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Abstract 

The WD40 scaffold protein Asc1 of Saccharomyces cerevisiae solely consists of a seven-

bladed β-propeller. The protein is highly conserved among eukaryotes and known as RACK1 

in metazoans and plants. Asc1p/RACK1 localizes to the head of the 40S ribosomal subunit 

next to the mRNA exit channel and associates with proteins of signal transduction pathways, 

thus providing a link between cellular signaling and mRNA translation. In this work, 

phosphorylation of Asc1p was analyzed by mass spectrometry resulting in the identification 

of at least three previously unknown phosphorylation sites. To analyze the impact of 

phosphorylation on the functionality of the protein, Asc1p phospho-site mutant strains were 

generated for these residues as well as for five additional phospho-sites known from high-

throughput studies. Phenotypic characterization showed slightly increased sensitivity to 

translation inhibitors caused by dephospho-mimics at T143 and Y250, whereas all other 

phospho-site mutations caused no obvious effect. However, phosphorylation of T12, T96, 

T99, and especially T143 is required to maintain the abundance of the ribosome binding-

compromised Asc1DEp variant. According to the reduced level of the dephospho-mimicking 

DE-variants, the respective mutant strains show asc1- phenotypes. Mutation of Y250 did not 

change Asc1DEp abundance, but also resulted in asc1- phenotypes with respect to 

cycloheximide sensitivity. Asc1p has a strong impact on the cellular phospho-proteome. A 

SILAC-based LC-MS approach identified almost 300 Asc1p-sensitive phosphorylation sites 

in more than 200 proteins that are mainly involved in translation and signal transduction but 

also other processes. Identification of Asc1p-associated proteins, including, for instance, 

mRNA-binding proteins, further corroborate Asc1p’s involvement in some of these processes, 

such as mRNA translation. With RNASeq analysis of polysome-derived mRNAs the 

translatomes of wild-type ASC1 and asc1- strains were compared. Among 73 transcripts of 

differentially translated mRNAs, the YHR177W mRNA is very remarkable as the total level of 

the transcript significantly increases, whereas its polysome association decreases. Yhr177wp 

belongs to the fungal-specific family of WOPR transcription factors that regulate morphology 

and development. Altogether, this work verifies the conserved β-propeller Asc1p as an 

important rack-wheel within cellular adaptation, signaling, and process coordination. 
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1. Introduction 

1.1 The WD40 protein Asc1 

Asc1p from S. cerevisiae is a highly conserved eukaryotic protein and belongs to the family 

of WD40 proteins (Chantrel et al., 1998). The WD40 domain belongs to the most abundant 

domain types in eukaryotes, while there are only few examples known for prokaryotic WD40 

proteins (Stirnimann et al., 2010). The WD40 domains provide scaffolds for the formation of 

protein complexes and harbor no intrinsic catalytic function known so far. In contrast to the 

Asc1 protein, which solely consists of a single WD40 domain, many members of this protein 

family contain additional catalytic or functional domains (Stirnimann et al., 2010). They 

function in various processes, such as signal transduction, RNA synthesis, vesicular 

trafficking, cytoskeleton assembly, cell division, and apoptosis (Li and Roberts, 2001).  

A WD40 domain comprises four to sixteen repeats of 44 to 66 amino acids with low sequence 

conservation. Each repeat typically contains a glycine-histidine dipeptide in its N-terminal 

region and ends with a tryptophan-aspartate (WD) motif (Figure 1A, Li and Roberts, 2001). 

The domain folds into a β-propeller with each blade consisting of a four-stranded anti-parallel 

β-sheet. The four β-strands of each sheet are referred to as A, B, C, and D starting with A 

from the center of the propeller (Figure 1B). Each WD40 repeat is part of two blades 

providing strand D of one β-sheet and strands A, B, and C of the following sheet. The 

narrower side of the propeller with the loops connecting strands D and A as well as B and C is 

defined as the top side (Figure 1C, Li and Roberts, 2001). Together with the bottom side and 

the circumference of the propeller the structure provides a large surface for protein-protein, 

protein-peptide, and protein-nucleic acid interactions (Stirnimann et al., 2010). The Asc1 

protein has the most common β-propeller structure with seven blades, which seems to have 

the optimal β-propeller-fold (Figure 1C, Murzin, 1992; Coyle et al., 2009). In S. cerevisiae, 

high-throughput interaction studies showed that the WD40 domain has a higher number of 

interactions than any other domain in yeast-two hybrid assays, which identify binary 

interactions, as well as in mass spectrometry/tandem affinity purification experiments, which 

include interactions within protein complexes (Stirnimann et al., 2010). The number of 

interactions found in the latter experiments tremendously exceeds the number found in the 

yeast-two hybrid assays implicating the participation of WD40 proteins in formation of large 

protein complexes (Stirnimann et al., 2010).  

WD40 proteins can also interact with each other as it was, for instance, described that the 

mammalian orthologue of Asc1p, RACK1, interacts with different Gβ isoforms (Chen et al., 

2004b) and forms homodimers (Thornton et al., 2004; Liu et al., 2007b). So far, there is no
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Figure 1. Structural features of the WD40 protein Asc1.  

(A) Amino acid sequence of the second WD40 repeat of Asc1p with the characteristic GH and WD 

motifs printed in bold. The arrows below the sequence labeled D, A, B, and C indicate the amino acids 

that form β-strands. (B) The structure formed by the second WD40 repeat of Asc1p. β-strands are 

colored according to the color-code used in A illustrating that each WD40 repeat is in general part of 

two blades. (C) Side- and bottom-view on the seven-bladed Asc1p colored with a gradient from blue 

(N-terminus) to red (C-terminus). Blades are labeled from 1 to 7 starting at the N-terminus. (D) Asc1p 

homodimer. Both Asc1 proteins are depicted with the same coloring as in C. Blades are labeled from 1 

to 7. The individual β-strands of blade 4 are labeled from 4βA to 4βD. Strands 4βB and 4βC of Asc1p 

depicted on the right-hand side were not resolved in the crystal structure and are therefore not present 

in the depicted structure. All structures were generated with the PyMOL Molecular Graphics System 

software based on the Protein Data Bank (PDB) files 3FRX and 3RFH (Coyle et al., 2009; Yatime et 

al., 2011). The figure is adapted from Stirnimann et al. (2010).  

 

experimental evidence that S. cerevisiae Asc1p forms homodimers in vivo, however, a crystal 

structure of a homodimer derived from recombinantly expressed Asc1p has been resolved 

(Figure 1D, Yatime et al., 2011). In contrast to other β-propeller dimers, the Asc1p 

homodimer shows an atypical structural rearrangement. While the overall shape of each 

Asc1p molecule is preserved in the dimer, the inner strands B and C of both blades number 

four are expelled from the propeller, and the outer strands A and D form a new blade that is 

shared by both molecules (Figure 1D, Yatime et al., 2011). In the dimer, the planes of the two 

Asc1 proteins are oriented in an almost 90° angle to each other. The homodimer does not only 

provide an extended surface for interactions, it also exposes regions of the protein that are 

otherwise not accessible in the monomeric form (Yatime et al., 2011). Homodimerization 

enables Asc1p/RACK1 to scaffold the interaction between two proteins that share the same 

binding site of the protein as it was shown for the mammalian NMDA receptor and the Fyn 

kinase that both bind to the first β-propeller blade of RACK1 (Thornton et al., 2004). 

Homodimerization of mammalian RACK1 also seems to be essential for the interaction 
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between the transcription factor subunit HIF-1α and the Elongin-C E3 ubiquitin ligase 

complex that both interact with the sixth WD40 repeat of RACK1 (Liu et al., 2007b). Results 

from the two studies hint to the same region of RACK1 for dimerization as it is observed for 

the crystal structure of the Asc1p homodimer.  

 

1.2 The Gβ-like protein Asc1 - an integral component of the ribosome 

There is only one WD40 repeat protein known in S. cerevisiae that is almost exclusively 

composed of a single β-propeller like Asc1p, namely the Gβ-protein Ste4 of the pheromone 

response pathway. Asc1p might act in an analogous way to Ste4p. The Ste4p-comprising 

heterotrimeric G-protein associates to the transmembrane receptor Ste2p of MATa or Ste3p of 

MATα cells, respectively. Binding of pheromones (α- or a-factor, respectively) to the 

receptors triggers their conformational change leading to guanosine diphosphate (GDP) to 

guanosine triphosphate (GTP) exchange at the Gα-subunit Gpa1p. The reduced affinity of the 

GTP-bound Gpa1p for the Gβγ-heterodimer (Ste4p and Ste18p) leads to its release from the 

complex. Gβγ subsequently activates downstream effectors that finally regulate gene 

expression for the induction of the mating process (pheromone signal transduction in yeast is 

reviewed in Bardwell, 2005). Asc1p has been described as the Gβ-subunit for the Gα-protein 

Gpa2 of a nutrient responsive cAMP/PKA signal transduction pathway that regulates 

pseudohyphal development in diploid and invasive/adhesive growth in haploid cells (Zeller et 

al., 2007). Like other Gβ-proteins, Asc1p binds to the GDP-bound form of Gpa2p and inhibits 

the GDP-GTP exchange on the Gα-protein (Zeller et al., 2007). A Gγ-subunit of this pathway 

has not been identified so far.  

The function of Asc1p cannot be exclusively restricted to a putative role as a Gβ. Asc1p 

belongs to the 5% most abundant proteins in the cell, and this extremely high abundance with 

approximately 6400 ppm outreaches by far the abundance of Gpa2p with about 60 ppm 

(PaxDb, Wang et al., 2012; Wang et al., 2015a). The first published study on S. cerevisiae 

Asc1p already described the localization of the protein to the 40S subunit of the ribosome 

based on its detection in the respective fractions of sucrose-gradients (Chantrel et al., 1998). 

Subsequent studies corroborated this initial finding, and nowadays the crystal structures of the 

Tetrahymena thermophila 40S subunit and the S. cerevisiae 80S ribosome are available 

providing information on the precise and highly conserved position of Asc1p at the head of 

the 40S subunit next to the mRNA exit tunnel (Figure 2, Sengupta et al., 2004; Ben-Shem et 

al., 2011; Rabl et al., 2011). Asc1p contacts the ribosomal proteins Rps3, Rps16, and Rps17 

and interacts with the phosphate backbone and nucleotide bases of helix 39 and helix 40 of 
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the 18S rRNA (Rabl et al., 2011). The binding of Asc1p to ribosomes even under high-salt 

concentrations (Link et al., 1999; Inada et al., 2002; Rabl et al., 2011) and its frequent 

presence in cryo-electron microscopy maps of ribosomes implicate that most or even all 

functional ribosomes in the cell contain Asc1p (Nilsson et al., 2004; Sengupta et al., 2004). 

Furthermore, the ASC1 gene shares typical characteristics of ribosomal genes: Like 66% of 

the S. cerevisiae ribosomal genes, the ASC1 open-reading frame is interrupted by an intron 

(Chantrel et al., 1998; Link et al., 1999). In contrast, only 3.7% of all S. cerevisiae genes 

contain an intron (Link et al., 1999). The 273 bp large intron is positioned at bp 538 to 810 of 

the 1233 bp large ASC1 gene and comprises the SNR24 gene that codes for the small 

nucleolar RNA (snoRNA) U24 (Chantrel et al., 1998). 

As part of a ribonucleoprotein complex, snoRNA U24 directs the site-specific 2’-O-ribose-

methlyation of 25S pre-ribosomal RNA (Kiss-László et al., 1996). Another feature that is 

shared by ASC1 and ribosomal genes is the regulation of its mRNA synthesis by the 

transcription factors Fhl1p and Ifh1p (Kleinschmidt et al., 2006). Despite the characterization 

of Asc1p as a core component of the 40S ribosomal subunit, a fraction of ribosome-unbound 

Asc1p seems to exist. It has been shown, for instance, that a ribosome-free form of Asc1p 

arises in the stationary growth phase of yeast cultures (Baum et al., 2004) indicating that 

growth conditions and extracellular signals could shift Asc1p to or away from the ribosome.

 

Figure 2. Localization of Asc1p to the ribosome. 
(A) Localization of Asc1p to the small 40S subunit of the ribosome next to the mRNA exit tunnel. 

Asc1p is colored using a gradient from blue (N-terminus) to red (C-terminus). The ribosomal proteins 

and rRNA of the small 40S subunit are colored in different shades of yellow and orange. The 

ribosomal proteins and rRNA of the large 60S subunit are colored in red. The mRNA exit tunnel is 

indicated with an asterisk. (B) Close-up and side-view on Asc1p bound to the ribosome. Asc1p 

interacts with ribosomal proteins Rps3, Rps16, and Rps17 as well as with rRNA. (C) Close-up and 

bottom-view of Asc1p bound to the ribosome. According to the definition for β-propeller proteins, 

Asc1p faces the ribosome with its top side. The β-propeller blades are labeled from 1 to 7. Figures 

were generated with the PyMOL Molecular Graphics System software on the basis of the PDB file 

4V88 (Ben-Shem et al., 2011). 
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This also implicates the presence of Asc1p-deficient ribosomes. A simultaneous interaction of 

Asc1p with the Gα Gpa2p and the ribosome was disfavored due to sterical hindrance (Coyle 

et al., 2009), however, Asc1p might dissociate from Gpa2p upon activation of its associated 

transmembrane receptor Gpr1p and translocate to the ribosome for signal transmission to the 

regulation of mRNA translation. The viability of yeast ASC1 deletion strains shows that the 

protein is not essential for mRNA translation in general. Instead, it might link signal 

transduction to the translational regulation of specific groups of transcripts (Rachfall et al., 

2013).  

 

1.3 Asc1p orthologues within the eukaryotic domain 

Asc1p is a highly conserved eukaryotic protein with about 52% amino acid sequence identity 

to RACK1 of Homo sapiens and 46% to RACK1A of Arabidopsis thaliana. Comparison of 

the crystal structures of the orthologous Asc1/RACK1 proteins of S. cerevisiae, H. sapiens, 

A. thaliana, and T. thermophila shows that this high conservation also manifests on the 

structural level (Ullah et al., 2008; Coyle et al., 2009; Rabl et al., 2011; Ruiz Carrillo et al., 

2012). Besides studies on S. cerevisiae Asc1p, there are plenty of publications on its 

orthologues from different organisms ranging from fungi, plants, and insects, to mammals. 

Alterations in Asc1p/RACK1 abundance affect fundamental cellular processes. Deletion of 

the S. cerevisiae ASC1 gene leads to diverse phenotypes comprising decreased resistance 

against cell wall stress, absence of haploid adhesive growth and diploid pseudohyphae 

formation, cold and heat sensitivity, and reduced respiratory activity (Gerbasi et al., 2004; 

Kleinschmidt et al., 2006; Valerius et al., 2007; Rachfall et al., 2013). In S. cerevisiae, Asc1p 

was first identified in a screen for gene deletions that suppress the growth defect of heme-

depleted ∆hap1 (∆cyp1) cells. Hap1p is a transcription factor required for oxygen and heme-

dependent regulation of gene expression. Thus, the protein was termed Absence of growth 

suppressor of Hap1p/Cyp1p 1 (Asc1p, Chantrel et al., 1998).  

 

1.3.1 Asc1p orthologues in other fungi  

Orthologues of Asc1p have been studied in various other ascomycetes besides S. cerevisiae. 

In the fission yeast Schizosaccharomyces pombe, the deletion of the ASC1 orthologous gene 

cpc2 increases heat sensitivity and delays cell division at G2 as well as conjugation and 

meiosis due to failure of the cells to accumulate in G1 upon respective stimuli (McLeod et al., 

2000). Homozygous ∆asc1 strains of the opportunistic human pathogen Candida albicans are 

deficient in hyphal development as well as adhesive and invasive growth (Kim et al., 2010; 
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Liu et al., 2010). The morphological transition of C. albicans between yeast, pseudohyphal, 

and hyphal growth forms is considered as essential for the pathogenicity of the fungus, and in 

line with this, ASC1 deleted C. albicans strains show strongly reduced pathogenicity in mouse 

infection models (Kim et al., 2010; Liu et al., 2010). In the filamentous fungi Aspergillus 

nidulans and Aspergillus fumigatus, the deletion of the cpcB gene results in defects in spore 

germination, hyphal growth, and asexual conidiospore formation. Moreover, in A. nidulans 

the sexual development of cleistothecia was impaired resulting in the absence of ascospore 

formation (Kong et al., 2013). Furthermore, A. fumigatus shows decreased virulence in an 

immunosuppressed mouse infection model for invasive aspergillosis (Cai et al., 2015).  

In the basidiomycete and opportunistic human pathogen Cryptococcus neoformans, absence 

of the Asc1p orthologue Gib2p results in reduced growth at 37 °C as well as decreased 

pathogenicity in a mouse infection model (Wang et al., 2014). Absence of the Asc1p 

orthologue Rak1 also decreases the virulence of the phytopathogenic basidiomycete Ustilago 

maydis. Deletion of rak1 leads to altered cell morphology, longer doubling times, and 

increased sensitivity to cell wall stress, and it impairs the mating process, which is a 

prerequisite for plant infection (Wang et al., 2011). 

 

1.3.2 Plant RACK1 proteins 

Plants can possess more than one RACK1 orthologue within their genome. A. thaliana harbors 

three versions named from A to C with approximately 87% identity and 94% similarity 

between RACK1A and each of the other two orthologues on the level of the amino acid 

sequence (Chen et al., 2006). All three genes are ubiquitously expressed in the plant, but 

differ in their expression levels with RACK1A showing the highest and RACK1C the lowest 

transcript level in various tissues (Chen et al., 2006; Guo and Chen, 2008). A loss-of-function 

rack1a mutant shows various developmental defects in seed germination, leaf production, and 

flowering as well as deregulation of hormone responses (Chen et al., 2006). In contrast, loss-

of-function rack1b and rack1c single as well as double mutants have no obvious 

developmental defects (Guo and Chen, 2008). Yet, double mutants lacking RACK1A in 

combination with one of the other two RACK1s show synergistic effects. Triple mutants 

missing all three orthologues mostly die off in soil, and those that survive cannot reach 

maturity. Overexpression of RACK1B or RACK1C rescues the phenotype of a rack1a mutant 

implicating that the three orthologues are functionally redundant and only differ in the 

regulation of their expression (Guo and Chen, 2008). The rice species Oryza sativa harbors 

two RACK1 orthologues that are named according to the nomenclature in A. thaliana 
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RACK1A and RACK1B (Zhang et al., 2014). Also in rice, the RACK1A gene appears to be 

more prominently expressed than the RACK1B gene (Zhang et al., 2014). It is involved in 

seed germination and regulation of responses to exogenous abscisic acid, a plant hormone, 

and to H2O2, a reactive oxygen species with cell damaging properties that also serves in 

cellular signal transduction (Zhang et al., 2014).  

 

1.3.3 RACK1 in metazoan organisms 

Like in plants, RACK1 is almost ubiquitously expressed in mammals (Chou et al., 1999; 

Ruan et al., 2012). Metazoan RACK1 is an essential gene, and its depletion leads to lethality 

in early stages of embryogenesis. Homozygous RACK1 depletion in mouse results in lethality 

at gastrulation (Volta et al., 2012). Heterozygous adult mice with only one functional RACK1 

copy in their genome show no differences in RACK1 levels and are viable. However, they 

show skin pigmentation defects, and eleven days old female pups show a transient growth 

defect (Volta et al., 2012). At this developmental stage, RACK1 expression differs in the 

brain and liver. In Xenopus laevis, knockdown of RACK1 results in impaired neuronal tube 

closure during embryogenesis through defects in convergent extension movements (Wehner 

et al., 2011). In zebrafish Danio rerio, rack1 knockdown also impairs convergent extension 

during gastrulation, as well as oriented cell division and cellular polarization (Li et al., 2011). 

Depletion of RACK1 through RNA interference in C. elegans leads to developmental-timing 

delay, and its loss-of-function is embryonic lethal (Jannot et al., 2011). In Drosophila 

melanogaster, RACK1 is required throughout embryogenesis, larval development, and pupal 

stages (Kadrmas et al., 2007). A small percentage of RACK1-deficient flies can reach 

adulthood, but they exhibit severe phenotypes including sterility (Kadrmas et al., 2007). 

Silencing of RACK1 expression specifically in adult flies using a thermosensitive Gal80 

system did not affect viability, but reduced the longevity by 20% (Majzoub et al., 2014). 

Furthermore, the depletion of RACK1 in cell lines of different organisms does not cause 

lethality indicating that RACK1 is only essential during embryogenesis (Majzoub et al., 

2014). A role of RACK1 already in the first stages of embryogenesis has been implicated 

from the high levels of RACK1 in ovaries as well as from the high abundance of maternally 

inherited RACK1 transcripts in zygotes of D. melanogaster (Vani et al., 1997; Kadrmas et al., 

2007). Analysis of mutant flies devoid of RACK1 in the germ line revealed that the 

maternally inherited transcripts are indeed essential for the earliest steps of embryogenesis, 

and their absence cannot be compensated by zygotic RACK1 (Kadrmas et al., 2007). 
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Beyond its pivotal role in development, RACK1 seems to play a decisive role in cancer 

proliferation. Aberrant RACK1 expression is associated with different cancer types and was 

proposed as a biomarker for diagnosis and prognosis of the clinical outcome of certain cancer 

types (Wang et al., 2009; Cao et al., 2010). The importance of RACK1 in cancer development 

seems to arise from its role in fundamental cellular processes, such as cell proliferation, cell 

spreading (Hermanto et al., 2002), angiogenesis (Berns et al., 2000), and apoptosis (Ruan et 

al., 2012). 

 

1.3.4 ASC1/RACK1 gene expression correlates with ribosomal genes 

Expression of plant RACK1 genes has been reported to be regulated by different hormones. 

Already the first described plant RACK1 was identified in a screen for auxin-responsive genes 

in the tobacco BY-2 cell line (Ishida et al., 1993). In A. thaliana, all three RACK1 genes are 

down-regulated in their expression levels upon treatment with abscisic acid (Guo et al., 2009), 

whereas O. sativa RACK1 mRNA levels increase in response to the same hormone as well as 

upon treatment with jasmonate and auxin (Nakashima et al., 2008). Guo and colleagues 

(2011) reported that about 80% of proteins that are co-regulated in their expression with 

RACK1 are ribosomal genes. Similarly, increased expression of ASC1 in S. cerevisiae upon 

growth with ethanol instead of glucose as sole carbon source correlated with increased 

expression of RPS26 that encodes a protein of the small ribosomal subunit (Kleinschmidt et 

al., 2006). Also, the biosynthesis of human RACK1 appears to correlate with that of other 

ribosomal genes. The association of human RACK1 mRNA to polysomes and thus its 

translation efficiency in response to serum deprivation as well as serum stimulation of human 

HeLa cells resembles that of the mRNA of the ribosomal protein RPS6 (Loreni et al., 2005). 

Additionally, the RACK1 mRNA shows similarity to other ribosomal mRNAs since it starts 

with an oligopyrimidine sequence and ends with a short 3’ untranslated region (3’UTR) of 

45 nucleotides (Loreni et al., 2005).  

 

1.3.5 Orthologous genes complement ASC1/RACK1-deficiency across phyla 

As outlined in the previous chapters, misregulation of ASC1/RACK1 expression ranging from 

deletion to its overexpression in various eukaryotic model organisms interferes with vital 

cellular events and manifests in diverse and severe phenotypes. It has been repeatedly shown 

that phenotypes caused by the deletion of ASC1/RACK1 can be complemented by the 

expression of orthologues from other species underlining its high conservation within the 

eukaryotic domain. Rat RACK1 expressed in S. cerevisiae ∆asc1 cells can be detected in 
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ribosomal fractions of sucrose density gradients, and it partially complements the temperature 

sensitivity phenotype of the ∆asc1 strain at 37 °C (Gerbasi et al., 2004). Likewise, expression 

of rat RACK1 in A. nidulans strains deficient in the ASC1/RACK1 orthologous cpcB gene 

complements defects in sexual development (Hoffmann et al., 2000). Expression of each of 

the three A. thaliana orthologues in a diploid S. cerevisiae ∆asc1/∆asc1 strain restored the 

ability of this strain to form pseudohyphae under nitrogen starvation (Guo et al., 2011), and 

the expression of U. maydis Rak1 can complement the adhesive growth defect of a haploid 

S. cerevisiae ∆asc1 strain (Wang et al., 2011). Expression of human RACK1 in X. laevis 

rescues the defect in neuronal tube closure during embryogenesis upon knockdown of the 

endogenous RACK1 mRNA (Wehner et al., 2011).  

 

1.4 Described molecular function of Asc1p/RACK1 

Many studies addressed the molecular function of Asc1p/RACK1 that underlies the described 

phenotypes (chapter 1.3). The following chapter will give an introduction to the current 

knowledge about the role of the protein in mRNA translation, signal transduction, and protein 

degradation. 

 

1.4.1 Asc1p/RACK1 as a regulator of mRNA translation 

The characterization of Asc1p as an integral component of the small ribosomal subunit 

suggests a role of the protein in the process of mRNA translation. S. cerevisiae Asc1p seems 

to act as a repressor of translation as shown in vitro (Gerbasi et al., 2004) and in vivo 

(Chiabudini et al., 2014). In vitro translation assays using cell extracts of ASC1 wild-type and 

deletion strains and different templates including capped as well as uncapped luciferase 

mRNA and wild-type poly(A) mRNA revealed increased translation of mRNAs in extracts 

from ∆asc1 cell. Yet, the addition of exogenous and recombinantly-expressed Asc1 protein to 

the samples of the in vitro translation assay did not repress translation activity (Gerbasi et al., 

2004). In vivo, absence of Asc1p reduces the average ribosome transit time, which is required 

by a ribosome for elongation and termination of translation, by approximately 30% 

(Chiabudini et al., 2014). In contrast, overexpression of RACK1 in the human hepatocellular 

carcinoma derived cell line Huh7 was reported to promote protein biosynthesis in metabolic 

labeling studies with [35S]-methionine (Ruan et al., 2012). Using firefly and renilla luciferase 

reporter constructs it could be further shown that RACK1 promotes cap-dependent as well as 

internal ribosomal entry site (IRES)-mediated translation (Ruan et al., 2012). A role of 

RACK1 as a promoter of translation was also deduced from experiments measuring the 
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translation of firefly luciferase reporter constructs within cell extracts from wild-type and 

Rack1-null thoracic muscle cells of D. melanogaster (Belozerov et al., 2014). Embryonic 

fibroblasts of heterozygous mice that carry only one functional copy of RACK1 showed 

reduced stimulation of translation through treatment with insulin or phorbol 12-myristate 

13-acetate (Volta et al., 2012). Liver cells of 16 days old RACK1 heterozygous mice show a 

mild accumulation of 80S ribosomes, and the skin pigmentation phenotype of the adult 

mutant mice resembles that of RPL24 mutants (Volta et al., 2012). In conclusion, 

Asc1p/RACK1 seems to fulfill both a repressive as well as a promoting effect on general 

mRNA translation rates depending on the cellular context.  

 

1.4.1.1 S. cerevisiae Asc1p in co-translational quality control and reading frame 

maintenance  

In S. cerevisiae, Asc1p was proposed to function in mRNA quality control systems that act 

during translation (Kuroha et al., 2010; Matsuda et al., 2014). Different surveillance systems 

recognize aberrant mRNAs and guide their degradation as well as the clearance of the 

corresponding peptide products (reviewed in Inada, 2013). Asc1p promotes nascent 

polypeptide-dependent translation arrest that is caused by translation of stretches of the basic 

amino acids lysine and arginine encoding sequences within reporter constructs (Kuroha et al., 

2010; Brandman et al., 2012; Matsuda et al., 2014). Stretches of lysine in the growing peptide 

chain can arise, for instance, when the mRNA lacks a stop codon and translation precedes to 

the poly(A) tail of the mRNA because AAA triplets code for lysine (Lu and Deutsch, 2008). 

The positively charged amino acids in the growing peptide chain appear to slow down 

translation through interaction with the negatively charged ribosome tunnel (Lu and Deutsch, 

2008). Asc1p further promotes translation arrest at repeats of rare or inefficiently decoded 

CGA triplets and is required for the co-translational degradation of arrested products via the 

proteasome and the endonucleolytic cleavage of the corresponding mRNA (Kuroha et al., 

2010; Letzring et al., 2013; Matsuda et al., 2014). Furthermore, deletion of ASC1 causes 

frameshifting at the inefficiently translated CGA repeats, a phenomenon that is not observed 

in wild-type cells (Wolf and Grayhack, 2015). The inefficient translation of the arginine 

encoding CGA triplet is due to wobble decoding and can be suppressed through expression of 

an anticodon mutated tRNA that perfectly pairs the CGA codon (Letzring et al., 2010). 

Frameshifting at CGA codons in ASC1 deleted cells becomes more favored with an increasing 

distance of the codon from the translational start site (Wolf and Grayhack, 2015). Also, the 

afore mentioned inhibitory effect of CGA codon repeats on translation depends on a certain 
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distance from the translation start site and seems to be independent of Asc1p when the CGA 

repeats lie close to the start codon. Pairs of two adjacent CGA codons are found in 26 genes 

of S. cerevisiae (Wolf and Grayhack, 2015), thus Asc1p might regulate the translation of 

specific mRNAs. Furthermore, Asc1p was reported to affect the translation in dependence of 

the 5’UTRs of mRNAs (Rachfall et al., 2013).  

 

1.4.1.2 Asc1p/RACK1-dependent phosphorylation of translation factors 

The molecular mechanisms underlying the effects of Asc1p/RACK1 on mRNA translation 

remain mostly elusive, but some studies provided starting points for a better understanding of 

its function in protein biosynthesis. Experiments with mammalian cell lines showed that 

RACK1 localizes activated protein kinase PKCβII to ribosomes leading to phosphorylation of 

the eukaryotic translation initiation factor 6 (eIF6). This modification induces the release of 

eIF6 from the 60S ribosomal subunit followed by 80S assembly and translation initiation 

(Ceci et al., 2003). RACK1-mediated positioning of activated PKCβII is also required for 

phosphorylation of eIF4E shown in human hepatocellular carcinoma cell lines (Ruan et al., 

2012). Blocking the interaction between PKCβII and RACK1 reduces stimulation of 

translation through activated PKC in human HeLa and Huh7 cell lines (Grosso et al., 2008; 

Ruan et al., 2012). An interaction of the A. thaliana RACK1 proteins with the two 

orthologous eIF6 proteins A and B was also shown and implicates a possible conservation of 

this mechanism among different eukaryotic species (Guo et al., 2011). Experiments with 

human embryonic kidney cell lines HEK293 showed that localization of c-Jun N-terminal 

kinase (JNK) to ribosomes is also mediated by RACK1 leading to phosphorylation of S205 

and S358 of the elongation factor eEF1A2, one of the two mammalian eEF1A isoforms 

(Gandin et al., 2013a). Phosphorylation of eEF1A2 at these residues enhances its association 

with newly synthesized and misfolded polypeptides at the ribosome and their degradation by 

the proteasome (Gandin et al., 2013a).  

So far, it has not been shown that S. cerevisiae Asc1p recruits kinases to the translational 

machinery. However, deletion of ASC1 results in increased phosphorylation of the translation 

initiation factors eIF2α and eIF4A as well as Ssz1p, a component of the ribosome-associated 

complex (Valerius et al., 2007). Absence of Asc1p affects phosphorylation of the α-subunit of 

eIF2 at residue S51 (Valerius et al., 2007). This modification inhibits eIF2B-mediated GDP to 

GTP exchange at eIF2, a prerequisite for binding of the methionine-carrying initiator tRNA 

(MettRNAi) to the initiation factor. Consequently, the amount of the ternary complex 

consisting of eIF2, GTP, and the MettRNAi decreases, when phosphorylation of eIF2α at S51 



Introduction 

13 
 

increases (Dever et al., 1992). Since the ternary complex is essential for translational 

initiation, overall cellular protein biosynthesis is reduced upon elevated eIF2α 

phosphorylation. The phosphorylation of eIF2α is thus a key factor in the regulation of 

mRNA translation, and it is mediated by the sensor kinase Gcn2p in response to nutrient 

availability (Dever et al., 1992). The kinase activity of Gcn2p is induced through binding of 

uncharged tRNAs that are tRNAs carrying no amino acid. The abundance of these uncharged 

tRNAs reflects the availability of amino acids (Wek et al., 1995). In ∆asc1 cells, 

phosphorylation of eIF2α at S51 is increased even without amino acid starvation induced by 

the histidine analogon 3-amino-1,2,4-triazole (3-AT, Valerius et al., 2007). In contrast, 

absence of Cpc2p in S. pombe leads to decreased phosphorylation of eIF2α in response to 

3-AT (Tarumoto et al., 2013). In line with this, the autophosphorylation and thus activation of 

the Gcn2p kinase at residue T818 is reduced in ∆cpc2 cells under the same conditions 

(Tarumoto et al., 2013). 

 

1.4.1.3 Asc1p/RACK1-dependent recruitment of proteins to the ribosome 

Besides a putative role of Asc1p as a docking site for kinases at the ribosome, it could also 

localize other proteins to the translational machinery. Asc1p was shown to interact with the 

c-subunit of eIF3, Nip1p (Kouba et al., 2012). Furthermore, the C. neoformans Asc1p 

orthologue Gib2p interacts with eIF4A (Wang et al., 2014), while Trypanosoma brucei 

RACK1 associates with eEF1A most likely in an indirect way (Regmi et al., 2008; Choudhury 

et al., 2011).  

Asc1p/RACK1 was further shown to associate with mRNA-binding proteins in different 

organisms. S. cerevisiae Asc1p interacts with the mRNA-binding protein Scp160 and is 

required for its localization to ribosomes (Baum et al., 2004; Coyle et al., 2009). Both proteins 

can associate with the translation inhibitor Eap1p and the GYF domain containing protein 

Smy2 to form the so-called SESA network (Scp160p, Eap1p, Smy2p, and Asc1p, Sezen et al., 

2009). The complex regulates the translation of the POM34 mRNA that encodes an integral 

membrane protein of the nuclear pore complex. Defects in spindle pole body duplication 

during cytokinesis promote the SESA-mediated inhibition of POM34 mRNA translation most 

likely to relieve an inhibitory effect of Pom34p on spindle pole body duplication (Sezen et al., 

2009).  

The Asc1p orthologue of S. pombe Cpc2p was further shown to interact with the mRNA-

binding protein Nrd1 (Jeong et al., 2004). Nrd1p represses Ste11p-regulated genes required 

for sexual differentiation and binds and stabilizes cdc4 mRNA that encodes a myosin light 
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chain crucial for cytokinesis (Tsukahara et al., 1998; Satoh et al., 2009). In neuronal 

mammalian cells, RACK1 binds to the mRNA-binding protein ZBP1 within transport 

ribonucleoprotein complexes (RNPs, Ceci et al., 2012). These RNA granules contain 

translationally repressed mRNAs that are transported along dendrites or axons, such as the 

ZBP1-bound β-actin mRNA. At their destination, RACK1 is required for the recruitment of 

the activated Src-kinase to the ZBP1/β-actin mRNA complex for phosphorylation of ZBP1 

and the subsequent release and translation of the β-actin mRNA (Ceci et al., 2012). 

Neuronal RNPs are related to processing bodies (P-bodies) and stress granules that contain 

untranslated mRNAs and increase in their abundance upon inhibition of translation initiation 

(Decker and Parker, 2012). P-bodies and stress granules form foci in the cytoplasm that are 

localized adjacent to each other or partially overlap, and RNPs seem to cycle between these 

two structures and actively translating polysomes. P-bodies contain proteins involved in 

mRNA decay and repression of translation (Decker and Parker, 2012). Deletion of ASC1 in 

S. cerevisiae prevents P-body formation in response to DNA replication stress induced by 

hydroxyurea, but not in response to osmotic stress/starvation (Tkach et al., 2012). In contrast 

to P-bodies, stress granules contain different translation initiation factors and components of 

the small ribosomal subunit including RACK1 as shown for human HeLa cells subjected to 

certain stress conditions (Arimoto et al., 2008; Decker and Parker, 2012). 

 

1.4.1.4 RACK1’s function in IRES-dependent translation initiation and the miRNA 

pathway 

In D. melanogaster and in the Huh7.5.1 cell line, silencing of RACK1 decreases propagation 

of viruses belonging to the Dicistroviridae and Flaviviridae families, respectively, due to the 

requirement of RACK1 for IRES-mediated mRNA translation (Majzoub et al., 2014). 

Notably, RACK1 is not required for the activity of those IRES containing mRNAs that bind 

to the 40S subunit and recruit the 60S subunit independently of translation initiation factors. 

The Hepatitis C virus of the Flaviviridae family causes liver disease and hepatocellular 

carcinoma. Thus, RACK1 might evolve as a target for antiviral therapy (Majzoub et al., 

2014). RACK1 has further been described to act in the miRNA pathway of C. elegans, 

H. sapiens, and A. thaliana, but its function seems to differ between the different organisms 

(Speth et al., 2013). In metazoans and plants, small non-coding micro RNAs (miRNAs) play 

an important role in gene silencing on a post-transcriptional level. The miRNA pathway 

requires processing of primary miRNAs by the Dicer enzyme into 20 to 22 nucleotide long 

miRNAs. These mature miRNAs assemble together with Argonaute (Ago) and other proteins 



Introduction 

15 
 

into a miRNA-induced silencing complex (miRISC). The complex is directed by the miRNA 

to target mRNAs via base-pairing to regulate their translation or degradation. Experiments 

with human hepatoma cell lines showed that RACK1 interacts with Ago2 and with the KH-

type splicing regulatory protein that associates with the Dicer complex and is involved in 

miRNA maturation (Otsuka et al., 2011). RACK1 was proposed to function after miRNA 

maturation and might be involved in the recruitment of mature miRNA to the RISC (Otsuka et 

al., 2011). Another study reported that RACK1 interacts with the miRISC in C. elegans and 

human HeLa cells (Jannot et al., 2011). The localization of the miRISC to translating 

ribosomes is reduced upon depletion of RACK1 resulting in increased expression of specific 

miRNA targets (Jannot et al., 2011). In A. thaliana, however, RACK1 deficiency reduces the 

level of a large number of primary miRNAs (Speth et al., 2013). RACK1 interacts with the 

protein SERRATE, a protein involved in miRNA production. RACK1 is further found in 

complex with the miRISC component AGO1 suggesting more than one role of plant RACK1 

in the miRNA pathway (Speth et al., 2013). 

  

1.4.2 Asc1p/RACK1 in signal transduction pathways 

Asc1p/RACK1 shows high similarity to the Gβ-subunits of heterotrimeric G-proteins and was 

described as the Gβ-subunit of the Gα-protein Gpa2. In other organisms, Asc1p/RACK1 has 

been associated to G-protein-mediated signaling as well, but it also functions in other signal 

transduction pathways and seems to provide a central hub to link different pathways. The 

following chapters describe the function of Asc1p/RACK1 in cellular signaling in different 

organisms ranging from yeast to man.  

 

1.4.2.1 Role of Asc1p and its orthologues in signal transduction pathways in fungi and 

plants 

Immunoprecipitation experiments showed that S. cerevisiae Asc1p can be co-purified with the 

adenylyl cyclase Cyr1p of the cAMP/PKA pathway and with the mitogen-activated protein 

kinase kinase kinase kinase (MAP4K) Ste20p (Figure 3, Zeller et al., 2007). Asc1p was 

suggested to inhibit the activity of both enzymes: Cyr1p catalyzes the formation of cAMP 

from ATP, and absence of Asc1p enhances cAMP levels upon stimulation of starved cells 

with glucose. Phosphorylation and activation of the Ste20p down-stream MAPK Kss1p is 

increased in ∆asc1 cells compared to wild-type cells (Zeller et al., 2007). Additionally, Asc1p 

was identified in complex with the MAPK Slt2p of the signal transduction pathway that 
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Figure 3. Model on Asc1p’s function in the cAMP/PKA pathway and MAPK cascades in 

S. cerevisiae.  
The cAMP/PKA pathway and the MAPK cascades regulating cell wall integrity, filamentous and 

adhesive growth, and mating are depicted. Proteins that were described to associate physically with 

Asc1p are colored in blue. Asc1p directly interacts with the Gα-protein Gpa2 of the cAMP/PKA 

pathway and was proposed to function as the Gβ-subunit. The interaction between Asc1p and Gpa2p 

inhibits the exchange of Gpa2p-bound GDP for GTP, a process that is required for activation of the 

Gα-protein. Asc1p was further co-purified with the adenylyl cyclase Cyr1p and the MAP4K Ste20p 

and seems to inhibit the function of these proteins within their respective pathways (Zeller et al., 

2007). Asc1p was also identified in complex with the MAPK Slt2p (Breitkreutz et al., 2010). The 

amount of phosphorylated MAPKs Slt2p and Kss1p is increased in ∆asc1 cells (Chasse et al., 2006; 

Zeller et al., 2007). The general overview of the signal transduction pathways is adapted from the 

KEGG database (http://www.genome.jp/kegg).  

 

regulates cell wall integrity (Breitkreutz et al., 2010). Phosphorylation of Slt2p was increased 

in ∆asc1 cells indicating enhanced activity of this pathway (Figure 3, Chasse et al., 2006).  

The Asc1p orthologue of the basidiomycete C. neoformans Gib2p was also identified to 

function as a Gβ-subunit through its interaction with the Gα-protein Gpa1 of the cAMP 
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signaling pathway (Gib2p = Gpa1-interacting β 2, Palmer et al., 2006). In C. neoformans, this 

pathway also regulates the production of virulence factors, such as the antioxidant melanin 

and the polysaccharide capsule (Alspaugh et al., 1997). In contrast to well characterized 

Gβ-subunits of heterotrimeric G-proteins, Asc1p/RACK1 lacks the N-terminal coiled-coil 

domain important for interaction with Gγ-subunits (Zeller et al., 2007; Ullah et al., 2008; Ruiz 

Carrillo et al., 2012). However, Gib2p of C. neoformans has been described to associate with 

the Gγ-proteins Gpg1 and Gpg2 (Palmer et al., 2006). It further binds to the GTPase Ras1p 

that in turn interacts with the adenylyl cyclase Cac1p (Wang et al., 2014). Whereas 

S. cerevisiae Asc1p was reported to inhibit the adenylyl cyclase Cyr1p, C. neoformans Gib2p 

positively affects cellular cAMP levels in Gpa1p-deficient cells possibly through reducing the 

inhibitory effect of Ras1p on Cac1p (Zeller et al., 2007; Wang et al., 2014).  

The three RACK1 proteins of A. thaliana have not been shown to function as Gβ themselves, 

but they were reported to interact with the Gβ-protein AGB1 (Cheng et al., 2015). 

Furthermore, they associate with all three components of the MAPK cascade and seem to 

provide a scaffold that links the heterotrimeric G-protein to MAPK signaling similar to Ste5p 

in the pheromone response pathway of S. cerevisiae. The plant G-protein/MAPK pathway is 

activated by pathogen secreted proteases placing RACK1 in the center of the plant innate 

immune response pathway (Cheng et al., 2015). 

 

1.4.2.2 Metazoan RACK1 - Receptor for activated C kinase 1  

Like the plant RACK1 proteins, mammalian RACK1 has also not been reported to function as 

a Gβ-subunit, but it interacts with the Gβ1γ1 dimer and to a lesser extent with the transducin 

heterotrimer Gαtβ1γ1 (Dell et al., 2002). Since RACK1 also interacts with other Gβγ isoforms, 

it might act as a general Gβγ binding partner (Chen et al., 2005). The association of RACK1 

with Gβγ inhibits a specific subset of their signaling functions, whereas Gα-mediated signal 

transduction seems to be RACK1-independent (Chen et al., 2004a).  

Metazoan RACK1 has been described as an interaction partner for a plethora of different 

signaling molecules comprising proteins localized in the cytoplasm and nucleus as well as the 

cytosolic domains of membrane-spanning receptors (Li and Xie, 2015). RACK1 has versatile 

effects on its interaction partners. Similar to yeast Asc1p, RACK1 can influence the 

enzymatic activity of its associated proteins. Furthermore, it was shown that RACK1 shuttles 

proteins to their cellular target sites and that it scaffolds protein-protein interactions, thereby 

also interconnecting different signal transduction pathways and forming a central regulatory 

node (Gandin et al., 2013b; Li and Xie, 2015). 
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Already some of the earliest studies on mammalian RACK1 characterized the protein as an 

interaction partner of activated PKCβII resulting in its name receptor for activated C kinase 1 

(Ron et al., 1994; Ron et al., 1995). RACK1 stabilizes the activated conformation of the 

kinase and shuttles the protein to its cellular target sites (Ron et al., 1994; Ron et al., 1999). 

The function of RACK1 has also been linked to other PKC isoforms (Liedtke et al., 2002; 

Robles et al., 2010; Wehner et al., 2011). The function of RACK1 in neuronal tube closure 

during embryogenesis of X. laevis, for example, seems to involve its interaction with PKCδ1 

in a membrane localized complex with PTK7, a regulator of planar cell polarity, and 

Dishevelled, a protein involved in Wnt signaling (Wehner et al., 2011). 

 

1.4.2.3 RACK1 links insulin-like growth factor 1 with integrin signaling 

In contrast to its effect on PKC, RACK1 acts as an inhibitor of the Src family of non-receptor 

protein tyrosine kinases specifically of Src and Fyn (Chang et al., 1998; Yaka et al., 2002; 

Adams et al., 2011). The release of Src from RACK1 involves the direct interaction of 

RACK1 with the insulin-like growth factor 1 receptor (IGF-1R), a transmembrane receptor 

and regulator of cell adhesion, migration, growth, and survival (Kiely et al., 2005). Upon 

activation of IGF-1R through its ligand IGF-1, RACK1 simultaneously binds the 

 

Figure 4. Model on the function of RACK1 in IGF-1R signal transduction. 
In the absence of IGF-1, RACK1 recruits PP2A and phosphorylated FAK to the IGF-1R receptor. 

Upon binding of IGF-1 to its receptor, PP2A is released through binding of β1 integrin to the same 

binding site on RACK1, and its activity is reduced. Furthermore, RACK1 is phosphorylated by the 

c-Abl kinase at Y52, a modification that stabilizes the interaction between RACK1 and FAK. This 

interaction is required for the dephosphorylation of FAK at Y397. These signaling events contribute to 

the induction of cell proliferation and migration. The model is adapted from Kiely et al. (2006 and 

2009). Proteins that interact physically with RACK1 are colored in blue.  
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transmembrane receptor β1 integrin, another regulator of adhesion, thereby integrating signals 

coming from the two distinct receptors (Figure 4, Hermanto et al., 2002). Activation of 

IGF-1R leads to release of Src from RACK1 as well as to dissociation of protein phosphatase 

PP2A from the complex (Kiely et al., 2005; Kiely et al., 2006). Since PP2A and β1 integrin 

bind to WD40 repeats 1 to 4 of RACK1 in a mutually exclusive manner, association of the 

membrane receptor with RACK1 excludes PP2A from the complex, thereby reducing its 

phosphatase activity (Kiely et al., 2006).  

Stimulation of serum starved cells with IGF-1 further stabilizes the interaction of RACK1 

with focal adhesion kinase (FAK) through phosphorylation of RACK1 at Y52 by the c-Abl 

kinase (Figure 4, Kiely et al., 2009). The interaction between RACK1 and FAK is essential 

for the IGF-1 triggered dephosphorylation of FAK at Y397 that is considered as a prerequisite 

for the induction of cell migration (Kiely et al., 2009). RACK1 also recruits other proteins to 

IGF-1R, such as phosphorylated Shc, IRS-1, IRS-2, and Shp2 (Kiely et al., 2005), and serves 

as an adaptor protein for Kindlin-3 and other signaling proteins at the β1 integrin receptor 

(Feng et al., 2012).  

 

1.4.2.4 Metazoan RACK1 in cAMP/PKA signaling 

While the inhibitory effect of RACK1 on the Src kinase is relieved through IGF-1R signaling, 

RACK1-dependent inhibition of the non-receptor protein tyrosine kinase Fyn is abrogated 

through PKA induced dissociation of the two proteins (Figure 5, Yaka et al., 2003). Like yeast 

Asc1p, mammalian RACK1 is thus linked to cAMP/PKA signaling. In neurons of the 

hippocampus, RACK1 homodimers localize the Fyn kinase to the N-methyl D-aspartate 

(NMDA) receptor via interaction with the cytoplasmic tail of the receptor subunit NR2B 

(Yaka et al., 2002; Thornton et al., 2004). As long as RACK1 is part of the complex, 

phosphorylation of NR2B through Fyn is blocked (Yaka et al., 2002). However, upon 

activation of the cAMP/PKA pathway, RACK1 is released, and the phosphorylation takes 

place leading to increased ion channel activity of the NMDA receptor (Yaka et al., 2003). 

Homodimer formation of RACK1 enables its simultaneous association with NR2B and Fyn 

since both share the same interaction surface on RACK1 (amino acids 35 to 48, Thornton et 

al., 2004). This complex seems to be stabilized at membranes through interaction of RACK1 

with the Gβ-subunit of a PAC1 receptor-associated heterotrimeric G-protein (Figure 5). 

Binding of pituitary adenylyl cyclase-activating polypeptide (PACAP) to the PAC1 receptor 

leads to dissociation of the G-protein that might in turn promote the release of RACK1 from 

the complex and thus Fyn-mediated phosphorylation of NR2B (Thornton et al., 2004). 
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Activation of the cAMP pathway further leads to translocation of RACK1 to the nucleus, a 

process that depends on its direct interaction with the scaffold protein 14-3-3ζ (Figure 5, 

Neasta et al., 2012). In the nucleus, RACK1 localizes to the promoter region IV of the brain-

derived neurotrophic factor (BDNF) gene possibly through interaction with histones H3 and 

H4 (Yaka et al., 2003; He et al., 2010). RACK1 induces the dissociation of the transcription 

repressor methyl-CpG-binding protein 2 (MeCP2) from the promoter leading to histone H4 

acetylation, chromatin remodeling and thus exon-specific transcription of BDNF (He et al., 

2010).  

 

Figure 5. Model on the involvement of RACK1 in G-protein and cAMP/PKA signaling in 

metazoan.   

RACK1 inhibits the phosphorylation of the NMDAR subunit NR2B by the Fyn kinase, thereby 

causing decreased channel activity. The interaction of RACK1 with Gβ might stabilize the complex at 

the membrane. Binding of PACAP to the G-protein-coupled receptor (GPCR) PAC1 causes 

dissociation of the heterotrimeric G-protein into the Gα-subunit and the Gβγ-heterodimer. This might 

destabilize the complex of NR2B, Fyn, and RACK1 releasing the inhibitory effect of RACK1 on Fyn 

and enabling phosphorylation of NR2B by the kinase and increasing the channels activity. RACK1’s 

simultaneous interaction with NR2B and Fyn requires its homodimerization. Also, the activation of 

the adenylyl cyclase (AC) with forskolin and the subsequent activation of the cAMP/PKA pathway 

promote the release of RACK1 from the complex with NR2B and Fyn and thus the phosphorylation of 

NR2B. The figure is adapted from Yaka et al. (2003), Thornton et al. (2004), and the KEGG database. 

Additionally, the interaction between RACK1 and the scaffold protein 14-3-3ζ is depicted, which is 

promoted by active PKA and leads to translocation of RACK1 into the nucleus where it activates 

BDNF transcription (Neasta et al., 2012). RACK1 seems to promote cAMP hydrolysis through 

increasing the affinity between PDE4D5 and its substrate (Bird et al., 2010). RACK1-interacting 

proteins are colored in blue.  
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RACK1 is further involved in the cAMP pathway through its interaction with the 

phosphodiesterase (PDE) isoform PDE4D5 (Figure 5, Yarwood et al., 1999). PDEs provide 

the only mechanism to decrease cellular cAMP levels through catalyzing the hydrolysis of the

molecule to 5’AMP. The PDE4 class of cyclic nucleotide PDEs is responsible for the majority 

of cAMP hydrolysis and is encoded by four genes (A-D) in mammals that provide different 

isoforms through alternative splicing (Conti et al., 2003). In membrane fractions of HEK293 

cells, the interaction between RACK1 and PDE4D5 increases the affinity of the enzyme for 

its substrate cAMP (Bird et al., 2010).   

 

1.4.2.5 Function of RACK1 in MAPK cascades 

Like S. cerevisiae Asc1p, RACK1 was not only identified to be involved in the cAMP/PKA 

pathway, but also to interact with components of MAPK cascades (Figure 6). The MAPK 

p38b binds RACK1 in cells of D. melanogaster thoracic muscles and of the S2 cell line, and 

in vitro experiments showed that the MAPK can phosphorylate RACK1 (Belozerov et al., 

2014). Genetic studies revealed that p38b and RACK1 act in a common pathway for the 

regulation of protein aggregate formation, life-span, and locomotor functions. In aging and 

stressed cells, activation of p38b seems to shift RACK1 to a ribosome-unbound pool that 

might repress translation (Belozerov et al., 2014).  

In another study on the differentiation of bone marrow-derived macrophages (BMMs) into 

bone-resorbing osteoclasts, RACK1 was shown to act upstream in the p38 pathway as well 

(Lin et al., 2015). Mammalian RACK1 is required for p38 activation in response to the 

cytokine receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to induce 

osteoclast formation (Lin et al., 2015). The RANKL receptor RANK associates at its 

cytoplasmic domain with the E3 ubiquitin ligase tumor necrosis factor receptor-associated 

factor 6 (TRAF6, Galibert et al., 1998). Upon ligand binding to RANK, TRAF6 recruits the 

MAP3K transforming growth factor-β activated kinase 1 (TAK1) via an adaptor protein to the 

complex leading to its activation (Mizukami et al., 2002). Experiments with HEK293T cells 

revealed that RACK1 mediates the interaction between the TRAF6-TAK1 complex and the 

p38-targeting MAP2K MKK6 that results in increased downstream phosphorylation of p38 

(Figure 6, Lin et al., 2015). Treatment of bone marrow-derived macrophages with RANKL 

increases RACK1 levels depending on a putative binding site for the transcription factor and 

target of RANK-signaling NF-κB within the promoter of the RACK1 gene (GNB2L1). 

Overexpression of RACK1 induces p38 phosphorylation and enhances RANKL-
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Figure 6. Model on the involvement of RACK1 in MAPK cascades in metazoans. 
The model illustrates the interaction of RACK1 with components of different MAPK cascades and 

related processes. Proteins that have been reported to interact directly or are in a multisubunit complex 

with RACK1 are colored in blue. Dashed lines indicate up-stream or downstream signal transduction 

or regulatory processes that are not illustrated in more detail. References for interactions are as 

follows: MEKK4 (Arimoto et al., 2008), MKK7 (Guo et al., 2013), TRAF6 and TAK1 (Lin et al., 

2015), MKK6 (Lin et al., 2015; Wang et al., 2015b), MKK3 (Wang et al., 2015b), JNK and activated 

PKC (López-Bergami et al., 2005), components of ERK1/2 pathway (Vomastek et al., 2007). The 

components of the ERK pathway were shown to interact with RACK1 in a complex. The illustrated 

interaction between ERK and RACK1 is representative for the whole pathway and might occur 

indirectly (Vomastek et al., 2007). RACK1 also promotes activity of MKK3 that is not illustrated in 

the figure due to space limitations. The inhibitory effect of RACK1 on the degradation of N-terminally 

phosphorylated c-Jun was reported by Zhang et al. (2012) and is described in detail in the following 

chapter 1.4.3. Localization of RACK1 to stress granules was shown by Arimoto et al. (2008). The 

overview of MAPK pathways is adapted from the KEGG database, and the model for RACK1’s 

involvement in these pathways is partially adapted from Gandin et al. (2013b).  

 

stimulated osteoclast formation. Accordingly, reduction of RACK1 levels reduces 

phosphorylation of p38 as well as RANKL-stimulated osteoclastogenesis (Lin et al., 2015). 

Furthermore, ectopic expression of RACK1 in mouse L929 fibroblastoma cells suppresses 

tumor necrosis factor α (TNFα)-induced cell death most likely due to increased activation of

p38 (Wang et al., 2015b). An interaction between RACK1 and the upstream kinases MKK3 

and MKK6 of p38 was shown in L929 and human 293T cells. Upon TNFα stimulation, 
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enhanced binding of RACK1 activates the kinases leading to increased phosphorylation of 

p38 (Wang et al., 2015b).  

Using the Cercopithecus aethiops origin-defective SV-40 (COS7) cell line derived from 

African green monkey kidney cells as well as HEK293 cells, RACK1 was further shown to 

interact with the MAP3K MEKK4/MTK1 that phosphorylates the upstream MAP2Ks MKK3 

and MKK6 of p38 (Figure 6, Arimoto et al., 2008). In the absence of stress, RACK1 seems to 

tether at least two MEKK4 proteins together in an inactive state, thereby facilitating their 

activation as soon as the cells become exposed to certain stress conditions (Arimoto et al., 

2008). MEKK4 additionally phosphorylates the MAP2K MKK4 that targets p38 as well but 

also the MAPK JNK.  

The JNK signal transduction pathway is further affected by RACK1 through its direct 

interaction with the MAPK (López-Bergami et al., 2005). In HEK293T cells, PKC becomes 

activated upon treatment with UV irradiation or phorbol esters and is localized to JNK by 

RACK1 (Figure 6). PKC phosphorylates the MAPK at S129 and thereby augments the 

activation of JNK through its upstream MAP2Ks MKK4 and MKK7 (López-Bergami et al., 

2005). Thus, RACK1 functions as a node to link PKC with MAPK signal transduction. 

RACK1 was further described to directly interact with the upstream MAP2K MKK7 of JNK 

in human hepatocellular carcinoma (HCC) and HEK293T cells (Guo et al., 2013). The 

interaction between RACK1 and MKK7 promotes the interaction of MKK7 with its upstream 

MAP3Ks increasing its activity and leading to elevated JNK phosphorylation (Figure 6). 

Expression of RACK1 is elevated in clinical HCC tissue and could promote tumor growth 

through its interaction with MKK7 (Guo et al., 2013).  

In the mouse fibroblast cell line NIH 3T3, RACK1 was shown to associate with central 

components of the MAPK/extracellular signal-regulated kinase (ERK) pathway: The 

MAP3Ks RafB and Raf1, the MAP2Ks MEK1 and MEK2, the MAPKs ERK1/2, and the 

scaffolding protein MP1 (Figure 6, Vomastek et al., 2007). The ERK pathway responses to 

extracellular substances, such as growth factors and hormones, and regulates cell proliferation 

and differentiation (Rubinfeld and Seger, 2005). RACK1 seems to link the pathway to 

integrin- and FAK-activation and is required for the localization of ERK to focal adhesions, 

where it promotes cell motility through the disassembly of these structures (Vomastek et al., 

2007). 

The afore mentioned experiments performed by Arimoto and colleagues (2008) revealed 

interaction between RACK1 and the MAP3K MEKK4, but neither confirmed the interaction 

of RACK1 with the MAP2Ks MKK3, MKK6, and MKK7, nor with the MAPKs JNK, ERK, 
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and p38. The occasionally inconsistent observations for RACK1’s interaction with 

components of MAPK cascades could be either due to a context-specific interaction of 

RACK1 with other proteins that varies between different model organisms or cell lines or it 

might be caused by differences in the experimental design. Interaction between RACK1 and 

p38b, for instance, was shown for D. melanogaster and was specific for a kinase-dead mutant 

of the MAPK (Belozerov et al., 2014). 

 

1.4.2.6 RACK1 as a central hub linking signal transduction with translation 

Most studies on RACK1’s function in signal transduction pathways do not take the ribosome-

association of the protein into consideration. Yet, as described before (see also chapter 

1.4.1.2), RACK1 was identified as an anchoring protein for the kinases PKCβII and JNK at 

the translational machinery (Ceci et al., 2003; Ruan et al., 2012; Gandin et al., 2013a). 

Furthermore, activation of the MAP3K MEKK4 is regulated through sequestration of RACK1 

into stress granules as part of stalled pre-initiation complexes (Figure 6, Arimoto et al., 2008). 

Certain stress conditions, such as hypoxia, induce granule formation and consequently reduce 

the amount of cytoplasmic RACK1 that is available for interaction with MEKK4 leading to 

decreased basal activity of the kinase and inhibition of its activation (Arimoto et al., 2008). 

Thus, besides mediating crosstalk between different signal transduction pathways, RACK1 

also links these pathways to the translational machinery.  

 

1.4.3 RACK1-dependent protein-degradation of its interaction partners 

Mammalian RACK1 regulates the degradation of certain interaction partners, such as the 

hypoxia-inducible factor 1 (HIF-1, Liu et al., 2007a). The transcription factor HIF-1 is a 

heterodimer consisting of an α- and β-subunit (Wang and Semenza, 1995). Under low oxygen 

conditions, HIF-1 induces the transcription of genes that encode proteins required for 

increased oxygen delivery and adaptation of the energy metabolism (Semenza et al., 1994; 

Iyer et al., 1998). Hypoxia can be caused by environmental conditions, such as increased 

altitude or by defects in blood supply to tissues. Furthermore, hypoxia plays an essential role 

during embryogenesis (Iyer et al., 1998), and it also occurs frequently within cancer tissues 

where it causes HIF-1-dependent changes in cell-proliferation, angiogenesis, and cellular 

metabolism (reviewed in Semenza, 2013). 

An important mechanism for the regulation of HIF-1 is the degradation of its α-subunit in 

response to oxygen concentrations. Under normoxia, prolyl-hydroxylases modify HIF-1α and 

thereby generate a binding site for the von Hippel-Lindau protein/Elongin-B/C E3 ubiquitin 
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ligase that ubiquitinates the transcription factor subunit and thus triggers its proteasomal 

degradation. This pathway depends on cellular oxygen-levels and the metabolic status of the 

cell because the prolyl-hydroxylases use oxygen as well as α-ketoglutarate as substrates for 

the modification of HIF-1α (Ivan et al., 2001; Jaakkola et al., 2001; Semenza, 2013).  

The stability of HIF-1α is also regulated by an oxygen-independent pathway that involves 

RACK1 (Figure 7, Liu et al., 2007a). The β-propeller protein competes with the heat shock 

protein HSP90 and the septin-family member SEPT9_v1 for binding to the transcription 

factor subunit. Whereas binding of HSP90 and SEPT9_v1 stabilizes HIF-1α, RACK1 can 

recruit the Elongin-B/C E3 ubiquitin ligase to HIF-1α via direct interaction with Elongin-C 

and thereby promotes ubiquitination and degradation of the transcription factor subunit (Liu et 

al., 2007a; Amir et al., 2009). The formation of this complex most likely relies on the 

homodimerization of RACK1 because both HIF-1α as well as the E3 ubiquitin ligase interact 

with the sixth WD40 repeat of the β-propeller protein and thus only the RACK1 dimer can 

bind both proteins simultaneously (Liu et al., 2007b). Homodimerization of RACK1 involves 

the fourth WD40 repeat of each monomer and seems to require phosphorylation of its amino

 

Figure 7. Model on RACK1-dependent and oxygen-independent regulation of HIF-1α stability. 

RACK1 competes with HSP90 (or SEPT9_v1, not depicted here) for binding to the transcription 

factor subunit HIF-1α. HSP90-bound HIF-1α is stabilized and can interact with the HIF-1β-subunit 

and coactivators, such as p300, to induce transcription of target genes. RACK1-bound HIF-1α, 

however, is recruited to Elongin-C that is part of an E3 ubiquitin ligase complex further consisting of 

Elongin-B (B), Cullin-2 (CUL2), ring box protein 1 (RBX1), and an E2 ubiquitin-conjugating enzyme 

(E2). HIF-1α is ubiquitinated and degraded by the 26S proteasome. Localization to the ligase complex 

is achieved through interaction of RACK1 with Elongin-C. Since both Elongin-C and HIF-1α interact 

with the sixth WD40 repeat of RACK1, dimerization of the β-propeller protein is required. 

Dimerization involves the fourth WD40 repeat of each RACK1 monomer and seems to require 

phosphorylation at S146. RACK1 can interact with the catalytic subunit CnA of the phosphatase 

calcineurin (CnB is the regulatory subunit). Calcineurin can become activated by cyclosporine and 

subsequently dephosphorylates RACK1 leading to dissociation of the dimer and thus stabilization of 

HIF-1α. The figure is modified from Liu et al. (2007a and b). RACK1-interacting proteins are 

highlighted in blue. 
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acid residue S146 within the fourth WD40 repeat. RACK1 dimer formation is impaired by 

activation of the calcium induced protein phosphatase 2B (PP2B) that is also known as 

calcineurin. The interaction of RACK1 with the catalytic subunit of calcineurin seems to 

result in dephosphorylation of RACK1 at S146 leading to dissociation of the RACK1 

homodimer into its subunits and thus stabilization of HIF-1α (Figure 7, Liu et al., 2007b).  

RACK1 further induces the degradation of the pro-apoptotic factor BimEL (Zhang et al., 

2008). In the presence of the apoptosis inducing agent paclitaxel, RACK1 mediates the 

interaction of BimEL with an E3 ligase complex resulting in ubiquitination and proteasome-

dependent degradation of BimEL. Through this mechanism, RACK1 could protect cancer 

cells from apoptosis leading to tumor growth and drug resistance (Zhang et al., 2008).  

RACK1 also affects the stability of the transcription factor c-Jun by regulating its interaction 

with Fbw7, the subunit for substrate recognition of an E3 ubiquitin ligase complex (Zhang et 

al., 2012a). The N-terminus of the oncoprotein c-Jun can be phosphorylated by the JNKs 

leading to increased transcriptional activity, DNA-binding, and stability of the protein 

(Papavassiliou et al., 1995; Musti et al., 1997; Weiss et al., 2003). RACK1 mediates 

interaction between N-terminally non-phosphorylated c-Jun and Fbw7 leading to 

ubiquitination and subsequent degradation of the transcription factor (Figure 6, Zhang et al., 

2012a). N-terminally phosphorylated c-Jun, however, is excluded from this complex and thus 

stabilized. This further strengthens the role of the β-propeller protein in tumorigenesis (Zhang 

et al., 2012a).  

In summary, RACK1 regulates degradation of HIF-1α, BimEL, and c-Jun through mediating 

their interaction with the respective ubiquitin E3 ligase complex. Furthermore, RACK1 

induces ubiquitination and subsequent degradation of the pro-apoptotic protein Fem1b and the 

∆Np63 transcription factor (Fomenkov et al., 2004; Subauste et al., 2009). Thus, RACK1 is 

an important regulator in post-translational regulation of protein expression for specific target 

proteins.  

 

1.5 Regulation of Asc1p/RACK1 through post-translational modifications 

Asc1p and its orthologues from higher eukaryotes interact with a plethora of different 

proteins. The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) 

currently lists 85 proteins as physical interaction partners of Asc1p. Some of these 

interactions might occur indirectly via the formation of multi-protein complexes, but others 

were shown to involve direct protein-protein interaction, such as the binding of the eIF3c-

subunit Nip1p to Asc1p (Kouba et al., 2012). The Nip1p interaction site lies within WD 
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repeats 1 to 3 of Asc1p (Kouba et al., 2012). Based on the crystal structure of the yeast 80S 

ribosome, the sites within Asc1p that interact with the ribosomal proteins Rps3, Rps16, and 

Rps17, (which are not included in the SGD list of interaction partners), can be precisely 

mapped (Figure 2, Ben-Shem et al., 2011). The interaction surface of the Asc1p homodimer is 

formed by blades 3 and 4 of each Asc1p monomer according to the crystal structure of the 

recombinantly expressed protein (Yatime et al., 2011). For all other direct physical interaction 

partners of Asc1p, the binding site has not been confined so far.  

In contrast, the binding sites of many metazoan RACK1 interaction partners have been 

mapped to more specific regions within the β-propeller protein. Figure 8 illustrates that many 

RACK1 interaction partners share identical or overlapping binding sites. Many of these 

interactions might not interfere with each other because they are, for example, organism-, 

tissue-, or cell line-specific. However, considering all the additional interaction partners that 

are not included in Figure 8, the RACK1 interaction network demands multiple regulatory 

mechanisms, such as the post-translational modification of RACK1 itself. The previous 

chapters of this work already provided examples for a regulation of mammalian RACK1 

through phosphorylation: The interaction of RACK1 with the focal adhesion kinase becomes 

stabilized through phosphorylation at Y52 by the c-Abl kinase (Kiely et al., 2009). 

Phosphorylation of mammalian RACK1 at Y246 by the Src kinase increases the interaction of 

RACK1 and Src and leads to inhibition of the kinase activity (Chang et al., 2001; Chang et al., 

2002). Phosphorylation of RACK1 at Y246 further regulates its interaction with the mRNA-

binding protein ZBP1 within transport RNPs in neurons, thereby modulating the translation of 

β-actin mRNA (Ceci et al., 2012). Moreover, RACK1 interacts with the MAPK p38b of 

D. melanogaster and was shown to be phosphorylated by this kinase at serine and/or 

threonine residues in vitro (Belozerov et al., 2014). In mammals, RACK1 is phosphorylated 

by the AMP-activated protein kinase at T50 during the onset of autophagy. This modification 

enhances the binding of RACK1 to components of the Atg14L-Beclin 1-Vps34-Vps15 

complex and consequently promotes the formation of the autophagy initiation complex (Zhao 

et al., 2015).  

Although the β-propeller structure is described as a rigid scaffold for protein-protein 

interactions, the Asc1/RACK1 proteins of S. cerevisiae, H. sapiens, and A. thaliana were 

shown to harbor flexible regions (Tarnowski et al., 2014). Thus, phosphorylation of 

Asc1p/RACK1 might contribute to define the shape of the β-propeller. RACK1 was reported 

to form homodimers in dependence on its phosphorylation at S146 (Liu et al., 2007b), and 

according to the crystal structure of the S. cerevisiae homodimer this interaction requires
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Figure 8. RACK1 interaction map. 

The crystal structure of human RACK1 is shown bound to the 40S subunit of the ribosome. The 

WD40 repeats are differentially colored, and the remaining parts of RACK1 depicted in gray. The 

surrounding text indicates the localization of RACK1 binding sites for the named interactions partners. 

Besides interaction partners of metazoan RACK1, also O. sativa (Os) RACK1 and S. cerevisiae Asc1p 

binding partners (printed in bold) are included. The depiction of human RACK1 at the ribosome was 

modeled using the PyMOL Molecular Graphics System software on the basis of the PDB files with the 

IDs 4AOW (Ruiz Carrillo et al., 2012) and 4V88 (Ben-Shem et al., 2011) through merging the 

structure of human RACK1 on the position of S. cerevisiae Asc1p at the ribosome. 

 

drastic rearrangement of the fourth blade of each monomer that might be indeed regulated 

through phosphorylation in this region (Figure 1D, Yatime et al., 2011). Phosphorylation of 

RACK1 might further regulate the turn-over of the protein as it was shown for A. thaliana 

RACK1A, which seems to be destabilized through phosphorylation by the with no lysine 

kinase 8 (WNK8, Urano et al., 2015). 

So far, there exists no knowledge about a regulation of S. cerevisiae Asc1p through post-

translational modifications, although high-throughput studies identified several amino acid 

residues as targets for modifications. These modifications comprise phosphorylation (Chi et 

al., 2007; Smolka et al., 2007; Gnad et al., 2009; Holt et al., 2009), acetylation (Henriksen et 

al., 2012), succinylation (Weinert et al., 2013), and ubiquitination (Swaney et al., 2013). The 

high degree of conservation of Asc1p on the level of the amino acid sequence might also 

apply to some of its post-translational modifications. Thus, the analysis of post-translational 

modifications of S. cerevisiae Asc1p might reveal conserved features for the regulation of this 

protein.  
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1.6 Aim of this study 

The exposed position of the Asc1p β-propeller at the head of the 40S ribosomal subunit and 

its association with components of signal transduction pathways suggest a function of Asc1p 

as an interface between the translation machinery and signal transduction. To understand the 

function of Asc1p in cellular signaling in S. cerevisiae, the Asc1p-dependent phospho-

proteome was analyzed. Since mammalian RACK1 has been reported to recruit kinases to the 

ribosome for the phosphorylation of translation initiation factors, a special interest was on 

proteins that contain Asc1p-sensitive phosphorylation sites and are associated to translational 

or co-translational processes. Due to its known association with components of 

phosphorylation cascades, Asc1p itself might be a target of regulatory phosphorylation. Here, 

phosphorylation sites of Asc1p should be identified, and their impact on Asc1p’s function 

should be characterized through their targeted mutation to phosphorylation- or 

dephosphorylation-mimicking residues. Phenotypic characterization of the resulting mutant 

strains should reveal their importance for the functional integrity of Asc1p. Phosphorylation 

of Asc1p might support signal transduction to the translational machinery to adjust it to 

cellular needs. This might result in translational regulation of specific transcripts. Here, 

mRNAs were sought for that show Asc1p-dependent translation efficiency. Altogether, the 

results aim to contribute to characterize the function of the ribosomal protein Asc1 in signal 

transduction.  
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2. Materials and Methods 

For centrifugation of samples in 1.5 ml or 2 ml reaction tubes, the Hereaus Instruments 

Biofuge Pico or Hereaus Fresco 17 centrifuge (Thermo Scientific, Waltham, Massachusetts, 

USA) was used, and for centrifugation of samples in 15 ml or 50 ml tubes the eppendorf 

Centrifuge 5804 R (Eppendorf Wesseling-Berzdorf, Germany), the Sigma Laboratory 

Centrifuge 4K15C (Sigma Laborzentrifugen, Osterode am Harz, Germany) or the Hettich 

Rotanta/RP centrifuge (Hettich Lab Technology, Tuttlingen, Germany) was used. For picture 

editing, Adobe Photoshop Elements 5.0/CS4/CS6 and Adobe Illustrator CS4/CS6 (Adobe 

Systems, San Jose, California, USA) were applied, and for text and data processing Microsoft 

Word and Excel 2007/2010 (Microsoft, Redmond, Washington, USA) were used. 

 

2.1 S. cerevisiae strains 

The S. cerevisiae strains used in this study are of the Σ1278b background (except for the 

BY4741-derived strain Y02724) and are listed in Table 1. For the generation of the 

asc1SNR24 (asc1-) strain that expresses the snoRNA U24, but not Asc1p, a 

loxP::URA3::loxP cassette was integrated in exon 1 of ASC1 resulting in strain RH3514. The 

marker was rescued through transient transformation with plasmid-borne Cre-recombinase 

(pSH63). This resulted in strain RH3510 with a loxP site in the ASC1 ORF that abrogates the 

translation of the mRNA (Rachfall et al., 2013). An ASC1 deletion strain (RH3500) was 

generated through replacement of the ASC1 gene by a loxP::URA3::loxP cassette amplified 

from plasmid pUG72 according to Gueldener et al. (2002). This strain was used for 

subsequent construction of strains with the ASC1 cDNA (RH3502) or with ASC1 alleles 

carrying different codon-exchanges within the open-reading frame at the ASC1 locus 

(RH3529-RH3551, RH3574-RH3598, RH3611-RH3616, RH3623-RH3631, RH3635-

RH3644). The transformation cassettes contained the ASC1 cDNA or the mutated asc1-alleles 

carrying flanking regions identical to those of the ASC1 gene for homologues recombination. 

Transformants were selected for their resistance against 5-fluoroorotic acid (0.5 mg/ml; 

#R0812, Thermo Fisher Scientific, Waltham, Massachusetts, USA) due to the loss of the 

URA3 marker gene. Successful transformations were verified by polymerase chain reaction 

(PCR, chapter 2.5.1), Southern blot (chapter 2.7), and sequencing of the ASC1 locus (chapter 

2.5.5). Arginine or arginine and lysine auxotrophic strains RH3487-RH3494 and RH3570-

RH3573 derived from strains RH2817 (ASC1), RH3263 (∆asc1), and RH3549 (asc1DE), 

respectively. The ARG4 and LYS1 genes were also replaced with the recyclable 

loxP::URA3::loxP marker according to Gueldener et al. (2002). As already described, strains 
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were transiently transformed with plasmid-borne Cre-recombinase (pSH63) for marker 

rescue. An arginine and lysine auxotrophic asc1- strain was generated from the ASC1 

∆arg4::loxP ∆lys1::loxP strain RH3493 as already described: Integration of a 

loxP::URA3::loxP cassette in exon 1 of ASC1 resulted in strain RH3519. The subsequent 

rescue of the URA3-marker led to strain RH3520 with a loxP site in exon 1 of ASC1. For 

metabolic labeling with isotopically-labeled arginine and lysine, ∆arg4::loxP ∆lys1::loxP 

strains RH3493 (ASC1), RH3520 (asc1-), RH3573 (asc1DE), and RH3494 (∆asc1) were used. 

Strains RH3431 (ASC1), RH3504 (asc1-), and RH3599 (asc1DE) expressing C-terminally 

3xmyc-tagged Flo8p were constructed by transformation of RH2817, RH3510, and RH3549 

according to Janke et al. (2004). HBN1 and YHB1 deletion strains were generated as described 

for the ARG4 and LYS1 deletion strains using the loxP::kanMX::loxP cassette that was 

amplified from plasmid pUG6 according to Gueldener et al. (2002).  

 

Table 1. S. cerevisiae strains used in this study. 

For Asc1p phospho-site mutations that caused Asc1p-dependent phenotypes at least two independent 

clones with individual strain designations were generated and tested. The only exception is the 

asc1T12ADE strain.  

Strains Genotype Reference 

RH2817 MATα, ura3-52, trp1::hisG Valerius et al., 2007 

RH3263 
MATα, ura3-52, trp1::hisG, leu2::hisG, 

Δasc1::LEU2 
Valerius et al., 2007 

Y02724 
BY4741, Mat a, his3∆1, ∆leu2, ∆met15, 

∆ura3, YLR113w(HOG1)::kanMX4 
Euroscarf collection 

RH3461 MATα, ura3-52, trp1::hisG, ∆yhb1::kanMX Rachfall et al., 2013 

RH3462 
MATα, ura3-52, trp1::hisG, leu2::hisG, 

Δasc1::LEU2, ∆yhb1::kanMX 
Rachfall et al., 2013 

RH3463 MATα, ura3-52, trp1::hisG, ∆hbn1::kanMX Rachfall et al., 2013 

RH3464 
MATα, ura3-52, trp1::hisG, leu2::hisG, 

Δasc1::LEU2, ∆hbn1::kanMX 
Rachfall et al., 2013 

RH3497 
MATα, ura3-52, trp1::hisG, ∆hbn1::loxP, 

∆yhb1::kanMX 
Rachfall et al., 2013 

RH3498 
MATα, ura3-52, trp1::hisG, leu2::hisG, 

Δasc1::LEU2, ∆hbn1::loxP, ∆yhb1::kanMX 
Rachfall et al., 2013 

RH3514 
MATα, ura3-52, trp1::hisG,  

asc1-URA3 SNR24 

Nadine Smolinski 

(Master thesis, MT) 

RH3510 MATα, ura3-52, trp1::hisG, asc1-loxP SNR24 Rachfall et al., 2013 

RH3500 MATα, ura3-52, trp1::hisG, ∆asc1::URA3 
Sabrina Sander 

(MT)  

RH3502 MATα, ura3-52, trp1::hisG, ASC1 ∆snr24 
Sabrina Sander 

(MT) 

RH3549, RH3550 MATα, ura3-52, trp1::hisG, asc1DE This work 
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Table 1. continued 1.  

Strains Genotype Reference 

RH3431 MATα, ura3-52, trp1::hisG, FLO8-myc3-TRP1 Rachfall et al., 2013 

RH3504 
MATα, ura3-52, trp1::hisG, asc1-loxP SNR24, 

FLO8-myc3-TRP1 
Rachfall et al., 2013 

RH3599 
MATα, ura3-52, trp1::hisG, asc1DE, 

FLO8-myc3-TRP1 
This work 

RH3623, RH3624, RH3625 MATα, ura3-52, trp1::hisG, asc1T12A This work 

RH3626 MATα, ura3-52, trp1::hisG, asc1T12ADE This work 

RH3627, RH3628, RH3629 MATα, ura3-52, trp1::hisG, asc1T12E This work 

RH3630, RH3631 MATα, ura3-52, trp1::hisG, asc1T12EDE This work 

RH3529 MATα, ura3-52, trp1::hisG, asc1T96A This work 

RH3539, RH3540, RH3541 MATα, ura3-52, trp1::hisG, asc1T96ADE This work 

RH3530 MATα, ura3-52, trp1::hisG, asc1T96E This work 

RH3542, RH3543 MATα, ura3-52, trp1::hisG, asc1T96EDE This work 

RH3531 MATα, ura3-52, trp1::hisG, asc1T99A This work 

RH3611, RH3612, RH3613 MATα, ura3-52, trp1::hisG, asc1T99ADE This work 

RH3532 MATα, ura3-52, trp1::hisG, asc1T99E This work 

RH3614, RH3615, RH3616 MATα, ura3-52, trp1::hisG, asc1T99EDE This work 

RH3533, RH3534, RH3535 MATα, ura3-52, trp1::hisG, asc1T96A T99A This work 

RH3544, RH3545, RH3546 MATα, ura3-52, trp1::hisG, asc1T96A T99ADE This work 

RH3537, RH3538 MATα, ura3-52, trp1::hisG, asc1T96E T99E This work 

RH3547, RH3548 MATα, ura3-52, trp1::hisG, asc1T96E T99EDE This work 

RH3551 MATα, ura3-52, trp1::hisG, asc1S120A This work 

RH3575, RH3576, RH3577 MATα, ura3-52, trp1::hisG, asc1S120ADE This work 

RH3574 MATα, ura3-52, trp1::hisG, asc1S120E This work 

RH3578, RH3579, RH3580 MATα, ura3-52, trp1::hisG, asc1T143A This work 

RH3584, RH3585, RH3586 MATα, ura3-52, trp1::hisG, asc1T143ADE This work 

RH3581, RH3582, RH3583 MATα, ura3-52, trp1::hisG, asc1T143E This work 

RH3587, RH3588, RH3589 MATα, ura3-52, trp1::hisG, asc1T143EDE This work 

RH3590 MATα, ura3-52, trp1::hisG, asc1S166A This work 

RH3638 MATα, ura3-52, trp1::hisG, asc1S166ADE This work 

RH3591, RH3592 MATα, ura3-52, trp1::hisG, asc1S166E This work 

RH3593, RH3594, RH3595 MATα, ura3-52, trp1::hisG, asc1T168A This work 

RH3639, RH3640 MATα, ura3-52, trp1::hisG, asc1T168ADE This work 

RH3596, RH3597 MATα, ura3-52, trp1::hisG, asc1T168E This work 

RH3598 MATα, ura3-52, trp1::hisG, asc1S166A T168A This work 

RH3536 MATα, ura3-52, trp1::hisG, asc1S166A T168ADE This work 
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Table 1. continued 2.  

Strains Genotype Reference 

RH3637 MATα, ura3-52, trp1::hisG, asc1S166E T168E This work 

RH3635, RH3641, RH3642 MATα, ura3-52, trp1::hisG, asc1Y250F This work 

RH3636, RH3643, RH3644 MATα, ura3-52, trp1::hisG, asc1Y250FDE This work 

RH3487 MATα, ura3-52, trp1::hisG, ∆arg4::URA3 This work 

RH3488 
MATα, ura3-52, trp1::hisG, leu2::hisG,  

∆asc1::LEU2, ∆arg4::URA3 
This work 

RH3489 MATα, ura3-52, trp1::hisG, ∆arg4::loxP This work 

RH3490 
MATα, ura3-52, trp1::hisG, leu2::hisG,  

∆asc1::LEU2, ∆arg4::loxP 
This work 

RH3491 
MATα, ura3-52, trp1::hisG, ∆arg4::loxP, 

∆lys1::URA3 
This work 

RH3492 
MATα, ura3-52, trp1::hisG, leu2::hisG,  

∆asc1::LEU2, ∆arg4::loxP, ∆lys1::URA3 
This work 

RH3493 
MATα, ura3-52, trp1::hisG, ∆arg4::loxP, 

∆lys1::loxP This work 

RH3494 
MATα, ura3-52, trp1::hisG, leu2::hisG,  

∆asc1::LEU2, ∆arg4::loxP, ∆lys1::loxP 
This work 

RH3519 
MATα, ura3-52, trp1::hisG, asc1-URA3 

SNR24, ∆arg4::loxP, ∆lys1::loxP 
This work 

RH3520 
MATα, ura3-52, trp1::hisG, asc1-loxP SNR24 

∆arg4::loxP, ∆lys1::loxP, 
This work 

RH3570 
MATα, ura3-52, trp1::hisG, asc1DE, 

∆arg4::URA3 
This work 

RH3571 
MATα, ura3-52, trp1::hisG, asc1DE, 

∆arg4::loxP 
This work 

RH3572 
MATα, ura3-52, trp1::hisG, asc1DE, 

∆arg4::loxP, ∆lys1::URA3 
This work 

RH3573 
MATα, ura3-52, trp1::hisG, asc1DE, 

∆arg4::loxP, ∆lys1::loxP 
This work 

 

2.2 Bacterial strain and plasmids 

The Escherichia coli strain DH5α was used for preparation and amplification of plasmids (F’, 

Φ80ΔlacZΔM15, Δ(lacZYA-argF), U169, deoR, recA1, endA1, hsdR17, (rK
-, mK

+), supE44, 

λ-, thi-1, gyrA96, relA1, Woodcock et al., 1989). Plasmids used in this study are listed in 

Table 2. Plasmid pME4132 was obtained through insertion of the ASC1 gene into the pASK-

IBA7plus plasmid (#2-1406-000, IBA, Göttingen, Germany) according to the provided 

instructions. To generate plasmid pME4135, Strep-ASC1 was amplified from plasmid 

pME4132 introducing NheI and HindIII restriction sites for cloning into plasmid pME2835 

(Nadine Smolinski, personal communication). Plasmid pME4041 was generated through 
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Table 2. Plasmids used in this study. 

Plasmid Description Reference 

pUG6 AmpR, pUCori, loxP::kanMX::loxP 
Gueldener et al., 

2002 

pUG72 AmpR, pUCori, loxP::URA3::loxP 
Gueldener et al., 

2002 

pSH63 AmpR, pUCori, GAL1Prom, cre, TRP1, CEN/ARS 
Gueldener et al., 

2002 

pME2791 pRS416GAL1 with GAL1Prom, CYC1Term, URA3, CEN/ARS Mumberg et al., 1994 

pME2787 pRS426MET25 with MET25Prom CYC1Term, URA3, 2µm  Mumberg et al., 1994 

pME2624 MET25Prom, CYC1Term, URA3, 2 µm, ASC1 our collection 

pME2834 MET25Prom, CYC1Term, URA3, 2 µm, ASC1-Strep our collection 

pME2835 MET25Prom, CYC1Term, URA3, 2 µm, Strep-ASC1 our collection 

pME4041 MET25Prom, CYC1Term, URA3, 2 µm, ASC1-cDNA-Strep N. Smolinski (MT) 

pASK-

IBA7plus 
AmpR, f1 origin, Strep-tag, Xa cleavage site IBA 

pME4132 AmpR, f1 origin, Strep-Xa-ASC1 N. Smolinski 

pME4135 MET25Prom, CYC1Term, URA3, 2 µm, Strep-Xa-ASC1 N. Smolinski 

pME4364 pME2791 with ASC1 and its native promoter (+500bp) This work 

pME4384 
pME2791 with asc1R38DK40E (asc1DE) and the native 

ASC1 promoter  
This work 

pME4124 pME2834 with asc1DE This work 

pME4365 pME4364 with asc1T12A This work 

pME4366 pME4364 with asc1T12ADE This work 

pME4367 pME4364 with asc1T12E This work 

pME4368 pME4364 with asc1T12EDE This work 

pME4025 pME2834 with asc1T96A N. Smolinski (MT) 

pME4370 pME2834 with asc1T96ADE This work 

pME4026 pME2834 with asc1T96E N. Smolinski (MT) 

pME4371 pME2834 with asc1T96EDE This work 

pME4027 pME2834 with asc1T99A N. Smolinski (MT) 

pME4372 pME2834 with asc1T99ADE This work 

pME4028 pME2834 with asc1T99E N. Smolinski (MT) 

pME4373 pME2834 with asc1T99EDE This work 

pME4029 pME2834 with asc1T96A T99A N. Smolinski (MT) 

pME4125 pME2834 with asc1T96A T99ADE This work 

pME4030 pME2834 with asc1T96E T99E N. Smolinski (MT) 

pME4374 pME2834 with asc1T96E T99EDE This work 

pME4120 pME2834 with asc1S120A This work 
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Table 2. continued. 

Plasmid Description Reference 

pME4375 pME4364 with asc1S120ADE This work 

pME4121 pME2834 with asc1S120E This work 

pME4122 pME2834 with asc1T143A This work 

pME4376 pME2834 with asc1T143ADE This work 

pME4123 pME2834 with asc1T143E This work 

pME4377 pME2834 with asc1T143EDE This work 

pME4031 pME2834 with asc1S166A N. Smolinski (MT) 

pME4126 pME2834 with asc1S166ADE This work 

pME4032 pME2834 with asc1S166E N. Smolinski (MT) 

pME4033 pME2834 with asc1T168A N. Smolinski (MT) 

pME4127 pME2834 with asc1T168ADE This work 

pME4034 pME2834 with asc1T168E N. Smolinski (MT) 

pME4035 pME2834 with asc1S166A T168A N. Smolinski (MT) 

pME4128 pME2834 with asc1S166A T168ADE This work 

pME4036 pME2834 with asc1S166E T168E N. Smolinski (MT) 

pME4378 pME2834 with asc1Y250F This work 

pME4379 pME2834 with asc1Y250FDE This work 

 

amplification of the ASC1 cDNA from a cDNA sample generated from total RNA of the 

Σ1278b strain background with primers introducing BamHI and HindIII restriction sites for 

cloning into pME2834. The QuantiTect Reverse Transcription Kit (#205314, Qiagen, Hilden 

Germany) was used to generate cDNA from RNA according to the manufacturer’s 

instructions. Plasmid pME4364 is derived from pME2791 and carries ASC1 under control of 

its native promoter (+500 bp upstream of ASC1 according to Kleinschmidt et al., 2006). ASC1 

was amplified together with its promoter from genomic S. cerevisiae DNA using 

oligonucleotides that introduced SacI and HindIII restriction sites for subsequent cloning. 

Plasmids carrying asc1 with codon exchanges were constructed via a two-step PCR strategy: 

In the first reaction, the codon exchange(s) was (or were) introduced within an 

oligonucleotide bearing the mutated codon(s) in its center using an ASC1 wild-type carrying 

plasmid (pME2834 or pME4364) as template. Codons for serine and threonine were 

exchanged for GCT (alanine) as well as for GAA (glutamate). The tyrosine 250 codon was 

substituted for TTT (phenylalanine), and R38 and K40 encoding triplets were exchanged for 

GAT (aspartate) and GAA (glutamate), respectively. In the second PCR, the complete asc1 

allele was amplified flanked by the respective restriction sites for cloning into the parent 
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vector (BamHI and HindIII restriction sites for cloning into pME2834 and SacI and HindIII 

restriction sites for cloning into pME2791). For construction of plasmids pME4025-

pME4036, pME4120-pME4128, pME4370-pME4374, and pME4376-pME4379, plasmid 

pME2834 served as the parent vector. Plasmid pME4364 served as parent vector for plasmids 

pME4365-pME4368, pME4375, and pME4384. For plasmids comprising the R38D K40E 

codon exchanges in combination with a phosphorylation site mutation, either plasmid 

pME4124 or pME4384 was used as template for PCR. Alternatively, plasmids that already 

comprised a phosphorylation site mutation were used as template for PCR, and the R38D 

K40E mutation was introduced by using oligonucleotides bearing the respective codon 

exchanges. The plasmids served as templates for amplification of transformation cassettes to 

integrate the mutated asc1 alleles into the yeast genome at the original ASC1 locus. 

 

2.3 Cultivation of microorganisms 

2.3.1 Cultivation of S. cerevisiae 

Yeast strains were cultivated in liquid yeast nitrogen base medium (1.5 g/l YNB without 

amino acids and ammonium sulfate, 5 g/l ammonium sulfate, 2% glucose) containing the 

respective supplements or in yeast extract peptone dextrose (YEPD) medium (2% peptone, 

1% yeast extract, 2% glucose). Solid media contained 2% agar. Minimal with vitamins (MV) 

plates contained 1.45 g/l YNB, 5.52 g/l ammonium sulfate, 10% succinic acid, 8.5 g/l KOH, 

and their pH was adjusted to 7.2. If required, 20 mg/l L-arginine, 20 mg/l L-histidine, 30 mg/l 

L-isoleucine, 30 mg/l L-lysine HCl, 20 mg/l L-methionine, 20 mg/l uracil, 

20 mg/l L-tryptophan, 30 mg/l L-leucine, 150 mg/l L-valine. Yeast cells were grown at 30 °C. 

Liquid cultures were grown on a shaker (100 to 120 rpm), and growth of the cells was 

monitored by measuring the optical density (OD) at 600 nm. The inoculation volumes (Vi in 

ml) for main cultures were calculated with the formula:  

Vi = (Vm · ODm · e-μ · Δt)/ODp 

(Vm = volume of main-culture in ml, ODm = desired optical density of the main-culture after 

Δt, ODp = OD of pre-culture, μ = growth rate (0.29/h for YNB), Δt = growth time in h). 

For SILAC-based phospho-proteome and proteome analyses cultures were grown in liquid 

YNB medium supplemented with 100 mg/l differentially labeled L-arginine as well as 

L-lysine. Stable isotopically labeled amino acids were purchased from Silantes (München, 

Germany): 13C6-L-arginine HCl (#201203902), 13C6
15N4-L-arginine HCl (#201603902), 

4,4,5,5-D4-L-lysine HCl (#211103912), and 13C6
15N2-L-lysine HCl (#211603902). Further 

experiment-specific growth conditions are described in the respective paragraphs. 
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2.3.2 Cultivation of E. coli 

E. coli cells were cultivated in liquid lysogeny broth (LB) medium (1% bacto-trypton, 0.5% 

yeast extract, 1% NaCl) on a shaker at 37 °C. The medium was supplemented with 100 µg/ml 

ampicillin for selective conditions. Solid media contained 2% agar.  

 

2.4 Isolation of DNA from microorganisms 

2.4.1 Plasmid DNA purification from E. coli 

For isolation of plasmid DNA, E. coli cells of a 5 ml LB overnight culture were harvested by 

centrifugation, and plasmids were isolated using the QIAprep Spin Miniprep Kit (#27106, 

Qiagen) according to the manufacturer’s instructions. Plasmid DNA was eluted with 50 µl 

H2O. For PCR, samples were diluted 1:50.   

 

2.4.2 Isolation of DNA from S. cerevisiae cells  

Cells were grown overnight in 10 ml YEPD medium to saturation and harvested by 

centrifugation for isolation of DNA according to Hoffman and Winston (1987). The pellet 

was washed in 0.5 ml H2O and transferred to a 1.5 ml reaction tube. After spinning down the 

cells, the supernatant was discarded, and the cells were disrupted in the presence of 0.2 ml 

lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA), 

0.2 ml phenol/chloroform/isoamylalcohol (25:24:1, #A156.2, Carl Roth, Karlsruhe, 

Germany), and an equal volume of glass beads. Cells were disrupted through vigorous 

shaking for 3 to 4 min. 0.2 ml H2O were added, and the samples were centrifuged for 5 min at 

13,000 rpm. The upper aqueous layer was transferred into a new tube, and 0.2 ml phenol/ 

chloroform/isoamylalcohol were added. The samples were mixed and centrifuged again at 

13,000 rpm for 5 min. The upper phase was transferred into a new tube, and DNA was 

precipitated by adding 1 ml ethanol followed by incubation at -20 °C for several minutes or 

overnight. Samples were centrifuged for 5 min at 13,000 rpm followed by removal of the 

supernatant. Pellets were dissolved in 0.4 ml H2O, and 3 µl RNase A (10 mg/ml) was added. 

After 5 to 10 min incubation at 37 °C, 10 µl 4 M ammonium acetate and 1 ml ethanol were 

added, and samples were stored again at -20 °C to precipitate the DNA. After centrifugation 

at 13,000 rpm for 5 min, the supernatant was discarded, pellets were dried and then dissolved 

in 40 to 50 µl H2O. For PCR, samples were diluted 1:50. 
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2.5 Cloning techniques 

2.5.1 Polymerase chain reaction 

DNA was amplified with the polymerase chain reaction (PCR; Saiki et al., 1985). Depending 

on the subsequent application of the amplified PCR product, different thermostable 

polymerases were used. For amplification of DNA for site-specific homologous 

recombination and plasmid construction, Phusion High-Fidelity DNA polymerase (#F-530L, 

Thermo Scientific), Pfu DNA polymerase (#EP0572, Thermo Scientific), or KOD DNA 

polymerase (#71085-3, Merck, Darmstadt, Germany) were used. For analytic PCRs, Taq 

DNA polymerase (#EP0404, Thermo Scientific) was applied. 10 mM dNTP stocks (prepared 

from dATP #0141, dCTP #R0151, dGTP #R0161, dTTP #0171, Thermo Scientific) were used 

accept for the KOD polymerase that was provided together with a 2 mM dNTP stock 

(molarities apply to each dNTP). All polymerases were used according to the manufacturer’s 

instructions. Primers for PCR were ordered from Eurofins MWG Operon (Ebersberg, 

Germany).  

 

2.5.2 Restriction digestion of DNA 

DNA was digested with type II restriction endonucleases for plasmid construction or prior to 

Southern blot analysis. Restriction enzymes and their respective buffers (Thermo Scientific or 

New England Biolabs, Frankfurt am Main, Germany) were used according to the 

manufacturer’s instructions in a sample volume of 20 µl. Samples were incubated for at least 

1.5 h at 30 °C or 37 °C depending on the applied enzyme. 

 

2.5.3 Agarose gel electrophoresis 

DNA samples were mixed with 0.1 volumes of 10x loading dye (10% Ficoll 400, 200 mM 

EDTA, pH 8.0, 0.2% bromphenol blue sodium salt, 0.2% xylene cyanol) and applied on 

horizontal 1% agarose gels containing 0.5 μg/ml ethidium bromide. Agarose gels were 

prepared in TAE buffer (40 mM Tris base, 20 mM acetic acid, 1 mM EDTA) that was also 

used as running buffer for separation of the DNA fragments through electrophoresis at 90 V 

(Voytas, 2001). For visualization of DNA, the Gel iX20 Imager (Intas Science Imaging 

Instruments, Göttingen, Germany) was used. If applicable, DNA bands were excised from 

agarose gels under UV light, and DNA was extracted using the QIAquick Gel Extraction Kit 

(#28706, Qiagen) according to the manufacturer’s instructions. 
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2.5.4 Ligation of DNA fragments 

For ligation of linear DNA fragments, 1 µl T4 DNA ligase (#EL0016, Thermo Scientific), 

3 µl of the supplied 10x ligation buffer (Thermo Scientific), 50 to 100 ng digested plasmid 

DNA, and a 2- to 5-fold excess of insert DNA (or H2O for controls) were mixed and filled up 

to 30 µl with H2O. The sample was incubated for at least 10 min at room temperature and 

subsequently used for transformation of E. coli cells. 

 

2.5.5 DNA sequencing  

100 ng of DNA and 5 pmol of the appropriate primer in a volume of 5 µl were submitted to 

the Göttingen Genomics Laboratory (G2L, Göttingen, Germany) for sequencing. 

Alternatively, sequencing of DNA was carried out by the SEQLAB Sequencing Laboratories 

Göttingen GmbH (Göttingen, Germany): 18 ng per 100 bp of template DNA was used for 

linear DNA fragments and 720 to 1200 ng for sequencing of plasmids in a final volume of 

12 µl. 3 µl of the primer (10 pmol/μl) were added.   

 

2.6 Transformation procedures 

2.6.1 Transformation of E. coli 

Preparation of competent E. coli cells was performed according to Inoue et al. (1990). For the 

preparation of competent E. coli cells, 250 ml super optimal broth (SOB) medium (2% 

tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4) 

were inoculated with DH5α cells and incubated at 20 °C at 200 rpm for at least 24 h until an 

OD600 of 0.6 was reached. Cells were placed on ice for 10 min and harvested by 

centrifugation at 2,500 x g for 10 min at 4 °C. The pellet was resuspended in 80 ml 

transformation buffer (TB, 10 mM HEPES, 15 mM CaCl2, 250 mM KCl, pH 6.7, 55 mM 

MnCl2). Cells were stored on ice for 10 min and centrifuged at 2,500 x g for 10 min at 4 °C. 

The pellet was gently resuspended in 20 ml TB buffer. 1.4 ml DMSO was added with 

swirling, and cells were incubated for 10 min on ice. Aliquots were prepared, frozen in liquid 

nitrogen, and stored at -80 °C. For the transformation of E. coli, competent cells were thawed 

on ice. Samples from the DNA ligation were each mixed with 200 µl of these cells. After 

incubation on ice for 30 min, samples were placed at 42 °C for 90 sec and then placed back on 

ice for 3 min. Each sample was mixed with 800 µl LB medium and incubated at 37 °C for 1 h 

on a shaker. After centrifugation at 5,000 rpm for 2 min, the supernatant was discarded. Cells 

were resuspended in the remaining liquid and spread on solid selective media. Plates were 

incubated overnight at 37 °C.   
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2.6.2 Transformation of S. cerevisiae 

Transformations were performed using the lithium acetate method (Ito et al., 1983). 600 to 

800 µl of a 10 ml YEPD pre-culture were transferred to 10 ml fresh YEPD medium and 

incubated for additional 5 to 6 h. Cells were harvested by centrifugation at 2,000 rpm for 

3 min. The cell pellet was resuspended in 10 ml lithium acetate/TE buffer (100 mM lithium 

acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8.0). For genomic transformations using linear 

DNA fragments, cells were incubated for 15 to 20 min on a shaker. For transformation of 

plasmid DNA, cells were only briefly incubated. Samples were centrifuged again at 

2,000 rpm for 3 min. The supernatant was discarded, and cells were resuspended in the 

remaining liquid. The volume was filled up to 400 µl, and the sample was divided into two 

200 µl aliquots. To one of the samples the linear DNA of the transformation cassette or the 

plasmid DNA was added, while the second one served as negative control. 20 μl of pre-

warmed (65 °C) carrier DNA (salmon sperm DNA, 10 mg/ml in TE buffer, pH 8.0) were 

added to both samples. For the transformation of the same strain with more than one linear 

DNA fragment or plasmid, all volumes were adjusted accordingly. Samples were mixed with 

800 µl 50% PEG 4000 (prepared in lithium acetate/TE buffer) and incubated at 30 °C for 

30 min followed by a heat shock at 42 °C for 25 min. Samples were centrifuged at 7,000 rpm 

for 30 sec, and the supernatant was removed. Cells were resuspended in 1 ml YEPD medium 

and incubated for 1 h (transformation of plasmid DNA) or 3 h (chromosomal integration) at 

30 °C on a shaker. Cells were harvested by centrifugation at 4,000 rpm for 10 to 20 sec. Most 

of the supernatant was discarded. Cells were resuspended in the remaining liquid, spread onto 

solid selective media, and incubated for at least 3 d until colonies formed.  

 

2.7 Southern blot analysis 

Integration of DNA fragments at the correct locus in the genome of S. cerevisiae was 

confirmed by Southern analysis according to Southern (1975). Chromosomal DNA was 

digested overnight with the respective restriction enzymes (Thermo Scientific). Samples were 

heated at 65 °C for 10 min, mixed with loading dye, and applied onto 1% agarose gels. DNA 

fragments were separated according to their size at 70 V for 10 min followed by 90 V for 

90 min. Gels were then washed with the first washing buffer (0.25 M HCl) for 10 min, with 

the second (0.5 M NaOH, 1.5 M NaCl) for 25 min, and with the third (1.5 M NaCl, 0.5 M 

Tris, pH 7.5) for 30 min. Afterwards, the DNA was transferred onto a nylon membrane 

(Hybond-N Membrane, #RPN203N, GE Healthcare, München, Germany) by capillary 

blotting for at least 3 h. The membrane was then dried at 75 °C for 7 min, and the DNA was 
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cross-linked to the membrane through 3 min exposure of each side of the membrane to UV 

light. The membrane was incubated at 55 °C for 30 min in prewarmed hybridization buffer 

(0.5 M NaCl, 4% Blocking Reagent, #NIP552, GE Healthcare), and the labeled probe was 

added for hybridization overnight. Probes were labeled using the AlkPhos Direct Labeling 

Reagents (#RPN3680, GE Healthcare) according to the manufacturer’s instructions. The 

membranes were washed twice with the first washing buffer (2 M urea, 0.1% SDS, 

50 mM sodium phosphate pH 7.0, 150 mM NaCl, 1 mM MgCl2, 0.2% Blocking Reagent) at 

55 °C for 10 min and twice with the second washing buffer (50 mM Tris base, 100 mM NaCl, 

2 mM MgCl2, pH 10) at room temperature for 5 min. For the chemiluminescence reaction, the 

membrane was incubated with 1 ml of the CDP-Star Detection Reagent (#RPN3682, GE 

Healthcare). For detection of chemiluminescence, membranes were exposed to the Amersham 

HyperfilmTM-ECLTM (GE Healthcare) followed by development of the film. 

 

2.8 Protein analyses 

2.8.1 Preparation of whole-cell protein extracts from S. cerevisiae 

This paragraph describes preparation of protein extracts for Western blot analyses as well as 

proteome analyses. In case that the protocol differs for other applications, the changes are 

specified in the respective paragraphs. In general, S. cerevisiae cultures were grown in 50 ml 

YNB medium to midlog phase (OD600 = 0.8, 40 ml cultures for proteome analysis) and 

harvested by centrifugation at 3,000 rpm for 4 min at 4 °C. Cells were washed with ice-cold 

breaking buffer (100 mM Tris-HCl pH 7.5, 200 mM NaCl, 20% glycerol, 5 mM EDTA) and 

lysed in 500 µl breaking buffer supplemented with 0.5% β-mercaptoethanol, 1 cOmpleteTM 

protease inhibitor tablet (#11836145001, Roche Diagnostics, Mannheim, Germany) per 

50 ml, 1 PhosSTOPTM phosphatase inhibitor cocktail tablet (#04906837001, Roche 

Diagnostics) per 10 ml, 1 mM NaF, 8 mM β-glycerol phosphate, and 0.5 mM sodium 

vanadate through vigorous shaking (frequency 30 sec-1, 4 min) with an equal volume of glass 

beads (∅ 0.25 to 0.50 mm) using the mixer mill Retsch MM400 (Retsch, Haan, Germany). 

The samples were incubated in the presence of 4% SDS at 65 °C for 10 min. Samples were 

subjected to centrifugation at 13,000 rpm for 15 min at room temperature, and the supernatant 

was collected as protein extract. Protein concentrations were determined using the BCA 

reagent (#23224 and #23228, Thermo Fisher Scientific) according to the manufacturer’s 

instructions. 
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2.8.2 Purification of Strep-tagged Asc1p 

For identification of Asc1p phospho-sites, strain RH3263 (∆asc1) was transformed with 

plasmid pME2834 (ASC1-Strep) or pME4135 (Strep-Xa-ASC1) and cultivated in 1 to 10 l 

liquid YNB medium to an OD600 of 0.8. Harvested cells were washed with ice-cold breaking 

buffer (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2) and lysed in breaking buffer 

(approximately 5 times the volume of the cell pellet) supplemented with 0.5 mM PMSF, 

0.5 mM DTT, and protease and phosphatases inhibitors (as described before) through 

vigorous shaking with glass beads. Samples were centrifuged at 13,000 rpm for 15 min at 

4 °C, and the supernatant was applied on Strep-Tactin® sepharose® columns for affinity 

purification of Strep-tagged Asc1p (Strep-tag® Starter Kit, #2-1101-000, IBA). The 

purification was performed at 4 °C following the instructions of the manufacturer’s protocol. 

Eluate fractions were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE, 

chapter 2.8.3). 

For identification of Asc1p and Asc1DEp interaction partners, strain RH3494 (∆asc1 

∆arg4 ∆lys1) was transformed with plasmids pME2834 (ASC1-Strep), pME4124 (asc1DE-

Strep), and pME2624 (ASC1), respectively. The resulting three different strains were 

cultivated in 150 ml YNB medium supplemented with differentially labeled amino acids to an 

OD600 of 0.8. Cell pellets were washed with the wash buffer (100 mM Tris-HCl, pH 8.0, 

150 mM NaCl, 1 mM EDTA) of the Strep-tag® Starter Kit, harvested by centrifugation and 

resuspended in 500 µl of the same buffer supplemented with 0.5 mM PMSF, 0.5 mM DTT, 

and protease and phosphatase inhibitors (as described before). Cells were lysed through 

vigorous shaking with glass beads. Samples were centrifuged for 8 min at 13,000 rpm at 4 °C. 

The supernatant was transferred into a new tube, and centrifugation was repeated. The three 

supernatants were mixed and directly applied onto a Strep-Tactin® Spin Column (#2-1850-

010, IBA). 20 µl of the pooled protein extracts were retained for SDS-PAGE. The columns 

were used for protein purification according to the manufacturer’s instructions. Proteins were 

eluted from the column with 50 µl elution buffer (100 mM Tris-HCl, pH 8.0, 150 mM NaCl, 

1 mM EDTA, 2 mM D-biotin). 5 µl of the total protein extract sample and one half of the 

eluate fraction were subjected to SDS-PAGE.  

 

2.8.3 SDS-polyacrylamide gel electrophoresis 

Protein samples were mixed in a 2:1 ratio with 3x loading dye (0.25 M Tris-HCl pH 6.8, 

30% glycerol, 15% β-mercaptoethanol, 7% SDS, 0.3% bromphenol blue) and heated at 65 °C 

for 10 min before they were subjected to SDS-polyacrylamide gel electrophoresis (SDS-
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PAGE) according to Laemmli (1970). Samples were applied onto 12% SDS-polyacrylamide 

gels that were placed in electrophoresis buffer (25 mM Tris base, 250 mM glycine, 0.1% 

SDS). SDS-gels consisted of a lower running gel (375 mM Tris pH 8.8, 12% 

acrylamide/bisacrylamide 37.5:1 (Rotiphorese® Gel 30, #3029.1, Carl Roth), 2 mM EDTA, 

0.1% SDS) and an upper stacking gel (125 mM Tris pH 6.8, 5% acrylamide/bisacrylamide 

37.5:1, 2 mM EDTA, 0.1% SDS). Proteins were separated electrophoretically for 10 min at 

100 V and subsequently at 150-200 V until the separation of proteins was sufficient. This was 

most often the case when the bromphenol blue left the gel. The PageRulerTM Prestained 

Protein Ladder (#26616, Thermo Fisher Scientific) was used to estimate the sizes of proteins. 

 

2.8.4 Western blot analysis 

Western blot experiments were performed according to Burnette (1981). Proteins were 

transferred from SDS-gels onto nitrocellulose membranes (AmershamTM Protran® Western 

blotting membrane, #GE10600002, Sigma-Aldrich, München, Germany) by electrophoretic 

blotting in a Mini-Trans-Blot-Electrophoretic-Cell (Bio-Rad Laboratories, München, 

Germany) filled with transfer buffer (25 mM Tris base, 190 mM glycine, 0.02% SDS, 20% 

methanol) for 1.5 h at 100 V. After blotting, the membranes were stained with Ponceau red 

(0.2% Ponceau S, 3% trichloroacetic acid) for 5 min, washed with water and photographed 

using the FUSION-SL-4 (Peqlab, Erlangen, Germany). Ponceau red staining was removed 

through washing with phosphate buffered saline (PBS, 8 mM Na2HPO4, 2 mM NaH2PO4, 

150 mM NaCl) and subsequent incubation with the blocking buffer (PBS with 5% milk 

powder) for at least 1 h at room temperature or overnight at 4 °C. Membranes were incubated 

for 2 h at room temperature or overnight at 4 °C with the primary antibody diluted in the 

blocking buffer. The membranes were incubated with monoclonal mouse anti-c-myc 

(dilution: 1:2,000, #2276, Cell Signaling Technology, Danvers, Massachusetts, USA), 

polyclonal goat anti-Rap1p (1:500, #yN-18, Santa Cruz Biotechnology, Heidelberg, 

Germany), polyclonal rabbit anti-Tec1p (1:1,000, Hans-Ulrich Mösch, Philipps-Universität, 

Marburg, Germany), polyclonal anti-Asc1p (1:1,000, Andrew Link, Vanderbilt University 

Medical Center, Nashville, USA), or polyclonal phospho-p38 MAPK (Thr180/Tyr182) 

(1:500, #9211, Cell Signaling Technology) antibodies. The anit-Rap1p, anti-Tec1p, and anti-

Asc1p antibodies were diluted in PBS with 5% milk powder. Tris buffered saline (TBS, 

150 mM Tris, 150 mM NaCl, pH 7.2-7.4) with 5% milk powder and 0.1% Tween 20 was used 

for dilution of the anti-c-myc antibody. TBS with 5% bovine serum albumin (BSA) and 0.1% 

Tween 20 was used for blocking and preparation of the antibody dilution when the 
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phosphorylation-specific antibody phospho-p38 MAPK (Thr180/Tyr182) was applied. 

Membranes were washed three times with PBS or TBS, respectively, followed by incubation 

with the peroxidase-coupled goat anti-mouse (1:5,000, #115-035-003, Dianova, Hamburg, 

Germany), donkey anti-goat (1:2,000, #sc-2020, Santa Cruz Biotechnology), or goat anti-

rabbit (1:2,000, #G21234, MoBiTec, Göttingen, Germany) secondary antibodies. The goat 

anti-rabbit antibody was diluted in TBS with 5% BSA when it was used in combination with 

the phospho-p38 MAPK (Thr180/Tyr182) antibody. The membranes were washed as 

described before. For the peroxidase reaction, 100 µl 2.5 mM luminol, 44 µl 40 µM 

paracumaric acid, and 6.15 µl 30% H2O2 were added to 20 ml 100 mM Tris pH 8.5 and 

applied onto the membrane followed by 1 min incubation on a shaker. Chemiluminescence 

was detected using the FUSION-SL-4. Signals were quantified relative to the Ponceau red 

staining as loading control according to Rivero-Gutiérrez et al. (2014) using the Bio1D 

software Version 15.01 (Vilber Lourmat, Eberhardzell, Germany). 

 

2.8.5 Colloidal Coomassie staining of proteins 

Protein staining within SDS-gels was done using colloidal Coomassie G250 and was 

performed according to Kang et al. (2002). All steps of the procedure were performed with 

constant shaking of the SDS-gel in the respective solutions and at room temperature. After 

SDS-PAGE, the gel was incubated in fixing solution (40% ethanol, 10% acetic acid) for at 

least 1 h. The gel was washed twice for at least 10 min with H2O followed by staining with 

the Coomassie G250 solution (0.1% Coomassie Brilliant Blue G250, 5% aluminium sulfate-

(14-18)-hydrate, 10% methanol, 2% orthophosphoric acid) overnight. To prepare the staining 

solution, aluminium sulfate was first dissolved in H2O followed by the addition of methanol. 

Coomassie Brilliant Blue G250 was added and dissolved. Finally, phosphoric acid was added, 

and the solution was filled up with H2O to the final volume. After staining, the gel was 

washed with H2O. Prior to in-gel trypsin digestion of proteins (chapter 2.8.6) the Coomassie 

staining was reduced through incubation of the gel or the gel pieces in fixing solution 

overnight. To remove the fixing solution, gels were washed with H2O at least twice for 

10 min.  

 

2.8.6 In-gel protein digestion with trypsin 

The in-gel digestion of proteins with trypsin was performed according to Shevchenko et al. 

(1996). Gel lanes were cut into pieces of approximately 1.5 to 2 mm2. The pieces were 

transferred into reaction tubes, covered with acetonitrile and shaken for 10 min. Acetonitrile 
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was removed, and the gel pieces were dried in the Savant SPDIIIV SpeedVac Concentrator 

(Thermo Scientific). 150 ml 10 mM DTT solution (in 100 mM NH4HCO3) were added to 

each sample followed by incubation at 56 °C for 1 h. The DTT solution was removed, and 

150 µl 55 mM iodoacetamide (prepared in 100 mM NH4HCO3) were added. After 45 min 

incubation at room temperature and in the dark, the solution was removed, and 150 µl 

100 mM NH4HCO3 were added. On a shaker, samples were incubated for 10 min. The liquid 

was exchanged for 150 µl acetonitrile, and the samples were incubated again for 10 min. The 

washing steps with 100 mM NH4HCO3 and with acetonitrile were repeated once. Gel pieces 

were dried in the SpeedVac and subsequently covered with trypsin (#37283.01, SERVA 

Electrophoresis, Heidelberg, Germany) digestion buffer, which was prepared according to the 

manufacturer’s instructions. After 45 min incubation on ice, remaining trypsin digestion 

buffer was removed. The gel pieces were covered with 25 mM NH4HCO3, and samples were 

incubated at 37 °C overnight. The supernatant was collected in a new reaction tube. Gel 

pieces were covered with 20 mM NH4HCO3 and shaken for at least 10 min. The supernatant 

was collected again in the same tube, and the gel pieces were covered with 50% 

acetonitrile/5% formic acid. After shaking of the samples for at least 20 min, the supernatant 

was collected. The last step was repeated twice. Prior to the collection of supernatants 

samples were always centrifuged for 1 min at 13,000 rpm. The peptide-containing samples 

were dried in the SpeedVac. Peptides were reconstituted in 20 µl liquid chromatography-mass 

spectrometry (LC-MS) sample buffer (2% acetonitrile, 0.1% formic acid) and directly 

subjected to LC-MS analysis (chapter 2.8.9) or purified using C18 stop and go extraction 

(stage) tips according to Rappsilber et al. (2003 and 2007). Two C18 disks were punched out 

from a Solid Phase Extraction Disk (#2215, 3M, Neuss, Germany) and placed in a 100 to 

200 µl pipette tip. This stage tip was in turn placed into a reaction tube using an adaptor. The 

C18 material was equilibrated with 100 µl methanol/0.1% formic acid, followed by 100 µl 

70% acetonitrile/0.1% formic acid, and twice 100 µl 0.1% formic acid. For each step, the 

samples were centrifuged for 2 min at maximum speed. After loading of the peptide solution 

on the C18 material, the samples were centrifuged for 5 min at 4,000 rpm. Two times 100 µl 

0.1% formic acid were applied followed by 2 min centrifugation at 10,000 rpm for washing of 

the samples. Peptides were eluted from the C18 material with 60 µl 70% acetonitrile/0.1% 

formic acid. Samples were centrifuged for 5 min at 4,000 rpm. The eluted peptides were dried 

in the SpeedVac, reconstituted in 20 µl LC-MS sample buffer, and subjected to LC-MS 

analysis. 
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2.8.7 In-solution digestion of proteins with LysC and trypsin 

Proteins were digested in-solution when high amounts of peptides were required for phospho-

peptide enrichment. Protein samples were prepared as described in chapter 2.8.1 with the 

exceptions that cell extracts were subjected to sonication for subsequent filter-aided sample 

preparation (FASP, Wiśniewski et al., 2009). Protein concentrations were determined as 

described before (chapter 2.8.1). For the in-solution digest, 1 mg protein of each sample was 

subjected to chloroform-methanol extraction to reduce the amount of SDS in the samples 

(Wessel and Flügge, 1984). For the chloroform-methanol extraction, 100 µl aliquots of the 

protein extract were prepared. If necessary, volumes were adjusted accordingly. Successively, 

each sample was mixed with 400 µl methanol, followed by 100 µl chloroform and 300 µl 

H2O. After each step, the samples were mixed through vigorous shaking for 1 min. After 

centrifugation at 13,000 rpm for 5 min at 4 °C, the upper phase was discarded, and 300 µl 

methanol were added. After vigorous shaking for 1 min, the samples were centrifuged at 

13,000 rpm for 10 min at 4 °C, and afterwards the supernatant was discarded. The pellets 

were dried and then dissolved in 200 µl buffer UA each (8 M urea prepared in 100 mM Tris-

HCl pH 8.5). Proteins were in-solution digested with LysC (#125-05061, Wako Chemicals, 

Neuss, Germany) and trypsin (#37283.01, SERVA Electrophoresis) according to the FASP 

protocol (Wiśniewski et al., 2009) using centrifugal filter units (#MRCF0R030, Merck). The 

protein concentration was determined using the BCA reagent as described before and adjusted 

to 1.25 µg/µl with UA. For one phospho-proteome analysis, four filter units were each loaded 

with 200 µl of the protein solution. All steps were performed at room temperature, and all 

centrifugation steps were carried out at 13,000 rpm for 15 min except when stated otherwise. 

If necessary, the flow-through was removed between the centrifugation steps. The filter units 

were centrifuged, refilled twice with 200 µl UA and centrifuged again. 200 µl UA with 

3 µl 1 M DTT were added followed by gentle mixing. After 30 min incubation, the filter units 

were centrifuged, refilled with 200 µl UA followed by another round of centrifugation. 

100 µl 50 mM iodoacetamide prepared in 8 M UA were added, and the samples were gently 

mixed. After incubation for 20 min at room temperature, the filter units were centrifuged for 

10 min. 100 µl buffer UB (8 M urea prepared in 100 mM Tris-HCl pH 8.0) were added 

followed by centrifugation. The step was repeated twice. Protein samples were mixed with 

40 µl UB containing LysC in an enzyme to protein ratio of 1:50. Filter units were sealed with 

parafilm and incubated overnight. The filter units were transferred into a new collection tube. 

Samples were mixed with 120 µl 25 mM NH4HCO3 containing trypsin in an enzyme to 

protein ratio of 1:100. Samples were incubated for 4 h and then centrifuged for 15 min. 50 µl 
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0.5 M NaCl were added to the membrane of the filter unit, and the samples were centrifuged 

for 20 min. Peptide samples were acidified and desalted with C18 cartridges (#98060401985, 

3M) according to Wiśniewski et al. (2009). Each cartridge was placed into a 15 ml tube, 1 ml 

methanol was applied onto the cartridge followed by centrifugation at 1,500 x g for 1 min. 

The step was repeated with 0.5 ml 70% acetonitrile/0.1% TFA and with 0.5 ml 0.1% TFA. 

The peptide sample was loaded onto the cartridge followed by centrifugation at 150 to 500 x g 

until the complete liquid was in the flow-through. The step was repeated with 0.5 ml 

0.1% TFA for washing. The cartridge was transferred into a new tube, and the previous 

centrifugation step was repeated with 0.5 ml 70% acetonitrile for elution of the peptides. 

Samples were dried in the SpeedVac. A fraction of the sample was dried separately and 

reconstituted in LC-MS sample buffer (2% acetonitrile, 0.1% formic acid) for measurement of 

the peptide concentrations using the BCA assay as described before and with the 

MassPREPTM E. coli Digest Standard (#186003196, Waters, Eschborn, Germany) as 

reference.  

 

2.8.8 Phospho-peptide enrichment 

To enrich phospho-peptides from complex peptide mixtures, a protocol modified from 

Mazanek et al. (2007) was used. Peptide samples were reconstituted in 50 µl loading solvent 

(70% acetonitrile, 420 mM 1-octanesulfonic acid (#O0133, Sigma-Aldrich), 50 mg/ml 

dihydroxybenzoic acid (#39319, Sigma-Aldrich), 0.1% heptafluorobutyric acid (#77249, 

Sigma-Aldrich), 3% TFA) and applied onto equilibrated TiO2 columns (TT2TIO, Glygen 

Corporation, Columbia, Maryland, USA) in an estimated ratio of 400 μg peptides per 1 mg of 

TiO2 for optimized recovery of phospho-peptides from TiO2 according to Kanshin et al. 

(2013). Equilibration of the columns was done by applying 40 µl of the first wash solution 

(70% acetonitrile) followed by 40 µl loading solvent. A syringe was used to gently press the 

liquid through the stationary phase. After loading of the peptide samples, columns were 

washed twice with 40 µl loading solvent, once with the second washing solution (70% 

acetonitrile, 125 mM asparagine, 125 mM glutamine, 3% TFA), and twice with 40 µl of the 

third washing solution (70% acetonitrile, 3% TFA). The second washing solution comprised 

asparagine and glutamine to displace N/Q-rich peptides on the TiO2 (Kanshin et al., 2013). 

Peptides were eluted from the column by applying two times 40 µl elution buffer (50 mM 

ammonium dihydrogen phosphate adjusted to pH 10.5 with ammonium hydroxide). Samples 

were acidified with 20 µl TFA, dried, reconstituted in LC-MS sample buffer (2% acetonitrile, 
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0.1% formic acid), and again desalted using C18 cartridges. For LC-MS analyses, all samples 

were dissolved in 20 µl sample buffer.  

 

2.8.9 Liquid chromatography-mass spectrometry analysis 

Liquid chromatography (LC) coupled to an Orbitrap Velos Pro™ Hybrid Ion Trap-Orbitrap 

mass spectrometer (MS) was employed for protein and phospho-peptide identification and for 

relative quantification by SILAC-ratios. Peptides of 1 to 6 μl sample solution were trapped 

and washed on an Acclaim® PepMap 100 pre-column (#164564, 100 μm x 2 cm, C18, 3 μm, 

100 Å, Thermo Fisher Scientific) at a flow rate of 25 μl/min for 6 min in 100% solvent A (2% 

acetonitrile, 0.07% TFA). Analytical peptide separation by reverse phase chromatography was 

performed on an Acclaim® PepMap RSLC column (#164540, 75 μm x 25 cm or 50 cm, C18, 

3 μm, 100 Å, Thermo Fisher Scientific) typically running a gradient from 98% solvent A 

(0.1% formic acid) and 2% solvent B (80% acetonitrile, 0.1% formic acid) to 42% solvent B 

within 95 min and to 65% solvent B within the next 26 min at a flow rate of 300 nl/min 

(solvents and acids from Fisher Chemicals). Chromatographically eluting peptides were on-

line ionized by nanoelectrospray (nESI) using the Nanospray Flex Ion Source (Thermo Fisher 

Scientific) at 2.4 kV and continuously transferred into the mass spectrometer. Full scans 

within the mass range of 300 to 1850 m/z were taken within the Orbitrap-FT analyzer at a 

resolution of 30,000 or 60,000 (SILAC experiments) with parallel data-dependent top ten 

MS2 collision-induced dissociation (CID) fragmentation with the LTQ Velos Pro linear ion 

trap. Phospho-peptide samples were analyzed with CID fragmentation applying the multistage 

activation (MSA) method as well as with higher energy collisional dissociation (HCD) 

fragmentation in a separate run. When HCD fragmentation was used, data-dependent top five 

MS2 fragmentation was performed, and fragment ions were analyzed in the Orbitrap. For 

analysis of Asc1p phospho-peptides, also targeted data acquisition with parent mass lists was 

applied. LC-MS method programming and data acquisition was done with the software 

XCalibur 2.2 (Thermo Fisher Scientific). For identification of Asc1p-derived phospho-

peptides, MS/MS2 data were searched against an S. cerevisiae-specific protein databases 

(SGD, 6110 entries including common contaminants, S288C_ORF_database release version 

2011, Stanford University) using the Proteome Discoverer Software version 1.4, and 

phospho-site localization was evaluated using phosphoRS (Olsen et al., 2006; Olsen and 

Mann, 2004). The digestion mode was trypsin, and a maximum of two missed cleavage sites 

was considered. Carbamidomethyl at cysteines was set as fixed modification. Oxidation at 

methionines and phosphorylation at serines, threonines, and tyrosines were considered as 
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variable modifications. Mass tolerances of precursors and fragment ions were 10 ppm and 

0.6 Da, respectively. False discovery rates were calculated by the Proteome Discoverer using 

the reverse-decoy mode, and the filter for valid peptide sequence matches was set to 0.01. For 

quantitative proteome analyses, MS/MS2 data were analyzed with the MaxQuant 1.5.1.0 

software with the program’s default parameters using an S. cerevisiae-specific protein 

database derived from UniProt (http://www.uniprot.org, Proteome ID UP000002311, 6721 

entries, download 2014, Cox and Mann, 2008). The digestion mode was trypsin/P, and a 

maximum of two missed cleavage sites was considered. Carbamidomethyl at cysteines was 

set as fixed modification, and acetylation at the N-terminus, oxidation at methionines, 

phosphorylation at serines, threonines, and tyrosines (only for raw data from MSA and HCD 

LC-MS runs) were considered as variable modifications. Arg6 and Lys4 were defined as 

medium peptide labels and Arg10 and Lys8 as heavy peptide labels. Mass tolerances of 

precursors and fragment ions were 4.5 ppm and 0.5 Da, respectively. Match between runs, 

requantification, and FTMS recalibration were enabled. For protein quantification, the 

minimum ratio count was two, and unique plus razor peptides were considered. False 

discovery rates were calculated by MaxQuant using the revert-decoy mode, and the filter for 

valid peptide sequence matches was set to 0.01. MaxQuant output data were further processed 

using the Perseus software 1.5.0.15 (Cox and Mann, 2008). 

 

2.9 RNA analyses 

2.9.1 Northern blot analysis 

Total RNA was isolated from yeast according to Cross and Tinkelenberg (1991). 40 µg RNA 

was mixed with 30 µl sample buffer (66.7% formamide, 9.25% glycerol, 0.18% bromphenol 

blue, 1.8% ethidium bromide), heated at 65 °C for 15 min, and kept on ice for 10 min. RNA 

was separated on a 1.4% agarose gel containing 3% formaldehyde and 1% 3-(N-

morpholino)propanesulfonic acid (MOPS, 23 mM MOPS, 5 mM sodium acetate, 

1 mM EDTA, pH 7) in running buffer (6.7 % formaldehyde and 1% MOPS) at 70 V. Transfer 

of RNA onto a nylon membrane was performed by capillary blotting overnight. Cross-linking 

of the RNA to the membrane, generation and labeling of the probe, and signal detection were 

carried out as described for the Southern blot (chapter 2.7).  
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2.9.2 Sucrose density gradients 

Sucrose-density gradient fractionation experiments were performed as described by Mašek et 

al. (2011). S. cerevisiae cultures were grown overnight to midlog phase in 100 ml liquid YNB 

medium. The culture was supplemented with cycloheximide at a final concentration of 

100 µg/ml and incubated for 15 min on ice. Cells were harvested by centrifugation, 

resuspended in washing buffer (20 mM HEPES-KOH pH7.5, 10 mM KCl, 2.5 mM MgCl2, 

1 mM EGTA) and transferred into a 2 ml reaction tube. After another round of centrifugation, 

the cells were resuspended in lysis buffer (20 mM HEPES-KOH pH 7.5, 10 mM KCl, 

2.5 mM MgCl2, 1 mM EGTA, 1 mM DTT, 100 µg/ml cycloheximide, 1.5 µl RiboLock RNase 

Inhibitor (40 U/µl, #EO0381, Thermo Fisher Scientific), 1 cOmpleteTM EDTA-free protease 

inhibitor tablet (#05056489001, Roche Diagnostics) per 50 ml, 1 PhosSTOPTM phosphatase 

inhibitor cocktail tablet (#04906837001, Roche Diagnostics) per 10 ml). The volume of lysis 

buffer and the amount of glass beads that were added equaled the volume of the cell pellet. 

Cells were disrupted using the Fast-Prep-24 (MP Biomedicals, Illkirch, France) two times for 

20 sec at 5.0 m/sec. Samples were centrifuged for 5 min at 13,000 rpm at 4 °C. The 

supernatant was transferred into a new reaction tube, and centrifugation was repeated for 

7 min. The supernatant was again transferred into a new reaction tube, and the OD260 of a 

1:100 dilution was measured with the NanoDrop 2000 (Thermo Scientific). A volume of cell 

extracts equaling an OD260 of 20 was loaded onto a 7 to 47% sucrose gradient. The gradient 

was generated with the Gradient Master 108 (BioComp Instruments, Fredericton, Canada) 

using 7% and 47% sucrose solutions prepared in the washing buffer. After centrifugation at 

40,000 rpm for 2 h and 50 min at 4 °C in a TH-641 rotor and a Sorvall WX80 ultracentrifuge, 

(Thermo Scientific) the gradient was fractionated using a fraction collector (Foxy Jr. Fraction 

Collector, Optical Unit Type 11, Absorbance detector UA-6, Teledyne Isco, Lincoln, 

Nebraska, USA) by pumping a 60 % sucrose solution into the bottom of the tube. During 

fractionation, the absorbance at 254 nm was measured to monitor the distribution of RNA in 

the gradient and thus to obtain the polysome profile.  

 

2.9.3 Isolation of RNA from sucrose gradient fractions and mRNA enrichment 

Fractions from the sucrose-density gradient centrifugation were collected starting from the 

first polysome peak. 2 volumes of TRIzol® Reagent (#15596-026, Thermo Fisher Scientific) 

were added to the samples followed by vigorous shaking. 0.2 volumes of 3 M sodium acetate 

and 0.4 volumes of chloroform were added followed by 3 min shaking. Samples were then 

centrifuged at 4,200 rpm for 30 min at 4 °C. The upper aqueous phase was transferred into a 
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new reaction tube, and 50 µg glycogen (#77534, Affymetrix, Cleveland, Ohio, USA) were 

added per 1 ml of the sucrose gradient. Isopropanol was added in a 1:1 ratio. Samples were 

mixed and incubated overnight at 4 °C. They were transferred into SS-34 tubes and 

centrifuged for 30 min at 13,000 rpm in a Sorvall® RC 5B Plus centrifuge (Thermo 

Scientific). The supernatants were removed, and the pellets were washed with 25 ml ice-cold 

75% ethanol. The previous centrifugation step was repeated, and ethanol was removed. Pellets 

were dried and then resuspended in 250 µl H2O. The Oligotex Direct mRNA Kit (#70022, 

Qiagen) was used for enrichment of mRNAs according to the provided Batch Procedure 

Protocol. Samples were eluted using two times 25 µl Oligotex Elution Buffer. To remove 

DNA from the samples, digestion with DNase I (#EN0521, Thermo Scientific) was 

performed. For digestion of 7.5 µl sample from the previous elution step, 1 µl DNase I, 1 µl 

10x reaction buffer with MgCl2 (#B43, Thermo Scientific), and 0.5 µl RiboLock RNase 

Inhibitor (40 U/µl, #EO0381, Thermo Fisher Scientific) were added, and the samples were 

incubated at 37 °C for 45 min. Samples were then purified using the RNeasy MinElute 

Cleanup Kit (#74204, Qiagen) according to the manufacturer’s instructions.  

 

2.9.4 cDNA synthesis and RNASeq analysis 

The experimental steps and data analysis described in this chapter were performed together 

with the Department of Genomic and Applied Microbiology of the Institute of Microbiology 

and Genetics, Georg-August University Göttingen. Samples enriched for mRNA (see chapter 

2.9.3) were subjected to cDNA synthesis using the NEBNext® Ultra™ RNA Library Prep Kit 

for Illumina® (#E7530S, New England Biolabs). After second strand cDNA synthesis, sample 

clean-up with the QIAquick PCR purification kit (#28106; Qiagen) was performed. For the 

removal of adapter dimers and adapter monomers after library preparation, the Agencourt® 

AMPure® XP Beads (#A63881, Beckman Coulter, Krefeld, Germany) were applied. For the 

purification of cDNA, the GeneRead Size Selection Kit (#180514, Qiagen) was used. All kits 

and reagents were used according to the manufacturer’s instructions. Sequencing was 

performed on an Illumina Genome Analyzer IIx (Illumina, San Diego, USA). The sequence 

reads were mapped on the genome of S. cerevisiae (SGD) using Bowtie2 (Langmead and 

Salzberg, 2012) with standard parameters. The output Sequence Alignment/Map files were 

used to obtain readcount data for the S. cerevisiae genes to be used in a differential expression 

analysis applying the baySeq algorithm (Hardcastle and Kelly, 2010). Transcripts with a 

likelihood ≥ 90% and a false discovery rate ≤ 0.05 were considered as differentially abundant 

in the analyzed translatomes. 
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2.10 Phenotypic tests 

Yeast cells were grown to midlog phase and diluted to an OD600 of 0.1. Three consecutive 

ten-fold dilutions were prepared, and 10 µl or 20 µl of each dilution were dropped on YEP 

plus 2% glucose/glycerol and on YNB medium, respectively. Media tested were YEP with 

2% glycerol, YEPD with Congo red (125 µg/ml) or NaCl (75 mM), and YNB with 

canavanine (600 ng/ml) or cycloheximide (0.15 µg/ml). YEPD and YNB plates were used for 

growth controls. To assess the respiratory activity of the strains, a 2,3,5-triphenyltetrazolium 

chloride (TTC, #93140, Sigma-Aldrich) assay (Ogur et al., 1957) was performed: 100 µl of 

the highest dilution were streaked on YNB plates (Ø 9.2 cm) containing 0.4% glucose, and 

the plates were incubated for 3 d at 30 °C. Colonies were then overlaid with liquid 1.2% top 

agar containing 0.5% TTC and incubated for 20 to 30 min at 30 °C. To observe glucose-

dependent colony morphology, 100 µl of the highest dilution of the cell suspensions were 

streaked on YEP plates containing either 2% glucose or 0.4% glucose to obtain single 

colonies after 3 d growth at 30 °C. To test the resistance of yeast strains against DETA-

NONOate (#82120, Cayman Chemical, Ann Arbor, Michigan, USA), an agar diffusion/halo 

assay was performed. Cells were grown to an OD600 of 0.6 in YNB medium, and 100 µl of the 

culture were transferred to 10 ml 0.5% liquid agar (40 °C) that was poured onto MV plates 

after mixing. Two filter papers soaked with 2 µl and 4 µl of 1 M DETA-NONOate, 

respectively, were immediately placed onto the agar surface. The ability of the yeast strains to 

grow adhesively was tested by growth on YNB plates containing 10 mM 3-amino-1,2,4-

triazole (3-AT, #A8056, Sigma-Aldrich) at 30 °C for 3 d followed by washing of the plates 

under a constant stream of water. Plates were photographed using the Gel iX Imager. Colonies 

from the TTC and glucose-dependent colony morphology assays were documented using the 

stereomicroscope Olympus SZX12 (Olympus Corporation, Hamburg, Germany) and the 

cellSens Dimension software 1.4 (Olympus Corporation). 
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3. Results 

3.1 Asc1p-dependent phenotypes 

Deletion of the RACK1 gene in metazoans leads to lethality during embryogenesis, whereas 

S. cerevisiae ASC1 deletion strains are viable. Yeast ∆asc1 strains exhibit multiple 

phenotypes related, for instance, to cell wall integrity, respiration, and translation. These 

strains are also deficient in the SNR24 gene that is located within the intron of the ASC1 gene 

and codes for the snoRNA U24 (Figure 9A, Chantrel et al., 1998). Thus, the absence of the 

snoRNA U24 in a ∆asc1 strain might account for, or at least contribute to, the observed 

phenotypes.  

The two major classes of snoRNAs are named according to conserved sequence motifs box 

C/D and H/ACA snoRNAs (Balakin et al., 1996; Ganot et al., 1997). The snoRNAs of the two 

families form ribonucleoprotein (RNP) complexes with distinct sets of proteins (reviewed in 

Watkins and Bohnsack, 2012). Members of the C/D snoRNP family catalyze 2’-O-ribose-

methylation of pre-rRNA, whereas members of the H/ACA snoRNP family are responsible 

for pseudouridinylation of pre-rRNA (Kiss-László et al., 1996; Ni et al., 1997). Substrate 

specificity of the snoRNPs is provided by sequences in the snoRNA that are complementary 

to the modified rRNA target (Watkins and Bohnsack, 2012). The snoRNA U24 belongs to the 

C/D box family and is required for three site-specific 2’-O-ribose-methylations of 25S pre-

rRNA (Kiss-László et al., 1996). Although the SNR24 gene is highly conserved among 

eukaryotes, its position within an intron of ASC1/RACK1 is less well conserved. The human 

snoRNA U24 encoding gene, for instance, lies within the second intron of the RPL7A gene 

(Qu et al., 1995). The function of snoRNP U24 catalyzed 2’-O-methylation of 25S rRNA is 

not clear. The absence of snoRNA U24, but not the lack of Asc1p, leads to a halfmer 

phenotype in sucrose density gradients of S. cerevisiae cell extracts (Kouba et al., 2012). 

Halfmers are polysomes or monosomes bound to an additional 43S preinitiation complex, and 

they are detected as additional peaks in polysome profiles (Helser et al., 1981). The formation 

of halfmers might be due to reduced amounts of mature 60S ribosomal subunits in the cell as 

a consequence of loss of the snoRNA U24 (Rotenberg et al., 1988; Kouba et al., 2012).  

To test whether also other phenotypes observed for the ∆asc1 strain are eventually caused by 

the deletion of the SNR24 gene, two different strains were generated: 1) a strain expressing 

the snoRNA U24, but not Asc1p, and 2) a strain only deleted for the SNR24-containing intron. 

For construction of the first strain, a loxP::URA3::loxP cassette was inserted into exon 1 of 

the ASC1 gene (Figure 9B). After the verification of transformants, the Cre-recombinase was
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Figure 9. Construction of S. cerevisiae ASC1 and SNR24 mutant strains. 
(A) The genomic ASC1 locus. The ASC1 gene is interrupted by an intron that contains the snoRNA 

U24 encoding SNR24 gene. (B) Construction of a yeast strain still expressing the snoRNA U24, but no 

Asc1p. In the first step, the loxP-URA3-loxP cassette was introduced into exon 1 of the ASC1 gene 

between base pairs 164 and 165. After verification of the transformant, the marker was rescued 

through expression of plasmid-borne Cre-recombinase that mediates homologous recombination 

between the two loxP sites (indicated with black rectangles) flanking the URA3 gene. One loxP site of 

34 bp remains in exon 1 of the asc1 ORF. The loxP site is flanked by two short regions (indicated with 

dark gray rectangles) that are derived from the amplification of the loxP-URA3-loxP cassette by PCR. 

In total, the sequence remaining in exon 1 has a size of 109 bp. The resulting strain is termed 

asc1SNR24 or asc1-. (C) Introduction of mutated alleles of ASC1 into the yeast genome at the native 

locus. For transformations, a ∆asc1::URA3 yeast strain was used, and the loxP-URA3-loxP cassette 

was replaced by different mutant alleles of the ASC1 gene that were amplified from plasmids with 

45 bp overhangs homologous to the up- and down-stream regions of the ASC1 gene. C1 shows the 

generation of a strain expressing the ASC1 cDNA (cASC1) without the intron, and C2 illustrates the 

construction of a yeast strain expressing mutated asc1 with defined codon exchanges at specific 

positions within its ORF, such as R38D K40E. 
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transiently expressed to induce homologous recombination between the two loxP sites 

flanking the URA3 marker, finally yielding in a single loxP site in exon 1 of ASC1. The 

presence of this loxP site in the asc1 mRNA should result in the abrogation of Asc1p 

synthesis during translation due to a stop codon within the loxP site (see Supplementary 

Figure 1). However, it should not interfere with the splicing of the mutated ASC1 pre-mRNA 

to generate functional snoRNA U24. The strain was designated asc1SNR24 and abbreviated 

as asc1- in the following chapters. 

For the generation of the second strain, ASC1 was amplified from a cDNA sample and cloned 

into a vector. The ASC1 cDNA was then amplified from this plasmid with oligonucleotides 

that introduced 5’ and 3’ flanking regions for genomic integration through homologous 

recombination at the native ASC1 locus. The replacement cassette was transformed into a 

∆asc1::URA3 strain with ASC1 replaced by loxP::URA3::loxP (Figure 9C1). This enabled the 

selection of transformants on 5-fluoroorotic acid-containing media. The obtained verified 

strain was designated as cASC1. Both the asc1- and the cASC1 strains were verified by PCR, 

Southern blot, and sequencing of the mutated locus. Furthermore, Northern blot experiments 

were performed to verify the expression of snoRNA U24 in the asc1- strain. Western blot 

experiments were performed to confirm the expression of Asc1p in the cASC1 strain and the 

absence of the protein in the asc1- strain (not all data shown, in part depicted in Figure 19). 

Both strains were analyzed for phenotypes that are known to rely on Asc1p and will be 

introduced in the following paragraphs. Total deletion of the ASC1 locus actually represents 

an ASC1 SNR24 double deletion, but is referred to as ∆asc1 in this study. 

Deletion of ASC1 reduces the resistance of S. cerevisiae cells against translation inhibitors, 

such as cycloheximide, which interferes with the translocation step during elongation 

(Parsons et al., 2004). Also, the natural resistance against the non-proteinogenic amino acid 

canavanine is compromised in a ∆asc1 strain. The ∆asc1 strain is further impaired in its cell 

wall integrity that manifests in its increased sensitivity to Congo red, calcofluor white, or the 

glucanase zymolyase (Valerius et al., 2007; Rachfall et al., 2013). Deletion of ASC1 results in 

the loss of adhesive growth of haploid yeast cells and pseudohyphae formation of diploid cells 

due to reduced expression of the cell surface glycoprotein Flo11 (Valerius et al., 2007). The 

∆asc1 strain shows reduced growth on non-fermentable carbon sources, such as ethanol or 

glycerol, indicating impairment of respiration. This is further confirmed by strongly reduced 

red staining of ∆asc1 cells through triphenyltetrazolium chloride (TTC), a compound that gets 

reduced by electrons of the respiratory chain leading to the formation of a red dye (Ogur et al., 

1957). In the presence of high amounts of glucose (2%), S. cerevisiae cells cover their energy 
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supply mainly through fermentation. Therefore, the TTC assay is performed with colonies 

grown on medium containing low concentrations of glucose (0.4%).  

Impairment in respiration and low oxygen concentrations (hypoxia) can lead to the formation 

of reactive oxygen and nitrogen species (Figure 10A, Castello et al., 2006). These reactive 

compounds can lead to harmful modification of proteins and other cellular components. 

Asc1p-deficient cells show highly increased levels of the proteins Hbn1 and Yhb1, which are 

both assumed to function in the detoxification of such reactive compounds (Rachfall et al., 

2013). Hbn1p (homologous to bacterial nitroreductases 1) is similar to bacterial 

nitroreductases, and cells deficient in this protein show decreased antioxidant activity, for 

example, mediated by the superoxide dismutase (Figure 10A, de Oliveira et al., 2010). Yhb1p 

(yeast flavohemoglobin 1) functions in the detoxification of nitric oxide (NO, Liu et al., 

2000). NO inhibits the cytochrome c oxidase of the respiratory chain, and it reacts with 

superoxide to peroxynitrite, which causes protein tyrosine nitration (Brown, 2001; Radi, 

2004). The increased sensitivity of the single deletion strains ∆hbn1, ∆yhb1, and ∆asc1 to the 

NO donor DETA-NONOate in a halo assay shows that all three proteins are required for 

resistance against nitrosative stress (Figure 10B). Double deletion strains of all three possible 

combinations of ∆asc1, ∆hbn1, and ∆yhb1 are more sensitive to nitrosative stress than the 

single deletion strains. A triple deletion mutant ∆asc1 ∆hbn1 ∆yhb1 was generated that is 

hypersensitive to DETA-NONOate. Strains with an ASC1 deletion showed slightly impaired 

growth on the minimal medium used for the halo assay that might contribute to some minor 

extent to the reduced resistance against DETA-NONOate (Figure 10C). The data indicate that 

∆asc1 cells are prone to oxidative/nitrosative stress, such as externally applied NO. Loss of 

additional factors involved in the detoxification of reactive species, such as Hbn1p and 

Yhb1p, increases the sensitivity of ∆asc1 cells to DETA-NONOate (Rachfall et al., 2013).  

The asc1- strain and the cASC1 strain were analyzed with respect to a representative selection 

of the described phenotypes (Figures 10 and 11). The asc1- strain behaved identical to the 

∆asc1 strain and the cASC1 strain identical to the wild-type ASC1 strain. Thus, the 

phenotypes of a ∆asc1 strain observed here are caused by the absence of the Asc1 protein and 

not by the lack of the snoRNA U24. To exclude any impact of a loss of snoRNA U24 on 

observations made for Asc1p-deficient strains, the asc1- strain was used instead of the ∆asc1 

strain for subsequent experiments in this study.  
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Figure 10. Nitrosative stress in Asc1p-deficient strains. 

(A) The generation of reactive oxygen and nitrogen species within the respiratory chain upon hypoxia. 

Under normoxia, the cytochrome c oxidase complex (IV) of the respiratory chain transfers electrons 

onto oxygen leading to the formation of water molecules. Upon hypoxia, electrons are also transferred 

to nitrite (NO2
-) yielding in nitric oxide (·NO). Furthermore, accumulating electrons on the cytochrome 

bc1 complex (III) are released by superoxide (O2
·-) formation. ·NO and O2

·- react to form peroxynitrite 

(ONOO-), which can modify proteins through tyrosine nitration. O2
·- can be detoxified through the 

enzymes superoxide dismutase (SOD) and catalase. Yhb1p can consume ·NO, and Hbn1p seems to be 

involved in activation of SOD (Liu et al., 2000; de Oliveira et al., 2010). (NADH = nicotinamide 

adenine dinucleotide, CoQ = coenzyme Q, c = cytochrome c; I = NADH coenzyme Q reductase, II = 

succinate dehydrogenase; modified from Castello et al., 2006). (B) Agar diffusion/halo assay to 

determine the sensitivity to the nitric oxide donor DETA-NONOate. Yeast cells were diluted in liquid 

top agar that was poured on MV plates (pH 7.2), and filter papers containing 2 µl or 4 µl of 1 M 

DETA-NONOate were applied. Plates were incubated for 2 days at 30 °C, and the size of growth 

inhibition zones was determined. The graph shows the resistance of the deletion strains against DETA-

NONOate relative to the wild-type determined by the reciprocal values of the halo diameters. (C) Drop 

dilution assay. Serial ten-fold dilutions of the cell suspensions used for the halo assay were dropped 

onto MV-plates to evaluate total growth of the strains on this medium. (N/A = not applicable; 

modified from Rachfall et al., 2013). 
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Figure 11. Phenotypic characterization of the asc1SNR24, cASC1, and asc1DE strains. 

(A) Drop-dilution assays. Cell suspensions were spotted onto different growth media. YNB media 

containing 600 ng/ml canavanine or 0.15 µg/ml cycloheximide were used to test strains for their 

sensitivity to inhibitors of protein biosynthesis. To evaluate the growth of strains on non-fermentable 

carbon sources, cells were grown on YEP medium containing 2% glycerol as sole carbon-source. 

Sensitivity to cell wall stress was analyzed through growth on 125 µg/ml Congo red containing YEPD 

plates (glc = glucose). YNB and YEPD plates served as growth controls. (B) Colony morphology 

under low glucose. Cells were spread on YEP plates containing 2% glucose (high glucose) or 0.4% 

glucose (low glucose) to form single colonies with distinct morphologies after 3 d growth at 30 °C. 

(C) TTC assay to evaluate respiratory activity. Cells were spread on YNB plates containing low 

amounts of glucose (0.4%). After 3 d incubation at 30 °C, colonies were overlaid with top-agar 

containing 0.5% TTC that is reduced by electrons of the active respiratory chain to a red dye. (D) Test 

for adhesive growth. Haploid cells were patched onto 10 mM 3-AT containing YNB plates and 

incubated for 3 d at 30 °C. Afterwards, plates were washed under a constant stream of water to remove 

non-adherent cells from the agar surface. Non-adherent strains are highlighted in gray. 

 

In addition to the asc1- and the cASC1 strain, the asc1R38D K40E (asc1DE) strain was 

included in the phenotypic characterizations. This strain expresses an Asc1p variant that is 

supposed to bind less efficiently to the ribosome due to the exchange of two highly conserved, 

positively charged residues R38 and K40 to negatively charged aspartate (D) and glutamate 

(E, Coyle et al., 2009). R38 of Asc1p seems to contact D27 of Rps17p, and K40 appears to 

form a salt-bridge with a phosphate residue of the sugar-phosphate backbone of the rRNA 

(Adams et al., 2011). An S. cerevisiae asc1DE strain has originally been constructed and 
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Figure 12. Asc1p-dependent transcription factor levels.  
Immunodetection of Flo8p-myc3, Tec1p, and Rap1p within cell extracts from ASC1 wild-type, asc1-, 

and asc1DE cultures. A c-myc antibody was used to detect myc3-tagged Flo8p. Tec1p and Rap1p were 

detected using protein-specific antibodies. Ponceau red staining of proteins served as loading control, 

and a part of the lower half of the stained Western blot membrane is depicted. Fold changes relative to 

wild-type signal intensities are given below each lane. 

 

phenotypically characterized by Coyle and colleagues (2009). They observed a shift of the 

majority of Asc1DEp from the ribosomal to the ribosome-free fraction during sucrose 

gradient ultracentrifugation. Nevertheless, the asc1DE strain was shown to behave 

phenotypically mainly like the ASC1 wild-type strain, apart from the staining of cells with 

calcofluor white that revealed elevated levels of chitin in the cell wall similar to an ASC1 

deletion strain (Coyle et al., 2009). Here, an asc1DE mutant strain was generated as well in 

the used S. cerevisiae Σ-strain background (Figure 9C2) and tested for additional phenotypes. 

Similar to what was observed by Coyle and colleagues, the asc1DE strain behaved mostly like 

the ASC1 wild-type strain. However, it showed a slightly reduced resistance against 

cycloheximide (Figure 11). Loss of Asc1p causes decreased abundance of the transcription 

factors Flo8p, Tec1p, and Rap1p. The asc1- strain confirms that this effect depends on the 

lack of Asc1p and not on the absence of the snoRNA U24. The abundance of these 

transcription factors, however, remained unaffected in the asc1DE strain (Figure 12). 

Altogether, these observations indicate that compromised binding of Asc1p to the ribosome 

due to the DE exchange only slightly reduces the functionality of the protein. 

 

3.2 Phosphorylation of Asc1p 

Asc1p/RACK1 is known to interact with protein kinases both in yeast and higher eukaryotes. 

The phosphorylation of Asc1p itself likely regulates its protein-interactions, stability, and 

subcellular localization (Chang et al., 2002; Zeller et al., 2007). Phospho-sites within Asc1p 

have been identified in high throughput studies (Smolka et al., 2007; Holt et al., 2009). Here, 

phosphorylation of Asc1p was studied with a targeted approach based on the purification of 
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the protein from yeast cultures and identification of phospho-peptides using LC-MS. 

Subsequently, S. cerevisiae mutant strains were generated with amino acid exchanges at the 

newly identified and the previously known phospho-sites of Asc1p and subjected to 

phenotypic characterizations to reveal the impact of phosphorylation on the functionality of 

Asc1p.  

 

3.2.1 The surface of Asc1p is target for multiple phosphorylations 

Strep-tagged Asc1p was purified from exponentially growing S. cerevisiae cell cultures, and 

tryptic peptides of the protein were analyzed with LC-MS for in-depth characterization of its 

phosphorylation. The raw data search against an S. cerevisiae-specific protein database using 

the Proteome Discoverer 1.4 software and the SequestHT and Mascot search algorithms 

resulted in the identification of seven singly phosphorylated peptides, two of them with an 

overlapping sequence due to a trypsin missed cleavage site at K161 (Figure 13). Since all 

phospho-peptides identified contained more than one serine, threonine, and/or tyrosine 

residue, the phosphoRS algorithm was used to calculate phospho-site probabilities (Olsen and 

 

 

Figure 13. LC-MS-based identification of Asc1p phospho-sites.  

Asc1p amino acid sequence is depicted with identified phosphorylated peptides and sites. The amino 

acid sequence coverage of Asc1p considering all identified high confident peptides was 97.81% (false 

discovery rate ≤ 0.01). Phospho-sites S166 and T168 were identified within a phospho-peptide ranging 

from residue A162 to K176 and within a second peptide from residue V156 to K176 bearing a missed 

cleavage site at the C-terminus of K161 that is indicated with a plus (+). Residues R38 and K40, which 

lead to compromised ribosome-association of Asc1p when mutated to D and E, respectively, are 

written in red and marked with dots (Sengupta et al., 2004; Coyle et al., 2009). WD40 repeats are 

indicated according to SGD (SMART domain SM0032). See Supplementary Table 1 for details on the 

identification of phospho-peptides and Supplementary Figure 2 for fragmentation spectra. 
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Mann, 2004; Olsen et al., 2006). Six amino acid residues of Asc1p, T12, S120, T143, S166, 

T168, and Y250, were identified with a site probability of 100% to be unambiguous phospho-

sites. These data confirmed the already known phospho-sites S120, S166, and T168 (Smolka 

et al., 2007; Holt et al., 2009) and led to the identification of three previously unknown sites, 

T12, T143, and Y250. Furthermore, a phospho-peptide was identified with 99.9% as the 

highest localization probability for residue T300. For more details on peptide identification 

and phospho-site localization, see Supplementary Table 1 and Supplementary Figure 2. This 

study focused on T12, S120, T143, S166, T168, and Y250 as well as on T96 and T99 (Chi et 

al., 2007) that were not detected in the experiments presented here. The position of these eight 

phospho-sites within the protein bound to the 40S subunit of the ribosome is illustrated in 

Figure 14. T12, T99, and T143 are localized in the βD-strands of blades 7, 2, and 3 thus being 

localized at the circumference of the protein. T96, S120, S166, and Y250 are localized at 

sides of Asc1p that do not directly face the ribosome. T96 lies next to T99 in close proximity 

to the ribosomal protein Rps16. S166 is positioned within the loop between βA- and βB-

strands of blade 4 adjacent to T168, which is the N-terminal amino acid of strand 4βB. None 

of the phospho-sites is localized at the side of Asc1p known to directly contact other 

ribosomal proteins indicating that kinases can access the protein in its ribosome-bound state. 

 

Figure 14. Cartoon view of Asc1p bound to the 40S subunit of the ribosome.  

The Asc1p β-propeller is depicted in white (loops) and gray (β-strands). Positions of phospho-sites 

that were further analyzed in this study are highlighted in yellow, and the amino acids are depicted as 

sticks with carbon atoms in yellow, nitrogen atoms in blue, and oxygen atoms in red. For better 

recognizability, neighboring amino acids within the LC-MS-identified peptides are colored in green. 

Additionally, residues R38 and K40 are highlighted. For the ribosomal protein Rps3, the C-terminal 

last 14 amino acids were structurally not resolved and are therefore missing. Figures of structures were 

generated with PyMOL Molecular Graphics System software on the basis of the PDB file 4V88 (Ben-

Shem et al., 2011). 
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3.2.2 Construction of yeast strains expressing Asc1p isoforms with amino acid exchanges 

at phospho-sites 

To analyze the impact of phosphorylation on Asc1p, S. cerevisiae Asc1p phospho-site mutant 

strains were generated. These strains express Asc1p having either glutamate or alanine at one 

of the phospho-sites to mimic their constitutively phosphorylated or dephosphorylated state, 

respectively. Y250 was mutated to phenylalanine instead of alanine due to the higher 

similarity between these two amino acids. For phospho-sites lying close to each other within 

the amino acid sequence (T96 and T99 as well as S166 and T168), strains with both sites 

mutated simultaneously were generated in addition. 

Furthermore, strains carrying each phospho-site substitution in combination with the two 

amino acid exchanges R38D K40E were constructed. These two amino acid exchanges are 

considered to compromise the ribosome binding of Asc1p (see chapter 3.1). The DE mutation 

causes only a marginal loss of Asc1p’s functionality, but it might cause synthetic effects in 

combination with the phospho-site mutations. All constructed strains are listed in Table 1. 

Growth phenotypes studied with these strains are summarized in Table 3 and are illustrated 

and described in the following chapter.  

 

3.2.3 Asc1p phospho-sites T143 and Y250 confer resistance against translation inhibitors 

and together with T12, T96, and T99 are essential to maintain overall functionality of 

the Asc1DEp variant 

The phospho-site mutant strains constructed were analyzed with respect to the Asc1p-

dependent phenotypes introduced in chapter 3.1 and the ASC1 wild-type, asc1-, and asc1DE 

strains were used as references. Figures 15-17 give an overview of the main observations. The 

dephosphorylation mimicking mutations T143A and Y250F increased the sensitivity to 

cycloheximide similar to the DE mutation, and the Y250F mutation also caused sensitivity to 

canavanine (Figure 15). In the absence of an additional DE mutation, all other phospho-site 

mutant strains showed wild-type behavior (Figures 15-17 and data not shown). 

DE-compromised localization of Asc1p at the ribosome, however, enhances the effects caused 

by amino acid exchanges at T143 and Y250. The asc1T143ADE and asc1Y250FDE strains 

showed synthetic hypersensitivity to cycloheximide in comparison to the strains bearing only 

the dephosphorylation mimic or the DE mutation (Figure 15). They were even phenotypically 

similar to the asc1- strain. Irrespective of the DE mutation, phenylalanine at position 250 

affected the sensitivity to cycloheximide and canavanine. The asc1T143ADE strain behaved 

similar to the asc1- strain in all tests showing, for example, strongly reduced red pigmentation
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Table 3. Overview of Asc1p phospho-site mutant strains and their phenotypes. 

As references the phenotypes of the ASC1 wild-type strain were defined as +, and the phenotypes of 

the Asc1p-deficient asc1- strain as - - -. The phenotypes of the Asc1p phospho-site mutant strains were 

classified accordingly. Dark gray background color highlights strains and their phenotypes that 

differed significantly from the ASC1 wild-type strain. 

 

 
cana-
vanine 

cyclo-
heximide 

glycerol 
TTC  

assay 
Congo  

red 
wrinkled 
colonies 

adhesive 
growth 

reference strains        

ASC1 + + + + + + + 

asc1- - - - - - - - - - - - - - - - - - - - - - 

asc1DE + - + + + + + 

phospho-site 
mutant strains 

       

T12A + + + + + + + 

T12A DE + - + + + + - 

T12E + + + + + + + 

T12E DE + - + + + + + 

T96A + + + + + + + 

T96A DE - - - - - - - - - - - - 

T96E + + + + + + + 

T96E DE - - - - - - - - - - - - 

T99A + + + + + + + 

T99A DE + - + + + - - 

T99E + + + + + + + 

T99E DE + - + + + + + 

T96A T99A + + + + + + + 

T96A T99A DE - - - - (-) - - - - - - - - - - - - 

T96E T99E + + + + + + + 

T96E T99E DE - + + + - - - - - 

S120A + + + + + + + 

S120A DE + - + + + + + 

S120E + + + + + + + 

T143A + - + + + + + 

T143A DE - - (-) - - - - - - - - - - -  - - - - - - 

T143E + + + + + + + 

T143E DE - - - - + - - + - - - 

S166A + + + + + + + 

S166A DE + - + + + + + 

S166E + + + + + + + 

T168A + + + + + + + 

T168A DE + - + + + + + 

T168E + + + + + + + 

S166A T168A + + + + + + + 

T166A T168A DE + - + + + + + 

S166E T168E + + + + + + + 

Y250F - - - + + + + + 

Y250F DE - - - - + + + + + 
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Figure 15. Drop dilution assays to analyze the impact of phospho-site mutations on Asc1p-

dependent phenotypes. 

Cell suspensions were spotted on YNB plates with or without 0.15 µg/ml cycloheximide or 600 ng/ml 

canavanine, respectively, to assess sensitivity to translation/protein biosynthesis inhibitors. To 

evaluate cell wall integrity, cells were dropped on YEPD plates with or without 125 µg/ml Congo red, 

and to test fermentative activity, cells were spotted onto YEP medium with 2% glycerol instead of 

glucose. 

 

in the presence of TTC (Figure 16B2). Only its sensitivity to Congo red was less pronounced 

than for the asc1- strain. The asc1T143EDE strain with a phosphorylation mimic at position 143 

showed similar but in most cases milder phenotypes than the asc1T143ADE strain. 

Combination with the DE mutation also caused strong effects of the amino acid substitutions 

at T12, T96, and T99. The asc1T12ADE strain showed impaired adhesive growth (Figure 17). 

The asc1T96ADE and the asc1T96EDE strain were non-adhesive and showed no wrinkled colony 

morphology on 0.4%. Other phenotypes were only mildly affected (Figures 15-17). The 

substitution of T99 by alanine, but not by glutamate, combined with the DE mutation affected 

the same two phenotypes though less severely. The asc1T96A T99ADE strain with both 

neighboring amino acids replaced by alanine behaved like the asc1T96ADE strain except for its 

slightly increased sensitivity to cycloheximide (Figure 15). Interestingly, the sensitivity of the 

asc1T96EDE strain to cycloheximide and its reduced growth on the non-fermentable carbon 

source glycerol were suppressed by an additional T99E exchange (asc1T96E T99EDE strain). In 

all other assays, the additional T99E mutation only partially suppressed the phenotype caused 
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Figure 16. Impact of Asc1p phospho-site mutations on colony morphology and respiratory 

activity.  

(A) Colony morphology under glucose limitation. Cells were grown on YEP 2% glucose plates (no 

limitation) and YEP 0.4% glucose plates (glucose limitation). (B) TTC assay to evaluate respiratory 

activity. Cells were grown on 0.4% glucose containing YNB plates. Colonies were overlaid with 1.2% 

top agar containing 0.5% TTC and incubated for 20 to 30 min at 30 °C. (glc = glucose) 

 

by the T96E DE mutation. Combination of the DE mutation with dephosphorylation mimics 

at S120, S166, and T168 did not affect any of the tested phenotypes (data not shown, 

substitution to glutamate was not tested). Thus, DE-induced alterations in Asc1p-binding to 

the ribosome caused phenotypes when combined with specific phospho-site mutations. A 

high-copy plasmid bearing the wild-type ASC1 gene complemented all mutations and by that 

revealed a recessive nature of the described asc1 mutations (Figure 18).  
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Figure 17. Test for haploid adhesive growth of phospho-site mutant strains.  
Cells were patched on 10 mM 3-AT containing YNB plates and incubated for 3 d. Plates are depicted 

before and after washing with a constant stream of water. 
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Figure 18. Complementation of ASC1 phospho-site mutant phenotypes by expression of plasmid-

borne wild-type ASC1. 

Phospho-site mutants were transformed with a high-copy number plasmid carrying the wild-type 

ASC1 gene under the control of the MET25-promoter (ASC1; pME2624) or with the empty vector 

(EV; pME2787) as control. The ASC1 wild-type, asc1-, Δasc1, and asc1DE strains were transformed 

with the same plasmids as further controls. (A) Haploid adhesive growth at amino acid starvation 

caused by 10 mM 3-AT. Plasmid-transformed phospho-site mutants asc1T12ADE, asc1T96ADE, 

asc1T96EDE, asc1T99ADE, asc1T96A T99ADE, asc1T96E T99EDE, asc1T143ADE, and asc1T143EDE as well as 

control strains were patched on the 3-AT containing YNB plates and subjected to wash tests after 3 d 

of growth. The asc1T99EDE, asc1T143A, and asc1T143E strains, which are not impaired in adhesive 

growth, served as additional controls. Plates are shown before and after the washing step. (B) Drop 

dilution assay to evaluate cycloheximide sensitivity. Cell suspensions of plasmid-transformed 

phospho-site mutant strains asc1Y250F and asc1Y250FDE as well as control strains were applied onto 

YNB plates containing 0.15 µg/ml cycloheximide. 
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3.2.4 Phosphorylation of T12, T96, T99, and especially T143 is required for cellular 

abundance of Asc1DEp 

The cellular abundance of the Asc1DE protein was found to be rather increased compared to 

that of Asc1p in the wild-type strain (Figure 19). The abundance of Asc1DEp requires the 

integrity of the phospho-sites T12, T96, T99, and especially T143, but not Y250. Yet, none of 

the phospho-site exchanges alone affected the abundance of Asc1p in the absence of the DE 

mutation (Figure 19 and data not shown). Replacing residue T143 by alanine caused the 

severest reduction in Asc1DEp abundance even far below the Asc1p levels in wild-type cells. 

This correlates with the phenotypes of this strain that are reminiscent of those of the asc1- 

strain. The exchange of T143 by a phosphorylation-mimicking glutamate residue reduced the 

Asc1DEp levels, yet, to a lesser extent.  

The combination of DE with T96 replaced either by alanine or by glutamate caused a severe 

reduction of Asc1p abundance below wild-type levels as well. This effect was enhanced for 

the T96 alanine substitution through the simultaneous exchange of its neighboring amino acid 

T99 to alanine in strain asc1T96A T99ADE. In contrast, the asc1T96E T99EDE strain exhibited

 

Figure 19. Asc1 protein abundance in phospho-site mutant strains. 

(A-C top) Immunodetection of Asc1p within cell extracts derived from ASC1 wild-type, asc1DE, and 

phospho-site mutant strains and the asc1- strain as negative control. Ponceau red staining of proteins 

served as loading control, and a part of the lower half of the stained Western blot membrane is 

depicted. Fold changes relative to wild-type signal intensities are given below each lane. (C bottom) 

Northern blot analyses for detection of ASC1 mRNA and SNR24 snoRNA U24 levels in T143 

phospho-site mutant strains. rRNA served as loading control. 
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higher levels of Asc1p, an observation that is also in line with the phenotypes of this strain. 

Remarkably, the T96E T99E exchanges rescued the sensitivity of the asc1DE strain to 

cycloheximide independently of Asc1p levels in the asc1T96E T99EDE strain that are reduced in 

comparison to the asc1DE strain.  

The asc1Y250FDE strain displayed Asc1p levels similar to the asc1DE strain. Thus, the 

increased sensitivity of both the asc1Y250F and the asc1Y250FDE strain to cycloheximide and 

canavanine cannot be explained by the cellular abundance of Asc1p in these strains. To 

exclude that the changes in Asc1p expression were caused at the ASC1 mRNA level, Northern 

blot experiments were performed with a probe against exon 1 of ASC1. The asc1T143ADE 

strain with the strongest reduction of Asc1p abundance revealed unchanged levels of ASC1 

mRNA suggesting that the reduced Asc1p-levels were caused post-transcriptionally either 

through mRNA translation or protein stability (Figure 19C).  

 

3.3 The Asc1p-dependent phospho-proteome 

The evidence for Asc1p-phosphorylation and the knowledge about Asc1p being an important 

player in cellular signal transduction prompted us to investigate Asc1p-dependent protein-

phosphorylation beyond its own phosphorylation. Previous studies reported that the absence 

of Asc1p leads to increased phosphorylation of the MAPKs Kss1p and Slt2p, which control 

filamentous growth, mating, and cell wall integrity (Chasse et al., 2006; Zeller et al., 2007). 

Here, the phosphorylation of the MAPK of the high osmolarity response pathway, Hog1p, 

was analyzed using an antibody for the protein phosphorylated at residues T174 and/or Y176 

by its upstream MAP2K, Pbs2p. A significant decrease in Hog1p phosphorylation was 

detected in the asc1- strain, but not in the asc1DE strain (Figure 20A). This might explain the 

sensitivity of the asc1- strain to osmotic stress (Figure 20B, Melamed et al., 2010).  

 

Figure 20. Asc1p-dependency of the high osmolarity response pathway.  
(A) Immunodetection of Hog1p phosphorylated at T174 and/or Y176 within cell extracts obtained 

from ASC1 wild-type, asc1-, and asc1DE cells using a phospho-p38 MAP kinase-specific antibody. As 

loading control, proteins were stained with Ponceau red, and a part of the stained Western blot 

membrane approximately at the level of the Hog1p-P signals is depicted. Fold changes relative to 

wild-type signal intensities are given below each lane. (B) Drop dilution assay on YEPD plates 

containing 75 mM NaCl to evaluate osmotic stress sensitivity. 
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3.3.1 Asc1p affects the phosphorylation of more than 200 proteins at almost 300 

different sites  

To get an unbiased and comprehensive view on Asc1p-dependent phosphorylation of other 

proteins besides MAPKs, a LC-MS-based quantitative phospho-proteome analyses was 

performed using stable isotope labeling with amino acids in cell culture (SILAC). The 

proteomes of the following strains were quantitatively compared to that of the wild-type ASC1 

strain: 1.) The asc1- strain, to study the impact of the absence of Asc1p, 2.) the asc1DE strain, 

to observe the consequences of a displaced Asc1p at the ribosome, 3.) the asc1T143A, 

asc1T143E, and asc1T143EDE strains, to investigate the impact of the phospho-site T143 in the 

presence and absence of the DE mutation. Prior to the quantitative phospho-proteome analysis 

that requires the enrichment of phospho-peptides from overall peptide-samples, the total 

proteomes were quantitatively compared to analyze the overall changes in protein abundance. 

The total proteome data were used to correlate changes in phosphorylation to changes in 

protein abundance enabling correction of the phospho-peptide SILAC-ratios with the 

corresponding protein ratios. For efficient incorporation of the isotopically labeled arginine 

and lysine, ∆arg4 ∆lys1 strains were generated for the ASC1 wild-type, the asc1-, and the 

asc1DE background. Strains with the phospho-site T143 mutated were arginine and lysine 

prototroph and therefore cultivated in the presence of the naturally occurring light amino acids 

(Arg0, Lys0). To distinguish between changes caused by the Asc1p mutations or differences in 

arginine and lysine metabolism (prototroph ARG4 LYS1 strains versus auxotroph ∆arg4 ∆lys1 

strains), an auxotrophy-control ASC1Aux was included in the experiments that is an ASC1 

wild-type strain prototrophic for arginine and lysine (ARG4 LYS1). The triple SILAC 

approach using light (Arg0, Lys0), medium (Arg6, Lys4), and heavy (Arg10, Lys8) variants of 

the labels enables the quantitative comparison of these proteomes in one experiment.  

The workflow for the peptide sample preparation of the Asc1p-dependent proteome and 

phospho-proteome analyses is depicted in Figure 21. All experiments included the ASC1 

∆arg4 ∆lys1 strain as constant reference for SILAC-ratio reporting. In the following text, the 

term SILAC-ratio refers to ratios with the respective ASC1 ∆arg4 ∆lys1 value in the 

denominator. A detailed description of the LC-MS data evaluation using the 

MaxQuant/Perseus software is provided in the Materials and Methods section and in 

Supplementary Tables 2 (proteome) and 3 (phospho-proteome). Briefly, a one-sample t-test 

(p-value < 0.01) was applied for the protein SILAC-ratios of the asc1- and asc1DE strains to 

identify proteins that are significantly regulated. A two-sample t-test (p-value < 0.01) was 

used to assess the difference between the protein SILAC-ratios of the asc1T143 mutant strains
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Figure 21. Analysis of the Asc1p-dependent phospho-proteome.  
Peptide sample preparation for SILAC and LC-MS-based Asc1p-dependent phospho-proteome and 

proteome analyses. S. cerevisiae strains were cultivated in the presence of light, medium, or heavy 

labeled arginine and lysine. Arrows indicate which strains were pooled and indicate the number of 

replicates. The auxotrophy control (Aux) comprised cells of the ASC1 ARG4 LYS1 strain. In total, 13 

independent cell pools were obtained and subjected to the subsequent preparation of cell extracts. The 

protein extracts were split in two and processed separately for the proteome and phospho-proteome 

analyses. For the proteome analysis, cell extract containing 100 µg protein was separated by SDS-

PAGE, followed by staining with Colloidal Coomassie and in-gel trypsin digestion. For the phospho-

proteome analysis, only protein extracts of experiments 1-8 and 12-13 were further processes. 1 mg 

protein of each sample was subjected to chloroform-methanol extraction to remove SDS from the 

samples followed by in-solution digestion (filter-aided sample preparation, FASP, Wiśniewski et al., 

2009) with LysC and trypsin. Phospho-peptides were enriched using TiO2 affinity chromatography. 

The peptide samples were analyzed individually by LC-MS using appropriate fragmentation 

techniques (CID, MSA-CID, or HCD). All raw data files were searched in one set against an 

S. cerevisiae-specific protein database with the MaxQuant software. The downstream data evaluation 

was performed with Perseus as described in Supplementary Tables 2 and 3.  

 

and the corresponding values of the auxotrophy controls. In the asc1- strain, 604 proteins were 

significantly affected in their abundance with an averaged log2 SILAC-ratio < -0.26 or > 0.26 

(Supplementary Table 4). Using this threshold for regulation twelve proteins for the asc1DE, 

one and four for the asc1T143A and asc1T143E strains, respectively, and 111 for the asc1T143EDE 
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strain were identified as regulated (Supplementary Tables 5-8). The rather marginal changes 

in the asc1DE, asc1T143A, and asc1T143E proteomes reflect the observation that these strains 

behaved phenotypically mainly like the wild-type strain in our tests. Accordingly, 88 of the 

111 proteins affected in their abundance by the T143E DE mutation were identified as 

regulated in the asc1- strain as well, and in line with this, the asc1T143EDE strain mostly 

showed similar or equal phenotypes as the Asc1p-deficient strain. 

Based on these observations, the phospho-proteome analysis focused on the asc1- strain. The 

respective peptide samples were subjected to the enrichment of phospho-peptides and LC-MS 

analysis. In total, 1947 distinct phospho-sites (localization probability ≥ 0.5) were identified. 

1245 of these sites were detected and quantified in at least two independent samples for the 

comparison between the asc1- and ASC1 wild-type strain and considered for further analysis. 

A two-sample t-test (p-value < 0.01) was applied comparing the SILAC-ratios of the 

phospho-sites with those of the corresponding proteins. The significantly regulated phospho-

sites were further filtered for their degree of regulation considering only sites with a 

normalized median log2 SILAC-ratio < -0.26 or > 0.26 (Supplementary Table 9). Table 4 lists 

phospho-sites with an even stronger regulation of median log2 SILAC-ratios ≤ -0.58 or ≥ 0.58. 

Phospho-sites with zero to two quantification values for the corresponding protein were also 

considered applying a one-sample t-test on their SILAC-ratios. In total, 289 phospho-sites in 

208 proteins showed Asc1p-dependent changes in their degree of phosphorylation. 139 of 

these sites were found to be up-regulated and 151 down-regulated including one site (S222 of 

Vid27p) that was identified as up-regulated for the singly phosphorylated peptide and down-

regulated for the doubly phosphorylated peptide (T220 and S222). Six other sites were also 

identified twice within singly and doubly phosphorylated peptides, but showed the same 

direction of regulation. 62 proteins were identified with more than one Asc1p-dependently 

regulated phospho-site, and eight of these proteins contained sites that were increased and 

others that were decreased in their degree of phosphorylation. 

Table 4. Asc1p-dependently regulated phospho-sites. 
All proteins containing phospho-sites with a proteome-corrected median log2 asc1-/ASC1 SILAC-ratio 

≤ -0.58 or ≥ 0.58 are listed together with their regulated sites and the corresponding localization 

probabilities (site & prob). The colors reflect the values of the median SILAC-ratios for the phospho-

site (phos), the corresponding protein (prot), and the proteome-correction (log2 ratio phospho-site 

minus log2 ratio protein, named phospho regulation). Gray indicates that the protein was not 

quantified in the total proteome analysis. In this case, the phospho regulation is identical with the 

quantification value for the phospho-site. 1 indicates that only one quantification value was obtained. 

Phospho-sites that are printed in italics are previously unknown sites according to PhosphoGRID 

(http://www.phosphogrid.org, Stark et al., 2006) and SGD including data from Swaney et al. (2013). 

See Supplementary Table 9 for details and additional phospho-sites with a proteome-corrected log2 

asc1-/ASC1 SILAC-ratio < -0.26 or > 0.26. 
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Table 4.  

 
       
      *Ty2a-Dr3;Ty2a-C;Ty2a-Or1; Ty2a- 
      Lr2;Ty2a-Gr2;Ty2a-F 
       
      **Ty1b-Lr4;Ty1b-Pr1;Ty1b-Gr2; 
      Ty1b-Pr2;Ty1b-Er1;Ty1b-MI2; 
      Ty1b-Ol; Ty1b-Jr1;Ty1b-A;Ty1b-    
      Ml1;Ty1b-Pl;Ty1b-Lr2,   
      S445/S1004/S1005 
 

 

  

 
asc1-/ 
ASC1 

p
h
o
s
p
h
o
 

re
g
u
la

ti
o

n
 

protein site & prob 

p
h
o
s
 

p
ro

t 

Edc1 S82 0.99   2.15 

Tpi1 S215 1.00   1.47 

Csr1 S2 1.00   1.45 

Pre8 S15 1.00   1.16 

Rpn7 S196 1.00   1.11 

Isc1 T361 1.00   0.95 

Rpl12a/b S38 1.00   0.93 

Rcn1 S117 1.00   0.91 

Rcn1 S113 1.00   0.91 

Ste20 T572 0.61   0.90 

Pin4 S194 1.00   0.87 

Nte1 S634 0.99   0.83 

Ste20 S169 1.00   0.82 

Ty2a* S424 0.99   0.81 

Imh1 T304 0.65   0.81 

Acm1 S48 1.00   0.80 

Aim3 S843 0.93   0.79 

Imh1 S308 0.98   0.72 

Smi1 S389 0.92   0.72 

Nnk1 Y739 1.00   0.70 

Iml2 S7 1.00   0.70 

Pgm3 T156 0.66   0.69 

Kri1 Y482 0.63   0.68 

Rlp7 T120 1.00   0.67 

Rpn1 S19 1.00   0.67 

Tif1 S2 1.00   0.67 

Acc1 S9 0.87   0.66 

Fyv8 S441 0.99   0.65 

Dig2 T83 0.76   0.64 

Rpo21 T1471 0.93   0.64 

Pgm3 S158 0.97   0.64 

Imh1 S827 0.52   0.64 

Ste20 S502 1.00   0.63 

Rrp36 S14 1.00   0.63 

Myo3 S357 1.00   0.62 

Pda1 S313 1.00   0.62 

Dig2 T82 0.94   0.62 

Pdr16 S349 0.69   0.61 

Pdr16 S346 0.97   0.61 

Stb1 T99 1.00   0.60 

Stb1 S72 1.00   0.58 

Ppq1 S208 0.89   0.58 

Ysc84 S301 1.00   0.58 

 
asc1-/ 

ASC1 

p
h
o
s
p
h
o
 

re
g
u
la

ti
o

n
 

protein site & prob 

p
h
o
s
 

p
ro

t 

 additional 96 sites    0.58 > x > 0.26 

 additional 74 sites  -0.26 > x > -0.58 

Acc1 S1157 1.00   -0.59 

Hom3 S332 0.94   -0.59 

Tsa1 T174 1.00   -0.60 

Yap1 S14 1.00   -0.60 

Bni1 S1889 0.99   -0.62 

Sod1 S39 1.00   -0.62 

Ura2 T1859 0.77   -0.62 

Cue4 S48 1.00  1 -0.64 

Sch9 S726 1.00   -0.64 

Yjl070c S43 1.00  1 -0.65 

Pup2 S56 0.89   -0.65 

Prr1 S132 1.00   -0.65 

Rps19a/b S117 1.00   -0.65 

Ssd1 S231 0.96   -0.65 

Trm2 S98 0.95   -0.66 

Rad16 S25 1.00   -0.66 

Sec21 T638 1.00   -0.67 

Yjl070c S41 0.99  1 -0.67 

Trm2 S92 0.95   -0.68 

Rsc2 S682 1.00   -0.68 

Abp1 S167 0.94   -0.70 

Ent3 S2 1.00   -0.70 

Ycr023c S313 1.00   -0.72 

Rad16 S78 0.99   -0.73 

Vps1 S599 1.00   -0.73 

Rps7b S31 0.87   -0.74 

Trm2 T96 0.87   -0.74 

Trm2 S93 0.97   -0.74 

Par32 S39 1.00   -0.75 

Gpd2 S70 0.97   -0.77 

Orm2 S9 1.00   -0.77 

Pup2 T55 0.96   -0.78 

Cdc60 T142 1.00   -0.78 

Rps7b S30 0.90   -0.78 

Rad9 S494 0.81   -0.79 

Sui3 T116 1.00   -0.80 

Sum1 S736 0.71   -0.80 

Sui3 S118 0.69   -0.80 

Gat1 S262 0.98   -0.82 

Yhr020w T38 0.50   -0.82 

Yhr020w S36 0.50   -0.82 

 
asc1-/ 
ASC1 

p
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p
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p
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Zeo1 T49 1.00   -0.83 

Zeo1 S40 1.00   -0.83 

Gcs1 S157 0.81   -0.85 

Ura2 S1857 0.98   -0.86 

Ty1b** S1004 0.67   -0.86 

Kin2 S549 1.00  1 -0.87 

Vid27 T220 1.00   -0.94 

Vid27 S222 1.00   -0.94 

Def1 T258 0.90   -0.95 

Meh1 S146 0.99   -0.95 

Vtc3 S198 1.00   -0.99 

Tdh1/2/3 S201 1.00   -1.01 

Gvp36 S2 1.00   -1.03 

Rho5 S223 1.00   -1.03 

Abp1 S169 1.00   -1.03 

Mnr2 T177 0.99   -1.05 

Hsp42 S223 0.99   -1.06 

Def1 S260 1.00   -1.08 

Nrg2 S100 0.77   -1.08 

Kns1 T562 1.00   -1.10 

Mnr2 S152 1.00   -1.14 

Tif4632 T196 1.00   -1.18 

Bre5 S282 1.00   -1.20 

Grx2 S94 0.94   -1.30 

Ctr9 S1017 1.00   -1.31 

Puf3 S86 1.00   -1.34 

Ugp1 Y13 0.55   -1.42 

Grx2 S91 1.00   -1.42 

Cdc28 Y19 0.98   -1.46 

Abp1 T181 1.00   -1.53 

Abp1 S183 1.00   -1.53 

Nrg2 T99 0.95   -1.64 

Mep2 S460 0.73   -1.67 

Mep2 T459 0.63   -1.70 

Tpo1 S72 1.00   -1.71 

Egd1 T151 1.00   -3.36 

> 1.5   1.0   0.5   0   -0.5   -1.0   < -1.5 
 │     │     │     │     │     │     │  
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Due to the triple-SILAC approach the analyzed samples also contained information about the 

asc1T143A and asc1T143E phospho-proteomes that were further evaluated (see Supplementary 

Tables 10-11). As expected from the results for the total proteomes, only a few changes were 

observed in the phospho-proteomes of the T143 mutant strains with nine regulated phospho-

proteins. Four of them were already found as regulated in the asc1- strain (Ent3p, Sec31p, 

Rps1a/bp, and Tif1p). Phosphorylation of S2 of Tif1p was down-regulated in the asc1T143E 

strain, whereas the modification was increased in asc1- cells, and Sec31p phosphorylation was 

altered at a different site (S980 instead of S999) in the asc1T143A strain. In total, 213 proteins 

were identified as Asc1p-dependently regulated in their phosphorylation that were further 

evaluated according to their related biological processes.  

 

3.3.2 Asc1p spreads signals to fundamental processes of eukaryotic gene expression 

To evaluate which processes are affected by the Asc1p-dependent phosphorylation network, 

the 213 Asc1p-dependently regulated phospho-proteins were assigned to biological processes 

(gene ontology term) making use of the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.7 (Huang da et al., 2009a, b). From this initial 

computational analysis seven different groups were established, and all but 18 proteins were 

assigned to these functional categories in a non-exclusive manner (Figure 22A, 

Supplementary Table 12). One of the largest groups consists of proteins related to mRNA 

translation. Some of them are directly involved in this process, such as ribosomal proteins 

(e.g., Rpl12a/bp), translation factors, and mRNA-binding proteins (e.g., Puf3p). Eight 

translation initiation factors were identified to be regulated comprising the RNA-helicase 

eIF4A, which was found with increased phosphorylation in the absence of Asc1p in an earlier 

study of our group (Valerius et al., 2007). Besides initiation factors, this category also 

comprises the elongation factor Yef3p and the termination factor Sup35p. Egd1p, a 

component of the nascent polypeptide-associated complex, and Ssz1p, a part of the ribosome-

associated complex, were further shown to be affected in their phosphorylation status. The 

observed increase in phosphorylation of Ssz1p at residue S480 confirms again an earlier 

finding of our group (Valerius et al., 2007). Proteins indirectly involved in translation, such as 

tRNA-modifying enzymes, ribosome biogenesis factors, and tRNA-synthethases, were 

assigned to the group of translation as well.  

The Asc1p-dependent phosphorylation network is connected to further processes that 

contribute to cellular protein homeostasis including transcription and protein turnover. 

Absence of Asc1p alters, e.g., phosphorylation of the transcription factor Fhl1p, a key 
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Figure 22. Cellular processes and known Asc1p-interaction partners that are targeted by Asc1p-

dependent phosphorylation. 

(A) Assignment of the Asc1p-dependently regulated phospho-proteins to cellular processes. The graph 

depicts the number of proteins assigned to the different groups (see Supplementary Table 12 for the 

identity of proteins in each group). The 213 proteins were grouped in a non-exclusive manner meaning 

that 30 proteins are present in two groups. (B) Known Asc1p-interacting proteins Asc1p-dependently 

regulated on the level of phosphorylation. 

 

regulator of ribosomal protein encoding genes including ASC1 itself (Kleinschmidt et al., 

2006). The category transcription was additionally expanded for proteins affecting mRNA 

fate, such as the decapping protein Edc1. The group protein turnover includes three 

components of the regulatory particle of the 26S proteasome (Rpn1p, Rpn7p, and Rpn13p) 

and two components of its catalytic core (Pre8p and Pup2p), as well as Bre5p, a 

deubiquitination cofactor of Ubp3p, which regulate bulk protein degradation during ribophagy 

and mitophagy (Müller et al., 2015). The group traffic and transport comprises central 

structural components of vesicle coats (e.g., Sec21p) and regulators of vesicle-mediated 

transport (e.g., Gcs1p). Also, transmembrane transporters, such as the polyamine transporter 

Tpo1p and the ammonium transporter Mep2p, were assigned to this category. Asc1p affects 

the phosphorylation of several proteins that are related to cytokinesis, cytoskeleton 

organization, and budding, for instance, proteins involved in actin patch assembly at sites of 

polarized growth (Sla2p and Ent1p), polarisome components (Spa2p and Bni1p), actin 

nucleation promoting factors (Myo3/5p and Abp1p), regulators of actin filament elongation 

(Aim3p and Abp1p), and profilin (Pfy1p). Another group comprises enzymes of the primary 

metabolism that are, e.g., involved in amino acid biosynthesis (e.g., Hom3p), glycolysis and 

gluconeogenesis (e.g., Tpi1p and Tdh1/2/3p), and pyrimidine biosynthesis (Ura2p).  
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Finally, the largest group contains proteins implicated in cell signaling. This group stands in 

close relation to all other groups since it comprises 14 protein kinases, such as Cdc28p, 

Sch9p, and Ste20p, and regulatory subunits of the protein phosphatase Glc7p (Glc8p and 

Ypi1p) that could be directly responsible for the observed Asc1p-dependent changes in the 

phospho-proteome. In summary, the proteome data reveal an unprecedented strong impact of 

a single WD40 repeat protein on the phosphorylation of proteins involved in the regulation 

and realization of fundamental processes in a eukaryotic cell. Figure 22B shows proteins that 

were identified here with Asc1p-sensitive phospho-sites and were found in previous studies to 

genetically or physically interact with Asc1p. The physical interaction partners are potential 

candidates for an Asc1p-mediated kinase/phosphatase-target interaction. 

 

3.4 Identification of Asc1p-interacting proteins 

The results presented in the previous chapter showed a severe impact of Asc1p on the 

S. cerevisiae phospho-proteome. As a scaffold protein, Asc1p is supposed to provide 

proximity of proteins, and it might localize kinases or phosphatases to their substrates. 

Mammalian RACK1 was shown to contribute to the recruitment of kinases to the ribosome 

for the subsequent phosphorylation of translation initiation factors (Ceci et al., 2003; Ruan et 

al., 2012). Considering a similar function for Asc1p in yeast, the protein was purified from 

protein extracts to identify co-purifying proteins. C-terminally Strep-tagged Asc1p was 

affinity captured via Strep-Tactin® columns followed by LC-MS-based identification of 

proteins. Also, Asc1DEp-Strep with the two amino acid exchanges R38D and K40E was 

enriched via Strep-Tactin®. This variant is supposed to be compromised in its association to 

the ribosome and might lead to the identification of interactions that are specific for the 

mutated protein (Sengupta et al., 2004; Coyle et al., 2009).  

In general, the analysis of eluate fractions derived from affinity purification or pull-down 

experiments with LC-MS results in the identification of hundreds of proteins as unspecific 

background due to the high sensitivity of modern mass spectrometers, such as the LTQ 

Orbitrap Velos Pro used in this study. Thus, interaction partners of a bait protein might also 

be identified with high confidence from negative controls although with lower abundance. In 

this study, a strain expressing untagged Asc1p was used for the negative control. Reliable 

quantification methods are essential to compare the abundance of each identified protein 

between the sample enriched for the bait protein and the negative control. Here, a SILAC-

based approach was applied for relative peptide and thus protein quantification as described 

before (chapter 3.3.1). SILAC-labeling allows the pooling of differentially labeled cell 
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Figure 23. Workflow for the identification of putative interaction partners of Asc1p-Strep and 

Asc1DEp-Strep. 
On the left-hand side of the figure the experimental workflow is illustrated. The experiment was 

performed with three biological replicates. In each replicate, the cells of three different independently 

cultured strains were analyzed expressing either Asc1p-Strep, Asc1DEp-Strep, or the untagged Asc1p. 

For each experiment, the light, medium, and heavy amino acid labels were swapped between the 

different strains. The steps of cultivation and preparation of cell extracts were performed individually 

for each sample to prevent the interchange of proteins bound to Asc1p-Strep or Asc1DEp-Strep. The 

three cell extracts of one replicate were mixed immediately before capturing of Asc1p-Strep and 

Asc1DEp-Strep with Strep-Tactin® spin columns. The eluate fractions and aliquots of the pooled 

protein extracts were subjected to SDS-PAGE. A representative SDS-gel after staining of proteins 

with Colloidal Coomassie is depicted. Each lane was cut into eight gel pieces as indicated in the figure 

with black lines, and proteins were in-gel digested with trypsin followed by LC-MS analysis of the 

peptides. In total, 16 LC-MS runs were performed for each biological replicate: 8 for the proteome 

plus 8 for the enrichment. Raw-data files were searched against an S. cerevisiae-specific database 

using the MaxQuant software. On the right-hand side of the figure, an overview of the most important 

steps of the downstream data evaluation with the Perseus software is provided. The pathway splits up 

into two branches: one for the analysis of proteins identified in the eluate fraction with two or three 

proteome (prot.)-corrected SILAC-ratios available and a second for the analysis of proteins with no or 

one proteome-corrected SILAC-ratio. NaN is the abbreviation for not a number and states that the 

protein was not identified or not quantified in one of the replicates.  
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Table 5. Logarithmized SILAC-ratios of proteins co-captured with Asc1p-Strep. 

The listed proteins were identified to be enriched together with Strep-tagged Asc1p based on their 

relative quantification using SILAC. The top part lists proteins with 2-3 proteome-corrected SILAC-

ratios and the bottom part those with 0-1 proteome-corrected SILAC-ratios. The colors reflect the 

SILAC-ratios according to the scale below the table. (Abbreviations/symbols: ** = t-test p-value 

< 0.05, * = t-test p-value < 0.1, Ø = mean of respective SILAC-ratios, SD = standard deviation, 

DE = mean Asc1DEp-Strep/control SILAC-ratios). The last column of the upper part of the table gives 

the mean and SD of the proteome-corrected Asc1DEp-Strep/control ratios. The last column of the 

bottom part gives the mean and SD of the enrichment Asc1DEp-Strep/control ratios.  

2-3 proteome-corrected SILAC-ratios ≥ 0.26 

 
proteome-corrected 

ratios 
enrichment ratios proteome ratios DE 

protein 
Ø 

(SD) 
1 2 3 Ø 

(SD) 
1 2 3 Ø 

(SD) 
1 2 3 Ø 

(SD) 

Asc1** 
7.41 
(1.00) 

7.66 8.27 6.31 
5.21 
(0.90) 

5.31 6.06 4.27 
-2.20 
(0.16) 

-2.35 -2.20 -2.04 
7.15 
(0.76) 

Def1* 
1.38 
(0.96) 

1.81 2.05 0.28 1.54 
(0.96) 

1.91 2.26 0.45 0.16 
(0.05) 

0.10 0.20 0.17 1.25 
(0.85) 

Dsk2 
0.95 
(0.84) 

0.50 1.92 0.43 1.13 
(0.84) 

1.50 1.73 0.17 0.18 
(0.71) 

1.00 -0.19 -0.26 1.24 
(0.64) 

Kel1** 
0.95 
(0.52) 

0.77 1.53 0.54 0.85 
(0.55) 

0.70 1.45 0.39 -0.10 
(0.05) 

-0.07 -0.08 -0.15 0.83 
(0.60) 

Sis1** 
0.76 
(0.33) 

1.02 0.86 0.39 
0.66 
(0.26) 

0.91 0.66 0.39 
-0.10 
(0.10) 

-0.10 -0.20 0.00 
0.73 
(0.79) 

She2** 
0.66 
(0.21) 

- 0.80 0.51 0.57 
(0.28 

- 0.77 0.38 -0.04 
(0.09) 

0.05 -0.03 -0.13 0.16 
(0.05) 

Spt5* 
0.57 
(0.33) 

0.80 - 0.34 0.57 
(0.33) 

0.53 0.91 0.25 -0.17 
(0.13) 

-0.26 - -0.08 0.43 
(0.10) 

Prx1** 
0.56 
(0.01) 

- 0.56 0.57 0.16 
(0.08) 

- 0.11 0.21 -0.44 
(0.07) 

-0.50 -0.45 -0.36 0.05 
(0.08) 

Ssd1 
0.54 
(0.32) 

0.40 0.91 0.31 
0.67 
(0.42) 

0.62 1.12 0.28 
0.14 
(0.14) 

0.23 0.21 -0.03 
0.47 
(0.50) 

Mcm6** 
0.42 
(0.14) 

0.56 0.42 0.28 0.37 
(0.16) 

0.54 0.33 0.23 -0.05 
(0.04) 

-0.01 -0.09 -0.06 0.45 
(0.28) 

only 0-1 proteome-corrected SILAC-ratio, 2-3 enrichment ratios ≥ 0.26 

Mnl2* - - - 5.09 
5.50 
(0.83) 

- 6.33 4.67 - - - -0.42 4.92 

(0.92) 

Nop1*3 - - - 0.50 
0.63 
(0.27) 

0.54 1.00 0.35 - - - -0.14 
0.47 
(0.50) 

Cue5** - - - 0.36 
0.60 
(0.10) 

0.68 0.46 0.67 - - - 0.32 
0.65 
(0.10) 

Rav1* - - - - 
0.58 
(0.23) 

0.60 0.30 0.85 - - - - 0.44 
(0.28) 

Mcm4* - - - 0.28 
0.51 
(0.18) 

0.61 0.67 0.27 - - - -0.01 0.16 
(0.08) 

Gsy1 - - - - 
0.50 
(0.19) 

0.68 - 0.31 - - - - 
0.25 
(0.27) 
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Table 6. Logarithmized SILAC-ratios of proteins co-captured with Asc1DEp-Strep. 

The listed proteins were found to be enriched together with Strep-tagged Asc1DEp based on their 

relative quantification using SILAC. The layout of the table and abbreviations/symbols are as 

described for Table 5. (wt = wild-type, mean Asc1p-Strep/control SILAC-ratios equivalent to DE in 

Table 5). 

2-3 proteome-corrected SILAC-ratios ≥ 0.26 

 
proteome-corrected 

ratios 
enrichment ratios proteome ratios wt 

protein 
Ø 

(SD) 
1 2 3 Ø 

(SD) 
1 2 3 Ø 

(SD) 
1 2 3 Ø 

(SD) 

Asc1** 
7.15 
(0.76) 

6.87 8.01 6.58 
4.42 
(0.76) 

4.22 5.26 3.78 
-2.73 
(0.08) 

-2.65 -2.75 -2.80 7.41 
(1.00) 

Def1 
1.25 
(0.85) 

1.24 2.11 0.41 
1.61 
(1.02) 

1.25 2.76 0.82 
0.36 
(0.32) 

0.01 0.65 0.41 1.38 
(0.96) 

Dsk2** 
1.24 
(0.64) 

0.97 1.97 0.79 
1.21 
(0.59) 

1.31 1.75 0.58 
-0.03 
(0.32) 

0.34 -0.23 -0.21 0.95 
(0.84) 

Rvs161 
1.04 
(1.32) 

0.28 2.57 0.28 
0.93 
(1.25) 

0.18 2.38 0.25 
-0.11 
(0.08) 

-0.10 -0.20 -0.04 
0.15 
(0.19) 

Kel1* 
0.83 
(0.60) 

0.56 1.52 0.41 
1.04 
(0.63) 

0.71 1.77 0.66 
0.21 
(0.06) 

0.15 0.24 0.25 
0.95 
(0.52) 

Ssa1** 
0.63 
(0.02) 

0.64 0.61 0.65 
0.70 
(0.07) 

0.76 0.63 0.72 
0.07 
(0.05) 

0.12 0.02 0.08 0.14 
(0.08) 

Ssa2** 
0.63 
(0.06) 

0.63 0.68 0.57 
0.61 
(0.02) 

0.63 0.59 0.60 
-0.02 
(0.06) 

0.00 -0.09 0.03 0.17 
(0.09) 

Ape3** 
0.49 
(0.28) 

- 0.29 0.68 
0.53 
(0.04) 

- 0.50 0.56 
0.05 
(0.17) 

0.06 0.21 -0.13 -0.03 
(0.35) 

Sup35** 
0.47 
(0.10) 

0.38 0.58 0.45 
0.54 
(0.21) 

0.32 0.73 0.59 
0.07 
(0.12) 

-0.06 0.14 0.14 0.22 
(0.23) 

Mvp1** 
0.45 
(0.17) 

0.33 0.57 - 
0.22 
(0.14) 

0.19 0.37 0.10 
-0.16 
(0.04) 

-0.13 -0.19 - 
0.29 
(0.28) 

Spt5* 
0.43 
(0.10) 

0.36 - 0.50 
0.40 
(0.27) 

0.17 0.70 0.33 
-0.18 
(0.02) 

-0.19 - -0.17 
0.57 
(0.33) 

Svl3 
0.41 
(0.13) 

0.32 - 0.51 
0.49 
(0.58) 

0.00 1.13 0.35 
-0.24 
(0.11) 

-0.32 - -0.16 0.61 
(0.78) 

only 0-1 proteome-corrected SILAC-ratio, 2-3 enrichment ratios ≥ 0.26 

Mnl2* - - - 4.49 
4.92 
(0.92) 

- 5.57 4.27 - - - -0.23 5.50 
(1.17) 

Fra1 - - - 0.41 
0.52 
(0.28) 

0.72 - 0.32 - - - -0.09 -0.08 
(0.08) 

Rxt2 - - - - 
0.51 
(0.37) 

0.34 0.94 0.26 - - - - 
0.48 
(0.23) 

Pba1** - - - - 
0.49 
(0.04) 

0.46 - 0.52 - - 0.16 - 
0.35 
(0.09) 

Bur2 - - - - 
0.49 
(0.23) 

- 0.65 0.32 - - - - 0.47 
(0.39) 

Pam1* - - - - 
0.42 
(0.21) 

0.31 0.67 0.29 - - - - 0.42 
(0.38) 

Bud14** - - - - 
0.37 
(0.14) 

0.27 0.54 0.31 - - - - 0.40 
(0.17) 
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cultures directly after their cultivation, thereby treating them in the following steps as one 

sample and preventing any experimental bias due to individual sample processing. However, 

light and heavy labeled forms of proteins bound to the bait protein might interchange during 

the enrichment procedure if their interaction is highly dynamic (Wang and Huang, 2008). One 

possibility to address this problem is to pool samples at a later stage. Here, the cell lysis of 

independent cultures was done separately, and samples were pooled immediately prior to the 

affinity purification of Strep-tagged Asc1p (Figure 23). Strep-Tactin® spin columns were used 

that enable fast downstream processing of the samples after their pooling. Using a triple 

SILAC approach, three different strains expressing either Asc1p-Strep, Asc1DEp-Strep, or the 

untagged protein as a negative control were processed in a single affinity purification 

experiment. The proteins were expressed from high copy plasmids (2 µm) under control of 

the MET25-promoter in the ∆asc1 ∆arg4 ∆lys1 strain. In total, three biological replicates were 

analyzed. The eluate fraction and a sample from the total protein extract (after pooling but 

prior to affinity purification) were subjected to SDS-PAGE followed by in-gel trypsin 

digestion. Peptide samples were analyzed with LC-MS, and the obtained raw data files were 

analyzed against an S. cerevisiae-specific protein database using the MaxQuant software with 

the Andromeda search engine for the identification and quantification of peptides and their 

corresponding proteins. SILAC-ratios were reported with the values for the Asc1p control in 

the denominator so that high ratio values indicate the Asc1p-dependent co-enrichment of a 

protein. To avoid misinterpretation due to expression effects, the total protein extracts were 

analyzed as well to get quantitative proteome data as an input-control. SILAC-ratios for 

proteins of the enriched fractions were corrected for SILAC-ratios of proteins from the 

proteome (as it was described in chapter 3.3.1 for the correction of phospho-peptide ratios 

with protein ratios). Reduced sample complexity derived from the enrichment led to 

identifications (and quantifications) of proteins that were not covered from the very complex 

samples obtained from total protein extracts. Thus, the described proteome-correction of 

SILAC-ratios was not applicable to all proteins. 

The MaxQuant data were downstream analyzed using the Perseus software as briefly 

illustrated in Figure 23. For a detailed overview of all processing steps, see Supplemental 

Table 13. The normalized SILAC-ratios from the MaxQuant protein groups output file were 

used in Perseus. The normalization step of MaxQuant centers the normal distribution of 

SILAC-ratios on a ratio of 1:1 for the bulk of proteins, thereby correcting experimental biases. 

This mathematical correction is performed under the assumption that most proteins do not 

differ in their abundance between the samples.  
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Values were logarithmized (log2) so that a ratio value of 0 indicates no enrichment, and a ratio 

value considerably greater than 0 hints to a specific enrichment of a protein through its 

association with Asc1p-Strep or Asc1DEp-Strep. Two-sample t-tests (p-value < 0.1 and p-

value < 0.05) were applied to obtain statistical validation for the enrichment of candidates. 

For each protein, the SILAC-ratios from the enriched fractions (x) were proteome-corrected 

with the respective SILAC-ratios from the proteome (y) by subtraction (x-y). All proteome-

corrected SILAC-ratios of the three replicates had to be ≥ 0.26 (approximately 20% 

enrichment) to identify a protein as a putative Asc1p-Strep interaction partner. In case that 

only two ratios were determined, both had to be ≥ 0.26. These thresholds resulted in the 

identification of nine proteins for Asc1p-Strep and eleven proteins for Asc1DEp-Strep plus 

the bait proteins Asc1-Strep and Asc1DE-Strep.  

For proteins with no or only one proteome-corrected SILAC-ratio, the same filter (two values 

≥ 0.26 and no value < 0.26) was applied on the non-proteome-corrected SILAC-ratios from 

the eluate fraction. If a proteome-corrected SILAC-ratio was available, this should not be less 

than 0.26. With these thresholds six and seven proteins were additionally considered as 

enriched together with Asc1p-Strep and Asc1DEp-Strep, respectively. Additionally, a one-

sample t-test instead of a two-sample t-test was applied on these proteins for statistical 

validation of candidates.  

All candidates and their quantification values are listed in Tables 5 and 6, and the resulting 

Asc1p-interaction map is depicted in Figure 24. Five proteins were found as putative 

interaction partners for Asc1p-Strep as well as for Asc1DEp-Strep namely Def1p, Dsk2p, 

Kel1p, Mnl2p, and Spt5p. The remaining 23 proteins were identified for the enrichment of 

only one of the two Asc1p variants. The interaction map also indicates interactions between 

proteins that were already reported in literature (according to interactions listed in SGD). 

Bud14p is the only protein that has been reported as a physical interaction partner of Asc1p 

before. Bud14p is one of the regulatory subunits of the phosphatase Glc7p and might 

therefore be directly responsible for Asc1p-mediated dephosphorylation processes (Knaus et 

al., 2005). As a regulatory subunit of the Bur1p protein kinase, the Asc1DEp-Strep-associated 

cyclin Bur2p is involved in regulation of phosphorylation as well (Yao et al., 2000). 

Additionally, three proteins with Asc1p-sensitive phosphorylation sites namely Def1p, 

Sup35p, and Ssd1p were found.  
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Figure 24. Interaction map of Asc1p-Strep and Asc1DEp-Strep. 

All proteins identified as putative interaction partners of Asc1p-Strep (colored in yellow) or Asc1DEp-

Strep (colored in green). Proteins highlighted in both colors were found to interact with both Asc1p 

variants. The Asc1p structure is placed in the center, and the colored lines illustrate the interactions 

identified in this work. (The structure figure of Asc1p was generated with the PyMOL Molecular 

Graphics System software on the basis of the PDB file 3FRX). Black lines and dashed black lines 

connect proteins that have already been reported as physical or genetic interaction partners, 

respectively, in other studies according to SGD. For proteins without a black border, no or only one 

proteome-corrected SILAC-ratio could be obtained. A black border indicates that at least two 

proteome-corrected SILAC-ratios could be obtained for the respective protein. Thick black borders 

indicate that the two-sample t-test was positive (p-value < 0.1 or p-value < 0.05). 
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3.5 The Asc1p-dependent translatome 

Based on its exposed position at the head of the 40S ribosomal subunit next to the mRNA exit 

tunnel, Asc1p is considered to be directly involved in regulation of translation (Sengupta et 

al., 2004). It has been shown to interact with translation factors and mRNA-binding proteins 

and might affect translation in general or for specific transcripts (Baum et al., 2004; Kouba et 

al., 2012). Here, the translatomes - meaning the entity of actively translated mRNAs - of 

ASC1 wild-type and the asc1- cells were quantitatively compared to identify transcripts that 

are targets of an Asc1p-dependent translational regulation.  

 

Figure 25. Workflow for the Asc1p-dependent translatome and transcriptome analysis. 

The ASC1 wild-type and asc1- strains were cultivated in three replicates. After harvesting of the cells, 

each sample was divided and one half processed for the translatome and the other half for the 

transcriptome analysis. For the translatome analysis, cell extracts were prepared and subjected to 

sucrose-density ultracentrifugation. Polysomal fractions were collected, and RNA was isolated. For 

the transcriptome analysis, total RNA was directly isolated from the cells. RNA samples from both 

experimental lines were subjected to mRNA enrichment and DNase I digest. cDNA was synthesized 

from the RNA, and samples were subjected to sequencing followed by data analysis. 
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Table 7. Asc1p-dependent changes in the translatome.  

An expanded view of this table with the normalized readcounts for all three replicates for each strain 

can be found in Supplementary Table 14. For each transcript and strain, the mean of the normalized 

readcounts was calculated. Logarithmized (log2) asc1-/ASC1 ratios of these mean values are provided 

in this table and colored according to the color scale. (FDR = false discovery rate). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gene  
 asc1-/ 
ASC1 

likeli-
hood 

FDR 

COS8 2.68 0.9965 1.7E-03 

ZPS1 2.35 0.9973 1.3E-03 

PRM5 1.84 0.9981 7.7E-04 

HBN1 1.69 0.9995 1.4E-04 

GSY1 1.65 0.9994 2.2E-04 

HSP42 1.61 0.9916 3.5E-03 

HSP26 1.48 0.9160 3.2E-02 

YCL021W-A 1.45 0.9909 4.0E-03 

GAL3 1.38 0.9595 1.3E-02 

YLL053C 1.36 0.9834 5.5E-03 

ZRT1 1.35 0.9397 1.8E-02 

YKL070W 1.34 0.9268 2.8E-02 

FET4 1.32 0.9935 2.6E-03 

VTI1 1.27 0.9608 1.2E-02 

AHA1 1.26 0.9973 1.1E-03 

AQY2 1.22 0.9322 2.4E-02 

FKS3 1.22 0.9886 4.5E-03 

STI1 1.17 0.9983 6.0E-04 

AGA1 1.16 0.9495 1.5E-02 

GAL80 1.15 0.9826 5.9E-03 

GSY2 1.12 0.9986 4.2E-04 

NDJ1 1.07 0.9298 2.5E-02 

URA10 1.05 0.9182 3.1E-02 

HXK1 1.05 0.9409 1.7E-02 

GRX3 1.02 0.9943 2.2E-03 

SMA2 1.01 0.9343 2.2E-02 

DCS1 1.01 0.9921 3.3E-03 

YGR161W-C 1.00 0.9970 1.5E-03 

YHB1 0.95 0.9749 8.0E-03 

UBC1 0.91 0.9280 2.6E-02 

LST8 0.91 0.9278 2.7E-02 

ALG13 0.90 0.9891 4.2E-03 

HSP78 0.86 0.9564 1.4E-02 

APE1 0.84 0.9644 1.2E-02 

YMR315W 0.84 0.9340 2.3E-02 

FMP41 0.82 0.9207 2.8E-02 

GLO2 0.80 0.9352 2.2E-02 

gene  
asc1-/ 
ASC1 

likeli- 
hood 

FDR 

GLK1 0.78 0.9392 1.9E-02 

TWF1 0.77 0.9140 3.2E-02 

MXR1 0.76 0.9046 3.4E-02 

SFG1 0.76 0.9011 3.5E-02 

ARC18 0.76 0.9075 3.3E-02 

YKL151C 0.76 0.9710 8.6E-03 

EXG2 0.71 0.9366 2.0E-02 

YDR327W 0.70 0.9187 3.0E-02 

DFR1 -0.66 0.9357 2.1E-02 

HTB1 -0.68 0.9396 1.8E-02 

FAA2 -0.75 0.9290 2.5E-02 

HO -0.75 0.9699 1.0E-02 

TDA1 -0.91 0.9708 9.1E-03 

YHR177W -0.93 0.9188 2.9E-02 

URA4 -1.02 0.9922 3.1E-03 

AAC3 -1.02 0.9702 9.7E-03 

SNO1 -1.04 0.9755 7.5E-03 

ARN1 -1.06 0.9594 1.4E-02 

ALD6 -1.06 0.9682 1.1E-02 

YJL213W -1.16 0.9800 7.0E-03 

BAP3 -1.23 0.9802 6.7E-03 

YIL165C -1.25 0.9970 1.4E-03 

AQR1 -1.29 0.9823 6.2E-03 

ECM13 -1.36 0.9960 2.0E-03 

SNZ1 -1.47 0.9933 2.8E-03 

RIB4 -1.49 0.9976 9.5E-04 

TPO1 -1.64 0.9961 1.8E-03 

YGR035C -1.64 0.9909 3.7E-03 

YMR141W-A -1.67 0.9491 1.6E-02 

FMP48 -1.71 0.9877 4.8E-03 

TPO4 -1.74 0.9650 1.1E-02 

TIS11 -1.86 0.9857 5.1E-03 

URA3 -1.87 0.9936 2.4E-03 

URA1 -2.14 1.0000 2.5E-05 

EEB1 -2.56 1.0000 8.6E-06 

MDH2 -2.64 1.0000 2.0E-05 

≤ -2.5 
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The experiments were performed with three biological replicates for each strain (Figure 25). 

Total cell extracts derived from exponentially growing yeast cells were subjected to sucrose 

density ultracentrifugation to separate polysomes from ribosomal subunits, monosomes, and 

mRNP particles. The polysome fractions with highly translated mRNAs were collected, and 

RNA was isolated. The samples were enriched for mRNAs to reduce the rRNA amount in the 

samples. DNA in the samples had to be removed by enzymatic DNase I digestion. The RNA 

was transcribed into cDNA and subjected to sequencing. The readcounts for each mRNA 

were used for a differential expression analysis with the baySeq algorithm (Hardcastle and 

Kelly, 2010).  

Transcripts differentially abundant in the translatomes of the ASC1 wild-type strain and the 

asc1- strain that had ≥ 90% likelihood for regulation were further considered. For the 73 

transcripts that passed this threshold, the normalized readcounts of all six samples are given in 

the Supplementary Table 14. The mean value of the normalized readcounts was calculated for 

the three replicates of each strain, and the asc1-/ASC1 ratio of these values was determined 

(Table 7 and Supplementary Table 14). 45 polysomal transcripts were found to be increased 

and 28 decreased in their abundance in the asc1- strain in comparison to the ASC1 wild-type 

strain.  

 

Figure 26. Asc1p-dependent translatome versus proteome. 

The graph provides the log2 asc1-/ASC1 ratios for mRNAs and proteins that were found to be Asc1p-

dependently affected in their abundance in the translatome as well as in the total proteome. 
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For 24 of the polysomal transcripts, a relative quantification value for the corresponding 

protein can be found in the list of Asc1p-dependently regulated proteins (Figure 26 and 

Supplementary Table 4). For all 24 candidates, the direction of regulation was identical in the 

translatome and proteome hinting to a correlation between the translation efficiency for an 

mRNA and the expression level of the respective mature protein. Alteration of the abundance 

of a transcript in the translatome could reflect the general changes in the abundance of the 

transcript. Therefore, the translatome data were compared with a former microarray-based 

quantitative transcriptome analysis for the ∆asc1 strain (Rachfall et al., 2013). 13 transcripts 

were found to be altered in their abundance in the translatome as well as in the transcriptome 

(Figure 27). 12 of these transcripts showed the same direction of regulation in the translatome 

and the transcriptome. Thus, Asc1p-dependently increased or decreased abundance of these 

transcripts might lead to differences in their translation rates. Yet, one mRNA, the transcript 

of the YHR177W gene, was increased in its total abundance, but showed severely decreased 

association with translating ribosomes upon Asc1p-deficiency. YHR177W is a paralog of the 

gene encoding Muc1p expressed independent of TEC1 1 (Mit1p). Their gene products belong 

to the WOPR family of transcriptional regulators that is named for its members Wor1p, 

Pac1p, and Ryp1 and contain a WOPR box for DNA-binding (Lohse et al., 2010). The WOPR 

box is highly conserved within the fungal kingdom and found in regulators of morphology 

and pathogenesis (Lohse et al., 2010). For example, Mit1p is required for pseudohypal growth 

in S. cerevisiae, and Wor1p regulates the transition of yeast cells from white to opaque cell 

morphology in C. albicans (Huang et al., 2006; Cain et al., 2012).  

 
Figure 27. Asc1p-dependent translatome and transcriptome.  

The columns provide the log2 asc1-/ASC1 ratios for mRNAs found to be Asc1p-dependently affected 

in their levels in the translatome as well as in the transcriptome. Transcriptome data derived from a 

microarray analysis comparing the ASC1 wild-type strain with the ∆asc1 strain (Rachfall et al., 2013). 
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The comparison with the microarray data implicates that RNASeq-based transcriptome data 

for the asc1- strain are required to differentiate between mRNAs that change in their 

abundance in the translatome due to an Asc1p-dependent regulation in their expression level 

or an Asc1p-dependent alteration of their translation efficiency. Experiments for a 

quantitative transcriptome analysis of the asc1- strain with RNASeq are in progress 

(Figure 25). 
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4. Discussion 

4.1 Does the R38D K40E amino acid exchange within Asc1p cause a ribosome binding 

defect in vivo?  

The Asc1 protein of S. cerevisiae is not essential for viability of yeast cells under laboratory 

conditions, but is required to adapt cells to a variety of different stress conditions. As a 

constituent of the ribosome, it is likely that Asc1p’s molecular function is tightly linked to the 

process of mRNA translation. The crystal structures of the T. thermophila 40S subunit and the 

S. cerevisiae 80S ribosome confirm Asc1p’s integral position within the ribosome (Ben-Shem 

et al., 2011; Rabl et al., 2011). In cells of the stationary growth phase of a yeast culture, 

Asc1p seems to bind ribosomes less tightly (Baum et al., 2004). This gives rise to the question 

whether Asc1p also acts apart from the ribosome as it has been suggested for other ribosomal 

proteins (reviewed in Warner and McIntosh, 2009). Asc1p was described to function as the 

G-protein β-subunit of the Gα Gpa2p, which is localized to membranes via its interaction with 

the nutrient sensor Gpr1p. A simultaneous interaction of Asc1p with Gpa2p and the ribosome 

was considered to be unlikely due to sterical hindrance (Zeller et al., 2007; Coyle et al., 2009). 

In metazoans, several known interactions of RACK1 also seem to occur in its ribosome-free 

state since the respective interaction surface was mapped to the ribosome-facing side of the 

β-propeller. Yet, homodimerization of Asc1p/RACK1 would enable a simultaneous 

interaction with the ribosome and a second interaction partner that binds to the same regions 

on the second β-propeller surface. Still, ribosome binding of RACK1 seems incompatible 

with the simultaneous interaction with the Fyn kinase and NR2B. The interaction with these 

two proteins in complex was proposed to rely on homodimer formation since the binding sites 

of both proteins involve amino acids 35 to 48 of RACK1 (Thornton et al., 2004). Many 

studies with metazoan systems do not even consider ribosome-localization of RACK1 for 

their experiments or the discussion of their results. In conclusion, a ribosome-independent 

impact of the β-propeller protein on cellular adaptation seems possible.  

A ribosome binding mutated variant of Asc1p has been proposed and expected to contribute 

to the differentiation between ribosome-dependent and ribosome-independent functions of 

Asc1p. The mutated Asc1 protein contains an exchange of the two highly conserved residues 

R38 and K40 to aspartate (D) and glutamate (E), respectively, which weakens the binding to 

the ribosome (Sengupta et al., 2004; Coyle et al., 2009). In comparison to wild-type Asc1p, 

Asc1DEp is shifted from the ribosomal to the ribosome-free fraction during sucrose-gradient 

ultracentrifugation (Coyle et al., 2009). However, S. cerevisiae asc1DE strains behave 

phenotypically mainly like the wild-type ASC1 strain (this study; Coyle et al., 2009). The 
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rather marginal phenotypic effects are confirmed here and reflected by our findings on the 

molecular level: While in Asc1p-deficient cells the protein levels of the transcription factors 

Flo8p, Tec1p, and Rap1p are significantly reduced and more than 600 additional proteins are 

altered in their abundance, the transcription factors are not affected by the DE exchange, and 

there are almost no changes observed within the total proteome. Yet, Kuroha and colleagues 

(2010) were able to show that a promoting effect of Asc1p on nascent polypeptide-dependent 

translation arrest is lost in the asc1DE mutant strain. 

It is surprising that a reduction in ribosome-association of almost 90% (Coyle et al., 2009) 

should have only a minor impact on the functionality of Asc1p in S. cerevisiae. This would 

suggest either that Asc1p acts to a great extent independently from the ribosome or that a 

small percentage of Asc1p bound to ribosomes is sufficient for the protein to function. 

However, it has to be considered that the reduced ribosome-association of Asc1DEp in 

sucrose gradient ultracentrifugation might not reflect the in vivo situation: Although the DE 

mutation obviously compromises the interaction of Asc1p with the ribosome, its dissociation 

from the 40S subunit might only occur during cell lysis or subsequent ultracentrifugation.  

It also has to be taken into consideration that the DE mutation impairs the interaction of 

Asc1p with other components besides the ribosome. For example, the interaction of 

mammalian RACK1 with the Fyn kinase as well as with the NR2B-subunit of the NMDA 

receptor involves amino acids 35 to 48 of RACK1 (Thornton et al., 2004), and R36 and K38 

of mammalian RACK1 correspond to R38 and K40 of Asc1p. In S. pombe, exchange of these 

residues (R36 and K38) to alanine in combination with simultaneous R125A and K127A 

substitutions reduced the association of Cpc2p with Ran1p, a protein kinase regulating the 

transition between mitosis and meiosis (McLeod et al., 2000). This study was published four 

years before the R38D K40E exchange was first shown to affect ribosome binding of Asc1p 

(Sengupta et al., 2004). These two residue pairs were chosen for mutagenesis because they are 

both part of a short motif that is found in the sequence of other direct interaction partners of 

Ran1p and might be responsible for substrate specificity (McLeod et al., 2000).  

Here, Asc1p-Strep as well as Asc1DEp-Strep were purified to identify potential interaction 

partners of the wild-type protein and the variant. The experimental set-up did not result in the 

enrichment of ribosomal proteins with the Strep-tagged wild-type Asc1p. Thus, no difference 

in ribosome-association was observed between Strep-tagged Asc1p and Asc1DEp. Yet, 

proteins were identified that were specifically enriched with one of the two Asc1p variants. 

For example, the mRNA-binding protein She2 was exclusively enriched with Asc1p-Strep, 

whereas the heat shock proteins Ssa1 and Ssa2 and the translation termination factor Sup35p 
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were only co-purified with Asc1DEp-Strep (see below for the discussion of these candidates 

and their relation to Asc1p). The direct or indirect interaction of these proteins with Asc1p 

might involve residues R38 and K40 as it was described for the Cpc2p-Ran1p interaction.  

DE variants have also been studied in other organisms to analyze the effect of a reduced 

ribosome binding on the function of Cpc2p/RACK1. In S. pombe, a cpc2DE strain shows 

neither increased sensitivity to 3-AT nor decreased phosphorylation of eIF2α as it was 

observed for the ∆cpc2 strain (Tarumoto et al., 2013). Yet, another study reported that 

expression of plasmid-borne wild-type Cpc2p, but not Cpc2DEp, rescues the reduced protein 

abundance of the MAPK phosphatases Pyp1p and Pyp2p and of the stress-responsive 

transcription factor Atf1p in a ∆cpc2 strain (Nuñez et al., 2009). Furthermore, expression of 

Cpc2DEp results in the same defect in G2/M transition as caused by a CPC2 deletion evident 

through increased cell size at cell division (Nuñez et al., 2009; Nuñez et al., 2010).  

The following paragraph provides four examples for observations made with the RACK1-DE 

variant in metazoan systems. Arimoto and colleagues (2008) observed translocation of 

RACK1 to stress granules upon certain stress conditions presumably as part of the small 

ribosomal subunit. RACK1-DE did not show this cellular translocation implicating a 

reduction in ribosome-association of this RACK1 variant in vivo (Arimoto et al., 2008). In 

D. melanogaster S2 cell lines, a stable knock-down of RACK1 decreases propagation of 

viruses of the Dicistroviridae family due to the requirement of RACK1 for IRES-mediated 

translation of the viral mRNA. Transfection of this cell line with a vector carrying the 

RACK1-DE variant cannot rescue this phenotype in contrast to transfection with the same 

vector carrying the wild-type RACK1 gene (Majzoub et al., 2014). The RACK1-DE mutant 

was further used to ascribe an enhancing effect of RACK1 on chemoresistance and growth of 

human hepatocellular carcinoma to the ribosome-bound state of the protein (Ruan et al., 

2012). The authors of this study showed, for example, that the transfection of Huh7 cells with 

wild-type RACK1, but not with RACK1-DE, mediates resistance against doxorubicin-induced 

apoptosis. Whereas overexpression of RACK1 promotes de novo protein biosynthesis in 

metabolic labeling studies in Huh7 cells, overexpression of RACK1-DE slightly inhibits this 

process. This observation might be caused by the reduced binding of the RACK1 interaction 

partner PKCβII to the ribosome in the presence of RACK1-DE and consequently decreased 

phosphorylation of the PKCβII-targets eIF4E and eIF6 (Ruan et al., 2012). Gandin 

and colleagues (2013a) used the RACK1-DE variant to show that RACK1 recruits activated 

JNK to ribosomes. At the ribosome, JNK phosphorylates eEF1A2 that subsequently binds to 



Discussion 

91 
 

newly synthesized polypeptides and induces their proteasomal degradation (Gandin et al., 

2013a).  

These results from the metazoan systems support the assumption that the DE exchange also 

causes in vivo reduction of ribosome-association of Asc1p/RACK1. Yet, it has to be 

considered that there might be substantial differences in the nature of Asc1p/RACK1’s 

association with the ribosome between various organisms. The Leishmania major orthologue 

of Asc1p/RACK1, for example, harbors a glycin residue instead of the highly conserved 

lysine residue at position 36 and is nevertheless found tightly associated to ribosomes in 

sucrose-density centrifugation experiments (Choudhury et al., 2011). Furthermore, Coyle and 

colleagues (2009) also analyzed the importance of other lysine and arginine residues besides 

R38 and K40 at the ribosome-facing side of Asc1p for ribosome binding. The exchange of 

two less conserved residues (K62 and K87) to alanine affects the ribosome-association of 

Asc1p as well, yet to a significantly lesser extent than the R38D K40E mutation (Coyle et al., 

2009; Adams et al., 2011).  

Besides differences in characteristics of the interaction between Asc1p/RACK1 and the 

ribosome, there might be additional organism-specific factors, such as post-translational 

modification of Asc1p/RACK1, that influence its localization to the ribosome or at least its 

precise positioning at this site in vivo. Although the DE mutation had only marginal effects on 

Asc1p-dependent phenotypes, this work revealed tremendous synthetic effects when the DE 

mutation was combined with amino acid substitutions at Asc1p phospho-sites.  

 

4.2 The DE exchange and phospho-site mutations synergistically compromise Asc1p’s 

functionality and integrity 

In this study, at least three previously unknown phosphorylation sites of Asc1p were 

identified: T12, T143, and Y250. These three residues and five additional phospho-sites of 

Asc1p (T96, T99, S120, S166, T168), which were known from previous high-throughput 

studies, were characterized in detail through the generation of respective asc1 mutant strains 

(Chi et al., 2007; Smolka et al., 2007; Holt et al., 2009). The resulting strains synthesize 

Asc1p variants with replacements of the phospho-sites by either alanine/phenylalanine 

(dephosphorylation mimic) or by glutamate (phosphorylation mimic). The systematic 

phenotypic analysis of these strains revealed an increased sensitivity to translation inhibitors 

for the asc1T143A and asc1Y250F strains. All other phospho-site mutant strains showed wild-

type behavior for the tested phenotypes. Yet, the combination of phospho-site mutations at 

T143 and Y250 as well as T12, T96, and T99 with the DE mutation caused strong synthetic 
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phenotypes revealing the importance of these phospho-sites in combination with the 

conserved residues R38 and K40. Phosphorylation of Asc1p/RACK1 has also been reported 

in other organisms, such as S. pombe, H. sapiens, and A. thaliana (Chang et al., 2001; Liu et 

al., 2007b; Wilson-Grady et al., 2008; Kiely et al., 2009; Urano et al., 2015). The amino acids 

T12, T143, and Y250 of Asc1p are highly conserved in these organisms. (Figure 28, 

RACK1A is shown representatively for the three RACK1 proteins of A. thaliana). S. pombe 

 

                           *T12                                      oY52 

                           oT10                         oS39    T50+ +Y52  *S60 

S.c. Asc1p   1 MASNEVLVLRGTLEGHNGWVTSLATSAGQPNLLLSASRDKTLISWKLTGDDQKFGVPVRSFKGHSHIVQD 

S.p. Cpc2p      1 ..MPEQLVLRATLEGHSGWVTSLSTAPENPDILLSGSRDKSIILWNLVRDDVNYGVAQRRLTGHSHFVSD 

H.s. RACK1    1 ..MTEQMTLRGTLKGHNGWVTQIATTPQFPDMILSASRDKTIIMWKLTRDETNYGIPQRALRGHSHFVSD 

A.t. RACK1A   1 ..MAEGLVLKGTMRAHTDMVTAIATPIDNADIIVSASRDKSIILWKLTKDDKAYGVAQRRLTGHSHFVED 

                                                         WD1                        . 
 

  

                                    T96*  *T99     *S108   S120*   -S122 

S.c. Asc1p  71 CTLTADGAYALSASWDKTLRLWDVATGETYQRFVGHKSDVMSVDIDKKASMIISGSRDKTIKVWTIKGQC 

S.p. Cpc2p     69 CALSFDSHYALSASWDKTIRLWDLEKGECTHQFVGHTSDVLSVSISPDNRQVVSGSRDKTIKIWNIIGNC 

H.s. RACK1   69 VVISSDGQFALSGSWDGTLRLWDLTTGTTTRRFVGHTKDVLSVAFSSDNRQIVSGSRDKTIKLWNTLGVC 

A.t. RACK1A  69 VVLSSDGQFALSGSWDGELRLWDLAAGVSTRRFVGHTKDVLSVAFSLDNRQIVSASRDRTIKLWNTLGEC 

                                   WD2                                       WD3     . 
 

                            S146                S166 

                 *T143  + oS148       -T162 * *T168 

S.c. Asc1p 141 LATLL....GHNDWVSQVRVVPNEKADDDSVTIISAGNDKMVKAWNLNQFQIEADFIGHNSNINTLTASP 

S.p. Cpc2p    139 KYTITDG..GHSDWVSCVRFSPNP....DNLTFVSAGWDKAVKVWDLETFSLRTSHYGHTGYVSAVTISP 

H.s. RACK1  139 KYTVQDE..SHSEWVSCVRFSPNS....SNPIIVSCGWDKLVKVWNLANCKLKTNHIGHTGYLNTVTVSP 

A.t. RACK1A 139 KYTISEGGEGHRDWVSCVRFSPNT....LQPTIVSASWDKTVKVWNLSNCKLRSTLAGHTGYVSTVAVSP 

                                                          WD4                        . 
 

                                                     *Y250 

                                     +Y228     S242o   +Y246    oS255 

S.c. Asc1p 207 DGTLIASAGKDGEIMLWNLAAKKAMYTLSAQDEVFSLAFSPNRYWLAAATATGIKVFSLDPQYLVDDLRP 

S.p. Cpc2p    203 DGSLCASGGRDGTLMLWDLNESTHLYSLEAKANINALVFSPNRYWLCAATGSSIRIFDLETQEKVDELTV 

H.s. RACK1  203 DGSLCASGGKDGQAMLWDLNEGKHLYTLDGGDIINALCFSPNRYWLCAATGPSIKIWDLEGKIIVDELKQ 

A.t. RACK1A 205 DGSLCASGGKDGVVLLWDLAEGKKLYSLEANSVIHALCFSPNRYWLCAATEHGIKIWDLESKSIVEDLKV 

                              WD5                                     WD6            . 
 

                                                

                                                *T300  

S.c. Asc1p 277 EFAGYSKAAEP...........HAVSLAWSADGQTLFAGYTDNVIRVWQVMTAN.  

S.p. Cpc2p    273 DFVGVGKKSSEP..........ECISLTWSPDGQTLFSGWTDNLIRVWQVTK...  

H.s. RACK1  273 EVISTSSKAEPP..........QCTSLAWSADGQTLFAGYTDNLVRVWQVTIGTR  

A.t. RACK1A 275 DLKAEAEKADNSGPAATKRKVIYCTSLNWSADGSTLFSGYTDGVIRVWGIGRY..  

                                                             WD7 

 

Figure 28. Phospho-site locations within Asc1p and its orthologues. 
Amino acid sequence alignment of Asc1p with its orthologues and their phospho-sites. Amino acid 

residues that are conserved in at least three of the depicted sequences are shaded in black, those that 

are similar in at least three sequences are shaded in gray. Phospho-sites are indicated above the 

sequences according to the legend in the figure. For S. cerevisiae (S.c.) Asc1p, phospho-sites T12 (this 

study), S60 (Gnad et al., 2009), T96 and T99 (Chi et al., 2007), S108 and S120 (Holt et al., 2009), 

T143 (this study), S166 and T168 (Smolka et al., 2007), Y250 and T300 (this study) are indicated with 

an asterisk (*). For S. pombe (S.p.) Cpc2p, phospho-sites T10, S39, Y52, S148, S242, and S255 

(Wilson-Grady et al., 2008) are labeled with a circle (o). Phospho-sites S122 and T162 of A. thaliana 

(A.t.) RACK1A (T161 of RACK1B and RACK1C, Urano et al., 2015) are indicated with a minus (-) 

and phospho-sites T50 (Zhao et al., 2015), Y52 (Kiely et al., 2009), S146 (Liu et al., 2007b), Y228 

(Chang et al., 2001), and Y246 (Chang et al., 2001; Chang et al., 2002) of H. sapiens (H.s.) RACK1 

are indicated with a plus (+). The seven WD40 repeats are labeled below the sequences. Sequences 

were retrieved from the UniProt database, aligned with the Clustal Omega program 

(http://www.uniprot.org/align) and shaded with the BoxShade tool (http://www.ch.embnet.org/ 

software/BOX_form.html). 

S.c. phospho-sites: * 

S.p. phospho-sites: o 

H.s. phospho-sites: + 

A.t.  phospho-sites: - 
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Cpc2p and human RACK1 have been reported to be phosphorylated at residues T10 and 

Y246, respectively, corresponding to positions T12 and Y250 of yeast Asc1p (Chang et al., 

2001; Chang et al., 2002; Wilson-Grady et al., 2008). Phosphorylation of S. pombe Cpc2p 

was observed in a high-throughput study and has so far not been studied in detail. Here, 

impaired adhesive growth of the asc1T12ADE strain was observed. Phosphorylation of human 

RACK1 at Y246 is catalyzed by the non-receptor protein tyrosine kinase Src. The 

modification enhances the interaction between RACK1 and Src leading to an inhibition of the 

kinase activity (Chang et al., 2001; Chang et al., 2002). Phosphorylation of RACK1 at Y246 

also regulates its interaction with the mRNA-binding protein ZBP1, another target for the Src 

at the ribosome (Ceci et al., 2012). In our analyses, the asc1Y250F strain specifically showed 

sensitivity to inhibitors of mRNA translation suggesting a role of this phosphorylation site in 

(co-)translational processes. The mutation of mammalian RACK1 at Y246 does not reduce 

the association of the β-propeller protein to ribosomes (Ceci et al., 2012) suggesting that the 

observed phenotypes for the asc1Y250F strain are not caused by enhanced release of the protein 

from the site of translation. However, impairment of Asc1p’s correct localization to the 

ribosome through the DE mutation enhanced the effect of Y250F on the sensitivity of yeast 

cells to cycloheximide. To the best of our knowledge, this is the first study that showed the 

phosphorylation of Y250/Y246 of Asc1p/RACK1 in vivo. The high conservation of this 

amino acid residue and its surrounding sequence together with the experimental evidence for 

phosphorylation of Y246 in mammals suggest that the phosphorylation of this residue is 

highly conserved among eukaryotes and provides a common mechanism to regulate the 

protein. 

According to the data compiled in the PhosphoGRID database only approximately 3% of all 

known phosphorylation sites in S. cerevisiae are tyrosine residues, whereas about 25% and 

75% are threonine and serine residues, respectively (Stark et al., 2006). No S. cerevisiae 

homologues are known for the Src kinase or other members of the family of non-receptor 

protein tyrosine kinases. Furthermore, no true tyrosine kinases were described for yeast, yet, 

dual-specificity kinases that phosphorylate serine/threonine as well as tyrosine residues and 

function, for example, in MAPK cascades (Hunter and Plowman, 1997).  

So far, amino acid T143 of Asc1p has not been described as a phospho-site in other 

organisms. However, the comparison of the amino acid sequences and the crystal structures of 

Asc1p and its orthologues reveals that the phospho-sites S122 of A. thaliana RACK1A, S146 

of human RACK1, and S148 of S. pombe Cpc2p are located in the same region of the protein 

(Figure 29, Liu et al., 2007b; Wilson-Grady et al., 2008; Urano et al., 2015). Putative
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phosphorylation of human RACK1 at S146 was proposed to be a prerequisite for dimer 

formation in vivo and consequently for a RACK1-mediated degradation of the α-subunit of 

the transcription factor HIF-1 (Figure 7, Liu et al., 2007b). So far, there is no evidence for the 

in vivo homodimerization of Asc1p, but a crystal structure of an Asc1p homodimer could be 

resolved using a protein sample derived from recombinant expression in E. coli (Yatime et al., 

2011). Hence, phosphorylation of Asc1p does not seem to be essential for homodimer 

formation. However, the yeast phosphorylation site T143 not only lies in close proximity of 

human S146 (see superposition view of the crystal structures in Figure 29), but also in the 

center of strand 3βD that is directly positioned at the dimer interface (Yatime et al., 2011). 

Since S146 is not conserved in S. cerevisiae Asc1p, phosphorylation of T143 of Asc1p could 

instead regulate a putative homodimer formation of the β-propeller protein.  

 

Figure 29. Phosphorylation in the blade 3 region of Asc1p/RACK1.  
Structures of S. cerevisiae Asc1p (gray), H. sapiens RACK1 (blue), and A. thaliana RACK1A (green) 

are shown with their respective phosphorylation sites T143, S146, and S122 highlighted. Phospho-

sites are depicted as sticks with carbon atoms in yellow, nitrogen atoms in blue, and oxygen atoms in 

red. Additionally, a superposition view of all three structures is depicted. The Asc1p homodimer is 

displayed with the two interacting Asc1p molecules in gray and white and with the T143 residues from 

both proteins highlighted. Structure figures were generated with the PyMOL Molecular Graphics 

System software on the basis of the PDB files 3FRX (Asc1p, Coyle et al., 2009), 4AOW (hRACK1, 

Ruiz Carrillo et al., 2012), 3DM0 (AtRACK1, Ullah et al., 2008), and 3RFG (Asc1p dimer, Yatime et 

al., 2011). 
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The substitution of T143 for alanine in combination with the DE mutation resulted in a drastic 

reduction of Asc1 protein levels and significantly changed the phenotypes of the mutant 

strain. Phosphorylation of Asc1p might regulate the protein’s stability as it was proposed for 

phosphorylation of S122 of A. thaliana RACK1A by WNK8 (Urano et al., 2015). Since S122 

of A. thaliana RACK1A lies in close proximity to T143 of S. cerevisiae Asc1p (see the 

superposition view of the structure in Figure 29), the phosphorylation state of this region may 

determine the stability of the protein. Not only the amino acid exchange of T143 but also that 

of T12 and T96 resulted in significant reduction of Asc1 protein levels when combined with 

the DE mutation. In contrast, the DE mutation itself resulted in increased levels of Asc1p. 

Furthermore, the additional mutation of T99 to alanine, but not to glutamate, enhanced the 

effect of the T96A DE mutation on protein levels and certain phenotypes. It is important to 

note, that neither one of the phospho-site mutations at T12, T96, T99, and T143 alone 

changed protein levels of Asc1p. Apparently, these residues are all located near the Asc1p-

ribosome binding interface in contrast to S120, S166, T168, and Y250 (Figure 14). 

Compromised association of Asc1p to the ribosome or even changes in its precise positioning 

might expose these residues and make them accessible for other proteins. The 

phosphorylation of T12, T96, T99, or T143 might regulate the integrity of Asc1p as a 

ribosomal protein and might thereby amplify the ribosome-repulsing effect of the DE 

mutation. The loss of ribosome-association of Asc1p or its increase in undesired interactions 

with other proteins could eventually lead to increased degradation rates for the protein.  

 

4.3 Absence of Asc1p significantly changes the phospho-proteome of S. cerevisiae 

Asc1p and its mammalian orthologue RACK1 have emerged as key factors in signal 

transduction pathways that adjust the phospho-proteome to cellular needs. Here, reduced 

abundance of the phosphorylated and active form of the MAPK Hog1p of the high osmolarity 

response pathway was observed in the asc1- strain. A reduced phosphorylation of the 

metazoan orthologue of Hog1p, p38, upon depletion of RACK1 has been reported as well 

(Lin et al., 2015; Wang et al., 2015b). Accordingly, overexpression of RACK1 was shown to 

induce p38 phosphorylation. RACK1 seems to mediate the activation of the MAPK through 

the interaction with upstream MAP2Ks of p38 (Figure 6, Lin et al., 2015; Wang et al., 2015b). 

In S. cerevisiae, an interaction between Asc1p and the p38-activating MAP2K homologue, 

Pbs2p, has not been described so far. However, Asc1p associates with the MAP4K Ste20p 

that acts not only upstream of Hog1p but also of the MAPKs Kss1p and Fus3p, and increased 

activation of Kss1p through phosphorylation has been detected as well in Asc1p-deficient 
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cells (Figure 3, Zeller et al., 2007). In D. melanogaster, a direct interaction between p38b and 

RACK1 was observed, and RACK1 even seems to be a target of p38b-mediated 

phosphorylation (Belozerov et al., 2014).  

Besides the impact of Asc1p on the phosphorylation status of MAPKs (Chasse et al., 2006; 

Zeller et al., 2007), the translation factors eIF2α and eIF4A and a component of the ribosome-

associated complex, Ssz1p, were also reported to harbor Asc1p-sensitive phosphorylation 

sites (Valerius et al., 2007). Here, SILAC quantification through high-resolution mass-

spectrometry was used to get a comprehensive overview of Asc1p-sensitive phosphorylation 

sites of proteins in S. cerevisiae. The increased phosphorylation of eIF4A and of Ssz1p was 

confirmed. Previously, the position of the affected phosphorylation site could be determined 

only for Ssz1p (Valerius et al., 2007). Here, increased phosphorylation of S2 within eIF4A 

was observed. Besides eIF4A and Ssz1p, more than 200 proteins were identified to be Asc1p-

dependently altered in their phosphorylation status at almost 300 different sites. This finding 

characterizes Asc1p as a key regulator within the cellular phosphorylation network.  

 

4.4 Versatile Asc1p-dependent changes in the phospho-proteome: How does Asc1p act? 

How does Asc1p affect the phosphorylation status of so many proteins? The scaffold protein 

might position kinases and/or phosphatases in the proximity to their targets for their 

subsequent modification as it was shown for mammalian RACK1 that positions the activated 

PKCβII at the ribosome for the phosphorylation of eIF6 and eIF4E (Ceci et al., 2003; Ruan et 

al., 2012). Here, ribosome-associated proteins with Asc1p-sensitive phosphorylation sites 

were identified that could depend on a similar regulatory mechanism, among them, for 

instance, ten translation initiation factors with three subunits of eIF3, namely Rpg1p, Prt1p, 

and Tif35p. The b-subunit of eIF3, Prt1p is one of 15 proteins with Asc1p-sensitive 

phosphorylation sites that have been described as physical interaction partners of Asc1p 

according to the SGD (Figure 22B) and the Asc1p-Strep co-purification experiments 

presented here. Asc1p was also reported to interact with the c-subunit of eIF3 confirming a 

physical proximity of Asc1p to eIF3 at ribosomes (Kouba et al., 2012).  

The list of proposed physical Asc1p interaction partners comprises the MAP4K Ste20p, which 

acts upstream of the MAPKs Kss1p, Fus3p, and Hog1p (Zeller et al., 2007). Ste20p contains 

three phospho-sites that are up-regulated in asc1- cells and are possibly involved in the 

regulation of Ste20p’s general kinase activity or target/pathway specificity. Asc1p was 

suggested to inhibit the kinase activity of Ste20p (Zeller et al., 2007). Thus, Asc1p could not 

only position kinases at their cellular target sites, but also affect their activity.   
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In line with an Asc1p-dependent regulation of Ste20p, increased phosphorylation of Myo3p at 

the Ste20p target site S357 was detected in the absence of Asc1p. Phosphorylation of Myo3p 

at S357 through Ste20p was shown in vitro and seems to be required for the protein’s function 

(Wu et al., 1997). Furthermore, increased phosphorylation of residues T82 and T83 of the 

MAPK-target Dig2p was observed. Together with Dig1p, it represses the activity of the 

transcription factor Ste12p through direct interaction (Figure 3). Upon phosphorylation by 

MAPKs Kss1p and/or Fus3p, Dig2p, and Dig1p are released from the complex leading to the 

activation of Ste12p (Tedford et al., 1997). However, it has not been addressed whether the 

phosphorylation status of T82 and T83 is involved in the MAPK-dependent regulation of 

Dig2p. 

Besides Ste20p, 42 additional proteins involved in signal transduction processes were 

identified with Asc1p-sensitive phosphorylation sites including also other protein kinases like 

Cdc28p and Sch9p. In the Asc1p-deficient strain, reduced phosphorylation of residues Y19 of 

Cdc28p and S726 of Sch9p was detected. These sites are known to be involved in the 

regulation of the catalytic activities of the kinases (Booher et al., 1993; Urban et al., 2007). 

The cyclin-dependent kinase Cdc28p coordinates cell cycle progression through 

phosphorylation of various targets. Phosphorylation of Cdc28p at Y19 by the Swe1p kinase 

provides one of the mechanisms to regulate the catalytic activity of Cdc28p. Phosphorylation 

of the kinase at this residue is highly conserved and leads to its inhibition and subsequent 

entry into mitosis (reviewed in Enserink and Kolodner, 2010). In S. pombe, the absence of the 

Asc1p orthologue Cpc2p leads to a defect in G2/M transition, possibly caused by an increased 

abundance of the Swe1p-homologous kinase Wee1p and decreased levels of the Wee1p-

inhibitor Cdr2p. In line with this, phosphorylation of the Cdc28p-homologue Cdc2p at Y15 

(equivalent to Y19 in S. cerevisiae) showed delayed kinetics during the cell cycle (Nuñez et 

al., 2010). In this study, increased protein levels of Cdc28p were also observed that have not 

been detected for Cdc2p in S. pombe. Mammalian RACK1 was described to affect cell cycle 

progression at the stage of G1/S transition through its inhibitory effect on Src kinase activity 

(Mamidipudi et al., 2004). Collectively, these data suggest that Asc1p and its orthologues 

influence cell cycle progression.  

The Sch9p kinase is phosphorylated by the TOR complex 1 (TORC1) at six residues in its 

C-terminal domain including S726, which was identified here to be Asc1p-dependently 

regulated (Urban et al., 2007). TORC1 is one of two complexes that contain the Target of 

rapamycin Tor1/2 kinase as catalytic subunit and that regulate cellular growth in response to 

nutrient signals (Loewith et al., 2002). Sch9p is required for the TORC1-mediated regulation 
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of ribosome-biosynthesis, translation initiation, and entry into stationary phase. 

Phosphorylation of the C-terminal domain of Sch9p is required for the protein’s activity and 

is abolished upon rapamycin treatment and carbon or nitrogen starvation (Urban et al., 2007). 

In this study, phosphorylation of S726 was found to be decreased in asc1- cells.  

Considering Asc1p-dependent regulation of specific kinases, such as Ste20p, Cdc28p, and 

Sch9p, the motif-x software tool was applied to find overrepresented kinase motifs 

surrounding the regulated phospho-sites (localization probability ≥ 0.75, Schwartz and Gygi, 

2005; Chou and Schwartz, 2011). 38% of the serine and 43% of the threonine residues were 

directly followed by a proline residue (Figure 30). Such SP or TP motifs are preferred target 

sites for MAPKs and cyclin-dependent kinases (Mok et al., 2011). However, these motifs 

were also high abundant - albeit less frequent - among all phospho-sites identified here by 

LC-MS irrespective of their SILAC-ratios (31% SP and 30% TP). Furthermore, 13% of all 

regulated serines were followed by a glutamate at the third C-terminal position, yet, 15% of 

all identified phospho-sites harbored this SxxE motif excluding a specific enrichment of this 

motif. As expected from the many kinases affected by Asc1p, rather a phosphorylation 

network than a specific motif and its respective kinase are subject to Asc1p-dependent 

regulation.  

The following paragraphs will focus on the impact of Asc1p on the regulation of specific 

cellular processes. Several candidates of the Asc1p-sensitive phospho-proteome and their 

associated biological processes will be discussed considering known or putative relations to 

Asc1p and further taking into account the results obtained from the Asc1p-Strep 

co-purification experiments. 

 

 
Figure 30. Overrepresented motifs for Asc1p-sensitive phosphorylated serine and threonine 

residues.  

Abundances of motifs for Asc1p-dependently regulated phospho-sites were compared with the 

occurrence of the same motifs for all phospho-sites identified in this study. Motifs were searched for 

sites with a localization probability ≥ 0.75 using the motif-x software (Schwartz and Gygi, 2005; Chou 

and Schwartz, 2011). Additional motifs identified for the complete phospho-proteome are not 

depicted. 
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4.5 Asc1p affects localized mRNA translation and cytoskeleton organization 

Among the 213 proteins identified here with Asc1p-sensitive phospho-sites, 42 are involved 

in processes related to mRNA translation comprising, for example, eIF3 subunits, eIF4A, and 

Ssz1p. Another protein of this group is the mRNA-binding protein Puf3 with S86 as one of 

the strongest down-regulated phosphorylation sites in the asc1- strain. Puf3p associates with 

mRNAs that encode mitochondrial proteins and promotes their localized translation at 

mitochondria (Saint-Georges et al., 2008). Yet, Puf3p was also reported to support the 

degradation of its bound transcripts (Olivas and Parker, 2000). These opposing roles of Puf3p 

in mRNA translation and degradation were suggested to be regulated by its phosphorylation 

(Lee and Tu, 2015). Upon glucose deprivation, Puf3p gets phosphorylated at several residues 

within its N-terminal region - including the Asc1p-sensitive phospho-site S86 - and promotes 

the translation of bound transcripts instead of their degradation (Lee and Tu, 2015). In line 

with the reduced phosphorylation of Puf3p at S86 in asc1- cells, our quantitative proteome 

data revealed that Asc1p-deficiency causes decreased abundance of many mitochondrial 

proteins, such as ribosomal proteins and subunits of the transporter complexes of the outer 

and inner mitochondrial membrane (Supplementary Table 15). This regulation of 

mitochondrial proteins is consistent with the reduced respiratory activity of asc1- cells and 

their compromised growth on non-fermentable carbon sources (Rachfall et al., 2013).  

Reduced phosphorylation was also observed for residue S231 of the mRNA-binding protein 

Ssd1 in Asc1p-deficient cells. Additionally, Ssd1p was co-purified together with Asc1p-Strep. 

Ssd1p suppresses the translation of its associated mRNAs until it gets phosphorylated by the 

kinase Cbk1p at eight residues (Jansen et al., 2009). Many Ssd1p-bound transcripts code for 

cell wall remodeling proteins. Cbk1p seems to activate the translation of Ssd1p-bound 

transcripts at sites of cell growth and cell wall remodeling, and disturbance of this regulation 

leads to defects in cell wall organization. The Asc1p-sensitive residue S231 of Ssd1p has not 

yet been reported to be involved in the Cbk1p-mediated inhibition of Ssd1p, but lies in close 

proximity to S228, one of the known target sites of Cbk1p (Jansen et al., 2009). Both the 

interaction of Ssd1p with Asc1p-Strep and the identification of an Asc1p-sensitive phospho-

site within the mRNA-binding protein hint to a functional relationship between the two 

proteins. This interaction might contribute to the observed defects of Asc1p-deficient cells in 

cell wall integrity (Valerius et al., 2007; Rachfall et al., 2013).  

Asc1p might further be involved in the regulation of specific transcripts through physical 

association with the mRNA-binding proteins She2 and Scp160 (this study; Baum et al., 2004). 

Here, She2p was co-purified with Asc1p-Strep. She2p is required for the localization of ASH1 
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mRNA to the bud during cell division (Jansen et al., 1996). In the daughter cell, the 

transcription repressor Ash1p prevents mating type switching (Sil and Herskowitz, 1996). To 

mediate the asymmetric localization of the ASH1 mRNA, She2p first has to translocate to the 

nucleus where it is co-transcriptionally recruited to RNA polymerase II by the universally 

conserved transcription factor heterodimer Spt4p-Spt5p and subsequently binds the nascent 

ASH1 mRNA (Shen et al., 2010). In the cytoplasm, a transport mRNP is formed through the 

interaction between She2p and the Myo4p-adaptor protein She3 (Böhl et al., 2000). The 

mRNP moves along the actin cytoskeleton to the bud tip, and translation is suppressed 

through the presence of Puf6p and Khd1p in the mRNP (Irie et al., 2002; Gu et al., 2004). 

When the destination of the ASH1 mRNA is reached, phosphorylation of Puf6p and Khd1p 

triggers the translation of ASH1 mRNA (Paquin et al., 2007; Deng et al., 2008). Besides the 

ASH1 mRNA, She2p is required for the localization of more than 30 transcripts (reviewed in 

Heym and Niessing, 2012). Most of these mRNAs contain cis-elements, known as zip-code 

elements that were shown to be required for the recognition through She2p (Heym and 

Niessing, 2012). She2p shows similarities to the mammalian mRNA-binding protein ZBP1 

(Zipcode-binding protein 1). Remarkably, ZBP1 interacts with RACK1 in transport mRNPs 

in neuronal cells to regulate the localized translation of β-actin mRNA (Ceci et al., 2012; 

Heym and Niessing, 2012). Thus, Asc1p and RACK1 are both involved in mRNA transport.  

The involvement of Asc1p in She2p directed mRNA localization is further supported by the 

co-purification of the already mentioned She2p-interacting transcription factor Spt5p with 

Asc1p-Strep and Asc1DEp-Strep. The Spt4p-Spt5p heterodimer is involved in the elongation 

process of RNA polymerase II transcription, but has also been found to function in RNA 

polymerase I-mediated transcription, mRNA capping, and splicing (Hartzog et al., 1998; Wen 

and Shatkin, 1999; Lindstrom et al., 2003; Schneider et al., 2006). Additionally, the cyclin of 

the Bur1p kinase, Bur2p (Yao et al., 2000), was co-purified with Asc1DEp-Strep. The Bur1p-

Bur2p complex phosphorylates Spt5p in its C-terminal region, which is required for 

transcription elongation and histone modification (Liu et al., 2009; Zhou et al., 2009). 

Asc1p further interacts with the mRNA-binding protein Scp160 (Baum et al., 2004). Binding 

of Scp160p to ribosomes requires Asc1p, and as part of a multiprotein complex called SESA 

network, both proteins regulate the translation of the POM34 mRNA (Baum et al., 2004; 

Sezen et al., 2009). Like She2p, Scp160p is involved in mRNA transport through targeting of 

pheromone-induced mRNAs to the shmoo tip during mating (Gelin-Licht et al., 2012). 

Scp160p was described as an effector protein of Gpa1p, the Gα-protein of the pheromone-

response pathway (Guo et al., 2003). Through the interaction with Scp160p, Asc1p might link 
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the pheromone response pathway to nutrient sensing based on its proposed function as the 

Gβ-protein for Gpa2p. A role of Asc1p in the pheromone signal transduction pathway has 

been previously proposed based on the already mentioned interaction of Asc1p with the 

MAP4K Ste20p and increased activation of the downstream MAPK Kss1p (Zeller et al., 

2007). Furthermore, Asc1p-deficient MATa cells exhibit increased sensitivity to the α-factor 

pheromone (Chasse et al., 2006). Altogether, Asc1p seems to be involved in translational 

regulation through interaction with mRNA-binding proteins. This regulation might not only 

involve Asc1p-dependent recruitment of mRNA-binding proteins to the ribosome as it was 

shown for Scp160p but also Asc1p-dependent mRNA transport for localized translation as it 

was shown for its mammalian orthologue (Baum et al., 2004; Ceci et al., 2012). Furthermore, 

Asc1p affects the phosphorylation status of mRNA-binding proteins and consequently most 

likely the fate of their bound transcripts.   

Cellular localization of mRNAs most often involves the actin cytoskeleton and motor 

proteins. Casolari and colleagues (2012) studied the association of mRNAs with cytoskeletal 

motor proteins. The type I myosin Myo3p was identified to associate with mRNAs that 

encode key regulators of actin branching and endocytosis. The motor protein seems to be 

required for the transport of its associated transcripts to actin patches and/or for their 

anchoring at these sites (Casolari et al., 2012). In asc1- cells, Myo3p is strongly increased in 

its phosphorylation at S357. As already discussed, Myo3p is most likely phosphorylated at 

S357 by the MAP4K Ste20p, whose activity seems to be suppressed by Asc1p (Wu et al., 

1997; Zeller et al., 2007).  

Besides Myo3p, 27 other proteins with Asc1p-sensitive phospho-sites are related to 

cytoskeleton-associated processes, and 37 proteins are associated with transport and 

trafficking. One of the proteins involved in cytoskeleton-associated processes is the formin 

Bni1p/She5p, which was identified in the initial screen for genes required for the asymmetric 

localization of ASH1 mRNA (Jansen et al., 1996). Phosphorylation of Bni1p was down-

regulated upon Asc1p-deficiency at S1889. Yet, is has to be noted that no quantitative 

proteome value was obtained for the protein. The formins Bni1p and Bnr1p nucleate 

unbranched actin cables and cytokinetic rings, whereas the formation of actin patches at sites 

of endocytosis requires the Arp2/3 complex (reviewed in Goode et al., 2015). The Arp2/3 

complex associates with nucleation-promoting factors, such as the already mentioned 

Myo3/5p and the acting binding protein Abp1 (Evangelista et al., 2000; Goode et al., 2001). 

Abp1p harbors four sites that are reduced in phosphorylation in asc1- cells, whereas the total 

protein level of Abp1p is increased by more than 70%. Abp1p acts together with Aim3p to 
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regulate actin filament barbed end elongation in the Arp2/3-nucleated networks (Michelot et 

al., 2013). Phosphorylation of Aim3p at S843 is enhanced in Asc1p-deficient cells, however, 

a corresponding quantitative proteome value is missing.  

The proteins Bud14 and Kel1 were found to interact with Strep-tagged Asc1p variants in this 

study. A complex of Bud14p with the Kelch proteins Kel1 and Kel2 regulates the 

displacement of formin Bnr1p from the growing ends of actin filaments and is consequently 

required for the normal actin cable architecture (Gould et al., 2014). An interaction between 

Asc1p and Bud14p was suggested from a high throughput study (Gavin et al., 2002). As an 

additional component of this complex, Asc1p could be directly involved in the coordination 

of actin cytoskeleton organization. Bud14p was further described as one of the regulatory 

subunits of the protein phosphatase Glc7p and is required for the localization of Glc7p at sites 

of polarized growth (Knaus et al., 2005). The localization of Bud14p to these sites in turn 

relies on the interaction with the Kelch proteins (Knaus et al., 2005; Gould et al., 2014). The 

Bud14p-Glc7p complex contributes to the regulation of microtubuli interactions at sites of 

polarized growth (Knaus et al., 2005). Furthermore, it seems to control post-translational 

modification of the stress-responsive transcription factor Msn2p in dependence of the Ccr4p-

Not complex (Lenssen et al., 2005). Two other regulatory subunits of Glc7p (Glc8p and 

Ypi1p) were found to be affected in their phosphorylation status in the asc1- cells providing 

further evidence for a link between Asc1p and Glc7p function. Thus, several changes in the 

Asc1p-dependent phospho-proteome might be caused by altered Glc7p activity. In 

conclusion, Asc1p might affect cytoskeleton-related processes through mediating the 

phosphorylation status of key-components of actin-organization. 

 

4.6 Asc1p’s impact on protein folding and degradation 

Phosphorylations of core components of the 26S proteasome are sensitive to Asc1p. 

Furthermore, the abundance of almost all subunits of the 20S core particle and two 

components of the 19S regulatory particle were increased upon Asc1p-deficiency (Figure 31 

and Supplementary Table 16). The proteasome and eIF3 were described to form a 

supercomplex with the ribosome, elongation factors, tRNA synthetases, and chaperones called 

the translasome that reveals a close connection of protein synthesis and degradation (Sha et 

al., 2009). Different co-translational quality control pathways exist that recognize aberrant 

translation processes and involve the proteasome for degradation of the nascent polypeptide 

chain (reviewed in Inada, 2013). Asc1p is required for nascent polypeptide-dependent 

translation arrest that is, for example, caused by polybasic sequences in the growing peptide 
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chain. This results in the degradation of the translated mRNA and the nascent polypeptide 

chain (Kuroha et al., 2010; Brandman et al., 2012; Matsuda et al., 2014).  

The correct folding of nascent polypeptides is essential to protect newly synthesized proteins 

from immediate degradation. In eukaryotic cells, the nascent polypeptide-associated complex 

(NAC) can bind to emerging polypeptides to prevent inappropriate interactions and 

misfolding (Wang et al., 1995). Moreover, the NAC functions in the co-translational delivery 

of proteins to mitochondria as well as in the translocation of nascent polypeptide chains to the 

endoplasmic reticulum mediated by the signal recognition particle (George et al., 2002; Zhang 

et al., 2012b). The NAC is a highly conserved heterodimer formed by the proteins Egd1 and 

Egd2 in S. cerevisiae. Here, phosphorylation of Egd1p at T151 was identified as the strongest 

down-regulated phospho-site in the asc1- strain.  

A role of Asc1p in co-translational protein folding is deduced from the observation that 

mammalian RACK1 recruits activated JNK to the ribosome in order to phosphorylate eEF1A 

and with that to induce association of the translation factor with the newly synthesized peptide 

chain (Gandin et al., 2013a). The translation elongation factor is involved in the recruitment 

of aminoacyl-tRNAs to the ribosomes, but it can also mediate the co-translational degradation 

of nascent polypeptide chains by the proteasome (Hotokezaka et al., 2002; Chuang et al., 

2005). In T. brucei, RACK1 was shown to associate with eEF1A (Regmi et al., 2008). 

Moreover, the mRNA-binding protein and interaction partner of Asc1p, Scp160p, was found

 

Figure 31. Asc1p-dependent alterations of the 26S proteasome.  

Asc1p-sensitive phospho-sites within components of the 26S proteasome are indicated with asterisks. 

Proteins regulated in their abundance in the Asc1p-deficient cells are colored. Colors indicate whether 

the phospho-sites or the proteins were up- or down-regulated in the asc1- strain. The schematic 

depiction of the 26S proteasome was adapted from the KEGG database. 
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to associate with eEF1A at ribosomes implicating a physical proximity of eEF1A to Asc1p 

also in yeast (Baum et al., 2004).  

The heat shock protein 70 (Hsp70) chaperones Ssb1p and Ssb2p (Stress-seventy subfamily B) 

together with the ribosome-associated complex consisting of the Hsp70 Ssz1p and the Hsp40 

Zuo1p also assist in the folding of nascent polypeptide chains (Gautschi et al., 2002). Ssz1p 

contains an Asc1p-sensitive phosphorylation site (this study; Valerius et al., 2007). The 

family of Hsp70 chaperones further comprises four Ssa (Stress-seventy subfamily A) proteins. 

Here, Asc1DEp-Strep, but not Asc1p-Strep, was shown to co-purify with Ssa1p and Ssa2p. 

Ssa1p associates with the Hsp40 Sis1p predominantly on translating ribosomes and both 

proteins are required for intact mRNA translation (Horton et al., 2001). Although Ssa1p and 

Ssa2p clearly did not interact with Asc1p-Strep, Sis1p was found enriched with the Strep-

tagged wild-type Asc1 protein. Ssa1/2p and Sis1p are involved in prion propagation 

(reviewed in Liebman and Chernoff, 2012). The [PSI+] prion is formed through a refolding of 

the translation termination factor Sup35p, and deletion of ASC1 results in induction of [PSI+] 

(Manogaran et al., 2011). Like Ssa1/2p, Sup35p was found to interact with Asc1DEp-Strep, 

but most likely not with Asc1p-Strep. Sup35p has been proposed to function in a process 

named premature translation termination that releases C-terminally truncated nascent 

polypeptides from ribosomes stalled on polylysine stretches (Chiabudini et al., 2014). During 

this process, Sup35p binds to the ribosomal A-site although it does not contain a stop codon. 

The deletion of ASC1 abolishes premature translation termination most likely due to its effect 

on overall translation rates (Chiabudini et al., 2014). Yet, the data presented here indicate a 

direct interplay between Asc1p and Sup35p that is further supported by the identification of 

two Asc1p-sensitive phospho-sites within Sup35p (T570 and S571). 

Altogether, Asc1p/RACK1 seems to function in protein folding and degradation during 

translation and beyond. The involvement of Asc1p in protein degradation processes is further 

supported by the finding that three proteins with ubiquitin-binding activity namely Def1p, 

Cue5p, and Dsk2p associate with Asc1p-Strep and/or Asc1DEp-Strep. Both Def1p and Cue5p 

contain ubiquitin-binding CUE domains (Shih et al., 2003). The CUE domain of Def1p is 

required for its binding to the ubiquitin-like domain of Ela1p, a component of the Elongin-

Cullin ubiquitin ligase complex. The simultaneous interaction of Def1p with this E3 ubiquitin 

ligase and the RNA polymerase II results in polyubiquitination of the largest subunit of the 

polymerase, Rpb1p, and its subsequent degradation (Wilson et al., 2013). The Def1p-

mediated degradation of RNA polymerase II occurs in response to DNA-damage that causes 

transcriptional stress. Upon these conditions, Def1p is modified in a ubiquitin- and 
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proteasome-dependent process leading to removal of its C-terminal domain and its 

translocation from the cytoplasm to the nucleus where it mediates Rpb1p degradation (Wilson 

et al., 2013). Two phosphorylation sites T258 and S260 are reduced in their phosphorylation 

status in asc1- cells further implicating a functional link between Asc1p and Def1p.  

The Cue5 protein was identified as a ubiquitin adaptor protein for the autophagy related 

protein 8 (Atg8) and thus seems to be involved in substrate recognition for selective 

macroautophagy (Lu et al., 2014). Dsk2p is involved in the delivery of polyubiquitinated 

proteins to the proteasome. The protein binds polyubiquitin-chains through its C-terminal 

ubiquitin-associated domain and interacts with the proteasome through its N-terminal 

ubiquitin-like domain (Funakoshi et al., 2002). Asc1p was described to be ubiquitinated at ten 

sites, and it remains to be determined whether the ubiquitin-binding proteins Def1, Cue5, and 

Dsk2 interact with the ubiquitinated forms of Asc1p-Strep and/or Asc1DEp-Strep (Swaney et 

al., 2013).  

 

4.7 The β-propeller Asc1p represents a regulatory interface connecting mRNA 

translation with fundamental cellular processes according to signals 

This work focused on the role of Asc1p in the cellular phosphorylation network of 

S. cerevisiae. The exposed localization of the β-propeller at the ribosome goes along with an 

important coordination function that connects a variety of cellular processes to local mRNA 

translation and signal transduction. It influences the activities of central signal transduction 

players, such as the kinases PKA, Cdc28p, Ste20p, Kss1p, Slt2p, and Hog1p as well as the 

phosphatase Glc7p, which coordinate cellular processes like cell cycle progression, 

maintenance of cell wall integrity, and adaptation to osmolarity and hypoxic growth 

conditions (Figure 32). Fundamental processes like cytoskeleton organization, protein folding 

and turnover, and even nuclear transcription processes are significantly affected by the 

absence of Asc1p. Translation of the transcription factor YHR177W mRNA seems highly 

Asc1p-dependent. This diversified impact of a single protein might be due to its high 

abundance and presence in almost every ribosome. Especially, different local activity of 

ribosomes, for example, at mitochondria, could be subject to Asc1p-dependent regulation. 

The interaction of Asc1p with mRNA-binding proteins or its effect on their phosphorylation 

status could provide a mechanism for translational regulation. Asc1p is itself phosphorylated 

at multiple sites. Here, four of these sites were identified to be involved in the regulation of 

Asc1p’s abundance. Absence of Asc1p uncouples the translation machinery from certain 

signal transduction pathways and limits the ability of the cell to adapt to stress conditions.  
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Figure 32. The rack-wheel of Asc1p-dependent signal transduction.  

The proposed function of Asc1p in the adaptation of the cellular proteome and phospho-proteome in 

response to signal transduction is schematically depicted. Asc1p links cellular signal transduction to 

the ribosome leading to the adjustment of the cellular proteome as needed (indicated by red arrows). 

Simultaneously, Asc1p is important for the phosphorylation status of central components of various 

processes named in the outermost ring of the scheme. The inner ring around the central rack-wheel 

gives examples for proteins containing Asc1p-sensitive phosphorylation sites. Proteins labeled with a 

plus (+) were additionally identified as interaction partners of Asc1p. Proteins marked with an asterisk 

(*) were not identified with Asc1p-sensitive phospho-sites but as Asc1p-interacting proteins. In the 

outer gray ring, examples for proteins are given that are Asc1p-dependently regulated on the proteome 

level. For the transcription factor Yhr177wp, translation of its encoding mRNA seems to be directly 

Asc1p-dependent. Also, a ribosome-free form of Asc1p could be part of the signal transduction 

machinery. Ribosome-association of Asc1p can be impaired through the DE mutation. 

Phosphorylation (P) of Asc1p itself could modulate the protein’s integrity as a link between translation 

and signal transduction. Additional references used apart from this study: Flo11p (Valerius et al., 

2007), Kss1p (Zeller et al., 2007), Scp160p (Baum et al., 2004), and Slt2p (Chasse et al., 2006; 

Breitkreutz et al., 2010). (HSP = heat shock protein, Hxts = hexose transporters) 
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6. Supplementary Material 

 

  1          11         21         31         41 

ASC1 SNR24 ATGGCATCTA ACGAAGTTTT AGTTTTGAGA GGTACCTTGG AAGGTCACAA 

Asc1p  M  A  S  N   E  V  L   V  L  R   G  T  L  E   G  H  N 

asc1-  ATGGCATCTA ACGAAGTTTT AGTTTTGAGA GGTACCTTGG AAGGTCACAA 

Asc1p-    M  A  S  N   E  V  L   V  L  R   G  T  L  E   G  H  N 

 

  51         61         71         81         91 

ASC1 SNR24  CGGTTGGGTC ACATCTTTGG CTACTTCTGC TGGTCAACCA AACCTATTGT 

Asc1p    G  W  V   T  S  L  A   T  S  A   G  Q  P   N  L  L  L 

asc1-  CGGTTGGGTC ACATCTTTGG CTACTTCTGC TGGTCAACCA AACCTATTGT 

Asc1p-   G  W  V   T  S  L  A   T  S  A   G  Q  P   N  L  L  L 

 

        101        111        121        131        141 

ASC1 SNR24 TGTCCGCTTC CCGTGATAAG ACTTTGATCT CCTGGAAGTT GACTGGTGAC 

Asc1p    S  A  S   R  D  K   T  L  I  S   W  K  L   T  G  D 

asc1-  TGTCCGCTTC CCGTGATAAG ACTTTGATCT CCTGGAAGTT GACTGGTGAC 

Asc1p-    S  A  S   R  D  K   T  L  I  S   W  K  L   T  G  D 

 

       151        161        171        181        191 

ASC1 SNR24  GACCAAAAGT TTGG------ ---------- ---------- ---------- 

Asc1p  D  Q  K  F   G  -  -   -  -  -   -  -  -  -   -  -  - 

asc1-   GACCAAAAGT TTGGAGCAGC TGAAGCTTCG TACGCTGCAG GTCGACAACC 

Asc1p-  D  Q  K  F   G  A  A   E  A  S   Y  A  A  G   R  Q  P 

 

  201        211        221        231        241 

ASC1 SNR24  ---------- ---------- ---------- ---------- ---------- 

Asc1p   -  -  -   -  -  -  -   -  -  -   -  -  -   -  -  -  - 

asc1-   CTTAATATAA CTTCGTATAA TGTATGCTAT ACGAAGTTAT TAGGTGATAT 

Asc1p-   L  I  *   -  -  -  -   -  -  -   -  -  -   -  -  -  - 

 

           251        261        271        281        291 

ASC1 SNR24  ---------- ---------- --TGTCCCAG TTAGATCTTT CAAGGGTCAC 

Asc1p    -  -  -   -  -  -   -  V  P  V   R  S  F   K  G  H 

asc1-   CAGATCCACT AGTGGCCTAT GCTGTCCCAG TTAGATCTTT CAAGGGTCAC 

Asc1p-    -  -  -   -  -  -   -  -  -  -   -  -  -   -  -  - 

Supplementary Figure 1. DNA and amino acid sequence alignments of the ASC1 SNR24 wild-

type strain and the asc1- strain.  

The figure illustrates the differences in the DNA and amino acid sequence between the ASC1 SNR24 

wild-type and the asc1- strain. Due to the presence of a stop codon (TAA labeled with an asterisks) 

within the loxP site in the asc1- strain, translation of the corresponding mRNA is abrogated leading to 

the formation of truncated Asc1p-. 
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Supplementary Table 1. LC-MS-based identification of Asc1p-derived phospho-peptides. 

Phospho-sites with the highest post-translational modification (PTM) score are printed in black, and 

all other putative phospho-sites within the peptides in gray.  

Amino 
acid 

Position 
Highest 
PTM 
score 

Peptide sequence 
Spectral 
counts 

Highest 
Xcorr 
(SequestHT) 

Highest 
IonScore 
(Mascot) 

T 12 100.00 

GTLEGHNGWVTSLATSAGQPN 

LLLSASR 
19 5.42 70 

T 21 45.5 

S 22 33.3 

T 25 60.1 

S 26 39 

S 35 9.9 

S 37 79.6 

S 120 100 

KASMIISGSR 2 - 47 S 124 0 

S 126 0 

T 143 100 
GQCLATLLGHNDWVSQVR 29 4.54 59 

S 152 0 

S 166 100 
ADDDSVTIISAGNDK 

VVPNEKADDDSVTIISAGNDK 
121 
25 

4.87 
4.37 

108 
60 

T 168 100 

S 171 90 

Y 250 100 

YWLAAATATGIK 21 3.51 56 T 256 0.3 

T 258 0 

S 291 77.4 

AAEPHAVSLAWSADGQTLFAG 

YTDNVIR 
17 5.19 91 

S 295 93.2 

T 300 99.9 

Y 305 0.6 

T 306 0.2 
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Supplementary Figure 2. Annotated fragmentation spectra of Asc1p phospho-peptides. 
(A) Annotated fragmentation spectrum of the peptide GTLEGHNGWVTSLATSAGQPNLLLSASR 

phosphorylated at T12.  
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(B) Annotated fragmentation spectrum of the peptide KASMIISGSR phosphorylated at S120.  
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(C) Annotated fragmentation spectrum of the peptide GQCLATLLGHNDWVSQVR phosphorylated 

at T143.  
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(D) Annotated fragmentation spectrum of the peptide ADDDSVTIISAGNDK phosphorylated at S166.   
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(E) Annotated fragmentation spectrum of the peptide VVPNEKADDDSVTIISAGNDK 

phosphorylated at S166.  



Supplementary Material 

135 
 

 

(F) Annotated fragmentation spectrum of the peptide ADDDSVTIISAGNDK phosphorylated at T168.  



Supplementary Material 

136 

 

 

(G) Annotated fragmentation spectrum of the peptide VVPNEKADDDSVTIISAGNDK 

phosphorylated at T168.  
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(H) Annotated fragmentation spectrum of the peptide YWLAAATATGIK phosphorylated at Y250. 
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(I) Annotated fragmentation spectrum of the peptide AAEPHAVSLAWSADGQTLFAGYTDNVIR 

phosphorylated at T300.  
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Supplementary Table 2. Overview of proteome data evaluation with Perseus. 

Abbreviations: Prot = protein, vs. = versus 

No. Command Description 

asc1- and asc1DE T143 phospho-site mutant 
strains, for example, asc1T143A 

1 Generic 
matrix upload 

proteinGroups.txt 
normalized ratios etc.  

2.1 
2.2 
2.3 

Filter rows 
based on 
categorical 
column 

Remove rows with + in reverse column 
Remove rows with + in potential contaminant column 
Remove rows with + in only identified by site column 
 

3 Transform Inverse ratios (1/x) when ASC1 is not in the denominator 

4 Transform log2(x) 

5 Normalization Subtract column median of ratios 

6 Categorical  
annotation 
rows 

Group biological replicates 

7 Reorder/ 
remove 
columns 

Select Prot ratios of interest for the following steps 

8.1 Average  
groups 

Calculate median of each group  
→ protein ratio 

Calculate mean of each group 

8.2 Combine 
expression 
columns 

- Calculation of difference between 
mean of asc1T143A/ASC1 ratios 
and ASC1Aux/ASC1 ratios 
→ protein ratio 

9 Change 
column type 

Change numerical column with protein ratio (steps 8.1 and 8.2) to 
expression column 

10 Categorical  
annotation 
rows 

Define column with protein ratio as own group 
 

11 One/Two 
sample(s) 
tests 

One-sample t-test,  
p-value 0.01 
 

Two-sample t-test,  
p-value 0.01 
Prot ratios asc1T143A/ASC1 
vs.  
Prot ratios ASC1Aux/ASC1 

12 Filter rows 
based on 
categorical 
column 

Keep rows with + (significant) from step 11 
 

13 Filter rows 
based on 
valid values 

Filter protein ratio (steps 8.1 and 8.2) for values outside -0.26 to 0.26 
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Supplementary Table 3. Overview of phospho-proteome data evaluation with Perseus. 

Abbreviations: PP = phospho-peptide, Prot = protein, vs. = versus 

No. Command Description 

asc1- T143 phospho-site mutant strains, 
for example, asc1T143A 

1 Generic 
matrix upload 

Phospho (STY)Sites.txt 
normalized ratios, localization probability etc.  

2.1 
2.2 

Filter rows 
based on 
categorical 
column 

Remove rows with + in reverse column 
Remove rows with + in potential contaminant column  
 
 

3 Expand site 
table 

In order to have only one column per sample 

4 Transform Inverse ratios (1/x) when ASC1 is not already in the denominator 

5 Transform log2(x) 

6 Reorder/ 
remove 
columns 

Select PP ratios of interest for the following steps 

7 Matching 
rows by 
name 

Matching PP ratios with respective Prot ratios from step 7 of 
Supplementary Table 2 (in the case that a phospho-peptide cannot be 
assigned to a single protein the median of the protein ratios is 
calculated) 

8 Categorical  
annotation 
rows 

Group PP ratios and Prot ratios for biological replicates 

9 Average  
groups 

Calculate median of each group Calculate mean of each group 

10.1 Combine 
expression 
columns 

Correction of PP ratios with Prot ratios: 
median PP ratios - median Prot ratios 

→ phospho regulation  

10.2 - Calculation of difference between 
proteome-corrected PP ratios of 
asc1T143A/ASC1 and 
ASC1Aux/ASC1  

→ phospho regulation 

11 Change 
column type 

Change numerical column with phospho regulation (steps 10.1 and 
10.2) to expression column 

12 Categorical  
annotation 
rows 

Define column with phospho regulation as an own group for later 
filtering of values 

13 Categorical  
annotation 
rows 

Group PP ratios for biological replicates for the next step 

14 Filter rows 
based on 
valid values 

Filter for two valid PP ratios Filter for one valid PP ratio 

15.1 Two samples 
tests  
 

t-test, p-value 0.01 
PP ratios vs. Prot ratios 

t-test, p-value 0.05 
PP ratios vs. Prot ratios  

for asc1T143A/ASC1 

15.2 - t-test, p-value 0.05 
PP ratios asc1T143A/ASC1 vs. PP 
ratios ASC1Aux/ASC1 

16.1 Filter rows 
based on 
categorical 
column 

Keep rows with + (significant) from step 15.1 

16.2 - Keep rows with + (significant) 
from step 15.2 

17 Filter rows 
based on 
valid values 

Filter phospho regulation (steps 10-12) for values outside  
-0.26 to 0.26 
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Supplementary Table 3. Continued. 

No. Command Description 

The following steps were only performed for the asc1- phospho-proteome analysis and for 
phosphorylated peptides with zero to two corresponding Prot ratios. 
Start from step 15.1 

18 One sample 
tests  

t-test, p-value 0.01  
only phospho-peptide ratios 

19 Filter rows 
based on 
categorical 
column 

Discard rows with + (significant) from step 15.1 (these candidates 
showed regulation of PP ratios with respect to Prot values) 

20 Filter rows 
based on 
categorical 
column 

Keep rows with + (significant) from step 18 

21 Categorical  
annotation 
rows 

Group Prot ratios  
→ proteome 

22 Filter rows 
based on 
valid values 

Filter rows based on three valid values in the proteome group, add 
categorical column (assumption: less than three valid values might be 
insufficient for two-samples t-test) 

23 Filter rows 
based on 
categorical 
column 

Keep rows that were specified as discarded in the previous step 
(remaining candidates have less than three valid values in the 
proteome group) 
 

24 Filter rows 
based on 
valid values 

Filter rows based on one valid value in proteome group, add 
categorical column 
 

 phosphorylated peptides with no 
corresponding Prot ratio 

phosphorylated peptides with one 
or two corresponding Prot ratio(s) 

25 Filter rows 
based on 
categorical 
column 

Keep rows that were specified as 
discarded in the previous step, 
they have no proteome values 

Keep rows that were specified as 
keep in the previous step, they 
have one or two proteome 
value(s) 

26 Change 
column type 

Change numerical column with 
PP median ratio (step 9) to 
expression column 

- 

27 Categorical  
annotation 
rows 

Define column with PP median 
ratio from the previous step as an 
own group for filtering of values in 
the next step 
→ phospho regulation with no 
Prot value 

- 

28 Filter rows 
based on 
valid values 

Filter phospho regulation with no 
Prot value (step 27) for values 
outside -0.26 to 0.26  

Filter phospho regulation (step 
10.1) for values outside  
-0.26 to 0.26 
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Supplementary Table 4. SILAC-based proteome data for the comparison of the asc1- strain and 

the ASC1 wild-type strain. 

The table lists proteins with a median asc1-/ASC1 log2 SILAC-ratio ≤ -0.58 or ≥ 0.58 and a p-value 

< 0.01. Proteins with SILAC-ratios > 0.26 or < -0.26 are not shown. Replicates are numbered 1-8 and 

13 (see Figure 21, Ø = median of SILAC-ratios, SD = standard deviation, gray/NaN = not a number). 

proteins 
protein 
IDs  

asc1-/ASC1 
  

1 2 3 4 5 6 7 8 13 Ø SD 

Aro9 P38840 1.70 2.00 2.15 NaN NaN NaN NaN NaN 1.75 1.88 0.21 

Hbn1 Q96VH4 1.27 1.15 1.27 1.58 1.50 1.85 2.01 1.65 1.26 1.50 0.30 

Yhb1 P39676 1.32 1.26 1.28 1.43 1.63 1.52 1.62 1.68 1.29 1.43 0.17 

Bna2 P47125 NaN NaN 0.96 0.99 1.40 1.39 1.43 1.56 1.21 1.39 0.23 

Sam3 Q08986 NaN NaN 1.57 1.10 1.01 NaN 1.50 1.39 1.38 1.38 0.22 

Ty1a1 P0CX581 NaN NaN 0.64 NaN NaN 1.33 0.91 1.34 1.33 1.33 0.32 

Ty2b2 P253842 0.63 1.18 0.93 0.82 1.68 NaN 1.63 1.21 NaN 1.18 0.40 

Ty1b3 Q036123 1.07 1.11 1.10 1.12 1.39 1.31 1.29 1.32 1.03 1.12 0.13 

Hsp82 P02829 1.02 1.13 1.04 0.90 0.93 1.36 1.17 1.11 1.13 1.11 0.14 

Ty1a4 P0CX734 1.13 1.01 1.10 NaN NaN NaN 1.44 1.58 1.06 1.11 0.24 

Ych1 P42937 1.14 1.16 1.09 0.81 1.06 0.71 1.43 1.05 1.05 1.06 0.21 

Mtd1 Q02046 1.03 0.81 0.86 1.12 1.20 0.85 1.13 1.11 0.85 1.03 0.15 

Sui1 P32911 0.89 1.01 1.02 1.02 1.03 0.91 1.02 1.06 0.78 1.02 0.09 

Ty2b5 Q123375 0.84 0.94 0.87 0.93 1.89 1.51 1.86 1.68 0.67 0.94 0.48 

Dak1 P54838 0.89 0.99 0.88 0.72 0.81 1.22 0.99 0.94 0.94 0.94 0.14 

Hsp104 P31539 0.89 0.93 0.80 0.73 0.82 1.30 1.09 1.01 1.02 0.93 0.17 

Sro9 P25567 0.92 0.80 0.80 0.85 1.00 1.15 1.01 0.99 0.70 0.92 0.14 

Rcn2 Q12044 NaN 0.85 0.81 NaN 0.94 NaN NaN 0.92 1.01 0.92 0.08 

Dcs1 Q06151 1.07 0.69 0.86 0.73 0.83 1.07 0.79 1.07 0.92 0.86 0.15 

Aap1 P37898 0.85 0.35 1.01 0.96 0.58 0.75 0.87 0.93 0.78 0.85 0.21 

Gly1 P37303 0.85 0.75 0.88 0.95 0.99 0.78 0.88 0.79 0.74 0.85 0.09 

Nmd5 P46970 0.86 0.68 0.69 0.79 1.07 0.88 0.98 0.84 0.76 0.84 0.13 

Fpr4 Q06205 0.05 0.92 0.66 0.87 1.05 1.11 0.60 0.74 0.84 0.84 0.32 

Lst8 P41318 0.31 0.93 NaN 0.81 NaN NaN 0.88 0.91 0.34 0.84 0.29 

Ssa1 P10591 0.87 0.91 0.84 0.67 0.63 1.08 0.81 0.76 0.91 0.84 0.14 

Lap3 Q01532 0.77 0.83 0.80 0.71 0.88 1.10 1.14 0.98 0.73 0.83 0.16 

Cue5 Q08412 NaN 0.53 0.88 0.79 NaN 1.11 0.71 0.88 NaN 0.83 0.19 

Fmp41 P53889 0.55 0.69 0.89 0.76 0.92 1.02 1.16 NaN 0.59 0.82 0.21 

Bna1 P47096 0.82 0.79 0.77 0.83 1.02 0.74 1.03 0.99 0.71 0.82 0.13 

Cex1 Q12453 0.89 0.90 0.64 0.81 0.89 1.07 0.76 0.78 0.69 0.81 0.13 

Aro7 P32178 0.34 0.69 0.80 0.99 0.96 0.87 0.67 0.99 0.48 0.80 0.23 

Hem15 P16622 0.69 0.81 0.73 0.80 0.82 0.99 0.79 0.65 0.57 0.79 0.12 

Ddi1 P40087 0.75 0.78 0.80 0.95 0.71 1.02 0.77 0.81 0.67 0.78 0.11 

Nbp2 Q12163 NaN NaN 0.83 0.78 NaN 0.69 NaN NaN NaN 0.78 0.07 

Gpm2 Q12008 0.92 0.66 0.58 0.43 0.96 0.99 0.78 1.13 0.70 0.78 0.22 

Abp1 P15891 0.85 0.78 0.77 0.83 0.55 0.98 0.52 0.56 0.87 0.78 0.16 

Sti1 P15705 0.68 0.80 0.76 0.67 0.70 0.83 0.82 0.73 0.78 0.76 0.06 

Plb1 P39105 0.72 0.59 0.52 0.72 0.88 0.77 0.90 0.79 0.75 0.75 0.12 

Atg18 P43601 NaN NaN 0.76 NaN NaN NaN 0.74 NaN NaN 0.75 0.01 

His7 P33734 0.71 0.74 0.72 0.70 0.77 0.72 0.75 0.79 0.61 0.72 0.05 

Fdc1 Q03034 0.93 0.22 0.58 0.68 NaN 0.86 1.07 0.75 0.43 0.72 0.28 
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Supplementary Table 4. Continued 1. 

proteins 
protein 
IDs  

asc1-/ASC1 
  

1 2 3 4 5 6 7 8 13 Ø SD 

Cki1 P20485 0.66 0.62 0.77 0.63 0.61 0.88 0.78 0.82 0.72 0.72 0.10 

Grx3 Q03835 0.56 0.71 0.66 0.72 0.84 0.96 0.64 0.83 0.77 0.72 0.12 

Lap4 P14904 0.78 0.69 0.71 0.62 0.69 1.06 0.89 0.85 0.70 0.71 0.14 

Twf1 P53250 0.67 0.71 0.77 0.62 0.71 0.90 0.67 0.67 0.74 0.71 0.08 

Aip1 P46680 0.83 0.78 0.69 0.69 0.60 0.76 0.71 0.67 0.82 0.71 0.07 

Ubc1 P21734 0.75 0.69 0.72 0.70 0.57 0.68 0.70 0.56 0.77 0.70 0.07 

Cdc28 P00546 0.54 0.60 0.70 0.52 0.89 0.74 0.78 0.89 0.61 0.70 0.14 

Bbc1 P47068 0.64 0.52 0.79 0.57 0.69 0.89 0.77 0.35 0.86 0.69 0.17 

Hsp42 Q12329 0.63 1.04 0.51 0.69 0.56 1.49 0.55 0.77 1.23 0.69 0.35 

Ato3 Q12359 NaN NaN 0.59 NaN NaN NaN 0.76 0.69 NaN 0.69 0.08 

Nfu1 P32860 0.48 0.71 0.68 0.89 0.56 0.70 0.53 0.67 0.77 0.68 0.13 

Ald2 P47771 0.27 0.78 0.33 NaN 0.62 1.03 0.74 NaN NaN 0.68 0.29 

Rbg2 P53295 0.62 0.45 0.41 0.37 0.90 0.68 0.76 0.69 1.00 0.68 0.22 

Ycr016w P25617 0.88 0.70 0.49 0.66 NaN NaN 0.75 NaN 0.24 0.68 0.22 

Eno1 P00924 0.68 0.58 0.36 0.36 0.80 0.63 0.95 0.89 0.67 0.67 0.21 

Trp3 P00937 0.57 0.59 0.66 0.61 0.84 0.72 0.82 0.74 0.67 0.67 0.10 

Aro8 P53090 0.68 0.68 0.60 0.64 0.64 0.67 0.72 0.64 0.68 0.67 0.04 

Acs2 P52910 0.67 0.60 0.66 0.67 0.75 0.70 0.80 0.75 0.60 0.67 0.07 

Krs1 P15180 0.60 0.67 0.61 0.58 0.71 0.69 0.75 0.70 0.63 0.67 0.06 

Ypt52 P36018 0.66 0.55 0.63 0.45 0.70 0.59 0.75 0.66 0.68 0.66 0.09 

Ent5 Q03769 0.17 0.47 0.25 0.82 0.78 0.79 0.66 0.76 0.56 0.66 0.24 

Pan6 P40459 1.12 0.35 0.66 0.81 0.57 0.48 0.68 0.75 0.58 0.66 0.22 

Sis1 P25294 0.62 0.53 0.58 0.49 0.75 0.67 0.65 0.72 0.67 0.65 0.08 

Npa3 P47122 0.60 0.75 0.64 0.70 0.65 0.40 0.67 0.75 0.59 0.65 0.11 

Trm5 P38793 0.59 0.65 0.15 NaN 1.03 0.43 0.69 0.62 0.66 0.63 0.25 

Rio2 P40160 0.44 NaN 0.59 NaN 0.40 0.70 0.72 0.67 NaN 0.63 0.14 

Car1 P00812 0.57 0.28 0.63 0.63 0.65 0.63 0.59 0.70 0.51 0.63 0.12 

Ade1 P27616 0.63 0.63 0.58 0.58 0.87 0.62 0.84 0.91 0.61 0.63 0.14 

His5 P07172 0.59 0.62 0.59 0.60 0.67 0.64 0.69 0.71 0.58 0.62 0.05 

Aro3 P14843 0.64 0.59 0.53 0.50 0.67 0.62 0.79 0.66 0.59 0.62 0.08 

Aim17 P23180 0.71 0.56 0.54 0.48 0.10 1.05 0.62 0.74 0.93 0.62 0.27 

Bna5 Q05979 0.01 0.83 0.59 0.62 0.94 0.61 0.92 1.19 0.50 0.62 0.34 

Trm82 Q03774 0.37 0.32 0.61 NaN 0.66 0.77 NaN 0.65 0.36 0.61 0.18 

Glr1 P41921 0.55 0.63 0.57 0.62 0.43 0.61 0.81 0.67 0.58 0.61 0.10 

Cys3 P31373 0.61 0.55 0.54 0.61 0.62 0.68 0.67 0.69 0.55 0.61 0.06 

Trp5 P00931 0.58 0.60 0.63 0.59 0.59 0.60 0.78 0.64 0.61 0.60 0.06 

Erg26 P53199 0.54 0.57 0.60 0.74 0.77 0.61 0.57 0.63 0.43 0.60 0.10 

Faa4 P47912 0.60 0.86 0.35 0.49 0.72 0.44 0.72 0.80 0.32 0.60 0.20 

Cpa2 P03965 0.58 0.75 0.73 0.62 0.43 0.51 0.59 0.54 0.64 0.59 0.10 

Tps1 Q00764 0.63 0.66 0.58 0.31 0.25 0.73 0.45 0.41 0.69 0.58 0.18 

Frd1 P32614 0.58 0.51 0.55 0.60 0.72 0.54 0.79 0.65 0.42 0.58 0.11 

Gcn3 P14741 0.66 0.58 0.58 0.51 0.36 0.58 0.58 0.53 0.50 0.58 0.08 

Rrp1 P35178 0.34 0.68 0.57 0.58 0.67 0.57 0.63 0.63 0.54 0.58 0.10 

Ahp1 P38013 -0.41 -0.41 -0.45 -0.58 -0.94 -0.60 -0.81 -0.81 -0.42 -0.58 0.20 
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Supplementary Table 4. Continued 2. 

proteins 
protein 
IDs  

asc1-/ASC1 
  

1 2 3 4 5 6 7 8 13 Ø SD 

Lys4 P49367 -0.65 -0.69 -0.71 -0.47 -0.50 -0.75 -0.43 -0.58 -0.51 -0.58 0.12 

Tom70 P07213 -0.59 -0.51 -0.57 -0.58 -0.68 -0.47 -0.62 -0.62 -0.57 -0.58 0.06 

Hhf1 P02309 -0.50 -0.51 -0.61 -0.60 -0.59 -0.70 -0.59 -0.62 -0.56 -0.59 0.06 

Pim1 P36775 -0.68 -0.48 -0.59 -0.64 -0.54 -0.59 -0.58 -0.65 -0.53 -0.59 0.06 

Sec53 P07283 -0.57 -0.59 -0.60 -0.66 -0.61 -0.59 -0.63 -0.54 -0.55 -0.59 0.04 

Dcp2 P53550 -0.76 -0.94 -0.65 -0.79 -0.31 -0.21 NaN -0.56 -0.53 -0.60 0.25 

Hem13 P11353 NaN -0.72 -0.75 -0.40 -0.31 -0.66 -0.66 -0.29 -0.57 -0.61 0.19 

Mam33 P40513 -0.84 -0.50 -0.39 -0.73 -1.04 -0.13 NaN -0.46 -0.83 -0.61 0.30 

Pmt2 P31382 -0.61 -0.66 -0.59 -0.76 -0.53 -0.61 -0.74 -0.70 -0.61 -0.61 0.08 

Hta1;  
Hta2 

P04911; 
P04912 

-0.64 -0.61 -0.59 -0.73 -0.62 -0.66 -0.61 -0.64 -0.58 -0.62 0.04 

Gcv3 P39726 NaN -0.48 -0.62 -0.54 -0.80 -0.93 -0.73 -0.62 -0.42 -0.62 0.17 

Mia40 P36046 -0.52 -0.56 -0.52 -0.61 -0.76 -0.63 -0.66 -0.81 -0.62 -0.62 0.10 

Tuf1 P02992 -0.70 -0.54 -0.62 -0.71 -0.88 -0.52 -0.65 -0.62 -0.51 -0.62 0.12 

Htb1;  
Htb2 

P02293; 
P02294 

-0.58 -0.53 -0.60 -0.62 -0.57 -0.70 -0.77 -0.71 -0.63 -0.62 0.08 

Isc1 P40015 NaN NaN NaN NaN NaN -0.63 -0.62 NaN NaN -0.63 0.01 

Mrp13 P12686 -0.24 -0.46 -0.63 NaN -0.75 NaN -0.71 -0.83 -0.43 -0.63 0.21 

Rpp2a P05319 -0.61 -0.58 -0.55 -0.53 -0.64 -0.74 -0.63 -0.65 -0.69 -0.63 0.07 

Tsa1 P34760 -0.56 -0.64 -0.64 -0.64 -0.69 -0.59 -0.62 -0.68 -0.62 -0.64 0.04 

Gas3 Q03655 -0.67 -0.64 -0.48 -0.34 -0.28 -0.96 -0.60 -0.90 -0.99 -0.64 0.26 

Hht1 P61830 -0.81 -0.66 -0.64 -0.72 -0.61 -0.69 -0.59 -0.71 -0.57 -0.66 0.08 

Tim9 O74700 -0.66 -0.67 -0.67 -0.65 -0.53 -0.57 -0.72 -0.22 -0.74 -0.66 0.16 

Ggc1 P38988 -0.78 -0.72 -0.70 -0.67 -0.67 -0.64 -0.54 -0.55 -0.68 -0.67 0.08 

Pmc1 P38929 -0.36 NaN -0.67 -0.28 -0.10 NaN -1.10 -1.21 -0.68 -0.67 0.42 

Mcd4 P36051 -0.76 -0.61 -0.80 -0.66 -0.49 -0.18 -0.69 -0.85 -0.67 -0.67 0.20 

Tim10 P87108 -0.76 -0.66 -0.62 -0.41 -0.68 -0.69 -0.64 -0.68 -0.80 -0.68 0.11 

Hho1 P53551 -0.69 -0.61 -0.89 -0.91 NaN -0.62 NaN NaN NaN -0.69 0.15 

Pdi1 P17967 -0.67 -0.69 -0.73 -0.64 -0.70 -0.62 -0.67 -0.70 -0.70 -0.69 0.03 

Adk1 P07170 -0.70 -0.60 -0.67 -0.70 -0.71 -0.70 -0.71 -0.66 -0.68 -0.70 0.03 

Hem1 P09950 -0.76 -0.89 -0.64 -0.43 -0.70 -0.67 -0.83 -0.71 -0.55 -0.70 0.14 

Mrp1 P10662 -0.74 -0.52 -0.29 -0.29 -0.82 -0.67 -0.89 -0.90 NaN -0.71 0.25 

Lys20 P48570 -0.94 -0.97 -0.87 -0.66 -0.42 -0.71 -0.30 -0.82 -0.66 -0.71 0.23 

Sap190 P36123 -0.73 -0.71 -0.42 NaN 0.08 NaN -0.82 -0.93 -0.59 -0.71 0.34 

Ynl208w P40159 -0.71 -0.83 -0.71 -0.66 -0.81 -0.94 -0.69 -0.79 -0.44 -0.71 0.14 

Nce102 Q12207 -0.55 -0.75 -0.62 -0.72 -1.36 -0.55 -0.88 -0.97 -0.46 -0.72 0.28 

Glt1 Q12680 -0.72 -0.73 -0.78 -0.64 -0.71 -0.83 -0.79 -0.79 -0.72 -0.73 0.06 

Scw4 P53334 -0.49 -0.64 -0.75 -0.81 -0.57 -0.83 -1.17 -0.94 -0.37 -0.75 0.24 

Ydl124w Q07551 -0.48 -0.52 -0.79 -0.75 -0.96 -0.45 -0.85 -0.90 -0.57 -0.75 0.19 

Gcv2 P49095 -0.78 -0.75 -0.86 -1.05 -0.58 -0.26 -0.73 -0.77 -0.47 -0.75 0.23 

Axl2 P38928 NaN NaN -0.66 NaN NaN NaN -0.77 -0.79 -0.74 -0.75 0.06 

Ynl134c P53912 -0.60 -0.76 -0.66 -0.57 -0.86 -0.78 -0.92 -0.78 -0.53 -0.76 0.14 

Uth1 P36135 -0.65 -0.66 -1.42 -0.87 NaN -1.03 -0.55 -0.95 -0.32 -0.76 0.34 

Ycf1 P39109 -0.55 -0.38 -0.64 -0.77 -0.82 -1.27 -0.81 -0.83 -0.61 -0.77 0.25 

Yjr098c P47139 -0.61 -0.73 -0.67 -0.92 -0.80 NaN NaN -0.86 -0.78 -0.78 0.11 



Supplementary Material 

145 
 

Supplementary Table 4. Continued 3. 

proteins 
protein 
IDs  

asc1-/ASC1 
  

1 2 3 4 5 6 7 8 13 Ø SD 

Ybr085c-A O43137 -0.63 -0.79 -0.83 -1.15 -1.24 -0.71 -0.92 -0.68 -0.47 -0.79 0.25 

Kar2 P16474 -0.72 -0.81 -0.80 -0.79 -0.75 -0.63 -0.76 -0.79 -0.80 -0.79 0.06 

Nhp6a P11632 NaN -0.79 -0.64 -0.79 NaN NaN -0.94 NaN NaN -0.79 0.12 

Taf5 P38129 NaN NaN -1.00 -0.40 -0.64 -0.69 -1.62 -0.90 NaN -0.79 0.42 

Yhm2 Q04013 -0.84 -0.73 -0.84 -0.75 -0.72 -0.85 -0.80 -0.88 -0.72 -0.80 0.06 

Dic1 Q06143 NaN -1.04 -0.80 -1.16 -0.84 NaN -0.46 -0.33 -0.63 -0.80 0.30 

Hxt1 P32465 -0.74 -0.58 -0.68 -0.81 -0.95 -1.02 -1.04 -1.26 -0.57 -0.81 0.23 

Agp1 P25376 NaN -0.84 -1.07 -0.83 -0.81 NaN -0.48 -0.48 -0.81 -0.81 0.21 

Hor2 P40106 -0.83 -0.72 -0.86 -1.10 -0.69 NaN NaN NaN NaN -0.83 0.16 

Psa1 P41940 -0.75 -0.77 -0.86 -0.83 -0.88 -0.86 -0.86 -0.96 -0.84 -0.86 0.06 

Var1 P02381 -1.00 NaN NaN -0.71 NaN NaN -0.87 NaN NaN -0.87 0.14 

Gph1 P06738 -0.82 -0.87 -1.11 -1.51 -1.19 0.01 -1.07 -0.75 -0.21 -0.87 0.48 

Ura4 P20051 -0.74 -0.90 -1.07 -0.87 -0.64 -1.00 -1.06 -0.80 -1.04 -0.90 0.15 

Pbi2 P0CT04 -0.86 -0.64 -1.11 -1.22 -1.35 -0.52 -0.90 -1.12 -0.68 -0.90 0.28 

Rhr2 P41277 -0.90 -0.99 -0.88 -0.91 -0.93 -1.22 -0.99 -0.91 -0.89 -0.91 0.11 

Hxt66 P390036 -0.84 -0.94 -1.21 -1.09 -1.41 0.21 -1.07 -0.91 -0.28 -0.94 0.50 

Tos1 P38288 -1.03 -0.81 -0.99 -1.03 NaN -0.38 -1.06 -0.95 -0.69 -0.97 0.23 

Ctp1 P38152 -1.32 -0.97 -0.97 -0.71 -0.81 -1.15 -0.70 -1.04 -0.57 -0.97 0.24 

Exg1 P23776 -0.73 -0.90 -0.84 -1.12 -1.04 -1.00 -1.25 -1.16 -0.75 -1.00 0.18 

Gsc2 P40989 -1.48 -1.09 -1.12 -0.92 -0.90 -0.13 -1.05 -1.00 -0.55 -1.00 0.38 

Tma17 Q12513 NaN -1.22 -0.98 NaN NaN NaN NaN NaN -1.01 -1.01 0.13 

Ftr1 P40088 -0.54 0.01 -0.97 -1.18 NaN NaN -1.19 NaN -1.11 -1.04 0.48 

Cpr1 P14832 -1.00 -0.94 -0.99 -1.07 -1.19 -1.08 -1.16 -1.12 -0.96 -1.07 0.09 

Gre2 Q12068 NaN NaN -1.37 -1.19 -0.95 -0.57 -0.87 -1.65 NaN -1.07 0.39 

Sim1 P40472 -0.56 NaN -1.41 -1.48 NaN NaN -1.13 -1.19 -0.85 -1.16 0.35 

Mnn1 P39106 -0.97 -0.98 -1.18 -1.34 -1.17 -1.20 -1.05 -1.20 -0.85 -1.17 0.15 

Pdr12 Q02785 -1.35 -0.49 -2.21 -1.32 -1.38 NaN -1.84 -1.26 -0.82 -1.34 0.54 

Ura1 P28272 -1.18 -1.37 -1.50 -1.35 -1.16 -1.42 -1.48 -1.22 -1.47 -1.37 0.13 

Msc1 Q03104 -1.44 -0.89 -1.67 -0.93 NaN -0.74 -2.13 -1.96 NaN -1.44 0.55 

Fet3 P38993 -1.26 -1.06 -0.82 -1.17 -1.45 -2.12 -1.59 -1.90 -1.65 -1.45 0.41 

Cpa1 P07258 -1.87 NaN -1.79 -1.50 NaN NaN NaN NaN -1.78 -1.78 0.16 

Rib4 P50861 -1.64 -1.94 -1.84 -1.72 -1.58 -1.81 -1.98 -1.64 -2.03 -1.81 0.16 

Ynr034w-A Q3E841 NaN -1.97 -2.69 NaN -1.74 NaN -1.58 NaN NaN -1.86 0.49 

Mdh2 P22133 -2.03 -2.53 -3.29 -1.89 -1.34 -1.52 NaN -1.95 -2.14 -1.99 0.61 

Ctt1 P06115 -1.93 -1.57 -2.35 -2.00 -2.53 -1.08 -2.03 -2.55 -0.90 -2.00 0.59 

Ygp1 P38616 -2.01 -1.14 -3.27 -3.16 NaN NaN -1.16 -2.17 NaN -2.09 0.93 

Hsp12 P22943 -3.06 -2.08 -2.41 -3.07 -3.79 -1.68 -3.96 NaN NaN -3.06 0.85 

Asc1 P38011 -9.32 -10.8 -8.51 -8.96 -3.51 -3.63 -3.60 -4.19 -4.62 -4.62 2.97 

1Ty1a-Pr1;Ty1a-A;Ty1a-Dr4;Ty1a-Jr2;Ty1a-Nl2;P0CX58;P0CX57;O74302;P47099;Q12470 
2Ty2b-C;Ty2b-Gr2;Ty2b-F;Ty2b-Dr2;P25384;P0CX64;P0CX63;Q03494 
3Ty1b-Er1;Ty1b-Ml2;Ty1b-Ol;Ty1b-Jr1;Ty1b-A;Q03612;Q03434;Q12273;P47098;O13527 
4Ty1a-Pl;Ty1a-Lr2;Ty1a-Er1;Ty1a-Dr6;Ty1a-Pr3;Ty1a-Gr1;Ty1a-Ml2;Ty1a-Lr3;Ty1a-Jr1;Ty1a-Lr4; 
Ty1a-Gr2;Ty1a-Ol;P0CX73;P0CX72;P0CX71;P0CX70;Q6Q5H1;Q12085;P0CX76;P0CX75;P0CX74; 
P0C2I8;Q12485;Q92392;Q12391 
5Ty2b-Gr1;Ty2b-Lr1;Ty2b-Dr1;Ty2b-Or2;Q12337;P0C2J3;Q12472;Q12501;P0C2J2 
6 Hxt7,P39004;Hxt10,P43581;Hxt12,P40441;Hxt13,P39924;Hxt17,P53631;Gal2,P13181 
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Supplementary Table 5. SILAC-based proteome data for the comparison of the asc1DE strain 

and the ASC1 wild-type strain. 

The table lists the two proteins with a median asc1DE/ASC1 log2 SILAC-ratio ≥ 0.58 and a p-value 

< 0.01 (no protein with a median asc1DE/ASC1 log2 SILAC-ratio ≤ -0.58 was identified). Proteins 

with this SILAC-ratio > 0.26 or < -0.26 are not shown). The replicates are numbered 9-13 according to 

Figure 21. (Ø = median of protein SILAC-ratios; SD = standard deviation; gray/NaN = not a number) 

proteins 
protein 
IDs 

asc1DE/ASC1 

 
 

9 10 11 12 13 Ø SD 

Ty1a1 P0CX731 0.72 0.63 NaN NaN 0.73 0.72 0.05 

Nup57 P48837 0.35 NaN 0.60 0.58 0.58 0.58 0.12 

*Ty1a-Pl;Ty1a-Lr2;Ty1a-Er1;Ty1a-Dr6;Ty1a-Pr3;Ty1a-Gr1;Ty1a-Ml2;Ty1a-Lr3;Ty1a-Jr1; 

Ty1a-Lr4;Ty1a-Gr2;Ty1a-Ol 

P0CX73;P0CX72;P0CX71;P0CX70;Q6Q5H1;Q12085;P0CX76;P0CX75;P0CX74;P0C2I8;Q12485; 
Q92392;Q12391 

 
 
Supplementary Table 6. SILAC-based proteome data for the comparison of the asc1T143A strain 

and the ASC1 wild-type strain. 

The table lists the protein that fulfilled the criteria of the two-sample t-test (see Supplementary Table 

2) and had a A-Aux log2 SILAC-ratio > 0.26. The replicates are numbered 1-3 and 4, 8, and 12 

according to Figure 21. (Ø = mean of protein SILAC-ratios for A and Aux; A = asc1T143A/ASC1; 

Aux = ASC1Aux/ASC1; A-Aux = Ø of A minus Ø of Aux; SD = standard deviation; gray/NaN = not a 

number) 

protein 
protein 
ID 

asc1T143A/ASC1 ASC1Aux/ASC1 A Aux A - 
Aux 1 2 3 4 8 12 Ø SD Ø SD 

Cox20 Q04935 NaN 0.19 0.22 NaN -0.15 -0.15 0.20 0.02 -0.15 0.00 0.35 

 
 
Supplementary Table 7. SILAC-based proteome data for the comparison of the asc1T143E strain 

and the ASC1 wild-type strain. 

The table lists the proteins that fulfilled the criteria of the two-sample t-test (see Supplementary Table 

2) and had a E-Aux log2 SILAC-ratio < -0.26 or > 0.26. The replicates are numbered 5-6 and 4, 8, and 

12 according to Figure 21. (Ø = mean of protein SILAC-ratios for E and Aux; E = asc1T143E/ASC1; 

Aux = ASC1Aux/ASC1; E-Aux = Ø of E minus Ø of Aux; SD = standard deviation; gray/NaN = not a 

number) 

proteins 
protein 
IDs 

asc1T143E/ASC1 ASC1Aux/ASC1 E Aux E - 
Aux 5 6 7 4 8 12 Ø SD Ø SD 

Rcl1 Q08096 NaN 0.07 0.04 -0.26 NaN -0.29 0.06 0.02 -0.28 0.02 0.34 

Aha1 Q12449 0.11 0.09 0.10 -0.18 -0.20 -0.11 0.10 0.01 -0.17 0.05 0.26 

Efg1 Q3E705 -0.02 -0.02 NaN 0.24 0.32 0.24 -0.02 0.00 0.27 0.05 -0.29 

Rvb2 Q12464 -0.17 -0.12 -0.14 0.18 0.10 0.18 -0.15 0.02 0.15 0.05 -0.30 
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Supplementary Table 8. SILAC-based proteome data asc1T143EDE versus ASC1 wild-type.  

The table lists the proteins that fulfilled the criteria of the two-sample t-test (see Supplementary 

Table 2) and had a mean EDE-Aux log2 SILAC-ratio ≤ -0.58 or ≥ 0.58. Proteins with this SILAC-ratio 

< -0.26 or > 0.26 are not shown. The replicates are numbered 9-11 and 4, 8, and 12 according to 

Figure 21. (Ø = mean of protein SILAC-ratios for EDE and Aux; EDE = asc1T143EDE/ASC1; Aux = 

ASC1Aux/ASC1; EDE-Aux = Ø of EDE minus Ø of Aux; SD = standard deviation; gray/NaN = not a 

number) 

proteins  
protein 
IDs  

asc1T143EDE/ASC1 ASC1Aux/ASC1 EDE Aux EDE 
-Aux 9 10 11 4 8 12 Ø SD Ø SD 

Nce103 P53615 0.57 0.85 0.81 -0.46 -0.43 -0.13 0.74 0.15 -0.34 0.18 1.08 

Ty1b1 Q036121 0.82 1.14 1.12 -0.11 0.13 -0.15 1.03 0.18 -0.05 0.15 1.07 

Yhb1 P39676 0.88 0.73 0.68 -0.05 -0.29 -0.35 0.76 0.10 -0.23 0.16 0.99 

Hbn1 Q96VH4 0.65 0.64 0.35 -0.16 -0.39 -0.55 0.55 0.17 -0.37 0.19 0.91 

Hsp82 P02829 0.84 0.98 0.85 0.10 -0.13 0.12 0.89 0.08 0.03 0.14 0.86 

Aap1 P37898 0.62 0.68 0.62 -0.02 -0.07 -0.13 0.64 0.03 -0.07 0.06 0.71 

Ygl039w P53183 0.50 0.18 0.58 -0.30 -0.16 -0.28 0.42 0.21 -0.25 0.07 0.67 

Car1 P00812 0.53 0.73 0.68 0.07 0.06 -0.14 0.65 0.10 0.00 0.12 0.65 

Ych1 P42937 0.44 0.35 0.43 -0.43 -0.19 -0.01 0.41 0.05 -0.21 0.21 0.62 

Gly1 P37303 0.49 0.62 0.74 0.02 0.16 -0.12 0.62 0.12 0.02 0.14 0.60 

Cpa2 P03965 0.49 0.57 0.58 -0.10 0.06 -0.10 0.55 0.05 -0.05 0.09 0.59 

Sui1 P32911 0.62 0.66 0.67 0.03 0.18 -0.04 0.65 0.03 0.06 0.11 0.59 

Arg1 P22768 0.92 0.83 0.97 0.26 0.47 0.23 0.91 0.07 0.32 0.13 0.59 

Scw10 Q04951 -1.00 -0.77 -0.95 -0.34 -0.30 0.05 -0.91 0.12 -0.20 0.21 -0.71 

Gsc2 P40989 -0.74 -0.83 -0.91 -0.07 -0.26 0.10 -0.83 0.08 -0.08 0.18 -0.75 

Mnn1 P39106 -0.80 -0.62 -0.73 0.14 -0.01 0.12 -0.72 0.09 0.08 0.08 -0.80 

Ura4 P20051 -0.80 -0.87 -0.86 0.02 -0.02 -0.04 -0.84 0.04 -0.01 0.03 -0.83 

Ura1 P28272 -0.80 -0.90 -0.94 0.18 -0.04 0.16 -0.88 0.07 0.10 0.12 -0.98 

Rib4 P50861 -1.04 -1.12 -1.03 0.10 0.04 -0.04 -1.07 0.04 0.03 0.07 -1.10 

Arp7 Q12406 -1.65 -1.45 NaN 0.17 0.15 -0.06 -1.55 0.14 0.09 0.13 -1.64 

1Ty1b-Er1;Ty1b-Ml2;Ty1b-Ol;Ty1b-Jr1;Ty1b-A 
Q03612;Q03434;Q12273;P47098;O13527  
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Supplementary Table 9. SILAC-based phospho-proteome data for the comparison of the asc1- 

strain and the ASC1 wild-type strain. 

The table lists the proteins with a proteome-corrected phospho-peptide log2 asc1-/ASC1 SILAC-ratio 

(diff. phos-prot) > 0.26 or < -0.26 and a p-value < 0.01 in the two-sample t-test (Supplementary 

Table 2). The replicates are numbered 1-8, and 13 according to Figure 21. (Ø = median; SD = standard 

deviation; difference (diff.) phos-prot = Ø phospho-peptide (phos) minus Ø protein ratio (prot); 

positon = phosphorylated amino acid residue, printed in italic = site was previously unknown; loc. 

prob. = localization probability; gray/NaN = not a number; multiplicity = number of phospho-sites per 

peptide)  

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 

p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Tpi1  P00942 
                  

1.19 0.20 -0.28 0.04 1.47 S 215 1 1.00 

 Csr1  Q06705 
                  

1.31 0.22 -0.14 0.17 1.45 S 2 1 1.00 

 Pre8  P23639 
                  

1.44 0.17 0.28 0.04 1.16 S 15 1 1.00 

 Rpn7  Q06103 
                  

1.27 0.20 0.15 0.05 1.11 S 196 1 1.00 

 Isc1  P40015 
                  

0.33 0.01 -0.63 0.01 0.95 T 361 1 1.00 

 Rpl12a; 

 Rpl12b 

 P0CX53; 

 P0CX54                   
0.74 0.34 -0.19 0.05 0.93 S 38 1 1.00 

 Ste20  Q03497 
                  

0.56 0.47 -0.34 0.33 0.90 T 572 1 0.61 

 Pin4  P34217 
                  

0.69 0.25 -0.17 0.15 0.87 S 194 1 1.00 

 Ste20  Q03497 
                  

0.48 0.17 -0.34 0.33 0.82 S 169 1 1.00 

 Imh1  Q06704 
                  

0.41 0.18 -0.40 0.18 0.81 T 304 1 0.65 

 Acm1  Q08981 
                  

0.60 0.17 -0.20 0.08 0.80 S 48 1 1.00 

 Imh1  Q06704 
                  

0.32 0.08 -0.40 0.18 0.72 S 308 1 0.98 

 Smi1  P32566 
                  

0.49 0.53 -0.22 0.12 0.72 S 389 1 0.92 

 Iml2  P47031 
                  

0.39 0.26 -0.31 0.18 0.70 S 7 1 1.00 

 Kri1  P42846 
                  

0.68 0.01 0.00 0.21 0.68 Y 482 1 0.63 

 Rlp7  P40693 
                  

0.73 0.23 0.06 0.12 0.67 T 120 1 1.00 

 Rpn1  P38764 
                  

0.83 0.18 0.16 0.04 0.67 S 19 1 1.00 

 Tif1  P10081 
                  

0.68 0.24 0.01 0.03 0.67 S 2 1 1.00 

 Acc1  Q00955 
                  

0.11 0.22 -0.55 0.09 0.66 S 9 1 0.87 

 Fyv8  P46949 
                  

0.68 0.01 0.03 0.11 0.65 S 441 1 0.99 

 Rpo21  P04050 
                  

0.42 0.09 -0.22 0.08 0.64 T 1471 1 0.93 

 Imh1  Q06704 
                  

0.24 0.14 -0.40 0.18 0.64 S 827 1 0.52 

 Ste20  Q03497 
                  

0.30 0.20 -0.34 0.33 0.63 S 502 1 1.00 

 Myo3  P36006 
                  

0.86 0.12 0.24 0.46 0.62 S 357 1 1.00 

 Pda1  P16387 
                  

0.51 0.28 -0.11 0.05 0.62 S 313 1 1.00 

 Pdr16  P53860 
                  

0.50 0.14 -0.11 0.12 0.61 S 349 2 0.69 

 Pdr16  P53860 
                  

0.50 0.18 -0.11 0.12 0.61 S 346 2 0.97 

 Leu1  P07264 
                  

0.77 0.24 0.21 0.05 0.56 T 494 2 0.76 

 Sec3  P33332 
                  

0.35 0.20 -0.22 0.11 0.56 S 256 1 1.00 

 Yak1  P14680 
                  

0.29 0.40 -0.26 0.09 0.55 T 288 1 1.00 

 Pdr16  P53860 
                  

0.43 0.13 -0.11 0.12 0.55 S 346 1 0.97 

 Hrb1  P38922 
                  

0.37 0.07 -0.18 0.19 0.54 S 338 1 0.89 

 Crp1  P38845 
                  

0.76 0.24 0.23 0.13 0.53 S 440 1 0.96 

 Hrb1  P38922 
                  

0.33 0.26 -0.18 0.19 0.50 S 343 1 0.62 

 Yef3  P16521 
                  

0.52 0.28 0.02 0.04 0.50 S 642 1 0.91 

 Rcn2  Q12044 
                  

1.42 0.11 0.92 0.08 0.50 S 104 1 0.76 

 Kri1  P42846 
                  

0.49 0.09 0.00 0.21 0.49 S 486 1 1.00 

 Rcn2  Q12044 
                  

1.41 0.15 0.92 0.08 0.48 S 160 1 0.99 

 Cmd1  P06787 
                  

0.83 0.46 0.35 0.08 0.48 S 82 1 1.00 
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Supplementary Table 9. Continued 1. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Gea2  P39993 
                  

0.07 0.22 -0.41 0.14 0.48 S 284 1 1.00 

 Pho13  P19881 
                  

0.78 0.25 0.31 0.11 0.47 T 198 1 0.93 

 Rcn2  Q12044 
                  

1.39 0.30 0.92 0.08 0.47 T 105 1 0.89 

 Akr1  P39010 
                  

0.42 0.21 -0.04 0.16 0.46 S 51 1 1.00 

 Bcp1  Q06338 
                  

0.76 0.22 0.30 0.10 0.46 T 205 1 1.00 

 Sla2  P33338 
                  

0.76 0.33 0.30 0.05 0.46 T 294 2 0.87 

 Rcn2  Q12044 
                  

1.38 0.14 0.92 0.08 0.46 S 102 1 0.80 

 Erb1  Q04660 
                  

0.55 0.32 0.09 0.06 0.46 S 418 1 1.00 

 Pho13  P19881 
                  

0.76 0.23 0.31 0.11 0.45 S 197 1 0.94 

 Rps0a; 

 Rps0b 

 P32905; 

 P46654                   
0.32 0.23 -0.13 0.10 0.45 T 6;6 1 0.60 

 Rpg1  P38249 
                  

0.59 0.13 0.14 0.04 0.44 S 508 1 1.00 

 Nop12  Q08208 
                  

0.49 0.24 0.05 0.13 0.44 S 70 1 0.97 

 Gly1  P37303 
                  

1.27 0.30 0.85 0.09 0.42 S 367 1 0.79 

 Gly1  P37303 
                  

1.27 0.21 0.85 0.09 0.42 S 369 1 1.00 

 Spa2  P23201 
                  

0.42 0.24 0.01 0.12 0.42 S 1080 1 1.00 

 Sec3  P33332 
                  

0.19 0.12 -0.22 0.11 0.41 S 254 1 0.95 

 Ski2  P35207 
                  

0.87 0.09 0.46 0.13 0.41 S 2 1 1.00 

 Tif5  P38431 
                  

0.45 0.12 0.05 0.12 0.40 S 184 1 0.70 

 Leo1  P38439 
                  

0.33 0.15 -0.08 0.12 0.40 S 132 1 1.00 

 Shm2  P37291 
                  

0.93 0.17 0.54 0.10 0.39 S 26 1 1.00 

 Guk1  P15454 
                  

0.12 0.34 -0.28 0.05 0.39 S 149 1 1.00 

 Met6  P05694 
                  

0.25 0.25 -0.14 0.06 0.39 S 675 1 1.00 

 Crp1  P38845 
                  

0.62 0.07 0.23 0.13 0.38 S 153 1 0.66 

 Gcd6  P32501 
                  

0.38 0.12 0.00 0.16 0.38 S 538 1 1.00 

 Mkt1  P40850 
                  

0.37 0.18 -0.01 0.08 0.38 S 362 1 0.97 

 Tif35  Q04067 
                  

0.52 0.33 0.14 0.08 0.38 S 2 1 1.00 

 Rpl13a; 

 Rpl13b 

 Q12690; 

 P40212                   
0.26 0.32 -0.12 0.06 0.38 T 15 1 1.00 

 Ent2  Q05785 
                  

0.63 0.15 0.25 0.28 0.37 S 167 1 1.00 

 Leu1  P07264 
                  

0.58 0.15 0.21 0.05 0.37 S 488 2 1.00 

 Sup35  P05453 
                  

0.61 0.10 0.24 0.07 0.36 T 570 1 0.89 

 Not3  P06102 
                  

0.27 0.19 -0.09 0.14 0.36 S 322 1 0.79 

 Srp14  P38985 
                  

0.38 0.06 0.02 0.12 0.36 S 8 1 1.00 

 Vps13  Q07878 
                  

0.45 0.28 0.10 0.10 0.35 S 1731 1 0.99 

 Shp1  P34223 
                  

0.36 0.35 0.01 0.15 0.35 S 322 1 0.92 

 Kap123  P40069 
                  

0.25 0.04 -0.11 0.02 0.35 S 646 1 1.00 

 Sub2  Q07478 
                  

0.11 0.24 -0.24 0.06 0.35 S 2 2 1.00 

 Spa2  P23201 
                  

0.35 0.42 0.01 0.12 0.35 S 961 1 1.00 

 Apl5  Q08951 
                  

0.20 0.12 -0.15 0.16 0.35 S 888 1 1.00 

 Rfa2  P26754 
                  

0.43 0.17 0.08 0.15 0.35 S 122 1 1.00 

 Mak5  P38112 
                  

0.28 0.20 -0.07 0.14 0.35 S 678 1 1.00 

 Pdr5  P33302 
                  

0.31 0.13 -0.04 0.23 0.35 S 840 1 0.87 

 Ser1  P33330 
                  

0.86 0.26 0.52 0.09 0.35 T 20 1 1.00 

 Smc4  Q12267 
                  

0.24 0.19 -0.10 0.13 0.34 S 128 1 1.00 

 Kin28  P06242 
                  

0.27 0.19 -0.06 0.19 0.33 T 162 1 0.98 

 Acc1  Q00955 
                  

-0.22 0.14 -0.55 0.09 0.33 S 10 1 1.00 
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Supplementary Table 9. Continued 2. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Ssz1  P38788 
                  

0.50 0.21 0.17 0.04 0.32 S 480 1 1.00 

 Ils1  P09436 
                  

0.37 0.14 0.05 0.04 0.32 S 4 1 0.93 

 Prt1  P06103 
                  

0.42 0.19 0.10 0.03 0.32 S 61 1 1.00 

 Cdc37  P06101 
                  

0.50 0.21 0.18 0.12 0.32 S 17 2 1.00 

 Cdc37  P06101 
                  

0.50 0.21 0.18 0.12 0.32 S 14 2 1.00 

 Sec16  P48415 
                  

0.28 0.13 -0.03 0.11 0.31 T 808 1 0.77 

 Leu1  P07264 
                  

0.52 0.25 0.21 0.05 0.31 S 495 2 1.00 

 Pdc1  P06169 
                  

0.13 0.31 -0.17 0.02 0.30 S 196 1 0.90 

 Nop12  Q08208 
                  

0.35 0.09 0.05 0.13 0.30 S 184 1 1.00 

 Vps13  Q07878 
                  

0.40 0.14 0.10 0.10 0.30 S 1715 1 1.00 

 Rpn1  P38764 
                  

0.46 0.13 0.16 0.04 0.30 S 647 1 0.81 

 Tan1  P53072 
                  

0.52 0.19 0.22 0.21 0.30 S 72 1 1.00 

 Myo3; 

 Myo5 

 P36006; 

 Q04439                   
0.27 0.10 -0.03 0.26 0.30 S 777 1 1.00 

 Isw1  P38144 
                  

0.26 0.08 -0.04 0.14 0.29 S 175 1 0.99 

 Sec16  P48415 
                  

0.26 0.17 -0.03 0.11 0.29 S 607 1 1.00 

 Sup35  P05453 
                  

0.53 0.20 0.24 0.07 0.29 S 571 1 0.92 

 Spn1  Q06505 
                  

0.02 0.13 -0.27 0.13 0.28 S 89 1 1.00 

 Sec7  P11075 
                  

0.12 0.02 -0.16 0.09 0.28 Y 1221 1 0.78 

 Sub2  Q07478 
                  

0.04 0.24 -0.24 0.06 0.28 S 13 2 1.00 

 Nop12  Q08208 
                  

0.32 0.18 0.05 0.13 0.28 T 181 1 0.95 

 Vtc2  P43585 
                  

0.57 0.14 0.30 0.19 0.27 S 657 1 1.00 

 Rps0a; 

 Rps0b 

 P32905; 

 P46654                   
0.13 0.14 -0.13 0.10 0.27 S 2;2 1 0.99 

 Ser33  P40510 
                  

-0.37 0.29 -0.10 0.12 -0.27 S 29 2 0.96 

 Met5  P47169 
                  

-0.34 0.27 -0.06 0.04 -0.28 S 903 1 1.00 

 Gpd2  P41911 
                  

-0.40 0.20 -0.12 0.13 -0.28 S 75 1 1.00 

 Ser33  P40510 
                  

-0.39 0.12 -0.10 0.12 -0.29 T 31 2 0.97 

 Get2  P40056 
                  

0.01 0.16 0.31 0.14 -0.30 T 55 1 0.64 

 Ser33  P40510 
                  

-0.39 0.26 -0.10 0.12 -0.30 S 22 2 0.99 

 Rpn13  O13563 
                  

-0.02 0.13 0.28 0.11 -0.30 S 135 1 1.00 

 Gpm1  P00950 
                  

-0.63 0.29 -0.33 0.04 -0.31 S 127 1 0.76 

 Vps13  Q07878 
                  

-0.21 0.13 0.10 0.10 -0.31 S 1362 1 0.90 

 Qri1  P43123 
                  

0.04 0.17 0.36 0.11 -0.32 S 218 1 1.00 

 Tdh1; 

 Tdh2; 

 Tdh3 

 P00360; 

 P00358; 

 P00359 
                  

-0.26 0.09 0.06 0.29 -0.32 T 209 1 0.82 

 Chd1  P32657 
                  

-0.43 0.28 -0.10 0.18 -0.32 S 1336 1 0.85 

 Spa2  P23201 
                  

-0.32 0.17 0.01 0.12 -0.33 S 254 1 1.00 

 Fen1  P25358 
                  

-0.34 0.17 -0.01 0.08 -0.33 S 338 1 1.00 

 Gea2  P39993 
                  

-0.74 0.17 -0.41 0.14 -0.33 S 315 1 0.97 

 Hxt1; 

 Hxt3; 

 Hxt9; 

 Hxt11 

 P32465; 

 P32466; 

 P40885; 

 P54862 

                  
-0.81 0.17 -0.46 0.10 -0.35 S 3 1 0.99 

 Thr4  P16120 
                  

-0.14 0.27 0.21 0.02 -0.35 S 411 2 0.81 

 Thr4  P16120 
                  

-0.14 0.27 0.21 0.02 -0.35 S 410 2 0.81 

 Bcy1  P07278 
                  

-0.31 0.30 0.04 0.10 -0.35 S 145 1 0.92 
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Supplementary Table 9. Continued 3. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Fen1  P25358 
                  

-0.37 0.20 -0.01 0.08 -0.36 T 334 1 1.00 

 Sfk1  P35735 
                  

0.00 0.25 0.36 0.13 -0.36 T 124 1 0.94 

 Prt1  P06103 
                  

-0.26 0.07 0.10 0.03 -0.37 S 187 1 0.68 

 Eno1; 

 Eno2 

 P00924; 

 P00925                   
-0.09 0.16 0.28 0.11 -0.37 S 10 1 1.00 

 Vtc2  P43585 
                  

-0.08 0.06 0.30 0.19 -0.38 S 193 2 0.85 

 Met6  P05694 
                  

-0.52 0.16 -0.14 0.06 -0.38 S 446 1 0.99 

 Aro4  P32449 
                  

-0.24 0.23 0.15 0.11 -0.39 S 4 1 0.98 

 Ett1  Q08421 
                  

-0.38 0.26 0.02 0.18 -0.40 S 41 1 0.98 

 Ypr091c  Q06833 
                  

-0.89 0.14 -0.49 0.24 -0.40 S 669 1 1.00 

 Ser33  P40510 
                  

-0.50 0.24 -0.10 0.12 -0.40 S 2 1 1.00 

 Psk1  P31374 
                  

-0.48 0.23 -0.07 0.14 -0.41 S 1020 1 0.99 

 Vas1  P07806 
                  

-0.38 0.40 0.03 0.02 -0.41 S 294 1 1.00 

 Spc110  P32380 
                  

-0.36 0.14 0.05 0.20 -0.41 S 80 1 1.00 

 Gpd2  P41911 
                  

-0.55 0.01 -0.12 0.13 -0.43 S 72 2 1.00 

 Hom3  P10869 
                  

-0.27 0.34 0.16 0.07 -0.43 T 333 1 0.99 

 Aro8  P53090 
                  

0.24 0.54 0.67 0.04 -0.43 S 14 1 0.53 

 Sui3  P09064 
                  

-0.27 0.13 0.17 0.12 -0.44 T 116 2 1.00 

 Sec31  P38968 
                  

-0.40 0.27 0.04 0.07 -0.44 S 999 1 1.00 

 Reb1  P21538 
                  

-0.49 0.26 -0.04 0.26 -0.45 S 355 1 0.81 

 Ncl1  P38205 
                  

-0.69 0.70 -0.22 0.06 -0.47 S 424 1 0.98 

 Pkh3  Q03306 
                  

-0.41 0.09 0.06 0.05 -0.47 S 684 1 0.81 

 Vtc2  P43585 
                  

-0.19 0.07 0.30 0.19 -0.49 S 196 2 1.00 

 Pbp1  P53297 
                  

-0.49 0.23 0.00 0.13 -0.49 S 106 1 0.99 

 Rpl7a; 

 Rpl7b 

 P05737; 

 Q12213                    
-0.56 0.25 -0.07 0.03 -0.49 T 8;8 1 1.00 

 Cys3  P31373 
                  

0.11 0.32 0.61 0.06 -0.50 S 40 1 0.97 

 Ty1b1  P0C2I71 
                  

0.61 0.24 1.11 0.21 -0.50 T 5831 1 0.56 

 Mlp1  Q02455 
                  

-0.69 0.22 -0.18 0.18 -0.51 T 337 1 1.00 

 Vip1  Q06685 
                  

-0.28 0.18 0.23 0.21 -0.51 S 31 1 0.98 

 Hom6  P31116 
                  

-0.35 0.21 0.17 0.02 -0.52 S 240 1 0.74 

 Sui3  P09064 
                  

-0.35 0.47 0.17 0.12 -0.52 S 112 2 0.96 

 Gpd2  P41911 
                  

-0.65 0.25 -0.12 0.13 -0.53 S 75 2 1.00 

 Esc1  Q03661 
                  

-0.66 0.33 -0.13 0.12 -0.53 S 532 1 1.00 

 Rps1a; 

 Rps1b  

 P33442; 

 P23248                    
-0.49 0.26 0.04 0.06 -0.53 S 236 1 1.00 

 Rpl7a; 

 Rpl7b 

 P05737; 

 Q12213                   
-0.61 0.05 -0.07 0.03 -0.54 T 8;8 2 1.00 

 Rpl7a; 

 Rpl7b 

 P05737; 

 Q12213                   
-0.61 0.05 -0.07 0.03 -0.54 S 11 2 1.00 

 Pdr1  P12383 
                  

-0.71 0.33 -0.17 0.08 -0.54 S 942 1 0.81 

 Cdc3  P32457 
                  

-0.31 0.40 0.24 0.08 -0.54 S 77 1 0.93 

 Ncl1  P38205 
                  

-0.77 0.21 -0.22 0.06 -0.55 S 423 1 0.90 

 Cho1  P08456 
                  

-0.41 0.14 0.14 0.18 -0.55 S 50 2 0.95 

 Cho1  P08456 
                  

-0.41 0.21 0.14 0.18 -0.55 S 47 2 1.00 

 Cho1  P08456 
                  

-0.41 0.22 0.14 0.18 -0.55 S 46 2 1.00 

 Pbp1  P53297 
                  

-0.56 0.12 0.00 0.13 -0.55 S 104 1 0.99 
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Supplementary Table 9. Continued 4. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Pfy1  P07274 
                  

-0.56 0.22 0.00 0.09 -0.56 S 2 1 1.00 

 Ent2  Q05785 
                  

-0.31 0.13 0.25 0.28 -0.56 S 173 1 0.88 

 Zeo1  Q08245 
                  

-0.73 0.36 -0.16 0.09 -0.56 T 49 1 1.00 

 Apa1  P16550 
                  

-0.53 0.19 0.03 0.07 -0.56 T 60 1 1.00 

 Gpm1  P00950 
                  

-0.90 0.34 -0.33 0.04 -0.57 S 128 1 0.80 

 Acc1  Q00955 
                  

-1.14 0.27 -0.55 0.09 -0.59 S 1157 1 1.00 

 Hom3  P10869 
                  

-0.44 0.21 0.16 0.07 -0.59 S 332 1 0.94 

 Tsa1  P34760 
                  

-1.23 0.03 -0.64 0.04 -0.60 T 174 1 1.00 

 Sod1  P00445 
                  

-0.81 0.15 -0.19 0.09 -0.62 S 39 1 1.00 

 Ura2  P07259 
                  

-1.20 0.28 -0.57 0.06 -0.62 T 1859 1 0.77 

 Pup2  P32379 
                  

-0.34 0.20 0.31 0.04 -0.65 S 56 1 0.89 

 Prr1  P28708 
                  

-0.51 0.22 0.14 0.18 -0.65 S 132 1 1.00 

 Rps19a; 

 Rps19b 

 P07280; 

 P07281                   
-0.71 0.36 -0.06 0.05 -0.65 S 117 1 1.00 

 Ssd1  P24276 
                  

-0.71 0.12 -0.06 0.14 -0.65 S 231 1 0.96 

 Trm2  P33753 
                  

-0.62 0.17 0.04 0.13 -0.66 S 98 1 0.95 

 Rad16  P31244 
                  

-0.67 0.22 -0.01 0.23 -0.66 S 25 1 1.00 

 Sec21  P32074 
                  

-0.82 0.27 -0.15 0.07 -0.67 T 638 1 1.00 

 Trm2  P33753 
                  

-0.63 0.11 0.04 0.13 -0.68 S 92 1 0.95 

 Rsc2  Q06488 
                  

-1.02 0.25 -0.34 0.22 -0.68 S 682 1 1.00 

 Abp1  P15891 
                  

0.08 0.52 0.78 0.16 -0.70 S 167 1 0.94 

 Ent3  P47160 
                  

-0.43 0.34 0.27 0.13 -0.70 S 2 1 1.00 

 Rad16  P31244 
                  

-0.74 0.47 -0.01 0.23 -0.73 S 78 1 0.99 

 Vps1  P21576 
                  

-0.48 0.20 0.26 0.07 -0.73 S 599 1 1.00 

 Rps7b  P48164 
                  

-0.47 0.41 0.27 0.05 -0.74 S 31 1 0.87 

 Trm2  P33753 
                  

-0.69 0.02 0.04 0.13 -0.74 T 96 1 0.87 

 Trm2  P33753 
                  

-0.70 0.29 0.04 0.13 -0.74 S 93 1 0.97 

 Gpd2  P41911 
                  

-0.89 0.19 -0.12 0.13 -0.77 S 70 2 0.97 

 Orm2  Q06144 
                  

-0.37 0.18 0.41 0.14 -0.77 S 9 1 1.00 

 Pup2  P32379 
                  

-0.47 0.19 0.31 0.04 -0.78 T 55 1 0.96 

 Cdc60  P26637 
                  

-0.45 0.34 0.33 0.05 -0.78 T 142 1 1.00 

 Rps7b  P48164 
                  

-0.52 0.20 0.27 0.05 -0.78 S 30 1 0.90 

 Rad9  P14737 
                  

-0.37 0.00 0.42 0.07 -0.79 S 494 1 0.81 

 Sui3  P09064 
                  

-0.63 0.30 0.17 0.12 -0.80 T 116 1 1.00 

 Sum1  P46676 
                  

-0.68 0.00 0.12 0.17 -0.80 S 736 1 0.71 

 Sui3  P09064 
                  

-0.63 0.10 0.17 0.12 -0.80 S 118 1 0.69 

 Yhr020w  P38708 
                  

-0.73 0.16 0.09 0.06 -0.82 T 38 1 0.50 

 Yhr020w  P38708 
                  

-0.73 0.16 0.09 0.06 -0.82 S 36 1 0.50 

 Zeo1  Q08245 
                  

-0.99 0.41 -0.16 0.09 -0.83 T 49 2 1.00 

 Zeo1  Q08245 
                  

-0.99 0.41 -0.16 0.09 -0.83 S 40 2 1.00 

 Gcs1  P35197 
                  

-0.55 0.32 0.29 0.09 -0.85 S 157 1 0.81 

 Ura2  P07259 
                  

-1.43 0.18 -0.57 0.06 -0.86 S 1857 1 0.98 

 Ty1b2  P0C2I72 
                  

0.25 0.22 1.11 0.21 -0.86 S 4452 1 0.67 

 Def1  P35732 
                  

-0.96 0.49 0.00 0.19 -0.95 T 258 1 0.90 

 Tdh1; 

 Tdh2; 

 Tdh3 

 P00360; 

 P00358; 

 P00359  
                  

-0.94 0.21 0.06 0.29 -1.01 S 201 1 1.00 

 Gvp36  P40531 
                  

-1.06 0.48 -0.04 0.07 -1.03 S 2 1 1.00 
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Supplementary Table 9. Continued 5. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Abp1  P15891 
                  

-0.25 0.26 0.78 0.16 -1.03 S 169 1 1.00 

 Hsp42  Q12329 
                  

-0.37 0.19 0.69 0.35 -1.06 S 223 1 0.99 

 Def1  P35732 
                  

-1.08 0.10 0.00 0.19 -1.08 S 260 1 1.00 

 Tif4632  P39936 
                  

-0.97 0.27 0.21 0.12 -1.18 T 196 1 1.00 

 Bre5  P53741 
                  

-1.34 0.45 -0.14 0.24 -1.20 S 282 1 1.00 

 Grx2  P17695 
                  

-1.05 0.45 0.25 0.31 -1.30 S 94 1 0.94 

 Ctr9  P89105 
                  

-1.15 0.11 0.16 0.07 -1.31 S 1017 1 1.00 

 Puf3  Q07807 
                  

-1.03 0.20 0.31 0.11 -1.34 S 86 1 1.00 

 Ugp1  P32861 
                  

-1.26 0.63 0.16 0.15 -1.42 Y 13 1 0.55 

 Grx2  P17695 
                  

-1.17 0.43 0.25 0.31 -1.42 S 91 1 1.00 

 Cdc28  P00546 
                  

-0.76 0.59 0.70 0.14 -1.46 Y 19 1 0.98 

 Abp1  P15891 
                  

-0.76 0.54 0.78 0.16 -1.53 T 181 2 1.00 

 Abp1  P15891 
                  

-0.76 0.54 0.78 0.16 -1.53 S 183 2 1.00 

 Egd1  Q02642 
                  

-3.48 0.07 -0.12 0.12 -3.36 T 151 1 1.00 

 phospho-peptides with no proteome value 

 Edc1  P53080 
                  

2.15 0.11 NaN NaN NaN S 82 1 0.99 

 Rcn1  P36054 
                  

0.91 0.21 NaN NaN NaN S 117 2 1.00 

 Rcn1  P36054 
                  

0.91 0.21 NaN NaN NaN S 113 2 1.00 

 Nte1  Q04958 
                  

0.83 0.10 NaN NaN NaN S 634 1 0.99 

 Ty2a3  Q993033 
                  

0.81 0.48 NaN NaN NaN S 424 1 0.99 

 Aim3  P38266 
                  

0.79 0.21 NaN NaN NaN S 843 1 0.93 

 Nnk1  P36003 
                  

0.70 0.30 NaN NaN NaN Y 739 1 1.00 

 Pgm3  Q03262 
                  

0.69 0.25 NaN NaN NaN T 156 1 0.66 

 Dig2  Q03373 
                  

0.64 0.27 NaN NaN NaN T 83 1 0.76 

 Pgm3  Q03262 
                  

0.64 0.27 NaN NaN NaN S 158 1 0.97 

 Rrp36  Q12481 
                  

0.63 0.34 NaN NaN NaN S 14 1 1.00 

 Dig2  Q03373 
                  

0.62 0.19 NaN NaN NaN T 82 1 0.94 

 Stb1  P42845 
                  

0.60 0.36 NaN NaN NaN T 99 1 1.00 

 Stb1  P42845 
                  

0.58 0.36 NaN NaN NaN S 72 1 1.00 

 Ppq1  P32945 
                  

0.58 0.20 NaN NaN NaN S 208 1 0.89 

 Ysc84  P32793 
                  

0.58 0.01 NaN NaN NaN S 301 1 1.00 

 Gde1  Q02979 
                  

0.56 0.09 NaN NaN NaN S 254 1 0.94 

 Air2  Q12476 
                  

0.52 0.17 NaN NaN NaN S 49 1 1.00 

 Dcn1  Q12395 
                  

0.52 0.08 NaN NaN NaN S 12 1 1.00 

 Rcn1  P36054 
                  

0.47 0.13 NaN NaN NaN S 117 1 1.00 

 She3  P38272 
                  

0.46 0.19 NaN NaN NaN S 361 1 1.00 

 Air2  Q12476 
                  

0.43 0.13 NaN NaN NaN T 16 1 0.99 

 Bud21  Q08492 
                  

0.43 0.14 NaN NaN NaN S 144 1 1.00 

 Pol1  P13382 
                  

0.42 0.23 NaN NaN NaN S 170 1 0.95 

 Kha1  P40309 
                  

0.40 0.12 NaN NaN NaN S 557 1 1.00 

 Pik1  P39104 
                  

0.38 0.15 NaN NaN NaN S 236 1 0.96 

 Fip1  P45976 
                  

0.37 0.22 NaN NaN NaN S 15 1 1.00 

 Ent1  Q12518 
                  

0.36 0.26 NaN NaN NaN S 327 1 0.96 

 She3  P38272 
                  

0.35 0.10 NaN NaN NaN S 394 1 0.73 

 Rho4  Q00246 
                  

0.30 0.29 NaN NaN NaN S 58 1 1.00 

 Sng1  P46950 
                  

0.30 0.12 NaN NaN NaN T 91 1 1.00 

 Vid27  P40157 
                  

0.29 0.16 NaN NaN NaN S 222 1 1.00 
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Supplementary Table 9. Continued 6. 

proteins 
protein 

IDs 

asc1-/ASC1 

phospho-peptides 

asc1-/ASC1 

proteins 

phos- 

peptides 
proteins diff. 

phos-

prot 

position 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 5 6 7 8 13 1 2 3 4 5 6 7 8 13 Ø SD Ø SD 

 Ypi1  P43587 
                  

0.28 0.10 NaN NaN NaN S 131 1 0.73 

 Bbp1  Q12365 
                  

-0.32 0.22 NaN NaN NaN T 7 1 1.00 

 Taf3  Q12297 
                  

-0.32 0.15 NaN NaN NaN S 346 1 0.76 

 Ecm21  P38167 
                  

-0.47 0.13 NaN NaN NaN S 140 1 1.00 

 Ume6  P39001 
                  

-0.50 0.19 NaN NaN NaN S 645 1 1.00 

 Mdv1  P47025 
                  

-0.50 0.23 NaN NaN NaN S 376 1 1.00 

 Yel043w  P32618 
                  

-0.55 0.27 NaN NaN NaN S 802 1 1.00 

 Yap1  P19880 
                  

-0.60 0.32 NaN NaN NaN S 14 1 1.00 

 Bni1  P41832 
                  

-0.62 0.22 NaN NaN NaN S 1889 1 0.99 

 Sch9  P11792 
                  

-0.64 0.12 NaN NaN NaN S 726 1 1.00 

 Ycr023c  P25351 
                  

-0.72 0.16 NaN NaN NaN S 313 1 1.00 

 Par32  Q12515 
                  

-0.75 0.49 NaN NaN NaN S 39 1 1.00 

 Gat1  P43574 
                  

-0.82 0.27 NaN NaN NaN S 262 1 0.98 

 Vid27  P40157 
                  

-0.94 0.30 NaN NaN NaN T 220 2 1.00 

 Vid27  P40157 
                  

-0.94 0.30 NaN NaN NaN S 222 2 1.00 

 Meh1  Q02205 
                  

-0.95 0.31 NaN NaN NaN S 146 1 0.99 

 Vtc3  Q02725 
                  

-0.99 0.28 NaN NaN NaN S 198 1 1.00 

 Rho5  P53879 
                  

-1.03 0.26 NaN NaN NaN S 223 1 1.00 

 Mnr2  P35724 
                  

-1.05 0.17 NaN NaN NaN T 177 1 0.99 

 Nrg2  P38082 
                  

-1.08 0.61 NaN NaN NaN S 100 1 0.77 

 Kns1  P32350 
                  

-1.10 0.51 NaN NaN NaN T 562 1 1.00 

 Mnr2  P35724 
                  

-1.14 0.21 NaN NaN NaN S 152 1 1.00 

 Nrg2  P38082 
                  

-1.64 0.41 NaN NaN NaN T 99 1 0.95 

 Mep2  P41948 
                  

-1.67 0.13 NaN NaN NaN S 460 1 0.73 

 Mep2  P41948 
                  

-1.70 0.21 NaN NaN NaN T 459 1 0.63 

 Tpo1  Q07824 
                  

-1.71 0.51 NaN NaN NaN S 72 1 1.00 

 phospho-peptides with one or two proteome value(s) 

 Dbf2  P22204 
                  

0.51 0.12 0.21  0.30 S 374 1 1.00 

 Kin82  P25341 
                  

0.37 0.10 0.09  0.28 T 499 1 0.76 

 Dbf20  P32328 
                  

-0.12 0.06 0.22  -0.34 S 366 1 1.00 

 Pct1  P13259 
                  

-0.23 0.22 0.15 0.62 -0.38 S 346 1 1.00 

 Fhl1  P39521 
                  

-0.52 0.19 -0.12  -0.40 S 264 1 1.00 

 Ssn2  P38931 
                  

-0.51 0.23 -0.01  -0.50 S 375 1 1.00 

 Fhl1  P39521 
                  

-0.65 0.15 -0.12  -0.53 S 44 1 0.97 

 Glc8  P41818 
                  

-0.21 0.10 0.35  -0.57 S 12 1 1.00 

 Cue4  Q04201 
                  

-0.65 0.41 -0.01  -0.64 S 48 1 1.00 

 Yjl070c  P40361 
                  

-0.48 0.05 0.17  -0.65 S 43 1 1.00 

 Yjl070c  P40361 
                  

-0.50 0.09 0.17  -0.67 S 41 1 0.99 

 Kin2  P13186 
                  

-0.49 0.14 0.38  -0.87 S 549 1 1.00 

1Ty1b-Lr4;Ty1b-Pr1;Ty1b-Gr2;Ty1b-Pr2;Ty1b-Er1;Ty1b-Ml2;Ty1b-Ol;Ty1b-Jr1;Ty1b-A;Ty1b-Ml1;Ty1b-
Pl;Ty1b-Lr2 
P0C2I7;P0C2J0;Q03612;Q03434;Q12273;P47098;O13527; 583; 1142; 1143 
2Ty1b-Lr4;Ty1b-Pr1;Ty1b-Gr2;Ty1b-Pr2;Ty1b-Er1;Ty1b-Ml2;Ty1b-Ol;Ty1b-Jr1;Ty1b-A;Ty1b-Ml1;Ty1b-

Pl;Ty1b-Lr2 

P0C2I7;P0C2J0;Q03612;Q03434;Q12273;P47098;O13527; 445; 1004; 1005 
3Ty2a-Dr3;Ty2a-C;Ty2a-Or1;Ty2a-Lr2;Ty2a-Gr2;Ty2a-F 

Q99303;P25383;Q12439;P0C2J6;P0CX62;P0CX61  
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Supplementary Table 10. SILAC-based phospho-proteome data for the comparison of the 

asc1T143A strain and the ASC1 wild-type strain. 

The table lists the proteins that fulfilled the criteria described in Supplementary Table 3. The replicates 

are numbered 1-3 and 4, 8, and 12 according to Figure 21. (A = asc1T143A/ASC1; Aux = 

ASC1Aux/ASC1; Ø = mean of phospho-peptide (PP) and protein (Prot) log2 SILAC-ratios for A and 

Aux; A Ø PP - Prot = mean of PP ratios minus mean of Prot ratios for A; Aux Ø PP - Prot = mean of 

PP ratios minus mean of Prot ratios for Aux; SD = standard deviation, gray = no value determined, 

position = phosphorylated amino acid residue, multiplicity = number of phosphorylations within the 

identified phospho-peptide; loc. prob. = localization probability  

proteins 
protein 

IDs 

A 
PP 

Aux 
PP 

A 
Prot 

Aux 
Prot 

A 
PP 

Aux 
PP 

A 
Prot 

Aux 
Prot 

1: 
A 
Ø 

PP- 

Prot 

2: 
Aux 
Ø 

PP- 

Prot 

1-2 

p
o
s
it
io

n
 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

1 2 3 4 8 12 1 2 3 4 8 12 
Ø 

SD 

Ø 

SD 

Ø 

SD 

Ø 

SD 

 Nth1  P32356             
0.02 
±0.06 

-0.15 
±0.09 

-0.27 
±0.16 

-0.10 
±0.12 

0.29 -0.05 0.34 S 60 1 1.00 

 Ent3  P47160             
-0.20 
±0.03 

0.14 
±0.09 

-0.07 
±0.06 

-0.03 
±0.08 

-0.12 0.17 -0.30 S 2 1 1.00 

 Met17  P06106             
-0.24 
±0.02 

0.02 
±0.01 

0.03 
±0.05 

-0.02 
±0.05 

-0.27 0.03 -0.30 S 34 1 0.94 

 Rps1a; 
 Rps1b 

 P33442; 
 P23248             

-0.22 
±0.06 

0.20 
±0.10 

-0.05 
±0.01 

-0.01 
±0.06 

-0.17 0.21 -0.38 S 236 1 1.00 

 Saf1  P38352             
0.05 
±0.04 

0.44 
±0.02 

-0.09 
±0.01 

-0.13 
±0.04 

0.14 0.56 -0.42 S 16 1 1.00 

 Sec31  P38968             
-0.26 
±0.10 

0.25 
±0.27 

0.06 
±0.02 

-0.02 
±0.11 

-0.32 0.27 -0.59 S 980 1 1.00 

 

 

Supplementary Table 11. SILAC-based phospho-proteome data for the comparison of the 

asc1T143E strain and the ASC1 wild-type strain. 

The table lists the proteins that fulfilled the criteria described in Supplementary Table 3. The replicates 

are numbered 5-7 and 4, 8, and 12 according to Figure 21. (E = asc1T143E/ASC1; Aux = ASC1Aux/ASC1; 

Ø = mean of phospho-peptide (PP) and protein (Prot) log2 SILAC-ratios for E and Aux; E Ø PP - Prot 

= mean of PP ratios minus mean of Prot ratios for E; Aux Ø PP - Prot = mean of PP ratios minus mean 

of Prot ratios for Aux; SD = standard deviation, gray = no value determined, position = 

phosphorylated amino acid residue, multiplicity = number of phosphorylations within the identified 

phospho-peptide; loc. prob. = localization probability  

proteins 
protein 

IDs 

E 
PP 

Aux 
PP 

E 
Prot 

Aux 
Prot 

E 
PP 

Aux 
PP 

E 
Prot 

Aux 
Prot 

1: 
E 
Ø 

PP- 

Prot 

2: 
Aux 
Ø 

PP- 

Prot 

1-2 

p
o
s
it
io

n
 

m
u
lt
ip

lic
it
y
 

lo
c
. 
p
ro

b
. 

5 6 7 4 8 12 5 6 7 4 8 12 
Ø 

SD 

Ø 

SD 

Ø 

SD 

Ø 

SD 

 Sbp1  P10080             
1.40 
±0.10 

0.29 
±0.25 

-0.02 
±0.04 

-0.02 
±0.07 

1.41 0.32 1.09 T 91 1 1.00 

 Tif1  P10081             
-0.25 
±0.06 

0.26 
±0.16 

-0.01 
±0.02 

0.03 
±0.02 

-0.24 0.24 -0.48 S 2 1 1.00 

 Bmh1; 
 Bmh2 

 P29311; 
 P34730 

            
-0.20 
±0.02 

0.21 
±0.06 

0.12 
±0.05 

0.01 
±0.10 

-0.32 0.20 -0.52 S 104 1 0.95 

 

  



Supplementary Material 

156 

 

Supplementary Table 12. Cellular processes affected by Asc1p-dependent phosphorylation. 

Proteins containing Asc1p-sensitive phospho-sites were assigned to different cellular processes. 

Protein names highlighted in green indicate that the proteins contain phospho-sites that are up-

regulated in the Asc1p mutant strains, accordingly, red indicates a down-regulation.   
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Bud21 Air2 Cdc37 Akr1 Acm1 Csr1 Akr1 Crp1 
Erb1 Dig2 Dcn1 Apl5 Aim3 Gde1 Cdc37 Fyv8 
Gcd6 Edc1 Pre8 Bcp1 Cmd1 Gly1 Cmd1 Guk1 
Ils1 Fip1 Rpn1 Ent1 Ent1 Leu1 Dbf2 Iml2 
Kap123 Isw1 Rpn7 Hrb1 Myo3/5 Nth1** Dig2 Pol1 
Kri1 Kin28 Shp1 Imh1 Pin4 Pda1 Isc1 Rfa2 
Mak5 Leo1 Vid27°  Kap123 Rho4 Pdc1 Kin28 Smc4 
Mkt1 Not3 Bre5 Kha1 Sla2 Pdr16 Kin82 Sng1 
Nop12 Rpo21 Cue4 Myo3/5 Smi1 Pgm3 Nnk1 Ty2a+ 
Rlp7 Ski2 Def1 Pdr5 Ste20 Ser1 Nte1 Grx2 
Rpg1 Spn1 Hsp42 Sec16 Ysc84 Shm2 Pho13 Mdv1 
Rpl12a/b Stb1 Pup2 Sec3 Ent2°  Tpi1 Pik1 Par32 
Rpl13a/b Sub2 Rpn13 Sec7 Gea2°  Acc1°  Ppq1 Qri1 
Rps0a/b Chd1 Saf1** She3 Spa2°  Met6°  Rcn1 Rad16 
Rrp36 Ctr9 

 
Sla2 Abp1 Apa1 Rcn2 Sod1 

Sbp1** Fhl1 
 

Ysc84 Bbp1 Aro4 Rho4 Ty1b++ 
Srp14 Gat1 

 
Ent2°  Bni1 Aro8 Sec3 Ycr023c 

Ssz1 Nrg2 
 

Gea2°  Cdc3 Cho1 Shp1 Yjl070c 
Sup35 Pdr1 

 
Vps13°  Cdc28 Cys3 Ste20 

 Tan1 Puf3 
 

Vtc2°  Ent3* Eno1/2 Yak1 
 Tif35 Reb1 

 
Bmh1/2** Gcs1 Elo2 Ypi1 

 Tif5 Rsc2 
 

Bre5 Gvp36 Gpd2 Spa2°  
 Yef3 Ssn2 

 
Ecm21 Hsp42 Gpm1 Bcy1 

 Tif1 ↓ Sum1 
 

Ent3* Pfy1 Hom3 Bmh1/2** 
 Prt1°  Taf3 

 
Esc1 Spc110 Hom6 Bni1 

 Cdc60 Ume6 
 

Gcs1 Ssd1 Met17** Cdc28 
 Egd1 Yap1 

 
Get2 Vip1 Met5 Dbf20 

 Ett1 
  

Gvp36 Vps1 Pct1 Glc8 
 Ncl1 

  
Hxt1/3 

 
Ser33 Kin2 

 Pbp1 
  

Kin2 
 

Tdh1/2/3 Kns1 
 Puf3 

  
Mep2 

 
Thr4 Meh1 

 Rpl7a/b 
  

Mlp1 
 

Ugp1 Orm2 
 Rps19a/b 

  
Mnr2 

 
Ura2 Pkh3 

 Rps1a/b* 
  

Sec21 
  

Prr1 
 Rps7b 

  
Sec31* 

  
Psk1 

 Ssd1 
  

Tpo1 
  

Rad9 
 Sui3 

  
Vps1 

  
Rho5 

 Tif4632 
  

Vtc3 
  

Sch9 
 Trm2 

     
Sfk1 

 Tsa1 
     

Vip1 
 Vas1 

     
Yel043w 

 Yhr020w 
     

Ypr091c 
 

      

Zeo1 

 ° also contains an up-regulated Asc1p-sensitive phospho-site 
* regulation also found in either the asc1T143A or the asc1T143E mutant strain 
** regulation exclusively found in either the asc1T143A or the asc1T143E mutant strain  
↓ regulated in the opposite direction in the asc1T143E strain compared to the asc1- strain  
+ Ty2a-Dr3;Ty2a-C;Ty2a-Or1;Ty2a-Lr2;Ty2a-Gr2;Ty2a-F 
++ Ty1b-Lr4;Ty1b-Pr1;Ty1b-Gr2;Ty1b-Pr2;Ty1b-Er1;Ty1b-Ml2;Ty1b-Ol;Ty1b-Jr1;Ty1b-A;Ty1b-l1;Ty1b-
Pl;Ty1b-Lr2  
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Supplementary Table 13. Overview of data evaluation of SILAC-based Asc1p-Strep and 

Asc1DEp-Strep enrichment experiments with Perseus. 

No. Command Description 

1 Generic 
matrix upload 

proteinGroups.txt 
normalized ratios etc. 

2.1 
2.2 
2.3 

Filter rows 
based on 
categorical 
column 

Remove rows with + in reverse column 
Remove rows with + in potential contaminant column 
Remove rows with + in only identified by site column 
 

3 Transform Inverse ratios (1/x) when the control is not in the denominator 

4 Transform log2(x) 

5 Normalization Subtract column median of ratios 

6 Combine 
expression 
columns 

Eluate ratios minus respective proteome ratios 
→ proteome-corrected eluate ratios 

7  
7.1/4 
7.2/5 
7.3/6 
 
7.7 
7.8 

Categorical  
annotation 
rows 

Group for Asc1p-Strep/control ratios and for Asc1DEp-Strep/control ratios: 
- proteome-corrected eluate ratios 
- eluate ratios 
- proteome ratios 
Group for two-sample t-test: 
- eluate and proteome Asc1p-Strep/control ratios 
- eluate and proteome Asc1DEp-Strep/control ratios 

8 
8.1 
8.2 

Two-samples 
test 

Two-sample t-test (p-value < 0.05 and p-value < 0.1)  
eluate versus proteome Asc1p-Strep/control ratios 
eluate versus proteome Asc1DEp-Strep/control ratios 

9 
9.1 
9.2 

One-sample 
test 

One-sample t-test (p-value < 0.05 and p-value < 0.1) 
eluate ratios Asc1p-Strep 
eluate ratios Asc1DEp-Strep 

  proteins with 0-1 valid proteome 
ratio 

proteins with 2-3 valid proteome 
ratios 

10 Filter rows 
based on 
valid values 

2 proteome-corrected eluate ratios, 
add categorical column 

2 proteome-corrected eluate ratios  
≥ 0.26 

11 Filter rows 
based on 
categorical 
column 

Remove rows with keep from 
previous step 

- 

12 Filter rows 
based on 
valid values 

1 proteome-corrected eluate ratios < 0.26, add categorical column 

13 Filter rows 
based on 
categorical 
column 

Remove rows with keep from previous step 

14 Filter rows 
based on 
valid values 

2 eluate ratios ≥ 0.26 
 

 

15 Filter rows 
based on 
valid values 

1 eluate ratio < 0.26 
add categorical column 

16 Filter rows 
based on 
categorical 
column 

Remove rows with keep from 
previous step 

17 Select rows 
manually and  
remove 
selected rows 

Check remaining candidates manually. Example for removed candidate:  
Two eluate ratios of a protein that could not be proteome-corrected were 
≥ 0.26. For the third replicate, the protein was not detected in the eluate 
fraction but with a ratio ≥ 0.26 in the proteome indicating unspecific 
enrichment of the protein in the other samples. 
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Supplementary Table 14. Expanded view for the Asc1p-dependent changes in the translatome.  

For the transcripts of each of the six samples the normalized readcounts are provided. The mean of 

these readcounts was calculated as well as the log2 ratio of these values (asc1-/ASC1). The 

logarithmized ratios are colored according to the scale below the table. (FDR = false discovery rate) 

gene 
asc1-/ 
ASC1 

normalized 
readcounts asc1- 

normalized 
readcounts ASC1 likelihood FDR 

1 2 3 1 2 3 

COS8 2.68 48 40 47 9 8 4 0.9965 1.7E-03 

ZPS1 2.35 494 801 783 174 111 124 0.9973 1.3E-03 

PRM5 1.84 268 214 260 78 53 76 0.9981 7.7E-04 

HBN1 1.69 290 294 302 74 101 99 0.9995 1.4E-04 

GSY1 1.65 286 267 310 98 99 78 0.9994 2.2E-04 

HSP42 1.61 226 360 329 89 110 100 0.9916 3.5E-03 

HSP26 1.48 67 59 78 31 22 20 0.9160 3.2E-02 

YCL021W-A 1.45 138 181 189 62 57 67 0.9909 4.0E-03 

GAL3 1.38 110 140 167 54 60 46 0.9595 1.3E-02 

YLL053C 1.36 494 411 543 212 201 153 0.9834 5.5E-03 

ZRT1 1.35 4059 5193 5339 2244 1731 1744 0.9397 1.8E-02 

YKL070W 1.34 78 110 124 40 41 42 0.9268 2.8E-02 

FET4 1.32 388 355 388 186 130 137 0.9935 2.6E-03 

VTI1 1.27 275 181 236 110 87 89 0.9608 1.2E-02 

AHA1 1.26 1459 1381 1438 678 556 548 0.9973 1.1E-03 

AQY2 1.22 509 425 431 237 211 136 0.9322 2.4E-02 

FKS3 1.22 134 150 162 63 67 62 0.9886 4.5E-03 

STI1 1.17 1427 1395 1514 646 608 670 0.9983 6.0E-04 

AGA1 1.16 209 294 208 94 107 117 0.9495 1.5E-02 

GAL80 1.15 444 382 586 211 215 209 0.9826 5.9E-03 

GSY2 1.12 428 427 450 205 189 206 0.9986 4.2E-04 

NDJ1 1.07 160 213 251 95 95 107 0.9298 2.5E-02 

URA10 1.05 169 137 148 83 60 76 0.9182 3.1E-02 

HXK1 1.05 391 346 394 229 164 155 0.9409 1.7E-02 

GRX3 1.02 847 882 856 385 416 477 0.9943 2.2E-03 

SMA2 1.01 228 297 285 126 122 153 0.9343 2.2E-02 

DCS1 1.01 254 238 242 127 123 115 0.9921 3.3E-03 

YGR161W-C 1.00 335 337 341 169 172 167 0.9970 1.5E-03 

YHB1 0.95 9465 9433 8816 5197 4475 4671 0.9749 8.0E-03 

UBC1 0.91 674 818 776 356 416 436 0.9280 2.6E-02 

LST8 0.91 429 415 525 267 221 243 0.9278 2.7E-02 

ALG13 0.90 281 280 285 149 162 142 0.9891 4.2E-03 

HSP78 0.86 462 415 420 266 215 234 0.9564 1.4E-02 

APE1 0.84 435 401 409 237 203 256 0.9644 1.2E-02 

YMR315W 0.84 942 820 931 508 451 548 0.9340 2.3E-02 

FMP41 0.82 507 471 478 286 309 227 0.9207 2.8E-02 

GLO2 0.80 578 444 527 292 309 286 0.9352 2.2E-02 

GLK1 0.78 2089 2031 2049 1308 1137 1145 0.9392 1.9E-02 

TWF1 0.77 356 400 412 232 206 246 0.9140 3.2E-02 
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Supplementary Table 14. Continued. 

gene 
asc1-/ 
ASC1 

normalized 
readcounts asc1- 

normalized 
readcounts ASC1 likelihood FDR 

1 2 3 1 2 3 

MXR1 0.76 719 627 730 427 367 428 0.9046 3.4E-02 

SFG1 0.76 446 449 448 290 214 287 0.9011 3.5E-02 

ARC18 0.76 335 367 367 208 185 238 0.9075 3.3E-02 

YKL151C 0.76 522 478 541 314 291 306 0.9710 8.6E-03 

EXG2 0.71 386 371 378 232 252 208 0.9366 2.0E-02 

YDR327W 0.70 1080 1115 1213 669 723 710 0.9187 3.0E-02 

DFR1 -0.66 249 275 279 418 412 440 0.9357 2.1E-02 

HTB1 -0.68 604 705 684 1062 1057 1071 0.9396 1.8E-02 

FAA2 -0.75 116 136 136 214 224 215 0.9290 2.5E-02 

HO -0.75 443 449 487 763 745 813 0.9699 1.0E-02 

TDA1 -0.91 112 122 109 199 214 230 0.9708 9.1E-03 

YHR177W -0.93 71 63 81 125 142 144 0.9188 2.9E-02 

URA4 -1.02 625 609 658 1173 1321 1351 0.9922 3.1E-03 

AAC3 -1.02 82 66 87 164 167 147 0.9702 9.7E-03 

SNO1 -1.04 161 114 139 298 272 283 0.9755 7.5E-03 

ARN1 -1.06 267 278 246 674 495 482 0.9594 1.4E-02 

ALD6 -1.06 1507 1567 1758 3052 3510 3527 0.9682 1.1E-02 

YJL213W -1.16 137 132 139 368 272 271 0.9800 7.0E-03 

BAP3 -1.23 51 43 53 121 119 105 0.9802 6.7E-03 

YIL165C -1.25 101 98 118 249 268 236 0.9970 1.4E-03 

AQR1 -1.29 466 411 395 1232 968 904 0.9823 6.2E-03 

ECM13 -1.36 126 121 125 367 308 277 0.9960 2.0E-03 

SNZ1 -1.47 987 698 1224 2697 2602 2733 0.9933 2.8E-03 

RIB4 -1.49 616 620 636 1362 1894 2011 0.9976 9.5E-04 

TPO1 -1.64 307 403 370 971 1297 1091 0.9961 1.8E-03 

YGR035C -1.64 95 71 93 334 246 228 0.9909 3.7E-03 

YMR141W-A -1.67 18 18 10 49 48 49 0.9491 1.6E-02 

FMP48 -1.71 20 19 19 63 60 67 0.9877 4.8E-03 

TPO4 -1.74 715 1388 1142 3217 4068 3577 0.9650 1.1E-02 

TIS11 -1.86 39 33 38 182 102 115 0.9857 5.1E-03 

URA3 -1.87 440 341 391 1855 1003 1421 0.9936 2.4E-03 

URA1 -2.14 833 1025 993 4083 4112 4328 1.0000 2.5E-05 

EEB1 -2.56 245 264 238 1717 1361 1329 1.0000 8.6E-06 

MDH2 -2.64 69 103 102 543 556 605 1.0000 2.0E-05 
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Supplementary Table 15. Mitochondrial proteins down-regulated in their abundance in the asc1- 

strain. 

proteins protein IDs description 
median log2 
asc1-/ASC1 
ratio 

mitochondrial translation 

Img1 P25626 54S ribosomal protein IMG1. mitochondrial -0.50 

Img2 P25642 54S ribosomal protein IMG2. mitochondrial -0.53 

Mam33 P40513 Mitochondrial acidic protein MAM33 -0.61 

Mnp1 P53163 54S ribosomal protein L12. mitochondrial -0.57 

Mrp1 P10662 37S ribosomal protein MRP1. mitochondrial -0.71 

Mrp13 P12686 37S ribosomal protein MRP13. mitochondrial -0.63 

Mrpl15 P36523 54S ribosomal protein L15. mitochondrial -0.48 

Mrpl19 P53875 54S ribosomal protein L19. mitochondrial -0.52 

Mrpl3 P36516 54S ribosomal protein L3. mitochondrial -0.54 

Mrpl33 P20084 54S ribosomal protein L33. mitochondrial -0.48 

Mrpl38 P35996 54S ribosomal protein L38. mitochondrial -0.30 

Mrpl49 P40858 54S ribosomal protein L49. mitochondrial -0.55 

Mrpl51 Q06090 54S ribosomal protein L51. mitochondrial -0.53 

Mrps8 Q03799 37S ribosomal protein S8. mitochondrial -0.38 

Mss51 P32335 Protein MSS51. mitochondrial -0.46 

Rsm10 Q03201 37S ribosomal protein S10. mitochondrial -0.49 

Rsm7 P47150 37S ribosomal protein S7. mitochondrial -0.52 

Tuf1 P02992 Elongation factor Tu. mitochondrial -0.62 

Var1 P02381 Ribosomal protein VAR1. mitochondrial -0.87 

mitochondrial protein import 

Mia40 P36046 
Mitochondrial intermembrane space import and 
assembly protein 40 

-0.62 

Tim10 P87108 
Mitochondrial import inner membrane translocase 
subunit TIM10 

-0.68 

Tim12 P32830 
Mitochondrial import inner membrane translocase 
subunit TIM12 

-0.31 

Tim44 Q01852 
Mitochondrial import inner membrane translocase 
subunit TIM44 

-0.28 

Tim50 Q02776 
Mitochondrial import inner membrane translocase 
subunit TIM50 

-0.28 

Tim8 P57744 
Mitochondrial import inner membrane translocase 
subunit TIM8 

-0.30 

Tim9 O74700 
Mitochondrial import inner membrane translocase 
subunit TIM9 

-0.66 

Tom20 P35180 Mitochondrial import receptor subunit TOM20 -0.26 

Tom22 P49334 Mitochondrial import receptor subunit TOM22 -0.42 

Tom40 P23644 Mitochondrial import receptor subunit TOM40 -0.47 

Tom7 P53507 Mitochondrial import receptor subunit TOM7 -0.42 

Tom70 P07213 Mitochondrial import receptor subunit TOM70 -0.58 
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Supplementary Table 15 continued 1. 

proteins protein IDs description 
median log2 
asc1-/ASC1 
ratio 

further mitochondrial transport processes 

Aac1 P04710 ADP, ATP carrier protein 1 -0.42 

Ctp1 P38152 Tricarboxylate transport protein -0.97 

Dic1 Q06143 Mitochondrial dicarboxylate transporter -0.80 

Ggc1 P38988 
Putative mitochondrial carrier protein 
YHM1/SHM1 

-0.67 

Mir1 P23641 Mitochondrial phosphate carrier protein -0.57 

Om14 P38325 Mitochondrial outer membrane protein OM14 -0.45 

Pet9 P18239 ADP, ATP carrier protein 2 -0.40 

Por1 P04840 Mitochondrial outer membrane protein porin 1 -0.47 

respiration 

Atp1 P07251 ATP synthase subunit α, mitochondrial -0.52 

Atp2 P00830 ATP synthase subunit β, mitochondrial -0.49 

Atp3 P38077 ATP synthase subunit γ, mitochondrial -0.38 

Atp4 P05626 ATP synthase subunit 4, mitochondrial -0.32 

Atp5 P09457 ATP synthase subunit 5, mitochondrial -0.43 

Atp7 P30902 ATP synthase subunit d, mitochondrial -0.33 

Atp15 P21306 ATP synthase subunit ε, mitochondrial -0.41 

Atp16 Q12165 ATP synthase subunit δ, mitochondrial -0.32 

Atp17 Q06405 ATP synthase subunit f, mitochondrial -0.28 

Atp18 P81450 ATP synthase subunit J, mitochondrial -0.34 

Cox4 P04037 Cytochrome c oxidase subunit 4, mitochondrial -0.39 

Cox6 P00427 Cytochrome c oxidase subunit 6, mitochondrial -0.26 

Nde1 P40215;Q07500 
External NADH-ubiquinone oxidoreductase 2, 
mitochondrial 

-0.42 

Sdh1 Q00711;P47052 
Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit 2, mitochondrial 

-0.57 

Sdh2 P21801 
Succinate dehydrogenase [ubiquinone] iron-
sulfur subunit, mitochondrial 

-0.32 

Tim11 P81449 ATP synthase subunit e, mitochondrial -0.31 

tricarboxylic acid cycle 

Aco2 P39533 Probable aconitate hydratase 2 -0.55 

Kgd1 P20967 
2-oxoglutarate dehydrogenase E1 component, 
mitochondrial 

-0.47 

Lsc2 P53312 
Succinyl-CoA ligase [ADP-forming] subunit β, 
mitochondrial 

-0.30 

assembly of respiratory chain complexes 

Cbp3 P21560 Protein CBP3, mitochondrial -0.28 

Cbp4 P37267 Assembly factor CBP4 -0.30 

Coa1 P40452 Cytochrome oxidase assembly protein 1 -0.29 

Cox15 P40086 Cytochrome c oxidase assembly protein COX15 -0.32 

Yta12 P40341 
Mitochondrial respiratory chain complexes 
assembly protein RCA1 

-0.39 
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Supplementary Table 15 continued 2. 

proteins protein IDs description 
median log2 
asc1-/ASC1 
ratio 

mitochondrial contact site and cristae organizing system (MICOS) complex 

Mic10 Q96VH5 UPF0327 protein YCL057C-A -0.31 

Mic12 P38341 Uncharacterized protein YBR262C -0.40 

Mic19 P43594 UPF0726 protein YFR011C -0.41 

Mic60 P36112 Uncharacterized protein YKR016W -0.31 

glycine decarboxylase complex 

Gcv1 P48015 Aminomethyltransferase, mitochondrial -0.47 

Gcv2 P49095 
Glycine dehydrogenase [decarboxylating], 
mitochondrial 

-0.75 

Gcv3 P39726 Glycine cleavage system H protein, mitochondrial -0.62 

protein folding and degradation 

Hsp10 P38910 10 kDa heat shock protein, mitochondrial -0.40 

Phb1 P40961 Prohibitin-1 -0.27 

Pim1 P36775 Lon protease homolog, mitochondrial -0.59 

proteins with described mitochondria-associated functions 

Adh3 P07246 Alcohol dehydrogenase 3, mitochondrial -0.38 

Adk1 P07170 Adenylate kinase 1 -0.70 

Arg5,6 Q01217 Protein ARG5,6, mitochondrial -0.34 

Arg8 P18544 Acetylornithine aminotransferase, mitochondrial -0.36 

Arh1 P48360 
Probable NADPH:adrenodoxin oxidoreductase, 
mitochondrial 

-0.26 

Dld1 P32891 
D-lactate dehydrogenase [cytochrome] 1, 
mitochondrial 

-0.49 

Dld2 P46681 
D-lactate dehydrogenase [cytochrome] 2, 
mitochondrial 

-0.26 

Erv1 P27882 
Mitochondrial FAD-linked sulfhydryl oxidase 
ERV1 

-0.54 

Hem1 P09950 5-aminolevulinate synthase, mitochondrial -0.70 

Isc1 P40015 Inositol phosphosphingolipids phospholipase C -0.63 

Mae1 P36013 NAD-dependent malic enzyme, mitochondrial -0.48 

Mmf1 P40185 Protein MMF1, mitochondrial -0.38 

Mss116 P15424 
ATP-dependent RNA helicase MSS116, 
mitochondrial 

-0.47 

Num1 Q00402 Nuclear migration protein NUM1 -0.30 

Prx1 P34227 Mitochondrial peroxiredoxin PRX1 -0.45 

Sod2 P00447 Superoxide dismutase [Mn], mitochondrial -0.52 

Uth1 P36135 Protein UTH1 -0.76 

Yhm2 Q04013 Mitochondrial DNA replication protein YHM2 -0.80 
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Supplementary Table 15 continued 3. 

proteins protein IDs description 
median log2 
asc1-/ASC1 
ratio 

further proteins found to be associated with mitochondria 

Aim36 Q03798 Uncharacterized protein YMR157C -0.54 

Aim9 P40053 Uncharacterized protein YER080W -0.39 

Cpr1 P14832 Peptidyl-prolyl cis-trans isomerase -1.07 

Gpm1 P00950 Phosphoglycerate mutase 1 -0.33 

Imo32 P53219 
Uncharacterized abhydrolase domain-containing 
protein YGR031W 

-0.33 

Msc1 Q03104 Meiotic sister chromatid recombination protein 1 -1.44 

Ncp1 P16603 NADP-cytochrome P450 reductase -0.54 

Pep4 P07267 Saccharopepsin -0.49 

Pth2 P34222 Peptidyl-tRNA hydrolase 2 -0.28 

Tdh3 P00359 Glyceraldehyde-3-phosphate dehydrogenase 3 -0.48 

Tma19 P35691 Translationally-controlled tumor protein homolog -0.37 

Tpi1 P00942 Triosephosphate isomerase -0.28 

 

 

Supplementary Table 16. Proteasomal proteins up-regulated in their abundance in the asc1- 

strain. 

proteins protein IDs description 
median log2 
asc1-/ASC1 
ratio 

20S core particle 

Pre2 P30656 Proteasome subunit β type-5 0.42 

Pre3 P38624 Proteasome subunit β type-1 0.29 

Pre4 P30657 Proteasome subunit β type-7 0.34 

Pre5 P40302 Proteasome subunit α type-6 0.39 

Pre6 P40303 Proteasome subunit α type-4 0.32 

Pre7 P23724 Proteasome subunit β type-6 0.48 

Pre8 P23639 Proteasome subunit α type-2 0.28 

Pre9 P23638 Proteasome subunit α type-3 0.30 

Pre10 P21242 Probable proteasome subunit α type-7 0.33 

Pup1 P25043 Proteasome subunit β type-2 0.30 

Pup2 P32379 Proteasome subunit α type-5 0.31 

Pup3 P25451 Proteasome subunit β type-3 0.33 

Scl1 P21243 Proteasome subunit α type-1 0.41 

19S regulatory particle 

Rpn13 O13563 26S proteasome regulatory subunit RPN13 0.28 

Rpn5 Q12250 26S proteasome regulatory subunit RPN5 0.27 
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Abbreviations 

 

aa    = amino acid 

AC   = adenylyl cyclase 

AMP    = adenosine monophosphate 

Aux   = auxotrophy 

3-AT    = 3-amino-1,2,4-triazole 

BCA    = bicinchoninic acid 

bp    = base pair 

BSA    = bovine serum albumin 

cAMP    = cyclic adenosine monophosphate 

cDNA   = complementary DNA 

CID    = collision-induced dissociation  

C-terminal/-terminus = carboxyl-terminus   

d    = days 

DE    = R38D K40E 

DETA-NONOate  = (Z)-1-[N-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium 

   1,2-diolate) 

DNA    = deoxyribonucleic acid 

dNTP   = deoxynucleoside triphosphate 

DTT    = dithiotreitol 

ECL    = enhanced chemoluminescence 

EDTA    = ethylenediaminetetraacetic acid  

EGTA    = ethylene glycol tetraacetic acid 

et al.   = et alii 

FASP    = filter-aided sample preparation 

FDR    = false discovery rate 

FT   = fourier transform 

G1/G2    = gap phase 1/2 

GDP    = guanosine diphosphate 

glc   = glucose 

GPCR   = G-protein-coupled receptor 

GTP    = guanosine triphosphate 

h    = hour(s) 
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HCC    = hepatocellular carcinoma 

HCD    = higher energy collisional dissociation 

HEK293  = human embryonic kidney 293 

HeLa   = Henrietta Lacks 

Huh7   = human hepatocellular carcinoma 

ID   = identifier 

IRES    = internal ribosomal entry site 

LB    = lysogeny broth 

LC    = liquid chromatography 

M    = mitosis 

MAPK   = mitogen activated protein kinase 

min   = minute(s) 

miRISC   = miRNA-induced silencing complex 

miRNA   = micro RNA 

mRNA   = messenger RNA 

mRNP   = ribonucleoprotein containing mRNA 

MS    = mass spectrometry 

MSA    = multistage activation 

MV   = minimal with vitamins 

N/A   = not applicable 

NaN   = not a number 

N-terminal/-terminus = amino-terminus  

OD   = optical density 

ORF   = open reading frame 

PACAP   = pituitary adenylyl cyclase-activating polypeptide 

PAGE    = polyacrylamide gel electrophoresis 

P-bodies   = processing bodies 

PBS    = phosphate buffered saline 

PCR    = polymerase chain reaction 

PEG    = polyethylene glycol 

PKA    = protein kinase A 

PKC    = protein kinase C 

PMSF    = phenylmethane sulfonyl fluoride 

PTM    = post-translational modification 
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RNA    = ribonucleic acid 

RNP    = ribonucleoprotein 

rpm   = revolutions per minute 

rRNA   = ribosomal RNA 

S    = synthesis phase or Svedberg unit 

SD    = standard deviation 

SDS    = sodium dodecyl sulfate 

sec    = second(s) 

SESA    = Scp160p, Eap1p, Smy2p, Asc1p 

SILAC   = stable isotope labeling with amino acids in cell culture  

snoRNA   = small nucleolar RNA 

snoRNP   = ribonucleoprotein containing snoRNA 

SOB    = super optimal broth 

SOD    = superoxide dismutase 

TAE    = Tris base, acetic acid, EDTA 

TB    = transformation buffer 

TBS    = Tris-buffered saline 

TE    = Tris EDTA 

TFA    = trifluoracetic acid  

Tris    = Tris(hydroxymethyl)aminomethane 

tRNA    = transfer RNA 

tRNAi    = initiator tRNA 

TTC    = triphenyltetrazolium chloride 

UA    = first urea buffer of FASP protocol 

UB    = second urea buffer of FASP protocol 

UTR    = untranslated region 

UV    = ultraviolet 

V    = volume 

vs.   = versus 

WD    = tryptophan-aspartate 

YEPD    = yeast extract peptone dextrose 

YNB    = yeast nitrogen base 
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