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Preface 

The German Academic Exchange Service (DAAD) provided a scholarship for the doctoral 

study at the Georg-August University of Göttignen. Subsequent research work was funded by 

Deutsche Forschungsgemeinschaft (DFG). The dissertation is being submitted to the Faculty of 

Agricultural Sciences under the doctoral degree program of Graduate School in Forest and 

Agriculture Sciences (GFA), to fulfill the requirements for the acquisition of the doctoral degree 

of agricultural sciences ‘Doctor scientiarum agrariarum’ (Dr. sc. agr.). 

The presented dissertation is cumulative based on three papers as the first author, which are 

published in the international refereed journals, and on an additional study (study 4, in 

preparation). The published manuscripts are included in chapters 3. 

The focus of the general introduction (chapter 1) is on the theoretical background of the soil 

organic matter and the need of work. Chapter 2 presents the objectives, study site, methods and 

summary of the main results. Whereas specific introductions on the effects of crop residue 

decomposition and stabilization in soil organic matter are given in chapter 3 comprising 

following manuscripts. 

Chapter 3.1 

Shahbaz M, Kuzyakov Y, Heitkamp F: Decrease of soil organic matter stabilization with 

increasing inputs: Mechanisms and controls. Geoderma (2016). doi: 

org/10.1016/j.geoderma.2016.05.019 

Chapter 3.2 

Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E 

(2016) Microbial decomposition of soil organic matter is mediated by quality and quantity of 

crop residues: mechanisms and thresholds. Biology and Fertility of Soils (2016). doi: 

10.1007/s00374-016-1174-9 

Chapter 3.3 

Shahbaz M, Kuzyakov Y, Maqsood M, Wendland M, Heitkamp F: Decadal nitrogen 

fertilization decreases mineral-associated and subsoil carbon: a 32 years study. Land 

degradation and development (2016). doi: 10.1002/ldr.2667
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VI Summary 

Cropland soils may be sources or sinks for atmospheric CO2. In general, it is assumed that C 

input into the soil and soil organic matter (SOM) levels are linearly related. This gives rise to 

environmental concerns regarding the removal of crop residue. In recent years, it has been 

shown that residue incorporation increases SOM levels to only a small extent, and high C input 

is not directly beneficial for SOM stabilization. Similar observations have been reported from 

a well-documented long-term field experiment at Puch, Germany, which contradicted the 

predicted (linear) relationship between C inputs (1-5 Mg C ha-1 y-1) and SOM changes. Several 

factors have been suggested to explain the relationship between high C inputs and small 

observed increases of SOM: (i) alteration of soil physical properties, affecting residue 

mineralization and protection; (ii) differences in residue input quality, recalcitrant belowground 

versus labile aboveground inputs; (iii) decomposition of native SOM through priming effects 

of incorporated residues; (iv) partitioning of residue C between protected and less protected 

SOM fraction; and (v) translocation of part of the unprotected C to the subsoil. The aim of this 

thesis was to ascertain whether these factors can really explain the limited increases of SOM 

often observed in the context of increasing crop residue inputs.  

In order to quantify the effect of crop residue quality and quantity on soil physical structure and 

SOM stabilization, 13C-labeled wheat residues with variable quality (leaves, stems, roots) and 

quantity were added to the soil and incubated for 2 months. Soil aggregation generally increased 

with higher residue additions, but the proportion of residue C protected within aggregates 

decreased. The protection of aboveground biomass residues (leaves and stems) was more 

reduced than belowground (root) residues at high additions. However, regardless of residue 

type, SOM decomposition increased with higher crop residue addition. The decrease of residue 

protection within aggregates and the increase of SOM mineralization led to a decrease in the 

rate of C stabilization within SOM by higher residue additions. 

To explore the mechanisms how crop residue quality (leaves, stems, roots) and quantity effect 

residue and SOM mineralization, with a special focus on the priming effect, an incubation study 

was conducted over a period of 4 months. The added C was traced in CO2 and in microbial 

biomass, and enzyme activities were measured. Roots were least decomposed and the 

mineralization of aboveground biomass residue disproportionally increased with higher residue 

additions. However, roots caused much higher SOM priming than leaves and stems. The C 
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source partitioning and enzyme activities revealed that SOM priming was mainly controlled by 

residue-feeding microorganisms. To quantify the relationship between residue decomposition 

(i.e. quality effect), input levels, and priming, a new unifying model (logistic & power 

functions) was proposed. The model enabled the estimation of threshold values for 

mineralization of low and high residue additions above which incremental priming was 

maximal: i.e. ca. 20% for roots, 29-44% for stems and 39-51% for leaves. SOM priming 

depended on residue quality and decreased with increasing C additions. Nonetheless, priming 

was a power function of residue mineralization, whereby the threshold for strong increases in 

priming was lower for root decomposition than for aboveground residues. 

In order to determine the effect of long-term C inputs (straw- or root-dominated) on changes in 

SOM contents and partitioning of added C between SOM fractions, the soil was sampled (top- 

and subsoil) from a field experiment started in 1983. Where, five organic amendments (either 

with straw or root dominated C inputs) were combined with different N fertilization rates.  C 

input driven by straw incorporation was highest and increased with N fertilization. The density 

fractionation approach was used to separate topsoil SOM fractions. Total SOM content showed 

an increase with C inputs, which was mainly explained by the free light fraction of SOM. 

Despite high inputs, straw contributed little to the free light fraction, but prevented C losses 

from the mineral-associated SOM fraction (ρ >1.6 g cm-3), which were observed in the absence 

of straw addition. In contrast to topsoil, subsoil SOM contents decreased with N fertilization, 

thus also with C input. Above- (straw) and belowground (root) residues showed opposite effects 

on SOM fractions. Root C remained longer in the light fractions and was responsible for topsoil 

SOM increase with N fertilization. Straw decomposed rapidly (from light fractions), and 

sustained the most stable mineral-associated SOM fraction.  

Overall, results from incubation studies and the field experiment reveal that increasing amounts 

of aboveground residue addition improve soil aggregation. However, low physical protection 

and disproportionally increased residue mineralization decreases residue stabilization in SOM. 

Roots are recalcitrant to decomposition, but cause stronger and higher priming effects than 

aboveground residues. Nevertheless, high aboveground residue mineralization protects C in the 

most stable mineral-associated SOM fraction. Low root mineralization indicates that root litter 

can mainly stay in the unprotected free light SOM fraction, but roots can increase SOM losses 

through priming effects. The often described minor increase of SOM after organic matter input 

reflects the opposing behaviors of root and aboveground residues in SOM stabilization. 
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1 General introduction 

1.1 Global carbon cycle 

In the last few decades, the soil has been intensively cultivated to meet the global demands of 

the growing population for food, fodder, fibers and biofuel (Garnett et al. 2013; Keating et al. 

2014). Simultaneously, it is important that any change in land management must maintain soil 

quality and while not increasing its negative impacts on the environment, such as greenhouse 

gas emissions. Compared to soil carbon (C), the global distribution of phytomass C and its 

relation to the environment is relatively well researched (Harris et al. 2012). The soil C exceeds 

the amounts which is stored in both plants and atmosphere (Scharlemann et al. 2014). Despite 

a great deal of research, estimates of global soil C sources and resources are still uncertain, and 

C emissions due to land use changes remain the least-understood component of the C cycle 

(Scharlemann et al. 2014). 

Globally, approximately 1500 Petagrams of C is stored in the soil (Pg C, Scharlemann et al. 

2014; Schlesinger 1984). To understand the background of increasing atmospheric CO2 levels, 

there is a much interest in knowing whether the soil acts as a net source or sink for C (IPCC 

2007; Krull et al. 2003). Since 1850, after the industrial revolution, it is estimated that ca. 108 

to 188 Pg C has been lost from the terrestrial ecosystem due to the rapid increase in population 

and associated land use changes (Houghton 2012). Although there are considerable 

disagreements between estimates of global C pool sizes, however, it is accepted that 

approximately 68-100 gigatons C per year is released to the atmosphere from various 

ecosystems.  

Within this C loss pool, the contribution of C evolved from agriculture (i.e. due to land use 

changes) ranged from approximately 25-50% (Houghton 2012). These losses due to land use 

changes represents the second largest anthropogenic C source released into the atmosphere, 

after fossil fuel combustion (Lal 2004; Post and Kwon 2000). Perhaps as late as the 1950s, land 

use changes accounted for higher levels of  anthropogenic CO2 emissions than fossil fuel 

combustion (Lal et al. 2012).  

Soil C losses can theoretically be mitigated by adopting recommended management practices 

(Lal et al. 2012; Sauerbeck 2001). Smith et al. (2013) estimated that, until 2050, agriculture 

holds the potential to mitigate the release of up to 4.3 gigatons yr-1 of CO2 to the atmosphere by 

adopting proper mitigation options. However, some mitigation options are in direct competition 
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with each other, e.g., use of crop residue for bioenergy versus crop residue incorporation into 

the soil for increasing and maintaining SOM levels.  

In cropland soils, the main source of biomass is crop residues (Lal 2012). Crop residue is mainly 

incorporated into the soil with the aim of improving SOM and soil quality. A fraction of added 

crop residues can be stabilized as SOM by various mechanisms, while the other fraction will be 

lost to the environment via microbial decomposition. The effectiveness of SOM stabilization 

depends on the quality and quantity of biomass returned to the soil. Therefore, it is important 

to investigate the effect of crop residue management on SOM stabilization and the potential 

losses of soil C (as CO2) following residue addition for sustaining both soil and environmental 

quality.  

1.2 Soil organic matter stabilization  

SOM has beneficial effects on soil physical, chemical and biological properties, which in turn 

influence the productive capacity of soils. SOM is also a major contributor of N, P and other 

nutrients to plants. Soil microbial communities are dependent on SOM as a C source for their 

metabolic activities, which in turn affects soil structure and nutrient fluxes. A majority of 

models used to predict SOM dynamics assume that the increase of SOM is linearly proportional 

to the amount of C input (Six et al. 2002). Thus, SOM levels can theoretically increase without 

limits, given that C inputs correspondingly increase without limit. Such predictions of SOM 

content dynamics are acceptable for soils possessing low to moderate C contents. However, 

changes in SOM content resulting from, C inputs usually depends on the amount and nature of 

inputs (C availability), soil physicochemical properties, management practices and native SOM 

conditions (e.g. Powlson and Glendining 2011; Heitkamp et al. 2012). Native SOM contents 

reflect the balance of C inputs and its losses under specific conditions that do not necessarily 

represent the maximum ability of a soil to stabilize SOM. The relationship between soil 

structure and its ability to stabilize C is a key element for understanding SOM protection (Six 

et al. 2002). There is a distinction between SOM which is protected against decomposition by 

various mechanisms from that which is not protected from decomposition.  

The protected SOM pools mainly represent the contents of SOM (affected by long-term inputs) 

and are often characterized by three main protection mechanisms: (i) physical protection, (ii) 

chemical stabilization, and (iii) biochemical stabilization (Christensen 1996; Six et al. 2002; 

Six and Paustian 2014). Physical protection by soil aggregates (especially microaggregates) is 

indicated by the positive influence of aggregation on SOM accumulation (Elliott 1986; Tisdall 
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and Oades 1982; Six et al. 2002). Aggregates protect SOM by forming physical barriers 

between microbes, enzymes and their substrate’s diffusion, as well as by controlling food web 

interactions and consequently SOM decomposition (Six et al. 2000). Chemical stabilization of 

SOM is known to be the result of the chemical or physicochemical binding of SOM with soil 

mineral surfaces (i.e. clay and silt particles). The relationship of organic C stabilization with 

soils mineral surfaces is often defined as mineral-associated SOM, which has long mean 

residence times and comprises a large proportion of SOM in cropland soils (Hassink 1997). 

Biochemical stabilization is understood as the stabilization of SOM due to its own chemical 

composition (e.g. recalcitrant compounds such as polyphenols and lignin) and through chemical 

association processes (e.g. condensation reactions) in soil. This mechanism is mostly referred 

to as biochemical stabilization of SOM through selective protection of recalcitrant SOM 

compounds. However, all of these mechanisms can only stabilize SOM up to a certain limit. 

Thereafter, increasing C inputs may lead to high losses of added organic compounds through 

mineralization processes. Nevertheless, environmental conditions, management practices and 

soil physicochemical characteristics may have a strong impact on SOM stabilization by 

affecting those mechanisms which can limit C sequestration under high C inputs. 

1.3 Impact of long-term C inputs on SOM  

Under long-term field conditions, in contrary to general assumptions, SOM does not increase 

linearly with increasing C inputs (primarily crop residues) (Heitkamp et al. 2012; Stewart et al. 

2007) (e.g. Fig. 1-1). This means that, while SOM may continue to increase with increasing C 

input, the efficiency of the C input to SOM conversion decreases (i.e. increase in SOM is 

smaller per unit of C input). According to specific conditions, there are several factors which 

can affect SOM stabilization that need to be addressed. For example, Freibauer et al. (2004) 

reported that, for the EU-15 countries, the addition of 1 to 3.7 Mg C ha-1 yr-1 (by farmyard 

manure and straw inputs) resulted in increases in SOM stocks of  0.4 and 0.7 Mg C ha-1 yr-1 

relative to non-amended cropland soils. However, Powlson and Glendining (2011) reported that 

in most of their 23 long-term experiments, straw incorporation (as compared to removal) had 

minor effects on SOM storage. Likewise, Stewart et al. (2007) tested C predictions models and 

found that an asymptotic relationship can best predict the change in SOM against C inputs 

within their dataset of 14 experimental sites located in Canada and the US (duration: 12-50 

years). More recently, Steinmann et al. (2016) found a loss of SOM ca. 0.6 t C ha-1 yr-1  (at 60 

cm depth) even under balanced C input (from 20 to 133 kg C ha-1 yr-1) across 268 sites in 8 
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years. In general, these findings primarily indicate that increasing the amount of C input does 

not result in proportional increases in SOM content, as predicted in several studies (Fig. 1-1).  

Similarly, Heitkamp et al. (2012) also observed a quadratic relationship between the change in 

SOM stocks and C-input in a long-term cereal-based crop rotation experiment in Puch, 

Germany. The organic additions ranged from 1-5 Mg C ha-1 yr-1, where C inputs driven by 

animal manure were fixed, while those by straw incorporation were increased with N 

fertilization levels. Their findings were in agreement with previous works (Paustian et al. 2000; 

Lorenz and Lal 2012), demonstrating a serious decline in SOM increase when annual C input 

exceeded 2.4 Mg C ha-1.   

Overall, the authors could only speculate about the rational of this relationship (see below), but 

it was clear that increasing amounts of C input (e.g. from straw) were not efficient in increasing 

SOM levels (Fig. 1-1). This could give rise to the idea that, e.g., energetic use of crop residue 

would be a more efficient option in mitigating greenhouse gas (CO2) emissions (because of less 

C stabilization and high mineralization) compared to residue incorporation in soil.  

 

Figure 1-1: Hypothetical relationship between annual carbon inputs and measured 

(diamond symbols) or modelled (round symbols) long-term changes in soil organic matter 

(SOM) contents as proposed by Heitkamp et al. (2012a), Powlson et al. (2011) and Stewart 

et al. (2007). 
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Although it is agreed that increasing C inputs (mainly through straw) is not automatically 

beneficial for SOM (Fig. 1-1), the reasons for these findings are not completely understood. 

Potential reasons for  these findings could be: (i) alteration of soil physical properties, resulting 

in conditions favoring high decomposition and less accumulation of SOM in aggregates; (ii) a 

shift from recalcitrant belowground to labile aboveground residue inputs, (due to high above 

ground biomass production under high N fertilization) which may result in higher 

decomposition and less C stabilization from crop residue (iii) acceleration of native SOM 

mineralization through priming effect of incorporated residues (iv) lower partitioning of added 

C in stable SOM fractions (i.e. mineral-associated) due to their limited capacity to stabilize 

SOM, and (v) translocation of a portion of unprotected SOM to the subsoil. 

1.3.1 Alteration of soil physical properties  

The soil structure refers to the arrangement of soil particles into units called aggregates. Well-

stabilized and aggregated soil is an important indicator of soil quality and workability. In 

general, most soil physical properties are related to SOM contents within a given texture 

(Haynes und Naidu 1998; Bronick und Lal 2005). Soil aggregates vary in size (e.g. macro- and 

microaggregates) and are strongly influenced by the quality and quantity of added organics, as 

they influence soil processes involved in aggregation (Abiven et al. 2009; Majumder and 

Kuzyakov 2010). The addition of readily-decomposable substrates improves aggregation 

process more so than recalcitrant substrates. During substrate decomposition, microorganisms 

excrete substances which act as cementing agents (e.g. glomalin, polysaccharides) that bind soil 

particles together. In addition, fungi hyphae and roots can also act as binding agents. In the 

presence of organics, binding of soil particles results in microaggregate (< 250 µm) formation 

and, thereafter, microaggragates bind with SOM and silt clay particles to form macroaggreagtes 

(> 250 µm) (Tisdall and Oades 1982). However, microaggregates may form inside 

macroaggregates and can release during macroaggregates turnover (Six et al. 2000).  

Aggregates physically protect SOM from microbial decomposition through spatial 

inaccessibility of degrading microorganisms and their enzymes (Angers et al. 1997; Kögel-

Knabner et al. 2008). However, aggregates have limited capacity to stabilize SOM. After 

reaching a threshold level, most of the added organics remain unprotected (Andruschkewitsch 

et al. 2014; Shahbaz et al. 2016; Stewart et al. 2008). The physically unprotected fraction can 

serve as a favorable substrate for microorganisms due to its high accessibility, typically 

resulting in rapid decomposition. An increase in the proportion of macroaggregates is an 
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indicator of high soil physical quality (e.g. aeration, water movements, nutrients exchange) , as 

such conditions offer favorable conditions for microbial growth and activities (Schjønning et 

al. 1999; Jäger et al. 2011). Under such situations (low physical protection and high microbial 

activity), increased mineralization of unprotected residues may lead to a high residue C loss to 

stabilization ratio. This would explain the shape of observed (measured) relationships (Fig. 1-

1) between C input and SOM change under increasing C additions. Nevertheless, residue 

quality can have a stronger effect on aggregation because it directly affects microbial 

functioning. 

1.3.2 Changes in crop residue quality  

Crop residue quality is an essential factor controlling SOM formation, stabilization and 

dynamics. Crop residues vary in their structural and chemical composition (Adair et al. 2008). 

Residues are often classified on the basis of C/N ratio and the contents of a recalcitrant 

substance such as phenols, tannins, or lignin (Stewart et al. 2015; Wang et al. 2015a). Residue 

decomposition rates are generally negatively related to the amount of recalcitrant compounds 

present in their biomass (Bertrand et al. 2006; Castellano et al. 2015). Aboveground residues 

(e.g. leaves and stems) are considered high quality because they contain less recalcitrant 

compounds and lower C/N ratios than belowground residues (e.g. roots) (Bertrand et al. 2006; 

Lian et. 2016; Rasse et al. 2005). The application of N fertilization generally improves crop 

residue quality by increasing nutrient contents and lowering C/N ratio (Schmidt et al. 2015; 

Silveira et al. 2013).  

The role of residue quality in SOM formation is currently under debate. The common view on 

recalcitrant root residues, which are decomposed slowly and therefore contribute significantly 

to SOM content (Berg and McClaugherty 2014; Johnson et al. 2014; Rasse et al. 2005), 

contradicts the view of the large contribution of high quality (easily decomposable) residues to 

stable SOM formation (Castellano et al. 2015; Cotrufo et al. 2013; Lehmann and Kleber 2015). 

The latter concept is mainly associated with microbial by-products, which are released and 

stabilized in the mineral-associated SOM fraction during microbially-mediated plant residue 

decomposition (Cotrufo et al. 2013; Lehmann and Kleber 2015). Therefore, compared to 

recalcitrant residues, easily-decomposable residues can greatly contribute to the stable SOM 

fraction. However, the fast mineralization of easily-decomposable residues (disproportionally 

increase with addition level) may increase C losses more than stabilization within SOM 

fractions (Xiao et al. 2015).  
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1.3.3 Residue partitioning within SOM fractions  

SOM is usually classified into its three main fractions on the basis of density. On the basis of 

residue decomposability, added crop residues partition into various SOM fractions. The fraction 

which is least decomposed (fresh input) and remains unprotected by physical mechanisms is 

referred as the free light fraction of SOM. The SOM fraction that partially decomposes and is 

protected by physical mechanisms, e.g., inside aggregates, reflects the occluded light fraction 

of SOM. The third SOM fraction is the heavy fraction, which is highly decomposed and 

considered stable for decades because of its strong association with mineral particles. The heavy 

fraction of SOM generally depends on microbial by-products, which are released during crop 

residue decomposition (Cotrufo et al. 2013; Schrumpf et al. 2013) or microbial turnover 

(Miltner et al. 2012). On the basis of its formation mechanism, the heavy SOM fraction is highly 

affected by long-term management practices.  

A non-linear increase of SOM levels (as shown in Fig 1-1) under increasing C inputs is 

primarily linked to the saturation (or less increase per unit of C input) of SOM fractions 

(Hassink and Whitmore 1997; Six et al. 2002). This means that, besides the unprotected 

fraction, SOM fractions have only a limited capacity to stabilize SOM. Within SOM fractions, 

the saturation of mineral-associated fractions is more important, as it represents the major pool 

(up to 80%) of SOM in cropland soils (Stewart et al. 2007). It has been observed that the 

unprotected light fraction of SOM increases proportionally to the C input, however, mineral-

associated or aggregate protected fractions can stabilize SOM only up to a certain limit (Gulde 

et al. 2008; Stewart et al. 2008). This may explain why Gong et al. (2009) found increases in 

heavy fraction C (and also total SOM) with increasing C input in a soil depleted in SOM, while 

Heitkamp et al. (2011) did not report any effect in a sandy soil (due to a lower proportion of the 

heavy SOM fraction). When the heavy or occluded fraction reaches its effective capacity, a 

higher portion of C input will be partitioned to a less-protected labile fraction (e.g., light 

fraction). The light fraction can rapidly mineralize, resulting in greater losses (as CO2) or 

leaching of unprotected SOM into the subsoil (Stewart et al. 2008).  

1.3.4 Stabilization in subsoil  

The importance of management effects on SOM is mostly considered for topsoil (Ap horizon, 

plough layer), while information for subsoil is scarce (Gregory et al. 2014; Ogle et al. 2005). 

Subsoil SOM stabilization mostly occurs through dissolved organic C (leaching from topsoil), 

bioturbation and root growth (Rumpel and Kögel-Knabner 2011). The subsoil SOM 
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stabilization is linked with the soil texture and topsoil management practices (Hobley and 

Wilson 2016; Hobley et al. 2016). Apparent differences in SOM stocks between land-uses or 

management practices turned out to be primarily due to redistribution of SOM into deeper soil 

layers (Don et al. 2009). If translocation of SOM happens only at high rates of C inputs, the 

relationship observed between input and SOM changes in the topsoil can be similar to that in 

Fig. 1-1 (nonlinear measured relation). SOM stabilization in subsoil is considered more 

effective because it generally contains higher clay contents (e.g. Luvisols), which are mostly 

C-deficient and is less exposed to these changes (Hobley and Wilson 2016; Kögel-Knabner et 

al. 2008). However, in contrast to the general assumption that subsoil is less affected by 

management, Khan et al. (2007) showed more serious losses of SOM below the plough layer 

in a silty-loam soil. A possible explanation of subsoil C loss can be due to priming, which 

normally occurs after an input of “fresh C” to the soil (Fontaine et al. 2007).  

1.3.5 Soil priming effect 

Soil priming effect (PE) is the short-term change in native SOM mineralization caused by 

substrate addition (Fig. 1-2, Kuzyakov et al. 2000). The PE is a natural process that is induced 

by pulses or continuous inputs of fresh organics (Kuzyakov et al. 2000). Soil microorganisms 

are frequently C limited, thus, the input of C-rich crop residues stimulates microbial 

decomposition of SOM, resulting in PE (Blagodatskaya et al. 2011). The size of PE increases 

with the amount of substrate addition. Following substrate addition SOM mineralization 

typically increases, which is defined as a positive PE. However, if SOM decomposition slows 

following substrate additions then it reflects a negative PE (Fig. 1-2). For instance, if the added 

substrate is labile, then microorganisms would mainly rely on the added substrate and may 

decrease their dependence on recalcitrant SOM (Fontaine et al. 2003). This ultimately may 

result in a negative PE due to high substrate availability (Blagodatskaya and Kuzyakov 2008). 

On the other hand, if the added substrate stimulates the inactive or dormant soil microflora by 

providing energy, this would accelerate SOM mineralization (in parallel to substrate 

decomposition), thus resulting in a positive PE. The quality and amount of substrate is the most 

important factor that can affect soil PE. 

The increase in the number of studies on PE during the last decade reflects the interest in biotic 

mechanisms of carbon turnover in soil, which is still poorly understood (Blagodatskaya and 

Kuzyakov 2008; Chen et al. 2014; Fontaine et al. 2003; Wang et al. 2015b; Xiao et al. 2015). 

Most of the investigations on PE are performed with glucose additions as substrate, because 
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most plant polymers are rapidly decomposed to monosaccharides (Gunina and Kuzyakov 

2015). The few available studies which have determined the impact of plant residue additions 

on SOM dynamics primarily found a positive PE following application (Guenet et al. 2010; 

Moreno-Cornejo et al. 2015; Xiao et al. 2015). There may be several mechanisms explaining 

the variations in PE under contrasting substrate quality, as substrate quality directly affects 

microbial activity (Blagodatskaya et al. 2014; Fontaine et al. 2003; Kuzyakov et al. 2000). 

However, regardless of the specific mechanisms, any positive increase in SOM decomposition 

following substrate (residue) addition may lead to severe C losses, which would decrease the 

overall rate of SOM stabilization under high C inputs. 

 

 

Figure 1-2: Schematic diagram of the influence of organic substrate addition on soil organic 

matter (SOM) mineralization, i.e. priming effect (PE). The increase of SOM mineralization 

represents positive PE, while decrease of SOM mineralization reflects negative PE 

(modified after Kuzyakov et al. 2000).   
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2 Objectives and Methods 

2.1 Objectives 

To contribute to knowledge needed, the thesis aim is to explain an unexplained observations 

from long-term experiment Puch (near to Munich) Germany: where increasing amounts of C-

input with straw did not increase SOM stocks efficiently (Fig.1-1, Heitkamp et al. 2012a). The 

idea was to test whether soil structure, crop residue quality or quantity, C partitioning between 

SOM fraction, C-translocation and SOM priming would explain the pattern of SOM 

stabilization, which was observed under long-term experiment started in 1983. 

The specific study objectives were as following: 

(1) To determine the effect of crop residue quality and quantity on soil aggregates 

formation and SOM physical protection (Chapter 3.1) by hypothesizing that; 

(i) regardless of addition level, belowground residues will be mineralized slower 

than aboveground crop residues;  

(ii) the aggregate formation will increase with the residue addition level;  

(iii) the percentage of residue derived C stabilized within aggregates will decrease 

with the addition level.  

(2) To investigate the mechanisms and thresholds levels of wheat residue quality and 

quantity (13C-labeled) inducing SOM priming (Chapter 3.2) by hypothesizing that;  

(i) the intensity of SOM decomposition will be affected by the residue 

mineralization rates, i.e. SOM decomposition will be dependent on residue type;  

(ii) regardless of residue type, the intensity of PE will decrease with increasing C 

addition; 

(iii) we assumed that microorganisms decomposing added residues will represent the 

most active fraction of soil microflora. Therefore, we further hypothesized that 

the PE will be the main function of the microbial fraction feeding on residues 

and of its enzymes activities. 

(3) To explain and compare the integrated effect of long-term C inputs (along N 

fertilization rates), either straw or root dominated, on topsoil SOM contents, partitioning 



2 Objective and Methods 

11 

 

of C within topsoil SOM fractions and accumulation of SOM in the subsoil (Chapter 3.3). 

In particular, the specific goals of this study are;  

(i) to estimate and compare the changes in topsoil SOM levels due to C inputs (variable 

organics) and N fertilization over the study period, i.e. 32 years; 

(ii) to analyze the effects of topsoil managements on SOM accumulation in the subsoil; 

(iii) to quantify and compare the effects of C inputs and N fertilization on the partitioning 

of C among topsoil SOM fractions (f-LF, o-LF and HF), and the overall impact of 

these fractions on SOM formation. 

2.2 Methods  

The findings from controlled but short-term laboratory experiments and outcomes from the 

long-term field experiment will be correlated to test and quantify the relevance of SOM 

stabilization factors (discussed above). The long-term field experiment at Puch is well 

documented and designed, represents a common soil type (silt loam texture) in central Europe 

(Luvisol derived from loess) and covers a wide range of management options in a widespread 

cereal-based crop rotation. 

Knowing the reasons for the observed SOM changes versus C inputs is very important: if, e.g., 

soil limited physical capacity or increasing soil respiration (including priming) would explain 

low efficiency of SOM stabilization under high C inputs, then the alternative use of straw can 

be justified. This can suggest that energetic use of residues would be more efficient e.g. 

regarding mitigation of greenhouse gas emissions. However, soil physical properties cannot be 

disregarded in this respect, because it is important for the sustainable use of croplands and soil 

quality.  

2.2.1 Study site and layout  

The site is located in Puch, Germany close to the Munich (48°11’ N, 11°12’ E). The mean 

annual temperature and precipitation from 1984 to 2009 was 8.4 °C and 868 mm yr-1, 

respectively. The soil is classified as Luvisol (IUSS-WRB 2015) derived from loess sediments 

(clay: 18%, silt: 73%, sand: 9%) overlying glacial moraine deposits. The pH value declined 

from 6.5 to 6.1 during the study period. Before the initiation of the experiment the site was used 

as cropland probably for decades or centuries. 
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The crop rotation is silage maize (Zea mays L) – winter wheat (Triticum aestivum L) – winter 

barley (Hordeum vulgare L). In 1983 the experiment was laid out as a full-factorial strip-design 

with two factors (n = 3). Factor one is organic additions and the second N-fertilization rates 

(Table 2-1). Application of P and K was equal in all treatments but varied between years 

according to plant needs (Hege and Offenberger, 2006). Five levels of organic amendments are 

considered here: (i) – Control: no amendment, straw (wheat and barley) removed; (ii) – Slurry: 

slurry application, straw removed; (iii) – Manure: application of farmyard manure every third 

year, straw removed; (iv) – Straw: straw incorporated; and (v) – Straw with slurry: slurry 

application, straw incorporated. 

 

 

 

C input by farmyard manure, slurry and straw addition was fixed and measured before the 

addition. While inputs by crop residues (stubbles and roots) were estimated and were increased 

with N fertilization (Heitkamp et al. 2012a). Since already measured C-inputs showed a large 

gradient of C-input especially with straw and straw plus slurry additions, which make the 

experiment well suited for the proposed study. Rates of N-fertilizer (three levels, N0, N2 and 

N4) varied between crops and since 1999 the amounts and frequency of N fertilization given to 

winter wheat and winter barley was changed (Table 2-1).  

 

Figure 2-3 An aerial view of the study site located at Puch, close to Munich 
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Table 2-1: Rates of N-fertilizer application and annual C additions.  

N-addition (kg ha-1 yr-1) N0 N2 N4 

1983-1998    

barley 0 60 80/40 

wheat 0 50/30* 70/50/40 

maize 0 100 120/80 

Since 1999    

barley 0 50/30 80/40/40 

wheat 0 50/20/30 80/60/60 

maize 0 100 120/80 

C-addition (Mg ha-1 yr-1) 

Control 1.17 1.45 1.58 

Slurry 2.09 2.34 2.44 

Manure 2.23 2.49 2.64 

Straw 1.83 2.87 3.73 

Straw+Slurry 3.16 4.27 4.86 

*N amounts divided by slash indicate split applications 

2.2.2 Soil sampling 

To estimate the effects of crop residue quality and quantity inputs on SOM stabilization under 

controlled conditions the soil (Luvisol) was sampled from the Ap horizon (0-25 cm) of an 

experimental-field located in the North West of Göttingen, Germany (51°33′36.8″ N, 

9°53′46.9″ E). The sampled soil characteristics were similar to the long-term field experiment 

located at Puch. The soil had silt-loam texture with following chemical characteristics: the 

organic C (with standard error) content of 12.6 (0.4) g kg−1, a C/N ratio of 9.7 and pH (CaCl2) 

of 6.0.  

To estimate the long-term management effects on SOM stabilization and to correlate them with 

the findings of incubation studies, the soil samples were taken from a depth of 0-25 cm (topsoil) 

and 25-50 cm (subsoil) from the Puch field site. The sampled topsoil depth (0-25 cm) represents 

the plough layer which is annually mixed by tillage. While the purpose of subsoil (25-50 cm) 

sampling was to investigate the impact of long-term C inputs on subsoil SOM accumulation. 

For each organic additions, the soil was sampled in three field replicates within each selected 

N fertilization rate. Three levels of N fertilization were selected i.e. no- (N0); medium- (N2) 

and high-fertilization (N4) (Table 2-1).  
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2.3 Summary of experiment and main results 

Table 2-2: Summary of the experiments: objectives, methods and main results. 

Objectives/Aims Methods Main results 

1. To determine the 

effect of crop 

residue quality and 

quantity on soil 

aggregates 

formation and SOM 

protection 

13C-labeled wheat residue 

varying in quality (leaf, stem, 

root) and quantity were used to 

trace plant residue C in various 

pools. 

Aggregates size fractionations 

(macro-, microaggregates and 

silt plus clay) was done by wet 

sieving method. 

C sources were partitioned in 

CO2 efflux, microbial biomass 

and aggregates. 

Aggregate formation increased 

generally with addition level. 

Decrease of residue occlusion with 

increasing inputs 

Aboveground C retention in 

aggregates decreased at a high level 

of addition. 

Soil priming mainly depended on 

the level of addition. 

Increased mineralization and less 

residue physical protection 

decreased SOM stabilization. 

2. To investigate the 

mechanisms and 

thresholds levels of 

wheat residue 

quality and quantity 

(13C-labeled) 

inducing SOM 

priming 

Partitioning of C sources in 

CO2 and in microbial biomass 

at different sampling periods 

over a 120 days incubation 

period. 

Measurements of enzyme 

activities involved in C, N and 

P cycles at different sampling 

periods. 

Estimation of threshold values 

of residue quality for SOM 

priming by developing a new 

unifying logistic model. 

Root residue induced stronger and 

higher SOM priming effect than 

aboveground crop residues. 

Microbial-residues served as SOM 

primer. 

Priming effect was a power function 

of crop residue mineralization rate. 

The microbial fraction (and their 

enzyme activities) feeding on crop 

residues served as an active players 

of SOM priming. 

Aboveground residues 

decomposition disproportionally 

increased with the addition level. 

3. To determine the 

impact of long-term 

C inputs (along N 

fertilization rates), 

either root or straw 

dominated, on SOM 

stabilization and C 

Estimation of topsoil (0-25 cm) 

SOM changes occurred since 

the initiation of the experiment 

(32 years). 

Separation of SOM pools into 

free light fraction, occluded 

light fraction and mineral-

Topsoil SOM contents increased 

with input (also by N fertilization), 

mainly because of the C in the free 

light fraction. 

The topsoil SOM lost up to 15% 

under no organic additions during 

32 years. 
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partitioning within 

topsoil SOM 

fractions, and to 

estimate the subsoil 

SOM contents 

 

associated SOM fraction by 

density fractionation using 

sodium polytungstate (p <1.6 g 

cm-3). 

Estimation of subsoil (25-60 

cm) SOM contents. 

Straw contributed little to the f-LF 

but prevented C losses from the 

mineral-associated SOM fraction, 

which observed without straw 

additions. 

Root C retained longer in the light-

fractions and were responsible for 

SOM increase with N fertilization. 

4.  Additional 

studies: 

To explore the 

responses of SOM 

versus residue 

mineralization in 

response to glucose 

addition over an 

incubation period of 

3 months in a soil 

having one month 

partially 

decomposed wheat 

residues (leaves, 

root)  

A three-source partitioning 

approach was applied using 

dual isotopic labels (13C/14C) to 

partition the decomposition of 

glucose, residue and SOM. 

Residues were preincubated in 

soil (for 30 days) to obtain 

partially decomposed wheat 

residues and there after glucose 

was added. 

Glucose priming effect both on 

SOM and residues was 

distinguished. 

Source partitioning was done 

for CO2 and microbial biomass. 

Glucose addition caused negative 

priming effect on residues 

(predominantly leaves) and strong 

positive priming effect on SOM. 

Increased SOM derived C 

(compared to residue derived) in 

microbial biomass suggested that 

glucose caused preferential 

microbial utilization of SOM over 

plant residue.  

Priming induced by glucose was 

mainly due to SOM decomposing 

microorganisms. 

The priming effects of residue on 

SOM changed by the presence of 

glucose. 
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Highlights  

 Aggregate formation increased generally with addition level. 

 Decrease of residue occlusion with increasing inputs 

 Aboveground C retention in aggregates decreased at a high level of addition. 

 Soil priming mainly depended on the level of addition. 

 Increased mineralization and less residue physical protection decreased SOM 

stabilization. 

 

Graphical abstract 

  

Conceptual diagram of the effects of levels of residue addition on the efficiency of soil 

organic matter stabilization (SOM) by three processes: Aggregate formation, Physical 

protection of added residues, and Priming intensity. The red color represents increasing 

process intensity. The dashed lines indicate the conditions affecting growing fraction of 

microbial biomass (important for priming) as influenced by the three soil processes. 
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3.1.1 Abstract 

Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. 

However, organic matter input and SOM stocks are not linearly related. Consequently, adding 

high amounts of residues, such as straw, may increase SOM to only a small extent, and an 

alternative use of the residues may be justified. The objective of this study was to test how the 

level and type (above- or belowground) of residue addition affect SOM stabilization. We 

hypothesize that (1) root residues will be mineralized slower than leaf and stalk residues, (2) 

soil aggregate formation will increase with high additions, and (3) wheat residue addition will 

induce positive priming, with the magnitude depending on the residue level and type. 

Homogeneously 13C-labeled wheat residues (leaves, stalks, roots) were added to a silt-loam soil 

at levels of 1.40 and 5.04 g DM kg-1 and CO2 release and δ13C signature were measured over 

64 days at 20 °C. Water-stable macroaggregates (> 250 µm), microaggregates (53-250 µm) and 

silt plus clay size fractions (<53 µm) were separated and 13C incorporation from residue was 

quantified in each fraction after 64 days. Aggregate formation generally increased with added 

residue amount, but the proportion of residues occluded within aggregates decreased with 

increasing addition level. The occlusion of residues from aboveground biomass was more 

reduced with addition level than that of roots. Residue mineralization increased with the 

addition level, but this increase was less for roots compared to stalks and leaves. Priming effects 

were similar between residue types and mainly depended on the added amount: SOM 

mineralization increased by 50% and 90% at low and high addition levels, respectively. We 

conclude that the proportion of residues physically protected within aggregates decreases and 

priming effects increase with increasing C input leading to decreasing rate of long-term C 

stabilization within SOM by increasing residue addition. 

 

Keywords: root mineralization, straw residue, soil organic matter, carbon sequestration, 

priming effect, water stable aggregates  
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3.1.2 Introduction 

Globally, anthropogenic loss of carbon (C) from terrestrial ecosystems is estimated from 48 to 

114 Pg before the industrial revolution (Houghton, 2012). Since 1850, another 108 to 188 Pg C 

has been lost, which mostly stems from biomass but about 25% of this loss is contributed by 

soil organic matter (SOM) mineralization (Houghton, 2012; Lal, 2004). The soil C losses can 

be mitigated by recarbonization using recommended management practices thereby increasing 

food security (Lorenz and Lal, 2012; Sauerbeck, 2001). However, some mitigation options in 

agriculture are in direct competition with each other, e.g., use of crop residue for 2nd generation 

bioenergy crops versus residue incorporation into the soil for maintenance or build-up of SOM. 

The incorporation of crop residues, such as cereal straw, is an important measure to maintain 

or increase SOM levels under cropland (Lugato et al., 2014). Recent studies on long-term field 

experiments, however, show that incorporation of cereal straw is often not very effective in 

terms of SOM increases (Heitkamp et al., 2012b; Poeplau et al., 2015; Powlson et al., 2011). 

Resultantly, the efficiency (i.e. the increase of SOM per unit of input) of residue incorporation 

decreases with the amount added, as shown in a long-term experiment on a silt-loam Luvisol 

(Heitkamp et al., 2012b). Reasons for this may be (1) a lower proportion of belowground plant 

biomass, which is supposed to be more recalcitrant and have longer mean residence time in soil 

(Rasse et al., 2005), (2) a finite capacity of aggregates, which provide physical protection of 

SOM against mineralisation , and (3) priming of SOM by incorporation of plant residues. 

The biochemical composition and physical structure of crop residue affect mineralization 

(Prescott, 2010). Plant parts differ in chemical composition and physical structure, especially 

roots are more recalcitrant and so, have a longer mean residence time in soil (Heitkamp et al., 

2012a; Rasse et al., 2005). For instance, a meta-analysis showed that roots of herbaceous 

species decompose 1.8 times slower than leaves (Freschet et al., 2013). Therefore, increasing 

aboveground input by crop residue shifts the input away from below-ground sources and can 

decrease the average litter mean residence time in soil.  Occlusion within aggregates is another 

important mechanism to protect litter from mineralization (Six et al., 2004; von Lützow et al., 

2008). 

Aggregates, which protect SOM by physical occlusion, are formed by biological and 

physicochemical processes (Six et al., 2004). Aggregates are often classified according to 

stability (e.g. resistance against slaking) and size. The addition of residue forms hotspots of 
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microbial activity triggering the formation of aggregates. The amount and type of organic 

matter input having differential decomposition rates can affect aggregate dynamics (Gunina et 

al., 2015). However, due to the limited capacity of storage, some studies showed that residue 

addition levels had little effect on aggregate C contents (Andruschkewitsch et al., 2014; Stewart 

et al., 2008). In consequence, a higher proportion of crop residue would remain physically 

unprotected when incorporation of residues is increased. In contrast Poirier et al. (2014) 

observed macroaggregates formation was leveled off at increasing residue input, however, 

residue kept accumulating in aggregates due to occlusion and adsorption mechanisms. 

In the soil, labile substances can cause positive priming, i.e. additional (compared to without 

substrate addition soil) CO2 release by accelerated SOM mineralization. Many experiments on 

priming were performed with glucose because the most plant polymers will be decomposed to 

monosaccharides rapidly (Gunina and Kuzyakov, 2015). Only a few studies investigated 

priming effects of crop residue on SOM (Guenet et al., 2010; Moreno-Cornejo et al., 2015). 

These studies show contrasting results: whereas Guenet et al. (2010) reported that priming of 

SOM by wheat residues is a non-linear function which saturates with the addition of 2.2 g straw 

kg-1 soil, Poirier et al. (2013) showed an almost linear increase up to 40 g maize residue C kg-1 

soil. Xiao et al. (2015) suggested that priming increases linearly with litter addition upon the 

response of enhanced microbial biomass and activity. Residues with lower C/N ratio or mineral 

N addition decreased the priming effect slightly (Guenet et al., 2010; Moreno-Cornejo et al., 

2015; Wang et al., 2015).  

Summarizing, with increasing levels of residue incorporation the increase of SOM per unit of 

input may decrease 1) due to a shift from recalcitrant below to labile aboveground input, 2) by 

a lower proportion of fresh residues protected within aggregates or 3) by inducing positive 

priming of SOM. In a controlled experiment, we tested these three possibilities by incorporation 

of 13C labeled wheat plant parts (leaves, stalks and roots) at two levels into a silt-loam soil 

during 64 days of incubation. We hypothesise that (1) regardless of addition level, root residue 

will be mineralised slower than leaves and stalk residue, (2) aggregate formation will increase 

with addition level, but the proportion of residue C stabilized within aggregates will decrease, 

and (3) wheat residue addition will induce positive priming, with its magnitude depending on 

the level of addition and the type of residue. 
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3.1.3 Materials and methods 

3.1.3.1 Soil and wheat residue 

The soil (Haplic Luvisol) samples were taken from the Ap horizon (0-25 cm) of an experimental 

field, located on a terrace plain of the river Leine in the North West of Goettingen, Germany 

(51°33ʹ36.8ʺ N, 9°53ʹ46.9ʺ E). The soil had silt-loam texture (clay: 7.0%, silt: 87.2%, sand: 

5.8%) and was carbonate-free with a mean organic C (with standard error) content of 12.6 (0.4) 

g kg-1, a C/N ratio of 9.7 and pH (CaCl2) of 6.0. Since more than 25 years the field has been 

cultivated with annual C3 crops (predominantly wheat; Kramer et al., 2012). The soil was air 

dried after sampling. Larger clods were crushed with mortar and pestle, sieved (< 2 mm) and 

fine roots and other visible plant debris were carefully removed.  

The wheat (Triticum aestivum L.) plants were labeled with 13C every week after emergence for 

at least 8 hours in a growth chamber. Seeds were planted into pots filled with quartz sand, were 

watered regularly and once a week Hoagland’s nutrient solution (N: 210, K 235, Ca 200, P 31, 

S64, Mg: 48 ppm plus micronutrients) was added. Labeled (99 Atom%) NaH13CO3 was injected 

into H2SO4 positioned in the chamber. In the night (dark period) the chamber was left closed 

and was opened in the morning after respired CO2 was taken up again. Further details are 

presented by Bromand et al. (2001). Plants were harvested after senescence, where roots were 

washed free from the sand with tap water. Wheat biomass was carefully separated into leaves, 

stalks and roots. Each part was chopped and sieved (< 2 mm) to achieve more homogeneous 

mixing with soil for incubation. The content of C, N and 13C Atom % (At%) was measured with 

an isotope ratio spectrometer coupled to an elemental analyzer (Delta plus, EA-IRMS, see detail 

section 3.1.3.5). The mean C concentrations of leaves, stalk and roots were in the order: 391.9 

±6.1 (C/N: 17.2±0.3), 409.6 ±8.7 (C/N: 21.5 ±1.17) and 278.3 ±5.9 (C/N: 15.5±0.5) g kg-1, 

respectively. The At%13C values for the residue types were 1.55 ±0.00 (leaves), 1.34 ±0.01 

(stalks) and 1.51 ±0.03 (roots).  

3.1.3.2 Incubation and sampling 

Maximum water holding capacity (WHC) of the soil was determined by soaking for 24 hours, 

subsequent free drain for 1 hour and weighing in the wet and dry state. A hundred grams of 

sieved and dried soil was weighed into 750-ml incubation jars. The soil was then preincubated 

at 50% of its WHC for seven days, because rewetting and sieving affect the availability of SOM 

for microorganisms and may cause a respiration flush (Blagodatskaya and Anderson, 1999). 
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The pre-incubated soil was amended with labeled wheat leaves, stalks or roots with low or high 

amounts and one control were left without residue addition (n = 4). The added residues were 

thoroughly mixed with incubated soil. Water contents were then adjusted to 70% of WHC 

before starting the incubation for 64 days. Residues were added at rates of 1.4 and 5.04 g DM 

kg-1 as low and high addition level, respectively. These amounts correspond to 5 and 18 Mg ha-

1 of residues under field conditions assuming 25 cm depth and a bulk density of 1.5 g cm-3. We 

added residues on a dry matter base, however, C input by roots with lower C-contents 

corresponds to ca. 70% of the C amount added with leaves or stalks.  

3.1.3.2 CO2 efflux  

Released CO2 was trapped in small bottles with 10 mL of 1 M NaOH placed in the incubation 

jars (including 4 controls without soil) which were closed air-tight. The NaOH traps were 

replaced after 2, 6, 11, 17, 27, 51 and 64 days. Therefore, jars were not closed longer than 14 

days and the capacity of NaOH was never used up to more than 60%. To quantify respired CO2, 

NaOH was titrated with 0.1 M HCl until pH 8.2 using phenolphthalein as indicator. Excess 0.5 

M BaCl2 was added to precipitate CO3
2- before titration. Another Aliquot of NaOH was mixed 

with 1 M SrCl2 in a 15 ml centrifugation tube and centrifuged for 5 min at 2000 rpm 

(Blagodatskaya et al., 2011). The centrifugation process was repeated until the pH level of the 

aliquot reached 7. The SrCO3 pellets were dried at 60 oC and stored for δ13C analysis.  

3.1.3.3 Fractionation of soil aggregates 

Water stable aggregates were separated at the end of incubation. The soil was oven-dried at 

40oC for 24 h. Then, 70 g of dry soil was placed on a 250 µm sieve and submerged in ca. 1.5 L 

distilled water for 5 min to allow slaking (Six et al., 1998). Thereafter, the sieve was moved up 

and down into the water with 50 repetitions in 2 min. Water-stable aggregates remaining on the 

mesh (macroaggregates >250 µm) were collected in pre-weighed aluminum foil then dried and 

weighed. Aggregates which passed the 250 µm-sieve were poured onto the next smaller mesh 

size (microaggregates: 53-250 µm) and the fractionation-procedure was continued as described 

above. Finally, the silt and clay size fraction together with the finest microaggregates <53 µm 

was collected in a pre-weighed container, dried and weighed.  

3.1.3.4 Microbial biomass 

The fumigation extraction method was used to measure microbial biomass C, as described by 

Vance et al. (1987). Briefly, 10 g of moist soil was divided and one subsample was fumigated 
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for 24 h at 25 °C with ethanol-free CHCl3. Both subsamples were shaken for 1 h at 175 rev. 

min–1 with 20 mL of 0.05 M K2SO4. The obtained extracts were kept cold (< 4 oC) and analyzed 

the next day for total C concentration (Multi N/C 2100, Analytik Jena, Germany). Microbial 

biomass C was calculated as EC/KEC, where EC = (organic C from fumigated soils) – (organic 

C from non-fumigated soils) and KEC = 0.45 (Wu et al., 1990).  

3.1.3.5 Isotopic analysis and calculations 

At the end of incubation period, soil aggregates size classes were ground to a fine powder using 

a ball mill for 3 minutes and then analyzed for carbon concentration as well as 13C/12C ratios. 

The analyses were performed at the Centre for Stable Isotope Research and Analysis (KOSI) 

University of Goettingen, Germany, using an isotope ratio mass spectrometer (Delta plus, 

IRMS; Thermo Fisher Scientific, Bremen, Germany), coupled to an elemental analyzer (NC 

2500; CE Instruments, Milano, Itlay). The values were calibrated with reference to the 

international VPDB (Vienna Peedee Belemnite) standard. For 13C/12C ratio measurements in 

microbial biomass, the extracts from fumigated and nonfumigated samples were freeze-dried 

and weighed in capsules. As incorporated wheat residues were highly enriched, residue derived 

C in all pools was calculated by using At%13C values. At%13C values originated from the 

incubated soil were calculated according to the following Eq. (1):  

𝐴𝑡% 13𝐶 = [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 13𝐶 𝑎𝑡𝑜𝑚𝑠/(𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓(12𝐶+ 13𝐶) 𝑎𝑡𝑜𝑚𝑠] ∗ 100   (1) 

In the various pools, the fraction of total C (f C) derived from residues was calculated using Eq. 

(2): 

𝑓𝐶 = [(𝐴𝑡𝑡𝑟 − 𝐴𝑡𝑐)/(𝐴𝑡𝑟 − 𝐴𝑡𝑐)]         (2) 

Where Attr represents At%13C values of, aggregate size fractions, CO2-C trapped in NaOH, 

extracted C, derived from the residues amended soil. While Atr represents At%13C values of 

initially incorporated wheat residues (leaves, stalk or roots), Atc represents At%13C values of 

each corresponding pool coming from the unamended sample. Thus, the amount of residue 

derived C (Cres-derived) in various pools, was computed using Eq. (3) (Poirier et al., 2013). 

𝐶𝑟𝑒𝑠−𝑑𝑒𝑟𝑖𝑣𝑒𝑑 = 𝑓𝐶 ∗ [𝐴]         (3) 

Where [A] represent either total organic C in aggregates size classes (g kg-1 soil) measured by 

a dry combustion method, total respired CO2 (mg C kg-1) measured by titration method, C 

contents of fumigated or non-fumigated K2SO4 extract (mg kg-1).  
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Similarly, the amount of SOM derived C (CSOM-derived) was calculated by subtracting Cres-derived 

from total C of the corresponding pool. The amount of priming effect (PE, mg C kg-1) was 

calculated according to the following Eq. (Blagodatskaya et al., 2011).  

𝑃𝐸 = (𝐶𝑂2 𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑂2 𝑟𝑒𝑠−𝑑𝑒𝑟𝑖𝑣𝑒𝑑) − 𝐶𝑂2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙       (4) 

For the estimation of total residues derived C incorporation in microbial biomass, firstly 

residues derived C was calculated separately from fumigated and non-fumigated samples by 

using Eq. 3, thereafter values of the non-fumigated sample were subtracted from fumigated. 

3.1.3.6 Statistical analysis  

The experiment was laid out as a full-factorial, fully randomized design. The factor “type” had 

three levels (leaves, stalks, roots) and the factor “level” had three (no addition, 1.4. and 5.04 g 

kg-1) or two levels. Two levels were used when comparing residue-derived C in fractions, where 

inclusion of “no addition” was not suitable. Statistical analyses were performed with SPSS 11 

using a two-way ANOVA with “level” and “type” as fixed effects. When significant (p ≤ 0.05) 

effects were found, post hoc comparisons of means were performed using Fisher’s Least 

Significant Difference (Webster, 2007). A students t-test was used to test whether the increase 

in mineralization was different from the increase in addition within the different residue types. 

Assumptions of a normal distribution were tested by the Kolmogorov–Smirnov test while 

homoscedasticity was checked using Levene’s test. When assumptions were not met, a 

logarithmic transformation was used. The results are presented as means of 4 replicates for non-

isotopic, and 3 replicates for isotopic measurements.  

3.1.4 Results 

3.1.4.1 Effect of residue addition on aggregates and C distribution 

The distribution of the water-stable macroaggregates (>250 µm) was strongly affected by both 

residue level (p ≤ 0.001) and type (p ≤ 0.001). The interaction of level and type showed a strong 

tendency (p = 0.068) to affect macroaggregate distribution, meaning that the effect of residue 

type tended to be more pronounced at high level (Fig. S1-1). At high addition level, the 

proportion of macroaggregates decreased with residue type in the order: leaves (45± 2.9%), 

stalk (37.3± 3.8%) and roots (28.2 ± 2.4%). Correspondingly, the proportion of microaggregates 

increased in the same sequence (Fig. S1-1). The proportion of macroaggregates (17-23%) at 
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low addition level did not differ from unamended soil. Proportions of microaggregates were 

inversely related to macroaggregates. 

The formation of aggregates was accompanied by incorporation of wheat residues. Up to 58% 

of the residue C was incorporated in all aggregate fractions and about 37% was protected in 

macroaggregates (Table S1-1, Fig. S1-2). A much lower portion of residue derived C was 

observed in the microaggregates (7-15%) and in the silt plus clay fraction (1.5-2.7%, Fig. S1-

2). Absolute amounts of residue C were higher at high level throughout all size classes. 

However the portion of residue derived C (% of initial input) incorporated into aggregates was 

smaller at high addition level in macro- and microaggregates (Fig. S1-2). Moreover, the portion 

of root-derived C in microaggregates was significantly higher compared to stalk and leaves 

(Fig. S1-2). 
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Figure S1-1 The relative distribution of aggregate size classes (Macro >250 µm, Micro 53-

250 µm and silt plus clay <53 µm) after 64 days of incubation depending on type and level 

of crop residue additions. Means and standard errors (n=4). The probability levels of the 

ANOVA for accepting the null hypothesis that the factors have no effect are as follows: 

macroaggregates (type < 0.001; level < 0.001; type × level = 0.068), microaggregates (type 

< 0.001; level = 0.001; type × level = 0.349), < 53 mm (type = 0.034; level = 0.116; type × 

level = 0.003). 
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3.1.4.2 Microbial biomass  

Residue-derived C in microbial biomass was affected both by type (p = 0.001) and level (p < 

0.001) of addition. More C was incorporated at high level of all residue types (2-3 times), and 

incorporation was highest from leaves followed by stalks and roots (Fig. S1-3).  

Microbial biomass C derived from SOM was affected by the interaction of residue type and 

level (p = 0.001, Fig. S1-3). Addition with leaves and stalks decreased C contents of microbial 

biomass by 24 and 45 mg kg-1 at high compared to low addition level, respectively.  

3.1.4.3 Mineralisation 

Residue mineralization (Fig. S1- 4) after 64 days depended on the type and level of the addition 

(for both p < 0.001). For instance, residue mineralization at high addition level was 3.4 times 

higher for leaves (230 and 790 mg CO2-C kg-1, low and high level, respectively) and 4.1 times 

higher for stalks (200 and 820 mg CO2-C kg-1, low and high level, respectively) than at low 

level. Therefore, the increase in mineralisation was in the same magnitude as to the increase in 

addition level, which was 3.6 times higher (t-values 1.4 and 2.1 for leaves and stalks, 

respectively, critical t-value: 4.3). CO2 efflux derived from roots was lower (150 and 370 mg 

kg-1, low and high level, respectively; p < 0.001) as compared to leaves or stalks (Fig. S1-4). 

Table S1-1. The contribution of residue-C (as % of initial input) protected in different soil 

aggregate fractions (macroaggregates >250 µm, microaggregates 53-250 µm and silt plus 

clay <53 µm), and mineralized as CO2, in total recovery of added residue after 64 days of 

incubation, depending on the level and type of addition. Unrecovered plant residues were not 

incorporated into aggregates and removed from samples. Numbers in the brackets represent 

SE (n=3). 

Treatment Residue C (% of initial input) Total recovery (%) 

                    Aggregate classes CO2  

Low addition level   

Leaf 47.3 (3.9) 42.6 (0.8) 89.9 (4.7) 

Stalk 55.2 (1.5) 34.7 (2.2) 89.8 (3.5) 

Root 58.6 (0.9) 37.1 (1.4) 95.7 (2.3) 

High addition level   

Leaf 34.0 (0.3) 40.2 (0.9) 74.2 (0.9) 

Stalk 38.2 (0.7) 39.0 (1.6) 77.2 (2.2) 

Root 47.62 (5.2) 25.6 (1.4) 73.2 (4.3) 

ANOVA results(p values)   

Type 0.003 <0.001 0.758 

Level <0.001 0.018 <0.001 

Level x Type 0.567  0.001 0.332 
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CO2 evolution at low addition level was 65 to 75% compared to leaves and stalks and is fully 

explained by the lower C content of roots. At high level, however, mineralization of roots is 

less than 50% of leave and stalks. The increase of mineralization from low to high level was 

only 2.4 times (significantly different from 3.6, t-value: 7.0). Therefore, the type of residues 

was more important at high input level (type × level p < 0.001). 

Mineralisation of SOM (Fig. S1-4) increased (p < 0.001) with the level of residue addition. 

Consequently, SOM mineralisation was 50 to 90% increased due to the addition of field-

equivalent amounts of 5 and 18 Mg ha-1 crop residue (Fig. S1-4).  

3.1.5 Discussion 

Overall, results confirmed, at least in parts, all of our hypotheses. Our first hypothesis assumed 

that root residue mineralisation will be lower than of stalk and leaf. This was confirmed at least 

at high addition level (Table S1-1, Fig. S1-4) and is corroborated by previous work (Bertrand 

et al., 2006; Freschet et al., 2013; Rasse et al., 2005). The lower root mineralisation is generally 

explained by biochemical composition (more lignin, suberin, and less N) of roots being more 

recalcitrant (Bertrand et al., 2006; Rasse et al., 2005). It is, however, noteworthy that residue-

derived CO2-C efflux increased less with addition level for roots as compared to stalks and 

leaves (Fig. S1-4). Whereas residue input increased 3.6 fold, mineralisation of leaves increased 

3.4 fold, of stalks 4.1 fold and of roots only 2.4 fold. The mechanisms explaining the microbial 

activity with root input at high level cannot be elucidated unequivocally from our experiment. 

On the one hand, some compounds in roots may directly affect microbial activity negatively 

(e.g. phenolic compounds, Bertrand et al., 2006). On the other hand, interactions with the 

mineral soil matrix, such as aggregation, could protect residues from mineralisation. For 

instance, the proportion of root-derived C in microaggregates and the fraction < 53 µm is 

significantly higher for roots than for stalks and leaves (Fig. S1-2).  

The second hypothesis assumed that formation of aggregates will increase with the residue 

input level, but the proportion of residue-C incorporated within aggregates will decrease. The 

increase in macroaggregate formation was strikingly demonstrated (Fig. S1-1), as reported 

before in other studies using various organic additions (Abiven et al., 2009; Andruschkewitsch 

et al., 2014; Helfrich et al., 2008; Six et al., 2004). Correlation of microbial respiration with 

macroaggregate portion (Andruschkewitsch et al., 2014) confirms the contribution of active 
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microorganisms to aggregate formation. The correlation of the mass of macroaggregates with 

the CO2 release was better with residue-derived CO2 (r = 0.8) than with SOM-derived CO2 (r = 

0.5). The proportion of protected residue-derived C was smaller at high addition level for all 

types of residue (Table S1-1, Fig. S1-2). Thus, increasing addition level promotes 

macroaggregate formation. However, the low proportion of physically protected residues at 

high addition levels leads a decreasing C-stabilization rate within SOM. Only in case of high 

addition with roots, however, we found a potentially protecting effect of occlusion within 

aggregates. For instance, if occlusion within aggregates protects residues from mineralisation 

(Six et al., 2002) then residue mineralization (as a proportion of total input) should be lower 

when aggregate occlusion is higher. Table S1-1 clearly shows that this was only the case when 

Figure S1-2  Residue-derived  C  in  the  soil  aggregate  size  classes  (Macro  >250  µm,  

Micro  53-250  µm  and  silt  plus clay <53 µm). Upper subfigures present total aggregate 

protected C in soil and lower subfigures show protected C portion of initially added residue-

C. Means and standard errors (n = 3). The p-values calculated by an ANOVA show 

probability levels for accepting the null hypothesis that the factors have no effect. 
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roots were added at high level, whereas there was no significant difference for any other 

treatment in the proportion of mineralised residue. Therefore, physical protection did not play 

a marked role in C stabilization of aboveground residues. Although there are widespread 

assumptions that aggregates protect organic matter from mineralisation, this may not 

necessarily apply to freshly incorporated aboveground residues within macroaggregates 

(Andruschkewitsch et al., 2014). Microaggregates may be more effective in stabilising C (von 

Lützow et al., 2008) because sorption instead of physical occlusion may be the prevailing 

process (Lehmann et al., 2007). At high addition level of roots, we found not only a lower 

proportion of mineralisation (Table S1-1) but also a higher association of root C with 

microaggregates and the < 53 µm fraction (Fig. S1-2). Overall there was no evidence for 

physical short-term stabilisation of aboveground plant parts and higher association of large 

amounts of roots may indicate preferential long-term stabilisation under field conditions 

(Baldock and Skjemstad, 2000; Six et al., 2002; von Lützow et al., 2008). 
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Figure S1-3 The contribution of residue derived and soil organic matter (SOM) derived C 

to microbial biomass (left) and the amount of  primed C due to low and high level of crop 

residue addition (right). Means with standard errors (n=3). The probability levels of the 

ANOVA for accepting the null hypothesis that the factors have no effect are as follows: 

SOM derived C (type < 0.001; level = 0.001; level × type = 0.001), residue derived C (type 

= 0.001; level <0.001; level × type = 0.118), primed C (type = 0.413; level <0.001; level × 

type = 0.613). 
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Our third hypothesis assumed that the incorporation of wheat residue will induce positive 

priming of SOM, with its magnitude depending on the level of addition and the type of residue. 

The priming of added residues was evident from increased mineralization of SOM which 

mainly depended upon the amount of addition. (Fig. S1-4) Regardless of residue type, 

mineralization of SOM increased up to from 50 to 90% due to addition of low and high levels, 

respectively, whereas residue addition was increased 3.6 times. Therefore, the amount of 

primed CO2 decreased per unit of applied residue. This was also reported by Guenet et al. (2010) 

and Xiao et al. (2015). Generally, the addition of substrates activates microbial biomass, whose 

enhanced production of extra-cellular enzymes causes priming (Kuzyakov et al. 2009; 

Loeppmann et al. 2016; Wu et al. 1993). This is shown in our study by a growing fraction of 

microbial biomass which preferentially used residue C instead of SOM (Fig. S1-3; Xiao et al. 

2015). Indeed, primed C is related to residue-derived microbial C (R2 = 0.47) and also to 

residue-derived C in microaggregates (R2 = 0.80). We conclude that the intimate contact of 

residue and soil in microaggregates promotes diffusion of enzymes between the substrates 

Figure S1-4 Cumulative CO2-C release during 64 days of incubation depending on type 

and level of crop residue additions. Left: release from crop residues; right: release from soil 

organic matter (SOM). Mean values with standard errors (n = 3). The p-values calculated by 

an ANOVA show probability levels for accepting the null hypothesis that the factors have 

no effect. 
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(SOM and residues). Due to the smaller proportion of residues in aggregates with high addition 

level (Fig. S1-2, Table S1-1), the priming effect on a per-input-base levels off. This may also 

explain the lack of an effect of residue type on priming. We expected that the different 

mineralization of residue types would be reflected in the intensity of priming. Roots at high 

level showed least mineralization, but similar priming. Both findings can be linked to the higher 

incorporation of root residues into aggregates. 

3.1.6 Conclusions 

Our initial hypotheses were not all fully confirmed. Firstly, we hypothesised that mineralization 

of root residues will be lower regardless of addition level. Root residues at the low addition 

level were mineralised to a similar extent as leaves and stalks, and root mineralisation was lower 

only at high addition levels. Secondly, the portion of residue-C as percent of initial input 

incorporated into macro- and microaggregates was decreased with increasing input level, as we 

hypothesised. Roots at the high addition level, however, were incorporated into aggregates 

more effectively than leaves and stalks. Our third hypothesis assumed that priming would 

depend on the type and addition level of residues. Mineralisation of SOM was accelerated by 

50 to 90% and increased with residue addition levels. Contrary to our hypothesis, the type of 

residue showed no effect on priming. Overall, SOM stabilization decreased with increase in 

addition level. However, at the high addition level a higher portion of roots, compared to stalk 

and leaves, was incorporated into aggregates, which was accompanied by decreased 

mineralisation. Priming induced by freshly incorporated residues should be further investigated 

in aggregates with a special focus on dynamics and enzyme activities. Feedbacks between 

incorporation of fresh residues into aggregates and priming may be important under field 

conditions. We conclude that the proportion of residues physically protected within aggregates 

decreases and priming effects increase with increasing C input leading to decreasing rate of 

long-term C stabilization within SOM by increasing residue addition. 

In order to sustain sufficient SOM levels in arable soils, an efficient crop residue management 

under specific field conditions is rquired. Our findings highlight the necessity to connect the 

quantity and quality of crop residues for better predicting mineralization and stabilization of 

SOM. Specifically, this may also help to resolve the global implications to characterize and 

identify key soil and residue parameters for modeling of greenhouse gas emissions from soil. 
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3.2.1 Abstract 

Crop residue quality and quantity have contrasting effects on soil organic matter (SOM) 

decomposition, but the mechanisms explaining such priming effect (PE) are still elusive. To 

reveal the role of residue quality and quantity in SOM priming, we applied two rates (5.4-10.8 

g kg-1) of 13C-labeled wheat residues (separately: leaves, stems, roots) to soil and incubated for 

120 days. To distinguish PE mechanisms, labeled C was traced in CO2 efflux and in microbial 

biomass and enzyme activities (involved in C, N and P cycles) were measured during the 

incubation period. Regardless of residue type, PE intensity declined with increasing C 

additions. Roots were least mineralized but caused up to 60% higher PE compared to leaves or 

stems. During intensive residue mineralization (first 2-3 weeks), the low or negative PE resulted 

from pool-substitution. Thereafter (15-60 days), a large decline in microbial biomass along with 

increased enzyme activity suggested that microbial-necromass served as SOM primer. Finally, 

incorporation of SOM-derived C into remaining microbial biomass corresponded to increased 

enzyme activity, which is indicative of SOM co-metabolism. Both PE and enzyme activities 

were primarily correlated with residue-metabolizing soil microorganisms. A unifying model 

demonstrated that PE was a function of residue mineralization, with thresholds for strong PE 

increase of up to 20% root, 44% stem and 51% leaf mineralization. Thus, root mineralization 

has the lowest threshold for a strong PE increase. Our study emphasizes the role of residue-

feeding microorganisms as active players in the PE, which are mediated by quality and quantity 

of crop residue additions. 

 

Keywords: 13C-labeled crop residues, Enzyme activities, Litter quality, Microbial necromass, 

Priming effect, Soil organic matter   
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3.2.2 Introduction   

Soil organic matter (SOM) is primarily formed through the partial degradation and 

transformation of crop residues by microorganisms (Castellano et al. 2015). The quality and 

quantity of crop residues influence the microbial decomposition processes, which may affect 

residue and SOM mineralization rates, leading to a priming effect (PE). The PE represents the 

changes of native SOM decomposition as a result of exogenous substrate inputs such as crop 

residues (Jenkinson et al. 1985; Kuzyakov 2010). As soil microorganisms are mostly C-limited, 

input and/or high availability of substrates may alter their activities, resulting in a PE 

(Blagodatskaya and Kuzyakov 2008). While increasing amounts of substrate addition can 

decrease PE, the effect, however, depends on the substrate quality (Guenet et al. 2010). If 

substrate composition and availability are heterogeneous (e.g. crop residues), then a cascade of 

apparent (due to microbial turnover) and real (due to SOM decomposition) PE can be induced 

over time at various stages of substrate decomposition (Kuzyakov 2010; Xu et al. 2011).  

Crop residues vary in their structural and chemical composition (Adair et al. 2008; Aber and 

Melillo 1982). Residue decomposition rates are generally negatively related to the amount of 

recalcitrant compounds present in their biomass, such as lignin, phenols, tannins etc. (Bertrand 

et al. 2006; Castellano et al. 2015; Aber and Melillo 1982). Aboveground crop residues (e.g. 

leaves and stems) are considered high quality compared with belowground residues, which are 

relatively recalcitrant to decomposition e.g. roots (Bertrand et al. 2006; Rasse et al. 2005). The 

role of residue quality in SOM formation is currently under debate. The common view on 

recalcitrant root residues, which are decomposed slowly and therefore contribute largely to 

SOM (Berg and McClaugherty 2014; Johnson et al. 2014; Rasse et al. 2005), contradicts the 

view of the great contribution of easily decomposable residues in SOM formation (Cotrufo et 

al. 2013; Lehmann and Kleber 2015). The latter concept is mainly associated with the microbial 

by-products, which are released and stabilized in the soil mineral fraction during crop residue 

decomposition (Cotrufo et al. 2013; Ladd et al. 1996; Shahbaz et al. 2016b) and microbial-

turnover (Ladd et al. 1996; Miltner et al. 2012).  

The soil microbial turnover depends on substrate quality and availability (Leifeld and von 

Lützow 2014; Nguyen and Marschner 2016). If substrate availability or input is interrupted, 

microorganisms may respond by a switch to dormancy or their biomass decreases after 

microbial cell death. Such a relatively fast decrease of substrate dependent microbial biomass 

(MB) was already detected in several laboratory incubation experiments (e.g. Blagodatskaya et 
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al. 2011a; Jiang-shan et al. 2005; Tian et al. 2015; Wang et al. 2016). The decrease in MB 

results in accumulation of microbial-necromass (after their cell death), which is already 

considered as an important source for stable SOM (Miltner et al. 2009, 2012; Wagner 1968). 

Due to its heterogeneous nature, microbial-necromass may serve as labile substrates for living 

microorganisms and its re-utilization can represent SOM priming.  

The PE has often been explained by the microbial activation hypothesis (Chen et al. 2014). 

Instead of total microorganisms, the active microbial fraction is considered to be more 

important (Blagodatskaya and Kuzyakov 2013). The active fraction mostly consists of the 

growing portion of microorganisms, which respond rapidly to substrate addition, e.g. by 

producing  enzymes (Blagodatskaya and Kuzyakov 2013; Fontaine et al. 2007). Depending on 

substrate quality (i.e. labile substance or C/N ratio), the active microbial fraction produces 

enzymes either to degrade added organics or to decompose SOM to meet their nutritional 

demands (Schnecker et al. 2014; Wang et al. 2015). This, again, may result in variable 

successions of PE over time. The changes in microbial activity due to substrate decomposition 

(rapidly or slowly) can therefore be recognized, for example by the changes in enzyme activities 

(Burns et al. 2013; Nannipieri et al. 2002, 2012; Schnecker et al. 2014). 

Most of the studies investigating PE used labeled low molecular weight substances such as 

glucose and amino acids (e.g. Blagodatskaya et al. 2011a; Hoyle et al. 2008; Tian et al. 2015). 

Only a few studies have distinguished PE using labeled crop residues, mostly with contrasting 

results depending on the residue type. PE proves to be a linear function of MB but is also a 

saturation function of the substrate’s C amount (Guenet et al. 2010; Xiao et al. 2015). Although 

the effect of residue quality on PE is not obvious, the role of residue-decomposing microbial 

fractions in PE is highlighted based on the contrasting quality of substrate additions (Wang et 

al. 2015). We lack information explaining the mechanisms of PE under contrasting quality and 

quantity of crop residue C based on the active residue-feeding microbial fraction. 

The present study is designed to explain the mechanisms of PE induced by crop residues 

varying in their amount and quality. Here, we used homogeneously 13C-labeled wheat (Triticum 

aestivum L.) biomass to partition residue- and SOM-derived C within total CO2 and MB. We 

added contrasting quality wheat residues from both aboveground (leaves, stems) and 

belowground (roots) parts to soil at two levels. We hypothesized that: i) the intensity of SOM 

decomposition will be affected by the residue mineralization rates, i.e. SOM decomposition 

will be dependent on residue type; ii) regardless of residue type, the intensity of PE will decrease 
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with increasing C addition. We assumed that microorganisms decomposing added residues will 

represent the most active fraction of soil microflora. Therefore, we further hypothesized that; 

(iii) the PE will be the main function of the soil microorganisms feeding on residues and of its 

enzymes activities  

3.2.3 Materials and methods 

3.2.3.1 Study area and soil 

The soil used for the incubation was sampled from the Ap horizon (0-25 cm) of an experimental 

field located on a terrace plain of the Leine River north-west of Goettingen, Germany 

(51°33ʹ36.8ʺ N, 9°53ʹ46.9ʺ E). Since more than 25 years the field has been cultivated with 

annual C3 crops, predominantly wheat (Kramer et al. 2012).The soil was classified as Luvisol 

and had a silt-loam texture (6% sand, 87% silt, 7% clay). The pH and a test with 10% 

hydrochloric acid indicated the absence of carbonates. The carbonate-free soil had the following 

characteristics: MB 0.40 ±0.0 g C kg-1 soil, organic C 12.8 ±0.4 g kg-1; total N 1.3±0.0 g kg-1, 

pH (CaCl2) 6.0; δ13C -26.8‰. After sampling, the soil was air dried, sieved (< 2 mm) and fine 

roots and other visible crop debris and small stones were carefully removed.   

3.2.3.2 Production of 13C-labeled crop residues 

Wheat plants were grown to produce 13C-labeled residues as described in detail by Bromand et 

al. (2001). Briefly, wheat (Triticum aestivum L.) seeds were grown in pots filled with quartz 

sand and were watered regularly once a week with Hoagland nutrient solution (N: 210, K: 235, 

Ca: 200, P: 31, S: 64, Mg: 48 mg L-1 plus micronutrients). Following seedling emergence (11 

days after seeding), plants were placed inside a transparent closed chamber (120 cm wide × 104 

cm high × 60-cm deep) enclosed within a climate-controlled growth cabinet with the following 

conditions:  16/8 h photoperiod, light intensity at approximately 600 μmol m-2 s-1, mid day and 

night temperatures of 25°C and 15°C, respectively. The plants were labeled (for at least 8 h) 

continuously with 13C every week until harvesting. The intended enrichment of CO2 in the 

chamber was ~99 atom% 13C. To accomplish this, the CO2 concentration was first allowed to 

fall to 327 ppmv in the chamber. Thereafter, 13C-labeled CO2 was generated by injecting 

NaH13CO3 (as ~99 atom% 13CO2 source) solution through a septum into a generation flask 

containing 1M H2SO4. The evolved CO2 was swept into the sealed chamber with a small pump 

through a closed loop of tubing, and a fan circulated the CO2 inside the chamber. Wheat plants 
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continued to grow in the chamber until maturity (120 days of growth). Thereafter, the plants 

were harvested and roots were gently washed to remove the sand particles. 

To avoid any preferred decomposition of above- and belowground parts of the wheat biomass, 

plant residues were carefully separated into leaves, stems and roots. For homogeneous mixing 

of residues within the soil, each part of the residues was chopped and sieved (2 mm). Carbon 

and N contents of applied residues varied between residue types, whereby leaves, stems and 

roots had C contents of 391.9 ±6.1 (C/N: 17.2±0.3), 409.6 ±8.7 (C/N: 21.5 ±1.17) and 298.3 

±5.9 (C/N: 15.5±0.5) g kg-1, respectively. The atom% 13C values were measured with an isotope 

ratio spectrometer coupled to an elemental analyzer (Delta plus, EA-IRMS, see detail section 

3.2.3.7) (Table S2-1).  

3.2.3.3 Incubation and sampling 

For incubation, 50 g soil (dry weight basis) was weighed into 250-ml incubation bottles. The 

soil was then pre-incubated (at 22 °C) at 50% water holding capacity (WHC) for one week. 

Thereafter, the 120-day full-factorial incubation experiment with two factors – wheat residue 

type and residue addition level – was designed. Accordingly, eight treatments were included: 

three 13C-labeled wheat residue types (leaves, stem, roots), two addition levels (low and high, 

respectively 5.4 and 10.8 g dry mass kg-1 soil) and one control without residue addition. A 

reference treatment with the decomposition of crop residues in autoclaved sand was also 

conducted to consider isotopic fractionation during incubation. All treatments were set with 

three replicates. The added residues were thoroughly mixed in the soil, and the water contents 

were then adjusted to 70% WHC. Note, the control soils (without residue addition) also treated 

in the same way as those with residue addition. The residues were added on a dry matter basis. 

Accordingly, the C input by roots (with lower C content) corresponds to ca. 70% of the C 

amount added with leaves or stems.  

To estimate MB and enzyme activities, samples were destructively harvested at day 15, 30, 60 

and 120 of incubation.  

To prove that crop residue were homogeneously labeled, we sampled the partially decomposed 

residues during the incubation period (destructive sampling). A portion of the incubated soil 

(ca. 20 g, having residues) was submerged into distilled water; thereafter, the floating material 

was collected, dried (60°C) and analyzed for 13C values at IRMS (section 3.2.3.7). The isotopic 

signature of partially decomposed residues revealed that after 2-weeks (intensive residue 
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mineralization), the differences in 13C values for the rest of incubation period did not exceed 

0.03 atom% in all treatments (Table 1). This indicated that possible error due to the 

inhomogeneous (non-uniform) labeling of the residues was minimal and that it did not exceed 

the variation in 13C between the replicates. The isotopic signature was used as the residue 

reference material for the mass balance equation.  

3.2.3.4 CO2 efflux 

In order to measure soil respiration, CO2 was trapped in 5 mL 1M NaOH trap solution. The trap 

solution was replaced with fresh 1M NaOH aliquot at day 2, 4, 7, 11, 23, 30, 36, 46, 60, 81, 101 

and 120 of incubation. Therefore, incubation bottles were not closed longer than 21 days and 

the capacity of NaOH was never used up by more than 60%. An aliquot of sampled NaOH was 

immediately used to measure total soil and residue-derived CO2. The total amount of CO2 

trapped in the NaOH solution was determined by titration with 0.05 M HCl against 

phenolphthalein, after addition of 0.5 M BaCl2 solution. 

3.2.3.5 Microbial biomass  

To determine the C content in MB at all destructive sampling periods, the chloroform 

fumigation-extraction method was used as already described by Makarov et al. (2015) and 

Vance et al. (1987). Briefly, 6 g (moist) soil were extracted with 24 ml of 0.05M K2SO4 for one 

hour. The other 6 g soil was firstly fumigated with ethanol-free CHCl3 for 24 h at 22°C and then 

extracted in the same way. The obtained extract were analyzed for total C content using a 

TOC/TIC analyzer (Multi N/C 2100, Analytik Jena, Germany). The MB-C (K2SO4 extractable) 

was calculated as EC/KEC, where EC = is the difference between extracted organic C of 

fumigated and non-fumigated soils and KEC = 0.45 (Wu et al. 1990).  

3.2.3.6 Enzyme assays 

The enzyme activities at all sampling periods (15, 30, 60 and 120 days) were measured using 

fluorogenically labeled substrates (Pritsch et al. 2004; Sanaullah et al. 2016). Five fluorogenic 

enzyme substrates based on 5- methylumbelliferone (MUF) were used: MUF- β -D-

cellobiohydrolase (MUF-C; EC 3.2.1) for cellobiohydrolase, MUF- β -D-xylopyranoside 

(MUF-C; EC 3.2.1) for xylanase, MUF-N-acetyl- β -D-glucosaminide dehydrate (MUF-NAG; 

EC 3.2.1.14) for chitinase, MUF- β -D-glucopyranoside (MUF-G; EC 3.2.1.21) for β-

glucosidase and MUF-phosphate monoester (EC 3.1.3.2) for acid phosphomonoesterase 

(Nannipieri et al. 2011). l-Leucine-7-amino-4-methylcoumarin (AMC) substrate was used to 
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estimate L-leucine aminopeptidase (LAP) activity. All enzyme substrates were purchased from 

Sigma (Germany). 

Briefly, 0.5 g of soil (dry weight basis) were dispersed in 50 ml of deionized water for 2 min 

using low energy sonication (40 J S
-1). Then, 50 µl of the suspension were pipetted into 150 µl 

specific enzyme substrate solution (containing 50 µl of MES or Trizma buffer for MUF or AMC 

substrates, respectively) having a final concentration of 200 µmol g-1 soil. Fluorescence was 

measured by incubations of soil suspension (for 2 h at 22 °C) in 96-well microplates (puregrade, 

Germany) with fluorogenic substrates at an excitation wavelength of 355 nm and an emission 

wavelength of 460 nm, slit width of 25 nm, with a Victor R3 1420 Multilabel Counter (Perkin 

Elmer, Waltham USA).  

3.2.3.7 Isotopic analysis  

Since we used 13C-enriched plant material, the CO2-trapped NaOH samples were specifically 

prepared for isotopic analysis. For this, 3 ml of CO2-trapped NaOH solution was precipitated 

with an equal volume of 1 M SrCl2 solution. The NaOH solution containing SrCO3 precipitates 

was then centrifuged for 5 min at 2680 × g. The process was repeated with distilled water to 

remove excess NaOH and to reduce pH to 7. After removing water, SrCO3 pellets were dried 

at 60°C and stored for 13C analysis by an isotope ratio mass spectrometer (Delta plus, IRMS; 

Thermo Fisher Scientific, Bremen, Germany). The 13C values were expressed as atom%. The 

estimations were calibrated with reference to the international VPDB (Vienna Peedee 

Belemnite) standard. For 13C measurement of MB, an aliquot (ca. 10 mL) of the K2SO4 extract 

was freeze-dried and thereof solid material was analyzed. 

3.2.3.8 Calculations  

To partition residue- and SOM-derived C in total CO2 and microbial C, calculations were done 

step by step as suggested earlier (Blagodatskaya et al. 2011a; Poirier et al. 2013)  

Firstly, the 13C values (atom%) were calculated according to the following equation. 

𝐴𝑡𝑜𝑚%  13𝐶 = [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 13𝐶 𝑎𝑡𝑜𝑚𝑠/𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓(12𝐶 + 13𝐶) 𝑎𝑡𝑜𝑚𝑠] · 100  (1) 

Then the fraction of residue-derived C (f · Cres) was calculated according to the mass balance 

equation (Hayes 2004): 

𝑓 · 𝐶𝑟𝑒𝑠 = (𝐴𝑡𝑚𝑖𝑥 − 𝐴𝑡𝑐𝑜𝑛)/(𝐴𝑡𝑟𝑒𝑠 − 𝐴𝑡𝑐𝑜𝑛)        (2) 
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Where Atmix represents 13C atom% values of the residues-amended soil evolved as CO2 (trapped 

in NaOH), or present in fumigated or non-fumigated K2SO4 extracts. Atres represents specific 

13C atom% values of the corresponding residue source (i.e. leaves, stems, roots). Atcon shows 

13C atom% values of each corresponding pool of soil without residue addition.  

Finally, the amount of residue-derived C (Cres, g kg-1) was calculated according to equation (3): 

𝐶𝑟𝑒𝑠 = 𝑓 · 𝐶𝑟𝑒𝑠 · [𝑇𝐶]          (3) 

Where [TC] represents the total C amount of the corresponding pool (i.e. CO2, fumigated and 

non-fumigated K2SO4 extract)  

The amount of SOM-derived C (CSOM, g kg-1) was simply calculated by subtracting Cres from 

the total C of the corresponding pool.   

The amount of primed C released as total CO2, i.e. PE (g C kg-1), was calculated according to 

the following equation. 

𝑃𝐸 = 𝐶𝑂2 · 𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑂2 · 𝐶𝑟𝑒𝑠 − 𝐶𝑂2 · 𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙       (4) 

To estimate the residue-derived C fraction present as MB (Res_CMB) in each destructive 

sampling and at the end of incubation, firstly residue-derived C was calculated separately for 

fumigated and non-fumigated samples using equation 3. Then calculations were done according 

to following equation.  

𝑅𝑒𝑠_𝐶𝑀𝐵 = (𝑓 · 𝐶𝑟𝑒𝑠 − 𝑛𝑓 · 𝐶𝑟𝑒𝑠)/(𝑓 · 𝐶 − 𝑛𝑓 · 𝐶)      (5)  

Where f·Cres and nf·Cres are the Cres values of fumigated and non-fumigated samples, 

respectively, calculated according to Eq. 3. f·C and nf·C are the amounts of total C in fumigated 

and non-fumigated samples, respectively, determined as discussed in section 3.2.3.5. 

The relationship of both CO2 efflux and enzyme activities were highly positively correlated 

with the Res_CMB instead of total MB-C. Therefore, to estimate specific PE and enzyme 

activities (in relation to Res_CMB), the absolute amounts of PE (calculated according to Eq. 4) 

and enzyme activities (as described in section 3.2.3.6) were divided by the total amounts of 

Res_CMB, which was calculated according to Eq. 5.  

3.2.3.9 Threshold values for PE increase 
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The relationship between the fraction of mineralized residue, x (as % of initial input) and 

specific priming effect (PE), was best explained and fitted by a unifying model (combining 

logistic and power functions): 

𝑃𝐸(𝑥) = 𝑎 · 𝑥2 + 𝑏/[1 + exp(− 𝑐 · (𝑥 − 𝑑))] + 𝑒      (6) 

where PE(x) represents the specific PE, x the value of mineralized fraction of crop residues, a 

the residue quality coefficient, b the maximal PE value, c the residue-specific maximal rate of 

PE increment, d the mineralized fraction of residues at maximal rate of PE increment, and e the 

minimal PE value. Model parameters were optimized for best fitting of the model output to 

experimental data. All fits were done with Excel Solver facilities. For all the types of crop 

residues, the model demonstrated an excellent goodness of fit with r2 above 0.98. The model 

enabled estimation of the threshold value of the mineralized fraction of crop residues when 

maximal changes in PE increment occur. That corresponds to the point where the second 

derivative of the function (6) has its maximum. 

3.2.3.10 Statistical analysis  

The experiment was carried out as a full factorial, completely randomized design. The factor 

“type” had three levels (leaves, stems, roots) and the factor “addition” had two or three levels 

(no, low and high addition). Time was considered as a random factor where applicable. Two 

addition levels were used when comparing residue-derived C where inclusion of “no addition” 

was not suitable. Statistical analyses were performed with SPSS 11 using a two-way ANOVA 

(when the time was not considered) and three-way ANOVA with “addition level”, “type” as 

fixed effects and “time” as a random effect. When significant (p ≤ 0.05) effects were found, 

post hoc comparisons of means were performed using Fisher’s Least Significant Difference test 

(Webster 2007). The error propagation was calculated when the mean values were used for 

determining PE (Meyer 1975). Correlations (r) between MB (derived from residue and SOM) 

values and CO2 or potential enzyme activities in soils were analyzed by Pearson’s correlation 

method.  

3.2.4 Results 

3.2.4.1 13C in crop residues during incubation 

The 13C values of incorporated residues were specific to residue type i.e. leaves, stem and root 

had 1.54, 1.36 and 1.51 13C atom%, respectively. During the incubation period, the 13C values 
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of partially decomposed residues mainly declined until day 15, and thereafter remained nearly 

constant for the rest of incubation period, indicating that residues were homogeneously labeled 

(Table S2-1). The averaged (±SD) 13C (atom%) values of partially decomposed residues of 

leaves, stem and roots across all sampling period were 1.41±0.01, 1.32±0.01, 1.44±0.03, 

respectively. Accordingly, a very similar 13C values of the CO2 evolved from reference 

treatments with sand were detected. The average (±SD) values of 13C (atom%) across sampling 

periods were 1.41±0.03, 1.30±0.02, and 1.42±0.01 for leaves, stems and roots, respectively.  

 

Table S2-1: The 13C values (atom%) of leaves, stems and roots of wheat residues at 

different decomposition stages over the incubation period at days 0, 15, 30, 60 and 120. 

Numbers in brackets: ± SE of mean. 

Residue type 0 day 15 day 30 day 60 day 120 day 

Leaves (13C 

atom%) 

1.54 (0.00) 1.41 (0.01) 1.43 (0.00) 1.40 (0.02) 1.41 (0.01) 

Stems (13C 

atom%) 

1.36 (0.00) 1.32 (0.00) 1.33 (0.00) 1.31 (0.00) 1.31 (0.01) 

Roots (13C 

atom%) 

1.51 (0.00) 1.46 (0.00) 1.47 (0.01) 1.40 (0.04) 1.45 (0.01) 

 

3.2.4.2 Residue and soil organic matter mineralization  

Residue addition caused a significant increase in total soil CO2 efflux compared to the control 

without additions. At low additions, the amount of total CO2 efflux was higher in leaves and 

stems (for both, up to 1.9 g C kg-1) than in roots (1.5 g C kg-1) (Fig. S2-S1 supplementary 

material). At the high residue addition level, absolute CO2 efflux also increased. Similar to low 

additions, no differences in total efflux between leaves and stems (3.3 g C kg-1) were also found 

at high additions.  

The total amount of SOM-mineralized C in the control was 0.65 g C kg-1 soil over 120 days of 

incubation. Mineralization of SOM significantly increased with residue addition depending on 

the type and amount of residue (Fig. S2-1a). At the doubled amount of residue addition, the 

cumulative SOM mineralization remained similar between low and high addition levels of 

leaves (up to 0.9 g C kg-1) and stems (1.1 g C kg-1). In contrast, SOM mineralization under high 

root addition increased up to 15% compared with low additions (Fig. S2-1a). 
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The residue mineralization rate was significantly affected by both type and level of additions. 

Total mineralization was highest in leaves, lowest in roots (Fig. S2-1b). Depending on the 

quality and on the added amount, two distinct residue mineralization phases (intensive and 

slow) were observed. Remarkably, during the intensive phase, the residue decomposition was 

proportional to the added amount (for leaves and stems ca. 2-3 weeks) (Fig. S2-1b). During the 

slow phase (after 2-3 weeks), residue mineralization was disproportionally stronger for high 

versus the low amount of leaves and stems, but not for roots. 
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Therefore, at the end of the experiment, at low addition, the leaf-, stem- and root-derived CO2 

reached 1.0, 0.9 and 0.4 g C kg-1, corresponding to 46, 38 and 29% of their initial additions, 

respectively (Fig. S2-1b). Relative root mineralization after intensive phase was similar at high 

Figure S2-1. Cumulative CO2 release originated from soil organic matter (SOM, a), crop 

residue decomposition (% of initial addition, b), total priming effect (PE, c), and specific PE 

(d) over 120 days of incubation, depending on the residue type and addition level. Mean 

values with standard errors (n = 3). The p-values of the ANOVA showing the effect of 

different factors for all; cumulative CO2 release originated from SOM (a); residue 

decomposition (% of initial addition, b); total PE (c) and; specific PE (d) are as follows: type 

< 0.001, level <0.001 and their interactions; level × type < 0.001. 
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and low addition (i.e. 29% of initial input), whereas the leaf and stem mineralization rate were 

up to 17 and 30% faster at high than at low additions, respectively (Fig. S2-1b). 

3.2.4.3 Priming effect 

A significant increase in the SOM-originated CO2 efflux after residue addition caused a positive 

PE, but the PE intensity was strongly affected by residue quality and amount (Fig. S2-1c). The 

maximum PE was recorded for root (increase with the addition level: 0.42 to 0.58 g C kg-1) and 

lowest (even negative) for leaf addition (0.20 to 0.27 g C kg-1). Remarkably, larger PE was 

observed at low versus the high amount of stems and leaves during the intensive phase of 

decomposition. Furthermore, the cumulative PE remained negative under high leaf addition 

during the initial ca. 6 weeks of incubation (Fig. S2-1c).  

As the added residues varied in their C contents (see above), the specific PE was calculated 

based on C addition (Fig. 1d). The amount of specific PE (per unit of C) in root treatments was 

significantly higher than that of leaves and stems at both residue addition levels (Fig. S2-1d). 

The total amounts of specific PE in root treatments were 300 and 200 g C kg-1 at low and high 

root-C addition, respectively.  

 

Figure S2-2. The relationship between the fraction of mineralized residue, x (as % of initial 

input) and soil specific priming effect (PE), was best explained and fitted by a unifying 

model (combined with logistic and power functions): 𝑃𝐸(𝑥) = 𝑎 · 𝑥2 + 𝑏/[1 + exp(− 𝑐 ·

(𝑥 − 𝑑))] + 𝑒. Means and standard error (n=3). 
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Regardless of residue type, specific PE decreased at high versus low C addition (Fig. S2-1d), 

suggesting that the PE depended on the amount of decomposed residues. To clarify this 

relationship, we plotted the cumulative specific PE against residue-originated CO2 (Fig. S2-2). 

After a lag-period, the PE increased strongly over the course of residue decomposition. This 

demonstrates that during the initial intensive phase the decomposition rate of residues exceeded 

the PE. During the slow phase of residue decomposition, however, the PE increased drastically. 

A threshold (calculated by the second derivative, see section 3.2.3.9) of the decomposition 

function indicated that such a drastic increase in PE occurred when ca. 20, 29-44 and 39-51% 

of (low and high) roots, stems and leaves were decomposed, respectively (Fig. S2-2). 
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To differentiate the contribution of various sources of CO2 efflux from soil (within residue 

additions), respired from soil over 120 days, total respiration was partitioned (% contribution) 

Figure S2-3. The relative contribution (%) of carbon (C) sources from basal respiration, 

priming effect and residue mineralization) to their corresponding total soil CO2 efflux after 

120 days of incubation, depending on the residue type and addition level. Basal respiration 

(without addition) was assumed to be constant for all residue treated soils. Means and 

standard errors (n = 3). The p-values from the ANOVA showing the factors effect is as: 

basal respiration (type < 0.001; level < 0.001; and their interactions: type × level = 0.081), 

and for both; priming effect and residue mineralization is as (type < 0.001; level < 0.001; 

and their interactions: type × level < 0.001). 
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into basal respiration, residue originated, and PE (Fig. S2-3). The basal respiration (from the 

control 0.65 g C kg-1) was assumed to be constant for all residue additions. At the end of the 

experiment, 53-73%, 43-66% and 28-40% of added leaves-, stems- and roots-originated CO2 

contributed to their corresponding total CO2 efflux. At high addition, the percentage of primed 

C in total CO2 efflux was lower in the leaves and stems versus their low addition level. At high 

additions, root-induced primed C percentage of total respiration remained the same as at its low 

addition levels, but the contribution of basal respiration was reduced, which was substituted by 

residue-originated C (Fig. S2-3).  

3.2.4.4 Microbial biomass 

Consistent with the CO2 efflux, adding residues significantly (28-85%) increased MB-C 

compared with control. This highlights the microbial demands for C and nutrients. The MB-C 

significantly increased (compared to the control) during the intensive decomposition phase of 

the residues (during the first two weeks), with an average of 42-85, 42-53 and 28-54% due to 

leaf, stem and root addition, respectively (Fig. S2-4a). Remarkably, the increase of MB-C was 

solely (intensive phase) or mainly (slow phase) due to residue-feeding microorganisms, because 

the differences in SOM-decomposed biomass were insignificant (except at day 120). The 

amount of residue-derived C present as MB (Res_CMB) was the highest under leaves (0.07 to 

0.37 g C kg-1 soil) and the lowest under root additions (0.02-0.17 g C kg-1 soil) across all 

sampling periods (Fig. S2-4a). Despite a major overall drop (15-60 days) in biomass during the 

slow decomposition phase, the MB in residue-treated soil still remained higher than in the 

control (exception: low root treatment at days 30 and 60). This again was mainly due to residue-

decomposing microorganisms. Remarkably, the percentage of SOM-derived C in MB in all 

residue treatments exceeded the control, only at day 120 indicating a relative increase of SOM-

C incorporation in MB. A stronger positive correlation between 13C labeled MB (Res_CMB) 

than SOM was found with total CO2 and residue-originated CO2 effluxes, at all sampling 

periods (Table S2-S1, Supplementary Material). Similarly to specific PE, the PE calculated per 

unit of Res_CMB was greater at low than at high residue addition (Fig. S2-4b). At both addition 

levels, the PE per unit Res_CMB from roots was significantly higher than that of leaves and 

stems.  
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3.2.4.5 Enzyme activities  

The activities of all tested enzymes increased significantly after residue addition. Enzyme 

activity highly depended on residue type and the amount of addition (generally increasing with 

addition level) and sampling time (Fig. S2-S2, Supplementary Material). The correlation 

between enzyme activity and MB-C was relatively weak, but it was highly strengthened when 

Figure S2-4. The contribution of soil organic matter (SOM) and crop residues originated C 

(Res_CMB) to total microbial biomass (a); and the amount of priming effect per unit of 

Res_CMB,(b), depending on the residue type, addition level and time of sampling. The inset 

(a) shows amount of total SOM derived CO2 during the period of 15-30 days. Means with 

standard errors (n = 3). The p-values from the ANOVA showing the factors effect on SOM 

originated microbial biomass (type = 0.043, level = 0.174, time < 0.001, type × level = 

0.042, type × time <0.001, level × time = 0.661, and level × type × time = 0.546); and on 

Res_CMB (for all factors i.e. type, level, time and their interactions, p < 0.001). Similarly p-

values for Priming effect per unit Res_CMB (b) are as, for all factors and interactions ≤ 0.001 

(except the interaction of type × time, p = 0.307). 
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it correlated with 13C MB-C (Res_CMB) (Table S2-2, Supplementary Material). The correlation 

between enzyme activity and SOM-derived MB was mainly negative or insignificant. 

Therefore, enzyme activities are presented as specific activity per unit of Res_CMB (Fig. S2-5).  

Overall, the specific enzyme activities (nmol µg-1 Res_CMB h-1) were lowest on incubation day 

15 (Fig. S2-5). At both addition levels, the activities involved in the C-cycle (ß-glucosidase, ß-

cellobiohydrolase, chitinase, xylanase) remained stable. The acid phosphomonoesterase and 

leucine aminopeptidase activity increased until day 60 and then decreased again (Fig. S2-5). 

Enzyme specific activity was significantly higher under root than under both leaf and stem 

addition at all sampling periods. With the increase of residue addition level, however, the 

specific activity significantly decreased compared with low residue addition (Fig. S2-5). No 

significant differences in enzyme activities between leaf and stem additions were observed at 

both addition levels. The positive correlation between the specific PE and enzyme activities 

consistently increased with the increased specific PE and was the strongest for ß-glucosidase, 

acid phosphomonoesterase and leucine aminopeptidase activity (Table S2-2). 

Table S2-2. The Pearson correlations (r) between specific priming effect and values of 

specific enzyme activities at days 15, 30, 60 and 120 of incubation in soils amended with 

residues  

 ß-

Glucosidase 

Acid 

Phosphatase 

Chitinase Xylanase Cellubiosidase LAP* 

15 days 0.74 0.61 -0.19 0.43 0.27 0.71 

30 days 0.69 0.78 0.66 0.66 0.40 0.67 

60 days 0.82 0.80 0.64 0.69 0.68 0.82 

120 days 0.90 0.82 0.77 0.72 0.74 0.81 

*leucine aminopeptidase 
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Figure S2-5. Specific enzyme activities (enzyme activities per unit of residue originated 

microbial biomass (Res_CMB)), depending on the residue type, addition level and time of 

incubation. Mean values with standard errors (n = 3). The presented p-values are from the 

ANOVA of the data (residue type, addition level, time of sampling and their interactions) 
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3.2.5 Discussion 

3.2.5.1 Residue and soil organic matter decomposition 

3.2.5.1.1 Residue quality effects 

Our first hypothesis (i.e. SOM decomposition dependence on residue type) was confirmed by 

the simultaneous but inverse intensity of CO2 efflux originating from SOM and from crop 

residues. SOM decomposition was very low during the intensive phase of residue 

mineralization (up to 3 weeks) and thereafter increased when residue mineralization rate 

declined. Roots had a lower and shorter intensive mineralization phase than leaves and stems, 

but relatively intensive SOM decomposition indicated high SOM vulnerability (Chen et al. 

2015; Shahbaz et al. 2016a). Note, however, a 2-fold increase of residue addition triggered an 

up to 2.3 and 2.6 times higher mineralization of leaves and stems, whereas SOM decomposition 

remained unaffected. This demonstrated that high rates of residue mineralization reflect great 

substrate C availability, which did not cause an increase in SOM decomposition. 

Microorganisms preferably utilize substrates if their availability is high and therefore SOM 

decomposition is not necessarily to be increased (Nottingham et al. 2009; Wang et al. 2015). In 

contrast to this, SOM decomposition was substantially increased (up to 15%) at the doubled 

amount of root additions. This proved the high susceptibility of SOM to decomposition in the 

presence of decaying roots (Shahbaz et al. 2016a). Despite roots were characterized by the C/N 

ratio close to leaves, the roots were least decomposed. This can be attributed to the biochemical 

composition: root contains relatively less readily decomposable compounds and high amount 

of recalcitrant substances such as lignin, suberin, phenols and tannin (Aber and Melillo 1982; 

Bertrand et al. 2006; Lian et al. 2016; Rasse et al. 2005). Soil microorganisms feeding on such 

slowly decomposable substances produce enzymes able to degrade similar compounds in SOM 

via co-metabolism (Horvath 1972; Kuzyakov et al. 2000). Here we extend the meaning of co-

metabolism assuming that microorganisms producing such enzymes can also utilize SOM 

decomposition products. 

3.2.5.1.2 Priming effect as a function of residue mineralization threshold levels  

The occurrence of PE after residue incorporation suggests that substrate-addition (C 

availability) changed microbial stoichiometry that accelerated SOM decomposition for 

balanced microbial growth (Chen et al. 2014). This explains, in accordance with the priming 

conceptual models, the development of PE due to microbial C limitation (Blagodatskaya and 
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Kuzyakov 2008). Here, we further developed a concept on the PE dynamics as depending on 

the quality and quantity of crop residues.   

In accordance with our second hypothesis, specific PE (per unit of residue-C) was lower at high 

than at low residue additions. Such decrease in PE mostly occurs when the abundant amount of 

easily decomposable substrate is available (Guenet et al. 2010). This is often explained by the 

microbial substrate C saturation and their preferential substrate utilization over SOM 

(Blagodatskaya and Kuzyakov 2008; Xiao et al. 2015). The decrease of PE at high C additions 

highlights the relation of PE with residue decomposition (Wang et al. 2015). The PE was lowest 

during the intensive phase of residue mineralization and thereafter increased strongly. 

According to a unifying model (logistic and power functions) a threshold of ca. 20, 29-44 and 

39-51% mineralization of roots, stems and leaves, respectively, exhibited the strong increase of 

PE at the slow residue decomposition phase (Fig. S2-2). This showed that the onset of strong 

priming growth was up to 2.5 times faster (earlier) under root additions compared with leaf and 

stem additions. Accordingly, at high crop residue addition, the start of strong increase of PE 

was delayed by a factor of up to 1.5 for both leaves and stems (exhibiting quantity effect) versus 

not for roots. This residue decomposition and PE phenomena (depending on quality and 

quantity of input) indicated a changing microbial substrate utilization pattern (Nguyen and 

Marschner 2016; Wang et al. 2015), which may result is a variable amount of apparent and real 

PE (Garcia-Pausas and Paterson 2011; Blagodatskaya et al. 2014).  

3.2.5.2 Mechanisms of priming effect 

3.2.5.2.1 Apparent and real priming effect in relation to residue mineralization 

The mechanisms of PE relate the extra-CO2 emission with the sources of the primed organic 

matter. During the intensive residue mineralization phase: the low or even negative PE 

suggested a preferential substrate utilization (or pool substitution) mechanism mainly for leaves 

(ca. 2-3 weeks) and stems (Blagodatskaya and Kuzyakov 2008; Fontaine et al. 2003). 

Importantly, this phase lasted much longer for leaf and stem additions than for the roots, 

showing apparent PE (Figs S2-2 and S2-6) (Paterson and Sim 2013). Afterward (15-60 days), 

the increase in primed CO2 was accompanied by up to 60% decrease in MB, and by increased 

specific enzyme activities (compared with at day 15). Surprisingly, no incorporation of SOM-

derived C into MB was detected during this period. This suggested an occurrence of a new 

mechanism of real PE primarily from re-utilization of microbial-necromass (produced after a 
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strong decrease in MB), indicating that necromass served as SOM primer (Fig. S2-6) (Miltner 

et al. 2009; 2012). At a later stage, the PE strongly exceeded residue decomposition and it was 

accompanied by incorporation of SOM-derived C into MB. This indicated an occurrence of real 

PE, possibly due to microbial shifts i.e. from fast- to slow-growing (e.g. fungi) SOM-feeding 

populations (Blagodatsky et al. 2010; Nannipieri et al. 1978). This phase of PE was much faster 

(started earlier) and stronger under root versus leaf and stem addition (Figs S2-2 and S2-6). 

Therefore, the sequence of PE mechanisms was more complex during decomposition of 

aboveground crop residues compared with roots.  

3.2.5.2.2 Priming effect mechanisms in relation to microbial biomass and enzyme activities  

The lower amount of root- than leaf- or stem-originated C in MB confirms that root-C was 

relatively less labile and its decomposition was slower (Cotrufo et al. 2013; Stewart et al. 2015). 

The MB peaked due to residue additions at day 15, without an increase in SOM-originated C 

compared to the control. The correlation between the PE and enzyme activity was relatively 

weak in that period. We therefore, interpret the PE occurring during the intensive 

decomposition phase as apparent, mainly due to the pool substitution (or preferential use) 

mechanism (Blagodatskaya and Kuzyakov 2008; Garcia-Pausas and Paterson 2011). The fast 

decline of MB  demonstrates the exhaustion of the labile portion of residue and SOM-originated 

C, which is often observed in other studies (Blagodatskaya et al. 2011b; Wang et al. 2016). The 

decline of MB during 15-30 days e.g. by ca. 0.2 g C kg-1 in the without addition control was 

confirmed by at least 0.1 g C kg-1 of SOM derived CO2-C emissions during that period (Fig. 

S2-4a). Similar pattern observed in the residue treated soils where SOM-derived CO2-C 

emission corresponded well to the decline in SOM-originated microbial C.  Such PE can already 

be considered as real assuming extra CO2 originated from the labile SOM-fraction (i.e. 

microbial-necromass) and that the PE was accompanied by increased enzyme activity 

(Blagodatskaya and Kuzyakov 2008; Miltner et al. 2009; Paterson and Sim 2013). The specific 

PE and enzyme activities mainly correlated with residue-metabolizing microbial biomass, 

indicating the link of the residue-feeding microbial fraction to PE. Remarkably, this PE 

mechanism has never been before experimentally demonstrated. The significant increase of 

SOM derived C in MB after 120 days corresponded to the strong correlation between the PE 

and enzyme activity (Fig. S2-4a and Table S2-2). This suggests that the possible mechanism of 

real PE was due to the co-metabolism of recalcitrant SOM during the decomposition of less 

labile crop residues.  
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Residue addition enhanced microbial activity, boosting enzyme production (Fig. S2-S2, 

Supplementary Material) (Blagodatskaya and Kuzyakov 2013; Fontaine et al. 2003). Due to 

stronger positive correlations, the residue-originated (Res_CMB) rather than the SOM-originated 

soil microflora appeared to be mainly responsible for decompositions and enzyme activities 

(Table S2-S1, Supplementary Material), further supporting our third hypothesis.  

Residue addition stimulated specific activities (per unit of Res_CMB) of all six tested enzymes 

(Fig. S2-5). The decrease of specific enzyme activities at high residue additions can be due to 

the decreasing rate of enzyme production because of lower energy demands (microbial 

saturation by substrate) (Xiao et al. 2015). The increase of these activities after the intensive 

phase of residue decomposition confirms that microorganisms were at a nutrient limitation - or 

starving stage, causing (real) PE (Blagodatskaya et al. 2014). Accordingly, a strong interaction 

between specific enzyme activities and PE further supported microbial-necromass re-utilization 

mechanism, i.e. a real PE.  

At both addition levels, higher root-induced specific PE and enzyme activities than leaves and 

stems may be due to the complex root structure (less decomposability) and low C availability. 

Thus, microorganisms synthesized more enzymes able to hydrolyse root components as well as 

similar compounds from SOM. This caused real PE based on co-metabolism (Kuzyakov et al. 

2000; Paterson and Sim 2013). Although residue-originated C in MB under root additions was 

lowered compared with leaves and stems, microorganisms involved in root degradation 

produced enzymes (specific activity): probably this community was more efficient due to 

substrate quality (Fig. S2-5). Our study emphasizes the role of crop residue-feeding 

microorganisms as active players explaining the mechanisms and thresholds of PE, which are 

induced by contrasting crop residue quality and quantity.  
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Fig. S2-6. Conceptual scheme of apparent and real priming effect (PE) in soil after residue 

addition, explained by three main mechanisms: pool substitution, re-utilization and co-

metabolism. Residue mineralization threshold levels, as estimated by a unifying model 

(logistic plus power functions), represent the shifts of PE from apparent to real when ca. 

20% (roots), 44% (stems) and 51% (leaves) of added residues (i.e. at high additions) were 

mineralized. 

Mechanisms:  1– Microbial uptake of plant residues degraded by existing enzymes lead to 

initial increase of microbial (active) biomass (MB), which is mainly due to the residue-

feeding population; 2– Acceleration in enzyme production after residue-induced increase in 

MB (depending upon residue type); 3– Preferential substrate utilization (under high 

substrate C availability) leading to pool substitution mechanism (1,2,3); 4 – Decrease of MB 

during slow residue decomposition phase (after exhaustion of labile substrate) which results 

in the accumulation of microbial-necromass i.e. after microbial starvation and cell death; 5– 

Re-utilization (2,4,5) of microbial-necromass under low substrate availability; 6– Direct 

contribution of microbial-necromass and plant compounds in soil organic matter (SOM) 

formation; 7– Increase of enzymatic SOM decomposition by co-metabolism under low 

availability of labile crop residue compounds (depending on residue quality). 
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Overall, we summarize that the partitioning of C sources (residue and primed) during residue 

decomposition is combined with residue-originated MB and specific enzyme activity (Figs S2-

4 and S2-5). The results demonstrated that instead of the total MB, the crop residue-feeding 

microorganisms, served as the main player regulating PE mechanisms, which depended on 

residue mineralization stage (threshold levels). Residue quality and amount strongly influenced 

the MB and microbial activity (high MB under leaf, low under root additions) involved in crop 

residue and SOM decomposition (Fig. S2-6) (Blagodatskaya et al. 2014). The increase in MB 

after residue addition was mainly due to crop residue feeding microbial fraction. During 

intensive phase, crop residues preferably decomposed due to accelerated enzyme production 

(specific), which mainly correlated with the residue-feeding microbial population. This caused 

apparent PE by a pool substitution (roots and stems) and negative PE by preferential residue 

decomposition mechanisms (Fig. S2-1d, stages 1, 2 and 3 in Fig. S2-6). Later, a strong decrease 

in MB (resulted in an increase of microbial-necromass) and a high correlation of enzyme 

activity with PE occurred. This indicated real PE induced primarily by the re-utilization of 

microbial-necromass (stage 2, 4 and 5 in Fig S2-6, Miltner et al. 2012). Subsequently, co-

metabolism of recalcitrant SOM was seen when an increase in SOM-originated C in MB was 

accompanied by an increase in specific enzyme activities. The specific enzyme activity strongly 

depends on crop residue C availability: unless the decomposability or C availability is high, 

microorganisms will produce less enzymes capable to co-metabolize SOM and there will be a 

less need for re-utilization of microbial-necromass (resulting in low or negative PE). Under low 

residue decomposability, i.e. less C availability (e.g. roots), microbial dynamics yield only a 

brief pool substitution stage. Nonetheless, re-utilization and co-metabolism will be the 

dominating processes, creating real PE (Fig. S2-6).  

3.2.6 Conclusions    

Root residues induce faster and stronger PE than aboveground plant parts. For all residue types, 

specific PE (per unit of C addition) decreased with added residue amounts. The slow root 

decomposition leads to stronger PE. The leaf and stem residues were intensively mineralized 

and yielded negative or apparent PE for extended periods, due to preferential utilization and 

pool substitution mechanisms. This resulted in a shorter real PE compared to root addition. 

During the 15-60 days, the MB declined strongly but specific enzyme activities increased. 

Remarkably, no incorporation of SOM-derived C into MB was detected during up to 60 days. 

Therefore, this suggest that the PE was primarily caused by re-utilization of microbial-
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necromass i.e. necromass served as SOM primer. At the end of incubation, the incorporation of 

SOM-originated C into microbial biomass and a corresponding increase in enzyme activities 

indicated the co-metabolism of SOM. The amount of primed SOM correlated with the residue-

feeding microorganisms and depended on residue decomposition phases, residue quality and 

the added amounts. This underlines the role of residue–feeding microbial community as an 

active player for PE that is responsible for the contrasting PE mechanisms. We recorded 

threshold levels for the onset of strong PE increase versus the fraction of mineralized residues 

at ca. 20, 29-44 and 39-51% mineralization of low and high input of root, stem and leaves, 

respectively. We conclude that for microbially-mediated SOM decomposition the residue 

mineralization stage is crucial, which depends not only on the quality but also the quantity of 

added residues. Further research efforts should focus on evaluating the role of microbial-

necromass in stable SOM formation and PE under contrasting substrate quality, and on utilizing 

enzyme assays (e.g. for oxidative enzymes) to assess the recalcitrance of newly-formed SOM 

compounds. 
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3.3.1 Abstract 

Crop residues and manure are important sources of carbon (C) for soil organic matter (SOM) 

formation. Crop residue return increases by nitrogen (N) fertilization because of higher plant 

productivity, but this often results only in minor increases of SOM. In our study, we show how 

N fertilization and organic C additions affected SOM and its fractions within a 32-year long 

field-experiment at Puch, Germany. Five organic additions: no-addition (control), manure, 

slurry, straw and straw+slurry, were combined with three mineral N fertilization rates (no-, 

medium- and high-fertilization), which resulted in 1.17-4.86 Mg C-input ha-1 yr-1. Topsoil (0-

25 cm) SOM content increased with N fertilization, mainly due to the C in free light fraction 

(f-LF). In contrast, subsoil (25-60 cm) SOM decreased with N fertilization, probably because 

of roots’ relocation in Ap horizon with N fertilization at the surface. Despite high inputs, straw 

contributed little to f-LF but prevented C losses from the mineral-associated SOM fraction (ρ 

>1.6 g cm-3) with N fertilization, which was observed without straw addition. Above- (straw) 

and belowground (roots) residues had opposite effects on SOM fractions. Root C retained 

longer in the light-fractions and was responsible for SOM increase with N fertilization. Straw 

decomposed rapidly (from f-LF), and fueled the mineral-associated SOM fraction. We conclude 

that SOM content and composition depended not only on residue quantity, which can be 

managed by the additions and N fertilization, but also on the quality of organics. This should 

be considered for maintaining the SOM level, C sequestration and soil fertility. 

 

Keywords: Soil organic matter; Density fractionation; Nitrogen fertilizer; Manure & straw 

slurry; Cropland soil. 
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3.3.2 Introduction 

Improving and maintaining soil organic matter (SOM) levels is necessary for the functioning 

of physicochemical and biological properties of soils (Keesstra et al., 2016; Laudicina et al., 

2015). Poor soil physicochemical functioning can lead to land and nutrients degradations (such 

as due to erosions) in cropland soils (Auerswald et al., 2009; Novara et al., 2013; Rodrigo 

Comino et al., 2016a). Crop residue return is important for soil conservation practices because 

it is a major carbon (C) source for improving SOM levels (Cerdà et al., 2016). The SOM is vital 

for nutrients conservation and soil structural development, therefore protect the soil against 

degradation (Brevik et al., 2015; Withers et al., 2007).  

The pool size of SOM depends on its formation from plant residues and its mineralization to 

CO2 (Cotrufo et al., 2015). Generally, it is assumed that increasing amounts of C inputs to soil, 

improves SOM levels. Several field studies, however, show that increasing C inputs did not 

always increase SOM levels (Heitkamp et al., 2012a; Novara et al., 2016; Stewart et al., 2008). 

Such phenomena of SOM change is often linked with C storage capacity of SOM fractions, 

which are important for nutrients conservation and soil physicochemical functioning 

(Prosdocimi et al., 2016; Six et al., 2002).  

The SOM fractions are mainly distinguished according to their protection mechanism and 

decomposition stage (Schrumpf et al., 2013). Mostly, SOM fractions with various protection 

mechanisms are separated based on density and their association with soil silt and clay particles 

(Gunina & Kuzyakov, 2014). The physically unprotected fraction of SOM represented by the 

free light fraction (f-LF) which is strongly affected by recent C inputs. Within soil aggregates, 

SOM is physically protected by spatial separation from decomposing microorganisms (i.e. their 

extracellular enzymes) and by low oxygen diffusion into aggregates, which slows 

decomposition (Six et al., 2002). The aggregates associated fraction often termed the occluded 

light fraction (o-LF). Decomposition of light fractions and also microbial turnover leads to the 

formation of microbial-residues, which mostly are sorbed to fine mineral-particles and form the 

heavy fraction (HF) of SOM (Schrumpf et al., 2013). This physicochemical stabilization (after 

microbial substrate degradation) substantially reduces the turnover of SOM in HF. The SOM 

increase due to large C additions (such as crop residue) mostly explained by C accumulation in 

HF. However, due to the limited physical or physicochemical protection capacity, large C 

additions may cause only minor increase of bulk SOM, especially in high-C soils (Six et al., 



3 Publications and Manuscripts: Study 3 

71 

 

2002; Shahbaz et al., 2016). This indicates that C-input driven by e.g. high crop residues return, 

therefore, would not be directly beneficial for SOM. 

Crop residue return frequently increased by nitrogen (N) fertilization, however, the effect of the 

N-fertilization-triggered increase of C addition is not always certain (Dou et al., 2016; Zhang 

et al., 2016). This is because, the stable SOM build-up is not mainly input driven but also 

depends on residue decomposability and its protection from microbial degradation (Barbera et 

al., 2010; García-Orenes et al., 2016). Recent views suggest that stable SOM formation is 

mainly related to the conversion of residue C input into microbial-residues that make up most 

of the C associated with HF (Cotrufo et al., 2013; Gleixner, 2013; Lehmann & Kleber, 2015). 

N-fertilization improves aboveground residue quality and decreases C/N ratio. Residues with 

lower C/N ratios support high microbial-residues formation compared to low-quality (such as 

roots; high C/N and recalcitrant compounds), which decomposes slowly (Cotrufo et al., 2013). 

However, in contrast to low quality, accelerated decomposition of high-quality residues (e.g. 

under high N availability) can promote C losses (as CO2 emissions or leaching of dissolved C) 

more than stabilization within SOM (De Almeida et al., 2016; Pabst et al., 2016). The soil N 

availability and residue decomposability (with contrasting quality) can, therefore, affect the 

partitioning of C within SOM fractions and its distribution along soil depths.  

The importance of management effects on SOM levels has mostly been examined for topsoil 

(0-25 cm, plough layer); information for subsoil is scarce (Gregory et al., 2014; Ogle et al., 

2005). Subsoil contains a large fraction of total organic C and is sensitive, for instance, to land 

use changes (Rumpel and Kogel-Knabner, 2011). The subsoil SOM stabilization is primarily 

affected by root growth (its exudations) and dissolved C leaching from topsoil (Don et al., 2009; 

Rumpel & Kögel-Knabner, 2011). In general, due to relatively less exposure to environmental 

extreme events and high degree of mineral-associations, subsoil SOM is assumed to be more 

stable than topsoil (Cerdà et al., 2010; Rumpel & Kögel-Knabner, 2011). However, subsoil 

SOM can be destabilized due to priming effects, specifically under high N fertilization 

(Kuzyakov et al., 2000; Khan et al., 2007). Subsoil mostly had a mineral-associated C, thus its 

SOM stabilization can be affected by the factors affecting C accumulation in topsoil HF 

(Stewart et al., 2008; Hobley & Wilson, 2016). Nonetheless, no clear information is available 

on the long-term management effects, on total SOM change that can be explained by C 

stabilization in its fractions, and we know little about the ultimate effects on subsoil C.  
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The present study was therefore designed to explain and compare the integrated long-term 

impacts of C inputs (varies in quality and quantity) and N fertilization rates on topsoil (0-25 

cm) SOM and its fractions, and to estimate the effects on subsoil (25-60 cm) SOM contents. 

Density fractionation approach was used to separate C in topsoil SOM fractions. We assumed 

that C storage in SOM fractions will reflect the total SOM change, but their response rate can 

differ. In particular, the specific goals of this study were: i) to estimate and compare the changes 

in topsoil SOM levels due to C inputs (variable organics) and N fertilization over the study 

period, i.e. 32 years, ii) to analyze the effects of topsoil managements on SOM accumulation in 

subsoil, iii) to quantify and compare the effects of C inputs and N fertilization on partitioning 

of C among topsoil SOM fractions (f-LF, o-LF and HF), and overall impact of these fractions 

on SOM formation. 

3.3.3 Materials and methods 

3.3.3.1 Site description  

The long-term (well designed and documented) field experiment (48°11ʹ37.85ʺ N, 9°13ʹ04.55ʺ 

E) is located at Puch, a village close to Munich, Germany. The study site represents a common 

soil type in Central Europe and covers a wide range of management options in a widespread, 

cereal-based crop rotation. The soil was classified as Luvisol (Parabraunerden) (IUSS-WRB, 

2015), derived from loess sediments with silt-loam texture (sand: 9%, silt: 73%, clay: 18%) 

overlying moraine deposits of the Riss glaciation. The mean annual precipitation and 

temperature since 1983 were 868 mm y-1 and 8.4°C, respectively (Heitkamp et al., 2012a). Prior 

to the experiment, the site was used as cropland for decades or even centuries, and we, therefore, 

assume no major disequilibrium of C contents due to land use changes. In the plough layer (0-

25 cm, maintained since 1983) the pH decreased from 6.4 to 6.1 in the studied period (1983-

2015). The pH and a test with 10% hydrochloric acid (HCl) indicated the absence of carbonates. 

To estimate the changes in SOM contents during the study period, starting conditions of SOM 

(in 1983) were analyzed using topsoil samples (0-25 cm). Soil samples were taken for plots 

receiving various organic additions but bulked across replicates and N fertilization rates (see 

below, Fig. S3-1). Therefore, in 1983, different amounts of SOM contents (g C kg−1) were 

calculated for different organic additions that ranged 11.2 (no-addition control); 10.6 (Slurry as 

well as for Straw) and 10.8 (Manure and Straw+Slurry) (Fig. S3-4a), see further details in 

Heitkamp et al. (2012a).  
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3.3.3.2 Experimental design 

The crop rotation is silage maize (Zea mays L.) – winter wheat (Triticum aestivum L.) – winter 

barley (Hordeum vulgare L.). The experiment was laid out as a full factorial strip design with 

two factors (n = 3) (Fig. S3-1). Organic additions were considered as the first factor and N 

fertilization rate (three levels) as the second factor (Fig. S3-2, Table S3-1). In all organic 

additions, application of phosphorus (P) and potassium (K) fertilization was equal but varied 

between years according to crop needs (Hege & Offenberger, 2006). Five organic addition 

levels were selected for factor one: i) Control (no addition, straw removed); ii) Manure (straw 

removed, cattle farmyard manure applied every third year); iii) Slurry (cattle slurry application, 

straw removed); iv) Straw (alone straw incorporated); v) Straw+Slurry (straw incorporated 

combined with slurry application).  

 

 

 

 

 

 

 

 

In August and April, before the maize crop, slurry (on average 7.6% dry matter, 5.8% OM, 4.4 

kg N m−3, 2.8 kg NH4 N m−3) was applied at rates of 30 m3 ha-1 (corresponds to the regional 

practices). Since 1999, the slurry application was changed to account for more recent 

management of the region (Table S3-1): to maize, two applications of 25 m3 (each at sowing 

time) and additionally (in spring) to winter wheat or winter barley (before sowing), 25 m3 ha-1 

Figure S3-1. Aerial view of the study site (48°11ʹ37.85ʺ N, 9°13ʹ04.55ʺ E), located at Puch 

close to Munich (Germany), showing the field experimental design which consists of two 

factors: organic additions (1 – control, 2 – manure, 3 – straw, 4 – slurry, 5 – straw+slurry) 

and N fertilization rates (N0, N2 and N4 represents; no, medium and high N fertilization, 

respectively). The expanded box shows random soil sampling points (3 sample which were 

bulked) for both top- and subsoil of individual plot. 
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was applied each time. The manure was spread every third year in August before the maize 

crop. From 1983 to 1998, manure was applied on the fresh mass basis of 30 Mg ha−1 (on average 

23% dry matter, 17% OM, 5.5 kg N Mg−1) and, from 1998 on, the application rate was increased 

to 40 Mg ha−1. 

 

  

The second factor, N fertilization (three levels, no (N0), medium (N2) and high (N4) 

fertilization), varied between crops. The amount of N fertilization rates given to winter wheat 

and barley was different, because of the specific nutrient demands of the crops (Table S3-1).  

 

 

Figure S3-2. The contribution of organic carbon (C) sources to total annual C additions 

(Mg C ha-1) starting from 1984. The C input by manure, slurry, straw and crop roots 

(stubbles) was measured and calculated (see detail Heitkamp et al., 2012a). N0, N2 and N4 

represents; no, medium and high N fertilization, respectively. Control: without organic 

additions; Manure: straw removed, farmyard manure applied every third year; Slurry: cattle 

slurry application, straw removed; Straw: straw incorporated; Straw+Slurry: straw 

incorporated combined with slurry application. 
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Table S3-1. Mineral N fertilization rates 

N-fertilization (kg N ha-1 y-1) N0 N2 N4 

1984-1998    

barley 0 60 80/40 

wheat 0 50/30* 70/50/40 

maize 0 100 120/80 

since 1999    

barley 0 50/30 80/40/40 

wheat 0 50/20/30 80/60/60 

maize 0 100 120/80 
* N-amounts divided by slash indicate split applications. 

 

Until 1993, straw yield was measured in all organic addition plots, and thereafter only for 

organic additions with straw removal. A C content of 45% was considered for straw, and the 

straw yield was estimated based on the mean harvest index (grain to aboveground biomass 

ratio), which was remarkably stable (0.49 ± 0.01) through time and among treatments. The 

straw was incorporated directly into the plot of its origin. This provided realistic on-farm 

conditions since the amount and chemistry of straw may be directly influenced by the respective 

treatments. Consequently, the amount of incorporated straw increased with N fertilizer rate 

(Fig. S3-2). The amount of manure and slurry was fixed and measured before addition, and 

their C contents were calculated by dividing organic matter by 1.92 (Larney et al., 2005). The 

fraction of crop residues in soil added by roots and crop-stubbles was estimated as described 

by Heitkamp et al. (2012a). The used regression model of yields with crop residues does not 

separate between roots and stubbles. Nevertheless, it is reasonable to assume that a major part 

of the estimated C input of residues stems from roots. According to estimates of Bolinder et al. 

(2007), we calculated that ca. 75% of our estimates may be contributed by roots. Therefore, we 

argue that the C input by crop residues in treatments without straw incorporation is clearly 

dominated by roots. Overall, mean annual C input for all organic additions ranged from 1.17 to 

4.86 Mg C ha-1 y-1 and increased with N fertilization rate (Fig. S3-2). For detailed information 

about the experiment (i.e., C input estimation and calculations, crop yields, N balances) see 

Hege & Offenberger (2006) and Heitkamp et al. (2012a). 

3.3.3.3 Soil sampling 

Following the wheat harvest in August 2015, soil samples were taken from a depth of 0-25 cm 

(topsoil) and 25-60 cm (subsoil) with the help of a soil auger. The sampled topsoil (0-25 cm) 

represents the plough horizon (Ap), which is annually mixed by tillage since 1983. The subsoil 

(25-60 cm) was sampled to estimate the SOM accumulation which is affected due to topsoil 
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managements. For each organic addition, the soil was sampled in three field replicates of each 

selected N fertilizer rate. Within each selected N field replicate plot, three random sampling 

(for both top- and sub-soil) was done and thereafter soil was bulked and represented one 

composite field replicate of each selected N fertilization level (Fig. S3-1). Three levels of N 

fertilization were selected: N0, N2 and N4 (Table S3-1). The soil samples were air dried at room 

temperature, sieved (< 2mm), and visible parts of large crop residue (e.g. mixed during 

sampling from recent crop harvest) removed. Additionally, we sampled soil with 100 cm³ 

cylinders (three replicates per plot, 10-15 cm depths) to determine bulk density. The samples 

were oven dried (105°C), left for cooling in a desiccator and weighed. 

3.3.3.4 Density fractionation  

The SOM density fractionation approach was applied to both top- (0-25 cm) and subsoil (25-

60 cm), but the yield of f-LF and o-LF from subsoil was too small to carry out precise 

measurements. Therefore, the density fractionation was only presented for topsoil and we 

assumed the subsoil SOM was mainly HF-C. 

To isolate the density fractions of topsoil SOM, 20 g of air-dried soil portioned into two 

replicates (i.e. 10 g each) was placed into a centrifugation tube. A 30 mL of sodium 

polytungstate solution with a density of 1.6 g cm−3 was added to each soil portion in the tube 

(Cerli et al., 2012). The tube was then gently turned several times by hand, the solution was 

centrifuged at 4,000 rpm for 40 min, and the supernatant with floating material (ρ >1.6 g cm−3) 

was filtered (cellulose acetate filter, 0.45 μm; Sartorius, Germany) and washed with ca. 1 L 

distilled water to obtain a salt-free f-LF. To isolate o-LF, a similar amount of sodium 

polytungstate solution (ρ = 1.6 g cm−3) was added to the remaining sample after removing of f-

LF. The sample was mixed with sodium polytungstate and then the soil-aggregates were 

dispersed by ultrasound (Retesch, Germany) with a calibrated input energy at 440 J ml-1. After 

dispersion, the suspension was left to settle overnight and centrifuged for 40 min at 4,000 rpm. 

The supernatant (consist of o-LF) was filtered and washed as described above. To separate sand 

particles (> 53 µm) from the remaining sample after the separation of f-LF and o-LF, wet 

sieving was done with 53 µm mesh size. The measured organic C contents of sand fraction were 

very low (<0.01%) and therefore fraction <53 µm (silt plus clay) was considered as the HF 

(Breulmann et al., 2016). The HF was washed with distilled water, and suspended particles 

were precipitated by adding few drops of 0.5 M AlCl3. The clear supernatant was removed and 
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the precipitated HF was collected. All the density fractions were dried (at 40°C, to constant 

weight) and weighed. 

3.3.3.5 Analysis of total carbon contents  

Before analysis, all density fractions, topsoil and subsoil samples were dried (40°C). The soil 

samples were ball milled (MM2, Fa Retsch, Germany), while density fractions of SOM were 

homogenously manually ground by using mortar and pestle. The C contents were measured 

using an elemental analyzer (Vario EL II, Germany). The soil was carbonate-free, therefore we 

consider total soil C as organic C. Further, we reported C measurements only as contents instead 

of calculating stocks because there were no significant effects of the tested factors on topsoil 

bulk density (organic addition p= 0.310, N fertilization p=0.788 and their interactions, organic 

addition x N fertilization p= 0.209). 

The ΔSOM contents (%C) of topsoil, in relation to its initial and final C values were calculated 

(Johnson et al., 2014) as; 

ΔSOM = [(SOMn − SOMi)/SOMi] ∗ 100 

Where, SOMn is the SOM contents (g C kg−1) at our sampling time (2015), and SOMi is the 

initial SOM contents in 1983.  

3.3.3.6 Statistics 

Statistical analyses were performed using R (version 2.11.1). A linear mixed model (LMM) 

was used to test the effect of organic additions (factor one, five levels) and N fertilization (factor 

2, three rates) on top- and subsoil C and topsoil density fractions. The main two factors were 

used as fixed effects, while the spatial structure (strip design) was introduced as a random factor. 

Results are presented as means (n=3) ± standard error.  

To quantify changes of C contents since the beginning of the experiment, replicate values of 

ΔC were related to the annual C inputs (Mg C ha−1 y−1) (Halvorson & Schlegel, 2012; Johnson 

et al., 2014). An exponential relationship showed the best fit according to the highest adjusted 

R² values. The effect of C additions on density fractions was additionally quantified. Linear 

regressions between density fractions and C inputs were applied to the whole dataset (n = 45) 

and within each organic addition among N fertilizer rates (n = 9). Results different at p < 0.01 

level are considered as significant.  
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3.3.4 Results 

3.3.4.1 Soil organic matter contents depending on C inputs and N fertilization 

After 32 years of C input (1.17 to 4.86 Mg C ha-1 y-1), the relation of changes in topsoil C 

contents (% change compared to initial C values) against total C inputs was best described by 

an exponential model (Fig. S3-3). The total SOM contents in topsoil were significantly affected 

by both organic addition and N fertilizer rates (Fig. S3-4a). The topsoil SOM contents ranged 

from 9.6 to 12.6 g C kg-1 and generally increased with N fertilization rate. Compared to initial 

values in 1983, the highest positive change (up to 17%) of C along N fertilization rate over 32 

years was recorded under slurry addition, either with straw removal or incorporation (Fig. S3-

3). C contents remained stable under manure additions, which represent the traditional practice 

in the region. Highest losses of C (12-14%) were recorded when N fertilizer was applied alone 

(control) and or with straw (2-8%) incorporation.  

The C content in subsoil SOM was also affected by N fertilization and organic additions (Fig. 

S3-4a). Contrary to topsoil, however, the subsoil SOM contents decreased with increasing N 

fertilization rate. The total SOM content in the subsoil ranged from 4.1 to 5.5 g C kg-1 soil. 

Compared to other organic additions, the control had the highest amount of subsoil SOM at 

each N fertilization rate (Fig. S3-4). Note that starting conditions in 1983 were not measured 

for subsoil. The measured C contents in topsoil SOM were highest in the control and, therefore, 

we assume that the high C contents in this treatment reflect the heritage of the starting 

conditions. That this restriction also applies for the N fertilization is highly unlikely: while 

organic additions were arranged in strips, plots receiving N fertilizer rates were randomized. 

Thus, the highly significant effect of N fertilization (p ≤0.001) strongly indicates a real 

treatment effect and cannot be explained by spatial heterogeneity. 
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3.3.4.2 Effect of C inputs and N fertilization on SOM fractions 

The total sample recovery after soil density fractionation was ca. 97%. Total C contents in f-LF 

(p < 1.6) ranged from 0.26 to 0.74 g C kg−1 and in o-LF from 0.35 to 0.54 g C kg−1 of soil (Fig. 

S3-5a, c). Therefore, both fractions together comprised up to 20% of total SOM. The C content 

of the f-LF was affected by both N fertilization and organic addition. C contents of the o-LF 

depended mainly on organic additions. The highest occlusion was found when slurry (alone or 

in combination with straw) or manure was applied. The effect of N fertilization on o-LF varied 

depending on the organic addition (Fig. S3-5c, d), indicated no response (control, slurry), 

increased (manure, straw) and decreased (slurry+straw).  

Figure S3-3. The curve represents the exponential relationship between the mean annual C 

additions and changes of topsoil soil organic matter (SOM) contents (%, between 1983 and 

2015) over 32 years. 0-line corresponds to C content in soil at the start of the experiment (32 

years ago). Control: without organic additions; Manure: straw removed, farmyard manure 

applied every third year; Slurry: cattle slurry application, straw removed; Straw: straw 

incorporated; Straw+Slurry: straw incorporated combined with slurry application. Bars 

represent the ± standard error of the mean (n=3). The probability levels of the linear mixed 

model describing the effects (C addition, N fertilization, interaction) for accepting the null 

hypothesis that the factors have no effect for the change of total SOM (%) are as follows, C 

addition ≤ 0.001; N fertilization ≤ 0.001 and interactions: C addition × N fertilization = 0.409. 
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The C contents of the HF ranged from 6.5 to 8.7 g C kg−1, thus constituting up to 80% of total 

SOM contents. The HF was affected by organic addition, with the highest C content under 

slurry+straw and the lowest C content in the control (Fig. S3-5e, f). Despite the increasing C 

additions with increasing N fertilization, the C contents in HF decreased across N fertilizer 

rates, when straw was removed (Figures 2 and 5e, f). Nonetheless, upon straw incorporation, 

non-significant slopes (across N rates) indicated that the C associated with HF at least did not 

decrease with increasing N fertilization rate (Fig. S3-5f).  

3.3.5 Discussion 

3.3.5.1 Effect of C inputs and N fertilization on top- and subsoil SOM 

Compared to the initial C values, slurry application (alone or with straw) increased topsoil C 

contents over 32 years (Fig. S3-3 and S3-4a). This indicated that slurry contained either 

relatively stable C and thus was retained in soil (Shahbaz et al., 2014; Weyman-Kaczmarkowa 

& Politycka 2002), or that slurry improved root growth (Kandeler et al., 1994). The total SOM 

changes remained unaffected under manure addition, presumably because this management is 

closest to the traditional practice and SOM contents were therefore in dynamic equilibrium. The 

more labile nature of straw explains why its addition did not maintain the C contents at a similar 

level as manure or slurry. Other researchers have reported that substantial amounts of straw 

incorporation did not have marked effects on total SOM contents (Powlson et al., 2011; Poeplau 

et al., 2015; Novara et al., 2016). C contents increasing with N fertilizer rates in soils without 

straw incorporation can be explained by the increasing crop residue return by stubbles and roots. 

Since straw was removed, roots with their slower decomposition were mainly responsible for 

the SOM increases (Heitkamp et al., 2012b; Rasse et al., 2005). 

The exponential relationship between change in topsoil C and C inputs was especially evident 

with straw incorporation (alone or combined with slurry). This shows a decreasing overall 

efficiency of C accumulation with increasing amounts of aboveground biomass. One reason is 

a closer C/N ratio of straw with increasing N fertilizer rates because litter with closer C/N ratios 

decomposes faster (Ogle et al., 2005). Faster decomposition, however, should also increase the 

amount of microbial-residues, which form a major part of stable SOM (Cotrufo et al., 2013; 

Gleixner, 2013). Recently, Castellano et al. (2015) linked the stabilization efficiency of the 

labile litter with the concept of “C saturation”. That concept proposes that effective stabilization 

of microbial-residues occurs only when mineral surfaces have free capacity for sorption. This 
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explanation does not fit to our dataset. Although the shape of the relationship between ΔC and 

C additions (Fig. S3-3) does fit the “C saturation” concept, the data from the subsoil and density 

fractions contradicts this hypothesis. The subsoil is characterized by low C contents, and the C 

stabilization capacity should be high, resulting in linear relationships with C input. Instead, we 

show that C decreased in subsoils receiving more C through increased biomass by N 

fertilization (Fig. S3-4).  
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The decrease of subsoil SOM contents with N fertilization, probably indicates roots’ relocation 

in Ap horizon with N fertilization at the surface. However, other studies have shown that the 

supply of fresh C and high N fertilization can destabilize subsoil C due to priming effects 

(Fontaine et al., 2007; Khan et al., 2007; da Silva Oliveira et al., 2016). Recent findings also 

indicate that microbial community composition can strongly change with N fertilization 

Figure S3-4. Contents of soil organic matter (SOM) in topsoil (0-25 cm), subsoil (25-60 cm) 

and initial topsoil (32 years ago, crossed circle) (a); and the ratio of sub- to topsoil SOM contents 

(b). N0, N2 and N4 represents; no, medium and high N fertilization, respectively. Control: 

without organic additions; Manure: straw removed, farmyard manure applied every third year; 

Slurry: cattle slurry application, straw removed; Straw: straw incorporated; Straw+Slurry: straw 

incorporated combined with slurry application. Bars represent the ± standard error of the mean 

(n=3). The probability levels of the linear mixed model for accepting the null hypothesis that 

the factors have no effect are as follows: topsoil SOM (organic addition ≤ 0.001; N fertilization 

≤ 0.001; and interactions: organic addition × N fertilization = 0.750), subsoil SOM (organic 

addition = 0.002; N fertilization ≤ 0.001; and interactions: organic addition × N fertilization = 

0.323), sub-to- topsoil SOM ratio (organic addition ≤ 0.001; N fertilization ≤ 0.001; and 

interactions: organic addition × N-fertilization = 0.691).  
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(Kuslien et al., 2014; Fanin et al., 2015) and that microbial activity governs the integration of 

new C into the soil (Lange et al., 2015). Regardless of the specific mechanism involved, the 

results show that subsoil C drops as N fertilizer rates increase (Fig. S3-4). A similar finding 

was recently reported by Steinmann et al. (2016) on a large sample set (n = 268, for the 

Cologne-Bonn region, Germany), where despite increasing topsoil SOM contents, the subsoil 

C contents declined over 8 years. This was in contrast to the general notion that subsoil SOM 

is highly stabilized and insensitive to management. Moreover, fractions that are supposed to be 

stabilized – such as the organo-mineral HF – can also clearly be affected by management 

(Hobley et al., 2016). 

3.3.5.2 Distribution of organic matter in density fractions  

The C contents of f-LF increased with N fertilizer rates and therefore with C additions (Fig. S3-

5). However, this increase of C in f-LF was much stronger when straw was removed (in control, 

manure and slurry), indicating the importance of root-derived C (Fig. S3-5a). The amount of 

manure and slurry application in our experiments was fixed, and thus any changes in f-LF must 

be due to residue C originating mainly from roots (and to a lower degree from crop stubbles). 

Strongly increasing C contents in the f-LF under straw removal (Fig. S3-5) reflect an 

enrichment of root C (Schrumpf et al., 2013) due to its slower mineralization rates compared 

to straw (Rasse et al., 2005; Shahbaz et al., 2016). f-LF is known to be most responsive to C 

input, especially derived by cattle manure additions (Gregorich et al., 2006; Yagüe et al., 2016). 

Nonetheless, under straw incorporation (dominant aboveground biomass) the low response of 

f-LF contents to C input indicated that straw was rapidly decomposed. The retention of roots 

and the fast decomposition of straw in the f-LF may explain the behavior of the HF. 

The HF-C decreased with increasing C additions and N fertilization when straw was removed. 

This means that root-derived C was unable to increase, or even sustain, C contents in the HF 

under high N fertilization (Fig. S3-5 and 6). In a meadow ecosystem, N fertilization increased 

plant biomass production without changing bulk SOM or its fractions (Neff et al., 2002). This 

was explained by a substantially increased C turnover in plant material and f-LF, followed by 

replacement of C in the HF by microbial-residues derived from labile substances (Cotrufo et 

al., 2013; Gleixner, 2013; Gunina & Kuzyakov, 2014). However, roots or low-quality residue 

inputs (high C/N) can also contribute markedly to SOM storage (Rasse et al., 2005; Barbera et 

al., 2010). Therefore, we propose that roots and straw fulfilled different functions with regards 

to SOM storage. On the one hand, root-derived C was retained in the f-LF and thus directly 
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Figure S3-5. Soil organic matter (SOM) contents and their relationships with mean annual 

C addition over 32 years. The slopes of the linear regressions (± standard errors) either of 

the total dataset (n= 45) or within individual treatment (organic additions n = 9) along N 

fertilization rates are given. Free light fractions (f-LF) (a) and their slopes (b), occluded light 

fractions (o-LF) (c) and their slopes (d), heavy fractions (HF) (e) and their slopes (f). 

Control: without organic additions; Manure: straw removed, farmyard manure applied every 

third year; Slurry: cattle slurry application, straw removed; Straw: straw incorporated; 

Straw+Slurry: straw incorporated combined with slurry application. ***: p ≤ 0.001; **: p ≤ 

0.01;*: p ≤ 0.05; +: p ≤ 0.1; ns: p > 0.1. The probability levels of the linear mixed model for 

accepting the null hypothesis that the factors have no effect on C contents are as follows: f-

LF (C addition ≤ 0.001; N fertilization ≤ 0.001; and interaction: C addition × N fertilization 

= 0.010), o-LF (C addition ≤ 0.001; N fertilization = 0.428; and interaction: C addition × N 

fertilization = 0.005), HF (C addition ≤ 0.001; N fertilization = 0.0109; and interaction: C 

addition × N fertilization = 0.326). 
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reflected the amount of C input and explained the often observed minor increase of SOM with 

N fertilization in cropland soils (Lu et al., 2011). On the other hand, straw, exhibiting (relative 

to roots) faster decomposition, fueled mineral-associated SOM with microbial-residues. The 

decreasing C contents in the HF without straw incorporation indicate that the stimulating effect 

of N on SOM turnover (Neff et al., 2002; Qiao et al., 2016) could not be counteracted by 

remaining C inputs. Importantly, this discussion centers around the effect of N fertilization 

solely within one type of organic addition. Accordingly, our finding is sensu strictu valid only 

for C inputs, which are stimulated by N fertilization. 

 

 

 The C contents in o-LF showed inconsistent results and were mainly affected by organic 

additions (Fig. S3-5c, d). The increase of C contents in o-LF with manure additions is consistent 

with other findings, where high aggregates formation to animal manure additions attributed to 

the increase of occlusion. The addition of manure along N fertilization can increase favorably 

Figure S3-6. The stabilization of top- and subsoil soil organic matter (SOM) under long-

term organic C inputs and N fertilization rates (lower part). The upper part represents the 

partitioning and stabilization (by different mechanisms) of added organic C into topsoil 

SOM fractions. The inset on free light fraction and heavy fraction shows the contribution of 

root dominated (R in circle) or straw dominated (S in circle) C inputs in C storage within 

SOM fraction along N fertilization rates.  

 



3 Publications and Manuscripts: Study 3 

85 

 

root biomass (Hati et al., 2006) which are important for aggregate formation during growth 

(Denef et al., 2002) and decomposition (Majumder & Kuzyakov, 2010; Shahbaz et al., 2016). 

The results, however, indicated that straw incorporation resists, while slurry addition favored 

the decreases of occluded C under increasing N fertilizer rates.  

Overall, the SOM fractions (f-LF, o-LF and HF) are a sensitive indicator for evaluating changes 

in the soil quality, due to their vital role in nutrient cycling, SOM formation and soil structural 

development (Brevik et al., 2015; Schrumpf et al., 2013; Six et al., 2002). In our study, the C 

content of f-LF increased and of HF decreased with N fertilization, particularly when straw was 

absent (Fig. S3-5 and S3-6). In contrast, straw incorporation with N fertilization did not improve 

C contents of f-LF but prevented the loss of C in HF, which is less responsive to environmental 

changes. HF is considered the most important principal component for long-term SOM 

stabilization and it plays a pivotal role in soil structural development due to its strong bindings 

effect (Six et al., 2002). It has been shown that soil mineral particles (HF) with low SOM 

content exhibit faster dispersal in soil water compared with SOM-rich mineral fractions (Dexter 

and Czyz, 2000; Schjønning et al., 2009). Under low HF-associated SOM contents (as without 

straw additions, Fig. S3-5e), therefore, the prevalence of erosion-induced land degradation may 

increase possibly due to decrease of soil stability (Jiménez et al., 2016; Keesstra et al., 2016; 

Schjønning et al., 2009). In addition to the positive impact on mineral-associated SOM fraction, 

straw incorporation also provides soil physical protection against raindrop impact, resulting in 

reduced sediment detachment (Auerswald et al., 2009; Cerdà et al., 2016; Prosdocimi et al., 

2016). Although, the overall effect of straw removal on bulk SOM (at our low-erosion study 

site) was minor, our findings however, support the potential benefits of straw incorporation (to 

protect decadal mineral-associated SOM from loss, and so may improve soil quality e.g. by 

mulching effect and improving soil structure) at exposed site suffering from high rates of 

erosion (Auerswald et al., 2009; Rodrigo Comino et al., 2016a, 2016b; Prosdocimi et al., 2016).  

3.3.6 Conclusions 

Nitrogen fertilization substantially increased C input by roots and straw into the soil because of 

higher plant productivity. Therefore, total SOM increased with N fertilizer rates during the 32 

years in the Ap horizon (0-25 cm). Subsoil (25-60 cm) SOM, however, decreased with 

increasing C additions and N fertilization, probably because roots are relocated to the topsoil 

as the N supply increased. The increase of total SOM in the topsoil was driven mainly by the 
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light fraction. Mineral-associated C, however, decreased with increasing C input induced by N 

fertilization. Straw contributed little to the f-LF but prevented C losses from the mineral-

associated HF. We ascribe this finding to different functions of roots (dominating crop residue 

input when straw was removed) and straw: Whereas under root-dominated residue input, light 

SOM fraction increased linearly with N fertilization, more easily decomposable straw was 

transformed (from f-LF) by microorganisms and stabilized on minerals thereafter. Accordingly, 

the often described minor increase of SOM with N fertilization reflects the opposite response 

of functionally variable SOM fractions to root and aboveground residues. This calls for caution 

when recommending removal of aboveground crop residues, such as straw, e.g. for bioenergy 

or other purposes. Although the overall effect of straw removals on bulk SOM can be minor, 

the SOM stabilized on mineral fractions, which are less responsive to environmental changes, 

could be lost over decades. In conclusion, organic residues increase the SOM level, but their 

effects strongly depend not only on their quantity (e.g. regulated by management and N 

fertilization) but also on the quality and functions of plant residues remaining and added on and 

in soil. 
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4 Additional Study 

This chapter presents a study that is completed but the writing is still in progress. The goal is to 

present the short description of the work that has been done and that still needs to be done before 

submitting a manuscript. The presented results are not exhaustive but are selected because they 

enhance the understanding of SOM stabilization when crop residues are partially decomposed 

and labile C (such as root exudates) is available. The results present the potential of the future 

manuscript. 

 

Study 4 (in preparation) 

Interactive effect of glucose and partially decomposed plant residues priming: A three 

source partitioning study 

4.1 Background 

Crop residue return to the soil is aimed to improve SOM levels and soil physical properties. 

The pool size of SOM depends on the balance between SOM formation from added plant 

residue and roots decomposition and its mineralization to inorganic C. Much is known about 

factors controlling residue and SOM decomposition rates, information related to how labile C 

inputs (e.g. exudates released by roots) can alter residues as well as then SOM stabilization is 

scare. Under natural conditions, labile C is usually released into the soil through root exudation. 

Glucose is an organic component that resembles the root exudates and it represents simple 

monosaccharides which are produced during cellulose decomposition. The availability of such 

labile substrate influence the microbial growth and activities (due to rapid C assimilation by 

microbes) which can affect decomposition of already degrading crop residues (present is soil) 

and SOM. The impact of contrasting substrates quality, separately i.e. less labile plant residues 

or labile C (such as glucose) additions on SOM is mostly studied. It has been reported that 

glucose and plant residues can prime the decomposition of SOM. However, we lack the 

knowledge about the simultaneous effects of glucose on SOM versus plant residue 

mineralization. Further, information related to combined effect of these substrates: labile C and 

especially partially decomposed residues (as under field conditions), on SOM is need to be 

investigated.  
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4.2 Objectives and hypotheses 

The aim of this study is to explore the responses of SOM versus residue mineralization in 

response to labile C (glucose) addition in a soil having partially decomposed wheat residues 

(leaves, root), over an incubation period of 3 months. The combined effect of residues plus 

glucose on SOM stabilization is also studied. We followed a three-source partitioning approach 

using dual isotopic labeling (13C and 14C) to partition the decomposition of glucose, residues 

and SOM. Specific objectives of this study were: (1) to compare the priming effects of glucose 

versus residues on SOM decomposition when they were added separately, (2) to differentiate 

the effects of glucose addition on SOM versus residue in soil-residue mixtures, (3) to provide 

insights into the possible consequences of glucose amendment on different C pools. 

Two type of wheat residues are used representing contrasting quality i.e. easily decomposable 

leaves and recalcitrant to decomposition roots. To meet the study objectives, we hypothesized 

that: regardless of the type of plant residues glucose will be mineralized at the same rate, and 

therefore the magnitude of priming will increase at the same rate between glucose+leaves and 

glucose+roots treated soils. The base of this hypothesis is that priming of SOM mineralization 

is facilitated by increased availability of labile C for microbial activity. That means the rate of 

priming is constrained by the maximum potential activity of microorganisms and that microbial 

biomass composition/size and residues/SOM recalcitrance are soil-specific limitations on SOM 

mineralization. 

4.3 Methods 

We used dual 13C/14C isotopic labeling approach to partition soil CO2 efflux and C pools into 

three sources: glucose (14C), plant residues (13C) and SOM. To obtain partially decomposed 

plant residues, 13C labeled wheat residue (leaves, stems separately) were preincubated in the 

soil for 30 days, to reach a constant residue mineralization rate (Fig. 4-1). This was done 

because under natural conditions during residues decomposition (partial degradation) labile 

substrate (such as root exudates) are released to the soil.  After partial degradation of residue, 

soil alone or with residues was amended with or not with 14C-labeled glucose solution (160 µg 

C g-1) over a period of 3 months at 22 °C (Fig. 4-1). Accordingly, six treatments were 

established (Soil alone, Soil+glucose, Soil+leaves, Soil+leaves+glucose, Soil+roots, 

Soil+roots+glucose) with three replicates. To see the changes in microbial biomass over the 
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incubation period, the microbial biomass C contents were estimated before the glucose 

additions (at day 30 of pre-incubation) and at the end of incubation.  

 

 

 

 

 

 

 

 

 

 

Results and discussion 

4.2.1 Glucose and residue mineralization  

Glucose decomposition was calculated based on the 14CO2 efflux. The results show that glucose 

mineralization rate was dependent on the residue quality. Glucose mineralization rate was 

highest during the initial days (up to 11 days) and remained similar between with roots and 

alone soil additions. Adding with leaves, glucose mineralization increased by 17% than with 

roots or alone soil (Fig. 4-2). 

After glucose addition, mineralization rate of leaves declined up to 65% and of roots remained 

unaffected (Fig. 4-1). However, at the end of incubation, the cumulative leaves mineralization 

under glucose addition also reached to the similar level as without glucose additions. A fast 

Figure 4-1: Mineralization rate of total soil CO2 efflux, before (during 30 day pre-

incubation period) and after glucose additions. The inset represent the mineralization rate of 

wheat residues (leaves and stems). Error bar represents standard error (n=3) 
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decline in leaves residues but high glucose mineralization indicated a strong shift of residue 

decomposing microorganism toward added glucose C. Root mineralization rate remained 

unaffected after glucose additions. This indicates that roots decomposition was already reached 

to a stable conditions (i.e. slow-growing) and the glucose mineralization was not mainly due to 

the root decomposing microorganisms.   

 

  

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Priming effect 

The addition of glucose to the alone soil induced a cumulative positive priming effect (0.19 mg 

C g-1) on SOM over 90 days, a much higher (42%) effect than residue-induced priming in the 

presence of glucose. Compared to soils with only residue amended, glucose and residue added 

in combination increased SOM mineralization by 44%. This increase in priming effect was 

solely due to the contribution of primed SOM during the initial (up to 11 days) period of glucose 

Figure 4-2: Cumulative glucose mineralization over the incubation period depending on 

plant residue type. The inset shows cumulative residue derived CO2 with or without glucose 

additions. Error bar represents standard error of mean (n=3) 

Incubation days

0 20 40 60 80

G
lu

c
o

s
e

 m
in

e
ra

liz
a

ti
o

n
 (

%
 o

f 
in

it
ia

l i
n
p

u
t)

20

30

40

50

60

Soil+glucose

Soil+leaves+glucose

Soil+roots+glucose

Days
0 30 60 90

R
e

s
id

u
e

 C
O

2
 (

µ
g

 C
 g

-1
)

0

150

300

450
Soil+leaves 

Soil+leaves+glucose 

Soil+roots 

Soil+roots+glucose 



4 Additional study 

99 

 

mineralization (Fig. 4-3). Meaning that microbial activation after glucose addition caused 

mainly SOM mineralization.  
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To assess the priming effects of glucose on residue (i.e. leaves and roots) versus SOM in the 

soil-residue mixture, the residue- and SOM-derived CO2 effluxes from the 

Soil+residue+glucose amendments were compared to those with soil+residue treatments. The 

results showed that glucose had opposite priming effect on residue and SOM decomposition. 

During the initial period (up to 11 days of addition), glucose caused a strong priming effect on 

SOM (higher when added with leaves than roots), but thereafter cumulative priming effect was 

decreased (Fig. 4-4). The total SOM priming effect due to glucose addition in residue treatments 

was up to 120 µg C g-1 soil. In contrast, the priming effect of glucose on residue mineralization 

was negative (slightly for roots and strongly for leaves) in the initial 2 weeks but then became 

positive. Accordingly, residue mineralization with glucose gradually reached to the level 

without glucose additions after 90 days (Inset Fig. 4-2, Fig. 4-4).   

 

Figure 4-3: Cumulative soil organic matter (SOM) priming effect at different time intervals, 

depending on: time, glucose and residue addition, type of residue and combination of 

glucose and residues. Error bar represents standard error of mean (n=3)  
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4.2.3 Microbial biomass 

To assess the changes in residue and SOM feeding microorganisms, the microbial biomass C 

were estimated at the time of glucose additions and at the end of incubation. At the end of 

incubation, a higher amount of microbial biomass was recorded under leaves addition followed 

by root additions than alone soil control. Partitioning of microbial biomass C into various 

sources revealed that a remarkable amount of SOM originated C caused an increase in microbial 

biomass C either with alone residues, or the combination of glucose and residues. Glucose 

increased microbial biomass C, which was mainly due to SOM decomposing microorganisms. 

However, a significant portion of residue decomposing microorganism was lost after glucose 

addition (Fig. 4-5). 

 

Figure 4-4: Priming effects of glucose on the mineralization of residues (leaves and roots) 

versus soil organic matter (SOM) in soil-residue mixtures. The priming effects are 

differences in SOM mineralization between the Soil+residue+glucose and soil+residue 

amendments. Error bars represent standard error of mean (n=3). 
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4.2.4 Conclusions 

Increased SOM- but not residue-derived C in microbial biomass suggested that glucose caused 

a preferential microbial utilization of SOM over crop residues. This was evident by high SOM 

priming under glucose addition. Glucose additions caused contrasting priming effect on 

residues and SOM. Residue mineralization rates decreased (strongly of leaves) but SOM 

decomposition strongly increased after glucose addition. Thereafter (after ca. 2 weeks), residue 

mineralization gradually reached to the residue mineralization levels without glucose addition. 

Overall, addition of glucose after residues preincubation (30 days of decomposition) enhanced 

the SOM priming significantly, either glucose was added alone or in combination with residues. 

Glucose induced priming effect was mainly evident by SOM decomposing microorganisms. 

Further, the priming effects of residue on SOM are changed by the presence of glucose. 

 

Figure 4-5: Microbial biomass carbon originating from three sources: soil organic matter 

(SOM), residue and glucose following incubation. Error bars represent standard error of 

mean (n=3). 
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5 General conclusions 

A combined approach of controlled laboratory experiments and a less controlled long-term (32 

year) field experiment enhanced the understanding of SOM formation and stabilization. SOM 

stabilization is related to soil physical properties, source and amount of crop residue inputs (root 

or straw dominated), priming effects and residue C partitioning between SOM fractions. 

Addition of large amounts of crop residues improved soil physical structure, but efficiency of 

residue C stabilization in SOM was lower than for smaller additions. Increased C input was 

associated with a low percentage of residues physically protected within aggregates and a high 

rate of SOM mineralization. This explained the reduced long-term C stabilization in SOM with 

increasing residue additions. 

A more precise effect of crop residue quality and quantity on SOM stabilization was 

investigated, especially in terms of SOM priming. An increased level of addition led to a 

disproportionate increase in the residue mineralization rate for aboveground residues, but not 

for roots (belowground). SOM priming decreased with greater residue additions for all residue 

types. However, we demonstrated that root residues induced faster and stronger SOM priming 

than aboveground residues. This was attributed to the recalcitrance of roots to decomposition, 

which causes microorganisms to decompose SOM for nutritional needs by increasing their 

enzyme activities. Remarkably, the amount of primed C and enzyme activities were mainly 

correlated with the residue-feeding microorganisms, indicating a possible link between the 

residue-feeding microbial fraction and priming. To describe this link, we suggested a unifying 

logistic model for all residue types describing SOM priming as a function of residue 

mineralization. We recorded threshold levels for the onset of strong priming in terms of the 

fraction of mineralized residues at high additions: ca. 20, 44 and 51% mineralization of roots, 

stems and leaves, respectively. Therefore, we concluded that the quality of added substrate is 

crucial for microbe-mediated SOM decomposition. 

The density fractionation approach revealed the importance of crop residue quality in C 

partitioning between SOM fractions and role of these fractions in determining SOM contents 

in the field experiment. The C input in the field experiment was mainly ascribed from two main 

sources: root- or straw, which were both increased by N fertilization. The topsoil SOM contents 

increased with higher input (N induced) to only a limited extent, and was mainly accounted for 

by the free light fraction of SOM. Mineral-associated C, however, decreased with the increasing 
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C input induced by N fertilization. The aboveground residue (straw) contributed little to the 

free light fraction, but prevented C losses from the mineral-associated SOM fraction. We 

ascribed this finding to the different behaviors of roots (the dominant crop residue input when 

straw is removed) and straw: Under root-dominated residue input, the light SOM fraction 

increased linearly with N fertilization, whereas the more easily decomposable straw was 

transformed (from the light SOM fraction) by microorganisms and stabilized in the mineral-

associated fraction thereafter. Although the overall effect of straw addition on bulk SOM was 

minor, it prevented the loss of mineral-associated SOM fractions (observed when straw 

removed), which are stable over decades. In contrast to topsoil, the subsoil (25-60 cm) SOM 

contents decreased with increasing C additions (along with N fertilization), probably because 

roots were more localized in the topsoil as N supply increased. This was contrary to our 

hypothesis, i.e. high C inputs at the surface may cause high subsoil SOM accumulation.  

In conclusion, organic residues improve soil structure and SOM levels, but their effects strongly 

depend on not only their quantity (which can be managed through additions) but also on the 

quality and behavior of plant residues added to the soil. Roots and aboveground residues exhibit 

variable effects and functions for SOM stabilization. Root-dominated C inputs contribute 

greatly to the unprotected or less decomposed SOM fractions (free light fraction) for a longer 

period than aboveground plant residues. Although roots are more recalcitrant to decomposition 

than aboveground residues, they have a lower mineralization threshold at which SOM priming 

increases. Therefore, in addition to SOM destabilization through priming, root additions may 

result in lower levels of microbially-mediated stable SOM formation following residue 

decomposition, which is necessary for mineral-associated stable SOM formation. Although 

larger aboveground residue additions (leaves, stems) improve soil aggregation and protect the 

mineral-associated SOM fraction, low physical protection and high mineralization decreases 

the efficiency of their stabilization in SOM. The often-described minor increase of SOM with 

high crop residue inputs emerges from the opposing responses of functionally variable SOM 

fractions to root and aboveground residues. 

Overall, our findings connect the quantity and quality of crop residues for better prediction and 

understanding of the mineralization and stabilization of SOM. In order to sustain sufficient 

SOM levels, efficient crop residue management under specific field conditions is required. This 

is important when recommending removal of aboveground crop residues, such as straw, e.g. for 

bioenergy purposes. 
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Figure S2-S1. Cumulative total soil CO2 efflux over 120 days of incubation, depending on 

type and level of crop residue additions. Mean values with standard errors (n = 3).
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Figure S2-S2. The effect of residue type and level of addition on potential soil enzymes 

activities over the incubation period of 120 days. Mean values with standard errors (n = 3). 
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Table S2-S1: The Pearson correlations (r) of residue and soil organic matter (SOM) derived microbial biomass carbon (MBC) with total and residue 

originated CO2 efflux, and with the values of the potential activities of hydrolytic enzymes in soils amended with residues at incubation day 15, 30, 

60 and 120. 

  Total CO2 Residue CO2 ß-Glucosidase Acid Phosphatase Chitinase Xylanase Cellubiohydrolase LAP* 

Residue MBC                 

15 day 0.88 0.89 0.66 0.33 0.85 0.76 0.39 0.82 

30 day 0.54 0.64 0.08 0.90 0.02 0.40 0.40 0.85 

60 day 0.85 0.86 -0.09 0.81 0.39 0.47 0.21 0.55 

120 day 0.76 0.78 0.27 0.53 0.86 0.29 -0.25 0.33 

                  

SOM MBC                 

15 day -0.43 -0.46 -0.02 0.08 -0.40 -0.30 -0.40 -0.26 

30 day 0.04 0.13 -0.23 0.62 -0.05 0.00 0.09 0.38 

60 day 0.39 0.40 0.07 0.35 0.02 0.13 0.11 0.17 

120 day 0.48 0.53 -0.09 0.50 0.65 0.11 -0.05 0.14 

*Leucine aminopeptidase
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7.2 Contribution to the studies 

Names order corresponds to the estimated importance of the each contribution 

 

Study 1 (chapter 3.1): Decrease of soil organic matter stabilization with increasing 

inputs: mechanisms and controls 

Study design: Felix Heitkamp, Muhammad Shahbaz, Yakov Kuzyakov 

Sample collection: Muhammad Shahbaz 

Sample preparation, incubation and analysis: Muhammad Shahbaz 

Data interpretation: Muhammad Shahbaz, Felix Heitkamp 

Manuscript writing: Muhammad Shahbaz 

Comments on manuscript: Felix Heitkamp, Yakov Kuzyakov 

 

Study 2 (chapter 3.2): Microbial decomposition of soil organic matter is mediated by 

quality and quantity of crop residues: mechanisms and thresholds 

 

Study design: Muhammad Shahbaz, Felix Heitkamp, Yakov Kuzyakov 

Sample collection: Muhammad Shahbaz, Muhammad Sanaullah 

Sample preparation, incubation and analysis: Muhammad Shahbaz, Amit Kumar, 

Muhammad Sanaullah 

Data interpretation: Muhammad Shahbaz, Evgenia Blagodatskaya 

Logistic model development: Vladimir Zelenev, Evgenia Blagodatskaya, Muhammad 

Shahbaz, Felix Heitkamp 

Manuscript writing: Muhammad Shahbaz 

Comments on manuscript: Evgenia Blagodatskaya, Yakov Kuzyakov, Muhammad Sanaullah, 

Felix Heitkamp 
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Study 3 (chapter 3.3): Decadal nitrogen fertilization decreases mineral-associated and 

subsoil carbon: a 32 year study 

 

Field experiment maintenance: Matthias Wendland  

Sample collection: Muhammad Shahbaz, Shafique Maqsood, Felix Heitkamp  

Sample preparation and analysis: Muhammad Shahbaz, Shafique Maqsood 

Data interpretation: Muhammad Shahbaz, Felix Heitkamp, Yakov Kuzyakov 

Manuscript writing: Muhammad Shahbaz 

Comments on manuscript: Felix Heitkamp, Yakov Kuzyakov 

 

Study 4 (chapter 4, in preparation): Interactive effect of glucose and partially decomposed 

plant residues priming: A three source partitioning study 

Study design: Muhammad Shahbaz, Yakov Kuzyakov, Felix Heitkamp 

Sample collection: Muhammad Shahbaz 

Sample preparation, incubation and analysis: Muhammad Shahbaz 

Data interpretation: Muhammad Shahbaz, Evgenia Blagodatskaya 

Preliminarily results writing: Muhammad Shahbaz 
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