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Summary

The vast majority of the efficiency and productivity measurement literature has been

based on the static viewpoint of the firm. Few studies have developed the dynamic

analog of static efficiency measurement, introducing the notions of long-run efficiency

and inefficiency persistence. The former is perceived as a flow that measures firms’

failure to optimize their present production processes while taking into account their

long-run objectives. The latter is based on the argument that adjustment costs prevent

firms from altering the level of their quasi-fixed factors of production, and therefore

inefficient firms are likely to remain partly inefficient in the future. This implies that

their inefficiency may persist from one period to the next. However, the few existing

dynamic efficiency studies have not provided any empirical evidence on the driving

forces of firms’ long-run efficiency and inefficiency persistence.

As far as productivity measurement is concerned, previous studies have exclusively

employed static efficiency models that are inconsistent with the dynamic nature of

firms’ decision-making process. Additionally, these static efficiency models have either

imposed a very restrictive or a non-existing time structure on efficiency. On the one

hand, imposing a very restrictive time structure on efficiency scores may not reveal

period-specific shocks on firms’ efficiency. On the other hand, a specification that

allows for the efficiency scores to evolve completely arbitrarily over time may capture

period-specific efficiency shocks, but is also very likely to produce erratic results.

This dissertation departs from previous dynamic efficiency studies by shedding

light on the drivers of long-run efficiency and inefficiency persistence. Additionally,

a dynamic efficiency specification is used to calculate and decompose Total Factor

Productivity (TFP) growth. Such a modelling approach not only recognizes that

firms’ decision-making processes are dynamic in nature, but also offers a more flexible

time-structure for the efficiency component that can account for period-specific shocks

without producing erratic results.

Three models for dynamic efficiency measurement are developed and applied to

the case of German dairy farms. Estimation proceeds using Bayesian techniques. The

first model is based on the argument that the efficiency levels achieved by farms in

the long-run may vary due to their different characteristics and the varying degrees

of their inefficiency persistence. The conventional dynamic stochastic frontier model

is extended to allow for such heterogeneity in the long-run efficiency of farms. The

results suggest that farms achieve different long-run efficiency levels mainly due to their

different characteristics. In particular, economically larger farms are more technically

efficient in the long-run, while farms that receive higher amounts of subsidies are less

technically efficient in the long-run.
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The second model aims to provide empirical evidence on the driving forces of farms’

inefficiency persistence. By assuming that inefficiency persistence arises due to the

existence of pecuniary and non-pecuniary adjustment costs, the model tests whether

financial aid and managers’ experience have an impact on inefficiency persistence.

The empirical findings reveal a high degree of inefficiency persistence through time,

which increases with the amount of subsidies received. Older farmers exhibit higher

inefficiency persistence as opposed to younger ones, presumably due to their lack of

motivation to adopt state-of-the-art technologies.

The third model calculates and decomposes TFP growth of German dairy farms

using a dynamic specification for the efficiency component. The results report a high

TFP growth rate that is mostly attributed to technical progress. The model is also

able to capture steep efficiency and TFP growth changes that may have been induced

by the high milk price volatility which occurred in the German dairy sector. The

dynamic efficiency model is favored by the data when tested against a model that

imposes a very restrictive time structure on efficiency, and a model that imposes no

time structure on efficiency scores.

iv



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on efficiency and productivity . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 German dairy sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objectives and research questions . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Heterogeneity of long-run technical efficiency of German dairy

farms: a Bayesian approach . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Modelling Approach and Estimation . . . . . . . . . . . . . . . . . . . 11

2.3 Data and empirical specification . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3: The effect of farm characteristics on the persistence of

technical inefficiency: a case study in German dairy farming . . 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Modelling inefficiency persistence . . . . . . . . . . . . . . . . . 29

3.2.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Alternative models . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Data and empirical specification . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4: Productivity growth under a dynamic inefficiency

specification: the case of German dairy farms . . . . . . . . . . 42

v



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Distance function and efficiency . . . . . . . . . . . . . . . . . . 45

4.2.2 Alternative efficiency specifications . . . . . . . . . . . . . . . . 46

4.2.3 Measurement and decomposition of TFP growth . . . . . . . . . 48

4.3 Estimation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Empirical specification . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Log-marginal likelihood and Bayes factors . . . . . . . . . . . . 51

4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 5: General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Synthesized Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Policy Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . 67

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



List of Tables

2.1 Summary statistics of the models’ variables . . . . . . . . . . . . . . . . 17

2.2 Posterior means, standard deviations and 95% credible intervals of the

first-order terms and the structural parameters . . . . . . . . . . . . . . 19

2.3 Marginal effects of the variables in z on long-run technical efficiency

(LRTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Summary statistics of the models’ variables . . . . . . . . . . . . . . . . 35

3.2 Posterior means, standard deviations and 95% credible intervals of the

model’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Marginal effects of the variables in z on technical efficiency . . . . . . . 38

3.4 Marginal effects of the variables in w on inefficiency persistence . . . . 39

4.1 Summary statistics of the model’s variables . . . . . . . . . . . . . . . . 54

4.2 Posterior summaries of the first-order terms and the parameters in the

three θ vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 TFP growth rate and decomposition (%) . . . . . . . . . . . . . . . . . 56

4.4 Marginal log-likelihoods and posterior model probabilities . . . . . . . . 59

5.1 Summary of average inefficiency persistence scores by chapters . . . . . 64

A.1 Parameterization of priors . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Estimates of the model’s parameters . . . . . . . . . . . . . . . . . . . 69

A.3 Determinants of transformed efficiency s . . . . . . . . . . . . . . . . . 70

B.1 Parameterization of priors . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2 Parameter estimates from the three alternative inefficiency specifications 71

B.3 Estimates of the model’s parameters . . . . . . . . . . . . . . . . . . . 71

B.4 Determinants of transformed efficiency (s) . . . . . . . . . . . . . . . . 73

B.5 Determinants of transformed inefficiency persistence (h) . . . . . . . . 73

C.1 Estimates of the parameters from the Battese and Coelli (1992) model 75

C.2 Estimates of the parameters from the unstructured model . . . . . . . . 76

C.3 Estimates of the parameters from the dynamic model . . . . . . . . . . 78

C.4 Determinants of efficiency in the unstructured model . . . . . . . . . . 79

C.5 Determinants of transformed efficiency s in the dynamic efficiency model 79

vii



List of Figures

1.1 Evolution of milk prices per 100kg in the German dairy sector from

2001 to 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Boxplot of inefficiency persistence parameter ρ and LRTE . . . . . . . 20

3.1 Posterior density and summary statistics of inefficiency persistence ρi . 39

4.1 Decomposition of TFP growth under the three alternative models . . . 58

A.1 Coefficient of variation for European Size Units and subsidies . . . . . . 68

B.1 Coefficient of variation for ESU, specialization, and density . . . . . . . 74

B.2 Coefficient of variation for received subsidies . . . . . . . . . . . . . . . 74

C.1 Coefficient of variation for size, specialization and stock density . . . . 80

viii



Abbreviations

AMS Automatic Milking System

CAP Common Agricultural Policy

DEA Data Envelopment Analysis

ESU European Size Units

EU European Union

FADN Farm Accountancy Data Network

LRTE Long-Run Technical Efficiency

MCMC Markov Chain Monte Carlo

SFA Stochastic Frontier Analysis

SPS Single Payment Scheme

TFP Total Factor Productivity

ix



Acknowledgments

Aristotle had once said: “The roots of education are bitter, but the fruit is sweet”. The

way that the word “bitter” is perceived is of course something subjective. In my view,

it refers to a painful experience but not a tedious or an unpleasant one. How can one

achieve his goals without sacrificing? Without sweating? Feelings like disappointment

or anxiety are natural to arise, without, however, implying that one is unhappy. And

this occurs when one strives for something that he really desires. This was exactly

the case for myself during these 3 years. I am currently unaware of the “sweetness

of the fruit” concerning my professional career. However, I am completely aware of

something more important. And this is the life lesson that I got from this procedure.

Learning how to think, respect and listen to alternative opinions, and keep on trying

even when it seems impossible to achieve your target, are just some examples.

Upon the completion of my PhD dissertation, I need to acknowledge several people

who helped, encouraged and guided me during this 3-year trip. I am highly indebted

to my two supervisors from Göttingen, Prof. Bernhard Brümmer and Prof. Thomas
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Chapter 1

General Introduction

1.1 Background on efficiency and productivity

According to production theory, firm managers are assumed to successfully optimize

their production processes. The two main behavioral assumptions imposed on the

decision-making units are those of cost minimization and profit maximization. The

former maintains that production factors are employed in a way such that the cost of

production is minimized, subject to the requirement that a certain level of output is

produced. The latter claims that decision makers produce the amount of output that

maximizes their profits. Of course, the aforementioned assumptions may not necessar-

ily reflect the actual objectives of producers. For instance, a manager’s actual objective

may be to minimize his or her total debt, or maintain his or her existing market share.

However, the majority of models used to represent producers’ behavior are based on

the assumptions of cost minimization and profit maximization. In particular, there

is homophonous agreement that, irrespective of how output is determined, it will be

produced at minimum cost. In other words, even if the level of output produced is

not based on the criterion of profit maximization, the assumption of cost minimization

should still hold.

However, in reality, producers are not necessarily successful optimizers. This may

be due to governmental intervention that aims to protect them from market compe-

tition, and extreme weather conditions or disease outbreaks that can result in unex-

pected loses in output. If one is willing to accept that the decision-making units do

not always meet their objectives, the discrepancy between optimal and observed pro-

duction should be defined and quantified. Two early attempts to define efficiency in

production are described in Debreu (1951) and Koopmans (1951). The former defines

efficiency as the situation in which a level of “satisfaction”, say output, is achieved

with the minimum use of physical resources. The latter describes a producer as being

efficient if he or she chooses the combination of productive activities that maximize

the amount of output produced for a given quantity of production factors. The study

of Farrell (1957) was the first to quantify efficiency. In particular, it provided a way

to measure cost efficiency and decompose it into technical and allocative efficiency

components.

1



Based on the definitions of efficiency provided by Debreu (1951) and Koopmans

(1951), and the pioneer applied work of Farrell (1957), a vast area of empirical re-

search has been triggered that extends from providing alternative ways of measuring

efficiency, to identifying its potential driving forces. Efficiency measurement and the

identification of its determinants are important for better resource allocation and for

the evaluation of particular policies. For instance, facilitation of economic planning

can be achieved by knowing how much more a sector can produce by increasing its

efficiency and not utilizing additional resources. Furthermore, by being able to iden-

tify the determinants of efficiency, one can evaluate the success of a particular policy

instrument in increasing a firm’s efficiency. However, to be able to measure efficiency

and identify its driving forces, a modelling decision concerning a firm’s objectives must

be made. Measurement of profit or cost efficiency and the specification of an output

or an input distance function are some examples of such a dilemma.

Once panel data are available and efficiency is estimated, one can proceed further

and calculate the Total Factor Productivity (TFP) growth of a sector. Productivity

analysis was first introduced in the work of Malmquist (1953), who developed a stan-

dard of living index defined as the ratio of two input distance functions. Shephard

(1970) developed the analogous output index using output distance functions. These

two studies have inspired researchers to develop a productivity index based on distance

functions. Caves et al. (1982) were the first to define a productivity index based on

ratios of output or input distance functions. This index is known as the Malmquist

productivity index and has been extensively used in the productivity measurement

literature. Subsequent research on productivity analysis has been focused on devel-

oping alternative decompositions for the Malmquist productivity index. TFP growth

can be decomposed into the following components: (i) a technical change component

which accounts for frontier shifts over time, (ii) an efficiency change component that

quantifies firm-level efficiency changes over time, (iii) a scale effect component which

accounts for firm-level changes in scale over time and (iv) allocative effects for out-

puts and inputs that concern the optimal output and input mix. The importance

of calculating TFP growth stems from the fact that it serves as an indicator of the

competitiveness of a sector. In particular, high TFP growth assures that a particular

sector is able to survive both domestic and international competition and persist in a

competitive environment. The most important decision that the researcher needs to

take when calculating TFP growth concerns the specification of the time evolution of

efficiency, as several different approaches exist for modelling time-varying efficiency.
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1.2 Problem statement

Empirical studies on efficiency measurement have been almost exclusively based on a

static framework. However, firms’ decision making processes are dynamic in nature;

the decisions made today will not only affect present, but also future production possi-

bilities. The minimization of discounted costs or the maximization of discounted cash

flows are examples of firms’ dynamic objectives. The major flaw associated with static

efficiency analysis is that it may result in a producer being labeled as inefficient despite

the fact that this may be an optimal strategy so that he meets his long-run objective.

Besides the difference in firms’ objectives under the two alternative contexts, another

discrepancy between static and dynamic contexts is that capital is treated differently.

In a static framework, capital is considered to be either fixed or freely adjusted. This

implies that altering its level does not impose any penalty apart from the acquisition

cost. In a dynamic context, capital is a quasi-fixed factor and not freely adjusted with

its evolution depending on the depreciation rate of existing capital and investment in

new capital (Stefanou, 2009).

Non-free adjustment implies that, beyond the acquisition cost, additional adjust-

ment costs are associated with altering the level of certain production factors such

as capital. Stefanou (2009) categorizes these adjustment costs into two major sub-

categories: external and internal adjustment costs. External adjustment costs are

pecuniary in nature and refer to the lack of credit sources that would allow the firm

to raise its capital stock. Internal adjustment costs are associated with learning and

refer to the loss of physical output as a result of the time that the operator needs to

spend in order to learn how to use his or her new resources.

Given that adjustment costs are responsible for the sluggish adjustment of quasi-

fixed factors of production, the question that naturally arises is the following: can we

argue that such a sluggish reaction could be used to label the producer as inefficient?

This is what static efficiency measures argue, as they measure efficiency based on the

distance of the observed quantities from the frontier. Nevertheless, in the presence of

high adjustment costs, a certain degree of inertia in adjusting the level of quasi-fixed

factors of production may be the most ideal decision of a producer. In other words,

if a producer is inefficient at a certain point in time, his optimal strategy may be to

remain inefficient in the short-run. This implies that inefficiency may persist from

a period to the next. However, an efficiency measure that does not treat a sluggish

reaction as inefficiency needs to be considered. Dynamic or long-run efficiency is such

a candidate, as it measures a firm’s failure to achieve optimality in the current period,

where the firm operates. Nevertheless, the long-run objective of the firm is taken into

account while defining optimality of the current period.
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The above arguments remain relevant when productivity analysis is conducted, as

one of its major components is that of efficiency change. Several empirical studies

that have attempted to measure TFP growth have relied on static efficiency measures

that ignore the dynamic nature of producers’ decisions. As TFP growth is a dynamic

concept itself, modelling the dynamic behavior of the decision-making units is more

appropriate. Additionally, numerous studies have considered the evolution of efficiency

scores as a deterministic function of time. Consequently, these studies are not able

to capture time-specific shocks in a firm’s efficiency. Given the stochastic environ-

ment under which firms operate, shocks such as bad weather conditions or high price

volatility should not be a rare phenomenon.

1.3 German dairy sector

The German dairy sector has recently experienced radical changes both in terms of

its production and structure, and in terms of policy intervention. Milk production

has steadily increased from ∼27 million tons in 1999 to ∼28 million tons in 2009,

reaching a peak of ∼32 million tons in 2015. This increased production in milk has

been accompanied by a continuous decline in the number of dairy cows. Specifically,

the number of dairy cows has decreased from ∼4.8 million in 1999 to ∼4.3 million

in 2015. Furthermore, the use of labor has declined and German dairy farms have

become more capital intensive (EUROSTAT, 2016). Apart from the aforementioned

production and structural changes, the dairy sector in Germany has also faced high

milk price volatility, particularly between the years of 2001 and 2009. Figure 1.1

provides a graphical illustration of the evolution of milk prices per 100kg in the German

dairy sector for the period 2001-2009. The graph reveals that slight changes in milk

prices occur between 2001 and 2006, in both directions. More notably, steep milk

price changes are observed from 2006 onwards. In particular, a large price increase

occurs between 2006 and 2008 with milk prices rising from 25.25e/100kg in 2006 to

35.01e/100kg in 2008. This milk price increase is followed by a rapid decline in 2009,

when milk prices sunk to a low of 25.25e/100kg.

Turning to policy intervention, by being a member of the European Union (EU),

Germany’s dairy sector has been extensively regulated by the Common Agricultural

Policy (CAP) to meet objectives such as the reduction of milk production and sustain-

ability. In 1984, the CAP introduced the milk quota system to reduce overporduction

of milk and milk products. The quota regime in Germany has experienced several

changes over the years that were mainly related to the transfer of quota rights. While

milk quota transfers were initially realized by renting land, from 2000 onwards quota

transfers were only possible through auctions at the regional level (Kleinhanß et al.,

4



Figure 1.1: Evolution of milk prices per 100kg in the German dairy sector from 2001
to 2009.

Source: EUROSTAT.

2010). In 2009, and with the intention of preparing a “soft landing” before the abolish-

ment of the milk quota system in 2015, the CAP introduced the “Health Check” policy,

which led to a 1% increase in quotas for every year until 2015 (European Commission,

2016).

Dairy farms in Germany are also heavily subsidized. At first, subsidies took the

form of direct support to farmers, who received a subsidy per unit of output. How-

ever, the 2003 decoupling reform of the CAP altered the way in which subsidies were

granted. As its name suggests, the reform meant that subsidies became decoupled

from production and were distributed based on a Single Payment Scheme (SPS) as

well as cross-compliance conditions related to environmental, food safety, and animal

welfare standards. Payments according to the SPS scheme could be regionalized, farm-

specific, or both, with Member States of the EU being able to choose the way that the

SPS is implemented. Germany chose a combination of regionalized and farm-specific

payments (Brady et al., 2009).

In the particular case of decoupled payments, a large body of the efficiency mea-

surement literature has concluded that the income support nature of these payments

has reduced the motivation of farmers to work efficiently. Since German dairy farms

have been heavily dependent on this policy instrument, the sector has become a good
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candidate for measuring its efficiency. Additionally, random shocks such as the afore-

mentioned milk price volatility motivate the measurement of changes in both efficiency

and TFP growth of farms. Finally, the fact that the German dairy sector is character-

ized by heavy use of capital stock and fast technological progress makes it likely that

adjustment costs may influence producers’ decisions and objectives. This motivates

the transition from static to dynamic efficiency measurement.

1.4 Objectives and research questions

As far as parametric efficiency measurement is concerned, it is rather surprising that

the majority of studies have assumed that firms’ decision-making processes are static

in nature. The most likely reason is that moving to dynamic efficiency analysis involves

complex estimation techniques, intensive coding and a lot of computing power. That

is why dynamic efficiency studies have been primarily conducted in non-parametric

settings. Recently, a few attempts have been made to model the dynamic behavior of

decision-making units in parametric settings. Such attempts have revealed this to be

a brand new field of research, one that allows us to extend the few existing models in

order to relax some of their assumptions or, indeed, to add relevant information that

can explain some key concepts.

The main objective of this study is to extend and estimate parametric dynamic effi-

ciency and TFP growth models. These models are applied to the case of German dairy

farms. Firstly, the dynamic efficiency model is extended to allow for heterogeneity in

the long-run technical efficiency of farms. Long-run technical efficiency is allowed to

differ across farms not only based on varying degrees of inefficiency persistence, but

also due to farm-specific characteristics. Additionally, an alternative way of modelling

inefficiency persistence is used. Secondly, a model that accounts for the impact of

farm-specific characteristics on the persistence of technical inefficiency is developed.

These farm-specific characteristics are closely related to the aforementioned types of

adjustment costs, which, according to theory, are responsible for the sluggish adjust-

ment of quasi-fixed factors of production. Finally, a dynamic efficiency specification

is used to measure and decompose farms’ TFP growth. Given the stochastic nature

of the production environment, the last study tests whether the dynamic efficiency

specification is able to capture time-specific shocks on farms’ technical efficiency and,

therefore, TFP growth.

The research questions associated with the study include the following:

• Is there heterogeneity in the long-run technical efficiency of German dairy farms?

• Are there any farm-specific characteristics that can help explaining the persis-
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tence of German dairy farms’ technical inefficiencies?

• Is the dynamic efficiency specification able to capture time-specific technical

efficiency and TFP growth shocks in German dairy farming?

To provide answers to the aforementioned research questions, three models are

used and estimation proceeds in a Bayesian framework. By using the technique of

data augmentation, Bayesian methods have been proved to be particularly useful in

estimating models that involve latent data, with models for efficiency measurement

falling in this category. Additionally, interpretation of the results and particularly

hypothesis testing and construction of credible intervals is much more straightforward

when compared to frequentist techniques, while the results obtained are valid in finite

samples.

1.5 Outline

This dissertation focuses on extending the already existing parametric dynamic ef-

ficiency models to provide answers to the formulated research questions. The next

chapter extends the dynamic efficiency model in a way such that it can account for

heterogeneity in the long-run technical efficiency of German dairy farms. Heterogene-

ity is permitted due to both farm-specific characteristics and farm-specific inefficiency

persistence. In addition, a novel method for modelling inefficiency persistence is pro-

posed. Chapter 3 aims to provide empirical evidence on the factors that may influence

farms’ inefficiency persistence. Particular emphasis is given to the modelling approach

of the inefficiency persistence parameter and the motivation behind the selection of its

determinants.

Chapter 4 examines the TFP growth of German dairy farms by using a dynamic

efficiency specification. The main focus of this chapter is to test whether the dynamic

efficiency model can reveal abrupt changes in technical efficiency and TFP growth that

may be due to the high milk price volatility that took place in the German dairy sector.

The results from the dynamic efficiency specification are compared with those of two

static efficiency specifications and a formal model comparison is performed. Finally,

Chapter 5 summarizes the main findings of this dissertation, discusses its limitations,

synthesizes the results, presents some policy implications and offers suggestions for

future research.
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Chapter 2

Heterogeneity of long-run technical

efficiency of German dairy farms: a

Bayesian approach

Abstract
In parametric efficiency studies, two alternative approaches exist that can provide an

estimate of the long-run efficiency of firms: the dynamic stochastic frontier model and

the generalized true random-effects model. We extend the former in order to allow

for heterogeneity in the long-run technical efficiency of firms. This model is justified

by drawing on potential differences in firm-specific characteristics and in firms’ in-

efficiency persistence. The model is applied to an unbalanced micro-panel of German

dairy farms that covers the period from 1999 to 2009. Estimation of long-run technical

efficiency and inefficiency persistence is based on an output distance function repre-

sentation of the production technology and performed in a Bayesian framework. The

results suggest that heterogeneity in long-run technical efficiency of farms is mostly

attributed to discrepancies in farm-specific factors rather than differences in farms’

inefficiency persistence. Farm size is positively related to long-run technical efficiency

while subsidies exert a negative effect on the long-run technical efficiency of farms.

Inefficiency persistence is found to be very high, but heterogeneity in this persistence

is low.

Keywords: Dynamic stochastic frontier; long-run technical efficiency; inefficiency

persistence; heterogeneity; dairy farms.

JEL Classification: C11, C23, D21, D24
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2.1 Introduction

Agricultural investment is often referred to as the main engine of farm productivity

improvement and considered to be necessary for farms to catch up with frontier shifts

in order to avoid being driven out of business. In a capital-intensive agricultural

environment, such investment is associated with the replacement of existing capital,

the increase in the capital stock or the adoption of technological innovations (Kapelko

et al., 2015). Hence, continuous agricultural investment can assure frequent changes in

firms’ production process, facilitating the use of existing knowledge or the generation

of new technology. However, the adjustment cost hypothesis described by Penrose

(1959) and Eisner et al. (1963), states that the existence of adjustment costs prevents

the decision-making units from instantaneously adjusting their quasi-fixed inputs to

their long-run equilibrium values. Examples of adjustment costs are expansion-related

expenses, constraints on credit sources and learning and training costs that are related

to the time spent by the operator to acquire knowledge and experience using the new

resources (Stefanou, 2009). This costly adjustment provides firm operators with an

incentive to remain partly inefficient in the short-run, resulting in persistence of their

inefficiency over time. Besides, inefficiency persistence may differ among firms because

of discrepancies in the speed that technological innovations are adopted. For instance,

disparities in the managerial skills and motivation of the firm operators may affect the

speed of the introduction of a new technology (Gardebroek and Oude Lansink, 2004).

In addition, discrepancies in the cognitive capacity and experience of firm operators

may result in less/more time devoted to becoming familiar with the new technology.

Hence, differences in adjustment costs across firms may result in varying degrees of

inefficiency persistence among them.

The adjustment cost hypothesis can also provide the basis for the distinction be-

tween short and long-run inefficiency. The difference between these two concepts is

illustrated by an example. Suppose that a system is currently in equilibrium when a

new technology arises. If there were no adjustment costs present, firm operators would

instantaneously adopt the new technology and would reach their desirable efficiency

levels in the short-run. However, if adjustment costs exist, the optimal strategy for

firm operators would be to remain inefficient in the short-run and reach their targeted

efficiency levels in the long-run. Dependent on the level of adjustment costs and on

firm-specific characteristics, firms may consider different reactions to the shock intro-

duced by the new technology. Despite reacting differently, decision makers will take

into account their long-run objective (which may differ among firms) in their current

production plans. Hence, long-run inefficiency is perceived as a flow that measures

the failure to optimize in the current period where firms always operate. The term
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“long-run” stems from the fact that firms’ decisions are made in the short-run but with

a view in the future. On the other hand, short-run inefficiency completely ignores the

presence of adjustment costs and that current production decisions may affect future

outcomes. It simply takes a snapshot of the current position of the production frontier,

and quantifies the deviation of firms from this frontier.

Two alternative approaches exist that take into account adjustment costs and dis-

tinguish between short-run and long-run inefficiency using the parametric technique

of Stochastic Frontier Analysis (SFA) introduced by Aigner et al. (1977) and Meeusen

and van den Broeck (1977)1. The first approach, is based on the generalized true

random effects model introduced by Tsionas and Kumbhakar (2014) in a Bayesian

framework, and involves the specification of an one-sided time-invariant error term

and an one-sided time-varying error term in the production frontier. The first error

term aims to capture the so-called persistent or long-run inefficiency while, the latter,

aims to capture the so-called transient or short-run inefficiency. Identification of these

two inefficiency components, in the presence of time-invariant firm characteristics (i.e.

unobserved heterogeneity) and time-varying statistical noise, is achieved through the

use of one-sided distributions for the two inefficiency components. Since its intro-

duction, this novel approach has been used by several other empirical studies. For

instance, Filippini and Hunt (2015) and Filippini and Greene (2016), present the fre-

quentist way to estimate the generalized true random effects model using the method

of simulated maximum likelihood, while, Badunenko and Kumbhakar (2016), examine

the robustness of the model due to concerns related mainly to the identification of the

four error components.

The second approach, accounts in a more comprehensive way for the consequences

of costly adjustment of quasi-fixed inputs, and the resulting persistence of inefficiency.

More precisely, Ahn and Sickles (2000) specified an autoregressive process on firm-

specific efficiency scores to account for persistence of shocks in firms-level efficiency.

In the presence of the aforementioned adjustment costs, this model recognizes that

inefficiency is not likely to disappear over time. Criticism related to the specification of

an autoregressive process on a non-negative variable, has led Tsionas (2006) to specify

an autoregressive process on transformed efficiency that can take any value on the

real line. The same approach was followed by Emvalomatis et al. (2011), Emvalomatis

(2012a) and Galán et al. (2015). This model, as in the case of the generalized true

random effects model, can provide an estimate of both the short- and long-run firm-

level efficiency. The short-run efficiency is derived based on the distance of the firms

from the production possibilities frontier, while, long-run efficiency corresponds to the

1For non-parametric dynamic efficiency studies that have used the technique of Data Envelopment
Analysis (DEA), see Fallah-Fini et al. (2014).

10



steady-state value of efficiency from the specification of the autoregressive process.

The study of Tsionas (2006) fails to derive the long-run efficiency of firms due to

the specification of time-varying covariates in the autoregressive process. Emvaloma-

tis et al. (2011) and Emvalomatis (2012a) provide estimates for the long-run efficiency

scores assuming that all firms reach a common long-run efficiency level. Unlike the

aforementioned studies, the study of Galán et al. (2015) recognizes that differences in

firms’ adjustment costs may result in different degree of their inefficiency persistence,

but, as in Tsionas (2006), the specification of time-varying variables in the autoregres-

sive process does not allow them to derive long-run measures of efficiency. The only

exception that combines the specification of heterogeneity in inefficiency persistence

and the derivation of firm-specific long-run efficiency scores, is the work of Ahn and

Sickles (2000). However, heterogeneity in firm-specific long-run efficiency occurs only

due to differences in firms’ (unobserved) management and different speed of adop-

tion of a new technology, without taking into account any observable firm-specific

factors. However, as the effect of firm-specific factors on short-run efficiency is well

documented, surprisingly, their impact on long-run efficiency has been completely dis-

regarded. Particularly in agriculture, heterogeneity in farm size and the high extent

of regulation may be responsible for differences in the long-run efficiency of farms.

In this paper we propose a dynamic stochastic frontier model that, as in the case

of the generalized true random effects model, can provide an estimate of firm-specific

long-run efficiency. However, our model allows for firm-specific long-run inefficiency

to be dependent on firm-specific characteristics, which is an issue that has been com-

pletely ignored by both the generalized true random effects and the dynamic stochastic

frontier models. Furthermore, an alternative specification for modeling heterogeneity

in inefficiency persistence over time is proposed, that maintains the assumption of pos-

itive autocorellation of efficiency scores. In the next section, the modeling approach is

described and Bayesian techniques are detailed. The model is applied to a micro-panel

of German dairy farms and Section 2.3 describes the data used and the empirical spec-

ification of the model. Section 2.4 presents the results, while concluding remarks are

provided in Section 2.5.

2.2 Modelling Approach and Estimation

We consider the typical stochastic frontier model and employ an output distance func-

tion to account for the multi-output nature of the production technology. Assuming

that a vector of outputs ỹ ∈ RM
+ is produced by a vector of inputs x̃ ∈ RN

+ , the output

distance function is defined as:
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Do(x̃, ỹ, t) = min

{
θ :

ỹ

θ
can be produced by in period t

}
(2.1)

The output distance function gives the minimum amount by which the output

vector can be deflated given the input vector. It assumes values in the unit interval

and the locus of points for which Do(x̃, ỹ, t) = 1 defines the boundary of the pro-

duction possibilities set. The technical efficiency of firm i in period t is defined as

TEit = Do(x̃it, ỹit, t). Taking the logarithm of both sides of this expression, imposing

the condition of linear homogeneity in outputs of the output distance function, and

appending an error term leads to the econometric version of the distance function:

− log ỹmit = logDo

(
x̃it,

ỹit
ỹmit

, t

)
+ vit − log(TEit) (2.2)

where ỹmit is the normalizing output and vit is an error term that captures statistical

noise. Letting yit be the dependent variable in equation (2.2) and the logarithm of the

distance function a linear function of parameters and functional transformations of its

arguments, the estimable form of the distance function can be written as:

yit = x
′

itβ + vit − log(TEit), vit ∼ N (0, σ2
v) (2.3)

where yit is minus the logarithm of the normalizing output, x
′
it is a vector of covari-

ates, β is a vector of parameters to be estimated, vit is a two-sided error term that

accounts for statistical noise, and TEit is the technical efficiency of firm i in period

t. For estimation purposes, equation (2.3) can be seen as a typical cost stochastic

frontier. Following Tsionas (2006), Emvalomatis et al. (2011), Emvalomatis (2012a)

and Galán et al. (2015), we consider a dynamic stochastic frontier model that spec-

ifies an autoregressive process on firm-specific technical efficiency. However, in this

study, as in Galán et al. (2015) we allow for firm-specific inefficiency persistence and

recognize that heterogeneity in terms of the adjustment costs and the managerial

characteristics of farms may affect the degree of persistence. We define a latent-state

variable, sit = log( TEit
1−TEit ), as the logistic transformation of technical efficiency so that

we project TEit from the unit interval to the real line and we assume the following

autoregressive process on sit:

sit = z
′

iδ + ρisi,t−1 + ξit, ξit ∼ N (0, σ2
ξ) (2.4)

si0 =
z
′
iδ

1− ρi
+ ξi0, ξi0 ∼ N (0, σ2

ξ0) (2.5)

where z is a vector of time-invariant covariates, δ and ρi are parameters to be esti-
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mated, ξit is a two-sided error term that captures statistical noise, and σ2
ξ0 =

σ2
ξ

1−ρ2i
,

is due to stationarity. Based on this modelling approach ρi is an elasticity that mea-

sures the firm-specific percentage change in the efficiency to inefficiency ratio that is

transferred from one period to the next. Stationarity of the s series ensures that the

expected value of s does not diverge to either positive or negative infinity and therefore,

technical efficiency will not approach unity or zero. Using functional transformations,

the firm-specific inefficiency persistence parameter is restricted on the unit interval. A

value of ρi close to one indicates high inefficiency persistence and that high adjustment

costs result in sluggish adjustment of quasi-fixed factors. Besides, given the one-to-one

transformation from s to TE, the steady-state value of s is directly interpreted as the

expected value of Long-Run Technical Efficiency (LRTE). In this case, the expected

value of LRTE corresponds to the expectation of [1 + exp{z′iδ/1− ρi}]−1 and is inter-

preted as the expected value of efficiency that will prevail in the sector in the long-run.

Besides, this value will be firm-specific due to differences in firm-specific characteristics

and potential heterogeneity in firms’ inefficiency persistence.

Moving to the modeling of firm-specific inefficiency persistence, Galán et al. (2015)

used a hierarchical structure allowing the inefficiency persistence parameter ρi to take

values between -1 and 1. More specifically, they assumed that ρi = 2ki−1 and sampled

ki from a Beta distribution. However, we argue that it is rather unlikely to observe

negative autocorrelations of efficiency in the adjustment towards the long-run equilib-

rium, while sampling from a Beta distribution can be computationally troublesome.

With the intention to restrict the inefficiency persistence parameter, ρi, on the unit

interval, we specify ρi = exp(hi)
1+exp(hi

and we assume the following relationship:

hi = µ+ ωi, ωi ∼ N (0, σ2
ω) (2.6)

In this framework, hi is a draw from a Normal distribution with common mean µ,

and variance σ2
ω. Hence, our modeling approach not only restricts inefficiency persis-

tence on the unit interval but also specifies a less computationally demanding sampling

distribution for ρi. According to this transformation, hi follows a logit-Normal distri-

bution with negative values of µ resulting in very low inefficiency persistence, positive

and low values (e.g. from 2 to 4) in high inefficiency persistence, while, positive and

high values imply that inefficiency persistence approaches unity. Finally, given that

the variables in z capture part of firm’s unobserved heterogeneity, we do not include

random effects in the production frontier. We use Bayesian techniques to estimate the

model described in equations (2.3−2.6). We define si to be a Ti×1 vector of the latent-

state variable of the transformed technical efficiency for firm i and h to be an N × 1

vector of the latent-state variables of the transformed inefficiency persistence. Finally,
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we collect all structural parameters to be estimated to a vector θ = [β, σv, δ, σξ, µ, σω]
′
.

The complete data likelihood of the structural parameters and latent states is:

p(y, {si},h|θ,X,Z) = p(y|{si},β, σv,X)× p({si}|h, δ, σξ,Z)× p(h|µ, σω)

=
1

(2πσ2
v)

∑N
i=1

Ti
2

exp

{
−

N∑
i=1

Ti−1∑
t=0

(yit − x
′
itβ + log TEit)

2

2σ2
v

}

× 1

(2πσ2
ξ0)

N
2

exp

{
−

N∑
i=1

(si0 − z
′
iδ)2

2σ2
ξ0

}

× 1

(2πσ2
ξ)

∑N
i=1

(Ti−1)

2

exp

{
−

N∑
i=1

Ti−1∑
t=1

(sit − z
′
iδ − ρisi,t−1)2

2σ2
ξ

}

× 1

(2πσ2
ω)

N
2

exp

{
−

N∑
i=1

(hi − µ)2

2σ2
ω

}
(2.7)

where y is the stacked vector of the values of the dependent variable over i and t,

X is the matrix of covariates in equation (2.3) and Z is the matrix of covariates in

equations (2.4) and (2.5).

Using Bayes’ rule the joint posterior density of the model’s parameters and latent

states is:

π(θ, {si},h|y,X,Z) ∝ p(y, {si},h|θ,X,Z)× p(θ) (2.8)

where p(y, {si},h|θ,X,Z) is given by equation (2.7) and p(θ) corresponds to the

product of all the prior densities. We use proper and rather flat priors for the structural

parameters2. Normal priors are used for β, δ, and µ, while inverted-Gamma priors

are used for all variance parameters. We use Markov Chain Monte Carlo (MCMC)

simulations (see Koop et al. (1995) for an application to stochastic frontier models) to

sample from the posterior. To draw samples from the posterior for the latent states,

{si} and h, data augmentation techniques are also used (Tanner and Wong, 1987).

The priors specified for β, δ, and µ, and the variances are conjugate and, therefore,

Gibbs updates are used. The complete conditionals for {si} and h do not belong

to any known distributional family and, therefore, Metropolis-Hastings updates are

used. The MCMC techniques used involve 10 chains and 130,000 iterations with a

burn-in phase of 50,000 iterations being used to remove the influence of the initial

values. Since the Metropolis-Hastings algorithm has the potential of generating highly

correlated draws, every one in 10 draws were retained to reduce autocorrelation in the

samples. Hence, every chain contributes 8,000 draws, resulting in a total of 80,000

2Table A.1 in Appendix A provides details on the parameterization of priors.
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retained draws from the posterior.

2.3 Data and empirical specification

The data used for this application are provided by the Farm Accountancy Data Net-

work (FADN)3. The accounting data that FADN provides are collected regionally using

a common questionnaire across all EU Member States. The dataset contains farm-

level information on physical and structural data of farms, such as farms’ location,

milk output, livestock units, as well as economic and financial data, such as produc-

tion costs, subsidies and quotas. FADN uses a stratified random sampling scheme in

which farms remain in the panel for a period of four to five years on average, although

there are cases where farms remain for more than ten years.

The part of the dataset used here contains such information for German dairy farms

and covers the period from 1999 to 2009. This study focuses on farms engaged pri-

marily in dairy production, and for this purpose we have selected farms whose revenue

from sales of cow’s milk, beef and veal comprise at least 66% of their total revenues for

every year the farm is observed. Additionally, considering the dynamic nature of our

model, we have selected farms that are observed for at least four consecutive years.

The final dataset consists of an unbalanced panel of 1,691 farms with a total of 13,384

observations.

The output distance function in equation (2.2) is specified in two outputs:

1. Deflated revenues from sales of cow’s milk and milk products (milk)

2. Deflated revenues plus change in valuation of beef and veal, pigmeat, sheep and

goats, and poultry meat, plus deflated revenues from sales of other livestock and

products (other)

The reported revenues are deflated with price indices obtained from EUROSTAT,

using 2000 as the base year.

Six inputs are specified in equation (2.2):

1. Buildings and machinery (K) are measured in deflated book value4. A Törnqvist

index was constructed using price indices for each of the two components. The

total reported value was then deflated using the Törnqvist index.

2. Total labor (L) is measured in man-hours and consists of family, as well as hired

labor.

3Data source: EU-FADN - DG AGRI.
4Brümmer et al. (2002) have included livestock units in their capital index. We decided to specify
livestock units as a separate input to identify its individual effect on production.
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3. Total utilized agricultural area (A) is measured in hectares and includes owned

and rented land.

4. Materials and services (M) are measured in deflated value. This input consists

of ten categories of inputs: seeds and plants, fertilizers, crop protection, energy,

other livestock-specific costs, other crop-specific costs, forestry-specific costs, feed

for pigs and poultry, contract work and other direct inputs. A Törnqvist index

was constructed using expenditure and price indices for each input. The total

reported value was then deflated using the Törnqvist index.

5. Total livestock units (S) is measured in livestock units and includes equines,

cattle, sheep, goats, pigs and poultry that are present at the holding.

6. Purchased feed (F) is measured in deflated value. It includes concentrated feed-

ingstuffs for grazing stock and coarse fodder for grazing stock. The value of feed

produced within the farm is excluded.

Dummy variables for eastern, western, northern and southern (base category) Ger-

many are used to capture discrepancies in technology and climatic conditions. Finally,

the z vector in equations (2.4)-(2.5) includes two variables5: the economic size of farms

expressed in hundreds of European Size Units (ESU) and the total amount of subsi-

dies6 that farms receive in thousands of euros. Farms with large economic farm size

are more business/market oriented and may put more managerial effort in terms of the

use of mental labor in the production process compared to those with smaller economic

farm size. This may be reflected in differences in their efficiency. For instance, Latruffe

et al. (2004), Latruffe et al. (2008), Bojnec and Latruffe (2011) and Zhu et al. (2012),

find that bigger farm size is associated with higher efficiency levels. The effect of sub-

sidies on efficiency is more disputable. On the one hand, subsidies may affect efficiency

negatively as, their income effect nature, may reduce the motivation of farm operators

to work efficiently (Hadley, 2006; Bojnec and Latruffe, 2009; Zhu and Oude Lansink,

2010; Zhu et al., 2011; Zhu et al., 2012; Bojnec and Latruffe, 2013). On the other

hand, if subsidies act as an investment tool, they may increase the efficiency of farms

(Rizov et al., 2013). In our case, decoupled payments comprise approximately 65%

of the total amount of subsidies that farms receive. Hence, we expect that subsidies

will negatively affect efficiency, since, decoupled payments are independent from pro-

duction quantities and therefore, may be simply seen as an additional income source.

5Inclusion of additional variables is possible but time-invariant z variables needed to be considered
to be able to derive long-run efficiency scores. Hence, we were unable to include additional relevant
variables that vary significantly over time.

6This variable consists of subsidies on crops, livestock, other subsidies (related to forestry, environ-
mental programs etc.), subsidies on intermediate consumption and external factors, and decoupled
payments.
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The two aforementioned variables are specified as time-invariant for two main reasons.

First, the interpretation of LRTE would have no meaning if the variables were chang-

ing over time. Second, the size of the farms and the amount of subsidies that farms

receive change slightly across time and therefore a time-invariant specification can be

representative of the actual behavior of farms7. Summary statistics of the models’

variables appear in Table 2.1.

Table 2.1: Summary statistics of the models’ variables

Variable Mean Std. dev. 5% 95%
Cow’s milk (1,000e) 144.47 213.84 32.43 350.98
Other output (1,000e) 26.20 30.44 4.36 70.23
Capital (1,000e) 195.83 249.13 28.96 485.38
Labor (1,000 man-hours) 3.97 5.99 1.80 7.20
Land (hectares) 77.41 132.29 19.08 173.47
Materials (1,000e) 60.25 98.55 13.08 142.79
Livestock (livestock units) 108.17 130.41 32.06 241.81
Purchased feed (1,000e) 27.63 55.76 2.28 73.38
ESU (100 ESU) 0.89 1.25 0.25 1.98
Subsidies (100,000e) 0.31 0.64 0.04 0.72

We use an output distance function for the following reasons. First, despite the

milk quota system restricting milk production, farms still have the opportunity to lease

and purchase milk quota. Second, given the main argument of the paper concerning

sluggish adjustment of quasi-fixed factors of production, inputs like capital and labor

are restricted to immediate changes. The distance function is specified as translog in

inputs (x), outputs (y), and time trend (t). Using the estimable form of equation

(2.2), the distance function is written as:

7We compute farm-specific coefficients of variation for ESU and subsidies by dividing every farm’s
standard deviation in the respective variable by the farm’s mean. Figure A.1 in Appendix A presents
histograms of the coefficient of variation for ESU and subsidies.
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Unlike the Cobb-Douglas function, the translog is a flexible functional form that

does not impose any restrictions on substitution possibilities between inputs and out-

puts. Time and its interaction with inputs and outputs is included to capture, possibly

biased, technological progress. The data for inputs and outputs are normalized by their

geometric mean allowing us to interpret the parameters associated with the first-order

terms directly as distance elasticities, evaluated at the geometric mean of the data.

2.4 Results

The complete set of results is provided in Table A.2 in Appendix A. Table 2.2 reports

the posterior means, standard deviations and 95% credible intervals of the first-order

terms of the distance function and the structural parameters. All of the distance

function elasticities are statistically significant, as their respective credible intervals

do not contain zero (capital is significant only at the 90% credible interval).

The distance elasticity with respect to output reflects a measure of the curvature

of the frontier and implies that a 1% increase in output other than milk will lead

to a 0.12% increase in the distance function, meaning that farms will move closer

to the frontier. The negative distance elasticities with respect to inputs state that

increases in inputs push the frontier outwards and farms become less efficient, with

livestock units having the highest effect. The scale elasticity is 0.88 and reveals that

farms operate under decreasing returns to scale. The German dairy sector experiences

technological progress as the frontier moves outwards with time. Finally, the value of

µ is 3.03 and suggests that inefficiency persistence, ρ, of German dairy farms is rather
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Table 2.2: Posterior means, standard deviations and 95% credible intervals of the
first-order terms and the structural parameters

Variable Mean Std. dev. 95% Credible Interval
intercept -0.464 0.030 [-0.542, -0.415]
log other 0.121 0.003 [0.116, 0.127]
log capital -0.007 0.004 [-0.015, 0.000]
log labor -0.053 0.008 [-0.068, -0.038]
log land -0.078 0.009 [-0.097, -0.060]
log materials -0.114 0.007 [-0.128, -0.100]
log units -0.446 0.012 [-0.469, -0.422]
log feed -0.180 0.004 [-0.188, -0.172]
trend -0.022 0.001 [-0.023, -0.020]
σv 0.089 0.001 [0.087, 0.091]
σξ 0.148 0.008 [0.132, 0.162]
σω 0.380 0.030 [0.321, 0.439]
µ 3.032 0.075 [2.884, 3.178]

high. Moving to the parameters associated with the hidden-state process, Figure 2.1

presents boxplots8 of the inefficiency persistence parameter ρ and LRTE.

The mean value of the inefficiency persistence parameter ρ across farms is 95%

while, most farms are concentrated around this mean as can been seen on the left

panel of Figure 2.1. This result is in accordance with the high inefficiency persistence

in German dairy farming reported by Emvalomatis et al. (2011). Very few farms

exhibit values of inefficiency persistence lower than 90%, while, a few more attain

extremely high values of 98%. Hence, despite these small differences, all farms face

high adjustment costs that force them to remain inefficient in the future. Moreover,

given that the s process is stationary, the average value of LRTE is 63%9 and most of

the variation between farms is attributed to their different characteristics (ESUs and

subsidies), and, to a lesser extent, to heterogeneity in their inefficiency persistence.

The right panel of Figure 2.1 shows that most observations are concentrated in

the area between the 1st and 3rd quartiles while outliers are found only above the 3rd

quartile. The fact that most farms’ LRTE is concentrated around 60-80% should not

be surprising. Recalling that LRTE reflects the value of efficiency that each farm will

attain in the long-run, one should not expect to observe values below 50% since these

farms would probably drop out of the market by attaining such a low level of efficiency

in the long-run. In contrast, we should expect to find farms to be partly inefficient but

in a competitive level such that of 60-80%, while cases of farms’ exhibiting a higher

level of efficiency in the long-run may occur. The average value of short-run efficiency

8We first calculate the mean of all the draws from the posterior for every farm and then we plot these
farm-specific means.

9Note that the expectation of LRTE was defined as [1 + exp{z′

iδ/1− ρi}]−1.
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Figure 2.1: Boxplot of inefficiency persistence parameter ρ and LRTE

across years and farms is 65% meaning that farms can, on average, increase their

production by 35%, by still using the same amount of inputs. Besides, the values of

short-run efficiency and LRTE are very close to each other meaning that the time-span

captured by the data is close to the equilibrium.

Differences in the LRTE of farms can be attributed to farm-specific characteristics.

Table A.3 in Appendix A, reports the determinants of transformed technical efficiency

s. However, since the main contribution of this paper lies on the explanation of LRTE

heterogeneity due to farm-specific characteristics, we derive the marginal effects of the

variables in z on LRTE10. These marginal effects were calculated at the mean values of

the variables in z and are presented in Table 2.3. All marginal effects are statistically

significant.

The marginal effect with respect to farm size is positive and implies that an 1 unit

(100 ESU) increase in farm size causes a 0.9% increase in LRTE. This result suggests

that larger farms are more likely to attain higher efficiency scores in the long run,

possibly because they tend to be more business oriented and make use of more mental

10The derivative of LRTE with respect to the kth explanatory variable in z is given by: ∂LRTEi
∂zk

=(
zk
ρi

)
×exp{z

′
iδ}

(1+exp{z′iδ})2
.
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Table 2.3: Marginal effects of the variables in z on long-run technical efficiency
(LRTE).

Variable Mean Std. dev. 95% Credible Interval
ESU 0.009 0.001 [0.007, 0.012]
subsidies -0.009 0.001 [-0.011, -0.006]

labor. Subsidies have a negative marginal effect on LRTE with an 1 unit (100,000e)

increase in subsidies leading to a 0.9% decrease in LRTE. This negative effect can be

attributed to the decrease in farmers’ motivation to work efficiently when subsidies are

seen as an additional source of income. This result is in accordance with the findings of

Hadley (2006), Bojnec and Latruffe (2009), Zhu and Oude Lansink (2010), Zhu et al.

(2011), Zhu et al. (2012), and Bojnec and Latruffe (2013).

2.5 Concluding remarks

This article developed a model that accounts for heterogeneity in long-run technical

efficiency. A dynamic stochastic frontier model is used, which, as an alternative to the

generalized true random effects model, can provide a value of the long-run efficiency

of farms. However, our model recognizes that long-run technical efficiency may be

affected by firm-specific characteristics, which is an issue that has been completely

ignored in previous studies that have used either the dynamic stochastic frontier or

the generalized true random effects model. Furthermore, it also accounts for potential

differences in firms’ inefficiency persistence using a novel approach that maintains

the assumption of positive autocorellation of efficiency under the presence of high

adjustment costs. Hence, our modeling approach allows the long-run expected value

of technical efficiency to differ among firms based on two components: differences in

firm-specific factors and potentially different degrees of inertia of firms in adjusting

their quasi-fixed factors under the presence of high adjustment costs. The model is

applied to an unbalanced panel dataset of German dairy farms that covers the period

from 1999 to 2009 and a Bayesian estimation approach is proposed.

Our results confirm the presence of highly autocorellated inefficiency as the model

produces an estimate of average inefficiency persistence of 95%. Governmental regula-

tion and unpredictable changes in economic conditions force farms to remain inefficient

and this inefficiency does not disappear as time progresses. Credit access problems

or time-consuming learning-by-doing procedures suggest that the convergence towards

more efficient use of resources is costly and, therefore, gradual. Heterogeneity in ineffi-

ciency persistence is found to be low, suggesting that farmers exhibit a similar degree

of sluggish adjustment towards more efficient production plans. High risk-aversion
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when it comes to the adoption of a new technology in combination with adjustment

costs may be responsible for such similarities in inefficiency persistence.

The average value of long-run technical efficiency is 63%, confirming that the pres-

ence of high adjustment costs provides farmers with an incentive to remain partly

inefficient at a given point in time. Most farms attain long-run efficiency scores of

60-80%, while few of them reach higher efficiency levels in the long-run. The fact that

there exist no farms that attain long-run efficiency scores below 60% is anticipated

based on the argument that very inefficient farms should not be able to survive in the

long-run due to market competition. One should rather expect that most farms would

reach a high level of efficiency in the long-run that can allow them to continue oper-

ating. Differences in long-run technical efficiency of farms are attributed, to a large

extent, to farm-specific factors and, to a lesser extent, to heterogeneity in inefficiency

persistence.

European size units are positively related with long-run technical efficiency, sug-

gesting that larger farms, in terms of economic size units, are more efficient in the

long-run. This result is justified based on the fact that larger farms are more busi-

ness/market oriented and more prone to the use of mental labor that can increase

their efficiency. Subsidies are negatively associated with long-run technical efficiency.

Several studies have shown that when subsidies are perceived as an additional source

of income, they lead to lower motivation of farm operators to improve the efficiency

of their farms. This income effect is particularly true for the period under study,

since, after the 2003 CAP reform, subsidies were disbursed in the form of decoupled

payments which were independent from production quantities.
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Chapter 3

The effect of farm characteristics on the

persistence of technical inefficiency: a case

study in German dairy farming

Abstract
This paper provides a way to include explanatory variables that may impact the persis-

tence of farms’ technical inefficiency by extending the conventional parametric dynamic

efficiency model. Estimation of the model is performed using Bayesian techniques. The

empirical findings reveal a high degree of inefficiency persistence through time, which is

increasing in the amount of subsidies received. Older farmers exhibit higher inefficiency

persistence, as opposed to younger ones, presumably due to their lack of motivation to

adopt state-of-the-art technologies.

Keywords: dairy farms; inefficiency persistence; dynamic stochastic frontier.

JEL Classification: C11, C23, Q12
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3.1 Introduction

The adoption of technical innovation in farming is necessary to ensure that farms

remain productive and competitive in an evolving sector. The technological treadmill

theory introduced by Cochrane (1958) states that early adopters of new technologies

enjoy high returns, which are gradually eliminated as more and more farmers adopt

the new technology. This is a consequence of an increase in supply and the associated

fall in prices. As a result, farmers are trapped on a treadmill, with initial high returns

and the need to keep up with the evolution of technology providing strong incentives

for continuous investment in new technologies. However, empirical evidence has shown

that investment in new equipment takes place at irregular intervals, often referred to

as investment spikes (Geylani and Stefanou, 2013). Investment is irregular because

inputs such as capital are not freely adjusted. However, certain adjustment costs do

exist, such as those associated with altering production levels (Stefanou, 2009).

The adjustment cost hypothesis described by Penrose (1959) maintains that it

is costly for the decision maker to rapidly adjust the level of quasi-fixed factors of

production to their optimal levels. Therefore, the decision making unit exhibits a

certain degree of inertia when it comes to the adoption of a new technology when high

adjustment costs are present. These adjustment costs are due to financial constraints

and costs associated with learning. In efficiency analysis, this sluggish adjustment of

quasi-fixed factors of production and the associated lag in technology adoption have

implications on the dynamic evolution of farms’ efficiency scores. Considering a farm

which operates in a dynamic environment, governmental regulation or unpredictable

events (i.e. extreme weather conditions, pest outbreaks etc.) may force the farm to be

inefficient at a certain point in time. In order to become efficient and stay viable, the

farm will need to reorganize its production process. However, when adjustment costs

are high, immediate adjustment may not be optimal. Therefore, the decision making

unit may have an incentive to remain inefficient in the short-run. As a result, this

implies that inefficiency will persist1 from one period to the next (Emvalomatis et al.,

2011).

Inefficiency persistence is, therefore, the result of high adjustment costs that slow

down the adjustment of some production factors. Stefanou (2009) provides a descrip-

tion and categorizes adjustment costs in two major subcategories, external and internal

adjustment costs. On the one hand, external adjustment costs are pecuniary in nature

and involve the lack of credit sources that prevent farms from raising their capital

1Since inefficiency is defined as one minus efficiency, if most farms are fully efficient or close to being
fully efficient, one should refer to efficiency persistence and not inefficiency persistence. However,
the term inefficiency persistence is used as we expect that only few farms will be fully efficient or
close to that.
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stock beyond the level that is currently in use. Examples of external adjustment costs

include expansion planning fees such as architects and legal costs, as well as imperfect

capital markets. Besides, information asymmetries may result in low selling prices

of used equipment, even if it has been only minimally used. In dairy farming, an

example of an external adjustment cost is the following: consider a farmer who has

just bought an Automatic Milking System (AMS). Soon after, an advanced AMS that

incorporates udder cleaning and the removal of milking equipment from dairy cows

becomes available on the market. While the farmer will observe some of his neighbors

milking their cows more efficiently using the advanced AMS, it will probably not be

optimal for him to sell his newly bought AMS to buy the advanced AMS, as this will

entail high costs due to the low selling price of his newly bought AMS (even though he

only used it minimally). This implies that the optimal decision for the farmer would

be to exploit the full potential of his AMS and buy the new machine when its value

depreciates enough. However, this also implies that his optimal strategy is to remain

inefficient in comparison to his peers using the advanced AMS.

On the other hand, internal adjustment costs do not involve financial constraints

but are perceived as learning costs. A manager who invests in a new technology

needs to devote a certain amount of time to learning how to use the new equipment

efficiently. New skills and experience must first be developed before the farmer is able

to take advantage of his newly bought equipment. Following the previous example

of the availability of an advanced AMS on the market, the farmer should devote a

particular amount of time to learning how to use the computer that programs the new

milking procedure. This implies that more efficient milking will not start immediately

after the purchase of the new AMS, but only when the farmer becomes familiar with

using it. This is an example of an internal adjustment cost.

Based on the aforementioned types of adjustment costs, the degree of inefficiency

persistence is expected to be influenced by financial constraints/aid, as well as by

managers’ experience. In terms of the former, farms facing credit constraints (exter-

nal adjustment costs) have limited access to external funding because of being unable

to offer adequate guarantees to lenders and, as a result, tend to invest less (Kumbhakar

and Bokusheva, 2009). Subsidies may play a key role in ameliorating access to external

funding, since they can induce credit access and lower the cost of borrowing (Ciaian

and Swinnen, 2009; Kumbhakar and Bokusheva, 2009; Rizov et al., 2013). However,

subsidies may also act as an additional source of income that provides farmers with

less motivation to invest in new technologies (Zhu et al., 2012; Rizov et al., 2013).

Hence, the effect of subsidies on inefficiency persistence depends on the way farmers

perceive subsidies. If farmers view subsidies as a credit access tool, they may induce

investment in new technologies and result in lower inefficiency persistence. Neverthe-
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less, if subsidies are viewed simply as an additional income source, farmers may invest

in subsidy-seeking activities instead of investing in new technologies; this would imply

higher inefficiency persistence.

On the subject of internal adjustment costs, Luh and Stefanou (1993), argue that

learning plays a key role in facilitating the adjustment of quasi-fixed inputs to their

optimal levels, in the sense that knowledge accumulation accelerates the familiarization

of farm operators with using new equipment. Stefanou and Saxena (1988), state that

managers with more experience have a greater ability to learn. Hence, older farmers

are expected to learn quicker than younger ones and as a result, farms owned by older

managers may adjust faster and exhibit lower inefficiency persistence. However, very

old farmers may not be willing to invest in new technologies in comparison with younger

ones due to a lack of motivation (Hadley, 2006; Abdulai and Tietje, 2007), especially

in the absence of a successor. Accordingly, farms owned by young or middle-aged

operators may adopt easier new technologies compared to very old operators. This

would result in lower inefficiency persistence.

The main objective of this paper is to incorporate particular farm-specific charac-

teristics that are related to adjustment costs. These can then be tested to determine

whether they have an impact on the persistence of technical inefficiency of German

dairy farms. The concept of inefficiency persistence has been tackled in both non-

parametric and parametric settings. In a non-parametric framework, Nemoto and

Goto (1999), Nemoto and Goto (2003) and Silva and Stefanou (2007) account for inef-

ficiency persistence by assuming intertemporal cost-minimizing behavior and making

use of price information2. Parametrically, the method of SFA, introduced by Aigner

et al. (1977) and Meeusen and van den Broeck (1977), has undergone several changes

before it was considered as being truly dynamic. With the availability of panel data,

early attempts to describe the evolution of efficiency scores over time considered inef-

ficiency as a deterministic function of time (Cornwel et al., 1990; Kumbhakar, 1990;

Battese and Coelli, 1992; Lee and Schmidt, 1993), ignoring firms’ dynamic behavior.

A more recent generation of SFA models that are truly dynamic has emerged with

the innovative work of Ahn and Sickles (2000). The research specified an autoregres-

sive process on firm-specific efficiency scores to account for persistence of shocks in

firms’ efficiency. Subsequent criticism relating to the formulation of an autoregressive

process on non-negative variables, led Tsionas (2006) to specify an autoregressive pro-

cess on transformed efficiency that can take any value on the real line. Since then,

several studies have considered this type of model, including Emvalomatis et al. (2011),

Emvalomatis (2012a) and Galán et al. (2015). All these models, irrespective of the

2For a thorough literature review on non-parametric dynamic efficiency studies see Fallah-Fini et al.
(2014).
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way efficiency is transformed, recognize that under the presence of high adjustment

costs, inefficient firms are likely to remain inefficient in the future, or, in other words,

exhibit high inefficiency persistence. All studies find very high inefficiency persistence,

thus adding credibility to the adjustment cost theory.

However, in this dynamic SFA framework, none of the aforementioned studies

allow for firm characteristics to impact inefficiency persistence. In this study, we

extend the dynamic SFA model in a way that it can accommodate factors that may

influence inefficiency persistence. Such a modelling approach allows one not only

to test the adjustment cost theory as previous studies do, but also include and test

whether particular farm-specific characteristics affect inefficiency persistence. In the

next section we describe the modelling approach and the Bayesian techniques used to

estimate the model. A description of the data used and the empirical specification

follows. Then, an application of the model to a panel of German dairy farms is

presented. The final section provides some discussion on the implications of the study

and offers some concluding remarks.

3.2 Modelling approach

An output distance function is used to measure efficiency in a multi-output production

technology3. Assuming that a vector of inputs x̃ ∈ RN
+ is used to produce a vector of

outputs ỹ ∈ RM
+ , the output distance function is defined as:

Do(x̃, ỹ, t) = min

{
θ :

ỹ

θ
can be produced by x̃ in period t

}
(3.1)

The output distance function takes an output-expanding approach to measure the

distance of a producer to the boundary of the production possibilities set, and gives the

minimum amount by which the output vector can be deflated to reach this boundary.

It assumes values in the unit interval and the locus of points for which Do(x̃, ỹ, t) = 1

defines the boundary of the production possibilities set. The technical efficiency of a

firm i in period t is then defined as TEit = Do(x̃it, ỹit, t). Taking the logarithm of both

sides, imposing the condition of linear homogeneity on the outputs of the distance

function, and then appending an error term, all lead to the following econometric

version of the output distance function:

− log ỹmit = logDo

(
x̃it,

ỹit
ỹmit

, t

)
+ vit − log(TEit) (3.2)

3The model can also be applied to an input or a hyperbolic distance function. However, the output
distance function makes sense for the application that follows.
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where ỹmit is the normalizing output and vit is a linear error term that accounts for

random noise. Notice that the left hand-side variable is negative and log(TEit) is

subtracted from the right hand-side. Hence, the distance elasticities with respect to

inputs should be negative and the skewness of the efficiency term suggests that we

should estimate the frontier as if it is a cost frontier. Letting yit be the dependent

variable in equation (3.2), and the logarithm of the distance function representing a

linear function of parameters and monotonic transformations of its arguments, the

estimable form of the distance function can be written as:

yit = x
′

itβ + vit − log(TEit), vit ∼ N (0, σ2
v) (3.3)

where yit is the negative of the logarithm of the normalizing output, x
′
it is a vector of

time-varying covariates, β is a vector of parameters to be estimated, vit is a two-sided

error term that captures statistical noise, and TEit is the technical efficiency of firm i

in time t.

We follow Tsionas (2006) and consider a dynamic stochastic frontier model by

specifying an autoregressive process on firm-specific technical efficiency. TEit is treated

as a random variable that lies on the unit interval TEit ∈ (0, 1]. To avoid criticism

related to the specification of an autoregressive process on a nonnegative variable, a

one-to-one transformation of TEit is used to project it from the unit interval to the

real line. Following Emvalomatis (2012a), we use the inverse of the logistic function

for this transformation. We define sit = log( TEit
1−TEit ) as the latent-state variable and

assume the following autoregressive process on sit:

sit = z
′

iδ + ρisi,t−1 + ξit, ξit ∼ N (0, σ2
ξ) (3.4)

si1 =
z
′
iδ

1− ρi
+ ξi1, ξi1 ∼ N (0, σ2

ξ1) (3.5)

where z is a vector of time-invariant covariates, δ and ρi are parameters to be esti-

mated, ξit is a two-sided error term that accounts for statistical noise and σ2
ξ1 =

σ2
ξ

1−ρ2i
, is

due to stationarity. Imposing stationarity on the s series, and therefore time-invariant

covariates in the z vector, is necessary both from an econometric point of view and

theoretically. Econometrically, since s is an unobserved quantity, a distribution in the

initial period expressed by equation (3.5) needs to be defined. This is possible if we

impose stationarity on the s series (Wooldridge, 2005). Theoretically, if the s series

is not stationary, then its expected value will approach either positive or negative in-

finity depending on the sign of the term z
′
iδ. This implies that technical efficiency

will approach either unity or zero. Observing fully efficient or fully inefficient firms in
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efficiency analysis is something quite rare.

3.2.1 Modelling inefficiency persistence

Based on the modelling approach presented in equation (3.4), the inefficiency per-

sistence parameter ρi can be viewed as an elasticity that measures the firm-specific

percentage change in the efficiency to inefficiency ratio that is carried out from one

period to the next. Stationarity of the s series requires that the inefficiency persistence

parameter, ρi, remains between -1 and 1. However, we restrict ρi to the unit interval

since we do not expect negative adjustment towards the long-run equilibrium. For

interpretation purposes, a value of ρi close to 1 implies that inefficiency persistence is

very high and firms find it difficult to adjust their quasi-fixed inputs to their optimal

levels. Conversely, lower values for ρi suggest that the adjustment towards optimal

conditions is faster. When it comes to the modelling approach, we transform the inef-

ficiency persistence parameter in a way that not only restricts it to the unit interval,

but also, exposes it to firm-effects and allows them to have an impact. Therefore, we

consider the following transformation4 for the inefficiency persistence parameter:

ρi =
exp{hi}

1 + exp{hi}
(3.6)

where hi is a firm-specific latent-state variable that is assumed to exhibit the following

relationship:

hi = w
′

iη + λi, λi ∼ N (0, σ2
λ) (3.7)

where w
′
i is a vector of time-invariant covariates, η is a vector of parameters to be

estimated, and λi is a linear error term that captures random noise. Hence, hi is

a continuous variable that can take any value on the real line while, based on our

transformation in equation (3.6), ρi lies on the unit interval. Firm-specific factors can

be incorporated into the vector w that will have a non-linear impact on the inefficiency

persistence parameter ρi as equation (3.6) implies. This modelling approach allows us

to include firm-specific factors and test whether they have an impact on inefficiency

persistence.

3.2.2 Bayesian inference

Bayesian techniques are used to estimate the model in equations (3.3−3.7). We define

si to be a Ti×1 vector of the latent-state variable of the transformed technical efficiency

4Note that we use the inverse of the logistic function again for the transformation and we define a

latent-state variable hi = log
(

ρi
1−ρi

)
. Solving for ρi yields equation (3.6).
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for firm i, where Ti represents farm-specific time periods, and h is an N × 1 vector

of the latent state variable of the transformed inefficiency persistence. All structural

parameters to be estimated are collected in a vector, θ = [β, σv, δ, σξ,η, σλ]
′
. The

complete data likelihood and the latent states is:

p(y, {si},h|θ,X,Z,W) = p(y|{si},β, σv,X)× p({si}|h, δ, σξ,Z)× p(h|η, σλ,W)

=
1

(2πσ2
v)

∑N
i=1

Ti
2

exp

{
−

N∑
i=1

Ti∑
t=0

(yit − x
′
itβ + log TEit)

2

2σ2
v

}

× 1

(2πσ2
ξ)

∑N
i=1

(Ti−1)

2

exp

{
−

N∑
i=1

Ti−1∑
t=1

(sit − z
′
iδ − ρisi,t−1)2

2σ2
ξ

}

× 1

(2πσ2
ξ1)

N
2

exp

{
−

N∑
i=1

(si1 − z
′
iδ)2

2σ2
ξ1

}

× 1

(2πσ2
λ)

N
2

exp

{
−

N∑
i=1

(hi −w
′
iη)2

2σ2
λ

}
(3.8)

where y is the stacked vector of the dependent variable over firms and time periods, X

is the matrix of covariates in equation (3.3), Z is the matrix of covariates in equations

(3.4− 3.5), and W is the matrix of covariates in equation (3.7).

The first line of equation (3.8) is due to the normality assumption of σv. The

second and third lines are due to equations (3.4− 3.5). These assumptions state that

transformed inefficiency s depends on the covariates in z and w (since s depends on

ρi, which is a function of the covariates in w), but not on the inputs x. This is a stan-

dard assumption in the frontier literature and a convenient one since, if it fails, the

covariates in x should also appear in the inefficiency component, making identification

potentially weak (as these variables will appear in the model twice). This is what

non-neutral stochastic frontiers do (Karagiannis and Tzouvelekas, 2005). The fourth

line of equation (3.8) is due to equation (3.7) and states that inefficiency persistence

is independent of the inputs x, and of the covariates in z. The first assumption is

somewhat straightforward since inefficiency persistence depends on investment deci-

sions which are related to farm characteristics rather than input volumes. The second

assumption states that the variables that affect efficiency should not affect inefficiency

persistence. This assumption stems from the fact that farm characteristics that may

affect the efficiency of farms do not necessarily affect their ability to change the ef-

ficiency levels as a response to a shock (i.e. introduction of a new technology). An

important issue here is that this holds for farm characteristics that are not related to

adjustment costs.
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Back to our econometric formulation and using Bayes’ rule, the joint posterior

density of the model’s parameters and latent-states can be written as:

π(θ, {si},h|y,X,Z,W) ∝ p(y, {si},h|θ,X,Z,W)× p(θ) (3.9)

where p(θ) is the product of all prior densities. Proper, but rather vague priors are used

for the structural parameters5. We use normal priors for β, δ and η, while inverted-

Gamma priors are used for the three variance parameters. Such prior specification has

the desirable property of resulting in posteriors of the same distributional form. We

estimate the posterior moments of the model’s parameters using MCMC techniques

(Koop et al. (1995) illustrate an application of MCMC in stochastic frontier mod-

els). Drawing samples from the posterior for the latent-state variables requires data

augmentation techniques (see Tanner and Wong, 1987). Finally, Metropolis-Hastings

updates are used for si and h as their complete conditionals do not belong to any

known distributional family.

3.2.3 Alternative models

Since we extend previously applied models, we compare our results with two base

models: (i) the most popular panel-data stochastic frontier specification introduced

by Battese and Coelli (1992). The inefficiency component is defined as ui
t = γ(t) · ui,

with ui being a firm-specific effect that captures technical inefficiency and is assumed

to follow a one-sided distribution (in our specification an exponential distribution),

and γ(t) = exp(η{T − t}). This model has been used extensively in the stochastic

frontier literature as it relaxes the assumption of time-invariant inefficiency by esti-

mating only one additional parameter (η). However, this model fails to capture firms’

dynamic behavior as it considers inefficiency as a deterministic function of time, (ii)

the dynamic efficiency model used by Emvalomatis et al. (2011), where (transformed)

inefficiency s is defined as si
t = δ+ρsi,t−1 +wit. This model, in contrast to the Battese

and Coelli specification, is able to capture firm-level dynamic behavior by specifying

an autoregressive process on firm-specific efficiency scores. However, it does not al-

low for firm-specific characteristics to impact efficiency and it restricts the inefficiency

persistence parameter to be the same across firms. The results under the two afore-

mentioned specifications and the specification used in this paper are similar and are

presented in Table B.2 in Appendix B.

5Table B.1 in Appendix B presents the parameterization of priors.
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3.3 Data and empirical specification

The data used in this application are provided by the FADN6. The dataset contains

farm-level information on physical units such as outputs and inputs, economic and

financial data such as production costs, subsidies and debts, geographical information

that allows one to distinguish different regions, as well as characteristics of the farm’s

primary operator such as age. The accounting data that FADN provides are collected

regionally using a common questionnaire across all EU Member States. FADN uses

stratified random sampling and farms remain in the panel on average for a period of

4-5 years, although there are cases where farms remain for more than ten years.

The part of the dataset that is used here contains such information for German

dairy farms and covers a period from 1999 to 2009. This study focuses on farms

primarily engaged in dairy production, and for this purpose we have selected farms

whose revenues from sales of cow’s milk, beef, and veal comprise at least 66% of their

total revenues for every year the farm is observed. Furthermore, given the dynamic

nature of our modelling approach, we retained farms that are observed for at least four

consecutive years. Our final dataset consists of an unbalanced panel of 1,625 farms

with a total of 12,965 observations.

The output distance function in equation (3.2) is specified in two outputs:

1. Deflated revenues from sales of cow’s milk (milk)

2. Deflated revenues plus change in valuation of beef and veal, pigmeat, sheep and

goats, and poultry meat, plus deflated revenues from sales of other livestock and

products (other)

The reported revenues are deflated with price indices obtained from EUROSTAT,

using 2000 as the base year. Deflation of milk was based on its own price index, while,

an aggregate price index of agricultural products was used to deflate outputs other

than milk.

Six categories of inputs are specified in equation (3.2):

1. Buildings and machinery (K) are measured in deflated book value. For each

input subcategory (buildings and machinery), its own price index was obtained

from EUROSTAT and a Törnqvist index was constructed. The total reported

value was deflated using the Törnqvist index.

2. Total labor (L) is measured in man-hours and consists of family and hired labor.

6Data source: EU-FADN - DG AGRI.
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3. Total utilized agricultural area (A) is measured in hectares and includes owned,

as well as rented land.

4. Materials and services (M) are measured in deflated value. This input consists

of ten subcategories of inputs: seeds and plants, fertilizers, crop protection,

energy, other livestock-specific costs, other crop-specific costs, forestry-specific

costs, feed for pigs and poultry, contract work and other direct inputs. For each

of the aforementioned subcategories, the relevant price indices were obtained

from EUROSTAT and a Törnqvist index was constructed. The total reported

value was deflated using the Törnqvist index.

5. Total livestock units (S) is measured in livestock units and includes the total

number of equines, cattle, sheep, goats, pigs and poultry of the holding.

6. Purchased feed (F) is measured in deflated value. It includes concentrated feed-

ingstuffs for grazing stock and coarse fodder for grazing stock. The value of feed

produced within the farm is excluded. This variable was deflated using its own

price index from EUROSTAT.

We further account for differences in technology and climatic conditions across re-

gions in Germany by including dummy variables for eastern, western, northern and

southern (base category) Germany. Recognizing that several factors may affect techni-

cal efficiency, the z vector in equations (3.4− 3.5) includes the following variables: the

economic size of farms measured in hundreds of ESU, specialization in milk production

captured by the ratio of revenues that come from milk production to total revenues,

and stock density defined as livestock units per hectare. The criteria for choosing the

aforementioned covariates are based on theoretical arguments that their validity has

been examined by several empirical studies. For instance, farm size is expected to ex-

ert a positive effect on efficiency due to the higher managerial effort by the operators

of big farms (Davidova and Latruffe, 2007; Latruffe et al., 2008; Zhu et al., 2012).

Specialization may affect efficiency either positively, because of farmers’ experience

when they are engaged in a single production activity (Latruffe et al., 2005; Zhu et al.,

2012; Sauer and Latacz-Lohmann, 2015), or negatively, when economies of scope arise

(Brümmer, 2001; Coelli and Fleming, 2004). Finally, stock density is associated with

intensive production techniques and it can positively impact efficiency (Alvarez and

Corral, 2010). The variables in z are specified as time-invariant because stationarity

on the s series needs to be imposed so that we are able to estimate equation (3.5).

Besides, such a specification is not very restrictive since the covariates in z do not vary

33



significantly over time7.

The w vector in equation (3.7) that directly examines the variation in the trans-

formed inefficiency persistence parameter hi and, indirectly, the variation in the ineffi-

ciency persistence ρi through equation (3.6), consists of the following covariates: (i) the

total amount of subsidies per hectare that farms receive. This variable consists of sub-

sidies on crops, livestock, other subsidies (related to forestry, environmental programs

etc.), subsidies on intermediate consumption and external factors, and decoupled pay-

ments, (ii) a dummy variable that captures the effect of the primary operators’ age

on inefficiency persistence. As a base category, we use those farms whose primary

operator is aged 65 years or older8. The reasoning behind these choices is twofold:

(i) subsidies are included in order to test whether financial support is perceived as an

investment tool that could lower inefficiency persistence, or as an additional source of

income that could lower farmers’ motivation to work efficiently and therefore, increase

their inefficiency persistence, (ii) the dummy variable for age examines whether very

old farmers exhibit higher inefficiency persistence compared to young and middle-aged

farmers due to their lack of motivation to invest in new technologies9. Since inef-

ficiency persistence does not change over time, the covariates in w are specified as

time-invariant10.

The selection of the covariates in z and w is solely based on their connection with

adjustment costs and how likely it is that they play a role in farmers’ investment

decisions as a response to a shock (i.e. introduction of a new technology). Farm size,

milk specialization and stock density (covariates in z) may affect the efficiency of farms

but not the ability to change efficiency as a response to a shock (i.e. the introduction of

a new technology) if we control for human capital. For instance, higher specialization

in milk production may allow the farmer to do better on a daily basis and be efficient.

However, if a new technology arises, being more specialized in milk production should

not affect his decision whether or not to invest. Such a decision would probably

be made based on the farmer’s experience (age) or his financial situation. Besides,

robustness checks with respect to the inclusion of all covariates in both the z and

7We derive farm-specific coefficients of variation for ESU, specialization and stock density in the
following way: for each variable, we calculate each farm’s mean and mean standard deviation over
the years that is observed. Then, for every variable, we divide each farm’s standard deviation by
each farm’s mean. Figure B.1 in Appendix B present histograms of the coefficient of variation for
ESU, specialization, and stock density.

8Note that 25% of the farms in our sample are managed by primary operators who are aged 65 or
above on average. Age was initially specified as a continuous variable, and then by using 3 categories
(young, middle-aged and old). All specifications resulted in insignificant coefficient estimates.

9Financial indicators such as debt-to-asset ratio and liabilities-to-asset ratio were also included, re-
sulting in highly insignificant coefficient estimates. Note that these indicators were very close to 0
for most farms with extremely low variation across farms and time.

10We again compute the farm-specific coefficient of variation for subsidies. Figure B.2 in Appendix
B presents a histogram of the coefficient of variation for subsidies.
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w vectors were performed, resulting in weak identification due to poor mixing of

chains and many insignificant coefficient estimates. Summary statistics of the models’

variables are presented in Table 3.1.

Table 3.1: Summary statistics of the models’ variables

Variable Mean Std. dev. 5% 95%
Revenues from cow’s milk (1,000e) 125.52 126.29 32.24 311.13
Revenues from other output (1,000e) 24.37 25.14 4.31 63.06
Capital (1,000e) 176.53 162.16 28.77 444.71
Labor (1,000 man-hours) 3.36 2.01 1.80 6.30
Land (hectares) 64.79 56.77 19.00 156.83
Materials (1,000e) 51.02 53.60 13.01 125.45
Livestock (livestock units) 96.40 76.56 31.95 214.79
Purchased feed (1,000e) 22.76 26.48 2.25 64.39
Size (100 ESU) 0.78 0.66 0.25 1.75
Specialization (milk revenues/total revenues) 0.72 0.12 0.52 0.89
Density (livestock units/hectare) 2.01 0.67 1.10 3.15
Subsidies (1,000e/hectare) 0.04 0.02 0.01 0.06
Age (years) 56.89 9.19 41.00 71.00

Moving to the empirical specification of the model, since German dairy farms

use multiple inputs to produce multiple outputs (milk, meat etc.), an appropriate

representation of the production technology can be achieved using a distance function.

The criteria for selecting an output distance function instead of an input distance

function are summarized as follows. First, despite production of milk being restricted

under the milk quota system, dairy farms in Germany are able to lease and purchase

milk quota and, therefore, relax their output restrictions. Second, considering the

main argument of the paper, inputs such as capital are considered to be quasi-fixed

and consequently, an input distance function may be an inappropriate specification

tool.

We use a translog specification of the output distance function because, as opposed

to the Cobb-Douglas functional form, the translog is more flexible without imposing

any restrictions on substitution possibilities between inputs and outputs. Hence, the

output distance function is specified as translog in inputs (x), outputs (y), and time

trend (t). Using the estimable form of equation (3.2), the output distance function

can be written as:

35



− log ymit = α0 +
∑
k

αk log xkit +
∑
l

βl log

(
ylit
ymit

)

+
1

2

∑
k

∑
r

αkr log xkit log xrit

+
1

2

∑
l

∑
m

βlm log

(
ylit
ymit

)
log

(
ylit
ymit

)

+
1

2

∑
k

∑
l

ζkl log xkit log

(
ylit
ymit

)

+ µ1t+ µ2t
2 +

∑
k

γkt log xkit

+
∑
l

φlt log

(
ylit
ymit

)
+ vit − log(TEit)

(3.10)

A time trend is included to capture technological progress, while its interaction

with inputs and outputs allows it to be nonneutral. The data for outputs and inputs

are normalized by their respective geometric means, so that the parameters associated

with the first-order terms are directly interpretable as distance function elasticities,

evaluated at the geometric mean of the data.

3.4 Results

The results reported below are based on the following sampling scheme: we use 10

chains and after a long burn-in of 50,000 iterations, each chain contributes 80,000

draws from the posterior. With the intention to remove potential autocorrelation

induced by the Metropolis-Hastings updates, in each chain, every one in 10 draws

is retained so that we end up with a total of 80,000 draws from the posterior. The

complete set of results is provided in Table B.3 in Appendix B. Table 3.2 presents

the parameter estimates of the first-order terms of the distance function for output

and inputs, the trend estimate, the scale elasticity, and the three variance parameters.

All of the distance function elasticities have the expected signs and are statistically

significant, as the corresponding credible intervals do not contain zero.

The distance function elasticity with respect to the other output is a measure of

the curvature of the frontier and implies that a 1% increase in output, other than

milk, will result in a 0.125% increase in the distance function, implying that farms will

move closer to the frontier. The negative signs of the distance function elasticities with

respect to inputs state that potential increases in inputs push the frontier outwards
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Table 3.2: Posterior means, standard deviations and 95% credible intervals of the
model’s parameters

Variable Mean Std. dev. 95% Credible Interval
intercept -0.417 0.029 [-0.480, -0.370]
log other 0.125 0.003 [0.119, 0.130]
log K -0.017 0.004 [-0.024, -0.010]
log L -0.051 0.007 [-0.064, -0.037]
log A -0.087 0.010 [-0.106, -0.067]
log M -0.162 0.007 [-0.175, -0.148]
log S -0.422 0.012 [-0.445, -0.399]
log F -0.175 0.004 [-0.182, -0.167]
trend -0.020 0.000 [-0.021, -0.019]

scale 0.913 0.013 [0.886, 0.937]

σv 0.105 0.001 [0.103, 0.107]
σξ 0.086 0.010 [0.066, 0.106]
σλ 0.340 0.029 [0.282, 0.395]

and farms become less efficient, with livestock units having the highest effect. There

is also evidence that German dairy farms experience technological progress as the

frontier moves outwards with time. We also derive the scale elasticity by adding the

distance function elasticities with respect to inputs and multiplying them by minus 1.

The scale elasticity is 0.91, indicating that German dairy farms operate, on average,

on the decreasing returns to scale part of the technology11.

Moving to the technical efficiency scores, the average value of technical efficiency

across farms and years is 0.712. This means that farms are producing, on average, 70%

of what is feasible using the observed amount of inputs. The reported score is a bit

lower than that reported by Emvalomatis et al. (2011), and can be attributed to the

fact that their sample consists of farms which are more specialized in milk produc-

tion. Turning to the determinants of transformed technical efficiency (s), Table B.4 in

Appendix B presents the corresponding parameter estimates. Since s is a monotonic

transformation of efficiency, we are able to interpret the signs but not the magnitude of

the estimates on technical efficiency. For this purpose, we derive the marginal effects

of the variables in z on technical efficiency by calculating the derivative of technical

11Empirically, we observe that studies who have used higher thresholds for farms’ milk specialization
tend to report higher returns to scale in contrast to those who have applied lower thresholds.
For instance, Emvalomatis (2012b) reports a scale elasticity of 0.9 applying a threshold of 50%
milk specialization, while Brümmer (2001) and Emvalomatis et al. (2011) use a threshold of 80%
milk specialization and report a unit elasticity. Based on these empirical facts, the scale elasticity
reported in this paper is, as expected, closer to the one of Emvalomatis (2012b).

12Technical efficiency is obtained as exp{sit}
1+exp{sit} .
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efficiency with respect to the covariates in z13. The marginal effects were calculated

at the mean values of the variables and are reported in Table 3.3. All marginal effects

are statistically significant.

Table 3.3: Marginal effects of the variables in z on technical efficiency

Variable Mean Std. dev. 95% Credible Interval
size 0.003 0.001 [0.002, 0.004]
specialization 0.022 0.005 [0.013, 0.034]
density 0.001 0.000 [0.001, 0.002]

The marginal effect with respect to size is positive and implies that a 1 unit (100

ESU) increase in size causes a 0.3% increase in technical efficiency. Hence, bigger

economic farm size is associated with higher efficiency levels. This may be due to the

fact that large (in economic size) farms are more business/market oriented and use

more mental labor that can lead to higher efficiency. This conclusion was highlighted

in the work of both Latruffe et al. (2008) and Zhu et al. (2012). Specialization in milk

production has a positive marginal effect on technical efficiency, with a 1% increase in

specialization leading to a 2.2% increase in technical efficiency, as a result of the high

experience levels of managers that are engaged in a single production activity. Finally,

stock density is also positively related to technical efficiency. A 1 unit (livestock/ha)

increase in stock density leads to a 0.1% increase in technical efficiency, suggesting

that farms which adopt intensive production techniques are more technically efficient.

This result is consistent with the findings of Alvarez and Corral (2010) in their study

on dairy farms.

Turning to the inefficiency persistence ρi estimates, Figure 3.1 presents the poste-

rior density along with summary statistics14. Inefficiency persistence is found to be

very high with a mean value across farms of 0.97, verifying that inefficiency scores are

very highly autocorrelated due to the presence of high adjustment costs. This result is

very similar to the research of Emvalomatis et al. (2011) in the case of German dairy

farms. Furthermore, inefficiency persistence exhibits very little variation around the

mean, implying that all farms face high adjustment costs, which lead them to remain

inefficient in the future. In terms of the covariates affecting inefficiency persistence,

Table B.5 in Appendix B reports the determinants of transformed inefficiency persis-

tence h. However, since the main interest of the paper lies in determining the effect

of certain covariates on inefficiency persistence, we derive the marginal effects of the

13The derivative of technical efficiency with respect to the lth explanatory variable in z is given by:
∂TEit
∂zl

=
δl×exp{z

′
iδ}

(1+exp{z′iδ})2
.

14The inefficiency persistence parameter ρi presented in Figure 3.1 is obtained as follows: we first
calculate the mean of all the draws for each farm and then plot these means using a kernel density
plot.

38



Figure 3.1: Posterior density and summary statistics of inefficiency persistence ρi

variables in w on inefficiency persistence15. These marginal effects were calculated at

the mean values of the variables in w and are presented in Table 3.4. All marginal

effects are statistically significant.

Table 3.4: Marginal effects of the variables in w on inefficiency persistence

Variable Mean Std. dev. 95% Credible Interval
subsidies 0.002 0.001 [0.001, 0.004]
age<65 -0.003 0.001 [-0.005, -0.001]

Subsidies have a positive marginal effect on inefficiency persistence with a 1 unit

(1000/ha) increase in subsidies leading to a 0.2% increase in inefficiency persistence.

This result implies that subsidies are most probably not used for investment purposes,

but are rather perceived by farmers as an additional source of income. Since farmers

themselves do not view subsidies as a credit provision tool for investing in new tech-

nologies, their inefficiency persistence increases slightly with subsidies. Furthermore,

based on our dataset, governmental intervention does not facilitate the distribution of

part of the subsidies for investment purposes, as the share of subsidies for investment

to total subsidies is negligible. Hence, external adjustment costs persist as subsi-

dies do not ameliorate access to external funding that can be used for investment in

new equipment. Farms whose primary operator is younger than 65 years old exhibit

lower inefficiency persistence compared to those managed by older ones. This finding

suggests that very old farmers are probably less motivated to adopt state-of-the-art

15The derivative of inefficiency persistence with respect to the mth explanatory variable in w is given

by: ∂ρi
∂wm

=
ηm×exp{w

′
iη}

(1+exp{w′
iη})2

.
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technologies, as opposed to young or middle-aged farmers, resulting in slightly higher

inefficiency persistence. Even though increasing age offers more experience to farmers

and a higher ability to manage new resources, as Stefanou and Saxena (1988) and Luh

and Stefanou (1993) point out, there exists a point where a lack of motivation to invest

in new technologies prevails over a farmer’s advantage from experience.

3.5 Discussion and conclusions

In this article, we provided a way to include and test for the effect of farm characteris-

tics on inefficiency persistence. Previous studies on dynamic stochastic frontier analysis

have taken for granted the fact that high adjustment costs result in high inefficiency

persistence, without allowing for farm-specific factors to influence this persistence.

Our model, aside from testing the hypothesis that inefficiency is highly autocorrelated

through time, also allows us to test whether a set of farm-specific characteristics have

an effect on inefficiency persistence. In order to quantify the persistence of inefficiency,

we specify an autoregressive process on transformed technical efficiency, while the in-

efficiency persistence parameter is also transformed to allow for farm-specific effects to

have an impact on it. The model is applied to an unbalanced micro-panel of German

dairy farms that covers a period from 1999 to 2009. Bayesian techniques are used for

the estimation.

The model’s results are quite similar when compared with different efficiency spec-

ifications such as those of Battese and Coelli (1992) and Emvalomatis et al. (2011);

this certainly strengthens the robustness of our model. Our results suggest a high

degree of inefficiency persistence, which implies that inefficiency does not disappear

with time due to the presence of high adjustment costs. This result is in line with

the adjustment cost hypothesis described by Penrose (1959), which suggests that high

adjustment costs provide farmers with an incentive to remain partly inefficient in the

short-run. In terms of the determinants of inefficiency persistence, despite being statis-

tically significant, their economic significance is negligible. However, one could argue

that since inefficiency persistence lacks units of measurement (it is an elasticity that

measures the ratio of efficiency to inefficiency that is carried from one period to the

next), a more reasonable approach would be to focus on the sign of the effect rather

than its magnitude. Furthermore, the lack of variation in our financial indicators and

the lack of additional potential variables such as education or the presence of a suc-

cessor, did not allow as to examine the impact of further important covariates that

could explain inefficiency persistence. However, this paper has presented a way to

empirically look for the factors that may influence this persistence, opening an array

for future research.
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Subsidies are shown to not relieve the external adjustment costs that farms face.

They rather act as an additional source of income and not as a source of credit that

can be used for technology adoption purposes. Faster adjustment can be achieved if

subsidies are provided on the basis of investment in new technologies and not as a

compensation for income loss. Besides, if subsidies are provided for investment pur-

poses, an income gain is already implied as a result of increased productivity related

to the use of advanced technology. However, considering the variety of subsidies that

dairy farmers receive, one could expect different effects on inefficiency persistence for

different types of subsidies. Hence, a more analytical tool to assess the impact of sub-

sidies on inefficiency persistence would be to split them into multiple subcategories.

Nevertheless, given that inefficiency persistence is time-invariant, this approach would

be rather problematic as we would introduce significant variation over time. For in-

stance, decoupled payments would vary significantly over time given that they were

introduced in the middle of the time span that our dataset considers.

Furthermore, despite being unable to directly test the theory of Stefanou and

Saxena (1988) and Luh and Stefanou (1993) by modelling the different stages of the

farm’s life cycle, our study revealed that technology adoption also depends on farmers’

perceptions, as these evolve with ageing. Our results confirm that very old farmers

are less keen on adopting new technologies compared to their younger counterparts,

presumably due to a lack of motivation. This result does not imply that very old

farmers invest less than younger ones, but rather suggests that they invest more in

the replacement of existing capital and not in new equipment (productive investment)

that could make them more competitive in the long-run. Furthermore, the fact that

25% of farms in our sample are managed by primary operators that are, on average,

65 years old or above, provides a warning that several German dairy farms may be

left behind in terms of technology adoption. Hence, incentives should be provided

to young people to undertake the management of farms, as our results reveal that

they are more motivated to adopt state-of-the-art technologies that can increase the

productivity of farms and make them more competitive.
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Chapter 4

Productivity growth under a dynamic

inefficiency specification: the case of

German dairy farms

Abstract
A dynamic inefficiency specification is used to measure and decompose total factor pro-

ductivity growth of German dairy farms for the period 2001-2009. The average total

factor productivity growth rate is estimated approximately at 2.4% with high variation

observed towards the end of the study period. Given that this period is characterized

by high volatility in milk prices, the dynamic inefficiency specification is able to cap-

ture the associated sharp efficiency and total factor productivity growth changes. The

dynamic inefficiency model is favored by the data when compared with a model that

imposes a very restrictive time structure on inefficiency, and a model that does not

impose any time structure on inefficiency scores.

Keywords: productivity growth; German dairy farms; dynamic inefficiency

JEL Classification: C11, C23, D24, Q12
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4.1 Introduction

The evaluation of the competitiveness of a sector has traditionally been based on

the measurement of TFP growth, defined as the ratio of output growth rate to in-

put growth rate. In agriculture, TFP growth is used as an indicator of the ability of

farms to generate high income and factor employment levels while being exposed to

both domestic and international competition (Newman and Matthews, 2007). High

productivity growth is, therefore, essential to assure that a country’s agricultural sec-

tor survives competitive pressure from abroad but also from other sectors within the

country. The critical role that TFP growth plays in determining whether a sector

will survive or perish in a competitive environment requires precise estimates to be

obtained. Given that TFP growth is a dynamic concept, the modelling approach

followed should be able to capture potential shocks that may be due to bad weather

conditions, pest outbreaks, or high price volatility. For instance, in the specific context

of dairy farms, Germany (as well as most EU countries), has experienced large changes

in milk price during the first decade of the 21st century. More specifically, milk prices

have steeply increased from 2006 to 2008, reaching a peak of 35.01e/100kg in 2008,

while in 2009 they sunk to 25.25e/100kg (EUROSTAT, 2016). All the aforementioned

price changes make German dairy farms an interesting case for measuring changes in

farm efficiency and, more generally, TFP growth.

Detecting efficiency changes that can result in TFP growth volatility depends on

the specification of inefficiency. In a parametric setting, measurement and decom-

position of TFP growth relies on the estimation of the production frontier using the

technique of SFA, introduced by Aigner et al. (1977) and Meeusen and van den Broeck

(1977). The most challenging task while measuring the efficiency of the decision mak-

ing units concerns the assumptions made for the inefficiency component. In a cross-

sectional setting, one should only be concerned with the distributional assumptions

made. However, when panel data are available, the assumptions of time-invariant

versus time-varying inefficiency become the focus of attention. Since the assumption

of time-invariant inefficiency is very restrictive, several models have been developed

that relax this assumption. For instance, Cornwel et al. (1990) and Kumbhakar (1990)

specified inefficiency as a quadratic function of time, while Battese and Coelli (1992)

assumed that time-invariant inefficiency is scaled by a simple function of time. Specifi-

cation of inefficiency as a quadratic function of time turns out to be more flexible than

the Battese and Coelli model, which allows inefficiency to be either always increasing

or decreasing with the passage of time. However, parametric efficiency studies that

have attempted to measure and decompose TFP growth have mostly considered the

Battese and Coelli (1992) approach. For instance, Newman and Matthews (2007) and
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Emvalomatis (2012b) used the aforementioned inefficiency specification to measure

and decompose the productivity growth of Irish agricultural enterprises and German

dairy farms, respectively. This is primarily due to the fact that the approach proposed

by Cornwel et al. (1990) requires a large number of parameters to be estimated and

consistency can only be met if the time dimension of the panel goes to infinity. On the

other hand, the model of Kumbhakar (1990) may be problematic as the identification

of two parameters from a latent process is questionable. Furthermore, the major flaw

of all the aforementioned specifications is that inefficiency is considered to be a deter-

ministic function of time and can’t capture abrupt shocks in the environment in which

firms operate. This implies that these modelling approaches may be unable to capture

potential changes in efficiency and TFP growth that could result from the steep milk

price changes mentioned above.

An alternative specification for time-varying inefficiency that does not impose any

time structure on inefficiency assumes that, for each time period, inefficiency is a ran-

dom draw from a one-sided distribution. This specification offers also the option to

examine the potential drivers of inefficiency by allowing the mean of the distribution to

be a function of firm-specific characteristics. For instance, Battese and Coelli (1995)

assumed that for each time period, inefficiency is a random draw from a truncated

normal distribution, while Koop et al. (1997) use an exponential distribution, as it

behaves better when Bayesian techniques are considered. In the productivity mea-

surement literature, this approach has been used by Brümmer et al. (2002), Alvarez

and Corral (2010), and Sauer and Latacz-Lohmann (2015), who evaluated the produc-

tive performance of dairy farms. Meanwhile, Cechura et al. (2016) used it to perform

TFP country comparisons for the European dairy sector. Such a specification, in

contrast to the Battese and Coelli (1992) model that imposes a very restrictive time

structure of inefficiency, has the potential of capturing time-specific shocks in firm-

level efficiency. However, it may also produce very erratic results due to the complete

absence of a time structure for inefficiency.

A more flexible specification for the inefficiency component that does not lie on

the extremes of either imposing a very restrictive or a non-existing time structure on

inefficiency, is one that allows for autocorrelation in firm-specific efficiency scores. This

specification is justified on the grounds of the adjustment cost theory, which maintains

that it is costly for decision makers to rapidly adjust the level of quasi-fixed factors

of production (i.e. capital) to their optimal levels (Penrose, 1959). Costly adjustment

implies that inefficient firms may find it optimal to remain inefficent in the short-run,

resulting in persistence of their inefficiency over time (Emvalomatis et al., 2011). The

first study that attempted to account for persistence shocks in firms’ efficiency is the

study of Ahn and Sickles (2000), who specified an autoregressive process on firm-
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specific efficiency scores. To overcome the flaw of specifying an autoregressive process

on a non-negative variable, Tsionas (2006) has specified an autoregressive process on

transformed efficiency that can take any value on the real line. Subsequent studies

on dynamic efficiency have followed the latter approach, with minor adjustments con-

cerning the way that efficiency is transformed (Emvalomatis et al., 2011; Emvalomatis,

2012a; Galán et al., 2015). All studies find strong autocorrelation in efficiency scores,

adding credibility to the adjustment cost theory. In contrast to the restrictive time

structure for inefficiency that the Battese and Coelli (1992) model assumes, the dy-

namic efficiency specification offers a less restrictive time structure that can capture

abrupt changes in firm-level efficiency and TFP growth. On the other hand, since it

does not allow for the time evolution of efficiency scores to be completely arbitrary,

the results should be more stable compared to models that do not impose any time

structure on inefficiency scores.

The main objective of this paper is to measure and decompose TFP growth of

German dairy farms for the period 2001-2009, while accounting for persistent shocks

in farm-level efficiency. Given that the time period under consideration is characterized

by high price volatility, the dynamic efficiency specification could reveal abrupt changes

in efficiency and TFP growth as it can capture (persistent) time-specific efficiency

shocks. The results from the dynamic efficiency specification are compared with those

from a model that imposes the time structure of Battese and Coelli (1992), and a model

that imposes no time structure on efficiency. Additionally, formal model comparisons

are performed to infer which of the models fit the data better. The remainder of the

paper proceeds as follows: the next section describes the modelling approach, while

Section 4.3 provides details on the estimation of the models. Section 4.4 describes the

data, and Section 4.5 presents and discusses the results. Finally, Section 4.6 offers

some conclusions.

4.2 Modelling approach

4.2.1 Distance function and efficiency

We use an output distance function to measure efficiency in a multi-output production

technology. Assuming that a vector of inputs x̃ ∈ RN
+ is used to produce a vector of

outputs ỹ ∈ RM
+ , the output distance function is defined as:

Do(x̃, ỹ, t) = min

{
θ :

ỹ

θ
can be produced by x̃ in period t

}
(4.1)
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The output distance function assumes values in the unit interval and the locus of

points for which Do(x̃, ỹ, t) = 1 defines the boundary of the production possibilities

set. The technical efficiency of a firm i in period t is then defined as:

TEit = Do(x̃it, ỹit, t). (4.2)

Taking the logarithm of both sides, imposing the condition of linear homogeneity in

the outputs of the distance function, and appending an error term, all leads to the

following econometric version of the output distance function:

− log ỹmit = logDo

(
x̃it,

ỹit
ỹmit

, t

)
+ vit − log(TEit) (4.3)

where ỹmit is the normalizing output, and vit is a linear error term that accounts for

statistical noise. Letting yit be the dependent variable in equation (4.3) and the

logarithm of the distance function a linear function of its arguments, the estimable

form of the distance function can be written as:

yit = x
′

itβ + vit − log(TEit), vit ∼ N (0, σ2
v) (4.4)

where yit is the negative value of the logarithm of the normalizing output, x
′
it is a

vector of time-varying covariates, β is a vector of parameters to be estimated and

TEit is the technical efficiency of firm i in time t.

4.2.2 Alternative efficiency specifications

The most popular efficiency specification in a static context and when panel data are

available was introduced by Battese and Coelli (1992). Following the conventional way

that this specification is presented in the literature, it would be convenient to define

uit = − log TEit. The structure proposed by Battese and Coelli has the following form:

uit = γ(t) · ui (4.5)

where ui is the time-invariant inefficiency component that is assumed to follow a one-

sided distribution and γ(t) = exp{η(T − t)}. In our case, we assume that ui follows

an exponential distribution with rate parameter λ. The popularity of this model

stems from the fact that it relaxes the assumption of time-invariant inefficiency by

estimating only one additional parameter (η). However, it imposes a very restrictive

time structure as inefficiency can either be only increasing or decreasing, depending

on the sign of η. Additionally, it does not allow for time-specific shocks to be taken
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into account as inefficiency is specified as a deterministic function of time.

The second model that we consider was used by Koop et al. (1997) and assumes that

for each time-period inefficiency is a random draw from an exponential distribution

with rate parameter λ:

uit ∼ Exp(λit) (4.6)

The following relationship is assumed for λit:

λit = ew
′
itγ (4.7)

where w is a vector of time-varying covariates and γ is a vector of parameters to be

estimated. Note that positive coefficients with respect to w imply a positive impact

on λ and, therefore, a negative impact on inefficiency. In contrast to the Battese

and Coelli model, this specification does not impose any time structure on inefficiency

and could therefore capture time-specific shocks on farm-level efficiency. However, by

allowing for the time evolution of inefficiency to be completely random, it may produce

very erratic results. From now on, this model will be called the “unstructured” model.

Moving to the dynamic efficiency specification, we specify a dynamic stochastic

frontier by allowing for firm-specific efficiency scores to follow an autoregressive pro-

cess. The inverse of the logistic function is used to transform TEit so that we project

it from the unit interval to the real line. More precisely, we define sit = log( TEit
1−TEit ) as

the latent-state variable and assume the following autoregressive process on sit:

sit = z
′

iδ + ρsi,t−1 + ξit, ξit ∼ N (0, σ2
ξ) (4.8)

si1 =
z
′
iδ

1− ρ
+ ξi1, ξi1 ∼ N (0, σ2

ξ1) (4.9)

where z is a vector of time-invariant covariates, δ is a vector of parameters to be

estimated, ξit is a two-sided error term that accounts for statistical noise and σ2
ξ1 =

σ2
ξ

1−ρ2 , due to stationarity. Stationarity of the s series assures that the expected value

of s does not diverge to either positive or negative infinity and therefore, technical

efficiency will not approach unity or zero. Furthermore, based on this specification,

ρ is an elasticity that measures the percentage change in the efficiency to inefficiency

ratio that is carried from one period to the next. This inefficiency specification may

be able to capture (persistent) time-specific efficiency shocks, as it does not specify

a very restrictive time structure on inefficiency. Additionally, it could produce more

reasonable results compared to models that allow the time evolution of efficiency scores

to be completely random.
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4.2.3 Measurement and decomposition of TFP growth

After estimating the three alternative models, we can calculate and decompose TFP

growth following Orea (2002) and Lovell (2003), who have extended the Malmquist

productivity index introduced by Caves et al. (1982). The TFP growth rate is defined

as the weighted growth rate of outputs minus the weighted growth rate of inputs, and

can be written as:

d log TFP

dt
=

M∑
m=1

∂ logD0

∂ log ym
ŷm −

N∑
n=1

εn
ε
x̂n (4.10)

where εn = ∂ logD0/∂ log xn, ε is the scale elasticity multiplied by minus 1 and a hat

over a variable indicates growth rate. The weights that we use for outputs are the

corresponding distance elasticities, and for inputs, the shares of distance elasticities in

scale elasticity. Taking the logarithm of both sides of (4.2), totally differentiating with

respect to time, and substituting in (4.10) yields:

d log TFP

dt
=
d log TE

dt
− ∂ logD0(x,y, t)

dt
− (ε− 1)

N∑
n=1

εn
ε
x̂n (4.11)

Based on equation (4.11), we decompose productivity growth into three compo-

nents: (i) technical efficiency change (d log TE
dt

), (ii) technical progress (−∂ logD0(x,y,t)
dt

),

and (iii) scale effect (−(ε− 1)
∑N

n=1
εn
ε
x̂n).

4.3 Estimation approach

4.3.1 Empirical specification

As mentioned before, calculation and decomposition of TFP growth is based on an

output distance function. The use of a distance function is justified on the grounds

of the multi-output (milk, meat etc.) nature of German dairy farms’ production tech-

nology. We use an output distance function instead of an input distance function for

the following reasons: (i) despite the restrictions on milk production from the milk

quota system, German dairy farms can lease and purchase milk quota, (ii) given that

the dynamic efficiency specification assumes that inputs like capital are considered as

quasi-fixed, an input distance function may be an inappropriate specification tool. A

translog specification of the output distance function is used as, in contrast to the

Cobb-Douglas functional form, the translog is more flexible because it does not im-

pose restrictions on substitution possibilities between inputs and outputs. Hence, the

output distance function is specified as translog in inputs (x), outputs (y), and time
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trend (t). Using the estimable form of equation (4.3), the output distance function is

written as:

− log ymit = α0 +
∑
k

αk log xkit +
∑
l

βl log

(
ylit
ymit

)

+
1

2

∑
k

∑
r

αkr log xkit log xrit

+
1

2

∑
l

∑
m

βlm log

(
ylit
ymit

)
log

(
ylit
ymit

)

+
1

2

∑
k

∑
l

ζkl log xkit log

(
ylit
ymit

)

+ µ1t+ µ2t
2 +

∑
k

γkt log xkit

+
∑
l

φlt log

(
ylit
ymit

)
+ vit − log(TEit)

(4.12)

A time trend is included in the specification to capture technological progress, while

its interaction with outputs and inputs allows it to be nonneutral. Prior to estimation,

the data for all outputs and inputs are normalized by their respective geometric means,

so that the parameters associated with the first-order terms are directly interpretable

as distance function elasticities, evaluated at the geometric mean of the data.

4.3.2 Bayesian inference

Bayesian techniques are used to estimate the three alternative models. For the Bat-

tese and Coelli (1992) model, we gather all structural parameters in a vector θ1 =

[β, σv, η, λ]. The posterior distribution of the model can be written as follows:

π(θ1, {ui}|y,X) ∝ p(y, {ui}|θ1,X)× p(θ1) (4.13)

where y is the stacked vector of the dependent variable over years and farms, and X

is the matrix of variables in equation (4.4). The term p(y, {ui}|θ1,X) corresponds

to the complete data likelihood of the model, and p(θ1) is the prior density of the

parameters. The following priors are imposed on the parameters:

- A multivariate normal density is used for the prior density of the vector β. Prior

means are set equal to zero while the prior covariance matrix is diagonal with a

value of 1000 on the diagonal entries. This prior is conjugate.

- An Inverse-Gamma prior is used for σ2
v since this prior is conjugate. The shape
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and scale hyper-parameters are both set equal to 0.001.

- A normal prior is used for the η parameter with prior mean equal to zero and

prior variance equal to 0.1.

- A Gamma prior is used for the rate parameter λ. The typical approach is to set

the shape parameter equal to unity and the scale parameter equal to − log(r∗),

where r∗ is equal to the prior median efficiency (van den Broeck et al., 1994).

For the unstructured model, all structural parameters are gathered in a vector

θ2 = [β, σv,γ]. The posterior density of this model is as follows:

π(θ2, {ui}|y,X,W) ∝ p(y, {ui}|θ2,X,W)× p(θ2) (4.14)

where p(y, {ui}|θ2,X,W) is the complete data likelihood of the model, W is the

matrix of covariates in equation (4.7), and p(θ2) corresponds to the prior density of

the parameters. The following priors are specified for the parameters:

- We impose a multivariate normal prior density for the vector β. Prior means

equal to zero, and the prior covariance matrix is diagonal with the value of 1000

on the diagonal entries. This is a conjugate prior.

- We use an Inverse-Gamma prior for σ2
v as this prior is conjugate. Both shape

and scale hyper-parameters are set equal to 0.001.

- A multivariate normal density is imposed for the prior density of the vector

γ. Prior means are set equal to zero and the diagonal entries of the diagonal

covariance matrix are set equal to 1000. This is a non-conjugate prior.

For the dynamic efficiency model, we define si to be a T × 1 vector of the latent-

state variable of the transformed technical efficiency for firm i, where T represents

time periods, and we collect all structural parameters to be estimated in a vector

θ3 = [β, σv, δ, σξ, ρ]
′
. The model’s posterior distribution can be written as follows:

π(θ3, {si}|y,X,Z) ∝ p(y, {si}|θ3,X,Z)× p(θ3) (4.15)

where p(y, {si}|θ3,X,Z) is the complete data likelihood, Z is the matrix of covariates

in equations (4.8-4.9) and and p(θ3) is the prior density of the parameters. The priors

that we impose on the parameters are as follows:

- A multivariate normal density is used for the prior density of the vector β.

Prior means are set equal to zero. The prior covariance matrix is diagonal with

diagonal entries equal to 1000. The prior is conjugate.
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- An Inverse-Gamma prior is used for σ2
v. The shape and scale hyper-parameters

are set equal to 0.001. This prior is conjugate.

- A multivariate normal density is used for the prior density of the vector δ. As

in the case of the β priors, prior means are set equal to zero and the diagonal

entries of the diagonal covariance matrix are set equal to 1000. The prior is again

conjugate.

- An Inverse-Gamma prior is used for σ2
ξ as this is conjugate. The shape and scale

hyper-parameters are set equal to 0.1 and 0.01 respectively.

- A Beta prior is used for the inefficiency persistence parameter ρ to restrict it in

the unit interval (ρ ∼ Beta(α, β)). The prior hyper-parameters α and β are set

equal to 4 and 2 respectively. This prior is non-conjugate.

The posterior moments of the three models’ parameters are estimated using MCMC

techniques (Koop et al. (1995) illustrate an application of MCMC in stochastic frontier

models). Drawing samples from the posterior for the latent-state variables represent-

ing efficiency requires data augmentation techniques (see Tanner and Wong, 1987).

Finally, Metropolis-Hastings updates are used for γ, si, and ρ, as their complete con-

ditionals do not belong to any known distributional family.

4.3.3 Log-marginal likelihood and Bayes factors

We compare the three alternative models using Bayes factors (Kass and Raftery, 1995).

Considering two competing models M1 and M2, their relative posterior probability can

be written as:
p(M1|D)

p(M2|D)
=
p(D |M1)

p(D |M2)

Prob(M1)

Prob(M2)
(4.16)

where D represents the observed data, p(D |Mj) is the density of the data given Mj,

and Prob(Mj) is the prior probability of Mj being the true model. The marginal

density of p(D |Mj) with respect to the latent-state variables and parameters is written

as:

p(D |Mj) =

∫
p(D |θj,Mj) π(θj|Mj) dθj (4.17)

where θj is the vector of parameters for model j and π(θj|Mj) is the prior density of θj

under model j. The logarithm of the marginal density of the data with respect to the

latent-state variables and parameters can be obtained using the Laplace-Metropolis

estimator (Lewis and Raftery, 1997):

log
[
p(D |Mj)

]
≈ P

2
log[2π] +

1

2
log
[∣∣H∗|]+ log π

[
θ∗j
]

+ log p
[
D |θ∗j

]
(4.18)
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where P is the dimension of θj, θ
∗
j is the MCMC estimator of θj that maximizes the in-

tegrated likelihood p(D |θ∗j), and H is the Hessian of the integrated likelihood evaluated

at θ∗j . Following the conventional practice of placing equal prior model probabilities,

model comparison reduces to calculating Bayes factors. Assuming that the set of mod-

els considered is exhaustive, posterior model probabilities can be obtained using the

posterior odds ratio and the fact that probabilities sum to unity.

4.4 Data

The data used in this application are obtained from the FADN1. The dataset contains

farm-level information on physical units such as outputs and inputs, economic and

financial data such as product-specific production costs and debts, geographical infor-

mation, as well as characteristics relating to the farms’ primary operators. The part

of the dataset that is used here contains such information for German dairy farms and

covers the period from 2001 to 2009. This study focuses on farms primarily engaged

in dairy production, and for this purpose we have selected farms whose revenue from

sales of cow’s milk, beef, and veal comprise at least 66% of their total revenues, for

every year the farm is observed. This is the classification that FADN uses to define

specialized dairy farms. Furthermore, due to the dynamic nature of our modelling

approach, we retained farms that are observed for nine consecutive years. The final

dataset consists of a balanced panel of 706 farms with a total of 6,354 observations.

Two outputs are specified in the output distance function represented by equation

(4.3):

1. Deflated revenues from sales of cow’s milk (milk)

2. Deflated revenues plus change in valuation of beef and veal, pigmeat, sheep and

goats, and poultry meat, plus deflated revenues from sales of other livestock and

products (other)

The reported revenues are deflated with price indices obtained from EUROSTAT, using

2005 as the base year. Milk was deflated using its own price index, while, an aggregate

price index of agricultural products was used to deflate the rest of the outputs.

Six input categories are specified in equation (4.3):

1. Buildings and machinery (K) are measured in deflated book value. For each

input subcategory (buildings and machinery), its own price index was retrieved

from EUROSTAT and a Törnqvist index was constructed. The total reported

value was then deflated using the Törnqvist index.

1Data source: EU-FADN - DG AGRI.
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2. Total labor (L) is measured in man-hours and consists of both family and hired

labor.

3. Total utilized agricultural area (A) is measured in hectares and includes owned

and rented land.

4. Materials and services (M) are measured in deflated value. This category of input

is composed of ten other subcategories: seeds and plants, fertilizers, crop pro-

tection, energy, other livestock-specific costs, other crop-specific costs, forestry-

specific costs, feed for pigs and poultry, contract work, and other direct inputs.

For each input subcategories, the relevant price indices were obtained from EU-

ROSTAT and a Törnqvist index was constructed. The total reported value was

then deflated using the Törnqvist index.

5. Total livestock units (S) is measured in livestock units and consists of the total

number of equines, cattle, sheep, goats, pigs, and poultry of the holding.

6. Purchased feed (F) is measured in deflated value. It includes concentrated feed-

ingstuffs and coarse fodder for grazing stock. Feed produced within the farm is

excluded. The variable was deflated based on its own price index obtained from

EUROSTAT.

Dummy variables for eastern, western, northern, and southern (base category) Ger-

many are included to capture differences in technology and climatic conditions across

different regions in Germany. The w vector in equation (4.7) and the z vector in

equations (4.8− 4.9) consist of the following variables: farms’ economic size measured

in hundreds of ESU, farms’ specialization in milk production measured as the ratio

of revenues from milk production to total revenues and farms’ stock density, defined

as the volume of livestock units per hectare. Operators that own large (in economic

size) farms are expected to attain higher technical efficiency levels due to their higher

managerial effort (Latruffe et al., 2008; Zhu et al., 2012). Higher specialization in milk

production can increase a farm’s efficiency due to farmers’ higher level of experience

when engaging in single production activities (Zhu et al., 2012; Sauer and Latacz-

Lohmann, 2015). Finally, higher stock density that is associated with the adoption of

intensive production techniques can have a positive contribution on farms’ technical

efficiency (Alvarez and Corral, 2010). Imposing stationarity on the s series in equa-

tion (4.9) requires that the covariates in z are specified as time-invariant2. Summary

statistics of the model’s variables appear in Table 4.1.

2Variation of the variables over time is negligible. We derive farm-specific coefficients of variation for
size, specialization, and stock density by dividing each farm’s standard deviation in the respective
variable by the farm’s mean taken over time. Figure C.1 in Appendix C presents histograms of the
coefficient of variation for size, specialization and stock density.
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Table 4.1: Summary statistics of the model’s variables

Variable Mean Std. dev 5% 95%
Revenues from cows’ milk (1,000e) 104.15 117.02 29.14 257.34
Revenues from other output (1,000e) 29.11 39.54 5.25 73.19
Capital (1,000e) 169.55 152.18 29.21 418.52
Labor (1,000 man-hours) 3.29 3.16 1.80 5.47
Land (hectares) 59.34 58.77 18.47 140.26
Materials (1,000e) 45.83 51.03 13.00 108.57
Livestock (livestock units) 92.58 83.59 32.69 212.65
Purchased feed (1,000e) 19.47 28.94 1.89 54.29
Size (100 ESU) 0.75 0.79 0.25 1.69
Specialization (milk revenues/total revenues) 0.73 0.11 0.54 0.89
Density (livestock units/hectare) 2.03 0.66 1.13 3.19

4.5 Results and discussion

The results reported in this section are based on 120,000 draws from the posterior

distribution of the parameters for each model. A burn-in of 50,000 iterations is used

to remove the influence of the initial values, while every one in ten draws is retained to

mitigate potential autocorrelation of the draws. The full set of results from the three

alternative models is provided in Appendix C in Tables C.1, C.2 and C.3. Table 4.2

reports the parameter estimates of the first-order terms, and the rest of the parameters

from the three alternative models3.

The point estimates of the distance function elasticities across the three specifi-

cations differ slightly in magnitude. This results in different estimates for the scale

elasticities (RTS). However, the distance elasticities have the expected signs and their

95% credible intervals do not include zero (only the elasticity with respect capital in

the Battese and Coelli (1992) model is significant at the 90% credible interval)4. The

positive sign of the distance function elasticity with respect to other output means that

a potential increase in output, other than milk, will cause an increase in the distance

function and farms will move closer to the frontier. On the other hand, the negative

signs of the distance function elasticities with respect to inputs imply that increases

in inputs push the frontier outwards and farms become less efficient. All three models

suggest that German dairy farms experience technological progress since the frontier

moves outwards with the passage of time.

Concerning the Battese and Coelli model, the negative sign of η implies that farms

3Since the main objective of the paper is to compare the results from the three alternative specifica-
tions, the determinants of efficiency in the unstructured and the dynamic models are not discussed
but are presented in Tables C.4 and C.5 in Appendix C. Note that all estimates have the expected
signs and their corresponding 95% credible intervals do not contain zero.

4Credible intervals are presented in Tables C.1, C.2 and C.3 in Appendix C.
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Table 4.2: Posterior summaries of the first-order terms and the parameters in the
three θ vectors

BC92 Unstructured Dynamic
Variable Mean Std. dev. Mean Std. dev. Mean Std. dev.
intercept 0.276 0.011 -0.108 0.007 -0.524 0.040
log y2 0.191 0.005 0.233 0.005 0.146 0.005
log K -0.008 0.005 -0.060 0.004 -0.021 0.005
log L -0.014 0.011 -0.084 0.009 -0.049 0.011
log A -0.080 0.013 -0.048 0.010 -0.103 0.016
log M -0.261 0.010 -0.315 0.008 -0.199 0.010
log S -0.371 0.015 -0.312 0.012 -0.279 0.017
log F -0.219 0.006 -0.177 0.005 -0.191 0.005
trend -0.015 0.001 -0.025 0.001 -0.023 0.001
σv 0.106 0.001 0.136 0.002 0.082 0.001
η -0.018 0.004 - - - -
λ 3.334 0.165 - - - -
σξ - - - - 0.125 0.007
ρ - - - - 0.940 0.005
RTS 0.953 0.997 0.840
Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

become less efficient as time progresses. The Battese and Coelli model produces an av-

erage efficiency score of 76%, the unstructured model a score of 92%, and the dynamic

efficiency model an estimate of 60%. These big differences are due to the completely

different inefficiency structure that is imposed in each of the three models. The Battese

and Coelli model produces a moderate efficiency score. This is because the restric-

tive structure that is imposed on inefficiency smooths out big efficiency changes. For

instance, in contrast to the unstructured and dynamic efficiency models, the Battese

and Coelli specification can’t capture steep efficiency changes between 2007 and 2009;

this will become obvious below. On the other hand, the unstructured and the dy-

namic efficiency models are able to capture these efficiency changes, with the former

producing more extreme results that are reflected in the high average efficiency score.

Furthermore, inefficiency is highly autocorrelated and the dynamic efficiency model

produces an estimate for ρ of 94%. This result is consistent with the high inefficiency

persistence found by Emvalomatis et al. (2011) for the case of German dairy farms.

Additionally, it adds credibility to the adjustment cost theory, which states that un-

der the existence of high adjustment costs, the optimal decision for farms is to remain

inefficient in the future.

Moving to the TFP growth rate and its decomposition into technical progress,

technical efficiency change, and scale effect, Table 4.3 reports the corresponding esti-

mates for each of the three models. All three models suggest that technical progress
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is the main driver of TFP growth. This result is in accordance with the findings of

Brümmer et al. (2002), Emvalomatis (2012b), and Sauer and Latacz-Lohmann (2015)

for the case of German dairy farms. Technical progress is rather stable in the Battese

and Coelli case, decreasing in the unstructured model and increasing in the dynamic

efficiency model. On average, the scale effect contributes very little to TFP growth

under all specifications. Overall, the Battese and Coelli model produces an average

TFP growth estimate of approximately 1%, while the other two models produce an

estimate of around 2.5%. This is in line with previous empirical studies that have

reported average TFP growth rates of German dairy farms of above 1%.

Table 4.3: TFP growth rate and decomposition (%)

Year Technical progress TE change Scale effect TFP growth
BC92
2001-2002 1.419 -0.462 0.090 1.047
2002-2003 1.442 -0.471 0.166 1.137
2003-2004 1.490 -0.480 -0.139 0.871
2004-2005 1.540 -0.489 0.084 1.135
2005-2006 1.549 -0.498 0.159 1.210
2006-2007 1.608 -0.507 0.160 1.261
2007-2008 1.634 -0.517 -0.271 0.846
2008-2009 1.576 -0.527 0.063 1.112
Average 1.532 -0.494 0.039 1.077
Unstructured
2001-2002 3.296 0.451 0.005 3.752
2002-2003 2.959 -0.620 0.011 2.350
2003-2004 2.812 0.507 -0.008 3.311
2004-2005 2.658 -0.845 0.005 1.818
2005-2006 2.538 -0.231 0.011 2.318
2006-2007 2.358 0.795 0.012 3.166
2007-2008 2.196 -4.200 -0.020 -2.024
2008-2009 1.924 3.905 0.002 5.831
Average 2.593 -0.030 0.002 2.565
Dynamic
2001-2002 1.889 0.238 0.246 2.373
2002-2003 1.950 0.195 0.551 2.696
2003-2004 2.110 0.688 -0.478 2.320
2004-2005 2.268 -0.353 0.294 2.209
2005-2006 2.441 -0.337 0.500 2.604
2006-2007 2.589 -0.559 0.482 2.512
2007-2008 2.744 -2.152 -0.870 -0.278
2008-2009 2.860 1.765 0.201 4.826
Average 2.356 -0.064 0.116 2.408
Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

The reason why the average TFP growth estimate in the unstructured and dy-
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namic models is almost twice the estimate produced by the Battesse and Coelli model

is twofold: (i) the average estimate of the main contributor (technical progress compo-

nent) of TFP growth in the Battesse and Coelli model is smaller. This result should

not be surprising as the estimate with respect to the trend variable in the distance

function specification of the Battesse and Coelli model is deflated because the trend

variable appears also in the specification of inefficiency, (ii) the average technical effi-

ciency change estimate is much smaller in the Battesse and Coelli specification as it

is restricted to be only decreasing. This results in a further deflation of average TFP

growth.

Striking differences in the time variation of TFP growth across the three specifi-

cations are observed. This is due to the differences in the technical efficiency change

component. In the Battese and Coelli case, efficiency is, on average, slightly decreasing

over time. However, since the unstructured and the dynamic efficiency models do not

restrict efficiency to be either only increasing or decreasing, they allow for efficiency

changes to either directions. Besides, in contrast to the Battese and Coelli model, they

can capture steep efficiency changes. These changes are observed during the period

that milk price changes have occurred in the German dairy sector. More specifically, a

big efficiency change occurs between the period of 2007-2008. The milk price peak of

35.01e/100kg in 2008 is accompanied by an almost 2.2% decrease in average technical

efficiency in the dynamic efficiency model, and a 4.2% decrease in the unstructured

model. In both specifications, this results in a steep decline in TFP growth. High milk

prices motivate farmers to increase their short-run production so that they can take

advantage of the associated profits. To raise production in the short-run, farmers need

to increase the use of variable inputs. However, since farmers are probably experienced

in employing a particular range of variable inputs, a rapid increase in their use that

goes beyond their comfort zone may make them prone to committing mistakes. For

instance, farmers may overuse inputs such as feedingstuffs or labor, which will result

in increased production but inefficient use of these inputs.

On the other hand, an average efficiency increase of approximately 1.8% in the

dynamic efficiency model and 3.9% in the unstructured model is observed from 2008 to

2009, which is the period where prices plummeted from 35.01e/100kg to 25.25e/100kg.

This efficiency increase results in a high TFP growth rate under both models. A logical

consequence of such a price fall is that farmers are no longer motivated to increase

production, since the associated profit gains are smaller. On the contrary, given the

price decrease, farmers are more motivated to produce less by returning to their nor-

mal range of variable input use. This return may decrease short-run production, but

farmers will probably make a more efficient use of their variable inputs which will

compensate for the lower profits associated with the milk price fall.
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As expected, the Battese and Coelli model is not able to capture these efficiency

changes that may result from the milk price volatility which occurred during the pe-

riod of our study. On the other hand, the unstructured and dynamic efficiency models

are more flexible, and therefore able to capture such efficiency changes. However, in

contrast to the dynamic efficiency model, the unstructured model produces very er-

ratic results due to the complete absence of a time structure for inefficiency. To offer

a clearer picture of the differences in efficiency change and TFP growth volatility be-

tween the three models, Figure 4.1 presents the evolution of the components of TFP

growth. While the technical change component and particularly the scale effect com-

Figure 4.1: Decomposition of TFP growth under the three alternative models

Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification and Unstr.
to the unstructured model.

ponent vary little across each model, striking differences across the three alternative

specifications are observed for the period 2007-2009 in the technical efficiency change

component (DTE effect) and in TFP growth. These two components are rather stable

in the Battese and Coelli model, while the dynamic efficiency and unstructured mod-

els indicate sharp efficiency and TFP growth changes in the period 2007-2009. The

magnitude of these changes is much larger in the unstructured model.
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A more formal model comparison is performed to infer which of the three models

fits the data better. Note that the same dependent variable is used in all three specifi-

cations, while the prior model probability of 1/3 is placed in each of the three models.

Table 4.4 reports the estimates of the marginal log-likelihood and the posterior model

probabilities.

Table 4.4: Marginal log-likelihoods and posterior model probabilities

Model Marginal log-likelihood Posterior probability
BC92 1411.77 0.000
Unstructured 2157.58 0.000
Dynamic 4153.17 1.000
Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

The dynamic efficiency model is favored by the data as, on the one hand, it imposes

a less restrictive time structure on inefficiency compared to the Battese and Coelli

specification, while, on the other hand, it does not allow efficiency scores to evolve

completely arbitrarily over time as the unstructured efficiency model does.

4.6 Conclusions

This article estimates and decomposes TFP growth of German dairy farms for the

period between 2001 and 2009. The study period is characterized by steep milk price

changes that took place toward the end of the period. Such a shock motivates the mea-

surement of efficiency and TFP growth and their expected time variation. However,

detection of efficiency and TFP growth shocks depends on the modelling approach

followed. Most studies that have examined TFP growth have relied on models that

specify inefficiency as a deterministic function of time, with the most popular one be-

ing that of Battese and Coelli (1992). Additionally, models that do not impose any

time structure on efficiency may be able to capture efficiency shocks, but are likely

to produce very erratic results. We argue that a dynamic inefficiency specification

that allows for inefficiency scores to be autocorrelated, allows for a more flexible time

structure that can account for (persistent) efficiency shocks that may be induced by

the high milk price volatility observed during our study period, without producing

erratic results.

Although all three models produce an average TFP growth rate above 1%, large

discrepancies are observed in the grow rate’s evolution over time. While the technical

change components and particularly the scale components do not vary significantly

over time, important differences occur in the efficiency change components. On the

one hand, in the Battese and Coelli model, efficiency is only slightly decreasing over
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time. This is something to be expected, as this approach restricts inefficiency to

be either only increasing or only decreasing with the passage of time. Furthermore,

it is unable to capture steep efficiency changes because it considers inefficiency as

a deterministic function of time. On the other hand, in the unstructured and the

dynamic efficiency models, the direction of efficiency change is stochastic and can

reveal time-specific efficiency shocks. However, the unstructured model produces very

erratic results, since it does not impose any time structure on the efficiency scores.

The efficiency shocks occur when steep milk price changes were taking place in

German dairy farming. In particular, the peak of milk prices in 2008 coincides with a

sharp efficiency decrease that is only captured by the unstructured and the dynamic ef-

ficiency specifications. Since high milk prices offer the potential of making high profits,

farmers are motivated to increase the short-run production of milk. To achieve this,

they need to increase the use of variable inputs beyond the traditional level, running

the risk of making mistakes, such as overusing them. This results in the inefficient use

of resources which is evident in the observed efficiency decrease. However, the following

year, the decrease in milk price is accompanied by an efficiency increase, that again,

only the unstructured and dynamic efficiency models can capture. Farmers no longer

have the incentive to produce high amounts of milk, as its low price will now result

in relatively smaller profit gains. This implies that farmers are probably using their

variable inputs in a more parsimonious way that increases efficiency and compensates

for the profit loss compared to the year before.

The results confirm that the detection of sharp efficiency and TFP growth changes

heavily dependents on the specification of inefficiency. Models such as the Battese

and Coelli (1992) that consider the evolution of inefficiency as a deterministic function

of time are not able to capture efficiency shocks. Models that do not impose any

time structure on efficiency scores are able to account for period-specific efficiency

shocks, but can produce very erratic results. The dynamic efficiency model belongs

to the category of models that impose a time structure on efficiency scores, but not

a very restrictive one. Such a model can account for period-specific efficiency shocks

without running the risk of producing very erratic results, which is evident in our study.

Additionally, the dynamic efficiency model is favored by our data when tested against

the Battese and Coelli specification and a model that imposes no time structure on

efficiency.
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Chapter 5

General Conclusions

5.1 Summary of findings

This dissertation is built on the recognition that firms are not perfect decision-making

units. Producers may fail to meet their objectives due to governmental intervention or

due to the stochastic environment in which they operate. The deviation between op-

timal and observed production is quantified by means of efficiency measurement. Ad-

ditionally, stochastic events such as price volatility motivate the measurement and the

identification of shocks in firms’ TFP growth, which serves as an indicator of the com-

petitiveness of a sector. This dissertation departs from the vast literature on efficiency

and productivity measurement by recognizing that firms’ decisions are dynamic in

nature with today’s actions affecting future production possibilities. Decision-making

units may choose to remain inefficient in the short-run because this is the optimal

strategy to meet their long-run objective. The costly adjustment of quasi-fixed fac-

tors of production can justify such a decision. Long-run efficiency takes into account

the long-run objective of firms while measuring their failure to optimize their present

production processes.

The German dairy sector appears to be an interesting case for measuring efficiency

and TFP growth. Measurement of the former is motivated by the intensive policy

intervention that took place in the sector over the last decades. In particular, the

transition from coupled to decoupled CAP subsidies and the associated efficiency ef-

fects are of great interest. Furthermore, the sector’s fast technological progress and the

increasing use of capital stock justify the dynamic framework used. Measurement of

TFP growth is interesting for two main reasons. Firstly, TFP growth is an important

indicator that reflects the potential of a sector to survive in an environment that is

characterized by both domestic and international competition. Secondly, the high milk

price volatility that took place in the German dairy sector during the first decade of

the 21st century may result in steep changes in efficiency and TFP growth of German

dairy farms. Examining this issue can reveal important information concerning the

way that farmers react to such a shock.

The main objective of this dissertation is to extend and estimate the few existing

parametric dynamic efficiency and TFP models to answer three research questions.
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The first research question is concerned with whether heterogeneity exists in the long-

run technical efficiency of German dairy farms. To answer this research question

the parametric dynamic efficiency model is extended in Chapter 2 to allow for the

long-run technical efficiency of farms to be dependent on farm-specific characteristics

and varying degrees of their inefficiency persistence. The farm-specific characteristics

included consist of the economic size of farms, measured in ESU, and the amount of

subsidies that farms receive. Furthermore, a hierarchical structure for the inefficiency

persistence component is used that allows for variation across farms. The results

provide evidence of substantial heterogeneity in the long-run technical efficiency of

German dairy farms ranging from approximately 50% to 98%. This result indicates

that the assumption of previous studies of a common long-run technical efficiency

score for all firms should be relaxed. Heterogeneity in the long-run technical efficiency

of German dairy farms is mostly due to differences in farm-specific factors and, to a

lesser extent, due to discrepancies in farms’ inefficiency persistence. Farm size exerts

a positive impact on the long-run technical efficiency of farms, while subsidies are

negatively related to farms’ long-run technical efficiencies. Inefficiency persistence is

found to be very high, ranging from 88% to 98%.

The second research question is tackled in Chapter 3 and seeks farm-specific char-

acteristics which may influence farms’ technical inefficiency persistence. A meticulous

literature review is conducted to identify those farm-specific characteristics that are

related to adjustment costs. Based on this review, subsidies are related to external

adjustment costs, while the farmer’s age is associated with internal adjustment costs.

Given that adjustment costs cause high inefficiency persistence, this study tests for

the impact of these farm-specific characteristics on inefficiency persistence. The in-

efficiency persistence parameter is projected from the unit interval to the real line,

and covariates are allowed to have an impact on it. The empirical findings suggest

a high degree of inefficiency persistence, with subsidies and age having a statistically

significant impact on it. Specifically, subsidies have a positive effect on inefficiency per-

sistence, while older farmers exhibit higher persistence of technical inefficiency when

compared to younger farmers.

The third research question is concerned with the ability of the dynamic efficiency

specification to capture time-specific technical efficiency and TFP growth shocks that

may have been induced by the high milk price volatility that took place in the Ger-

man dairy sector. In Chapter 4, TFP growth is decomposed into three components: (i)

technical progress, (ii) technical efficiency change and (iii) scale effect. Apart from the

dynamic efficiency specification, two further models are considered: one which imposes

a very restrictive time structure on efficiency and one which does not impose any time

structure on efficiency scores. The results confirm that the dynamic efficiency specifi-
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cation is able to capture time-specific technical efficiency and TFP growth shocks in

German dairy farming. In addition, formal model comparisons are performed showing

that the dynamic efficiency specification is favored by the data when compared with

the two alternative efficiency specifications.

5.2 Limitations

In this dissertation, some limitations exist particularly with respect to the inefficiency

persistence component. In Chapters 2 and 3, heterogeneity in this persistence is quite

low. One would expect that, to a certain extent, farms would exhibit quite different

degrees of inefficiency persistence. This is because some farms may tend to adopt new

technologies quicker than others, or because some farm operators may be able to learn

quicker due to their higher cognitive capacity or experience. A possible explanation

for this low heterogeneity in inefficiency persistence is the following: since inefficiency

is an unobserved quantity, initializing the autoregressive process of the inefficiency

scores requires a distribution for inefficiency in the initial period. This is achieved by

imposing stationarity on the autoregressive series. Stationarity restricts the inefficiency

persistence parameter on the unit interval. A natural consequence of finding a mean

value for inefficiency persistence close to unity, while restricting it to the unit interval,

is that this parameter will not vary a lot around the mean.

In Chapter 3, while the determinants of inefficiency persistence are statistically

significant, their economic significance is negligible. However, this study has provided

a novel way to allow the inclusion and impact testing of farm-specific characteristics on

the persistence of technical inefficiency. Besides, in the case where the determinants

of inefficiency persistence were also economically significant, one would not be able

to intuitively interpret their magnitude. This is because inefficiency persistence is an

elasticity that measures the percentage change in the efficiency to inefficiency ratio

that is carried from one period to the next, and therefore lacks units of measurement.

For instance, interpretation of the magnitude of the determinants of efficiency is much

more intuitive, as it measures the deviation of firms from the production frontier.

Additionally, the study in Chapter 3 fails to include indicators that are directly

related to external adjustment costs. Subsidies are indirectly related to these costs,

as they can simply ameliorate farmers’ financial situation and allow them to adopt

new technologies. Examples of more relevant variables are financial indicators such

as debts. However, the lack of variation in the available financial indicators has pre-

vented their use as explanatory factors of inefficiency persistence. In terms of internal

adjustment costs, several additional covariates such as education or the presence of

a successor could further help in explaining the persistence of technical inefficiency.
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However, these information were not available in the dataset.

Finally, in Chapter 4, it was assumed that time-specific shocks in efficiency and

TFP growth of German dairy farms may occur because of the high milk price volatility

that took place during the study period. The dynamic efficiency specification was used

to capture such shocks. Despite the fact that this specification revealed steep efficiency

and TFP growth changes that coincide with the volatility in milk prices, this study

does not empirically test for the relationship between milk prices and efficiency or TFP

growth. This is due to the unavailability of milk prices in the dataset. Furthermore,

even if milk prices could be retrieved from an alternative data source, they could not

be used as determinants of efficiency. This is because the need of imposing stationar-

ity, requires that the determinants of efficiency are specified as time-invariant. This

requirement cannot be satisfied due to milk prices varying significantly over time.

All in all, despite the aforementioned limitations of this dissertation, the answers

to the three research questions were not affected.

5.3 Synthesized Results

Although the objective of each of the three chapters was different, all three studies used

the dynamic efficiency specification with minor differences related to the modelling of

the inefficiency persistence component. In all three studies, inefficiency persistence

of German dairy farms was found to be very high. Table 5.1 summarizes the average

inefficiency persistence estimates in Chapters 2-4. The estimates of average inefficiency

persistence are quite similar across the three chapters.

Table 5.1: Summary of average inefficiency persistence scores by chapters

Chapter Average inefficiency persistence
2. Long-run technical efficiency heterogeneity 95%
3. Determinants of inefficiency persistence 97%
4. Dynamic efficiency and TFP growth 94%

With respect to the efficiency scores, the long-run efficiency estimates are only reported

in Chapter 2 as this was the primary objective of the study. However, the average

short-run technical efficiency scores are reported in every chapter, and similar estimates

are found ranging from 60% to 70%.

All three chapters estimated efficiency using an output distance function. A translog

specification was used with the same outputs and inputs. The distance function elas-

ticities with respect to outputs and inputs are rather similar across all three chapters

and German dairy farms are found to operate under the decreasing returns to scale

part of the technology. Additionally, the three studies provide evidence that Ger-
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man dairy farms face technological progress, as the frontier moves outwards as time

progresses.

The results in Chapters 3 and 4 provide evidence that specialization in milk pro-

duction, higher stock density, and bigger economic farm size are all positively related

to technical efficiency. Specialization of farmers in a single production activity makes

them more experienced and skillful, resulting in higher technical efficiency. Higher

stock density is associated with intensive production techniques that result in higher

technical efficiency at the farm-level. Finally, farms with a large economic size are

probably more business oriented and use more mental labor which consequently in-

creases their technical efficiency. The results in Chapter 2 further suggest that the

positive impact of the economic size of farms on technical efficiency is also present in

the long-run.

Finally, all three chapters departed from the static efficiency framework by using

the dynamic efficiency specification, recognizing that farms’ decision making processes

are dynamic in nature. In Chapters 2 and 3, formal comparison tests between static

and dynamic efficiency models were not conducted. However, in Chapter 4 a formal

comparison test using Bayes factors was performed to compare two static efficiency

specifications with the dynamic efficiency model. The results suggest that the dynamic

efficiency specification outperforms the static efficiency models. Since the dynamic

efficiency specification is rather similar across all three chapters, this provides evidence

in favor of moving from a static to a dynamic framework in this dissertation.

5.4 Policy Implications

The results from Chapter 2 point out that CAP subsidies have a negative impact on

the long-run technical efficiency of farms. Several empirical studies including Hadley

(2006), Zhu and Oude Lansink (2010) and Bojnec and Latruffe (2013) have concluded

that CAP subsidies are negatively related to short-run technical efficiency. In all

cases, decoupled payments comprise a very large share of these CAP subsidies. Their

negative impact on technical efficiency stems from the fact that farmers perceive these

kinds of subsidies as an additional income source and are, therefore, less motivated

to work efficiently. Based on the results from Chapter 2, this negative effect is also

present in the long-run. This result informs policy-makers that there is a long-term

negative impact of CAP subsidies on farms’ technical efficiency.

Chapters 3 and 4 further indicate that specialization in milk production and higher

stock density can increase farms’ short-run technical efficiency. This is consistent with

the empirical findings reported by Latruffe et al. (2008), Alvarez and Corral (2010), and

Zhu et al. (2012). This implies that any policy encouraging specialization in a single
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production activity or adoption of intensive production techniques should positively

contribute to the technical efficiency of farms.

The results in all three chapters suggest that technical inefficiency is highly per-

sistent across time. This result is consistent with the high inefficiency persistence

reported by Emvalomatis et al. (2011) for the case of German dairy farms. Farms are

inefficient today and this inefficiency does not disappear as time progresses. Shocks

such as the introduction of innovative technologies do not allow farms to become fully

efficient because of the existence of high adjustment costs. Lately, the CAP reforms

tend to give particular emphasis to sustainability matters. In the dairy sector, particu-

lar attention is paid to animal health and welfare, public health risks related to the use

of antibiotics, and emission of nutrients and greenhouse gases. Farmers are required

to invest in improved animal housing systems or more environmentally friendly man-

agement practices (Stehfest et al., 2013). However, the results from this dissertation

point out that farmers face high adjustment costs that prevent them from instanta-

neously investing in new equipment. In this case, this implies that a farmer’s optimal

decision may be to remain environmentally inefficient because of the high adjustment

costs related to the construction of a new animal housing system or the adoption of an

environmentally friendly production technology. Consequently, policy makers should

be aware of the constraints that adjustment costs impose on farmers. If short-run

environmental efficiency is imperative, then faster implementation of environmentally-

friendly practices could be achieved by the distribution of subsidies among investments

that could make the dairy sector more sustainable.

With reference to the above discussion, the results from Chapter 3 show that CAP

payments are most probably perceived as an additional income source and not as a

tool for investing in new technologies. This results in higher inefficiency persistence

for farms. The cause lies with the fact that the share of subsidies on investment when

compared to the total amount of subsidies that farms receive is negligible. The results

further indicate that young farmers are more prone to investing in new technologies

compared to very old farmers. This result suggests that if policy makers are interested

in promoting the use of new technologies, they should provide young people with

incentives to undertake the management of farms.

Finally, the results in Chapter 4 suggest that TFP growth of German dairy farms

is particularly sensitive to shocks that may be outside the control of the producers.

TFP growth is a very important indicator that determines whether a sector will persist

or perish in an environment that is characterized by both domestic and international

competition. Given this high importance of TFP growth and its sensitivity with

respect to exogenous shocks, policy-makers should focus on minimizing these shocks

so that they can ensure that the sector is competitive and able to survive.
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5.5 Suggestions for Future Research

This dissertation has focused on extending the few existing parametric dynamic effi-

ciency models. The analysis of the determinants of inefficiency persistence has been

constrained by the lack of variation in the financial indicators and the absence of ad-

ditional potentially relevant variables. Based on the modelling approach proposed in

Chapter 3, future research can be conducted on examining the impact of financial

indicators such as debts on the persistence of inefficiency. Additionally, datasets that

contain information on farmers’ education and/or presence of a successor could help

to explain better the persistence of inefficiency. Finally, provided that a certain share

of total subsidies consists of subsidies on investment, an interesting exercise would be

to differentiate between decoupled payments and subsidies on investments, as opposite

effects on inefficiency persistence are expected.

Furthermore, given that data on environmental indicators are available, another

interesting direction is the application of the dynamic framework to environmental

efficiency analysis. As mentioned before, recent reforms to the CAP require farmers

to invest in environmentally friendly production techniques. However, financial con-

straints or learning costs may prevent or delay farmers’ investment in environmentally

friendly technologies. This may imply that the environmental inefficiency of farms

may persist over time, justifying the use of a dynamic framework.

A large number of efficiency measurement studies has recently focused on spatial

dependence between the decision-making units. This spatial dependence may arise

because farmers located in close proximity may communicate with each other, rais-

ing awareness of the existence of new technologies. This may be particularly relevant

when dynamic efficiency analysis is concerned because farmers’ investment decisions

may be affected by their neighbors’ decisions. Two relevant extensions of the dynamic

efficiency model are possible. The first combines the specification of a lag efficiency

component with a spatial efficiency term. This specification allows efficiency to be

dependent not only on past efficiency but also on neighbors’ efficiency. The second

extension could take the direction of including neighbors’ individual characteristics

as determinants of a farm’s inefficiency persistence. If communication between farm-

ers exists, then neighbors’ characteristics should play a role in a farm’s investment

decisions and, therefore, in its inefficiency persistence.
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Appendix A

Table A.1: Parameterization of priors

Parameter Distribution Probability density function Hyper-priors

β N(b,S) |S|−
1
2

(2π)
K
2

exp
{
− (β−b)′S−1(β−b)

2

}
b = 0K , S = 1, 000× IK

τ ≡ 1
σ2
v

Gamma(a,b) ba

Γ(α)
τα−1e−bτ a = 0.001, b = 0.001

δ N(d,P) |P |−
1
2

(2π)
L
2

exp
{
− (δ−d)

′
P−1(δ−d)
2

}
d = 0L, P = 1, 000× IL

φ ≡ 1
σ2
ξ

Gamma(a,b) ba

Γ(α)
φα−1e−bφ a = 0.01, b = 0.01

µ N(m,t) (2πt2m)−
1
2 exp

{
− (δ−mµ)2

2t2m

}
m = 2.3, t = 10

ψ ≡ 1
σ2
ω

Gamma(a,b) ba

Γ(α)
ψα−1e−bψ a = 0.1, b = 0.01

Figure A.1: Coefficient of variation for European Size Units and subsidies
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Table A.2: Estimates of the model’s parameters

Variable Mean Std. dev. 95% Credible Interval

intercept -0.464 0.030 [-0.542, -0.415]

log y2 0.121 0.003 [0.116, 0.127]

log K -0.007 0.004 [-0.015, 0.000]

log L -0.053 0.008 [-0.068, -0.038]

log A -0.078 0.009 [-0.097, -0.060]

log M -0.114 0.007 [-0.128, -0.100]

log S -0.446 0.012 [-0.469, -0.422]

log F -0.180 0.004 [-0.188, -0.172]

trend -0.022 0.001 [-0.023, -0.020]

east 0.029 0.014 [0.001, 0.057]

west -0.036 0.011 [-0.059, -0.014]

north 0.029 0.010 [0.009, 0.050]

log KK 0.009 0.002 [0.005, 0.013]

log KL -0.011 0.009 [-0.028, 0.005]

log KA -0.019 0.010 [-0.039, 0.000]

log KM 0.045 0.008 [0.030, 0.061]

log KS -0.028 0.012 [-0.050, -0.005]

log KF -0.001 0.004 [-0.007, 0.006]

log LL 0.016 0.011 [-0.005, 0.037]

log LA 0.028 0.018 [-0.008, 0.064]

log LM 0.006 0.016 [-0.026, 0.038]

log LS -0.037 0.023 [-0.082, 0.007]

log LF 0.024 0.008 [0.008, 0.040]

log AA 0.012 0.014 [-0.016, 0.040]

log AM 0.033 0.018 [-0.002, 0.068]

log AS -0.078 0.027 [-0.131, -0.025]

log AF 0.025 0.008 [0.008, 0.041]

log MM 0.004 0.009 [-0.013, 0.022]

log MS -0.161 0.022 [-0.204, -0.118]

log MF 0.030 0.007 [0.016, 0.043]

log SS 0.122 0.022 [0.078, 0.166]

log SF 0.029 0.011 [0.007, 0.050]

log FF -0.040 0.001 [-0.043, -0.037]

log y2y2 0.029 0.001 [0.027, 0.031]

trend2 0.000 0.000 [0.000, 0.000]
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log Ky2 -0.002 0.003 [-0.007, 0.004]

log Ly2 -0.008 0.006 [-0.020, 0.003]

log Ay2 -0.029 0.006 [-0.041, -0.017]

log My2 0.049 0.006 [0.037, 0.061]

log Sy2 0.010 0.009 [-0.007, 0.027]

log Fy2 -0.008 0.003 [-0.014, -0.003]

trend log K 0.000 0.001 [-0.002, 0.002]

trend log L -0.005 0.002 [-0.008, -0.002]

trend log A 0.004 0.002 [0.000, 0.007]

trend log M 0.009 0.002 [0.006, 0.013]

trend log S -0.009 0.002 [-0.014, -0.004]

trend log F 0.002 0.001 [0.000, 0.003]

trend log y2 0.008 0.001 [0.006, 0.009]

s

intercept 0.009 0.004 [0.000, 0.017]

ESU 0.035 0.004 [0.028, 0.044]

subsidies -0.033 0.005 [-0.043, -0.024]

σv 0.089 0.001 [0.087, 0.091]

σξ 0.148 0.008 [0.132, 0.162]

σω 0.380 0.030 [0.321, 0.439]

µ 3.032 0.075 [2.884, 3.178]

Table A.3: Determinants of transformed efficiency s

Variable Mean Std. dev. 95% Credible Interval
intercept 0.009 0.004 [0.000, 0.017]
ESU 0.035 0.004 [0.028, 0.044]
subsidies -0.033 0.005 [-0.043, -0.024]
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Appendix B

Table B.1: Parameterization of priors

Parameter Distribution Probability density function Hyper-priors

β N(b,S) |S|−
1
2

(2π)
K
2

exp
{
− (β−b)′S−1(β−b)

2

}
b = 0K , S = 1, 000× IK

τ ≡ 1
σ2
v

Gamma(a,b) ba

Γ(α)
τα−1e−bτ a = 0.001, b = 0.001

δ N(q,P) |P |−
1
2

(2π)
L
2

exp
{
− (ω−q)′P−1(ω−q)

2

}
q = 0L, P = 1, 000× IL

φ ≡ 1
σ2
ξ

Gamma(a,b) ba

Γ(α)
τα−1e−bτ a = 0.01, b = 0.01

η N(e,R) |R|−
1
2

(2π)
M
2

exp
{
− (η−e)′R−1(η−e)

2

}
e = 0M , R = 1, 000× IL

ψ ≡ 1
σ2
λ

Gamma(a,b) ba

Γ(α)
ψα−1e−bψ a = 0.1, b = 0.01

Table B.2: Parameter estimates from the three alternative inefficiency specifications

BC92 Emvalomatis et al. (2011) Current paper
Parameter Mean Std. dev. Mean Std. dev. Mean Std. dev.
intercept 0.225 0.009 -0.445 0.019 -0.417 0.029
log other 0.184 0.003 0.140 0.003 0.125 0.003
log K -0.021 0.004 -0.015 0.004 -0.017 0.004
log L -0.045 0.008 -0.049 0.007 -0.051 0.007
log A -0.021 0.009 -0.070 0.009 -0.087 0.010
log M -0.192 0.008 -0.146 0.007 -0.162 0.007
log S -0.506 0.011 -0.502 0.011 -0.422 0.012
log F -0.213 0.004 -0.192 0.004 -0.175 0.004
trend -0.017 0.001 -0.019 0.000 -0.020 0.000
average TE 0.770 0.661 0.700
ρ - 0.991 0.971
Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

Table B.3: Estimates of the model’s parameters

Variable Mean Std. dev. 95% Credible Interval

intercept -0.417 0.029 [-0.480, -0.370]

log other 0.125 0.003 [0.119, 0.130]

log K -0.017 0.004 [-0.024, -0.010]

log L -0.051 0.007 [-0.064, -0.037]

log A -0.087 0.010 [-0.106, -0.067]
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log M -0.162 0.007 [-0.175, -0.148]

log S -0.422 0.012 [-0.445, -0.399]

log F -0.175 0.004 [-0.182, -0.167]

trend -0.020 0.000 [-0.021, -0.019]

east 0.060 0.015 [0.030, 0.089]

west 0.002 0.010 [-0.018, 0.022]

north 0.055 0.010 [0.036, 0.074]

log KK 0.008 0.002 [0.004, 0.012]

log KL -0.014 0.009 [-0.031, 0.003]

log KA -0.013 0.009 [-0.030, 0.005]

log KM 0.047 0.007 [0.033, 0.062]

log KS -0.033 0.011 [-0.054, -0.012]

log KF 0.001 0.003 [-0.006, 0.007]

log LL 0.022 0.013 [-0.004, 0.048]

log LA 0.014 0.020 [-0.025, 0.053]

log LM 0.003 0.018 [-0.031, 0.038]

log LS -0.037 0.024 [-0.085, 0.010]

log LF 0.027 0.009 [0.010, 0.044]

log AA 0.017 0.014 [-0.011, 0.045]

log AM 0.019 0.018 [-0.016, 0.055]

log AS -0.070 0.026 [-0.122, -0.018]

log AF 0.033 0.008 [0.017, 0.049]

log MM 0.009 0.009 [-0.009, 0.027]

log MS -0.154 0.022 [-0.198, -0.109]

log MF 0.024 0.007 [0.009, 0.038]

log SS 0.135 0.022 [0.093, 0.177]

log SF 0.006 0.011 [-0.015, 0.027]

log FF -0.037 0.001 [-0.039, -0.034]

log other2 0.031 0.001 [0.029, 0.033]

trend2 0.000 0.000 [0.000, 0.000]

log K other -0.010 0.003 [-0.015, -0.004]

log L other -0.002 0.007 [-0.015, 0.011]

log A other -0.031 0.006 [-0.044, -0.019]

log M other 0.062 0.006 [0.050, 0.075]

log S other 0.008 0.009 [-0.009, 0.025]

log F other -0.015 0.003 [-0.021, -0.009]

trend log K -0.003 0.001 [-0.004, -0.001]

trend log L -0.006 0.001 [-0.009, -0.003]
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trend log A 0.006 0.001 [0.003, 0.009]

trend log M 0.001 0.001 [-0.002, 0.004]

trend log S -0.001 0.002 [-0.005, 0.003]

trend log F 0.003 0.001 [0.001, 0.004]

trend log other 0.004 0.001 [0.003, 0.005]

σv 0.105 0.001 [0.103, 0.107]

σξ 0.086 0.010 [0.066, 0.106]

σλ 0.340 0.029 [0.282, 0.395]

Table B.4: Determinants of transformed efficiency (s)

Variable Mean Std. dev. 95% Credible Interval
intercept -0.059 0.013 [-0.088, -0.036]
size 0.011 0.002 [0.007, 0.017]
specialization 0.087 0.022 [0.052, 0.132]
density 0.005 0.002 [0.003, 0.009]

Table B.5: Determinants of transformed inefficiency persistence (h)

Variable Mean Std. dev. 95% Credible Interval
intercept 3.487 0.238 [3.041, 3.976]
subsidies 0.087 0.027 [0.039, 0.140]
age<65 -0.095 0.034 [-0.161, -0.029]
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Figure B.1: Coefficient of variation for ESU, specialization, and density

Figure B.2: Coefficient of variation for received subsidies
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Appendix C

Table C.1: Estimates of the parameters from the Battese and Coelli (1992) model

Variable Mean Std. dev. 95% Credible Interval

intercept 0.276 0.011 [0.256, 0.298]

log y2 0.191 0.005 [0.181, 0.200]

log K -0.008 0.005 [-0.017, 0.002]

log L -0.014 0.011 [-0.035, 0.007]

log A -0.080 0.013 [-0.104, -0.055]

log M -0.261 0.010 [-0.282, -0.240]

log S -0.371 0.015 [-0.400, -0.342]

log F -0.219 0.006 [-0.231, -0.208]

trend -0.015 0.001 [-0.018, -0.013

east -0.042 0.035 [-0.104, 0.031]

west -0.011 0.016 [-0.041, 0.021]

north 0.033 0.015 [0.004, 0.064]

log KK 0.016 0.003 [0.011, 0.022]

log KL -0.023 0.013 [-0.048, 0.002]

log KA 0.011 0.013 [-0.015, 0.038]

log KM 0.027 0.010 [0.007, 0.047]

log KS -0.030 0.015 [-0.060, -0.001]

log KF -0.002 0.005 [-0.011, 0.008]

log LL 0.016 0.021 [-0.024, 0.057]

log LA -0.043 0.032 [-0.106, 0.020]

log LM 0.044 0.027 [-0.009, 0.098]

log LS -0.008 0.039 [-0.083, 0.068]

log LF 0.027 0.013 [0.002, 0.052]

log AA -0.037 0.022 [-0.079, 0.006]

log AM -0.021 0.027 [-0.074, 0.033]

log AS -0.035 0.040 [-0.115, 0.044]

log AF 0.060 0.011 [0.038, 0.082]

log MM 0.056 0.015 [0.027, 0.085]

log MS -0.224 0.033 [-0.289, -0.159]

log MF 0.026 0.010 [0.005, 0.046]

log SS 0.200 0.030 [0.141, 0.260]
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log SF -0.050 0.014 [-0.078, -0.022]

log FF -0.042 0.002 [-0.046, -0.038]

log y2y2 0.048 0.002 [0.044, 0.052]

log Ky2 -0.025 0.004 [-0.033, -0.017]

log Ly2 -0.022 0.012 [-0.045, 0.001]

log Ay2 -0.016 0.012 [-0.039, 0.007]

log My2 0.086 0.010 [0.067, 0.105]

log Sy2 0.016 0.015 [-0.013, 0.045]

log Fy2 -0.027 0.005 [-0.036, -0.018]

trend2 0.000 0.000 [0.000, 0.000]

trend log K 0.000 0.001 [-0.001, 0.002]

trend log L -0.007 0.002 [-0.011, -0.003]

trend log A 0.012 0.002 [0.008, 0.016]

trend log M -0.018 0.002 [-0.022, -0.014]

trend log S 0.010 0.003 [0.004, 0.015]

trend log F 0.002 0.001 [0.000, 0.004]

trend log y2 -0.001 0.001 [-0.003, 0.001]

σv 0.106 0.001 [0.104, 0.108]

η -0.018 0.004 [-0.026, -0.009]

λ 3.334 0.165 [3.020, 3.665]

Table C.2: Estimates of the parameters from the unstructured model

Variable Mean Sd.dev. 95% Credible Interval

intercept -0.108 0.007 [-0.119, -0.097]

log y2 0.233 0.005 [0.225, 0.241]

log K -0.060 0.004 [-0.067, -0.054]

log L -0.084 0.009 [-0.100, -0.069]

log A -0.048 0.010 [-0.064, -0.032]

log M -0.315 0.008 [-0.329, -0.301]

log S -0.312 0.012 [-0.332, -0.292]

log F -0.177 0.005 [-0.185, -0.169]

trend -0.025 0.001 [-0.026, -0.024]

east 0.017 0.014 [-0.006, 0.039]

west -0.011 0.007 [-0.022, 0.000]

north 0.031 0.007 [0.020, 0.042]
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log KK -0.001 0.003 [-0.005, 0.004]

log KL -0.004 0.012 [-0.024, 0.016]

log KA -0.006 0.012 [-0.026, 0.013]

log KM 0.045 0.011 [0.026, 0.064]

log KS -0.010 0.015 [-0.035, 0.015]

log KF -0.011 0.005 [-0.020, -0.002]

log LL -0.014 0.017 [-0.042, 0.015]

log LA -0.056 0.030 [-0.105, -0.007]

log LM 0.102 0.031 [0.051, 0.152]

log LS -0.019 0.038 [-0.082, 0.044]

log LF 0.015 0.013 [-0.005, 0.036]

log AA 0.029 0.017 [0.001, 0.056]

log AM -0.081 0.029 [-0.128, -0.034]

log AS -0.009 0.037 [-0.071, 0.052]

log AF 0.030 0.012 [0.011, 0.050]

log MM 0.021 0.017 [-0.006, 0.049]

log MS -0.177 0.034 [-0.232, -0.121]

log MF 0.036 0.011 [0.017, 0.054]

log SS 0.169 0.033 [0.114, 0.223]

log SF -0.016 0.017 [-0.044, 0.012]

log FF -0.036 0.002 [-0.040, -0.033]

log y2y2 0.057 0.002 [0.053, 0.061]

log Ky2 -0.003 0.005 [-0.011, 0.006]

log Ly2 -0.029 0.013 [-0.050, -0.008]

log Ay2 -0.048 0.013 [-0.069, -0.027]

log My2 0.004 0.012 [-0.016, 0.024]

log Sy2 0.086 0.017 [0.059, 0.114]

log Fy2 -0.015 0.006 [-0.024, -0.006]

trend2 0.000 0.000 [-0.000, 0.000]

trend log K 0.000 0.001 [-0.002, 0.002]

trend log L -0.004 0.003 [-0.009, 0.000]

trend log A 0.006 0.003 [0.001, 0.011]

trend log M -0.016 0.003 [-0.021, -0.011]

trend log S 0.009 0.004 [0.003, 0.016]

trend log F 0.005 0.001 [0.003, 0.007]

trend log y2 0.002 0.001 [-0.000, 0.0004]

σv 0.136 0.002 [0.132, 0.140]

77



Table C.3: Estimates of the parameters from the dynamic model

Variable Mean Std. dev. 95% Credible Interval

intercept -0.522 0.035 [-0.583, -0.469]

log y2 0.146 0.005 [0.138, 0.154]

log K -0.021 0.005 [-0.029, -0.012]

log L -0.049 0.011 [-0.067, -0.031]

log A -0.103 0.016 [-0.129, -0.077]

log M -0.199 0.010 [-0.215, -0.182]

log S -0.279 0.017 [-0.307, -0.251]

log F -0.191 0.005 [-0.199, -0.182]

trend -0.023 0.001 [-0.025, -0.022]

east -0.023 0.026 [-0.066, 0.018]

west 0.011 0.013 [-0.011, 0.033]

north 0.056 0.013 [0.035, 0.077]

log KK 0.006 0.003 [0.001, 0.012]

log KL 0.001 0.013 [-0.020, 0.023]

log KA -0.001 0.015 [-0.025, 0.023]

log KM 0.026 0.011 [0.009, 0.044]

log KS -0.006 0.017 [-0.033, 0.021]

log KF -0.003 0.005 [-0.011, 0.006]

log LL -0.008 0.018 [-0.038, 0.023]

log LA -0.015 0.032 [-0.067, 0.038]

log LM 0.034 0.027 [-0.010, 0.078]

log LS -0.002 0.037 [-0.062, 0.059]

log LF 0.016 0.013 [-0.005, 0.037]

log AA -0.023 0.021 [-0.059, 0.012]

log AM -0.024 0.027 [-0.069, 0.020]

log AS -0.012 0.041 [-0.078, 0.055]

log AF 0.052 0.012 [0.032, 0.072]

log MM 0.017 0.014 [-0.006, 0.039]

log MS -0.133 0.032 [-0.185, -0.081]

log MF 0.021 0.010 [0.005, 0.038]

log SS 0.087 0.033 [0.033, 0.141]

log SF -0.011 0.015 [-0.037, 0.014]

log FF -0.040 0.002 [-0.044, -0.037]

log y2y2 0.034 0.002 [0.031, 0.037]
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log Ky2 -0.016 0.005 [-0.024, -0.009]

log Ly2 -0.027 0.011 [-0.045, -0.009]

log Ay2 -0.017 0.011 [-0.035, 0.001]

log My2 0.067 0.010 [0.051, 0.082]

log Sy2 0.012 0.014 [-0.012, 0.035]

log Fy2 -0.015 0.004 [-0.023, -0.008]

trend2 -0.001 0.000 [-0.001, -0.001]

trend log K -0.001 0.001 [-0.002, 0.001]

trend log L -0.006 0.002 [-0.010, -0.002]

trend log A 0.010 0.003 [0.006, 0.014]

trend log M -0.014 0.003 [-0.018, -0.010]

trend log S 0.007 0.003 [0.002, 0.013]

trend log F 0.000 0.001 [-0.001, 0.002]

trend log y2 0.005 0.001 [0.004, 0.007]

σv 0.082 0.001 [0.080, 0.084]

σξ 0.125 0.007 [0.114, 0.137]

ρ 0.940 0.005 [0.931, 0.949]

Table C.4: Determinants of efficiency in the unstructured model

Variable Mean Sd.dev. 95% Credible Interval
intercept 2.622 0.114 [2.441, 2.814]
size 0.529 0.071 [0.416, 0.649]
specialization 1.483 0.156 [1.230, 1.743]
density 1.069 0.099 [0.909, 1.234]

Table C.5: Determinants of transformed efficiency s in the dynamic efficiency model

Variable Mean Std. dev. 95% Credible Interval
intercept 0.050 0.007 [0.039, 0.062]
size 0.025 0.004 [0.019, 0.032]
specialization 0.078 0.010 [0.063, 0.094]
density 0.021 0.004 [0.015, 0.028]
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Figure C.1: Coefficient of variation for size, specialization and stock density
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dynamic inefficiency specification: the case of German dairy farms. (In Journal

of Productivity Analysis, under review).

4. I. Skevas., X. Zhu., V. Shestalova., and G. Emvalomatis. The impact of agri-

environmental policies and production intensification on the environmental per-

formance of Dutch dairy farms. (In Journal of Agricultural and Resource

Economics, under review.)

5. T. Skevas., I. Skevas., and S. Swinton. Do spatial interdependencies affect the

decision to make land available for bioenergy crops? (In Journal of Agricul-

tural Economics, under review.)

Presentations at Professional Meetings

• Paper presentation at the 146th EAAE seminar: Technology transfer as a driver

of innovative entrepreneurship in agriculture and the agri-food industry, July 14-

16, 2015, Chania, Greece. Title: Dynamic efficiency analysis under a Bayesian

framework.

• Paper presentation at the 14th European Workshop on Efficiency and Produc-

tivity Analysis, June 15-18, 2015, Helsinki, Finland. Title: Heterogeneity of

89



inefficiency persistence under a Bayesian framework.

• Poster presentation at the EAAE 2014 International Congress, August 26-29,

2014, Ljubljana, Slovenia. Title: An examination of the impact of agri-environmental

policies and intensification on the hyperbolic efficiency of Dutch dairy farms.

Teaching Experience

• Efficiency and Productivity Analysis - Stochastic Approaches. Febru-

ary 2015.

Ph.D course of the Doctoral Certificate Program in Agricultural Economics.

Georg-August-Universität Göttingen

• Microeconomics (Teaching Assistant). September 2015 - December 2015.

B.Sc. course.

University of Dundee.

• Applied Business Statistics (Teaching Assistant). January 2016 - March

2016.

M.Sc. course.

University of Dundee.

Professional Associations

European Association of Agricultural Economists (EAAE)

Agricultural Economics Society (AES)

Journal Reviewer

Agricultural Economics

References
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