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Abbreviations 

µl microlitre 

µM micromolar 

bp base pairs 

AP alkaline phosphatase 

BBCH Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie 

°C degree celsius 

cm centimeter 

CTAB hexadecyltrimethylammoniumbromid 

DNA deoxyribonucleic acid 

dNTP deoxnucleotide-5`-triptophate 

E.coli  Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

et al. et alii (lat.) 

g gram 

h hour 

mg milligram 

ml millilitre 

mm millimeter 

mM millimolar 

min minute 

ng nanogram 

PCR polymerase chain reaction 

pg picogram 

RNAse ribonuclease 

rpm revolutions per minute 

s second 
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spp. species pluralis 

TBE tris-Borate-EDTA buffer 

TE tris-EDTA buffer 

Tris tris hydroxymethyl aminomethane 

U unit 

UV ultraviolet light 

V volt 

v/v volume by volume 

% percent 
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1 Introduction  

1.1 Wheat and wheat blast 

Wheat (Triticum aestivum) is a cereal grain, originally from the Levant region of the Near 

East but now cultivated worldwide. Wheat is grown on more than 701.5 million hectares, thus 

being larger than any other crop (The Statistics Portal, 2014). In 2013, world production of 

wheat was 713 million tons, making it the third most-produced cereal (FAOSTAT, 2013). 

Wheat is the primary staple food in North Africa and the Middle East, and is growing in 

popularity in Asia. The four largest producers of wheat in 2013 were China (121.7 million 

tons), India (93.5 million tons), USA (58 million tons) and Russia (52 million tons), 

(FAOSTAT, 2013). In terms of total production used for food, it is currently second to rice as 

the main human food crop and ahead of maize, which is also extensively used in animal feed.  

Wheat blast (“brusone”) caused by Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia 

grisea (Cooke) Sacc.) is a relatively new disease on wheat (Triticum aestivum L.). After initial 

reports of its occurrence in 1985 in Northern Paraná State in Brazil, the disease has been 

found in other wheat-growing areas of Paraná and has caused severe yield losses (Igarashi et 

al., 1986). Subsequently, it has quickly spread out to a number of major wheat producing 

regions of Brazil including Sao Paulo; Mato Grosso do Sul, Goias and the Central Cerrados of 

Brazil (Piccinini & Fernandez, 1989; Goulart et al., 1990; Prabhu et al., 1992; Dos Anjos et 

al., 1996). Within a few years, the disease has spread to several neighboring countries where 

it has caused serious damage (40-100%) in wheat fields of Paraguay in 1989. In the lowlands 

of Bolivia, it was responsible for a loss of 90,000 hectares of wheat between 1997 and 2000. 

In 2007, the disease was seen in summer-sown experimental wheat trials in Chaco, Argentina, 

and although researchers in Uruguay have not observed the disease in wheat, they have found 

the fungus on barley. In 2009, an outbreak cut Brazilian wheat production by up to 30%. 

(Igarashi, 1990; Prabhu et al.1992; Goulart & Paiva, 2000; Shoharak, 2003; Viedma, 2005; 

Alberione et al., 2008). In some regions of South America, Magnaporthe grisea already leads 

to an annual yield reduction of 10-100% of wheat, especially when there are favorable 

climatic conditions to coincide with critical growth stages for infection (Talbot, 2003). 

Recently, UK soil scientist Lloyd Murdock found wheat blast on a single wheat head in 2011 

at a UK Research and Education center research plot in Princeton, which is the first known 

occurrence of wheat blast outside of South America (Pratt, 2012).  

Duveiller et al. (2010) addressed that there are some wheat-producing regions in the world 

where wheat blast has not been reported so far, but which have climatic conditions very 

similar to the regions in South America where wheat blast attack is quite frequent. There is an 

opinion that wheat blast could not become a serious problem in European countries, as the 

normal conditions of humidity and temperature in these countries are below the optimal levels 

for the development of the disease. However, with the effects of global warming, changes in 

rainfall may create environmental conditions favorable to wheat blast conducive to the spread 

of wheat blast as in other parts of the world such as South Asia or Africa. The potential spread 

of the wheat blast pathogen to those locations should be considered. The features of wheat 
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blast, a broad host range and sexual reproduction, would accelerate the speed of its 

propagation, and make it a potential threat to wheat production in the whole world. 

The typical symptom of wheat blast is the head infection, which is common and destructive in 

the field. It consists of blighting of immature spikelets. Infection of the rachis blocks the 

translocation of photosynthates to the part of the spike above the point of necrosis, resulting in 

partial or total sterility of the spike. The kernels of the affected spikelets are often shrivelled 

(Prabhu et al., 1992). The affected spikelets above the infection point exhibit a bleached straw 

color (Fig.1 c), which can be easily distinguished from normal green color of the healthy 

spikelets (Urashima & Kato, 1994). On the leaves, the symptoms of wheat blast are elliptical 

to elongate lesions with light to dark green centers and yellow borders (Fig.1 d). However, the 

occurrence of disease symptoms on the leaves or stems before the heading stage is rare. Most 

of blast disease is transmitted by seeds. The seed-transmitted rate depends on the time of 

infection in relation to heading. Early infection leads to low seed-transmission rates. 

Transmission is greater when seed infection occurs later in the grain-filling period (Cunfer et 

al., 1993). 

Magnaporthe grisea is able to attack many graminaceous plants, including economically 

important crops like barley (Hordeum vulgare L., Brett & Linda, 2002; Zellerhoff et al., 

2006), finger millet (Eleusine coracana L., Singh & Kumar, 2010), oat (Avena sativa, Oh et 

al., 2002) and is reported to be very common in perennial ryegrass in the United States 

(Carver et al., 1972).  The fungus subsequently develops different pathotypes according to the 

original host plant from which they were isolated. Therefore, each pathotype has a restricted 

host range while commonly they are virulent to their original host (Tosa et al., 2004). Viji et 

al. (2001) reported that isolates from wheat showed notable similarity to the perennial 

ryegrass (Lolium perenne L.) isolates based on Pot2 fingerprints and one wheat isolate was 

highly virulent on perennial ryegrass. The wheat isolates produced sporadic lesions on Italian 

ryegrass and perennial ryegrass and the isolates derived from perennial ryegrass showed the 

same ITS2 sequence as wheat isolates and millet isolates (Tosa et al., 2004) 

1.2 Rice and rice blast 

As a cereal grain, rice (Oryza sativa L.) is the most widely consumed staple food for a large 

part of the world population, especially in Asia. Rice represents the third most produced 

agricultural commodity, after sugarcane and maize. The world dedicated 106.1 million 

hectares for rice cultivation (The Statistics Portal, 2014) and the total production has risen 

steadily from 212 million tons in 1961 to about 745.2 million tons in 2013 (FAOSTAT, 2013). 

It is estimated that its production will increase by 40% until 2030 (Ribot, 2008). Developing 

countries account for 95% of the total rice production, with China and India alone being 

responsible for nearly half of the world output. Since a large portion of maize crops is grown 

for purposes other than human consumption, rice is the most important grain with regard to 

human nutrition and caloric intake, providing more than one fifth of the calories consumed 

worldwide by humans (Smith, 1998). 

The ascomycete fungus Magnaporthe oryzae B. Couch (anamorph: Pyricularia oryzae Cavara) 

is a pathogen on many graminaceous plants. It is one of the most serious and widespread 
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diseases of rice, due to its widespread occurrence and destructiveness under conducive 

conditions. The domestication of rice started from its wild relative Oryza rufipogon about 

7,000 years ago in the middle Yangtze valley in China (Crawfor & Shen, 1988; Higman & Lu, 

1998), and spread to the hills of the Indian Himalayas around 3,000 BP. The first report of 

blast disease, which was designated as rice fever disease, was in China in 1637, followed by a 

record as `Imochi-byo` by Tsuchiya from Japan in 1704. In Italy, a disease called `brusone` 

been considered as blast was reported by Astolfi in 1828 and by Brugnateli in 1838. In 1960, 

Metcalf in the USA named it as `blast`. In 1968, rice blast (Magnaporthe oryzae) has been 

recorded in more than 80 countries worldwide by the Commonwealth Mycological Institute.  

This disease destroys rice crops to a great extent, particularly in temperate, flooded and 

tropical upland ecosystems (Ou, 1985). From the year of 1900 to 1960, publications document 

the outbreak of rice blast besides in Asia also in Australia, the Middle East (Iraq), Madagascar, 

Southern Europe (Portugal and Spain), as well as in Africa (Morocco, Uganda, Senegal and 

South Africa) and in the Americas (Costa Rica, Argentina and Brazil) (Parthasarathy & Ou, 

1965). Surveys confirmed that blast remains among the most serious constraints to yield in 

South Asia (Widawsky & O`Toole, 1990; Geddes & Iles, 1991). In Japan, blast causes annual 

yield losses corresponding to 275,000 tons of rice (25% of production) and requires the 

extensive use of fungicides (1.8 million euros in 2000, Ribot, 2008). In Brazil, the records 

reveal about 60% damage in upland rice crops (Prabhu et al., 2003). In recent years, rice blast 

epidemics have occurred in China (5.7 million hectares of rice were destroyed from 2001 to 

2005), Korea, Japan, Vietnam and the United States (Richard & Nicholas, 2009). The region 

of Indian Himalayas forms a heterogeneous mountainous area where rice production takes 

place by different cultivation systems, including intercropping with millets. Compared to 

other regions (Americas and Europe), the Indian Himalayas show the highest diversity in 

population structure of Magnaporthe oryzae host-specific on rice (Kumar et al., 1999).  

The rice blast fungus attacks rice plants at all stages of development and may infect all parts 

of the rice plant: leaf, collar, node, neck, stems, peduncles, panicles, seeds, and even roots.  

The most common and diagnostic symptoms of rice blast occurs on the leaves. The symptoms 

on leaves may vary according to the environmental conditions, the age of the plant, and the 

levels of resistance of the host cultivars. On susceptible cultivars, initial symptoms may 

appear as white to gray-green lesions or spots with dark green borders on all parts of the shoot, 

while older lesions on the leaves are elliptical or spindle-shaped and whitish to gray centers 

with red to brownish or necrotic border (Fig.1 e). Some resemble diamond shape, wide in the 

center and pointed toward either end. Lesions can enlarge and coalesce, growing together, to 

kill the entire leaves. On resistant cultivars, lesions often remain small in size (1-2 mm) and 

brown to dark brown in color. Rice can have blast in all growth stages. However, leaf blast 

incidence tends to lessen as plants mature and develop adult plant resistance to the disease.  

Symptoms of infection of the collars consist of a general area of necrosis at the union of the 

two tissues. Collar infections can kill the entire leaf and may extend a few millimeters into 

and around the sheath. The fungus may produce spores on these lesions (APS, 2012). Node 

and neck blast commonly occur together and have similar symptoms. Node infection occurs 

in a banded pattern. Lesions on the node are blackish to grayish brown. Infected nodes can 
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cause the culm or the part of the plant that holds the panicle to break. Lesions on the neck are 

grayish brown and can cause girdling, making the neck and the panicle fall over. If infection 

of the neck occurs before milky stage no grain is formed, whereas infection at later stages, 

leads to poor quality grains. After the flowering stage, the fungus can also infect the panicles 

as the seeds form. Lesions can be found on the panicle branches, spikes, and spikelets. The 

lesions are often gray brown discolorations of the branches of the panicle, and over time the 

branches may break at the lesion (IRRI, 2014). The fungus has often been isolated from the 

pedicels of the seeds. Seeds are not produced when pedicels become infected, a condition 

called blanking. Symptoms of rice blast on leaves themselves consist of brown spots, blotches, 

and occasionally the diamond-shaped lesions are often seen. The process and the time during 

which infection of seeds by spores of the pathogen occurs has not been fully described but 

recent information shows that the fungus can infect seeds by infecting the florets as they 

mature into seeds, and it is believed that this is the main way seed infection develops (APS, 

2012).   

Due to the distribution of rice around the world, the pathogen was adapted to other hosts. It 

has been found that M. oryzae can infect and survive in/on more than fifty species of grasses, 

many of which are of agricultural importance (Ou, 1985), such as barley (Zellerhoff et al., 

2006), Italian ryegrass and corn (Prabhu et al., 1992) and millet. But no infection to perennial 

ryegrass, results for copy numbers, fingerprints of Pot2 and MGR586 and ITS region 

sequencing indicate that rice isolates are genetically distinct from the isolates derived from 

perennial ryegrass (Lolium perenne) and none of the isolates from rice caused the disease on 

perennial ryegrass, and vice versa (Viji et al., 2001). And Barbara V. (2013) demonstrated 

that rice isolates are genetically distinct from wheat isolates and unlikely to cross over to 

infect wheat in the field. 
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Figure 1 Conidia and colony of Magnaporthe spp. and infected plant tissues. (a) Conidia and 

mycelia of Magnaporthe spp.; (b) Colony on an agar plate with fleecy grayish appearance; (c) 

Bleached wheat ears with straw color, the kernels are often shrivelled; (d) Elliptical lesions 

with yellow margin on the leaf of wheat seedlings; (e) Elliptical or spindle-shaped and whitish 

to gray centers with red to brownish or necrotic border on the leaf of rice seedlings. 

1.3 Taxonomy and relationship of Magnaporthe grisea and Magnaporthe oryzae 

It is now widely accepted, that the taxon Magnaporthe oryzae refers to the isolates of the 

pathogen from cultivated cereals including rice, while Magnaporthe grisea represents isolates 

from the members of the genus Digitaria (Chuma et al., 2009). Based on morphological 

observations, Rossmann et al. (1990) demonstrated that M. grisea and M.oryzae are 

morphologically not distinguishable and that their isolates are interfertile. Pyricularia grisea 

was suggested as the correct name for the pathogen. However, Kato et al. (2000) confirmed 

that isolates from crabgrass (Digitaria sanguinalis) are genetically distinct from those of rice, 

finger millet (Eleusine coracana) and other crop species. In the description of the anamorph, 

two form-species names have been applied in Magnaporthe. Pyricularia oryzae Cavara was 

described from rice and P. grisea (Cooke) Saccardo was described from grasses and cereals. 

Pyricularia oryzae was distinguished from P. grisea based on its sparse, usually nonseptate 

hyphae and larger, biseptate conidia (Brett & Linda, 2002). The use of the names P. grisea 

and P. oryzae has generally reflected the host from which the fungus was isolated rather than 

any morphological differences, with the name P. oryzae applied to isolates from rice and P. 

grisea to isolates from cereals and other grasses (Sprague, 1950).  



Introduction 

 8 

Although the two blast pathogens from wheat and rice have very similar characteristics, the 

knowledge about wheat blast compared to rice blast is still very limited, especially its genetic 

and epidemiological aspects. The relationship between the blast of wheat and rice has always 

generated questions about the origin of the first, considering wheat blast as a disease of 

relatively recent occurrence. Initially, rice blast was considered as the source of wheat blast. 

However, genetic studies have found significant differences among isolates from the two 

plant species and confirmed that the wheat pathogen Magnaporthe grisea found in Brazil has 

not originated from rice (Urashima et al., 2005; Valent & Chumley, 1994) and differs to a 

large extent from the rice pathogen, Magnaporthe oryzae (Couch & Kohn, 2002). Using 

microsatellite markers, Ceresini et al. (2011), compared sympatric populations of Magaporthe 

spp. adapted to either wheat and rice in Brazil and revealed that there was very low historical 

migration between the two different populations. Reports from fingerprints with repetitive 

DNA elements also showed the same results (George et al., 1998; Urashima, 1999). Dobinson 

& Hamer (1993) addressed repetitive DNA called MGR586 and MGR583 common in the 

genome of the rice pathotype, where they are found in a more frequent number than in isolates 

of wheat and other grasses. It is concluded that the wheat pathotype is not a  descendent of the 

rice pathotype. Urashima (1993) tested the host range, mating type and fertility of wheat 

isolates in Brazil and found that the wheat isolates are distinguishable from the rice isolate or 

other host-specific pathotypes but similar to the Eleusine isolate. Urashima et al. (2004a) has 

confirmed that the fungus Magnaporthe grisea, adapted to wheat, probably originated from a 

strain on Digitaria insularis. 

1.4 Epidemiology and life cycle of Magnaporthe spp. 

1.4.1 Epidemiology 

1.4.1.1 Wheat blast 

Limited data are available on the environmental determinants for optimal wheat blast 

(Magnaporthe grisea) infection. Based on previous observations, it is known that the intensity 

of damage caused by wheat blast has been directly proportional to the level of rainfall during 

the heading stage of wheat. Brazil has suffered one of the most serious epidemics of wheat 

blast in 2009 when there was a period of high precipitation during the heading stage (Maciel, 

2011). Cardoso et al. (2008) developed a warning system model to predict the intensity of 

wheat blast based on temperature and the duration of wheat spike wetness. The investigation 

was carried out at a temperature range of 10-35˚C and duration of spike wetness of 0-40 hours. 

It is concluded that wheat blast intensity could exceed 85% at 25˚C and 40 h wettness period. 

Alves and Fernandes (2006) revealed that production of conidia by Magnaporthe grisea was 

favored by high relative humidity (≥ 90%) and temperatures around 28˚C. 

1.4.1.2 Rice blast 

The vastness of the outbreaks of the blast disease differs according to environmental 

conditions. Long periods of leaf wetness, high humidity, moderate temperatures between 17-

23˚C during the night, low solar radiation as well as overcast skies, high moisture and little or 

no wind at night are some of the environmental factors favoring blast disease (Bonman, 1992; 

Maciel, 2011). Severe epidemics of blast in rice cultivation are generally associated with wet 
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weather. Frequent and long periods of rain are more prone to cause infection than short 

periods of heavy rain. All the vital processes of the disease cycle require free water and night 

time dew provides it. The longer the dew remains on the leaves, the more lesions are 

produced. In the tropics, the temperature is always optimal at night, and the disease is 

practically determined by the presence and duration of dew (Ou, 1980). There are five broad 

categories of rice production environments: irrigated, rain-fed lowland, upland, deep-water 

and tidal wetland (Khush, 1984). Upland environment is the most affected by the disease with 

a large production of dew on the leaf surface. Bonman (1992) and Ou (1980) demonstrated 

that blast severity depends largely on the cropping system adopted in rice fields. In the tropics, 

lowland rice fields flooded with water have shorter dew periods than upland fields. This is 

because the sun heats the water in the field to 42˚C. During the night, the warm water releases 

the absorbed heat slowly, delaying dew formation; the closer to the water surface, the shorter 

the dew period. Besides, protein and sugar contents are also higher in upland than in lowland 

rice.  

Important processes in the disease cycle include spore release, spore germination, infection 

and spore production. Spores are produced and released under high relative humidity (RH) 

conditions, with no spore production below 89% RH. The temperature for spore germination, 

lesion formation and sporulation is 23 to 30˚C, and the minimum of leaf wetness is 4 h. In 

water, conidial germination may occur within 3 h.  Based on previous studies, the optimal 

conditions for blast conidial germination were 92 to 96% relative humidity, temperatures of 

25 to 28˚C and leaf wetness of 7 to 14 h. Under optimal conditions, conidiophores and the 

first conidia were produced 4 to 6 h after dew formation and the conidia were released shortly 

thereafter (Greer & Webster, 2001). 

1.4.2 Life cycle  

The plant pathogenic fungus Magnaporthe is a genus of the ascomycetes, the class of 

Sordariomycetes and the family of Magnaporthaceae. There are five species in the widespread 

genus of Magnaporthe (Kirk, 2008), where Magnaporthe grisea (Hebert) Barr (anamorph 

Pyricularia grisea (Cooke) Sacc.) and Magnaporthe oryzae B. Couch (anamorph Pyricularia 

oryzae Cavara) are the two species studied in the present work. 

1.4.2.1 Life cycle of wheat blast  

The life cycle of blast is well studied on rice isolates (Valent and Khang, 2010; Wang and 

Valent, 2009; Wilson and Talbot, 2009), but it appears wheat isolates also shared the same 

disease cycle (Tufan et al., 2009). Disease cycle begins when a blast spore infects and 

produces a lesion on wheat plant and ends when the fungus sporulates and disperses many 

new airborne spores to nearby healthy plant tissues or other plants.  

Magnaporthe spp. are extremely effective plant pathogens as they can reproduce both 

sexually and asexually to produce specialized infectious structures. The life cycly of 

Magnaporthe spp. undergo sexual and asexual reproduction is shown in Fig. 2 (Dean et al., 

2005). 
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Figure 2 Life cycle of Magnaporthe spp. including sexual and asexual reproduction and 

infection cycle (Dean et al., 2005). Infection cycle consists of germination of asexual spores 

(conidia), formation of appressorium and penetration, host colonization with hyphae and 

sporulation of new conidia. In sexual reproduction, ascospores (asci) develop in perithecia 

after fusion of two opposite mating types. Once released, ascopores can develop appressoria 

and infect host cells. 

Wheat blast isolates show high levels of sexual fertility, functioning as hermaphrodites and 

crossing to produce abundant viable ascospores (Urashima et al., 1993). Sexual reproduction 

of the ascomycete fungi requires two different compatible mating types, at least one of which 

is female-fertile. The sexual or teleomorph stage of the blast pathogen can be produced in 

vitro undergo sexual crosses if isolates of opposite mating types are paired, but this occurs 

rarely in the field on any host (Yaegashi & Udagawa, 1978). This level of fertility in the 

laboratory raises the possibility that the wheat blast may undergo sexual recombination in the 

field, which is in contrast to the infertility of most rice isolates (Bruno & Urashima, 2001). 

Fully fertile isolates are self-sterile hermaphrodites (functioning both as females and males), 

with compatibility for mating governed by alternate alleles of the mating type locus MAT1. 

Two additional spore forms, ascospores and microconidia, are produced by sexually fertile 

isolates (Barbara V., 2013). Ascospores belong to the diagnostic pyriform condia and are 

produced in unordered asci within perithecia with long necks in the characters of hyaline and 

fusiform (spindle-shaped with tapering ends) with three septae and a single mitotically-derived 

nucleus. Perithecia produce asci within 2 to 3 weeks when strains of opposite mating type are 

incubated on oatmeal agar in the light at 20°C. Mature asci are extruded through the 

perithecial necks and ascospores are released into a viscous liquid (Yaegashi & Udagawa, 

1978). So water is required for release of conidia from conidiophores to reinitiate the disease 

cycle. Ascospores produce appressoria for plant penetration. The melanin layer in the 

appressorium is essential to build-up the very high pressure required to puncture the outer plant 

surface and gain access to host tissue. Pressure build-up requires immersion of the appressorium 
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in water, explaining in part the requirement for extended periods of rain or dew for this disease 

(Barbara V., 2013). Sexually fertile isolates also produce small, crescent-shaped microconidia, 

6 micrometers in length and 0.7 micrometers in width, which are hypothesized to function as 

spermatia. Microconidia are produced from phialides, and conditions under which they 

germinate are not known (Chuma et al., 2009).  

All nuclei in a conidium are derived through mitosis from a single nucleus, and consequently, a 

fungal strain can be purified by isolation of a single spore. In greenhouse, the fungus could 

sporulates from dead or dying coleoptiles of plants grown from infected seeds, while in the 

field, infested seeds left on the soil surface can readily produce spores for more than several 

weeks after planting. 

1.4.2.2 Life cycle of rice blast 

The overwintering sources of spores that comprise the primary inoculum consist of host seed, 

crop residue and secondary hosts (Greer & Webster, 2001). A single cycle can be completed 

in about a week under favorable conditions. In addition, a single lesion can generate hundreds 

to thousands of spores in one night with the ability to continue to produce the spores for over 

twenty days. Under favorable moisture and temperature conditions, the fungus can go through 

many disease cycles and produce a tremendous load of spores by the end of the season. This 

high inoculum level can be devastating to susceptible crops. The number of cycles and the 

number of spores that are produced on each individual lesion can be influenced by many 

factors, including the temperature, rainfall, the depth of the water in the paddy, the amount of 

nitrogen used to fertilize the rice, and the level of genetic resistance in the cultivar that is 

infected (TeBeest et al., 2007).  

Magnaporthe oryzae, an Ascomycete causing blast disease on rice, reproduces mostly 

asexually in nature. Sexual reproduction is possible in vitro and requires two strains of 

opposite mating types. The asexual reproduction is initiated by the attachment of asexual 

spores (conidia, Fig.1 a) disseminated by wind or splashed raindrops on infected plant organs. 

Spore release is regulated separately from production of conidia on conidiophores. The 

release of conidia is triggered by a one- to two- hour exposure to darkness and decreases with 

continued darkness (Daniel J.E., 2007). Ingold C.T. (1964) suggested that the small stalk cell 

formed at the base of the conidium builds turgor pressure until it ruptures, thereby launching 

the conidium, but this has not been confirmed by photos. 

A single polarized germ tube emerges from the spore, normally from its tapering end, and 

grows across the leaf surface before differentiating into the dome-shaped appressorium which 

is apparent on the epidermis (Veneault-Fourrey et al., 2006). On the leaf surface, the fungus 

may also respond to cutin monomers, ascis-9, 10-epoxy-18-hydroxyoctadecanoic acid or lipid 

monomers, which are effective inducers of appressorium development (Talbot, 2003). 

Formation of appressoria requires a hard, hydrophobic surface and can be induced in the 

laboratory using hydrophobic plastic surfaces, such as polytetrafluoroethylene (Richard & 

Nicholas, 2009). Hours after development, the swollen appressorium is melanized, caused by 

an impermeable layer in between the cell wall containing melanin which is derived from a 

polyketide precursor. This characteristic enables the glycerol filled appressorium to develop a 

turgor pressure up to 8.0 MPa. The highly concentrated glycerol is responsible for the 
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formation of a penetration peg, which ruptures through the leaf cuticle by mechanical force, 

allowing invasion of the underlying leaf tissue (de Jong et al., 1997; Talbot, 2003). 

Germination and penetration may be accomplished in 7-8 hours.  

After penetration, the fungus forms specialized biotrophic invasive hyphae that successively 

colonize living rice cells without visible symptoms for the first 4 days (Valent and Khang, 2010). 

Subsequent invasion of hyphae results in a biotrophic and a necrotrophic phase, indicating 

Magnaporthe to be a hemibiotrophic pathogen. During the biotrophic phase at the early stages 

of infection, primary hyphae differentiate to bulbous intracellular invasive hyphae that fill up 

the plant cell lumen and directly contact the membrane of the infected cell. Colonization of 

host tissues by the fungus occurs through the perforation of cell walls from adjacent cells 

without causing cell death, likely using plasmodesmata as penetration points, or through 

hyphal growth in the apoplast. After a few days of biotrophic growth within plant tissues, the 

fungus switches to the necrotrophic phase, during which it colonizes the plants by degrading 

the cell wall at a later period of invasion (Heath et al., 1990; Ribot, 2008). Nevertheless, 

depending on the Magnaporthe strain, the severity of disease induced in the invaded host 

plants may differ. 

The colonization spreads with fungal hyphae rapidly growing and ramifying within and 

between cells in the plant tissue, resulting in visible lesions that are symptomatic of blast 

disease after 5 to 7 days. Aerial conidiophores produce a sympodial arrangement of conidia 

from disease lesions under conditions of high humidity, allowing the disease to spread to 

adjacent plants and initiate a new cycle (Ou, 1985; Talbot, 2003).  

The peak of spore release occurs at midnight, allowing the spores to disseminate while 

humidity is high and dew is forming. Rain splash and strong wind also lead to dispersal at 

other times during the day. Conidia are coated with a rodlet layer of hydrophobin making 

them hydrophobic such that spores are not easily wetted and thus do not readily fall to the 

ground with the water droplets. Rather, they are launched into the air by the force of rain 

dropping on the leaf surface (Ebbole, 2007). 

Under favorable conditions, the fungus sporulates in the center of the lesions on infected plant 

tissues. The spores, called conidia, are produced abundantly on the tips of denticulate 

conidiophores that extend beyond lesion surfaces. A conidiophore may bear twenty or more 

conidia, and a typical leaf lesion produces 4,000-6,000 conidia every night (Ou, 1980). 

Conidia are produced after several hours of high humidity and are easily released or liberated 

near mid-day, especially under windy conditions. Most conidia travel only one or two meters 

from their source before landing on the plant (TeBeest et al., 2007).  

The teardrop-shaped and three-celled conidium sticks to the plant organ of its host plant by 

means of special adhesive released from an apical compartment in the tip of each spore during 

hydration. This adhesive provides the spore with a way to anchor itself tightly to the 

hydrophobic rice surface and allows germination to start (Hamer et al., 1988). 
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1.5 Management of blast on wheat and rice 

1.5.1 Management of wheat blast 

The control of wheat blast requires the integration of a series of measures. In general, these 

tools mentioned in integrated management of wheat crop disease are similar to these 

recommended below to control rice blast, such as early sowing, avoidance of irrigation in the 

early morning and evening, deep plowing and eliminating alternative hosts like grass weeds 

(Pannwitt, 2012). The following management measures are described in detail for the wheat- 

Magnaporthe grisea pathosystem.  

The first is the use of healthy seeds. Reis et al. (1995) have verified that the pathogen from 

wheat has high efficiency in transmission by wheat seeds, besides the ability to remain viable 

on seeds up to 22 months. Hence, the use of healthy seeds or seeds treated with fungicides 

could also be seen as an important measure to restrict the initial establishment of wheat blast 

in the field.  

The second point is that the wide host range on cereal crops of wheat blast greatly limits the 

implementation of a crop rotation strategy to control the disease.  

As most of the wheat cultivars demonstrate high susceptibility to blast, the use of fungicides 

to protect the spikes becomes one of the main alternatives for wheat growers, especially in 

regions with historical occurrence of the disease. However, there are only few active 

ingredients registered for chemical control of blast on wheat spikes. In Brazil, wheat 

producers use fungicides to protect their crop during the heading stage, with an effect of 

maximum 50% protection (Igarashi, 1990). Etienne Duveiller, wheat pathologist and associate 

director of CIMMYT`s global wheat program, also mentioned that there are places where 

farmers are using four fungicide applications with no results, which suggests that current 

chemicals are not effective against the fungus, or are not properly applied (Corporate 

Communications, 2010).  

The most desired and cost effective tool for controlling wheat blast is resistant cultivars. 

Preliminary results from CIMMYT international nurseries (2004) in Brazil suggest that 

several genotypes may have some level of blast tolerance. Yet, since the ascomycete fungus 

has a high genetic variability, major resistance genes are broken easily. Cultivars such as 

BR18, IPR 85 and CD113 moderate levels of resistance, while Milan, the cultivar from the 

CIMMYT line, reveals a high level of resistance (Kohli et al., 2010). It is more difficult to 

screen or breed resistant cultivars for wheat than rice. Urashima and Kato (1994) have 

analyzed the response of forty-three wheat cultivars from Brazil, Japan, United States, and 

Bulgaria, added to seven species of Triticum and eighteen lines of Aegilops under greenhouse 

conditions. All cultivars showed susceptible reactions except two lines from Aegilops that 

presented some promising results. This similar varietal resistance has also been reported in 

2004 by Urashima et al., when twenty wheat (Triticum aestivum) cultivars were inoculated 

with seventy-two monoconidial isolates of Magnaporthe grisea obtained from the States of 

Mato Grosso do Sul and Paraná. None of the wheat cultivars were resistant to all isolates of M. 

grisea, and the cultivar BR18 was suggested to have a broad resistance in relation to the rest 

of the tested cultivars to the isolates of M. grisea in the States of Mato Grosso do Sul and 
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Paraná. BR18 seems to carry a combination of several major genes for resistance reflected in 

the best RSR. However, the resistance of this cultivar in our experiment showed differential 

resistance to seventy Magnaporthe isolates. Approximately 35% of wheat isolates showed a 

strong pathogenicity to BR 18, and more than 80% of the leaf area had symptoms, but 45% of 

isolates induced less than 50% of lesions on the leaves. The mutation and parasexuality (Ou, 

1980; Zeigler et al., 1997; Zeigler, 1998) would explain why some cultivars resistant in the 

previous studies, BH1146, BR11, CNT8 (Igarashi et al, 1986; Barros et al., 1989; Goulart & 

Paiva, 1992; Goulart & Paiva, 1993) were not resistant in the present work. It is important to 

continue looking for new sources of resistance to blast and study the factors associated with 

this trait such as checking for new avirulence genes from the pathogen and selecting the 

resistance genes which are most effective. Maciel (2011) mentioned that there is an initiative 

to control wheat blast by transformation of wheat plants with major resistance genes for rice 

blast, which are associated with complete resistance, as well as gene pyramiding. 

1.5.2 Management of rice blast 

In order to most effectively control infection by rice blast, an integrated management should 

be implemented to avoid overuse of a single control method and fight against genetic 

resistance. The main cultural practices used to control rice blast in upland environments are 

the following: good soil preparation with deep plowing, uniformity in planting, seeding at the 

appropriate time which means sowing seeds early after the onset of the rainy season, 

management of the amount of water supplied to the crops limits spore mobility thus 

dampening the opportunity for infection, practice of recommended plant-spacing and timely 

weed management, restricted use of nitrogen topdressing and application of balanced doses of 

other fertilizers (IRRI, 2014). More details are described below. 

Elimination of crop residues could reduce the occurrence of overwintering and discourage 

inoculation in subsequent seasons. If possible, diseased straw and stubble should be destroyed 

by burning. This is an important control measure, but will not provide complete control by 

itself. Burning diseased crop residues will reduce overwintering inoculum in a given field and 

region, but will not protect the field from other inoculum sources.  

Silicon fertilizers (e.g., calcium silicate) can be applied to soils that are silicon deficient to 

reduce blast. However, because of its high cost, silicon should be applied efficiently. Cheap 

sources of silicon, such as straw of rice genotypes with high silicon content, can be an 

alternative. Care should be taken to ensure that the straw is free from blast as the fungus can 

survive on rice straw and the use of infected straw as a silicon source can spread the disease 

further.  

Crop rotation is one simple and effective technique that is highly recommended simply 

because it provides a mechanism that separates viable spores in crop residues from the newly 

emerging seedlings.  

Use of high quality healthy seeds is important. Infected seeds left on the soil surface provide 

inoculum from which epidemics develop and transmission of infected seeds by 

intercontinental trade or distribution of rice varieties from the breeder to the farmer could be 

the reason for the introduction of rice blast to different continents.  
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Applications for blast control techniques in irrigated environments are very similar to those of 

the upland. The main differences are related to the proper management of irrigation itself. 

Continuous flooding is recommended to limit blast development. Field drainage, especially 

for extended periods, should be avoided. Since it allows the formation of nitrate and may 

cause drought stress. Since shallow water favors the disease more than deep water, moderate 

water (4-5 inches) and deep water (6-8 inches) are suggested for early and late season, 

respectively (Scardaci, 1997).  

Pathogenicity is often used for screening and breeding of resistant cultivars. DNA fingerprint 

groups specific to a particular geographical region were also obtained by Sharma et al. (2002) 

in the pathotype analyses of Magnaporthe grisea populations from the north-western 

Himalayan region of India. A pathogen population consisting of 119 isolates from the north-

western Himalayan region has been classified into fifty-two pathotypes on the basis of disease 

reaction in the international differential rice lines. The lowest frequency of virulence was 

recorded on the rice line Tadukan (Pi−ta and/or Pi−ta
2
) and BL-1(Pi−b and Pi−sh), while it 

was highest on Caloro (Pi−k
s
) followed by NP125 (Pi−? and K-60 (Pi−k

p
). Rice line Tetep 

(Pi−k
h
+?) was highly effective in the north-western Himalayan region since none of the 

isolate could infect this line. Nevertheless, virulence rarely occurred on Fukunishiki (Pi−z
s
). 

These blast resistant rice lines can be used in resistance breeding for the effective 

management of rice blast in this region of India.  

However, in spite of the development of resistant cultivars being a cheap alternative for the 

farmer with low environmental impact, management of rice blast in existing resistant cultivars 

does not have a successful long-term strategy. Evolution of the pathogen results in the 

emergence of new virulent isolates, which make those resistant cultivars carrying resistance 

genes without specificity against the new types susceptible to blast. Resistant rice cultivars 

lose their effectiveness after 2 to 3 years of widespread use in commercial production (Ou, 

1980). This is a common event in rice cultivars and depends largely on how much the newly 

released resistant cultivars are adopted by farmers and come to occupy major proportions of 

areas of a given region, state or country. Zhu et al. (2000) suggested to plant a mixture of 

resistant and susceptible varieties of rice in the field by the use of crop heterogeneity. This 

practice leads to greater yield than fields planted in monoculture in Yunnan Province, China. 

This kind of rice cultivation seems to be very efficient in avoiding breaking resistances of rice 

cultivars by rice blast.  

The use of chemical fungicides to control the disease has long been viewed as a last resort for 

rice blast. There are two basic techniques that can be used to manage diseases with the 

chemical fungicide strategy. The first one is seed treatment to prevent infection of seedlings 

after germination. The second is using fungicides to prevent infection in leaves and panicles 

during the growing season by making one or two applications of fungicides to the foliage to 

protect the panicles when they are emerging from the boot. This technique attempts to reduce 

the incidence of rice blast on the panicle necks and panicles. Systemic fungicides like 

triazoles and strobilurins can be used judiciously to control blast. The melanin layer in the 

appressorium is essential to build-up the very high pressure required to puncture the outer plant 

surface. This accounts for the special class of fungicides, the melanin biosynthesis inhibitors 

(tricyclazole, pyroquilon, phthalide, and carpropamid), which are specific for controlling rice blast 
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disease (Barbara V., 2013). In Brazil, the most-used fungicide for spraying the aerial parts of 

the plant is tricyclazole, which has performed reasonably well in controlling rice blast, but has 

no effect on other rice diseases (Maciel, 2011). 

1.6 Objectives of the studies 

The overall aim of this thesis was to study the optimum conditions for the development of 

wheat blast under controlled conditions and distinguish Magnaporthe spp. from wheat and 

rice. The specific objectives are the following: 

 Identification of the optimal conditions for wheat blast infection. The culture conditions 

of Magnaporthe spp. in vitro were firstly tested and then the optimal conditions for the 

development of Magnaporthe grisea on wheat ears were found out in the climate 

chamber. 

 Blast isolates from wheat and rice are considered as different taxonomic groups, therefore 

pathogenicity distinction was performed with isolates from both hosts. The disease 

phenotype of Magnaporthe spp. on wheat and rice leaves was recorded in the climate 

chamber. 

 Development of molecular markers to distinguish different groups among Magnaporthe 

spp. The genotypic differentiation was analyzed with AFLP and MLST. Establishment of 

a precise disease assessment (quantitative real-time PCR) for specific detection of 

Magnaporthe spp. biomass on inoculated leaf samples.  

 Observation of leaf infection processes by fluorescence microscopy and confocal laser 

scanning microscopy (CLSM). 

 Study of the impact of phytotoxin of Magnaporthe spp. on wheat and rice leaves. 
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2 Materials and methods 

2.1 Chemicals 

Agar  AppliChem, Darmstadt, Germany 

Agarose  AppliChem, Darmstadt, Germany 

Ammonium nitrate (NH4NO3)  SIGMA-Aldrich, Saint Louis, USA 

Ammonium tartrate ((NH4)2C4H4O6)  SIGMA-Aldrich, Saint Louis, USA 

ATP (100mM) Thermo Scientific, Schwerte, Germany 

Calcium chloride (CaCl2.2H2O)     SIGMA-Aldrich, Saint Louis, USA 

Calcium carbonate (CaCO3) Merk, Darmstadt, Germany 

Chloroform  Applichem, Darmstadt, Germany 

DNA Loading Dye (6 ×) Fermentas, St. Leon-Rot, Germany 

dNTPs (10mM) Fermentas, St. Leon-Rot, Germany 

Dream Taq-buffer (10x)   Fermentas, St. Leon-Rot, Germany 

EDTA AppliChem, Darmstadt, Germany 

Ethanol AppliChem, Darmstadt, Germany 

Ethidium bromide AppliChem, Darmstadt, Germany 

FastAP (1U/μl) Thermo Scientific, Schwerte, Germany 

FastDigest BanmHI (10x) Thermo Scientific, Schwerte, Germany 

FastDigest PstI (10x) Thermo Scientific, Schwerte, Germany 

FastDigest Smal (10x) Thermo Scientific, Schwerte, Germany 

FastDigest SmaI Buffer (10x) 
Thermo Scientific, Schwerte, Germany 

Glycerol  Roth, Karlsruhe, Germany 

GeneRuler™ 100 bp Plus DNA Ladder Fermentas, St. Leon-Rot, Germany 

Isoamyl Merk, Darmstadt, Germany 

Lambda DNA Standard (300ng/μl) Fermentas, St. Leon-Rot, Germany 

Magnesium chloride (MgCl2)  Fermentas, St. Leon-Rot, Germany  
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β-Mercaptoethanol AppliChem, Darmstadt, Germany 

PCR-buffer (10x) Bioline, Luckenwalde, Germany  

PEG 4000 (50%) Thermo Scientific, Schwerte, Germany 

Pfu Buffer (10x) with MgSO4 (25mM) Thermo Scientific, Schwerte, Germany 

Pfu DNA Polymerase (2.5U/μl) Thermo Scientific, Schwerte, Germany 

Phenol AppliChem, Darmstadt, Germany 

Potassium phosphate monobasic (KH2PO4)   Merk, Darmstadt, Germany 

Proteinase K Analytik Jena, Jena, Germany 

Restriction enzyme EcoRI (10U) Thermo Scientific, Schwerte, Germany 

Restriction enzyme MseI (TruI, 10U) Thermo Scientific, Schwerte, Germany 

RNAse A  (10mg/ml) Applichem, Darmstadt, Germany 

Sodium chloride (NaCl)  Merk, Darmstadt, Germany  

Sodium dodecyl sulfate (SDS)  AppliChem, Darmstadt, Germany 

Streptomycin sulphate  Duchefa Biocheme, Harrlern, Netherlands 

Sucrose AppliChem, Darmstadt, Germany  

SureClean™ Plus Bioline, Luckenwalde, Germany  

SYBR Green I (1:1000) Invitrogen, Karlsruhe, Haarlem, Germany 

T4 DNA ligase (5 U/μl) Thermo Scientific, Schwerte, Germany 

T4 DNA ligase buffer (10x) with ATP (0.5mM) Thermo Scientific, Schwerte, Germany 

T4 Polynucleotide Kinase (10U/μl) Thermo Scientific, Schwerte, Germany 

Tango buffer (10x) Thermo Scientific, Schwerte, Germany 

Taq DNA Polymerase (BioTAQ™) (5U/μl) Thermo Scientific, Schwerte, Germany 

TBE buffer AppliChem, Darmstadt, Germany 

TE buffer AppliChem, Darmstadt, Germany 

Tris (pH 8) Merk, Darmstadt, Germany 

Tween 20 NeoLab Migge, Heidelberg, Germany 

Vegetable juice Granini, Nieder-Olm, Germany 
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Yeast extract Roth, Karlsruhe, Germany 

 

2.2 Media and buffers 

Media and buffers were autoclaved at 121°C, 103.4 kPa pressures for 20 min. 

 

V8 agar medium 

Vegetable juice 100ml 

CaCO3 2g 

Agar 15g 

Distilled water 900ml 

Streptomycin sulfate (after autoclaving, Duchefa Biochemi) 200mg 

 

Complete medium agar (CM)  

Yeast extract 3g 

Casamino acid 3g 

Sucrose 5g 

Agar 15g 

Distilled water 1L 

Streptomycin sulfate (after autoclaving) 200mg 

 

OA medium 

Oat flour 20g 

Sucrose 2g 

Agar 15g 

Distilled water 1L 

Streptomycin sulfate (after autoclaving) 200mg 

 

PDA 

PDA extract (Potato Glucose Agar) 39g 

Distilled water 1L 

 

Liquid Fries Complete medium 

Sucrose 30 g   

Ammonium tartrate (NH
-4

 Tartrate) 5 g       

Ammonium nitrate (NH4NO3) 1 g         

Potassium phosphate KH2PO4                                        1 g          

Magnesium sulfate (MgSO4.7H2O)           0.5 g  

Sodium chloride (NaCl)                                              0.1 g         

Calcium chloride (CaCl2.2H2O)                               0.13 g        

Yeast extract                                                                  1 g            

FeSO4.7H2O                                                               0.02g          

Distilled water 1 L 

Streptomycin sulfate (after autoclaving) 200mg 
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SOC medium 

Tryptone 20 g   

Yeast extract 5 g       

NaCl 0.5 g         

KCl (250mmol/L) 10 ml          

Distilled water 1 L 

Glucose (1M) (after autoclaving) 20 ml  

MgCl2.6H2O (2mol/L) (before using) 5 ml        

  

 

MacConkeyAP medium 

MacConkey 54 g   

Distilled water 1 L 

Ampicillin (100mg/ml) (after autoclaving) 1 ml 

 

LBAP medium 

Tryptone 10 g   

Yeast extract 5 g       

NaCl 10 g         

Agar 15 g 

Distilled water 1 L 

Ampicillin (100mg/ml) (after autoclaving) 1 ml 

 

Terrific brothAP medium 

Tryptone 12 g   

Yeast extract 24 g       

Glycerol  4 ml 

Distilled water 1 L 

KH2PO4(0.17M)+K2HPO4(0.72M) (after autoclaving) 100 ml 

Ampicillin (100mg/ml) (after autoclaving) 1 ml 

 

CTAB buffer 

CTAB (1%) 10g 

NaCl (0.7M) 40g 

Tris/HCl (50mM, pH 8.0) 50ml 

EDTA (10mM) 20ml 

PVP (1%) 10g 

LiCl (100mM) 25ml 

Distilled water Up to 1L 

 

1 × TE buffer 

Tris (10mM) 0.5ml 

EDTA (1mM) 0.1ml 

Distilled water Up to 50ml 
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PBS (Phosphate Buffered Saline) buffer (pH 7.4) 

NaCl 8g 

KCl 0.2g 

Na2HPO4 1.44g 

KH2PO4 0.24g 

Tween 20 0.5ml 

Distilled water Up to 1L 

 

2.3 Isolation and in vitro cultivation of Magnaporthe grisea 

2.3.1 Isolation of Magnaporthe grisea from infected wheat tissues 

Isolation from kernels 

Infected wheat kernels were surface-disinfested in 3% NaOCl for 1 min, washed twice in 

sterilized distilled water and incubated in moist chambers on filter paper at 25°C under 

constant illumination. The disinfested kernels were cut in two halves and aseptically 

incubated on Complete Medium Agar (CM) at 25°C in a 12-h light/dark cycle for 4 d. Single 

colonies were transferred on V8 agar plates supplemented with 200 mg/L streptomycin sulfate. 

As a result, a total of thirty-six isolates from different locations were obtained and used in the 

experiment (Table 1). Isolates were microscopically checked for their purity. 

Isolation from leaves 

The surface of infected wheat leaves was washed with sterilized distilled water and incubated 

on two layers of moistened filter paper in Petri dishes at 25°C for 2 d. Fungal material was 

scraped from the surface of symptoms with a sterile needle, transferred on CM agar and 

incubated at 25°C for 2 d. This isolation procedure was repeated three times. 

Storage 

For long term storage of samples, pure cultures of relevant fungal isolates were grown on V8 

agar plates covered with small sterilized filter paper discs (9 mm diameter). After 10 days of 

incubation at 25°C and 12 h light/dark, the filter papers colonized by mycelium from the 

respective isolates were desiccated and stored at -20°C. 

2.3.2 In vitro cultivation 

2.3.2.1 Medium selection 

One piece of filter paper from each of the wheat isolates MG 1.2 and MG 5 were cultured on 

CM at 25°C and 80% relative humidity for 7 d. One 5mm diameter agar block with fungal 

mycelium punched out from the margin of a colony was transferred to the center of CM, OA, 

PDA and V8 plates and incubated in the same conditions as before. Colony morphology, 

colony diameter and sporulation were recorded at 7 dpi. There were three replications 

prepared for each medium.  
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2.3.2.2 Cultural characteristics on V8 agar medium 

Mycelium agar discs were punched out with a sterile cork borer (5 mm diameter) from the 

surface of 7-day old colonies on CM agar and transferred onto the center of V8 agar plates 

upside down with a sterile needle. Each plate had one mycelium disc and three replications 

were prepared for each of the seventy isolates from different hosts (Table 5). The plates were 

incubated in a climate chamber at 25°C and 80% humidity in a 12-h light/dark cycle for 7 d. 

The cultures from these plates were used to determine the characteristics of colonies. Colony 

morphology were determined by visual observation while the colony diameter was measured 

daily using a Vernier calliper by taking an average of four radial measurements. After 

mycelium exposure under UV light for 2 d and washing with 100 µl of distilled water in each 

plate, one drop of each conidial suspension was evaluated for sporulation under a binocular 

microscope.  

2.3.2.3 Mycelium dry weight in Liquid Fries Complete medium 

All seventy isolates (shown in Table 1), collected from wheat and rice, were grown in flasks 

(500 ml) containing 200 ml of sterilized Liquid Fries Complete medium. Flasks were 

inoculated with one agar block which was punched out from the margin of a 7-day old colony 

on V8 agar. The cultures were placed on a rotary shaker at 100 rpm and incubated in the dark 

at 25°C for 10 d. Mycelia were harvested by filtration through two layers of filter paper in a 

porcelain filter funnel, dried in a vacuum freeze dryer for 48h and stored at -20°C until further 

use. The dry weight of each mycelium was registered. 

2.3.2.4 Mycelial growth after cultivation at low temperature 

Five isolates of Magnaporthe grisea from different wheat fields (MG 27 and MG 51 from 

Brazil, MG 1.2 and MG 5 from Bolivia; 1836-3/0-12 from Japan) were selected, due to their 

strong growth ability based on the experiment of cultural characteristics. Those isolates were 

transferred on V8 agar at 25°C for 3d. In present, Magnaporthe strains are mainly conserved 

as the form of fungus-colonized filter papers under -20°C, which is very infective but a little 

bit complicated.  In order to figure out the possibility of long term cryopreservation of 

Magnaporthe strains directly on the medium with high infectivity, the low terperature 

treatment was carried out. Three Petri dishes of each isolate were kept at 4°C or -20°C, 

respectively, for 2 d, and another three dishes of each isolate incubated at 25°C served as 

control. After 2 days of cold treatment, all dishes were placed in the same climate chamber at 

25°C for another 3 d to test mycelia activity. The colony diameters of all treatments were 

recorded daily by Vernier calliper and sporulation was checked in the end.  

2.4 Plant material, fungal strains and inoculation methods 

2.4.1 Plant material and cultivation 

2.4.1.1 Wheat plants 

The wheat cultivar BR 18, a widely grown moderately resistant variety, was used in this study. 

Plants were grown from seeds in 9 × 9 cm plastic pots filled with a sieved mixture of sand, 

peat and compost (1:1:2). Two kernels were sown in one pot and after 2 weeks, each healthy 
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seedling was transplanted into one pot filled with the same mixed soil. All plants were grown 

in the greenhouse at 16:8 h light/dark cycle at 23 ± 2°C and 60% relative humidity. Plants 

were well watered and no fertilizer was applied. 

2.4.1.2 Rice plants 

The rice cultivar CO 39 (susceptible indica variety) is strongly susceptible to Magnaporthe 

spp. under field conditions. Rice seeds were soaked in water, pre-germinated in a 9cm Petri 

dish on two layers of filter paper which had been moistened with sterile distilled water and 

incubated in the dark at 32°C for 7 d in an incubator. After 7 d, the pre-germinated seeds were 

transferred into 9 × 9 cm plastic pots containing a mixture of sandy loam soil, sand and organic 

soil in a ratio of 1:1:1 and kept at the same conditions in the greenhouse as mentioned above. 

Each pot was planted with three seedlings. Nitrogen fertilization with 10 g/L of YaraVita™ 

and TENSO™Iron (EC Fertiliser, CA Vlaardingen, The Netherlands) was applied 5 weeks 

after sowing. 

2.4.2 Magnaporthe spp. isolates 

Seventy Magnaporthe spp. isolates (Table 1) from different geographical and host origins 

were used in the experiment. Thirty-seven isolates from wheat were isolated in our laboratory; 

thirty isolates from rice came from thirteen fields in three West-African countries and were 

provided by Geoffrey Onaga (Ph.D. student, Division of Plant Pathology and Crop Protection, 

Georg-August-University Göttingen, Germany). One wheat isolate, one finger millet isolate 

and two perennial ryegrass isolates were kindly provided by Prof. Dr. Yokio Tosa (Dept of 

Agrobioscience Graduate School of Agricultural Science, Kobe University, Japan).  

Table 1  List of seventy Magnaporthe spp. isolates used in this study according to host plant 

and geographic origin 

Isolate name Host plant Geographic origin 

T-4 / Br48** Triticum aestivum (wheat) Brazil 

MG 1.2* Triticum aestivum (wheat) Bolivia 

MG 5* 
/ 
** Triticum aestivum (wheat) Bolivia 

MG 8 Triticum aestivum (wheat) Bolivia 

MG 11 Triticum aestivum (wheat) Bolivia 

MG 14 Triticum aestivum (wheat) Bolivia 

MG 27 Triticum aestivum (wheat) Brazil 

MG 44* Triticum aestivum (wheat) Brazil 

MG 51 Triticum aestivum (wheat) Brazil 

MG 52 Triticum aestivum (wheat) Brazil 

MG 5.1 Triticum aestivum (wheat) Bolivia 

MG 5.2 Triticum aestivum (wheat) Bolivia 

MG 8.1 Triticum aestivum (wheat) Bolivia 

MG 8.2 Triticum aestivum (wheat) Bolivia 

MG 20.3 Triticum aestivum (wheat) Brazil 

MG 29 Triticum aestivum (wheat) Brazil 

MG 9* 
/ 
** Triticum aestivum (wheat) Bolivia 

MG 12 Triticum aestivum (wheat) Bolivia 

MG 16* Triticum aestivum (wheat) Bolivia 
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Isolate name Host plant Geographic origin 

MG 38 Triticum aestivum (wheat) Brazil 

MG 50 Triticum aestivum (wheat) Brazil 

MG 52 Triticum aestivum (wheat) Brazil 

MG 53 Triticum aestivum (wheat) Brazil 

MG 54 Triticum aestivum (wheat) Brazil 

Ca 89* Oryza sativa (rice) Philippines 

43 Oryza sativa (rice) Philippines 

JMB8401 Oryza sativa (rice) Philippines 

AGT211* Oryza sativa (rice) Philippines 

M36-1-3-10-1** Oryza sativa (rice) Philippines 

C9228-37 Oryza sativa (rice) Philippines 

CBN9214-1* Oryza sativa (rice) Philippines 

B90103(BN111) Oryza sativa (rice) Philippines 

B90099 Oryza sativa (rice) Philippines 

M39-1-2-21-2 Oryza sativa (rice) Philippines 

V850256 Oryza sativa (rice) Philippines 

V86010** Oryza sativa (rice) Philippines 

Br116.5 / T-7** Triticum aestivum (wheat) Brazil 

Ken 15-15-1* 
/ 
** Eleusine coracana (finger millet) Japan 

TP / L-2* 
/ 
** 

Lolium perenne (perennial 

ryegrass) 
Japan 

FI5 / L-5* 
Lolium perenne (perennial 

ryegrass) 
Japan 

1836-3 / 0-12* 
/ 
** Triticum aestivum (wheat) Japan 

MG 19 Triticum aestivum (wheat) Brazil 

MG 21 Triticum aestivum (wheat) Brazil 

MG 25 Triticum aestivum (wheat) Brazil 

MG 28* Triticum aestivum (wheat) Brazil 

MG 30 Triticum aestivum (wheat) Brazil 

MG 31* Triticum aestivum (wheat) Brazil 

MG 32 Triticum aestivum (wheat) Brazil 

MG 33 Triticum aestivum (wheat) Brazil 

MG 39* Triticum aestivum (wheat) Brazil 

MG 48 Triticum aestivum (wheat) Brazil 

482RWA09 Oryza sativa (rice) Rwanda 

503UGA09 Oryza sativa (rice) Uganda 

520UGA09 Oryza sativa (rice) Uganda 

523UGA09 Oryza sativa (rice) Uganda 

524UGA09 Oryza sativa (rice) Uganda 

492RWA11* 
/ 
** Oryza sativa (rice) Rwanda 

500RWA11 Oryza sativa (rice) Rwanda 

528UGA11* Oryza sativa (rice) Uganda 

531UGA11 Oryza sativa (rice) Uganda 

552UGA11 Oryza sativa (rice) Uganda 

556UGA11 Oryza sativa (rice) Uganda 

559UGA11* Oryza sativa (rice) Uganda 

561UGA11 Oryza sativa (rice) Uganda 

MG 10 Triticum aestivum (wheat) Brazil 

563UGA11 Oryza sativa (rice) Uganda 

564UGA11* 
/ 
** Oryza sativa (rice) Uganda 
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Isolate name Host plant Geographic origin 

RWA 11.2* Oryza sativa (rice) Rwanda 

507RWA11 Oryza sativa (rice) Rwanda 

511RWA11 Oryza sativa (rice) Rwanda 

*     Isolates used on MLST test 

**    Isolates used to test the specificity and sensitivity of primers by PCR 

 

2.4.3 Inoculum preparation and inoculation of plant ears and leaves 

2.4.3.1 Inoculum preparation 

Filter papers colonized by Magnaporthe spp. were cultured in Petri dishes containing 20 ml of 

V8 agar under sterile conditions. The cultures were placed in a growth chamber with a 16 h/8 

h (light/dark) cycle and a constant temperature of 25°C for 7 d, followed by exposure under 

NUV light for 2 d to promote conidiation. Conidia were harvested by rinsing the surface of 

cultures with 100 µl sterile distilled water and scraping it using a glass slide. The conidial 

suspension was filtered through two layers of gauze to remove mycelia and agar. The number 

of conidia in the suspension was determined using a haemocytometer and a spore 

concentration of 1.0 × 10
5 

conidia/ml was used for inoculation. Before inoculation, 0.01% of 

the nonionic surfactant Tween 20 was added to the conidial suspension. 

2.4.3.2 Inoculation  

Wheat ear inoculation  

Ear inoculations were performed by spraying 20 ml of the conidial suspension on wheat ears 

(flowering stage BBCH 61-65, Table A1) using a glass sprayer connected to an air 

compressor until drop-down. The inoculated ears were enclosed with plastic bags to maintain 

100% relative humidity and outside of the plastic bag were covered with kraft paper bags to 

keep it in darkness. As Barksdale & Asai (1961) illustrated, conidiation requires a period of 

darkness and conidia are released in a diurnal pattern. The covered ears were incubated at 

25°C for 24 h. After incubation, wheat plants with inoculated ears were kept in controlled 

climatic chambers for 12 h light/dark at 25°C and 80% relative humidity. The ear inoculation 

was repeated twice and five ears were used for each isolate. 

Plant seedling inoculation 

Seedling inoculations were performed on the whole plant of wheat seedlings (3-leaf stage) 

and rice seedlings (4-leaf stage) by spraying with conidial suspensions. To promote spore 

germination, all inoculated seedlings were covered by plastic bags and kept in a dark moist 

chamber at 25°C and 100% relative humidity for 24 h equipped with a humidifier, and then 

moved to the micro-climate room with 12 h/12 h light/dark at 25°C and 90% relative 

humidity. Three seedlings were inoculated with each isolate, and the experiment was repeated 

once. Seedlings sprayed with sterile distilled water served as control.  
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2.5 Microclimatic requirements of wheat blast infection on wheat ears 

Since wheat blast is seed-borne and able to survive on alternate hosts, with uncertainties 

related to climate and absence of satisfactory genetic resistance, more information is needed 

to forecast epidemics and protect other regions and cropping systems from infection. The 

wheat pathogen is considered to be favored by warm and humid conditions, but the detailed 

epidemiological studies should be done to determine potential risk areas for this new pathogen. 

Changes in temperature and relative humidity can affect pathogen infection on host plant, so 

for the purpose of epidemiological study, the optimal conditions for infestation of 

Magnaporthe grisea by spray inoculation was conducted on wheat ears. 

2.5.1 Variation of microclimatic conditions 

The isolates of Magnaporthe grisea MG 1.2 and MG 5 were isolated from infected wheat 

kernels, originating from St. Cruz, Bolivia, at the Division of Plant Pathology and Crop 

Protection, Göttingen, 2008. Conidial suspensions from these two isolates with high 

sporulation (Table 5) were mixed before inoculation and the density in the mixture was 

adjusted to 1.0 × 10
5 

conidia/ml. To test environmental factors, the mixed conidial 

suspensions were sprayed on wheat ears (BBCH 61-65) and incubated as described above. 

The covering kraft paper bags were firstly removed after 24h, followed by plastic bag covers 

which were removed depending on the treatment (covered for 24 h, 48 h, 72 h and 96 h). For 

the temperature treatment, 5 different incubation temperatures were designed: 20°C, 23°C, 

26°C, 29°C and 32°C during the day, separately and 18°C in the night. Plants were kept in 5 

different climate chambers for the different temperature treatments; humidity treatment, 

which ears were sealed in different length of time, had five replicates and totally twenty plants 

in each climate chamber.  

2.5.2 Disease symptom assessment for infected wheat ears 

At 14 days post-inoculation (dpi), the blast severity level was determined according to a 

scoring system from 0-5 (Division of Plant Pathology and Crop Protection, Göttingen, 2008). 

0 = absence of symptoms; 1 = less than 5% of ear surface bleached; 2 = 5% - 35% ear surface 

bleached; 3 = 35% - 65% ear surface bleached; 4 = 65% - 80% ear surface bleached; 5 = more 

than 80% ear surface bleached (Fig. 3). 
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Figure 3 Disease scores of Magnaporthe grisea on wheat ears (pictures from Department of 

Crop Sciences, Georg-August-University of Göttingen) 

2.6 Pathogenicity differentiation of Magnaporthe spp. on seedling leaves 

2.6.1 Inoculation and incubation conditions 

Inoculation with seventy Magnaporthe spp. isolates was individually performed using the 3-

leaf stage of wheat seedlings (3 weeks old) and the 4-leaf stage of rice seedlings (6 weeks old). 

After harvesting conidia from fungal cultures on V8 agar using sterile distilled water, the 

concentration was adjusted to 1 × 10
5
 conidia/ml. Three seedlings were sprayed with 20 ml of 

conidial suspension using a sprayer and covered by plastic bags to keep 100% relative 

humidity. The inoculated seedlings were kept in a climate chamber at 25°C in the dark for 24 

h. Subsequently the plastic bags were removed and the plants were transferred to a growth 

chamber at 25°C,16 h/8 h light/dark and 80% relative humidity. This experiment was 

performed two times. 

2.6.2 Evaluation of disease incidence and severity on infected leaves 

Lesions were registered from four leaves per isolate. Disease incidence (percent leaves 

showing lesions) was recorded. Additionally, a disease index for blast pathogen was used to 

estimate the pathogenicity of isolates. Lesion types reflecting disease severity were assessed 6 

days after inoculation according to the rating index described by Murakami et al. (2000). The 

disease severity was categorized by 6 progressive grades (Table 2). 
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Table 2 Rating scale for the percentage of symptom development on wheat and rice leaves 

infected by Magnaporthe spp.  

Disease index Percentage of symptom development 

1 no visible symptoms 

2 expansion of lesions less than 5% 

3 expansion of lesions 6% ~ 20% 

4 expansion of lesions 21% ~ 50% 

5 expansion of lesions 51% ~ 80%  

6 expansion of lesions more than 80% of the whole leaf area 

2.7 Genotypic differentiation with AFLP and MLST 

2.7.1 Phylogenetic studies of Magnaporthe spp. with Amplified Fragment Length 

Polymorphisms (AFLP)  

Amplified fragment length polymorphism (AFLP) technology has the capability to detect 

polymorphisms in different genomic regions simultaneously. It is also highly sensitive and 

reproducible. Therefore, to estimate the association with geographical origin, host species and 

genetic diversity, AFLP is used in the study for identification of genetic relationships among 

the seventy Magnaporthe spp. isolates (Table 1). 

2.7.1.1 DNA extraction from mycelium 

DNA extraction 

Total genomic DNA extraction was performed according to the CTAB method used in the 

laboratory. Freeze-dried mycelium was ground to a fine powder with the help of liquid 

nitrogen using a pre-cooled ceramic mortar and pestle. Approximately 30 mg of powder was 

suspended and lysed with 500 µl CTAB buffer in a 2 ml Eppendorf tube. The samples were 

vortexed until the viscosity of suspension was significantly reduced and the formation of froth 

indicated the detachment of DNA from polysaccharides. 1 µl β-mercaopoethanol and 1 µl 

proteinase K were added, the sample was briefly vortexed incubated for 10 min at 65°C by 

occasional gentle mixing. Fifty µl of 20% sodium dodecyl sulphate (SDS) was added by 

gently inverting the tube and the sample was incubated at 37°C for 1 h. To facilitate the 

precipitation of most polysaccharides, proteins and cell debris, 75 µl of 5 M NaCl solution 

and 65 µl of CTAB/ NaCl (10% CTAB in 0.7m ol/L NaCl) solution were added and 

incubated at 65°C for 15 min after components have been mixed by inverting the tube several 

times. An approximately equal volume of phenol/chloroform/isoamyl (25/24/1) was added 

and mixed thoroughly by shaking vigorously in a shaker for 5 min. The suspension was 

centrifuged at 10,000 rpm for 15 min at 4°C after incubation, and the aqueous supernatant 

was immediately transferred to a fresh 1.5 ml fresh tube. The DNA in the aqueous supernatant 

was precipitated by adding an equal volume of ice cold isopropanol. The tube was placed in a 
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-20°C freezer for at least 1 h before centrifugation at 10,000 rpm for 15 min. The precipitated 

DNA pellets were washed and centrifuged at 15,000 rpm for 5 min twice with 500 μl 70% ice 

cold ethanol and the remaining ethanol was carefully removed with the help of a pipet. The 

DNA was dried in a SpeedVac at 30°C for 2 min. The dried DNA was dissolved in 50 µl TE 

buffer with 3 μl RNAse A (10mg/ml) to digest RNA, and further incubated at 37°C for 30 

min. All DNA samples were stored at -20°C.  

Quantification of extracted DNA 

DNA was quantified by running on 1% agarose gel. The agarose gel was prepared as follows: 

Agarose was dissolved in 0.5 × TBE buffer (boric acid 55.03 g/L (0.89 M); EDTA-Na2.2H2O 

7.44 g/L (0.02 M); Tris 107.81 g/L (0.89 M) in a microwave oven with gentle shaking. Then 

0.0001% v/v ethidium bromide (EB) was added to the solution after the melted agarose had 

cooled to 60°C. Liquid agarose was poured on a gel support with a comb and remained for 

30min before putting it into a 0.5 × TBE buffer tank. Two μl of DNA aliquot mixed with 1 μl 

of 6 × DNA loading dye was loaded into 1% agarose gel and run at 45 V for 60 min, along 

with Lambda DNA as standards with different amounts ranging from 50, 100, 150, 200 and 

300 ng. Gel documentation and analysis were performed with the Multi-Analyst software 

(Version 1.1, Bio-Rad Laboratories, Hercules, USA). 

2.7.1.2 AFLP analysis 

Sample preparation and amplification for AFLP were performed according to Laurentin H.E 

(2006) with minor modifications. Electrophoresis of PCR products and data analysis was 

according to Tredway et al. (2004), Weiberg A. (2009) and Splivallo et al. (2012). 

Restriction digestion of genomic DNA 

Genomic DNA (250 ng) was digested with two restriction enzymes EcoRI and MseI in a total 

volume of 20 µl reaction solution by adding the first enzyme 1 unit of EcoR1I (10 U) with 4 

µl of 10 × Tango buffer and completing the volume with sterile distilled water. Reaction 

solutions were spun briefly and incubated at 37°C for 6 h. Then 0.5 units of MseI1(10 U)  was 

added, reaction solutions were spun again and further incubated at 65°C for 3 h followed by 

heat deactivation of enzymes at 65°C for 10 min. The double-digested DNA was separated by 

0.8% agarose gel in TAE buffer at 3 V/cm distances of electrodes for 3 h. 

Ligation of adapters 

Adapter-ligation-solution was prepared for all DNA samples as follows: 5µl of forward and 

reversed EcoRI adapter and 50 µl of both strand MseI adapters (Table 3) were mixed with 100 

µl T4 ligase buffer (10 ×) in a total volume of 1000 µl premixed solution by completing with 

sterile distilled water. 10 µl of adapter-ligation-solution was ligated with an equal volume of 

each double-digested sample by the help of 1unit T4 DNA ligase (5 U/μl). Samples were 

incubated at room temperature overnight and then diluted 10-fold with sterile distilled water. 

Pre-amplification reactions of ligated DNA 
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Pre-amplification reactions were conducted in a TPersonal thermocycler (Biometra, Göttingen, 

Germany) with primers complimentary to the adapter sequences with one selective nucleotide, 

EcoRI-A and MseI-C (Table 3). Diluted ligation reaction (1 μl) was added to 2.5 μl of 10 × 

PCR buffer, 3 mM of MgCl2, 1 unit of Taq DNA polymerase, 10 pmol of EcoRI-A primer, 10 

pmol of MseI-C primer, 0.2 mM of each dNTPs and water to a final volume of 25 μl. Thermal 

cycling conditions included an initial denaturation step at 94°C for 30 s followed by 25 cycles 

at 94°C for 30 s, 56°C for 1 min, and 72°C for 1 min, and a final extension step at 72°C for 1 

min. The pre-amplification products were diluted 10-fold for use in selective amplification 

reactions. 

Selective amplification of pre-amplified DNA 

Selective amplification reactions were performed with EcoRI and MseI primers that included 

three selective nucleotides (provided by Prof. Petr Karlovsky, Division of Plant Pathology and 

Crop Protection, Georg-August-University Göttingen, Germany). A single MseI primer 

(MseI-CAC) was used in combination with three EcoRI primers (EcoRI-AGA, EcoRI-ACC 

and EcoRI-ACA) to yield three primer pair combinations. Each EcoRI primer included a 

5′fluorescent label (Dy680-labelled EcoRI-AGA, Dy750-labelled EcoRI-ACC and Dy635-

labelled EcoRI-ACA) for detection of PCR products by automated sequencing equipment. 

Twenty µl of selective amplification contained 1 µl of diluted pre-amplification product, 5 

pmol of EcoRI primer, 5 pmol of MseI primer, 0.3 units of Taq DNA polymerase, 1 × PCR 

buffer, 3 mM MgCl2, and 0.2 mM each dNTPs. Selective amplifications were programmed 

for an initial cycle at 94°C for 30 s, 65°C for 30 s, and 72°C for 1 min, followed by a 

touchdown phase where the annealing temperature was lowered 0.7°C each cycle for 11 

cycles, and finally 30 cycles at 94°C for 30 s, 56°C for 1min, and 72°C for 1 min. Pre-

amplification and selective amplification was performed twice for each isolate from the same 

ligated DNA solution.  

Table 3 Sequences of adapters and primers used in the AFLP analysis 

Adapter Sequence 

Forward EcoRI adapter 5’- CTCGTAGACTGCGTACC - 3’ 

Reversed EcoRI adapter 3’- CATCTGACGCATGGTTAA-5’ 

Forward MseI adapter 5’- GACGATGAGTCCTGAG - 3’ 

Reversed MseI adapter 3’- CTGCTACTCAGGACTCAT-5’ 

Primer Sequence 

EcoRI-A GACTGCGTACCAATTC-A 

MseI-C GATGAGTCCTGAGTAA-C 

EcoRI-AGA GACTGCGTACCAATTC-AGA 

EcoRI-ACC GACTGCGTACCAATTC-ACC 

EcoRI-ACA GACTGCGTACCAATTC-ACA 

MseI-CAC GATGAGTCCTGAGTAA-CAC 
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Electrophoresis of PCR products 

For each Magnaporthe spp. isolate, 2.5 µl of selective amplification product from each of the 

three primer combinations was mixed with 30 µl of separation loading buffer (98% 

formamide, 10 mM EDTA and 0.025% bromophenolblue) and 1 µl of IRD800 labelled 

internal size standard 600 (Beckman Coulter Ltd). The mixture was overlaid by 

approximately 10 μl of mineral oil and separated by denatured linear polyacrylamide capillary 

electrophoresis CEQ™ 8000  (Beckman Coulter GmbH, Krefeld, Germany) under the 

following conditions: running temperature at 50°C, denaturation step at 95°C for 2 min. 

Sample injection was at 2.0 kV for 30 s and separation was at 4.8 kV for 1 h. 

Analysis of AFLP data 

The raw data were imported and analyzed with the CEQ 8000 software (Beckman Coulter, 

Fullerton, CA, USA). Fragment recognition was performed with the following parameters: a 

maximum bin-width of three nucleotides, a slope threshold of 50%, and a relative peak height 

threshold of 10%. The confidence level was set at 95%. The applied model for calibration was 

the quartic curve model, which is recommended by Beckman when the Standard 600 is used. 

During gel evaluation, a binary matrix was constructed where each band was treated as a 

single character, and the band which presence in an individual was designated as 1 and the 

band which absence in another individual was designated by 0. The binary data were exported 

into a spreadsheet. All numerical taxonomic analyses were conducted using NTSYSpc 2.21 

software (Exeter Software, New York, USA). Similarity matrices from binary data were 

derived with ‘Qualitative Data’ Program in Dis/similarity and genetic similarity were 

estimated using a Dice similarity coefficient. Clustering analysis was done with ‘SAHN’ 

program clustering by the unweighted pair group method with arithmetic averages (UPGMA). 

Based on genetic similarities, the dendrogram was constructed by the ‘Tree plot’ program.  

The robustness of the dendrogram was assessed by bootstrap analysis with the Winboot 

software and 1,000 repeated samplings with replacement. The bootstrap values, reflecting the 

frequency with which each group is formed in repeated cycles of dendrogram construction, 

were used as a measure of the relative stability of the clusters of strains. And the cophenetic 

correlation for a cluster tree is defined as the linear correlation coefficient for the cophenetic 

distances obtained from the tree and the original distances (or dissimilarities) used to 

construct the tree. Thus, it is a measure of how faithfully the tree represents the dissimilarities 

among observations.  

2.7.2 Multilocus gene genealogy analysis with Multilocus Sequence Typing (MLST) 

MLST was used to investigate the phylogenetic relationships among Magnaporthe isolates 

from different hosts by analyzing DNA sequences of three housekeeping genes (actin, ß-

tubulin and calmodulin). Based on the geographical origin and cultural characteristics (Table 

5), 20 Magnaporthe spp. isolates were selected for this experiment (Table 1, isolates marked 

with an asterisk). 

http://en.wikipedia.org/wiki/Housekeeping_gene
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2.7.2.1 Gradient PCR reaction 

Gradient PCR 

Fragments of the actin, ß-tubulin, and calmodulin genes were amplified using the primer pairs 

ACT-512F (5’-ATGTGCAAGGCCGGTTTCGC-3’) and ACT-783R (5’-

TACGAGTCCTTCTGGCCCAT-3’), CAL-228F (5’-GAGTTCAAGGAGGCCTTCTCCC-3’) 

and CAL-737R (5’-CATCTTTCTGGCCATCATGG-3’) (Carbone & Kohn, 1999), and Bt1a 

(5’-TTCCCCCGTCTCCACTTCTTCATG-3’) and Bt1b (5’-

GACGAGATCGTTCATGTTGAACTC-3’) (Glass & Donaldson, 1995), synthesized by 

Invitrogen™ (Life Technologies GmbH, Darmstadt, Germany).  PCR amplification reactions 

were performed in a total volume of 30 µl containing 1 μM of each primer (10 μM), 1 × PCR 

buffer with MgSO4 (2 mM), 0.2 mM of each dNTP, and 1.25 units of Pfu DNA Polymerase 

and 50 ng of template DNA. The gradient PCR reactions were performed on TProfessional 

basic Gradient Thermocycler (Biometra, Germany), using thermal cycling conditions, which 

consisted of an initialization step at 95°C for 5 min, 35 cycles of denaturation at 95°C for 1 

min, annealing at 50-70°C for 1 min, elongation at 72°C for 1 min, a final extension at 72°C 

for 10 min and hold at 10°C.  

Agarose gel electrophoresis 

After amplification, 5 μl of PCR products under different annealing temperatures for three 

genes were electrophoresed in three 1.5% agarose gels prepared in 0.5 × TBE buffer, 

respectively. 6 × DNA loading dye was mixed in a 5/1 (v/v) ratio to the amplified products. 

Then, 0.0001% v/v ethidium bromide (EB) was used in the gel to stain DNA bands. 

Electrophoresis was performed at 45 V for 2 h in 0.5 × TBE buffer. 300 ng of 100 bp plus 

DNA ladder was also loaded in the same gel to estimate the molecular weight of the amplified 

products and PCR products were visualized under UV light. 

2.7.2.2  PCR amplification and purification for the actin gene 

PCR amplification 

PCR amplification for the actin gene was performed under the same condition as gradient 

PCR with an annealing temperature at 57°C. The amplified PCR products of all twenty 

isolates were separated by 1% agarose gel to determine the target fragment 334 bp of the actin 

gene.  

Purification 

To increase the sensitivity of sequencing, PCR products from the actin gene had to be purified 

from undesired proteins and unknown inhibitors. Therefore a volume of 40 μl SureClean 

Plus™ was added into each PCR product to precipitate DNA and spun briefly following the 

manufacturer’s instructions.  The mixture was incubated at room temperature for 10 min 

followed by centrifugation at 14,000 rpm for 10 min. The supernatant was decanted carefully 

and the pellet was rinsed twice with 70% ethanol. The remaining ethanol was removed and 

the pellet was air-dried under the laminar flow clean bench for 30 min. Finally the pellet was 

re-suspended in 50 μl sterile distilled water. 2 μl of purified DNA was quantified by 
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electrophoresis through a 1.5% agarose gel. To determine the quantity, a dilution series of 

Lamda DNA was run on the same gel with DNA samples. The identification of band for the 

actin gene and the amount of DNA was carried out by densitometry using the Multi-Analyst 

program™. The forward and reverse strands of the PCR products were sequenced, using the 

same primers as in the amplification reactions (ACT-512F and ACT-783R) on ABI Prism 

3730XL DNA Sequencer (Macrogen Europe, Amsterdam Zuid-oost, The Netherlands). 

2.7.2.3 PCR amplification and blunt ended cloning for the ß-tubulin and calmodulin genes 

PCR amplifications 

PCR amplifications were performed as described above with the annealing temperature at 

52°C for ß-tubulin and 61°C for calmodulin. The PCR products of both genes were run in an 

1% agarose gel. The fragments for the ß-tubulin gene (550 bp) and the calmodulin gene (516 

bp) were observed in all twenty isolates. 

Blunt ended cloning 

Since the first sequencing results of PCR products of both genes were unclear, blunt ended 

cloning for the ß-tubulin gene and the calmodulin gene were performed to improve the quality 

of fragments and reduce errors caused by the amplification. To combine the vector and PCR 

products, the PCR products were phosphorylated in a total volume of 50 μl reaction, 

consisting of 25 μl PCR products, 0.5 × Pfu Buffer with MgSO4, 4 units T4 Polynucleotide 

Kinase and 0.05 mM ATP, and incubated at 37°C for 30 min and inactivated at 75°C for 10 

min, while the vector pBluescript SK
-minus

 was dephosphorylated and digested in the 50 μl 

reaction solution, consist of 5 μg  pBluescript SK
-minus

, 1 × FastDigest SmaI buffer, 2.5 FDU 

FastDigest Smal and 5 U FastAP (Thermosensitive Alkaline Phosphatase), and then incubated 

and inactivated under the same conditions as the PCR products. The vector pBluescript SK
-

minus
 and PCR products were purified by PCl (phenol: chloroform: isoamyl = 25:24:1) and Cl 

(chloroform: isoamyl = 24:1) solutions. Equal volumes of PCl solution were mixed with 

vector and PCR products individually for 5 min; the upper phase was transferred carefully 

into a new Eppendorf tube by pipet after centrifuged at 15,000 rpm for 10 min. The 

purification was repeated with the Cl solution. Vector and PCR products were cleaned up and 

separated by running in a 1% agarose gel without EB in TAE buffer for 16 h. The agar slices 

containing the unstained fragments of vector and PCR products were cut out from agarose gel 

on a UV-transilluminator and each was transferred into a separate 2 ml Eppendorf tube. DNA 

of vector and PCR products were extracted from agar slices by using the glass milk method. 

Agar slices were melted in tubes with three volumes of DNA-binding buffer at 50°C for 15 

min and 6 μl of thoroughly re-suspended glass milk was added to permanently mix the 

components at room temperature for 10min. Glass milk sediments were re-suspended in 500 

μl DNA-binding buffer after centrifugation at 13,000 rpm for 30s and the supernatant was 

discarded. Sedimentation of glass particles was performed by re-suspending twice in 25 

volumes of washing buffer and centrifugation at 13,000 rpm for 30 s. The DNA pellets of 

vector and PCR products were individually re-suspended in 20 μl sterile distilled water for 5 

min at 50°C and controlled in 1% agarose gel for 3 h with 100 bp plus DNA ladder. The 

ligation of vector and PCR products (molar ratio, vector: PCR product = 1: 3) was performed 
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on ice in a final volume of 20 μl reaction with 20 ng pBluescript SK
-minus

, 1 × T4 DNA ligase 

buffer (included FC 0.5 mM ATP), 1 unit T4 DNA ligase, 5% PEG 4000 and PCR products 

(11 ng for ß-tubulin and 10 ng for calmodulin). The reaction solution was incubated at 4°C for 

2 d. Five μl of each ligation reaction was used for the transformation in competent cells of 

E.coli which were just prepared from our group. Those competent cells of E.coli were took 

out from the -70°C refrigerator and thawed on ice. Fifty μl E.coli was mixed with each 

ligation reaction and placed on ice for 30 min. For DNA uptake by heat shock, the mixtures 

were incubated at 42°C for 60s, and immediately placed on ice for 2 min. Then each mixture 

was transferred into 400μl preheated SOC medium with 2 μl MgCl2 at 37°C for 1 h. Two 

hundred μl of each suspension was placed on MacConkeyAP plates with the help of a 

Drigalski spatula, and incubated at 37°C overnight. Eight single white colonies were selected 

and incubated on LBAP medium at 37°C for 8 h as stock cultures. A bit of cell mass from 

stock culture was transferred into a glass vial containing 3 ml TBAP medium and incubated at 

37°C overnight on a rotary incubator. Plasmid DNA was extracted from bacterial suspensions. 

Cells were harvested via centrifugation of 2 ml of each bacterial suspension, and re-suspended 

and incubated in 200 μl ice-cold GLC buffer (50 mM Tris pH 8.0, 50 mM glucose and 10mM 

Na-EDTA) with lysozyme (2 mg/ml) at room temperature for 20 min. Then 300 μl of LYZ 

solution was added (1:1 mix of 2% SDS and 0.4 N NaOH) and the sample was incubated at 

room temperature for 10 min. Two hundred and fifty μl HS buffer was added (147 g 

potassium acetate and 19.16 ml formic acid were dissolved in 500 ml sterile distilled water) 

and the sample was kept on ice for 30 min. The supernatants were transferred into new 

Eppendorf tubes after centrifugation at 14,000 rpm at 4°C for 10 min. Nucleic acids were 

precipitated in 0.6 volumes of isopropanol at room temperature for 30 min and collected after 

centrifugation. The pellets were re-suspended in 50 μl TE buffer supplemented with 1 μl of an 

RNAse A solution (10mg/ml) for at least 30 min, washed twice with 500 μl 70% ethanol and 

air-dried under the Laminar Flow clean bench for 30 min. For checking the successful uptake 

of DNA-fragments, 500 ng of each plasmid DNA was double digested in a total volume of 20 

μl reaction solution by FastDigest enzyme PstI (5 U) and BanmHI (5 U) at 37°C for 1 h, 

inactivated at 80°C for 5 min and controlled by running in an 1% agarose gel for 3 h.  

Purification 

Recombined plasmid DNA was purified using QIAquick spin columns and buffers (QIAprep 

Miniprep, Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions. The 

both strands of PCR products from two genes were sequenced by the primer pairs T7 

(AATACGACTCACTATAG) and M13R (GCGGATAACAATTTCACACAGG) provided 

by Macrogen (Macrogen Europe, Amsterdam Zuid-oost, The Netherlands). 

2.7.2.4 DNA sequence alignment and phylogenetic analysis 

The sequence data for three genes from 20 Magnaporthe isolates were compared with the 

complete sequence data published in NCBI. Accumulation of neutral mutations is an 

important measure of evolutionary distance among lineages, these differences are fixed by 

genetic drift, and ideal sequences should not underly selection. In general, mutations occur at 

the same rate in both exons and introns, but are removed more effectively from the exons by 

adverse selection. However, in the absence of the constraints imposed by a coding function, 
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an intron is able quite freely to accumulate point substitutions and other changes. Hence, the 

sequences for introns and exons were separated to do the analysis. The intron sequences from 

three genes were concatenated for each isolate to perform the analysis of multiple alignment, 

as well as the concatenated exon sequences.  

Using Mega 6.0.5 software (molecular evolutionary genetics analysis version 6.0.5; Tamura et 

al., 2013), multiple sequence alignments were conducted by ClustalW progress and 

phylogenetic analyses were constructed by Neighbor-joining. The bootstrap analysis 

(Felsenstein 1985) was performed with 1,000 replicates for the assessment of the robustness 

of dendrogram topology and cophenetic correlation was used as an estimation of the 

faithfulness of cluster analysis.  

2.7.2.5 Genetic diversity 

To study the genetic structure of Magnaporthe spp. from different hosts, the 20 isolates were 

grouped in four sets according to their original host plant. Gene diversity indices such as total 

diversity (HT), diversity within group (HS), absolute differentiation among groups (DST) and 

coefficient of relative population differentiation (GST) (Nei, 1987) were calculated for each 

band and then averaged for the total set. All Nei's parameters were calculated using Popgene v. 

1.32 software, which was used to calculate all genetic parameters. The sequence data were 

manually converted in a text format for Popgene software. 

2.8 Detection and quantification of fungal biomass in infected wheat and rice leaves by 

qPCR 

2.8.1 Sample collection and preparation 

Sample collection 

Wheat seedlings at the 3-leaf stage and rice seedlings at the 4-leaf stage were individually 

inoculated with the isolates MG 5 and MG 31 from wheat and the isolate Ca 89 from rice. 

Those isolates were selected according to the different genetic groups from AFLP results (Fig. 

10). Infected leaves which had been collected at different time points (0, 2, 4 and 6 dpi) and 

the mock-inoculated control were used to investigate fungal biomass accumulation over time 

in each interaction. 

Sample preparation 

All samples were frozen immediately in liquid nitrogen after harvest and kept at -80°C. 

Genomic DNA from dried mycelium, inoculated leaves and control leaves were extracted by 

a modified CTAB method according to 2.7.1.1.  The extracted DNA samples were purified 

with SureClean Plus™ and quantified by electrophoresis. 

2.8.2 Evaluation of primer specificity and sensitivity by PCR 

Primer 

For this protocol to be successful, the PCR primers had to selectively amplify a region of the 

Pot2 transposon in blast isolates, without amplifying DNA from the plant itself or other 
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pathogens. The Pot2 transposon is believed to be present only in Magnaporthe spp. from 

various plants and with 100 copies in the genome which is advantageous for PCR detection 

(Kachroo et al., 1994; George et al., 1998; Harmon et al., 2003). Primers for the Pot2 region 

were chosen based on the specificity to the genome of Magnaporthe spp. The forward primer 

pfh2a (5 -́CGTCACACGTTCTTCAACC-3 )́ and reverse primer pfh2b (5 -́

CGTTTCACGCTTCTCCG-3´), synthesized by Invitrogen™ (Life Technologies GmbH, 

Darmstadt, Germany), were designed to amplify the 687 bp region of repetitive DNA 

fragment, the Pot2 transposon, which is shared by both rice and non-rice pathogens of 

Magnaporthe spp. (Kachroo et al., 1994).  

PCR reaction 

To determine primer sensitivity and primer ability to amplify Magnaporthe spp., the primers 

pfh2a and pfh2b were evaluated by applying PCR on eleven Magnaporthe spp. (Table 1, 

isolates marked with two asterisks) which were used in this study from different locations, 

combining with another primer specificity test performed by Heike (2012) using the same 

primers tested on 8 different pathogens. A semiquantitative polymerase chain reaction (PCR) 

was carried out using TProfessional basic Gradient Thermocycler with an initial denaturation 

step at 95°C for 2 min, followed by 33 cycles of denaturation for 1 min at 95°C, annealing for 

1min at 57°C and elongation for 1 min at 72°C, and a final extension step for 10min at 72°C. 

A reaction mixture of 25 μl consisted of the following components: 2.5 μl PCR-buffer (10 ×), 

2 μl dNTPs (10 mM), 2.5 μl of each primer (10 μM), 0.75 μl MgCl2 (25 mM), 0.2 μl 

BioTAQ™ DNA Polymerase (2 U/μl) and 10 ng template of each isolate. Ten μl of each PCR 

amplification product were separated on 1.3% of ethidium bromide stained agarose gel at 45 

V for 2 h and visualized under UV-light on a gel documentation system (Quantity One, 

Version 4.5.0 Bio-Rad Laboratories, Hercules, USA).  

2.8.3 Establishment of DNA standard curves 

DNA standard curve 

Quantitative real time polymerase chain reaction (qPCR) was used to quantify the exact 

amount of pathogen which is responsible for disease symptoms. The PCR program was 

performed on a CFX384 Touch™ Real-Time PCR Detection System using 384-well Quali-

PCR-Plates transparent (Kisker Biotech GmbH & Co. KG, Steinfurt, Germany) and the AB-

0558 Adhesive PCR Film (Fisher Scientific, Schwerte, Germany). Amplifications were 

performed in 10 μl containing 7 μM of each primer and 0.6 mM dNTPs in 1 × PCR buffer 

with 2 mM MgCl2, 0.2 U DNA polymerase (BioTAQ), 1 × SYBR Green I and 1μl of fungal 

DNA template. Standard curves were constructed and determined by comparing a standard 

series of known fungal DNA templates, which consisted of 1 pg, 10 pg, 100 pg, 1 ng and 10 

ng diluted in sterile distilled water with three technical replications per standard, to serve as 

reference to calculate the unknown DNA amounts in the samples. The PCR amplification 

analysis was performed with the Bio-Rad CFX Manager (Version 2.0, Bio-Rad Laboratories, 

Hercules, USA). 
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Comparison of standard curves 

To eliminate effects from plant DNA, equal amounts of DNA from mock-inoculated wheat 

and rice leaves were mixed artificially with fungal material and used as templates in the real-

time PCR. The results were compared with standard curves from pure fungal DNA. As a 

negative control, pre-mixed reaction solution was mixed with sterile distilled water. The PCR 

reaction was performed in an iCycler system (BioRad, Hercules, CA, USA) according to the 

following program: an initial denaturation step at 95°C for 15 min, followed by 35 cycles of a 

denaturation step for 15 s at 95°C, annealing for 25 s at 58°C and elongation for 45 min at 

72°C. Fluorescence was detected after each elongation step and the program was completed 

with a final elongation step of 10 min at 72°C. Melting curve analysis was performed at a 

denaturation step at 95°C for 10 s, followed by a renaturation step at 55°C step for 10 s and 

subsequent measurements within a range of 65°C to 95°C (every 10 s in 0.5°C temperature 

increments), followed by a cooling step at 15°C. In the real-time PCR application, the 

accumulation of the amplicon is monitored in each cycle based on the emission of 

fluorescence. The average threshold cycle (CT) values calculated from three replications were 

fit by linear regression to derive the template DNA concentration. 

2.8.4 Quantitative real-time PCR (qPCR)  

Quantitative real-time PCR was carried out in a total volume of 10 µl (Table 4) to detect and 

quantify the biomass of three isolates on wheat and rice leaves at different time points. The 

primers pfh2a and pfh2b were used to amplify the DNA samples. Sterile distilled water was 

used instead of sample DNA as a negative control. A series of known fungal DNA (1 pg, 10 

pg, 100 pg, 1 ng and 10 ng) was inserted as standard curve to quantify the amount of sample 

DNA. Three simultaneous replicates were used for each sample to confirm the reproducibility 

and reliability of the results. The quantitative real-time PCR was performed in the same 

conditions as described in 2.8.3. Melting curve analysis was performed at the end of each 

reaction to monitor primer-dimer formation and the amplification of gene-specific products.  

Table 4 Quantitative real-time PCR reaction mixture in a total volume of 10µl  

Reagent  Final concentration µl per reaction 

Distilled water -- 5.46 

10 × PCR buffer 1 ×  1 

MgCl2 (50mM) 2mM 0.4 

dNTPs (10mM) 6mM 0.6 

F-Primer (pfh2a, 10μM) 7μM 0.7 

R-Primer (pfh2b, 10μM) 7μM 0.7 

BioTAQ™ DNA Polymerase (5 U/μl) 0.2U 0.04 

SYBR Green I  (1:1000) 1 ×  0.1 
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DNA template -- 1 

Detection and calculation were performed on Bio-Rad CFX Manager (Version 2.0, Bio-Rad 

Laboratories, Hercules, USA), using a mathematical model to determine the relative 

quantification of fungal biomass from infected samples compared with the standard curve. 

The average threshold cycle (CT) value for each interaction was calculated from duplicate 

samples for each experiment.  

2.9 Cytological investigations of infection processes of heterologous and homologous 

strains of Magnaporthe spp. on wheat and rice leaves 

2.9.1 Sample preparation for cytological investigations 

The isolates MG 5 and MG 31 from wheat and Ca 89 from rice were also used in cytological 

investigations. The conidial suspensions (1.0 × 10
5 

conidia/ml) from three isolates were 

sprayed on the whole wheat seedlings at the 3-leaf stage and rice seedlings at the 4-leaf stage 

as described in 2.4.3.2. For cytological investigations, the second true leaves of wheat and leaf 

sheaths of rice were collected after infection. 

2.9.2 Cytological studies with confocal laser scanning microscopy (CLSM) 

The ability of different strains to infect plants showed differences, which was analysed by 

CLSM to observe the process of pathogen infection. The inoculated samples were harvested 

at 12, 24, 48 and 72 hours post inoculation (hpi). Time points were chosen with respect to the 

biology of infection development (Kankanala et al., 2007; Ribot et al., 2007). The second true 

leaves from wheat and rice leaf sheaths were cut into 2 cm segments and immersed in the 

clearing solution (0.15% (w : v) trichloroacetic acid in ethanol/chloroform (4/1, v/v)) at room 

temperature for 2 d. After washing away the cleaning solution attached to the sample surface 

by PBS buffer twice, samples were dried on paper towel briefly and immersed in the staining 

solution (1900 μl distilled water, 40μl propidium iodide (20 µg/ml) and 60 μl WGA Alexa 

Fluor 488 (30 µg/ml) in each beaker. All beakers from different time points and interactions 

were wrapped with aluminum foil and placed in a desiccator connected with a vacuum pump. 

Samples were infiltrated for 20 min under vacuum (800-900 mbar), subsequently washed with 

PBS buffer and mounted in 50% (v /v) glycerol (Roth, Karlsruhe) on glass slides in the dark 

for further observation. Attacked cell sites were located beneath appressoria and examined 

under a confocal laser scanning microscope (TCS SP5, Leica, Wetzlar, Germany). 

Fluorescence was excited with an argon laser at 488nm and detected at wavelengths 580-630 

nm. Images were processed and arranged using CLSM-LAS-AF software (Leica). Five wheat 

leaves or rice leaf sheaths were used to analyze fungal development at different time points in 

epidermal cells. There were three repetitive experiments.  

Fungal growth stages 

Development of fungi in the host plant was grouped into four stages. In the first stage, the 

spores germinate and form an appressorium; the second stage is the intracellular growth of 

primary invasive hyphae in the first infected epidermal cell after the infection peg penetrates; 

in the third stage, primary infection hyphae have extensively invaded the first invaded cell and 

are trying to reach the adjacent living cells through plasmodesmata; in the fourth stage, the 
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newly formed secondary infectious hyphae colonize the intracellular space of adjacent cells 

and other hyphae grow in the intercellular space (Ribot et al., 2008). Differences between 

isolates and time points were further compared by the least significant difference Tukey HSD 

test analysis.  

2.9.3 Hetero- and homologous interactions studied with autofluorescence microscopy 

Observations under an autofluorescence microscope 

Samples used for studying hetero- and homologous interactions were harvested at 48 h after 

inoculation, and evaluated under an auto-fluorescence microscope to investigate plant 

responses to infection at the cellular level. Infected wheat leaves and rice sheaths were 

destained in the clearing solution as mentioned above (2.9.2) for 2 d, and immersed in diluted 

cotton blue solution in darkness overnight. Samples were subsequently placed on glass slides 

and stored in 50% (v/v) glycerol after washing twice with PBS buffer to remove excess dye. 

Fungal structures stained with cotton blue were observed under a bright-field microscope. 

Autofluorescence of epidermal cells was observed under an epi-fluorescence microscope 

(excitation filter BP 515-560 nm, dichromatic mirror 580 nm, suppression filter LP590 nm; 

TCS SP, Leica Microsystems, Wetzlar, Germany). A total of 200 infection sites were 

inspected and scored independently. Five wheat leaves or rice leaf sheaths were analyzed for 

each interaction. Independent repetitive experiments were carried out three times. 

The types of cytological response 

Cytological responses visualized by autofluorescence microscopy could be categorized into 

four types (Fig. 21). Type A showed no reaction on epidermal cells. In this case the fungal 

appressorium seemed to have no capacity to attempt penetration. Type B referred to papilla 

formation with yellow fluorescence beneath the appressorium, which stopped the appressorial 

penetration of cell walls first attacked by the fungus. Type C comprised hypersensitive 

reaction of the epidermal cell. Such cells were usually accompanied by strong yellow 

fluorescence of cell walls or cytoplasm. Type D exhibited no resistance reactions to the 

appressorial penetration. The appressorium successfully invaded the epidermal cell, followed 

by the development of infection hyphae (Murakami et al., 2000). The incidences of cellular 

responses between host and nonhost type of interactions were compared by Tukey HSD test. 

2.10 Assessments of phytotoxin effects on rice and wheat leaves 

Necrotrophic phytopathogenic fungi synthesize a wide range of phytotoxic compounds, some 

of which induce lesion formation on plant leaves (Park et al., 2009). Therefore, we conducted 

a preliminary study for the phytotoxin effects on wheat and rice leaves. 

2.10.1 Testing of fungal culture filtrate (CF) on leaves 

The preparation of fungal culture filtrate 

Culture filtrates were prepared following Park et al. (2009) with minor modifications. The 

wheat isolates (MG 5 and MG 31) and rice isolate (Ca 89) were selected for this test as for the 

inoculation tests. One filter paper carrying each isolate (see above) was transferred to 500ml 
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flasks containing 250 ml of potato dextrose broth (PDB). Cultures were incubated at room 

temperature in the dark for 10 d with shaker agitation at 120 rpm. The crude culture filtrates 

were separated from the mycelia with the help of sterilized three layers of gauze and 

subsequently filtered through a 0.20 µm Millipore filter (Minisart
®
, Sartorius AG, Göttingen, 

Germany) to eliminate the conidia. The final culture filtrates (CF) were diluted with distilled 

water into two concentrations: 1/2 and 1/4. As a positive control, conidial suspensions were 

obtained as follows. Mycelium was scraped from V8 agar after growing 7 d and suspended in 

sterile distilled water, and then the concentration was adjusted to 1.0 × 10
5 

conidia/ml with 

sterile distilled water. The filtrate of fresh PDB was applied as a negative control. 2% Methyl 

cellulose (1 g methyl cellulose in 50 ml H2O) was added to each treatment. 

The effects of fungal culture filtrate on detached leaves 

Non-inoculated leaves of wheat cultivar BR 18 and rice cultivar CO 39 were used to study the 

effect of the filtrate. The second complete leaves detached from 3-week old wheat plants and 

5-week old rice plants were placed in plastic boxes on two layers of filter paper and 

inoculated with conidial suspension (1.0 × 10
5 

conidia/ml) by drop inoculation. Five drops of 

different treatments, including three concentrations (1/4, 1/2 and final CF) of pathogen filtrate 

from each isolate, pure conidial suspensions and PDB filtrate, were dropped on rice and wheat 

detached leaves. Some water was left in the plastic boxes to keep the high humidity close to 

100% and the lid was covered to prevent evaporation. The leaves were incubated at 25°C and 

16h light/8h dark in the climate chamber and observed at 3 dpi. Each treatment was repeated 

three times, and three detached leaves were used for each treatment.  

2.10.2 Assessment of leaf responses to infected leaf extract leachate  

Some fungi liberate toxins early during spore germination as an aid for penetration and 

establishment, while others are produced much later in the infection process and many 

enhance the senescence of the plant tissue leading to its more rapid death (Isaac, 1998). 

Therefore, the extraction of toxic compounds from lesions was performed. 

Preparations of infected leaf extracts  

Leaves of wheat and rice were harvested after 7 days post noculation with three isolates, 

individually and cut to small pieces. The small fragments from different interactions were 

immersed in sterile distilled water with stirring from time to time for 1 h and filtered on two 

layers of gauze to remove those fragments. The lesion filtrates were serially diluted to two 

concentrations: 1/2 and 1/4. The positive control of pure conidial suspension and negative 

control with sterile distilled water were prepared as described above. 

Effects of infected leaf extracts on detached leaves 

The incubation was performed following Talbot et.al. (1997) with modifications. The second 

complete leaves from the same stage as before were used. The bottom of three detached 

leaves was placed in one 2 ml Eppendorf tube containing either lesion filtrates or conidial 

suspension or sterile distilled water. The tubes were wrapped with Parafilm (Glasgerätebau 

Ochs, Bovenden/Lenglern, Germany) to prevent excess evaporation and aerial contamination, 

and incubated in the same conditions as above.  
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2.11 Statistical data analysis 

Processing of raw data and drawing in charts and tables were done by Microsoft Office Excel 

2007. Data were further analyzed using STATISTICA 9.1 (Stat Soft, Inc., Tulsa, Oklahoma, 

USA). Comparisons on cultural characteristics were performed by analysis of one-way 

ANOVA and Tukey HSD. Data from experiments on low temperature storage, microclimatic 

requirements, pathogenicity differentiation and fungal biomass by qPCR were processed by 

two-way ANOVA with multi-comparison by Tukey HSD test. For all analyses, P-values ≤ 

0.05 were considered significant. Different letters in the graphs indicate significant 

differences at a significance level of 5%.   
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3 Results 

3.1 In vitro growth of Magnaporthe spp. 

3.1.1 Isolation of Magnaporthe grisea from kernels and leaves 

The overwintering sources of spores that comprise the primary inoculum of blast disease 

consist of seed, crop residue and secondary hosts (Greer & Webster, 2001). Hence blast 

disease is also seed-transmitted. Kernel samples from infected wheat plants in fields were 

used for the isolation of Magnaporthe grisea. In total, we obtained thirty-six strains from 

infected kernels, including twenty-four strains from Brazil and twelve strains from Bolivia. 

Wheat leaves with lesions collected from the same fields were used for isolation, however, no 

aerial hyphae emerged on any lesions of the leaves, which were kept on CM agar for 2 days. 

The isolation from lesions on wheat leaves was unsuccessful and no spores were obtained 

from lesions. The reason could be that the leaves were too dry for hyphae to survive. 

3.1.2 Medium selection 

The colonies of wheat isolates MG 1.2 (Fig. 4) and MG 5 (Fig. A1) showed similar features 

on four different media (V8, CM, OA and PDA), while differences in morphology were 

observed between each media. Fig. 4 shows the colonies of MG 1.2 at 7 dpi on different 

media. Abundant vegetative mycelia have been generated on V8 and formed a white-gray 

colony with a mean diameter of 50.2 ± 0.76 mm. V8 is the best choice for further study, 

showing the highest sporulation after microscopic examination. White vegetative mycelia 

were also generated on CM (45.3 ± 0.58 mm) from mean diameter, but with less sporulation 

than on V8. Pigmented mycelia were produced on OA and PDA with mean diameters of 49.3 

± 0.58 mm and 48.5 ± 0.50 mm respectively, and low amount of spores were observed under 

microscopy. 

 

 

Figure 4 Colonies of wheat isolate MG 1.2 on different media: V8, CM, OA and PDA at 7 

dpi. 
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3.1.3 Cultural characteristics of Magnaporthe spp.  

Magnaporthe isolates, regardless of host species, exhibited high variability in cultural 

characteristics on V8 medium (Table 5). Description on colony morphology followed 

Breakwell et al. (2013). The surface of the colonies exhibited a variety of features with flat, 

convex and raised shapes, and accompanying flocculent, dull and rough textures. The colors 

of mycelia were observed to vary from white to gray and even black, sometimes taking on a 

translucent or cloudy state. Most of the colors on the substrate were black or darker yellow 

(data not show). The growth of aerial mycelium was classified as luxuriant, moderate and 

scanty with 48.6%, 37.1% and 14.3% of the isolates respectively. This showed that most of 

the Magnaporthe isolates could easily form aerial hyphae on a V8 medium. Sporulation 

intensity was divided into three levels: “++” (≥ 1.0 × 10
6
 conidia/ml), “+” (1.0 × 10

6
 

conidia/ml ~ 1.0 × 10
4
 conidia/ml) and “-” (≤ 1.0 × 10

4
 conidia/ml). The percentages of 

sporulation intensity were 58.6% (“++”), 27.1% (“+”) and 14.3% (“-”). This suggests that the 

amount of aerial hyphae formation and sporulation are positively correlated. There were 

significant differences (p ≤ 0.05) in radial mycelium growth rate (colony diameter) among the 

isolates on the V8 medium at 7 dpi. The percentage of isolates exhibiting slow growth (≤ 41.0 

mm) was 15.7%, those with moderate growth (41.1 ~ 46.0 mm) made up 37.1% and fast 

growth (≥ 46.1 mm) comprised the remaining 47.1%. There was no relationship between 

sporulation and colony growth in Fig. 4. This can be seen with isolates MG 19 and 

531RWA11 which both had the same high sporulation (“++”) but different colony diameters 

(53.8 mm and 38.9 mm, respectively).  

Mycelial dry weight also showed significant differences (p ≤ 0.05) after 10 days incubation on 

a Liquid Fries Complete media (see Method and materials 2.3.2.3). The mycelium growth was 

grouped into slow growth (≤ 1.20 g), moderate growth (1.21 g ~ 1.60 g) and fast growth (≥ 

1.61 g), and the proportion of each group was calculated to be 18.6%, 67.1% and 14.3%, 

respectively. The majority of isolates presented similar growth rates on Liquid Fries Complete 

medium. 

From the perspective of the host and geographical origin to compare the differences, these 

isolates have demonstrated some variability in cultural characteristics. For the specific 

description, the variability of all characteristics has shown within and among wheat isolates 

from different geographical origins (Brazil, Bolivia and Japan). Rice isolates from three 

countries (Philippines, Uganda and Rwanda) displayed similarities in colony morphology 

(raised/convex and flocculent features, white to gray color and moderate to luxuriant aerial 

mycelium) but differences were observed in sporulation, colony diameter and mycelial dry 

weight. The isolates of finger millet and perennial ryegrass from Japan had similar aerial 

mycelium formation, sporulation, colony diameter and mycelial dry weight, but varied in 

colony features and mycelium color. This suggested that there is no association between 

colony characteristics and host species or geographical origin. 
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Table 5 Cultural characteristics of Magnaporthe spp. isolated from different hosts and origins 

Isolate 

Colony morphology* 

Sporu

lation 

Diameter 

at 7 dpi 

(mm)** 

Mycelial 

dry 

weight 

(g)** 
Feature 

Color of 

mycelium 

Aerial 

mycelium 

T-4 / Br48 Flat, dull gray, translucent Scanty - 43.2 f-t 1.52 b-k 

MG 1.2 
Raised, 

flocculent 
White Luxuriant ++ 51.2 a-d 1.21 j-s 

MG 5 
Convex, 

flocculent 
White Luxuriant ++ 49.3 a-f 1.30 g-q 

MG 8 Flat, dull gray, translucent Scanty - 41.7 j-t 1.31 g-q 

MG 11 
Raised, 

flocculent 
White Moderate ++ 47.0 a-n 1.50 b-l 

MG 14 Raised, dull 
White to gray,  

translucent 
Moderate + 46.7 b-p 1.17 l-s 

MG 27 
Raised, 

flocculent 

White to gray,  

translucent 
Luxuriant ++ 41.0 n-t 1.53 b-j 

MG 44 Flat, dull gray, translucent Scanty - 42.5 h-t 1.13 m-s 

MG 51 
Flat, 

flocculent 

White to gray,  

translucent 
Scanty + 49.7 a-e 1.00 q-s 

MG 52 
Raised, 

flocculent 

White to gray, 

cloudy 
Moderate + 48.5 a-h 1.01 p-s 

MG 5.1 
Raised, 

flocculent 
White Luxuriant ++ 47.7 a-k 1.29 h-q 

MG 5.2 Flat, dull 
White to gray,  

translucent 
Scanty + 45.3 c-q 1.18 l-s 

MG 8.1 Flat, dull White to gray Scanty + 47.8 a-j 1.13 m-s 

MG 8.2 Flat, dull 
White to gray, 

translucent 
Scanty - 47.2 a-m 0.90 rs 

MG 20.3 Flat, dull White to gray Scanty - 46.8 a-o 1.22 j-s 

MG 29 Flat, dull 
White to gray, 

translucent 
Moderate + 46.7 b-p 1.31 g-q 

MG 9 
Raised, 

flocculent 
White Luxuriant ++ 44.0 e-t 1.29 h-q 

MG 12 
Raised, 

flocculent 
White Luxuriant ++ 46.2 c-p 1.33 f-q 

MG 16 
Convex, 

flocculent 
White to gray Luxuriant ++ 49.0 a-g 1.34 e-q 

MG 38 
Raised, 

flocculent 
White Luxuriant ++ 53.3 ab 1.35 d-p 

MG 50 Flat, rough White to gray Moderate - 45.8 c-p 0.88 s 

MG 52 Flat, rough White to gray Scanty - 47.2 a-n 1.04 o-s 

MG 53 
Raised, 

flocculent 
White to gray Luxuriant ++ 47.8 a-l 1.26 i-q 

MG 54 
Raised, 

flocculent 
White Luxuriant + 47.8 a-j 1.28 i-q 

Ca89 
Raised, 

flocculent 
gray Moderate ++ 44.3 e-s 1.67 a-e 

43 
Raised, 

flocculent 
White to gray Moderate + 42.8 g-t 1.58 a-i 
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Isolate 

Colony morphology 

Sporu

lation 

Diameter 

at 7 dpi 

(mm) 

Mycelial 

dry 

weight 

(g) 
Feature 

Color of 

mycelium 

Aerial 

mycelium 

JMB8401 
Raised, 

flocculent 
White Moderate - 41.5 k-t 1.66 a-f 

AGT211 
Flat, 

flocculent 
White Moderate + 40.7 p-t 1.75 ab 

M36-1-3-10-1 
Flat, 

flocculent 
White to gray Moderate - 35.3 u 1.72 a-c 

C9228-37 
Raised, 

flocculent 
White to gray Luxuriant + 41.5 k-t 1.52 b-k 

CBN9214-1 
Raised, 

flocculent 
White to gray Luxuriant + 42.0 i-t 1.57 b-i 

B90103 

(BN111) 

Raised, 

flocculent 
White to gray Moderate ++ 44.7 d-r 1.62 a-h 

B90099 
Raised, 

flocculent 
White to gray Moderate + 44.3 e-s 1.67 a-e 

M39-1-2-21-2 
Raised, 

flocculent 
White Moderate + 46.3 c-p 1.90 a 

V850256 
Raised, 

flocculent 
White to gray Moderate ++ 43.7 e-t 1.72 a-c 

V86010 
Raised, 

flocculent 
White Moderate ++ 42.7 g-t 1.68 a-d 

Br116.5/T-7 Flat, dull White to gray Scanty - 39.8 q-u 1.38 d-o 

Ken 15-15-1 Flat, rough White to black Moderate ++ 46.2 c-p 1.50 b-l 

TP / L-2 
Raised, 

flocculent 
White to black Luxuriant ++ 42.7 g-t 1.48 b-l 

FI5 / L-5 
Raised, 

flocculent 
White to green  Moderate ++ 46.5 b-p 1.39 c-n 

1836-3/0-12 
Convex, 

flocculent 
White Luxuriant ++ 42.7 g-t 1.08 n-s 

MG 19 
Raised, 

flocculent 
White and black Luxuriant ++ 53.8 a 1.37 d-o 

MG 21 
Raised, 

flocculent 
White Luxuriant ++ 48.3 a-h 1.46 b-m 

MG 25 
Raised, 

flocculent 
White Luxuriant ++ 52.2 a-c 1.36 d-o 

MG 28 Raised, dull White to gray Moderate + 49.0 a-g 1.41 c-n 

MG 30 
Raised, 

flocculent 
White Luxuriant ++ 48.3 a-h 1.46 b-m 

MG 31 
Convex, 

flocculent 
White Luxuriant ++ 51.0 a-d 1.44 b-m 

MG 32 
Raised, 

flocculent 
White and black Luxuriant ++ 46.7 b-p 1.29 h-q 

MG 33 
Raised, 

flocculent 
White and black Luxuriant ++ 43.3 e-t 1.25 i-r 

MG 39 
Convex, 

flocculent 
White to gray Luxuriant + 39.8 q-u 1.17 l-s 

MG 48 
Convex, 

flocculent 
White Luxuriant ++ 47.3 a-m 1.31 g-q 



Results 

 46 

Isolate 

Colony morphology 

Sporu

lation 

Diameter 

at 7 dpi 

(mm) 

Mycelial 

dry 

weight 

(g) 
Feature 

Color of 

mycelium 

Aerial 

mycelium 

482RWA09 Convex, dull White to gray Moderate ++ 40.7 p-t 1.44 b-m 

503UGA09 
Convex, 

flocculent 
White Luxuriant ++ 46.7 b-p 1.52 b-k 

520UGA09 
Convex, 

flocculent 
White Luxuriant ++ 48.0 a-i 1.47 b-m 

523UGA09 
Convex, 

flocculent 
White Luxuriant ++ 47.2 a-m 1.58 a-i 

524UGA09 
Convex, 

flocculent 
White Luxuriant ++ 49.3 a-f 1.63 a-g 

492RWA11 
Raised, 

flocculent 
White Moderate ++ 43.7 e-t 1.19 k-s 

500RWA11 Flat, rough White to gray Moderate ++ 43.3 e-t 1.09 n-s 

528UGA11 
Raised, 

flocculent 
White and black Luxuriant ++ 39.5 q-u 1.53 b-j 

531UGA11 
Raised, 

flocculent 
White Luxuriant ++ 38.8 s-u 1.54 b-j 

552UGA11 
Convex, 

flocculent 
White Luxuriant ++ 40.8 o-t 1.34 e-q 

556UGA11 
Convex, 

flocculent 
White and black Luxuriant ++ 41.2 m-t 1.48 b-l 

559UGA11 
Raised, 

flocculent 
White and black Luxuriant + 38.5  tu 1.52 b-k 

561UGA11 
Raised, 

flocculent 
White Luxuriant ++ 41.7 j-t 1.36 d-o 

MG 10 
Raised, 

flocculent 
White Luxuriant ++ 49.0 a-g 1.23 j-s 

563UGA11 
Raised, 

flocculent 
White Moderate + 39.3 r-u 1.42 b-n 

564UGA11 
Raised, 

flocculent 
White Moderate + 39.3 r-u 1.48 b-l 

RWA 11.2 
Raised, 

flocculent 
White Moderate ++ 41.5 l-t 1.29 h-q 

507RWA11 
Flat, 

flocculent 
White to gray Moderate ++ 44.2 e-t 1.28 i-q 

511RWA11 
Flat, 

flocculent 
White to gray Moderate + 41.8 i-t 1.32 g-q 

* Description of colony morphology following Breakwell et al. (2013) 

**The values are the means of three replications, which are followed by different letters indicating 

significant differences (p ≤ 0.05) between the isolates. These are calculated by the Tukey HSD (honestly 

significant difference) test. 

 

3.1.4 Mycelial growth rate after exposure to low temperature 

The colonies were exposed to low temperatures (4°C or -20°C) for 2 d. The effect of low 

temperature on colony growth trend of the 5 selected isolates was similar (Fig. 5).  However, 



Results 

 47 

there were significant differences (p ≤ 0.05) on colony diameters among different isolates and 

treatments. The characteristic differences between the five isolates are described in Table 5. 

After 8 days of incubation, the colony diameters for all five isolates were smaller than the 

control after treatment at 4°C. Meanwhile, the isolates treated at -20°C were observed the 

minimum value for its diameter. Sporulation under microscopy showed a large reduction at -

20°C, and fewer spores were produced at 4°C compared to the control.  

 

Figure 5 Average growth rates of wheat isolates (Magnaporthe grisea) on V8 from different 

origins at 8 dpi after low temperature storage treatment for two days. Each value is the 

average of 3 individual plates per isolate. 

 

The growth trend of the five isolates were similar prior to the temperature treatment. For this 

reason, only the growth curves of MG 5 from 8 d measuring data are shown in Fig. 6. The 

same growth rate was observed from 1d to 3d at 25°C in all Petri dishes. The cold treatments 

were performed at 4 d and 5 d and the rate of colony growth was slowed down at 4°C and 

completely prevented at -20°C because the media were frozen. From 6 d, mycelia slowly 

began to grow faster after being taken from 4°C to 25°C in the climate chamber; in the 

meantime, mycelia, which were kept at -20°C, started to slowly grow again with the thawing 

media at 25°C. 
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Figure 6 Colony growth of wheat isolate MG 5 measured for eight consecutive days on V8 

after the low temperature treatments. Each value is the average of 3 individual plates. The 

values followed by different letters indicate significant differences at p ≤ 0.05, calculated by 

the Tukey HSD test. 

3.2 Microclimatic requirements for wheat blast infection on wheat ears 

The objective of this experiment was to find out the influence of different environmental 

factors on the development of M. grisea on wheat ears, and determine the optimum conditions, 

especially under varying temperature and spike-wetness time. Starting from 7dpi, clear 

symptoms could be identified on infected ears. Initial symptoms for M. grisea were observed 

as the spikelets took on a black color with pale yellow dots. These dots then became larger 

until most of or even the whole spikelet became bleached.  

Symptoms were recorded at 14 dpi for all treatments. The effects of varying temperature and 

spike-wetness time on the disease severity are shown in Fig. 7. The differences were 

significant (p ≤ 0.05) among the different temperatures. Ear bleaching was more severe at 

temperatures above 26°C compared to lower temperatures. As the temperature rose, disease 

severity increased up to a value of 5 and more than 80% of wheat ears were bleached. 

However, when temperatures were higher than 23°C, the upward trend of disease severity 

slowed down, and similar severity was observed at both 29°C and 32°C. The results suggest 

that 26°C is conducive to the development of M. grisea on wheat ear.  

The main symptom of wheat blast is ear bleaching, as is also the case for other pathogens 

such as Fusarium head blight or unfavorable abiotic environmental conditions such as high 

temperature. In the control group, wheat ears - which were sprayed with distilled water and 

incubated at the same conditions - still remained green without any visible symptoms. At 

maturity, the control plants were still able to produce kernels. This proved that the wheat 

plants were not affected by other pathogens or high temperature.  

For the environmental factor of spike-wetness time, it was noted that as the wetness time 

increased, disease severity showed a corresponding slow increase. However, there was 

insignificant (p ≤ 0.05) difference between different time treatments. Mean disease severity 

values from four treatments were similar and ranged from three to four. When the wetting 

time lasted up to 24 h (a period in which most spores would germinate), disease severity had 
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reached 3.33 and more than half of all wheat ears were bleached. Hence, a spike-wetness time 

of 24h is sufficient for infection by M. grisea in our further experiments.   

 

Figure 7 Disease severity of Magnaporthe grise (MG 1.2 and MG 5) on wheat ears (BR 18) 

under various treatments of incubation temperature and spike-wetness time at 14 dpi. Each 

gray bar represents the mean of four spike-wetness time values and each black bar represents 

the mean of five temperature values. The values followed by different capital or small letters 

indicate significant differences at p ≤ 0.05, calculated by the Tukey HSD test. 

 

The effects of the two environmental factors temperature and spike-wetness time on disease 

severity at 14 dpi are shown in Table 6. The difference was highly significant (P = 0.000) for 

each factor separately, but was insignificant (P = 0.833) for the interaction of two factors. In 

Table 6, there was no significant difference between the four wetness times in the lowest 

treatment (20°C). This proves that lower temperatures are not conducive to the growth of M. 

grisea on wheat ears, regardless of the duration of humidity. Comparing disease severity in 

the treatments between 20°C and 26°C, the value of severity (1.94 ± 0.73) under lower 

temperature and longer wetness (20°C*96h) was much smaller than that (3.61 ± 0.74) under 

higher temperature and shorter wetness (26°C*24h). This shows that as the temperature rises, 

disease severity increases. Significant differences were observed in the treatments of 23°C 

and 26°C, as disease severity was shown to be higher under a wetting time of 96 h than it was 

for 24 h. This indicates that a longer duration of humidity would promote infection in warm 

conditions and suggests that the inoculated plants should be kept under high humidity 

conditions (˃80%) after inoculation. However, differences were shown to be insignificant in 

the temperature range 26°C-32°C. The disease severity of 4.11 (± 0.65) under 26°C*48h was 

quite similar to that of 4.50 (± 0.66) under 32°C*24h. This seems to indicate that after the 

temperature reaches the optimum point it no longer influences disease severity. Overall, 
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results illustrate that temperature is the main factor in influencing disease severity, but it is 

also very important to maintain the infected plants in high humidity after inoculation. 

Therefore, optimum conditions for the infection of M. grisea were chosen to be 26°C with the 

plants kept in high humidity conditions for 24h after inoculation.  

 

Table 6 Disease severity of wheat blast as affected by two environmental factors (temperature 

and spike-wetness time) on wheat ears (BR 18) which inoculated with mixed spore 

suspension from MG 1.2 and MG 5 at 14 dpi, calculated from the mean of nine leaves (± 

standard deviation) per group.  

    Spike-wetness 

Time 

Temperature 

24 h 48 h 72 h 96 h 

20°C 1.17 (± 0.56) g* 1.39 (± 1.08) g 1.89 (± 0.60) fg 1.94 (± 0.73) fg 

23°C 3.06 (± 0.68) e-g 3.56 (± 0.92) d-f 3.89 (± 0.60) b-e 4.22 (± 0.75) a-d 

26°C 3.61 (±0.74) c-e 4.11 (± 0.65) a-e 4.39 (± 0.65) a-d 4.61 (± 0.42) a-c 

29°C 4.33 (± 0.50) a-d 4.33 (± 0.66) a-d 4.78 (± 0.26) ab 4.89 (± 0.22) a 

32°C 4.50 (± 0.66) a-d  4.61 (± 0.70) a-c 4.94 (± 0.17) a 4.94 (± 0.17) a 

*Each value represents the mean of three replications. All values followed by different letters indicate 

significant differences at p ≤ 0.05, calculated by the Tukey HSD test. 

3.3 Pathogenicity differentiation on seedling leaves 

Pathogenicity tests for Magnaporthe spp. were performed to confirm cross-infectivity 

between wheat and rice. Leaves of wheat and rice seedlings were inoculated with seventy 

Magnaporthe isolates from different geographical origins, of which thirty isolates were from 

rice and forty were from wheat and other grasses. The typical blast symptoms (Fig.1 d) on 

wheat leaves are elliptical, elongated lesions with a light to dark green center and yellow 

margin which corresponds to the region colonized by the fungus. The symptoms on rice 

leaves vary according to the environmental conditions. Expanding elliptical or spindle-shaped 

lesions and whitish to gray centers with red to brownish or necrotic margins were observed in 

our controlled conditions (Fig. 1 e).  

Disease incidence was recorded at 6 dpi and is presented in Fig. 8. All isolates have produced 

typical lesions on their host plants, but there were significant differences (p ≤ 0.05) in the 

ability of the infection among the seventy isolates. For example, wheat isolate MG 8 caused 

100% of disease incidence on wheat, yet another wheat isolate - MG 44 - colonized only 10% 

of wheat leaves. The same differences also occur on rice isolates: 507RWA11 and CBN9214-
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1 showed 62.5% and 12.5% of incidence, respectively, on rice seedling leaves. This indicates 

that there is a variability of pathogenicity on Magnaporthe isolates.  

In addition, thirty-six out of forty isolates from wheat and other grasses were able to form 

small reddish to brown pin-point lesions on rice leaves (disease incidences were 5% - 32.5%), 

but isolation of mycelium from the lesions failed. Considering the response of wheat leaves to 

the infection from rice isolates at 6 dpi, only a few rice isolates were able to cause spindle-

shaped white to gray lesions, yet no pathogen was isolated from those lesions. Thus, thirty-

five isolates from wheat and other grasses and eleven rice isolates were able to cause lesions 

on both wheat and rice. Meanwhile five other isolates from wheat and other grasses were only 

pathogenic to wheat and nineteen rice isolates were only pathogenic to rice. 

Differences were also observed in the response of wheat and rice leaves to the same isolates. 

Wheat leaves were highly infected by isolates MG 19 and MG 33, and disease incidence 

reached 100% so that the entire wheat leaf gradually withered with an inwardly curling edge 

until it was completely dead. However, incidences were found to be very low for rice leaves - 

0% and 10%, respectively. In contrast, isolate 531UGA11 could not infect wheat leaves, but it 

colonized 55% of rice leaves. However, isolate 492RWA11 caused a similarly high disease 

incidence on wheat and rice leaves, 42.5% and 45%, respectively, and isolate Br116.5 / T-7 

showed similarly low infection in both hosts, 5% on wheat leaves and 7.5% on rice leaves.  

There was a significant difference (p ≤ 0.05) of disease severity in the ability of fungal strains 

to infect host and non-host plants (Fig. 9 and Table 7).  In compatible interactions between 

pathogen and host plant, the vast majority of wheat isolates caused a disease severity value of 

at least 4. More specifically, all wheat isolates were able to infect wheat leaves and 87.5% of 

these could colonize more than half of the leaves at 6 dpi. Indeed, 35% of isolates were able 

to colonize over 80% of the leaf area. For other pathogen-host interactions, 93.3% of rice 

isolates successfully reached disease severity values between 4 and 5 on rice leaves, meaning 

that 50% - 80% of rice leaves were infected by their compatible pathogens. In the 

incompatible interactions (i.e. post-penetration stopping of fungal invasion) between pathogen 

and non-host plant, most isolates from wheat caused 20% - 50% symptoms on rice leaves 

with a severity of between 3 and 4; yet, most rice isolates developed less than 5% of lesions 

on wheat leaves, with a corresponding disease severity value of between 1 and 2.
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Figure 8 Disease incidence of blast on wheat (BR 18, black bars) and rice (CO 39, gray bars) seedlings inoculated with seventy Magnaporthe spp. 

isolates at 6dpi. Disease incidence was expressed as the percentage of coverage by the lesion of the whole leaf, and the values are the means of three 

replications. The values followed by different letters indicate significant differences at p ≤ 0.05, calculated by the Tukey HSD test. 

 

Figure 9 Disease severity of blast on wheat (BR 18, black bars) and rice (CO 39, gray bars) seedlings inoculated with seventy Magnaporthe spp. 

isolates at 6 dpi. Disease severity was assessed according to Murakami et al. (2000) with 6 levels: 1 = no lesion, 2 = lesion ≤ 5%, 3 = lesion 6% ~ 

20%, 4 = lesion 21% ~ 50%, 5 = lesion 51% ~ 80%, 6 = lesion ≥ 81%. The values followed by different letters indicate significant differences at p ≤ 

0.05, calculated by the Tukey HSD test. 



Results 

 53 

Table 7 Comparison of disease severity on wheat and rice seedlings by seventy Magnaporthe 

spp. isolates at 6 dpi. 

Group of isolates Disease index* 
Number and percentage of isolates pathogenic on 

Wheat (%) Rice (%) 

Magnaporthe grisea 

(40 isolates collected 

from wheat, finger 

millet and perennial 

ryegrass) 

1 1 (2.5%) 5 (12.5%) 

2 2 (5.0%) 5 (12.5%) 

3 2 (5.0%) 17 (42.5%) 

4 13 (32.5%) 13 (32.5%) 

5 8 (20%) 0 (0%) 

6 14 (35%)  0 (0%) 

Magnaporthe oryzae 

(30 isolates collected 

from rice) 

1 11 (36.7%) 0 (0%) 

2 11 (36.7%) 0 (0%) 

3 6 (20.0%) 2 (6.7%) 

4 2 (6.7%) 25 (83.3%) 

5 0 (0%) 3 (10.0%) 

6 0 (0%) 0 (0%) 

* Disease index was according to Murakami et al. (2000) with 6 progressive grades: 1 = no lesion, 2 = 

lesion ≤ 5%, 3 = lesion 6% ~ 20%, 4 = lesion 21% ~ 50%, 5 = lesion 51% ~ 80%, 6 = lesion ≥ 81%  

3.4 Phylogenetic relationships among Magnaporthe spp. isolates from different hosts 

and geographical origins addressed by AFLP 

DNA fragments from seventy Magnaporthe spp. isolates were specifically amplified using 

three AFLP primer combinations. A band was recorded only when it was present in two or 

more isolates to avoid manual errors. A total of 175 AFLP bands were selected for the 

calculation of genetic distance and the phylogenetic analysis. Bands were considered 

polymorphic if the frequency of one of its states (present or absent) was no less than one. 

Using this definition, approximately 85% of bands were found to be polymorphic. 

Fig. 10 displays a phylogenetic tree (UPGMA) obtained by using similarity coefficients. The 

cophenetic correlation coefficient (0.95) indicated little distortion between the original 

similarity values from the similarity matrix and the values used to construct the dendrogram. 

Two distinct groups were identified in Fig. 10 at a similarity value of 0.57 by bootstrapping 

(100%). Within group I, two subgroups (A and B) were observed, which were joined by a 

node at the 74% similarity level.  



Results 

 54 

The phylogenetic tree (Fig. 10) revealed that all seventy isolates were clustered and each 

group was associated with its host plant. Populations from wheat dominated (92.5%) group I, 

however the group also contained one isolate from finger millet and two isolates from 

perennial ryegrass; group II was composed of all thirty rice isolates. Isolates derived from 

finger millet and perennial ryegrass appeared to be more closely related to wheat isolates and 

shared 87.5% of similarities with wheat isolate MG38, MG 50 and 1836-3/0-12.  

In group I, subgroup A was composed of the isolates from Brazil (50%) and Bolivia (50%). 

Whereas, subgroup B contained 73%, 23% and 3% of wheat isolates collected from Brazil, 

Bolivia and Japan, respectively. In group II, 12 rice isolates from the Philippines were 

separated into three subgroups (58%, 9% and 33%, respectively) with 0.79 and 0.83 of 

similarities to each other. The isolates derived from Uganda were divided into several small 

subgroups with an average similarity coefficient of around 0.83, while 6 isolates collected 

from Rwanda shared a similarity range between 0.79 and 0.85. 

Figure 10 Phylogenetic tree (unweighted pair group method with arithmetic mean, UPGMA) 

produced from amplified fragment length polymorphism (AFLP) fingerprint patterns 

observed in seventy Magnaporthe spp. isolates. Coefficient scale indicates the horizontal 

distance corresponding to genetic similarity as measured by the Dice similarity coefficient. 

Bootstrap values greater than 70 are indicated adjacent to the nodes and are based on 1,000 

replications.  
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3.5 Multilocus gene genealogy analyzed by MLST 

3.5.1 Sequence preparation from three genes for the phylogenetic analysis  

The sequence information for fragments of three housekeeping genes - actin, ß-tubulin and 

calmodulin from Magnaporthe spp. - were generated and compared with complete sequence 

data published in NCBI. Introns and exons of these three genes were identified and labeled 

(Fig. 11). Sequence lengths for the final analysis were 294 bp (gene actin), 684 bp (gene ß-

tubulin) and 597 bp (gene calmodulin). The mutation frequency for introns and exons is 

greatly variable, hence they were separately analyzed. In addition, introns for actin and exons 

for ß-tubulin in each isolate are too short for analysis, therefore the introns from three genes 

were concatenated for each isolate, while the same method was used for the exons. The total 

sequence length for concatenated introns and concatenated exons was 906 bp and 669 bp, 

respectively, for each isolate. The concatenated data set, comprising twenty Magnaporthe spp, 

was then analyzed by MLST. 

 

 

Figure 11 Diagram of three genes (actin, ß-tubulin and calmodulin) with labeled intron and 

exon positions. The length of analyzed sequences for actin, ß-tubulin and calmodulin were 

294 bp, 684 bp and 597 bp, respectively. 

 

3.5.2 Dendrograms composed by concatenated intron sequences 

To determine genetic differences in the population of twenty Magnaporthe isolates derived 

from wheat and rice, phylogenetic analysis of three housekeeping genes was performed. 
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Multiple sequence alignment (Fig. A3 and A4) by ClustalW and dendrograms for 

concatenated intron sequences (Fig. 12) by neighbor-joining were performed by Mega 6.0.5. 

As shown in Fig. 12, twenty Maganaporthe isolates were divided into four groups according 

to their concatenated intron sequences with genetic distances. Group Ai was composed of the 

isolates from wheat (43%), rice (43%) and perennial ryegrass (14%). The three rice isolates 

were close to each other with a bootstrap value of 99%. Meanwhile, the three wheat isolates 

were grouped together with 92% bootstrapping and were associated with one isolate from 

perennial ryegrass. In group Bi, three wheat isolates which clustered together and were close 

to another perennial ryegrass isolate with 74% bootstrap support. Group Ci only contained 

two rice isolates with 99% bootstrapping. Moreover, group Di was distinct from the other 

three groups and had 100% bootstrap support. However, it has a similar clustering structure to 

group Ai, and the isolates included in group Di were derived from rice, wheat and finger 

millet (43%, 43% and 14%, respectively.) These seven isolates were also separated into two 

subgroups according to the different hosts, and the isolate (Ken15-15-1) from finger millet 

was associated with three wheat isolates. Each group contained isolates from different hosts 

and geographical origins. 
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Figure 12 Dendrogram (Neighbor-joining) produced from concatenated introns of three 

housekeeping genes (actin, ß-tubulin and calmodulin) for twenty Magnaporthe spp. isolates 

derived from different hosts. Scale bar (0.005) indicates the genetic horizontal distance 

corresponding to the distance matrix by Neighbor joining. Bootstrap values greater than 70 

are indicated adjacent to the nodes and are based on 1,000 replications.  

 

3.5.3 Dendrograms composed by concatenated exon sequences 

The sequences from exons are highly conserved, therefore very low diversity was detected 

from their sequence data (Fig. 13). Similar results were also observed in clusters of introns. 

Two distinct groups were formed. Group Ae contained isolates from different hosts, with 46% 

of isolates from wheat, 39% from rice and 15% from perennial ryegrass; meanwhile, group 

Be contained three wheat isolates and three rice isolates, as well as one isolate from finger 

millet. The sequences of all Magnaporthe isolates within each group showed a high degree of 

consistency. 
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Figure 13 Dendrogram (Neighbor-joining) produced from concatenated exons of three genes 

(actin, ß-tubulin and calmodulin) for twenty Magnaporthe spp. isolates derived from different 

hosts. The scale bar (0.005) indicates the genetic horizontal distance corresponding to the 

distance matrix by Neighbor joining. Bootstrap values greater than 70 are indicated adjacent 

to the nodes and are based on 1,000 replications.  

3.5.4 Genetic diversity 

The parameters for the Nei equation were estimated by Popgene software among four 

population groups (wheat, rice, finger millet and perennial ryegrass) related to genetic 

diversity. Polymorphic loci and genetic diversity from intron data is shown in Table 8, while 

exon data is shown in Table 9.  

Table 8 estimated Nei's parameters according to the concatenated intron data, showing that 

41% of relative variation (GST) in allele frequencies corresponds to differences among groups 

with 0.0179 (SD ± 0.0048) of total diversity (HT). The percentages of polymorphic loci for the 

four groups ranged from 0% - 7.84%. Average diversities within the groups (HS) were, 

respectively, 0.03 ± 0.1072 for wheat, 0 for finger millet, 0.0143 ± 0.0835 for perennial 

ryegrass and 0.0273 ± 0.1091 for rice. The diversity values both inside and outside the groups 

demonstrated that genetic drift does not frequently occur in these fungi within host-species 

groups, but differences between groups are still very evident. In addition, the number of 
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isolates from finger millet and perennial ryegrass was very low, only 1 and 2, respectively. 

Therefore, low diversity coefficients (HS) for these two groups do not represent the actual 

diversity of their population, and only denote a control parameter in this test.  

 

Table 8 Polymorphic loci and genetic diversity of twenty Magnaporthe isolates from four 

populations, according to their intron data. 

Population Polymorphic loci % HS 

Wheat  71 7.84 0.03 ± 0.1072 

Finger millet 0 0 0 

Perennial  ryegrass 26 2.87 0.0143 ± 0.0835 

Rice  54 5.96 0.0273 ± 0.1091 

Average HS = 0.0179 ± 0.0048; HT = 0.0303 ± 0.0122; GST = 0.4096 

 

Very low diversities within the group were estimated from concatenated exon data (Table 9). 

The relative differentiation among all four groups (GST) was 53% and the total diversity (HT) 

was 0.0072 ± 0.0016. The diversity within groups (HS) was shown to be 0% in the finger 

millet and perennial ryegrass groups, 1.42% in the wheat group and 1.47% within the rice 

group. The HS values in the finger millet and perennial ryegrass groups were zero, therefore 

the diversity index among the four groups increased. The diversity values derived from 

concatenated exon data suggests that in the exon sequences, the frequency of mutation is very 

low and proves that the exon is much more conservative. It should be concerned that there 

were only one isolate from finger millet and two from perennia ryegrass, results of the 

analysis would be more accurate when there are more isolates from different hosts. 

Table 9 Polymorphic loci and genetic diversity of twenty Magnaporthe isolates from four 

populations, according to their exon data. 

Population Polymorphic loci % HS 

Wheat  22 3.29 0.0142 ± 0.0779 

Finger millet 0 0 0 

Perennia  ryegrass 0 0 0 

Rice  21 3.14 0.0147 ± 0.0818 

Average HS = 0.0072 ± 0.0016; HT = 0.0154 ± 0.0073; GST = 0.5311 
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3.6 Fungal growth in plant tissue measured with qPCR 

3.6.1 Primer sensitivity 

The accuracy of PCR-based assays can be significantly affected by the specificity and 

sensitivity of DNA primers. Before the amplification of the sample DNA, the size of 

amplified fragments of Pot2 transposon using primers pfh2a and pfh2b was checked on an 

agarose gel to determine the fragments’ abilities to amplify a specific DNA fragment from 

Magnaporthe spp.. This was achieved using the molecular tool PCR by Mullis & Faloona 

(1987), which amplifies a specific DNA fragment in vitro and is therefore a common 

technique for detecting and identifying pathogens with high sensitivity. Eleven Magnaporthe 

isolates, of which four were from wheat (MG 5, MG 19, MG 44and Br116.5 / T-7), four from 

rice (Ca 89, V86010, 528UGA11 and 507RWA11), one from finger millet (Ken 15-15-1) and 

two isolates from perennial ryegrass (TP / L-2 and FI5 / L-5), were tested for primer 

sensitivity and the presence of Pot2. Gel electrophoresis in Fig. 14 demonstrated the 

sensitivity of primer pair pfh2a and pfh2b. They successfully produced the diagnostic 

amplicon of the Pot2 transposon in all eleven Magnaporthe isolates which were collected 

from different hosts and geographical origins, and the amplified DNA fragments were the 

expected size, 687bp of the chromosome of Pot2.  

 

 

Figure 14 Detection of primer sensitivity for pfh2a and pfh2b by PCR on eleven 

Magnaporthe isolates. Lanes 1 to 4 were wheat isolates, lanes 5 to 8 were rice isolates, lane 9 

was the finger millet isolate, lanes 10 and 11 were perennial ryegrass isolates and lane 12 was 

the water control. The DNA fragments are 687 bp. 

 

Pannwitt (2012) also detected the specificity of primers pfh2a and pfh2b on eight different 

pathogens, Fusarium oxysporum 242/1, Alternaria solani 158, Magnaporthe grisea, 

Phytophthora infestans, Fusarium oxysporum f.sp. lycopersici, Hansfordia pulvinata, 

Rhizoctonia solani and Colletotrichum gloeosporioides. The result was that the single band of 

687 bp was amplified only from the Magnaporthe grisea isolate with the absence of this 

product in any other fungus tested. 
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Therefore, the primer pairs of pfh2a and pfh2b were used in the further detection of 

quantitative real-time PCR because of their specificity and sensitivity to Magnaporthe spp.. 

3.6.2 DNA standard curve 

The isolates selected were MG 5 and MG 31 from wheat and Ca 89 from rice. The standard 

curve formed by the amplification products of these three isolates is shown in Fig. 15. A 

linear relationship was established when the logarithm values of DNA concentrations (Log 

Starting Quantity) were plotted against Ct (cycle threshold) values. Fig. 15 clearly indicates 

the differences between the three isolates in Ct value under the same concentration. The 

correlation coefficient of this standard curve was 0.673. Interestingly, the Ct values from the 

two wheat isolates were very close to each other, and are both separated from the Ct value of 

the rice isolate. The initial concentration of each isolate was adjusted to the same 

concentration (10ng/µl) before the amplification reaction, so it is reasonable to exclude the 

possibility that there were any differences in the sample concentration. Further study into this 

separation is possible, to discover whether this is due to the copy number or amplification 

ability between wheat and rice isolates. Consequently, three standard curves were created 

using each isolate and calculating the biomass separately. 

 

 

Figure 15 Standard curve formed by the amplification products of three Magnaporthe isolates 

(MG 5, MG 31 and Ca 89). The amplified products of five concentrations from wheat isolates 

(MG 5 framed in red oval and MG 31 framed in blue oval) were above the standard curve, 

meanwhile the amplified products of five concentrations from rice isolate (Ca 89 framed in 

black oval) were under the standard curve. 
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In order to exclude the impact of plant DNA on PCR detection, the fungal DNA was mixed 

with both plant DNAs (wheat and rice), separately. The comparison of amplifications between 

pure fungal sample and mixed samples is shown in Fig. 16. Each 10-fold difference in initial 

DNA amounts is represented by approximately 3.5 cycle differences in the Ct value.  A 

standard curve was obtained with a good correlation coefficient (R
2
 = 0.997) and 95.8% 

efficiency (an average from three tests of different DNA sample preparations), indicating that 

the individual data points were highly correlated with the calculated linear regression. There 

were no differences presented in the Ct values between the pure fungal sample and the mixed 

sample. Therefore, the presence of plant DNA did not interfere with the final detection of 

qPCR when the infected leaf samples were prepared using the same method with fungal DNA 

extraction. 

 

Figure 16 Standard curve formed by pure fungal DNA, and the comparison with mixed DNA 

samples (fungi DNA mixed with plant DNA). “o” represents the Ct values from pure fungi 

DNA, and “×” represents the Ct values from mixed DNA samples.  

 

3.6.3 Quantitative real-time PCR detection  

In order to quantify the degree of colonization of infected leaves and to observe the course of 

infection of Magnaporthe spp. in host and non-host plants, we employed quantitative real-

time polymerase chain reaction (PCR) using total DNA extracted from infected leaves at 2 dpi, 

4 dpi and 6 dpi. Ct values were calculated and the biomasses of fungal DNA for three isolates 

were estimated using their own standard curves.  

Fungal biomass in infected plant leaves at 6 dpi was calculated using DNA standard curves 

and is shown in Fig. 17. In accordance with the disease severity observed in infected leaves, 

the highest amount of fungal DNA (approximately 199 pg of fungal DNA per 1 mg of plant 

sample) was found in the interaction between wheat isolate MG31 and its host plant. Slightly 

less in biomass (174 pg/mg) was present in wheat leaves infected by another wheat isolate 

MG 5, congruent with the reduced disease symptoms on wheat leaves. The lowest amount of 

fungal DNA (133 pg/mg) was detected in the interaction between rice isolate Ca 89 and its 

host plant.  
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Figure 17 Quantification of fungal biomass detected by quantitative real-time PCR with the 

primer pair pfh2a and pfh2b on wheat and rice leaves which were inoculated with three 

Magnaporthe isolates at 6 dpi. Each value represents the average and standard deviation of 

three DNA samples and is followed by different letters indicating significant differences at p 

≤ 0.05, calculate by the Tukey HSD test.  

Fig. 18 illustrates the fungal infection trend of Magnaporthe spp. in the host and non-host 

plants at 0, 2, 4 and 6 dpi. Fungal DNA was detected at 0 and 2 dpi with similar amounts for 

all interactions, confirming that a considerable amount of inoculum had remained on the leaf 

surfaces while preparing samples. Depending on the different interactions, fungal biomass  

increased with varying degrees over time. In the infection of wheat isolates with their host 

plant, a rapid development occurred between 2 and 4 dpi and was followed by a reduction in 

the growth. However, the rice isolate Ca 89 began to rapidly grow on the rice leaves after 4 

days of inoculation. On the other hand, the infections were restricted to incompatible 

interactions and the biomass of them was much lower than in the case of infection of the 

pathogen with their host plants. This is due to the inhibition of non-host resistance to the 

development of pathogens.  
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Figure 18 Growth of Magnaporthe spp. in wheat and rice leaves measured by fungal DNA 

biomass using quantitative real-time PCR. Each data point represents the average and 

standard deviation of three DNA samples at a specific time (0, 2, 4, or 6 dpi).  

 

3.7 Pathogen development on leaves of wheat and rice studied with CLSM 

To determine the development of Magnaporthe spp. (MG5, MG 31 and Ca 89) on host and 

non-host plants, the infection process was microscopically evaluated on wheat (BR 18) and 

rice (CO 39) by confocal laser scanning microscopy (CLSM). The frequency of each cellular 

interaction phenotype was scored after inoculation at different time points (12 , 24, 48 and 72 

hpi). These time points were selected for examination based on the infection of Magnaporthe 

on rice and were predicted to cover pre-invasion and post-invasion stages of pathogen 

development (Kankanala et al., 2007). The growth of hyphae was classified into four stages: 

stage one is the appressorium formation; stage two is the initial growth of the primary hyphae 

into the cells; stage three is the extensive invasion of the initially invaded cells; and stage four 

is the colonization of hyphae in the adjacent cells and intercellular spaces. All the samples 

from wheat leaves and rice leaf sheaths were double stained by WGA-AlexaFluor488 

conjugate and propidium iodide (PI). Stained images are shown in Fig. 19 (A) and Fig. 19 (B). 

Fungal structures (conidia, germination tubes and appressorium) were stained by WGA-

AlexaFluor488 (yellow-green), and the infection hyphae in the cells were highlighted by PI 

(red). However, plant structures were also stained with this nonspecific stain (Ramonell et al., 

2005). 

All three Magnaporthe isolates produced infection on wheat leaves (BR 18) (Fig. 20) and rice 

leaf sheaths (Fig. 21). Almost all spores germinated and formed an appressorium (stage one) 

at 12 hpi on the surface of wheat leaves and rice leaf sheaths. Even the non-adapted isolates 

for each plant were able to produce appressoria and attempted to infect the non-host plant as 

effectively as the adapted isolate.  

Significant differences (p ≤ 0.05) on wheat leaves (Fig. 20) were found at 24 hpi when hyphae 

from both wheat isolates grew in the initially invaded cells. At 24 hpi, 33% of MG 5 and 26% 

of MG 31 reached stage two, and 18% of MG 5 and 30% of MG 31 were growing in the cells 

(stage three). Furthermore, at 24 hpi the transition from penetration to invasion occurred more 
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rapidly with isolate MG 31, but for the non-adapted isolate Ca 89, there was a lack of 

appressorium penetration for the rice isolate and only 9% of hyphae grew into the cells. 

Similar differences have also been demonstrated on rice leaf sheaths (Fig. 21). Insignificant 

differences (p ≤ 0.05) were visible at stage two with 21% from MG5, 28% from MG 31 and 

30% from Ca 89, but the differences were significant at stage three at 24 hpi: 19% of the rice 

isolate (Ca 89) grew in the rice leaf sheaths, and only 0% of MG 5 and 3% of MG 31 were 

found.  

Hyphae were well developed after 48 hours of inoculation and all the adapted isolates had 

reached the fourth stage indicating that hyphae were colonizing the adjacent cells and 

intercellular spaces. Wheat isolates MG 5 and MG 31 showed a similar growth trend from 

stage one to stage three at 48 hpi, but a slightly higher percentage of isolate MG 31 (9%) at 

stage four was observed on wheat leaves (Fig. 20). At this time point, the majority of 

appressoria from rice isolate Ca 89 were arrested in their development at the first stage, and 

only 19% of them penetrated into the cells of wheat leaves. Turning our attention to the 

response of the rice leaf sheaths at 48 hpi (Fig. 21), most of the hyphae from isolate Ca 89 

were growing in the epidermal cells, and 7% of them had even colonized the adjacent cells or 

occupied the intercellular spaces. However, for the non-adapted wheat isolates, only 5% and 

13% of MG 5 and MG 31, respectively, could reach the third stage.  

At the last observation time point of 72 hpi, the number of infection sites defined by 

appressorium formation decreased over time in all interactions, with only 29% (MG 5), 22% 

(MG 31) and 21% (Ca 89) of infection sites remaining on their host plants from stage one. For 

interactions on the wheat leaves (Fig. 20), significant differences (p ≤ 0.05) were recorded at 

all four stages between wheat isolate and rice isolate. Most notably, at the fourth stage 42% 

and 50% of multicellular infections were observed from isolates MG 5 and MG 31, 

respectively, in contrast to 0% of hyphae detected from rice isolate Ca 89: This is clearly 

indicative of a successful infection. The infection from Ca 89 were seen to form hyphae (22%) 

within epidermal cells (stage two) at 72 hpi, but it seemed to rarely develop hyphae (5%) in 

the cells (stage three). However, rice isolate Ca 89 successfully infected rice with 32% of 

hyphae detected at the fourth stage (Fig. 21). In the meantime, 60% (MG 5) and 49% (MG 31) 

of the other two isolates still remained in the first stage, but 4% of hyphae from wheat isolate 

MG 31 were observed in development on adjacent cells. The arrest of appressoria was 

occasionally accompanied with the formation of papilla, which could happen on both 

compatible and incompatible interactions. More precise observations on these structures were 

made by using autofluorescence microscopy. 
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Figure 19 (A) Detection of hyphal growth of isolate MG 5 at different time points (12, 24, 48 

and 72 hpi) on wheat leaves (BR 18) by confocal laser scanning microscopy (CLSM). Stage 

one (a) was detected at 12hpi when appressoria formed; stage two (b) was at 24hpi when 

hyphae started to grow within the cells; stage three (c) was at 48hpi when hyphae extensively 

invaded the initial cell; and stage four (d) was at 72 hpi when hyphae colonized the adjacent 

cells and intercellular spaces. All the samples were stained with WGA-AlexaFluor488 and PI 

for 48 h. Conidia, germination tubes and appressoria were stained with WGA-AlexaFluor488 

(yellow-green), and infection hyphae in the cells and plant structures were stained with PI 

(red). App: appressorium; Co: conidia; IH: infection hyphae. 
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Figure 19 (B) Detection of hyphal growth of isolate Ca 89 at different time points (12, 24, 48 

and 72 hpi) on rice leaf sheaths (CO 39) by confocal laser scanning microscopy (CLSM). 

Stage one (a) was detected at 12hpi when appressoria formed; stage two (b) was at 24hpi 

when hyphae started to grow within the cells; stage three (c) was at 48hpi when hyphae 

extensively invaded the initial cell; and stage four (d) was at 72 hpi when hyphae colonized 

the adjacent cells and intercellular spaces. All the samples were stained with WGA-

AlexaFluor488 and PI for 48 h. Conidia, germination tubes and appressoria were stained with 

WGA-AlexaFluor488 (yellow-green), and infection hyphae in the cells and plant structures 

were stained with PI (red). App: appressorium; IH: infection hyphae. 
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Figure 20 Distribution of wheat / Magnaporthe interaction stages over time. Wheat (BR 18) 

leaves were inoculated with two adapted wheat isolates MG5 and MG 31, as well as a non-

adapted rice isolate Ca 89, and monitored at 12, 24, 48 and 72 hpi. Bars represent percentage 

averages, with standard deviations from five wheat leaves in three independent experiments. 

Stage one is the formation of appressoria; stage two describes when the primary hyphae start 

to grow within the cells; stage three represents the extensive invasion of hyphae into the 

initially invaded cells; and stage four characterizes the colonization of hyphae in the adjacent 

cells and intercellular spaces. 

 

Figure 21 Distribution of rice / Magnaporthe interaction stages over time. Rice (CO 39) leaf 

sheaths were inoculated with two non-adapted wheat isolates MG5 and MG 31, as well as an 

adapted rice isolate Ca 89, and were evaluated at 12, 24, 48 and 72 hpi. Bars represent 

percentage averages, with standard deviations from five wheat leaves in three independent 

experiments. Stage one is the formation of appressoria; stage two describes when the primary 

hyphae start to grow within the cells; stage three represents the extensive invasion of hyphae 

into the initially invaded cells; and stage four characterizes the colonization of hyphae in the 

adjacent cells and intercellular spaces. 
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3.8 Cytological responses on leaves recorded by autofluorescence  

The response of wheat and rice leaves to infection from adapted and non-adapted 

Magnaporthe isolates was investigated using microscopy at the cellular level. The same 

isolates (MG5, MG 31 and Ca 89) used before were inoculated on wheat (BR 18) and rice 

(CO 39) seedling leaves. Microscope observations were performed under bright-field and epi-

fluorescence microscopy. Four different cellular interaction stages are shown in Fig. 22 (A) 

and Fig. 22 (B). Picture A from Fig. 22 (A) and E from Fig. 22 (B) refer to type A (no 

reaction on epidermal cells), B and F show type B (papilla formation with fluorescence). C 

and G are comprised of hypersensitive reactions of epidermal cells (the whole cell 

autofluorescence was taken as a reliable marker for cell death (Koga, 1994)) while D and H 

describe the successful infection in epidermal cells. The frequency of each cellular interaction 

was scored after inoculation of three isolates on wheat and rice at 48 hpi (Fig. 23). 

Microscopic investigations under bright field revealed that spore germination and 

appressorium formation of these three isolates can be performed normally on wheat and rice 

tissues. Many appressoria was just halted in this stage and there was no reaction detected on 

epidermal cells (type A), 17.7% of appressorium from rice isolate Ca 89 were found on wheat 

leaves, and similarly 15.8% from wheat isolate MG 5 and 13.8% from wheat isolate MG 31 

were detected in this stage (Fig. 23).  

One of the earliest cellular responses toward pathogen penetration is the plant immune system. 

The plant would form papillae by thickening the cell wall to prevent the invasion of pathogens, 

classified as type B. Significant differences (p ≤ 0.05) were apparent between compatible and 

incompatible interactions for papilla formation. On wheat leaves, approximately 69.3% of 

epidermal cell responded with a papilla to penetration with the rice isolate Ca 89, while only 

22.5% and 21.2% responded to wheat isolates MG 5 and MG 31, respectively. This shows 

that wheat plant (BR 18) could effectively prevent the invasion by the rice isolate at the 

beginning. In regards to the response of rice leaves, the penetration of wheat isolates MG 5 

and MG 31 were prevented by 55.7% and 39.7%, respectively. However, only 21.5% of the 

adapted isolate Ca 89 were stopped by papilla, showing the significant differences for the 

adapted and non-adapted isolates. However, successful penetration through ineffective 

papillae allowed the establishment of infection hyphae in epidermal cells and resulted in 

strong autofluorescence in the cell walls in both host and non-host combinations.  

In type C, isolates triggered hypersensitive reactions (HR) of epidermal cells: the whole cell 

died with accumulated fluorescent materials on the cell walls (Koga et al., 1988). This 

autofluorescence was observed in 12% of the penetration sites on wheat leaves infected by Ca 

89, and is insignificantly different with 20.3% and 17.3% from MG5 and MG 31, respectively. 

Insignificant differences were also demonstrated on rice leaves with their responses to MG5, 

MG 31 and Ca 89 (21.2%, 27% and 17.3%).  

When the plant failed to prevent the development of the pathogen, hyphae grew into the cells 

(type D). In the compatible interactions, 41.3%, 47.7% and 43% of isolates MG 5, MG31 and 

Ca 89 successfully formed and developed hyphae in the cells of their host plants. Only 1% of 

rice isolate Ca 89 and 1.5% of wheat isolate MG 5 reached type D on their non-host plants. 
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Interestingly, wheat isolate MG 31 showed high frequency (13.2%) in type D, which indicates 

that MG 31 is capable of infecting non-host rice plants. Lesions had also been observed on 

rice leaves after 7 days of inoculation.  

In all host-type interactions between pathogens and their host plants, a relatively low 

frequency of papilla formation and cell autofluorescence occurred together with a high 

frequency of hyphae development in the cell. There were no significant differences between 

the three isolates and their hosts. However, for the non-host interactions, the opposite 

occurred, with a high frequency of papilla formation and very low frequency of hyphae 

growth. However, there was a significant difference between the invasion of wheat isolate 

MG 31 and the other two isolates. Overall, autofluorescence microscopy revealed that there 

were significant differences in host and non-host interactions. Both plants (wheat and rice) 

demonstrated active defense responses to the invasion of Magnaporthe spp.. The wheat 

isolate MG 31 is more aggressive when infecting rice, as non-host plant. 
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Figure 22 (A) Cellular interaction of wheat leaves inoculated with wheat isolates (MG 5 and 

MG 31) and the rice isolate (Ca 89) of Magnaporthe spp. at 48hpi. The pictures on the left 

side were detected under bright field, and the pictures on the right side were detected under 

fluorescence light. Four different types of cellular responses were classified on wheat and rice. 

Type A (picture A) represents appressorium formation with no plant response, type B (picture 

B) represents papilla formation with autofluorescence, type C (picture C) represents 

hypersensitive responses associated with whole cell autofluorescence and type D (picture D) 

represents successful penetration in epidermal cells. App: appressorium; IH: infection hyphae. 
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Figure 22 (B) Cellular interaction of rice leaf sheaths inoculated with wheat isolates (MG 5 

and MG 31) and the rice isolate (Ca 89) of Magnaporthe spp. at 48hpi. The pictures on the 

left side were detected under bright field, and the pictures on the right side were detected 

under fluorescence light. Four different types of cellular responses were classified on wheat 

and rice. Type A (picture E) represents appressorium formation with no plant response, type 

B (picture ) represents papilla formation with autofluorescence, type C (picture G) represents 

hypersensitive responses associated with whole cell autofluorescence and type D (picture H) 

represents successful penetration in epidermal cells. App: appressorium; IH: infection hyphae. 
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Figure 23 Autofluorescence microscopic analyses of wheat and rice seedlings interacting 

with isolates MG 5 and MG 31 from wheat and Ca 89 from rice at 48 hpi. Columns represent 

the mean values of percentages and standard deviations are calculated from five wheat leaves 

or rice leaf sheaths with approx. 200 interaction sites inspected per sample. Type A represents 

no reaction on epidermal cells, type B represents papilla formation with fluorescence, type C 

represents hypersensitive reactions with whole cell autofluorescence and type D represents 

successful infection in epidermal cells. 

3.9 Effects of phytotoxins 

3.9.1 The effects of fungal culture filtrate on detached leaves 

Conidial suspensions of Magnaporthe grisea prepared from wheat isolates MG 5 and MG 31 

induced lesions on wheat leaves (Fig. 24 a-II and b-II) after 3 days of inoculation. On leaves 

which were inoculated with MG 31, serious infection was clearly visible – far more than those 

inoculated with MG 5. However, neither the filtrate of fresh potato dextrose broth (PDB; Fig. 

24 a-I and b-I) nor culture filtrates from Magnaporthe grisea with a series of three 

concentrations (Fig. 24 a-III, IV, V and b-III, IV, V) produced any visible symptoms. 

Furthermore, effects from the rice isolate (Ca 89) failed to cause any lesions in all treatments 

(Fig. 24 c). 



Results 

 74 

 

Figure 24 Effects of fungal culture filtrates on wheat leaves. Detached wheat seedling leaves 

were drop-inoculated with fresh PDB as control (I), conidial suspension (II), culture filtrate 

(III), 1/2 of culture filtrate (IV) and 1/4 of culture filtrate (V). The conidial suspensions were 

prepared from wheat isolates MG 5 (a) and MG 31 (b) and rice isolate Ca 89 (c).  

 

In Fig. 25 c-II, typical necrotic lesions were evident on rice leaves which were inoculated with 

conidial suspensions of Magnaporthe oryzae (rice isolate Ca 89) at 3 dpi. However, no visible 

symptoms were noticeable in the treatments with either the filtrate of PDB (Fig. 25 c-I) nor 

three concentrations of culture filtrates (Fig. 25 c-III, IV, V). HR lesions were observed in the 

interaction between rice leaf and wheat isolate MG 31 (Fig. 25 b-II), but no symptoms were 

found on other treatments of MG 31 (Fig. 25 b-I, III, IV, V). The wheat isolate MG 5 did not 

induce any lesions with conidial suspension (Fig. 25 a-II) or culture filtrates (Fig. 25 a-III, IV, 

V) as well as the PDB control (Fig. 25 a-I). 

 

Figure 25 Effects of fungal culture filtrates on rice leaves. Detached rice seedling leaves were 

drop-inoculated with fresh PDB as control (I), conidial suspension (II), culture filtrate (III), 

1/2 of culture filtrate (IV) and 1/4 of culture filtrate (V). The conidial suspensions were 

prepared from wheat isolates MG 5 (a) and MG 31 (b) and rice isolate Ca 89 (c). Symptoms 

of necrotic lesions appeared on rice leaves inoculated with conidial suspension from the rice 

isolate.  
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3.9.2 The effects of extracts from infected leaves on detached leaves 

On wheat leaves, the effects of infected leaf extract leachate showed similar results as those of 

fungal culture filtrate. Wheat leaves did show any response to infected leaf extract leachate,  

but a less severe incidence of the disease was observed in the inoculation of spore suspensions. 

Specifically, the symptoms were only seen on the bottom of detached leaves, where they had 

been immersed in the conidial suspensions obtained from wheat isolates MG 5 (Fig. 26 a-II) 

and MG 31 (Fig. 26 b-II) in 3 dpi. The treatments of both isolates from three concentrations of 

culture filtrate (Fig. 26 a-III, IV, V and b-III, IV, V) did not cause phytotoxicity on leaves 

compared with the PDB control (Fig. 26 a-I and b-I). The non-host isolate Ca 89 also failed to 

induce lesions on wheat leaves (Fig. 26 c). 

 

Figure 26 Effects of infected leaf extracts on wheat leaves. Detached wheat seedling leaves 

were wound-inoculated with fresh PDB as control (I), conidial suspension (II), leaf extract 

leachate (III), 1/2 of leaf extract leachate (IV) and 1/4 of leaf extract leachate (V). The 

conidial suspensions were prepared from wheat isolates MG 5 (a) and MG 31 (b) and rice 

isolate Ca 89 (c).  

 

On rice leaves, no symptoms were observed in all treatments from the isolates of 

Magnaporthe grisea MG 5 (Fig. 27 a) and MG 31 (Fig. 27 b) after 3 days of inoculations. The 

senescence symptoms of the detached leaves, as descriped in Talbot et al. (1997), appeared as 

the leaf rolling, with pronounced desiccation and yellowing. On the bottom of the rice leaves, 
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there were only two or three necrotic lesions shown (Fig. 27 c-II), far less than after drop-

inoculation. 

 

Figure 27 Effects of infected leaf extract leachates on rice leaves. Detached rice seedling 

leaves were wound-inoculated with fresh PDB as control (I), conidial suspension (II), leaf 

extract leachate (III), 1/2 of leaf extract leachate (IV) and 1/4 of leaf extract leachate (V). The 

conidial suspensions were prepared from wheat isolates MG 5 (a) and MG 31 (b) and rice 

isolate Ca 89 (c).  

 

Through the above observation, it can be seen that regardless of the method which was used 

to extract phytotoxic substances or indeed the inoculation method, similar results were evident. 

Results showed that on both wheat and rice seedling leaves, lesions were only induced by the 

treatment with conidial suspension from compatible isolates and not by fungal culture filtrate, 

extracts from inoculated leaves or PDB filtrate (control). 
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4 Discussion  

4.1 Growth conditions required by Magnaporthe spp. in vitro and in vivo 

The inoculum concentration influences the disease severity, so it is important to obtain a 

sufficient amount of spores for artificial inoculations. Different fungal species and isolates 

from the same species are able to show significant differences in their sporulation ability. 

Factors such as the medium, temperature and environment for incubation would also affect 

spore production. Partridge-Metz & Chandra (2011) verified that rapid vegetative mycelial 

growth of Magnaporthe oryzae occurred using V8, PDA and OMA, while the culture media 

producing the highest amount of pigmentation were found to be V8, OMA and STAA. The 

highest yield of conidia was obtained using St. Augustinegrass agar (STAA). Vanaraj et al., 

(2013) suggested that potato dextrose and malt extract agar were also suitable for culturing 

different isolates of Pyricularia oryzae. The blast disease is more frequent in wheat producing 

regions above the 24 °S parallel. Kalíbia and José (2006) have studied the influence of 

temperature and relative air humidity on the sporulation of Magnaporthe grisea. The highest 

rates of infection and production of conidia from Magnaporthe spp. occur around 28°C with 

high relative humidity (≥90%). They also revealed that the effect of temperature and humidity 

was significant (P<0.001), but not the interaction. This is consistent with our results from 

epidemiological studies. The influence of temperature on the colony growth of Magnaporthe 

isolate on Petri dishes has been detected in our laboratory (Fig. A5). The maximum diameter 

of colony growth was measured between 24°C and 28°C. Latterell & Rossi (1986) mentioned 

that occasionally isolates from Pyricularia oryzae - representing broadly pathogenic races, 

which is valuable in cultivar screening - sporulated poorly; e.g. isolate 825 (IB-1) from Costa 

Rica. They tested three methods to enhance sporulation and proved that several isolates 

yielded improved sporulation capacities following UV irradiation of 24 h germinating spores 

in quartz tubes and no changes in pathogenic specialization occurred. Furthermore, several 

cultural changes were observed in X-radiation treatments. Eventually, in accordance with 

previous research and our results from medium screening, the colonies of all seventy 

Magnaporthe isolates were incubated on V8 agar medium at 25°C for 7 d, followed by 

exposure under UV light for 2 d.  

Studies on low temperature effect on blast disease were only reported for plant resistance 

response (Koga et al., 2004) or Magnaporthe cold acclimation (Li et al., 2014). However, the 

influence of low temperature on Magnaporthe to grow and sporulation has not been studied in 
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vitro. Significant differences (p ≤ 0.05) on colony diameters among five isolates (MG 27, MG 

51, MG1.2, MG5 and 1836-3/0-12) and three treatments (25°C, 4°C and -20°C) were shown 

in Fig. 5. The growth rate of the colonies was slowed down at 4°C and halted at -20°C; 

microscopy showed fewer spores at 4°C and a large reduction at -20°C. This suggests that the 

colony of wheat isolates could be stored at 4°C for short term storage, but that there is an 

associated effect on sporulation. 

The climate has a strong influence on the appearance of blast epidemics (Suzuki, 1975). Asai 

et al. (1966) demonstrated that the weather is an important factor in the variability of disease 

development. When there are no fluctuations in relative humidity and temperature, there 

appears to be no change in the number of diseases. The infection condition of blast disease on 

rice has been studied by many researchers. However, the environmental conditions needed for 

wheat plants have not yet been clearly defined. It is well-known that temperature and spike 

wetness are two of the most important environmental factors affecting the interaction between 

plant and pathogen. The pathogens which can infect crops are considered to be favored by 

warm and humid conditions (rain in the flowering stage). Kranz & Hau (1980) have pointed 

out that optimum condition studies under controlled conditions (climate chamber) provide a 

solid base for understanding the effects of environmental factors on the development of plant 

epidemics. Rotem (1988) also confirmed that the data obtained under controlled conditions 

would provide an indication of what may happen in the field. However, they cannot simulate 

with accuracy the development of the disease in nature, because a model is just a simplified 

representation of reality in a climate chamber and is a modified representation of the 

atmospheric conditions occurring during cultivation in the field. The objective of our 

experiment on microclimatic requirements was to find out the effect of different 

environmental factors on the development of M. grisea on wheat ears, and determine the 

optimum temperature and spike-wetness. Ear bleaching was more severe at temperatures 

above 26°C compared to lower temperatures (Fig. 7). At 14 hpi, spike wetness significantly 

contributed to disease severity (Table 6). However, there was no significant effect of spike 

wetness on disease severity for the wetness durations ≥24 hpi.  These results indicate that 

temperatures above 26°C increase disease severity, whereas ear bleaching is less affected by 

wetness duration after 24hpi. Moreover, leaf wetness had no significant effect on disease 

severity at 20°C, even at 14 hpi. 

Temperature generally accelerates biological processes, and both plants and their pathogens 

require a minimum temperature for growth and development. Infections do not normally start 
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during the cold seasons, and the development of ongoing infections will be halted during such 

periods. However, when other environmental conditions become favorable, pathogens are far 

more aggressive and will easily infect susceptible plants with increasing temperatures (Reis & 

Bresolin, 2004). The effect of temperature on the development of disease depends on the type 

of the pathogen-host association. Normally, a disease develops more rapidly at the optimum 

temperature for the pathogen which is generally above or below the optimum temperature for 

the host because the time required in completing the life-cycle of the pathogen is much shorter. 

However, when temperatures are below or above the optimum temperature for the pathogen 

or are close to the optimum for the host, the development of the disease is slower (Reis & 

Bresolin, 2004). Indeed, there is a maximum temperature for plant growth. Cardoso et al. 

(2008) verified that under controlled conditions, blast detection on wheat cultivar BR 23 was 

unable to be processed at 35°C, and all spikes (even in the control group) turned white, 

preventing evaluation. Perhaps the clearest possible reason points to the conditions of the 

experiment: the temperature (35°C) was simply too high for the wheat crop. However the 

growth of wheat at high temperatures showed different responses in our experiment. Wheat 

(BR 18) growth was not affected by temperatures between 20 °C - 32 °C, and ears in controls 

remained green during the whole experiment. This might be due to the different requirements 

of the cultivars in the growth environment. Wheat blast is more frequent in wheat producing 

regions above the 24 °S parallel and prefers warmer conditions. In lower temperature regions, 

we can effectively reduce the rate of wheat blast outbreak (Kalíbia and José, 2006). The blast 

severity was highly influenced by temperature. When the temperature rose, the disease 

severity increased relatively. When the temperature rises from 20°C to 23°C, a significant 

difference in severity was observed (1.60 at 20°C compared to 3.68 at 23°C). 

The wetness time refers to the time that a plant organ is exposed to liquid water, and the 

occurrence of liquid water on the surface of a plant constitutes an important factor in disease 

development (Sutton et al., 1984). The humid environment could lead to spore germination of 

the pathogen, and this response is automatic and irreversible. Infection would then be 

successful if wetting occurs for a sufficient time and at a suitable temperature to allow 

colonization of the host to be initiated. This interaction has been called the ‘critical period’ 

(CP) by Zadoks & Schein (1979). Therefore, when the infection occurs during a critical 

period, the surface of a spike may get dry but the life cycle of the pathogen will continue, 

which results from the establishment of parasitism. As described by Rossi et al. (2001), 

frequent rainfall, high humidity, and heavy dew which coincides with a crop sensitive period 

favors infection. This “critical period” is particularly evident in the field environment: the 
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rainfall will directly affect the duration liquid water spends on the plant surface. In controlled 

conditions, no symptoms of M. grisea on wheat ears were observed when wetting time was 

less than 10 hours (Cardoso et al., 2008). According to the results at different wetness times in 

our experiment, when high humidity is maintained over 24 hours for newly inoculated wheat 

ears, there were insignificant differences between disease severities shown as the extension of 

wetness time. This result suggested that humidity would no longer be the main factor 

affecting disease development when the initial high humidity was longer than 24 hours. 

Disease forecasting systems which use climatic models are based on the temporal and spatial 

presence of three decisive disease factors: a host, a plant pathogen and favorable atmospheric 

conditions which affect the infectious process (Sutton, 1988). The data from the interactions 

between temperature and spike wetness time could be used to create a basic climatic model 

for forecasting systems. This interaction has been used in many early warning systems 

(Stutton, 1988; Cardoso et al., 2008). According to the climatic model created by Cardoso et 

al. (2008), the variations as a function of temperature of blast intensity were explained by a 

generalized beta model; the variations as a function of the duration of spike wetness were 

analyzed by the Gompertz model. Disease intensity was modeled as a function of both 

temperature and the duration of spike wetness, and the resulting equation provided a precise 

description for the response of P. grisea to temperature and the duration of spike wetness.  

Tables were constructed using the models so the intensity of wheat blast (P. grisea) can be 

predicted based on temperature and the duration of wheat spike wetness obtained in the field.  

However, the effect of interactions between temperature and spike-wetness time on infection 

under controlled conditions can cause distortions when applied to the field. Possible reasons 

for these distortions could be temperature fluctuations, interruptions in the duration of wetness 

time, different inoculum concentrations, variation in spore germination, host factors (different 

growth stages or organs) and presence of nutrients or pesticides on the phylloplane and 

antagonistic biological activity of phylloplane microorganisms (Sutton, 1988). Hence, the 

absolute infection frequency is difficult to predict under field conditions.  

One solution which was suggested to avoid these problems was to divide data on the response 

of infection into daily probability of infection (DPI) values. Krause and Massie (1975) and 

Madden et al. (1978) developed a disease forecasting system using a climatic model to 

construct the table of critical periods containing four arbitrary selected categories of infection 

efficiency and denominated daily severity values (DSV). A computer program has been 

developed to automatically combine the mean of temperature values and wetness-period 
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values collected in the field from meteorological stations, and to calculate both daily 

probability of infection (DPI) values and the sum of the DPI (DDPI) values over a specified 

period. The DPI tables are different for each plant pathogen and host combination because 

there are different critical periods for each pathosystem (Madden et al., 1978). The outcome 

of our experiment would generate basic information to develop an early-warning system for 

wheat blast and strategies of blast disease management under practical field conditions. 

Cardoso et al. (2008) provided some data for the validation of the wheat blast warning system. 

In field conditions, the lesions on leaves, auricles and ligules can provide sufficient spores to 

infect the panicle, which is the main organ, resulting in the loss of wheat production (Thomas, 

1930; Ono & Suzuki, 1960; Hori, 1963). In addition, several climatic models for other 

diseases have been published and they also used the critical period concept (Zadoks & Schein, 

1962) to predict infection, including apple scab (Mills & La Plante, 1951), potato blight 

(Wallin, 1962), Alternaria infection of tomato (Madden et al., 1978), tomato septoriosis 

(Scaloppi, 1999), soybean rust (Reis et al., 2004) and wheat scab (Reis & Blum, 2004). 

Sutton (1988) addressed the fact that fungal spores do not germinate synchronously for the 

response to temperature and moisture, so environmental factors such as temperature and the 

duration of the wetting period would affect the ability of individual spores to successfully 

complete infection along with the final intensity of fungal diseases. Castejón-Muñoz (2008) 

investigated the effects of temperature and relative humidity on the airborne concentration of 

Pyricularia oryzae spores and the development of rice blast in the field. They reported that a 

relative humidity of 95% and an average temperature of 26-27°C were optimum for infection 

and substantially favored spore release, suggesting that the peak spore concentration in 

August could be used to forecast panicle blast. The incubation period for pathogens varies 

depending on the temperature, relative humidity and humectation period (Maheswari Amma 

& Raj, 1973). Castejón-Muñoz (2008) added that the crop growth stage and the airborne spore 

concentration will affect the development of the disease. Kato et al. (1970) noted that a rapid 

increase in the number of spores was recorded during the heading stage. The disease intensity 

may be more sensitive to the fluctuation of temperature in field conditions. A rise in 

temperature of 1°C in early August (midtillering stage) may have caused an increase in mean 

leaf blast intensity in terms of the AUDPC (Castejón-Muñoz, 2008). 

4.2 Differences in infectivity of Magnaporthe spp.  

Plants and pathogens that are in constant competition during their co-evolution have 

undergone changes in relative resistance/susceptibility and virulence/avirulence, respectively 
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(Zellerhoff et al., 2008). Magnaporthe spp. exhibited a broad range of virulence on wheat and 

rice supported by previous studies (Choi et al., 2013). Controversial results are also revealed 

in scientific literature in the case of the infection ability of blast pathogens and cross-infection 

between wheat and rice.  

It is believed that wheat isolates are capable of infecting rice but the reverse scenario has not 

been confirmed (Mehta, 2014). Igarashi et al. (1986) described positive pathogenicity of the 

wheat isolates towards rice. Furthermore, Odile et al. (2008) pointed out that the wheat isolate 

BR 32 could induce a hypersensitive response (necrotic flecks) with varying degrees of 

pathogen growth inside the invaded cell according to the rice genotype. However, other 

researchers hold a contrary opinion. Urashima (1993) verified that the eleven wheat isolates 

did not infect rice cultivars of the Japanese differential or Brazilian lowland and upland. 

Prabhu et al.(1992) reported that all isolates from rice were pathogenic to wheat cultivars and 

barley, but none of the ten wheat and seven grass isolates infected any of the thirty rice 

cultivars. Interestingly, some researchers claim that there is no cross-infection between wheat 

and rice. Tosa et al. (2004) discovered that two wheat isolates (Br 48 and Br 3) were avirulent 

on ten rice cultivars and the rice isolates (Ken 53-33 and 1836-3) also failed to infect wheat 

cultivars. Pratt (2012) found the blast isolates which infect rice do not infect wheat and vice-

versa in Kentucky, thus rice producers who grow wheat in extreme southwest Kentucky and 

surrounding states are not at increased risk from the wheat blast fungus. Ou (1985) proposed 

that these contradictory results might come from different genetic backgrounds of the isolates 

and hosts or environmental conditions in the tests. 

To elucidate the diversity of Magnaporthe spp. in our experiment, seventy isolates were 

obtained from different hosts and locations to provide more representative data of the actual 

diversity in South America. The hypersensitive response (HR) is a mechanism used by plants 

to prevent the spread of infection by pathogens. The HR is characterized by the rapid death of 

cells in the local region surrounding an infection and it serves to restrict the growth and 

spread of pathogens to other parts of the plant. Dead cells resulting from HR would form 

small spots on the leaf surfaces, but these spots would not expand because of the successful 

prevention from further infection. On the other hand, the successful infection should be able 

to spread from an initially infected cell to neighboring cells which causes the expansion of 

lesions. Normally the aerial conidiophores would start to produce conidia on the lesions under 

conditions of high humidity after 7 days of inoculation. The results from our pathogenicity 

test showed that 87.5% of wheat isolates successfully caused lesions on rice leaves with 
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different severity, some of these lesions were slightly expanded over time, but no spores were 

obtained from the lesion surface. The reason may be that conidiophores have not been formed 

at 6 dpi under our controlled conditions, and some wheat isolates induced HR on rice. Indeed, 

63.3% of rice isolates also formed spots on wheat leaves with slight severity, but these lesions 

did not expand. We were unable to isolate any pathogens from these lesions when incubated 

in humid Petri dishes. These observations suggest that, in the present experiment, some 

strongly aggressive isolates from wheat had the ability to infect the susceptible rice cultivar 

CO 39 and some isolates resulted in HR on rice. The existence of different populations of M. 

grisea causing wheat blast in Brazil was first suggested by Urashima et al. (1993), one 

composed of isolates employed by Igarashi et al. (1986) which infected rice, and another one 

used by other scientists which were non pathogenic to rice (Prabhu et al. 1992;  Urashima et 

al. 1993; Urashima et al. 2004b). 

Most rice isolates were only able to trigger HR on wheat leaves to prevent the further spread 

of infection. Kato et al. (2000) have also tested pathogenicity on eighty-five Pyricularia 

isolates, which were collected from twenty-nine host species of Gramineae, Bambusideae and 

Zingiberaceae plants in Brazil, Uganda, Ivory Coast, India, Nepal, China, Indonesia and Japan. 

Based on the pathogenicity to eight differential gramineous plants, seven pathotypes were 

classified from these isolates: finger millet type, foxtail millet type, common millet type, rice 

type, crabgrass type, Italian ryegrass/ weeping lovegrass type, and non-cereal/grass type. In 

another study, seventy-two monoconidial isolates of Magnaporthe grisea obtained from the 

States of Mato Grosso do Sul and Paraná were inoculated on seedlings of twenty wheat 

(Triticum aestivum) cultivars in greenhouse conditions by Alfredo et al. (2004). In total, they 

identified fifty-four distinct virulence patterns on twenty test cultivars among the isolates 

collected from these two States which are the main wheat producing areas. Approximately 

22.2% of these isolates (sixteen isolates) showed a similar virulence pattern. The virulence 

diversity of M. grisea has been attributed to mutation and parasexuality in rice (Ou, 1980; 

Zeigler et al., 1997; Zeigler, 1998), as well as the contribution of sexual recombination 

(Kumar et al., 1999; Mekwtanakarn et al, 2000). Moreover, Urashima et al. (1993) have 

characterized M. grisea from wheat as highly sexually fertile and hermaphroditic, sexually 

compatible with isolates from other hosts and both MAT1-1 and MAT1-2 mating types exist in 

a single field (Bruno & Urashima, 2001).  

However, some wheat isolates of M. grisea collected from different locations presented 

similar pathogenicity in our experiment. Wheat isolates MG 8 from Bolivia and MG 29 from 
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Brazil presented the same high pathogenic levels on their host plant (100% of disease 

incidence). Rice isolates C9228-37 from Philippines, 492RWA11 from Rwanda and 

564UGA11 from Uganda showed similar disease incidence, 40%, 45% and 45%, respectively. 

One of the possibilities for the presence of common pathogenicity in different geographical 

origins may be the movement of seeds which are infected with a specific isolate of M. grisea 

from one region to another. The outbreak of blast disease caused by seed contamination and 

transmission in new wheat-growing areas has been reported (Goulart & Paiva 1991; Urashima 

et al., 1999). 

In addition, pathogenicity on finger millet and perennial ryegrass has also been studied. 

Phylogenetic analysis showed that among twenty isolates from sixteen host species including 

perennial ryegrass, only the isolates from wheat (Triticum aestivum) and triticale (× 

Triticosecale), showed notable similarities with the perennial ryegrass isolates based on their 

Pot2 fingerprints. The copy number and fingerprints of Pot2 and repetitive DNA (MGR586) 

in isolates of P. grisea from perennial ryegrass are genetically distinct to the isolates derived 

from rice (Oryza sativa) in the United States (Farman, 2002). The perennial ryegrass isolates 

also had the same sequence in the internal transcribed spacer (ITS) region of the genes 

encoding ribosomal RNA as that of the wheat and triticale isolates, and exhibited rice isolate 

sequence polymorphisms (Harmon, 2003). Tosa et al. (2004) also studied the population of 

perennial ryegrass isolates on the ITS region. All of the perennial ryegrass isolates they 

collected were interfertile with Triticum isolates and clustered into the same group (CC group) 

on a dendrogram constructed from rDNA-internal transcribed spacer two sequences. DNA 

fingerprinting with MGR586, MGR583, and Pot2 showed that perennial ryegrass isolates are 

divided into two distinct populations, TALF isolates and WK isolates. The TALF isolates 

were virulent only on Lolium species, whereas the WK isolates were less specific and were 

able to infect wheat and rice. In pathogenicity assays, Viji et al. (2001) reported that all the 

isolates of P. grisea from Legacy II perennial ryegrass caused characteristic blast symptoms 

on Marilee soft white winter wheat, Bennett hard red winter wheat, Era soft white spring 

wheat, and Presto triticale. An isolate from wheat and one from triticale (from Brazil) were 

also highly virulent on perennial ryegrass. None of the isolates from perennial ryegrass caused 

the disease on Lagrue rice, and vice versa. Kato et al. (2002) reported that the isolates from 

cereal crops were generally capable of mating with finger millet strains and constituted a 

closed mating compatibility group. The transmission of M. grisea isolates occurs in natural 

agroecosystems between finger millet and Eleusine africana, goosegrass or Bambusa 

arundinacea, and between rice and tall fescue, Italian ryegrass, sweet vernalgrass, reed 
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canarygrass or Oryza longistaminata with a combined analysis of the pathogenicity and 

genetic similarity. In our experiment, only two perennial ryegrass isolates from Japan were 

included, and they showed specific virulence on wheat, but not rice. However, due to the 

small number of isolates collected from perennial ryegrass, these characteristics of virulence 

and avirulence are not representative for all perennial ryegrass isolates.  

Due to the lack of resistant wheat cultivars against M. grisea, farmers have been forced to rely 

on other control methods. In recent years, wheat blast has not caused yield loss in large areas 

as has happened in the past, but large yield losses have been observed in small areas in 

different parts of Brazil (Mehta et al., 1992). One reason for the reduction in yield loss is 

delaying planting in epidemic areas until 10
th

 of April. This strategy allows the heading stage 

to occur when the environment gets drier and is not favorable for the outbreak of blast disease. 

The other reason is the withdrawal of highly susceptible cultivars like Anahuac, Candeias and 

Ocepar7 (Urashima et al., 2004). Fungicide spray is another widely used method in the field 

to control blast disease. Urashima and Kato (1994) reported that fungicides, probenazole and 

tricyclazol (spray) provided good protection at the vegetative stage but not at the head level. 

New products like blacin, code numbers SSF-126 ((E)-2-methoxyimino-N-methyl-2-(-2-

phenoxylphenyl) acetamide), SSF-129 and 28S-28 72 seem to be promising with good 

protection of the head. 

It has been noticed that there is varying severity resulting from different inoculation methods 

with the same amount of inoculum. Berruyer et al. (2006) used four inoculation methods 

(spray, mist, dip, and sheath) to evaluate the growth of blast pathogen on rice and 

demonstrated that the type of infection method has an effect of several orders of magnitude on 

the quantity of fungus growing in the plant at the earliest time points using the same inoculum. 

Spray inoculation is used routinely for studying the rice–M. oryzae interaction (Ou, 1985), 

which produces both susceptible and resistant interactions that closely resemble the situation 

in the field. However, Berruyer et al. (2006) verified that fungus could not be detected in 

spray-inoculated rice leaf tissues until 96 hpi, even using the repetitive Pot2 sequence to 

maximize the potential for detection of fungus genes, which limits the possibilities for 

studying early infection stages. The results were consistent with our experiment; the detection 

by qPCR were performed at 0, 2, 4 and 6 dpi for the interaction of Magnaporthe spp. and host 

plants. No increase in fungal biomass untill 2 dpi was detected, but differences between host- 

and nonhost- interactions were demonstrated at 4 dpi. As for the other two inoculation 

methods described by Berruyer et al. (2006), mist inoculation gave both larger infection ratios 
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and denser infection points resulting in rapidly coalescing symptoms. It caused the highest 

fungus/plant ratio on the rice leaf sheath assay during early stage. The reason for mist 

inoculation resulting in more infection sites is probably due to the higher density of smaller 

drops of inoculum deposited on the plant surface. Interestingly, for dip inoculation the 

inoculated detached leaves showed more natural infection than the inoculated detached 

sheaths.  

The concentration of conidial suspension can affect the infection results. Berruyer et al. (2006) 

verified that normal fungus behavior was seen in the resistant interaction when using drop 

inoculation with conidial concentrations of 10
2
-10

4
 conidia/ml, but resistance was overcome 

and sporulation occurred when using an inoculum concentration of 10
5
 conidia/ml. The ability 

to overcome the resistance seemed to be directly proportional to the inoculum concentration. 

To reduce errors arising from the concentration of inoculum, 1.0 × 10
5
 conidia/ml was used in 

all of our experiments, as well as most inoculation experiments with Magnaporthe spp. (Tosa 

et al., 2003; Berruyer et al., 2005). 

4.3 Molecular genetic differentiation of Magnaporthe spp. 

DNA fingerprinting has been used to identify genotypes that are associated with various hosts 

in the genus Magnaporthe, such as Magnaporthe grisea repeat (MGR 586), grasshopper 

retroelement, and Magnaporthe gypsy element (Hamer et al., 1989; Dobinson et al., 1993; 

Farman et al., 1996) and to characterize genetic variability within Magnaporthe spp.  (Levy et 

al., 1993; Chen et al., 1995; Zeigler et al., 1995). Two molecular typing methods in our 

studies were used to estimate phylogenetic relationships within seventy Magnaporthe strains. 

from wheat, rice, finger millet and perennial ryegrass. All isolates were genotyped by 

amplified fragment length polymorphism (AFLP) and multilocus sequence typing (MLST). 

AFLP has been successfully used to analyze the population structure and genetic diversity in 

plant pathogenic fungi (Vos et al., 1995; Brown, 1996; Reineke et al., 1999; Tredway et al., 

2004). As compared with classical DNA-fingerprinting techniques, the AFLP method does 

not require prior knowledge of DNA sequences to detect variation over the entire genome and 

has proved to be robust and reliable because it uses stringent reaction conditions (Vos et al., 

1995; Savelkoul et al., 1999). Recently, the concordance of multilocus DNA sequence typing 

(MLST) data has become popular among filamentous fungi (Taylor et al., 2000; Taylor & 

Fisher, 2003). In Magnaporthe spp., Couch & Kohn (2002) performed phylogenetic analyses 

using actin, ß-tubulin and calmodulin gene sequences, and identified isolates from crabgrass 

as a distinct phylogenetic group from the other isolates from rice and other grasses. 
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Comparing the two molecular tools used in our phylogenetic analysis, AFLP is cheaper, faster, 

and easier to perform than MLST; but interlaboratory comparison by AFLP analysis will be 

difficult because complex banding patterns are PCR based and therefore prone to variation. 

MLST is more expensive, but it does result in solid DNA sequence data that are not subject to 

experimental variation.  

Both molecular typing methods resulted in similar genetic clustering indicating that most of 

the isolates were associated with their host species. Schouls et al. (2002) supported that the 

clustering analysis yielded a similar grouping of isolates by either AFLP or MLST, and 

haplotypes of most isolates were associated with the host origins. The results indicated that 

these methods, both of which are based on characterization of multiple loci in the genome, are 

equally suited in disclosing genetic relationships between Campylobacter jejuni isolates 

(Schouls et al., 2002). In our experiment of MLST, although isolates from wheat and rice 

were separated into different groups, they were still clustered together in each group. The 

association of each group with different hosts indicates ecological specialization. A 

multilocus gene genealogy analysis was reported by Brett & Linda (2002) in which forty-nine 

Magnaporthe isolates from five hosts were clustered and each group contained the isolates 

from different hosts. Digitaria species are ubiquitous weeds and often occur adjacent to rice 

cultivation, yet host association is maintained. They explained that this host association may 

result from ecological factors such as the life history or microhabitat occupied by the host. 

Alternatively, host association may be maintained by the inability to overcome resistance 

genes present in other grass hosts. 

There are also many other molecular techniques that have been used to study the genetic 

relationship between blast isolates. Using random amplified polymorphic DNA (RAPD) 

analysis, Sharma et al. (2002) collected 250 isolates of Magnaporthe grisea from the north-

western Himalayan region and these isolates were separated into twenty-five DNA fingerprint 

groups or lineages. Thirteen groups were exclusive to isolates obtained from Himachal 

Pradesh (HP), four from Uttaranchal and one from Jammu and Kashmir (J & K). The seven 

remaining groups were composed of isolates from different locations. Although RAPD 

analysis revealed high genetic variability among M. grisea populations from HP and J & K, 

genetic variation was low in the isolates collected from Uttaranchal. Bernardo et al. (1993) 

also used the RAPD method to fingerprint 120 Philippine isolates of the blast pathogen. The 

primer J-06 and MGR586 defined groups corresponding to each other, but this 

correspondence appeared to be population specific, and problems inherent with the RAPD 
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technique limited the reproducibility of the fingerprints in different laboratories. The internal 

transcribed spacer (ITS) regions of thirteen representative isolates were also amplified by 

PCR to construct a dendrogram for Pyricularia isolates. Isolates from agronomically 

important crops (rice, foxtail millet, common millet, finger millet, wheat and oats) and their 

relatives were classified into a single cluster, isolates from weeds (crabgrass and buffelgrass) 

were located outside the crop isolate cluster, and Japanese bamboo or bamboo grass isolates 

were farthest from the crop isolate cluster (Kusaba et al., 1999). Kato et al.(2000) collected 

eighty-five Pyricularia isolates from 29 host species of Gramineae, Bambusideae and 

Zingiberaceae plants in Brazil, Uganda, Ivory Coast, India, Nepal, China, Indonesia and Japan. 

Genetic variation among these isolates was assessed by RFLP analysis with two restriction 

enzymes and nine single-copy DNA probes isolated from a finger millet strain. A UPGMA 

dendrogram based on RFLP fingerprinting with MGR 586 has revealed that the eighty-five 

isolates could be classified into seven major groups. Isolates from cereal crops (finger millet, 

foxtail millet, common millet, wheat and rice) and a grass, Brachiaria plantaginea, were 

clustered into a single group and further divided into six subgroups corresponding to the 

pathotypes. These results suggested that the isolates from cereal crops form a single group 

with a common ancestor although they are pathogenic to taxonomically diverse plants. 

However, the high investment in time and resources for RFLP analysis has seriously limited 

the application of DNA fingerprinting for large-scale studies of pathogen ecology and 

evolution. Adreit et al. (2007) developed 18 microsatellite markers for rice blast 

(Magnaporthe grisea) population studies. These 18 markers were used in multiplex PCR to 

characterize six populations from different geographical origins and a large range of 

polymorphism was found. The average number of alleles per locus across populations ranged 

from 1.2 to 7 and the total number of alleles detected from 2 to 19. DNA samples from 

Magnaporthe grisea isolates were fingerprinted by using repetitive element-based PCR (rep-

PCR) with two outwardly directed primer sequences from Pot2 by George et al. (1998). 

Because Pot2 occurs at approximately 100 copies per haploid genome and is dispersed among 

the chromosomes, a number of intervening sequences were expected to be within amplifiable 

distance, generating sufficient polymorphism to detect genetic diversity. Cluster analysis from 

Pot2 rep-PCR fingerprints distinguished rice- and non-rice infecting isolates; isolates from 

rice formed a large and diverse cluster, while isolates from other hosts were much more 

distantly related.  

Ramanatha (2002) mentioned that distribution of genetic diversity in plant species depends on 

its evolution and breeding system, ecological and geographical factors and often on human 
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activities. Meanwhile, there is a traditional assumption that genotype selection from different 

geographical origins will maximize the diversity available to a breeding project, but it does 

not apply in all cases. In the present studies, geographical factors have not played an 

important role in the evolution of the pathogen Magnaporthe, since there is no association 

between genetic diversity and geographical origin. Isolates selected from the same location 

were separated into different groups which have been shown in our phylogenetic tree of 

AFLP. Wheat isolates MG 31 and MG 44 were both collected from Brazil and belong to 

different subgroups in group I of AFLP with a similarity of 74%, as well as those separated in 

MLST. The subgroup B in AFLP was composed of isolates from different locations: Brazil, 

Bolivia and Japan. Similarly, three wheat isolates - MG 9 (Bolivia), MG 31 (Brazil) and 

1836-3/0-12 (Japan) - showed insignificant differences in genetic diversity after MLST. In 

AFLP, host species were associated with groups: all wheat isolates were included into group I 

and all rice isolates were classified into group II. This indicated that there is an obvious 

relationship among the hosts, but not between geographical origins. Many researchers have 

also studied pathogen population structure using AFLP. Tredway et al. (2004) used AFLP to 

determine the genetic structure of Magnaporthe grisea populations associated with tall fescue 

and St. Augustinegrass in Georgia; the results showed that five lineages were isolated from 

tall fescue, St. Augustinegrass comprised 99.8% of the population in lineage C and 

populations from crabgrass were dominated (98%) by lineage K. Hence, the conclusion was 

made that host species was the primary factor determining population structure according to 

analysis of molecular variance, and host cultivar and geographical region had no significant 

effect on diversity. In another study of a sesame germplasm collection, it was reported that 

there was no association between geographical region and AFLP patterns, suggesting that 

there was considerable gene flow among diversity centers (Laurentin & Karlovsky, 2006). 

The dendrogram derived from intron and exon sequences by another molecular tool (MLST) 

revealed that the isolates collected from wheat and rice are distributed throughout clusters in 

Neighbor-joining analysis. The genetic diversity assessed by Nei`s parameters supported the 

fact that the percentage of polymorphic loci in intron sequences was higher than that in exon 

sequences, suggesting that there is a higher mutation rate occurring in introns. Although 

isolates from wheat and rice were divided into three groups, respectively, the isolates from the 

same hosts were clustered together with 74%-99% bootstrap supporting. Those isolates from 

the same host in each group were derived from different locations. On the other hand, the 

diversity within groups, which differs depending on the geographical origin, was lower than 

that among four groups classified by their host plants, especially the GST values on intron 
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(0.41) and exon (0.53). Overall, the cluster and genetic diversity produced by MLST 

suggested that in three home-keeping genes, most of the variation is explained by genetic 

diversity between host species rather than geographical origin, which supported the results 

from AFLP.  Geotge et al. (1998) reported that cluster analysis from Pot2 rep-PCR 

fingerprints distinguished rice- and non-rice infecting isolates; isolates from rice formed a 

large and diverse cluster, while isolates from other hosts were much more distantly related. 

Among the non-rice infecting isolates, there was divergence in some isolates from the same 

host. Phylogenetic analyses of multilocus sequences and DNA fingerprinting tested by Choi et 

al. (2013) also demonstrated that the haplotypes of most Magnaporthe grisea isolates were 

associated with their hosts. Notably, Caicedo et al. (2000) had mentioned that heterogeneity 

values or gene diversity indices might overestimate the number of real loci, whereas the 

number of alleles per locus is underestimated. Thus, heterogeneity measures are only relative 

values and cannot be compared with values obtained from other molecular markers. 

There is another interesting comparison between molecular clusters and pathogenicity. 

Urashima et al. (1993) suggested that there were two distinct populations of wheat blast in 

Brazil, one composed of isolates which infected rice and another one was non pathogenic to 

rice. Although the isolates derived from wheat in the present experiment were also divided 

into two subgroups by AFLP (Fig. 10), there was no correlation between subgroups and 

pathogenicity. Highly pathogenic strains of Magnaporthe spp. (Fig. 8) were widely 

distributed within groups / subgroups. Wheat isolates MG5 and MG 31, which were mainly 

tested in other experiments, were clustered into different groups or subgroups in MLST and 

AFLP. Similarly, differences in their ability of infection were also shown on pathogenicity 

and cytological reactions. However, those wheat isolates also exhibited high pathogenicity to 

rice, but did not cluster into the same group with MG 31. For example, 82.5% of the highly 

pathogenic wheat isolate MG 1.2 was grouped with MG 5 (27.5%) in AFLP and showed 

similarity with MG 5 in MLST, in contrast to the similarly highly pathogenic isolate MG 31 

(86.3%). From another point of view, isolates which are in the same group (group B) as MG 

31 in AFLP demonstrated significant differences in pathogenicity. For example, wheat 

isolates Br116.5/T-7, MG 28 and MG 48 exhibited their pathogenicity with 5%, 50% and 

100%, respectively, to their host plants. The same situation also occurs in rice isolates: those 

isolates with similarly high pathogenicity showed low similarity level in AFLP. Rice isolates 

531UGA11 and 507RWA11, which showed 55% and 62.5% of pathogenicity to their host, 

had a similarity of 79.5% in group II. This suggested that the differences among Magnaporthe 

isolates shown on molecular level are not correlated to their pathogenicity ability.  
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Isolates from finger millet and perennial ryegrass were clustered together with wheat isolates 

in both AFLP and MLST, which suggested that the phylogenetic relationships with those 

three host species are close, and the pathogen Magnaporthe could be shifted among them. It 

also suggests that in wheat field, the probability of infection by Magnaporthe will increase 

with the presence of these two plant species. In 1971, a severe epidemic occurred on annual 

ryegrass (Lolium multiflorum Lam.) pastures in Mississippi and Louisiana (Bain et al., 1972; 

Carver et al., 1972). In 1991, M. grisea was first reported as a pathogen of perennial ryegrass 

(L. perenne L.), when a localized epidemic occurred on golf course fairways in Pennsylvania 

(Landschoot & Hoyland, 1992). Since then, gray leaf spots on perennial ryegrass have been 

observed throughout the United States wherever this species is cultivated (Dernoeden, 1996; 

Schumann & Jackson, 1999; Uddin et al., 1999; Vincelli, 1999). Tredway et al. (2004) 

supported the idea that isolates from perennial ryegrass were closely related to the isolates 

from wheat. Rice isolates differ from wheat isolates in containing a distinct set of transposable 

elements, but wheat and ryegrass isolates share the same set of transposable elements 

according to rDNA sequences and transposon-detected restriction fragment length 

polymorphisms (RFLPs) (Viji et al., 2001; Farman, 2002). The susceptibility of wheat to the 

Eleusine isolate was reported previously in Japan (Kato, 1978). In this study all wheat isolates 

caused serious damage in seven lines of finger millet from different countries and one line of 

E. africana from Uganda. The pathogenic pattern of the wheat isolates from various 

gramineous plants showed a similarity to the pattern of the isolates from E. africana (Kato & 

Yamaguchi, 1980). The mating behavior of wheat blast isolates collected from Brazil has 

been determined with fertile tester lines from finger millet by Urashima et al. (1993). 

Fourteen wheat isolates out of sixteen were classified as MAT1-1. Fertility was determined by 

crossing the wheat isolates with isolates of other gramineous plants. Mature ascospores can be 

produced when wheat isolates are crossed with isolates from Eleusine coracana. The 

compatibility with mating type and fertility indicated the similarity between wheat and finger 

millet isolates.  

4.4 Quantitative real-time PCR detection 

Commonly, the evaluation for fungal pathogenicity, host resistance or strain aggressiveness is 

based on a disease rating or measurement of lesion number and size or sporulation intensity 

(Yeh & Bonman, 1986). However, these methods only provide a visual estimation rather than 

an accurate measurement of fungal growth in plants. Various methods for detection and 

quantification of fungal pathogens in plant or soil have been developed. Fungal biomass has 
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been quantified by measuring levels of fungal constituents such as ergosterol or chitin 

(Pacovsky & Bethlenfalvay, 1982; Gretenkort & Ingram, 1993), or by immunological 

methods (Harrison et al., 1990; Newton & Reglinski, 1993; Dewey et al., 1997; Karpovich-

Tate et al., 1998), and also by the GUS (a bacterial ß�-glucuronidase gene) - transformed 

strain (Couteaudier et al., 1993; Liljeroth et al., 1993; Thrane et al., 1995; Bao et al., 2000). 

However, these methods are more or less defective. In recent years, quantitative real-time 

PCR (qPCR) has been developed as a molecular tool to detect and identify fungal pathogens 

(Horevaj et al., 2011; Farman et al., 1996; George et al., 1998). This technique contains 

thermal cycling with fluorescence detection for PCR amplification and records the specific 

cycle number. The term of cycle threshold (Ct value) has been regarded to be the most 

reliable parameter to detect and quantify target DNAs with qPCR (Heid et al., 1996). On the 

other hand, specific primers can be designed to distinguish between closely related fungal 

species and offers higher sensitivity and specificity than many other methods (Henson & 

French, 1993). qPCR has had numerous applications in viral, bacterial, and fungal plant 

pathogen research thanks to its characteristics of fast, specific, reproducible and sensitive 

results (Schaad et al., 1999; Böhm et al., 1999; Frederick et al., 2000; Bate et al., 2001; 

Harmon et al., 2003; Horevaj et al., 2011). qPCR is primarily used to quantify the pathogen in 

planta, generally for a diagnostic purpose, as it accurately measures the relative growth and 

absolute biomass of pathogens (Schaad et al., 2003; Berruyer et al., 2005). It was also applied 

to detect genetically modified organism contamination in food and gene expression analysis 

(Gachon et al., 2004). Mason et al. (2002) has quantified insert number in transgenic plants 

by qPCR. Berruyer et al. (2005) remarked that such a biological quantification method does 

not work for fungi that grow as cohesive mycelial hyphae, because it is hard to separate them 

into single, viable cells from plant tissue.  

The interactions between pathogens and their non-host plants showed significant differences 

with the compatible interactions (Fig. 17). In incompatible interactions, the qPCR reaction 

still detected small amounts of fungal DNA from infected plant leaves. This may be due to 

spores which are left on the leaf surfaces after inoculation, or the mycelium which have 

grown into the plant cells, considering that the HR lesions were found on leaves. The fact that 

the biomass of isolate MG 31 on rice leaves was still higher than others may indicate that 

there was a development of wheat isolate MG 31 on the rice leaves. This result suggests that 

there are differences among the various isolates of Magnaporthe spp. with both the infection 

capacity and the speed of development. 
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The amount of fungal growth in plants may not always be proportional to the development of 

disease symptoms elicited by different blast isolates (Qi & Yang, 2002). Therefore, both 

quantification of the fungal growth and phenotypic assessment of disease symptoms are 

needed to more precisely evaluate virulence or aggressiveness of different blast isolates or 

mutants. The results of three isolates MG 5, MG 31 and Ca 89 from qPCR detection in our 

experiment are related to cytology observations and pathogenicity tests. Insignificant 

differences of fungal biomass from MG 5, MG 31 and Ca 89 on their host plants were 

detected at 2 dpi in qPCR, and 26%, 29% and 27% of hyphae from those three isolates started 

to grow in the initially invaded cells on the host plants at the same time point for cytology 

observations. This indicated that the early growth of primary hyphae from different isolates is 

similar. At 6 dpi, the fungal biomass of isolates MG 5, MG 31 and Ca 89 was 174.26, 199.36 

and 132.79 pg/mg, respectively, from qPCR detection. 63.8%, 86.3% and 46.3% of disease 

incidence from pathogenicity tests were correspondingly recorded for those isolates. The 

corresponding differences reflected in the different host species illustrates that detection 

results of fungal biomass from qPCR in the early stage of infection could indirectly reflect the 

disease severity of Magnaporthe infection in the late stage. Therefore, this qPCR detection 

method can be used as an effective and efficient tool for reliable assessment of fungal 

pathogenicity and host resistance, and for monitoring disease progression. 

In this research, primers used in qPCR amplification were the regions of the Pot2 transposon 

(EMBL Accession No. Z33638). Pot2 is a putative transposable element from Magnaporthe 

grisea. The element is 1857 bp in size, has 43 bp perfect terminal inverted repeats (TIRs) and 

16 bp direct repeats within the TIRs. A large open reading frame, potentially coding for a 

transposase-like protein, was identified by Kachroo et al. (1994). This putative protein coding 

region shares general structural features with a group of transposons, including the 

transposable element Fot1 from Fusarium oxysporum (Migheli et al., 1999), Tc1 from 

Caenorhabditis elegans (Harris et al., 1988), Tcb1 from Caenorhabditis briggsae (Brownlie 

et al., 2005), Uhu from Drosophila heteroneura (Brezinsky et al., 1992) and Mariner from 

Drosophila (Lidholm et al., 1993). The fact that Pot2 is present in both rice- and nonrice-

infecting isolates of M. grisea at equal copy numbers broadens its utility relative to other host-

specific repetitive elements (George et al., 1998). Pot2 has been reported in many studies and 

it is believed to be only present in the isolates of Magnaporthe spp. from various hosts 

(Farman et al., 1996; George et al., 1998; Harmon et al., 2003). It represents one of the major 

repetitve DNAs shared by both rice and non-rice pathogens of Magnaporthe. Kachroo et al. 

(1994) demonstrated that the Pot2 transposon has been found in all of 50 perennial ryegrass 
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isolates of M. oryzae and is more specific than other potentially useful sequences. Pot2 is 

believed to have originated in an ancestor of these fungi, before the evolution of host 

specificity, and was estimated to be present in 100 copies in the M. oryzae genome (Kachroo 

et al., 1994). Harmon et al. (2003) reported that the limit of detection of purified DNA was 

found to be between 5 and 50 pg. The ability to detect a relatively small amount of DNA 

enhances the efficiency of the procedure and increases the likelihood of successful detection. 

Interestingly, pathogen detection for naturally infected turfgrass samples from golf course 

fairways was implemented. There was no pathogen to be detected from symptomatic 

perennial ryegrass leaf blades that were dried and stored at 23°C for an extended period of 

more than 3 years. This suggests that symptomatic leaf blades should be processed fresh 

without drying or storing the plant material for long periods of time (Harmon et al., 2003). 

4.5 Cytological investigations of Magnaporthe infections on host and nonhost plants 

Cytological studies on the process of blast infection or the responses from plants have been 

mainly focused on rice plants (Arase et al., 1983; Koga & Kobayashi, 1982; Tomita & 

Yamanaka, 1983; Peng & Shishiyama, 1988 and 1989; Koga, 1994). The responses of wheat 

leaves to the blast fungus were examined in this investigation, and the similarities or 

differences between wheat and rice plants which respond to Magnaporthe infection were 

discovered. At the beginning stages (germination), all the conidia showed similar ability to 

germinate and form appressoria on host or nonhost plants, wheat or rice. The differences 

between host and nonhost interactions were observed at 24 hpi: more appressoria successfully 

penetrated the cell wall and attempted to penetrate into the cell on host interactions which 

occurred similarly on both wheat and rice plants, but most of the appressoria were arrested by 

papilla formation at this time. The differences between host and nonhost interactions 

increased over time. Some hyphae infested the entire initial invaded cells at 48 hpi on host 

interactions, while only a few hyphae broke through the control from the papilla and 

penetrated into the cells. The different responses to Magnaporthe infection between wheat 

and rice started to appear at this time. For the host interaction, the hyphae grew slightly faster 

in wheat leaves at 48 hpi. The percentage of successful infection in epidermal cells of host 

plants for wheat isolate MG 31 and rice isolate Ca 89 were 47.7% and 43%, respectively. 

Meanwhile, the difference in nonhost interactions was more obvious. The percentages for 

successful infections in nonhost plants for MG 31 and Ca 89 were 13.2% and 1%, 

respectively. At 72 hpi, clearer differences occurred in both host and nonhost interactions 

between wheat and rice. In comparison to the percentage of successful infections in epidermal 
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cells, approximately 62%, 70% and 44% of wheat isolates MG 5 and MG 31 and rice isolate 

Ca 89 were recorded for their host interactions. Similarly, 11%, 14% and 5% of isolates MG5, 

MG 31 and Ca 89 were found in their nonhost plants. These results suggest that the largest 

differences happened with host and nonhost interactions or host-specific pathotypes, followed 

by the resistant response of plant species. Interestingly, the responses of wheat and rice tissues 

to the infection of Magnaporthe at the microscopic level were correlated with those at the 

macroscopic level in out experiment. More infection hyphae of the three isolates were 

observed under microscope at 72 hpi in the host interactions than were observed in nonhost 

interactions. A higher incidence and severity were correspondingly discovered in the 

pathogenicity test for host interactions at 6 dpi. For the response of different plant species, 

about 70% and 44% of infection in the host plant was noticed for wheat isolate MG 31 and 

rice isolate Ca 89 in cytology observations. Correspondingly, 86.3% and 46.3% of disease 

incidence in pathogenicity was recorded for MG 31 and Ca 89, respectively. Comparing these 

results reveal that there is a positive correlation between cytology investigation and 

pathogenicity.  

Blast disease, caused by the fungal pathogen Magnaporthe, is one of the most destructive 

diseases occurring in crop cultivation. Breeding for resistance against blast has not achieved a 

lasting success because resistance of newly developed cultivars was quickly overcome by a 

shift in the pathogen population to new virulent races (Hamer et al., 1993). Plants in natural 

and agricultural ecosystems are exposed to bacteria, fungi, viruses and insects which have the 

potential to cause diseases. However, a given plant species is not a general host for all plant 

pathogenic organisms. The phenomenon that all cultivars of a plant are resistant to infection 

by all genotypes within a pathogen species is referred to as nonhost resistance (Heath, 1991; 

Nürnberger & Lipka, 2005). Nonhost disease resistance is one of the common forms for 

defense response. Because of its durability, nonhost resistance is regarded as a robust 

protection against the majority of potentially pathogenic microorganisms. In both monocot 

and dicot species, it was proposed that nonhost resistance should be classified in two types. 

The first is constitutive or passive and applies when the pathogen lacks the necessary 

pathogenicity factors, without producing any visible symptoms. The second type of nonhost 

resistance has been described as inaccessibility, for example, when a preformed antimicrobial 

substance cannot be overcome by the pathogen or when inducible, active defenses keep the 

pathogen in check. It is always associated with brown spots at the leaf surface because of a 

rapid and localized hypersensitive response (HR) with cell death (Holub and Cooper 2004; 

Mysore & Ryu, 2004). Thus, nonhost resistance could be viewed not only as a host property 



Discussion 

 96 

but also as an inadequacy in the pathogen in terms of limited host specificity (Heath 2001). 

There is much research about nonhost disease resistance (Koga & Kobayashi, 1982; Arase et 

al., 1983; Koga, 1994). A nonhost resistance in barley was reported by Zellerhoff et al.(2006), 

the nonhost type of resistance for blast disease was detected in barley against isolates derived 

from genera Pennisetum (fontaingrass) or Digitaria (crabgrass). Rice-Magnaporthe 

interactions have been studied extensively and have become a reference system to studying 

plant-pathogen interactions at the molecular level (Caracuel-Rios & Talbot, 2007; Ebbole, 

2007; Xu et al., 2007). The nonhost resistance observed in our cytological investigations 

could correspond to the two types of resistance described above. Approximately 87% of 

appressoria from rice isolate Ca 89 failed to penetrate the wheat cell walls at 48 hpi and no 

visible symptoms were observed on wheat leaves after 6 dpi. This corresponds to the first 

nonhost resistance type that the pathogen lacks the pathogenicity factors. Conversely, HR 

reactions with autofluorescence which refer to the second type of nonhost resistance were 

recorded on rice epidermal cells, and were triggered by 21.2% and 27% of primary infection 

hyphae from wheat isolates (MG 5 and MG31, respectively) with the presence of small 

necrotic spots on rice at 6 dpi. Heath et al. (1992) proposed a reason that the failed penetration 

of a non-adapted M. oryzae isolate on goosegrass was associated with the deposition of a 

silica-based granular deposition beneath the appressoria. There is only limited research 

available on the comparison of nonhost resistance on rice and wheat challenged with 

Magnaporthe spp. isolated from different species. The characterization of this nonhost 

pathosystem and comparison between compatible or incompatible interactions of rice and 

wheat with isolates derived from wheat and rice was conducted in our experiment at the 

cellular level. Host interactions on wheat and rice were successfully achieved and typical 

symptoms appeared on the leaves of the host plant. However, the responses of nonhost 

interactions between rice (CO 39) - wheat isolate MG 31 and wheat (BR 18) - rice isolate Ca 

89 were presented in two types as described previously. Jackson and Taylor (1996) revealed 

that during the course of infection, these pathogens engage in many sophisticated but poorly 

understood activities that redirect nutrient flow in plant tissues and alter the growth and 

morphology of the plant. Changes in the morphology of the pathogen are also evident during 

pathogenesis, and these developmental modifications offer great future potential for molecular 

genetic analyses, biochemical studies, and cell biological investigations of infection.  

Defense of plants against infection is based on diverse strategies, thus plants have evolved 

mechanisms to perceive pathogen attacks using both preformed defenses (e.g. antimicrobial 

compounds) and inducible defense responses (Odile et al., 2008). Gene-for-gene resistance is 
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considered to be the best characterized form of resistance. The defense responses mediated by 

gene-for-gene interactions include rapid localized cell death, known as the hypersensitive 

response (HR; Glazebrook, 2001; Rate & Greenberg, 2001), the production of phytoalexins 

(Modolo et al., 2002) and other antimicrobial secondary metabolites, and the expression of 

pathogenesis-related (PR) proteins (Narasimhan et al., 2001). The first M. grisea gene was 

detected expressed during the infection and identified using Northern hybridizations, was an 

ubiquitin-encoding gene (UEP3) (McCafferty & Talbot, 1998), and gene MPG1 encoding a 

class I hydrophobin, which is one of the most expressed M. grisea genes (Talbot et al., 1993), 

it is strongly expressed during the colonization of the plant by the fungus. Since then, many 

approaches such as expressed sequence tag (EST) or SAGE analysis have been implemented 

and discovered many novel M. grisea genes expressed during a susceptible infection from 

infected rice leaves (Kim et al., 2001; Rauyaree et al., 2001; Matsumura et al., 2003). Most of 

these genes encode proteins involved in protein synthesis, primary metabolism or 

cytoskeleton proteins, suggesting that the fungus is actively growing in the infected tissues. 

Ribot et al. (2007) have developed a genome-wide transcriptomic study of a susceptible 

infection using Agilent microarrays representing the 13,666 genes of the M. grisea genome. 

RNA from infected and noninfected rice leaves were hybridized on Agilent chips, and 

statistical analysis showed that 1851 fungal genes are significantly expressed in infected 

leaves in comparison to non-infected leaves. Among these 1851 genes, 34% have unknown 

functions, and 50% are involved in DNA, RNA, amino acid and protein synthesis, and energy 

production. These genes reflect the fact that the fungus is actively growing in infected tissues, 

requiring a significant biosynthesis of novel DNA, proteins and primary metabolites. 

Kiyosawa (1976) identified 13 rice genes conditioning the resistance to Magnaporthe oryzae. 

Urashima et al. (2004) demonstrated that the isolates of M. grisea with the ability to infect all 

20 wheat cultivars could overcome a great number of resistant genes, because each of the test 

cultivars possessed different resistance genes against the wheat blast fungus. The results from 

investigations by Urashima & Kato (1994) and from the rice blast study by Correa-Victoria & 

Zeigler, 1993 revealed that the Magnaporthe isolates which were able to overcome many 

resistant genes, are present over an extensive geographical area, retained over a large period 

of time, and in other pathossystems. It is important to identify resistant genes with the help of 

markers. Once a gene is tagged with a molecular marker, it can be transferred selectively into 

different genetic backgrounds by marker assisted selection. Ten random amplified 

polymorphic DNAs (RAPD) and two sequence characterized amplified region (SCAR) 

primers were used to identify blast resistant genes by Kumar et al. (2010). Markers OPA-05, 
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OPF-06, OPF-09, OPF-17, OPG-17, OPG-18, OPG-19, OPH-18, OPK-12, P-265-550 and P-

286-350 found linked to blast resistance in most of the resistant genotypes could be 

considered as potential molecular markers in the selection of blast resistant genotypes. 

Amplification with RAPD and SCAR primers revealed a nonallelic relationship among 

resistant genotypes and thus, there is a good possibility of obtaining enhanced resistance 

through gene pyramiding.  

Some studies suggested that the plant species specificity of Magnaporthe is governed by only 

a few genes (one or two) and these genes differ according to plant species or the type of 

cultivar attacked. This variation could result from the variation of resistance genes carried by 

the plants and cultivars. Avirulence genes from pathogens can be recognized by specific 

genotypes (cultivars) of the host species that contain corresponding resistance genes. Ebbole 

(2007) had mentioned that the genome sequence of M. oryzae 70-15 contains three members 

of the pwl family. The pwl genes do not encode avirulence factors toward any known rice 

cultivar, although functional copies of pwl are recognized by weeping lovegrass (Eragrostis 

curvula). Thus, the pwl genes appear to act as avirulence factors at the host species level, 

rather than at the cultivar level. Tosa et al. (2006) concluded that five loci (Pwt1, Pwt2, Pwt3, 

Pwt4 and Pwt5) were involved in the specific pathogenicity of Setaria, Triticum, Avena and 

Oryza isolates on wheat. The Oryza and Setaria isolates were shown to share two avirulence 

genes, PWT1 and PWT2, while the oat isolate carries other avirulence genes. The wheat strain 

carries none of the five avirulence genes. Conversely, Murakami et al. (2000) have shown that 

specific pathogenicity of Setaria and Triticum isolates on wheat was controlled by two genes 

(PWT1 and PWT2) located at different loci and no PCR products were amplified from those 

isolates with primers designed based on conserved DNA sequences of PWL genes. It is 

suggested that these genes had weak or no homology with the PWL genes family isolated 

from Eleusine and Oryza isolates that prevent the blast fungus from infecting weeping 

lovegrass (Kang et al., 1995; Sweigard et al., 1995). The primary role of Pwt1 assumed by 

Murakami et al. (2000) was that Pwt1 is the determination of pathogenicity and that the lesion 

color is merely a superficial result of this determination. At a lower temperature the 

hypersensitive reaction controlled by the Pwt1 locus can stop the fungal penetration 

efficiently and produce brown pinpoint or small lesions without the help by Pwt2s. At a 

higher temperature the hypersensitive reaction mediated by the Pwt1 locus cannot stop it 

efficiently under the absence of Pwt2s, so it is induced continuously and extensively, resulting 

in the browning and shriveling of the whole leaf. Host species specificity of Magnaporthe 
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toward foxtail millet was also studied (Murakami et al., 2003) and revealed the involvement 

of two genes only (PFM1 and PFM2). 

Inducible defenses can be activated upon recognition of elicitors, which derived from 

subpopulations of a pathogen species and evoked defense reactions in a cultivar-specific way 

(Odile et al., 2008). Several PR proteins such as chitinases and ß-1, 3-glucanases have well-

recognized antifungal activity on account of their hydrolytic action. For example, chitin is a 

major component of fungal cell walls and causes rice blast disease from Magnapothe oryzae. 

Plants produce chitinases upon pathogen attack and chito-oligomers (Oligosaccharide elicitor) 

induce defense responses in plants. The chitinases could release fragments of the cell wall of 

the fungal pathogen as a result of hydrolysis of cell wall components. These fragments may 

act as elicitors of active plant defense reactions. Chitin and its fragments, N-

acetylchitooligosaccharides, are representative microbe-associated molecular patterns of fungi 

that trigger various defense responses in plants at subnanomolar levels (Shibuya & Minami 

2001). They can degrade the pathogen cell wall or disrupt its deposition and thus block the 

infection process. Thus, pathogenic fungi are very likely to have mechanisms to avoid 

generating the chitin elicitor during the infection process. Mochizuki et al.(2011) have 

reported that invasive hyphae in the first-invaded rice cell can be stained with fluorescently 

labeled wheat germ agglutinin (WGA), a probe to detect chitin. However, in the second-

invaded cell, hyphae showed strong fluorescence, as cell-wall chitin is hydrolyzed by the 

plant chitinase. Recent studies have revealed that cell wall chitin is physically masked by 

other cell wall components. Fujikawa et al. (2009) showed that α-1,3-glucan masks both 

chitin and ß-1,3-glucan in the cell walls of M. oryzae at 24 hpi. They also demonstrated that 

the presence of α-1,3-glucan results in increased tolerance to chitinase digestion. Thus, 

masking chitin by α-1,3-glucan is a major strategy of M. oryzae to evade attack by chitinase. 

The PR-1 proteins are often used as markers of the enhanced defensive state induced by the 

pathogen, but their biological activity has not yet been clearly elucidated. Peroxidases could 

act in cell wall reinforcement by catalysing lignification, enhancing resistance against 

multiple pathogens. PBZ1 is induced by probenazole (3-allyloxy-1, 2- benzisothiazole-1, 1-

dioxide), an effective inducer of plant defenses against rice blast disease. This has an 

important role in disease resistance in rice (Komatsu et al., 2004). Plants are able to recognize 

microbial invaders through specific surface determinants, collectively called pathogen-

associated molecular patterns (PAMPs) and to react through defense signaling cascades 

(Jones & Dangl, 2006). Defense-gene analysis performed by (Odile et al., 2008) suggested 

that PR-type and similar proteins are part of an immune surveillance mechanism that protects 
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the plant primarily against invasion by microorganisms that are generally perceived as 

nonhost. They speculated that the strategies deployed by a nonhost fungus to attempt 

penetration of the epidermal cells are less efficient than those of a virulent host pathogen and 

thus are rapidly counteracted by the defense of the attacked plant. The encoded proteins could 

then hydrolyse the fungal cell wall before rupture of the leaf cuticle by the turgor pressure 

developed in the appressorium, which occurs at 24–30 h (Kankanala et al., 2007). 

For the microscopic observation, a double staining method with WGA-AlexaFluor488 and PI 

was used on wheat and rice samples under CLSM. As previously described, the fungal 

structures and plant tissues can be stained into different colors with WGA-AlexaFluor488 and 

PI which is more distinguishable for observation. There are many other staining methods for 

fungal structures that were performed in the interaction of Magnaporthe isolates with plants. 

Tufan et al. (2009) stained fungal structures with Uvitex-2B, and plant autofluorescing 

cellular structures were differentiated using a Uvitex-2B specific filter and an 

autofluorescence-specific filter, respectively (fungal structures showed green and 

autofluorescence showed red). The staining method with lactophenol cotton blue solution was 

also tested (Fig. A2) in autofluorescence microscopy. The staining results revealed that only 

conidia, germination tubes and appressoria were able to be stained blue and not hyphae in the 

epidermal cells which is not helpful for the observation of fungal growth within cells. 

Normally, the cotton blue staining is just used for the observation on conidia germination and 

appressorium formation (Gupta & Chattoo, 2007; Ghatak et al., 2013). Zellerhoff et al. (2008) 

used trypan blue to stain harvested barley leaves and the accumulation of autofluorescent 

material was observed using epifluorescence microscopy, but both fungal structures and plant 

tissues were stained blue which is not quite distinguishable. Ramonell et al. (2005) pointed 

out that trypan blue is good to stain the fungal hyphae and conidiophores on the leaf surface, 

and has the same staining results as cotton blue.  

Some researchers also performed studies investigating penetration into the mesophyll by 

Magnaporthe spp.. Hyphal growth was almost invariably coupled with autofluorescence and 

cytoplasmic granulation of the first invaded epidermal cell. This cytoplasmic granulation in 

the first invaded epidermal cell has been associated with race-specific resistance to adapted 

Magnaporthe isolates in rice (Koga & Kobayashi, 1982; Tomita & Yamanaka, 1983). 

Nonadapted isolates are rarely observed escaping from the first invaded cell, whereas hyphae 

from the adapted isolates would move on to infect multiple cells, resulting in collapse and 

autofluorescence of the adjacent mesophyll cells. Jarosch et al. (2003) confirmed that attacked 
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mesophyll cells collapsed and underwent cell death that was thought to allow development of 

the facultative biotroph fungus M. grisea. Autofluorescence was observed in both compatible 

and incompatible interactions in our experiment. On the one hand, HR of epidermal cells can 

accumulate fluorescence materials in both interactions, but on the other hand, the collapsed 

mesophyll cells could also display autofluorescence in compatible interactions. Heath et al. 

(1990b) supported that, in highly compatible interactions of weeping lovegrass (Eragrostis) or 

rice with M. oryzae, fungal progression into the mesophyll is accompanied by cell collapse 

and autofluorescence. In contrast, autofluorescent mesophyll cells of the incompatible 

interaction reported kept their regular shape and were not invaded by the pathogen. 

Quantitative real-time PCR analysis further confirmed that, in the nonhost interaction, fungal 

colonization was halted at very low levels of fungal biomass (Fig. 17), indicating the 

effectiveness of cellular defense reactions.  

There is another view about secondary infectious hyphae. While primary infection hyphae 

extensively invade the first infected epidermal cell, they seem to search the plant cell wall for 

plasmodesmata and breach it to reach the neighboring cells, forming secondary infectious 

hyphae. Interestingly, Ribot et al. (2008) mentioned that this process takes place 

independently of the amount of primary infection hyphae present in the first invaded cell and 

is rather time dependent. In addition, there are several advantages on microscope observation 

to use rice leaf sheaths. The rice leaf sheaths can be trimmed easily to exclude lower plant cell 

layers not yet invaded by the fungus. Meanwhile, the infected sheath tissue is optically clear, 

allowing detailed visualization of the fungus–plant interactions before attempting further 

studies on the sample. Nevertheless, the intact leaf sheath assay diverged slightly from nature 

in the later stages of infection, especially at higher inoculum concentrations. Koga et al. 

(2004b) made morphological comparisons of fungal growth between excised and intact leaf 

sheaths for the selection of samples. For technical reasons, most of these cytological studies 

were performed on rice leaf sheaths or onion/barley epidermal layers. As these tissues are 

very susceptible to blast, some of these observations may reflect excessive susceptibility and 

lead to somewhat artificial effects as the plant defense response is highly reduced. Berruyer et 

al. (2006) also reported similar observations that the difference between excised and intact 

leaf sheath was seen 48 h after inoculation, suggesting that only the early infection process 

mimics what occurs in the field.  
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4.6 Role of fungal phytotoxins 

Plant pathogenic fungi produce a range of toxic compounds (phytotoxins), usually secondary 

metabolites, that affect the physiological function of plants and often induce lesion formation 

in plant leaves (Stone et al., 2000). Phytotoxins often cause wilting, chlorosis and necrosis, 

but the importance and actual role in disease establishment is variable and intensly disputed 

for some diseases (Isaac, 1998). There are also other factors such as hormones, enzymes, 

genetic determinants and compounds liberated by the disruption of plant tissues. These toxins 

appear to target critical biochemical pathways, and their action can have pleiotropic effects on 

plant metabolism (Jackson & Taylor, 1996). Phytotoxins are low molecular weight secondary 

metabolites which are capable of disturbing the vital activity of plant cells or causing their 

death at concentrations below 10mM. Toxins are formed by diverse organisms (bacteria, 

plants and even phytophagous insects). Nevertheless, fungi are well known as phytotoxin 

producers, particularly those which are phytopathogenic. They are a very diverse group of 

molecules, including polypeptides, glycoproteins, phenolics, terpenoids, sterols and quinones 

(Isaac, 1998). Certain lipids regulate a wide range of important cellular processes in plants, 

including the regulation of ROS production (Sang et al., 2001) and the activation of defense 

gene expression (Farmer & Ryan, 1992). Nishimura and Scheffer (1965) first reported that a 

host-specific toxin, HV-toxin, was released from germinating spores of Helminthosporium 

victoriae. Xiao et al. (1991) later emphasized the importance of 'toxin release' during spore 

germination for infection. Fujita et al. (1994) confirmed that susceptibility-inducing activity 

incubated in spore germination fluids of P. oryzae increased concomitantly with the 

incubation time. Results indicated that the toxins were released as soon as spores germinated. 

In addition, Isaac (1998) mentioned that some fungi would liberate toxins in the early stage 

when they just encounter the host plants as an aid to penetration and establishment, while 

others are produced much later in the infection process. This may enhance the senescence of 

the plant, leading to its more rapid demise. Phytotoxin formation is sensitive to a number of 

diverse factors, e.g. the composition of the medium, its acidity and the duration and 

conditions of culturing. Most of them are not identified in advance as being able to affect the 

process. Microorganism strains are genetically unstable and their storage or reinoculation may 

adversely affect the ability to produce toxins (Berestetskiy, 2008). 

The effect of phytotoxins on plants is characterized by the appearance of specific symptoms; 

wilting and general growth suppression, as well as chloroses, necroses and spotting of aerial 

portions are the most common (Berestetskiy, 2008). Arase et al. (1990a) reported that the 
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spore germination fluids of Pyricularia oryzae induced infection by non-pathogenic 

Altemaria altemata (Fr.) Keissler of the leaves of rice cv. Sekiguchi-asahi which is a mutant 

of cv. Asahi, and caused a characteristic necrosis on the leaves of cv. Sekiguchi-asahi. This 

necrosis seems to be the same as that caused by inoculation with the fungus (Arase et al. 

1990b). Heath (1981) suggested that specific compatibility between P. oryzae and host 

species seems to be determined through two steps. The first is to establish compatibility at the 

species level (basic compatibility) and the second at race-cultivar level. Susceptibility or 

resistance of rice plants to P. oryzae is determined by the race-cultivar interaction. Fujita et al. 

(1994) confirmed that the toxins produced by Pyricularia oryzae during spore germination 

induced susceptibility to infection by non-pathogenic Altemaria alternata of rice leaves. The 

induced susceptibility was independent of the compatibility between the races of blast fungi 

used for obtaining the toxins and the rice cultivars used for bioassay.  Nishiuchi et al. (2006) 

have reported that Fusarium phytotoxins have elicitor-like activity in Arabidopsis, causing the 

induction of defensive genes, the accumulation of SA and ROS, and lesion formation. 

However, the production of phytotoxins does not appear to be the sole factor determining 

virulence in plants, and other virulence factors are probably involved in successful 

colonization. Park et al. (2009) mentioned that the severity of symptoms caused by culture 

filtrate treatment did not always correlate with the degree of disease severity in certain 

ecotypes of Arabidopsis and suggested that several mechanisms operate during pathogenesis 

in Arabidopsis. 

Magnaporthe spp. displays a considerable capacity for the production of phytotoxins. 

Susceptibility-inducing activity of the toxin(s) was recognized in all isolates tested, regardless 

of compatibility between fungal races and rice cultivars. The toxin(s) also induced 

susceptibility in other host plants of P. oryzae such as barley, Italian ryegrass, perennial 

ryegrass and wheat plants, but not in non-host species. Thus, the specificity of susceptibility-

inducing activity of this toxin(s) corresponded with the host range of P. oryzae. The results 

indicate that the toxin(s) were host-selective disease determinants to establish a basic 

compatibility (Fujita et al., 1994).  

The phytotoxins produced by Magnaporthe spp. are a series of salicylaldehyde-type 

phytotoxins including pyriculol, pyricuol and pyriculariol, and some of these have known 

structures. So far, however, only very limited information is available concerning the role of 

specific compounds in disease (Arase et al., 1998; Ebbole, 2007). One of the best 

characterized metabolites is tenuazonic acid, a photosystem II inhibitor. Strains producing low 
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levels of tenuazonic acid have smaller lesions than those with high levels of the phytotoxin 

(Lebrum, 1990). Arase et al. (1998) demonstrated that the toxin of the rice blast fungus 

inhibited root growth in rice seedlings cultivar-nonspecifically and induced necrosis 

formation on the leaves of rice cv. Sekiguchi-asahi. The induction of susceptibility by the 

toxin was also observed on other host plants, but not on nonhost plants. It was therefore 

suggested that the toxin is not playing an important role in specificity at the race-cultivar level, 

but it is host-selective and determines the host specificity at plant species level.  

Park et al. (2009) demonstrated that in response to treatment with a crude culture filtrate of M. 

oryzae, lesion formation and induction of PR gene expression were observed in Arabidopsis 

but not in rice, suggesting that M. oryzae employs virulence factors (i.e. phytotoxins) unique 

to infecting Arabidopsis. Fusarium phytotoxins have elicitor-like activity in Arabidopsis and 

cause the induction of defensive genes. However, the M. oryzae mutants lack the involvement 

in appressorium formation. Park et al. (2009) reported that a culture filtrate (CF) of M. oryzae 

KJ201 caused lesion formation in Arabidopsis leaves within 48 h of treatment and the severity 

of the lesions was correlated with the filtrate concentration. In contrast, the CF failed to 

produce any visible symptoms on the leaves of rice cultivar Nakdongbyeo at 1 dpi; and faint 

HR-like lesions were visible around the inoculation sites at 3 dpi. The application of CF 

induced the expression of three PR genes in Arabidopsis within 48 h of treatment even 

without visible symptoms, but failed to do so in rice at the same concentration. Our results 

showed that the culture filtrates from Magnaporthe spp. did not cause any lesions by 

phytotoxins on wheat and rice leaves at 3 dpi. A possible reason for this could be that the 

concentration of phytotoxin production from Magnaporthe spp. is too low to affect the host 

plants. Furthermore, the factors mentioned above and the extraction methods may influence 

the toxin formation, resulting in a low production. Conversely, it may be possible that the 

filtrates produced by those three isolates used in this study are not effective on those two 

plants.  

In our preliminary study, the phytotoxins from germinating conidia of three Magnaporthe 

isolates in the liquid media PDB and from infected plant tissues were simply extracted by 

double filtration using three layers of gauze and a 0.20 µm Millipore filter to remove conidia 

and hyphae, and diluted with distilled water. However, a lot of research on the selection for 

host resistance to pathogen toxins was carried out using purified toxin or culture filtrate for 

the high content of the target compounds (Daub, 1986; Zhane et al., 2011). The following are 

the most commonly used extraction method for fungal culture filtrate (Fujita et al., 1994; Park 
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et al., 2009). The spore germination fluids from liquid medium cultures were filtered through 

gauze or filter paper to remove mycelia and subsequently through a 0.20-0.22 μm Millipore 

filter to eliminate the conidia, or the toxins were extracted with ethyl acetate (EtOAc). After 

the removal of liquid medium or EtOAc by evaporation, the culture filtrate was dissolved in 

acetone. The solution was then evaporated under reduced pressure to remove acetone and 

concentrated to 1/50 or 1/100 of the original spore suspension volumes. Then a series of 

different concentrated toxin solutions are ready to be used for phytotoxin analysis. However, 

Isaac (1998) reminded us that toxins produced in culture may not necessarily be formed in a 

host plant. It is important to detect the naturally infected plant tissues to establish a role for 

toxins in the development of a plant’s disease. However, this may be difficult since active 

concentrations are often very low. In our preliminary test, we attempted to extract phytotoxins 

from lesion tissues by artificial inoculation. 

Further purification of phytotoxic compounds has been conducted to determine the chemical 

structure and biological activity of the phytotoxic metabolites produced by Magnaporthe spp.. 

The method for purification of phytotoxic compounds was based on a large-scale culture of 

isolates on plant grains prepared in flasks. Park et al. (2009) has extracted three phytotoxic 

compounds using this method and identified compound 1 was the fatty acid (9,12-

octadecadienoic acid). They were unable to identify the other two compounds due to 

insufficient quantities for subsequent chemical analyses. Deighton et al. (1999) indicated that 

necrotrophic pathogens use oxidative bursts to invade and destroy plant tissues. The 9, 12-

octadecadienoic acid may be a precursor of biologically active oxylipins in plants with JA as a 

terminal signal (Blechert et al., 1995). The production of excess 9, 12-octadecadienoic acid by 

M. oryzae may disrupt cellular homeostasis and lead to cell death. Recovery of disease 

resistant plants by in vitro selection at the cellular level using partially purified toxin or 

culture filtrate produced by a plant pathogen, has been reported (Daub M., 1986; Arcieni et al., 

1987; Frame et al., 1991). The effect of phytotoxins derived from Magnaporthe spp. on wheat 

and rice leaves in our experiment is just a preliminary test. Further purification of culture 

filtrate has to be performed in order to identify toxic metabolites of Magnaporthe spp. 

involved in pathogenicity. The potential use of culture filtrate of Magnaporthe spp. should 

also be investigated to determine structural and biochemical barriers involved in defense 

mechanisms and its usefulness for resistance induction in cells and tissue cultures. 

With the exception of the observation of lesions, the effect of culture filtrate on membrane 

permeability is another way to study the role of the phytotoxins. Iacobellis & Bottalico (1981) 
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suggested that the absence of non-specific substances in the filtrate have been related to 

changes in membrane permeability in infected plants. Changes in cell permeability of plant 

leaves were determined with a conductivity method which measures ion leakage and has been 

regarded as one of the earliest host responses to a variety of plant pathogens (Wheeler, 1976; 

Misaghi, 1982). A significantly higher electrolyte leakage was detected on potato leaves 

treated with filtrate of Fusarium eumartii compared to Richard's filtrate used as control, and 

both conidia and filtrate of F. eumartii increased ion leakage in potato leaves while no 

significant changes appeared in tomato leaves (Botta et al., 1994). Wheeler & Black (1963) 

also reported that only the host-selective Helminthosporium victoriae toxin causes 

permeability changes in oat tissues identical to those caused by the pathogen in 

experimentally infected plants.  

However, none of several evaluating points proposed to determine whether a toxin has a role 

in plant disease has any importance by itself. Yet in combination, confidence may increase 

(Yoder, 1980). Isaac (1998) reported that Fusicoccum amygdali is the causal agent of wilt 

diseases of almond and peach. This disease is caused by complex interactions between cell 

wall degrading enzymes, plant growth regulators and the toxin Fusicoccin produced by 

Fusicoccum amygdali. It is more likely that this toxin is a secondary determinant of the 

disease. Botta et al. (1994) suggested that the use of toxic metabolites instead of the pathogen 

to evaluate plant responses might be valuable, mainly when the disease expression is highly 

influenced by the environment or isolation of the pathogen is difficult.  

The most common approach to develop systems for selecting for disease resistance in culture 

has been to use of pathogen toxins as the selecting agent. Many investigators have succeeded 

in selection or breeding some cultivars with resistance to a specific pathogen toxin. The first 

resistance gene against toxins from plant was cloned and named Hm1, which confers 

resistance to HC- maize. Hm1 was cloned by transposon tagging, and homologs are present in 

severa1 HC-toxin-insensitive grasses. An enzyme from maize, called HC-toxin reductase, 

which deactivates HC-toxin by pyridine nucleotide-dependent reduction of an essential 

carbonyl group, is detectable only in extracts of maize that are resistant to C. carbonum race 1 

(genotype Hm/Hm or Hm/hm) (Meeley et al., 1992). In most cases, the toxin resistance 

expressed in regenerated plants is correlated with significant increase in the levels of disease 

resistance in the plants. Moreover, these changes were genetic and able to transmit the 

resistance to the progeny of the selected plants. In addition, Daub (1986) found that host 
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response to the toxin was not correlated to pathogenicity. Therefore, there are still many 

problems in the study of phytotoxins that need to be solved.
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Summary  

Wheat blast (causal agent Magnaporthe grisea) is a novel and serious disease of wheat, 

causing high yield losses which has become a critical problem for wheat production in South 

America. This study aimed to improve the knowledge of characterization, epidemiology and 

pathogenicity of Magnaporthe spp., and to distinguish Magnaporthe grisea from wheat with 

another blast pathogen from rice (Oryza sativa L.), Magnaporthe oryzae in terms of 

phylogenetic relationships and interaction with its hosts and non-hosts. The results from this 

research would provide useful information for the development of strategies for the future 

control of wheat blast under practical field conditions. 

Initially, cultural characteristics of seventy Magnaporthe isolates were characterized in vitro. 

Diversity of colony morphology of these isolates was shown on V8 medium and significant 

differences in colony growth diameter and mycelial dry weight were demonstrated. These 

differences were significant among isolates from the same host, but insignificant between 

different hosts. 

Effects of temperature (20, 23, 26, 29 and 32°C) and spike-wetness periods (24h, 48h, 72h 

and 96h) on ear infection at flowering stage of wheat (BR 18) were studied. The results 

showed that higher temperatures (>26°C) are conducive for the growth of M. grisea. 

Differences in spike-wetness periods were insignificant, but disease severity increased in 

warm conditions with extended wetness periods. Therefore, the optimum inoculation 

conditions for further studies was 26°C and 24h wetness duration after inoculation.  

Pathogenicity tests were carried out in the greenhouse. Seventy Magnaporthe isolates 

collected from different host plants and geographical origins were inoculated on wheat and 

rice seedlings under controlled conditions to evaluate their infection capacity on wheat and 

rice leaves. All isolates produced typical lesions on their host plants, but there were 

significant differences in disease incidence and severity between the different host-isolate 

combinations. Thirty-six isolates from wheat and other grasses and eleven rice isolates were 

able to cause lesions with varying severity on both wheat and rice while the rest of the isolates 

were pathogenic only on their host plants. In the compatible interactions, 55% of the wheat 

isolates and 93.3% of the rice isolates successfully induced disease (severity between 4 to 5), 

which means the pathogen has developed on between 50% and 80% of the host leaves, and 

32.5% of wheat isolates infected over 80% of wheat leaves. For the incompatible interactions, 

very low levels of disease severity were found on both host plants. 

Molecular research tools have also been developed and applied. Amplified fragment length 

polymorphism (AFLP) was used to detect genetic diversity within seventy isolates of 

Magnaporthe spp. from different hosts and geographical origins using three AFLP primer 

combinations. The isolates clustered into two groups corresponding to their original host. 

Magnaporthe grisea isolates from wheat were grouped together with 74% similarity, and 

resulted in the formation of two subgroups. Isolates from finger millet and perennial ryegrass 

were closely related to wheat isolates at a similarity level of 87.5%. Rice isolates 

(Magnaporthe oryzae) also clustered together with 79% similarity. However, isolates which 

originated from the same host but were collected from different countries were distributed in 
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different subgroups or clades, instead of clustering together. The assessment of phylogenetic 

relationships using AFLP revealed that the variation assessed by genetic diversity studies 

within Magnaporthe spp. is mainly dependent on the host species, rather than the 

geographical origin. 

Furthermore, another molecular genotyping method, multilocus sequence typing (MLST), 

was established. A phylogenetic analysis among twenty Magnaporthe isolates from different 

hosts was performed by inferring dendrograms for the concatenated sequences of three home-

keeping genes, actin, ß-tubulin and calmodulin. Due to the differences in mutation frequency, 

the concatenated sequences were divided into two parts, concatenated introns and 

concatenated exons, and their diversity was calculated separately. Dendrograms constructed 

using introns revealed three groups which contained the isolates from different hosts. Similar 

clusters were also found in the dendrogram derived from exons. The genetic diversity 

assessed by Nei`s parameters revealed that the percentage of polymorphic loci in the intron 

sequences was higher than that in the exon sequences. The diversity within the group, which 

differs depending on the geographical origin, was lower than that among four groups 

classified by their host plants. The clusters and genetic diversity produced by MLST 

suggested that in three house-keeping genes, most of the variation is explained by genetic 

diversity between host species rather than geographical origins, which is in accordance with 

the results of AFLP. 

In addition, a DNA based quantitative real-time polymerase chain reaction (PCR) was 

evaluated to quantify fungal biomass of Magnaporthe spp. in wheat and rice leaves. Samples 

from inoculated wheat and rice leaves were collected at different time points (0, 2, 4 and 6 dpi) 

and their Pot2 transposon was amplified with primers pfh2a and pfh2b. At the same time point, 

the amount of DNA biomass from the wheat isolate MG 31 infection on wheat leaves was 

higher than the other two isolates with their host plants. At 6 dpi, the biomass was 199 pg/mg 

for MG 31, 174 pg/mg for MG 5 and 133 pg/mg for Ca 89. For the non-host reaction, a very 

small increase of biomass was detected at 6 dpi in rice leaves infected by MG 31, but not in 

the two other incompatible interactions. 

Cytological investigations were performed with three Magnaporthe isolates selected from 

wheat (MG 5 and MG 31) and rice (Ca 89) for evaluating their capacity to infect the leaves of 

host and non-host plants. Microscopic observations were carried out by confocal laser 

scanning microscopy (CLSM) at different time points (12, 24, 48 and 72 hpi) and the growth 

of hyphae was classified into four stages. Spore germination and appressorium formation 

(stage one) were observed at 12 hpi in all interactions. At 24 hpi, only adapted isolates grown 

on their host were found and the percentages grown were 18%, 30% and 19% for isolates MG 

5, MG 31 and Ca 89, respectively. At 48 hours post inoculation, some of the hyphae from 

adapted isolates (26% from MG 5, 29% from MG 31 and 27% from Ca 89) extensively grew 

in the primary invaded cells, and attempted to enter the adjacent cells. Multicellular infection 

(stage four) from isolate MG 5 (42%), MG 31(50%) and Ca 89 (32%) were observed at 72 hpi. 

For the invasion of adapted isolates, MG 31 appeared to grow more rapidly in its host plant 

than the other two isolates. The nonhost resistance was restricted in the interactions for rice 

isolate Ca 89 on wheat and for wheat isolate MG 5 on rice, but another wheat isolate MG 31 

showed a certain degree of invasion in rice. 
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In a parallel study, cellular responses of wheat (BR 18) and rice (CO 39) to both adapted and 

non-adapted isolates of the blast fungus Magnaporthe were investigated by autofluorescence 

microscopy at 48hpi and grouped into four response types. The observations revealed that 

most of the compatible interactions between adapted isolates and their host plants reached 

type D (41.3% for MG 5, 47.7% for MG 31 and 43% for Ca 89) at 48 hpi, when hyphae 

successfully occupied the whole invaded cell and even grew into the adjacent cells. 

Inoculation with non-adapted isolates resulted in a lack of effective penetration, and resistance 

was detected in wheat leaves against rice isolate Ca 89 (81.3%) and in rice leaves against the 

wheat isolate MG 5 (76.9%). Partial resistance occurred as a response in rice to isolate MG 31 

derived from wheat where only 13.2% of hyphae from MG 31 were able to invade rice 

epidermal cells. The initial cellular defense towards the non-adapted isolates was associated 

with the formation of papillae (type B) and hypersensitivity responses (type C) which 

occurred in the initially invaded cells by showing strong autofluorescence and preventing 

further invasion from hyphae. 

Finally, a preliminary test on phytotoxins has been implemented. Detached seedling leaves of 

wheat and rice were treated with culture filtrate, infected leaf extract leachate and conidial 

suspension of Magnaporthe spp. as well as the filtrate of fresh potato dextrose broth (PDB) as 

a control. Symptoms were only evident on leaves treated with conidial suspension from 

compatible isolates. This result suggests that phytotoxins do not play a role in infection with 

three isolates (MG 5, MG 31 and Ca 89), neither on the seedling leaves of wheat nor on rice. 

Overall, the differences within Magnaporthe grisea isolates derived from wheat were 

evidenced in terms of phylogenetic characterization and pathogenicity. Genetic and 

cytological studies demonstrated differences between the two blast pathogens, Magnaporthe 

grisea (wheat) and Magnaporthe oryzae (rice). The results support the assumption that 

Magnaporthe grisea isolates (wheat) are distinct from those of rice, but some aggressive 

isolates may exhibit pathogenicity to rice. In order to further investigate the differences and 

relationships among Magnaporthe spp., more isolates should be collected from other hosts 

and geographical origins. In addition, research should also be expanded to practical field 

conditions and associated with the study of wheat blast management. 
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Appendix 

 

 

Figure A1 The colony of wheat isolate MG 5 on the media of V8, CM, OA and PDA at 7 dpi. 

 

 

Figure A2 Cotton blue staining on wheat leaves (A) and rice leaf sheaths (B) infected by 

adapted Magnaporthe isolates. Only conidia, germination tubes and appressorium were 

stained into blue, but not hyphae in the epidermal cells. App., appressoria; H., hypha; GT, 

germination tube.
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Figure A5  The influence of temperature on the colony growth of Magnaporthe isolate in 

Petri dishes 

Table A1 The phenological growth stages and BBCH (BASF, Bayer, Ciba-Geigy and 

Hoechst) -identification keys of cereals (including wheat) (Lancashire et al., 1991). The 

wheat seedlings on BBCH 12-13 were used in leaf inoculation, and wheat ears on BBCH 61-

65 were used in ear inoculation. 
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