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Chapter

Introduction

All cells are surrounded by biological membranes to shield and confine the

cellular interior. In eukaryotic cells, biological membranes even separate func-

tional compartments or organelles: confined environments that provide specific

chemical conditions or harbor macromolecules and protein machineries to fulfill

highly specialized tasks within the cells, like DNA replication and transcription,

adenosin triphosphate (ATP) generation, lipid or protein biogenesis or fatty acid

oxidation.

Biological membranes take on a very important role for the cell and its

organelles. They limit diffusion of proteins, ions, toxic byproducts or protons,

enable specific and directed transport of these solutes, harbor localized protein

machineries and enable transient or permanent electrochemical gradients. As

most functions of organelles are fulfilled by the organellar proteome, protein

translocation over these membranes is of special importance for cell viability.

While most protein importing organelles are of relatively simple constitution and

maintain only few protein translocation systems, mitochondria and chloroplasts

differ due to their unique, multi-membrane compartmenting structure (see
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figure . ). In yeast and mammals, protein import into mitochondria is arguably

the most complex of all protein sorting mechanisms.

Figure . : Sketch of a typical yeast cells with various organelles. Zoom into mitochondrion
shows multi-membrane ultrastructure.

. Protein Import into Mitochondria

Mitochondria are essential cellular organelles of all eukaryotic cells that

play a pivotal role in many physiological processes. Their best known role is the

involvement in oxidative phosphorylation, the most important ATP-generating

metabolic pathway, making mitochondria vital for cell growth and viability .

The organelle also harbors protein machineries involved in breaking down fatty

acids via β-oxidation and play a significant role in biosynthesis of lipids ; . The

mitochondrial iron-sulfur cluster assembly machinery not only matures Fe/S

proteins within the organelle, but also contributes to biogenesis of cytosolic and
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nuclear Fe/S proteins, making mitochondria essential even when respiration

is not required, e.g. yeast is grown on fermentable media. Another critical

involvement of mitochondria is in not cell growth but cell death, by setting the

stage for early steps of the intrinsic apoptotic pathway: the release of cytochrome

c and SMAC , triggering the caspase- cascade .

Historically, the mitochondrion originates from endosymbiotic α-proteobacteria

which left it with a double-membrane envelope and an own, albeit reduced,

genome. After massive gene transfer to the nucleus ; , the mitochondrial genome

nowadays only encodes for e.g. thirteen proteins in humans or eight proteins

in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) ; , accounting for

about % of the total mitochondrial proteome in general . These proteins mainly

are components of respiratory chain complexes, e.g. subunits of the cytochrome

c oxidase, of the ATP synthase and, in humans, of the nicotinamide adenine

dinucleotide (NADH) dehydrogenase.

Similar to gram-negative bacteria or chloroplasts, which originate from

endosymbiotic uptake of cyanobacteria, mitochondria possess two distinct

membranes, dividing the organelle into four different subcompartments: The

outer membrane (OM), the intermembrane space (IMS), the inner membrane

(IM) and the matrix (see figure . ). Together, all four subcompartments are

targets for import of over one thousand precursor proteins ; . In the last two

decades, multiple pathways that work alone, in strictly consecutive or even in very

complex cooperative manner have been revealed (see figure . ). At the hearts of

these pathways protein-conducting channels have been discovered. Originally

thought to be rare cases for translocation and insertion machineries, it is now

accepted that such channels rather represent normality at least in mitochondria
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and were also discovered in other eukaryotic organelles – and in bacteria ;

to constitute protein translocases. A vital property of mitochondria, required for

Figure . : Protein import into mitochondria follows multiple pathways from the cyto-
plasm to the respective subcompartment.

multiple functions, is the transmembrane potential across the inner membrane,

created by an electrochemical gradient due to proton pumping from matrix to

intermembrane space by respiratory chain complexes . The electrochemical

gradient is used by protein translocation systems and by the ATP generating

system of the inner membrane.
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The history of mitochondrial protein import research is a history of frequent

revisions and of recurrent revolutions. Originally, mitochondrial protein import

was believed to be performed by a single, streamlined pathway involving a

translocase of the outer membrane (TOM) – and a translocase of the inner

membrane (TIM) – , importing unfolded proteins with an N-terminal prese-

quence. Following this idea of a solitary pathway, the two translocases had to

be responsible for translocation into all four subcompartments of the mitochon-

drion: outer membrane and intermembrane space, inner membrane and matrix.

While the presequence translocase of the inner membrane (TIM ) was indeed

capable of both translocation into the matrix and lateral release into the inner

membrane, the model of a solitary pathway had to be corrected shortly after.

Studies regarding import of the inner membrane ADP/ATP carrier (AAC) family

proteins revealed the essential involvement of Tim , a protein organized in

high molecular weight complexes. Not only did these Tim -containing com-

plexes show no association with TIM , but import of AAC proteins was found

to be fully independent of the presequence translocase. A new insertion pathway

had been discovered: the carrier translocase of the inner membrane TIM . For

a long time afterwards, the trinity of protein translocases in mitochondria was

mostly accepted and models were sought after how TOM itself could release

membrane proteins into the outer membrane ; .

The triple-translocase model was challenged with the discovery of the sort-

ing and assembly machinery (SAM) ; and the mitochondrial import protein

Mim ; in the outer membrane. The small 13 kDa protein Mim inserts α-

helical transmembrane proteins like the TOM receptor Tom ; into the OM

independently of the TOM complex. It receives its substrates from the cytosol

and can even accommodate multi-helical proteins ; . SAM on the other hand
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is primarily inserting β-barrel proteins, like the TOM core component Tom ,

and receives its substrates from the IMS side for which it cooperates with the

TOM complex and soluble TIM-chaperones. These soluble chaperones and

many other IMS-proteins contain characteristic -CX C- or -CX C- cysteine motifs

and IMS sorting signals ; . In the IMS, they are recognized by the mitochon-

drial intermembrane space assembly (MIA), consisting of the disulfide relay

system Mia /Erv . MIA catalyzes the formation of intramolecular disulfide

bonds and facilitates oxidative folding – . Membrane proteins encoded in

the mitochondrial genome highlight the necessity of another protein insertion

or translocation pathway in the inner membrane. Comparably early, the ma-

chinery for insertion of mitochondrially encoded proteins was identified in the

OXA complex ; . Interestingly, the OXA machinery has been revealed to be

much more than just the insertase for mitochondrially encoded substrates, as it

is also involved in insertion of TIM substrates and even of TIM substrates .

. Mitochondrial Protein Translocases

. . Translocase of the Outer Membrane (TOM)

The very first step for most mitochondrial import substrates after transla-

tion is the passage through the abundant mitochondrial entry gate, the TOM

complex . In S. cerevisiae, the 450 to 500 kDa TOM complex consists of seven

proteins – : Tom is a 42 kDa β-barrel protein, forms the essential core of

the complex and is present with two or three units per complex – . Tom

and Tom are the loosely associated receptors for presequence and carrier

precursor proteins, respectively; Tom is the tightly associated central receptor,
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handling preproteins both at the cytosolic exterior and in the intermembrane

space. Tom is critical for complex formation, as deletion dissociates the TOM

complex, heavily impairing mitochondrial biogenesis ; . Tom / / are small

proteins and mainly linked to assembly and maintaining stability of the complex.

Translated on cytosolic ribosomes, preproteins destined for mitochondrial

import are recognized by membrane bound receptors. Precursors with a posi-

tively charged presequence, ultimately enabling import by TIM , are initially

recognized in their secondary structure by the TOM receptor Tom and

handed over to the general complex receptor Tom . Carrier protein precursors

with multiple internal targeting signals, on the other hand, are recognized by

Tom before being handed over to Tom . It has been reported that some

carrier protein precursors are not translocated in a completely unfolded state

but in a loop topology with the internal targeting signal leading ahead . After

recognition by the central receptor, the respective preproteins are threaded

through the pores formed by Tom and, after emerging from the channel, are

again taken over by Tom on the IMS side. From there on, they are taken over

and directed to other translocases by the respective targeting signal receptors.

In the case of positively charged presequences, the release of preproteins from

Tom is induced by Tim , a subunit of the TIM complex , while inner

membrane carrier preproteins as well as outer membrane β-barrel preproteins are

recognized by small Tim chaperones in the IMS and further directed to TIM or

SAM, respectively .

Initially, the protein conducting pore was found and characterized in isolated

full TOM complexes after solubilization using the mild detergent digitonin . It
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showed striking similarity to the peptide-sensitive channel (PSC) that was found

ten years earlier , indicating that these two channels are indeed identical. Later,

the same pore characteristics were found in the smaller core complex isolated via

a slightly harsher detergent n-Dodecyl β-D-maltoside (DDM), lacking Tom and

Tom compared to the previously described intact complexes . Furthermore,

similar characteristics could be attributed to Tom isolated from Neurospora

crassa , Tom from S. cerevisiae and to both NcTom and ScTom heterol-

ogously expressed in E. coli ; . Initially, there was some disagreement on the

number of pores and conductance states (see Becker et al. for an experimen-

tal elucidation of the problem), though in the end a conclusive picture could be

drawn: The TOM complex contains a water-filled translocation channel, the β-

barrel protein Tom which forms a cation-selective pore (𝑃 ∶ 𝑃 ≈ 10 ∶ 1) with

a main conductance 𝐺main = 370 to 390 pS and a subconductance gating state

𝐺sub = 150pS (in 250m KCl). The pore diameter was assessed using differ-

ent techniques like electron tomography, computational modeling or calculation

from the conductivity of the channel. The independent experiments all led to a

diameter of 2.1 to 2.6 nm for one pore unit, wide enough to import preproteins

with two secondary structured stretches in parallel.

Surprisingly, the water-filled pore itself is capable of binding import sub-

strates like the positively charged presequence of cytochrome c oxidase subunit

(Cox ) even without receptor units and, upon binding of substrates, exhibits a

significant increase in channel activity. The full TOM complex shows similar be-

havior, though at a - to -fold increased sensitivity ; . Recombinant Tom

also exhibited a sensitivity to higher voltages regardless of sign that resulted in a

reduced open probability, proving that a voltage sensor is also part of the channel

protein and not exclusively located in other subunits of the TOM complex .
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High-resolution electrophysiology was further used together with detailed kinetic

analysis to investigate substrate peptide interaction with isolated NcTom .

They revealed that pure peptide binding and full peptide translocation can be

distinguished by temporal parameters of Tom ’s substrate response and that

the energy profile of peptide translocation through the channel can be extracted

from temperature-dependent interactions .

While the purified TOM complex was found to mostly constitute twin- or

triple-pores , the TOM core complex formed mainly twin-pores, no triple-pores,

but a significant portion of single-pores. This distribution was recently confirmed

and explained by the presence of two different populations of TOM complexes

in vivo, with a lack of receptors in the twin-pore conformation . The single-pore

appearance was also found for recombinantly expressed and reconstituted Tom

from yeast . Very recently, the structure of the TOM core complex was solved us-

ing electron microscopy . The complex isolated with dodecyl-maltoside exhibits

the twin-pore formation without Tom or Tom , in line with the assumption

that the milder detergent digitonin might be required to isolate the complex also

in the triple-pore formation ; ; . Bausewein et al. speculate that the triple-

pore might represent a TOM-SAM supercomplex instead, though this assumption

is not in agreement with previous model-free crosslink-data .

. . Sorting and Assembly Machinery (SAM)

The second translocase in the outer membrane is constituted by SAM, also

referred to as topogenesis of the outer mitochondrial membrane β-barrel proteins

(TOB) complex. This complex is a relic of the endosymbiotic origin of mitochon-

dria and shows homology to the bacterial β-barrel assembly machinery (BAM)
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which inserts β-barrel proteins from the periplasm into the outer bacterial mem-

brane. In yeast mitochondria, five different β-barrel proteins are known, all sub-

strates of the SAM pathway: The outer membrane entry gate Tom ; the insertase

of the SAM complex, Sam , itself; the voltage-dependent anion channel (VDAC)

which is related to Tom ; and the two mitochondrial distribution and morphol-

ogy proteins Mdm and Mdm . The SAM complex of S. cerevisiae consists of

three proteins: the β-barrel protein Sam , a member of the Omp -family, the

β-signal receptor Sam , both essential, and the non-essential Sam which pro-

motes release of the precursor proteins. Each protein is present with one unit in

the 140 kDa core complex .

One of SAM’s substrates, the β-barrel protein Mdm , is partially associated

with the SAM complex . This association was initially thought to just originate

from Mdm ’s nature as a SAM substrate, though the most abundant substrate

VDAC was not co-isolated with SAM. Mdm was known to participate in mi-

tochondrial fusion and fission and is, as well as Mdm , a component of the

ER-mitochondria encounter structure (ERMES) . Mdm was also reported to

play a crucial role in biogenesis of Tom and thus of the TOM complex itself,

while biogenesis of VDAC was not impaired in mdm Δ deletion strains of S. cere-

visiae . Another temporary SAM constituent was found to be Tom , one of the

small TOM subunits, that plays a vital role in assembly of Tom at SAM but

is not necessary for binding Tom in the first place, even indicating a two-step

procession of β-barrel precursors at the SAM complex. In an earlier study of the

same group, Mim , which also interacts with TOM and SAM, was reported to be

crucial for Tom biogenesis , though Mim ’s involvement was later linked only

to Tom biogenesis , a common substrate of the Mim -pathway. Surprisingly, a

significant part of α-helical OM proteins is indeed not imported via Mim but in-
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stead utilizes SAM proteins and even Mdm to be inserted ; . These substrates

usually contain a transmembrane segment in their C-terminal half, like Tom ,

or are tail-anchored at their extreme C-terminus.

SAM substrates are recognized by Sam by a β-signal which was first identi-

fied for ScTom . It resides in the last transmembrane β-strand of the protein ,

consistent with the targeting signal of prokaryotic β-barrels insert by BAM , and

follows the semi-conserved sequence Po-X-G-X-X-Hy-X-Hy (Po: polar, G: glycine,

Hy: hydrophobic). Based on these findings, a more complex, circular β-signal,

containing the semi-conserved sequence, was identified that also contains all

information for targeting the preprotein to mitochondria .

The moment preproteins with such a β-signal enter the IMS through TOM,

they are recognized by small Tim chaperones – . They are six-bladed α-propeller

complexes formed either by the essential proteins Tim and Tim or by Tim

and Tim , as a trimer of dimers in triangular conformation ; . These chaper-

ones are thought to shield the hydrophobic stretches of the preproteins from the

aqueous IMS environment during shuttling from TOM to SAM or TIM . After

recognition at the SAM complex, the preproteins are handed over to the substrate

receptor Sam , where the preproteins are subsequently passed on to Sam and

then released into the outer mitochondrial membrane, assisted by Sam . It was

originally assumed that the Tim chaperones take over emerging preproteins from

TOM and then shuttle them to the independent SAM complex ; – as a solu-

ble chaperone-substrate complex. However, no soluble intermediates of β-barrel

preproteins could be found in the IMS. Instead, a recent study reported the im-

portance of the central TOM receptor Tom in not only import but oxidation

and thus folding of β-barrel proteins at the SAM complex . Using intact complex
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investigations, the authors of that study identified a transient 650 kDa TOM-SAM

supercomplex that mediates the handover of preproteins from one complex to the

other and is linked by Tom on the cytosolic side.

Mdm was not found to be part of this supercomplex, although its formation

was studied using a Tom -probe which should recruit Mdm to SAM at some

point as seen before . One could speculate that Mdm ’s recruitment to SAM for

Tom biogenesis might happen in a later stage, after supercomplex disassembly.

Previous studies found that a core component of the mitochondrial contact site

and cristae organizing system (MICOS), Mic (Fcj /Mitofilin), binds both TOM

and SAM complexes independently – . While it might be tempting to speculate

that simultaneous binding of both complexes by Mic represents an early stage

of supercomplex formation, this seems unlikely as binding of SAM to Mic was

shown to depend on an IMS-facing polypeptide-transport associated (POTRA) do-

main of Sam , while supercomplex formation of SAM and TOM still happens

after deletion of said POTRA and thus is independent of that POTRA domain .

The essential SAM component Sam has two noteworthy structural features:

The β-barrel itself, predictably composed of β-strands ; , and the N-terminal

POTRA domain that is conserved in the Omp -family, though with various

number of copies per protein . The POTRA domain was initially proposed

to function as a chaperone or as a receptor as it binds precursors, with partial

deletion of the domain leading to growth defects . Only shortly thereafter

though, an extensive study showed that deletion of the whole POTRA domain

does not inhibit yeast growth or protein import and assembly by SAM at all,

concluding that POTRA does not act as the main receptor domain. Instead, in

a combined electrophysiological and biochemical approach the authors inves-

tigated the channel properties of the SAM complex and of Sam alone under
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various conditions. They found that both Sam and the full SAM complex

exhibit very similar electrophysiological characteristics: The channel is mildly

cation-selective (𝑃 ∶ 𝑃 ≈ 4 ∶ 1) and is gating frequently between an open

and a semi-open state with a conductance difference Δ𝐺 = 160pS (250m
KCl). Upon addition of a shortened substrate, the β-signal of Tom , Sam

alone showed no alteration while the full SAM complex exhibits reduced gating

frequency, remains mainly in the open state and even opens up to much higher

conductance. Surprisingly, these increased conductance differences are multiples

of the minimal conductance, i.e. the channel can open to 320pS and rarely even

to 640pS, which might indicate that upon substrate binding the complex does

not only undergo simple rearrangement but even that other, previously dormant

units of Sam now contribute to channel formation.

. . Carrier Translocase (TIM )

The carrier translocase TIM is one of two inner membrane translocases

that handle substrates previously imported by TOM. It inserts multi-spanning

transmembrane proteins into the inner membrane in a strictly membrane po-

tential dependent manner ; ; . Substrates for TIM are mainly metabolite

carriers like the ADT/ATP carrier (AAC) or the phosphate carrier (PiC), each

carrying three pairs of transmembrane α-helices. TIM also imports protein

translocases of the Tim / / homology family, with four α-helices each. In S.

cerevisiae, the 300 kDa TIM core complex is formed by the central translocation

channel Tim ; , the chaperone-receptor Tim , Tim ; /Sdh , both

required for complex assembly, and the peripheral inner membrane protein

Tim ; that interacts with the chaperones Tim / . Of the four integral
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core components only Tim is essential for yeast growth, while deletion of the

other proteins lead to more or less severe growth defects ; . Additional to the

integral components, the peripheral membrane protein Tim was reported to

be associated with the TIM complex via a large IMS-domain of Tim ; ,

though it first forms a soluble complex with the chaperones in the IMS before

becoming membrane-bound .

Similar to β-signal proteins, preproteins with multiple targeting signals are

recognized by Tim -Tim or Tim -Tim chaperone complexes ; at the IMS

side of the TOM complex. There, the Tim -Tim chaperone complex promotes

import of metabolite carrier proteins like SiC or AAC, while import of ScTim ad-

ditionally requires the Tim -Tim chaperone complex ; . After the chaperone-

cargo complex is formed in the IMS, it is recognized by Tim and further di-

rected to TIM . Here, the soluble cargo-Tim -Tim -Tim complex is recruited

to the membrane via interaction between Tim and Tim , which leads to stable

association of the peripheral membrane protein Tim with the TIM complex

and the carrier preprotein is inserted by the central channel protein Tim . Bind-

ing or tethering of the chaperone-cargo complex to TIM is independent of the

mitochondrial membrane potential, while the initial insertion of α-helices into

a pore of Tim requires a low polarization (ΔΨ > 60mV) of the inner mem-

brane. The final insertion and subsequent release into the membrane occurs

only in the presence of both a targeting signal and a higher membrane potential

(ΔΨ > 120mV) ; .

In an early study, Tim was identified as water-filled channel, the core of

the TIM complex, and characterized electrophysiologically . Recombinantly

expressed ScTim constitutes a cation selective channel with a maximum ob-
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served conductance change of 𝐺main = (540 ± 18) pS under symmetrical buffer

conditions with 250m KCl. Interestingly, the channel gates in eight steps of

𝐺sub = (67 ± 5) pS from open to closed and exhibits direct conductance tran-

sitions covering multiples of 𝐺main with frequencies much higher than expected

for incidental simultaneous gating of independent pores. This indicates that the

main conductance change 𝐺main indeed corresponds to gating of one functional

subunit of a coupled channel. At asymmetric buffer conditions, Tim reveals a

varying cation preference of 𝑃 ∶ 𝑃 ≈ 15 ∶ 1 in the smallest conductance state

and 𝑃 ∶ 𝑃 ≈ 4 ∶ 1 in the fully open state. Isolated TIM complexes though

exhibited a significantly reduced ion preference (𝑃 ∶ 𝑃 > 2.4 ∶ 1), indicating a

possible reducing contribution by other complex constituents.

The channel is voltage-activated, i.e. at low membranes potential the channel

is present in a closed conformation but starts to open at elevated voltages regard-

less of sign. Prolonged exposure to higher membrane potentials, on the other

hand, again induces closure of Tim , similar in principle to Tom . While an

open, substrate-susceptible TIM is a reasonable requirement for membrane po-

tential dependent protein import, staying open would compromise the energized

state of the inner membrane.

A follow-up study revealed the twin-pore nature of TIM , using electron

microscopy and electrophysiological investigations . In electron micrographs,

TIM appears as a twin-pore similar to the TOM core complex. Isolated TIM

complexes fused to a planar lipid bilayer reveal a channel with identical pore

conductances compared to recombinantly expressed Tim , but appearing

only in multiples of two. The possibility of two independent channels, e.g. an

artifact of complex isolation or reconstitution, was refuted by the presence of

direct conductance changes of Δ𝐺TIM = 2 ⋅ 𝐺max,Tim , with a much higher fre-
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quency than expected for independent pores. Interestingly, both native complex

and recombinant protein are excitable using a combination of an uncharged

targeting signal (internal signal peptide of the phosphate carrier) and a high

transmembrane potential, leading to strongly increased gating activity of each

channel. While this shows that the Tim protein contains both a targeting

signal recognition mechanism and a voltage sensor, and does not require the

full complex for this, the voltage threshold required for activity increase is much

lower for the full complex (ΔΨmin,TIM ≈ 70mV) than for the recombinant protein

(ΔΨmin,Tim ≈ 140mV).

. . Presequence Translocase (TIM )

Designated mitochondrial matrix proteins and non-carrier inner membrane

proteins are imported via the TIM pathway (see figure . ). These substrates

typically bear positively charged, N-terminal presequences making up ≈ 70% of

the mitochondrial proteome . The presequences are cleaved after import by

mitochondrial peptidases in the matrix or the IMS . Some substrates, like the

cytochrome b , are even released back to the IMS after being processed by an

IMS peptidase .

In S. cerevisiae, the TIM core complex consists the channel-forming

eponymous protein Tim ; ; , its homolog Tim (both also homolog to

Tim ), the main presequence receptor Tim – and Mgr . TIM exists in

two different forms in the inner mitochondrial membrane to accommodate its

dual function: Integral inner membrane proteins are inserted by the TIM SORT

complex, containing Tim as an additional integral component . For import of

mitochondrial matrix proteins on the other hand, TIM recruits the presequence
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Figure . : Protein import through TIM requires dynamic switching of the complex
between two different conformations: Preproteins with a presequence and hydrophobic
sorting signals are inserted into the inner membrane via the Tim -containing TIM SORT,
assisted by electron transfer chain complexes III and IV. Preproteins with a presequence
but without sorting signals are translocated into the matrix with the help of the PAM
motor complex.
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translocase-associated motor (PAM) on the matrix side ; . PAM consists of

the chaperone heat-shock protein (Hsp ), the membrane-anchored co-

chaperone Pam , the scaffold proteins Pam and Tim , and the nucleotide

exchange factor Mge .

Upon emergence from TOM to the IMS, preproteins are bound by the cen-

tral receptor Tom . Tom IMS was found to also interact with Tim IMS and

Tim IMS ; , effectively linking the inner to the outer membrane. The prepro-

tein is handed over to the TIM complex via the main receptor Tim . The

IMS domain of Tim contains two presequence-binding subdomains: Tim core,

which also interacts with TIM IMS, and the essential Tim PBD . Both Tim IMS

and Tim IMS can bind presequences, though binding affinity was orders of mag-

nitude lower for Tim in comparison ; , indicating that indeed binding to

Tim is the first step in preprotein reception. During early steps of recognition

and handover, protein domain interactions are competing in a complex manner.

Tim PBD is able to interact with both Tim core and presequences with overlap-

ping sites , presumably to enable preprotein handover between the two sub-

domains of Tim . Further, Tim IMS- and presequence-binding to Tim IMS

are mutually exclusive ; , i.e. IMS domains of Tim and Tim dissociate

upon presequence handover to the channel protein. Now that the preprotein has

reached Tim IMS, it is inserted into the pore in an unknown manner and then

electrophoretically threaded through the inner membrane.

If the preprotein contains a sorting signal, typically a hydrophobic stretch af-

ter the presequence ; , translocation through TIM SORT proceeds until the hy-

drophilic presequences emerges on the matrix side. Here, most presequences are

proteolytically processed by the mitochondrial processing peptidase (MPP) ; .
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The protein is laterally released into the lipid bilayer through a yet unknown lat-

eral gate. Mgr ; and Tim ; both interact with preproteins during lateral

sorting of inner membrane proteins, with Mgr acting as the quality control of

lateral protein release . Interactions with preproteins and involvement in lat-

eral release lead to the speculation that Mgr and Tim form or contribute to the

lateral gate of TIM ; ; . Mgr and Tim are also critical for recruitment of

respiratory chain complexes to TIM SORT ; , which is speculated to ensure a

sufficient membrane potential in close proximity to TIM .

The mitochondrial membrane potential ΔΨ is the sole energy source of mem-

brane protein insertion by TIM . Dissipation of ΔΨ leads to complete collapse

of protein import for most TIM substrates, though interestingly, some prepro-

teins lacking a classical cationic presequence are still imported by TIM at a basal

rate . Even more so, deletion of the only cationic amino acid in the targeting

signal of such a preprotein, subunit e of the F F -ATP synthase, leads to complete

independence of its import from the membrane potential.

Designated matrix preproteins interact with Tim when they reach TIM .

Tim then dissociates from Tim IMS and consequently from TIM , which in

turn recruits Pam to the complex . After handover of the preprotein to Tim ,

it is threaded through the channel in a ΔΨ-dependent manner. When it emerges

on the matrix side, the PAM protein Tim can bind the presequence after its re-

cruitment by Tim and Tim . Upon preprotein binding, Tim recruits the

ATP-loaded main chaperone Hsp , which in turn then binds to the emerg-

ing presequence ; . ATP-hydrolysis by Hsp is stimulated by the J-proteins

Pam / ; that are recruited to TIM via interaction with Tim IMS . Con-

version of ATP leads tightening of Hsp around the presequence which pulls

the preprotein a short distance into the matrix. Then, Hsp ADP and the other
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PAM proteins dissociate from the complex and fresh Hsp ATP and co-chaperones

bind to TIM and the presequence. This subsequent recharging of PAM main-

tains continuous presequence import into the matrix.

. . Oxidase Assembly Machinery (OXA)

The oxidase assembly machinery (OXA) has a unique position among all mito-

chondrial protein translocation pathways. It has been identified as the only mito-

chondrial export machinery to handle mitochondrial encoded proteins through

a highly-conserved pathway. The OXA complex acts as an insertase of the inner

membrane by directly binding mitochondrial ribosomes and inserting the nascent

protein chain into the IM in a co-translational manner . OXA is constituted by

the membrane proteins Oxa , Mba and Mdm . Oxa is the core protein of the

complex, contains five transmembrane α-helices and spans the inner membrane

in a NOut-CIn topology. It is a member of the YidC/Alb /Oxa family which is a

small family of insertases with YidC and Alb being found in bacteria and chloro-

plasts, respectively. The individual function of each OXA protein appears not to

be easily attributed as each component seems to participate in multiple processes

in protein insertion and even beyond that. First of all, each of the three proteins

was shown to bind mitochondrial ribosomes and they were speculated to act coop-

eratively with each other – . Early investigations of Mba function showed that

it can compensate for import defects in yeast strains with Oxa -mutants and a

very recent study bolstered the view that Mba is not just a passive ribosome re-

ceptor but actively aligns the ribosome exit tunnel with the insertion complex .

Mdm on the other hand fulfills two major functions that are spatially distinct

on the protein level: The transmembrane part acts as an K+/H+ antiporter –

while the matrix exposed part has a ribosome binding domain with structural
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similarity to - - proteins . Both proteins also exhibit a regulatory function

on translation of mRNAs and can compensate for each other in that, while loss

of both proteins together leads to severe aberrant synthesis of respiratory chain

proteins .

Substrates for the OXA pathway like ScCox p can employ a cleavable target-

ing signal which is recognized by Oxa and processed by the inner membrane

peptidase (IMP) for maturation and insertion of the substrate, while other sub-

strates, e.g. the human HsCox , do not have a cleavable leader sequence. OXA

inserts not only mitochondrially but also some nuclear encoded inner membrane

preproteins in a pathway referred to as conservative sorting. There, the precursor

proteins make their way through TOM and TIM and are then not or only par-

tially released to the IM by TIM ’s sorting mechanism. Instead, they are fully or

partially translocated to the matrix where they are taken over by OXA to insert

the remaining transmembrane segments . This pathway provides two different

modes of action: chaperone-mediated release of transmembrane segments into

the matrix by TIM and subsequent insertion by OXA (”conservative sorting”) or

segment-wise insertion into the membrane directly by TIM (”stop-transfer”).

Initially, both modes were thought to be conflicting models of protein insertion

but were then proven to work in a complementary manner in during insertion of

multispanning membrane proteins, as shown for the ATP binding cassette (ABC)

transporter Mdl ; . Another prominent substrate of this pathway is Oxa itself

which is translated in the cytosol, imported via TOM and TIM and inserted via

existing OXA complexes . Interestingly, OXA was recently found to participate

in biogenesis of another type of inner membrane proteins, the ATP/ADP carrier

protein Aac which is actually inserted via TIM . While the specific role of

Oxa in this context is still unknown, the authors suggested a function in folding
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newly inserted carrier proteins.

Recently, some light was shed on the molecular mechanism of protein in-

sertion by OXA as an aqueous pore was identified in native OXA complexes .

For this purpose, Oxa was isolated from three different sources, purified from

S. cerevisiae, recombinantly expressed in E. coli and isolated as native OXA com-

plexes, and subjected to planar lipid bilayer electrophysiology. This revealed a

dynamic, cation-selective pore with a main conductance state 𝐺main = 530pS, a

minimal subconductance state 𝐺sub, = 75pS and multiple conductance states

in between, partially depending on the sign of the applied voltage. Oxa has a

calculated diameter of ≈ 1.9 nm and comes in minimal units of four pores. Incor-

porated channels reacted to αOxa antibodies by near-complete blockage, while

incubation of Oxa -channels with the presequence of the substrate ScCox led to

a drastic increase in activity of the channel. Investigations further confirmed prior

findings ; that Oxa is present as a homo-tetramer or, as two of four pores are

functionally coupled, as a dimer of dimers. After the discovery tetrameric Oxa

forming a water-filled pore in the inner mitochondrial membrane, crystal struc-

tures of the bacterial Oxa -homolog YidC emerged ; . These structures show

YidC in a monomeric state, a configuration that would not suggest channel ac-

tivity. Instead the authors proposed that YidC forms a hydrophilic groove in the

inner leaflet of the bilayer. This groove recruits the hydrophilic stretch of a sub-

strate and transfers it to the extracellular space in an unknown manner whilst

releasing the hydrophobic domain into the bilayer ; .

This obviously also challenged the idea of Oxa being a water-filled channel in

an oligomeric state, as both proteins share a high degree of sequence similarity.

While crystal structures provide a plethora of new and helpful information, also

towards understanding the molecular mechanism of a protein, they naturally are
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snapshots of a specific static state and often do not allow deeper insights into the

protein dynamics. Even if the implications from the crystal structure were trans-

ferred from YidC to Oxa , one could speculate that the monomeric, crystallized

form might represent an idle state whose oligomerization in vivo needs to be in-

duced to form the import-competent complex. It can also be speculated that two

hydrophilic grooves, as found in YidC, together constitute one coupled double-

pore, as found for Oxa complexes. It is tempting to imagine possible ways to

merge electrophysiological data with crystal structures from putative, especially

from non-β-barrel pores. While typical β-barrel channels often have stable shapes,

fixed number of β-strands and were shown to form oligomers of pre-existing pores,

but not assemble the pores by oligomerization ; , the same cannot be said for

α-helical transmembrane proteins like Oxa or Tim .

. Molecular and Channel Properties of Tim

Tim has been subject of multiple molecular and electrophysiological inves-

tigations, trying to shed light on molecular mechanisms and the origin of channel

properties. The protein consists of four α-helical, C-terminal transmembrane

segments and an unstructured, N-terminal domain facing the intermembrane

space , which enables interaction with presequences . The IMS domain is able

to homodimerize in the presence of a membrane potential, but dissociates upon

binding of presequences , although the N-terminal IMS domain of Tim was

found in an NMR study to exist purely as a monomer . Later, it was revealed that

the dimerization requires a functional first transmembrane segment (TMS ) ,

possibly explaining the previous discrepancy. Interestingly, the third (TMS )

and fourth (TMS ) transmembrane segment were found dispensable for protein

import , though it is unclear if they just do not take part in pore formation or
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if their contribution to the channel lining could be rescued by e.g. the homolog

Tim .

Tim is the main channel-forming protein of the complex , was identi-

fied as a component of the inner membrane import machinery nearly years

ago ; and found to constitute the aqueous pore in the multiple conductance

channel (MCC) . It forms a triple pore when constituted alone and a twin

pore in the full complex . Tim gates with a main conductance change 𝐺main =
(450 ± 11) pS and the subconductance change 𝐺sub, = (140 ± 15) pS, with a

single-pore diameter of 6.5Å to 12Å , which is wide enough to accomodate two

parallel α-helices without tertiary structure. Although the actual protein consti-

tution of the pore within the TIM complex is unknown, both Tim , contain-

ing four indispensable transmembrane α-helices, and Mgr , with two α-helices,

were found to mediate preprotein release into the bilayer and thus could be con-

tributors towards pore constitution. According to basic calculations, eight to ten

α-helices could together form an aqueous channel with a size comparable to the

Tim pore ; , without the need for Tim -dimer formation.

The Tim channel is voltage-activated, but closes upon prolonged exposure

to higher voltages. As with TIM , this is in line with the need for an open

channel to insert presequences while keeping the electrochemical barrier intact.

The voltage-sensitivity is increased by the IMS domain of the receptor Tim ,

drastically lowering the threshold for voltage-induced closing . Even without

other complex constituents, recombinant Tim recognizes preproteins with its

N-terminal IMS domain and reacts with fast gating (flickering) to site-specific pre-

sequence addition in electrophysiological studies ; ; . The voltage sensor of

Tim is proposed to be formed by a leucine zipper motif in the IMS domain, re-
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sponsible for voltage-regulated dimerization of the domain , though the voltage

sensor can not be exclusively located in the N-terminal IMS domain, as a trun-

cated, C-terminal version of Tim was found to also exhibit voltage-dependent

channel activity ; . Similar to the full length protein, the truncated version also

closed at high membrane potentials, indicating the presence of an membrane-

based part of the voltage sensor.

The Tim channel is, compared to potassium channels, mildly cation-

selective and prefers potassium ions over chloride ions with 𝑃 ∶ 𝑃 ≈ 16 ∶ 1.

Variations of the buffer-constituting cation revealed that the determining fac-

tor for ion permeability is dehydration energy , i.e. the likelihood of the ion

to shed the hydration shell to move through the channel . An alternative

determination factor is ion size, i.e. the ability to strongly bind to negative

charges along the channel lumen. It was concluded that negatively charged

amino acids in both IMS domain and channel lumen together constitute the

ion filter of Tim . Interestingly, the TIM complex shows slightly weaker

cation selectivity 𝑃 ∶ 𝑃 ≈ 11 ∶ 1 compared to recombinant Tim , high-

lighting that net contribution of other complex subunits to the ion filter is

small. The nonetheless present difference in selectivity could be attributed to

Tim or Mgr , putatively forming a part of the pore in fully assembled complexes.

Using a broad library of cysteine mutants of Tim , interaction of Tim

residues with preproteins during import was investigated via cross-link analysis.

In line with the later finding that TMS and TMS are dispensable, the sub-

strate was successfully cross-linked to the IMS domain and the first two helices

of Tim . As TMS showed a specifically high cross-link efficiency, it was

further characterized using a sophisticated, environment-sensitive fluorophore
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labeling approach. The attached fluorophore changes its spectral properties

depending on the polarity of its environment. It revealed that the TMS faces

two different environments, the aqueous channel and the lipid or protein phase.

The highly conserved, lumen-facing residues were further shown to switch to a

more non-polar environment after preprotein incubation, indicating the TMS

is in very close proximity to the substrate during translocation. In a follow-up

study, the TMS of Tim was found to undergo structural rearrangements upon

dissipation of membrane potential. In an energized membrane TMS forms a

straight α-helix, while upon depolarization the helix breaks into two smaller

helices, presumably around residue I , at the IMS-facing end of the helix .

Taken together, multiple studies have been conducted to elucidate molecular

characteristics and electrophysiological properties of Tim . It was found to react

to membrane potentials with increased gating and successive closing, enhanced

by the voltage regulator, while membrane depolarization leads to helix-kinking

and opening of the channel. The cation-selective Tim channel also closely

interacts with positively-charged substrates via the channel lumen, and exhibits

fast channel flickering upon incubation with presequences.
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Aims of this Thesis

Protein biogenesis of mitochondria is an essential requirement for not only

mitochondrial fitness but also for cell viability. Despite its own genome and pro-

tein synthesis, the overwhelming majority of proteins is imported from the cytosol

to one of the four distinct subcompartments of mitochondria, following multi-

ple pathways. At the heart of these pathways lie protein-conducting, aqueous

nanopores which cooperate in a complex orchestra.

One of the translocases of the inner membrane, TIM , handles over % of

all mitochondrial proteins and transports them either to the mitochondrial ma-

trix or the inner membrane. While TIM requires a complex interplay of multiple

subunits, switches between two different conformations to accommodate either

type of substrate and might constitute the channel itself from two or three sub-

units, the basic properties of the water-filled pore originate from one subunit, the

eponymous Tim .

While its pore characteristics have been analyzed to some extent, stud-

ies on structural implications and molecular localization of specific channel

mechanisms are scarce and suffer from the difficulties of handling hydrophobic
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membrane proteins in vitro.

The aim of this study is to investigate the molecular origin of basic pore prop-

erties, interaction with regulators and substrates, and their implication for chan-

nel function. To this end, high-resolution single channel electrophysiology was

employed to monitor channel behavior and interaction effects, combined with

site-directed mutagenesis to study the impact of specific regions of the pore on its

electrophysiological characteristics.
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Materials and Methods

. Materials

Standard chemicals and laboratory consumables were purchased from Th.

Geyer (Renningen, Germany), Carl Roth (Karlsruhe, Germany), Sarstedt (Nüm-

brecht, Germany), Sigma Aldrich (Tau irchen, Germany). Oligonucleotides were

purchased from Metabion (Planegg, Germany). Special chemicals and materi-

als used in this study that were not purchased from Carl Roth are listed in table . .

Table . : Lipids used in this study

Abbrev. Name Purchased from

PC L-α-phosphatidylcholine (Egg, Chicken) Avanti Polar Lipids
PE L-α-phosphatidylethanolamine (Egg, Chicken) Avanti Polar Lipids
PS L-α-phosphatidylserine (Brain, Porcine) Avanti Polar Lipids
PI L-α-phosphatidylinositol (Liver, Bovine) Avanti Polar Lipids
CL L-α-Cardiolipin (Heart, Bovine) Avanti Polar Lipids
SIV-PC L-α-Phosphatidylcholine (soybean, Type IV-S) Sigma Aldrich
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Table . : Special consumables not purchased from Carl Roth

Product Supplier

Chloroform Merck, DE
Deoxynucleotide triphosphate mix PRIME, DE
Deoxyribonuclease I (DNAse I) Sigma Aldrich, US
Dimethyl sulfoxide (DMSO) Thermo Scientific, US
DpnI Thermo Scientific, US
Glisseal-HV Laborfett VWR, US
Histodenz Sigma Aldrich, US
Lysozyme Sigma Aldrich, US
Mark Unstained Standard Thermo Scientific, US
N-Nonanoyl-N-methylglucamin (MEGA- ) Glycon, DE
PageRuler Prestained Protein Ladder Thermo Scientific, US
Parafilm Bemis, US
Phusion DNA Polymerase Thermo Scientific, US
Pierce ECL Western blotting substrate Thermo Scientific, US
Proteinase inhibitor pills (EDTA-free) Roche Applied Science, DE
PTFE-Film GoodFellow GmbH, DE
Spectra/Por Standard RC Tubing . kDa Spectrum Labs Inc, US
Triton X- Sigma Aldrich, US
Wizard SV Miniprep DNA Purification Kit Promega, DE
Wizard SV Gel and PCR Clean-Up Kit Promega, DE

Table . : Plasmids used in this study

Plasmid Encoded protein Vector Marker Origin

MM_ ScTim pET N Amp Truscott
et al.

MM_ ScTim -N A pET N Amp this study
MM_ ScTim -G A pET N Amp this study
MM_ ScTim -Y A pET N Amp this study
MM_ ScTim -A G pET N Amp this study
MM_ ScTim -L A pET N Amp this study
MM_ ScTim -N A pET N Amp this study
MM_ ScTim -N A pET N Amp this study
MM_ ScTim -D A pET N Amp this study
MM_ ScTim -K A pET N Amp this study
MM_ ScTim -G L pET N Amp this study
MM_ ScTim -G C pET N Amp this study
MM_ ScTim -A G pET N Amp this study
MM_ ScTim -A L pET N Amp this study
MM_ ScTim -A F pET N Amp this study
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Table . : Primers used in this study

Primer Encoded Mutation Direction Sequence

MM F Tim -N A Forward AGAGGTCCCTTCTTAGGTGCTAAT
MM R Tim -N A Reverse GAGAATCCCCGCATTAGCACC
MM F Tim -G A Forward TTCTTAGGTAATAATGCGGCGATT
MM R Tim -G A Reverse GAGAATCGCCGCATTATTACC
MM F Tim -Y A Forward GCGTTGAGCGCCAATATCATC
MM R Tim -Y A Reverse TGTAGAATTGATGATATTGGCGCT
MM F Tim -L A Forward GGTAATAATGCGGGGATTGCCGCGTTGAGCTACAATATC
MM R Tim -L A Reverse GATATTGTAGCTCAACGCGGCAATCCCCGCATTATTACC
MM F Tim -A G Forward CTTCTTAGGTAATAATGGGGGGATTCTCGCGTTG
MM R Tim -A G Reverse CAACGCGAGAATCCCCCCATTATTACCTAAGAAG
MM F Tim -N A Forward GCGTTGAGCTACAATATCATCGCTTCTACAATAGATGCACTAAG
MM R Tim -N A Reverse CTTAGTGCATCTATTGTAGAAGCGATGATATTGTAGCTCAACGC
MM F Tim -N A Forward GATTCTCGCGTTGAGCTACGCTATCATCAATTCTACAATAG
MM R Tim -N A Reverse CTATTGTAGAATTGATGATAGCGTAGCTCAACGCGAGAATC
MM F Tim -D A Forward TGCACTAAGAGGCAAACATGCCACCGCGGGCTC
MM R Tim -D A Reverse GAGCCCGCGGTGGCATGTTTGCCTCTTAGTGCA
MM F Tim -K A Forward TCACGGGCGCTTTGTTCGCGTCTTCAAAAGGTTTG
MM R Tim -K A Reverse CAAACCTTTTGAAGACGCGAACAAAGCGCCCGTGA
MM F Tim -G L Forward CTTAGGTAATAATGCGTTGATTCTCGCGTTGAGCTAC
MM R Tim -G L Reverse GTAGCTCAACGCGAGAATCAACGCATTATTACCTAAG
MM F Tim -A L Forward GTAATAATGCGGGGATTCTCCTGTTGAGCTACAATATCATC
MM R Tim -A L Reverse GATGATATTGTAGCTCAACAGGAGAATCCCCGCATTATTAC
MM F Tim -A G Forward GTAATAATGCGGGGATTCTCGGGTTGAGCTACAATATCATC
MM R Tim -A G Reverse GATGATATTGTAGCTCAACCCGAGAATCCCCGCATTATTAC

Table . : Centrifuges and rotors used in this study

Centrifuge Rotor Manufacturer

Sorvall RC BP H- BioProcessing Thermo Scientific, US
Eppendorf R A- - swinging bucket Eppendorf AG, DE
Sorvall RC F S- x y mL Thermo Scientific, US

JA- Beckman Coulter Inc., US
JA- Beckman Coulter Inc., US

Optima L- K UC Sw Ti swinging bucket Beckman Coulter Inc., US
Eppendorf R F - - Eppendorf AG, DE
Optima MAX-XP UC TLA- Beckman Coulter Inc., US
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Table . : Buffers used in this study

Buffer Buffer composition

Inclusion body purification buffers
Lysis buffer 100m NaCl, 50m Tris-HCl, 10 µgmL Dnase I, 5m MgCl ,

pill/ mL c mplete protease inhibitor cocktail without EDTA
pH .

Triton X- buffer 100m NaCl, 1m EDTA, 10m DTT, % Triton X- , 50m
Tris-HCl, pH .

TEN buffer 100m NaCl, 1m EDTA, 10m DTT, 50m Tris-HCl, pH .
TN buffer 100m NaCl, 50m Tris-HCl, pH .

Chromatography buffers
HisTrap buffer A M urea, 150m NaCl, 10m Tris-HCl, 50m Imidazole, pH

.
HisTrap buffer B M urea, 150m NaCl, 10m Tris-HCl, 500m Imidazole, pH

.
Size-exclusion buffer M urea, 150m NaCl, 10m Tris-HCl, pH .

General experiment buffers
Liposome buffer 150m NaCl, 20m MOPS-Tris, pH .
Electrophysiology buffer 250m KCl, 20m MOPS-Tris, pH .
Electrophysiology buffer 20m KCl, 20m MOPS-Tris, pH .

Other buffers
Competent cell buffer 30m KAc, 10m CaCl , 50m MnCl , 100m RbCl, % glyc-

erol, pH .
Competent cell buffer 10m RbCl, 75m CaCl , % glycerol, 10m MOPS, pH .
TAE buffer 20m Acetic acid, 40m Tris, 20m EDTA, pH .
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. Methods - Molecular Biology

. . Polymerase Chain Reaction

Polymerase chain reaction (PCR) was employed to perform site-directed

mutagenesis. Primer pairs were designed to contain the desired base mutation

in their center and purchased from Metabion (DE). For PCR, a µL PCR reac-

tion mix was set up, containing: ng DNA template, . µM each forward and

reverse primer, % DMSO, . µM dNTP mix, U Phusion DNA polymerase and

x Phusion HF buffer. The PCR mix was subjected to cycles of Denaturing - An-

nealing - Elongation (see table XY). The methylated template DNA was digested

with µL DpnI and µL of the digested PCR product was transformed into µL

E. coli XL -Blue cells for plasmid amplification (see section . . ).

. . DNA Sequencing

Plasmid DNA was sequenced, after amplification and isolation, by GATC

Biotech AG (DE).

Table . : Thermocycle setup for polymerase chain reactions

Step Temperature Time

Lid °C
Initial Denaturing °C s
Denaturing °C s
Annealing °C s x
Elongation °C min
Final Elongation °C min
End °C



CHAPTER . MATERIALS ANDMETHODS

. . DNA Concentration Determination

DNA concentration was determined spectrophotometrically with a Nan-

oDrop (Thermo Scientific, US) and its built-in Nucleic Acid method. The

calculation uses on a modified version of the Lambert-Beer law (equation .

which yields the concentration CDNA by measuring the absorbance 𝐴 at 260nm,

baseline-corrected by absorbance at 340nm, with the path length 𝑑 and an

extinction coefficient 𝜖.

CDNA = (𝐴 ⋅ 𝜖) /𝑑 .

. Methods - Cell Biology

. . E. coli Strains and Medium

In this study, three different E. coli strains were used (table . ). ScTim was

expressed in BL (DE ) cells. Plasmid amplification for all plasmids was carried

out in XL -Blue cells.

All E. coli strains were grown on LB (lysogeny broth) with g NaCl, g

yeast extract and g tryptone per liter of culture. For LB-Agar solid medium,

the LB was supplemented with 15 g L Agar-Agar. Cells containing ScTim

pET N vector were grown in medium complemented with 100mgL Ampicillin.

Table . : Escherichia coli strains used in this study

Strain Genotype Supplier

XL -Blue recA endA gyrA thi- hsdR supE relA Stratagene
BL (DE ) F- ompT hB (rB

- mB
-) gal dcm λ(DE ) Novagen
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. . Generation and Transformation of Chemically Competent E. coli

Cells

E. coli cells were made chemically competent according to a previously pub-

lished protocol . Briefly, a L culture of E. coli BL (DE ), XL -Blue or Rosetta

(DE ) cells was grown without antibiotics to an optical density at nm (OD)

of . at °C and cooled down on ice for min. After centrifugation at g

for min at °C, the cells were resuspended in mL ice-cold competent cell

buffer and pelleted again at the same speed. After resuspension in mL of the

final competent cell buffer the cells were aliquoted, frozen in liquid nitrogen and

stored at - °C for further usage.

Transformation of competent cells was achieved by adding ng plasmid

DNA or µL ligation PCR mix to µL competent cells, thawed on ice, and

incubation for minimum minutes on ice. The mix was subjected to a heat-shock

at °C for s and incubated on ice for minimum minutes before µL pre-

warmed LB medium was added. The cells were recovered by shaking them for one

hour at °C and rpm and subsequently plated on LB-Agar plates containing

the appropriate antibiotics specified by the plasmid (100 µgmL Ampicillin for

the pET N-vector). The plates were left at °C until bacterial colonies were

visible.

For plasmid amplification after mutagenesis (see chapter section . . ), XL -

Blue cells were transformed with the respective plasmid and plated on LB-Agar

plates supplemented with 100 µgmL Ampicillin. Multiple colonies were picked

and each grown in mL LB medium with antibiotics for – hours. The

cells were collected in mL tubes by centrifugation (Centrifuge R, A- -

rotor, rpm or g, room temperature, min). Cells were resuspended,
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lysed and plasmids were isolated and purified, using Wizard Plus SV Minipreps

DNA Purification System (Promega, DE) according to the manufacturers protocol.

. . Protein Expression and Inclusion Body Purification

Tim wild type and mutants containing an N-terminal His-Tag were ex-

pressed in E. coli BL (DE ) cells as described before ; . To this end, the

pET N plasmid carrying Tim wild type or mutant expression gene was trans-

formed into E. coli BL (DE ) cells which were plated on LB-Agar plates supple-

mented with Amp ( µg/mL). After incubation for h at °C, single colonies

were picked to inoculate a preculture of mL LB (+Amp) for h, which in turn

was used to inoculate a mL overnight culture of LB+Amp to an OD (op-

tical density at 𝜆 = nm; OD is proportional to cell density) of . . The

next morning, autoclaved LB medium in flasks ( L medium per L flask, typi-

cally L total culture volume) was supplemented with Amp, inoculated with the

overnight culture to an OD of . and left in an incubator shaker until the

culture reached an OD of . - . , which corresponds to the log or exponen-

tial growth phase, characterized by uninhibited cell growth i.e. doubling . Then,

IPTG was added (1m ) and expression was induced for h at °C before all cells

were collected by centrifugation (Sorvall RC BP with H- rotor, rpm

or g, °C, min). The cell pellets were resuspended in mL of cell re-

suspension buffer per L of original culture and again collected via centrifugation

(Sorvall RC with F S rotor, rpm or g, min, °C). The cell pellet

was typically frozen at this step.

As Tim is a highly hydrophobic membrane protein, it must be isolated and

purified from inclusion bodies. To this end, the pellet was resuspended in lysis
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buffer ( mL/g wet cells) and the cells were lysed by three passes at bar

through a cooled EmulsiFlex-C (Avestin Inc., US). The cell lysate was supple-

mented with deoxycholic acid and lysozyme, stirred with a magnetic bar for

min at room temperature (to enable DNase activity) and centrifuged (Sorvall RC

with F S rotor, rpm or g, min, °C) to remove soluble proteins

and bacterial cytoplasm. Next, membrane fractions and membrane-inserted

proteins were removed by resuspension in mL Triton X- buffer, stirring

for min at °C and centrifugation (Sorvall RC with F S rotor, rpm

or g, min, °C). The inclusion body pellet was then further washed

by resuspension in mL TEN buffer, stirring for h at °C and centrifugation

(as before). Ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT)

were removed by resuspension in mL TN buffer and centrifugation (as before),

before the pellet was stored at - °C.

. . Affinity Chromatography

The protein was solubilized from inclusion bodies using high molar concen-

trations of urea, a chaotropic salt, and purified via His-tag affinity chromatog-

raphy. Unlike protein tags, e.g. Glutathion-S-Transferase (GST), which require

proper folding of the tag, peptide tags like polyhistidine tags enable affinity chro-

matography purification even for denatured proteins, though specificity is typi-

cally greater with GST-tag. The imidazole moiety of polyhistidine tags binds pref-

erentially to complexed divalent metal ions, e.g. Ni +-NTA or Co +-NTA, with

NTA being crosslinked to an agarose matrix . Proteins without polyhistidine tags

do not bind at all or not tightly to the Ni +-NTA and can be washed off even with

low concentrations of imidazole, while the proteins of interest can be eluted from
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the Ni +-NTA by high concentrations of imidazole. This technique is typically

used with either agarose beads as a matrix to enable purification in reaction tubes

or with chromatography columns, either self-packed or commercially prepacked,

to be used with chromatography setup, e.g. ÄKTA systems. In this study, affinity

chromatography was used with prepacked HisTrapFF mL or mL columns (GE

Healthcare, UK), operated on an ÄKTAPrime Plus system (GE Healthcare, UK).

Prior to use, all chromatography buffers were sterile filtered through .

µm filters and degassed. The pellet was resuspended in buffer containing 50m
imidazole to reduce unspecific binding of contaminations. The resuspension was

stirred for min at room temperature and then centrifuged (Sorvall RC with

JA- rotor, rpm or g, min, room temperature) in a pre-warmed

rotor. Urea is temperature sensitive at very high concentrations. Using the rotor

right from the fridge would lead to precipitation of urea and thus of the protein of

interest. Alternatively, instead of urea guanidine hydrochloride can be employed

at M concentrations and used at °C as it is not temperature sensitive. The

supernatant was filtered through . µm filters and loaded to the column with

a flow rate of . mL/min to allow binding. The column was washed with

column volumes (CV) of HisTrap buffer A at mL/min and the bound protein

was eluted from the column with CV of HisTrap buffer B, containing 500m
imidazole, at mL/min and fractionated in mL steps.

. . Size-Exclusion Chromatography

Proteins pre-purified using affinity chromatography were further subjected

to size-exclusion chromatography, where particles, like proteins, are not sepa-

rated by binding affinity but by their size, more precisely their hydrodynamic
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volume . The size-exclusion matrix used in this study was made of crosslinked

agarose with covalently bound dextran to form a porous matrix. While the

smallest particles can enter the various nanometer-sized pores in the matrix,

bigger particles pass by most pores and cavities. This leads to a much higher

elution time for smaller particles that are trapped in the pores, whereas bigger

particles just pass by the porous cavities. In this study, a HiLoad / Su-

perdex pg (GE Healthcare, UK) operated on an ÄKTAPrime Plus system

(GE Healthcare, UK) and was used to separate Tim proteins from contam-

inations and aggregates, with a constant flow rate of mL/min. Before the

separation run, the column was equilibrated with CV of ddH O and . CV of

size-exclusion buffer. After injection, not exceeding a sample volume of mL, the

sample was eluted with CV of sizeexclusion buffer and fractionated in mL steps.

. Methods - Protein Biochemistry

. . Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE)

Proteins were separated and detected using discontinuous Tris-Glycine SDS-

PAGE ; . Here, the negatively charged detergent SDS denatures proteins ands

binds to them approximately proportional to the protein mass with≈ molecules

of SDS per amino acid. Application of an electric field across the gel leads to mi-

gration of the, now negatively charged, proteins towards the anode. The polyacry-

lamide gel matrix acts as a sieve, with smaller molecules passing through the pores

easier than bigger molecules, effectively separating smaller from bigger proteins.

The SDS polyacrylamide gels used in this study were cast with a stacking gel
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Table . : SDS-PAGE gel matrix and buffer composition

Matrix Composition

Stacking gel . % ( / . ) acrylamide / bis-acrylamide, . % SDS, 386m Tris/HCl pH
. , . % APS, . % TEMED

Running gel % ( / . ) acrylamide / bis-acrylamide, . % SDS, 126m Tris/HCl pH . ,
. % APS, . % TEMED

Running buffer . % SDS, 191m glycine, 25m Tris
Loading buffer % SDS, % glycerol, % β-mercaptoethanol, . % bromphenol blue,

60m Tris/HCl pH .

above the actual running gel. The stacking gel had a low polyacrylamide concen-

tration, and thus a higher porosity, and a pH of . and was used to focus the

proteins to a single band after loading. With a higher polyacrylamide concentra-

tion, the porosity of the matrix becomes the limiting factor for protein migration,

thus separating the proteins by size. For inital denaturing, the protein sample of

interest was incubated with x Loading buffer (from x stock). To estimate molec-

ular weight of protein bands, eitherMark unstainedmarker (Novex) orPageRuler

prestained marker (Thermo Scientific) were loaded on the gel as well.

. . Protein Visualization on SDS-PAGE

Proteins were visualized on gels after SDS-PAGE using Coomassie Brilliant

Blue. For a lower detection sensitivity, the gel was immersed in Coomassie stainer,

containing % ethanol, % acetic acid and . % Coomassie Brilliant Blue R- ,

heated in a microwave and incubated for min on a shaker. Stainer was then

discarded and replaced with destainer, same composition but without Coomassie

Brilliant Blue, again heated and incubated for min on a shaker. Destainer was

replaced as needed for further destaining.

To reach a higher detection sensitivity or to visualize lipids on a gel, a colloidal
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Coomassie stain was used, containing . % Coomassie Brilliant Blue G- ,

% ammonium sulfate, % phosphoric acid, and % methanol. The gel

was immersed in the stain and incubated on a shaker for minimum one hour,

typically over night, and then washed multiple times with ddH O. While normal

Coomassie stain stains the whole gain and has to be thoroughly destained,

background staining of colloidal Coomassie stain is minimal and can be washed

with normal water.

. . TCA Precipitation

Protein samples with a too high volume or a too low concentration for SDS-

PAGE had to be precipitated and redissolved in loading buffer. To this end, the

sample were incubated with % trichloroacetic acid (TCA) for min on ice and

centrifuged (Centrifuge R, , rpm or , g, °C, min). The super-

natant was carefully discarded, the pellet was washed with 1mL ice-cold acetone

and again centrifuged at the same conditions. Supernatant was again discarded

and the samples were dried on air over night. SDS loading buffer was added to

dried precipitation pellets. Due to the acidic precipitant, the redissolved pellet in

loading buffer might turn yellow (due to pH-sensitive bromphenol blue) and was

brought back to a higher pH by addition of 2 µL 1 Tris.

. Methods - Liposome Techniques

. . Liposome Preparation

For liposome formation, PC, PE, PI, PS and CL (see table . ) were first pre-

pared in chloroform and then mixed in the desired molar ratios, i.e. either : :
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PC:PE:CL or : : : : PC:PE:PI:PS:CL, in glass test tubes. The lipid mixture

in chloroform was dried under a nitrogen stream for min followed by desicca-

tion in vacuum for h. The dried lipid film was fully resuspended with liposome

buffer (150m NaCl, 20m MOPS/Tris, pH . ) for a final mass concentration

of 10mgmL . The lipid suspension was then subjected to at least seven freeze-

thaw cycles, i.e. freezing in liquid nitrogen followed by thawing in cold water and

vortexing for min. To reach size-uniformity of the liposomes, the suspension

was extruded times through polycarbonate membranes with a pore size of

nm (Whatman). The assembled extruder setup was washed with x MeOh, x

ddH O, x liposome buffer, passes each.

. . Protein Incorporation into Liposomes

The Tim protein was incorporated into liposomes in a detergent mediated

manner as described before . For that, both extruded liposomes and Tim pro-

tein in Urea were incubated with 80m MEGA- (non-ionic detergent, critical

micelle concentration cmc ≈ 20m , dialyzable) for min, then mixed in :

protein to lipid (w/w) ratio and incubated for another min. The mixture was

then dialyzed in membrane tubes with 3.5 kDa cutoff (Spectrum Labs) in L lipo-

some buffer to remove both Urea and MEGA- , first for h at room temperature

followed by overnight dialysis at °C.

. . Liposome Flotation Assay

To assess protein co-migration with liposomes, density gradient flotation

was employed using nonionic Histodenz as we described before . With this

technique, membrane-unbound proteins can be separated from liposomes and

membrane-bound proteins. While liposomes, both empty and with incorporated
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protein, migrate to areas of lower density, unbound protein stays in the loading

fraction (see figure . ). The base layer, µL % Histodenz mixed with

µL proteoliposomes, was loaded in the bottom of a polycarbonate test tube and

discreet layers of %, %, % and % in liposome buffer with µL each were

cast on top. The density gradient was centrifuged in a swinging bucket rotor (Op-

tima L- K UC with Sw Ti rotor, k rpm or , – , g, °C, h)

and then fractionated in µL steps from top to bottom. The fractions were

TCA-precipitated and subjected to SDS-PAGE.

Figure . : General principle of density gradient flotation as employed in this thesis. Li-
posomes and proteoliposomes migrate to low-density interfaces while unbound protein
or unincorporated protein stays in the loading fraction.

. . Sodium Carbonate Extraction

To test if proteins are only attached or truly inserted into liposomes, prote-

oliposomes were diluted in 200m sodium carbonate (Na CO ). This leads to

detachment of peripherally attached proteins from the membrane due to distur-
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bance of electrostatic interactions and unfolding of the protein . Proteolipo-

somes were used in a modified flotation assay with µL % Histodenz mixed

with 100 µl proteoliposomes as base layer, followed by ml % Histodenz and

. ml % Histodenz. After centrifugation, the liposomes were carefully extracted

from the interface between % and % layers with a pipette. The flotated lipo-

some samples were diluted in x 200m sodium carbonate, incubated on ice for

min and then centrifuged at , g for min at °C. Pellet and super-

natant were separated, the supernatant was TCA-precipitated and both samples

were subjected to SDS-PAGE.

. Methods - Electrophysiology

. . General Principle of Electrophysiology

For electrophysiological considerations, reduced membrane systems and even

whole cells can be brought down to an equivalent circuit diagram, that of a leaky

capacitor . In a minimal system, as used in this thesis, the circuit consists of

a series connection of resistor 𝑅 , representing the resistance

of both the electrical setup (headstage and electrodes) and the electrolytes, with

a parallel connection of 𝐶 and 𝑅 , capacitance and resistance of

the impermeable lipid bilayer, and 𝑅 , resistance (or inverse conductance

1/𝐺) of an incorporated ion channel (figure . A). 𝑅 is small compared to

𝑅 and can therefore be neglected in a series connection, while 𝑅 is

big compared to 𝑅 and can be neglected in a parallel connection, leaving a

reduced circuit (figure . B). Current flux through a capacitor depends on changes

of applied potential, thus directly after setting a constant holding potential 𝑈, the

capacitor 𝐶 is conducting for a few hundred milliseconds until exponen-
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tial decay reduces the respective current to near zero. Then, all current 𝐼 is flowing

through 𝑅 , enabling direct calculation of the channel’s conductance 𝐺 via

Ohm’s first law:

𝑈 = 𝑅 ⋅ 𝐼 = 𝐼
𝐺 <=> 𝐺 = 𝐼

𝑈 .

Figure . : Complex (A) and reduced (B) circuit sketch of an ion channel in a biological
membrane.

. . Reversal Potential and Ion Selectivity

In eukaryotic cells, the plasma membrane and many organellar membranes

are nearly impermeable for ions and only allow ion passage through dedicated ion

transporter. This restricted ion movement leads to an ion concentration gradient

over the membrane. The concentration difference results in an electrochemical

membrane potential which strives to equilibrate the ion concentration on both
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sides of the membrane again. The potential that needs to be applied over the

membrane to stop all ion flux through the membrane is termed reversal poten-

tial . If only one ion species, e.g. Na+, is transported over the membrane and

contributes to the asymmetry, the resulting equilibrium potential can be calcu-

lated using the Nernst equation

𝑈 = 𝑅𝑇
𝑧𝐹 ⋅ ln 𝐶𝐶 , .

where 𝑅 is the universal gas constant (𝑅 = 8.314 J K mol ), 𝑇 is temperature,

𝑧 is ion charge, 𝐹 is Faraday’s constant (𝐹 = 96485.332 Cmol ) and 𝐶 / is ion

concentration on each side of the membrane.

If multiple anions and cations contribute to the electrochemical potential, it

is not sufficient to only sum up the Nernst potentials (equation . ) for each ion as

the ions may have different permeabilities through the membrane. At asymmetric

salt concentrations, both anions and cations strife to equilibrate, and if the chan-

nel is not ion selective, all anions and cations migrate with the same rate, resulting

in zero net current. Though, if the channel discriminates between ions, one type

of ions has a higher permeability through the channel than the other, resulting in a

higher ion flux for the preferred type which can be measured as a nonzero current

at zero voltage. The reversal potential required to zero any current flux depends

on the salt concentrations and the relative ion preference of the channel and can

be calculated from the respective ion concentrations and their permeability, using

the Goldman or Goldman-Hodgkin-Katz voltage equation ;

𝑈 = 𝑅𝑇
𝐹 ⋅ ln

∑𝑃 [𝐶] + ∑𝑃 [𝐴]
∑𝑃 [𝐶] + ∑𝑃 [𝐴] , .

where [𝐶] / [𝐴] is the concentration of cations or anions, 𝑃 / are the permeability
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of cations or anions and 𝑖𝑛𝑛𝑒𝑟/𝑜𝑢𝑡𝑒𝑟 refers to the side of the membrane.

In this study, we use a potassium chloride buffer with known, different salt

concentrations on trans and cis sides of the channel. We can solve the equation

for the relative ion selectivity to

𝑃 ∶ 𝑃 =
[𝐶𝑙 ] –𝑒𝑥𝑝 ⋅ [𝐶𝑙 ]

𝑒𝑥𝑝 ⋅ [𝐾 ] − [𝐾 ]
, .

where 𝑃 / are the permeability of potassium or chloride ions, [𝐾 ] / [𝐶𝑙 ] are

the respective ion concentrations, 𝑐𝑖𝑠/𝑡𝑟𝑎𝑛𝑠 correspond to the two sides of the

bilayer, 𝐹, 𝑅, 𝑇 are constants as declared before and 𝑈 is the measured reversal

potential.

. . Conductance

As introduced in section . . , ion flux through an open channel results in a

recordable current 𝐼 that depends on the applied voltage. After partial or full

closure of a channel, the current is reduced to a 𝐼 or 𝐼 . It has to be

noted that 𝐼 can be non-zero, originating either from the membrane if it is

not fully impermeable or from the channel if it allows a residual current even in

its closed conformation.

Using Ohm’s law (equation . ), dividing recorded current by applied voltage,

yields the channels conductance at that specific voltage. This is an indicator of

how big the pore or multiple pores are. The diameter of a cylindrical pore can be

calculated according to Hille from the approximate length 𝐿 of the cylinder, the

resistivity 𝜌 of the buffer and the recorded and calculated conductance 𝐺 of the
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channel. 𝐿 can take on e.g. 0.5 nm for a very short constriction zone or 5nm for

a membrane-spanning cylinder. Resistivity 𝜌 is approx. 50Ω cm for unrestricted

electrophysiology buffer (250m KCl, 20m MOPS-Tris, pH . ), whereas elec-

trolytes exposed to strong electrical fields within a pore exhibit a much higher re-

sistivity and a correction factor of was determined for such a narrow channel .

The pore size can then be calculated:

𝑑 = 2 ⋅ 𝐺 ⋅ 𝜌 ⋅ 1
4 + 1

16 + 𝐿
𝐺 ⋅ 𝜌 ⋅ 𝜋 .

Current recordings of a channel were also analyzed with regards to the occupation

of open or closed states. To this end, the open probability 𝑃 was calculated by

dividing the mean current 𝐼 , typically recorded over the course of a minute,

by the maximum current 𝐼 of a trace. Extracting the maximum current of a

current recording can pose a difficulty if the channel is never fully open during

the recording, possibly due to substrate or ”stress” effects leading to closure.

. . Assembly of the Chamber

All electrophysiological experiments in this thesis were carried out using the

planar lipid bilayer setup ; . A very detailed method review describing the ver-

tical bilayer setup used in this thesis, with only minor alterations regarding the

electrical setup (see section . . ), was published recently .

Briefly, the bilayer chamber consists of two half-chambers with a circular aper-

ture on each side. One aperture per half-chamber was closed with a glass plate and

fixated with Parafilm and a tight PTFE ring. One half chamber was inserted with

the glass front first into the metal cage. On the other side of the half chamber,

Glisseal vacuum grease was applied to the flat front and a Polytetrafluoroethylene

(PTFE) film with a needle-tip sized hole was glued to one half chamber. The hole
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was created by carefully puncturing the PTFE film with a needle and trimmed

with three pulses of a self-made spark gap. The other half chamber was greased

without a PTFE film and inserted grease front first into the metal cage. There, the

non-glass fronts of both half-chambers face each other and are sealed, upon con-

tact, by the vacuum grease and the PTFE film after closing and carefully tightening

the setup with a metal screw ring. Magnetic stir bars of 5mm length are inserted

in each half-chamber to allow buffer mixing with the magnetic stirrer underneath

the metal cage.

Now, Type IV-S L-α-Phosphatidylcholine (SIV-PC) in decane (redissolved after

drying from chloroform in a dessicator, 3mg lipid in 50 µL decane) is painted on

the small hole in the PTFE film with a syringe and left for min incubation time.

The bilayer was created by first adding 3mL of electrophysiology buffer to each

half-chamber and then repeatedly raising and lowering the buffer level over the

lipid film to remove decane and excess lipids layer-wise. A lipid bilayer can be

distinguished from a non-bilayer film by eye as described in Bartsch et al. or by

its electrical properties, i.e. capacitance of a bilayer is much smaller than that of

a non-bilayer film.

. . Electrical Setup and Software

Ag/AgCl electrodes were created by soldering silver wire (diameter mm) to

gold connectors and immerse the wire of the electrodes in % NaCLO for min-

imum h; alternatively, the Ag-electrodes can be chlorinated by immersing the

wire and the ground in M KCl and applying a voltage of V over the electrode

for min. To eliminate liquid junction potentials, the electrodes were inserted

into glass tubes and embedded in a M KCl-Agar bridge. Electric recordings were

performed with Ag/AgCl electrodes connected to a CV- - GU headstage and fur-
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ther to a Geneclamp B current amplifier (both Axon Instruments, now Molec-

ular Devices, US), with the trans-electrode used as reference electrode and the

cis-electrode grounded. Currents were digitized using a Digidata A AD/DA

converter and recorded with a PC using the software AxoScope . for constant

holding potentials or Clampex . for voltage ramps (Molecular Devices, US).

. . Fusion of Proteoliposomes

Proteoliposomes were added close to the bilayer in the cis compartment of

the chamber. A salt gradient over the membrane was established with high salt in

cis and low salt in trans compartment, to enable osmotically-driven fusion ;

of proteoliposomes with the bilayer (figure . ). If fusion rates are low, CaCl can

be added to cis compartment to 10 to 20 m . After fusion, the buffer in each

chamber was perfused with chamber volumes (60ml) of standard 250m KCl

buffer to set exact salt concentrations.

Figure . : Sketch of electrophysiological setup and of channel insertion by osmotically-
driven fusion of proteoliposomes to the lipid bilayer.

. . Data Reconstruction with R

As manual analysis of electrophysiological recordings can be prone to unin-

tended bias (e.g. how to assess electrical noise to identify the true starting and
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ending levels of a gating event), a sophisticated data analysis tool was further de-

veloped in collaboration with Inder Tecuapetla-Gómez (Institute for Mathemat-

ical Stochastics, University of Göttingen, DE), based on an estimator of stepwise

constant functions, SMUCE, implemented in the R-package stepR . In brief, the

SMUCE reconstructs the underlying clean data by taking into account the esti-

mated filter effect, removing white noise from the presumed pre-filtered data and

finally fitting constant segments to the denoised data. The reconstruction allows

to easily identify and analyze conductance changes, dwell times and the general

dynamic behavior of ion channels. A major advantage of SMUCE compared to

previous techniques of data reconstruction is that SMUCE does not require any a

priori information about the channel characteristics, e.g. Markov model parame-

ter, to perform at least on the same level as established methods. With the core

algorithm from stepR, we created a full reconstruction routine with RStudio (RStu-

dio Inc., US) that automates gating event detection and dwell time calculation (see

section . ). Routine parameters that were used in this study are displayed in ta-

ble . . The reconstruction routine exports data analysis in two .txt-files, a dwell

time table and a list of gating events, that were further analyzed with OriginPro

. (OriginLab, US).

For analysis of the temporal resolution of Tim channels, the very recent es-

timator JULES was used within our routine instead, keeping the formatting of

data export identical (see section . ). JULES, related to SMUCE, is capable of

accurately reconstructing conductance changes, by deconvolution of the data to

fully remove the filter effect, that appear smaller that they were before filtering,

thus giving information about the ”true” conductance levels of very short events

(see Pein et al. for a detailed presentation). This routine demands higher com-

putational power than SMUCE if used for large amounts of current-voltage traces
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and was therefore only used for dwell time analysis.

Table . : Reconstruction stepR-parameters

SMUCE JULES

Minimum dwell time 𝑡0 = 2ms 𝑡0 = 0ms
Minimum conductance change 𝑐0 = 40pS 𝑐0 = 15pS
Fit segment length (points) 𝐿𝐿 = 15000 𝑛_𝑛𝑜𝑟𝑚 = 50000

i.e. 0.3 s resp. 1 s

. . Mean-Variance Analysis

A mean-variance analysis is a helpful tool to display and discover complex gat-

ing patterns of recorded current traces and is extensively described in Patlak .

Briefly, pairs of mean and variance for windows with length 𝑛 are calculated and

stored before moving the window forward step-by-step. Starting at the interval

[1, 𝑛] and storing (𝑀, 𝑉) , next the window [2, 𝑛 + 1] and the pair (𝑀, 𝑉) is con-

sidered. Analyzing the whole data set with 𝑁 data points will yield 𝑁 pairs of

mean and variance. The optimal choice of the window length 𝑛 depends on the

kinetics, e.g. gating speed, of the channel. The faster the channel can change its

conductance back and forth, the more transitions will be missed or biased using

a long window length. Choosing a very short window length, on the other hand,

might overvalue artifacts or noise.

Mean-variance analysis in this study was performed using a self-written R-

script (see section . ) and a window length of 2ms.



Chapter

Results

. In-depth Characterization of the Tim Channel

. . Expression and Purification of Tim

The expression plasmid for N-terminally His-tagged ScTim in a pET N vec-

tor was originally created by Kaye Truscott . The plasmid was transformed into

E. coli BL (DE ) competent cells and grown in liquid LB medium at °C to

an OD of . – . before inducing expression for h at °C with ITPG. Re-

combinantly expressed Tim is insoluble and aggregates in inclusion bodies at

higher concentrations. These inclusion bodies were isolated from bacterial cell

lysate by centrifugation, separated from soluble and membrane fractions via de-

tergent, further washed and finally solubilized in M urea used as a denaturing

chaotropic agent (figure . A). Chaotropic agents disrupt hydrogen bonds at very

high concentrations, effectively leading to protein unfolding. The solubilized pro-

tein was purified by Ni +-NTA affinity chromatography (figure . B) utilizing the

N-terminal deca-histidine tag.

To minimize the possibility of sample contamination by bacterial membrane
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proteins, which often exhibit channel activity and would mask the signal of

Tim in electrophysiological experiments, the protein was further purified using

size-exclusion chromatography (figure . D), despite its already high purity after

Ni +-NTA affinity chromatography. SDS-PAGE analysis of size-exclusion fractions

(figure . C) showed that we could purify the protein to homogeneity. Note that

the UV nm-absorption peaks at fractions and did not contain any protein

and can be attributed to UV-absorbing oxidized DTT and imidazole, loaded onto

the column together with the sample. Typical yield of Tim wild type protein

expression after purification was ≈ 10mg per liter of culture.

While pore forming toxins or some beta barrel proteins are partly soluble in

normal buffer and can insert into lipid bilayers on their own, this does mostly not

hold true for more complex membrane proteins like Tim . To embed this pro-

tein into lipid bilayers, it must be incorporated into liposomes first. To this end,

large unilamellar vesicles (LUV) with a diameter of 200nm were preformed from

a lipid mixture of PC:PE:PI:PS:CL with : : : : (mol%) before lipids and pro-

tein were, first separate then together, incubated with the mild dialyzable deter-

gent MEGA- . The mix was dialyzed in L of liposome buffer to remove both urea

and MEGA- , forcing the protein to refold in the lipid bilayer of the liposomes.

A density flotation assay was employed to investigate protein incorporation effi-

ciency. The protein co-migrated upwards with the liposomes to a lower density

(figure . A), while unbound proteins would have stayed in the loading fraction

(fraction & ). Co-migration of protein with liposomes can occur as integral

or peripheral membrane protein. To distinguish between integration and attach-

ment, co-migrated proteoliposomes were subjected to sodium carbonate extrac-

tion. Here, the sample is diluted in cold sodium carbonate (Na CO ) to unfold
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Figure . : Recombinantly expressed ScTim was purified to single band purity. (A) Ex-
pression and purification steps analyzed by SDS-PAGE. (B) UV nm-absorption profile of
NiNTA-affinity chromatography. (C) Purification using size-exclusion chromatography
monitored by SDS-PAGE. (D) UV nm-absorption profile of size-exclusion chromatogra-
phy. Meike Wiegand assisted with SDS-PAGE analysis in a lab rotation under my super-
vision.

Figure . : Tim was successfully incorporated into liposomes. (A) Histodenz density
flotation assay analyzed by SDS-PAGE. (B) Ultracentrifuged proteoliposomes after treat-
ment with 200m sodium carbonate. Meike Wiegand assisted with SDS-PAGE analysis
in a lab rotation under my supervision.
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and detach proteins only peripherally attached to a liposome. After ultracentrifu-

gation, Tim was found in the pellet together with the liposomes (figure . B)

whereas peripherally attached proteins would stay in the supernatant, confirming

that Tim is indeed incorporated into the liposomes as an integral membrane

protein. After successful incorporation into liposomes, Tim wild type and mu-

tants were characterized electrophysiologically.

. . Electrophysiological Characterization of Tim Wild Type

The first task in the characterization of molecular mechanisms of Tim was

to establish a detailed baseline of the channel behavior of recombinant Tim

wild type. In addition to investigate whether the wild type channel behaves any

different from the published channel features ; ; , it was required to exceed

the level of detail present in these previous studies to classify putative incremental

mutant effects.

Gating Analysis

The general gating behavior was investigated by recording the current flow

through the channel at different voltages. It must be noted that recombinant

Tim is a lightly rectifying channel, i.e. the conductance depends on the sign

of the applied holding potential, and that it typically inserted with the same ori-

entation: Channel conductance is higher at positive than at negative voltages,

when the cathode is emerged in the trans compartment of the cell (figure . ).

The trans side corresponds to the IMS side of the channel as tested by addition

of presequences or voltage regulator Tim ; to either side. In this configura-

tion, the native electrochemical potential of the inner mitochondrial membrane

corresponds to a holding potential of 150 to 180 mV. To assess the general gat-
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Figure . : Voltage ramp of a
Tim wild type channel at
symmetric buffer conditions.

ing behavior, constant holding potentials ranging from −60mV to 140mV were

applied to the bilayer incorporated channel in 20mV steps for 60 s each. Exceed-

ing this holding potential range was found to lead to irreversible closing of one or

more pores. The respective channel orientation was determined after each fusion

by recording a voltage ramp between −60 and 60mV and assessing the rectifica-

tion.

The recorded current traces (see figure . A as example) confirmed that cur-

rent through Tim undergoes changes in three isometric steps (figure . C), in-

dicating the triple pore structure of recombinantly expressed ScTim as pub-

lished earlier . All characterized channels contained three or multiples of three

pores. Further, all current changes Δ𝐼 were extracted from the recordings using

the reconstruction algorithm based on stepR (see section . . ) and divided by

the applied voltage 𝑈 to obtain conductance changes Δ𝐺. They were displayed

in a histogram (figure . B) and further modeled with multiple Gauss fits to ex-
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Figure . : Electrophysiological experiments show that Tim constitutes a voltage-
sensitive triple-pore. (A) Current-recordings at different constant holding potentials. (B)
Mean-variance analysis of a single Tim trace of 60 s at 120mV with a window of 2ms.
(C) Gating event analysis of over gating events from independent experiments.
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tract the numeric values for the main conductance state 𝐺main and the primary

and secondary subconductance states 𝐺sub, and 𝐺sub, . The main conductance

state 𝐺main = (461 ± 31) pS (Truscott et al. : 𝐺main = (450 ± 11) pS) corre-

sponds to one full closing or opening of a single pore of three, resulting in a total

conductance of 𝐺 ≈ 3 ⋅ 𝐺main. Gating from open to closed or vice-versa ap-

peared to be independent between the pores, i.e. the state of one pore did not

obviously affect the state of another pore. The primary subconductance state

𝐺sub, = (172 ± 30) pS (Truscott et al. : 𝐺sub, = (140 ± 15) pS) and the sec-

ondary subconductance state 𝐺sub, = (58 ± 13) pS are semi-open states a single

pore can transition into from the fully open state, but not from the closed state

(figure . C).

Voltage-Dependency and Regulation

Increasing the applied holding potential above 100mV, the channel gradually

exhibits a lower open probability 𝑃 = 𝐼 /𝐼 (figure . ). The voltage sen-

sitivity was further increased by addition of the soluble IMS-domain ofScTim

to the trans side, which lead to a reduction in open probability above 40mV
(figure . , in red), as published before .

Ion Selectivity

The presequence translocation channel Tim was found to be cation selec-

tive in electrophysiological experiments , very similar to the other mitochon-

drial translocases ; ; ; . For this study, a reversal potential of (47.2 ± 0.4)mV
in the presence of a . -fold KCl gradient (250m :20m ) was determined ex-

perimentally for incorporated Tim wild type (figure . ). The correspond-

ing ion selectivity of 𝑃 ∶ 𝑃 = 13.3 ∶ 1 was calculated using the GHK-



CHAPTER . RESULTS

Figure . : Current-voltage ramps (left) and open probabilities (right) of bilayer incorpo-
rated Tim wild type before (black) and after (red) addition of nM Tim IMS to the
IMS-side of the channel. (n= , mean±SD)

equation (equation . ), corresponding well to the published reversal potential

of (49.60 ± 3.06)mV .

Presequence Activation and Temporal Resolution

Tim reacts to substrate addition with fast gating ; ; . After adding the

presequence peptide Cox to 300n or 500n to the IMS side of incorporated

Tim channels and recording the current traces at 𝑈 = 120mV, a concentration-

dependent increase in gating activity together with premature closing of the chan-

nel could be observed figure . . After extracting the reconstructed data from

three independent current traces for Tim with 0n and 500n Cox using

JULES (see section . ), the gating events were analyzed in a histogram. The abso-

lute gating frequency (figure . A) confirmed the increase in overall gating event

count (relative total increase by factor . for 500n Cox ). Normalization of

the histograms showed that the main conductance state around 500pS was sig-

nificantly increased, while primary (around 180pS) and secondary (around 75pS)
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Figure . : Voltage ramp of a Tim wild
type channel at symmetric buffer conditions.

subconductance states were not increased with the same rate figure . C.
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Figure . : Current-recordings of incorporated Tim channels at 120mV, with (A) no,
(B) 300n or (C) 500n Cox added to the IMS side of Tim .

The temporal dimension of Tim gating could yield important insight into

the channel dynamics. The dwell times, i.e. residence times of the channel at

specific conductances, before and after addition of the Cox presequence peptide

were analyzed. Tim not activated with Cox showed a primarily open channel

that was able to close for very short times. For calculation of the regular minimal

dwell time per condition, the lowest 1% was excluded. This results in a regular
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minimal dwell time of unstimunlated Tim of 3.2 × 10 s (dashed black line

in figure . C). In the presence of 500n Cox , gating frequency increased but

the open conductance levels decreased slightly in the dwell time analysis, in line

with the slight shift of the main conductance state peak in the gating event his-

togram (figure . A). Despite the significant increase in gating events, the regular

minimal dwell time of Cox -stimulated Tim shifted to 5.6 × 10 s (dashed red

line in figure . C), though the majority of short dwell times (below 5 × 10 s)
seems to peak not at constant values but proportional to the overall conductance

of the occupied state (dash-dotted blue line in figure . C). Even with a less strict

view on regular minimal dwell time, short dwell times nearly exclusively occur

for partially closed channels for unstimulated and even more so for stimulated

Tim . Data points of Tim and Tim plus Cox , above G = 1nS and in the

peak area of short dwell times (grey box in figure . C), were extracted and ana-

lyzed in a dwell time histogram (figure . A) and fitted with a logarithmic normal

distribution with peak center 𝑥 = (62 ± 1) µs for unmanipulated Tim and

𝑥 = (184 ± 2) µs for Tim plus Cox (mean ± SD).
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Figure . : Cox induced increased gating activity in incorporated Tim channels, with
no (black) or 500n (red) Cox added to the IMS side of Tim . (A) Histogram of gat-
ing events per seconds per conductance change ΔG. (B) Histogram of normalized gating
frequency. (C) Dwell times at different conductances. Regular minimal dwell time indi-
cated with black dashed line for no Cox and red dashed line or blue dash-dotted line for
500n Cox . Grey box marks data used for figure . A. Three independent experiments
per condition.



. . IN-DEPTH CHARACTERIZATION OF THE TIM CHANNEL

Figure . : Dwell time histogram of the peak area marked in grey in figure . C for Tim
before (A) and after (B) addition of Cox . Fit of logarithmic normal distribuction in red.
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. Tim core Regulates Tim and Hands Over Preproteins

. . Voltage-Regulation by Tim Subdomains

To elucidate on the matter how molecular functions of the Tim IMS domain

are distributed between its subdomains, we investigated the interaction between

these subdomains and Tim with electrophysiological techniques. All three

Tim constructs, Tim IMS (aa - ), Tim PBD (aa - ) and Tim core

(aa - ), were purified and provided by Christian Schulz and Alexander Ben-

jamin Schendzielorz (both AG Rehling, University Medical Center Göttingen), as

described in Schulz et al. .

As with wild type Tim and Tim IMS (see section . . ), bilayer-incorporated

Tim channels were characterized with voltage ramps and three full sets of con-

stant voltage traces (60 s per voltage, from −60mV to 140mV in 20mV steps).

Then, Tim core or Tim PBD were added to the IMS-side of incorporated Tim

channels with a final concentration of 730n before the buffer in each half-

chamber was stirred and left to rest for two minutes each. After resting, a voltage

ramp and another full set of traces was recorded.

Voltage ramps and open probabilities showed that Tim core was able to in-

duce voltage-dependent closure in Tim channels (figure . A), while Tim PBD

did not induce any significant change in voltage ramps or open probability

(figure . B). Comparison with voltage-regulation by Tim IMS (figure . ) shows

that no significant difference between voltage regulation by full IMS- and shorter

core domain.
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Figure . : Voltage
regulation of Tim
by Tim subdomains
investigated via voltage
ramps and open prob-
abilities. (A) Voltage
ramps (left) and open
probability (right) of
Tim before (black)
and after (red) addi-
tion of Tim core to
the channels IMS side.
(B) Voltage ramps (left)
and open probability
(right) of Tim before
(black) and after (red)
addition of Tim PBD to
the channels IMS side.
(n= , mean±SD)

. . Presequence Handover to Tim by Tim

After it was confirmed that the regulatory function of Tim does not re-

quire the presequence binding domain PBD, we attempted to reopen Tim chan-

nels that were previously closed by Tim subdomains by addition of Tim sub-

strates. In situ additions of the presequence peptide Cox to bilayer-incorporated

Tim did not lead to any reactivation of Tim -closed channels in previous stud-

ies . Instead, in that study Tim channels were preincubated with Tim and

Cox prior to bilayer fusion, leading to channel-reactivation. Such a preincuba-

tion approach does not offer studying the unmanipulated system to detect minor

differences, hence we tested the full preprotein b ( )Δ-DHFR instead of a short

presequence peptide to reopen the channel in situ.

700n of the preprotein added to bilayer-incorporated Tim lead to a com-
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bination of early closure and increased gating activity (figure . A). When first

730n Tim IMS were added to the IMS side of Tim to induce closure before

the preprotein was added to the same side, the channel was able to reopen par-

tially (figure . B) in a manner observed for Tim + b ( )Δ-DHFR. Repeat-

ing the experiment with Tim core instead of Tim IMS again induced closure of

Tim as observed before. Interestingly, the preprotein was again able to induce

partial reopening of Tim (figure . C) even when Tim lacks its PBD. Anal-

ysis of current recordings at a constant holding potential of 120mV confirmed

that the preprotein was reactivating Tim to a similar extend after Tim IMS- or

Tim core-induced channel closure.
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Figure . : Voltage ramps of Tim reactivation by b ( )Δ-DHFR after Tim -induced
closure. (A) Voltage ramp of Tim channel activation by b ( )Δ-DHFR. (B)+(C) Volt-
age ramps of Tim channel activation by b ( )Δ-DHFR after induced closing with
Tim IMS (B) or Tim core (C).

Figure . : Tim traces with Tim -induced closure at constant holding potentials. (A)
Current traces of Tim at 120mV without Tim (top) or closed by 730n Tim IMS

(mid) or Tim core. (B) Current traces of channels shown in (A), but after addition of
700n b ( )Δ-DHFR.
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. Conserved TMS Residues Constitute Ion Filter

. . Design and Expression of Tim Mutants

To uncover molecular mechanisms that control electrophysiological proper-

ties of Tim from S. cerevisiae, single amino acid residues were mutated in and

next to the second transmembrane segment (TMS ) that was shown to closely in-

teract with presequence peptides in transit . Selection of most of these residues

was based on a previous identification of amino acids within the second alpha he-

lix (residues – ) that face an aqueous environment . As these pore-lining

residues were also highly conserved among many different species (figure . ),

we speculated that these residues could constitute specific electrophysiological

properties, e.g. voltage sensor, gating hinge or ion filter. The choice of amino

acid residues and their distribution on a helical wheel with one side facing the

pore interior is depicted in figure . . The residues were mutated to achieve a

presumable loss-of-function by substitution with alanine (A), glycine (G). Addi-

tionally, G L was selected as a mutation as it was shown earlier that it consti-

tutes a lethal phenotype when expressed in baker’s yeast . As A was shown to

shift from a polar to a non-polar environment in the presence of substrate , the

residue was also mutated to more hydrophobic leucin (L) and phenylalanine (F)

to shift it from the polar channel lumen even in the rested state, which could im-

pact channel constitution, presequence handling or channel gating. In addition

to the TMS mutants, two highly conserved, charged residues flanking the third

transmembrane segment (TMS ) were mutated. The negatively charged aspartic

acid at position at the matrix side and the positively charged lysine at position

at the IMS side of TMS (residues – ) were substituted with neutral ala-

nine. These mutations were introduced as a starting point to investigate whether
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Figure . : Sequence alignment of Tim from various species (Homo sapiens, Rattus
norvegicus, Saccharomyces cerevisiae, Danio rerio, Neurospora crassa) calculated using
ClustalW. Presumed transmembrane segments marked. Consensus: * identity; : high
similarity; . low similarity
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Figure . : Helical wheel
projection of Tim ’s trans-
membrane segment
residues to , with
fully conserved residues
marked in green. Polar
and apolar facing sides
are indicted with colored
hemispheres, TMS residues
mutated in this study are
circled in red.

charges not inside but flanking the mostly neutral transmembrane helices could

constitute or contribute to the channels ion filter.

All mutations were introduced to the wild type ScTim gene on a pET N

vector for recombinant expression in E. coli by site-directed mutagenesis. After

PCR, transformation into E. coli XL -Blue competent cells, plasmid purification

and sequencing, the isolated DNA was transformed into BL (DE ) competent

cells, expressed and purified as described in section . . Mariam Barbot (AG Mei-

necke, University Medical Center Göttingen) designed half of the mutants, per-

formed the respective site-directed mutagenesis and expressed two mutants used

in this study. Lennart Versemann (AG Meinecke, University Medical Center Göt-

tingen) assisted with expression and incorporation of several mutants in a lab ro-

tation and his bachelor thesis, both under my supervision.

. . Electrophysiological Screening of Tim mutants

Recombinantly expressed and incorporated mutants of Tim were screened

for altered electrophysiological properties using the planar lipid bilayer technique.

Mariam Barbot (AG Meinecke, University Medical Center Göttingen) contributed
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partial electrophysiological characterization of one mutant to this study. Lennart

Versemann (AG Meinecke, University Medical Center Göttingen) assisted with the

initial screening of several mutants in a lab rotation and his bachelor thesis, both

under my supervision, and contributed partial electrophysiological characteriza-

tion of five mutants to this study.

Gating Hinge

The general gating behavior of TMS mutants was studied by applying con-

stant voltages, in 20mV-steps between−60mV to 140mV, to bilayer-incorporated

channels and current was recorded for seconds (see figure . A for wild type).

Conductance changes were extracted from current recordings (Δ𝐺 = Δ𝐼/𝑈) and

plotted in a histogram. From these histograms, the main conductance peak repre-

senting the full closing of a single of three pores, and the primary subconductance

peak corresponding to the biggest semi-stable state, were modeled with a multi-

ple Gauss fit for each mutant (table . ) to extract the main conductance state

𝐺main and the primary subconductance state 𝐺sub, . Mutant 𝐺main and 𝐺sub, do not

significantly differ from the wild type levels where 𝐺sub, = (461 ± 31) pS and

𝐺sub, = (172 ± 30) pS.

Voltage Sensor

Recombinant Tim contains an internal voltage sensor, as evidenced by its

strong voltage-dependent gating behavior even in the absence of the voltage reg-

ulator Tim ; (see section . . ). While the IMS domain exhibits a ΔΨ-

dependent dimerization capability, Tim reacts to membrane potentials even

in a truncated form, lacking the IMS domain . This indicates that amino acid

residues either in the transmembrane segments or in the loops between helices
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contribute to the voltage sensor. To investigate if mutations in the conserved

TMS residues alter the voltage sensitivity of recombinant Tim , the open prob-

ability 𝑃 was calculated from the constant-voltage recordings. In general, no

significant difference between wild type and mutant Tim was found in how the

channels reacted to increased membrane potentials (figure . ).

Figure . : (A)-(D) Open probability of Tim mutants, and wild type as reference, from
three (wild type and N A) or one full set of constant-voltage traces.

Ion Filter

It is unknown how the ion filter of the channel protein Tim is constituted.

Previous studies show that the C-terminal transmembrane part of Tim still ex-
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Figure . : (A)-(E) Voltage ramps of Tim mutants, and wild type as reference, at asym-
metric buffer conditions (250m :20m , . -fold gradient).



CHAPTER . RESULTS

hibits an ion preference, indicating that amino acid residues in the pore-forming

transmembrane segments or the inter-helix loops facing IMS or matrix could con-

stitute the ion filter. As with wild type Tim , the ion selectivity of the mutant

channels was assessed by recording a voltage ramp in the presence of a high salt

gradient across the membrane, from 250m to 20m (figure . ). The reversal

potentials of Tim were reduced for mutated residues , , , (all highly

conserved among species, see figure . ) and (partially conserved among

species). The cation preference P+ : P- was calculated from the reversal poten-

tials from three independent experiments each and was reduced by ≈ - %

for most affected residues and over % for Tim N A (table . ). Remarkably,

charge deletions at residues and flanking TMS did not lead to significant

alteration of the ion selectivity. On the other hand, they exhibited a noteworthy

reduction in fusion rates despite identical incorporation success as monitored by

flotation and carbonate extration, indicating that the charges might be required

for proper protein folding or complex assembly. Both mutants were not consid-

ered in further studies.
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Table . : Main conductance state G (pS), subconductance state G (pS), reversal po-
tential Urev (mV) and the corresponding ion selectivity P+ : P- of all investigated Tim
mutants. Conductance states modeled from histograms using multiple Gauss fits (Peak
center ± SD). Reversal potential modeled from voltage ramps at asymmetric buffer con-
ditions using linear regression (mean ± SD). Ion selectivity calculated from mean reversal
potential . -fold KCl gradient using GHK-Equation.

Tim Mutant G (pS) G (pS) Urev (mV) P+ : P-
WT 461 ± 31 172 ± 30 47.2 ± 0.4 , :
N A 465 ± 55 181 ± 47 30.1 ± 0.7 , :
A G 442 ± 113 168 ± 62 47.6 ± 1.3 , :
G A 483 ± 50 122 ± 140 40.5 ± 1.8 , :
G L 498 ± 31 174 ± 42 44.0 ± 1.2 , :
L A 491 ± 83 209 ± 114 47.3 ± 1.0 , :
A G 497 ± 60 178 ± 59 39.7 ± 1.6 , :
A L 469 ± 29 165 ± 145 42.2 ± 1.7 , :
Y A 440 ± 121 198 ± 102 38.0 ± 1.4 , :
N A 469 ± 126 154 ± 113 42.0 ± 1.2 , :
N A 472 ± 131 192 ± 123 48.5 ± 1.9 , :

D A 45.4 ± 1.3 , :
K A 46.7 ± 2.3 , :
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. . Yeast Growth and Complex Integrity of Tim Mutants

In a close collaboration with Alexander Benjamin Schendzielorz (AG Rehling,

University Medical Center Göttingen), we investigated if the observed alterations

in electrophysiological properties, i.e. weakening of the ion filter, had implications

for mitochondrial fitness in the yeast S. cerevisiae. To this end, the amino-acid

substitutions in the second transmembrane segment were first introduced in the

yeast plasmid expressing Tim wild type by site-directed mutagenesis, with the

same primers as were used for mutagenesis of the pET N-plasmid, and successful

mutagenesis was monitored by plasmid sequencing. Half of the mutant plasmids

were generated by me, the rest of the mutants and all further yeast handling and

yeast experiments were performed by Alexander Benjamin Schendzielorz unless

explicitly stated differently. All yeast experiments were performed as described in

Denkert et al. .

S. cerevisiae cells with a chromosomal deletion of TIM were complemented

by a plasmid carrying both wild type TIM and URA genes. In normal medium,

the cells survive by expressing Tim from the complementing plasmid. Yeast

cells were transformed with a pRS -plasmid containing HIS gene as selective

marker and either wild type or mutant TIM . After transformation, yeast cells

were plated on medium lacking histidine to select transformants that could grow

on -His medium due to the HIS gene. Transformants were further plated on

medium containing -fluoroorotic acid ( -FOA), leading to URA -induced loss of

the TIM -URA -containing plasmid, to monitor Tim mutant ability to com-

pensate for lack of wild type Tim . Here, Tim G L exhibited a lethal pheno-

type as published before . Complementing strains were grown on fermentable

glucose and on non-fermentable glycerol at °C, °C or °C. Four strains, ex-
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pressing Tim N A, Tim L A, Tim A L or Tim Y A respectively, showed a

significant growth defect on glycerol at °C, while Tim N A also lead to a mild

growth defect on glucose at °C (table . ).

Table . : S. cerevisiae strains expressing mu-
tant forms of Tim were analyzed for growth on
fermentable (glucose) and non-fermentable (glyc-
erol) medium at different temperatures. Yeast
handling was performed by Alexander Benjamin
Schendzielorz.

Glucose Glycerol

Tim °C °C °C °C

WT + + + +

N A + - + - -

A G + + + +

G A + + + +

L A + + + -
A G + + + +

A L + + + - - -
Y A + + + - -
N A + + + +

N A + + + +

To investigate the origin

of impaired growth, mito-

chondria were isolated from

yeast cells expressing Tim

mutants or wild type and

mitochondrial protein levels

of Tim were quantified

from independent triplicates

and corrected by levels of

Por , an outer mitochondrial

membrane porin. The mu-

tants Tim L A, Tim A L,

Tim Y A or Tim N A have

significantly reduced mito-

chondrial levels of the Tim

protein figure . A. In addi-

tion to reduced Tim levels,

isolated TIM complexes

from strains expressing Tim A L and Tim Y A show reduced levels of both

Tim and Tim , determined by co-immunoprecipitation using antibodies

against Tim (figure . B). The wild type-like integrity of the inner membrane

potential in Tim N A-containing mitochondria was confirmed by measuring

the dequenching of the ΔΨ-sensitive fluorophore DiSC ( ) (figure . C).
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Figure . : Protein levels, complex formation and membrane integrity were monitored
for Tim mutant containing mitochondria. (A) Tim levels in mutant strain mitochon-
dria were assessed by Western blot quantification normalized by Por levels from four
independent experiments (mean±SD). (B) TIM complex formation and interaction in
mutant mitochondria was analyzed by co-immunoprecipitation with Tim antibodies.
(C) Relative inner mitochondrial membrane potential was calculated from triplicates by
dequenching of ΔΨ-sensitive fluorophore DiSC ( ) for wild type and Tim N A mito-
chondria. Figures were modified from Denkert et al. .
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It can not be dissected if the growth defects observed for Tim L A,

Tim A L and Tim Y A originate exclusively from reduced protein levels and

comprimised TIM complexes or if altered electrophysiological characteris-

tics also reduce mitochondrial fitness, even in intact and proper complexes.

Tim N A, on the other hand, showed a strong growth phenotype and the

strongest reduction in ion selectivity, but was expressed and integrated into yeast

mitochondria in wild type levels and maintained the full inner membrane poten-

tial.

To examine how Tim N A could compromise mitochondrial fitness with

wild type-like protein levels, complex integrity and membrane potential, we char-

acterized protein import capabilities of mutant and wild type mitochondria. The

matrix-destined substrates F β of the F F -ATP synthase, Cox of the cytochrome

c oxidase and fusion protein b ( )Δ-DHFR, and the inner membrane sorted fu-

sion protein b ( )-DHFR, were translated with [ S]-methionine in rabbit retic-

ulocyte lysate and imported into isolated mitochondria. Tim N A-containing

mitochondria exhibit a reduced import capability for all substrates, as evidenced

by import analysis after , and min at °C (figure . A). Import at °C

was quantified mid-time after min in independent triplicates and indicated im-

port reductions of Tim N A by to % of wild type levels. Note that import

reduction of b ( )-DHFR at later time points becomes even more pronounced,

compared to matrix targeted preproteins. Analysis of import kinetics of F β and

Cox at non-permissive temperatures (figure . C) revealed a stronger pheno-

type at later time points, i.e. a reduction to ≈ % of wild type levels after min

at °C compared to to % at °C.
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Figure . : Import kinetics of various substrates were determined for wild type or
Tim N A-containing mitochondria at (A) °C or (B) °C. (C) Import efficiency af-
ter min at °C was quantified from independent triplicates (n= , mean±SD). Figures
were modified from Denkert et al. .
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. . Presequence Titration of Cox to Tim N A and Wild Type

After Tim N A was identified as the only studied mutant with reduced ion

selectivity, yeast growth defect and proper complex and membrane integrity, we

showed that Tim N A is importing significantly less preproteins in isolated mi-

tochondria. Considering reduced protein import and the common assumption

that cation preference of mitochondrial translocases might be directly connected

to cationic presequences, we asked if Tim N A exhibits an altered response to

model presequences in vitro.

Before characterizing the presequence response of Tim N A, the mutant was

thoroughly characterized to avoid overlooking other alterations possibly respon-

sible for impaired yeast growth or protein import, but neither detailed gating

analysis (figures . A to . B) nor voltage-sensitivity with or without Tim

(figure . D) was altered compared to wild type. The only parameter that

changed was the channel’s ion selectivity (figure . C).

In section . , it was shown that the most obvious and striking response of

Tim to the presequences peptide Cox is a drastic increase in gating activity.

When Cox was titrated step-wise to the IMS side of Tim N A or wild type and

the buffers on each side are first stirred and then left to calm for two minutes,

the presequence induced increased gating frequency similar to Tim wild type

(figures . A to . C), though it appeared that the relative increase is weaker

for the mutant channel. For Tim wild type, a higher rate of partial closing at el-

evated voltages was observed for stimulated compared to unstimulated channels.

It can not be easily distinguished, if this increased voltage-sensitivity originates

from the presequence effect or from stress effects due to prolonged exposure to

repeatedly applied holding potentials. When the effects of presequence peptides



CHAPTER . RESULTS

Figure . : General gating analysis of Tim N A (A) Constant-voltage recordings of
Tim N A and different holding potentials. (B) Histogram of over gating events
with main and subconductance states fitted. (C) Asymmetric voltage ramp for reversal
potential analysis of Tim N A. (D) Current-voltage ramps (left) and open probabilities
(right) of bilayer incorporated Tim N A before (black) and after (red) addition of
nM Tim IMS to the IMS-side of the channel. (n= , mean±SD). Figures were modified
from Denkert et al. .
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to gating frequency are to be analyzed in-depth, it is required that all pores of

recombinant Tim remain open, and thus gating-capable, throughout the ex-

perimental process.

Table . : Open probability screening of
stimulated Tim N A at different holding
potentials.

[Cox ] Open probability

nM , , ,

nM , , ,

nM , , ,

nM , , ,

nM , , ,

Holding potential (mV)

In an initial screening, the gating

frequency of Tim N A at increasing

Cox concentrations was analyzed at

applied holding potentials of 80mV,

100mV and 120mV figure . D.

While the relative gating increase was

roughly proportional to the Cox con-

centration for recordings at 80mV, this

does not hold true for more elevated

holding potentials. Both at 100mV
and 120mV, the channel started to

close at higher Cox concentrations

(table . ), leading to less open and

gating-capable pores and thus underestimation of the gating frequency. There-

fore, the quantification of gating activity of Tim N A and wild type were per-

formed at 80mV only. Here, both Tim channel variants showed an increase

in activity, roughly proportional to the Cox presequence concentration. The

relative increase in Tim wild type exceeded factor above 500n of Cox ,

while, for Tim N A, the increase reached a plateau at approximately factor

(figure . E). To exclude that this difference, by factor , between both channels

originates from different gating activities of unstimulated channels, the absolute

gating frequency was also analyzed, showing no significant difference between

wild type and mutant Tim (figure . F).
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Figure . : Gating frequency analysis of wild type and mutant Tim after stimulation
with Cox presequence. (A)-(C) Constant-voltage recordings of Tim wild type (left) and
Tim N A (right) with no (A), 500n (B) or 900n (C) Cox . (D) Voltage dependency
of gating frequency development for Tim N A. (E) Relative increase in gating frequency
depending on Cox concentration for wild type (black) and mutant (red) Tim from in-
dependent triplicates (mean±SD). (F) Absolute gating frequency of unstimulated Tim
variants (n= , mean±SD). Figures were modified from Denkert et al. .
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Discussion

Tim is the eponymous pore-forming unit of the TIM translocon, the most

complex protein translocation system of mitochondria. Alone, the subunit forms

an aqueous pore with defined electrophysiological properties like voltage sensitiv-

ity, presequence activation or cation selectivity, that are also present to a similar

extend in native TIM complexes . The molecular origin of Tim ’s channel

properties is unknown and studies investigating molecular or structural charac-

teristics of the channel-part were often hindered by the difficulty of handling hy-

drophobic α-helical membrane proteins in vitro.

TIM utilizes the inner mitochondrial membrane potential ΔΨ as the energy

source for cationic presequence translocation. The IMS domain of main receptor

Tim hands over preproteins from the mitochondrial intermembrane space to

the channel Tim , but also acts as the voltage regulator, closing the channel at

physiological holding potentials to avoid leakage .

In this study, I employed high-resolution single-channel electrophysiology

with recombinant Tim to investigate channel characteristics in detail, explore

origins and implications of these properties using loss-of-function mutations and
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dissect interactions with the main receptor Tim .

Both recombinant Tim and isolated TIM complexes interact with sub-

strates of the TIM pathway bearing positively charged presequences and incu-

bation of the the channel with model peptides leads to stimulation and increased

gating activity ; ; ; . Peptides with similar amino acid composition and iden-

tical charge but shuffled order of amino acids were not able to stimulate increased

channel activity ; , indicating that secondary structure and charge alignment

plays an important role in presequence recognition by Tim .

. Tim Kinetics Change upon Presequence Interaction

The presequence translocase TIM and the pore-forming subunit Tim

were electrophysiologically characterized to some extend in the past ; ; ; . To

enable reasonable analysis of Tim characteristics, e.g. between wild type and

mutant channel or truncated forms of regulatory proteins, a detailed baseline of

wild type properties had to be established in this thesis. While the general char-

acteristics required for this thesis, like gating behavior, conductance states, ion

preference or protein and peptide interactions, were consistent with published

results, the aspect of temporal resolution of channel gating was not considered in

previous studies.

Recently, studies on Tom substrate interaction showed that the process of

substrate binding and translocation can be distinguished by analysis of kinetic

gating parameters including dwell times of stimulated closing events in the sub-

millisecond regime . A big difficulty in attempting to study channel kinetics at

the resolution limit is that unified and consistent analysis and quantification pa-

rameters are hard to establish. In this study, sophisticated data reconstruction
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tools capable of extracting channel properties like dwell times and conductance

changes with unmatched consistency and reliability ; were employed and re-

fined in collaboration. Using these computationally intensive routines, the time

scale of Tim channel stimulation by presequence interaction was analyzed by

extracting the dwell times, i.e. the time between two conductance changes, of

short closing events. Unexpectedly, the minimal dwell time of these events in-

creased after channel stimulation with presequence peptides which induced in-

creased gating activity. Without substrate, regular short-timed events reached

dwell times down to 32 µs. After addition of the Cox presequence, the regular

minimal dwell time nearly doubled to 56 µs, although the majority of short events

(below 500 µs) peaked at a much higher dwell time, around 180 µs.

If presequence incubation of Tim merely led to substrate binding to the

IMS domain, randomized movement into and from the channel’s opening funnel,

or presequences being trapped within the channel lumen, the increased gating

frequency should follow a similar temporal distribution as unstimulated channels.

The data instead shows that presequences block the channel for a rather defined

and increased amount of time, suggesting that they traverse the channel from one

end to the other. It is tempting to apply this new kind of data analysis to study

channel-substrate interaction of presequences with various properties like charge

or length.

. Tim core Regulates Tim and Hands Over Preproteins

The voltage regulator and main receptor Tim strongly interacts with Tim

via their IMS domains. Tim ’s IMS domain is subdivided into two distinct do-

mains ; ; , the very C-terminal presequence binding domain (PBD) and the
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more N-terminal, globular core domain. Both subdomains bind and properly rec-

ognize presequences with similar affinity than the full IMS domain . PBD and

core domain interact with each other , though only the core domain also inter-

acts with Tim IMS. Still, the core domain can not compensate for PBD-function,

as evidenced by the lethal phenotype of ΔPBD-strains . Further, Tim IMS-

Tim IMS and Tim IMS-presequence interactions are mutually exclusive ; .

It is suggested that presequence translocation is first initiated by binding to

the Tim PBD when Tim core is still bound to Tim IMS, effectively sealing the

channel. Next, the presequence-loaded PBD interacts with the core domain and

hands over the substrate due to a slightly higher affinity from core domain to pre-

sequence . Although the affinity of Tim towards substrates is orders of magni-

tudes lower , Tim IMS binds the presequence while dissociating from Tim IMS.

Possibly due to force exertion of the transmembrane potential, the presequence

is then threaded into the channel and partially translocated to the matrix before

full translocation or membrane sorting is initiated by PAM resp. Tim /Mgr .

The question arises why the PBD of Tim is essential, i.e. which function

of Tim IMS can not be compensated for by Tim core. The function of Tim core

was addressed in this study by first investigating the regulatory effect of soluble

Tim IMS, Tim PBD or Tim core on voltage-sensitivity of bilayer-incorporated

Tim channels. Tim PBD did not induce any premature closing of the chan-

nel at elevated voltages, as expected by the lack of interaction between Tim PBD

and Tim IMS. Tim core, on the other hand, increased the voltage-sensitivity of

the channel to the same extend as Tim IMS. The data confirms that the voltage

regulator property of Tim resides in the Tim -interacting core domain.

Second, the ability of Tim core to initiate presequence handover to Tim

without the PBD was investigated. In early studies, the presequence model pep-
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tide Cox was employed to study channel reactivation after Tim -induced clos-

ing . It proved unsuccessful to lift Tim from bilayer-incorporated Tim by

incubation with Cox in situ, but preincubation of Tim proteoliposomes, first

with Tim IMS then with Cox , lead to reactivation of some Tim channels. The

downside is that no unmanipulated Tim can be characterization with this ap-

proach, making it difficult to assess differences between full length and truncated

Tim IMS. In addition, it can never be ruled out that the channel that fused to the

bilayer after preincubation was actually not closed by Tim before and directly

bound Cox . To compensate for that in this study, the model fusion preprotein

b ( )Δ-DHFR was employed instead of Cox . After Tim IMS-induced closure

of a channel, the full preprotein was able to reactivate Tim for very short times,

mildly resembling the channel response to the preprotein without Tim . One

has to consider that this preprotein is translocated to the mitochondrial matrix

in vivo which requires the PAM motor and ATP for full translocation. With only

membrane potential, most likely the presequence is threaded through the chan-

nel, but the rest of the preprotein is stuck or might slide back. This explains the

difference in channel response between presequence and preprotein, where the

preprotein mostly leads to closure of the channel with attempts to reopen - the

opposite of presequence stimulation.

Strikingly, closure of bilayer-incorporated Tim by Tim core followed by

b ( )Δ-DHFR incubation lead to the same reactivation attempts than with

Tim IMS. This suggests that the PBD is not required to initiate presequence han-

dover from Tim to Tim .

The question whether the PBD is essential for initial presequence recep-

tion from the TOM complex was addressed in a previous study , where the

presequence-triggered dissociation of Tim and Tim was investigated. Upon
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binding of presequences to the main receptor, Tim dissociates from Tim

which in turn leaves the TIM complex. Presequence reception was monitored

indirectly via Tim -Tim dissociation by cross-linking. The authors manipu-

lated the mitochondria, e.g. by deleting the IMS domain of Tom which connects

TOM to TIM , or by gradually substituting Tim IMS with Tim core. Both ma-

nipulations only slightly reduced the level of dissociation, indicating that neither

TIM link to TOM nor presence of Tim PBD are required for initial presequence

reception.

It appears that Tim PBD has an essential function apart from voltage regula-

tion, presequence handover or initial presequence recognition.

. Tim N A is Impaired in Presequence and Preprotein

Translocation

Remarkably, all mitochondrial protein translocases exhibit an preference for

cations in electrophysiological characterizations and many mitochondrial tar-

geting signals contain positive net charges . The mitochondrial transmem-

brane potential ΔΨ is required to import presequences and targeting signals via

TIM ; , not only by inducing structural changes in the translocase ; ; but

also by interacting with the positive charges themselves, pulling them through

the channel ; ; . It was speculated that the cation selectivity of TIM is im-

portant for presequence recognition and translocation, though experimental evi-

dence was missing.

One contribution to the ion selectivity of Tim was identified by chance

when the N-terminal IMS-domain of the protein was cleaved of and the remain-

ing C-terminal membrane part was found to still form a channel, though with a
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reduced cation preference . Another effect on the ion filter was identified when

a negative charge was introduced in the transmembrane segment at position

, which lead to significantly weakened ion selectivity and even reduced pre-

sequence affinity. On the other hand, it is not surprising that introduction of

arbitrary charges in the middle of a transmembrane α-helix lead to alteration of

channel properties and especially of a charge-specific process like ion selectivity.

The authors of that study speculate ; that the ion filter might be formed by

charges in helix-flanking loops or by pore-facing charges within the channel lu-

men or a combination of both.

In this study, the origin of pore properties like the ion filter was addressed

by introducing presumed loss-of-function mutations in uncharged amino acid

residues of the second transmembrane segment (TMS ) of Tim . These residues

were identified as pore-lining and substrate-interacting in previous sophisticated

fluorophore-mapping studies ; . Additionally, for elucidation of the ion filter

two highly conserved amino acid residues at positions and , flanking the

third transmembrane segment, were mutated to alanine to remove their respec-

tive charges. In an electrophysiological screening, the only property significantly

altered was the ion selectivity of Tim . Especially pore-facing TMS -residues

with very high sequence identity among species (figure . ) contributed to the

strong cation preference.

It is remarkable that the charged residues flanking the TMS did not con-

tribute to ion selectivity of the channel. This is in line with an experimental de-

termination of Tim ’s pore size using the globular non-electrolyte PEG , where

Tim was found to contain wide channel openings at channel entry and exit and

a short and narrow constriction zone within the channel. This would indicate

that helix-flanking residues are farer from the channel center and are less able to
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manipulate ions by pure charge exposure.

Interestingly, uncharged amino acid residues from the matrix end (N ) to

the IMS side (N ) of the pore contribute to the ion filter. These results imply that

it is not the narrow constriction zone of Tim that sorts ions, as was proposed

for large, ion selective β-barrel channels – . It is tempting to speculate that

the mode of ion filtering is shared at least with other large α-helical membrane

channels, especially with homologs of the Tim / / family.

Most selectivity mutants also exhibited a growth defect when expressed in

tim Δ yeast cells. Unfortunately, apart from Tim N A, the other ion filter mu-

tants with a growth defect exhibited compromised mitochondrial steady state lev-

els and consequently reduced TIM complex constitution, making it impossible

to dissect contributions to their growth phenotype. Tim G A, on the other hand,

did not lead to impaired yeast growth despite showing a mediocre selectivity de-

fect, indicating that a certain reduction in cation preference can be compensated

for by the complex.

Tim N A though showed the strongest reduction in ion selectivity, a growth

phenotype at °C, wild type-like protein levels and complex integrity and no

other deviation from wild type Tim regarding electrophysiological properties.

Import assays for wild type and N A mutant with different TIM substrates

revealed the reason for impaired cell growth, with Tim N A-containing mito-

chondria exhibiting significantly reduced import capabilities for both matrix and

sorted proteins, even more pronounced at non-permissive temperatures.

Titrating the Cox presequence to bilayer-incorporated channels lead to a

highly reduced gating activity induction for mutant channels, from a relative in-

crease in gating frequency of ≈ for wild type, down to ≈ for mutant channels

in the presence of over 500n Cox presequence. We conclude that the reduced



. . TIM N A IS IMPAIRED INPRESEQUENCEANDPREPROTEINTRANSLOCATION

cation preference of Tim renders the channel insensitive towards presequences,

which in turn explains the reduced import rates of mitochondria.

It was unknown whether the increase in gating activity came from prese-

quence binding to the IMS domain or the channel entry, or if it corresponds to

presequence translocation, for which a transmembrane potential is sufficient. The

mutated residue N lies at the very C-terminal end of TMS , basically forming

the channel exit towards the matrix. The effect it still has, on not only on import

rates in organello but also on gating activity in vitro, strongly suggests that the

flickering of Tim channels upon presequence incubation represents an actual

translocation rather than pure binding on the IMS side.
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Summary and Conclusion

In eukaryotic cells, mitochondria are organelles that play an essential role in

multiple physiological processes like energy metabolism, fatty acid oxidation or

lipid synthesis. Mitochondria have a double-membrane envelope, dividing it into

four different subcompartments, which are all targets of complex protein import

machineries within the organelle. The most complex translocase in the organelle

is the presequence translocase TIM , importing over % of all mitochondrial

proteins into the inner membrane or the matrix.

The eponymous subunit Tim forms a dynamic, water-filled pore within the

complex, with a cation preference conserved among mitochondrial translocases.

Tim interacts with presequences of import substrates, leading to increased

channel activity, and with the receptor and voltage regulator Tim which

induces channel closing at elevated membrane potentials.

In this thesis, combining single channel electrophysiology and site-directed

mutagenesis, multiple pore-lining amino acid residues of Tim were identified

as constituents of the channel’s cation filter. Unlike proposed before, the ion fil-
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ter can not be constituted by a localized constriction zone within the channel,

but possibly by providing an energetically favorable or unfavorable surface path-

way for ions, spanning the whole channel lumen. Combining electrophysiology

and yeast biochemistry, we showed that the cation preference is a key property in

recognizing and especially translocating positively charged presequences in vitro

and preproteins in organello. High-resolution analysis of electrophysiology data

further indicate that the presequence-induced fast-gating state of Tim presum-

ably corresponds to a translocating state with peptides in transit.

Further, we investigated the domain origin for critical functions of the main

receptor Tim . We could show that both voltage regulation of, and presequence

handover to Tim is independent of the essential presequence binding domain

PBD but is localized in the soluble core domain of Tim .

In conclusion, we provided the first experimental evidence that the cation

preference of a mitochondrial protein translocase is linked to its ability to trans-

port substrates with a positively charged presequence. We also elucidated the

submolecular localization of essential interactions between receptor and channel

of TIM .
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Appendix - R scripts

. R: Reconstruction of .abf Using SMUCE

l s ( ) # This i s my d e f a u l t workspace from My
Documents .

setwd ( getwd ( ) ) # F i r s t change , i f you haven ’ t a l r e a d y .
rm( l i s t = l s ( ) ) # Delete the d e f a u l t workspace .

. getNamespace < funct ion (name) . I n t e r n a l ( getRegisteredNamespace ( as . name(name
) ) )

l i b r a r y ( abf )
l i b r a r y ( g t o o l s )
l i b r a r y ( s t a t s )
i f ( isNamespaceLoaded ( ” stepR ” ) ) { detach ( ” package : stepR ” , unload=TRUE) } e l s e

{ }
l i b r a r y ( stepR )
# # # # # # #
# parameters to s p e c i f y #
# record parameters
sampling< e #sampling frequency
c u t o f f< e # c u t o f f f requency of app l i ed f i l t e r
# time window , when to apply f i t
autotime< FALSE # a u t o m a t i c a l l y s p e c i f i y time boundaries by checking v o l t a g e

changes ( t ime = t ( v o l t a g e ) + s , time = t ( v o l t a g e ) s )
t ime < # v o l t a g e i s u s u a l l y changed at t = s , a t t ime = s the s i g n a l should

be mostly s t a b l e
time < # v o l t a g e change at t = s
# s i z e of each f i t segment
LL< #seggment of k po in t s work n i c e l y , can a l s o t r y k or k , but

the f i t s take longer
# thresho ld f o r g a t i n g d e t e c t i o n
c < #minimum conductance change in pS f o r d e t e c t i o n of a g a t i n g event
t < #minimum dwel l time ,
# s e t t i n g f o r d i s p l a y i n g p l o t s
PLOT< TRUE # decide i f a p l o t of every segment ( with length LL ) should be

d i s p l a y e d
# s e t t i n g f o r sav ing g a t i n g events and dwel l t imes to tx t f i l e s
SAVE< TRUE
# # # # # # #
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Find . I n d i c e s . F a l s e . P o s i t i v e< funct ion ( v ) { # t h i s funct ion r e t u r n s a matr ix
conta in ing the c l u s t e r s of i n d i c e s of f a l s e p o s i t i v e events

v . aux< c ( v , v [ length ( v ) ] )
l = length ( v . aux )
i f ( l > ) {

Matriz< matr ix ( rep ( , ( l )* ( l ) ) , nrow =( l ) )
temp< c ( )
f o r ( i in : ( l ) ) {
temp< c ( temp , v . aux [ i ] )
i f ( abs ( v . aux [ i ] v . aux [ ( i + ) ] ) == ) {
temp< c ( temp , v . aux [ ( i + ) ] )
}
e l s e {
temp< unique ( temp )
Matriz [ i , : l ength ( temp ) ]< temp [ : length ( temp ) ] ;
temp< c ( ) ;

}
}

n . row< sum( Matriz [ , ] ! = )
M. aux< matr ix ( rep ( , ( l )*n . row ) , nrow=n . row )
ind . aux< : ( l )
f o r ( j in : n . row ) {
k< ind . aux [ Matriz [ , ] ! = ] [ j ]
M. aux [ j , ] < Matriz [ k , ]

}
} e l s e {

M. aux< matr ix ( ) ;
}

M. aux
}

i n d i c e s . rep< funct ion (w) { #the parameter of t h i s funct ion , w, has to be the
output of Find . I n d i c e s . F a l s e . P o s i t i v e .

temp< matr ix ( rep ( , nrow (w) * ) , ncol = ) #each row conta ins : the index of the
f i r s t g a t i n g event in a seq . o f cons ecu t ive g a t i n g events ; lenght of seq
. o f g a t i n g events

f o r ( i in : nrow (w) ) {
temp [ i , ] < c (w[ i , ] , l ength (w[ i ,w[ i , ] > ] ) ) }
temp

}

# f i t . i d e a l i z a t i o n r e t u r n s a l i s t conta in ing
# ) newFitValue , t h a t i s , a f t e r i d e n t i f y i n g f a l s e p o s i t i v e events , we removed

them and r e p l a c e t h e i r v a l u e s a c c o r d i n g l y .
# ) f a l s e P o s i t i v e I n d i c e s , a v e c t o r conta in ing the i n d i c e s of a l l the f a l s e

p o s i t i v e events .
# ) c l u s t e r s I n d i c e s , a x l matrix , f i r s t column conta ins the index of the

f i r s t f a l s e p o s i t i v e event in a seq of cons ecut ive f a l s e p o s i t i v e events ,
# second column conta ins the lenght of the seq of the corresponding

cons ecu t ive f a l s e p o s i t i v e events .
# ) va lues , a v e c t o r conta in ing ONLY the v a l u e s of the i d e a l i z a t i o n .



. . R: RECONSTRUCTION OF .ABF USING SMUCE

f i t . i d e a l i z a t i o n < funct ion ( f i t , t , t ) { # f i t i s an o b j e c t of the c l a s s f i t (
j smurf or smuceR ) , t and t are t h r e s h o l d s

n= length ( f i t $ va lue )
f i t . l e f t E n d< f i t $ l e f t E n d
f i t . r ightEnd< f i t $ r ightEnd

i f (n> ) {
i n d < : ( n )
f i t . va lue < f i t $ va lue [ i n d ]
f i t . va lue . fwd < f i t $ va lue [ : n ]
f i t . va lue . bwd < f i t $ va lue [ : ( n ) ]

c r i < abs ( f i t . value f i t . va lue . fwd ) >= t
c r i < abs ( f i t . value f i t . va lue . bwd ) >= t
c r i < f i t $ r ightEnd [ i n d ] f i t $ l e f t E n d [ i n d ] < t

x< i n d [ c r i & c r i & c r i ] # i n d i c e s of a l l f a l s e p o s i t i v e events
f i t . l e f t E n d

g a t i n g s< Find . I n d i c e s . F a l s e . P o s i t i v e ( x )
i n d i c e s< i n d i c e s . rep ( g a t i n g s )
Y . aux< f i t $ va lue

f o r ( i in : nrow ( i n d i c e s ) ) { #here we update the v e c t o r f i t $ value , we remove
the g a t i n g events and f i l l the gap a c c o r d i n g l y

i n d i c e< i n d i c e s [ i , ]
length< i n d i c e s [ i , ]
i f e l s e ( length == , Y . aux [ i n d i c e ]< f i t $ va lue [ ( indice ) ] , Y . aux [ i n d i c e : (

i n d i c e + length ) ] < rep ( f i t $ va lue [ indice ] , length ) )
}

f o r ( i in (n ) : ) { # d e l e t e subsequent i d e n t i c a l l e v e l s
i f ( i s . f i n i t e (Y . aux [ i ] ) ) {

i f ( ( Y . aux [ i ] Y . aux [ i + ] ) == ) {
Y . aux< Y . aux[ i ]
f i t . l e f t E n d< f i t . l e f t E n d [ ( i + ) ]
f i t . r ightEnd< f i t . r ightEnd [ i ]
} e l s e { }
} e l s e {
}

}

f = length (Y . aux )
f i t . va lue . new< c ( )
f o r ( j in : f ) { #here we simply update the f i t t e d funct ion , c f . f i t . aux<

f i t t e d ( f i t ) above
l < ( f i t . r ightEnd [ j ] f i t . l e f t E n d [ j ] + )
temp < rep (Y . aux [ j ] , l )
f i t . va lue . new< c ( f i t . va lue . new , temp )
}
} e l s e {
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x< c ( FALSE )
i n d i c e s< c ( )
Y . aux< f i t $ va lue
f = length ( f i t $ va lue )
f i t . va lue . new< c ( )
f o r ( j in : f ) { #here we simply update the f i t t e d funct ion , c f . f i t . aux<

f i t t e d ( f i t ) above
l < ( f i t $ r ightEnd [ j ] f i t $ l e f t E n d [ j ] + )
temp < rep (Y . aux [ j ] , l )
f i t . va lue . new< c ( f i t . va lue . new , temp )
}
}
L i s t < l i s t ( ” newFitValue ” = f i t . va lue . new , ” f a l s e P o s i t i v e I n d i c e s ” =x , ”

c l u s t e r s I n d i c e s ” = i n d i c e s , ” va lue ” =Y . aux , ” l e f t E n d ” = f i t . l e f tEnd , ”
r ightEnd ” = f i t . r ightEnd )

re turn ( L i s t )
}

# # # Gating Event Detect ion # # #
# f i n d t r a n s i t i o n s above t , c a l c u l a t e the current changes and name them

gat ingEvents
Gat ingEventDetect ion< funct ion ( i d e a l i z e d . f i t , t , V , LL , sampling , t ime , t )

{ # i d e a l i z e d . f i t i s the outpput of f i t . i d e a l i z a t i o n , t i s the minimum
current change ( in pA) , V i s the v o l t a g e app l i ed in the trace , LL i s the
length of the f i t segment , sampling i s the sampling frequency , t ime i s
the s t a r t i n g time of the i d e a l i z a t i o n within the r e a l t r a c e ( l i k e t ime =
s i f v o l t a g e change occurred at s ) and h i s the turn number , i . e . which
f i t segment i s c u r r e n t l y processed

nn < length ( i d e a l i z e d . f i t $ va lue )
i f (nn > ) {
ind < : ( nn )

i d e a l . va lue < i d e a l i z e d . f i t $ va lue [ ind ]
i d e a l . va lue . fwd < i d e a l i z e d . f i t $ va lue [ : nn ]

c r i < abs ( i d e a l . value i d e a l . va lue . fwd ) >= t

gat ingEvents < abs ( i d e a l i z e d . f i t $ va lue [ c ( FALSE , c r i ) ] i d e a l i z e d . f i t $
va lue [ c ( cr i , FALSE ) ] )

conductance< abs ( gat ingEvents /V* )
gatingTime< ( ( i d e a l i z e d . f i t $ l e f t E n d [ c ( FALSE , c r i ) ] ) / sampling ) + t ime
Gating . temp < cbind ( gatingTime , i d e a l i z e d . f i t $ va lue [ c ( cr i , FALSE ) ] ,

i d e a l i z e d . f i t $ va lue [ c ( FALSE , c r i ) ] , gat ingEvents , conductance , deparse .
l e v e l = )

} e l s e { Gating . temp< c ( ) }

# t i d y up , check nd thresho ld (minimum dwel l time )
Gating< Gating . temp
LG< nrow ( Gating )
i f (LG> ) {

Gating . t< Gating
f o r ( i in LG : ) {

i f ( i s . f i n i t e ( as . numeric ( Gating . t [ i ] ) ) ) {
d i f f G< ( as . numeric ( Gating [ i , ] ) as . numeric ( Gating [ ( i ) , ] ) ) *
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i f ( d i f fG <t ) {
Gating . t< Gating . t [ i , ]
LG . t< nrow ( Gating . t )
i f ( i <LG . t + ) {

i f ( i > ) {
d i f f G . bwd< ( as . numeric ( Gating [ i , ] ) as . numeric ( Gating [ ( i ) , ] )

) *
i f e l s e ( d i f f G . bwd>t , Gating . t< Gating . t [ ( i ) , ] , ” ” )

} e l s e { i f e l s e ( i == , Gating . t< Gating . t [ ( i ) , ] ) }
} e l s e { }

} e l s e { }
} e l s e { }

}
Gating< Gating . t

} e l s e { }

L i s t < l i s t ( ” Gating ” =Gating )
re turn ( L i s t )
}

# # # # AFTER going through a l l t race segments # # # #
# t i d y up ” ValuesDwell ” and ” Gating ” to d e l e t e every entry below a s e t time

minimum
# i d e a l i z e d . f i t < f u l l . f i t
#Gating< Gat ings $ Gating
SmoothenIdeal< funct ion ( i d e a l i z e d . f i t , Gating , t ime , time , sampling , V , t ) {

Gat ingPoints . t< ( as . double ( Gating [ , ] [ : nrow ( Gating ) ] ) t ime ) * sampling

Gat ingPoints< append ( Gat ingPoints . t , l ength ( i d e a l i z e d . f i t $ newFitValue ) , a f t e r
= length ( Gat ingPoints . t ) )

Gat ingPoints< append ( Gat ingPoints , , a f t e r = )

f o r ( i in : ) {
L< length ( Gat ingPoints )
Smooth . v< c ( )
i f ( L > ) {
f o r ( i in : L ) {
Smooth . v< c ( Smooth . v , as . double ( summary ( i d e a l i z e d . f i t $ newFitValue [ (

Gat ingPoints [ i ] + ) : ( Gat ingPoints [ i + ] ) ] ) [ ] ) ) #mean va lue between
g a t i n g event ” i ” and ” i + ”

}
f o r ( i in length ( Smooth . v ) : ) { # i <

i f ( ( abs ( Smooth . v [ i ] Smooth . v [ i ] ) ) < t ) {
Gat ingPoints< Gat ingPoints [ i ]
Gat ingPoints . t< Gat ingPoints . t [ ( i ) ]

} e l s e { }
} } e l s e { }

}
L< length ( Gat ingPoints )
Smooth . l < c ( )
Smooth . r< c ( )
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Smooth . va lue< c ( )
f o r ( i in : L ) {

Smooth . va lue< c ( Smooth . value , as . double ( summary ( i d e a l i z e d . f i t $ newFitValue [ (
Gat ingPoints [ i ] + ) : ( Gat ingPoints [ i + ] ) ] ) [ ] ) ) #mean va lue between
g a t i n g event ” i ” and ” i + ”

Smooth . l < c ( Smooth . l , Gat ingPoints [ i ] + ) # l e f t E n d of each
segmen

Smooth . r< c ( Smooth . r , Gat ingPoints [ i + ] ) # r ightEnd of each
segmen

}

L < length ( Gat ingPoints )
Smooth . Gating< c ( )
i f ( length ( Smooth . va lue ) > ) {

Smooth . Gating< cbind ( ( Gat ingPoints . t / sampling ) +time , Smooth . va lue [ : ( L )
] , Smooth . va lue [ : L ] , abs ( Smooth . va lue [ : ( L ) ] Smooth . va lue [ : L ] )
, abs ( abs ( Smooth . va lue [ : ( L ) ] Smooth . va lue [ : L ] ) * /V) , deparse
. l e v e l = )

} e l s e {
Smooth . Gating< cbind ( ” ” , ” ” , ” ” , ” ” , ” ” , deparse . l e v e l = )

}

Smooth . DwellTime < ( Smooth . r Smooth . l ) / sampling
Smooth . DwellLevelC < Smooth . va lue /V
Smooth . Dwel lLeve l I < Smooth . va lue
Smooth . Dwell< c ( )
Smooth . Dwell< cbind ( Smooth . DwellTime , Smooth . Dwel lLevel I , Smooth . DwellLevelC ,

” ” , ” ” , deparse . l e v e l = )

L i s t < l i s t ( ” va lue ” =Smooth . value , ” l e f t E n d ” =Smooth . l , ” r ightEnd ” =Smooth . r , ”
Gating ” =Smooth . Gating , ” DwellTime ” =Smooth . Dwell )

re turn ( L i s t )
}

# Loading d a t a s e t s

f i l e s < l i s t . f i l e s ( getwd ( ) , p a t t e r n = ” \ \ . abf $ ” , a l l . f i l e s =TRUE, f u l l . names=
TRUE, ignore . case =TRUE, inc lude . d i r s =TRUE, r e c u r s i v e =TRUE)

f i l e s < f i l e s [ mixedorder ( f i l e s ) ]
LF < length ( f i l e s )
f i l e s

f o r ( f in : LF ) { #go through a l l f i l e s t h a t are present in the main f o l d e r

t r a c e< abf load ( f i l e s [ f ] )

i f ( nrow ( t r a c e $ t a g s ) > ) { #check i f there has been a v o l t a g e app l i ed
V< t r a c e $ t a g s [ , ]

i f ( autotime ) { # i f autotime ==TRUE, s e t t ime and time next to v o l t a g e changes
t ime < t r a c e $ t a g s [ , ] +

i f ( nrow ( t r a c e $ t a g s ) > ) {



. . R: RECONSTRUCTION OF .ABF USING SMUCE

time < t r a c e $ t a g s [ , ]
} e l s e { time < }

} e l s e { }

name < basename ( f i l e s [ f ] )
d i r < dirname ( f i l e s [ f ] )
nameL < nchar ( basename ( f i l e s [ f ] ) )
name < s u b s t r (name , , nameL ) # reformat f i lename f o r data export l a t e r

lbound < t r a c e $ s > t ime ;
ubound < t r a c e $ s <time ;
t r a c e s < t r a c e $ t r a c e s [ lbound & ubound ] # skim the t r a c e to

t < t * sampling / # thresho ld f o r dwel l time in po in t s
t < abs (V*c / ) # thresho ld f o r g a t i n g events , s c a l e d by v o l t a g e to

account f o r s m a l l e r current changes

LcountR < c e i l i n g ( length ( t r a c e s ) / LL ) #round up number of runs
i f ( LcountR == ) {
LL< length ( t r a c e s )
} e l s e { }

f u l l . f i t < c ( )
Gating< c ( )
VD< c ( )

f o r (h in : LcountR ) {
LB< (h )*LL +
i f (h*LL <= length ( t r a c e s ) ) {
RB< h*LL
}
e l s e { RB< length ( t r a c e s ) }

ion . chan< t r a c e s [ LB : RB]

# S e t t i n g the f i t

# JSMURF f o r ion channel
d f i l < d f i l t e r ( ” b e s s e l ” , l i s t ( pole = , c u t o f f = c u t o f f / sampling ) ) # d e f i n e

f i l t e r
f i t . ion . chan < jsmurf ( ion . chan , param= d f i l , r = e , confband=FALSE ) #

r e c o n s t r u c t i o n
f i t . aux < f i t t e d ( f i t . ion . chan )
f i t < f i t . ion . chan

i d e a l . ion . chan< f i t . i d e a l i z a t i o n ( f i t . ion . chan , t , t ) # i d e a l i z a t i o n of
r e c o n s t r u c t i o n

f u l l . f i t $ newFitValue< c ( f u l l . f i t $ newFitValue , i d e a l . ion . chan $ newFitValue )
f u l l . f i t $ va lue< c ( f u l l . f i t $ value , i d e a l . ion . chan $ va lue )
f u l l . f i t $ r ightEnd< c ( f u l l . f i t $ rightEnd , ( i d e a l . ion . chan $ rightEnd +LL* (h ) ) )
f u l l . f i t $ l e f t E n d< c ( f u l l . f i t $ le f tEnd , ( i d e a l . ion . chan $ l e f t E n d +LL* (h ) ) )



APPENDIX - R SCRIPTS

}

Gat ings< c ( )
Smooth< c ( )
Gat ings< Gat ingEventDetect ion ( f u l l . f i t , t , V , LL , sampling , t ime , t ) # e x t r a c t

g a t i n g events from i d e a l i z a t i o n
# Gating output i s : Time [ s ] S t a r t L e v e l [pA] EndLevel [pA] D i f f e r e n c e [pA]

Conductance [ pS ]
Smooth< SmoothenIdeal ( f u l l . f i t , Gat ings $ Gating , t ime , time , sampling , V , t ) #

smoothen i d e a l i z a t i o n data between detected g a t i n g events

# export matr ices to tx t , s e p e r a t o r i s tab f o r easy import . no names to avoid
” ” which messes up with importIntoEnv

header< cbind ( paste ( ”Minimum Dwell Time : ” , t , ”ms ” ) , pas te ( ”Minimum Gating
: ” , c , ” pS ” ) , ” ” , ” ” , ” ” , deparse . l e v e l = )

headerVD< cbind ( ” Dwell Time ( s ) ” , ” Current (pA) ” , ” Conductance ( nS ) ” , ” ” , ” ” ,
deparse . l e v e l = )

headerGating< cbind ( ” Time ( s ) ” , ” From (pA) ” , ” To (pA) ” , ” D i f f (pA) ” , ” Gating ( pS )
” , deparse . l e v e l = )

Gating . f i n a l < rbind ( header , headerGating , Smooth$ Gating , deparse . l e v e l = )
VD< rbind ( header , headerVD , Smooth$ DwellTime , deparse . l e v e l = )

i f (SAVE) { # export two f i l e s
w r i t e . t a b l e ( Gating . f i n a l , f i l e = paste ( dir , ” / ” ,V , ”mV_ ” ,name , ” SMUCE g a t i n g . t x t ” ,

sep= ” ” ) , row . names=FALSE , c o l . names=FALSE , sep= ” \ t ” , quote=FALSE )
w r i t e . t a b l e (VD, f i l e = paste ( dir , ” / ” ,V , ”mV_ ” ,name , ” SMUCE dwel l . t x t ” , sep= ” ” ) , row

. names=FALSE , c o l . names=FALSE , sep= ” \ t ” , quote=FALSE )
} e l s e { }
} e l s e { }

i f (PLOT) { # p l o t the o r i g i n a l t race , r e c o n s t r u c t i o n , i d e a l i z a t i o n and
smoothened f i t

SL< LL / sampling
par ( mfrow=c ( , ) )
y=range ( ion . chan )
dy=y [ ] y [ ] ; y=y + . *dy*c ( , ) # a d j u s t i n g the y a x i s
p l o t ( ion . chan , type = ’ p ’ , pch= ’ . ’ , y l im=y , cex . l ab = . , cex . a x i s = . , xaxt = ’

n ’ , yaxt = ’ n ’ , y lab = ’pA ’ , x lab = ’ time (ms) ’ )
mtext ( ’A ’ , s i d e = , ad j = , l i n e = . , cex = , font = )
a x i s ( , l a s = )
a x i s ( , a t =seq ( , LL , by=LL / ) , l a b e l s =c ( t ime +(h )*SL , t ime +SL / +(h )*SL ,

t ime +SL* / +(h )*SL , t ime +SL +(h )*SL ) )
l i n e s ( : length ( f i t . aux ) , f i t . aux , type = ’ l ’ , lwd = . , l t y = , c o l = ’ green ’ )
l i n e s ( : length ( f u l l . f i t $ newFitValue ) , f u l l . f i t $ newFitValue , type = ’ l ’ , lwd = , l t y

= , c o l = ’ blue ’ )
l i n e s ( : length ( Smooth$ newFit ) , Smooth$ newFit , type = ’ l ’ , lwd = . , l t y = , c o l = ’ red ’

)

legend ( ” bottomright ” , i n s e t = . , legend=c ( ” jsmurf f i t ” , ” F i n a l I d e a l i z a t i o n ” ,
” Smooth F i t ” ) , l t y =c ( , ) , c o l =c ( ” green ” , ” blue ” , ” red ” ) ,
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hor iz =F , pt . cex = . , cex = )
} e l s e { }
}

./Rscripts/SMUCE.R

. R: Reconstruction of .abf Using JULES

l s ( ) # This i s my
d e f a u l t workspace from My Documents .

setwd ( getwd ( ) ) # F i r s t change ,
i f you haven ’ t a l r e a d y .

load ( ” DependencyIonChannel I I I . RData ” ) # Load a
p r e v i o u s l y saved workspace .

rm( l i s t = l s ( ) ) # Delete the
d e f a u l t workspace .

l s ( )

l i b r a r y ( t o o l s )
l i b r a r y ( g t o o l s )
l i b r a r y ( abf )
i f ( isNamespaceLoaded ( ” stepR ” ) ) {

pkg < ” package : stepR ”
detach ( pkg , c h a r a c t e r . only =TRUE, unload=TRUE)

} e l s e { }
l i b r a r y ( stepR )
l i b r a r y ( dbacf )
time . s t a r t < as . double ( proc . time ( ) [ ] )

Gat ingEventDetect ion< funct ion ( i d e a l i z e d . f i t , t , V , sampling , t ) { #
i d e a l i z e d . f i t i s the outpput of f i t . i d e a l i z a t i o n , t i s the minimum
conductance change ( in pA) , V i s the v o l t a g e app l i ed in the trace , LL i s
the length of the f i t segment , sampling i s the sampling frequency , t ime
i s the s t a r t i n g time of the i d e a l i z a t i o n within the r e a l t r a c e ( l i k e
t ime = s i f v o l t a g e change occurred at s ) and h i s the turn number , i . e .

which f i t segment i s c u r r e n t l y processed

########### use as t e s t environment ###########
# i d e a l i z e d . f i t < postDeconv
# t < c
# V< v o l t a g e
# sampling< s r
# t

################################################

nn < length ( i d e a l i z e d . f i t $ va lue )
i f (nn > ) {

i d e a l . va lue < i d e a l i z e d . f i t $ va lue [ : ( nn ) ]
i d e a l . va lue . fwd < i d e a l i z e d . f i t $ va lue [ : nn ]
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c r i < abs ( i d e a l . value i d e a l . va lue . fwd ) >= t / & i d e a l . va lue . fwd*
abs (V) >= & i d e a l . va lue *abs (V) >= # f i l t e r out events t h a t go
f a r over zero ( f a r e r than pA)

f o r ( i in : length ( c r i ) ) {
i f ( i s . na ( c r i [ i ] ) ) {

c r i [ i ]< FALSE
} e l s e { }

}

ga t ingEvents < abs ( i d e a l i z e d . f i t $ va lue [ c ( FALSE , c r i ) ] *V i d e a l i z e d .
f i t $ va lue [ c ( cr i , FALSE ) ] *V)

conductance< gat ingEvents / abs (V) *
gatingTime< i d e a l i z e d . f i t $ l e f t E n d [ c ( FALSE , c r i ) ]
Gating . temp < cbind ( gatingTime , V* i d e a l i z e d . f i t $ va lue [ c ( cr i , FALSE ) ] , V

* i d e a l i z e d . f i t $ va lue [ c ( FALSE , c r i ) ] , gat ingEvents , conductance ,
deparse . l e v e l = )

# t i d y up , check nd thresho ld (minimum dwel l time )
Gating< Gating . temp
LG< nrow ( Gating )
i f (LG> ) {

Gating . t< Gating
f o r ( i in LG : ) {

i f ( i s . f i n i t e ( as . numeric ( Gating . t [ i ] ) ) ) {
d i f f G< ( as . numeric ( Gating [ i , ] ) as . numeric ( Gating [ ( i ) , ] ) ) *
i f ( d i f fG <t ) {

Gating . t< Gating . t [ i , ]
LG . t< nrow ( Gating . t )
i f ( i <LG . t + ) {

i f ( i > ) {
d i f f G . bwd< ( as . numeric ( Gating [ i , ] ) as . numeric ( Gating [ ( i )

, ] ) ) *
i f e l s e ( d i f f G . bwd>t , Gating . t< Gating . t [ ( i ) , ] , ” ” )

} e l s e { i f e l s e ( i == , Gating . t< Gating . t [ ( i ) , ] ) }
} e l s e { }

} e l s e { }
} e l s e { }

}
Gating< Gating . t
DwellTime < c ( Gating [ , ] , t a i l ( i d e a l i z e d . f i t $ rightEnd , n = ) ) c (

i d e a l i z e d . f i t $ l e f t E n d [ ] , Gating [ , ] )
Dwel lLeve l I < c ( Gating [ , ] , t a i l ( Gating [ , ] , n = ) )
DwellLevelC < Dwel lLeve l I /V

} e l s e {
i f (LG> ) {
DwellTime < c ( Gating [ , ] , t a i l ( i d e a l i z e d . f i t $ rightEnd , n = ) ) c (

i d e a l i z e d . f i t $ l e f t E n d [ ] , Gating [ , ] )
Dwel lLeve l I < c ( Gating [ , ] , t a i l ( Gating [ , ] , n = ) )
DwellLevelC < Dwel lLeve l I /V
} e l s e {

DwellTime < c ( Gating [ , ] , t a i l ( i d e a l i z e d . f i t $ rightEnd , n = ) ) c (
i d e a l i z e d . f i t $ l e f t E n d [ ] , Gating [ , ] )
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avgC < sum( ( i d e a l i z e d . f i t $ va lue * ( i d e a l i z e d . f i t $ r ightEnd i d e a l i z e d .
f i t $ l e f t E n d ) ) / ( i d e a l i z e d . f i t $ r ightEnd [ nn ] i d e a l i z e d . f i t $ l e f t E n d
[ ] ) )

DwellLevelC < avgC
Dwel lLeve l I < avgC*V

}
}
Ful lDwellTimes < cbind ( DwellTime , Dwel lLevel I , DwellLevelC , ” ” , ” ” ,

deparse . l e v e l = )

} e l s e {
Gating < cbind ( c ( ) , c ( ) , c ( ) , c ( ) , c ( ) , deparse . l e v e l = )
Ful lDwellTimes < cbind ( i d e a l i z e d . f i t $ r ightEnd i d e a l i z e d . f i t $ le f tEnd , V

* i d e a l i z e d . f i t $ value , i d e a l i z e d . f i t $ value , ” ” , ” ” , deparse . l e v e l = )
}

L i s t < l i s t ( ” Gating ” =Gating , ” DwellTime ” = FullDwellTimes )
re turn ( L i s t )

}

# PARAMETERS
#
s r < e # sampling r a t e
c f < e / e # c u t o f f f a c t o r , f i l t e r / sampling

#
m < L
n_norm < e # number of data po in t s per f i t segment
alpha < . # q u a l i t y parameter of f i t
# GatingEventDetect ion
c < # g a t i n g thresho ld in pS
t < # dwel l time thresho ld in ms
#
S i n g l e F i l e < FALSE # f i t only one f i l e ?
FileNumber < # i f yes , which ?
F u l l T r a c e < FALSE # cons ider f u l l t r a c e betw . V changes ?
ManualStart < # s t a r t i n g point i f above i s FALSE
ManualEnd < # ending point i f above i s FALSE
PLOT < TRUE # p l o t each s segment ?
SAVE < TRUE # save Gating Events and Dwell Times ?
#

f i l t e r < d f i l t e r ( type = ” b e s s e l B u t t e r ” , param = l i s t ( p o l e B e s s e l = ,
c u t o f f B e s s e l = . , R = , C = e ) , s r = e , len = )

kern < f i l t e r $ kern
c o r r e l a t i o n s < f i l t e r $param$ a c f

f i l e s < l i s t . f i l e s ( getwd ( ) , ” \ \ . abf $ ” , a l l . f i l e s =TRUE, f u l l . names=TRUE, ignore
. case =TRUE, inc lude . d i r s =TRUE, r e c u r s i v e =TRUE)

f i l e s < f i l e s [ mixedorder ( f i l e s ) ]
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f i l e s
i f ( S i n g l e F i l e ) { LF< } e l s e { LF < length ( f i l e s ) }

f o r ( f in : LF ) { # r e v e r s e order
i f ( S i n g l e F i l e ) { f< FileNumber } e l s e { }

name < basename ( f i l e s [ f ] )
d i r < dirname ( f i l e s [ f ] )
nameL < nchar ( basename ( f i l e s [ f ] ) )
name < s u b s t r (name , , nameL )

abf < abf load ( f i l e s [ f ] )

i f ( F u l l T r a c e ) {
s t a r t < c e i l i n g ( abf $ t a g s [ , ] + . ) * s r
end < f l o o r ( abf $ t a g s [ , ] . ) * s r
} e l s e {

s t a r t < ManualStart * s r
end < ManualEnd* s r
}

s tar tT ime < s t a r t / s r
endTime < end / s r

L < c e i l i n g ( ( end s t a r t ) /n_norm)
Las tS tep < ( end s t a r t ) /n_norm f l o o r ( ( end s t a r t ) /n_norm)
FullTime < abf $ s
v o l t a g e < abf $ t a g s [ , ]
cur rent < abf $ t r a c e s [ , ]
Fu l lData < current / v o l t a g e
rm( abf ) #remove abf again , i t s huge !

G a t i n g F i n a l = l i s t ( )

f o r ( i in : L ) { # i <
time . q u a n t i l e s < as . double ( proc . time ( ) [ ] )
i f ( i ==L & LastS tep ! = ) {

n < ( Las tS tep *n_norm)
time < FullTime [ s t a r t + ( i )*n_norm + : n ]
data < Ful lData [ s t a r t + ( i )*n_norm + : n ]

s t a t < t ( readRDS ( paste ( getwd ( ) , ” / dyaLen / dyaLen ” , ^ c e i l i n g ( log (n) ) , ” .
rds ” , sep = ” ” ) ) )

q < c r i t V a l ( s t a t = s t a t , n = n , f a m i l y = ” mDependentPS ” , alpha = alpha ,
c o v a r i a n c e s = c o r r e l a t i o n s , i n t e r v a l S y s t e m = ” dyaLen ” , output = ”
v e c t o r ” )

} e l s e {
s t a t < t ( readRDS ( paste ( getwd ( ) , ” / dyaLen / dyaLen ” , ^ c e i l i n g ( log (n_norm)

) , ” . rds ” , sep = ” ” ) ) )
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q < c r i t V a l ( s t a t = s t a t , n = n_norm , f a m i l y = ” mDependentPS ” , alpha =
alpha , c o v a r i a n c e s = c o r r e l a t i o n s , i n t e r v a l S y s t e m = ” dyaLen ” , output
= ” v e c t o r ” )

time < FullTime [ s t a r t + ( i )*n_norm + : n_norm ]
data < Ful lData [ s t a r t + ( i )*n_norm + : n_norm ]

}
time . q u a n t i l e s< as . double ( proc . time ( ) [ ] ) time . q u a n t i l e s

time . F i r s t f i t < as . double ( proc . time ( ) [ ] )
estSd < stepR : : sdrobnorm ( data , l a g = m + L )

f i t < s t e p F i t ( data , x = time , f a m i l y = ” mDependentPS ” , q = q , confband =
TRUE,

c o v a r i a n c e s = estSd ^ * c o r r e l a t i o n s , i n t e r v a l S y s t e m = ” dyaLen
” )

F i r s t F i t < f i t
p o s t I n c r < p o s t F i l t e r I n c r e m e n t a l ( f i t , t = m)
time . F i r s t f i t < as . double ( proc . time ( ) [ ] ) time . F i r s t f i t

# t h r e s o l d to f i l t e r smal l jumps
# i n c r e a s i n g sequences work b e t t e r than computing j u s t one round
time . i t e r a t i o n < as . double ( proc . time ( ) [ ] )
f o r ( i in : ( c / / . ) ) {
p o s t F p i t e r a t i v e < p o s t F i l t e r F a l s e P o s i t i v e A b s o l u t e V a l u e ( post Incr , data ,

thresho ld = i * . )
}
p o s t F p i t e r a t i v e O l d < p o s t F p i t e r a t i v e
postFp i tera t iveNew < p o s t F i l t e r F a l s e P o s i t i v e A b s o l u t e V a l u e ( p o s t F p i t e r a t i v e O l d

, data , thresho ld = ( c / / . )* . )

counter<
while ( length ( postFp i tera t iveNew $ va lue ) ! = length ( p o s t F p i t e r a t i v e O l d $ va lue ) )

{
p o s t F p i t e r a t i v e O l d < postFp i tera t iveNew
postFp i tera t iveNew < p o s t F i l t e r F a l s e P o s i t i v e A b s o l u t e V a l u e (

p o s t F p i t e r a t i v e O l d , data , thresho ld = ( c / / . )* . )
counter< counter +

}

postFp < postFp i tera t iveNew
time . i t e r a t i o n < as . double ( proc . time ( ) [ ] ) time . i t e r a t i o n

time . deconv < as . double ( proc . time ( ) [ ] )
thresholdShortSegment < + m *
s h i f t S t a r t < m
s h i f t E n d < m
messages < TRUE
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postDeconv < deconvo lveLoca l l y ( f i t = postFp , data = data , x = time , f i l t e r =
f i l t e r ,

c o v a r i a n c e s = f i l t e r $param$ a c f * estSd ^ ,
thresholdShortSegment = thresholdShortSegment

,
s h i f t S t a r t = s h i f t S t a r t , s h i f t E n d = shi f tEnd ,
messages = TRUE)

time . deconv< as . double ( proc . time ( ) [ ] ) time . deconv
# output s i m i l a r than with jsmurf : postDeconv $ l e f t E n d ; postDeconv $ va lue ;

postDeconv $ rightEnd

G a t i n g F i n a l . t < c ( )
G a t i n g F i n a l . t < Gat ingEventDetect ion ( postDeconv , c , vo l tage , sr , t )
G a t i n g F i n a l $ Gating < rbind ( G a t i n g F i n a l $ Gating , G a t i n g F i n a l . t $ Gating , deparse

. l e v e l = )
G a t i n g F i n a l $ DwellTime < rbind ( G a t i n g F i n a l $ DwellTime , G a t i n g F i n a l . t $ DwellTime

, deparse . l e v e l = )

i f (PLOT) {
p l o t ( time , data , type = ’ p ’ )
l i n e s ( F i r s t F i t , c o l = ’ blue ’ )
l i n e s ( postFp , c o l = ’ red ’ )
l i n e s ( postDeconv , c o l = ’ orange ’ )
} e l s e { }

} # end of the for loop going through the whole data s e t of a
s i n g l e f i l e

time . s a v e < as . double ( proc . time ( ) [ ] )
header< cbind ( paste ( ”Minimum Dwell Time : ” , t , ”ms ” ) , pas te ( ”Minimum Gating

: ” , c , ” pS ” ) , ” ” , ” ” , ” ” , deparse . l e v e l = )
headerVD< cbind ( ” Dwell Time ( s ) ” , ” Current (pA) ” , ” Conductance ( nS ) ” , ” ” , ” ” ,

deparse . l e v e l = )
headerGating< cbind ( ” Time ( s ) ” , ” From (pA) ” , ” To (pA) ” , ” D i f f (pA) ” , ” Gating ( pS )

” , deparse . l e v e l = )
Gating . f i n a l < rbind ( header , headerGating , G a t i n g F i n a l $ Gating , deparse . l e v e l = )
VD< rbind ( header , headerVD , G a t i n g F i n a l $ DwellTime , deparse . l e v e l = )

i f (SAVE) {
w r i t e . t a b l e ( Gating . f i n a l , f i l e = paste ( dir , ” / ” , vo l tage , ”mV_ ” ,name , ” _ ” ,

startTime , ” to ” , endTime , ” JULES G. t x t ” , sep= ” ” ) , row . names=FALSE , c o l .
names=FALSE , sep= ” \ t ” , quote=FALSE )

w r i t e . t a b l e (VD, f i l e = paste ( dir , ” / ” , vo l tage , ”mV_ ” ,name , ” _ ” , startTime , ” to ” ,
endTime , ” JULES DT. t x t ” , sep= ” ” ) , row . names=FALSE , c o l . names=FALSE , sep= ” \
t ” , quote=FALSE )

} e l s e { }

} # end of the for loop going through a l l abf f i l e s
time . f u l l < as . double ( proc . time ( ) [ ] ) time . s t a r t
time . f u l l
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./Rscripts/JULES.R

. R: Mean-Variance Analysis from Dwelltime-List

l s ( ) # This i s my d e f a u l t workspace from My
Documents .

setwd ( getwd ( ) ) # F i r s t change , i f you haven ’ t a l r e a d y .
rm( l i s t = l s ( ) ) # Delete the d e f a u l t workspace .
l s ( )
. getNamespace < funct ion (name) . I n t e r n a l ( getRegisteredNamespace ( as . name(name

) ) )
l i b r a r y ( g t o o l s )
l i b r a r y ( s t a t s )

##########
W. base < #window length f o r MV p l o t
f r e q . base<
f i l < #reduce number of d a t a p o i n t s and window length by f a c t o r < f i l >
##########
f r e q < f r e q . base / f i l

W < W. base / f i l

f i l e s < l i s t . f i l e s ( getwd ( ) , p a t t e r n = ” * dwel l * \ \ . t x t $ ” , a l l . f i l e s =TRUE, f u l l .
names=TRUE, ignore . case =TRUE, inc lude . d i r s =TRUE, r e c u r s i v e =TRUE)

# f i l e s < l i s t . f i l e s ( getwd ( ) , p a t t e r n = ” *DT* \ \ . t x t $ ” , a l l . f i l e s =TRUE, f u l l .
names=TRUE, ignore . case =TRUE, inc lude . d i r s =TRUE, r e c u r s i v e =TRUE)

f i l e s < f i l e s [ mixedorder ( f i l e s ) ]
f i l e s
LF < length ( f i l e s )

MVtot< c ( )

f o r ( f in : LF ) {
data . o r i g < read . t a b l e ( f i l e s [ f ] , header=FALSE , sep= ” \ t ” , sk ip = L , f i l l =TRUE

, s t r i p . white=TRUE, blank . l i n e s . sk ip =TRUE)
data < data . o r i g
data [ ] < round ( data [ ] * f r e q )
data< data [ ]
data< data [ ]
data< data [ ]
data

f o r ( i in : nrow ( data ) ) {
i f ( data [ i , ] >W) {

data [ i , ] < W
} e l s e { }

}
data
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f u l l d a t a < c ( )
LL < nrow ( data [ ] )

f o r ( i in : LL ) {
L < data [ i , ]
V < data [ i , ]
L
V
f u l l d a t a . t < c ( )
n <
while (n < ( L + ) ) {

n . temp < n
f u l l d a t a . t [ n . temp ] < V
n < n +

}
f u l l d a t a < append ( f u l l d a t a , f u l l d a t a . t )

}
L t o t a l < length ( f u l l d a t a )

LW < L t o t a l W

MV.M < c ( )
MV. V < c ( )

m<
while (m <(LW+ ) ) {

mean . t< c ( )
var . t< c ( )
window < f u l l d a t a [m: (m+W ) ]
mean . t < mean( window )
var . t < var ( window )

MV.M[m] < mean( window )
MV. V[m] < var ( window )
m < m+
}

name . t < basename ( f i l e s [ f ] )
d i r < dirname ( f i l e s [ f ] )
nameL < nchar ( basename ( f i l e s [ f ] ) )
name < s u b s t r (name . t , , nameL )

MV< cbind (MV.M, MV. V , deparse . l e v e l = )
p l o t (MV[ , ] , MV[ , ] , type = ” l ” )

w r i t e . t a b l e (MV, f i l e = paste ( dir , ” / ” ,name , ” _MV. t x t ” , sep= ” ” ) , row . names=FALSE , c o l .
names=FALSE , sep= ” \ t ” , quote=FALSE )

MVtot < rbind ( MVtot , MV, deparse . l e v e l = )
}
p l o t ( MVtot [ , ] , MVtot [ , ] , type = ” l ” )

./Rscripts/MVanalysis.R
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