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Summary 

This cumulative dissertation discusses a range of topics related to the demand for and 

considerations around product design of weather index insurance instruments aimed at 

smallholder farmers’ risk management. 

The second chapter, “Demand for a Simple Weather Insurance Product in India: 

Theory and Evidence,” uses survey and administrative data from a project conducted in 

Madhya Pradesh, India during the 2010-2012 period. As part of this project, a new index 

insurance product was introduced to protect smallholder farmers of rainfed soybean from 

both deficit and excess rainfall during two consecutive Kharif (summer) seasons. In order 

to assess the drivers behind the demand for insurance the study induced exogenous 

variation along three dimensions: (1) Spatial basis risk / Distance to the weather station 

(by installing three new randomly-positioned weather stations), (2) Insurance premium (by 

offering random discounts), and (3) Product understanding (by randomly varying the 

intensity of training across villages). 

The chapter relies on a standard expected utility theory framework by Clarke (2016) 

to develop a series of hypotheses about the responsiveness of demand to price, spatial basis 

risk, and farmer’s risk aversion. Demand is found to behave as predicted: falling with price 

and basis risk and hump-shaped in risk aversion. Moreover, there is evidence of differential 

price sensitivity at different levels of basis risk, as predicted by the model. With respect to 

product understanding, the evidence suggests that increased incentives to learn or learning 

by using are more effective at increasing both understanding and demand. 

Furthermore, the chapter contributes to the scarce evidence on the dynamics of the 

demand for insurance by analyzing a two-year panel of insurance purchases. While the 

effect of premium subsidies persists over time, that of investments in new weather stations 

diminishes and the effect of increased training in the first season seems to disappear 

altogether during the second season. Importantly, while having previously purchased 

insurance does not encourage future uptake, receiving a payout does, potentially reflecting 

issues of trust in the product or the insurance company. 

The third chapter, “Estimating Spatial Basis Risk in Rainfall Index Insurance: 

Methodology and Application to Excess Rainfall Insurance in Uruguay,” tackles the 
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important topic of basis risk in weather index insurance in more depth. In particular, the 

chapter sets out to estimate the actual extent of spatial or geographic basis risk and compare 

this to farmers‘ perceptions, as captured from survey data. 

A novel methodology is developed to estimate the degree of spatial basis risk for an 

arbitrary rainfall index insurance instrument. The methodology relies on a widely-used 

stochastic rainfall generator by Wilks (1998), extended to accommodate non-traditional 

dependence patterns through a copula function. In particular, the model intends to  capture 

spatial upper tail dependence in rainfall, or the tendency for extreme rainfall (as that related 

to extensive, large-area storms) to be more spatially correlated than milder rainfall. This 

feature is empirically shown to occurr in available historical rainfall data. The extent of 

basis risk is then captured by simulating from the calibrated model and calculating the 

fraction of cases in which the insurance product would not pay even when rainfall at the 

farmer’s plot is within the payout region. 

The methodology is applied to an index product insuring against excess rainfall in 

Uruguay. To calibrate the model for this case study, the chapter uses historical daily 

rainfall data from the national network of weather stations, complemented with a unique, 

high-resolution dataset from a dense network of 34 automatic weather stations around the 

study area. The degree of downside spatial basis risk is then estimated by Monte Carlo 

simulations and the results are linked to both a theoretical model for the demand of index 

insurance and to farmer perceptions about the product. 

The results indicate that basis risk is not negligible in our case study. Depending on 

the farmer’s location, basis risk is such that the insurance product would fail to pay 

between 1 to 5 times out of 10 in which a farmer faces critical crop losses. Moreover, while 

spatial basis risk naturally increases with distance to the insurance reference gauge, it does 

so at a decreasing rate. In turn, farmers seem to overestimate the rate of increase, pointing 

to the presence of information asymmetries regarding the spatial properties of rainfall.  

In terms of the comparison to the theoretical model by Clarke (2016), spatial basis risk 

generally remains within the theoretical range in which a risk-averse farmer would demand 

a positive amount of insurance, even for plots located at a considerable distance from the 

reference weather station at which the index is measured. Finally, the results point to the 

importance of taking into consideration geographic variation in precipitation patterns—

even within relatively small regions—when designing an index insurance product. This 

element is shown to considerably increase (or decrease) the degree of spatial basis risk, 

depending on the exact location of a farmer’s plot and its insurance reference weather 

station. This calls for a much more careful consideration of local climatologies before 

launching an index insurance product based on nearby weather stations. 

The fourth chapter, “Demand Heterogeneity for Index-Based Insurance: The Case for 

Flexible Products,” discusses a generally-overlooked yet important design issue in weather 

index insurance. Notably, most existing index insurance products are characterized by a 
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relatively rigid payout structure, intended for a representative farmer’s standard risk 

profile. Albeit convenient, this one-size-fits-all structure comes at the cost of ignoring 

considerable heterogeneity in agricultural risk profiles, potentially lowering the product’s 

worth for many farmers.  

The chapter provides unique evidence on the ways in which heterogeneity in farmers' 

risk exposure affects their demand for agricultural index insurance. To achieve this, it 

analyzes a set of flexible insurance products against excess rainfall recently marketed in 

Uruguay during the 2013-2014 period to cover horticultural losses around harvest. The 

products were designed as independent insurance units―separately covering against the 

risk of excess rainfall across different calendar months and at different rainfall 

intensities―and were intended to be freely combined by the farmers to form optimal 

insurance portfolios that suited their particular risk profiles. The analysis exploits the 

substantial variation observed in the insurance portfolios demanded by farmers. 

The relevance of alternative sources of heterogeneity is explored by extending a 

simple expected utility decision model and relying on structural estimation to test the 

significance of each of these sources. The results show evidence for the presence of 

important aspects of farmer heterogeneity that directly affect their demand for risk-coping 

instruments, including the particular mix of crops chosen by the farmer, ex-post planting 

dates, soil drainage, product understanding, and spatial basis risk. The chapter concludes 

by quantifying the benefits of a flexible scheme by comparing farmer welfare to that 

achieved under alternative counterfactual insurance options. Overall, the value of 

providing flexibility in the form of an insurance units scheme is substantial. The findings 

underscore the need to provide flexibility when implementing index-based tools for 

hedging agricultural risks.  
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CHAPTER 1 

1 General Introduction 

Climate variability has raised to the forefront of the public agenda during the past decade. 

While the scientific consensus is not set on whether the frequency or intensity of extreme 

weather events has indeed increased, the perception of the general public is progressively 

shifting towards an overall fear of future climate unpredictability. 

Looking ahead, the most conservative scientific predicitions are currently forecasting 

global temperature increases of +1º Celsius within the next 3 decades (IPCC, 2014). 

Increases in the frequency and intensity of extreme weather events is also deemed very 

likely, for instance in terms of the duration, intensity, and spatial extent of heat waves and 

warm spells, heavy precipitation, and coastal flooding events, albeit with heterogeneity 

across regions. In addition to an increase in the frequency and intensity of events, 

socioeconomic and climate assessment models point to an increase in exposure among 

both urban and rural populations, particularly in low-latitude, less-developed areas (IPCC, 

2014; World Bank, 2013). 

In this context, public and private sectors alike are actively considering scenarios and 

devising possible actions to cope with and mitigate the foreseen consequences of climate 

change. In particular, climate adaptation (or the ability of governments and populations to 

adapt to the new contexts brought about by a changing climate) is deemed crucial. This is 

particularly the case for the rural agricultural sector, where climate change has the potential 

to radically shift the landscape of crops suitable for a given area, an effect that may be 

most disruptive in the case of smallholder farmers with low levels of education and little 

outside options and coping capacity (Nelson et al., 2013; World Bank, 2013). 

1.1 The pernicious effects of weather risk 

In agriculture, weather constitutes a major source of risk. In developed and developing 

countries alike, agricultural production is directly tied to the weather. High and low 

temperatures, hail, and winds regularly induce damage to agricultural crops with a direct 

effect on production. Moreover, both excess and scarcity of rainfall constitutes a 

substantial hazard in rainfed regions without access to irrigation and other coping 

mechanisms. Weather extremes provide suitable conditions for the flourishing of pests and 
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diseases, which can result in serious consequences on regional crops. Finally, large-scale 

natural hazards such as floods or hurricanes, can have a direct and lasting impact over 

livelihoods and infrastructure across broad geographic areas and large groups of people. 

While agricultural producers are generally regarded as the most obvious victims of 

negative weather events―as these induce direct losses in their income―, most actors in 

the rural economy are affected. Large disruptive effects of extreme weather events on 

production are subsequently transmitted to other layers of the agricultural value chain (e.g. 

traders, wholesalers, processors, suppliers) and to rural financial markets (through loan 

defaults, illiquidity). In such a scenario a general dampening of economic activity may 

ensue, resulting in a negative feedback loop with further impacts over non-farm incomes. 

In addition, when production losses are considerable for a specific agricultural commodity, 

the undersupply can be reflected in price increases affecting most households in the 

economy. Ultimately, local, regional, and national governments face pressure to respond 

to extreme weather shocks through agricultural disaster assistance and other social and 

economic emergency programs (Clarke and Dercon, 2016). 

Crucially, weather risk does not equally affect all actors in the rural economy. Poor 

rural farmers are disproportionately affected by it. Faced with a shock to current income, 

and in the absence of proper financial instruments to smooth these shocks, the poor 

regularly resort to costly coping strategies which may turn a temporary shock into a 

permanent one. For instance, following a temporary income shock very poor households 

may be forced to choose between either liquidating a fraction of their productive assets 

(i.e. livestock, machinery, land) ―thus trumping their future growth potential― or 

reducing current consumption ―a strategy which implicitly puts the burden on future 

human capital development, particularly for young children in the household.1 

In this context, households have traditionally resorted to a number of risk coping 

mechanisms. Some examples include holding savings (either in cash or in kind), investing 

into semi-liquid assets (such as machinery or livestock), borrowing from informal sources 

such as moneylenders, relying on social or family networks, and diversification―both in 

terms of agricultural activities and in terms of the mix between agricultural and non-

agricultural labor. Most of these strategies, however, are costly, and their risk-mitigation 

potential is limited (Townsend, 1994). For instance, loans or gifts from other households 

have the potential to protect from idiosyncratic shocks (i.e. unexpected losses that affect a 

reduced number of households within a locality or social network), but are ill-suited to 

protect against systemic (or common) shocks, which affect all households in a given region 

and thus undermine their capacity to support each other. Importantly, a diversification 

strategy may come at an efficiency cost, impeding individuals from capturing the full range 

                                              

1 These dynamics are commonly known as, respectively, nutrition-based (Dercon and Hoddinott, 2004) or 

asset-based (Barrett and McPeak, 2006) poverty traps. 
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of benefits from specialization or holding back investment into riskier opportunities with 

a higher expected income. 

1.2 Formal insurance market failure 

Formal insurance is a natural solution to some of these problems, and may function in a 

complementary way to existing informal mechanisms. Since insurance markets can pool 

risks across a much broader scope of activities and a much larger geographic area, they 

can manage systemic risks more efficiently.  

The most common type of insurance is known as indemnity insurance, whereby 

compensations rely on identifying specific losses and indemnifying the individual against 

them. From a farmer’s perspective, access to insurance can reduce the costs associated to 

some of the informal strategies outlined above, for instance by improving access to credit. 

Most importantly, income protection from potential bad years stemming from insurance 

may enable poor households to unlock investment opportunities previously shunned away 

as being too risky.  

But while formal insurance markets for certain risks (e.g. life, automotive) are fairly 

developed across the world, insurance against weather risks is very limited (with the 

exception of certain developed countries or large subsidized systems in few developing 

ones, with a high level of public intervention in most cases). In the case of crops, multiple 

peril crop insurance, which can protect a farmer against any source of risk affecting their 

crop yields, has been historically unsucessfully commercialized among small farmers. 

Single peril crop insurance, which covers against a specific factor affecting the crop (e.g. 

hail or winds), has had better success, though still only at modest scales (Smith and 

Goodwin, 2010). 

There are a number of reasons for which agricultural indemnity insurance has failed 

to develop successfully. Providing agricultural insurance is difficult in rural areas of 

developing countries because of the small size of farms and lack of proper rural 

infrastructure, resulting in costly claim verification processes. Moreover, indemnity 

insurance is prone to information asymmetry problems such as adverse selection (where 

only the most risky farmers purchase insurance) and moral hazard (where a farmer exerts 

sub-optimal amounts of effort when being insured).2 Both of these derive in an increased 

cost of providing insurance, further trumping its development. 

1.3 The promise of index insurance 

As a result of these market failures, a promising innovation has gained traction during the 

past two decades. Weather index insurance is an alternative type of crop insurance more 

adequately suited to smallholder farmers for managing their agricultural risk (Hazell et al., 

2010). This type of insurance makes payouts based on whether a given index ―for 

                                              

2 Hazell, Pomareda, and Valdes (1986). 
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instance, a particular measure of a weather variable― is above or below a pre-specified 

threshold.3 As way of example, a hypothetical index insurance product against drought 

would pay when the amount of millimeters of rainfall (as measured by a specific weather 

station or satellite) is under a certain predefined ‘trigger’. 

Index-based insurance products have been regarded as having enormous potential to 

reach smallholder farmers in developing countries. Because payouts are based only on 

publicly-observed data rather than on private information reported by the individual filing 

claims, all index products reduce the adverse selection and moral hazard problems that 

often plague insurance markets.4 In addition, index insurance products drastically reduce 

the costs of loss verification. This makes insurance easier and cheaper to distribute, 

potentially lowering premiums and making it more affordable to poor farmers. An added 

advantage of this type of instrument is that payouts can be calculated and disbursed quickly 

and automatically without the need for households to formally file a claim, thus supporting 

farmers' incomes when most needed. 

1.4 Problem statement 

The potential of index insurance to offer quick and direct support against shocks at a low 

cost has attracted donors and governments alike. Many local and international 

organizations have carried out projects in developing countries with the expectation of 

private insurers stepping in for scaling these up. In India alone, more than nine million 

farmers purchase these hedging products to insure their risk (Clarke et al., 2012). In the 

U.S. a large federal insurance index-based scheme protects farmers against a variety of 

weather risks. 

Nevertheless, most index insurance products in developing countries have suffered 

from dishearteningly-low take-up levels. Some of the explanations put forth for this lack 

of demand include issues of trust in the insurance company, lack of understanding of the 

product, liquidity constraints, and crowding-out of insurance by implicit public guarantees 

(e.g. governments providing emergency relief in the case of an adverse weather event).5 

While all of these obstacles are also applicable to traditional indemnity insurance, weather 

index insurance suffers from one unique disadvantage: basis risk. 

Basis risk can probably be regarded as the Achilles’ heel of index insurance. It arises 

due to an index’s inadequacy to perfectly capture the individual losses of an insured 

                                              

3 A different type of index insurance, ‘area-yield insurance’, does not rely on a weather variable as its 

index, but instead focuses on whether the average yield over a specified area is above or below a specified 

threshold. 
4 Adverse selection could in theory still exist if farmers in an area have information not available to the 

insurance company (such as better seasonal forecasts) that allows them to purchase insurance only during 

more risky seasons. However, while theoretically possible, this is unlikely. 
5 See, for instance, Cole et al. (2013) and Matul et al. (2013). 
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farmer. This imperfect relationship can be related to a number of factors. First, the weather 

index may be imperfectly measured because of natural variation of weather between a 

measurement station and the farmer’s plot (a component of basis risk commonly known 

as spatial basis risk), or because of an imperfect remote estimation in the case of satellites. 

Second, a weather index cannot capture the full complexity of the effect of weather on a 

crop, which generally involves the interplay of a number of weather variables 

(temperature, rainfall, humidity, evapotranspiration, winds, etc.) and other factors such as 

crop variety, soil quality, and farming practices. This is commonly referred to as design 

basis risk. Third, other non-weather events may impact crop growth, such as pest attacks 

and diseases, which would not be captured by a weather-index product. 

Against this backdrop, a primary objective of the research agenda should be to gain a 

comprehensive understanding of the main obstacles for insurance uptake, while at the same 

time ensuring that the instruments offered are indeed welfare-enhancing for the targeted 

farmers. On the former, it is crucial to evaluate the gap between insurance supply and 

farmer needs and perceptions. This involves both assessing the external validity of existing 

findings and digging deeper on the determinants of basis risk and on the perceptions that 

farmers have about it. On the latter, more emphasis should be put in adding to the scarce 

evidence on the benefits of being insured, both from an ex-ante (i.e. farmer decisions taken 

before weather realizations) and an ex-post (i.e. insurance outcomes across states of the 

world and its effect on shock-coping and consumption smoothing) perspective. 

1.5 Objectives of the study 

The objective of this dissertation is twofold: (i) to provide novel perspectives on the extent 

and determinants of demand for weather index insurance instruments among smallholder 

farmers in developing countries; and (ii) to provide insights on the design of index 

insurance products that can help improve future products. In particular, the dissertation 

intends to answer the following questions: 

I. What is the sensitivity of insurance demand to price, product understanding, 

and spatial basis risk? How does insurance demand relate to farmer risk 

aversion? How do these compare to those found in other studies? 

II. What are the dynamics of insurance demand over time? How does future 

demand depend on past experiences with the product? 

III. Is it possible to derive ex-ante measures of basis risk by relying on available 

historical weather information? Can these measures contribute to the 

improvement of future products at the design phase?  

IV. What is the actual extent of spatial basis risk in a case study of rainfall index 

insurance? How does it compare to farmer perceptions? 

V. Is flexible index insurance a viable alternative to existing one-size-fits-all 

products? Can farmers adapt the insurance to their particular risk profile? 

How does this impact their welfare? 
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The evidence presented comes from two weather index insurance projects 

implemented in very different contexts: India and Uruguay. In the first case, an index 

insurance product was introduced in Madhya Pradesh, India during the 2010-2012 period 

to protect smallholder farmers of rainfed soybean from both deficit and excess rainfall 

during two consecutive Kharif (summer) seasons. The second project was conducted in 

Canelones, the main horticultural producing region in Uruguay, during the 2013-2014 

period and it aimed to cover horticultural farmers against excess rainfall around harvest. 

In both contexts, we rely on extensive farmer survey data together with administrative 

insurance purchase data. In the case of Uruguay, we additionally exploit long-term 

historical weather information together with unique, 3-year data from a high density 

network of rainfall gauges. 

1.6 Dissertation outline 

The dissertation proceeds as follows. 

The second chapter, “Demand for a Simple Weather Insurance Product in India: 

Theory and Evidence,” analyzes the demand for the rainfall-based weather insurance 

product in rural India. It presents a standard expected utility theory framework on the 

nature of demand for index insurance (Clarke, 2016) and explores its predictions in terms 

of price, basis risk, and risk aversion using survey and administrative data from India, 

relying on experimental, random variation across the first two dimensions. The results are 

contrasted against the evidence presented in previous studies (e.g. Cole et al., 2013; 

Mobarak and Rosenzweig, 2012; Hill, Hoddinott, and Kumar, 2013; and Clarke and 

Kalani, 2011; among many others). In addition, it contributes to the literature by presenting 

evidence on the price sensitivity of the demand for insurance at different levels of basis 

risk and on the impact of insurance training relative to other mechanisms for increasing 

understanding. Finally, it presents unique evidence on the demand of insurance over time, 

an important topic that has only been seldom analyzed (Cai, de Janvry, and Sadoulet, 2013; 

Karlan et al., 2012; and Cole, Stein, and Tobacman, 2014). 

The third chapter, “Estimating Spatial Basis Risk in Rainfall Index Insurance: 

Methodology and Application to Excess Rainfall Insurance in Uruguay,” develops a novel 

methodology to estimate the degree of spatial basis risk for an arbitrary rainfall index 

insurance instrument. While basis risk has overall been one of the most important issues 

discussed in the index insurance literature and debates, a concerted effort to understand 

and analyze its full extent and characteristics has been lacking in the literature and studies 

directly tackling the subject are scarce. The methodology relies on a widely-used stochastic 

rainfall generator (Wilks, 1998), extended to accommodate non-traditional dependence 

patterns—in particular spatial upper tail dependence in rainfall—through a copula 

function. By doing so, the methodology contributes to the literature by describing a 

weather generator model suited to analyzing the spatial properties of extreme rainfall in a 

given region. 
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The methodology is applied to the index product insuring against excess rainfall in 

Uruguay. The model is first calibrated using historical daily rainfall data from the national 

network of weather stations, complemented with a unique, high-resolution dataset from a 

dense network of 34 automatic weather stations around the study area. The degree of 

downside spatial basis risk is then estimated by Monte Carlo simulations and the results 

are linked to both a theoretical model for the demand of index insurance and to farmers’ 

perceptions about the product. This application enriches the broader index insurance 

debate by presenting the first direct empirical exploration of spatial basis risk, relying on 

an appropriate operational definition (beyond correlation in rainfall), and pointing to the 

importance of a directional element, generally disregarded as a relevant factor. Moreover, 

the study contributes additional evidence on behavioral frictions in the insurance market 

by indicating a relative gap between the real and perceived extents of spatial basis risk. 

The fourth chapter, “Demand Heterogeneity for Index-Based Insurance: The Case for 

Flexible Products,” discusses a generally-overlooked yet important design issue in weather 

index insurance. Notably, most existing index insurance products are characterized by a 

relatively rigid payout structure, intended for a representative farmer’s standard risk 

profile. Albeit convenient, this one-size-fits-all structure comes at the cost of ignoring 

considerable heterogeneity in agricultural risk profiles, potentially lowering the product’s 

worth for many farmers. This chapter relates to Chapter 3 in that the issue described can 

also be interpreted as a subcomponent of basis risk—known as design basis risk—, related 

to the elements in the design of an index product that contribute to the mismatch between 

payouts and losses. 

The chapter provides unique evidence on the ways in which heterogeneity in farmers' 

risk exposure affects their demand for agricultural index insurance. To achieve this, it 

analyzes a set of flexible insurance products against excess rainfall marketed in Uruguay 

and exploits the substantial variation in insurance portfolios demanded by farmers. The 

relevance of alternative sources of heterogeneity is explored by extending a simple 

expected utility decision model and relying on structural estimation to test the significance 

of each of these sources. To our knowledge, this study is the first one to provide theory-

based empirical estimates of real-world farmers' risk management behavior. Finally, the 

chapter quantifies the benefits of a flexible scheme by conducting policy experiments and 

comparing farmer welfare under this scheme to that achieved under alternative 

counterfactual insurance options. 

The dissertation concludes by discussing policy implications of the findings and 

discussing potential avenues for future research. 
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CHAPTER 2 

2 Demand for a Simple Weather Insurance Product in 

India –    Theory and Evidence* 

Income risk is substantial for farmers in developing countries. Formal insurance markets 

for this risk are poorly developed, and much of this risk remains uninsured with significant 

consequences for investment in productive activitiesp and the welfare of individuals. A 

large share of the income risk is agricultural, yet crop insurance markets are difficult in 

this setting (Hazell, Pomareda, and Valdes 1986) because of the small size of farms and 

limited formal records, and significant potential for adverse selection and moral hazard. 

As a result an increasing trend has been to sell weather index insurance products (weather 

hedges) to smallholder farmers to manage their risk (Hazell et al. 2010). In India alone, 

more than nine million farmers purchase these hedging products to insure their risk (Clarke 

et al. 2012).  

In this chapter we explore the predictions of a standard expected utility theory 

framework on the nature of demand for such products, in particular testing whether 

demand behaves as predicted with respect to price, the basis of the hedge, and risk 

aversion. We use the model of Clarke (2016) to develop a series of hypotheses that we test 

using data from a randomized control trial in which price and basis risk was varied for a 

series of hedging products offered to farmers in Madhya Pradesh in India. We find that 

demand behaves as predicted, with demand falling with price and basis risk, and appearing 

hump-shaped (that is, increasing and then decreasing) in risk aversion.  

Typically, hedging products are not sold to individuals, given their complexity. The 

market for hedging products that has recently emerged for smallholder farmers in low-

                                              

* This chapter is the Author’s Original Version (AOV) of an article that was published in the American 

Journal of Agricultural Economics, Volume 98, Issue 4, 1 July 2016, Pages 1250–1270, 

https://doi.org/10.1093/ajae/aaw031. The chapter is co-authored with Ruth V. Hill and Miguel Robles. The 

authors’ contributions are as follows. RVH and MR conceptualized and obtained funding for the project, 

designed the insurance product, carried out fieldwork, and collected the data. FC and RVH conceptualized 

and conducted the analyses. FC, RVH, and MR interpreted the results and wrote the paper. All authors read 

and approved the final manuscript. 

https://doi.org/10.1093/ajae/aaw031
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income countries is quite unusual in that it offers complex risk management products to 

individuals with limited formal education and, in most cases, no prior experience with 

insurance products. In this chapter, we also examine how individuals learn about these 

products over time: We look at the impact of increased investments in training on hedging 

products as well as evidence for learning by doing among farmers. We find evidence that 

suggests that learning by doing is more effective than increasing the intensity of training.  

During the past decade, index-based insurance has received considerable attention as 

a promising solution to the problem of imperfect insurance markets for rural households 

in developing countries. As a result, a number of pilot programs—generally coupled with 

evaluations—have been conducted throughout the world. Cole et al. (2013) report results 

on the determinants of demand in a number of randomized control trials conducted in 

India. They find that demand falls as price increases (with a price elasticity of –0.66 to –

0.88), tighter credit constraints, and higher distrust of the insurance provider. Mobarak and 

Rosenzweig (2012) also find that demand for a weather index insurance product is 

decreasing in prices and distance to the weather station. This chapter contributes to this 

literature. We also find that demand for an innovative index insurance product falls as 

price increases and as distance to the weather station increases. We estimate a negative 

price elasticity of 0.58 and find that doubling a household’s distance to a reference weather 

station decreases demand by 20 percent.  

We place these findings in the context of a theoretical model of demand for hedging 

products and test two other predictions implied by this framework: that demand is more 

price-elastic when basis risk is lower and that demand is hump-shaped in risk aversion. 

We find that farmers located less than 5 kilometers (km) away from the reference weather 

station are four times as sensitive to prices as farmers located at more than 12 km (for 

whom the basis is higher).  

A number of empirical papers have found a puzzling negative relationship between 

risk aversion and demand for index insurance (Cole et al. 2013; Hill, Hoddinott, and 

Kumar 2013; and Clarke and Kalani 2011). However, Clarke (2016) shows that in the 

presence of basis risk under index-based insurance, when premiums are above actuarially 

fair, a hump-shaped demand with respect to risk aversion is expected. Moreover, when 

premiums are actuarially fair or below, a downward-sloped relationship is to be expected. 

We explicitly test for these predictions and find results consistent with the above: for 

products with a multiple above 1, the demand increases at low levels of risk aversion but 

again falls at higher levels; for products with a multiple at or below 1, the intensity of 

demand is negatively related to risk aversion. Nevertheless—arguably because of limited 

power—the changes in demand at different levels of risk aversion are not statistically 

significant.  

An additional contribution of our study to the existing literature on the determinants 

of demand for index insurance is our analysis of understanding and demand for hedging 

products over time. Our study is among few to analyze the demand for index insurance 
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over time (among them Cai, de Janvry, and Sadoulet 2013; Karlan et al. 2012; and Cole, 

Stein, and Tobacman 2014, which focus on different aspects of the dynamics of demand 

for insurance). We find that a higher intensity of insurance literacy training has a weakly 

significant, short-run effect on demand. Households that received more intense training 

are 5 percentage points more likely to purchase the insurance product in the season 

immediately following the training. However, we find that intensive training has no 

significant effect on general insurance knowledge when tested months later, probably due 

to the fact that households in both control and treatment villages increased their levels of 

insurance knowledge similarly by the time of the follow-up survey. As a result, 

unsurprisingly, we find it does not have an effect on insurance demand in the subsequent 

season. Instead we find that tests on general knowledge of insurance are still consistent 

with learning by doing: Farmers who received higher price discounts have a greater level 

of understanding about the insurance product, despite the overall increase in insurance 

understanding among all farmers.  

We also examine whether insurance purchases in 2011 help to explain insurance 

purchase decisions in 2012, as would be expected in a model of learning by doing. The 

evidence shows no stand-alone impact of previous purchases; however, receiving a payout 

in 2011 has an impact on demand during the following season. Purchasing insurance and 

receiving a payout is strongly positively correlated with the decision to purchase insurance 

in the subsequent season. A payout in 2011 increases the probability of purchasing in 2012 

by around 7 percentage points.  

Given that in reality most—if not all—index insurance schemes suffer from recurrent 

low demand, it is highly relevant to understand and quantify how demand responds to 

different factors. The overall take-up for the index insurance product that we consider was 

low in both seasons, at 6.8 and 4.0 percent during 2011 and 2012, respectively. This is in 

line with the take-up rates found in several other studies for index insurance in India (Giné, 

Townsend, and Vickery, 2008, report lower than 5 percent take-up in Andhra Pradesh). As 

considerable government funds are being used to invest in index insurance markets 

expecting that will help farmers manage uninsured risk, it is crucial to understand why 

demand is low. Possible reasons are their high price (multiples on index insurance products 

range from 1.75 to 3.03, according to Cole et al. 2013, which is very high in comparison 

to a multiple of about 1.2 for indemnity insurance in more developed markets); low levels 

of investment in weather station infrastructure or financial literacy; or simply an inherent 

mismatch between the product’s attributes and farmers’ risk management needs. The 

results of this study suggest that the price and basis risk are key drivers of demand and that 

weather hedges will prove to be a useful tool for farmers only if these two elements are 

substantially reduced.  

The rest of the chapter is structured as follows: The next section discusses theoretical 

predictions on the nature of demand for index insurance. Section 2.2 discusses the different 

components of the design in our study. Section 2.3 describes the data used for the 
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subsequent analysis. Section 2.4 presents and discusses the results from the empirical 

analysis and contrasts them with the theory. The final section concludes. 

2.1 Theoretical Framework and Predictions on the Demand for Index Insurance 

In this section we present a simplified version of Clarke’s (2016) index-based insurance 

model to provide an intuition on the characteristics of demand for insurance products with 

substantial basis risk, such as the weather hedges sold to farmers in India. The model 

entails testable theoretical predictions that motivate our empirical work. 

Consider a representative farmer who faces an agricultural income stream, 𝑌, that 

depends on two states of nature, 𝑆 = {𝐿𝑜𝑠𝑠 = 𝐿, 𝐿𝑜𝑠𝑠 = 0} such that 𝑌(𝑆) = 𝑊 − 𝐿𝑜𝑠𝑠 

where 𝐿𝑜𝑠𝑠 =  𝐿 with probability 𝑝 and 𝐿𝑜𝑠𝑠 =  0 with probability 1 − 𝑝. In the absence 

of any insurance opportunity, expected income is 𝐸(𝑌) = 𝑊 − 𝑝𝐿 and the variance of 

income is 𝑉𝑎𝑟 (𝑌) = 𝑝(1 − 𝑝)𝐿2. The farmer’s preferences over income are represented 

by the indirect utility function 𝑉(. ), and the farmer is a strictly risk-averse agent; thus 

𝑉’(. ) > 0 and 𝑉’’(. ) < 0.  

Now consider an index insurance product such as a weather hedge (𝐼𝑛𝑑𝑒𝑥) that pays 

𝐿 with probability 𝑝 and 0 with probability 1 − 𝑝. The random loss (𝐿𝑜𝑠𝑠) and the random 

index payout (𝐼𝑛𝑑𝑒𝑥) have identical marginal distributions6 but are not independent. The 

index product is considered a good insurance instrument if it provides a payout when there 

is a loss and does not provide one when there is no loss. However, there is a joint 

probability 𝑟 that there is a loss 𝐿 (𝐿𝑜𝑠𝑠 =  𝐿) and the index payout is 0 (𝐼𝑛𝑑𝑒𝑥 =  0) 

and, symmetrically, a joint probability 𝑟 that there is no loss (𝐿𝑜𝑠𝑠 = 0) together with a 

positive index payout (𝐼𝑛𝑑𝑒𝑥 =  𝐿). This joint probability 𝑟 is the basis risk associated 

with the product. As a result, there are four states of nature 𝑆 = {(𝐿𝑜𝑠𝑠 = 𝐿, 𝐼𝑛𝑑𝑒𝑥 =

0), (𝐿𝑜𝑠𝑠 = 𝐿, 𝐼𝑛𝑑𝑒𝑥 = 𝐿), (𝐿𝑜𝑠𝑠 = 0, 𝐼𝑛𝑑𝑒𝑥 = 0), (𝐿𝑜𝑠𝑠 = 0, 𝐼𝑛𝑑𝑒𝑥 = 𝐿)} with 

probabilities 𝑃(𝑆) where 𝑃(𝐿, 0) = 𝑟, 𝑃(𝐿, 𝐿) =  𝑝 − 𝑟, 𝑃(0,0) = 1 − 𝑝 − 𝑟, 𝑃(0, 𝐿) = 𝑟. 

We summarize this in Table 2.1. In this context, no basis risk means 𝑟 = 0, which makes 

the random variables 𝐿𝑜𝑠𝑠 and 𝐼𝑛𝑑𝑒𝑥 identical: 𝐿𝑜𝑠𝑠 =  𝐼𝑛𝑑𝑒𝑥.7 

Table 2.1 ― Joint Probability of Income Loss and Index Payout 

Joint 

probability 

Index 

0 L 

Loss 
0 1—p—r r 

L r p—r 

                                              

6 We make the two random variables identically distributed for simplicity and to save on notation, but this 

condition can be easily removed. 
7 Note that if 𝑟 =  𝑝 (1 − 𝑝), the random variables 𝐿𝑜𝑠𝑠 and 𝐼𝑛𝑑𝑒𝑥 become identically and independently 

distributed. Therefore we require 𝑟 <  𝑝 (1 − 𝑝) to have an index product that provides at least some 

insurance services. 
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The price of one unit of the index product is 𝑚 times the actuarially fair price: 𝑝𝐿. The 

farmer has the option to choose the quantity 𝛼 of the index product she wishes to purchase. 

Her total spending is then 𝛼𝑚𝑝𝐿 and her net income 𝑌(𝑆) = 𝑊 − 𝛼𝑚𝑝𝐿 − 𝐿𝑜𝑠𝑠(𝑆) +

 𝛼 𝐼𝑛𝑑𝑒𝑥(𝑆), depending on one of the four potential states 𝑆. We summarize the income 

for each state with and without insurance in the real line in figure 1. With insurance, the 

expected income is 𝐸(𝑌) = 𝑊 − 𝛼𝑚𝑝𝐿 − (1 − 𝛼)𝑝𝐿 and the variance of income is 

𝑉𝑎𝑟(𝑌) = [𝑝(1 − 𝑝)(1 − 𝛼)2 + 2𝛼𝑟]𝐿2. The price multiple (𝑚) negatively affects the 

mean but not the variance. Basis risk (𝑟) does not directly impact the expected income, but 

it has a positive direct impact on income variance. 

2.1.1 Maximization Problem 

Given the joint probability distribution of 𝐿𝑜𝑠𝑠 and 𝐼𝑛𝑑𝑒𝑥 and the price of the index 

product, the farmer chooses the quantity 𝛼 of the insurance product that maximizes her 

expected indirect utility: 

 max
𝛂

𝐸[𝑉(𝑌(𝑆))] (2.1) 

 𝑌(𝑆 ) =  𝑊 –  𝛼𝑚𝑝𝐿 –  𝐿𝑜𝑠𝑠(𝑆) +  𝛼 𝐼𝑛𝑑𝑒𝑥(𝑆) (2.2) 

The first-order condition is as follows: 

 
E [V’(Y(S)) 

∂Y(S)

∂α
]  = 0 (2.3) 

In the absence of basis risk (𝑟 = 0) and actuarially fair price (𝑚 = 1), full insurance 

(𝛼∗ = 1) is the optimal solution: 

 p V’(W − αpL –  L +  αL) (1 − p)L − (1 − p) V’(W − αpL) pL =  0 (2.4) 

Under this scenario, income becomes 𝑌(𝑆) = 𝑊– 𝑝𝐿 for all states with positive 

probability, and income variance is equal to zero. 

 

 

Figure 2.1 ― Income with and without insurance 

Y(L,0) = Y(L,L ) =W − L Y(0,0) = Y(0,L) = W

Y(L,0) Y(L,L) Y(0,0) Y(0,L)

No insurance:

With insurance:

Y(L,0) = W − α m p L – L
Y(L,L) = W − α m p L − L + α L
Y(0,0) = W − α m p L
Y(0,L) = W − α m p L + α L
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2.1.2 Basis Risk 

Clarke (2016) shows that in the presence of basis risk (0 < 𝑟 < 𝑝(1 − 𝑝)) optimal 

insurance demand 𝛼∗ is decreasing in basis risk 𝑟. Here, we discuss the economic intuition 

of that result. 

After we introduce basis risk in the model, full insurance is no longer optimal. Basis 

risk entails a positive probability of getting into a very adverse situation in which income 

is subject to a loss 𝐿 and there is no index payout despite having spent 𝛼𝑚𝑝𝐿 on the 

insurance product; under our notation income in this state would be 𝑌(𝐿, 0). This is even 

worse than experiencing a loss without any insurance. On the flip side, there is the very 

lucky situation in which, despite not having a loss, the index pays out; this state would be 

𝑌(0, 𝐿).  

As the farmer purchases more insurance (higher 𝛼), two effects appear on the 

dispersion of income: Income at middle states in figure 1, 𝑌(𝐿, 𝐿) and 𝑌(0,0), becomes 

less disperse; and income at extreme states in figure 1, 𝑌(𝐿, 0) and 𝑌(0, 𝐿), becomes more 

disperse. When basis risk is low, the first effect tends to dominate, and for many values of 

𝑉’’(. ) it is optimal to purchase some insurance to decrease overall net income dispersion. 

When basis risk is high (high 𝑟), the second effect becomes relatively more important, as 

extreme incomes are more likely to occur.  

While the proper notion of income dispersion is not entirely reflected by income 

variance (as the third moment is also relevant—especially in the case of highly risk-averse 

agents), how the income variance is affected by basis risk is still informative. In the 

absence of basis risk, more insurance helps decrease income variance until 𝛼∗ = 1, but in 

the presence of basis risk, variance is higher and more insurance helps decrease the 

variance only until 𝛼∗ = 1 − [𝑟/𝑝(1 − 𝑝)], which is less than 1, see figure 2. When basis 

risk is too high (𝑟 = 𝑝(1 − 𝑝)), a positive amount of insurance (𝛼 > 0) only increases the 

variance and the optimal choice becomes not to purchase insurance at all. 

An alternative path to Clarke’s (2016) formal proof is to use standard comparative 

static analysis. We differentiate the first-order condition with respect to 𝛼 and 𝑟: 

 
𝐸 [V”(Y(S)) [

∂Y(S)

∂α
]

2

] dα + [ ∑ (
∂P(S)

∂r
V′(Y(S))

∂Y(S)

∂α
)

𝑆

] dr = 0 (2.5) 

The second term is equal to (1 – mp) L [V’(Y(0,L)) – V’(Y(L,L))] + mpL 

[V’(Y(0,0)) – V’(Y(L,0))]. By concavity of the utility function, both terms in brackets are 
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negative and therefore the whole term is negative.8 Hence, in Equation 2.5 the first and 

second terms are both negative, and then 
dα*

dr
< 0.9 

 

Figure 2.2 ― Optimal insurance under basis risk 

2.1.3 Price 

We now turn to looking at the relationship between price and demand. We show through 

standard comparative static analysis Clarke’s (2016) result that, in the case of a constant 

absolute risk aversion (CARA) utility function, the optimal demand 𝛼∗ is monotonically 

not increasing in price 𝑚𝑝𝐿. Since we want to keep the probability p and the loss L 

constant, we consider variations in prices that come through variations in the multiple 𝑚. 

First, note that for a given insurance coverage 𝛼, a higher multiple 𝑚 reduces income in 

all states 𝑆 by the same magnitude. In this case, the reduction in the lowest income 𝑌(𝐿, 0) 

is the most hurtful to the farmer’s welfare and therefore induces a decrease in 𝛼∗ to limit 

that particular welfare loss (by reducing total spending in insurance 𝛼𝑚𝑝𝐿). However, a 

lower 𝛼 has a negative impact on the income of states (𝐿, 𝐿) and (0, 𝐿), and this might 

induce the farmer to increase 𝛼 under certain conditions. Here, we show that this is not the 

case under a CARA utility function.  

We first differentiate the first-order condition with respect to 𝛼 and 𝑚: 

𝐸 [V”(Y(S)) [
∂Y(S)

∂α
]

2

] dα + 𝐸 [V”(Y(S))(−αpL)
∂Y(S)

∂α
] dm

+ 𝐸[V′(Y(S))(−pL)]dm = 0 

(2.5) 

                                              

8 As shown below, 1 – mp > 0; otherwise, the demand for insurance is zero. 

9 Note that by the first order conditions, 𝐸 (V′(Y(S))
∂Y(S)

∂α
) =  ∑ (P(S)V′(Y(S))

∂Y(S)

∂α
) = 0𝑆 . Multiply and 

divide the second term by P(S) to show that this is a negative term. 

r = 0

r > 0 

α

1 -
1
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Dividing and multiplying the second term by V′(Y(S)) we get 

𝐸 [V”(Y(S)) [
∂Y(S)

∂α
]

2

] dα + αpL γ𝐸 [V′(Y(S))
∂Y(S)

∂α
] dm

+ 𝐸[V′(Y(S))(−pL)]dm = 0 

(2.6) 

where γ is the coefficient of risk aversion. The first term is negative; the second term is 

equal to the first-order condition, multiplied by a constant, and thus equal to zero; and the 

third term is negative. Therefore 
dα

dm
< 0. 

2.1.4 Demand Price Elasticity and Basis Risk 

We claim that the responsiveness of the demand to variations in price is a function of the 

degree of basis risk r. Our conjecture is that when basis risk is low, the elasticity of demand 

is higher than when basis risk is high. Although we don’t provide a formal proof of such 

relationship, our intuition is based on the fact that when there is no basis risk, the elasticity 

of demand is high; and when basis risk is extremely high, the demand for insurance is zero 

and unresponsive for any price above the actuarially fair price or m ≥ 1.  

We have already established that in the absence of basis risk (r = 0) and actuarially 

fair price (m = 1), full insurance (α∗ = 1) is the optimal solution and therefore income is 

constant across states such that Y(S) = Y for any relevant state S. In this particular case we 

can estimate the responsiveness of the demand to a change in the multiple m (and therefore 

to a change in price while keeping constant p and L):  

dα

dm
|

m=1,r=0
= −

E[V′(Y(S))(−pL)]

E [V”(Y(S)) [
∂Y(S)

∂α
]

2

]

=
V′(Y)

L(1 − p)V”(Y)
< 0 (2.7) 

which in the case of a CARA utility function becomes −
1

L(1−p)γ
< 0. And more generally 

from the previous section we know that 
dα

dm
|

r=0
< 0. Now we look at the responsiveness 

of the demand when basis risk is extremely high: r ≥  p (1 − p). We show that for any 

price above the actuarially fair price (m ≥ 1), the demand is unresponsive and equal to 

zero (see Appendix). 

2.1.5 Risk Aversion 

Clarke (2016) shows that in the presence of basis risk and when premiums are above 

actuarially fair, a hump-shaped demand with respect to risk aversion is expected. Since the 

model presented here is a particular case of Clarke’s model, the same conclusion applies 

here. The intuition is as follows: A risk-neutral agent won’t buy an actuarially unfair 

product (m > 1), because the expected income is all that she cares about and expected 

income is decreasing in insurance coverage (α) when m > 1. As income in the worst-case 
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scenario is decreasing in insurance coverage (α), extremely risk-averse agents would also 

be unwilling to buy insurance as they would not be willing to sacrifice an income reduction 

in the worst-case scenario Y(L, 0) (income in this state is decreasing in insurance coverage, 

α ), despite the reduction of income dispersion in middle states that insurance coverage 

affords. Moderately risk-averse agents would choose to have some insurance coverage 

(α > 0) as they would be willing to trade some income loss in the worst-case scenario 

against less income dispersion in middle states (L, L) and (0,0) and an income gain in state 

(0, L). 

2.2 Empirical Design  

We worked with the insurance company HDFC ERGO to identify suitable villages to be 

included in our study. Suitable villages were defined as those that were 15 km or less from 

a weather station, in districts that were not notified for provision of subsidized insurance, 

and in villages in which HDFC had a marketing presence. Additionally, it was important 

to select villages that were neither too small nor too large for surveying and marketing 

activities. First, administrative data on the number of households within a village was used 

to exclude villages of fewer than 100 households and more than 500 households. This 

resulted in a list of about 120 villages in three districts. Second, 45 villages each in Dewas 

and Bhopal and 20 villages in Ujjain, 110 villages in total, were randomly selected for 

inclusion in this study.  

The 110 sampled villages were randomly allocated into treatment and control villages: 

72 treatment villages were selected for insurance to be offered in these villages. HDFC 

agreed that no insurance would be offered in the remaining control villages. More 

treatment villages than control villages were selected given the multiple treatment arms in 

this study. Villages in Bhopal and Dewas were allocated to treatment and control 

categories using a random draw with no stratification or blocking. Ujjain villages were 

allocated to treatment and control categories separately, on account of the later inclusion 

of this district. As such, stratification of the villages occurred along district lines. For this 

reason we include district dummies in our regression analyses.  

Six index insurance products, simple weather hedges, were sold in each district 

covering deficit and excess rain at the beginning, middle, and end of the season. For every 

peril identified in each of the covered periods, two types of coverage were available: one 

for a fixed payout in case of a lower probability event and the other in case of a higher 

probability event. The product was designed in such a way that the period, payouts and 

perils covered were the same in all the districts but each district had a different set of 

triggers (index levels corresponding to a payout). Details of the products offered are 

provided in the Appendix Table 1. Farmers were free to choose the number and 

combination of policies (index insurance products) that they wished to purchase. The 

policies were priced at actuarially fair prices plus administration costs. There were only 

minor differences in pricing between the policies offered in 2011 and 2012.  
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The marketing of these weather hedges was carried out by HDFC ERGO General 

Insurance Company in three different phases, prior to the start of each cover period.10 In 

2011, sales began partway through the season, with farmers in two districts (Dewas and 

Bhopal) being offered policies for the middle and end of the season, and farmers in one 

district (Ujjain) being offered policies for only the end of the season. Given that 

randomization in Ujjain was independent from that in the other districts, this does not 

affect the estimation of treatment effects for 2011. In 2012, all farmers were offered all 

policies for the three coverage periods of the season. Moreover in 2012, a door-to-door 

marketing exercise was again conducted by sales agents to ensure that all households in 

the sample were again offered insurance.  

2.2.1 Basis Risk 

Some exogenous variation in the degree of basis risk associated with the weather hedges 

was introduced by installing three new randomly located weather stations that would 

trigger payouts. Only villages in Dewas and Bhopal were eligible for this treatment, 

meaning that the 13 Ujjain villages that received insurance used pre-existing reference 

stations. The new weather stations were installed in locations selected according to the 

following process: 

1. We randomly selected one village in which to place a new weather station. All 

villages very close (10 km or less) to this one were then excluded from further 

selection. 

2. Out of the remaining villages, we randomly selected a second location. All villages 

very close (10 km or less) to this one were then excluded from further selection. 

3. Out of the remaining villages, we randomly selected a third location.  

The three villages selected using this process were Polayjagir and Talod in Dewas, 

and Intkhedi Sadak in Bhopal. Villages within 10 km of these sites were eligible to be 

serviced by these new stations. Pre-existing weather stations in each of the three districts 

were used as a reference station for those not selected to be serviced by the new station. 

The full list of weather stations used in this study is listed in Table 2.2. 

Table 2.3 presents comparisons of key village characteristics between treatment 

villages served by a new weather station and those served by pre-existing weather stations. 

The results from these tests of balance indicate that villages in these two treatment groups 

do not differ systematically on observable characteristics. We also compared villages 

closer to a weather station with those farther away from it. Tests of balance between 

                                              

10 Van campaigns, pamphlet distributions and mass SMS messages were undertaken in all the treatment 

villages. In addition, meetings of farmer groups were organized in the first two phases for marketing at the 

village level. After this, door-to-door visits took place for final marketing and selling of insurance policies. 
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villages below and above the median distance to the assigned weather station show no 

significant differences on observable characteristics. 

Table 2.2 ― Weather Station Assignment 

Trigger weather station Weather station with 

historical data used for 

product design 

Number of 

villages 

covered 

Dewas—Sonkatch 

(NCSML) 

Indore (IMD) 9 

Dewas—Polayjagir—

New 

Indore (IMD) 10 

Dewas—Talod—New Indore (IMD) 10 

Bhopal (IMD) Bhopal (IMD) 18 

Bhopal—Intkhedi 

Sadak—New 

Bhopal (IMD) 12 

Ujjain-Khachrod (IMD) Ujjain(IMD) 13 
Note: NCSML refers to weather stations installed and operated by National Collateral 

Management Services Limited. IMD refers to weather stations run by the Indian Meteorological 

Department. 

2.2.2 Price 

Exogenous variation in the price of the weather hedges was introduced by randomly 

allocating price discount vouchers among treatment households. If a household then chose 

to purchase the index insurance product, it could exercise the voucher at the moment of 

purchase. Based on group discussions and given the level of education of targeted farmers, 

we concluded that absolute numbers would be easier to understand by farmers than 

percentage discounts. Four levels of absolute discounts were selected, broadly equivalent 

to 15 percent, 30 percent, 45 percent, and 60 percent of the cheapest policy, in order to 

have enough price variation along a hypothetical demand curve. The level of discount 

received by a household held across all available insurance products for that season. For 

example, if a household received a Rs.45 discount voucher, the household was entitled to 

write off Rs.45 from the price of all index insurance products it chose to purchase during 

the entire season. 

There were important differences in price discounts between 2011 and 2012. In 2011, 

surveyed households received a discount voucher through a household-level random draw 

in two districts (Dewas and Bhopal) and through a village-level random draw in Ujjain. In 

2012, discounts were randomized at the village level in all districts. The decision to 

provide the same level of price discount to all farmers (sampled and non-sampled 

households) in a village was made in response to the insurance company’s concerns about 

a discouragement effect arising from not receiving a voucher, where farmers discriminated 

by the price-discount distribution process could develop a negative attitude toward the 

product. In addition, a village-wide price discount was cheaper to implement. 
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Table 2.3 ― Tests of Balance between Villages Assigned to New and Old Weather 

Stations 

 

Mean across 

new weather 

station 

villages 

Mean 

across old 

weather 

station 

villages 

T-test of 

difference 

Variables from households’ listing    
Number of households  218.93 209.35 0.34 
Proportion of type 0 households  0.39 0.42 –0.68 
Proportion of type 1 households  0.21 0.2 0.53 
Proportion of type 2 households  0.24 0.22 0.84 
Proportion of type 3 households  0.05 0.05 –0.14 
Proportion of type 4 households  0.11 0.11 –0.02 
Proportion of female-headed households  0.04 0.04 1.12 
Average years of education of the household head 4.43 4.38 0.16 
Proportion of SC/ST/OBC  0.83 0.82 0.16 
Average land owned (in acres) 3.64 3.42 0.56 

Variables from baseline survey    
Distance to weather station (in kms.) 5.02 10.1 –5.89 
Distance to market (in minutes) 46.15 47.35 –0.24 
Average cultivated acreage 6.93 6.72 0.36 
Proportion of land that is irrigated  0.74 0.78 –0.88 
Average cultivated acreage in the Rabi  5.72 5.9 –0.37 
Proportion of land on which wheat is grown 0.64 0.66 –0.46 
Proportion of land on which chickpeas are grown  0.25 0.26 –0.21 
Average cultivated area in the kharif  6.33 6.26 0.14 
Proportion of land on which soybeans are grown  0.88 0.92 –1.69 
Prop. of households reporting drought in last 10 years 0.11 0.14 –0.71 

Prop. of households that had some agric. insurance  0.38 0.29 1.52 

Prop. of households that had some insurance  0.64 0.56 1.52 

Prop. of households with access to agricultural loans  0.94 0.93 0.69 
Note: SC/ST/OBC refers to scheduled caste, scheduled tribe and other backward castes. Households are classified in types according to 

whether they own more (+) or less (-) than six acres of land, and whether the household decision maker has had more (+) or less (-) than five 

years of schooling.  Type 0 households own no land. Type 1: (-)Land/(-)Schooling, Type 2: (-)Land / (+)Schooling, Type 3: (+)Land/(-

)Schooling, Type 4: (+)Land/(+)Schooling. Source: Listing and household survey. 

2.2.3 Understanding 

Across all treated villages, decision makers in sampled households were invited to attend 

two hours of basic insurance literacy training in the first marketing season (2011). In these 

basic training sessions—which were also open to any other observers from the village—

farmers were introduced to potential weather-related risks they might face and encouraged 

to discuss their current coping mechanisms. After this introduction, the majority of the 

remaining training focused on a general discussion of weather index insurance, the way in 

which it had been tailored to their circumstances, and the characteristics of the product. 

Interactive games were played with the farmers, with the games intending to illustrate the 

costs and benefits of purchasing these hedges. A final iteration of games helped farmers 

understand that the ability of the insurance company to pay their claims was not dependent 
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on the weather outcome of other farmers. This was intended to build trust among the 

farmers toward the insurance company.  

Additionally, 37 of the treated villages were randomly selected to receive an additional 

two-hour training. Households in our sample were again actively encouraged to attend the 

meeting, and all villagers were allowed to participate. In this additional training session 

the basic concepts were reiterated, and any questions and concerns that the farmers had 

were addressed.  

Tests of balance between villages with basic training and villages with basic plus 

intensive training are presented in Table 2.4 and show that the two groups are balanced 

across common household characteristics. Some form of training was provided to all 

households in order to ensure a wide understanding of the product being offered. Because 

of this, we are able to analyse the impact of receiving intensive training with respect to 

receiving only basic training; we cannot estimate the impact of receiving some training 

against no training.  

2.3 Data 

A summary of the timeline of activities is provided in figure 3. An initial listing exercise 

was conducted in all selected villages during January and February 2011, before survey 

work, training, and insurance sales began. The listing exercise collected basic information 

on household characteristics such as age, gender, and education of the household head; 

caste; housing structure; landownership; and main crop of production in the rabi season. 

 
Figure 2.3 ― Timeline of activities 

The listing survey provides two important contributions to the study. Because much 

of the randomization in our design is conducted at the village level, aggregation of 

household data from the listing survey allows us to ensure balance across village-level 

statistics. Additionally, given that purchase rates of index insurance are generally found to 

be quite low in similar studies, it was important for us to focus our energies on households 

that would be relatively more inclined to purchase insurance. The information from the 

listing questionnaire allows us to identify these individuals and oversample them.  

Studies of insurance demand in India suggest that those who purchase weather index 

insurance have larger landholdings and higher education levels than those who do not 

(Giné, Townsend, and Vickery 2008; Cole et al. 2013). Data on education of the household 

Data Collection Insurance Activities Coverage Period   

First Season—2011 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Listing and 
baseline survey 

New weather 
stations 
installed 

Literacy 
training 
(Basix) 

Discounts provided and insurance sales     

        

Second Season—2012 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Follow-up survey    Discounts provided and insurance sales  
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decision maker and landholding of the household collected in the listing survey were used 

to classify households into five categories. Households in the first category, type 0 

households, are those that do not own any land. As these households were not allowed to 

purchase weather insurance, they were not included in the survey sample or in the training 

and marketing activities. Households that own land were further categorized into four 

types: 

• Type 1 households own six acres or less of land and have a household decision 

maker with less than five years of schooling 

• Type 2 households own six acres or less of land and have a household decision 

maker with five years or more of schooling 

• Type 3 households own more than six acres of land and have a household decision 

maker with less than five years of schooling 

• Type 4 households own more than six acres of land and have a household decision 

maker with five years or more of schooling. 

We sampled 30 households from each village. On average, the proportion of type 4 

households was found to be much lower than the proportion of type 1, 2, or 3 households. 

However, type 4 households are, a priori, the ones most likely to buy insurance. As a result, 

these were oversampled in our sampling strategy, such that half of the 30 sampled 

households would belong to this category. The remainder of the randomly selected sample 

in each village consisted of 3 type 1 households, 6 type 2 households, and 6 type 3 

households. 

A baseline survey was conducted among all sampled households in January–February 

2011, immediately after the listing exercise had been completed in a village. Sampled 

household characteristics are displayed in Tables 2.3 and 2.4. A follow-up survey was 

conducted in January–February 2012 among the same households. Attrition in the follow-

up survey was only 2.16 percent and not significantly different between treatment groups. 

On one hand, we use data collected in the follow-up survey on understanding of and 

attitudes toward insurance to assess whether the interventions had the expected effect. On 

the other hand, to assess the impact of the interventions on realized demand for insurance, 

we use administrative data on insurance sales. The advantage is that these data are 

available for both 2011 and 2012 and are expected to be more accurate than self-reported 

survey data on purchases. 
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Table 2.4 ― Tests of Balance between Villages Offered Intensive and Basic 

Insurance Literacy Training 

 Mean in 

intensive 

training 

villages 

Mean in 

basic 

training 

villages 

T-test of 

difference 

Variables from households’ listing    

Number of households  212.68 215.09 –0.1 

Proportion of type 0 households  0.39 0.37 0.35 

Proportion of type 1 households  0.23 0.22 0.49 

Proportion of type 2 households  0.21 0.23 –0.7 

Proportion of type 3 households  0.06 0.06 –0.52 

Proportion of type 4 households  0.12 0.12 –0.48 

Proportion of female headed households  0.04 0.04 0.43 

Average years of education of the household head 4.17 4.29 –0.47 

Proportion of SC/ST/OBC  0.81 0.82 –0.11 

Average land owned (in acres) 3.77 3.82 –0.13 

Variables from baseline survey    

Distance to weather station (in kms.) 8.02 8.91 –0.67 

Distance to market (in minutes) 47.34 48.03 –0.15 

Average cultivated acreage  6.85 6.8 0.09 

Proportion of land that is irrigated  0.71 0.74 –0.82 

Average cultivated acreage in the rabi  5.65 5.65 0 

Proportion of land on which wheat is grown 0.63 0.6 0.8 

Proportion of land on which chickpeas are grown  0.28 0.29 –0.27 

Average cultivated area in the kharif  6.4 6.22 0.38 

Proportion of land on which soybean is grown  0.9 0.93 –1.13 

Prop. of households reporting drought in last 10 years  0.16 0.13 0.72 

Prop. of households that had some agric. insurance  0.3 0.38 –1.59 

Prop. of households that had some insurance  0.58 0.57 0.19 

Prop. of households with access to agricultural loans  0.93 0.92 0.37 
Note: SC/ST/OBC refers to scheduled caste, scheduled tribe and other backward castes. Households are classified in types according to whether they own 

more (+) or less (-) than six acres of land, and whether the household decision maker has had more (+) or less (-) than five years of schooling.  Type 0 

households own no land. Type 1: (-)Land/(-)Schooling, Type 2: (-)Land / (+)Schooling, Type 3: (+)Land/(-)Schooling, Type 4: (+)Land/(+)Schooling. Source: 

Listing and household survey. 

In 2011, HDFC insurance agents sold a total of 308 contracts in treatment villages.11 

Take-up was 6.8 percent among sampled households. A majority of these sales, 263, 

correspond to the third insurance period. The remaining contracts covered the second 

period. The first period had no contracts because HDFC insurance agents did not get to 

market for it. In Bhopal and Dewas, the majority of transactions (more than 95 percent) 

were for the more comprehensive, more expensive contract; but in Ujjain, more than 90 

percent of the purchased contracts were for the less comprehensive, cheaper policy. In 

                                              

11 This includes insurance purchases from both, sampled and non-sampled households within treatment 

villages. 
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2012, the program was less successful overall, with only 185 contracts sold. Take-up was 

4.0 percent among sampled households. Although the majority of contracts purchased 

were for the less comprehensive, cheaper policy (96 percent), there was heterogeneity 

regarding the covered crop phases between districts. In Bhopal, almost two-thirds of the 

contracts covered risks in the third phase (around harvest), with the rest mainly 

concentrated in the first phase (sowing). In Dewas, purchases were relatively stable across 

the three periods. In contrast, in Ujjain, 90 percent of the purchased contracts corresponded 

to the first phase. 

Table 2.5 ― Summaries of Insurance Purchases by District and Sample 

 Treated Villages Household Sample 

 

 

 

Number 

of sales 

Acres 

insured 

Acres 

insured 

per sale 

Number of 

households 

insured 

Acres 

insured 

Acres 

insured per 

purchasing 

household 

2011 sales       

 Ujjain 115 59.5 0.5 10 8.5 0.9 

 Dewas 48 70 1.5 16 43 2.7 

 Bhopal 145 49 0.3 123 43.75 0.4 

 Total 308 178.5 0.6 149 95.25 0.6 

2012 sales       

 Ujjain 83 114 1.4 10 66 6.6 

 Dewas 75 150 2.0 44 85 1.9 

 Bhopal 27 60 2.2 33 31 0.9 

 Total 185 324 1.75 87 182 2.1 

Transaction data are summarized in Table 2.5. In both years, more than half (173 in 

2011 and 182 in 2012) of the total contracts were purchased by households sampled in the 

baseline survey and thus invited to attend training sessions. A number of households 

bought multiple contracts, as indicated by the total number of households insured in Table 

2.5. In 2011, although relatively few households purchased insurance in Dewas and Ujjain, 

on average they insured more land. This is also true of 2012 sales. The remaining contracts 

were bought by 125 households (in 2011) and 75 households (in 2012) that were not in the 

baseline sample and did not attend the training sessions. In our analysis, we will focus on 

uptake and demand aggregated across the entire season. 

2.4 Analysis 

The random allocation of price discounts, placement of weather stations, and delivery of 

additional training allows us to estimate the intent-to-treat (ITT) effect of these 

interventions on demand for weather hedges through a direct comparison of purchases 

across different treatment arms.  
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For the most part, our dependent variable is a dummy variable taking the value of 1 if 

a household purchased insurance in a given season. To account for the dichotomous nature 

of our dependent variable, we estimate a logit model. For ease of interpretation, all tables 

report the average marginal effects across the sample. Since the distance of a farmer’s plot 

to a pre-existing weather station is potentially endogenous, when we consider the impact 

of distance to the weather station on demand, we need to instrument this variable. We do 

so by following the approach in Smith and Blundell (1986), including the estimated 

residuals from the instrumenting regression in the main regression. We use as the 

instrument whether the insurance policy for a given farmer was referenced to an existing 

or to a new weather station. We bootstrap the standard errors of the main regression to 

account for the presence of the estimated residuals from the instrumenting regression. 

We also present some results for the quantity of insurance purchased, defined as the 

number of acres of land that the household insured, taking a value of zero if the household 

did not purchase any insurance. We estimate these specifications by ordinary least squares 

and by two-stages least squares when endogenous explanatory variables are included. 

2.4.1 The Initial Impact of Marketing Interventions 

In Tables 2.6 and 2.7 we present results on the impact of our three interventions—price 

discounts, investment in weather stations, and intensive training—on demand for weather 

hedges. Table 2.6 captures demand with the take-up dummy discussed above. Table 2.7 

uses the natural logarithm of units purchased as a dependent variable. The price variable 

is defined as the natural logarithm of the price (after discount) of the cheapest policy. Since 

the ratio of the price between the policies for the low- and high-probability events is 

constant across all districts, the natural logarithm of the discounted price of the cheapest 

policy is a good measure of the discount value for all policies. 

First, we look at the impact of being offered a price discount. Table 2.6 shows that 

receiving a price discount has a substantial effect in terms of encouraging a household to 

purchase insurance. A 10 percent decrease in price seems to lead to a 1.3 percentage point 

increase in take-up, which, given the low levels of average take-up, corresponds to a 19 

percent increase in demand from the average. Similarly, we find a significant price 

sensitivity in Table 2.7. Here, the dependent variable is the natural logarithm of the units 

purchased, and as such, the coefficient on the price variable is a measure of the elasticity 

of demand. We find a considerable price elasticity of 0.58, not significantly different from 

the price elasticity of 0.66 to 0.88 estimated by Cole et al. (2013) for weather index 

insurance in other states in India.12 

                                              

12 All of the above results are robust to including household-level covariates in the estimations. This is also 

true for the following results on weather station investments and intensive insurance training. This is 

expected, given that the tests of balance indicate no significant differences across household characteristics 

between treatment groups. 
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Table 2.6 ― Take-Up Among Sampled Households, 2011 

  (1) (2) (3) (4) (5) (6) 

 Logit Logit IV Logit Logit IV Logit Logit 

              

Log (price) –0.135*** –0.207*** –0.133*** –0.134*** –0.127*** –0.126*** 
 (0.024) (0.032) (0.026) (0.023) (0.031) (0.038) 

Log (distance to 

weather station) 

–0.018*** –0.010* –0.042 –0.023*** –0.056  
(0.007) (0.006) (0.031) (0.009) (0.035)  

Intensive 

training  0.050* 0.020 0.049    
 (0.026) (0.041) (0.032)    
Log (distance) x 

log (price) 
   (+)** (+)**  

      
Station is close      0.071* 
 

     (0.041) 

Station is close 

x log (price) 
     (–)** 

      

Sample Full 
New 

station 
Full Full Full 

Far and 

close 

Observations 2,183 848 2,183 2,183 2,183 932 
Notes: Average marginal effects are reported. IV specifications instrument log of distance with assignment to a new weather station. In 

columns (4), (5), and (6), as marginal effects are not defined for the interaction term, we show the sign and significance for the parameter in 

the logit equation. Standard errors for the marginal effects, clustered at the village level, are in parentheses. Standard errors are bootstrapped 

in IV specifications. *** p < 0.01, ** p < 0.05, * p < 0.1. 

Table 2.7 ― Log of Units Bought, 2011 

 (1) (2) (3) 
 OLS OLS IV OLS 

       

Log (price) –0.582*** –0.579*** –0.573*** 

 (0.133) (0.134) (0.134) 

Log (distance)  –0.081** –0.142 

  (0.040) (0.113) 

Intensive  0.176* 0.177* 

  (0.091) (0.091) 

Observations 2,183 2,183 2,183 

R-squared 0.100 0.114 0.111 
Notes: IV specifications instrument log of distance with assignment to a new weather 

station. Standard errors, clustered at the village level, are in parentheses. *** p < 0.01, 

** p < 0.05, * p < 0.1. 

Second, we consider the impact of weather station investment. To estimate the impact 

of basis risk on demand, we use the distance of a household to the reference weather station 

in the insurance policy they were offered. Using global positioning system (GPS) 

coordinates of households and GPS coordinates of the weather stations (new and old), we 

calculate the straight-line distance between each sample household and the reference 

weather station. However, this distance cannot be assumed as exogenous for households 

that were not assigned to a new weather station. Therefore, in column 2 we present results 
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only for those that were assigned to a new weather station, and in column 3, for all sample 

households but instrumenting distance with an indicator variable taking the value of 1 if 

the reference weather station was a new, randomly assigned station and zero otherwise. 

Results from the first stage of this regression (Appendix Table 2) show a significantly 

negative relationship between the instrument and distance. On average, households 

assigned to new reference weather stations were 6 km closer than those assigned to 

preexisting ones. Both the reduced-sample logit and the full-sample IV estimates suggest 

that increasing the distance from the weather station reduces uptake, though the IV 

specification yields a non-significant estimate. Doubling the distance to the weather station 

from the average reduces take-up by roughly 1.25 percentage points. An overall similar 

pattern holds when we consider the natural logarithm of quantity purchased as the 

dependent variable (Table 2.7). 

Third, we assess the impact on insurance demand of the intensity of training provided. 

Table 2.6 shows that households that were offered intensive training modules had 

significantly higher insurance demand. Take-up among those that were offered intensive 

training was about 5 percentage points higher than among those that were offered basic 

training only, but the effect is only weakly significant. The amount of insurance purchased 

(Table 2.7) was also weakly significantly higher among those that were offered the 

intensive training.13 

 

Figure 2.4 ― Price sensitivity of demand as distance to the weather station 

increases, 2011 

                                              

13 For both (basic and intensive) training sessions the participation rates were considerably high. Around 

70% of invited households attended, 20% attended through a representative, and the remaining 10% 

received training via later household visits. We find no differential results in take-up related to type of 

attendance. Also type of attendance is not related to household level covariates. 
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Thus far we have considered the impact of the treatments in isolation. However, we 

are likely to observe a different price elasticity for households offered a good insurance 

product, that is, with less basis risk, than for households offered a bad insurance product, 

one with high levels of basis risk. We test this assumption in columns 4 to 6 of Table 2.6 

by interacting price and distance to the reference weather station. We indeed find this to 

be the case: The sensitivity of demand to price increases the closer a household is to the 

product’s reference weather station.14 We further show this divergence in figure 4, which 

plots the average marginal effect of the logarithm of price on the probability of take-up for 

households located at different distances from the reference weather station. As an 

alternative exercise, column 6 restricts the sample to only those households that are located 

less than 5 km or more than 12 km from their reference weather station. We then use an 

indicator variable that takes the value 1 if a household belongs to the first group. 

Households located less than 5 km from a weather station have a sensitivity to price almost 

10 times higher (marginal effect of –0.20) than that of those located more than 12 km from 

a weather station (marginal effect of –0.02). Overall, this suggests that subsidies are more 

effective in encouraging demand when complementary investments are made aimed at 

reducing basis risk. 

Table 2.8 ― Impact of Offering Insurance on Insurance Knowledge and Attitudes 

  (1) (2) (3) (4) (5) (6) 

 

Knowledge 

about 

insurance 

Rainfall 

at weather 

station is 

similar 

Trust 

government 

insurance 

to pay 

Trust 

private 

insurance 

to pay 

Would buy if 

previously 

good year and 

no payout 

Would buy if 

previously 

bad year and 

no payout 

              

Offered 

insurance 

-0.001 0.038 0.010 0.065** 0.006 0.058 

(0.001) (0.036) (0.017) (0.031) (0.031) (0.041) 

Mean in control 3.02 0.14 0.93 0.19 0.76 0.27 

Observations 3,237 3,209 3,234 3,231 3,235 3,232 
As the knowledge variable takes values from 0 to 5, column (1) is estimated through an ordered logit. The rest of the columns are estimated 

through logit specifications. Average marginal effects are reported. Lagged dependent variable (from baseline survey) and district dummies 

are included but not shown. Standard errors, clustered at the village level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: 

Household survey data. 

2.4.2 Impact on Insurance Knowledge and Attitudes 

Using follow-up survey data collected in January 2012, we can explore different 

hypotheses for the mechanisms behind the treatment effects. In particular, we examine (1) 

whether comprehension of the insurance product was higher for those that were offered 

the intensive training and (2) whether households with insurance linked to rainfall at a 

                                              

14 While the marginal effect of the distance variable is not significant in the IV specification, both the 

distance and the interaction parameters are strongly significant in the estimated logit equation (p-values of 

0.007 and 0.008, respectively). 
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new, closer weather station believed it to better resemble the actual rainfall on their land. 

In Table 2.8 we assess the effect of being offered insurance on different self-reported 

measures of knowledge and attitudes, relative to households in villages where no insurance 

was offered. This is the combined average effect of all activities in the villages in which 

insurance was offered: the general marketing insurance activities and basic training—

which took place in all villages—plus the average effect of intensive training, discounts, 

and the placement of new weather stations in selected villages, together with the potential 

effects of actually having purchased insurance. 

We see that, on average, households in villages that were offered insurance did not 

have a better understanding of insurance by the time of the follow-up survey 

(approximately 7 to 8 months after training). This does not necessarily mean, however, 

that training was ineffective or that this knowledge was short-lived, as both control and 

treatment villages significantly increased their levels of knowledge about insurance.15 This 

could be due to a number of different reasons, such as spillover effects from treatment to 

control villages or other external shocks that affected both types of villages, such as the 

roll out of government insurance programs. The table does show though that households 

in treatment villages seem to trust private insurance companies more. This is somewhat 

expected since payouts stemming from the rainfall realizations of the previous season were 

disbursed promptly and without any problem. 

Table 2.9 ― Impact of Training, Discounts, and Weather Stations on Insurance 

Knowledge and Attitudes 

  (1) (2) (3) (4) (5) (6) 

 

Knowledge 

about 

insurance 

Rainfall 

at weather 

station is 

similar 

Trust 

government 

insurance 

to pay 

Trust 

private 

insurance 

to pay 

Would buy if 

previously 

good year and 

no payout 

Would buy if 

previously 

bad year and 

no payout 

Log (distance) 0.133* –0.088** –0.023 0.020 –0.089* –0.053 

 (0.076) (0.042) (0.023) (0.043) (0.047) (0.058) 

Intensive 

training  

–0.064 –0.035 0.005 –0.021 –0.015 –0.048 

(0.063) (0.032) (0.019) (0.036) (0.038) (0.053) 

Log (price) –0.106** –0.008 –0.003 0.032 –0.009 0.045 

 (0.043) (0.016) (0.011) (0.023) (0.021) (0.031) 

Observations 2,130 2,111 2,127 2,126 2,128 2,125 
IV specifications instrument log of distance with assignment to a new weather station. Lagged dependent variable (from baseline survey) 

and district dummies included but not shown. Standard errors, clustered at the village level, are in parentheses. *** p < 0.01, ** p < 0.05, 

* p < 0.1. Source: Household survey data. 

Table 2.9 disentangles some of these effects. We find that having received intensive 

training has no effect on comprehension of the insurance product or the other attitude-

related questions that households were asked. One plausible explanation is that insurance 

                                              

15 These results are unreported. 
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training was indeed effective (as shown by its significant positive effect over first year’s 

demand), and control villages simply caught up in terms of insurance knowledge by the 

time of the follow-up survey. Alternatively, it could have been the case that the additional 

training served more of a marketing purpose rather than provided additional knowledge 

about insurance itself, and insurance knowledge per se increased equally on average in all 

villages due to other unidentified factors, external to our intervention. Unfortunately we 

do not have data to distinguish between these hypotheses.  

The table does show, however, that households that were offered higher price 

discounts knew more about the insurance product being sold (perhaps due to an 

encouragement effect or because they were more likely to actually buy insurance and thus 

to engage in learning by doing). Moreover, and as expected, households that were offered 

insurance referenced to a new, closer weather station were more likely to believe it was a 

good approximation of actual rainfall on their land. 

Table 2.10 ― Take-Up Among Sampled Households, 2012 

  (1) (2) (3) (4) (5) (6) 

 Logit Logit IV Logit Logit IV Logit Logit 

Log (price) –0.026** –0.053*** –0.027* –0.024* –0.026 -0.018 

(0.012) (0.017) (0.015) (0.013) (0.018) (0.024) 

Log (distance to 

weather station) 

–0.008** –0.013*** –0.001 –0.006* –0.000 
 

(0.004) (0.002) (0.015) (0.003) (0.017) 
 

Intensive training 0.005 0.022 0.005 
   

(0.012) (0.016) (0.012) 
   

Log (distance) x 

log (price) 

   
(+)** (+) 

 

       

Station is close 
     

0.011       
(0.018) 

Station is close x 

log (price) 

     
(–)** 

       

Sample Full 
New 

station 
Full Full Full 

Far and 

close 

Observations 2,183 848 2,183 2,183 2,183 932 
Notes: Average marginal effects are reported. IV specifications instrument log of distance with assignment to a new weather 

station. In columns (4), (5), and (6), as marginal effects are not defined for the interaction term, we show the sign and 

significance for the parameter in the logit equation. Standard errors for the marginal effects, clustered at the village level, are 

in parentheses. Standard errors are bootstrapped in IV specifications. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: 

Administrative sales data. 

2.4.3 The Longer-Run Impact of Marketing Interventions 

We now turn to the effect of the marketing interventions on take-up in 2012, the second 

season of sales for the index insurance product. As described in Section 2.2, in 2012 we 

again offered price discounts, randomized at the village level, but left the other treatments 
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unchanged: No new weather stations were installed and no additional training sessions 

were conducted. 

Table 2.10 presents specifications parallel to those in Table 2.6 but for the second 

season of index insurance sales. The price of the insurance policy was again strongly 

significant in predicting demand. The distance to the weather station was also strongly 

associated with purchases both in the full sample and in the subsample of villages served 

by the new stations, although the instrumental variables results on the full sample no longer 

hold. The interaction between price and basis risk also replicates the results already 

discussed for 2011. 

Table 2.11 ― Take-Up Among Households, 2012, Including Price in 2011 

  (1) (2) (3) (4) (5) 

 Logit IV Logit Logit IV Logit Logit 

Log (price, 2012) –0.026** –0.027* –0.024** –0.026 –0.018  
(0.012) (0.015) (0.013) (0.018) (0.025) 

Log (price, 2011) –0.002 –0.002 –0.003 –0.004 0.001  
(0.010) (0.010) (0.010) (0.010) (0.017) 

Intensive 0.005 0.005 
   

 
(0.012) (0.013) 

   

Log (distance) –0.008** –0.001 –0.006* –0.000 
 

 
(0.004) (0.015) (0.003) (0.016) 

 

Log (distance) x 

Log (price, 2012) 

  
(+)** (+) 

 

     

Station is close 
    

0.011      
(0.018) 

Station is close x 

Log (price, 2012) 

    
(–)** 

      

Sample Full Full Full Full 
Far and 

close 

Observations 2,183 2,183 2,183 2,183 932 
Notes: Average marginal effects are reported. IV specifications instrument log of distance with assignment 

to a new weather station. In columns (3), (4), and (5), as marginal effects are not defined for the interaction 

term, we show the sign and significance for the parameter in the logit equation. Standard errors for the 

marginal effects, clustered at the village level, are in parentheses. Standard errors are bootstrapped in IV 

specifications. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: Administrative sales data. 

Now, while during the second year both price discounts and the distance to the weather 

station still seem to significantly (though less strongly) affect the demand for insurance, 

the effect of intensive training completely fades out: Although receiving intensive training 

considerably increased demand in the season immediately following training, it had no 

significant effect on demand a year later. Again, as discussed in Section 2.3.2, this is 

consistent with both control and treatment villages showing similar increases in their levels 

of insurance knowledge, together with the fact that any pure marketing effects stemming 

from being offered intensive training during the first season may have worn off a year 

later. The results, however, are indicative of a learning by doing effect, where being 
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offered a higher discount or being located closer to the weather station could encourage a 

household to get better informed about the insurance product. 

Table 2.11 includes the (discounted) price faced in 2011 as an additional control but 

finds no effect on 2012 insurance demand. Recall from Table 2.9 that households who had 

received a subsidy in 2011 showed a much better understanding of the insurance product. 

Again, this seems to run against the idea that lack of knowledge about insurance stood 

behind the weak demand observed. In addition, this result does not seem to support the 

existence of a discouragement (encouragement) or a price anchoring effect of having 

received a higher (lower) discount in 2011 than in 2012.16 In sum, the results suggest that 

insurance literacy training and subsidies have an immediate, but not sustained, effect on 

demand. 

In Table 2.12 we test the correlation between an individual’s experience with weather 

insurance in 2011 and demand in 2012. We find that prior experience with insurance is 

not, by itself, a strong predictor of demand. However, while purchasing insurance does 

not, on its own, have a substantial impact on demand, purchasing insurance and receiving 

a payout is strongly positively correlated with the decision to purchase insurance in the 

subsequent season.17 Moreover, observing other households in the village receiving a 

payout has no significant effect on demand.18 This pattern closely resembles that found by 

Stein (2011), and is in contrast to the work of Cole, Stein, and Tobacman (2014) –who 

find that experiencing a payout in the village is the only relevant predictor of future 

demand, regardless of individually receiving a payout or not--, and Karlan et al. (2012), 

who find individual as well as social network spillover effects. In any case, as we lack data 

on each household’s social network, we cannot directly compare our results with the latter. 

Finally, we present pooled results for the take-up in both seasons in Table 2.13. The 

resulting impacts simply reflect the average of the treatment effects over the first and 

second seasons. It is worth noting, however, that the interventions are still significant in 

the pooled results. 

2.4.4 Is Demand Hump-Shaped in Risk-Aversion? 

We now turn to testing the theoretical predictions outlined in Section 2.1 regarding the 

relationship between risk aversion and insurance demand. Specifically, we examine 

whether a hump-shaped relationship between demand and risk aversion exists for products 

priced with a multiple above 1 (that is, above the actuarially fair price) and a downward-

sloping relationship for products with a multiple below 1. In our experiment, insurance 

                                              

16 This hypothesis is also rejected in alternative (not reported) specifications, such as using the difference 

in discount between both seasons or an indicator variable for whether the discount in 2012 was lower than 

in 2011. 
17 Around 10 percent (14 households) of the 2011 purchasers received a payout from the insurance product. 
18 These results are not shown. 
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was in most cases priced above the actuarially fair price, and so we would expect to 

observe demand, on average, initially increasing with risk aversion and then falling. We 

show our estimates for the relationship between risk aversion (measured through a 

hypothetical Binswanger lottery survey question) and demand for insurance in Table 

2.14.19 Although we do not find a significant difference in demand across different levels 

of risk aversion, when we graph the point estimates, we do observe the predicted hump-

shaped demand for index insurance (as depicted in figure 5).20 

Table 2.12 ― 2012 Uptake Among Sampled Households, Including 2011 Uptake 

and Payouts 

  (1) (2) (3) (4) (5) 

 
Logit 

IV 

Logit 
Logit IV Logit Logit 

            

Log (price) –0.024** –0.025 –0.022* –0.023 -0.007  
(0.012) (0.016) (0.013) (0.019) (0.024) 

Bought insurance 

in 2011 

0.016 0.019 0.015 0.017 0.048** 

(0.013) (0.038) (0.013) (0.056) (0.022) 

Had a payout in 

2011 

0.073*** 0.071** 0.071*** 0.070 0.062* 

(0.018) (0.036) (0.019) (0.050) (0.033) 

Intensive 0.005 0.005 
   

 
(0.012) (0.013) 

   

Log (distance) –0.007** 0.000 –0.005 0.000 
 

 
(0.004) (0.016) (0.003) (0.017) 

 

Log (distance) x 

Log (price) 

  
(+)* (+) 

 

     

Station is close 
    

0.007      
(0.018) 

Station is close x 

Log (price) 

    
(–)**     

(0.048) 

Sample Full Full Full Full 
Far and 

close 

Observations 2,183 2,183 2,183 2,183 932 
Notes: Average marginal effects are reported. IV specifications instrument log of distance with assignment 

to a new weather station. In columns (3), (4), and (5), as marginal effects are not defined for the interaction 

term, we show the sign and significance for the parameter in the logit equation. Standard errors for the 

marginal effects, clustered at the village level, are in parentheses. Standard errors are bootstrapped in IV 

specifications. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: Administrative sales data. 

                                              

19 We calculate a range for the implicit risk aversion coefficients given a respondent’s answer assuming a CRRA 

function. In this way, the upper (lower) bound of the range is the relative risk aversion parameter that 

makes the selected option equivalent (in a utility sense) to the immediate less (more) riskier one. We then 

use the geometric average between these two bounds in the graphs. In the case of the riskiest choice 

(number 5), we use the coefficient from the lower bound. 
20 In all figures, we plot a spline-smoothed curve across the implicit coefficients of relative risk aversion, 

calculated as explained above. 
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Table 2.13 ― Pooled Results 

  (1) (2) 

 Logit IV Logit 

      

Log (price) –0.073*** –0.073*** 

 (0.015) (0.017) 

Log (distance to 

weather station) 

–0.010*** –0.020 

(0.003) (0.017) 

Intensive 0.029* 0.029* 

 (0.015) (0.016) 

2012 season –0.073*** –0.073*** 

 (0.015) (0.017) 

Observations 4,366 4,366 
Notes: Average marginal effects are reported. IV specifications 

instrument log of distance with assignment to a new weather station. 

Standard errors for the marginal effects, clustered at the village 

level, are in parentheses. Standard errors are bootstrapped in IV 

specifications. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: 

Administrative sales data. 

 
Figure 2.5 ― Probability of purchase against coefficients of relative risk aversion, 

Using historical weather data, we estimate the actuarially fair price of the insurance 

contracts that were offered. In Ujjain and Dewas, households receiving the two highest 

discount values faced an insurance contract that was actuarially favorable (with a multiple 

less than 1). This was also the case for those households in Bhopal who received the 

highest discount voucher. We then separately estimate the relationship between demand 

and risk aversion for the subgroups of households that faced a favorable (multiple below 

1) or an unfavorable (multiple above 1) insurance contract. Results are presented in 

columns 2 and 3 of Table 2.14. Again, we see no significant difference in demand across 

risk aversion, but graphing the results is still instructive (figure 6). We observe the 

predicted hump-shaped demand for households facing an insurance contract priced at a 

multiple higher than 1 (left panel) and the predicted downward-sloping demand curve for 
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households facing an insurance contract priced below the actuarially fair level (right 

panel). However, there is a kink in the demand curve for households with low levels of 

risk aversion that is not predicted by the theory. 

Table 2.14 ― Testing the Relationship between Risk Aversion, Price, and Demand  

Dependent variable 

is 2011 uptake 
(1) (2) (3) (4) 

          

Risk choice 1 

(least risk averse) 

0.008 –0.009 0.026 
 

(0.021) (0.022) (0.039) 
 

Risk choice 2 0.022 0.022 0.026 
 

 
(0.018) (0.023) (0.037) 

 

Risk choice 3 0.007 0.000 0.034 
 

 
(0.017) (0.020) (0.036) 

 

Risk choice 4 –0.000 0.005 0.002 
 

 
(0.014) (0.017) (0.039) 

 

Less risk averse 
   

0.010     
(0.010) 

Log (price) 
   

–0.136***     
(0.025) 

Less risk averse x 

Log (price) 

   
(–) 

    

Sample Full 
Multiple 

above 1 

Multiple 

below 1 
Full 

Observations 2,180 1,354 551 2,183 
Notes: Average marginal effects are reported. In column (4), as marginal effects are not defined for the 

interaction term, we show the sign and significance for the parameter in the logit equation. Standard 

errors for the marginal effects, clustered at the village level, are in parentheses. *** p < 0.01, ** p < 

0.05, * p < 0.1. Source: Administrative sales data and household survey data. 
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Figure 2.6 ― Probability of purchase against coefficients of relative risk aversion  
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Overall, results appear consistent with theoretical predictions; although, arguably 

because of limited power, no significant trend across levels of risk aversion is found. If 

these theoretical predictions were to hold true, we would also expect the price elasticity of 

demand for insurance to be higher among those who are less risk averse than among those 

who are more risk averse. This is potentially a test with higher power. We show this 

exercise in column 4 of Table 2.14 and do not find a significant difference between the 

price elasticity of demand for those who are more and less risk averse. 

2.5 Conclusions  

This chapter presents causal evidence on three factors that affect take-up of rainfall-based 

weather hedges in India: price, distance to the reference weather station (a proxy for basis 

risk), and insurance literacy.  

We link our empirical analysis to an expected-utility theoretical framework of the 

demand for insurance under the presence of basis risk. In line with the predictions of the 

model, demand for the insurance products offered to farmers (a series of weather hedges) 

is decreasing in price and basis risk. These effects are robust and significant. In addition, 

we explicitly test a theoretical prediction from Clarke (2016) for insurance products with 

basis risk, where demand increases with aversion at low levels of risk aversion, while it 

decreases at higher levels. Empirically, we find some evidence for this relationship, though 

the results are not strong, arguably due to a lack of power. 

We also find that demand increases as product comprehension increases. This is an 

important finding given that these weather hedges are being offered to farmers who have 

limited experience with formal financial products, and certainly not with products as 

complex as a weather hedge. However, while both price and investment in new weather 

stations (as a means to reduce the extent of basis risk) are fairly effective in encouraging 

future demand for the product, insurance literary training seems to be of a more transient 

nature, with no significant impact on understanding or demand after the first year of its 

implementation. Price discounts had a much stronger effect on understanding, consistent 

with a model of learning by doing. We also find that a prior positive experience with the 

product—as captured by having purchased insurance and having received a payout during 

the first season—significantly encourages uptake in subsequent seasons. This could also 

be explained by low levels of trust in the product or the insurance company. This is an 

interesting avenue for future research. 

The results of this study suggest that the price and basis risk of these products are key 

drivers of demand and that weather hedges will prove to be a useful tool for farmers only 

if the price and basis risk associated with the products are substantially reduced. However, 

it is important to consider the size of investment needed to allow well-priced, low-basis 

risk products to be available. Although we cannot truly compute a measure of the cost-

benefit of price discounts and weather station infrastructure until we assess the (largely 
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unknown) benefits of buying insurance and any other spillovers these interventions may 

bring about, we can compare the cost of each in increasing uptake by 10 percentage points. 

In 2011, the cost of distributing price discounts was around US$2.97 per capita. From 

the estimations in Table 2.6, a discount of about Rs.135 (about $2.7) is needed to increase 

average take-up rates by 10 percentage points. This amounts to a total of, roughly, $5 per 

capita to obtain the same response in demand that can be obtained through intensive 

training for $20. In 2012 discounts were implemented at the village level, which basically 

eliminated discount distribution costs, although the price effect was weaker with a Rs.180 

($3.6) discount needed to encourage an increase in uptake of 10 percentage points. This 

compares favorably with the cost of insurance literacy training, which increased demand 

by 5 percentage points in 2011 at a per capita cost of $10.40. 

In our sample, installing a new weather station increased take-up by almost 5 

percentage points as a result of the increased proximity to the trigger station afforded to 

households in nearby villages. Installing two new stations would increase take-up rates by 

10 percentage points. The cost of installing two new stations was $13.34 per household 

serviced, but in reality this cost can be spread across more households and across multiple 

years, given installing a new weather station not only encourages take-up in the year of 

installation but also that in subsequent years. Just spreading the installation investment of 

a new weather station over five years (and assuming a 20 percent interest rate) reduces the 

per-person annual cost to $2.23. Moreover, additional welfare benefits may stem from an 

insurance product with less basis risk. This is an important topic to explore in future 

research. 
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CHAPTER 3 

3 Estimating Spatial Basis Risk in Rainfall Index 

Insurance: Methodology and Application to Excess 

Rainfall Insurance in Uruguay 

Weather index insurance has gained considerable attention during the past decade as a 

promising instrument to increase the resilience of rural agricultural households and 

unleash productivity potentials in smallholder farming.21 By allowing insurance payouts 

to be determined by an objective and independently measured index, this instrument 

allows to overcome problems of asymmetric information and high loss verification costs, 

argued to have limited the expansion of traditional indemnity insurance into rural areas of 

developing countries.22 Despite the general enthusiasm, however, the development of 

index insurance markets has not been without its drawbacks. A particularly problematic 

element in this regard has been the overall low level of demand among farmers, which has 

resulted in most existing studies redirecting efforts towards analyzing demand 

determinants and away from other important questions such as the extent of the benefits 

over the production process stemming from reduced agricultural risk.23 

Perhaps the most cited obstacle for the adoption of index insurance has been basis risk, 

or the mismatch between crop losses (a farmer’s true variable of interest) and insurance 

payouts. Basis risk is an inherent limitation of index insurance products, arising from the 

inability of an index to perfectly replicate an individual farmer’s losses. By reducing the 

effectiveness of insurance, basis risk is not only expected to negatively impact demand, 

but also any potential positive effects on production and welfare. While a number of 

                                              

21 Hazell et al. (2010) provide a good overview of the topic. 
22 See Hazell, Pomareda, and Valdés (1986) for a comprehensive treatment. 
23 Cole et al. (2012) discuss the lack of demand for insurance across a number of pilot projects. A number 

of studies analyze the determinants of demand, such as Chapter 2 of the present dissertation; Cole et al. 

(2013); or Giné, Townsend, and Vickery (2008). For a few studies analyzing the impacts of index insurance 

on agricultural production see Cai (2016); Cole, Giné, and Vickery (2013); and Mobarak and Rosenzweig 

(2012). 
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innovative approaches have been suggested to minimize its consequences, basis risk still 

constitutes one of the most discussed issues around the general index insurance debate.24 

Surprisingly, the ubiquity of basis risk in the index insurance literature and debates 

has not been matched with a concerted effort to understand and analyze its full extent and 

characteristics, and studies directly tackling the subject are scarce. Most of the attention 

has been centered on spatial (or geographic) basis risk—the fraction of basis risk arising 

from measuring an insurance’s index at a physical location other than the farmer’s plot.25 

While, to our knowledge, there are no available estimations of the relative importance of 

the different components of basis risk, spatial variation in weather is perhaps the most 

salient negative feature of an index insurance product from a farmer’s perspective. For 

instance, a small number of studies in developing countries have shown that smallholder 

farmers seem to strongly react to the distance at which the insurance’s index is measured, 

suggesting a good understanding of the properties and downsides of this component.26 

Nevertheless, distance to the weather station can only serve as a rough proxy for spatial 

basis risk and almost no efforts have been conducted to properly quantify the latter.27 

A standard exercise commonly found in the literature has been to estimate rainfall 

decorrelation functions.28 A typical application would take the following form: (1) 

calculate Pearson correlation coefficients between daily rainfall amounts at every pair of 

available weather stations; (2) link these with geographic distance through the estimation 

of a (parametric or non-parametric) smoothing function. While this type of exercise can 

provide a rough approximation of the overall spatial dependence in rainfall, it suffers from 

a number of limitations with regard to the estimation of spatial basis risk. First, correlation 

can be used as an appropriate measure to measure dependence only if the underlying 

bivariate distribution of two sites is elliptical in nature (see, for instance, Embrechts, 

McNeil, and Straumann, 2002). Unfortunately, such an assumption seems not to be 

appropriate for daily rainfall (see Sections 3.1 and 3.4.2 below). Second, given that, by 

definition, insurance products relate to the occurrence of extreme risk events, the relevant 

                                              

24 See Barrett et al. (2007), for example. Other more recent innovations are the so-called double-trigger 

insurance (Elabed et al., 2013) or gap insurance (Dercon et al., 2014), among others. 
25 A full characterization of the different components of basis risk is offered in Section 3.2. 
26 See Chapter 2, Hill, Hoddinott, and Kumar (2013), and Mobarak and Rosenzweig (2012). Jensen, Mude, 

and Barrett (2014) explain demand through a more comprehensive measure of basis risk that relies on the 

availability of longitudinal household loss data. 
27 One exception seems to be Kost et al. (2012), who estimate basis risk relying on both a crop model and 

a weather simulator. Contrary to our methodology, however, they do not characterize the statistical 

relationship between weather at different sites nor contemplate the regular joint occurrence of extreme 

weather events. Moreover, they do not provide any sense of the variability of their estimates to the 

underlying uncertainty of the (crop and weather) models they rely on for their analysis. 
28 See, for example, Wang and Zhang (2003), Ciach and Krajewski (2006), and Odening, Musshoff, and 

Xu (2007). 
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dependence between sites is that at the tails of the distributional support.29 Third, insurance 

indices are usually functions of daily rainfall, sometimes defined over the course of an 

entire month or season. An appropriate correlation measure should thus be obtained for 

the indices themselves and not for daily observations, as dependence varies with 

aggregation.30 However, the limited availability of years from which to observe annual 

index realizations can greatly affect the precision of these estimates. 

In contrast, this chapter develops a novel methodology to quantify the extent and 

analyze the properties of spatial basis risk for any given rainfall index insurance product 

that can account for the above issues. The methodology is applied to an index insurance 

product covering against excess rainfall in Uruguay. We describe the results in terms of 

two main sources of spatial variation: distance and direction to the reference weather 

station. The latter, while highly context-dependent, has been largely ignored by the 

existing index insurance literature. We compare the model’s results to a theoretical upper 

bound for basis risk derived by Clarke (2016) and to farmers’ perceptions on geographic 

variation in rainfall, elicited during the insurance project’s baseline survey. 

The proposed methodology builds upon a multisite stochastic rainfall generator model 

standard in the hydrological literature, pioneered by Todorovic and Woolhiser (1975) and 

Katz (1977). In particular, the bivariate version of this model (Wilks, 1998) regards rainfall 

at two different sites as arising from two separate components: rainfall occurrence and 

rainfall amount. Rainfall occurrence is modeled as two correlated Markov chain processes 

(one per site); while rainfall amount—conditional on rainfall occurring—is regarded as 

arising from two correlated continuous univariate distributions. 

We extend this model through the use of a copula, an increasingly popular instrument 

that allows us to model non-traditional dependence structures between the marginal 

rainfall amount processes at both sites.31 This is particularly important, as rainfall amounts 

at two nearby sites generally exhibit so-called upper tail dependence, or a tendency of 

extreme rainfall realizations to jointly occur at both sites.32 Such a characteristic is a 

consequence of occasional large-scale precipitation systems, which can cover large 

geographical areas with abundant precipitation, and we indeed find considerable evidence 

for it in our historical rainfall data. The ability to capture this type of dependence is of 

crucial importance for determining spatial basis risk of insurance products, since these 

instruments link payouts to the occurrence of extreme weather events, precisely those at 

                                              

29 Interestingly, the dependence at the tails of the support of a bivariate normal distribution converges to 

zero as one moves further into the tails, regardless of the degree of overall correlation. 
30 See Ciach and Krajewski (2006). 
31 Other studies that have explore the coupling of stochastic rainfall simulation models with copulas are 

Serinaldi (2009b) and Serinaldi and Kilsby (2014). 
32 Kost et al. (2012) comment the following on the same topic: “When extreme events occur, such as the 

high rainfall totals in 2010 or a drought, farmers perceive that all locations are affected similarly.” We 

provide further indicative evidence based on farmers’ perceptions in Section 4.1 below. 
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the tail of their distributions. While these considerations have long been recognized by 

some strands of the insurance literature,33 concerned about the sustainability of insurance 

supply and the necessary capital reserves required to face the potential of rare though 

extreme events, a large amount of studies have failed to incorporate this important issue.34 

In order to calibrate the rainfall model we rely on 30 years of historical daily rainfall 

data from the national meteorological network. This dataset, though geographically sparse, 

is crucial to estimate the long-run statistical properties of rainfall at a single site. To obtain 

reasonable estimates for the degree of spatial dependence between sites, we augment the 

former with data from a unique, dense network of 34 rainfall gauges uniformly distributed 

around the study area and from a smaller network of gauges used as reference for the 

insurance product. With all the components in place we are now able to obtain a fully-

specified bivariate rainfall distribution for an arbitrary plot location and its corresponding 

reference gauge, achieved by interpolating the calibrated model’s parameters. Finally, 

spatial basis risk measures can be obtained from the model through Monte-Carlo 

simulations. 

Of course, this same measure could be calculated directly from historical data. 

However, there are a number of drawbacks related to this. As the above measures must be 

calculated from complete index realizations and indices for insurance products are 

generally defined over the course of a season or a year, this implies working with between 

20 and 50 observations (years) under most data availability scenarios. This is independent 

of the frequency at which the underlying data is available (hourly, daily, etc.). Moreover, 

as index insurance triggers are typically defined at very large (or low) extreme quantiles, 

and basis risk is only relevant around these triggers, the available number of observations 

to calculate these measures reduces even further. For instance, calculating basis risk for an 

insurance product that pays when the realized index is above its 95th percentile would 

imply observing a loss/payment once every 20 years. With 50 years of data, this would 

result in only around 2-3 years where to assess the degree of basis risk of the product. In 

contrast, thanks to (and at the cost of) imposing a specific distributional and dependence 

structure to the occurrence of rainfall at multiple sites, our methodology allows estimating 

these probabilities much more precisely than would otherwise be possible through simply 

simulating from the calibrated bivariate model an arbitrary number of times.  

                                              

33 See, for example, Okhrin, Odening, and Xu (2013) or Goodwin and Hungerford (2015) for two 

applications close to index insurance. 
34 For instance, Wang and Zhang (2003) consider the important topic of risk pooling in relation to 

sustainability in the U.S. agricultural insurance context. Their analysis, though, is based on Pearson 

correlations, a measure which is appropriate only when the underlying joint distribution is bivariate normal. 

Moreover, numerous studies from the finance literature still rely on value-at-risk measures based on normal 

distributions, even though the incorporation of non-classical association patterns through copulas has been 

much more widely incorporated (see, for example, Junker and May, 2005). In this regard, the methodology 

considered in this chapter can also be extended to account for risk in these other realms. 
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The results of this exercise are as follows. Spatial basis risk for the index insurance 

product marketed in Uruguay is not negligible. In particular, and depending on the farmer’s 

location, basis risk is such that the insurance product would fail to pay between 1 to 5 times 

out of 10 in which a farmer were to experience critical crop losses. It is worth noting, 

though, that estimated basis risk for all farmers still lies in a range within which the 

theoretical model would predict positive demand from sufficiently risk-averse individuals. 

Variation of basis risk between farmers is mostly determined by the distance at which a 

farmer is located from the insurance reference weather station, this relationship being 

positive and concave. The latter property implies that, for instance, while basis risk doubles 

at short distances to the weather station (from around 10% at 1 kms. to around 20% at 10 

kms.), it takes a much longer difference in distance to double again (around 40% at 40 

kms.). Interestingly, however, farmers perceive similarities in rainfall patterms to decrease 

much more rapidly. Based on farmer’s survey answers, an average farmer considers 

rainfall patterns in two sites 10 kms. apart as being similar, while rainfall patterns at 40 

kms. or more are considered to be very different. Finally, the results point to the importance 

of taking into consideration geographic variation in precipitation patterns—even within 

relatively small regions—when designing an index insurance product. This element is 

shown to considerably increase (or decrease) the degree of spatial basis risk, depending on 

the exact location of a farmer’s plot and its insurance reference weather station. 

The chapter contributes to the literature in a number of ways. First, by extending the 

model of Wilks (1998) through the use of copulas, our methodology describes a weather 

generator model through which to characterize the spatial properties of extreme rainfall in 

a given region. Second, we provide a framework to estimate the degree of spatial basis risk 

for an arbitrary rainfall index insurance product, which should serve to encourage better 

ex-ante assessments of future products. Third, our application enriches the broader index 

insurance debate by presenting the first direct empirical exploration of spatial basis risk, 

relying on an appropriate operational definition (beyond correlation in rainfall) and 

pointing to the importance of a directional element, generally disregarded as a relevant 

factor. Finally, the study contributes additional evidence on behavioral frictions in the 

insurance market by indicating a relative gap between the real and perceived extents of 

spatial basis risk. Given the low observed demand for index insurance products, closing 

this gap through appropriately targeted information seems an important consideration for 

the future development of the market. 

The chapter proceeds as follows. Section 3.1 describes the general structure of the 

stochastic rainfall generator model and its extension to account for flexible dependence 

patterns through the use of copulas. Section 3.2 discusses in more detail the concept of 

basis risk, in addition to its empirical measurement and its theoretical upper bound. 

Sections 3.3 and 3.4 discuss, respectively, the general context in which we apply the 

methodology and the empirical calibration of the rainfall model. Section 3.5 presents the 

results and Section 3.6 concludes. 
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3.1 Precipitation Model and Extension through Copulas 

Stochastic precipitation generator models have a long tradition in the hydrological 

literature. On one hand, they can be regarded as statistical representations of rainfall at a 

particular geographic area, which can be used to understand and analyze spatial patterns 

of local or regional precipitation systems. On the other hand, they can simulate long 

synthetic sequences of precipitation at various points in space, which can be later used as 

inputs for various applications related to risk and reliability assessment of agricultural and 

water resource systems (see Serinaldi and Kilsby, 2014; Ailliot et al., 2015; and references 

therein).  

While a number of alternative stochastic precipitation generator models are 

available—each exhibiting different characteristics and better suited at tackling different 

types of questions or climatic environments—we will rely on a widely-used version: the 

chain-dependent stochastic model (Todorovic and Woolhiser, 1975; Katz, 1977; Wilks, 

1998), also known as Wilks model. One of the advantages of this model is that it consists 

of an intuitive representation of daily rainfall, with one model component defining the 

binary occurrence process (rain or no rain) and a separate component driving the rainfall 

amount process, conditional on rainfall occurring. Another advantage of this model is that 

it can be calibrated using daily rainfall series at multiple sites, in contrast to other models 

that require more disaggregated rainfall observations (both temporally and spatially) or 

more complex climatological specifications. Finally, the model allows for interpolation of 

distributional and dependence parameters across space, which will be crucial to 

characterize basis risk at arbitrary locations where rainfall gauges are not available. As our 

application is targeted at insurance and other risk practitioners, we believe that the relative 

simplicity and flexibility of the chain-dependent stochastic model is attractive, while the 

estimation of more sophisticated or niche models seems unwarranted. 

It has been shown that the synthetic values arising from such a model are able to 

reproduce the most relevant statistical properties of daily rainfall fairly accurately (Wilks, 

1998).35 Moreover, Mehrotra, Srikanthan, and Sharma (2006) compare three popular 

stochastic precipitation generators and find that the chain-dependent stochastic 

precipitation model offers the best overall performance, with the added advantage of its 

simple structure. This model has been used in a variety of applications, including 

                                              

35 However, it is interesting to notice that this model may not accomodate all situations equally. For 

example, the literature has noted that this model cannot reproduce the statistical properties of length of dry 

spells as accurately as other aspects of the distribution (Buishand, 1978; Racsko, Szeidl, and Semenov, 

1991; Lettenmaier, 1995). These cases can be handled by allowing for a higher-order markov chain driving 

the occurrence process or by alternative stochastic weather models. Nevertheless, the current methodology 

would generally be adaptable to these alternative specifications. In addition, the model has been shown to 

be less accurate at preserving statistical characteristics at higher time scales than the one used for its 

calibration (i.e. monthly and annual time scales for a daily model). See, for instance, Srikanthan and 

Pegram (2007) and Pegram (2009), and references therein. 
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applications to finance and insurance (see, for example, Cao, Li, and Wei, 2004; Lopez 

Cabrera, Odening, and Ritter, 2013; and Ritter, Musshoff, and Odening, 2014).  

One potential shortcoming with the application of this model is known as low 

variability bias (see Dubrovský, Buchtele, and Žalud, 2004; Odening, Musshoff, and Xu, 

2007), or the model’s inaccuracy at reproducing statistical properties of rainfall at lower 

temporal frequencies, such as monthly or annual.36 However, since the object of our 

analysis is an insurance product linked to cumulative rainfall over 10 consecutive days 

only, we believe low variability bias not to be a first-order concern in relation to the 

numerous issues that would arise from working with an alternative model. Moreover, basis 

risk—the primary element of interest—is arguably related more to the modelling of the 

spatial dependence pattern of rainfall than to the accurate characterization of rainfall at a 

single site. 

Below we describe the basic structure of the chain-dependent stochastic precipitation 

model together with the proposed extension in the dependence structure of the amount 

process and provide a brief introductory description of the concept of copulas. 

3.1.1 Chain-dependent stochastic precipitation model  

In its most simple bivariate form, the model decomposes precipitation at each of two sites 

into an occurrence component and an amount component.  

The (binary) occurrence of rainfall at each site is regarded as arising from a first-order 

Markov chain. Spatial correlation between rainfall occurrence at both sites is modeled by 

allowing the random realizations driving each Markov Chain to arise jointly from an 

underlying bivariate normal distribution with a certain correlation coefficient.  

Conditional on rainfall occurring at a site, the precipitation amount process (i.e. 

number of millimeters over a certain time period, for instance a day) is modeled as arising 

from a given univariate distribution function, most commonly gamma or double-

exponential. Correlation between rainfall amounts is introduced through a second, 

underlying bivariate normal process.  

All parameters—Markov chain probabilities, parameters of the amount distributions, 

and correlation coefficients for the underlying normal distributions driving the dependence 

between amount and occurrence processes—are then calibrated from existing data. Section 

3.4 below provides more details on each of the components of the model, clearly 

illustrating how they all fit together. Once calibrated, the model is able to simulate a series 

of correlated precipitation data at both sites through Monte Carlo simulations. 

                                              

36 In some strands of the literature this feature is also known as overdispersion. 
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3.1.2 Extension 

Now, a limitation of the model is the assumed normality of the joint process driving the 

association between rainfall amounts at the two sites, which depends on just one 

correlation coefficient to describe the entire dependence structure. It has long been 

recognized that linear correlation is not appropriate to model joint dependence of real-

world variables (Blyth, 1996; Shaw, 1997). For instance, this measure cannot capture 

underlying non-linear relationships between variables and it is not invariant under 

monotonic transformations. Embrechts, McNeil, and Straumann (2002) provide a lucid 

discussion about the risks of using linear correlation to summarize dependence of risks 

beyond the particular case of elliptical distributions.  

An interesting aspect of the association between two random variables is the degree 

of dependence in the occurrence of extreme values, known as upper or lower tail 

dependence in accordance to whether this dependence takes place in the upper or lower 

tail of the distribution, respectively. This aspect of joint distributions is particularly 

relevant in the case of insurance products. For example, large scale natural disasters or 

large terrorist attacks such as 9/11 may affect multiple exposures of an insurance company 

at the same time (Kousky and Cooke, 2009). It is important to note that tail dependence in 

a joint distribution is independent of the existence of fat tails in the marginal distributions. 

Moreover, it does not share a direct relationship with linear correlation, as indicated by the 

fact that a bivariate normal distribution can accommodate any level of (negative or 

positive) correlation but at the same time always exhibits zero tail dependence. 

As geographic basis risk relates to the probability of an index being above or below a 

certain (extreme) trigger at two separate locations, tail dependence seems a natural 

property to consider in this context. In particular, as previously discussed, we wish to allow 

for positive upper tail dependence in the dependence process for rainfall amounts at 

different locations. We thus propose to extend the precipitation model above by 

introducing a bivariate copula as the driver of the spatial association between the wet part 

of the rainfall distribution at two sites. A natural way to achieve this is through the use of 

a copula, a flexible instrument that allows for a number of alternative dependence 

structures beyond the one implicitly imposed by the bivariate normal. 

Next, we briefly review the concept of copulas and describe alternative copula family 

candidates that may accommodate the association patterns most commonly found in the 

case of rainfall realizations. 

3.1.3 Copulas 

The word copula was first employed in a mathematical or statistical sense by Sklar (1959) 

in the theorem (which now bears his name) describing the functions that “join together” 

one-dimensional distribution functions to form multivariate distribution functions (Nelsen, 

2006). Sklar’s theorem states that any multivariate distribution can be represented by an 

appropriate copula function with arguments consisting of all the marginal cumulative 



Estimating Spatial Basis Risk in Rainfall Index Insurance 

47 

 

distribution functions.37 In particular, a 2-dimensional copula is a function C that maps 

values in the unit hypercube [0, 1]2 to values in the unit interval [0, 1] such that: 

 𝐹(𝑋1 = 𝑥1, 𝑋2 = 𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)) (3.1) 

Where 𝐹(. ) is the bivariate cumulative distribution function (CDF) for random 

variables 𝑋1 and 𝑋2, and 𝐹1(. ) and 𝐹2(. ) are the univariate CDFs for 𝑋1 and 𝑋2, 

respectively. Alternatively, a copula may be regarded as a multivariate distribution 

function with standard uniform marginal distributions. For a formal treatment of the topic, 

see Joe (1997) and Nelsen (2006). Danaher and Smith (2011) provide an accessible 

introduction with an application to marketing. 

During the past 20 years, copulas have been increasingly used in a number of contexts 

where the joint distribution of two or more variables is a central topic of interest. Apart 

from the statistical literature, where copulas have existed for several decades, one of the 

main areas where copulas have been practically applied has been in finance, as an 

instrument to jointly model asset prices and other financial variables of interest (see, for 

instance, Kharoubi-Rakotomalala and Maurer, 2013; Patton, 2012; and references therein). 

Another common area of application has been the marketing literature (e.g. Danaher and 

Smith, 2011). Finally, copulas have been widely applied in hidrology and biostatistics 

(Bárdossy, 2006; Genest and Favre, 2007). Of particular interest to this chapter, a few 

studies have approached joint modeling of weather outcomes through copulas (Serinaldi, 

2009a; Serinaldi, 2009b; Bárdossy and Pegram, 2009; Serinaldi and Kilsby, 2014). 

Modelling the dependence between two random variables through a copula has a 

number of advantages. First, copulas allow to model the dependence between two 

variables with different underlying marginal distributions. For instance, by using a copula 

it is possible to jointly model a discrete and a continuous variable (such scenarios are 

common in the marketing literature, see Danaher and Smith, 2011). Second, copulas can 

allow for a very flexible dependence structure between two variables, which can fit 

nonlinearities in association and different degrees of dependence along different regions 

of the support of the distributions. One important such application is the modelling of tail 

dependence. 

As discussed above, tail dependence relates to the degree of association between two 

random variables at the (upper or lower) tail of their joint support. This is in principle 

independent of the overall degree of association (and, in particular, of the level of linear 

correlation) between them.38 In particular, let 𝑋1 and 𝑋2 be random variables with 

                                              

37 Of course, a number of technical requirements need to be fulfilled for a function to be considered a 

copula. See Joe (1997) and Nelsen (2006) for further details. 
38 In the case of parametric families of bivariate distributions, however, tail dependence and different 

measures of correlation will be related to each other. 
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distribution functions 𝐹1 and 𝐹2, respectively. Upper tail dependence (𝜆𝑈) is defined as the 

probability of 𝑋1 being greater than its 𝑡-th percentile, given that 𝑋2 is greater than its 𝑡-th 

percentile, as 𝑡 approaches 100 (Nelsen, 2006):39 

 𝜆𝑈 = lim
𝑡→100

𝑃𝑟𝑜𝑏 (𝑋1 > 𝐹1
−1 (

𝑡
100

) |𝑋2 > 𝐹2
−1 (

𝑡
100

)) (3.2) 

In the case of copulas, upper and lower tail dependence are inherent properties of any 

copula family. Thus, copulas can be classified by their degree of tail dependence. For 

instance, as mentioned above, the Gaussian copula exhibits zero (upper or lower) tail 

dependence (asymptotic independence). 

In this chapter we consider the Gumbel copula (Gumbel, 1960), a well-known and 

widely used copula family belonging to the Archimedean class. It takes the following 

form: 

 𝐶(𝑢, 𝑣; 𝜃) = 𝑒𝑥𝑝 (−((− ln 𝑢)𝜃 + (− ln 𝑣)𝜃)
1 𝜃⁄

) (3.3) 

This copula exhibits weak lower tail dependence but strong upper tail dependence. 

These properties make the Gumbel copula an appropriate modelling choice when two 

outcomes are likely to simultaneously realize upper tail values (Trivedi and Zimmer, 

2007). As we show below, this is exactly the type of dependence commonly observed 

between rainfall amounts at two nearby sites (conditional on both sites experiencing 

rainfall). 

3.2 Basis Risk: Definition, Measure, and Theoretical Upper Bound 

This section defines basis risk in the context of our application and describes the measure 

chosen for the analysis. The advantages of this measure are both its intuitive appeal and 

its connection to a theoretical model of a farmer’s demand for index insurance.  

In the context of weather index insurance products targeted at smallholder farmers, 

basis risk represents a situation where the insurance’s payout does not perfectly correspond 

to the insured farmer’s crop losses. The sources of this dissociation, however, can be 

manifold. For instance, a farmer may experience a loss due to an inadequate handling of 

the plot, or due to an unexpected pest or disease. A broad characterization of the different 

components of basis risk can be thought of as follows: (i) spatial, related to geographic 

variation of the weather index between a farmer’s plot and the insurance’s reference 

weather station; (ii) design, related to the design of the insurance product, including the 

choice of weather variable, the specific index for the chosen weather variable, and the 

functional form of payouts; (iii) other covariate risks, related to other common factors 

affecting farmers in a specific area (e.g. pests), and (iv) idiosyncratic risk, related to 

                                              

39 Lower tail dependence (𝜆𝐿) is similarly defined as the probability of 𝑋1 being lower than its t-th 

percentile, given that 𝑋2 is lower than its t-th percentile, as 𝑡 approaches 0. 
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specific farming practices, and other plot and farmer’s characteristics (e.g., soil quality, 

input use, etc.).40 

Components (ii) to (iv) depend heavily on features of the crop production function of 

a farmer, which can only be accurately estimated through sufficient longitudinal farm-

level production data. As we do not count with such data, we are only able to focus on the 

spatial component of basis risk, implicitly assuming that experiencing a loss can be 

accurately captured by the index at the farmer’s plot being above the insurance’s trigger. 

As such, this measure will typically reflect a lower bound for a product’s overall degree 

of basis risk. To be fair, though, an appropriate benchmark for basis risk should consist of 

an indemnity insurance product that insures against the specific risk that the index 

insurance product is designed to address, in our context excess of rainfall. In this case, 

then, only components (i) and (ii) would represent relevant aspects of the imperfect 

insurance provided by index products. It is interesting to note that data from the baseline 

survey seems to provide some support for the higher importance of the geographic 

component of basis risk: out of the 335 farmers who expressed an initial lack of interest in 

the rainfall index insurance product offered to them (about 48% of the total surveyed 

farmers), only 69 raised some aspect of basis risk as a reason,41 with most of these (58 

farmers, or 84%) mentioning distance to the reference weather station as their main 

concern (compared to only 11 raising other aspects of basis risk as being important). 

Clarke (2016) defines basis risk as the unconditional probability of both experiencing 

a critical loss and not receiving an insurance payout (downside basis risk) or as the 

unconditional probability of both not experiencing a critical loss and receiving an 

insurance payout (upside basis risk).42 Clarke (2016) calls this measure 𝑟 and derives a 

theoretical upper bound beyond which an individual’s demand for insurance would be 

expected to be zero (regardless of their underlying utility function), as follows: 𝑟 <

𝑝(1 − 𝑞); where 𝑝 and 𝑞 represent, respectively, the farmer’s critical loss probability and 

the probability of receiving an insurance payout. Intuitively, this upper limit reflects the 

fact that an insurance product needs to give a sufficiently strong signal about the farmer’s 

losses so as to provide some insurance benefit (see Clarke, 2016; and Chapter 2 for further 

discussion).  

Throughout the rest of the chapter we focus on downside basis risk, given that it 

represents the main object of interest for a farmer buying an insurance product. Moreover, 

                                              

40 Other characterizations can be found in the literature, as this changes according to the specific objectives 

of the study and features of the insurance product at hand, see, for example, Elabed et al. (2013), or Jensen, 

Mude, and Barrett (2014).  
41 The remaining fraction of farmers expressed other concerns, such as (in order of importance): excess 

rainfall not being a relevant risk for their crops (39%), lack of understanding of the product (13%), and a 

range of other minor issues unrelated to basis risk (27%). 
42 His model incorporates both measures as being symmetric, though in reality these do not need be. 
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for our estimates of downside basis risk, we rely on a more intuitive measure related to 

Clarke’s that is commonly used in the literature (see, for instance, Kellner and Gatzert, 

2013). The measure represents the probability of mismatch between losses and payouts (as 

above), conditional on the farmer experiencing a critical loss.43 In other words, it can be 

interpreted as the number of times a given insurance product fails to pay, given that a 

farmer has indeed experienced a critical crop loss.   

3.3 Study Context and Data 

On November 2013 an innovative weather index insurance product was launched in the 

department of Canelones, Uruguay, as part of a project led by the International Food Policy 

Research Institute (IFPRI). The aim of the product was to cover horticultural farmers 

against excess rainfall around harvest, which is generally associated to severe losses due 

to the rotting of crops and the increased difficulty to access the plots. Given the 

heterogeneity in crops and time of planting, the product was designed as a portfolio of 

independent insurance ‘units’. Each unit promised to pay a fixed amount when the 

maximum accumulated rainfall over any 10 consecutive-day period within a calendar 

month (the index) exceeded a certain pre-determined trigger. Different products were 

offered for each of the months between January and April (the main horticultural harvest 

season), and for two severities of excess rainfall, with triggers corresponding to the 85th 

and 95th percentiles of the historic distribution of the index. This resulted in a total of eight 

insurance units, which could be freely combined by each farmer according to her own crop 

portfolio, timing of planting, and overall risk profile. 

The department of Canelones represents the main horticultural producing region in 

Uruguay. It is relatively small, covering a total area of 4,536 km2, and topographically flat 

to a large extent. It has a humid temperate climate with lower levels of precipitation 

relative to the rest of the country (up to 2,000 mm yearly, on average). It is important to 

note that, as rainfall is highly dependent on topography and other geographical 

characteristics, studies conducted in more complex settings should take this into 

consideration much more carefully in the modelling. 

3.3.1 Survey and Farmers’ Perceptions 

A baseline survey covering 700 horticultural farmers was conducted in Canelones between 

September and December of 2013. One of the objectives of the survey was to assess 

farmers’ perceptions about the different elements of the weather index insurance product 

on offer.  

Table 3.1 shows survey responses to questions on spatial variability in rainfall 

patterns. On one hand, and as expected, farmers do recognize that the pattern of rainfall 

between two given sites is more dissimilar the farther away they are from each other (panel 

                                              

43 Using Clarke’s notation this measure would be 𝑟 𝑝⁄ . 
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A). In particular, when asked about the degree of similarity in rainfall patterns between 

their plot and the reference gauge closest to them, farmers located farther away from the 

reference gauge do indicate that precipitation patterns are more dissimilar than farmers 

located closer by. It is however interesting to note that there is a large heterogeneity in 

farmers’ perception of rainfall similarity. Overall, these observations are in line with 

findings in the index insurance literature about geographic basis risk being inversely 

related to insurance demand (Hill, Hoddinott, and Kumar, 2013; Chapter 2; Mobarak and 

Rosenzweig, 2012).  

In addition, panel B in Table 3.1 shows farmers’ beliefs on the maximum distance at 

which a plot and a reference rain gauge can be apart from each other in order to consider 

their rainfall patterns as being similar. Overall, about two thirds of the respondents believe 

that 5 kilometers (kms.) or less is the extent to which rainfall patterns can be considered 

similar between two locations, while 90 percent of the sample believes that this distance 

should not exceed 10 kms. 

Moreover, farmers’ perception seem to be in line with the upper tail dependence 

property of the Gumbel copula discussed above. Figure 3.1 shows estimated kernel 

probability density functions on the perceived maximum distance at which either (i) 

overall rainfall patterns, and (ii) excess rainfall patterns can be considered similar between 

two sites. These data come from an endline survey conducted with 582 horticultural 

farmers during July and August 2015. The figure shows that farmers do seem to perceive 

excess rainfall patterns as being similar across broader geographic regions than overall 

rainfall. This supports the need for modelling spatial dependence for rainfall through more 

flexible models than the elliptical assumption implicit behind the popular Pearson 

correlation coefficient. 

Finally, it is interesting to note that further unreported analyses show no evidence of 

perceptions about rainfall similarity depending on the direction at which the reference 

gauge lies with respect to the farmer’s plot. This observation supports the isotropy 

assumption made in the following section. 
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Table 3.1 ― Farmers’ Perception of Geographic Variability in Rainfall Patterns 

Panel A. Rainfall patterns between plot and reference gauge 

Rainfall pattern 

between plot and 

reference gauge is 

All 

farmers 

 Distance to reference gauge 

  

Less than 

5 kms. 

Between 5 

and 10 kms. 

Between 10 

and 15 kms. 

More than 

15 kms. 

Very similar 2.9%  6.4% 1.9% 3.8% 1.2% 

Similar 40.7%  53.2% 49.0% 35.9% 25.5% 

Slightly similar 14.3%  13.8% 11.3% 14.7% 19.3% 

Different 29.6%  19.1% 29.2% 35.3% 29.8% 

Very different 9.0%  4.3% 5.8% 7.1% 18.6% 

Non-response 3.6%  3.2% 2.7% 3.3% 5.6% 

Panel B. Maximum distance for rainfall patterns to be similar 

Maximum distance No. Of farmers % Cum. % 

1 km. or less 121 17.3% 17.3% 

Between 2 and 4 kms. 179 25.6% 42.9% 

5 kms. 163 23.3% 66.1% 

Between 5 and 9 kms. 60 8.6% 74.7% 

10 kms. 110 15.7% 90.4% 

More than 10 kms. 67 9.6% 100.0% 

Note: This table shows survey responses on farmers’ perceptions about spatial variability of rainfall. Panel A shows whether 

rainfall patterns between the farmer’s plot and the closest reference gauge are considered to be similar or different, for all farmers 

in the sample (column 2) and by distance categories (columns 3 through 6). Panel B shows the maximum distance at which two 

sites can be apart for their rainfall patterns to be considered as similar. The data come from a baseline survey conducted with 700 

horticultural farmers in Canelones, Uruguay, during September and December 2013. 

 

 

Figure 3.1 ― Perception of similarity in rainfall and excess rainfall patterns 

Note: This figure shows estimated probability distribution functions for the maximum distance separating two sites at which 

patterns of rainfall (solid line) and excess rainfall (dashed line) are considered to be similar by farmers. The curves correspond to 

estimated nonparametric densities using a Gaussian kernel. The data come from an endline survey conducted with 582 horticultural 

farmers in Canelones, Uruguay, during July and August 2015. 
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3.3.2 Data 

For the application of our methodology we will focus on the summer agricultural season, 

which corresponds to the months of December, January, and February. This season is 

characterized by high levels of precipitation and is the main harvest season for a number 

of important horticultural crops such as onion, sweet potato, and tomato, among others. 

We work with the entire season (as opposed to individual calendar months or other 

agricultural time periods) for two main reasons. First, the Uruguayan meteorological 

institute (Instituto Uruguayo de Meteorología, INUMET) considers these three months as 

climatologically similar, grouping them into the same single season for meterological 

purposes. Second, working with a three-month period allows us to estimate distributional 

and dependence parameters using three times the amount of data than would be possible 

with monthly periods, thus benefiting from greater precision. In the sections that follow, 

then, all parameter estimates (and the subsequent simulations stemming from these) will 

be based on daily data corresponding to the full summer season. 

We use a number of data sources for the analysis. First, we count with historical daily 

data from the entire rain gauge network of the Uruguayan meteorological institute 

(Instituto Uruguayo de Meteorología, INUMET). We refer to these gauges as pre-existing. 

While these data span over 30 years in some cases, allowing us to estimate representative 

long-term distributional parameters, the network is geographically sparse in relative terms. 

We focus on 11 gauges located on or in the vicinity of the department of Canelones, 

Uruguay, since this is the area where the index insurance product is being offered. Second, 

we use daily data from five automatic weather stations located in Canelones, installed as 

part of insurance project activities during December, 2013. As these are used as reference 

gauges for the insurance product, we refer to them as insurance reference gauges. Finally, 

we use data from a unique network of 34 weather stations, installed during October and 

December of 2013, throughout the entire area of Canelones, which we refer to as 

monitoring gauges. These last two sources, though short in time span, provide us with 

geographically dense data that allow us to explore the dependence pattern of rainfall at 

short distances, thus complementing the long-term but geographically-sparse data from 

the pre-existing gauges. Combining these data sources allows us to tackle a problem that 

would otherwise be very difficult to solve with a unique data source. Figure 3.2 shows the 

location of all the rainfall gauges used in the analyses. Appendix Table 3 shows summary 

statistics for these gauges, including start and end dates, the observed proportion of rainy 

days, and the average daily rainfall amount, conditional on rain occurring, over the summer 

months.  

3.4 Estimation 

This section first discusses in more detail the calibration of the chain-dependent stochastic 

rainfall model at each available rain gauge. Next, the section discusses the estimation of 

different correlation measures of rainfall in space and the calibration of the copula 
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parameters used to model the dependence between pairs of sites. Each subsection ends 

with a description of the interpolation method implemented to predict the relevant 

distributional parameters at arbitrary points in space. The section concludes by providing 

an overview of all the components in the bivariate spatial rainfall generator. 

 

Figure 3.2 ― Location of Rainfall Gauges around Canelones, Uruguay 

It is important to note at this point that the model calibration requires a number of ex-

ante choices on functional forms. As our aim lies on illustrating the features of the model 

and its application for basis risk estimation, we make the most reasonable choices based 

on standard assumptions in the literature and practical considerations. Wherever possible, 

we try to provide rationale and formal goodness-of-fit tests to assert the appropriateness 

of a certain assumption, though purposely avoid full-fledged discussions on particular 

modelling choices. Were this model to be used for insurance pricing or other product 

design considerations affecting real-world outcomes these assumptions should certainly 

be approached with much more caution. 

In order to describe the model calibration, it is worth recalling that the model separates 

rainfall into an occurrence component and an amount component. The first component 

relates to the binary event of occurrence or non-occurrence of rainfall (also referred to as 

wet or dry days, respectively). The second component defines the number of millimeters 

of rainfall, conditional on the day being wet, over a given time span (24 hours in our case). 

3.4.1 Rainfall occurrence process 

In our model, the process for the occurrence of rainfall is completely determined by the 

two parameters of a first-order Markov chain: (i) 𝑝01, or the probability of rain occurring 
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in day 𝑡 conditional on rain not having occurred in 𝑡 − 1, and (ii) 𝑝11, or the probability of 

rain occurring in 𝑡 conditional on rain not having occurred in 𝑡 − 1.44 In this way, if the 

previous day were a wet day, the probability of raining on the current day would be 𝑝11, 

and the probability of not raining 1 − 𝑝11. Similarly, the probability of rain or no rain, 

conditional on the previous day being dry, would be determined by 𝑝01 and 1 − 𝑝01, 

respectively. 

We estimate these first-order Markov chain probabilities using the historical rainfall 

occurrence series at every gauge. We focus only on pre-existing gauges since these are the 

ones with a long enough time-span to appropriately capture climatological long-term 

occurrence probabilities for rain. Using only one to two years of data from the insurance 

reference and monitoring gauges could yield biased probability estimates due to the large 

inter-annual variability of rainfall. Table 3.2 shows the estimated probabilities for the 

eleven pre-existing rain gauges in our sample. 

Spatial dependence 

Following Wilks (1998), the occurrence of rainfall at one particular site can be determined 

at the simulation stage by taking a random draw from a standard uniform distribution and 

comparing it to either 𝑝01 or 𝑝11 (depending on whether the previous day was dry or wet): 

if lower, the day is considered to be wet, otherwise it is considered to be dry. This 

procedure can be extended to allow for dependence between multiple sites by drawing 

jointly from a (latent) bivariate normal distribution with correlation parameter 𝜌, 

calculating both (standard normal) cumulative probabilities, and comparing these to each 

site’s occurrence probability for day 𝑡 (given day 𝑡 − 1). Since the latent normal process 

is not observable from the data, estimation of 𝜌 is achieved by iteration until the correlation 

between simulated occurrence series at both sites is close enough to the one observed in 

the data. 

Unlike the estimation of the Markov-chain parameters, we include here all available 

rainfall gauges. The rationale behind this is that joint precipitation occurrences at the daily 

level between sites is still informative even in the presence of considerable inter-annual 

rainfall variability. Figure 3.3 shows a scatterplot of the estimated correlation parameters 

for the occurrence process between all pairs of sites. It is interesting to note that correlation 

declines relatively slowly with distance, such that two sites at a considerable distance (for 

                                              

44 While a first-order Markov chain is the overwhelming choice in the literature, the model can in principle 

accommodate a higher-order process. This could be relevant in the present case since we are mostly 

concerned about cumulative rainfall throughout several days. However, for all sites analyzed a second-

order Markov chain does not improve the fit over a first-order one according to the Bayesian information 

criterion (BIC). We prefer the BIC statistic since it is considered as the preferred measure by the literature, 

with the Akaike information criterion (AIC) being known to overspecify model order for large sample sizes 

(Wilks, 1998).. 
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instance, farther than 50 kms. from each other) still experience a very similar pattern of 

wet and dry days. 

Table 3.2 ― Estimated First-Order Markov Chain Probabilities and Model 

Selection 

Rainfall gauge 𝒑𝟎𝟏 𝒑𝟏𝟏   

BIC for 

1st order 

MC 

BIC for 

2nd order 

MC 

 
Number 

of Obs. 

Aeropuerto Carrasco 0.215 0.414  3,162.1 3,178.1  2,797 

Aeropuerto Melilla 0.222 0.419  3,209.1 3,225.1  2,797 

Cerrillos 0.137 0.288  2,423.5 2,439.5  2,797 

Chamizo 0.148 0.296  2,538.4 2,554.3  2,797 

Dr. Soca 0.119 0.292  2,239.7 2,255.7  2,797 

Libertad 0.153 0.321  2,609.1 2,625.0  2,797 

Mendoza 0.157 0.312  2,632.8 2,648.7  2,797 

Prado 0.204 0.430  3,105.7 3,121.7  2,797 

San Jacinto 0.127 0.288  2,324.5 2,340.5  2,797 

Tala 0.122 0.277  2,267.4 2,283.4  2,797 

Villa Rodriguez 0.158 0.300  2,629.3 2,645.3  2,797 

Note: This table shows estimated first-order Markov chain probabilities for rain occurrence for each of the eleven pre-

existing rainfall gauges in the study area. 𝑝01 indicates the probability of rain occurring on day 𝑡 conditional on no rain 

having occurred on day 𝑡 − 1, while 𝑝11 indicates the probability of rain occurring on day 𝑡 conditional on rain having 

occurred on day 𝑡 − 1. The third and fourth columns show the value of the Bayesian Information Criterion (BIC) for, 

respectively, a 1st order Markov chain (MC) and a 2nd order Markov-chain. A larger value indicates that a model is 

preferred according to the criterion. 

 
Figure 3.3 ― Dependence Structure of Precipitation Occurrence Process 

3.4.2 Rainfall amount process 

Traditionally, chain-dependent stochastic models represent the process determining the 

amount of rainfall at two different sites (conditional on rainfall occurring) through two 
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univariate distributions (one per site), which are linked together through an underlying 

latent bivariate normal distribution with a given correlation parameter 𝜌 (calibrated in a 

similar fashion to the one in the latent bivariate normal process that links the occurrence 

processes explained in the previous subsection). As described above, in this chapter we 

extend this model by the use of copulas in order to account for much more flexible 

dependence structures between the two site-specific univariate distributions. The 

following subsections describe the estimation of each site’s univariate distribution and that 

of the proposed dependence between two sites. 

Univariate distributions 

The most appropriate parametric distribution for representing the amount of rainfall at the 

daily scale has long been an issue of discussion in the literature. Several parametric 

families have been put forward as suitable candidates, some examples being gamma, 

Weibull, double exponential, and lognormal, among others. While the literature has not 

reached a consensus on which family can best represent daily rainfall amounts, the gamma 

family is a frequent choice that has been shown to adapt well to the skewness and other 

properties of daily rainfall processes (Ison, Feyerherm, and Bark, 1971; Woolhiser, 1992). 

In addition, the gamma family is a suitable choice to represent precipitation data because 

of its flexibility in distribution shapes making use of only two parameters: shape and scale 

(Wilks, 1990). 

Table 3.3 ― Estimated Gamma Parameters 

Rainfall gauge Shape Scale   
Number 

of Obs. 

Aeropuerto Carrasco 0.598 18.291  753 

Aeropuerto Melilla 0.590 19.007  775 

Cerrillos 1.008 16.024  451 

Chamizo 1.129 16.710  486 

Dr. Soca 1.064 16.729  401 

Libertad 1.150 15.009  514 

Mendoza 1.157 15.301  519 

Prado 0.565 19.286  738 

San Jacinto 1.065 17.103  423 

Tala 1.003 19.397  405 

Villa Rodriguez 1.125 15.305  514 

Note: This table shows estimated scale and shape parameters for a gamma distribution for each 

of the eleven pre-existing rainfall gauges in the study area. The estimated distribution is used to 

represent rainfall amount on a certain day, conditional on rainfall occurring on that day. 

In our analysis, we assume that daily rainfall amount (conditional on a day being wet) 

follows a gamma distribution with unknown shape and scale parameters, which we 
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estimate from available data for each pre-existing rain gauge.45 The rationale for narrowing 

the sample only to the pre-existing gauges is again—as discussed above for the case of the 

Markov chain parameters—to count with a long-enough history to observe sufficient 

realizations from the underlying distribution. It is worth noting that assuming a different 

suitable distribution family such as Weibull does not qualitatively change our results or 

conclusions. Table 3.3 shows the estimated gamma parameters for the eleven pre-existing 

rain gauges in our sample. 

Spatial dependence 

We have discussed above that any bivariate distribution can be uniquely represented 

through an appropriate copula function evaluated at the corresponding marginal 

distributions’ CDF. Having selected the marginal distribution for each site we now need 

to select an appropriate copula model to represent dependence between rainfall amounts 

at any two sites.  

As argued above, we will work with the Gumbel copula, as it suits well processes that 

simultaneously realize upper tail values. To motivate this choice and illustrate the presence 

of upper tail dependence in our data, Figure 3.4 shows a scatterplot of the joint rainfall 

realizations (expressed as cumulative probabilities of the underlying estimated 

distribution) between Prado and Aeropuerto Melilla rain gauges (panel A) and San Jacinto 

and Mendoza gauges (panel B).46 It can be seen that for the pair of gauges relatively close 

to each other, there is an overall high degree of dependence between the two series, but 

this dependence seems to increase at higher regions of the distributional support (upper-

right corner of the scatterplot). The joint occurrence of values at the upper tail is evident 

even for the pair of gauges that are more than 40 kms. apart from each other, even though 

the overall degree of dependence between the two series is substantially lower. 

It is well known that determining the right copula family through goodness of fit (GoF) 

tests can be problematic. While the bootstrap procedures suggested in Genest, Rémillard, 

and Beaudoin (2009) represent the state-of-the-art techniques, these are very expensive 

computationally and, based on Monte Carlo simulations, the authors conclude that no one 

single test is appropriate for all situations. Moreover, as the power of any test increases 

with sample size, it is rare for empirical data to properly fit any one parametric family, 

                                              

45 The choice of a single distribution for all rain gauges may not be the most appropriate, but it is a key 

assumption that allows to spatially interpolate the parameters to be used in the simulations. A fully non-

parametric distribution for each site would be ideal. This, however, seems problematic in our context, since 

for the calculation of basis risk we need to be able to simulate at arbitrary points in space, calling for some 

sort of spatial interpolation of distributions. The work by Mosthaf, Bárdossy, and Hörning (2015) on 

random mixing of spatial random fields could provide a potential solution to this problem. 
46 The results are not linked to the specific choice and estimation of the univariate distribution at each site. 

Scatterplots using cumulative probabilities from the empirical (non-parametric) CDF or the univariate rank 

for each observation yield equivalent characteristics. 
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which generally results in all candidate distributions being rejected.47 Instead, we follow 

here an alternative specification check proposed by Serinaldi (2008). The idea behind this 

methodology is to compare the theoretical relationship between Kendall’s 𝜏 rank 

correlation and the degree of tail dependence implicit in different candidate copula 

families, against the empirical (estimated) counterparts, for all pairs of series. For instance, 

a given pair of gauges has a certain estimated Kendall’s 𝜏 and coefficient of tail 

dependence.48 By taking all available pairs one can plot an empirical curve of one measure 

against the other, and then compare this empirical curve to different theoretical curves 

implicit in each copula family’s definition. Figure 3.5 shows the result of this exercise. We 

compare the empirical curve to those from other families exhibiting positive upper tail 

dependence, such as Gumbel, Student t, and three other families from the Archimedean 

class. Even though none of the curves perfectly accommodates the statistics from the 

observed rainfall data, it can be seen that the Gumbel family is the one that best 

approximates the empirical curve, particularly for high levels of dependence. Altogether, 

the evidence, though heuristic in nature, indicates that the Gumbel copula can be 

considered as an acceptable representation of the dependence between rainfall amounts in 

our study area. 

Figure 3.6 shows a scatterplot of the estimated Gumbel copula parameters for the 

amount process between all pairs of sites, including all available rainfall gauges (in a 

similar way as for the estimation of the dependence between rainfall occurrence 

processes). In contrast to the correlation in rainfall occurrence (Figure 3.3), the dependence 

between rainfall amount seems to decrease at a faster rate with distance to the reference 

gauge. Equivalent to the findings in decorrelation analyses, this feature is directly behind 

the common perception of basis risk being larger for rainfall products than for products 

based on other common weather variables, such as temperature. In the next section we will 

directly quantify the degree of basis risk in order to determine how the observed decrease 

in dependence translates into unattractiveness of an insurance product. 

3.4.3 Spatial Interpolation of Parameters 

In order to estimate the degree of basis risk across our study area, we need to arrive at a 

full description of the underlying bivariate precipitation distribution at two given locations. 

For this, we need to be able to interpolate the parameter estimates discussed in the 

preceding subsections at arbitrary points in space. Different methods of spatial 

interpolation of distributional parameters—estimated from site-specific precipitation 

                                              

47 The results from a (least computationally intensive) bootstrap test show that the Gumbel copula cannot 

be rejected (at the 5% level) in about 49.5 percent of the pairs. Given the large number of daily observations 

we count with, we take this as an additional piece of evidence towards the reasonably good fit of this copula 

family.  
48 We rely on a nonparametric estimator for the upper tail coefficient (𝜆𝑈) based on the work by Capéraà, 

Fougères, and Genest (1997). See Serinaldi (2008) for details and further discussion. 
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data—have been implemented in the literature (e.g. Baffault et al., 1996; Kleiber, Katz, 

and Rajagopalan, 2012; Serinaldi and Kilsby, 2014). This subsection describes the two 

methods we use in our context.49 

 
Panel A. Rainfall amount at Prado and Aeropuerto Melilla gauges (9.6 kms. apart) 

 
Panel B. Rainfall amount at San Jacinto and Mendoza gauges (42.3 kms. apart) 

Figure 3.4 ― Overall Correlation and Tail Dependence of Rainfall at Sample Sites 

Location-specific parameters (pertaining to the assumed functional forms for either 

rainfall occurrence or amount at one specific site) require a method that takes into 

consideration the specific location at which these parameters were estimated. These 

                                              

49 It is important to note that the following methods implicitly assume spatial isotropy in precipitation 

dependence within the study area. This implies that the relationship between two given points does not 

depend on the direction at which they lie from each other; in contrast to potential directional precipitation 

patterns caused by, for instance, prevailing winds or geographic accidents. Simple directional tests cannot 

reject the null hypothesis of isotropy in precipitation, while survey responses described above indicate that 

farmers in the area are not systematically aware of directional patterns in rainfall. For these reasons we 

proceed with this assumption. 
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parameters are the two probabilities in the first-order Markov-chain—from the rainfall 

occurrence process—, and the scale and shape parameters of the gamma distribution—

from the rainfall amount process. 

 

Figure 3.5 ― Kendall 𝝉 Correlation and Upper Tail Dependence 𝝀𝑼 

In contrast, for the parameters that relate to the dependence (in either model 

component) between two sites we assume spatial homogeneity and thus only take into 

consideration the distance between the two locations in the interpolation. These parameters 

are the correlation coefficient 𝜌 driving the dependence in rainfall occurrence and the 

Gumbel copula parameter 𝜃 behind the relationship between the amount of rainfall, 

conditional on rainfall occurring, at two different sites. 

Location-specific parameters 

We choose inverse distance weighting (IDW) as the interpolation method because, despite 

being one of the less sophisticated approaches available, it is simple enough and works 

well in regular geographies such as our study site.50 IDW estimates the value at an 

arbitrary, target point in space as the average value of observed adjacent points, weighted 

by the inverse of the (n-powered) distance to them. In particular, the estimation for an 

arbitrary point 𝑟 is as follows: 

 

𝛼𝑟
∗ = ∑

𝛼𝑙

𝐷𝑟𝑙
𝑛

𝐿

𝑙=1

∑
1
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𝑛

𝐿

𝑙=1

⁄  (3.4) 

                                              

50 An arguably better, alternative method would be ordinary kriging, which makes use of an estimated 

spatial covariance structure between sites (covariogram) to obtain an interpolated point estimate at an 

unobserved location, together with its standard error. Unfortunately, for the estimation of the location-

specific parameters we focus only on the subset of eleven pre-existing gauges, which provides us with too 

few pairs to obtain reliable estimates for the covariogram. 
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Figure 3.6 ― Dependence Structure of Precipitation Amount Process 

Where 𝛼𝑙 is the observed value at each of the 𝐿 locations and 𝐷𝑟𝑙 is the straight-line 

distance between location 𝑟 and location 𝑙. Note that the power parameter 𝑛 is a free 

parameter that controls the degree of smoothness of the interpolation. Very large values of 

𝑛 implicitly mean that the only relevant observations are those in the relative vicinity of 

the target point, while small values of 𝑛 take into account observations from farther away 

locations. We choose the value for this parameter by cross-validation (leave-one-out 

method), that is, we choose the power 𝑛 that minimizes the mean square error (MSE) 

between the estimated value (excluding that site) and the observed value, at all locations. 

Figure 3.7 shows shaded maps with the interpolated values of the shape (panel A) and 

scale (panel B) parameters for the gamma distribution. In turn, Figure 3.8 shows similar 

maps with the interpolated values of the Markov-chain precipitation probabilities after a 

dry (panel A) and wet (panel B) day, respectively. It can be seen that, while the estimated 

parameters don’t fluctuate substantially among the department of Canelones (our main 

study area), they seem to be consistently different near the city of Montevideo. In 

particular, relative to the more rural areas in Canelones, rainfall around the city of 

Montevideo seems to occur more often, yet, conditional on occurring, accumulated rain 

seems to be lower (see also Appendix Table 3). This could be related to these gauges’ 

proximity to a large body of water or to the existence of an urban effect. This will be of 

importance for the analysis below since ‘Aeropuerto Carrasco’ –one of the reference 

gauges to which the insurance product is linked– is located in this area. 
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Panel A. Shape parameter 

 
Panel B. Scale parameter 

Figure 3.7 ― Interpolated Gamma Distribution Parameters 

Dependence parameters 

For the interpolation of the parameters relating to the dependence structure of rainfall 

occurrence and rainfall amount we only focus, as discussed above, on the distance 

separating any two pairs of points, after which we fit a cubic B-spline using information 

from all available pairs (Bjørnstad and Falck, 2001). 

In addition to the scatterplots depicting the estimated dependence parameters 

pertaining to, respectively, the rainfall occurrence and amount processes, Figures 3.3 and 

3.6 show the estimated splines together with 95% confidence intervals calculated 

according to Bjørnstad and Falck’s (2001) method. In order to interpolate the dependence 

parameter between two arbitrary points in space, we simply use the distance separating 

them and obtain the corresponding value from the fitted spline curve. 
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Panel A. Probability of Rain Occurrence after Dry Day (𝑝01) 

 

Panel B. Probability of Rain Occurrence after Wet Day (𝑝11) 

Figure 3.8 ― Interpolated Markov-Chain Probabilities for Rain Occurrence 

3.5 Simulations and Results 

This section describes the estimation of downside basis risk for the insurance product 

described above across a uniform 20 by 35 grid of hypothetical locations within the limits 

of our study area, for a total of 700 sites. These represent potential locations of farmers 

and allow us to characterize basis risk in a general sense.  

We first identify the closest reference gauge for each location in the grid. Next, we 

interpolate all distributional and dependence parameters as described in the previous 

section, thus obtaining a complete characterization of the bivariate distribution for each 

pair of sites. Finally, we draw 450,000 realizations of daily rainfall by Monte Carlo 

simulation. This process is as follows: 
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1. Simulate a bivariate rainfall occurrence process combining the Markov chain 

parameters for each site in the pair and a bivariate random process with the 

corresponding correlation parameter (given the distance between sites). 

2. Simulate a bivariate rainfall amount process combining the univariate gamma 

distribution parameters for each site and ‘linking’ them through a Gumbel copula. 

In particular: 

a. Draw from a bivariate Gumbel copula with dependence parameter 𝜃 (given 

the distance between sites). 

b. For each site, obtain the daily rainfall amount evaluating the inverse gamma 

distribution (with the corresponding parameters) at the cumulative 

probability drawn in (a) from the Gumbel copula.51 

3. Finally, combine (1) and (2) to obtain the simulated time-series of rainfall at both 

sites. 

After obtaining the daily time-series, we accumulate rainfall into overlapping 10-day 

periods and calculate the maximum value among these over a 90-day period (the 

equivalent of one year’s summer season). This allows us to obtain a simulated time-series 

of the index at both sites along 5,000 seasons. With the entire simulated series of the index 

at a given pair we are then able to calculate alternative measures for basis risk. 

Figures 3.9 and 3.10 show estimated probabilities of downside basis risk for, 

respectively, the 85th-and 95th-percentile insurance products. Panel A in each figure plots 

the estimated conditional probability of not receiving an insurance payout when a loss 

occurs by relying on the interpolated distributional parameters. This represents our main 

measure of actual basis risk of the insurance product under consideration. Panel B, instead, 

shows a benchmark measure derived under the assumption that distributional parameters 

at the farmer’s plot are identical to the ones at the insurance reference gauge. In this way, 

while panel B reflects the basis risk implicit in the spatial separation of the two locations 

(that is, arising only from the imperfect dependence in rainfall patterns due to the distance 

                                              

51 An important aspect to take into account in stochastic rainfall generator models is the so-called spatial 

intermittence issue as referred to by Bárdossy and Plate (1992). This is related to rainfall amounts at an 

arbitrary location being generally lower conditional on nearby stations being dry than conditional on nearby 

stations being wet. In other words, if one imagines a given storm as a continuous field, locations in the 

center of the field (thus surrounded by all wet locations) should receive more rainfall than those in the 

edges of the field (thus nearby some dry locations). Failure to address this problem leads to unrealistically 

sharp transitions between wet and dry portions of the spatial domain. Wilks’ (1998) approach is to model 

the univariate rainfall amount distribution as mixed exponential and to later select the exponential in the 

mix with the lower mean whenever a day is simulated as being wet by a random draw close to the boundary 

implied by the Markov chain rainfall probability. In this chapter, instead, we take advantage of the mixtures 

of powers simulation method for the Gumbel copula described in Trivedi and Zimmer (2007) and, in a 

similar fashion to Wilks (1998), impose draws from the lower part of the distribution when one site in the 

pair is dry. 
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between them), panel A reflects also the additional basis risk arising from the different 

site-specific rainfall distributions. 

 

 

Panel A. Interpolated Univariate Rainfall Distributions 

 

Panel B. Identical Univariate Rainfall Distributions 

Figure 3.9 ― Downside Basis Risk - 85th Percentile Product 

A few interesting patterns arise from the figures. First, the level of basis risk for this 

particular insurance product is not negligible. At best, in the case of plots located very 

close to the reference rainfall gauge, the insurance product would fail to pay 1 out of 10 

times that the farmer experienced a significant loss. In general, the insurance product 

would fail to pay farmers between 10 and 50 percent of the times they experienced a loss, 

depending on their specific location, with this rate going up to 80 percent in extreme cases. 

Even though the above figures look large, it is interesting to see how these levels of basis 

risk compare to the theoretical upper bound for basis risk derived by Clarke (2016). Table 

3.4 shows summary statistics for the ratio of basis risk at each location and its theoretical 
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upper bound, by reference weather station and for both insurance products under 

consideration. It can be seen that downside basis risk is well below the upper theoretical 

bound in all cases, at levels roughly between 10 and 60 percent of this upper bound. In 

other words, downside basis risk seems to be within the limit in which a sufficiently risk-

averse farmer would benefit from (and thus demand) a positive level of insurance. 

However, the table also shows that this ratio shows considerable variation across reference 

gauges, a point to which we return below. 

 

 

Panel A. Interpolated Univariate Rainfall Distributions 

 

Panel B. Identical Univariate Rainfall Distributions 

Figure 3.10 ― Basis Risk - 95th Percentile Product 

Second, and as expected, downside basis risk increases the farther away a plot is from 

the insurance reference gauge. Interestingly, however, the relationship between basis risk 

and distance seems to be concave. In unreported regression results, distance and distance 

squared variables are, respectively, positively and negatively (and statistically-
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significantly) related to our basis risk measure. This is in line with the results in Chapter 

2, which finds demand for insurance products to be negatively related to the logarithm of 

the distance to the reference weather station. This feature of basis risk partly stems from 

the upper tail dependence implicit in the Gumbel copula; an alternative model assuming 

dependence under the traditional Gaussian assumption would thus fail to incorporate this 

property.  

Third, basis risk does not seem to increase as pronouncedly with distance as it is 

generally perceived. For instance, based on the 85th-percentile product with identical 

distributional parameters (Figure 3.9, panel B), the probability of not receiving a payout 

when a loss occurs is around ten percent when a plot is one kilometer away from the 

reference gauge,52 with this probability increasing to around 30 percent when the two sites 

are located 20 kilometers away and to around 40 percent when a plot is considerably far 

from the reference weather station (50-60 kms.). This is in contrast to the general notion 

that basis risk increases rapidly with distance when the underlying process is rainfall. This 

notion is captured by the shaded areas in the figures, which show estimated distance ranges 

at which an average farmer considers rainfall patterns to coincide or not.53 For instance, 

on average farmers consider rainfall patterns at two sites located at a distance between 9.9 

and 16.8 kilometers as not very similar, and rainfall patterns at distances above 38 

kilometers as very different. However, in the latter range, an insurance product would still 

correctly pay around 3 out of 5 times in which a significant loss occurred at the farmer’s 

plot. Overall, this indicates that, on one hand, farmers seem to overestimate the degree of 

geographical variation in rainfall and, on the other hand, that even though it may be true 

that the overall similarity between rainfall patterns at two sites decreases rapidly with 

distance, this may not be the case for the dependence between extreme rainfall patterns 

directly behind basis risk. 

Fourth, downside basis risk is generally lower, all things being equal, for the 85th-

percentile product than for the 95th-percentile one. Two effects come into play for this. On 

one hand, the probability mass around the 85th-percentile of the rainfall distribution is 

higher than around the 95th-percentile, which implies a larger number of realizations 

around the trigger and thus an increase in the unconditional mismatch probability. On the 

other hand, the probability of experiencing a loss (the denominator in our basis risk 

measure) is by definition higher in the case of the 85th-percentile product. Overall, the 

second effect dominates the first one and results in a lower basis risk for the 85th-percentile 

                                              

52 It is worth noting that basis risk estimates in the lower end of the distance spectrum are not precisely 

estimated, given the lack of weather station data located at minimal distances from each other.   
53 These ranges are derived from estimating an ordered logit model with perceived rainfall similarity 

(Categories: very similar, similar, not very similar, different, very different) as the dependent variable and 

distance as the independent one. The ranges are robust to including squared distance in the estimation, as 

well as to including dummies for the direction at which a reference weather station is located, the previous 

variables not being statistically significant in any specification. 
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product. This result is intuitive, in that an insurance product that covers against frequent 

risks should compensate often at rainfall levels above the trigger, and would only be at 

risk of incorrectly not compensating the farmer when rainfall is within a narrow band 

around the trigger. 

Table 3.4 ― Downside Basis Risk and Theoretical Upper Bound 

Panel A. 85th Percentile Product 

Rainfall gauge Median Mean Std. Dev. Min. Max. 
Number 

of Obs.        

All rainfall gauges 0.36 0.39 0.16 0.06 0.79 700 
       

Aeropuerto Carrasco 0.38 0.48 0.23 0.13 0.79 122 

Chacra Policial 0.42 0.40 0.09 0.12 0.56 171 

Progreso 0.46 0.43 0.19 0.06 0.70 149 

San Bautista 0.33 0.32 0.08 0.16 0.45 47 

San Jacinto 0.33 0.33 0.08 0.15 0.50 100 

Tala 0.29 0.28 0.05 0.15 0.40 111 

 Panel B. 95th Percentile Product 

Rainfall gauge Median Mean Std. Dev. Min. Max. 
Number 

of Obs.        

All rainfall gauges 0.32 0.35 0.14 0.05 0.71 700 
       

Aeropuerto Carrasco 0.34 0.43 0.20 0.12 0.71 122 

Chacra Policial 0.38 0.36 0.08 0.11 0.50 171 

Progreso 0.41 0.39 0.17 0.05 0.62 149 

San Bautista 0.30 0.28 0.07 0.14 0.40 47 

San Jacinto 0.30 0.30 0.07 0.13 0.45 100 

Tala 0.26 0.25 0.04 0.14 0.36 111 

Finally, an important consideration that has been generally overlooked by the literature 

is the natural variation in precipitation amount between different geographic locations.54 

In our particular study area, though relatively small in extent, rainfall exhibits a subtle but 

non-negligible amount of variation between locations (e.g. near the coastal city of 

Montevideo vis à vis near the center of Canelones). This small variation in rainfall patterns 

can dramatically increase or reduce the degree of basis risk of an insurance product, 

depending on the exact locations of both the plot and the reference gauge. This can be 

clearly seen by comparing panels A and B in both figures (which differ in that panel B 

excludes any variability in the sites’ precipitation distributions), where this feature almost 

doubles the level of downside basis risk for locations assigned to Aeropuerto Carrasco 

                                              

54 The literature has however widely acknowledged the limitations of index insurance products in regions 

with large topographic variation. See Kost et al. (2012), for example. 
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since, as discussed before, overall rainfall seems to be lower for this particular reference 

gauge relative to other weather stations (see Appendix Table 3).55  

 

Panel A. 85th Percentile Product 

 

Panel B. 95th Percentile Product 

Figure 3.11 ― Downside Basis Risk and Direction to Reference Weather Station 

Figure 3.11 portrays this feature in more detail. In particular, the figure shows the 

average level of downside basis risk taking into consideration the direction at which the 

reference weather station lies from each location. This is shown along eight directions and 

for groups of locations at four different distance ranges from the weather station. It can be 

seen that, if the assigned reference gauge lies to the south-west of a particular location, this 

location is subject to higher levels of basis risk relative to other locations within a similar 

distance to the reference gauge. This aspect of basis risk demands for a much more careful 

                                              

55 This effect can be even stronger if rainfall dependence were anisotropic, that is, if dependence in 

precipitation varied according to the direction in which the two points lay from each other. In our specific 

case, however, as argued above, this property does not seem to hold. 
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study of regional precipitation patterns when designing a new index insurance product, 

ideally involving local meteorological experts. 

3.6 Conclusions 

We develop a novel methodology for estimating the extent of spatial basis risk for an 

arbitrary rainfall index insurance product. We rely on a stochastic rainfall generator model 

standard in the hydrological literature and extend it to accommodate non-traditional 

patterns of dependence between rainfall distributions at two nearby sites through the use 

of a bivariate copula. In particular, we intend to capture the general tendency of extreme 

precipitation amounts occurring jointly at nearby sites more often than amounts at other 

regions of the support of the rainfall distribution. 

We apply the methodology to estimate the degree of spatial basis risk in an index 

insurance product against excess rainfall targeting horticultural farmers in Uruguay. After 

calibrating the model using unique historical precipitation data, we conduct Monte Carlo 

simulations using the bivariate stochastic rainfall generator which allow us to calculate our 

measure of downside basis risk for this product. 

We find that even though the degree of basis risk is considerable, it remains well below 

the theoretical upper bound from a model of demand for index insurance developed by 

Clarke (2016), implying that the product under consideration provides valuable insurance 

properties. This suggests that basis risk is not large enough so as to fully explain the lack 

of demand generally found in index insurance pilots.  

In addition—and as expected—basis risk increases concavely with distance, but the 

rate of increase is generally lower than what farmers perceive it to be. This points to the 

existence of important information asymmetries and indicates the need to complement the 

introduction of new index insurance products with extensive training on the spatial 

properties of rain, and basis risk in particular. Of course, low levels of education among 

farmers in developing countries represent a barrier to these type of technical trainings. The 

point is still crucial, though, since farmers are typically presented with a complex insurance 

product framed in terms of millimeters of rain and expected to make rational insurance 

decisions based on their prior knowledge and expectations on complex meteorological 

phenomena.  

Finally, a central aspect to consider in future products is the natural variation in rainfall 

patterns within a given area, even in the case of regular terrains such as those in our study. 

Subtle differences in rainfall patterns between the plot location and its reference rainfall 

gauge may result in substantial disparities in basis risk between locations. For some 

locations in our study, this effect was responsible for almost half of the total levels of 

downside basis risk. In extreme cases, local geo-climatic features could prove more 

important for determining basis risk than the actual distance to the reference gauge. 

Surprisingly, this point has been completely ignored by the index insurance literature until 

now, beyond evident settings such as mountainous topographies. 
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In summary, the present study has two main policy implications for existing and future 

index insurance schemes. First, much more thorough training needs to be offered to 

targeted farmers, aided by historical data and a careful description of the spatial 

relationship between overall rainfall patterns and that around extreme rainfall events. 

Second, in order to minimize the extent of spatial basis risk a careful consideration of 

subtle regional variations in rainfall patterns is essential, in addition to the more commonly 

studied distance aspect. This should be ideally carried out at the initial design stages of an 

index insurance scheme, when selecting from existing or determining the placement of 

new weather stations to be used as a reference for the product.  

In general terms, even though the methodology applies to products insuring against 

excess rainfall, it directly applies to any other products based on a rainfall index such as 

those covering against droughts, and it can be extended to products based on indices of 

other weather variables, such as temperature or humidity. In the case of temperature, for 

example, several multisite stochastic temperature generators exist, which could be used to 

calculate mismatch probabilities between temperature at a particular site and temperature 

at a reference weather station. 

Despite its advantages, however, this methodology can only tackle the estimation of 

the spatial component of basis risk. As discussed above, there exist a number of different 

sources for the mismatch between a farmer’s losses and an index insurance product’s 

payout. An analysis incorporating these other sources would require longitudinal farm-

level data with which we do not count. This is an important avenue for future research. 

Such an analysis can contribute to the design of innovative index insurance products that 

help mitigate the negative aspects of basis risk and reveal the potential for novel financial 

instruments to enhance farmers’ resilience. This is important as, for instance, if most basis 

risk were to arise from spatial variability in weather, the commonly proposed solution of 

increasing weather station density would be appropriate. Alternatively, however, if a large 

fraction of basis risk were to be explained by idiosyncratic differences in farmers’ abilities 

and technologies to cope with weather, policy recommendations would be entirely 

different.
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CHAPTER 4 

4 Demand Heterogeneity for Index-Based Insurance: 

The Case for Flexible Products*  

There has been an ongoing debate over the past few decades around weather index 

insurance and its merits as a tool for smallholder farmers’ agricultural risk management. 

Weather index insurance’s attractiveness—as an alternative to traditional, indemnity 

insurance products—arises from its cost-minimizing features, by reducing loss verification 

and information assymetry problems. The flip side is that, by solely relying on an objective 

index, insurance payouts cannot fully capture the losses of an individual farmer, a 

mismatch known as basis risk. Weather index insurance implementations around the world 

(at both small and large scales) have met with mixed success, giving rise to a substantial 

literature analyzing different aspects of the ex-ante and ex-post risk-management benefits 

and the determinants behind the feeble demand for this type of instruments.  

Notably, the vast majority of studies in this area have largely overlooked a subtle, yet 

important aspect in which the implementation of weather index insurance has also departed 

from traditional risk management instruments. While indemnity insurance provides a 

farmer with coverage against all adverse events that may affect his or her crops—thus 

naturally adapting to any specific risk profile—, the implicit rigidity in most existing 

weather index insurance products has made them largely inadequate in this realm, greatly 

undermining their effectiveness as risk management tools. To date, the design of these 

products has been characterized by a predetermined payout structure, generally calibrated 

considering the standard risk profile of a representative farmer. The reasons for this one-

size-fits-all structure can be traced to long-established insurance habits, where an 

individual needs only to purchase one single indemnity-based product to cover her entire 

risk exposure. However, the relative simplicity of offering one standardized product comes 

at the cost of ignoring heterogeneity in agricultural risk profiles, considerably lowering the 

                                              

* This chapter is co-authored with Miguel Robles. The authors’ contributions are as follows. MR 

conceptualized the project and obtained funding for it. FC and MR designed the insurance product, carried 

out fieldwork, and collected the data. FC conceptualized and conducted the analyses and wrote the paper. 

All authors read and approved the final manuscript. 
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product’s worth as a risk management tool for the large proportion of farmers deviating 

from the standard profile.  

In reality, this issue is nothing else than a subcomponent of basis risk—known as 

design basis risk—, related to the elements in the design of an index product that contribute 

to the mismatch between payouts and losses. For instance, if important losses in a 

particular rainfed crop were to ocurr after 5 dry days, an insurance product that pays only 

after a dry-spell of 8 days would entail a high degree of design basis risk. Alternatively, if 

the risk of drought for this crop were not related only to lack of rain but also to high 

temperatures, not considering this latter weather variable would introduce additional 

design basis risk. In this case, however, the rigidity in payout structure goes beyong a 

context-specific, case-by-case design issue. Rather, failing to consider the entire 

distribution of agricultural risk profiles constitutes a fundamental instance of design basis 

risk which has been internalized and inherited throughout most existing index products to 

date. 

To be specific, a typical index insurance product offers a payout that is linear in the 

index above/below a certain initial threshold (strike), up to a maximum/minimum level 

(exit) after which the payout is then constant. In the rest of the chapter, we refer to this 

particular type of index insurance as composite products. The different elements of an 

arbitrary composite product against excess rainfall are shown in Panel (a) of Figure 4.1. In 

order to illustrate the heterogeneity in agricultural risk profiles, Panel (b) shows 

hypothetical loss functions for the crops of two different farmers. The payout structure of 

the composite product follows closely loss function A; that is, when this farmer suffers 

small (large) losses around rainfall index values of 110 (150), the insurance compensates 

him approppriately with small (large) payouts. For the farmer with loss function B, 

however, the composite insurance unecessarily pays a small amount around index values 

of 110 (where the farmer suffers no crop losses), and notably under-compensates the 

farmer at values around 150, when his losses are very high. 

The relevance of the above problem hinges on farmers effectively facing disparate loss 

functions, and we argue that this is indeed the case. One important aspect—key in our 

study area—which can greatly induce heterogeneity in farmers’ loss exposure to weather 

realizations are differences in the mix and timing of crops. Even when this is not the case, 

such as in more homogeneous contexts where farmers generally plant the same crops at 

roughly the same points in time, there are other potential sources of heterogeneity. For 

instance, farmers may rely on alternative farming practices that affect the sensitivity of 

their crops to weather (climate-smart agriculture practices can improve a crop’s resilience 

to certain natural hazards), they may have access to different types of mechanisms to cope 

with weather risks (specialized machinery, access to and type of irrigation), or they may 

use different seed varieties designed for managing particular risks (drought-tolerant or 

pest-resistant seeds). In addition, other, more structural characteristics, may greatly affect 
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a farmer’s exposure to risks, such as soil type, slope, proximity to certain geographic 

features that mitigate or exacerbate the effects of weather, among many others.  

 
Panel A. Individual Composite Product 

 
Panel B. Loss Functions and Composite Product  

Figure 4.1 ― Insurance Coverage under Composite Product Scheme  

This chapter pursues two main objectives: (i) to describe the ways and extent in which 

farmer heterogeneity affects their demand for agricultural insurance, and (ii) to assess the 

value of providing a flexible index insurance product for hedging against agricultural risks.  

For this, we analyze a set of index insurance products covering against excess rainfall 

recently marketed in Uruguay that were specifically designed to accommodate this 

heterogeneity. The idea behind these products—originally proposed by Hill and Robles 

(2011)—is to provide an array of so-called insurance units independently covering against 

specific, well-defined risks, which an agent can then freely combine into an optimal basket 

that directly applies to his particular risk profile. In order to illustrate this conceptually, 

Panel (a) in Figure 4.2 shows two such hypothetical units: insurance unit #1 pays $500 if 

the rainfall index value is at or above 120 and nothing otherwise; insurance unit #2 does 
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so at value of the index above 150. Panel (b) shows how combining these units into 

different portfolios can allow farmers with risk profiles A and B (discussed above in Figure 

4.1) to manage their exposure. By purchasing 1, 1, and 2 of, respectively, insurance units 

#1, #3, and #5, the farmer with loss function A can construct an insurance portfolio that 

roughly protects him against his potential crop losses. In turn, loss function B can be 

hedged by purchasing 1, 2, 1, and 1 of, respectively, insurance units #2, #3, #4, and #5. 56 

In our study context, these insurance units separately covered the risk of excess rainfall 

during different time periods (calendar months) and for different degrees of intensity 

(different levels of the tail of the rainfall distribution). During the marketing efforts of the 

product, farmers were thus purposely encouraged to purchase a portfolio of these insurance 

units that best suited their individual needs. The demand for the product was reasonable in 

light of other rollouts of index insurance products in developing countries and of existing 

agricultural insurance penetration rates in the region. In particular, 1,088 insurance units 

were purchased, covering around 15% of the total horticultural hectares in the region. 

Interestingly, we observe significant heterogeneity in farmers’ insurance portfolios. This 

heterogeneity is evident even among farmers growing a similar set of crops, indicative of 

other important sources of heterogeneity in a farmer’s demand for insurance.  

Due to the nature of our purchase data, where a single farmer can purchase multiple 

types of products and multiple units of each of these types (a problem known as multiple 

discreteness), there are no existing econometric methods that can directly tackle the 

estimation of reduced-form demand equations.57 Traditional discrete choice methods 

model the agent’s choice of one out of two product types. Extensions such as multinomial 

or multivariate models can, respectively, handle single choices out of many mutually-

exclusive types or multiple correlated binary choices, but there are no existing discrete 

choice methods that can deal with multiple discreteness. On the other hand, demand 

equation type models focus on modelling demand shares or, more generally, the choice of 

(correlated) continuous quantities over a number of different categories of products, also 

resulting inappropriate for multiple discreteness problems. Moreover, the approaches 

above rely on linearity-in-parameters and overall restrictive error-distribution 

assumptions—sometimes inadequate for handling the non-linearities found in risk 

management applications—, in addition to requiring the estimation of a large number of 

                                              

56 Of course, the step-wise insurance coverage from these portfolios does not perfectly correspond with the 

hypothetical potential losses. In practice, however, this problem can be solved by allowing for additional 

flexibility through more types of insurance units or through smaller versions of composite products that 

can take into consideration the continuous nature of crop losses. 
57 Multiple discreteness can be naturally found in a large number of contexts. As summarized by Hendel 

(1999), "Although pervasive, multiple-discrete choice problems have received little attention because of 

their complexity." 
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parameters to allow for flexible specifications of the data. Finally, none of these 

approaches allow to assess the effect of counterfactual insurance schemes on farmers’ 

welfare.  

 
Panel A. Individual Insurance Units  

 
Panel B. Portfolios of Insurance Units  

Figure 4.2 ― Insurance Coverage under Insurance Units Scheme  

Closer to our context, there is a relatively small strand of the industrial organization 

literature that has dealt with this type of problems when analyzing multi-unit purchases of 

different varieties of consumer products. For instance, Kim, Allenby, and Rossi (2002) 

focus on households’ choice of yogurt flavors and use a modelling strategy that explicitly 

relies on households’ taste for variety, an approach that is however hardly adaptable to an 

insurance context. Dubé (2004) analyzes households’ choices for different sizes and types 

of carbonated soft drinks, modelling the purchased basket as the result of anticipating an 

unobserved (and unknown) number of future consumption ocassions. His model is based 

on Hendel (1999) analysis of firms’ demand for personal computers, who models firms’ 

choices by considering the match between computer attributes and different unobserved 

potential tasks that the firm requires computers for.  
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Since the various attributes of our differentiated insurance products are directly related 

to their risk management characteristics, we choose to model the risk management problem 

faced by farmers explicitly through the estimation of a structural model. In particular, we 

contemplate a farmer’s choice of insurance portfolio in the context of an expected utility 

theoretical framework, where a farmer chooses the set of insurance products that 

maximizes his next-period expected utility in the presence of uncertain future crop yields 

and rainfall realizations. To our knowledge, this chapter is the first one to provide theory-

based empirical estimates of real-world farmers’ risk management behavior.  

With the model in place, we then introduce different sources of farmer heterogeneity 

by modifying various aspects of the farmer’s decision-making problem. We seek out to 

explore the following sources of heterogeneity: (1) Crop composition; (2) Planting dates; 

(3) Soil type; (4) Product understanding; and (5) Distance to the weather station. We focus 

on these specific sources because they are particularly important in our context, with other 

potential aspects of heterogeneity (such as geographic features, coping mechanisms, or 

differences in equipment) either not having much relevance in this study area, not being 

available for the risk of excess rainfall, or not showing enough variability across farmers. 

We rely on data collected from farmer-level surveys conducted by the study team before 

and after the 2014-15 harvest season. Each of these sources is introduced together with 

one or more relevant free parameters mediating their effect. These parameters are then 

structurally estimated using GMM and their statistical significance assessed through 

regular inference tools. Since our main purpose is to explore how heterogeneity in farmers’ 

characteristics and preferences affect insurance demand, we focus on the sample of farmers 

who actually purchased insurance.  

The general process can be described as follows: the model provides a mapping 

between the parameters accompanying the different sources of heterogeneity and the 

optimal insurance choices for each farmer in our sample. With these optimal portfolios we 

can calculate the difference between the predicted and the observed purchased quantities 

of each of the 12 insurance units. Now, if the model were to perfectly explain the observed 

purchase decisions for all agents, these differences would be exactly equal to zero. More 

realistically, we construct empirical moments as the average difference between predicted 

and observed purchases across all farmers for each type of insurance unit, which should 

approach zero as the sample size grows if the model were to reflect true behavior. Finally, 

we solve for the optimal parameters by setting a given distance function of the moments 

closest to zero.  

The above analysis allows us to tease out the significance of each source of 

heterogeneity in a farmer’s demand for insurance. As a final step, the calibrated theoretical 

model for the demand of insurance provides a framework to conduct welfare analysis, with 

the aim of obtaining a relative measure of the benefits of offering a flexible insurance 

product—as opposed to a fixed-structure composite product resembling other index 

insurance instruments.  
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Identifying sources of heterogeneity in the demand for weather index insurance is 

relevant for a number of reasons. First, understanding the nature of heterogeneity can shed 

light on appropriate policies to address market imperfections. For instance, certain sources 

of heterogeneity can be regarded as information asymmetries arising in imperfect 

information contexts, such as misperceptions about the spatial variation in rainfall or about 

the characteristics of the insurance product being offered. The appropriate response toward 

these could entail a larger emphasis on educating farmers about these elements when 

introducing new weather index products. Second, other sources of heterogeneity can be of 

a more intrinsic nature, such as farmers’ crop composition, planting dates, or soil type. 

Such underlying differences in farmers’ risk profiles call for a more careful consideration 

at the design stage of new insurance products. In particular, an insurance scheme that can 

directly adapt to the differing needs of heterogeneous farmers seems to be a relevant 

alternative for a policymaker’s toolkit. Finally, the introduction of index insurance has 

generally suffered from relatively low levels of demand. If farmer heterogeneity were to 

be a key aspect behind this lack of demand, the marketing of an array of more flexible 

index insurance products could greatly contribute to their increased use as risk 

management tools.  

The chapter proceeds as follows. Section 4.1 describes the context for our study and 

the data used in the analysis. Section 4.2 outlines the base expected utility model and 

Section 4.3 discusses the different extensions to this model that will capture farmer 

heterogeneity. Section 4.4 explains the procedure and implicit assumptions for structurally 

estimating the extended model, the results of which are presented in Section 4.5. Finally, 

we discuss in detail the nature of the different sources of heterogeneity, together with the 

policy implications of our analysis, in Section 4.6.  

4.1 Context and Data  
These innovative insurance products were implemented in the context of a project led 

by the International Food Policy Research Institute (IFPRI), with support from the 

Uruguayan Ministry of Agriculture (MGAP), and were underwritten and marketed by 

Banco de Seguros del Estado (BSE), the federal insurance agency. The project’s main 

objective was to cover horticultural farmers’ harvest risk from excess rainfall, generally 

associated to severe losses due to the rotting of crops and the increased difficulty to access 

the plots. The products were offered commercially to all horticultural farmers in the 

department of Canelones, the main horticultural region in Uruguay, during the 2014-15 

summer harvest season. The marketing of the product was carried out through the existing 
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network of BSE insurance brokers, who held pre-existing relationships with farmers in the 

area.58 

Twelve insurance units were offered in total: two degrees of intensity (Strong rainfall, 

equivalent to the 85th historical percentile of the index, and Extreme rainfall, equivalent to 

the 95th percentile) for each of the six months of the horticultural harvest season (November 

through April). The index was chosen as the maximum accumulated rainfall over any 

consecutive ten-day period during a given calendar month.59 The triggers were selected 

considering the 85th and 95th percentiles of the historical index values by coverage month 

(see first two columns of Table 4.1 for trigger values). Each insurance unit promised to 

pay 500 U.S. dollars (about the cultivation costs of one-quarter of a hectare) if the realized 

rainfall index during a specific month was above its coverage month- and degree-specific 

trigger. The insurance units were priced at actuarially-fair cost plus a 40% administrative 

markup. Premiums were subsidized in 90% by MGAP, up to a total subsidy of 400 U.S. 

dollars per farmer after which farmers had to pay the fully unsubsidized amounts of $35.70 

for each Extreme coverage unit and $107.15 for each Strong coverage unit (regardless of 

the coverage month).  

Table 4.1 ― Insurance Units Triggers and Purchases by Coverage Month and 

Degree – 2014-15 Season  

Month \ Type 

Trigger  Num. of purchased units  Num. of purchasing farmers 

Strong Extreme   Strong Extreme   Total  Strong Extreme   Total 

November 130 161  28 81  109   7 11  15 

December 106 114  44 269  313  17 34  47 

January 113 224  63 98  161  19 22  38 

February 122 144  74 197  271  24 35  55 

March 178 269  42 99  141  14 21  34 

April 137 207  11 78  89  6 12  18              
Total - -   262 822   1,084   63 79   128 

We count with administrative data on insurance purchases provided by BSE, which 

identifies the number of insurance units purchased by coverage month and degree for every 

farmer (see Table 4.1). These data represent our main focus of interest, which we will 

attempt to match using the predictions from the calibrated theoretical model. A total of 

1,084 insurance units were purchased by 128 farmers to cover their horticultural crops 

                                              

58 These relationships exist since farmers in our sample generally purchase vehicle, property, life, and other 

types of insurance. Agricultural insurance, on the other hand, is rare, except for hail insurance which is 

relatively common. 
59 Since we did not count with sufficiently-dissagregated, historical yield data to identify the optimal index, 

we relied on substantial qualitative work including focus groups with farmers and semi-structured 

interviews with horticultural experts. 
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from excess rainfall during the 2014-15 summer season.60 Overall, it can be seen that 

farmers lean towards the Extreme product, which pays out if the cumulative rainfall index 

is above its 95th historical percentile. In addition, December and February seem to be the 

two most demanded coverage months. In general, though, the table shows that the 

purchases of insurance units are well distributed across all products offered.  

To get a sense of the level of portfolio heterogeneity at the farmer level, Figure 4.3 

shows the array of individual portfolios purchased by farmers. In particular, each vertical 

line in the figure represents the purchases of one single farmer; with the shapes and their 

vertical position indicating, respectively, the coverage degree and coverage month 

purchased. The figure shows that farmers not only choose a variety of different insurance 

units to construct their portfolio, but also that these portfolios differ considerably between 

farmers. While the purpose of the empirical model below is to formalize the channels 

through which this heterogeneity in portfolios arises, this graphical evidence already 

supports the hypothesis that the flexibility provided by our insurance scheme is indeed 

relevant and welcomed by farmers.  

  
Figure 4.3 ― Farmer-Level Portfolios of Insurance Units 

Our second main source of data are two farmer-level surveys conducted by a local 

survey firm before and after the 2014-15 harvest season. These surveys provide us with 

detailed data on general farmer demographics, past agricultural inputs and outputs, area 

planted under each crop, and other plot and soil characteristics. In addition, we elicited 

                                              

60 Insurance units for October were also available. However, due to administrative delays the marketing of 

the product was not able to begin in time for farmers to consider the purchase of these units, since a rule 

was in place that forbidded sales of insurance units within two weeks of the start of the coverage month. 

As a result, only four units for October were sold, which we decide to exclude from the analysis. 
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data on farmers’ risk aversion, attitudes towards insurance, and expectations about rainfall. 

Table 4.2 shows summary statistics of general farmer characteristics (including the 

variables that will be used in the empirical analysis) and horticultural profiles. The sample 

is comprised by the 91 farmers that purchased insurance units who will be used in the 

analysis.61 

Table 4.2 ― Summary Statistics of Farmer-Level Survey Data 

Panel A. General Characteristics 

Variable Mean St. Dev. No. of Obs. 

Age (in years) 46.8 9.9 91 

Years of education 7.7 3.1 91 

Farmer is female 0.18 0.38 91 

Landholding size (in ha.) 18.3 17.2 91 

Horticultural size (in ha.) 6.6 7.2 91 

Soil drainage 0.44 0.38 91 

Product understanding 1.6 0.6 91 

Distance to weather station (in kms.) 10.6 5.2 91 

Coefficient of risk aversion 0.78 1.20 91 
 

Panel B. Horticultural Profile 

Variable Mean St. Dev. No. of Obs. 

Number of horticultural crops 4.8 3.0 91 

Hectares cultivated in hort. crops 5.7 6.5 91 

Sweet potato 1.7 1.2 43 

Onion 2.4 3.1 47 

Cantaloupe 0.7 0.5 15 

Sweet pepper 0.7 0.6 37 

Roma tomato 0.5 0.5 26 

Heirloom tomato 1.7 3.0 26 

Carrot 2.0 1.7 13 

Round zucchini 0.7 0.8 33 

Squash 3.4 5.6 41 

Additionally, we tap into secondary data sources to calibrate some of the elements of 

the model. First, we count with historical daily data from the entire rain gauge network of 

the Uruguayan Meteorological Institute (INUMET). These data span over 30 years in some 

cases, allowing us to estimate representative, long-term distributional parameters for 

rainfall. Second, we gathered data on horticultural crop yields from the Southern-Region 

Horticultural surveys, which collect annual self-reported crop yield information for a large 

array of horticultural crops from a representative sample of farmers in the southern region 

of the country (of which the department of Canelones comprises the largest and most 

important fraction). These data include average crop production, planted area, and yields 

                                              

61 This is lower than the total number of farmers who purchased insurance units since some farmers were 

not interviewed during the baseline survey (even though efforts were made to reach all horticultural farmers 

in Canelones).  
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for 32 different horticultural crops and spans 12 summer seasons, from 2001-02 through 

2014-15 (survey results are not available for a few of these seasons). Finally, we use price 

data published by the main market for agricultural products (Mercado Modelo), located in 

the capital city of Montevideo, which contains daily data on wholesale prices of different 

varieties and qualities for an array of fruits and vegetables. The use of these data will be 

made explicit in Section 4.4 below. 

4.2 Model  
This section describes the theoretical framework characterizing the decision problem of 

farmers, which will be used as the basis for the empirical analysis of Section 4.4. Overall, 

the objective of this framework is to provide a simple yet reasonable specification for 

farmers’ decision-making under risk, while avoiding to fully model related aspects of 

decision-making not regarded as central to the choice of an insurance units portfolio.  

4.2.1 Farmer’s Utility  

A farmer f maximizes expected utility over his own next-period income, 𝐸[𝑈𝑓(𝑊𝑓)], 

where 𝑈𝑓(∙) is a well-behaved utility function with 𝑈𝑓
′(∙) > 0 and 𝑈𝑓

"(∙) < 0. For the sake 

of simplicity, we assume that farmers share a common utility function though potentially 

with different parameters 𝛼𝑓 (e.g. risk aversion): 𝑈𝑓(𝑊𝑓) = 𝑈𝑓(𝑊𝑓, 𝛼𝑓).62 

Next-period income 𝑊𝑓 consists of the revenue from selling the harvest of his 

particular mix of 𝐽 crops, plus the net income from his insurance purchases: insurance 

payouts, 𝐼𝑓, minus insurance premiums, 𝑐𝑓; as follows: 

 
𝑊𝑓 = ∑(𝐻𝑓𝑗𝑌𝑓𝑗𝑃𝑗)

𝐽

𝑗=1

+ 𝐼𝑓 − 𝑐𝑓 (4.1) 

𝐻𝑓𝑗  is the number of hectares cultivated with crop 𝑗, 𝑌𝑓𝑗 is the yield of crop 𝑗 in units 

per hectare, and 𝑃𝑗 is the (expected) market price obtained from selling one unit of crop 

𝑗.63 In order to focus on the insurance demand decision we consider the area cultivated 

under each crop (𝐻𝑓𝑗) and the (expected) market price for each crop (𝑃𝑗) as predetermined 

for the upcoming season.64 

                                              

62 For instance—and most importantly—parameters controlling their degree of risk aversion. 
63 We purposely ignore costs of cultivation, such as the costs of agricultural inputs, since these would not 

influence the portfolio choice decision that constitutes the main interest of our analysis. 
64 In doing this we abstract from important considerations that have been traditionally analyzed in the crop 

insurance literature, such as the impact of insurance on production decisions. However, while restrictive, 

this aspect of the model aligns well with the reality of our empirical application, where the insurance 

product was announced closely before or after planting decisions had already been made by farmers. 
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4.2.2 Insurance Units 

The available insurance units protect against excess rainfall, which can damage crop 

yields around harvest. Each insurance unit is linked to the maximum cumulative rainfall 

observed over any 10-consecutive-day period in a particular coverage month (the index). 

These are available for a total of six months (November through April) and for two degrees 

of rainfall intensity: Strong (s) and Extreme (e). In particular, the Strong (Extreme) product 

for month m pays a fixed amount when the rainfall index in month m is above its historical 

85th (95th) percentile:  

 
𝐼𝑚𝑣 = { 500 𝑖𝑓 𝛿𝑚 ≥ 𝛿�̅�𝑣

    0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 (4.2) 

where δm is the realized rainfall index for month 𝑚 and 𝛿𝑚𝑣 is a predetermined trigger for 

month 𝑚 and coverage type 𝑣 = (𝑠, 𝑒). 

The farmer chooses to purchase a number 𝑞𝑓𝑚𝑣 for each of the 12 insurance units, at 

a predetermined price of 𝑐𝑣 per policy, which varies with the coverage degree 𝑣 but is the 

same across coverage months 𝑚 (𝑐𝑚𝑣 = 𝑐𝑣 ∀𝑚 and 𝑐𝑠𝑡𝑟𝑜𝑛𝑔 > 𝑐𝑒𝑥𝑡𝑟𝑒𝑚𝑒).65,
 66 The total 

payout (𝐼𝑓) and cost (𝑐𝑓) of farmer’s 𝑓 insurance portfolio are then: 

 
𝐼𝑓 = ∑ ∑ 𝑞𝑓𝑚𝑣 ∙ 𝐼𝑚𝑣

𝑣=𝑠,𝑒

6

𝑚=1

 (4.3) 

 

𝑐𝑓 = ∑ ∑ 𝑞𝑓𝑚𝑣 ∙ 𝑐𝑣

𝑣=𝑠,𝑒

6

𝑚=1

 (4.4) 

4.2.3 Decision Problem 

Farmer’s 𝑓 decision problem thus consists of maximizing expected utility over his own 

next-season income by choosing 𝑞𝑓𝑚𝑣: 

 
max
𝑞𝑓𝑚𝑣

𝐸[𝑈𝑓(𝑊𝑓)] = 𝐸 [𝑈𝑓 (∑(𝐻𝑓𝑗𝑌𝑓𝑗𝑃𝑗)

𝐽

𝑗=1

+ 𝐼𝑓 − 𝑐𝑓)] (4.5) 

The uncertainty in the model arises from two sources: rainfall indices and crop yield 

realizations. As described above, the insurance units depend on the realizations of six 

random variables (rainfall indices across six calendar months). Crop yields, in turn, depend 

on the realization of 𝐽 additional random variables. These 𝐽 + 6 random variables are 

                                              

65 Given that premiums do not vary across farmers, we are not able to analyze common topics in the 

literature such as the price elasticity of farmers' demand for insurance. 
66 In addition, farmers face a non-linear budget set which consists of a 90% premium subsidy up to a total 

subsidy amount of $400, and lack of subsidy thereafter. While this is included in the empirical model, we 

exclude the details from the equations for the sake of simplicity. 
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jointly modelled through a parametric multivariate distribution, the realizations of which 

represent the different states of the world under which the farmer forms the expectation 

for his next-period income. Importantly, note that a (negative) relationship between 𝑌𝑗𝑓 

and 𝐼𝑓 should exist in the model for an agent to seek insurance; we discuss this relationship 

in the next subsection.  

An analytical solution of this problem is very difficult to obtain when normality cannot 

be assumed for the distribution of crop yields and rainfall indices. In addition, even if 

normality were assumed, the non-linearity of the insurance units’ payout would require to 

integrate the multivariate distribution over 36 regions (three support regions for insurance 

payouts within each month). To solve the model, thus, we rely on simulation: 𝐽 + 6 random 

realizations are jointly drawn from this multivariate distribution K number of times, which 

determine the support of the expectation operator. Given the parameters in his utility 

function, the farmer then chooses the 12 𝑞𝑓𝑚𝑣 to construct a portfolio of insurance units 

that maximizes the expected utility of his next-period income. This maximization is done 

numerically. Since a farmer cannot purchase a fraction of an insurance unit, the optimal 

portfolio is discretized by direct evaluation of his expected utility function at every 

combination of the upper and lower integer bounds of the optimal portfolio. Under 

concavity of the utility function, the combination that maximizes this expected utility 

function is thus the optimal discrete portfolio.  

The general argument for the farmer to choose positive amounts of insurance is well-

known: under a concave utility function insurance smoothes a farmer’s income across 

states of nature, thus a farmer will choose to give up a certain amount (insurance premium) 

in order to receive state-contingent income (insurance payouts) in those states with a high 

marginal utility of consumption (i.e. the states where loss of income occurs).  

4.2.4 Calibration  

In order to complete the formulation of the model we must determine the functional form 

and calibrate the two sources of uncertainty faced by the farmer: rainfall and crop yields.  

First, we assume that the rainfall indices (that is, the maximum amount of rainfall 

accumulated over ten consecutive days in a given calendar month) for the six months, Δ =

[𝛿1, … , 𝛿6], can be represented by a multivariate lognormal distribution: Δ = 𝑒𝑅~𝑁(𝝁,𝚺), 

with 𝝁 a 6x1 vector of means and 𝚺 a 6x6 variance-covariance matrix. While arbitrary, 

this family is chosen because of its relative simplicity and strictly positive support with a 

long upper tail (capturing the occurrence of excess rainfall events, which is the key of our 

analysis). 67 This distribution is calibrated using 30 years of historical rainfall data from the 

most representative weather station in our study area: Aeropuerto Carrasco. It is worth 

                                              

67 Goodness of fit tests cannot reject the null hypothesis for joint log-normality of the historical series. 
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noting that in doing so we are implicitly assuming that farmers form rational expectations 

over past information.  

Second, we assume that future crop yields can be represented through a multivariate 

normal distribution. This is arguably a stronger assumption. Our justification for this 

choice is twofold: (1) Joint normality is found plausible by a strand of the empirical 

literature on crop yields;68 (2) This assumption simplifies the empirical treatment when 

including a large number of crops. This distribution is in turn calibrated using historical 

yield data from the annual horticultural surveys conducted in our study area.69 

Finally, in order for the insurance to be relevant, we must account for the dependence 

of yields on rainfall. Unfortunately, we do not count with sufficiently long and 

dissaggregated data on both yields and rainfall across our study area to empirically 

estimate said relationship. We sort these obstacles by assuming a certain dependence 

structure that relies on a number of free parameters which will be estimated later as 

described in Section 4.4. In particular, we make the following assumptions in the model 

about the nature of dependence between crop yields and the rainfall indices, where farmer 

𝑓’s yields for crop j, 𝑌𝑓𝑗, depend on the month 𝑚 rainfall index, 𝛿𝑚, as follows: 

 
𝑌𝑓𝑗 = 𝑌𝑗 ∙ [1 − ∑ 𝜃𝑗𝑚,𝑓 ∙ 𝑚𝑎𝑥(0, 𝛿𝑚 − ℎ)

6

𝑚=1

] (4.6) 

The term in brackets in Equation 4.6 acts as a multiplier that reduces "potential" yields 

𝑌𝑗 according to the realizations of rainfall. In particular, we allow yield to decrease linearly 

with rainfall when the rainfall index is above a certain threshold ℎ.70 When all the rainfall 

indices are below the threshold ℎ, this term is equal to 1 and yield is thus optimal; but 

when one or more of the rainfall indices is above ℎ, the term takes a value below 1 and the 

maximum potential yield is reduced by a certain fraction. The 𝜃𝑗𝑚 > 0 capture the linear 

                                              

68 See, for example, Just and Weninger (1999). Another strand challenges these findings, importantly 

Ramirez, Misra, and Field (2003). Overall, however, there does not seem to be a consensus on the most 

appropriate distributional form for crop yields. 
69 It is important to clarify that these data represent the average crop yield in the area, thus concealing the 

true amount of variation in individual farmer yields. For the purposes of our empirical model, we do not 

consider this to be a first order limitation. Rather, since single-farm outcomes could in principle be much 

worse than an entire area's outcomes, this assumption limits the true loss distribution of farms and would 

bias our model's predictions towards acquiring less insurance. 
70 We assume ℎ to be fixed across coverage months, as the risk of excess rainfall in horticulture is generally 

associated to the rotting of crops from being underwater or to reduced accesibility to the field for 

harvesting, both problems that depend on the amount of rainfall and terrain characteristics but not on the 

specific crop planted. However, it is important to note that the effect of excess rainfall on yields is not 

constant, since the 𝜃𝑗𝑚 can differ across crops, capturing the fact that some crops are more resilient than 

others to being exposed to excess water. 
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negative effect of excess rainfall (accumulated rainfall above the threshold ℎ) on crop 

yields and are constructed as 

 𝜃𝑗𝑚,𝑓 = 𝜃𝑗 ∙ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓 (4.7) 

where 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓 indicates the fraction of month 𝑚 during which crop 𝑗 is exposed to 

excess rainfall. Since the qualitative analysis indicates that the main risk of excess rainfall 

occurs around harvest, we further assume that a crop’s exposure to large amounts of rain 

(i.e. high 𝛿𝑚) takes place 60 days (two months) before the expected date of harvest, 

otherwise exposure to 𝛿𝑚 is null. Note that exposure varies according to a farmer’s choice 

of planting a given crop 𝑗 and to the farmer’s choice of planting dates. Finally, the 𝜃𝑗 are 𝐽 

free parameters that are estimated as explained in Section 4.4.  

4.3 Sources of Heterogeneity  
In this section we discuss the effect of alternative sources of farmer heterogeneity on 

demand for insurance in the context of our model. We extend the model in Section 4.2 to 

accomodate for each source and, in Section 4.4, empirically estimate these parameters to 

assess whether they fit the insurance demand data.  

4.3.1 Crop Composition  

Naturally, this is an important aspect of heterogeneity and its inclusion in the model should 

explain a substantial amount of variation in the observed insurance portfolios. In order to 

assess whether the purchased insurance portfolios are related to farmers’ crop composition 

we compare the benchmark model in Section 4.2 with a modified version which considers 

that all farmers face the same mix of crops. In order to maintain farmer size constant, we 

calculate the total number of hectares in every crop and determine shares for each of them, 

which we then apply to a farmer’s total landholding size. If the model taking into 

consideration a farmer’s actual crop composition results in a better overall fit of the 

observed insurance portfolio data, this would provide evidence in support of the relevance 

of this source of heterogeneity.  

4.3.2 Planting Dates  

Another direct source of heterogeneity in farmer’s risk profile is related to differences in 

farmers’ timing in the planting of crops. Differences in planting dates could stem from 

common strategies such as staggering sowing to reduce specific risks at later stages of crop 

growth or to take advantage of seasonal price variation (e.g. selling early or late in the 

market, when supply for that crop is low). Other important underlying causes behind 

differences in planting dates are preference for seed varieties with longer or shorter 

durations.  

In the context of the model, this is taken into consideration by allowing the 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓 variable described in Equation 4.7 to change according to the full set of 

planting dates for each crop reported (ex-post) by the farmer. In other words, for each 
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reported planting date 𝑑, we calculate 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓
𝑑  as the fraction of month 𝑚 during 

which crop 𝑗—planted in date 𝑑—is within two months of its harvest date (and thus 

exposed to excess rainfall). In order to obtain 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓 for the overall relationship 

between crop 𝑗 and the different months 𝑚, we simply calculate the mean of 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑗𝑚,𝑓
𝑑  

across all planting dates 𝑑 reported by farmer 𝑓.71 

4.3.3 Soil Type  

As mentioned above, the risk of excess rainfall is generally interdependent with terrain 

characteristics such as slope or poor drainage. Since our study area is homogeneously flat, 

slope does not seem to be a relevant factor in our context. Soil drainage, however, may be 

a relevant factor in a farmer’s demand for insurance. In particular, soils with poor drainage 

are more prone to water accumulation after heavy rains, while soils with better drainage 

can withstand higher levels of rainfall before suffering the same consequences. In terms 

of insurance demand, a farmer with the former type of soil would thus be more prone to 

buying insurance that protects him against the occurrence of lower amounts of rainfall.  

In the context of our model, we introduce this factor by modifying the threshold 

parameter h in Equation 4.6, which controls the amount of cumulative rainfall above which 

crop yields start to be negatively affected. In particular, we impose the following structure: 

 ℎ = ℎ + 𝛽𝑠𝑜𝑖𝑙 ∙ 𝑋𝑠𝑜𝑖𝑙 (4.8) 

where 𝑋𝑠𝑜𝑖𝑙 ∈ [0,1] captures the proportion of farmer’s 𝑓 horticultural area comprised of 

heavy soils with poor drainage and 𝛽𝑠𝑜𝑖𝑙 is a parameter to be estimated. In order to assess 

the relevance of this characteristic on demand for insurance we can then test the hypothesis 

𝐻0: 𝛽𝑠𝑜𝑖𝑙 = 0. 

4.3.4 Product Understanding  

There is a large literature that identifies farmers’ limited product understanding as an 

important factor in their reduced demand for index insurance (e.g. Cole et al., 2013; Sibiko, 

Veettil, and Qaim, 2016; among others). It thus seems appropriate to evaluate this aspect 

of farmer heterogeneity within the context of our model.  

While a limited understanding of the insurance product could translate into different 

misconceptions within the farmer’s decision making problem, we summarize its effect in 

the model as an additive term to the insurance’s payout, 𝐼𝑓. In particular, we posit that 

limited understanding is reflected in the farmer’s decision problem as a lower payout in 

those states of nature where the insurance product pays: 

                                              

71 Ideally, we would want to weight this average by the surface of crop 𝑗 planted in date 𝑑 . However, we 

do not count with detailed information on surface cultivated by planting date and thus must resort to this 

simplyfing assumption. 
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 𝐼𝑓
′ = 𝐼𝑓 + 𝛽𝑐𝑜𝑛𝑠 + 𝛽𝑢𝑛𝑑 ∙ 𝑋𝑢𝑛𝑑 (4.9) 

where 𝑋𝑢𝑛𝑑 is a dummy variable that takes the value of one if the farmer’s response to the 

question "Do you know how the insurance product works?" was "A little" or "No", and 

𝛽𝑢𝑛𝑑 a free parameter (capturing the effect of lack of understanding of the insurance 

product).  

In addition, we allow for an additional parameter, 𝛽𝑐𝑜𝑛𝑠, that affects all farmers’ 

perception of the insurance payout (regardless of their level of understanding). This 

parameter can be interpreted as the distrust that is normally observed when introducing a 

completely brand new type of insurance, different from any other product previously 

experienced. This parameter also serves by way of a constant in a linear model, bringing 

the average level of insurance demand to its observed counterpart.  

4.3.5 Distance to the Weather Station  

As our weather index insurance product pays according to the rainfall recorded at the 

reference weather station (i.e. the weather station closest to the farmer’s plots), insurance 

becomes less appealing for farmers farther from the weather station. This effect is known 

in the index insurance literature as spatial basis risk.72 

In order to capture this element in the model, we introduce a second set of rainfall 

indices, Δ𝑊𝑆 = 𝑒𝑅~𝑁(𝝁,𝚺), which captures rainfall at the weather station and thus 

determines insurance payouts. The original set of rainfall indices, Δ, is then interpreted as 

reflecting rainfall at the farmer’s plot (and thus associated to the loss in crop yields under 

excess rainfall). The two sets of random variables are identically distributed and correlated, 

with the degree of correlation between them determined by the distance (in kilometers) of 

the farmer’s plots to the weather station, Xdis t, as follows: 

 𝐶𝑜𝑟𝑟(Δ, Δ𝑊𝑆) = (1 + 𝛽𝑑𝑖𝑠𝑡 ∙ 𝑋𝑑𝑖𝑠𝑡) (4.10) 

with 𝛽𝑑𝑖𝑠𝑡 < 0 a free parameter. In other words, if the farmer’s plots are located at the 

same place where rainfall is recorded (𝑋𝑑𝑖𝑠𝑡 = 0), the correlation between the two sets of 

random variables is exactly 1 and thus realizations from them are equivalent. This would 

result in the rainfall indices affecting a farmer’s crop yields being the same as those 

determining the payout of the insurance product, thus eliminating spatial basis risk. Now, 

at positive distances from the weather station, the correlation between these two sets of 

                                              

72 This is related to the general perception of spatial variation in rainfall being very high. While this is 

mostly true for average rainfall events—which tend to be short and localized—, extreme rainfall events 

(e.g. large storms) are of a more reginal nature and as such highly spatially correlated. Since excess-rainfall 

index insurance products pay around the upper tail of the rainfall distribution, spatial basis risk is mitigated. 

Nevertheless, farmers seem to consistently overestimate the negative effect of distance on correlation in 

rainfall, dampening their demand for insurance. See Chapter 3 for more details. 
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rainfall indices would fall linearly with distance, and the rainfall affecting crop yields 

would only be positively correlated—not identical—to the rainfall determining payouts. 

4.4 Structural Estimation  
This section describes the structural estimation of the model parameters using generalized 

method of moments (GMM). The set Γ of free parameters for the full model including all 

extensions is Γ = [𝜃𝑗 , 𝛽𝑐𝑜𝑛𝑠 , 𝛽𝑢𝑛𝑑 , 𝛽𝑠𝑜𝑖𝑙 , 𝛽𝑠𝑜𝑖𝑙],  with the 𝐽 𝜃𝑗 parameters governing the 

degree of dependence between excess rainfall and crop yields introduced in Section 4.2 

and the 𝛽 parameters associated with each of the sources of heterogeneity discussed in 

Section 4.3. 

The aim of the estimation process is to find the parameters Γ∗ that predict optimal 

insurance portfolios that are closest to the actual portfolios purchased by farmers. To do 

this, we use as moments the difference between the number of predicted and actual 

insurance units for each of the 12 coverage month (November through April) and degree 

(Strong and Extreme 10-day cumulative rainfall) combinations. We carry out the 

estimation by two-step GMM, using as instruments a constant and the fraction of land 

owned by the farmer (thus assuming that, after taking into account all aspects related to 

the farmer’s risk profile in the model, the fraction of land owned by the farmer should be 

systematically unrelated to any remaining differences in purchases). In the second step, we 

calculate the efficient weighing matrix following Hansen (1982), which results in well-

known asymptotic distributions for the estimates.  

The model’s structure provides a mapping from farmer characteristics and model 

parameters to farmers’ optimal choices of 𝑞𝑓𝑚𝑣. For a given value of the parameters, we 

can identify the portfolio of insurance units that maximizes each farmer’s expected utility. 

As it is impractical to obtain a closed-form analytical solution for the farmer’s problem, 

we rely on simulation.73 For this, we draw 𝐾 joint random realizations for all the random 

variables in the model (rainfall indices plus crop yields), and calculate each farmer’s utility 

at every one of these states of the world.74 A farmer’s expected utility is the simple average 

of his utility across all (simulated) states of the world. We can then identify, for each farmer 

𝑓, the insurance portfolio (𝑞𝑓𝑚𝑣
𝑜𝑝𝑡

) that maximizes his expected utility given the parameters.  

The GMM estimation proceeds as follows: given values for all farmer characteristics 

and initial (arbitrary) parameters Γ(1), a set of farmer choices 𝑞𝑓𝑚𝑣
(1)

 are obtained for all 𝐹 

                                              

73 An analytical solution would entail solving truncated cumulative probabilities of 6 lognormal (rainfall 

indices) and 9 normal (crop yields) distributions over 36 regions of integration (since the payouts of the 

insurance product are non-continuous at the Strong and Extreme triggers for each of the 6 months). 
74 See Pakes and Pollard (1989) for a formal treatment of estimation under simulated moments. Following 

their suggestion, we keep the set of random draws from the stochastic elements of the model constant 

across GMM iterations (i.e. alternative parameter sets) in order to maintain the equicontinuity of the 

objective function. See also Low and Meghir (2017). 
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farmers. These choices are in turn compared to the true observed choices 𝑞𝑓𝑚𝑣
𝑇  by 

calculating the sample moments (as the average of each individual moment across all 

farmers) and the GMM objective function is computed for a given weighting matrix. The 

procedure continues in this fashion, with a new set of model parameters Γ(𝑠) at each 

iteration 𝑠, until the objective function cannot be decreased any further (i.e. where the 

predicted optimal choices are found to be closest to the true observed choices, under a 

given distance measure and precision). The resulting parameter set Γ∗ is thus the one that 

achieves the closest fit to the observed insurance purchase data.  

We use 𝐾 = 300 realizations to represent the different states of nature in the farmer’s 

decision problem. As for the missing elements of the model, we assume a constant relative 

risk aversion (CRRA) utility function, 𝑈(𝑊𝑓) =
𝑊𝑓

1−𝛾𝑓

1−𝛾𝑓
, with relative risk aversion 

parameter 𝛾𝑓 calibrated from a (non-incentivized) modified Holt and Laury (2002) risk 

aversion elicitation game carried out during the baseline survey, following Balsa, 

Gandelman, and González (2015). We work with nine crops: sweet potato, onion, 

cantaloupe, sweet pepper, roma and heirloom tomato, carrot, round zucchini, and squash. 

Based on data from our baseline survey, these crops account for almost 90% of the area 

cultivated under horticultural crops and include more than 80% of the horticultural farmers 

in the department of Canelones. Moreover, this group of crops represents two thirds or 

more of (i) the total horticultural hectares and (ii) the number of horticultural crops 

cultivated for the large majority (87%) of farmers in our sample.  

4.5 Results  
We first discuss the results from the parameter estimation, discussing their statistical as 

well as economic significance. Then, we describe counterfactual policy experiments 

carried out with the estimated model that allow us to quantify the value of providing a 

flexible insurance scheme in the form of insurance units.  

4.5.1 Model Estimates  

Table 4.3 shows two-step GMM results for the full model using the average planting dates 

(as determined from qualitative local expert knowledge). 

Overall, the results point to a significant effect of all sources of heterogeneity 

considered in the model on insurance demand. First, differences in farmers’ understanding 

of the insurance product seem to be a strong predictor of their purchase decisions. 

Understanding little or nothing about how the product works is equivalent to reducing the 

payout of the product in around $200 (out of $500), thus shrinking the product’s value by 

about 40%. Second, a farmer with good soil drainage in all of his plots is much more 

tolerant of higher rainfall amounts as indicated by his insurance purchases (thus leaning 

his purchases towards the Extreme product). In the context of the model, having good 
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drainage in 100% of the plots is equivalent to a substantial higher threshold above which 

excess rainfall affects crop yields: 155 millimeters compared to 100 millimeters for 

farmers with bad soil drainage. Third, distance to the weather station matters, farmers 

located farther away from the product’s reference weather station do indeed perceive 

rainfall realizations at their plot as different from rainfall realizations at the weather station. 

The coefficient in the table indicates that being one extra kilometer away from the weather 

station is equivalent to reducing the correlation between the rainfall distribution at the plot 

and at the weather station by around 0.069. To get a sense of the order of magnitude of 

this estimate, such an effect size would indicate that farmers’ perceive a distance of around 

14 kilometers as the maximum distance between two locations at which there can be any 

correlation between their rainfall patterns. Finally, the parameter capturing overall distrust 

in the insurance product (also referred to previously as the constant term) is indeed 

negative and statistically significant, diminishing the overall value of the product for all 

farmers in about a third. Note that the presence of this constant effect could in reality be 

indicative of the presence of other type of farmer characteristics and/or beliefs affecting 

the general level of insurance demand but unnacounted for in our model.  

Table 4.3 ― Model Parameter Estimates using Average Planting Dates  

Panel A. Parameter Estimates 

Parameter Estimate 
Standard 

Error 
Z-Statistic 

Constant: βcons -168.516 29.759 -5.663 

Understanding: βund -200.663 33.150 -6.053 

Soil drainage: βsoil 54.581 2.638 20.689 

Spatial basis risk: βdist -0.069 0.002 -39.215 
    

θsweet potato 0.0023 0.0002 9.741 

θonion 0.0015 0.0004 3.826 

θcantaloupe 0.0015 0.0004 3.767 

θsweet pepper 0.0015 0.0004 3.633 

θroma tomato 0.0015 0.0003 5.113 

θheirloom tomato 0.0015 0.0005 2.795 

θcarrot 0.0027 0.0004 6.732 

θround zucchini 0.0015 0.0004 3.827 

θsquash 0.0015 0.0004 4.324 
    

Objective function 0.4480   

Number of obs. 91     
    

Panel B. Test for Over-Identifying Restrictions 

  
Actual 

value 
5% value p-value 

J-statistic 40.7717 19.675 0.000 

The final value of the objective function—derived from the sample moments and the 

optimal weighting matrix—is 0.448. Panel B shows the results for the test of 
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overidentifying restrictions, with a test statistic equal to 40.772 (equivalent to the objective 

function times the number of observations). Under the null, this statistic is distributed chi-

squared with 11 degrees of freedom (24 moment restrictions minus 13 parameters): 

𝜒0.05
2 (11) = 19.675. Thus, the null hypothesis of the model being an accurate 

representation of reality is rejected.  

Table 4.4 shows instead results for the model using the actual planting dates, as 

collected directly from farmers during the follow-up survey. The estimated parameters for 

farmers’ understanding of the product, type of soil drainage, and sensitivity to the distance 

to the weather station are lower in magnitude than those estimated when using average 

planting dates, though they are still strongly statistically significant and economically 

important. The general distrust parameter is also lower (though still statistically 

significant), seemingly indicating that this alternative model is indeed capturing the 

variability in insurance purchases more accurately. 

Interestingly, the model using actual planting dates in Table 4.4 results in a 

considerably lower objective function than that using average planting dates (Table 4.3).  

4.5.2 The Value of Flexibility  

The above results show that certain farmer characteristics do actually matter for their 

choice of insurance portfolio. The question remains, however, of whether farmers are 

better-off by being able to construct their portfolios as opposed to buying the pre-designed 

portfolios implicit in a one-size-fits-all, composite index insurance product. It is natural to 

think that under the latter scheme, by not being able to adapt the insurance to their 

particular risk profile, most farmers would indeed be worse-off (except perhaps for those 

farmers whose risk profile is close enough to the risk profile implicit in the composite 

product). In addition, it would be important to quantify the relative improvement in 

farmers’ welfare from providing flexibility; if this improvement were too small to be 

relevant, the additional costs associated to implementing a flexible system would not be 

warranted. Fortunately, the structural model estimated in the previous section provides us 

with a framework where to explore these questions. 

With this objective in mind, we carry out policy experiments where we take as given 

the model’s structure together with the optimal parameters estimated above (Table 4.4) 

and allow farmers to choose the optimal combination from a hypothetical set of 

counterfactual insurance products. Then, by comparing each farmer’s resulting expected 

utility under the alternative scenario to their expected utility under the insurance units 

scheme, we can derive the welfare changes brought about by providing flexibility.  
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Table 4.4 ― Model Parameter Estimates using Actual Planting Dates 

Panel A. Parameter Estimates 

Parameter Estimate 
Standard 

Error 
Z-Statistic 

Constant: βcons -143.755 27.398 -5.247 

Understanding: βund -124.376 18.867 -6.592 

Soil drainage: βsoil 46.754 3.009 15.538 

Spatial basis risk: βdist -0.065 0.002 -30.790 
    

θsweet potato 0.0017 0.0003 5.554 

θonion 0.0013 0.0003 4.673 

θcantaloupe 0.0013 0.0004 3.198 

θsweet pepper 0.0013 0.0005 2.713 

θroma tomato 0.0030 0.0005 6.448 

θheirloom tomato 0.0027 0.0009 2.975 

θcarrot 0.0018 0.0003 6.138 

θround zucchini 0.0030 0.0004 7.331 

θsquash 0.0030 0.0002 12.576 
    

Objective function 0.3687   

Number of obs. 91     
    

Panel B. Test for Over-Identifying Restrictions 

  
Actual 

value 
5% value p-value 

J-statistic 33.5507 19.675 0.000 

We consider two types of alternative composite insurance products. The first type 

involves a frequent choice in index insurance implementations, where products are 

designed for a particular crop, using the best available knowledge about the timing and 

effect of the risks under consideration. The second type is a hybrid between this model and 

the flexible products rolled-out in Uruguay, where an insurance product is offered for each 

calendar month but no flexibility is provided in terms of the particular payout function 

with respect to the index. In other words, under this second type of alternative products, a 

farmer is able to purchase insurance for individual months (according to his own 

assessment of his crops’ exposure to each of them), but has to put up with a particular 

payout structure, being thus unable to adapt insurance payouts to his specific exposure 

torainfall intensity.  

For both of these types, we maintain the index chosen (i.e. accumulated daily rainfall 

over 10 consecutive days) and consider the most common payout structure seen in crop 

insurance products for smallholder farmers around the world. This structure relies on three 

elements (or parameters): the strike, the tick, and the exit. In the case of excess rainfall, a 

typical product would pay nothing when the value of the index is under the strike and 

would pay the entire coverage amount if the realized value of the index is above the exit 

value (i.e. extreme rainfall amounts were recorded). For realized values of the index 
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between the strike and exit, the insurance product would pay the product between the tick 

and the difference between the index and the strike: 𝑃𝑎𝑦𝑜𝑢𝑡 = (𝐼𝑛𝑑𝑒𝑥 − 𝑆𝑡𝑟𝑖𝑘𝑒) 𝑥 𝑇𝑖𝑐𝑘. 

In order to design the alternative products, we need to decide on the values taken by the 

strike and exit parameters (the tick can be derived implicitly from the difference between 

the exit and the strike together with the maximum payout intended for the product, which 

is fixed at $500 as in the insurance units). For simplicity we determine these values as the 

percentiles of the historic distribution of the index in our study area. We use two alternative 

combinations: (1) Strike at the 85th percentile and Exit at the 95th percentile; and (2) Strike 

at the 90th percentile and Exit at the 99th percentile.  

The combinations above result in four sets S of alternative insurance products, which 

we believe reasonably capture the range of options available to the implementer of an 

index insurance scheme. Next—and separately for each of these sets—we allow each 

farmer to select an optimal portfolio of insurance products within the available set and 

calculate the resulting (optimal) level of expected utility from purchasing this portfolio, 

𝐸𝑈𝑓
𝑠. Moreover, from the optimization procedure in the previous section, we count with 

each farmer’s expected utility under an optimal portfolio of insurance units, 𝐸𝑈𝑓
∗, and their 

expected utility under a no-insurance scenario, 𝐸𝑈𝑓
𝑁𝐼. Finally, we calculate the welfare 

improvement (with respect to no insurance being available) under each alternative scenario 

𝑆, relative to the welfare improvement from having a flexibile insurance units scheme 

available: 

 (𝐸𝑈𝑓
𝑠 − 𝐸𝑈𝑓

𝑁𝐼)

(𝐸𝑈𝑓
∗ − 𝐸𝑈𝑓

𝑁𝐼)
 (4.11) 

 This is our final welfare measure, where values under 100% indicate that a farmer’s 

welfare under the insurance units scheme is higher than under the alternative, hypothetical 

set of composite insurance products, while values above 100% indicate that a farmer is 

worse-off under the alternative scenario.  

Table 4.5 shows a summary of results from these exercises. Overall, the value of 

providing flexibility in terms of an insurance units scheme is substantial. For instance, if 

the first alternative set of products were available (Set #1), with one insurance product per 

crop and strike and exit values at the 85th and 95th historical percentiles, all farmers would 

be worse-off than in the benchmark system of insurance units, with excess expected utilty 

(over the expected utility achieved under no insurance) around half of that achieved under 

the more flexible scheme. Certainly, there is a lot of heterogeneity among farmers: for 

some farmers, the benefit of being able to create a portfolio reflecting their unique risk 

profile is quite large, allowing them to boost the additional welfare from counting with 

insurance by about 4 times compared to the alternative set; for other farmers, on the other 

hand, the welfare derived from either insurance scheme would be almost the same. In terms 

of the other hypotethical sets of insurance products, the value of flexibility is even greater 

if one considers the insurance products available in Set #2, which pay under more extreme 
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rainfall conditions than those in Set #1. As for the month-level products considered in Sets 

#3 and #4, the value of an insurance units scheme is somewhat smaller, though still 

positive. In these cases, though, a small subset of farmers (18.7% and 28.6%, respectively) 

would be better-off under the alternative schemes.  

Table 4.5 ― Results from Alternative Policy Experiments 

Alternative 

products 
Description Average Median Min. Max. 

Perc. farmers 

worse-off 

Set #1 
Crop-level products 

Strike: p, Exit: p 
57.2% 53.3% 22.0% 97.9% 100.0% 

Set #2 
One ins. prod. per crop 

S: 90th pctile, E: 99th pctile 
28.2% 25.2% 6.4% 60.4% 100.0% 

Set #3 
One ins. prod. per month 

S: 85th pctile, E: 95th pctile 
79.1% 84.7% 23.1% 115.7% 81.3% 

Set #4 
One ins. prod. per month 

S: 90th pctile, E: 99th pctile 
73.9% 72.6% 17.0% 124.8% 71.4% 

All in all, the results in this subsection illustrate that there are large benefits to be 

reaped from implementing an insurance scheme that provides the basic elements for 

heterogeneous farmers to adapt it to their particular risk needs.  

4.6 Discussion and Policy Implications  
We describe a flexible commercial index insurance scheme which comprises a number of 

independent insurance units covering against different aspects of excess rainfall, based on 

the weather securities approach originally proposed by Hill and Robles (2011). We exploit 

substantial variation in the insurance portfolios purchased by farmers to provide unique 

theory-based evidence on how farmers’ heterogeneity in risk profiles affects the nature of 

their demand for insurance. In particular, we provide evidence that differences in crop 

composition, planting dates, soil drainage, distance to the weather station, and 

understanding of the product are all significant determinants of the type of insurance 

portfolio purchased by a farmer. In addition, we show that, under the assumptions and 

optimal estimated parameters of the model, providing flexibility through an insurance units 

scheme improves farmer welfare considerably in relation to having provided a range of 

other hypotethical composite products.  

More generally, this chapter illustrates the feasibility of rolling out a real-world system 

of commercially-backed, flexible insurance units or weather securities. At least in the 

particular context of horticultural farmers in Uruguay, this system seems to be more 

appropriate than traditional index insurance systems based on one single, standardized 

product. Nevertheless, the generalizability of these findings seems plausible for any other 

contexts with sufficient degrees of farmer heterogeneity.  

As discussed above, traditional index insurance products are generally based in the 

expert design of an optimal insurance policy for a representative farmer or for the expected 
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losses under ideal management conditions. Now, a natural preconception against the 

flexible insurance approach is that farmers would not be able to construct their optimal 

portfolios in a way that improves upon an expert’s assessment. We show this notion to be 

unfounded. Farmers do indeed purchase a wide array of different portfolios and, more 

importantly, do so in a way that is consistent with the underlying risk exposure of their 

particular crop composition and other individual characteristics related to their individual 

farming conditions.  

Our results have significant policy implications. Farmer heterogeneity matters. The 

approach of selling index insurance as a single, one-size-fits-all policy is misguided. For 

all its worth, index insurance cannot be designed to fit all risk profiles. Product flexibility 

is important and farmers seem to have the ability to adapt it to their needs. However, not 

all heterogeneity is equal. On one hand, there are certain sources of heterogeneity that are 

related to information problems, such as limited product understanding or misperceptions 

about rainfall distributions. In this respect, a flexible insurance system would serve only 

as a temporary patch; requiring more permanent solutions that tackle the root of the 

problem such as accompanying the rollout of new insurance with appropriate marketing 

and campaigns educating about true climatic patterns. On the other hand, other sources of 

heterogeneity are of a more structural nature, such as the degree of soil drainage a farmer 

has or his specific choice of crops and planting dates. A flexible insurance system is almost 

unavoidable in these cases, as it is hard to imagine how to design only a few composite 

insurance products that could appropriately consider the weather risks of all possible risk 

profiles.  

This product was marketed in a context of better-educated farmers relative to other 

rural contexts in Latin America, not to mention Africa or Asia. This gives rise to the 

question of whether farmers’ choice of appropriate insurance portfolios would still be 

attainable in these other contexts. Preliminary evidence in this regard discussed in Hill and 

Robles (2011) shows that smallholder farmers in Ethiopia do indeed flexibly respond to 

their risk exposure by purchasing different insurance portfolios. In addition, we venture 

that insurance units of the sort commercialized in our project are indeed easier to grasp, as 

their payout structure relates directly to simple relations between weather and crop yields 

that farmers already have beliefs formed over. In a way, traditional index products with 

more complex payout structures may require a leap of faith from farmers with low 

education levels (in trusting that they will match their losses). Furthermore, this can be 

harmful for the sustainability of the insurance scheme. Most index insurance projects 

abound in anecdotal evidence about farmers complaining about lack of payouts after 

experiencing losses, and this is generally related to a lack of understanding about the 

insurance product they purchased. This type of negative feedback can greatly damage 

repeat purchases. The binary payout structure of a single index insurance unit of the type 

analyzed in this chapter is arguably more transparent, allowing farmers to better 

understand them and avoiding confusion when a payout does not trigger.  
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Implementing such an insurance system nevertheless requires a shift in the mindset of 

insurance providers, generally hang up in old business practices of selling one single 

insurance policy. Moreover, regulatory constraints may exist in some cases too. Despite 

the challenges and the need to accompany it with appropriate marketing and education 

campaigns, we show this system to be an overall feasible insurance scheme that should be 

seriously considered in contexts where heterogeneity in farmer characteristics and farming 

practices is present. 
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CHAPTER 5 

5 General Conclusions 

There is no doubt that Earth’s climate is changing. With it, both the frequency and intensity 

of extreme weather events are likely to increase in the near future, with dramatic impacts 

on agricultural systems and livelihoods. While large-scale agricultural producers are better 

suited to evolve in this shifting landscape, smallholder farmers are both the most affected 

and the least able to cope with shocks and adapt. In this context, affordable, small-scale 

crop insurance is bound to be a fundamental piece in the policy toolkit to promote rural 

resilience and help bring about sustainable transformation to billions of people. 

Weather index insurance in particular seems better equipped than its indemnity cousin 

to play a central role in this process. The cost reduction that comes along from basing 

insurance on an index are crucial to encourage low-income farmers to affordably insure 

themselves against weather risks. Now, after two decades of sustained push yet oscillating 

success for weather index insurance, it is high time to take stock of its triumphs, confront 

its weaknesses, and assess the way forward. 

This dissertation provides some important building blocks to support such a task, 

discussing topics relating to both the demand and the supply perspectives.  

In terms of the demand perspective, a number of insights are provided on smallholder 

farmers’ real-world choices and attitudes towards insurance instruments. These insights 

should prove helpful when introducing new insurance products, by informing marketing 

and outreach efforts and providing a roadmap for policymakers to assess the degree of 

support needed in premium subsidies. 

In terms of the supply perspective, the dissertation tackles the very relevant issue of 

basis risk, contributing a novel methodology to aid with the ex-ante assessment of spatial 

basis risk and presenting evidence on the feasibility of a flexible system capable of 

reducing the extent of design basis risk in index insurance products. Both of these should 

serve to devise better insurance products, with improved risk coverage and a higher appeal 

for targeted farmers. 



Chapter 5 

100 

 

5.1 Key findings 

Chapter 2 analyzes the case of an insurance product against deficit or excess rainfall 

implemented in Madhya Pradesh, India. It presents causal evidence on three factors 

affecting take-up: price, distance to the reference weather station (a proxy for basis risk), 

and insurance literacy. The evidence is in line with the predictions from an expected-utility 

theoretical framework: demand is decreasing in price and basis risk, and increasing in 

product comprehension. Moreover, the chapter assesses the validity of a theoretical 

prediction about demand increasing with risk aversion at low levels of aversion, yet 

decreasing at higher levels (due to the uncertain nature of index insurance payouts). The 

chapter finds some evidence in this regard, although the estimation arguably suffers from 

lack of power to conclusively assert this. Finally, the chapter provides evidence on the 

demand for index insurance over time. In particular, the analyses indicate that receiving 

payouts is more important for repeat purchases than solely having purchased insurance in 

the past, indicating that trust or other behavioral mechanisms may be at play in farmers 

risk protection decisions. 

Chapter 3, in turn, develops a novel methodology to estimate the extent of spatial basis 

risk for an arbitrary rainfall index insurance product. It relies on a stochastic rainfall 

generator model, standard in the hydrological literature, and extends it to accommodate 

non-traditional patterns of dependence between rainfall distributions at two nearby sites 

through a bivariate copula. This is important so as to capture the general tendency of 

extreme precipitation amounts jointly occurring at nearby sites more often than non-

extreme amounts. The methodology is then applied to an excess rainfall index insurance 

product targeting horticultural farmers in Uruguay. The chapter presents evidence of 

substantial spatial basis risk, though at levels well below the upper bound from a model of 

demand for index insurance, implying that the product does indeed provide valuable 

insurance benefits. In addition, spatial basis risk increases concavely with distance, but the 

rate of increase is generally lower than what farmers perceive it to be. Lastly, the chapter 

shows that subtle geographic variations can play a major role for spatial basis risk, 

underscoring the importance of considering other geographic features, beyond distance to 

farmers’ plots, when deciding the placing of reference weather stations (on which to base 

insurance payouts). 

Finally, Chapter 4 describes a flexible commercial index insurance scheme against 

excess rainfall risk around harvest implemented in Canelones, Uruguay for horticultural 

crops. The scheme is unique in that it comprises a number of independent insurance units 

covering against different aspects of excess rainfall, based on the weather securities 

approach originally proposed by Hill and Robles (2011). This scheme is proposed as an 

alternative to traditional index insurance products, generally based in the expert design of 

an optimal insurance policy for a representative farmer under ideal management 

conditions.  
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The chapter exploits substantial variation in the insurance portfolios purchased by 

farmers to provide unique theory-based evidence on how farmers’ heterogeneity in risk 

profiles affects the nature of their demand for insurance. In particular, it provides evidence 

that differences in crop composition, planting dates, soil drainage, distance to the weather 

station, and understanding of the product are all significant determinants of the type of 

insurance portfolio purchased by a farmer. Moreover, while a natural preconception is that 

farmers would not be able to construct their optimal portfolios, this notion is shown to be 

unfounded. Farmers do indeed purchase a wide array of different portfolios and, more 

importantly, do so in a way that is consistent with the underlying risk exposure of their 

particular crop composition and other individual characteristics related to their individual 

farming conditions. Finally, the chapter shows that, under the assumptions and optimal 

estimated parameters of the model, providing flexibility through an insurance units’ 

scheme substantially improves farmer welfare in relation to a range of other hypothetical 

composite products. 

5.2 Policy implications 

One of the findings in Chapter 2 is that demand for insurance increases as product 

comprehension increases. This is an important finding given that weather index insurance 

products are generally offered to farmers who have limited experience with formal 

financial products. However, the chapter also finds that, while both price and investments 

in new weather stations (as a means to reduce the extent of spatial basis risk) are fairly 

effective in encouraging future demand, insurance literary training seems to be of a more 

transient nature, with no significant impact on understanding or demand after the first year 

of its implementation. Price discounts in the first year, however, had a much stronger effect 

on understanding, consistent with a model of learning by doing or learning by using. This 

is an important implication to consider into the design of future products. 

Chapter 2 also finds that a prior positive experience with the insurance product—as 

captured by having purchased insurance and having received a payout during the first 

season—significantly encourages uptake in subsequent seasons. This could also be 

explained by low levels of trust in the product or the insurance company. Designing 

insurance products with small yet highly likely payouts during the first years of 

implementation may be desirable if it contributes to boost demand and trust and thus to 

establish the product among small farmers. This is an interesting avenue for future 

research. 

An important contribution of this chapter relates to its analysis of the cost-

effectiveness of alternative ways to boost demand for insurance. In this regard, providing 

premium subsidies seems to have been the most cost-effective measure―in terms of its 

direct effect on observed demand―, at least in the context of our study. Reducing the 

extent of spatial basis risk by installing automated weather stations comes second, even 

though its benefits on uptake are considered during only one insurance season. 

Considering effects over multiple seasons, together with the current downward tendency 
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of automatic weather station prices make this an important intervention to evaluate in 

future projects. Finally, providing insurance training was the most costly measure when 

taking its benefits into consideration. In fact, the chapter presents evidence suggesting that 

simply experiencing the product may be a more effective way to increase insurance 

knowledge, further supporting premium subsidies as the mechanism of choice. 

The following chapter, Chapter 3, has two main policy implications for existing and 

future index insurance schemes. First, the evidence points to the existence of important 

information asymmetries in regards to weather perceptions, where farmers perceive spatial 

correlation in extreme rainfall to be much lower than what historical records indicate. This 

suggests the need to complement the introduction of new index insurance products with 

extensive training on the spatial properties of rain, and that of extreme rainfall events in 

particular. Of course, low levels of education among farmers in developing countries 

represent a barrier to these type of technical trainings. The point is still crucial, though, 

since farmers are typically presented with a complex insurance product framed in terms of 

millimeters of rain and expected to make rational insurance decisions based on their prior 

knowledge and expectations on complex meteorological phenomena (see also Sibiko, 

Veettil, and Qaim, 2016). 

Second, in order to minimize the extent of spatial basis risk a careful consideration of 

subtle regional variations in rainfall patterns is essential, in addition to the more commonly 

studied distance aspect. This should be ideally carried out at the initial design stages of an 

index insurance scheme, when selecting from existing or determining the placement of 

new weather stations to be used as a reference for the product. In particular, subtle 

differences in rainfall patterns between the plot location and its reference rainfall gauge 

may result in substantial disparities in basis risk between locations. In extreme cases, local 

geo-climatic features could prove more important for determining basis risk than the actual 

distance to the reference gauge. Surprisingly, this point has been largely ignored by the 

index insurance literature until now, beyond settings where this is directly evident such as 

mountainous topographies. 

Despite its advantages, however, the methodology in Chapter 2 can only tackle the 

estimation of the spatial component of basis risk. As discussed in the chapter, there exist 

a number of different sources for the mismatch between a farmer’s losses and an index 

insurance product’s payout. An analysis incorporating these other sources would require 

longitudinal farm-level data which is not always available, but this remains a very 

interesting avenue for future research. Such an analysis can contribute to the design of 

innovative index insurance products that help mitigate the negative aspects of basis risk 

and reveal the potential for novel financial instruments to enhance farmers’ resilience. This 

is important as, for instance, if most basis risk were to arise from spatial variability in 

weather, the commonly proposed solution of increasing weather station density would be 

appropriate. Alternatively, however, if a large fraction of basis risk were to be explained 
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by idiosyncratic differences in farmers’ abilities and technologies to cope with weather 

risk, policy recommendations would be entirely different. 

The final chapter, Chapter 4, illustrates the feasibility of rolling out a real-world 

system of commercially-backed, flexible insurance units or weather securities. At least in 

the particular context of horticultural farmers in Uruguay, this system seems to be more 

appropriate than traditional index insurance systems based on one single, standardized 

product. While the generalizability of these findings seems plausible for other contexts 

with sufficient degree of farmer heterogeneity, this remains an important avenue for future 

research.  

The evidence presented in the chapter has significant policy implications. Farmer 

heterogeneity matters. The approach of selling index insurance as a single, one-size-fits-

all policy is misguided. For all its worth, index insurance cannot be designed to fit all risk 

profiles. Product flexibility is important and farmers seem to have the ability to adapt it to 

their needs. However, not all heterogeneity is equal. On one hand, there are certain sources 

of heterogeneity that are related to information problems, such as limited product 

understanding or misperceptions about rainfall distributions. In this respect, a flexible 

insurance system would serve only as a temporary patch; requiring more permanent 

solutions that tackle the root of the problem such as accompanying the rollout of new 

insurance with appropriate marketing and campaigns educating about true climatic 

patterns, as discussed above. On the other hand, other sources of heterogeneity are of a 

more structural nature, such as the degree of soil drainage a farmer has or his specific 

choice of crops and planting dates. A flexible insurance system is almost unavoidable in 

these cases, as it is hard to imagine how to design only a few composite insurance products 

that could appropriately consider the weather risks of all potential risk profiles. 

The product described in the chapter was marketed in a context of better-educated 

farmers relative to other rural contexts in Latin America, not to mention Africa or Asia. 

This gives rise to the question of whether farmers’ choice of appropriate insurance 

portfolios would still be attainable in these other contexts. Preliminary evidence in this 

regard discussed in Hill and Robles (2011) shows that smallholder farmers in Ethiopia do 

indeed flexibly respond to their risk exposure by purchasing different insurance portfolios. 

In addition, insurance units of the sort commercialized in this project may indeed be easier 

to grasp, as their payout structure relates directly to simple relations between weather and 

crop yields that farmers already have beliefs formed over. In a way, traditional index 

products with more complex payout structures may require a leap of faith from farmers 

with low education levels (in trusting that they will match their losses). Furthermore, this 

can be harmful for the sustainability of the insurance scheme. Most index insurance 

projects abound in anecdotal evidence about farmers complaining about lack of payouts 

after experiencing losses, and this is generally related to a lack of understanding about the 

insurance product they purchased. This type of negative feedback can greatly damage 

repeat purchases. The binary payout structure of a single index insurance unit of the type 
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analyzed in this chapter is arguably more transparent, allowing farmers to better 

understand them and avoiding confusion when a payout does not trigger. 

Implementing such a flexible insurance system nevertheless requires a shift in the 

mindset of insurance providers, generally hang up in old business practices of selling one 

single insurance policy. Moreover, regulatory constraints may exist in some cases too. 

Despite the challenges and the need to accompany it with appropriate marketing and 

education campaigns, the chapter shows this system to be an overall feasible insurance 

scheme that should be seriously considered in contexts where heterogeneity in farmer 

characteristics and farming practices is present. 

5.3 Final comments 

A number of weather index insurance experiences around the world have shown this type 

of insurance’s potential as a formal, efficient risk management tool for farmers in 

developing countries. However, to truly bring it at scale globally its limitations have to be 

addressed. This dissertation provides a number of wortwhile approaches to achieve this. 

Below, we describe some additional new developments in the index insurance realm that 

may potentially help this technology to make the jump. 

An interesting new alternative is Picture-Based Crop Insurance (PBI), which is 

currently being tested in the Indian states of Haryana and Punjab. Under PBI, farmers take 

pictures of their insured plots every week using their own smartphones and a specially-

designed app that aids in keeping the frame of view fixed in the same portion of the field. 

With this time-series of pictures, a farmer can then make a claim for any losses 

experienced, which can be assessed by agronomic experts or automated machine learning 

algorithms on the basis of the pictures and other auxiliary information. This type of product 

can greatly reduce basis risk and encourage uptake by instilling a sense of ownership in 

the farmer. Initial results are very promising, in terms of both the feasibility of the approach 

(Kramer et al. 2017a) and its sustainability, with no evidence of moral hazard or adverse 

selection (as would be expected from the product’s resemblance to indemnity-based 

insurance), nor of picture tampering or fraud (Kramer et al. 2017b). 

Importantly, the increasing affordability of automatic weather stations and the 

expanding technologies for remote sensing of weather variables and crop growth (such as 

micro-satellites and unmanned aerial vehicles) have an enormous potential to underlie 

innovative insurance products with reduced basis risk in the near future. Satellite-based 

products are already available across many continents, and are being received with a lot of 

enthusiasm among local stakeholders (some prominent examples are the Index-Based 

Livestock Insurance―IBLI―in Kenya and Ethiopia; IBLI in Mongolia; and RIICE in East 

and South-East Asia). 

Finally, weather index insurance may find a natural partnership in Climate-Smart 

Agriculture (CSA) technologies, which have gained popularity during the past decade as 

an efficient means towards climate adaptation by rural farming communities.  
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In some cases, CSA technologies involve reducing a crop’s vulnerability to certain 

weather risks, thus achieving a similar objective as crop insurance. Due to these similarities 

between the two families of technologies, there has been a recent strand of work that has 

focused on evaluating the potential for complementarities between them. 

One of the most important examples of complementarity between weather-index 

insurance and a CSA technology are drought tolerant (DT) seed varieties. Although the 

main characteristic of such seed varieties is their resistance to mild or moderate lack of 

soil moisture, crop failure is generally an inevitable result under an extreme drought, with 

the added consequence of farmers’ being worse off due to having to repay the higher cost 

of DT seeds. Weather index insurance, on the other hand, is not very well suited to handle 

moderate drought because it tends to be expensive under a high frequency of loss 

(insurance premiums must be high to account for frequent payouts). Nevertheless, because 

extreme drought events occur much more rarely and are generally easier to identify 

through an index (compared with more moderate events that may or may not damage 

crops), weather index insurance boasts natural comparative advantages to handle this layer 

of risk. It is natural to see, thus, that a holistic system—wherein farmers rely first on DT 

seeds to inexpensively cover more frequent and milder drought risks, and in addition rely 

on reduced-cost catastrophic index insurance against extreme events—could provide 

farmers with more complete protection against all potential scenarios, thus more efficiently 

handling drought risk at a much lower cost than any of the above technologies would be 

able to achieve on its own (Lybbert and Carter 2015; Ward et al. 2015). 

Lastly, other ways in which index insurance can partner up with CSA technologies is 

by encouraging CSA adoption. Many farmers generally refrain from adopting CSA 

practices due to their uncertainty and higher perceived risks, relative to traditional 

practices. In these contexts, index insurance may be a tool to inexpensively give the farmer 

the necessary peace of mind to try out the new technology. Such an approach could either 

complement or substitute for standard subsidies for encouraging CSA adoption. 

Understanding the optimal interplay between these two mechanisms is an important 

research avenue. 

Overall, and despite some setbacks, weather index insurance seems to have earned a 

well-deserved place in the development agenda. In the face of climate change and its 

effects on rural communities in developing countries, the potential benefits of insuring 

against risk are incalculable. This dissertation discusses some novel perspectives and 

provides important considerations for the design and marketing of future index insurance 

products. It is up to the large number of practitioners and researchers in the field, together 

with policymakers in developing regions, to find the optimal ways to scale up these 

important instruments for coping with risk. 
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Appendix Chapter 2 

Demand for Insurance 

Demand for insurance is zero (𝛼 = 0) when basis risk is extremely high ( 𝑟 ≥ 𝑝(1 − 𝑝) ) 

for any multiple equal or higher than unity (𝑚 ≥ 1). 

We show that the expected utility with no insurance 𝐸𝑉(𝑌(𝑆)𝛼=0) is equal or higher 

than the utility of having any positive insurance 𝐸𝑉(𝑌(𝑆)𝛼>0): 

𝐸𝑉(𝑌(𝑆)𝛼=0) ≥ 𝐸𝑉(𝑌(𝑆)𝛼>0) 

∑ 𝑃(𝑆) 𝑆 (𝑉(𝑌(𝑆)𝛼=0) − 𝑉(𝑌(𝑆)𝛼>0)) ≥ 0. 

We work on the left-hand side: 

∑ 𝑃(𝑆) 𝑆
𝑉(𝑌(𝑆)𝛼=0)−𝑉(𝑌(𝑆)𝛼>0)

(𝑌(𝑆)𝛼=0)−(𝑌(𝑆)𝛼>0)
((𝑌(𝑆)𝛼=0) − (𝑌(𝑆)𝛼>0)). 

Let’s define 𝑇(𝑆) ≡
𝑉(𝑌(𝑆)𝛼=0)−𝑉(𝑌(𝑆)𝛼>0)

(𝑌(𝑆)𝛼=0)−(𝑌(𝑆)𝛼>0)
, where 

𝑇(𝐿, 0) ≡
𝑉(𝑊 − 𝐿) − 𝑉(𝑊 − 𝐿 − 𝛼𝑝𝑚𝐿)

𝛼𝑝𝑚𝐿
 

𝑇(𝐿, 𝐿) ≡
𝑉(𝑊 − 𝐿) − 𝑉(𝑊 − 𝐿 − 𝛼𝑝𝑚𝐿 + 𝛼𝐿)

𝛼𝑝𝑚𝐿 − 𝛼𝐿
 

𝑇(0,0) ≡
𝑉(𝑊) − 𝑉(𝑊 − 𝛼𝑝𝑚𝐿)

𝛼𝑝𝑚𝐿
 

𝑇(0, 𝐿) ≡
𝑉(𝑊) − 𝑉(𝑊 − 𝛼𝑝𝑚𝐿 + 𝛼𝐿)

𝛼𝑝𝑚𝐿 − 𝛼𝐿
 . 
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Because of the concavity of 𝑉(. ), 𝑇(𝐿, 0) > 𝑇(𝐿, 𝐿) > 𝑇(0,0) > 𝑇(0, 𝐿). After 

replacing terms we have 

 = 𝑟 𝑇(𝐿, 0) 𝛼𝑝𝑚𝐿 + (𝑝 − 𝑟) 𝑇(𝐿, 𝐿) (𝛼𝑝𝑚𝐿 − 𝛼𝐿) + (1 − 𝑝 −

𝑟) 𝑇(0,0) (𝛼𝑝𝑚𝐿) + 𝑟 𝑇(0, 𝐿) (𝛼𝑝𝑚𝐿 − 𝛼𝐿) . 

Now we use 𝑇(𝐿, 0) > 𝑇(𝐿, 𝐿) > 𝑇(0,0) > 𝑇(0, 𝐿) and replace terms 

= 𝛼𝑝𝑚𝐿(𝑟 𝑇(𝐿, 0)  + (𝑝 − 𝑟) 𝑇(𝐿, 𝐿) + (1 − 𝑝 − 𝑟) 𝑇(0,0) + 𝑟 𝑇(0, 𝐿) )  

− 𝛼𝐿((𝑝 − 𝑟) 𝑇(𝐿, 𝐿) + 𝑟 𝑇(0, 𝐿) )

> 𝛼𝑝𝑚𝐿(𝑟 𝑇(𝐿, 𝐿)  + (𝑝 − 𝑟) 𝑇(𝐿, 𝐿) + (1 − 𝑝 − 𝑟) 𝑇(0, 𝐿) + 𝑟 𝑇(0, 𝐿) )  

− 𝛼𝐿((𝑝 − 𝑟) 𝑇(𝐿, 𝐿) + 𝑟 𝑇(0, 𝐿) ) 

= 𝛼𝐿 𝑇(𝐿, 𝐿)(𝑝2𝑚 − (𝑝 − 𝑟)) + 𝛼𝐿 𝑇(0, 𝐿)(𝑝𝑚(1 − 𝑝) − 𝑟) 

= 𝛼𝐿 𝑇(𝐿, 𝐿)(𝑟 − (𝑝 − 𝑚𝑝2)) − 𝛼𝐿 𝑇(0, 𝐿)(𝑟 − 𝑚(𝑝 − 𝑝2)) 

For this expression to be non-negative, two conditions are sufficient: 

 𝑟 − (𝑝 − 𝑚𝑝2) ≥ 0 => 𝑟 ≥ 𝑝(1 − 𝑚𝑝) 

 (𝑟 − (𝑝 − 𝑚𝑝2)) ≥ (𝑟 − 𝑚(𝑝 − 𝑝2)) => 𝑚 ≥ 1. 

Combining  these conditions we conclude that when 𝑟 ≥ 𝑝(1 − 𝑝) the demand for 

insurance is zero for any 𝑚 ≥ 1.  
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Appendix Table 1 ― Product Design 

Coverage 

period 

Time 

period 
Description Index 

1 Jun 25 – 

July 20 

This period corresponds to the sowing and 

germination stage. Sowing usually takes place 

after June 15. Farmers have the option to wait 

until the start of the rainy season to decide when 

to start sowing. After sowing and during the 

germination phase, the major peril is excessive 

rain on a single day.  

Maximum 

rainfall on any 

single day 

during coverage 

period 

2 Jul 21 – 

Sep 15 

This period combines the vegetative and 

reproductive phases. Both phases share similar 

perils—either excess or deficit of total rainfall 

during the period—although during the 

vegetative phase, rain deficit seems relatively 

more important, and during the reproductive 

phase, excess rain. Given that each phase by itself 

is relatively short, our evaluation is that it is not 

practical to create securities for each phase 

separately. 

Total 

cumulative 

rainfall during 

coverage period 

3 Sept 16 – 

Oct 15 

This period combines the maturity phase and 

harvest. The major peril is excess rainfall, 

especially heavy rain on a single day.  

Maximum 

rainfall on any 

single day 

during coverage 

period 
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Appendix Table 2 ― First-Stage Results for Table 6 

  

Specification 

(3) 
  Specification (5) 

  (1)   (2) (3) 

  

Log 

(distance) 
  

Log 

(distance) 

Log 

(distance) x 

Log (price) 

New weather 

station 

dummy 

–0.955***   –0.351 2.464 

  (0.235)   (0.615) (2.227) 

New weather 

station 

dummy x 

price 

  

    –0.117 –1.430*** 

    (0.104) (0.451) 

Observations 2,183   2,183 2,183 

Unrestricted 

R2 
0.255   0.255 0.271 

Restricted R2 0.052   0.052 0.068 

Wald F-test of 

joint 

significance 

16.47***   9.54*** 10.00*** 

Standard errors, clustered at the village level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 

0.1. Source: Administrative sales data. 
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Appendix Chapter 3 

Appendix Table 3 ― Weather Station Data Availability and Summary Statistics 

Rainfall gauge 

Proportion of 

days with 

rainfall (in %) 

Average daily 

rainfall amount 

(in mm.) 

 Start date End date 
Number 

of Obs. 

Pre-existing gauges       

Aeropuerto Carrasco 26.9 10.9  1981-01-01 2011-12-31 2,797 

Aeropuerto Melilla 27.7 11.2  1981-01-01 2011-12-31 2,797 

Cerrillos 16.1 16.1  1981-01-01 2011-12-31 2,797 

Chamizo 17.4 18.9  1981-01-01 2011-12-31 2,797 

Dr. Soca 14.3 17.8  1981-01-01 2011-12-31 2,797 

Libertad 18.4 17.3  1981-01-01 2011-12-31 2,797 

Mendoza 18.6 17.7  1981-01-01 2011-12-31 2,797 

Prado 26.4 10.9  1981-01-01 2011-12-31 2,797 

San Jacinto 15.1 18.2  1981-01-01 2011-12-31 2,797 

Tala 14.5 19.4  1981-01-01 2011-12-31 2,797 

Villa Rodriguez 18.4 17.2  1981-01-01 2011-12-31 2,797 
       
Insurance reference gauges      

Chacra Policial 28.9 11.7  2013-11-30 2015-06-23 180 

Progreso 31.7 13.8  2013-11-30 2015-06-23 180 

San Bautista 31.1 11.2  2013-11-30 2015-06-23 180 

San Jacinto 32.2 12.1  2013-11-30 2015-06-23 180 

Tala 31.7 10.4  2013-11-30 2015-06-23 180 
       
Monitoring gauges       

WS 1 37.0 14.1  2013-10-27 2015-02-10 162 

WS 2 41.2 13.3  2013-11-10 2014-12-29 119 

WS 3 39.5 14.3  2013-10-28 2015-02-10 162 

WS 6 31.5 11.2  2013-10-28 2015-02-10 162 

WS 7 33.8 12.4  2013-12-02 2015-02-12 160 

WS 8 36.0 13.8  2013-12-02 2015-02-10 161 

WS 9 37.6 12.6  2013-11-10 2015-02-05 157 
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WS 10 33.3 14.5  2013-11-29 2015-02-10 162 

WS 11 37.7 14.5  2013-10-27 2015-02-10 162 

WS 12 34.6 14.1  2013-11-03 2015-02-10 162 

WS 13 35.2 15.8  2013-11-22 2015-02-10 162 

WS 15 38.3 10.5  2013-11-09 2015-02-10 162 

WS 16 33.3 13.4  2013-11-09 2015-02-10 162 

WS 17 34.6 12.6  2013-11-09 2015-02-10 162 

WS 19 38.7 10.5  2013-11-28 2015-02-11 163 

WS 20 39.1 10.4  2013-12-08 2015-02-11 156 

WS 21 38.0 10.4  2013-11-28 2015-02-11 163 

WS 22 35.2 11.3  2013-11-09 2015-02-10 162 

WS 23 35.0 10.1  2013-11-29 2015-02-11 163 

WS 24 33.1 13.8  2013-11-29 2015-02-11 163 

WS 26 34.9 15.4  2013-11-22 2015-02-07 129 

WS 27 37.5 12.0  2013-11-22 2015-02-10 152 

WS 28 37.1 10.2  2013-11-04 2015-02-18 170 

WS 29 34.8 12.2  2013-11-04 2015-02-12 164 

WS 30 35.4 10.5  2013-11-04 2015-02-12 164 

WS 32 36.8 6.8  2013-11-28 2015-02-11 163 

WS 33 37.4 9.8  2013-11-16 2015-02-11 163 

WS 34 39.4 10.2  2013-11-16 2015-02-13 165 

WS 35 35.5 10.0  2013-11-16 2015-02-13 155 

WS 36 35.7 10.4  2013-11-16 2015-02-13 157 

WS 37 35.2 11.4  2013-11-28 2015-02-13 165 

WS 38 40.0 13.7  2013-11-16 2014-03-04 90 

WS 39 36.4 11.6  2013-11-04 2015-02-13 165 

WS 40 34.6 9.2  2013-12-07 2015-02-13 130 
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