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Summary  
This dissertation is composed of three papers describing the nexus between natural resource 

management programs, farmer well-being, and productivity. Our study sheds light on the 

effectiveness of actions that have been or could be implemented to address the “triangle of 

poverty.” This triangle connects low farm productivity to high poverty, which forces farmers to 

increase the pressure on natural resources thus further degrading the environment and resulting in 

even lower productivity and more poverty. 

Natural resource management (NRM) imbeds key agricultural policies, which aim at 

handling resource degradation while enhancing productivity particularly among smallholder 

farmers. Technologies promoted through the use of NRM programs encompass conservation 

agriculture, water and integrated pest management, agroforestry, and silvopastoral activities. 

Although most of these technologies have been promoted since the early 1960s, it was not until 

1989 when the CGIAR emphasized the value of NRM technologies as tools to ensure the 

sustainability of agricultural systems. Since then, the implementation of NRM programs have 

evolved around the following definition: “Sustainable agriculture should involve the successful 

management of resources for agriculture to satisfy changing human needs while maintaining or 

enhancing the quality of the environment and conserving natural resources (Consultative Group 

on International Agricultural Research [CGIAR] 2006, p.4).” In general, these programs aim at 

developing and disseminating technologies, which improve the quality of soil and water, diversify 

the agro-ecosystem and build farm capacity to mitigate the effects of climate change.  

To examine to what extent NRM programs have achieved their aim, in the first essay, meta-

regression analysis is used to explore the effect that natural resource management (NRM) 

programs have on monetary outcomes and on productivity. In doing so, we use a comprehensive 



 
 

dataset of 75 impact evaluation studies and 215 observations from all over the world (equivalent 

to a sample of 31,991 treated and 42,936 control farmers) to explain why impact varies among 

studies and across different interventions, regions, and methods. Econometric results from ordered 

probit, probit, OLS regression, and Bayesian regression models consistently show that NRM 

programs have a significant positive effect on the monetary outcomes and productivity of 

beneficiaries relative to control farmers. Overall, NRM technologies increase monetary outcomes 

on average by 8%, and yields by 13%. Furthermore, the impacts of NRM programs could be larger 

if: i) participatory methods to transfer the technology to the final user are incorporated in the 

design; ii) appropriate training to boost the adoption of the technology is provided; iii) NRM 

technologies are tailored to the rainfall patterns of the intervention area; iv) government units are 

more efficient in the delivery of technologies; and v) the evaluation of NRM programs account for 

the time necessary for these programs to produce results.  

The first essay compiles evidence from a large number of published analyses. We 

complement this evidence in the following two essays with original empirical analyses of a specific 

NRM intervention, the Socio-Environmental and Forestry Development Program-II (POSAF-II), 

which was implemented by the Nicaraguan Ministry of the Environment and Natural Resources 

(MARENA). The goal was to promote economic development and environmental sustainability. 

POSAF-II financed a total of 13,477 farmers occupying 69,767 hectares in several major river 

basins that were severely damaged by Hurricane Mitch in 1998. Therefore, this program represents 

a unique opportunity to evaluate the economic impact of NRM programs in an area affected by a 

massive weather event, characterized by high soil degradation and poverty.  

The second essay is an analysis of the economic impact of natural resource technologies 

delivered by POSAF-II. We use cross-sectional data for 1,483 households, from 212 treated and 



 
 

control communities. Results obtained through propensity score matching (PSM), ordinary least 

squares (OLS), weighted least squares regression (WLS) based on PSM, and instrumental 

variables (IV) regression indicate that POSAF-II has had a positive impact on the total value of 

agricultural production of beneficiary farmers relative to appropriate control groups. The estimated 

internal rate of return supports the hypothesis that increasing household income while encouraging 

the sustainable use of natural resources through the implementation of suitable management 

programs can be complementary development objectives. 

The third essay examines the impact of POSAF-II on two critical components of productivity: 

technological change (TC) and technical efficiency (TE). We use propensity score matching 

(PSM) to mitigate potential biases from observable variables along with a recently introduced 

stochastic production frontier (SPF) model that addresses sample selection bias arising from 

unobservable variables. Our results show that POSAF-II has had a positive impact on both TC and 

TE. This essay contributes to the literature on impact evaluation by showing how an intervention 

designed to improve natural resource management can also enhance the income of poor farm 

households through increases in productivity. 
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Chapter 1 General introduction  
 

In recent years, worldwide agricultural production has managed to more than keep pace with the 

growing global demand for food (World Bank, 2008). However, while the prevalence of hunger 

has been reduced, roughly 800 million individuals worldwide suffer from under-nutrition. 

Furthermore, the prospects for further growth in food demand and the increasing burden to channel 

agricultural resources for energy generation is expected to impose rising pressure on agricultural 

systems around the globe. Consequently, there is a growing need to increase agricultural 

productivity, not only to improve farmers’ incomes but also to ensure the availability of affordable 

food for the growing urban population while protecting the natural resource base.  

Achieving faster agricultural productivity growth is becoming more and more difficult in many 

areas where land and water resources are under pressure and rising climatic fluctuations, pests, 

and diseases threaten farm output (IFPRI, 2009). Furthermore, there is growing evidence that 

climate change has affected agricultural production and will cause increasing damage to the 

agricultural sector in the coming decades (Gornall et al., 2010). These challenges pose a significant 

threat to approximately 1.2 billion people who are currently living below the poverty line, 70% of 

whom live in rural areas. A significant number of these poor people earn their income directly 

from agricultural activities or rely to some degree on the agricultural sector for their livelihoods 

(Cleaver, 2012). 

Agricultural productivity growth increases farmer incomes, which in turn augments the 

demand for goods and services in rural areas (Thirtle et al., 2003). De Janvry (2010) claims that 

during the Green Revolution in Asia, the agricultural sector demanded more labor due to a 
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considerable increase in land productivity and that this change brought more income to rural 

families and led to a reduction in poverty.   

Despite the evidence regarding the positive impact of agricultural growth on poverty reduction, 

since the 1980s both national governments and donors have reduced investments in the agricultural 

sector. Specifically, the share of investments in agriculture in total bilateral and multilateral aid 

fell from a peak of 22.5% in 1979–1981 to a low of 5.4% in 2003–2005 (Cleaver, 2012). This 

resulted in 20 years of gradually decreasing agricultural growth rates, a situation that started to 

turn around in 1995 (Fuglie and Nin-Pratt, 2012). Inadequate funding has had deleterious effects 

on world production. For example, from 2001 to 2010 world agricultural production grew only at 

a rate of roughly 2.4%. More recently, there has been a shift in agricultural research and 

development (R&D). From 2000 to 2008, world agricultural spending increased from US $26.1 to 

US $37.1 billion (PPP 2005), a change largely driven by China and India. In contrast, many low-

income countries have experienced a negative trend on agricultural investments and a lack of 

research capacity is common in such countries (Beintema et al., 2012). Nigeria and Uganda are 

exceptions among low-income countries, where the 2008 food price crisis was followed by 

significant increases in funding for agricultural R&D. However, in many low-income countries 

funding remains bellow the level necessary to strengthen agricultural R&D capabilities (Stads and 

Beintema 2015). 

The use of economic resources in an efficiencient manner is crucial, even more so when 

funding is inadequate. Thus, it is critical to allocate the limited resources available to programs 

and policies that can have real impact on reducing poverty while promoting the sustainable use of 

natural resources. In this context, generating compelling evidence on the effects that agricultural 

practices have on farmer income has become an important issue for policymakers and donors 
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(Khandker, Koolwal, and Samad, 2010; Kelley, Ryan, and Gregersen, 2008). Consequently, 

assessing the impact of policies and programs has also become an important area of research. The 

key rational for assessing this impact is to ensure accountability in public administration and to 

guide policy decisions. In addition, determining how impacts are—or are not—achieved and which 

interventions lead to which specific impacts is essential for producing the “proof” that validates 

public actions (Gertler, Martinez, Premand, Rawlings, and Vermeersch, 2011).  

A number of natural resource management (NRM) programs designed to reduce poverty by 

increasing productivity and protecting natural resources have been implemented in Latin America 

and elsewhere (Barrett, Moser, and Mchugh, 2004; Dalton, Lilja, Johnson, and Howeler, 2005; 

District and Kingdom, 2011; Dutilly-diane, Sadoulet, and de Janvry, 2003). However, the available 

evidence concerning the impact and economic value of these programs is limited. First, rigorous 

documentation of the impact of these programs is scarce (Renkow and Byerlee, 2010; Kelley et 

al., 2008). Second, evaluations of NRM technologies have seldom applied state-of-the-art 

methodologies. Finally, in many cases, NRM technologies have been evaluated in controlled 

experimental environments which do not provide the evidence needed to determine the expected 

performance under actual farming conditions where many variables are beyond the control of the 

producer (Del Carpio and Maredia, 2011; Consultative Group on International Agricultural 

Research [CGIAR], 2006; Kelley et al., 2008; Pal 2011; Renkow and Byerlee, 2010).  As a result, 

measured productivity gains under controlled conditions are likely to overestimate the real impact 

of NRM technologies. In other words, the expected performance of alternative technologies in 

various agro-ecological and socio-economic conditions needs to be better understood in order to 

generate useful data to guide resource allocation decisions (Renkow and Byerlee, 2010;Harwood, 

Kassam, Gregersen, and Fereres, 2005). 
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The general objective of this study is to address gaps in the literature concerning the impact of 

NRM interventions on low-income farmers through a comprehensive analysis of the nexus 

between natural resource management, farmer well-being and productivity. State-of-the-art 

techniques are used to generate new evidence concerning the impact of NRM programs. A 

distinguishing characteristic of this thesis is the combination of complementary impact evaluation 

and stochastic frontier techniques, which have only recently been used together. To accomplish 

the general objective set forth, we have developed the following specific goals:   

1. Conduct a meta-analysis to examine the evidence available in the resource economics 

literature concerning the impact of natural resource management programs on agricultural 

production and poverty alleviation in developing countries.  

2. Contribute to the literature on natural resource management programs and the link between 

these programs and farmer well-being by evaluating the effects of the Socio-Environmental 

and Forestry Development Program II (POSAF-II). 

3. Examine the influence of POSAF-II on two critical components of productivity, that is, 

technological change and technical efficiency, using production frontier methods 

correcting for selectivity bias.  

The rest of the dissertation is organized into four chapters. Chapter two addresses the first goal 

listed above by presenting a meta-analysis of NRM programs and examines the factors that 

influence positive or negative outcomes. A review of 75 studies generated 215 observations that 

are used to construct a database that we use in a meta-regression analysis. Several econometric 

methods are applied to estimate the effect of NRM on yields, income and techichal efficiency. The 

second goal is addressed in chapter three, which uses data from treated and control farmers to 

evaluate the impact of POSAF-II, to estimate the spillover effects of the program, and to calculate 
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the rate of return on investment. In chapter four we address the third goal by evaluating the impact 

of natural resource management programs on technological change and technical efficiency for 

treated and control farmers. We first estimate separate stochastic frontier models for the treated 

and control groups, and then estimate a meta-frontier to compare the differences in technical 

efficiency scores within and between the two groups. The fifth chapter presents a summary and 

draws conclusions from the three preceding chapters.     
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Chapter 2 Do Natural Resource Management Programs 

Have an Impact? A Meta Regression Analysis 
 

Abstract  

A growing population imposes significant challenges on agricultural systems. It entails increased 

agricultural production to satisfy the world’s demand for food and fiber, and thus puts more 

pressure on the available natural resources, especially soil and water. In addition, challenges 

derived from changes in rainfall and temperature patterns make agricultural systems more 

vulnerable to extreme conditions, such as extended droughts, flooding, and extreme heat. To face 

these challenges, natural resource management (NRM) technologies have been promoted by the 

Food and Agriculture Organization of the United Nations (FAO), Development Banks, CGIAR 

centers across the globe, and other international cooperation agencies. Although a significant body 

of evidence has been produced, the debate concerning the potential of NRM programs to increase 

productivity and incomes while decreasing environmental degradation is not over. Therefore, this 

paper uses meta-regression analysis to explore the effect NRM technologies have on monetary 

outcomes and productivity. To this end, we developed a comprehensive dataset of 75 studies and 

215 observations from all over the world, equivalent to a sample of 31,991 treatment and 42,936 

control farmers. Ordered probit, OLS regression, and Bayesian regression models are employed to 

examine the variability of various impact indicators across different interventions, countries, and 

methods. The results reveal that NRM increases both monetary outcomes and productivity. The 

specific impacts vary depending on factors such as training and whether government agencies 

oversaw the implementation of the program. 

  

Key words - natural resource management, meta-regression analysis, impact evaluation 
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2.1 Introduction  

The promotion of conservation agriculture (CA) and the sustainable intensification of agricultural 

production represent cornerstone strategies for policies that endeavor to tackle natural resource 

degradation while enhancing productivity and reducing poverty among smallholder farmers. 

Recent examples include the Sustainable Land Management (SLM) Program implemented by the 

Ethiopian government, the Africa Research in Sustainable Intensification (SI) for the Next 

Generation (Africa RISING) funded by the United States Agency for International Development 

and implemented in southern Saharan regions including Mali, Ghana, Malawi, Tanzania, Zambia 

and Ethiopia, and the Sustainable Livestock Management program in Nicaragua, funded by the 

Inter-American Development Bank (Haile, Azzarri, Roberts, & Spielman, 2017). Similar 

interventions are also promoted by international agencies such as ICARDA, CIMMYT, CIAT, 

ICRISAT, and others (Giller et al. 2011). The implementation of these programs are a response to 

the increasing need for more sustainable agricultural production, which addresses environmental 

degradation through technologies that improve soil and water quality, and promotes diversified 

agro-ecosystems while building farm capacity to mitigate the effects of climate change (Arslan et 

al. 2015; FAO 2008).  

Conservation agriculture is based on the following three key management principles: 1) 

continuous minimum mechanical soil disturbance; 2) permanent organic soil cover; and 3) the 

diversification of crop species grown in rotations/or association (Kassam et al. 2012). Moreover, 

the latter are complemented by other natural-based activities, such as water and integrated pest 

management, as well as the implementation of agroforestry and silvopastoral practices (Food and 

Agriculture Organization of the United Nations [FAO], 2017). Overall, the implementation of 

these natural resource management (NRM) practices have the potential to make agriculture more 
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sustainable, making it possible to feed a growing population while reducing environmental stress 

particularly as we contemplate the vagaries of climatic change (Giller et al., 2011; Jat, Sahrawat, 

& Kassam, 2014; Pretty, Toulmin, & Williams, 2011; Vanlauwe et al., 2011). Choosing inferior 

management strategies could result in soil or water losses, which are critical assets, thereby 

bringing instability to established production systems (Jat et al. 2014). 

Although there is much evidence of the impact that NRM technologies can have on 

productivity and efficiency (e.g., Barrett, Moser, Mchugh, & Barison, 2004; Bravo-Ureta, 

Almeida, Solís, & Inestroza, 2011; De los Santos-Montero & Bravo-Ureta, 2017; District & 

Kingdom, 2011; Dutilly-diane, Sadoulet, & de Janvry, 2003), the debate surrounding the potential 

of these technologies for increasing productivity and reducing environmental degradation remains 

controversial. Giller et al. (2009) have questioned the performance of NRM in Sub-Saharan Africa 

(SSA) arguing that the evidence is not sufficiently robust to point toward a positive impact of these 

technologies. They claim that research reveals adverse effects such as drops in productivity and 

higher labor costs. They also point out the need for a more critical assessment of the ecological 

and socio-economic conditions that preclude or enhance the adoption of NRM technologies. 

Alongside the previous critics, Govaerts et al. (2009) also question the contribution of conservation 

agriculture to carbon sequestration. After reviewing 78 cases, they found that 31 of them showed 

no significant advantages of conservation agriculture relative to conventional tillage and in seven 

cases soil carbon concentration was even lower under the latter.  

To shed light on the NRM debate , various scholars have attempted to organize different 

findings through the use of meta-analyses. Pretty et al. (2006) conducted a meta-analysis of 286 

interventions that tackle poverty and environmental degradation by disseminating resource-

conserving technology packages in 57 developing countries. According to those authors, NRM 
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interventions increased productivity on 12.6 million farms with smallholder farmers experiencing 

a gain in excess of 100%, while improving the supply of critical environmental services regarding 

water infiltration and carbon sequestration. However, Phalan, Rodrigues, and Balmford (2007) 

argue that much of the evidence presented by Pretty and colleagues is weak because many of the 

studies examined lacked control groups, and thus the results are subject to selection bias from both 

observable and unobservable variables (Khandker et al. 2010). In similar work, Branca et al. (2011) 

examined 160 publications from Asia, Latin America, and Sub-Saharan Africa that reported on the 

effects that agronomy, integrated nutrient management, tillage and residue management, water 

management, and agroforestry had on yields. However, as noted in relation to the work of Pretty 

et al. (2006), this work uses data from projects that did not consider a counterfactual situation. 

Authors conclude that, in general, the use of NRM technologies increased agricultural 

productivity. However, they point out that the reported effects vary across different practices and 

climatic conditions.  

The most recent meta-evidence is presented by Pittelkow et al. (2015) who analyzed 610 

studies with 5,463 observations that focus on the effect of no-till practices on productivity, using 

data for 48 crops. They show that under rainfed conditions, no-till reduces yields; however, when 

no-tillage is combined with crop rotation and cover crops, yields can be equal or larger than 

conventional tillage systems. A shortcoming of this study is the use of data from field experiments, 

which more than likely do not reflect conditions on operating farms.   

In light of the previously mentioned results, we review 215 observations from 75 econometric 

studies on the impact of natural resource management technologies. Unlike the preceding 

literature, we focus on those studies that clearly incorporate a counterfactual situation or that use 

econometric methods to address selection biases (Khandker et al. 2010). Moreover, we exclusively 
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examine scenarios under farmer conditions; therefore, we exclude studies that report results from 

controlled experiments. Similar to Pretty et al. (2006), we focus on impact evaluation studies that 

reflect all kinds of conservation agriculture technologies as well as practices that are considered 

complementary such as integrated pest management, agroforestry, aquaculture, silvopastoral 

technologies, and water management. Our database allows us to exploit the heterogeneity of NRM 

programs to examine the impact evaluation results. Furthermore, this data enables us to estimate 

the impact that NRM programs have on yields and monetary outcomes.    

The remainder of the paper is structured as follows. Section 2 describes the salient features of 

meta-analyses followed by a discussion of the data and analytical framework in section 3. Then, 

section 4 discusses the main results and section 5 contains a summary and key conclusions. 

2.2 Meta-analysis  

Meta-analysis is a method for aggregating the results from a number of studies through the use of 

statistical procedures (Glass 1976). Meta studies are frequently designed in connection with 

previous research focusing on a similar issue or may also aim to answer new questions as findings 

appear through the advance of scientific enquiry. Results from newer studies may contradict or 

may appear to support previous findings; in either case, narrative or descriptive reviews are not 

enough to analyze the emerging findings (Stanley 2001). Meta-analysis is an appropriate method 

for drawing conclusions from myriad reported results (Glass, 1976; Nelson and Kennedy, 2008). 

A key contribution is to bring objectivity to literature reviews because instead of using casual 

judgment, meta-analysis relies on statistical procedures that facilitate the formulation of more 

consistent inferences (Glass 1976; Stanley and Doucouliagos 2012).  
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Nelson and Kennedy (2008) argue that in economics the use of meta-regression is the most 

common type of meta-analysis. It varies in design from the meta-analysis used in natural science 

experiments because in economics different designs, model specifications, and econometric 

techniques are employed. Similarly, the Bayesian method has been applied in economics to 

systematize the results from different studies and different outcome indicators (Eddy, Hasselblad, 

and Shachter, 1990). Moeltner et al. (2007) contend that the Bayesian method is appropriate when 

estimating a large set of parameters or when the number of studies in the meta-analysis is 

considered to be small.  

Given the value of meta-analysis in synthesizing research findings the approach has been used 

by economists to examine a number of topics including: to explain the variability of technical 

efficiency in agriculture (Bravo-Ureta et al. 2007); to explore how geographical distance and 

separation via an international border affects the strength and speed of price transmission in the 

cereal market (Kouyat and von Cramon-Taubadel 2016); to examine the impact of genetically 

modified crops (Klümper and Qaim 2014); to estimate consumers’ marginal willingness to pay 

(MWTP) for health benefits in food products (Dolgopolova and Teuber 2017); to gauge the impact 

of public investment in economic recovery and growth (Núñez-Serrano and Velázquez 2017); and 

to understand the hedonic relationship between the price of wine and its quality (Oczkowski and 

Doucouliagos 2017).  

Meta-analyses of impact evaluation studies have been conducted in education and natural 

resource conservation. Evans, Cherrett, and Pemsl (2011) examined 29 impact assessment cases 

of small-scale fisheries (SSF). The authors set a selection criteria based on country, topic, method, 

data quality and variability, and indicators of impact. In a similar study, Oltmer et al. (2000) 

applied an ANOVA-type meta-analysis to evaluate the impact of agri-environmental policies in 
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the European Union. Other meta-analyses have evaluated the environmental impact of organic 

farming (Tuomisto, Hodge, Riordan, and Macdonald, 2012), agribusiness-related finance and 

farmer/business training (Nankhuni and Paniagua, 2013), and labor market policies (Card, Kluve, 

and Weber, 2010).  

The only meta-analysis of impact evaluations that looks at several dimensions of NRM 

programs can be found in the study carried out by Del Carpio (2011). However, the study did not 

apply statistical methods because the heterogeneity of the studies considered did not make it 

possible to find enough comparable outcome variables. The CGIAR (2006) carried out a similar 

assessment of NRM programs but the focus was on the internal rates of return rather than on 

evaluating the impact of the technologies. In sum, as far as we can determine by closely examining 

the literature, no study has conducted a systematic review of the impact of NRM programs using 

a meta-analysis. Therefore, the contribution of this paper is to narrow an existing gap in the 

literature by being the first to offer a meta-regression analysis which synthesizes the available 

empirical studies on impact evaluations of NRM programs. To do so, we develop a new and 

comprehensive dataset including 75 studies and 215 observations, encompassing information from 

31,991 treated and 42,936 control farmers. We specifically seek to explain why impact varies 

among studies and across different interventions, countries, and methods. Our estimation strategy 

uses different econometric procedures, starting with an ordered probit model, and then, based on 

a subsample of the data, we estimate OLS and Bayesian regression models.  

2.3  Data and Analytical Framework  

2.3.1 Data  

We develop a data set for this study based on a comprehensive search of both published and gray 

literature papers that have undertaken rigorous impact evaluations of NRM studies written in 
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English between 2000 and 2017. The range of words used to characterize NRM technologies varies 

significantly, so our search was based on a variety of terms as follows: agroforestry; natural 

resource management technologies; water management; rice intensification; conservation 

technologies; climate smart technologies; sustainable agriculture; and no-tillage.  

A multi-step procedure was used to identify the relevant papers before constructing the data 

set. First, the following databases were used in the search: Google Scholar, ECOLIT, JSTOR, 

AgEcon search, Smart Economist, and Ideas. Second, searches were conducted in the databases of 

the following institutions: The Inter-American Development Bank (IDB); the World Bank (WB); 

the African Development Bank; the International Fund for Agricultural Development (IFAD); the 

International Food Policy Research Institute (IFPRI); FAO; and the Asian Development Bank. In 

addition, a complementary search was performed in the 3ie’s Impact Evaluations Database and on 

the website of the Abdul Latif Jameel Poverty Action Lab (J-PAL), and Innovations for Poverty 

Action (IPA). In the selection process, the reference list in some key articles was used as a source 

to identify other potential studies, a process known as snowballing (Waddington et al. 2012). Thus, 

we considered peer reviewed articles and gray literature including working papers, book chapters, 

dissertations, policy documents, impact evaluation reports, and conference papers. 

Our search yielded a total of 125 studies. However, to be included in the meta-analysis, studies 

had to fulfill the following criteria: be an impact evaluation using a counterfactual situation derived 

from experimental or quasi-experimental methods; contain clear impact indicators reported as a 

statistic; clearly report the sign of the treatment effect (i.e., positive or negative, and statistical 

significance); and focus on farm performance. From the initial 125, the meta-sample was reduced 

to 75 because 50 studies did not meet the inclusion criteria. Of the 75, five authors were contacted 

by email to obtain information not reported in their studies but needed for our analysis (e.g., sample 
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size, number of technologies evaluated). Since most of the papers reported more than one estimate 

of impact, the database has a total of 215 observations or an average of 2.9 data points from each 

of the 75 studies. 

2.3.2 Descriptive analysis 

Table 2.1 presents a set of variables and their corresponding descriptive statistics included in the 

meta dataset used to analyze the impact of NRM programs. As indicated earlier, the data include 

impact evaluation studies published between 2000 and 2017, and report on data collected between 

1997 and 2015. Of the 75 studies included 50 correspond to journal articles (67%) and 25 to 

working papers, impact evaluation reports, or Ph.D. theses (33%).  

The largest group of observations is from Africa (52%) followed by Asia (30%), and 18% from 

North America, Europe, and Latin American and Caribbean countries, grouped as RESTWORLD. 

The countries in this is group share a similarity in that they have a long history of using 

conservation agriculture practices (Knowler and Bradshaw 2007). Observations included in our 

sample evaluate the impact of one to 16 technologies, with an average of three technologies. De 

los Santos-Montero and Bravo-Ureta (2017), and Branca et al. (2011) find that technology 

packages are more likely to be successful than single technologies. 

As previously mentioned, one of the inclusion criteria is that the studies use experimental or 

quasi-experimental methods to construct a counterfactual situation. Only one study was found that 

applied experimental methods, although in the J-PAL website seven were in progress by the time 

that we concluded the data collection. For quasi-experimental methods, multiple econometric 

techniques are often applied, which yields significant heterogeneity. As can be seen in Table 2.1, 

the estimation of the impact of NRM is dominated by regression methods (58%) followed by a 

combination of PSM with regression models (28%) and PSM alone (14%). The dominance of the 
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regression methods could explain why most of the observations use a larger treatment group which 

leads to a TSRATIO of 1.20. The size of this ratio is standard in regression-based methods. 

However, in matching methods, a larger control group is typically used to facilitate matches that 

satisfy the common support assumption without losing treated observations (Khandker et al. 2010). 

A surprising finding is that only 64 (30%) observations use panel data and this clearly suggest that 

a number of impact evaluation studies do not have baseline data (Del Carpio and Maredia 2011). 

However, since 2010 the drive to promote the implementation of effective development aid has 

become the norm, with more policymakers and international aid offices monitoring, generating 

and maintaining better data sets in order to generate more robust impact evaluation measures 

(Khandker et al. 2010).  

An important feature that can be expected to play and important role on the effectiveness of an 

NRM program is the presence or absence of training. In our data, 189 (88%) observations report 

that training was a component in the project while the remaining 12% did not incorporate training 

to accompany the delivery of the NRM technologies. Participatory methods such as Farmer Field 

Schools are often used as a means to transfer technologies to farmers. This method was used in 95 

observations (44%) in our sample and the data indicate that the use of Farmer Field Schools has 

increased over time. Another variable used to account for the heterogeneity among the NRM 

studies is IMPLEBY which refers to whether or not the government is responsible for the 

implementation of the program, and this is the case for 82 of the observations in our database.    

A significant component of the meta-analysis is the selection of the outcome variables that 

measure the size of the effect produced by a development program. Like other features in impact 

evaluation design, outcome variables vary significantly within and across studies; therefore, 

building a standardized measure is no easy endeavor. Hence, we follow two coding strategies. 
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First, we coded the sign of every outcome variable reported in the paper according to its 

significance level into “negative and significant,” “not significant,” or “positive and significant” 

and these signs were then correspondingly converted to -1, 0, and 1. In the case of integrated pest 

management, whose outcome variable is cost reduction, the sign was inverted. Second, we grouped 

the outcome variables into three categories (some indicators did not fit into these categories, but 

they were captured in the first step whenever possible): monetary outcomes expressed in US 

Dollars; Yields; and TE. The monetary outcomes, such as the total value of agricultural production, 

profit, revenues, and cost reductions, account for 81 observations (41% of the total of our sample) 

while Yields and TE represent 48 (23%) and 15 (7%) data points, respectively. Table 2.2 shows 

an overview of the sign of the impact evaluation studies. As is shown, 122 (57%) observations 

report positive impacts vs. 84 (39%) and 9 (4%) that show non significant and negative impacts, 

respectively.  

Technology packages delivered through NRM programs could simply include soil or water 

conservation technologies, and in our meta-analysis these represent 58 (27%) and 24 (11%) 

observations, respectively. These packages could also be composed of other complementary 

technologies and this case accounts for 62% of the NRM observations. Another important feature 

of the impact evaluation design is the length of time between the end of the intervention (i.e., and 

the evaluation. This variable displays significant heterogeneity across studies, going from zero 

years (i.e., that NRM technologies are evaluated before the program is closed) to 21 years, which 

is a considerable amount of time to accrue the benefits of the technologies. 
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Table 2.1. Definition of variables and descriptive statistics  

Variable No. of obs. Definition Mean SD 

PUBLICATION 145 1 if the evaluation has been published in a peer review 

journal (compared to: Working paper, conference 

papers, book chapter, etc.) 

0.67 0.46 

PYEAR - Years of publication. 2012 4 

DYEAR - Year when the data of collected, the last year in panel 

data case 

2007 4.5 

AFRICA 112 1 if the evaluation has been done in Africa, (base 

comparison RESTWORLD) 

0.52 0.50 

ASIA 65 1 if the evaluation has been done in ASIA, (base 

comparison RESTWORLD) 

0.30 0.46 

RESTWORLD 38 Include North and Latin America and Caribbean, 

EUROPE, (This is the omitted category)  

0.18 0.38 

NTECHN - Number of technology under evaluation 3.34 3.32 

METHOD1 30 1 if a matching method is used 0.14 0.34 

METHOD2 60 1 if PSM is used in combination with other regression 

methods 

0.28 .45 

METHOD3 125 1 if regression methods are used alone 0.58 0.49 

PARTICIP 95 If a participatory approach was used to deliver the 

technology 

0.44 0.49 

TRAINING 189 If was written in the project that training was offered 

to participants 

0.88 0.32 

COVPRE  coefficient of variation of the monthly rain during the 

year of the data collection  

0.93 0.47 

IMPLEBY 82 1 if the project was implemented for the government 

alone, 0 otherwise 

0.38 0.48 

PANEL 64 1 if the Panel data was used 0.30 0.45 

TCRATIO  Treatment sample size/control sample size 1.20 0.87 

SAMPLES  Number of observations  819.82 1997.4 

MONVAL 81 1 if the effect has been measured in monetary terms 

expressed in US$ per hectare (e.g., total value of 

agricultural production, profits, revenues, cost 

reduction, income)  

0.61 0.49 

TEFF 15 if the effect is measured as a technical efficiency score 0.07 0.26 

YIELD 48 if the effect has been measured as Yield (Kg/ hectare) 0.23 0.42 

CONPRA1 24 1 if Soil conservation practices are used alone 0.27 0.44 

CONPRA2 58 1 if Water conservation practices are used alone, the 

base comparison are technologies such as, rice 

conservation, IPM, and SWC+ agroforestry 

0.11 0.31 

CONPRA3 133 1 If both water and soil conservation are used together  0.62 0.48 

TIME  Number years between the implementation and the 

evaluation 

4.07 3.60 

 

One additional virtue of a meta-analysis is the possibility of adding relevant information 

beyond what is provided originally in the study that can help to explain the variability of the 
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different effects (Stanley and Doucouliagos 2012). In so doing, we added annual rainfall variability 

that corresponds to the production season when the last round of data is collected. This variability 

is expressed as a coefficient of variation over the 12 months registered until harvest. A similar 

approach has been used by Arslan et al. (2015). We paired each observation in our dataset with 

the annual rainfall information from the climate change knowledge portal of the Work Bank 

(World Bank 2017a). For cases where primary studies reported the use of panel data, the rainfall 

corresponds to the last year of the data collection of the study.  

2.3.3 Analytical Framework 

The first step in this meta-analysis entails the analysis of publication bias in the reported estimates. 

Publication bias arises when journals publish articles that fulfill a pre-conceived expectation of the 

results and in our context this would mean restricting publications to articles that show impact 

(Osborne 2008; Stanley and Doucouliagos 2012). Econometric methods are used to assess the 

presence (or absence) of publication bias. A positive correlation between the reported treatment 

effect and its standard error serves as a test to reveal the presence of publication bias, thus in its 

absence, both are independent (Stanley 2008).  

The presence can be estimated by the following equation:  

𝑡𝑖 = 𝛽1𝑆𝐸𝑖 + 𝛽2(1/𝑆𝐸𝑖) + 𝑣𝑖                                                                                                      (1) 

where 𝑡𝑖 is the t-static of each treatment effect reported, 1/𝑆𝐸𝑖 is the precision estimate given by 

the inverse of the standard error of the treatment effect, and 𝑣𝑖 = 𝜀𝑖/𝑆𝐸𝑖. In equation 1, we identify 

publication bias by testing 𝐻0: 𝛽1 = 0, and 𝐻0: 𝛽2 = 0 is a test of the existence of any empirical 

effect beyond the presence of publication bias. Therefore, failing to reject these null hypotheses 

would indicate the presence of publication bias and the lack of effect of NRM (Stanley 2008). 
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Beyond the presence (or absence) of publication bias, the impact of NRM projects can be 

explained by factors related to the nature of the technology, the context where the technology is 

implemented or the evaluation design used to measure the effect. As previously mentioned, our 

main objective is to explain the effect of the latter two factors on a qualitative impact measure (i.e., 

positive or negative) and the size of the impact. In doing so, we first estimate an ordered probit 

model, where the dependent variable is the ordered response which, as defined above, is equal to 

-1, 0, or 1. A similar specification in the context of meta-analysis has been used by Busch and 

Ferretti-Gallon (2017) and Card et al. (2010).  

The theoretical specification of the ordered probit model can be expressed as: 

𝐸𝑖
∗ = 𝛽𝑥𝑖 + 𝑒𝑖,                𝑒|𝑥~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)                                                                                 (2) 

where 𝐸𝑖
∗ represents the latent measurement of the pertinent impact indicator reported in study i, 

𝑥𝑖 represents a set of explanatory variables shown in Table 2.1, 𝛽 is a vector of parameters to be 

estimated and 𝑒𝑖 is an error term (Wooldridge 2002). The following thresholds define the 

parameters of the discrete latent variables when the parameter values go over the threshold:  

𝐸𝑖 =  −1   𝑖𝑓 𝐸𝑖
∗ <  𝛼1  (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡), 

𝐸𝑖 =     0   𝑖𝑓 𝛼1 <  𝐸𝑖
∗ <  𝛼2 ( 𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡),                                                                         (3) 

𝐸𝑖 =    1   𝑖𝑓  𝐸𝑖
∗ > 𝛼2 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡), 

where 𝛼1 and 𝛼2 present the cut-off points or thresholds to be estimated.  

Since the number of observations reporting significantly negative effects is low, as shown in 

Table 2.2, and to check the robustness or the ordered probit estimate, we fit a probit model 

excluding the significantly negative observations and recoding the insignificant as 0 and the 

significantly positive as 1 and compare the estimated coefficients with those obtained from the 

ordered probit model.  
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In addition, we use two subsamples of our dataset to estimate a linear regression model of the 

effect of NRM on monetary values (i.e., any type of possible monetary variable used as an outcome 

variable) and Yields, both expressed in logs. This kind of aggregation of the monetary values has 

been used in the literature including Saginor, Simons, and Throupe (2011) and Simons and Saginor 

(2006). For this purpose, we estimate the following two models:  

Model 1:  

Log(MONVAL) = f(ASIA, AFRICA, NTECHN, METHOD1, METHOD2, PARTICIP, 

TRAINING, COEVPRE, IMPLEBY, PANEL, TIME, TIME2) 

Model 2:  

Log(Yield) = f(PUBLICATION, PYEAR, ASIA, AFRICA, NTECHN, METHOD1, METHOD2, 

PARTICIP, TRAINING, COEVPRE, IMPLEBY, PANEL, TSRATIO, COMPRA2, COMPRA3, 

TIME,TIME2, SAMPLE) 

These explanatory variables are introduced in order to explain the variability in the two 

indicators of impact presented on the left hand side of models (1) and (2). It has been argued that 

peer review publications could be biased toward reporting significant effects, which would 

influence researchers to scrutinize the work they prepare for journal submission (Borenstein, 

Hedges, and Rothstein 2007; Stanley 2001). A useful starting point to infer the presence of 

publication bias is the level of significance of the variable “PUBLICATION”. Likewise, 

publication year is intended to capture any trend on the impact of NRM over the years. If this effect 

is significant it would suggest changes to more robust |methods or better ways to implement NRM 

programs (Maredia 2009). Another variable worth examining is NTECHN, which represents the 

number of technologies analyzed by each observation, and it is intended to capture the effect of 

using technology packages instead of one technology at a time. METHOD 1, 2, 3 serves as a 

reference to capture the high level of methodological heterogeneity of these types of studies. 

Meanwhile, PARTICIP and TRAINING represent programs features associated with the 
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technology transfer process (Knowler and Bradshaw 2007). Since NRM programs are 

implemented by different organizations, is informative to ascertain if the type of implementer 

makes a difference; thus, we introduce the dummy IMPLEBY, to compare governments vs. other 

organizations such as NGO’s and development banks. Further, CONPRA1, 2 represent groups of 

the different NRM technologies, and if the associated parameters are significant then this would 

suggest that technologies may have a different level of success. Another important issue in the 

evaluation of NRM technologies is the time elapsed between the delivery of the technology and 

the time that it takes for the effect of these technologies to be observed (Branca et al. 2011); thus, 

TIME captures the effect of years on the impact of NRM technologies, and TIME2 is used to 

estimate whether or not this effect decreases over time.  

To estimate Model 1, the database has 81 observations and this could be sufficient to estimate 

the different parameters of the model (Stanley and Doucouliagos 2012). However, only 48 

observations are available to estimate Model 2, which might not be enough to proceed with the 

estimation using standard regression methods. The loss in degrees of freedom and the noise 

introduced by the estimation of a large number of parameters reduces the efficiency of the model 

(Moeltner et al. 2007). Moreover, since some observations are coming from the same study, cluster 

standard errors at the study level are needed which further reduces the degrees of freedom and 

these factors lead to imprecise parameter estimates (Wooldridge 2002). Moeltner et al. (2007) 

argue that given data limitations Bayesian methods should be used. Eddy et al. (1990) come to a 

similar conclusion, and also argue that Bayesian analysis is more appropriate when data from 

different settings is combined.  

Bayesian methods make it possible to introduce previous information about the parameters and 

their variance. which allows for parameter estimation based on a posterior probability distribution 
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(Koop 2003). In this case, the incorporation of prior information can mitigate the effect of a small 

sample size. Therefore, we estimate Model 2 using a Bayesian approach relying on sampling from 

a posterior distribution using the Metropolis–Hastings (MH) algorithm. Unlike classical 

econometrics, in Bayesian analysis the precision of the estimates is not limited by sample size 

(Rossi, Allenby & Mcculloch, 2005). In order to produce an efficient sampling from the posterior 

distribution and to improve the efficiency of the model parameter, we blocked1 each of the 

parameters and used Gibbs sampling (i.e., a hybrid MH sampling with Gibbs updates). These 

strategies allow us to improve the overall sampling efficiency of the posterior distribution 

(Greenberg 2008).  

In Bayesian estimation, the prior information can rely on non-informative priors, an approach 

that is often questioned (Greenberg 2008). Hence, we use informative priors from the probit 

estimation, although priors from other meta-analyses could have been used. However, as 

mentioned above, the estimates of the meta-analysis studies are not estimated based on impact 

evaluation analysis and are likely to introduce biases in the model.  

A general specification of the Bayesian model is as follows:  

𝑓(𝛽, 𝜎2|𝑦, 𝑋) ∝ ∏ (𝑓(𝑦𝑖|𝜇𝑖,𝜎
2)𝑖 × 𝑓(𝛽, 𝜎2)                                                                               (4) 

where 𝛽 represents the set of coefficients of the posterior distribution to be estimated, and 𝑋 is the 

matrix whose ith row is xi. ∏𝑖 is a prior independent of (𝛽, 𝜎2) and, in this case, it is obtained from 

the probit model. 𝑓(𝛽, 𝜎2) the rightmost term represents the posterior for the regression 

parameters. Equation (4) is fundamental in Bayesian analysis and states that the posterior 

                                                           
1 Blocking means that model parameters are separated into different subsets or blocks and the 

Markov chain is obtained by sampling within each separate block.    
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distribution (rightmost term) of model parameters is proportional to their likelihood (second term) 

and prior probability distributions (first term). 

Table 0-1 Table 2.2: Distribution of the program's estimates by significance of effect 

Table 2.2. Distribution of the program's estimates by significance of effect  

Effects sign No. Observations   % 

Significantly positive (1) 122 57 
Insignificant (0) 84 39 
Significantly negative (-1) 9 4 
 215 100% 

 

For Model 1, as a check of robustness, we estimate two additional models, the first is based on 

the partial correlation between the t value of the estimated coefficient for the treatment effect and 

the corresponding degrees of freedom. This represents a measure of the association between the 

significance of the reported outcomes while controlling for the number of explanatory variables. 

It also allows us to compare different outcomes from different studies (Stanley and Doucouliagos 

2012). The calculation of the partial correlation is as follows:  

 𝑟 =
𝑡

√𝑡2+𝑑𝑓
                                                                                                                                    (5) 

where t denotes the t-statistic of the treatment effect, and df reports the degrees of freedom of the 

t-statistic. The second check of robustness is based on the use of the t-statistic as a dependent 

variable in the following model: 

The null hypothesis is that the effect of NRM programs is equal to zero, which is rejected or 

accepted depending on the mean value of the t-statistic and its level of significance (Corć and Pugh 

2010).    
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2.4  Results and Discussion 

Before conducting a meta-analysis of the results we first test for publication bias. To this end, we 

apply both graphical and econometric methods. The first method implies the use of a funnel plot 

that shows a graphical display between the partial correlation (horizontal axis) from equation (5) 

and the inverse of the standard errors (vertical axis) of the parameters of the treatment effect  

(Stanley and Doucouliagos 2012; Sterne and Harbord 2004). If studies with small sample display 

larger effects then there is evidence of publication bias. Thus, in the absence of bias, results from 

small studies will be spread at the bottom of the graph (Sterne and Harbord 2004). As shown in 

Figure 2.1, the relation between the empirical treatment effect and the inverse standard errors 

suggest that there is no bias, i.e., the bulk of the studies cover zero and are displayed at the bottom 

of the graph. This is confirmed by the results in Table 2.3, where the hypothesis of 𝛽1 = 0 is 

rejected, i.e., 1/SE is significant (p<0.001). In addition, 𝛽2 is significant which means that there is 

a positive significant effect of NRM technologies on the different outcome variables. (Stanley and 

Doucouliagos 2012).  

 
Figure 2.1Funnel plot of NRM partial correlations and precisions 
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Table 0-2 Table 2.3: Meta-regression analysis of publication selection 

Table 2.3. Meta-regression analysis of publication 

selection  

Variables  Coefficient  

Intercept: 𝛽̂1 0.919***(0.74) 

1/SE: 𝛽̂2 0.012***(0.003) 

N  213 
Standard errors (SE) are clustered by study id and reported 

in parenthesis. 

 

As specified earlier, one of our estimation strategies was based on using the significance level 

(significantly positive, statistically insignificant or significantly negative) of the estimated impact 

to identify the characteristics of the studies that play a role on the effect of the NRM technologies. 

Table 2.4 contains the main findings of the meta-ordered probit model alongside the estimation of 

the marginal effects used in this analysis. In general, in both the ordered probit and probit models, 

the null hypothesis that all coefficients are simultaneously zero is rejected. Furthermore, a pseudo-

R2 of 0.17 and 0.20 indicates that the variation of the impact indicator of NRM technologies is 

well explained by the variables included in our model.2 On the whole, both models display very 

similar parameter estimates. Since the number of negative significant observations is very low, we 

focus on the marginal effect of the probit model estimates in column 4 of Table 2.4. However, we 

do point out cases where major discrepancies arise between the ordered probit and probit models. 

The models include characteristics of the intervention as well as covariates related to the 

evaluation design. As shown in Table 2.4, positive significant results are not correlated with 

publication in peer review journals or in other type of outlet. Likewise, the year of publication is 

not correlated with the probability of finding a positive impact. Although our expectation was that 

the increase in impact evaluations coupled with the availability of more evaluation techniques 

                                                           
2 Further details about the use of pseudo-R2 in ordered probit models can be found in O’Donnell and Connor (1996). 
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would have led toward more positive impacts, this is not the case. Moving to the dummies for the 

country groups, we find that impact evaluation studies implemented in Asia and Africa are 36% 

and 30%, respectively, more likely to be associated with positive significant impacts than evidence 

from the rest of the world. The rest of the world includes North America and Latin America and 

the Caribbean, where NRM technologies have already been largely adopted (Knowler and 

Bradshaw 2007), and therefore makes it less likely that a positive impact will be found in the 

region. However, it is more likely that a positive and significant impact will be found in Africa 

and Asia where there is not yet a high adoption rate.  

Training is a very important factor for boosting the effectiveness of NRM technologies; its 

absence or presence is considered to be a key factor for the successful adoption of these 

technologies (Knowler and Bradshaw 2007). Our results in Table 2.4 suggest that the use of 

participatory approaches while implementating NRM programs increases the likelood of finding a 

positive impact by 15.5%. Likewise, programs that implement training activities are 25.6% more 

likely to have a positive impact than programs implemented without training. Although for many 

program the need to deliver appropriate technical packages and training is clear, some NRM 

programs failed to incorporate them to a sufficient extent. Our results are consistent with previous 

evidence which found that training increases overall knowledge and productivity (Godtland et al. 

2004; Lahmar 2010). 

In order to account for the potential role that weather plays on the effects of NRM technologies, 

we introduce the coefficient of variation for the annual rainfall during the year that the impact 

evaluation was carried out in each study. The econometric results (Table 2.4) suggest that a better 

distribution of annual rainfall increases the probability of finding a positive outcome by 24.2%. 

This suggests that the success of NRM technologies may be tied to rainfall distribution. For 
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instance, Arslan et al. (2015) found that high rainfall variability during the growing season is 

associated with positive effects of NRM on productivity. Similar results are reported by Khan et 

al. (2016), who found that zero tillage users in India experienced between a 24%-28% lower yield 

losses than non-users after an unseasonal rainfall event. However, Kassie et al. (2011) argued that 

in areas with high rainfall, the use of terraces has adverse effects on productivity. In this context, 

our results allow us to draw a conclusion based on the sign of the expected impact, but not about 

the possible magnitude. Furthermore, NRM technology involves a very large set of practices, an 

issue that is cannot be disentangled in our meta-analysis. Moreover, the effects of NRM may also 

vary depending on the crop under analysis. Needless to say, the literature is still mixed regarding 

where NRM interventions perform better. 

Confirming previous evidence regarding the effectiveness of governmental agencies in 

program implementation (Cho and Honorati 2013), we find that the likelihood of observing a 

positive effect decreases by 40% if the NRM program is implemented by a government agency 

compared to NGOs, development banks or other international institutions. The greater 

effectiveness of NGOs and other institutions in program implementation indicates that government 

agencies need to enhance their project managerial skills in order to accomplish better results. 

Furthermore, in the short run, governments should work closely with NGOs and international 

agencies on the delivery and implementation of NRM technologies.  

The econometric results presented in Table 2.4 indicate that the type of outcome variables 

matter when evaluating the impact of NRM programs. Yields and Monetary Outcomes tend to 

exhibit a negative probability of reporting positive effects compared to the use of technical 

efficiency (TE). Knowler & Bradshaw (2007) claim that NRM leads to a more efficient use of 

natural resources and better utilization of fertilizer, however this does not necessarily imply an 
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increase in productivity. Moreover, Bravo-Ureta, Greene, and Solís (2012) and Solís, Bravo-Ureta, 

and Quiroga (2007) argue that development programs might create both technology and 

managerial gaps (i.e., TE) in favor of program beneficiaries and thus it is important to measure 

both effects. They also argue that the estimation of TE in the context of impact evaluation analysis 

has been neglected. Reasons behind the low use of the TE on the evaluation of NRM effectiveness 

may lie behind the lack of understanding by policymakers about the conceptualization of TE, i.e., 

it is easier to communicate an increase in yield than a higher TE score. The lack of straightforward 

econometric methods that allow for causal conclusions could be another reason for disregarding 

TE in impact evaluation work.   

Other characteristics, such as econometric methods, the type of data, sample size, or 

technology grouping are not statistically significant; thus, these covariates do not play a role on 

the effectiveness of the program. However, one evaluation characteristic that does play a part in 

the effectiveness of the program is the number of years that have elapsed between the program 

implementation and the evaluation. The econometric results in Table 2.4 indicate a positive 

association between years and the likelihood of finding a positive impact. It has been argued that 

NRM technologies need an appropriate amount of time to generate significant effects. Our 

econometric estimation (Table 2.4) points toward the confirmation of the previous evidence (Jat 

et al. 2014; Kassam et al. 2012). For each additional year between the end of the project and the 

impact evaluation, NRM programs are 10 % more likely to report positive effects. Furthermore, 

our results indicate that time displays a quadratic effect; hence, after a certain period the effect 

diminishes. Two possible explanations come to mind: diminishing returns; or abandonment of the 

technology by beneficiaries. 
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Table 0-abl 2: Ordered probit models for sign ⁄significance of estimated of NRM technologies 

Table 2.4. Ordered probit models for sign ⁄significance of estimated of NRM technologies 

 OProbit OProbit(ME) Probit Probit(ME) 

Variable Coef. Coef. SD  

PUBLICATION -0.210 

(0.311) 
-0.079 

(0.117) 
-0.197 

(0.378) 
-0.059 

(0.113) 
PYEAR -0.023 

(0.039) 

-0.009 

(0.014)  

-0.055 

(0.042) 

-0.016 

(0.013) 

ASIA  0.716 

(0.573) 

0.272 

(0.216)  

1.193** 

(0.554) 

0.362** 

(0.159) 

AFRICA 0.617 

(0.454) 

0.234 

(0.170) 

0.998** 

(0.437) 

0.303* 

(0.122) 

NTECHN 0.064 

(0.041) 

0.024 

(0.155) 

0.072 

(0.047) 

0.022 

(0.014) 

METHOD 1 -0.369 

(0.348) 

-0.139 

(0.132) 

-0.173 

(0.302) 

-0.052 

(0.092) 

METHOD 2 0.131 

(0.278) 

0.049 

(0.106) 

0.247 

(0.290) 

0.075 

(0.088) 

PARTICIP 0.488** 

(0.245) 

0.185**  

(0.092) 

0.511** 

(0.249) 

0.155** 

(0.074) 

TRAINING 0.701* 

 (0.419) 

0.266*  

(0.159) 

0.845* 

(0.464) 

0.256* 

(0.138) 

COEVPRE 0.758*** 

(0.262) 

0.287***  

(0.1000) 

0.798*** 

(0.304) 

0.242*** 

(0.086) 

IMPLEBY -0.020*** 

(0.373) 

-0.387***  

(0.139) 

-1.346*** 

(0.339) 

-0.408*** 

(0.094) 

PANEL -0.088  

(0.338) 

-0.033 

(0.128) 

-0.114 

(0.336) 

-0.035 

(0.111) 

TSRATIO -0.020 

 (0.142) 

-0.008 

(0.054) 

-0.091 

(0.127) 

-0.028 

(0.037) 

SAMPLE-S 0.000 

 (0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

MOVAL -0.789* 

(0.444) 

-0.299* 

(0.166) 

-0.928** 

(0.480) 

-0.282** 

(0.136) 

YIELD -1.423*** 

(0.542) 

-0.539*** 

(0.200) 

-1.573*** 

(0.578) 

-0.477*** 

(0.154) 

CONPRA2 0.097 

(0.488) 

0.037 

(0.185) 

-0.029 

(0.496) 

-0.009 

(0.150) 

CONPRA3 -0.195 

(0.295) 

-0.074 

(0.112) 

-0.117 

(0.307) 

-0.036 

(0.093) 

TIME 0.219 

(0.169) 

0.083 

(0.064) 

0.331** 

(0.157) 

0.100** 

(0.045) 

TIME2 -0.023* 

(0.013) 

-0.008* 

(0.005) 

-0.032*** 

(0.012) 

-0.009*** 

(0.003) 

     

Observations  215  215  

Pseudo R2 0.171  0.203  

note: *** p<0.01, ** p<0.05, * p<0. 

Standard errors (SE) are clustered by study id and reported in parenthesis. 

Marginal effects (ME) calculated at the sample mean, using the delta method 
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Now we move to the effect size analysis of estimates from observations that use monetary 

outcomes as a dependent variable. Econometric results using 81 observations are presented in 

Table 2.5 along with the estimation of two more OLS regressions in columns 2 and 3. We use t-

statistic values reported by each study and the partial correlation coefficients as dependent 

variables. Both methods are commonly used in the meta-analysis literature to summarize empirical 

evidence, especially when different outcomes are reported. These statistics allow for the 

comparison of different estimates and studies (Stanley 2001; Stanley and Doucouliagos 2012). We 

use these two estimations to check for the robustness of the model presented in column 1 of Table 

2.5. The R2 of the three models are high, which indicates that a significant part of variability of 

NRM measured on monetary values is explained by the covariates included in the models.  

Table 2.5 shows that ASIA displays negative coefficients contrary to what is observed in the 

probit estimation.  Thus, the meta-regression results (Table 2.5) indicate that countries in ASIA 

exhibit a lower impact than the rest of the world. For Africa, this parameter also has a negative 

sign, although it is not statistically significant. These results indicate that both regions need to 

establish additional policies to increase the size of the effect of NRM. This could be achieved by 

increasing the productivity per hectare or by increasing the value of the crop, or by a combination 

of both.  

The results for rainfall form the meta-regression differ from those obtained from the probit 

model. In areas with poor rainfall distribution, the size of the effect is 42% compared with areas 

that have better rainfall patterns. These results are relevant since NRM technologies are considered 

to be a technological option to address adverse effects of climatic change such as drought and 

periods with heavy rains (Arslan et al. 2015; Khan et al. 2016). Furthermore, areas such as Sub-

Saharan Africa and South Asia, where a significant part of agricultural production come from 
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rainfed areas, could benefit from the adoption of NRM technologies. Since our data is very 

heterogeneous in terms of NRM technologies, it is not possible to disentangle the particular 

contribution that each technology makes on the aggregate impact. For instance, NRMs that favor 

water infiltration may not be appropriate for rice production where farmers need to retain water. 

Thus, the relation between NRM technology and crops is a matter of careful consideration. It is 

possible that different technologies have different effects on productivity. Moreover, the effects of 

NRM technologies may also vary depending on the crop under analysis.  

The constant parameter (Table 2.5), which indicates whether or not there is any significant 

effect of NRMs on the outcome variable, is positive and significant among the different model 

specifications. The intercept coefficient in column 1 shows that after controlling for programs and 

evaluation characteristics, NRM technologies increase monetary outcomes on average by 8%. The 

models in columns 2 and 3 display similar results; however, their interpretations are more 

statistical than economical (Stanley and Doucouliagos 2012). For instance, the average t-statistic 

of 2.7 in column 2 indicates that, on average, the reported effect is statistically significant, i.e., the 

reported p-values are larger than 0.05, yet this is not economically meaningful. Nonetheless, they 

show a strong indication of the positive impact of NRM. 

 

 

 

 

 



32 
 

Table 0-3 Table 2.5: Meta-regression of the effect of NRM technologies on Monetary Values 

Table 2.5. Meta-regression of the effect of NRM technologies on Monetary Values 

Variable MONVAL (1) t- statistic (2) Partial correlations (3) 

Coef. Coef. Coef. 

CONSTANT  8.127*** 

(1.22) 
2.70407*** 

(0.642) 

10.361*** 

(1.803) 

ASIA  -6.29*** 

(0.794) 

-1.804** 

(0.799) 

-0.995 

(1.802) 

AFRICA -0.015 

(0.437) 

-0.193 

(0.272) 

0.163 

(0.693) 

NTECHN 0.049 

(0.107) 

-0.026 

(0.045) 

-0.066 

(0.158) 

METHOD 1 0.573** 

(0.246) 

-0.069 

(0.114) 

0.091 

(0.311) 

METHOD 2 -0.728 

(0.465) 

0.152 

(0.272) 

-0.887 

(0.833) 

PARTICIP 1.698** 

(0.782) 

0.957*** 

(0.274) 

1.749* 

(0.999) 

TRAINING 0.357 

(1.057) 

0.825 

(0.759) 

2.376 

(2.001) 

COEVPRE -1.223*** 

(0.421) 

-0.866** 

(0.413) 

-3.231*** 

(1.028) 

IMPLEBY -1.919* 

(1.216) 

-1.242*** 

(0.386) 

-1.258 

(1.231) 

PANEL 1.501*** 

(0.312) 

-0.646*** 

(0.296) 

-1.033 

(0.684) 

TIME 0.068 

(0.162) 

-0.721*** 

(0.210) 

2.523*** 

(0.545) 

TIME2 -0.004 

(0.004) 

0.040* 

(0.024) 

-0.172* 

(0.062) 

Observations  81 81 81 

R2 0.94 0.91 0.88 

note: *** p<0.01, ** p<0.05, * p<0. 

Standard errors (SE) are clustered by study id and reported in parenthesis. 

Regressions 1–3 are weighted by the inverse of the standard deviation of the primary 

studies. 

 

The final econometric model is based on a Bayesian approach and estimates the impact of 

NRM technologies on yield and the credible intervals using a subsample of 48 observations. 

Column 1 in Table 2.6 reports the mean and the standard deviations of the posterior distribution 

of model parameters, which in turn are means and standard deviations of the marginal posterior 

distributions of the parameters (Koop 2003). At a quick glance, the estimated model parameters 

display similar signs compared to those obtained in both the probit and OLS models (Table 2.4), 
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which support previous estimations. The coefficient of the constant also shows that the average 

effect of NRM on Yields is equal to 13%. Furthermore, the probability that the coefficient for the 

constant is between 9.15 and 16.5 is about 95%. Since the lower interval is larger than zero, we 

can conclude that NRM technologies have a positive effect on yield. Overall, these findings 

strongly support the conclusions derived from the different estimations in this paper. Furthermore, 

both the acceptance rate and efficiency criteria3 indicate that the model quality is above the 

threshold of 10% and 1%, respectively (Greenberg 2008).  

Table 0-4 Table 2.6: Meta-Bayesian regressions of the effect of NRM technologies on Yields 

Table 2.6. Meta-Bayesian regressions of the effect of NRM technologies on Yields 

Variable Mean (SD)                   [95% Cred. Interval] 

CONSTANT 13.034(1.878) 9.156 16.543 

PUBLICATION -0.146(0.782) -1.657 1.394 

PYEAR 0.049(0.011) 0.028 0.071 

ASIA  0.705(0.672) -0.591 2.024 

AFRICA -0.269(0.567) -1.369 0.852 

NTECHN 0.555(0.218) 0.136 0.984 

METHOD 1 -3.165(0.606) -4.346 -1.965 

METHOD 2 -2.258(0.818) -3.886 -0.674 

PARTICIP 1.158(0.756) -0.3006 2.640 

TRAINING 1.261(1.121) -0.8866 3.471 

COEVPRE 0.877(0.504) -0.0616 1.921 

IMPLEBY -1.979(0.34) -2.674 -1.3021 

PANEL 1.564(0.632) 0.346 2.826 

TSRATIO 0.385(0.285) -0.179 0.941 

CONPRA2 -0.272(0.545) -1.3409 0.802 

CONPRA3 -1.009(0.766) -2.559 0.465 

TIME 13.769(1.040) 11.748 15.851 

TIME2 -6.798(0.038) -6.8708 -6.723 

SAMPLES -0.045(0.024) -0.094 0.003 

    

Observations  48   

Acceptance rate .630   

Efficiency 0.03   

Log marginal 

likelihood = -418.01753  

  

Bayesian normal regression Metropolis-Hastings and Gibbs sampling and MCMC 

with125,000 iterations.  

                                                           
3 These two criteria define the overall efficiency of the Bayesian model, the first measures the degree of 

autocorrelation of sample from the posterior probability, while the acceptance measures how many of proposed 

sampling through the Monte Carlo Markov chain are accepted (Rossi et al. 2005).  
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2.5  Summary and conclusions  

The available experimental and econometric evidence shows ambiguous results on the effect that 

natural resource management (NRM) technologies have on productivity and other outcomes. In 

order to analyze these contradictory research findings and estimate the “macro effect” of NRMs, 

we employ meta-regression analysis techniques. In so doing, we develop a unique data set of 

impact evaluation studies of NRM programs. These data comprise 75 studies with a total of 215 

observations. The meta-dataset that we developed is the basis for our econometric work which 

relies on fitting ordered probit, probit, ordinary least squares, and a Bayesian regression models. 

These different approaches allow us to explain why impact varies among studies and across 

different interventions, countries, and econometric methods.  

The econometric results reveal that study and program characteristics can play a significant 

positive effect on the impact of NRM technologies. Among these features, studies implemented in 

Asia and Africa are more likely to report more significant estimates. However, the average impact 

is lower than the estimated impact reported in North American, Latin American and Caribbean 

countries and also in Europe. Likewise, the inclusion of training and participatory extension 

methods appears to increase the likelihood of finding a positive impact. Both characteristics also 

matter when it comes to finding a larger average impact. Although with our data it is not possible 

to decide how long training periods should be, we believe the design of appropriate training 

activities is an essential program component. With respect to which organization is responsible for 

the implementation of the program, it seems that NRM programs implemented solely by 

government agencies yield lower effects than those implemented by a financial institution, NGO, 

or international cooperation agencies.  
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Although there is no clear indication that the econometric methods used to measure the impact 

of the program matter, the outcome variables used to determine the impact do matter. The 

estimation of technical efficiency produces more favorable impacts than the use of yield or 

monetary outcomes. The time that passes between the end of the program and its evaluation can 

also be a major determinant of impact. In terms of policy implication, this opens the door to a 

possible revision of those impact evaluations where insignificant or negative impacts were found 

in the short term. In addition, this is also an important point to consider for development agencies 

that often include impact evaluation analysis only at the end of their projects. 

In conclusion, the promotion of NRM programs to tackle natural resource degradation and to 

increase productivity is a win-win public policy. Overall, NRM programs increase monetary 

outcomes on average by 8%, and the effect on productivity ranges between 9.15% and 16.5%, 

which leads to a substantial welfare gain for farmers. In a context where natural resources 

constitute the most valuable assets for smallholder farmers, these results are particularly relevant 

for policymakers searching for appropriate interventions. Furthermore, it is noteworthy to mention 

that this meta-analysis is based on the benefit that is accrued by farmers. Therefore, benefits that 

accrue to the society need to be added to estimate the total effect that NRM programs have. We 

also point out that future impact evaluation studies should clearly report detailed information 

concerning sample size, standard deviation, and the mean of the estimated effect. This will help to 

increase the size of the available evidence to support or reject NRM technologies. 
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Chapter 3 Natural Resource Management and Household 

Well-being:The Case of POSAF-II in Nicaragua 
 

This article has been published in World Development, 2017, 99(Novermber), pp.42-59 

 

Abstract: Measuring the impact of natural resource programs is a key element in the formulation 

and implementation of policies designed to promote farm income while enhancing the quality of 

the surrounding environment. In this paper, we analyze the economic impact of natural resource 

technologies delivered by the Socio-environmental and Forestry Development Program-II 

(POSAF-II) in Nicaragua. We use cross-sectional data for 1,483 households, from 212 treated and 

control communities. Results obtained from propensity score matching (PSM), ordinary least 

squares (OLS), weighted least squares regression (WLS) based on PSM, and instrumental 

variables (IV) regression indicate that POSAF-II has had a positive impact on the total value of 

agricultural production of beneficiary farmers. An internal rate of return analysis supports the 

hypothesis that increasing household income while encouraging the sustainable use of natural 

resources through the implementation of suitable management programs can be complementary 

development objectives. 

 

Keywords: natural resource management, impact evaluation, intention-to-treat, spillover, internal rate of 

return, Nicaragua 
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3.1 Introduction  

Over the past several years, agricultural production worldwide has managed to effectively meet 

global demand for food and fiber (World Bank, 2008). However, the ongoing rise in food demand 

stemming from population and income growth along with the uncertainty from climate change is 

expected to increase pressure on the agricultural system around the globe (Schmidhuber and 

Tubiello 2007; Wheeler and VonBraun 2013). Consequently, promoting agricultural productivity 

while ensuring farming resilience and sustainability is a priority. Achieving these goals is 

becoming more and more difficult in many areas where land and water resources are under 

pressure, and production is threatened by rising climatic variability, pests, and diseases (Cleaver 

2012; FAO and ITPS 2015). Furthermore, there is growing evidence that climate change has 

affected agricultural production and will inflict increasing damage to farming in the coming 

decades (Gornall et al., 2010; World Bank., 2016). These challenges pose a significant threat to 

about 1.2 billion people worldwide that are living below the poverty line, and 70% of them live in 

rural areas. A significant number of these people earn their income directly from agricultural 

activities or have some reliance on farming for their livelihoods (Cleaver, 2012). 

The challenges facing agriculture make it imperative to harmonize the need to promote the 

sustainable use of natural resources with the choice of policies that can be effective in reducing 

poverty (Barrett, Travis, and Dasgupta 2011). In this context, generating compelling evidence 

regarding the effects of changes in agricultural practices on farm income has become an important 

issue for policy makers and donors (Khandker, Koolwal, & Samad, 2010; Kelley, Ryan, & 

Gregersen, 2008). Assessing the impact of policies on people’s lives has also become an important 

area of scholarly work. One of the reasons for assessing this impact is to build accountability in 

public administration and to guide policy decisions. Along with these reasons, determining what 
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works and why impacts are reached or not reached are additional justifications for producing the 

“proof” that validates public actions (Gertler, Martinez, Premand, Rawlings, & Vermeersch, 

2011).  

A number of natural resource management (NRM) programs, designed to simultaneously 

reduce poverty, increase productivity and protect natural resources, have been implemented in 

Latin America and elsewhere (e.g., Barrett, Moser, Mchugh & Barison, 2004; Bravo-Ureta, 

Almeida, Solís, & Inestroza, 2011; Dalton, Lilja, & Johnson, 2011; Dutilly-diane, Sadoulet, & de 

Janvry, 2003; Kassie, Shiferaw, & Muricho, 2011; Tsiboe, Dixon, Nalley, Popp, & Luckstead, 

2016). Moreover, in many cases, NRM technologies have been evaluated in controlled 

experimental or on-farm technology trials, but these types of data are not useful to evaluate actual 

farming conditions where many variables are beyond the control of the producer (Del Carpio and 

Maredia 2011; Kelley et al. 2008; Pal 2011; Renkow and Byerlee 2010). As a result, productivity 

gains measured under controlled conditions are likely to overestimate the real impact of NRM 

technologies. Furthermore, the results of impact evaluations using a counterfactual group vary 

from highly positive to very negative (Del Carpio and Maredia 2011). Therefore, the performance 

of specific technologies under real farming conditions needs to be better understood so that robust 

interventions can be formulated and implemented (Renkow & Byerlee, 2010; Harwood, Kassam, 

Gregersen, & Fereres, 2005).  

Latin American countries, like others in different parts of the developing world, have 

implemented NRM programs delivering technologies with the intention of reducing rural poverty 

while improving productivity and protecting natural resources (Bravo-Ureta et al. 2011; Cavatassi, 

Salazar, et al. 2011; Solís et al. 2007). However, the literature contains limited reliable evidence 

concerning the effects of these interventions on farmers’ incomes. Likewise, most of these 
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programs focus only on the benefits generated while ignoring more comprehensive measures of 

performance, such as the internal rate of return (IRR) on the investment, which is critical 

information for policymakers (Del Carpio and Maredia 2011). A few exceptions include the 

Environmental Program of El Salvador or PAES (Cocchi and Bravo-Ureta 2007) and the Natural 

Resource Management in Priority Watersheds Project (MARENA) in Honduras (Bravo-Ureta et 

al., 2011).  

The general objective of this study is to contribute to the literature on impact evaluation of 

natural resource management programs and the link between these programs and farmer well-

being through the evaluation of the Socio-environmental and Forestry Development Program II 

(POSAF-II). This evaluation focuses on Component I of the Program, which promoted the 

sustainable management of natural resources at the farm level. Our study sheds light on the effect 

of actions that can address the “triangle of poverty”, which ties low farm productivity to increased 

poverty, forcing farmers to place pressure on the environment leading to increasing degradation 

and in turn to even lower productivity and more poverty. This is a cycle that without intervention 

continues overtime with dire consequences to both people and the environment. Vosti and Reardon 

(1997) argue that the reversal of this downward spiral requires suitable policies, institutions, 

programs, and technologies. Duraiappah (1998) adds that market failures preclude the adoption 

and diffusion of sustainable practices by failing to impose a price for environmental degradation 

and/or the deforestation of tropical forests. Moreover, the author contends that there is a feedback 

loop between environmental degradation and poverty, i.e., environmental degradation causes 

poverty and poverty causes environmental degradation. Along similar lines, Scherr (2000) 

reinforces the role of institutions and calls for the need to promote the adoption of technologies 
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that jointly address poverty and environmental degradation, while pointing out that more research 

is required to explore interactions between poverty, agriculture and the environment.  

Swinton, Escobar, and Reardon (2003) take a close view of the situation in Latin America and 

conclude that policies are needed to implement sustainable agricultural practices. They also argue 

that these policies need to be tailored to address specific environmental problems. Pretty et al. 

(2006) undertake a meta-analysis including 286 interventions that tackle poverty and 

environmental degradation in 57 poor countries from throughout the globe. The authors claim that 

NRM interventions have increased productivity on 12.6 million farms while improving the supply 

of critical environmental services. However, Phalan, Rodrigues, and Balmford (2007) argue that 

much of the evidence presented by Pretty and colleagues is weak because many studies lack control 

groups and thus results are likely to be biased. In 2015, the United Nations’ “International Year of 

Soil” declaration highlights the importance of more sustainable soil use and the crucial nature of 

this resource (FAO and ITPS 2015). In addition, the Sustainable Development Goals express the 

need for the promotion of sustainable farming while, increasing investments in agriculture as a 

path to reduce poverty and doubling agricultural productivity (UN 2016). 

A central challenge in evaluating the impact of development programs is the construction of a 

suitable counterfactual to mitigate biases from observable and unobservable variables (Khandker 

et al. 2010). To address this challenge, in this article we use PSM or propensity score matching4 

(Rosenbaum and Rubin 1983) along with instrumental variables and weighted least squares 

regression (Angrist and Pischke 2015; Hirano and Imbens 2001). These econometric techniques 

                                                           
4 PSM allows for the construction of comparable groups of beneficiaries and non-beneficiaries, based on 

the conditional probability of being treated, which is estimated using a set of observable characteristics 

(Khandker et al. 2010). Further details are presented in Section 4. 
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allow us to estimate unbiased benefits, which we then use along with administrative data to 

generate expected cash inflows and outflows and to calculate the expected IRR of the Program 

under various scenarios. The analysis shows that the estimated impact of POSAF-II is positive and 

statistically significant while the calculated IRR ranges from 35% to 75%, depending on the 

scenarios examined.  

3.1.1 Description of POSAF-II  

The Nicaraguan Ministry of the Environment and Natural Resources (MARENA) implemented 

POSAF-II between 2002 and 2008. The IDB (2001) stated that the Program sought to improve 

socioeconomic conditions and living standards of beneficiaries and to lessen the impact of natural 

disasters in priority watersheds, through the sustainable development and use of renewable natural 

resources. The goal was to promote economic development and environmental sustainability. 

POSAF-II financed a total of 13,477 farmers occupying 69,767 hectares in several major river 

basins that were severely damaged by Hurricane Mitch in 1998 (Figure 3.1). POSAF-II was 

organized into the following three components: Component I - sustainable management of natural 

resources at the farm level; Component II - infrastructure and training to prevent and mitigate 

natural disasters; and Component III - institutional strengthening and training in natural resource 

management. The total funding of POSAF-II amounted to US$38 million5. 

 

 

                                                           
5 Further information about the design of the POSAF-II can be found in IDB (2001).  
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Figure 3.1 Area of influence of POSAF-II. 

 

Component 1 of POSAF-II, the central part of the Program, had a budget of US$20.2 million 

and was designed to introduce and encourage the adoption of agroforestry, silvopastoral, 

reforestation, and woodlot management systems. Producers, with technical advice from extension 

agents, prepared farm management plans that took into account the overall management strategy 

for their respective sub-basin. Technical assistance consisted of a two level-strategy. The first level 

was based on a monthly farm visit that allowed beneficiaries to receive individual technical advice. 

The second level involved an advisory group service where farmers interacted with each other and 

also received information from an extension agent who served as the meeting coordinator. This 

approach allowed each farmer to be in contact with an extension agent twice a month. Each 
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extension agent was responsible for a group of between 50-70 farmers, with a total of 227 

extension agents dispersed throughout the POSAF-II area of influence.  

The farm management plans incorporated a combination of practices drawn from the following 

pre-established options: soil conservation, integrated pest management, live barriers, stone walls, 

contour plowing, infiltration ditches, terracing, pruning, green manure production, composting, 

wood-saving stoves, and slope correction. The maximum incentive provided to a farmer to 

implement a management plan was US$1,300, and POSAF-II covered the costs for technical 

assistance from another line of the overall budget. To promote the sustainable adoption of these 

practices, extension agents provided continuing support to Program beneficiaries over a period of 

three years (IDB, 2001).  

The following three production systems were defined: i) Agroforestry (SAGF), including the 

planting of fruit trees, introduction of soil conservation practices (stone barriers, terraces, live 

barriers, among others); ii) Forestry (SFOR) including forest plantation and regeneration, and 

management of natural resources; and iii) Mixed (SMIX) incorporating elements of both SAGF 

and SFOR in the context of silvopastoral production systems. To induce adoption of these systems 

the Program provided technical assistance for three years and materials to participating farmers. 

Component 1 served two types of farmers: i) poor small-scale subsistence farmers; and ii) middle-

sized market-oriented farmers with limited ability to adopt new technologies and that required 

substantial technological innovations in order to alleviate environmental problems. To be eligible, 

farmers had to demonstrate: land ownership or any clear documentation of possession of a farm 

larger than 1.06 hectares (1.5 Manzanas) located in one of the selected river basins; no previous 

participation in similar programs; and be committed to participate in all POSAF-II activities. Based 
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on these criteria, POSAF-II was implemented in three different rounds with a total of 6,049 farms 

in the first round, 4,549 in the second and 2,879 in the third.    

3.1.2 Impact Evaluation Studies and Natural Resource Management 

This section presents a review of impact evaluation analyses that have relied on “good practices”, 

i.e., where impact has been estimated by comparing beneficiaries with a proper control group. 

Although there is a sizable amount of research illustrating the impact of agricultural growth on 

poverty reduction, the literature on the impact of different interventions, including technology 

transfer, is rather limited. Recently, more impact evaluations have been completed, although only 

a few can be considered as rigorous. A meta-analysis by Del Carpio and Maredia (2011) examined 

286 evaluation projects. Only 86 of these projects use a counterfactual group to measure the effects 

of the interventions, which was a requirement for inclusion in the meta-analysis. However, a 

shortcoming of the subgroup of 86 studies is that only two of them examined the internal rate of 

return (IRR) or net present value (NPV) of the program. Moreover, of the 86 only 12 focused on 

NRM. 

Among the few available impact evaluations of NRM initiatives, Dalton et al. (2011) assessed 

the project “Improving the Sustainability of Cassava-based Cropping Systems in Asia” between 

1994 and 2003. The project activities had a significant impact on the adoption of soil management 

technologies. The IRR reported is 41.2% for the implementation period and 49.2% for the 

following five years. A similar IRR is reported by Cocchi and Bravo-Ureta (2007), who evaluated 

the Environmental Program of El Salvador (PAES). The authors examined the effects of the 

adoption of conservation technologies and output diversification on farm income. The estimated 

NPV was $13,674,100 with a discount rate of 12%, while the IRR was 48.5%. These results 
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suggest that the soil conservation practices and crop diversification implemented had a high payoff 

at both the farm and program levels.  

Dey, Paraguas, Kambewa, and Pemsl (2010) carried out an impact evaluation of a 15-year 

program run by The WorldFish Center and its national and international partners in Malawi. The 

study assessed the effects of a technology transfer model based on the integration of aquaculture 

and agriculture (IAA), and the welfare effects on farm households. These authors collected survey 

data in 2004 for both adopting and non-adopting (counterfactual) farmers. Several methods were 

used to estimate the different effects of the program, and the main effects were: i) Total factor 

productivity of IAA adopters exceeded those of non-adopters by 11%; and ii) Net farm income of 

IAA adopters exceeded those of non-adopters by 62%.  

More recently, Bravo-Ureta et al. (2011) evaluated the impact of Module 3 in Component II 

of the MARENA Program in Honduras. The aim was to determine the impact of the program on 

farm income as well as the IRR. This study used panel data for 109 participants and 262 non-

participants (control group). The researchers used propensity score matching techniques and 

difference-in-difference methods to deal with possible biases. The increases in incomes 

attributable to MARENA ranged from US$263 to US$331 per beneficiary household, which 

generated an IRR of 49%.  

Cavatassi et al. (2011) examined the impact of linking smallholder potato farmers to high-

value markets while working with Plataformas de Concertación in Ecuador. The authors found 

positive effects on household welfare and these results were achieved without a significant increase 

in the use of agrochemicals. Bravo-Ureta, Greene, and Solís, (2012) reexamined the MARENA 

Program in Honduras by combining propensity score matching with stochastic frontier models. 
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These authors found that the technical efficiency level in the treatment group was higher than in 

the control group and that selectivity bias was an issue.  

A key contribution of our study is to provide a detailed impact evaluation using different 

methodologies of a sizeable NRM program while also accounting for spillover effects and 

examining the internal rate of return under various alternative situations. The IRR is often 

neglected in impact evaluations (Del Carpio and Maredia 2011) even though policy makers require 

such analysis when assessing the contributions of development projects. Therefore, this study adds 

to the limited literature on impact evaluation of natural resource management programs and the 

link to farmers’ well-being in Central America.  

3.2  Analytical Framework and Data  

3.2.1 Analytical Framework 

Impact evaluations can be conducted through a randomized design where the treated and control 

groups are assigned before the intervention to ensure that, on average, both groups have the same 

characteristics in terms of observable and non-observable variables (Angrist and Pischke 2009; 

Duflo, Glennerster, and Kremer 2007; Gertler et al. 2011; Khandker et al. 2010; Ravallion 2005, 

2008). In cases where there is neither an experimental design nor a baseline, as is the case with 

POSAF-II, an alternative is to use quasi-experimental methods (Hirano and Imbens 2001; 

Khandker et al. 2010; Mendola 2007). In studies that rely on quasi-experimental methods, careful 

attention is needed to deal with possible biases stemming from observable and non-observable 

variables. If one can assume that the source of bias comes only from observable variables, then 

PSM provides a relatively simple way to mitigate such biases (Caliendo and Kopeinig 2008; 

Dehejia and Wahba 2002). To implement this approach, it is necessary to have a set of covariates 

associated with the eligibility requirements and other time invariant variables that are not affected 
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by the intervention. In addition, endline data for a suitable sample of beneficiaries and non-

beneficiaries is also required (Khandker et al. 2010). PSM makes it possible to construct 

statistically a group of non-treated or control units, which is very similar to a group of treated or 

participating units. This is typically accomplished using a Logit or Probit model to estimate the 

probability of participating in the program (B = 1) conditioned on a set of observable variables (X) 

and this can be expressed as (Khandker et al. 2010): 

𝑃(𝑋) = Pr (𝐵 = 1|𝑋)                                                                                                          (1) 

The model makes it possible to calculate propensity scores and then match beneficiaries and 

control groups based on these scores or probabilities. There is a fairly extensive menu of matching 

criteria, and in this paper we use 1-to-1 nearest neighbor (NN) without replacement. This matching 

method has a straightforward interpretation and applies the matching based on the common support 

assumption (Caliendo & Kopeinig, 2008). In addition, it is good practice to apply alternative 

matching criteria to examine the robustness of the results (Cavatassi et al., 2011; Khandker et al., 

2010) and to this end we use the Genetic Matching method. This method is a generalization of the 

Mahalanobis metric that includes an additional weight matrix to find the particular measure that 

optimizes post-matching covariate balance (Diamond and Sekhon 2013).  

After matching, the effect of the program is equal to the average difference of the outcome 

indicator(s) between the beneficiary and the control group. This difference, known as the Average 

Treatment Effect (ATE), can be expressed as: 

 𝛼 = 𝐸(𝑌𝐵𝑖 − 𝑌𝐶𝑖 | Pr(𝑋) , 𝐵 = 1)                                                                                              (2) 

where YBi and YCi represent the value of the pertinent indicator, total value of agricultural 

production (TVAP) in this study, for beneficiaries (B) and the control group (C), respectively.   
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A second approach to evaluate the impact is a standard OLS regression, where the program’s 

impact on the outcome variable Yi is determined by the following equation: 

 𝑌1 = 𝛼0 + 𝛼1𝐵𝑖 + ∑𝛾𝑖𝑋𝑖𝑗 + 𝜀𝑖                                                                                                   (3) 

where 𝛼1 measures the average treatment effect of the Program, Bi = 1 if households participate 

and 0 otherwise, 𝛾𝑖 are the parameters to be estimated associated with covariates Xij, and εi is the 

typical error term. A problem with this simple approach is that the Bi indicator of participation is 

likely to be correlated with the error term, which would yield biased estimates (Angrist and Pischke 

2009). 

 Thus, in addition to OLS, equation (3) can be estimated using weighted least squares (WLS) 

where the weights are based on the propensity scores obtained from the PSM. This approach was 

introduced by Hirano and Imbens (2001) and has been used by Todd, Winters, and Hertz (2010) 

and Cavatassi et al. (2011), among others. An advantage of WLS is that it mitigates biases from 

observables while making use of all the observations available including those that fall outside the 

area of common support. This method is implemented as follows: a) Propensity scores (PS) are 

estimated using a Logit or a Probit model; b) Yi and Xij are weighted by 1/PS(X) for beneficiaries 

and 1/(1-PS(X)) for controls; and c) Equation (3) is estimated using OLS and the weighted data 

(Khandker et al. 2010).  

Again the estimates from equation (3), although superior to those obtained from the 

conventional OLS model, would be biased if program participation is correlated with 

unobservables captured in the error term. To address this endogeneity problem and thus ensure 

that the estimated impact of POSAF-II is not biased due to unobservables, an instrumental variable 

(IV) approach is implemented. This method requires finding an instrument Z, which is related to 
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participation in POSAF-II but not correlated with the error term, i.e., cov (Z, ε) = 0. Following 

Cavatassi et al. (2011) and Khandker et al. (2010), we use ‘Intention to Treat’ (ITT) as an 

instrument. This method is appropriate given that “ITT analysis captures the causal effect of being 

assigned to the treatment” (Angrist & Pischke, 2015, p.119). ITT relies on the fact that some of 

those assigned to be treated chose not to receive the treatment. Before using ITT as an instrument, 

we conduct a Hausman and a Durbin-Wu-Hausman tests for exogenous regressors (Khandker et 

al. 2010). 

The IV approach entails a two stage procedure as follows:  

 

𝑆𝑡𝑎𝑔𝑒 1: 𝐵𝑖 = 𝜌𝑍𝑖 + ∑𝜙𝑗𝑋𝑖𝑗 + 𝜈𝑖         (4) 

𝑆𝑡𝑎𝑔𝑒 2: 𝑌𝑖 = 𝜆0 + 𝜆1𝛣̂𝑖 + ∑ 𝛿𝑗 𝑋𝑖𝑗 + 𝜇𝑖                                          (5)                     

In the first stage (equation 4), the instrument Zi is introduced in an equation that explains the 

participation in POSAF-II (Bi). In the second stage, the Bi variable is replaced by the predicted 

participation in POSAF-II (𝛣̂𝑖) obtained in the first stage. This model is then estimated to obtain 

the measure of impact given by 𝜆1 in equation (5). All Greek characters (i.e., ρ, ϕ, 𝜆 and 𝛿) are the 

parameters to be estimated.  

Once the impact of POSAF-II has been estimated, these results are used to calculate the 

Program’s IRR. The IRR is equal to the interest rate that yields a net present value (NPV) equal to 

zero or:  

𝑁𝑃𝑉 = ∑
𝐶𝑛

(1+𝑟)𝑛
𝑁
𝑛=0 = 0                                                                                                        (6)                         

where r is the IRR to be calculated; Cn is the incremental net cash flow of the program in 

period n; and N represents the total number of periods (years). The IRR for POSAF-II is calculated 
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assuming a 15 year time horizon, spanning from 2003 to 2018, and 2003 is considered as year 

zero. 

3.2.2 Data  

POSAF-II started at the end of 2003 and ended at the end of 2007 resulting in a 4-year 

implementation period. The data for the impact evaluation was collected in 2012 reflecting 

information for the 2011 agricultural year. The data use in this evaluation was collected four years 

after the implementation ended which made it possible for beneficiaries to derive benefits 

attributable to POSAF-II. 

The data collection procedure followed two-stages similar to the approach used by Cavatassi 

et al. (2011). In the first stage, PSM was used to match treatment and control communities. 

Information regarding treated communities was obtained from the monitoring and evaluation 

system implemented by POSAF-II, known as SIMOSE (Sistema de Monitoreo y Seguimiento). 

The list of control communities was based on the National Water Resources Plan for Basins, Sub-

basins, and Micro-basins, obtained from the Ministry of the Environment and Natural Resources. 

The matching at the community level was conditional on agro-ecological characteristics including: 

altitude (ALT); temperature (TEMP); precipitation (PRECI); and short-term-drought or canículas 

(STD). These variables, defined in Table 3.1, were selected based on data availability as well as 

on information obtained from local experts and POSAF-II personnel who considered such 

variables as critical in matching communities consistent with the technologies offered.  
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Table 0-1 Table 3.1: Definition of variables 

Table 3.1. Definition of variables  

Variable Unit Definition  

TVAP US$/hectare Total value of agricultural production  

BENE Dummy 1 if the household is a beneficiary of POSAF-II 

CONI Dummy 1 if the household is a non-beneficiary of POSAF-II and 

lives in a treatment community 

CONO Dummy 1 if the household is a non-beneficiary of POSAF-II and 

lives in a non-treated community  

AGE Years Age of the household head 

EDUC Years Years of schooling of the household head 

NET Dummy 1 if the farmer is a member of an organization focused on 

social activities or agricultural production 

LAND Hectares  Total land devoted to agricultural production 

DIST Kilometers Plot distance to main town  

ALT Meters Meters above sea level 

PAVE Dummy 1 if the farm is located next to a paved road 

ACCE Dummy 1 if the farm is accessible all year 

TEMP Celsius Average temperature in the region 

PRECI Millimeters  Annual precipitation 

STD Days  Number of drought days during a raining season  

COST US$ Variable production costs, excluding labor 

FLABOR US$ Total value of family labor  

LABOR US$ Total value of hired labor expense 

 

The Logit model used to match communities can be written as: 

 COMU = f (ALT, TEMP, PRECI, STD) + error term                                                    (7)                     

where COMU is equal to 1 for POSAF-II communities and 0 for control communities. The results 

of the Logit model were used to match the communities based on the 1-to-1 nearest-neighbor (NN) 

criterion. The range of propensity scores for the beneficiary communities goes from 0.11 to 0.99 

and for the control group from 0.05 to 0.93. Therefore, the area of common support ranges from 

0.11 to 0.93 and, after matching, 618 communities (309 treated and 309 control communities) were 

selected. From this total of 309 pairs, 106 pairs were randomly chosen using the RAND procedure 

of SQL. The quality of this final selection was evaluated and deemed appropriate by a local panel 

of experts.  
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Table 3.2 shows the mean and standard deviation of the pre-treatment variables included in the 

community level Logit model. The predicted probabilities show that communities located at higher 

altitudes, with higher temperatures, and lingering short-term-drought periods were less likely to 

be selected for program implementation. In addition, those communities with higher precipitation 

were more likely to receive the program. Among those characteristics, the parameters for ALT and 

PRECI are statistically significant, which is consistent with the program implementation criteria 

(IDB 2001). Furthermore, at the 1% level of significance, the null hypothesis that all parameters 

are jointly equal to zero is rejected.  

Table 0-2 Table 3.2: Logit model of POSAF-II participation 

Table 3.2. Logit model of POSAF-II participation  

Variable Mean Std. Coefficient S.E. 

ALT 721.9 302.2 -0.003 a 0.001 

TEMP 22.7 2.8 -0.017 0.054 

PRECI 1251.1 250.1   0.002 a 0.000 

STD   23.8 21.8 -0.008 0.006 

Constant     0.796 1.438 

Log likelihood   -471.7 

LR chi2(4)   125.5 a 

N   797 

a = significant at the 1% 

In the second stage of the data collection process, SIMOSE was used to create a list including 

all beneficiaries of POSAF-II and a group of eligible non-beneficiaries located in the 106 treated 

communities selected in the first stage. Hereafter, the beneficiaries6 are referred to as BENE, and 

                                                           
6 We only have data for 2011, four years after the program ended, and adoption rates at that time 

were 91%, 90% and 85% for SAGF, SFOR, and SMIX, respectively. In addition, 36% of the 

beneficiaries remained fully engaged with the technologies adopted with support from the Program 

and 63% were using some of the technologies prescribed or had made some modifications. In the 
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the non-treated in beneficiary communities as CONI for control in. An additional control group 

was generated from the 106 matched non-treated communities, hereafter referred to as CONO for 

control out. As will be discussed in more detailed below, having controls outside the program 

allows for the examination of spillover effects, i.e. whether untreated farmers located in treated 

communities received indirect benefits by interacting with neighboring beneficiaries (Angelucci 

& De Giorgi, 2009). These potential spillover effects can be a significant benefit derived from a 

project and are thus important to quantify. Moreover, this type of design, as alluded to earlier, 

makes it possible to define the ITT instrument. 

Once the sampling frame was defined, households from each group were randomly selected. 

Following the procedures in Wassenich (2007), the final sample size for beneficiaries was 257, 

327 and 288 for SAGF, SFOR and SMIX, respectively. The same sample size was defined for the 

control group for SAGF and SFOR. Since SMIX is a combination of SAGF and SFOR, no 

additional data was collected and the matching is done using all SAGF and SFOR observations. 

Given that some observations are lost because of the lack of common support, it is good practice 

to increase the sample size ahead of time in order to avoid the need to find replacements while in 

the field, which can be a difficult task. Thus, the final sample contains a total of 1,483 farmers 

(842 BENE, 318 CONI, and 323 CONO), which represents 98.7% of the sample size calculated 

originally. The subgroups under each grouping are as follows: BENE (239 SAGF, 309 SFOR, and 

294 SMIX), CONI (318), CONO (216 Agroforestry and 107 Forestry). In Section 5 below, we 

describe the matching undertaken at the farmer level.  

                                                           

case of CONI, a farmer was considered to be an adopter if he/she was using at least one of the 

POSAF-II practices implemented by neighboring beneficiaries.  
 



69 
 

3.2.3 Descriptive analysis   

As aforementioned, the impact of POSAF-II is analyzed separately for the three production 

systems SAGF, SFOR, and SMIX. Table 3.3 presents descriptive statistics for all variables for 

each system. The BENE group for each system is compared with the corresponding control group 

to determine whether the means under analysis are the same. The comparisons reveal no difference 

in means indicating that the counterfactual groups are appropriate. On average, the TVAP of BENE 

is higher for the three systems (SAGF $1,045, SFOR $1,041, SMIX $1,754) compared to the 

respective controls; however, the difference is not statistically significant for SMIX. Another 

variable to note is LAND, which refers to the area used for agricultural production. For the SAGF 

group, BENE and CONO have similar farm sizes, with 15.8 and 14.9 hectares, respectively. 

Similarly, average farm size is equal for BENE and CONO in SFOR; hence, these groups are 

comparable. 

POSAF-II beneficiaries share most of the characteristics of the control farmers. As would be 

expected, the t-tests show statistically significant differences among variables affected by the 

program’s implementation, such as TVAP. An exception is COST, which does not exhibit any 

statistical difference between treated and controls for SAGF (BENE $520, CONI $825, CONO 

$754) and for SMIX (BENE $1176, CONI $865, CONO $800). In SFOR, BENE is statistically 

different from the control groups (CONI $799, and CONO $580); however, the mean value ($489) 

is lower than those in the comparison groups. Even though the program required that beneficiaries 

worked in the implementation of the various technologies, the cost variable does not display higher 

means for any of the systems. In addition, EDUC, and NET in the treatment group are not 

statistically different from CONI and CONO; hence, as already indicated, this analysis shows that 

we have been able to define a suitable counterfactual situation based on observables. The variable 
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EDUC ranges from 4.2 to 4.9 years of schooling for SAGF, 4.3 to 5.2 years for SFOR, and 4.6 to 

5.9 years for SMIX.   

Annual precipitation is between 1,285 to 1,314 millimeters for SAGF, and between 1,281 to 

1,304 millimeters for SFOR, indicating that both treatment and control received nearly the same 

amount of rain. For SMIX, TEMP is slightly higher for BENE than for CONI, but is equal to 

CONO, which is the main comparison group. The mean values for STD across treatment and 

control groups are very similar among systems. Again, comparisons based on these variables 

indicate that we have a reasonable counterfactual.  
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Table 0-3 Table 3.3: Descriptive statistics for variables included in the analysis by system before matching 

Table 3.3. Descriptive statistics for variables included in the analysis by system before matching 
 Agroforestry (SAGF) Forestry (SFOR) Mixed (SMIX) 

Variable BENE CONI CONO CON BENE CONI CONO CON 

 

BENE CONI CONO CON 

TVAP 1044.7 a,b,c 878.5 c 792.2  838.9 1040.8 a,b,d 613.0 c 503.4 580.8 1753.8  1202.8 1365.6 1268.6 

AGE 53.5 a,b,c 42.3c 49.9 45.8 54.7 a,b,d 42.6 c 50.4 54.7 51.9 a,c 42.6 c 51.0 46.0 

EDUC 4.2  4.3 4.9 4.6 4.8 4.3 5.2 4.5 4.6 b 4.8 c 5.9 5.0 

NET  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

LAND  15.8 a,c 6.4 c 14.9 10.3 24.4 a,d 6.9 c 26.5 12.7 10.3 d,b 6.6 c 29 15.7 

DIST 44.1a,b,c 37.5 c 27.4 32.9 42.8 b,d 42.3 c 24.4 37.2 30.7 b 36.1c 24.1 31.3 

ALT  492.9 b,d 557.0 c 752.9 492.9 524.7 b,c 563.2 c 696.2 602.3 642.3 a,b 564.3 c 731.1 631.9 

PAVE 0.3 b,d 0.3 c 0.5 0.4 0.3 0.3 0.3 0.3 0.1 a,b,d 0.3 0.3 0.3 

ACCE 0.6 b,c 0.6 c 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.7 

TEMP 24.0 b,c 23.6 c 22.5 23.0 23.7 b,d 23.6 c 22.4 23.2 23.0 b 23.6 c 22.3 23.1 

PRECI 1284.5  1314.1 1286.3 1284.5 1280.5 1289.6 1303.9 1293.8 1349.5 1330.4 1300.1 1318.1 

STD 23.6 20.3 23.4 23.6 21.7 18.6 27.7 c 21.3 19.9 b 19.8 c 26.8 22.6 

COST 520.0  825.2 753.8 792.5   488.6 a,b,d 799.4 580.3 735.0 1176.0 865.2 799.7 833.4 

FLABOR  127.9 a,b 171.0 c 82.4 127.9   82.7 a,c 161.9 c 84.8 139.2 155.4 b 175.0 c 71.1 133.0 

LABOR 368.3 a,b 688.2 c 458.9 438.8 a,b 664.1 c 573.2 877.8 a,b 766.9 c 599.9 368.3 a,b 688.2 c 458.9 

"a" the difference between the mean of BENE and CONI is statistically significant at least at the 10% level  

"b" the difference between the mean of BENE and CONO is statistically significant at least at the 10% level  

"c" the difference between the mean of CONO and CONI is statistically significant at least at the 10% level  

“d” the difference between the mean of BENE and CON is statistically significant at least at the 10% level  
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3.3 Results and Discussion 

3.3.1 Matching beneficiaries with control farmers  

As discussed earlier, the first stage in defining the samples was to match treatment and control 

communities. Now we proceed to match farmers for each of the three systems SAGF, SFOR, and 

SMIX. Three Logit models, one for each system, are estimated to determine the probability of 

being a POSAF-II beneficiary. In each Logit model, the dependent variable is equal to 1 for BENE, 

and zero for controls, CONI and CONO.  

As depicted in Table 3.4, some of the parameters for the Logit model differ across systems; 

namely, the parameter for EDUC is positive and significant for SFOR which indicates that more 

educated farmers signed up for these technologies; however, this parameter is not statistically 

significant for SAGF and SMIX. Land has a positive and significant effect on the participation in 

SFOR and a negative and significant effect on SMIX, which indicates that farmers with larger 

farms were more likely to participate in forestry activities. This is consistent with the idea that 

forestry is more appealing to larger operators who are likely to have other sources of income and 

thus can withstand the years that are required to enjoy the income flows from the harvest of trees. 

In contrast, small farms are more income constrained and need to see returns in a shorter time 

period. Other covariates relate to agro-ecological conditions, such as PRECI, ALT, STD, and 

TEMP. Farmers located in areas with higher levels of precipitation are less likely to be SFOR 

beneficiaries. The parameter for PRECI has a negative effect on SMIX and SAGF but is not 

statistically significant. Farms located at higher elevations are less likely to participate in both 

SAGF and SFOR. These signs are as expected given that agricultural activities in these locations 

are less common due to lack of adequate infrastructure. The results for short-term-drought are 

similar, while the respective parameters for SMIX are not significant. The percentage of correct 
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predictions for being a beneficiary of POSAF-II is 70.4%, 66.7%, and 66.4% for farmers in SAGF, 

SFOR and SMIX, respectively. Furthermore, chi-squares of 118.8, 118.9, and 84.0 with 11 degrees 

of freedom and p-values lower than 0.001 indicate that the parameters in all three models are 

jointly significantly different from zero. In sum, the statistical results shown in Table 3.4 suggest 

that the models are appropriate to explain the participation in the program.  

In order to check the common support condition, we provide a graphical balance check with 

the kernel density estimates of the estimated propensity scores of treatment and control groups for 

each system (Figure 3.2). The results show that most of the propensity scores estimated for the 

BENE and both control groups fall within the common support area for the three systems. We then 

use the nearest neighbor 1-to-1 matching method and check the balancing property between the 

control and treatment groups using t-tests (Table 3.A.1 – 3.A.3) and some of the results are 

inconclusive (Caliendo and Kopeinig 2008). Consequently, as suggested by Sekhon (2011), we 

also ran a bootstrapped Kolmogorov-Smirnov test (KS) following Abadie (2002) and the analysis 

of differences in means shows that matching significantly improved the covariate balance for both 

SAGF and SFOR implying that beneficiaries and controls are not statistically different. Even 

though the matching process improves the covariate balance in all cases, the mean values for two 

variables for SMIX remain significantly different. Therefore, in addition to the nearest neighbor 

1-to-1 matching method, we use genetic matching following Diamond and Sekhon (2013) to check 

the robustness of the matching process. The genetic matching does not improve the covariate 

balance since the nearest-neighbor 1-to-1 has a smaller KS test statistic with p-values lower than 

0.01. However, both matching techniques produce similar p-values for the difference in means. In 

sum, the t-tests for the three systems show that based on observable characteristics the control 

groups represent a good counterfactual.  
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Table 0-4 Table 3.4: Logit model of POSAF-II participation used to match farmers 

Table 3.4. Logit model of POSAF-II participation used to match farmers 
Variables SAGF SFOR SMIX 

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

AGE 0.018 a 0.004 0.033 a 0.004 0.019 a 0.004 

EDUC -0.008 0.015 0.039 b 0.013 0.008 0.012 

NET 0.198 0.157 0.005 0.136 0.181 0.129 

LAND 0.003 0.002 0.003 c 0.001 -0.006 c 0.002 

DIST 0.012 a 0.003 0.008 a 0.001 0.001 0.002 

ALT -0.012 a 0.003 -0.000 c 0.000 0.000 0.000 

PAVE -0.199 0.159 -0.175 0.126 -0.811 a 0.134 

ACCE -0.036 0.152 0.255 c 0.126 0.224 c 0.127 

TEMP -0.017 0.054 0.083 0.049 0.046 0.040 

PRECI -0.001 0.000 -0.001 c 0.000 -0.000 0.000 

STD -0.022 a 0.005 -0.014 b 0.004 -0.005 0.004 

Constant 1.258 1.437 -2.849 1.374 -2.020 c 1.069 

Total observations 

  BENE 

  CON 

680 

239 

441 

643 

289 

354 

669 

293 

376 

Log likelihood -289.3 -397.8 -416.6 

LR chi2(11) 118.8 a 118.9 a 84.0 a 

Pseudo R2 0.17 0.13 0.09 

Correctly 

classified 

70.4% 66.7% 66.4% 

a = significant at the 1%, b = significant at the 5% and c = significant at the 10% 
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Figure 3.2 Kernel distribution of propensity scores for BENE (broken black line) and corresponding 

control groups (continuous gray line). 
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3.3.2 Impact on farmer incomes 

 

The economic impact of POSAF-II is examined based on four alternative estimation techniques, 

PSM, OLS, WLS and IV. The indicator of impact is the TVAP for each of the three systems. All 

of the estimated models represent production functions where the dependent variable is expressed 

in monetary values. The total value of agricultural production (TVAP) is measured in US dollars, 

is equal to the sum of the value of the different outputs produced by each farm using average prices 

reported by the farmers surveyed to conduct the study. The key point is to value all production 

including what the household consumes and what is sold in the market. This kind of indicator is 

often used in impact evaluations in agriculture (e.g., Bravo-Ureta et al., 2011; Cavatassi et al., 

2011; Kassie et al., 2008; Yorobe et al., 2016). To conserve space, Table 3.5 only presents the key 

parameters concerning the estimated impact of POSAF-II on the TVAP for SAGF, SFOR, and 

SMIX. The F-statistics for the three regression models for each system are significant at the 1% 

level; therefore, the joint hypothesis that all coefficients are equal to zero in each model is rejected.     

Our estimates show consistently that POSAF-II has a positive and significant effect on the 

TVAP of beneficiaries relative to controls for SAGF and SFOR based on all four procedures used, 

i.e., PSM, OLS, WLS and IV. In contrast, the results for SMIX are positive but not significant for 

the PSM and OLS models, and negative but also not significant for the WLS and IV models. The 

average increase in TVAP attributable to POSAF-II for SAGF farmers is US$330 (PSM), US$343 

(OLS), US$695 (WLS) and US$1058 (IV). For SFOR, the average impact of POSAF-II on TVAP 

is US$23, US$604, US$650 and US$913 for PSM, OLS, WLS, and IV models, respectively. As 

indicated earlier, SMIX farmers use some of the technologies included in SAGF and SFOR for 

silvopastoral production systems. Such systems are known for their high level of complexity, a 

relatively long time to recover the investment, and rather high farmer skills and technical assistance 
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requirements (Calle, 2008; Calle, Montagnini, & Zuluaga, 2009). For these reasons, to perform 

well, silvopastoral systems need to be complemented by participatory research, training, payments 

for environmental services and policies to strengthen the livestock sector (Calle et al. 2013; 

Murgueitio et al. 2011; Pagiola et al. 2007). Another challenge of silvopastoral systems is the 

identification of the optimal time to measure outcomes as well as the quantification of associated 

benefits (Thornton and Herrero 2001). Moreover, Pagiola et al. (2007) find that the sustainable 

adoption of silvopastoral systems in Nicaragua is associated with long-term support payments to 

farmers. Hence, our findings for SMIX are consistent with the difficulties reported in the literature 

concerning the successful adoption of silvopastoral systems in Central and South America. 

As mentioned previously, PSM deals with biases that stem from observable characteristics. 

However, it is possible that there are biases from unobservables and to deal with this we use the 

IV approach as an alternative estimation method. To check the validity of the intention to treat or 

ITT as an instrument, we use a weak instrument test (Angrist and Pischke 2009) and reject the null 

hypothesis of a weak instrument with an F-statistics larger than the rule of thumb of 10, which 

means that ITT is a valid instrument. Subsequently, we use a modification of the Hausman test 

(Khandker et al., 2010) to check whether participation in POSAF-II is exogenous and the results 

confirm exogeneity. Hence, there should be no difference between the OLS and IV coefficients, 

while OLS guarantees a higher efficiency in the estimates (Greene 2007). Moreover, Wooldridge 

(2002) argues that a correctly specified WLS leads to more efficient estimates than OLS and this 

makes the former the more desirable method of the four considered here. It is worth noting that 

Cavatassi et al. (2011) also concluded that the WLS approach was the best method in the impact 

evaluation of the Plataformas program in Ecuador. 
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In the previous estimations (Table 3.5), the counterfactual group includes all control farmers, 

i.e., both CONI and CONO. To examine the possible presence of spillover effects, we now 

compare the BENE with the CONO groups and the results, presented in Panel-A of Table3.6, show 

that the parameters are positive and statistically significant. These results reveal that the impact of 

Table 0-5 Table 3.5: Impact of POSAF-II on SAGF, SFOR, and SMIX 

Table 3.5. Impact of POSAF-II on SAGF, SFOR, and SMIX 

Models PSMa  OLS WLS IV 

Agroforestry System (SAGF) 

POSAF-II 330.32** 

(130.1) 

342.78*** 

(131.4) 

695.03*** 

(233.8) 

1057.96*** 

(331.5) 

     

N 478 680 680 680 

F(Chi2)  2.75*** 2.52***  4.02*** 

R2  0.08 0.11 0.06 

     

Forestry System (SFOR) 

POSAF-II 23.19*  

(15.3) 

603.62*** 

(204.7) 

650.36*** 

(162.4) 

912.92***  

(336.9) 

     

N 578 643 643 643 

F(Chi2)  3.04*** 2.82***  1.76*** 

R2  0.05 0.07 0.05 

 

Mix System (SMIX) 

POSAF-II 215.83  

(279.8) 

177.93  

(247.6) 

-61.50 

(119.6) 

-136.93  

(478.7) 

     

N 586 669 669 669 

F(Chi2)  17.90*** 9.45*** 41.97*** 

R2  0.47 0.25 0.46 

Robust standard errors for OLS and WLS, standard errors for IV in parenthesis. 
a Values in parenthesis. Bootstrap with 1000 replications is used to estimate the 

standard errors. * p<0.10; ** p<0.05; *** p<0.01 
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POSAF-II on TVAP is US$852 and US$938 for SGAF and SFOR, respectively, and both are 

higher than the estimates obtained when all controls (CONO) are used. The parameters for SMIX 

are again negative but not significant, and these results are in line with the previous findings. To 

further examine the effect of POSAF-II on the beneficiary communities, we re-estimate the models 

contrasting the CONO vs. the CONI groups. Panel-B of Table 3.6 shows that the average TVAP 

for control farmers in treated communities is US$425 (SAGF) and US$302 (SFOR) higher than 

their counterparts in the non-treated communities. These results are evidence of significantly 

positive spillover effects on farmers living in proximity to the treated groups.   

According to Knowler and Bradshaw (2007), the adoption of NRM technologies in agriculture 

is correlated with individual motivation, household structure, and agro-ecological characteristics. 

Among the BENE and CONI groups, the latter characteristics are similar so knowledge diffusion 

is likely to occur. Another possible explanation behind these spillover effects is the level of 

complexity of the technology. Greiner and Gregg (2011) suggest that the adoption of conservation 

practices is motived by the technological characteristics of the practices. POSAF-II delivered some 

technologies with a relatively low level of complexity and considerable positive effects on 

production such as fencing, contour plowing, high-quality fruit trees, banana plants with sanitary 

treatment, and forest trees. Pannell et al. (2006) discuss additional characteristics that facilitate the 

adoption of new technologies including low short-term input and adjustment costs, significant 

impact on profits in the medium and long term, and a positive impact of the new technologies on 

other elements of the farming system. Some technologies offered by POSAF-II meet these 

characteristics, in particular, terracing, natural fertilizers, ditching, and slope correction.  
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Table 0-6 Table 3.6: Spillover effect of POSAF-II on the three systems 

Table 3.6. Spillover effect of POSAF-II on the three systems  

 SAGF SFOR SMIX 

   WLS  WLS  WLS 

Panel A.  

BENE vs. CONO 

  

852.5** 

(368.5) 

  

938.4*** 

(282.1) 

  

-226.2 

(160.6) 

N   364           354  420 

R2   0.09  0.10  0.32 

        

Panel B.  

CONI vs. CONO 

  

425.2* 

(285.9) 

  

301.6** 

(133.8) 

  

-25.0 

(199.9) 

N  441  330  420 

R2  0.09  0.14  0.51 

Robust standard errors in parenthesis * p<0.10; ** p<0.05; *** p<0.01 

 

3.3.3  Is POSAF-II a good investment?  

We start this section by explaining the calculation of the cash flows necessary for the analysis of 

the IRR of the Program, which is a commonly used economic indicator in project analysis (Blank 

and Tarquin 2005). These calculations require the projection of relevant inflows and outflows over 

the period of analysis, assumed to be 15 years. The annual inflows for SAGF and SFOR along 

with the inflows for the Program are obtained from the results of the WLS regressions shown in 

Table 3.5. These inflows are assumed to remain constant overtime. We do not calculate the IRR 

for SMIX separately given that TVAP gains for this system are not significant. However, all three 

systems are incorporated in the analysis at the Program level. The annual inflow is equal to the 

average farm size per system times the annual income gain times the number of beneficiaries, as 

presented in Tables 3.A.4-1 to 3.A.4-4. Thus, the incremental cash flows account for the 

incorporation of new beneficiaries in the earlier years of the analysis starting with 2004 (year 1 in 

the 15 year period of analysis) reaching a steady state of 13,477 members in 2007 (year 4 in the 

15 year period).   

The calculation of the outflows assumes that to maintain the annual benefits derived by 

beneficiaries from the POSAF-II technologies several expenses (outflows) are needed including: 



81 
 

maintenance cost; labor and material expenses associated with hoeing, fertilization, crop 

protection, tree pruning and replanting; and miscellaneous items. This type of data is usually not 

available which explains why IRR or NPV analyses are rarely included in impact evaluations (Del 

Carpio and Maredia 2011). Fortunately, the data needed to generate the outflows is available for 

POSAF-II primarily for two reasons. First, the data used to undertake the initial impact evaluation 

of the project was collected in 2012, four years after the implementation was completed, which 

gave farmers sufficient time to implement the various technologies adopted through POSAF-II 

and to get a good idea of the associated inflows and outflows (Bravo-Ureta 2012). Second, a 

consortium of consulting firms (F7-Consult, ENSOME, ViSKon Aps 2012) was hired by 

MARENA in 2012 to collect specific data on the productivity of various technologies along with 

the associated expenses listed above. The Consortium generated information based on both a 

workshop with farmers and a survey encompassing 92 producers from 27 communities and nine 

different municipalities. These communities are a sample of those used in the initial matching 

implemented to identify the farms to be interviewed, so the associated data is representative of 

POSAF-II beneficiaries constituting a good basis to generate the cash flows required to examine 

the IRR of the Program.   

Based on the available information on inflows and outflows, we developed two baseline 

scenarios: 1) Baseline-1 (Tables 3.A.4-1 to 3.A.4-4) where we use the WLS results; and 2) 

Baseline-2 where we add spillover effects presented at the top of Table3.6 (i.e., the difference 

between BENE and CONI) assuming that one beneficiary affects one neighboring control. As we 

show in Table 3.7, the IRR for Baseline-1 is 62% for SAGF and 65% for SFOR, and 35% for the 

Program as a whole. This suggests that the impact of POSAF-II on SAGF and SFOR farmers is 

sufficiently high to compensate for the lack of impact of SMIX. The introduction of spillover 
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effects in Baseline-2 yielded an IRR equal to 85%, 83% and 53% for SAGF, SFOR and POSAF-

II, respectively. These results indicate that spillover effects can have a major impact, which 

confirm the importance of including such flows in the analysis of projects (Angelucci and De 

Giorgi 2009). 

 

3.3.4 Sensitivity and risk analyses  

In order to check the robustness of the IRR results, we undertake both sensitivity and risk analyses. 

The sensitivity analysis involves changes in individual model parameters to test the impact of such 

changes on the final results (Iman and Helton 1988). Here we examine four scenarios, the first 

three without spillover effects and the fourth with. Scenario-1 assumes a reduction of 20% in the 

number of beneficiaries and this yields an 18% expected IRR for the Program (Table 3.7). 

Scenario-2 introduces an increase of 20% in maintenance costs and in this case the expected IRR 

for the Program is 25%. Scenario-3 combines the assumptions of scenarios 1 and 2 and the IRR 

drops to 8% for the Program. These results show that POSAF-II is more sensitive to changes in 

the level of beneficiaries than changes in maintenance cost. It is clear that the lack of impact of 

SMIX imposes a significant burden on the overall economic results of POSAF-II. Scenario-4 

introduces spillover effects (Table 3.6) to Scenario-3, and this yields a 30% expected IRR.  

The risk analysis is performed by undertaking a micro-simulation exercise using the program 

@Risk (Palisade Corporation 2016). To conduct the simulations, we use the observed TVAP 

values for each farmer in a given system. These TVAP values are introduced in the @Risk program 

to generate alternative statistical distributions, and the program provides an assessment of the most 

desirable distribution for the data under consideration. We then take the average impact value from 

the WLS regressions and use the most suitable distribution obtained from @Risk, which is the log-

normal, to generate an expected impact value for each farm based on Baseline-1. Once we have 
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these expected values, @Risk is used to run Monte Carlo simulations with 10,000 replications. 

The results from these simulations are used to calculate the distribution of IRRs for the Program. 

Table 3.7 shows that, on average, the IRR is equal to 75%. Figures 3.3 and 3.4 show that with 94% 

confidence the IRR lies between 0% and 82.5%. Furthermore, the simulations results are consistent 

with those reported by Lutz, Pagiola, and Reiche (1994), and by Cocchi and Bravo-Ureta (2007). 

These authors evaluate similar NRM programs and obtained expected average IRRs of 40% and 

84%, respectively.   

 

 

 

 

Table 0-7 Table 3.7: Expected internal rate of return (IRR) of POSAF-II over a 15 year horizon 

Table 3.7. Expected internal rate of return (IRR) of POSAF-II over a 15 year horizon  

 

Baseline-1 

Baseline-2 

 SAGF  SFOR  POSAF-II  

 62% 65% 35% 

 85% 83% 53% 

Scenario 1  47% 56% 18% 

 2 57% 59% 25% 

3 42% 51% 8% 

4 59% 70% 30% 

Simulation Mean 64% 75% 75% 

 Minimum 

Maximum 

-30% 

194% 

-35% 

106% 

-43% 

154% 

IRR< 12% 4% 0.4% 3% 
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  Figure 2.4 Probability density for the expected IRR of POSAF-II 

 

 

 
Figure 3.3 Cumulative probability density of the expected IRR for POSAF-II 
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3.4  Summary and conclusions 

In this study, we examine the economic impact of POSAF-II, a natural resource management 

(NRM) program implemented in Nicaragua between 2002 and 2008, on the total value of 

agricultural production (TVAP) for beneficiaries relative to control farmers. The Program 

supported small and medium scale producers in improving the use of natural resources, 

increasing productivity and reducing environmental degradation. The farmers received 

technologies associated with agroforestry (SAGF), forestry (SFOR), or mixed (SMIX) systems 

where the latter combined technologies from the first two in the context of silvopastoral 

production systems. The econometric analysis relies on methodologies designed to reduce biases 

that stem from both observable and unobservable variables when only cross-sectional (endline) 

data is available. The methodologies implemented include propensity score matching (PSM), 

ordinary least squares (OLS), weighted least squares (WLS) and instrumental variables (IV). 

The motivation behind the use of different methods is to assess the robustness of the analysis. If 

different methodologies lead to similar outcomes, then the likelihood that results are reliable is 

high.   

The results for SAGF and SFOR indicate that POSAF-II had a positive and significant 

impact on the beneficiaries attributable to the Program. While the outcomes are consistent across 

the four methodologies used, the results derived from WLS are the most robust. These results 

indicate that the impact of POSAF-II on the TVAP of beneficiaries with respect to controls is 

US$695 for SAGF, US$650 for SFOR, and non-significant for SMIX. Moreover, the analysis 

clearly suggests that POSAF-II generated an overall increase in the total value of agricultural 

production of beneficiaries. It is important to underscore that the analysis reported in this study 

was done from the point of view of the state of Nicaragua since the financial support provided 



86 
 

to beneficiaries, the expenses incurred in the provision of the extension services and the 

opportunity costs of labor contributed by the beneficiaries, were all included as cash outflows.  

In addition to the direct impact on beneficiaries, the analysis suggests that POSAF-II had 

positive spillover effects on non-treated farmers living inside treated communities. To calculate 

the spill over effect, we first compared beneficiaries vs. control farmers residing outside treated 

communities. In this case, the impact of POSAF-II on TVAP was US$852 for SGAF and 

US$938 for SFOR. These estimates are higher than those obtained when beneficiaries are 

compared with all control farmers. In addition, we compared control individuals inside treated 

communities with control individuals living outside treated communities and the results revealed 

average spillover effects per farm equal to US$425 and US$302 for SAGF and SFOR, 

respectively. 

The 35% internal rate of return obtained from a baseline scenario illustrates that investments 

in NRM technologies like those delivered by POSAF-II for SAGF and SFOR have a positive 

economic return. It is useful to keep in mind that the analysis was done separately for each of 

the three NRM systems and not for specific technologies included within each system. 

Therefore, this analysis does not make it possible to understand the contribution of specific 

technologies to the economic results; however, it does appear that the combination of 

technologies for the SAGF and SFOR systems was appropriate. Nevertheless, in formulating 

similar projects, it would be informative to develop and examine alternative bundling of 

technologies to see if the performance of recommended systems could be improved. This is a 

matter that deserves further study.  

A lesson derived from this study is the importance of identifying the most suitable time for 

carrying out an impact evaluation. The bulk of the data available for POSAF-II was collected 
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four years after the program had closed and this is different from the typical case when endline 

data is collected just before the project is closed. The implication of this typical case is that 

farmers have very limited time to implement the technologies received so the measured benefits 

tend to be very low. In contrast, in this study the four years that had elapsed since completion of 

POSAF-II gave farmers sufficient time to fully adopt the technologies. Ideally, however, one 

would be able to revisit these farmers 10 or 15 years after closing to be able to fully gauge the 

accrued benefits and the long term sustainability of the intervention.   

Regarding the design of future projects, our analysis suggests that an important feature is the 

strategy that should be used to deliver agricultural technologies including the length of time that 

technical assistance should be afforded to farmers to support adoption. POSAF-II provided an 

initial training phase that led farmers to choose the technologies that better fit their needs; thus, 

the demand for a specific package came from a knowledge based delivered to farmers as part of 

the intervention. In contrast, development projects often deliver technologies that extension 

agents or researchers deem suitable without much or any farmer input; this approach is likely to 

lead to a low level of empowerment and interest from beneficiaries in the technologies promoted. 

In addition, three years of extension support with an average contact of two visits per month 

seems to be appropriate to induce the adoption of the technologies offered by POSAF-II. These 

factors plus an implementation scheme compatible with the constraints faced by different types 

of beneficiaries can be considered crucial for the success of an NRM program like POSAF-II.        

In sum, and very importantly, the results for POSAF-II suggest that it is possible to have 

interventions that increase farm income and preserve or enhance environmental conditions, and 

that this is achievable while obtaining relatively high rates of return for both society and farmers. 

Finally, we point out that the present study was conducted in the absence of baseline data. 
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Although the robustness of the impact estimates was gauged by applying various methodologies, 

the timely collection of baseline data should be undertaken in order to enrich studies of this type 

and thus generate even more reliable results. 
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Appendix   

Table 0-8 Table 3.A.1: Balancing test of SAGF 

Table 3.A.1. Balancing test of SAGF 

 Unmatched samples   Genetic Matching Nearest Neighbor 
Variables BENE Control Diff: 

p-value 

KS p-

value 

BENE Control Diff: 

p-value 

KS p-value BENE Control Diff: 

p-value 

KS  

p-value 

AGE 53.48 48.36 0.00 0.01 53.48 51.01 0.09 0.05 52.25 48.98 0.02 0.03 

EDUC 4.20 4.84 0.10 0.28 4.20 4.93 0.06 0.00 4.18 4.87 0.08 0.35 

NET 0.21 0.17 0.31 - 0.21 0.23 0.45  - 0.18 0.18 1 - 

LAND 15.77 12.42 0.19 0.06 15.77 12.45 0.24 0.00 12.96 15.89 0.26 0.97 

DIST 44.08 31.95 0.00 0.00 44.08 45.36 0.61 0.01 38.71 36.78 0.46 0.24 

ALT 492.89 670.94 0.00 0.00 492.89 491.21 0.94 0.45 603.36 581.51 0.46 0.68 

PAVE 0.28 0.41 0.00 - 0.27 0.23 0.32 - 0.35 0.32 0.46 - 

ACCE 0.57 0.69 0.00 - 0.57 0.52 0.33 - 0.65 0.61 0.37 - 

TEMP 24.01 22.91 0.00 0.00 24.01 24.03 0.90 0.14 23.24 23.48 0.33 0.41 

RIAN 1284.50 1285.30 0.98 0.03 1284.50 1355.40 0.01 0.02 1289.10 1284 0.85 0.92 

STD 23.62 25.03 0.47 0.05 23.62 20.84 0.12 0.01 22.93 24.66 

 

0.37 0.39 

         Before Matching 

Minimum  

p.value: < 2.22e-16 

After Matching 

Minimum  

p.value: 0.1253 

Note: In bold: statistical differences higher than 10% level 
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Table 0-9 Table 3.A.2: Balancing test of SFOR 

Table 3.A.2. Balancing test of SFOR  

 Unmatched samples   Genetic Matching Nearest Neighbor 
Variables  BENE Control Diff: 

p-value 

KS p-

value 

BENE Control Diff: 

p-value 

KS p-value BENE Control Diff: 

p-value 

KS  

p-value 

AGE 54.65 44.91 0.00 0.00 54.65 53.94 0.39 0.11 49.79 48.83 0.45 0.82 

EDUC 4.75 4.53 0.53 0.73 4.75 4.39 0.32 0.94 4.58 4.42 0.66 0.85 

NET 0.18 0.18 0.86 - 0.18 0.15 0.30  0.17 0.18 0.73 - 

LAND 24.42 12.72 0.00 0.00 24.42 20.81 0.23 0.00 16.48 18.21 0.62 0.11 

DIST 42.65 37.35 0.03 0.07 42.65 47.44 0.06 0.00 40.57 38.23 0.32 0.49 

ALT 524.68 602.26 0.00 0.00 524.68 525.76 0.96 0.24 559.74 551.95 0.76 0.79 

PAVE 0.32 0.29 0.36 - 0.32 0.30 0.53  0.32 0.31 0.79 - 

ACCE 0.62 0.63 0.79 - 0.62 0.66 0.29 - 0.62 0.62 0.93 - 

TEMP 23.86 23.22 0.00 0.00 23.86 23.87 0.98 0.96 23.63 23.56 0.73 0.88 

PRECI 1280.50 1293.80 0.47 0.04 1280.50 1283.20 0.89 0.10 1279.20 1283.10 0.84  0.90 

STD 21.66 21.26 0.79 0.03 21.66 21.67 0.99 0.05 22.03 21.66 0.83 0.93 

         Before Matching 

Minimum  

p.value: < 2.22e-16 

After Matching 

Minimum  

p.value: 0.109 

Note: In bold: statistical differences higher than 10% level 
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Table 0-10 Table 3.A.3: Balancing test of SMIX 

Table 3.A.3. Balancing test of SMIX  

 Unmatched samples   Genetic Matching Nearest Neighbor 
Variables BENE Control Diff: 

p-value 

KS p-

value 

BENE Control Diff: 

p-value 

KS p-value BENE Control Diff: 

p-value 

KS  

p-value 

AGE 51.88 46.02 0.00 0.00 51.88 52.52 0.47 0.26 50.90 47.55 0.00 0.00 

EDUC 4.66 5.024 0.32 0.10 4.66 4.26 0.28 0.06 4.83 4.87 0.92 0.84 

NET 0.22 0.16 0.05  0.22 0.16 0.07 - 0.22 0.17 0.10  

LAND 10.27 15.74 0.02 0.42 10.27 10.59 0.81 0.50 13.42 11.60 0.02 0.08 

DIST 30.69 31.46 0.70 0.00 30.69 31.82 0.58 0.00 31.57 30.80 0.72 0.34 

ALT 642.32 631.91 0.72 0.00 642.32 682.37 0.17 0.00 642.61 634.36 0.78 0.23 

PAVE 0.12 0.30 0.00  0.12 0.12 0.88 - 0.13 0.21 0.01  

ACCE 0.71 0.65 0.09  0.71 0.69 0.52 - 0.66 0.68 0.72  

TEMP 23.17 23.05 0.54 0.27 23.17 22.97 0.37 0.49 23.18 23.08 0.66 0.41 

PRECI 1349.5 1318.10 0.14 0.00 1349.5 1380.2 0.17 0.12 

 

1338.10 1332.60 0.81 0.60 

DDAYS 19.91 22.62 0.07 0.00 19.91 16.13 0.01 0.00 20.59 21.28 0.66 0.00 

         Before Matching 

Minimum  

p.value: < 2.22e-16 

After Matching 

Minimum  

p.value: 0.001 

Note: In bold: statistical differences higher than 10% level 
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Table 0-11 Table 3.A.4-1: Cash flow and expected internal rate of return (IRR) of SAGF 

Table 3.A.4-1. Cash flow and expected internal rate of return (IRR) of SAGF 

Beneficiaries   7,051      
Hectares 14,864.71      

Average farm (ha)  2.11      
*Interest rate (15 years)  1%      
Income gains per year (Inc.)  695.03      

                                                                                                                                                                                                                                                                                                                                                                                                                       

Year  

Investment cost 

(1a)    Cost (2a)  Interest (3a)  

Total outflows (4a)  

 (1a + 2a + 3a) 

Beneficiaries 

per year (5a)  

ATE (6a)  

(5a*Inc.*ha) 

Net flow               

(7a) (6a-4a) 

00/2003 2,112,085    2,112,086 - - -2,112,086 

01/2004 3,104,995  943,150 21,121 4,069,266 1,313 1,923,862 -2,145,404 

02/2005 2,053,901  1,146,679  52,171 3,252,752 3,244 4,753,244 1,500,492  

03/2006 2,104,182  1,647,154 72,710 3,824,047 4,521 6,624,358 2,800,311  

04/2007 1,964,812  1,974,151 93,7512 4,032,715 5,829 8,540,894 4,508,179 

05/2008  4,722,221 113,400 4,835,621 7,051 10,331,419 5,495,798  

06/2009  2,496,231 93,752 2,589,982 7,051 10,331,419 7,741,437 

07/2010  2,388,164 93,752 2,481,916 7,051 10,331,419 7,849,503  

08/2011  2,499,352 93,752 2,593,104 7,051 10,331,419 7,738,315  

09/2012  2,388,164 93,752 2,481,916 7,051 10,331,419 7,849,503  

10/2013  4,722,221 93,752 4,815,973 7,051 10,331,419 5,515,447 

11/2014  4,722,221 187,503 4,909,725 7,051 10,331,419 5,421,695  

12/2015  4,722,221 187,503 4,909,725 7,051 10,331,419 5,421,695  

13/2016  4,722,221 187,503 4,909,725 7,051 10,331,419 5,421,695  

14/2017  4,722,221 187,503 4,909,725 7,051 10,331,419 5,421,695  

15/2018  4,722,221 187,503 4,909,725 7,051 10,331,419 5,421,695  

IRR                            62% 

 

 

*Interest rate increases from 1% to 2% after the tenth year  
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Table 0-12 Table 3.A.4-2: Cash flow and expected internal rate of return (IRR) of SFOR 

Table 3.A.4-2. Cash flow and expected internal rate of return (IRR) of SFOR 

Beneficiaries   3,461      

Hectares 26,927.00      

Average farm (ha)  7.78      

*Interest rate (15 years)  1%      

Income gains per year (Inc.)  650.36      

       

Year  

Investment 

cost (1b)         Cost (2b) Interest (3b) 

Total outflows 

(4b) = (1b + 2b + 

3b) 

Beneficiaries 

per year (5b) 

ATE (6b)  

(5b*Inc.*ha) 

Net flow               

(7b) (6b-4b) 

00/2003 825,400 - - 825,400   - 825,400 

01/2004 1,361,200 1,455,091 8,254 2,824,545  - - 2,824,545 

02/2005 901,400 1,067,089 21,866 1,990,355  - - 1,990,355 

03/2006 2,008,700 1,274,704 30,880 3,314,284  - - 3,314,284 

04/2007 1,620,600        1,816,119  50,967      3,487,686  2,626 13,287,244 9,799,558 

05/2008         8,220,062 67,173      8,287,235 3,461 17,512,244 9,225,009 

06/2009         1,826,246 67,173      1,893,419  3,461 17,512,244 15,618,825  

07/2010         1,826,246  67,173      1,893,419  3,461 17,512,244 15,618,825  

08/2011         1,889,255 67,173      1,956,428 3,461 17,512,244 15,555,816  

09/2012         1,826,246  67,173      1,893,419  3,461 17,512,244 15,618,825  

10/2013         7,246,113  67,173      7,313,286 3,461 17,512,244 10,198,958  

11/2014            460,509  101,934         562,443  3,461 17,512,244 16,949,801  

12/2015            460,509 101,934         562,444  3,461 17,512,244 16,949,800  

13/2016            460,509 101,934         562,444 3,461 17,512,244 16,949,799 

14/2017         7,246,113  101,934      7,348,047  3,461 17,512,244 10,164,197 

15/2018         7,246,113  101,934      7,348,047  3,461 17,512,244 10,164,197  

IRR 65% 
 

 

*Interest rate increases from 1% to 2% after the tenth year  
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Table 0-13 Table 3.A.4-3: Cash flow and expected internal rate of return (IRR) of SMIX 

Table 3.A.4-3. Cash flow and expected internal rate of return (IRR) of SMIX 

Beneficiaries   7,051      

Hectares  14,864.71      

Average farm (ha)  2.11      

*Interest rate (15 years)  1%      

Income gains per year 

(Inc.)  

695.03 

     

Year  

Investment 

cost (1c) Cost (2c) 

Interest     

(3c) 

Total outflows 

(4c) = (1c + 2c + 

3c) 

Beneficiaries 

per year (5c) 

ATE                  

(6c) 

(5c*Inc.*ha) 

Net flow               

(7c) (6c-4c) 

00/2003 887,362   887,362 541  -887,362 

01/2004 1,416,198. 1,245,190 8,873 2,670,262 1,405 - -2,670,262 

02/2005 919,045 1,905,374 23,035 2,847,456 1,966 - -2,847,456 

03/2006 843,207 2,636,062 32,226 3,511,495 2,480 - -3,511,495 

04/2007 792,935 9,843,616 40,658 10,677,210 2,964 - -10,677,210 

05/2008  7,006,685 48,587 7,055,272 2,964 - -7,055,272 

06/2009  4,549,196 40,658 4,589,854 2,964 - - 4,589,854 

07/2010  3,849,290 40,658 3,889,948 2,964 - - 3,889,948 

08/2011  11,800,562 40,658 11,841,220 2,964 - -11,841,220 

09/2012  3,985,076 40,658 4,025,734 2,964 - - 4,025,734 

10/2013  6,263,297 40,658 6,303,955 2,964 - - 6,303,955 

11/2014  6,263,297 81,316 6,344,614 2,964 - - 6,344,614 

12/2015  6,263,297 81,316 6,344,614 2,964 - - 6,344,614 

13/2016  6,263,297 81,316 6,344,614 2,964 - - 6,344,614 

14/2017  6,263,297 81,316 6,344,614 2,964 - - 6,344,614 

15/2018  6,263,297 81,316 6,344,614 2,964 - - 6,344,614 

IRR - 
 

*Interest rate increases from 1% to 2% after the tenth year  
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Table 0-14 Table 3 A.4-4: Cash flow and expected internal rate of return (IRR) of POSAF-II 

Table 3 A.4-4. Cash flow and expected internal rate of return (IRR) of POSAF-II 

Year  

Investment 

cost (1d) = 

(1a+1b+1c) 

Cost (2d) = 

(2a+2b+2c) 

Interest (6d) 

= (3a+3b+3c) 

Total outflows 

(4d) = (1d + 

2d + 3d) 

Beneficiaries 

per year (5) = 

(5a+5b) 

ATE (6) = (6a 

+6b + 6c)  

Net flow               

(7d) 

00/2003 3,824,849   3,824,849 0                          -    -3,824,849 

01/2004 5,882,394 3,643,431 38,248 9,564,074 1,313 1,923,862 -7,640,211 

02/2005 3,874,348 4,119,143 97,072 8,090,563 3,244 4,753,244 -3,337,319 

03/2006 4,956,090 5,557,920 135,816 10,649,827 4,521 6,624,358 -4,025,469 

04/2007 4,378,348      13,633,887  185,377 18,437,628 8,455 21,828,138 3,630,526  

05/2008       19,948,969  229,160 20,494,464 10,512 27,843,663 7,665,534 

06/2009         8,871,673  185,377 9,373,385 10,512 27,843,663 18,786,613  

07/2010         8,063,701  185,377 8,565,413 10,512 27,843,663 19,594,585 

08/2011       16,189,170 185,377 16,690,882 10,512 27,843,663 11,469,116  

09/2012         8,199,486 185,377 8,701,199 10,512 27,843,663 19,458,799  

10/2013       18,231,631  185,377 18,733,344 10,512 27,843,663 9,426,655  

11/2014       11,446,027  370,754 12,133,116 10,512 27,843,663 16,026,882  

12/2015       11,446,027 370,754 18,918,720 10,512 27,843,663 16,028,347  

13/2016       11,446,027  370,754 12,133,116 10,512 27,843,663 16,029,813  

14/2017       11,446,027  370,754 18,918,720 10,512 27,843,663 16,026,882  

15/2018       18,231,631 370,754 18,918,720 10,512 27,843,663 9,241,278  

IRR 35% 
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Abstract  

 

Understanding how natural resource management (NRM) technologies impact agricultural productivity is 

essential in order to ensure that policies designed to reduce environmental degradation and alleviate poverty 

are successful. In this paper, we analyze the impact of natural resource technologies delivered by the Socio-

environmental and Forestry Development Program-II (POSAF-II) in Nicaragua. Using cross-sectional data 

for 1,201 farmers (475 beneficiaries, 726 control farmers), we provide empirical evidence concerning the 

effects of an NRM program on two critical components of productivity: technological change (TC) and 

technical efficiency (TE). We use propensity score matching (PSM) to mitigate potential biases from 

observable variables and a recent stochastic production frontier (SPF) model that addresses sample selection 

bias arising from unobservable variables. Our results show that POSAF-II has had a positive impact on the 

two dimensions of productivity analyzed, i.e., TC and TE. This study contributes to the literature on impact 

evaluation by showing how an intervention designed to improve natural resource management can also 

enhance the income of poor farm households through increases in productivity. 

Keywords: Natural resource management; technological change; technical efficiency; propensity 

score matching; stochastic production frontier; sample selection bias; meta-frontier.
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3.2  Introduction 

Unsustainable agricultural practices, such as monoculture cropping, the overuse of chemical 

inputs, slash and burn, and tillage on steeply sloping land, present a threat to the stability of 

production systems in Central American countries (FAO & ITPS, 2015; Gardi et al., 2015). Along 

with factors like extreme climatic events, unsustainable agricultural practices are a major cause of 

soil degradation, particularly in areas where cultivation occurs on hillsides or land with steep 

slopes (FAO, 2011). The World Resources Institute reported that by 1990, 26% of Central 

America’s territory had been exposed to soil degradation, representing the highest share worldwide 

(Gardi et al., 2015). Soil degradation and natural resource depletion have had particularly 

detrimental effects in rural areas where many of the most impoverished people reside. For example, 

between 1982 and 2003, Central America suffered degradation rates of nearly 60%, as well as 

associated reductions in agricultural gross value product of up to 13% (Gardi et al., 2015). Hence, 

the sustainable management of natural resources is an important issue for farmers and policy 

makers (EC, 2013; FAO & ITPS, 2015). 

In the search for ways to address the fragile nature of natural resources and in order to increase 

crop and livestock productivity, as well as to reduce poverty among hillside households, Central 

American governments and development institutions, funded by international donors, have 

implemented a number of natural resource management (NRM) programs. A prime example of 

the latter is Nicaragua’s Socio-environmental and Forestry Development Program (POSAF-II). 

This program was designed to improve socioeconomic conditions and living standards for 

residents in key watersheds while decreasing the impact of natural disasters through the 

development and sustainable use of renewable natural resources. POSAF-II financed a total of 

13,477 farmers occupying 69,767 hectares in several major river basins (Figure 4.1). POSAF-II 
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was funded jointly by the Inter-American Development Bank and the Nordic Development Fund, 

and was executed by the Nicaraguan Ministry of Environment and Natural Resources (MARENA). 

We focus on Component I of POSAF-II, which involved improved management of natural 

resources at the farm level by encouraging the adoption of sustainable technologies and practices 

(e.g., terracing, level curves, integrated pest management, and organic fertilization, among others) 

primarily in agroforestry and forestry management systems (IDB, 2001). 

Natural resource management (NRM) integrates a variety of conservation technologies and 

management techniques within a production system aimed at protecting water, forests, and 

ecosystems. These conservation strategies can be applied to agricultural value chains, such as 

crops, forest products, livestock, and integrated aquaculture systems, in order to increase economic 

performance while ensuring the well-being of farm households and protecting the ecosystem and 

its natural resources (Cocchi & Bravo-Ureta, 2007; Del Carpio & Maredia, 2011; Solís, Bravo-

Ureta & Quiroga, 2007; Kassie et al., 2011). 

 

Figure 4.1 Area of influence of POSAF-II.. 
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While impact evaluation (IE) studies of NRM technologies have shown positive effects on 

farm income, the role of managerial performance, commonly proxied by technical efficiency (TE), 

has been largely ignored (Bravo-Ureta, Greene, & Solís, 2012; Franzluebbers, Sawchik & 

Taboada, 2014). An even more striking gap is the dearth of IE work that focuses on TE and that 

utilizes counterfactual methods to correct for selection bias (González-Flores, Bravo-Ureta, Solís 

& Winters, 2014). Our study contributes to closing this gap in the literature by using data from 

treatment and control groups along with stochastic production frontier methods that correct for 

selection bias. This framework, based on Greene (2010) and Bravo-Ureta et al. (2012), allows us 

to obtain unbiased managerial (TE) and technological change (TC) effects attributable to POSAF-

II. 

 

3.3  Review of the literature 

A robust body of research has analyzed the contribution of NRM programs to household well-

being and farm income (Cocchi & Bravo-Ureta, 2007; Marenya & Barrett, 2007; Franzluebbers et 

al., 2014; Jaleta et al., 2016). However, the same level of attention has not been given to 

understanding the mechanism by which NRM technologies boost farm income, and this is an 

important issue in order to design and implement cost effective interventions (Pretty et al., 2006; 

Pretty, Toulmin, & Williams, 2011; Lutz, Pagiola, & Reiche, 1994). As mentioned earlier, the 

interest here is on understanding the role of managerial performance and technology in increasing 

farm income as a consequence of NRM interventions. 

Attempts to gauge the impact of NRM on TE include the study by Odoul et al. (2011), who 

focused on the adoption of soil and water conservation technologies among smallholder farmers 
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in sub-Saharan Africa. These authors did not find a significant impact on TE. Similar results were 

found by Ndlovu et al. (2014) when evaluating conservation technologies used by maize producers 

in Zimbabwe. To deal with possible biases, the authors used panel data for farmers using 

conservation or conventional farming. In contrast, Tien et al. (2011) concluded that the adopters 

of zero tillage and direct seeded rice had a higher level of TE than non-adopters. Frey et al. (2012) 

compared silvopastoral and conventional cattle ranching operations that simultaneously apply two 

or more silvopastoral technologies, and the authors claimed that they accounted for sample 

selection bias by using paired comparisons of technologies within the same farms. Their results 

suggested that farmers who used these technologies displayed higher TE than conventional cattle-

ranchers. Krishna and Veettil (2014) evaluated minimum tillage, another NRM practice, by 

comparing villages with full adoption (> 90%) with non-full adopters in India. Their results 

showed that the TE for the two groups of villages was 0.92 and 0.88, respectively. In dealing with 

sample selection bias, the studies cited have ignored the fact that the stochastic production frontier 

(SPF) is a non-linear model, and this a clear shortcoming in their analyses. Sample selection bias 

is a frequent issue in impact evaluation analysis when the decision to participate in the program is 

not random, as is the case with POSAF-II. This problem typically arises because some participants 

choose to participate in the program while others do not, although the program is offered to all 

eligible individuals. As a result, the choice of participating may lead to differences between 

participants and non-participants. For this reason, we used the methodological framework 

mentioned above.  

Published research focusing on the impact of NRM technologies on TE in Central America is 

limited. Among the few relevant articles, Solís et al. (2007) used a switching regression model to 

account for sample selection bias for high and low-level adopters of soil conservation technologies 
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in El Salvador and Honduras. The authors concluded that farmers with adoption levels above the 

mean display higher TEs. More recently, Bravo-Ureta et al. (2012), based on Greene (2010), 

analyzed the NRM in Priority Watersheds Project in Honduras, combining propensity score 

matching (PSM) with the SPF methodology that addresses sample selection bias. These authors 

found that the TE level in the treatment group was higher than in the control group, and that 

selection bias was an issue. González-Flores et al. (2014) used the latter model to evaluate a 

technology and training program in Ecuador. Rahman et al. (2009) and Wollni and Brümmer 

(2012) have also applied the SPF corrected for sample selection, but without using PSM to remove 

biases coming from observables. The methodology used in these studies relies on separate SPF 

models for treatment and control groups; thus, a direct comparison of TE scores across these 

groups is not suitable. To address this issue, Villano et al. (2015) as well as Lakner, Brenes-Muños 

& Brümmer (2017) estimated meta-frontier models, making it possible to compare directly TE for 

different groups relative to a common benchmark. 

 

3.4  Analytical framework and data 

To assess productivity differentials between treatment and control groups, we use the SPF method 

that deals with sample selection bias as mentioned above. We first use PSM to match beneficiaries 

(BENF) and control (CONF) farmers with similar propensity scores to mitigate bias associated 

with observable variables. Propensity score matching (PSM) can be a reliable approach in cases in 

which panel data is not available, and an experimental design was not set before program 

implementation, as was the case for POSAF-II (Hirano & Imbens, 2001; Mendola, 2007; 

Khandker, Koolwal & Samad, 2010). Next, we estimate standard and sample selection SPFs, and 

then meta-frontier models to compare TE for BENF and CONF. 
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4.3.1 Econometric estimation and sample selection bias 

 

Interventions promoted by POSAF-II can result in TC that represents a shift in the production 

frontier and/or changes in TE representing managerial performance. These two effects are 

estimated in this study using the SPF framework. To determine differences in productivity between 

treatment and control groups, it is necessary to address sample selection bias arising from both 

observable and unobservable variables. Here, both sources of bias are mitigated using PSM to deal 

with biases from observables and the stochastic production frontier model corrected for sample 

selection to cope with biases from unobservable variables. 

The first step is to use PSM to construct a counterfactual group of farmers based on time-

invariant observable characteristics. Propensity score matching (PSM) uses a Probit or Logit model 

to calculate the predicted probability of treatment based on a given set of predetermined covariates 

(Khandker et al., 2010). These probabilities, or propensity scores, are then used to match similar 

households in the treatment group with those from the control group. While different matching 

criteria are available, we use the 1-to-1 nearest neighbor matching (NNM) criterion without 

replacement, because this method is easy to interpret and reflects a clear match for individuals 

based on the assumption of common support1 (Caliendo & Kopeinig, 2008). Furthermore, this 

method is often used in applied research (Bravo-Ureta et al., 2011; Kassie et al., 2011; Villano et 

al., 2015). 

The second step involves the estimation of SPF models. First, the estimation is done using the 

pooled (P) unmatched (U) sample of BENF and CONF groups. Next, we estimate two separate 

models using unmatched data, one for BENF and a second for CONF. Then, we perform a 

                                                           
1 The region of common support represents the range where propensity scores for both treated and control observation 

are found (Angrist & Pischke, 2009). 
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likelihood ratio test (LR) for the equality of the last two models. If there is no difference, then the 

model using the pooled dataset is supported. The models are then re-estimated for BENF and 

CONF using the sample selection SPF framework. Subsequently, the process is repeated using the 

matched samples to estimate a pooled model. Then, two separate standard SPFs are estimated 

using the matched subsamples, one for BENF and another for CONF. Finally, we re-estimate these 

models for both BENF and CONF using the sample selection SPF. Thus, the models in this step 

incorporate corrections for biases from both observable and unobservable variables (Bravo-Ureta, 

et al. 2012). 

The selection approach for estimating SPF is expressed as follows: 

 

Sample selection:                 𝑑𝑖 = 1[𝛼′𝒛𝑖 + 𝑤𝑖 > 0], 𝑤𝑖~𝑁(0,1)                                                

(1)  

Stochastic frontier model:    𝑦𝑖 = 𝛽′𝑥𝑖 +  𝜀𝑖, 𝜀𝑖~𝑁[0, 𝜎𝜀
2]                                                          

(2)  

Error structure:                      𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 

                                    𝑢𝑖 = |𝜎𝑢𝑈𝑖| = 𝜎𝑢|𝑈𝑖|, where 𝑈𝑖~𝑁(0,1)  

                                                      𝑣𝑖 = 𝜎𝑣𝑉𝑖, where 𝑉𝑖~𝑁(0,1) 

                                                 (𝑤𝑖,𝑣𝑖)~𝑁2[(0, 0), (1, 𝜌𝜎𝑣, 𝜎𝑣
2)],   

  

where d is a binary variable equal to 1 for BENF and 0 for CONF, y denotes the output variable, 

z is a vector of control variables, x is a vector of inputs in the production frontier, α and β are the 

parameters to be estimated, and the error structure corresponds to that in the stochastic frontier 

model. In this model, the parameter ρ captures sample selection bias. The full model and further 

details concerning its estimation are available in Greene (2010) and Bravo-Ureta et al. (2012). 
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As mentioned before, TE scores for beneficiary and control groups obtained from the 

estimation of separate models are not directly comparable; therefore, like Villano et al. (2015), we 

use a meta-frontier approach to estimate productivity differentials between the treatment and 

control groups. This framework makes it possible to compare the TE of different groups by 

estimating a meta-frontier, which is a function that envelopes separate SPF models for the 

beneficiary and control groups (Battese, Prasada Rao, & O’Donnell, 2004; O’Donnell, Rao & 

Battese, 2008). The meta-frontier production model is defined as follows: 

𝑦𝑖
∗ = 𝑓(𝑥𝑖,𝛽

∗) = 𝑒𝑥𝑖𝛽 ,∗                                                                                                                 (3) 

𝑥𝑖𝛽∗ ≥  𝑥𝑖𝛽𝑗.                                                                                                                                               (4) 

where β* is a vector of meta-frontier parameters subject to equation (4) for all 𝑖  observations, 

𝛽𝑗 denotes the parameter vector of the SPF function for the treatment and control groups, and 𝑦∗ 

denotes the meta-frontier output. Given the constraints, equation (3) can be estimated by solving 

the following optimization problem: 

 

min 𝐿 ≡ ∑ |(ln 𝑓(𝑥𝑖 𝛽
∗) − (ln 𝑓(𝑥𝑖 𝛽̂(𝑗))|𝑁

𝑖=1                                                                                 (5) 

𝑠. 𝑡 ln 𝑓(𝑥𝑖 𝛽
∗) ≥ 𝑙𝑛 𝑓(𝑥𝑖,𝛽̂(𝑗)).                                                                                                     (6) 

Since 𝛽̂(𝑗) is treated as fixed, the second term in the summation is constant with respect to the 

minimization. Therefore, the solution of equation (5) can be obtained by minimization of the 

objective function, 𝐿∗ ≡ 𝑥̅𝛽∗, subject to equation (6); 𝑥̅ is the row vector of means of elements of 

the 𝑥 vector for all the observations in the dataset. After estimation of the meta-frontier parameters 

(𝛽∗), we can calculate meta-technology ratios (MTRs), which fall between zero and one due to the 
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restriction imposed by equation (4). The MTR is defined as the distance between the group frontier 

and the meta-frontier, and is calculated as follows (O’Donnell et al., 2008): 

𝑀𝑇𝑅 =
𝑒

𝑥𝑖𝛽𝑗

𝑒𝑥𝑖𝛽∗ .                                                                                                                                 (7) 

 

After estimating the MTR, the meta-frontier TE (TE*) is estimated as: 

 𝑇𝐸∗  =  𝑇𝐸𝑗  ×  𝑀𝑇𝑅𝑗.                                                                                                                                 (8) 

 

4.3.2 Data and empirical model 

In this study, we use cross-sectional data collected in 2012 from 1,201 farmers (475 BENF, 726 

CONF). Treatment farmers were beneficiaries of POSAF-II, which was implemented between 

2002 and 2008 by the MARENA. As indicated earlier, the aim of the program was to improve 

socio-economic conditions by boosting farm productivity among small and medium-sized farmers, 

primarily through the promotion and adoption of soil conservation and water management 

practices. POSAF-II incorporated two major production systems: i) agroforestry (SAGF), 

including the planting of fruit trees, introduction of soil conservation practices (stone barriers, 

terraces, and live barriers, among others) and silvopastoral sub-systems; and ii) forestry (SFOR), 

including forest planting and regeneration, and management of natural resources. Specific 

technology packages were defined for each system, and the program supported farms in the 

selection and adoption of specific packages by providing financial support and technical assistance 

(Bravo-Ureta, 2012). 

The data collection started with the matching of treatment and control communities based on 

agro-ecological characteristics, such as altitude (ALT), temperature (TEMP), precipitation 

(PRECI), and the prevalence of canículas or short-term-drought (STD). Then, a random sample of 

the matched communities was used to draw random samples of beneficiaries and control farmers. 
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Further information about the data collection can be found in Bravo-Ureta (2012). To determine 

whether POSAF-II had an impact on the TE and TC of BENF, our model should yield a clear 

causal interpretation. Therefore, the first stage of data collection makes a first approximation on 

the construction of a counterfactual group. Since we used PSM to pair beneficiaries and control 

communities, both groups have similar time-invariant characteristics (Cameron & Trivedi, 2005; 

Khandker et al., 2010). In the second stage, we matched beneficiaries and controls from the 

selected communities. Table 4.1 presents the definitions of the variables used in the matching of 

communities and farmers, as well as in the estimation of the SPF models. 

The NNM criterion produced 172 pairs of observations for SAGF and 302 pairs of observations 

for SFOR. In the former, one observation was discarded for BENF and 30 from CONF due to a 

lack of common support. In SFOR, four BENF and one CONF were discarded. The region of 

common support is the interval 0.01 and 0.82, and 0.14 and 0.98, respectively, for SAFG and 

SFOR, as presented in Figure 4.2. Along with the NNM, we used the Genetic Matching method, 

which is a generalization of the Mahalanobis metric, which includes an additional weight matrix 

to find a distance that optimizes post-matching covariate balance (Diamond & Sekhon, 2013). 

Following Ho et al. (2011), we ran a balance test to check the distribution of the covariates in the 

two groups, as well as to compare which of the matching processes led to the best balance. This 

exercise revealed that the NNM generated the best covariate balance, i.e., the smallest distance 

between the control and treated groups. Thus, our analysis is based on the matched sample 

generated by the NNM procedure. 
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Figure 4.2 Kernel distribution of propensity scores for BENF (broken black line) and CONF 

(continuous gray line).  

 

Now we move to the estimation of the SPF corrected for sample selection bias based on Greene 

(2010). This method first requires the estimation of another Probit model of program participation, 

which enables the sample selection feature of the model. This Probit is expressed as follows: 

 𝑃𝑖 = 𝛼0 + ∑ 𝛼𝑗
10
𝑗=1 𝒁𝑗𝑖 + 𝑤𝑖,                                                                                                        (9) 
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where Pi is a dichotomous variable equal to 1 for BENF and 0 otherwise, Z is a vector of exogenous 

variables that explain participation in the Program, 𝜶 are the unknown parameters to be estimated, 

and 𝑤 is the error term. The Z variables used are AGE, SCHOOL, DIST, NET, TEMP, PRECI, 

STD, and ACCE (see Table 4.1). 

Table 0-1 Table 4.1. Definition of variables used in the SPF and Probit models 

Table 4.1. Definition of variables used in the SPF and Probit models 

Variables  Unit Definition 

SPF model 

TVAP  US$/hectare Total value of agricultural production 

LAND  Hectares  Total land devoted to agricultural production 

PINP  US$ Purchased inputs presents the production costs, excluding labor 

LABOR  US$ Total value of family and hired labor 

BENF  Dummy 1 if the household is a beneficiary of POSAF-II 

Probit models 

AGE  Years Age of the household head 

SCHOOL  Years Years of schooling of the household head 

NET  Dummy 1 if the farmer is a member of an organization focused on social 

activities or agricultural production 

DIST  Kilometers Plot distance to main town 

ALT  Meters Meters above sea level 

TEMP  Celsius Average temperature in the region 

PRECI  Millimeters Annual rainfall 

STD  Days Number of drought days during the rainy season 

ACCE  Dummy 1 if the farm is accessible all year 

 

 

After estimation of the participation in equation (9), we used a Cobb-Douglas (CD) SPF model 

to estimate efficiency. The CD model can be formally expressed as follows: 

𝐿𝑛𝑌𝑖 = 𝐵0 + ∑ 𝛽𝑗
𝑛
𝑗=1 𝐿𝑛(𝑋𝑖𝑗) + (𝑣𝑖 − 𝑢𝑖)        𝑖𝑓𝑓  𝐵 = 1,                                            (10)                           

where Yi refers to the output of the ith farmer, measured as the total value of agricultural 

production (TVAP) in US dollars. The total value of agricultural production (TVAP) is equal to 

the sum of the value of the different outputs produced by each farm using constant average prices 

calculated from the data collected in the surveys conducted during the study. This kind of monetary 

indicator is often employed in the impact evaluation and the applied production economics 
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literature to measure output when the use of physical units is not possible. It is important to 

emphasize that monetary figures must be valued at constant prices to avoid possible market effects 

(e.g. Battese, Prasada Rao, & O’Donnell, 2004; Frey et al., 2012; Ghebru & Holden, 2015; 

González-Flores, Bravo-Ureta, Solís, & Winters, 2014; Odoul, Binam, Olarinde, Diagne, & 

Adekunle, 2011; Solís, Bravo-Ureta, & Quiroga, 2009). In addition, the program analyzed is 

relatively small, so there is no expectation of price effects that could result from supply shifts that 

could be attributed to the program itself. The vector X are traditional inputs, LAND, PINP, and 

LABOR, and we add altitude, precipitation, temperature, and drought to account for environmental 

conditions as done by Sherlund et al. (2002), Rahman and Hasan (2008), and Bravo-Ureta et al. 

(2012), among others. The recent literature argues that these types of variables allow for strong 

identification in production models, and their exclusion is likely to lead to omitted variables bias 

(Burke and Emerick 2016; Dell, Jones, and Olken 2014; Njuki, Bravo-Ureta, and Mukherjee 2016; 

O’Donnell 2016). Moreover, technological choices made by farmers are influenced by 

environmental conditions, and failure to account for these factors can bias technical efficiency 

estimates (Sherlund et al., 2002). Finally, β are unknown parameters to be estimated; v is the 

standard error that follows a two-sided normal distribution; and u is the inefficiency term with a 

half-normal distribution. 

4.3.3 Descriptive analysis 

Tables 4.2 and 4.3 present descriptive statistics for the variables included in the SAGF and SFOR 

models before and after matching. The data shows that for SAGF and SFOR, BENF display a 

higher TVAP (SAGF $1168.69, SFOR $7256.88) compared to the CONF. This conforms to 

expectations since the technologies offered to program beneficiaries were intended to increase 

farm productivity and income. For SAGF, the variables AGE, DIST, ALT, and TEMP are 

statistically different from the CONF at the 1% significance level. Once matching is done, the 

mean value of AGE is the only one that remains different for the CONF group. The mean value of 

PINP does not exhibit any statistical difference between BENF and CONF, although the former 
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were advised to use integrated pest management and to fertilize their farms. This is consistent with 

Mauceri et al. (2007), who argue that improved practices are likely to decrease the use of purchased 

inputs. In sum, the balance condition indicates that matching generated a suitable counterfactual 

group for our analysis.Table 0-2 Table 4.2. Summary statistics of variables used in the matching and production models in SAGF 

Table 4.2. Summary statistics of variables used in the matching and production models in SAGF 

 Pooled BENF CONF 

t-test Variable Mean S.D. Mean S.D. Mean S.D. 

Unmatched sample 

TVAP 973.93 1850.31 1168.69 1744.57 883.84 1892.72 0.085 

LAND 13.24 27.87 15.77 38.46 10.28 19.69 0.033 

LABOR 762.35 1270.87 633.35 1172.57    822.02 1311.07 0.093 

PINP 781.25     1263.47 672.43    1335.77 831.59 1227.16 0.185 

AGE 48.59 15.45 53.48 14.53 45.78 15.29 0.000 

SCHOOL 4.64 4.52 4.19 4.53 4.60 4.35 0.786 

NET 0.17 0.38 0.21 0.40 0.16 0.37 0.189 

DIST 32.88 24.86 44.07 29.45 32.78 24.59 0.008 

ALT 635.83 304.59 492.89 317.09 646.64 305.71 0.000 

TEMP 22.93 2.54 24.01 2.55 22.97 2.62 0.000 

PRECI 1307.86 282.83 1284.52 266.25 1301.34 288.11 0.909 

STD 19.91 20.53 23.62 17.48 21.72 21.91 0.405 

Observations  547  173  374   

Matched Sample 

TVAP 943.43 1523.31 1172.26 1749.02 714.59 1220.69 0.005 

LAND 16.02 34.01 15.76 38.57 12.85 25.44 0.333 

LABOR 626.63    1126.47 636.95      1175.03 616.32      1079.07      0.865 

PINP 663.71      1186.10       676.18     1338.76       651.24     1014.55      0.846 

AGE 52.70 14.71 53.35 14.40 52.22 13.94 0.336 

SCHOOL 4.71 4.81 4.21 4.53 4.05 4.16 0.646 

NET 0.21 0.41 0.21 0.40 0.21 0.41 0.693 

DIST 36.21 27.65 43.88 29.26 43.02 32.25 0.523 

ALT 558.14 293.15 494.11 316.95 499.16 319.71 0.304 

TEMP 23.35 2.56 24.00 2.56 24.01 2.76 0.470 

PRECI 1316.28 270.56 1284.03 266.94 1302.52 272.82 0.633 

STD 17.96 17.98 23.63 17.53 21.76 19.92 0.330 

Observations 344  172  172   

Notes: "in bold" the difference between the mean of BENF and CONF is statistically significant at least at 

the 1% level.  
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Table 0-3 Table 4.3. Summary statistics of variables used in the matching and production models in SFOR 

Table 4.3. Summary statistics of variables used in the matching and production models 

in SFOR 

 Pooled BENF CONF 

t-test Variable Mean S.D. Mean S.D. Mean S.D. 

Unmatched sample 

TVAP 5850.76 13791.05 7256.88 18655.35 4628.39 7097.04 0.023 

LAND 18.23 43.26 24.50 48.14 12.78 37.75 0.000 

LABOR 8091.35 19307.14 6437.57 16989.93 9528.99 21034.64 0.043 

PINP 4404.12 9039.67 4799.56 10482.23 4060.35 7564.58 0.008 

AGE 49.30 15.39 54.47 14.29 44.81 14.91 0.000 

SCHOOL 4.66 4.52 4.79 4.70 4.54 4.35 0.081 

NET 0.178 0.38 0.17 0.38 0.18 0.38 0.589 

DIST 39.71 30.28 42.58 32.07 37.21 28.44 0.03 

ALT 568.39 315.94 526.79 313.83 604.54 313.75 0.851 

TEMP 23.50 2.57 23.84 2.55 23.21 2.55 0.001 

PRECI 1286.93 239.44 1279.74 215.27 1293.18 258.77 0.5325 

STD 21.37 20.14 21.54 19.07 21.23 21.06 0.9636 

Observations  658  306  352   
Matched Sample 

TVAP 5792.80 13922.83 6999.05 18399.87 4586.55 6845.39 0.000 

LAND 15.76 25.74 20.43 29.59 11.09 20.19 0.029 

LABOR 7547.10 19042.14 6519.86 17087.24 8574.34 20792.30 0.185 

PINP 4407.46 9148.04 4755.09 10518.83 4059.84 7534.14 0.351 

AGE 50.65 14.79 54.410 14.22 46.894 14.42 0.000 

SCHOOL 4.614 4.48 4.72 4.63 4.51 4.33 0.556 

NET 0.18 0.38 0.18 0.38 0.19 0.39 0.676 

DIST 41.11 30.97 42.76 32.22 39.46 29.63 0.191 

ALT 551.66 315.93 524.50 312.95 578.81 317.09 0.094 

TEMP 23.66 2.56 23.86 2.56 23.46 2.55 0.066 

PRECI 1283.44 237.57 1280.79 215.27 1286.09 258.29 0.784 

STD 21.42 19.83 21.43 19.03 21.41556 20.63 0.992 

Observations 604  302  302   

Notes: "in bold" the difference between the mean of BENF and CONF is statistically significant at least at 

the 1% level.  

3.5  Results and Discussion 

Now we proceed to discuss the results of the estimation of the sample selection corrected SPF 

model and subsequent analysis. First, we consider the results of the Probit model, which are 

presented in Table 4.4. A statistically significant Chi-Square of 73.3 and 130.2 for SAGF and 

SFOR, respectively, rejects the null hypothesis that all parameters in the POSAF-II participation 
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equation are equal to zero. Furthermore, we find that for both SAGF and SFOR, AGE plays a 

significant role in the decision to participate in POSAF-II, and that this effect is non-linear. Similar 

results were obtained by Bravo-Ureta et al. (2012) and by Mendola (2007), who argue that this 

characteristic influences the adoption of new technologies, but that there is a threshold beyond 

which farmers are less receptive to such technologies. The parameter for schooling of household 

heads is statistically significant and positive for SFOR, while negative but not significant for 

SAGF. Weber et al. (2011) reported similar results regarding the role of schooling on the decision 

to adopt NRM technologies in a forestry intervention in Brazil. Furthermore, the estimated model 

suggests that farmers located close to the center of the town were more likely to be beneficiaries 

of the SAGF. Since SAGF farmers produce perishable goods, being located close to the center of 

town favors the commercialization of such goods. In contrast, forestry activities are more likely to 

occur in places with high elevation, and the commercialization of the associated output often takes 

place on the farm (Admasu et al., 2013). 

Table 0-4 Table 4.4. Estimate of the Probit selection equation for SAGF and SFOR 

Table 4.4. Estimate of the Probit selection equation for SAGF and 

SFOR 

 SAGF SFOR 

 Coeff. S.E Coeff. S.E 

Constant 5.309a 1.000 5.604 a 0.919 

AGE -0.072 a 0.025 -0.099 a 0.021 

AGE2 0.000 b 0.000 0.001 a 0.000 

SCHOOL -0.049 0.039 0.072 b 0.035 

SCHOOL2 0.002 0.002 -0.002 0.002 

LAND -0.003 0.002 -0.003 b 0.001 

DIST -0.007 a 0.003 0.008 a 0.002 

NET -0.182 0.155 0.010 0.139 

TEMP -0.125 a 0.028 -0.124a 0.027 

PRECIP 0.000 0.000 0.001 a 0.000 

STD 0.014a 0.005 0.015 a 0.004 

ACCE 0.028 0.146 -0.230 c 0.128 

Log likelihood -304.69  -389.36  

Chi-squared 73.29 a  130.24a  

N 547  658  

Note: a, b, c => Significance at 1%, 5%, 10% level.  
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Farmers located in areas with high temperatures and low levels of precipitation were less likely 

to join the program (SAGF and SFOR), and this is consistent with the environmental requirement 

of the crops produced by beneficiaries. For instance, coffee plantations require more than 1000 

mm of precipitation per year, and temperatures between 18-21º Celsius to perform well (Jaramillo 

et al., 2011). Furthermore, farmers located in areas with higher precipitation experience relatively 

higher levels of soil degradation; thus, adopting NRM technologies seems appropriate. In addition, 

POSAF-II sought to alleviate some of the effects of Hurricane Mitch on the rainforest areas of 

Nicaragua; hence, beneficiaries likely perceived POSAF-II as a mechanism to deal with lingering 

effects from the hurricane. These results are generally in line with Kassie et al. (2008), who found 

that farmers located in areas with high precipitation were more likely to adopt soil conservation 

technologies in Ethiopia. 

 

We next estimate separate and pooled SPF models for the unmatched samples for BENF and 

CONF for each of the two production systems. Preliminary comparisons led to the acceptance of 

the CD functional form over the Translog (TL), and thus we use the former throughout. To 

compare the separate versus the pooled models, we use a likelihood ratio test based on Greene 

(2007), which can be expressed as: 

𝐿𝑅 = 2((𝑙𝑛𝐿𝑝 − (𝑙𝑛𝐿𝐵 + 𝑙𝑛𝐿𝑐))                                                                                        (11) 

where 𝑙𝑛𝐿𝑝, 𝑙𝑛𝐿𝐵, and 𝑙𝑛𝐿𝑐 represent the log-likelihood function values obtained from the pooled 

(unrestricted model), and beneficiary and control subsamples (restricted), respectively. The LR 

tests confirm that beneficiaries and controls display different technologies for both the SFOR and 

SAGF systems. In the case of SAGF, this is also indicated by the significance of the BENF 

parameter (Table 4.5). 
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Table 4.5 shows that LAND, LABOR, and PINP (purchased inputs) are positively related to 

TVAP, as expected. The estimated parameters are (partial) production elasticities, which measure 

the contribution (%) of each input to output change (%). The results show that cultivated land 

(LAND) makes the highest contribution to TVAP; i.e., a one percent change in cultivated area 

produces a larger percent growth in output compared to the other two inputs. In addition, the effects 

of labor (LABOR) and purchased inputs (PINP) differ between BENF and CONF for SGAF. For 

BENF, LABOR exhibits the second highest contribution to TVAP. Solís et al. (2007) report similar 

results in their analysis of soil conservation practices in Honduras. As reported by Marenya and 

Barrett (2007) and Abdulai and Huffman (2014), the implementation of NRM practices relies 

heavily on the use of labor, which may explain the weight of this input in the production frontier 

among BENF. In the case of CONF, labor might not be a constraint, so we would expect a lower 

contribution from this input to production. For SFOR, PINP makes the second largest contribution 

to the TVAP. This result is in line with Bravo-Ureta et al. (2012) and González-Flores et al. (2014), 

who find that purchased inputs play an important role in farm production. 

Tables 4.5 and 4.6 also report the values for γ, used to test for the presence of technical 

inefficiency (TI). We reject the underlying hypothesis of γ = 0, or no inefficiency with a probability 

value of less than 1%. Therefore, a substantial amount of variation in TVAP can be attributed to 

technical inefficiency for both BENF and CONF. As previously mentioned, the reason for 

following Greene (2010) is to estimate an unbiased TE for beneficiary and control farmers, and 

this depends on the significance of the ρ parameter (see Table 4.5 and 4.6). The results show no 

selection bias for beneficiaries of SAGF and SFOR, and this is consistent across the unmatched 

and matched samples. One exception is for the control unmatched sample for SAGF, but matching 

removed the presence of sample selection bias. Thus, we can conclude that unobservable factors 
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(e.g., managerial skills, motivation) do not account for differences in the performance of 

beneficiary vis-a-vis control groups for both the SFOR and SAGF systems in POSAF-II. 

Methodologically, these results imply that the matching performed at the community and farm 

levels yielded a counterfactual that mitigates biases from both observable and unobservable 

variables. We should note that Cavatassi et al. (2011) used a similar procedure to define their 

control group, and also found that biases were alleviated. 
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Table 0-5 Table 4.5. Parameter estimates for the conventional and sample selection SPF models: unmatched and matched sample for SAGF 

Table 4.5. Parameter estimates for the conventional and sample selection SPF models: unmatched and matched sample for SAGF 

Variables 

Unmatched sample Matched sample 

Conventional SPF Sample selection 

corrected SPF 

Conventional SPF 

 

Sample selection 

corrected SPF 

PF-U BF-U   CF-U  BF-US  CF-US PF-M BF-M   CF-M  BF-MS  CF-MS 

Land 0.457a     0.412a 0.493a 0.388a 0.522a 0.499a 0.412 a 0.575a 0.404a 0.400 a 

Labor 0.120c         0.225b 0.051 0.219c 0.023 0.155b 0.225 b 0.026 0.229b 0.230 b 

PINP 0.191a       0.115 0.273a 0.121 0.279a 0.159b 0.115 0.273b 0.111 0.109 

ALT 0.027         -0.018 0.026 -0.018 0.029 0.048 -0.018 0.063 -0.012 -0.014 

DROUGHT -0.006          -0.001 0.000 0.002 -0.004 -0.001 -0.001 0.007 -0.001 -0.001 

PRECI 0.0001          -0.0001 0.0003 0.0005 0.0002 -0.0002 -0.0001 -0.0002 -0.0001 -0.0001 

Temp. -0.014          -0.071 -0.0189 -0.081 0.170 -0.008 -0.071 0.009 -0.060 -0.062 

BENF 0.576a      0.624a     

Constant 4.384a 6.874a 4.033a   7.196b  3.792a  4.432a 6.854 a 3.925a 6.721b 6.828 b 

γ 1.648a 2.493a 1.491a - - 2.313 a 2.481a 2.476a - - 

σ2 1.572a 1.521a 1.599a -  1.595 a 1.524a 1.680a - - 

L. 

Likelihood 

846.8 - 244.0 -595.4 -419.8 -724.5 -507.9 

 

-243.1 -260.2 -359.9 

 

 

-234.4 

σ(u) -  - 1.448a      1.359 a    1.376a 1.370 a 

σ(v) -  - 0.610a       0.969 a    0.601a 0.617a 

ρ(w,v) -  - -0.301 -0.605b     -0.252 -0.358 

N 547 173 374  174 374 344 172 172 172 172 
a p<0.010; b p<0.05; c <0.01.  
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Table 0-6 Table 4.6. Parameter estimates for the conventional and sample selection SPF models: unmatched and matched sample for SFOR 

Table 4.6. Parameter estimates for the conventional and sample selection SPF models: unmatched and matched sample for SFOR 

Unmatched sample Matched sample 

Variables Conventional SPF Sample selection 

corrected SPF 

Conventional SPF 

 

Sample selection 

corrected SPF 

PF-U BF-U   CF-U  BF-US  CF-US PF-M BF-M   CF-M  BF-MS  CF-MS 

Land 0.572 a 0.553a 0.616 a 0.512 a 0.621 a 0.586a 0.562 a 0.658 a 0.537a 0.653a 

Labor 0.096 a 0.090a 0.057a 0.089 a 0.053 0.091 a 0.086a 0.053 0.085a 0.053 

PINP 0.206a 0.188 a 0.297a 0.196 a 0.305a 0.202 a 0.185 a 0.304a 0.188 a 0.305a 

ALT 0.055c 0.011 0.065 c -0.005 0.055 0.048 0.039 0.034 0.036 0.026 

DROUGHT -0.003 -0.004 -0.002 -0.002 -0.003 -0.005c -0.005 -0.004 -0.004 -0.005 

Temp. -0.0132 -0.092 -0.015 -0.119 -0.014 -0.023 -0.064 -0.011 -0.079 -0.013 

BENF -0.008 - - - - -0.020     

Constant 5.792a 8.117a 4.667 a 8.918 a 4.706a 6.070a 7.245 a 5.435a 7.889 a 5.421a 

γ 1.442a 1.482a 1.410a   1.351a 1.276 a 1.413 a   

σ2 1.331a 1.453 a 1.208a   1.295a 1.344 a 1.223a   

L. 

Likelihood 

-932.11 -457.90 -466.68 -658.07 -661.50 

 

-849.811 -440.61 -404.05 -626.49 -593.23 

σ(u) -   1.073 a 0.831 a    1.125a 0. 819a 

σ(v) -   0.903a 0.786a    0.822a 0. 797 a 

ρ(w,v) -   -0.207 -0.149     -0.283 0.45 

N 658 306 352 306 352 604 302 302 302 243 

a p<0.01; b p<0.05; c <0.10.  
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Tables 4.7 and 4.8 present a summary of average TE scores coming from the SPF and the meta-

frontier models, as well as the MTRs for SAGF and SFOR, respectively. In both tables, we present 

results obtained from unmatched and matched samples, as well as for conventional and sample 

selection corrected SPFs for BENF and CONF. Table 4.7 shows that the beneficiaries of the SAGF 

system display an average TE of 40%, a value that is consistent across all specifications, including 

when the sample selection framework is used. Similar TE scores have been reported by Bravo-

Ureta et al. (2007), Frey et al. (2012), Ghebru and Holden (2015), and González-Flores et al. 

(2014). For SAGF controls, the TE scores range from 39% to 36%. For SFOR, the average TE for 

unmatched beneficiaries is 43% vs. 49% for unmatched controls, and these results are very similar 

to those obtained from the matched sample selection framework. It is important to remember, as 

mentioned earlier, that these results are only relevant for comparisons within groups, and not 

across groups. 

In order to make a meaningful comparison of TE across different groups, we need to use a 

common benchmark technology, which is the reason why we estimate meta-frontiers. In addition, 

meta-frontiers make it possible to examine MTRs, a measure of the distance of the group frontier 

(BENF frontier or CONF frontier) with respect to the meta-frontier (O’Donnell et al., 2008). 

On average, the results in Tables 4.7 and 4.8 show that, using the matched samples along with 

the sample selection SPF model, the estimated meta-technology ratios for BENF are significantly 

higher (98% for SAGF and 99% for SFOR) than for CONF (31% for SAGF and 56% for SFOR). 

Hence, TE with reference to the meta-frontier, which allows for a meaningful comparison between 

beneficiaries and controls, is considerably higher for BENF (40% for SAGF and 44% for SFOR) 

than for CONF (11% for SAGF and 27% for SFOR). These results are evidence that participation 

in POSAF-II has led to a significant increase in the productivity of beneficiaries relative to 
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controls; however, both groups exhibit relatively low levels of TE compared to what has been 

reported in the literature (e.g., Bravo-Ureta et al., 2007). 

The TE estimates reported here are relatively low when compared to the available evidence for 

Latin America (Bravo-Ureta et al., 2007; Lachaud et al., 2015). However, it is important to keep 

in mind that POSAF-II was implemented in areas that were severely damaged by Hurricane Mitch 

in October 1998. This natural disaster produced massive and lasting soil losses with profound 

adverse effects on productivity, posing severe management challenges to farmers (Menéndez-

Duarte et al., 2003). Nevertheless, our findings convey the need to implement policies designed to 

provide tailored technical assistance over a suitable time frame. The intention is for farmers to 

improve their knowledge and managerial performance in order to achieve the full benefits of the 

NRM technologies adopted. 

Table 0-7 Table 4.7. Descriptive statistics of TE scores from alternative models for SAGF 

Table 4.7. Descriptive statistics of TE scores from alternative models for SAGF 

Item BENF CONF   

Conventional SPF (SPF-C) Mean St.Dev Mean St.Dev Test of Means  

TE-group a 0.40 0.20 0.39 0.16 ***  

Meta-technology ratio (MTR) b 0.98 0.06 0.47 0.11 ***  

TE-meta-frontierc 0.39 0.20 0.18 0.09 ***  

TE-sample selection SPF (SPF-USS) 

TE-group a 0.40 0.20 0.39 0.17 ***  

Meta-technology ratio (MTR) b 0.89 0.07 0.47 0.13 ***  

TE-meta-frontierc 0.35 0.18 0.18 0.10 ***  

Matched sample (SPF-M) 

TE-group a 0.40 0.20 0.36 0.20 ***  

Meta-technology ratiob 0.94 0.03 0.51 0.16 ***  

TE-meta-frontier c 0.37 0.19 0.18 0.12 ***  

Matched sample with sample selection(SPF-MSS) 

TE-group a 0.40 0.20 0.36 0.20 ***  

Meta-technology ratio (MTR) b 0.98 0.06 0.31 0.11 ***  

TE-meta-frontierc 0.40 0.20 0.11 0.08 ***  
a Technical efficiency with respect to the group frontier.b Meta-technology ratio c Technical efficiency with respect to 

the meta-frontier.  
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Table 0-8 Table 4.8. Descriptive statistics of TE scores from alternative models for SFO R 

Table 4.8. Descriptive statistics of TE scores from alternative models for SFOR 

Item BENF CONF    

Conventional SPF (SPF-C) Mean St.Dev Mean St.Dev Test of Means  

TE-group a 0.43 0.17 0.49 0.15 ***  

Meta-technology ratio (MTR) b 0.94 0.16 0.56 0.11 ***  

TE-meta-frontierc 0.40 0.17 0.28 0.10 ***  

TE-sample selection SPF (SPF-USS) 

TE-group a 0.47 0.15 0.54 0.12 ***  

Meta-technology ratio (MTR) b 0.93 0.19 0.47 0.11 ***  

TE-Meta-frontierc 0.43 0.16 0.25 0.09 ***  

Matched sample (SPF-M) 

TE-group a 0.46 0.15 0.52 0.13 ***  

Meta-technology ratio (MTR) b 0.99 0.01 0.87 0.10 ***  

TE-meta-frontier c 0.46 0.15 0.46 0.13 ***  

Matched sample with sample selection(SPF-MSS) 

TE-group a 0.44 0.16 0.49 0.15 ***  

Meta-technology ratio (MTR) b 0.99 0.09 0.56 0.10 ***  

TE-meta-frontierc 0.44 0.16 0.27 0.10 ***  
a Technical efficiency with respect to the group frontier.b Meta-technology ratio c Technical efficiency with respect to 

the meta-frontier. Notes*** p<0.01; ** p<0.05; * 0.01.  

In addition to comparing the managerial performance (i.e., TE) between BENF and CONF, we 

are also interested in quantifying the impact of POSAF-II on TVAP assuming full efficiency, i.e., 

that all farmers operate on their respective frontiers. We do this by calculating frontier output for 

beneficiaries and controls for SFOR and SAGF separately, using the results from the models 

estimated with matched sample and selectivity. Thus, any differentials in TVAP measured in this 

part of the analysis are technological gaps or distances between the respective production frontiers 

of the BENF and CONF groups. These differentials represent unbiased indication of technological 

change (shift in the frontier) attributable to POSAF-II since we control for biases from both 

observable and unobservable characteristics. 

Table 4.9 shows that the average annual predicted frontier output (TVAP) for the beneficiaries 

of the SAGF system is US $76.3 per hectare, compared to US $47.2 per hectare for the respective 
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controls. This is an increase of US $29.1, or 38.1%. The corresponding figures for SFOR are US 

$139.1 (BENF) and US $102.0 (CONF), which amounts to a US $39.8 gain per hectare, or a 28.6% 

increase. As also shown in Table 4.9, these differences are highly statistically significant. Now, if 

we multiply the per hectare increases in TVAP by the average farm sizes for each group and 

production system, we obtain household level benefits. Thus, the impact of POSAF-II resulted in 

an average annual benefit of US $457 for SAGF and US $980 for SFOR households given an 

average farm size equal to 15.8 and 24.5 hectares (see Table 4.2), respectively. The magnitude of 

this impact is significant considering that the Nicaraguan gross domestic product per capita in 2015 

reached US$ 2,087 (World Bank, 2017). Therefore, the economic impact derived from being a 

beneficiary of POSAF-II is equivalent to approximately 25% and 50% of the GDP per capita for 

SAGF and SFOR, respectively. In sum, we note that beneficiaries of both systems have 

experienced a significant shift in their production frontier and incomes relative to the respective 

control groups, holding all inputs constant, and that this shift is a causal effect of POSAF-II. 

Finally, we use the bounding approach suggested by Rosenbaum (2002) to verify if the 

difference in TVAP between beneficiary and control groups is affected by selection bias. Our 

results show that the TVAP differentials estimated are robust to effects in unobservable factors 

(such as managerial skills) larger than 100%. More details are provided in Appendix Table 4.A1. 
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Table 0-9 Table 4.9. Average annual productiv ity  increase per hectare from technical change (TC) attributable to  POSA F-II (US$) 

Table 4.9. Average annual productivity increase per hectare from technical change (TC) 

attributable to POSAF-II (US$) 

 

System 

 

 

TVAP  

 

Std. Err.a T-test b 

BENF CONF TC   

SAGF 76.3 47.2 29.1 3.3 *** 

SFOR 139.1 102.0 39.8 6.2 *** 
a Tests are for differences in means with respect to treated farmers 
b Bootstrap Std. Err with 1000 repetitions 

*** p<0.01. 

 

3.6  Summary and conclusions 

In this paper, we analyze the impact of POSAF-II on technical efficiency (TE) and technological change 

(TC), and thereby on household income. POSAF-II is a natural resource management (NRM) program that 

was implemented in Nicaragua between 2002 and 2008. We use cross-sectional data for beneficiary and 

control farmers along with a method that combines propensity score matching (PSM) and sample selection 

corrected stochastic production frontiers (SPF). The former approach addresses possible bias from 

observable variables, while the latter mitigates biases from unobservable variables. The econometric results 

show that sample selection bias was not present, which implies that the matching procedures implemented 

were adequate to mitigate bias from both observable and unobservable variables. In order to check for the 

robustness of our results, we run a sensitivity analysis to test for the effect of unobservable variables on the 

estimated impact of POSAF-II on the total value of agricultural production (TVAP), and this further 

confirms that bias is not an issue in our analysis. 

Beneficiaries received financial and technical support to facilitate the adoption of technologies 

associated with an agroforestry (SAGF) or a forestry (SFOR) production system. Our results reveal 

that average TE with reference to the meta-frontier is consistently higher for beneficiary farmers 

(40 % for SAGF and 44% for SFOR) compared to their respective controls (11% for SAGF and 

27% for SFOR). These significant differences reveal that the location of the frontier for 

beneficiaries in both production systems is much higher than the location for control farmers with 
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respect to the common benchmark. Furthermore, these differences are due to the fact that 

beneficiaries of both the SAGF and SFOR systems have experienced a significant shift in their 

production frontier, relative to the respective control groups, and this shift is a causal effect of 

POSAF-II. Consequently, the change in productivity among beneficiaries was driven by an upward 

shift in the production frontier as a result of technological change induced by the program. 

The analysis presented in this study clearly shows that NRM projects, like POSAF-II, designed 

to promote environmentally-friendly technologies, can also have positive effects on the income 

and well-being of small and medium-sized farms. Furthermore, our findings indicate that POSAF-

II induced a significant increase in productivity due to an upward shift in the production frontier 

and to a moderate improvement in the TE of beneficiaries relative to controls. These findings 

support the notion that to ensure that NRM technologies reach their potential, it is essential that 

those who design and implement these interventions pay particular attention to the technical 

assistance provided to farmers to encourage better managerial performance, and thus enhance 

utilization of the technologies promoted. In sum, our results justify the implementation of well-

designed and carefully implemented NRM interventions as an instrument to increase farm income 

while promoting the adoption of technologies that are friendly to the environment. From a broader 

perspective, our findings suggest that NRM programs can contribute to the achievement of the 

economic and environmental dimensions of the Sustainable Development Goals (SDGs). 

Finally, we point out that the present study was conducted in the absence of baseline data. 

Nevertheless, our results suggest that appropriate program design and careful choice of the 

methodology applied to define a proper counterfactual situation can provide robust results, even 

when the analysis is based only on endline data. Although this study generated robust results using 

cross-sectional data, the timely collection of baseline data remains an important undertaking in 
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order to enrich studies of this type, and thus generate even more reliable results. Under ideal 

circumstances, a follow up survey would be undertaken 10 or 15 years after the end of a NRM 

project to allow for a more comprehensive assessment of benefits and of the long-term 

sustainability and learning effects of such projects. 
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Appendix 1. 

As explained in the text, the methodological framework used in this study- the participation Probit 

along with the sample selection SPF model- corrects for biases from observable and unobservable 

characteristics that, if not appropriately dealt with, can lead to misleading results. In addition, we 

examined the extent to which the null hypothesis of no difference in TVAP between BENF and 

CONF can be rejected. To this end, we use the bounding approach suggested by Rosenbaum (2002) 

to perform a sensitivity analysis. Since TVAP is a continuous variable, we used the ado-file 

(rbounds) in Stata proposed by Diprete & Gangl (2004). This method is characterized by using an 

arbitrary Gamma value to specify the level of bias. In lieu of an arbitrary value, we use the ρ from 

the sample selection estimate from Tables 4.5 and 4.6 to perform the sensitivity analysis. 

Therefore, the size of the bias is equal to one plus 0.60 and 0.15 for SAGF and SFOR, respectively. 

Table 4.A1 displays the results of the sensitivity analysis for both production systems. A critical 

p-value larger than 0.05 would lead to the questioning of the impact of POSAF-II on TVAP. As 

shown in Table 4.A1, our results remain robust, even in cases when changes exceed 100% of the 

Gamma values (2.2 for SAGF and 1.30 for SFOR). In order to detect a change in the estimated 

impact of POSAF-II, the effect of unobservable variables should be significantly larger than 100%. 

This is very unlikely since the estimation process accounts for several variables that play a 

significant role in the decision to participate in POSAF-II. Thus, we conclude that the confidence 

intervals for TVAP differentials between beneficiaries and controls do not include zero or negative 

values. 

Table 0-10 Table 4.A1. Estimation of Rosenbaum bounds to check the sensitivity of results to unobservable bias 

Table 4.A1. Estimation of Rosenbaum bounds to check the 

sensitivity of results to unobservable bias 

SAGF SFOR 

Gamma* 

(ρ) sig+ sig- 

Gamma* 

(ρ) sig+ sig- 

1 0 0 1 0 0 

1.6 <0.001 0 1.1 <0.001 0 

2.2 <0.001 0 1.3 <0.001 0 

2.8 <0.001 0 1.4 <0.001 0 

3.4 <0.001 0 1.6 <0.001 0 

4.0 <0.001 0 1.7 <0.001 0 

4.6 <0.001 0 1.9 <0.001 0 

5.2 <0.001 0 2.0 <0.001 0 

      
* gamma - log odds of differential assignment due to unobserved 

factors 

sig+ - upper bound significance level 

sig- - lower bound significance level 
"in bold" significance level of the Gamma values 
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Chapter 5 Key conclusions  
 

By 2050 the world population is expected to reach 9 billion and producing enough food and fiber 

to feed all these people represents a significant challenge. In addition, complications derived from 

increasing unpredictable weather will make agricultural systems more vulnerable to extreme 

conditions, such as extended droughts, flooding, and heat waves. These processes impose a 

significant burden on natural resources and the higher demand for food implies the need to increase 

agricultural production, which leads to added pressure on soil, water and other resources. The 

increased exploitation of natural resources reduces soil productivity, which may lead to an 

expansion of land under cultivation to offset the lower productivity. Extreme weather, such as 

hurricanes and downpour events (i.e., flash-flooding), will produce substantial soil erosion and 

forest destruction, which will have a significant impact on overall soil productivity. In addition, a 

reduction in agricultural research and development (R&D) expenditures has made it more difficult 

to generate technologies to address these challenges. Generally, these challenges will pose a 

significant threat to the 1.2 billion people living below the poverty line, 70% of whom live in rural 

areas with most making their living from agricultural or other related activities.  

Against this background, this dissertation analyzes the nexus between natural resource 

management (NRM) programs, productivity, and farmer well-being. NRM technologies 

comprehend the use of conservation agriculture, improved soil and water management,  integrated 

pest management, as well as the implementation of agroforestry and silvopastoral practices (Food 

and Agriculture Organization of the United Nations [FAO], 2017). The underlying hypothesis is 

that NRM programs can address the vicious circle of low farm productivity, increased poverty, 

exploitation of natural resources, resource degradation and further reduced productivity. To 

validate this hypothesis, the evidence available in the resource economics literature concerning the 



 140 

impact of NRM programs on agricultural production and poverty alleviation in developing 

countries is examined.  

Meta-regression methods are used to analyze 75 studies of NRM program effects with a total 

of 215 observations. Based on these data we compare the results of several econometric approaches 

that include fitting ordered probit, probit, ordinary least squares regression, and Bayesian 

regression models. Our results indicate that NRM programs are more likely to have positive effects 

in Asia and Africa. However, our results also indicate that the magnitude of the effect is relatively 

lower on these two continents. Likewise, the inclusion of training and participatory extension 

methods appears to increase the likelihood of finding a positive effect. Both characteristics also 

matter when it comes to finding a larger average treatment effect. Our results further suggest that 

the likelihood of a positive treatment effect decreases when NRM programs are implemented by 

governments. This indicates that government agencies involved in the implementation of NRM 

programs need to enhance their managerial performance to deliver better results. Furthermore, in 

the short run, governments should work closely with NGOs and international agencies on the 

delivery and the implementation of NRM technologies.  

Our results show that the use of yield or a monetary outcome as dependent variables, relative 

to the use of technical efficiency (TE), decreases the likelihood of observing a positive treatment 

effect. It is commonly argued that NRM leads to a more efficient use of natural resources, specially 

fertilizer; thus, our finding supports such argument.  

Just as other studies show that NRM technologies need an appropriate amount of time to 

generate significant effects, our results indicate that there is a positive association between years 

elapsed between the end of program and when the evaluation is undertaken. This opens the door 

to reconsider impact evaluations that show insignificant or negative effects in the short term. 



 141 

Furthermore, development agencies should contemplate this point when determining the timing of 

impact evaluations. Econometric methods, the type of data, and sample size do not play a 

significant role for program effectiveness.  

After studying the accumulated evidence in the literature, we proceed to provide our own 

evaluation of a specific NRM intervention, the Socio-Environmental and Forestry Development 

Program-II (POSAF-II) implemented in Nicaragua, between 2002 and 2008. The goal of POSAF 

II was to promote economic development and environmental sustainability. Results based on 

propensity score matching (PSM), ordinary least squares (OLS), weighted least squares (WLS) 

and instrumental variables (IV) indicate that POSAF-II has had a positive and significant impact 

on the total value of agricultural production, thus increasing agricultural income and household 

wealth. Furthermore, the positive benefit accrued by beneficiary farmers led neighbors to adopt 

NRM technologies, which produced a spillover effect of approximately half the size that 

beneficiary farmers received themselves. These results show that a well-designed NRM program 

can produce additional welfare gains for those who do not receive an incentive to adopt the 

technologies offered by the program. 

Furthermore, our results show that the combination of direct and indirect effects of NRM 

programs yield a high payoff. A 35% internal rate of return obtained from our estimation illustrates 

that investments in NRM technologies like those delivered by POSAF-II for agroforestry (SAGF) 

and forestry (SFOR) have a positive economic return. However, due to data constraints it was not 

possible to disentangle the contribution of specific technologies to the economic results; yet, it 

does appear that the combination of technologies for the SAGF and SFOR systems was 

appropriate. Nevertheless, in formulating similar projects, it would be informative to examine 
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alternative bundling of technologies to see if the performance of recommended systems could be 

improved. This is a matter that deserves further study.  

Our analysis suggests that the design of NRM programs should include a proper strategy to 

deliver agricultural technologies, and the length of time that technical assistance is provided should 

be sufficient to allow the full adoption of the technologies. POSAF-II provided an initial training 

phase that led farmers to choose the technologies that best fit their needs; thus, the demand for a 

specific package came from a knowledge base delivered to farmers as part of the intervention. In 

contrast, development projects often deliver technologies that extension agents or researchers 

deem suitable without much or even any farmer input; this approach is likely to lead to a low level 

of empowerment and interest from potential beneficiaries in the technologies promoted. In 

addition, three years of extension support with an average contact of two visits per month seems 

to be appropriate to induce the adoption of the technologies offered by POSAF-II. These factors 

plus an implementation scheme compatible with the constraints faced by different types of 

beneficiaries can be considered crucial for the success of an NRM program like POSAF-II.        

It has been argued that more efficient farmers make better use of natural resources and the 

implementation of NRM technologies increase the efficiency of external inputs, such as fertilizers 

and pesticides. Our results confirm these effects based on a method that combines propensity score 

matching (PSM), sample selection corrected stochastic production frontiers (SPF), and a meta-

frontier analysis. Our analysis of technical efficiency (TE) and technological change (TC) shows 

a positive impact of NRM technologies. The results reveal that the frontier for beneficiaries in both 

SAGF and SFOR is much higher than the function for control farmers with respect to the common 

benchmark. Furthermore, these differences are due to the fact that beneficiaries of both production 

systems have experienced a significant shift in their production frontier, relative to the respective 
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control groups, and this shift is a causal effect of POSAF-II. Consequently, the change in 

productivity among beneficiaries was driven by an upward shift in the production frontier as a 

result of technological change induced by the program. 

The analysis presented in this study clearly shows that NRM projects, such as POSAF-II, 

designed to promote environmentally-friendly technologies, can also have positive effects on the 

income and well-being of small and medium-sized farms. Furthermore, our findings indicate that 

POSAF-II induced a significant increase in productivity due to an upward shift in the production 

frontier and to a moderate improvement in the TE of beneficiaries relative to controls. These 

findings support the notion that to ensure that NRM technologies reach their potential, it is essential 

that those who design and implement these interventions pay particular attention to the technical 

assistance provided to farmers to encourage better managerial performance, and thus enhance 

utilization of the technologies promoted. 

The promotion of NRM programs to tackle natural resource degradation and to increase 

productivity is a win-win public policy. Overall, NRM programs increase monetary outcomes by 

8%, on average, and the effect on productivity ranges between 9.15% and 16.5%, which leads to 

substantial welfare gains for farmers. This indicates that its implementation leads to a better use of 

natural resources and induces a more efficient use of external inputs. NRM technologies aim at 

achieving a suitable and profitable agricultural production; our results indicate that this goal has 

been clearly accomplished by POSAF_II and other sumilar programs. Overall, our findings 

suggest that NRM technologies can effectively address the “triangle of poverty,” and are relevant 

when considering the achievement of economic and environmental dimensions of the sustainable 

development goals (SDGs).  
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Finally, it is important to briefly consider limitations of this study and ideas for future 

research. A clear shortcoming is that the available data did not make it possible to disentangle the 

effect of individual technologies delivered by POSAF-II. We do recognize that the design of 

policies could benefit from more precise information concerning separate technologies. Thefore, 

an avenue for future research is to generate more disaggregated data so that the analysis can then 

focus on individual technologies and on the asessment of the optimal budling of technologies.   

Furtheremore, the implementation of NRM technologies has focused primarily on farm 

and technology characteristics but has neglected detailed consideration of individual farmer 

characteristis, both  productive and socio-economic, to shed light on what beneficiaries are more 

likely to adopt in a sustainable basis beyond the end of the project (Lalani et al. 2016; Zeweld et 

al. 2017). Most impact evaluation studies assume that farmers are expected profit maximizers and 

thus the adoption of new technologies becomes more likely if the associated expected profits 

exceeds the prevailing situation. However, this process is not  well understood and is neccesary to 

develop a stronger link between behavioral economics and impact evaluation methods in order to 

have a more clear understanding of the adoption of NRM technologies. 

  Another feature that deserves attention is the link between climate change perceptions, 

farm efficiency and the adoption of NRM technologies. Up to now, the degree to which technical 

efficiency (TE) is affected by climate change perceptions has not been investigated. Most of the 

studies that examine the effects of climate on TE have focused on the connection between climatic 

variables and TE scores. However, these studies fail to account for the role that farmers perceptions 

may play in the adoption of NRM technologies. 
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