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Summary

Ion channel recordings by the patch clamp technique are a major tool to quantify the

electrophysiological dynamics of ion channels in the cell membrane, which is for instance

important in medicine for the development of new drugs. In this work, we model these

recordings as a time series which is equidistantly sampled from the convolution of a piece-

wise constant signal disturbed by white noise with a lowpass filter. We focus on non-

parametric estimation of the underlying signal, but also discuss how to use these esti-

mations to analyze the recordings. Estimating the underlying signal requires to detect

multiple change-points in noisy and filtered Gaussian observations. The variance can be

constant in time, but also a varying variance is observed in some measurements. Since

this change-point regression problem is very difficult, we start with independent Gaussian

observations but with heterogeneous noise. Such a model is of its own interest and has

further applications for instance in genetics.

For this model, we propose the heterogeneous simultaneous multiscale change-point

estimator, H-SMUCE. It estimates the piecewise constant function by minimizing the

number of change-points over the acceptance region of a multiscale test which locally

adapts to changes in the variance. The multiscale test is a combination of local likelihood

ratio tests which are properly calibrated by scale dependent critical values in order to keep

a global nominal level α, even for finite samples.

We show that H-SMUCE controls over- and underestimation of the number of change-

points at a given probability for finitely many observations. To this end, new deviation

bounds for F -type statistics are derived. We also bound the implicitly defined critical

values. By combining these bounds, we obtain simultaneous confidence intervals for the

change-point locations and a confidence band for the whole signal. Moreover, it allows us

to show that H-SMUCE achieves the optimal detection rate and estimates the number of

change-points consistently for vanishing signals, even when the number of change-points

is unbounded. The only extra assumption we have to suppose is that the length of the

constant segments does not vanished too fast. We compare the performance of H-SMUCE

with several state of the art methods in simulations and show how it can be computed

efficiently by a pruned dynamic program. An R-package is provided.

In a second step we combine these multiscale regression techniques with deconvolution

to obtain non-parametric estimators for the ion channel recordings. Truncating the filter

kernel and pre-estimating the function values on longer constant segments enable us to

perform the deconvolution locally which allows fast computation. Simulations and real

data applications confirm that the proposed segmentation methods, JULES and JILTAD,
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estimate the underlying signal very accurately, even when events occur on small temporal

scales, where the smoothing effect of the filter hinders estimation by common methods.

Moreover, JILTAD shows still good results when the noise is heterogeneous, a situation

for which previously no non-parametric estimation method existed. Also these methods

are implemented in R.

The usage of these methods is demonstrated in a biochemical study against the context

of multidrug-resistant bacteria. We showed statistically significant differences for the in-

teraction of the antibiotic ampicillin with the wild type and with the mutant G103K of

the outer membrane channel PorB. These results improves the understanding of potential

sources for bacterial resistance and might help to develop new drugs against it to alleviate

the severe consequences of multidrug-resistant bacteria.
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1. Introduction

Ion channels are pore-forming proteins in the cell membrane that allow ions to pass the

membrane, which itself is impermeable to ions, along the electrochemical gradient (Alberts

et al., 2007). In this function they are mandatory for several vital processes like excitation

of muscle and nerve cells, building up a resting membrane potential, energy conversion and

regulation of the osmotic activity of cells (Hille, 2001). The amount of ions that can pass

an ion channel is not constant in time. Often caused by external stimuli such as voltage,

ligand binding or mechanical stress (Chung et al., 2007; Purves et al., 2008), the pores

of an ion channel can open and close, called gating. Also the passage of larger proteins

can block temporarily the ion pathway (Raj Singh et al., 2012). Understanding these

processes is crucial, e.g., for developing drugs against several diseases such as cancer or

epilepsy (Kass, 2005; Overington et al., 2006; Kim, 2014). In this work, another example

is given in Section 5, where we present our joint analysis with the Steinem lab (Institute

of Organic and Biomolecular Chemistry, University of Göttingen) of the interaction of

the antibiotic ampicillin with the outermembrane porin PorB (Bartsch et al., 2017). An

example of recorded observations is shown in Figure 1.1.

A major tool for a quantitative analysis of the gating dynamics is the patch clamp tech-

nique (Neher and Sakmann, 1976). It allows to measure the conductance, the recorded

current divided by the applied voltage, of a single ion channel in time (Sakmann and

Neher, 1995). For this work E. Neher and B. Sakmann received the Nobel prize in Physi-

ology or Medicine in 1991. Very roughly described, a single ion channel is inserted in the

(often artificial) membrane surrounded by an electrolyte with an electrode to measure the

current while a constant voltage is applied. For a more detailed explanation of its various

configurations see (Sakmann and Neher, 1995) and the references therein. Such recordings

can be modeled as a time series, which is equidistantly sampled from the convolution of

a piecewise constant signal disturbed by Gaussian white noise with a lowpass filter, for

more details see Section 3.1.

In this work, we focus on non-parametric estimation of the underlying signal, since from

these estimations typical summary statistics and confidence statements for important

channel characteristics such as the number of states, their conductance levels and the

dwell time distribution in the different states can be obtained (Colquhoun, 1987; Sak-

mann and Neher, 1995; Hotz et al., 2013). Like in Figure 1.1, in many applications at

least some events are very short in time, often even shorter than the filter length. Esti-

mating such events is particularly challenging, since the amplitudes of them are smoothed

by the filter. Moreover, in some measurements, see for instance Figure 3.3, the noise
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Figure 1.1.: Observations (grey points) of a representative conductance time series of PorB
wild type with 1 mM ampicillin recorded by the patch clamp technique using
black lipid membranes at 80 mV.

level is larger on segments with a larger conductance. This phenomenon is called open

channel noise, since a larger conductance results from an open pore. Although for ion

channel recordings many non-parametric methods exist, see for instance (Basseville and

Benveniste, 1983; Colquhoun, 1987; Sakmann and Neher, 1995; VanDongen, 1996; Hotz

et al., 2013; Gnanasambandam et al., 2017), to the best of our knowledge, no method can

deal with short events and heterogeneous noise satisfactorily, despite its importance. This

is discussed in more detail in Section 3.2.

In summary, we aim to estimate a piecewise constant function, containing very short

events, from filtered, potentially heterogeneous observations, while the correlation struc-

ture is still explicitly given by the known filter. For this task we will extend a multiscale

2



approach, which was proposed by Frick et al. (2014a) for the simpler model of unfiltered

observations and homogeneous noise. The general methodology is presented in the next

section.

1.1. Multiscale change-point estimation

In this section we present the simultaneous multiscale change-point estimator, SMUCE,

from (Frick et al., 2014a) in a more general formulation. We assume that n observations

Y = (Y1, . . . , Yn) are given by the function values of a piecewise constant function µ :

[0, 1] → R at equidistant design points xi = i/n plus standard Gaussian errors ε =

(ε1, . . . , εn) scaled by a known, global standard deviation, i.e.,

Yi = µ(i/n) + σ0εi, i = 1, . . . , n. (1.1)

Here, an equidistant design in the unit interval is assumed, but extensions to other fixed

designs are straightforward. For ion channel recordings we use for instance instead of the

unit interval the physical time since recording started.

The estimator SMUCE from (Frick et al., 2014a) is defined as the restricted maximizer µ̂ of

a functional L(Y, µ). Often the restricted maximum likelihood estimator is used, because

of its efficiency. Thereby, the candidate set of all piecewiese constant functions M, see

(2.4), is restricted to all solutions C(Y,q) of the (non-convex) optimization problem to

minimize the number of change-points under the constraint that the candidate function is

accepted by a multiscale test. In formulas,

µ̂ := argmax
µ∈C(Y,q)

L(Y, µ), (1.2)

where

C(Y,q) := {argmin
µ∈M

|µ|0 s.t. Tn(Y, µ,q) ≤ 0}, (1.3)

with |µ|0 the number of change-points of µ, q = (q1, . . . , qn) a vector of critical values, see

below, and multiscale test statistic

Tn(Y, µ,q) := max
[ in ,

j
n ]∈I(µ)

T ji (Y, µ([i/n, j/n]))− qj−i+1. (1.4)

Here, the interval set I is a subset of the set of all intervals with start and endpoints at the

design points and I(µ) ⊂ I is the subset of all intervals on which the candidate function µ

is constant. We denote by µ([i/n, j/n]) the function value of µ on the interval [i/n, j/n].

Furthermore, T ji is a local test statistic depending on the model. Often the corresponding

likelihood ratio test statistic is used due to its power. We test over all intervals in I(µ),

whether µ([i/n, j/n]) is the expectation of the observations or not. This guarantees that

the estimate µ̂ describes the data everywhere locally well and detects in this sense all

3



significant change-points. On the other hand, minimizing the number of change-points

guarantees not to include additional artificial change-points.

For this model the the vector of critical values q can be obtained by scale penalization, see

(Dümbgen and Spokoiny, 2001; Dümbgen and Walther, 2008; Frick et al., 2014a). More

precisely, different scales are balanced by a penalty function pj−i+1,n(·) leading to the

penalized multiscale statistic

T
pj−i+1,n
n (Y, µ) := max

[ in ,
j
n ]∈I(µ)

pj−i+1,n(T ji (Y, µ([i/n, j/n]))). (1.5)

Then, the global quantile qα at significance level α is defined as the (1 − α) quantile of

T
pj−i+1,n
n (ε, 0), with 0 denoting the function identical to zero, and the critical values are

obtained by ql = p−1
l,n(qα), l = 1, . . . , n. Note that the same threshold is used for all

intervals of the same length as no a-priori information on the change-point locations is

assumed. The most common penalization

pl,n(t) =
√

2t−
√

2 log (n exp(1)/l) (1.6)

implies for many models that the penalized multiscale statistic converges in distribution

to an almost surely finite limit distribution, see (Dümbgen and Spokoiny, 2001; Dümbgen

and Walther, 2008; Frick et al., 2014a), which guarantees appropriate scale balancing. We

will see later that this is not true when we assume heterogeneous noise and that for this

model a different approach is required.

Such an estimator has many good estimation properties like to overestimate the number

of observations only with probability α, to estimate the number of change-points consis-

tently and to detect vanishing signals with the optimal rate, see (Frick et al., 2014a, (14),

Corollary 1, Theorems 3, 5, 6). In addition, confidence statements like confidence intervals

for the change-point locations and a confidence band for the whole signal are obtained,

see (Frick et al., 2014a, Corollaries 2 and 3, Theorem 7). Hence, in this work we extend

this methodology to Gaussian observations with heterogeneous noise and to filtered ob-

servations. For filtered observations we have to combine the multiscale estimator with a

deconvolution approach. Since a model with filtered observations, heterogeneous noise and

events on all scales is very difficult, we start with unfiltered, independent observations,

but with heterogeneous noise. Although this model is already quite challenging, it still

allows to establish a substantial theory.

1.2. Heterogeneous change-point estimation

For this task we present in Section 2 the Heterogeneous Simultaneous MUltiscale Change-

point Estimator, H-SMUCE, which we proposed in (Pein et al., 2017c). Motivated by the

ion channel recordings we assume that the unknown variance of the observations can only

change at the same locations as the unknown signal, but does not have to, in particular
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homogeneous observations are still part of the model. More precisely, the global standard

deviation in (1.1) is replaced by a piecewise constant function that has the same change-

point locations as the signal µ or less. We stress that this restriction is only required for

our theory. For practical applications, where such an assumption is often violated, we

show in simulations in Section 2.4.3 that H-SMUCE is robust against a violation of this

assumption, i.e., a change in variance may occur without a change in the signal.

This is contrary to methods that consider changes in the variance as relevant structural

changes of the underlying data, even when the expectation does not change, and look for

changes in the expectation and in the variance. In this spirit are local search methods,

such as binary segmentation (Scott and Knott, 1974; Vostrikova, 1981) if the correspond-

ing single change-point detection method takes the heterogeneous variance into account,

but also global methods can achieve this goal, e.g., the pruned exact linear time method,

PELT, (Killick et al., 2012). For a Bayesian approach in this context see (Du et al., 2016)

and the references therein. In addition, methods which search for more general structural

changes in the distribution potentially apply to this set-up as well, see for instance (Csörgo

and Horváth, 1997; Arlot et al., 2012; Matteson and James, 2014; Zou et al., 2014; Haynes

et al., 2017) among others.

In contrast to this setting, H-SMUCE in Section 2 considers the variance as a nuisance

parameter and we primarily seek for changes in the signal µ. Hence, we aim for statisti-

cally efficient estimation of the signal µ, but still being robust against heterogeneous noise.

Obviously, this cannot be achieved by methods addressing the first setting. Although of

great practical relevance, this situation has only rarely been considered and in particu-

lar no rigorous theory exists, to our knowledge. The cross-validation method LOOVF

(Arlot and Celisse, 2011) and cumSeg (Muggeo and Adelfio, 2011) have been designed

specifically to be robust against heterogeneous noise. Moreover, also circular binary seg-

mentation (CBS), see (Venkatraman and Olshen, 2007), applies to this.

It is important that our model is also fundamental different as the model in Enikeeva

et al. (2016), since they assume that the variance has to change when the signal changes.

Moreover, they assume that the variances are known. This increases potentially the de-

tection power as under this assumption variance changes can be used for finding signal

changes, as well. The exact gain is quantified in their paper and will be briefly discussed

in Section 2.1. In contrast, in our model variance changes can potentially even have an

adverse effect, since the nuisance parameter σ2(·) hinders estimation.

We define H-SMUCE as the multiscale constrained maximum likelihood estimator like

in (1.2) with L(Y, µ) being the likelihood function, see (2.3), and local test statistic

T ji (Y,mij) being the likelihood ratio test statistic

T ji (Y,mij) := (j − i+ 1)

(
Y ij −mij

)2
2ŝ2
ij

, (1.7)
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with Y ij := (j−i+1)−1
∑j

l=i Yl and local variance estimate ŝ2
ij := (j−i)−1

∑j
l=i (Yl − Y ij)

2.

In comparison to the homogeneous problem this simply replaces the constant variance by

an estimate of the local variance, i.e., we use instead of a Gauss test a t-test, with squared

test statistic.

To allow fast computation and to simplify the asymptotic analysis, we choose for the in-

terval system I the dyadic partition D, see (2.8), which contains at most n− 1 intervals.

Nevertheless, our methodology can easily be adapted to other intervals systems, see Re-

mark 2.

So far the adaption to heterogeneous variance was not very difficult, but it remains the

most challenging task. For the construction of a multiscale test a vector of critical values

q, that combines the local tests appropriately, has to be chosen. To this end, note that

in the heterogeneous case scale penalization as in the homogeneous case (Dümbgen and

Spokoiny, 2001; Dümbgen and Walther, 2008; Frick et al., 2014a) does not balance scales

anymore appropriately. In particular, this will give a multiscale statistic which diverges

asymptotically, since due to the local variance estimation the test statistic fails to have

subgaussian, but still has subexponential, tails. To overcome these burdens we introduce

in Section 2.2.1 scale dependent critical values such that the multiscale test has significance

level α, see (2.12), and such that the different scales are balanced appropriately by weights

β1, . . . , βn, see (2.13) and (2.14). More precisely, these weights determine the ratios be-

tween the rejection probabilities of the multiscale test on a corresponding scale. Existence

and uniqueness of the so defined scale dependent critical values is shown in Lemma 1 and

explicit bounds are given in Lemma 3. The weights also allow to incorporate prior scale

information, see Section 2.3.4.

1.3. Theoretical results for H-SMUCE

Using the so defined vector of critical values q allows to obtain several confidence state-

ments which are a main feature of H-SMUCE. First of all, we show in Section 2.3 that the

probability to overestimate the number of change-points is bounded by the significance

level α of the multiscale test uniformly over S in (2.2), P(K̂ > K) ≤ α, see Theorem 5.

More specifically, we show the overestimation bound

sup
(µ,σ2)∈S

P
(
K̂ > K + 2k

)
≤ αk+1, ∀ k ∈ N0, (1.8)

see Theorem 6. In Theorem 7 we provide an exponential bound for the underestimation

of the number of change-points by H-SMUCE, P(K̂ < K). To this end, we show new

exponential deviation bounds for F -statistics, see Section A.3, which might be of interest

by its own. Combining the over- and the underestimation bound provides upper bounds

for the errors P(K̂ 6= K) and E[|K̂ − K|]. For a fixed signal both bounds vanish super

polynomially in n if α = αn ↘ 0 when the weights are chosen appropriately, see Remark

8. Consequently, the estimated number of change-points converges almost surely to the
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true number, see Theorem 9. Further, these exponential bounds enable us to obtain a

confidence band for the signal µ as well as confidence intervals for the locations of the

change-points, for an illustration see Figures 1.2 and 2.1. We show that the diameters

of the confidence intervals decrease asymptotically as fast as the (optimal) sampling rate

up to a log factor. All confidence statements hold uniformly over S∆,λ ⊂ S, all functions

with minimal signal to noise ratio ≥ ∆ and minimal scale ≥ λ := mink=0,...,K τk+1 − τk,
with ∆ and λ arbitrarily, but fixed, see Theorems 10 and 11. Finally, H-SMUCE detects

vanishing signal with the optimal minimax rate, even when the number of change-points is

unbounded, only the constants are slightly worse. Remarkably, the only extra assumption

we have to suppose is that signal and variance have to be constant on segments at least of

order log(n)/n, see Theorem 13. This reflects the additional difficulty to separate locally

signal and noise levels in a multiscale fashion.

1.4. H-SMUCE in action

Figure 1.2 illustrates the performance of H-SMUCE in an example with n = 1 000 ob-

servations and K = 10 change-points. We found that H-SMUCE misses for α = 0.1 one

change-point as the choice α = 0.1 tunes H-SMUCE to provide the strong guarantee not

to overestimate the number of change-points K with probability 0.9, see (1.8). But, for α

between 0.15 and 0.99, only displayed for α = 0.5, the correct number of change-points is

detected, while providing a weaker guarantee for not overestimating K. In addition, for

α between 0.15 and 0.99 each true change-point is covered by the associated confidence

interval at level 1 − α. Notably, the reconstructions are remarkably stable in α. In fact,

combining Lemma 3 and (4.1) shows that the width of the confidence band is proportional

to
√

log(1/α) which decreases only logarithmically for increasing α.

We compare H-SMUCE with CBS (Venkatraman and Olshen, 2007), cumSeg (Muggeo

and Adelfio, 2011) and LOOVF (Arlot and Celisse, 2011) in several simulation studies

in Section 2.4. Thereby, H-SMUCE outperforms these methods as long as the constant

segments are too short, since H-SMUCE is forced to be conservative on these scales to

control the overall familywise error rate. We also examine robustness issues, see Section

2.4.3. In all of these simulations H-SMUCE performs very robustly and overestimates the

number of change-points only rarely, in accordance with (1.8).

1.5. Multiscale estimation for ion channel recordings

We now come back to filtered ion channel recordings. Unfortunately, a straightforward

extension of the multiscale regression estimator as described in Section 1.1 to filtered ob-

servations is not computational feasible, for a more detailed discussion see Section 3.3.

Hence, we present in Section 3 three different methods which can be interpreted as ap-

proximations of a multiscale regression estimator for the ion channel models.

First of all, we extend the Jump-Segmentation by MUltiResolution Filter, J-SMURF,

7
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(b) α = 0.1.
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(c) α = 0.5.

Figure 1.2.: (b), (c): Observations (black dots), true mean function (black line), confidence
band (grey), confidence intervals for the change-point locations (brackets and
thick line) and the estimate (red line) by H-SMUCE at given α and with equal
weights β1, . . . , βdn , see (2.13) and (2.14).

which was proposed by Hotz et al. (2013), to heterogeneous noise by combining it with

H-SMUCE. This method has good detection properties if events are long enough, but

almost no power on smaller scales.

To also detect short events and estimate their parameters well we proposed in (Pein et al.,

2017d) the JUmp Local dEconvolution Segmentation filter, JULES. This estimator ob-

tains by multiscale estimation a piecewise constant approximation on the convolution

which is then refined by postfiltering and deconvolution. The fast decaying filter kernel

allows us to perform the deconvolution locally, i.e., to estimate only few parameters from

only few observations at one time, which makes it computation feasible. Figure 1.3 shows
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exemplarily an estimation of the signal underlying the observations in Figure 1.1.

  

Figure 1.3.: Estimation by JULES (red) of the signal underlying the observations in Figure
1.1 and its convolution with the lowpass filter (darkred).

To also deal with heterogeneous noise we propose in this work a new method called

J-SMURF Improved by Local Tests And Deconvolution, JILTAD. This approach esti-

mates in a first step events on large scales by J-SMURF and then improves the estimation

on small scales by tests that take into account the deconvolution explicitly as well as by

deconvolution as above. An exemplary estimation in Figure 3.5 for the observations in

Figure 3.3 shows that at presence of heterogeneous noise this method is indeed able to

estimate events on small scales well.

The performance of these non-parametric estimation methods is assessed in a comprehen-

sive simulation study and on gramicidin A recordings. They confirm that JULES and
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JILTAD are indeed able to detect and estimate events that are short in time with very

high precision, JULES only when the noise is homogeneous, but JILTAD also when the

noise is heterogeneous.

1.6. Implementation and software

All presented methods are implemented in R (R Core Team, 2017). The multiscale es-

timators, in particular SMUCE and H-SMUCE, can be computed efficiently by pruned

dynamic programs and implementations are provided by the stepR package (Pein et al.,

2017a). A first algorithm was described in (Frick et al., 2014a) and implemented by Hotz

and Sieling (2015). In (Pein et al., 2017c) we proposed a speed up for smaller intervals

sets by computing firstly the confidence intervals and then the estimator by a dynamic

program restricted to these intervals. The non-parametric estimation methods for the

ion channel recordings are comparable multiscale regression estimators combined with de-

convolution which can be computed locally by an iterative grid search. These methods

are implemented in the R package clampSeg (Pein et al., 2017b). More details about

the dynamic programs, the computation of the critical values and an overview about the

provided R packages are given in Section 4 in which we also study the computation time

of the algorithms theoretically and in simulations.

1.7. Application to PorB recordings

In Section 5 we present the application from (Bartsch et al., 2017), in which we compared

how frequently ampicillin enters and the time duration it resides in the PorB wild type

and a mutation called G103K as a function of the ampicillin concentration and the applied

voltage. The very short durations and the huge amount of observations and events require

an automatic analysis of these recordings with high precision on small temporal scales. By

using JULES and JILTAD we showed that the average residence time of the ampicillin in

the mutant is statistically significant longer than in the wild type and that the conductance

of the mutant is smaller. These findings reason, together with other findings by molecular

dynamic simulations, that ampicillin passes the mutant less likely, a potential source for

antibiotic resistance. Understanding these interactions helps to develop new drugs against

multidrug-resistant bacteria, a topic with heavily increasing importance in the past few

years (Cosgrove and Carmeli, 2003; Rice, 2007; World Health Organization, 2014).

The work ends with a conclusion and an outlook in Section 6. All proofs are given in the

Appendix A together with some auxiliary statements.
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2. Heterogeneous Multiscale Change-Point

Inference for Independent Observations

The methods for estimating the change-points in (1.1) and in related models are vast, see

for instance (Yao, 1988; Donoho and Johnstone, 1994; Csörgo and Horváth, 1997; Bai and

Perron, 1998; Braun et al., 2000; Birgé and Massart, 2001; Kolaczyk and Nowak, 2005;

Boysen et al., 2009b; Harchaoui and Lévy-Leduc, 2010; Jeng et al., 2010; Killick et al.,

2012; Rigollet and Tsybakov, 2012; Zhang and Siegmund, 2012; Fryzlewicz, 2014; Frick

et al., 2014a; Du et al., 2016; Yau and Zhao, 2016; Li et al., 2016; Fang et al., 2016;

Maidstone et al., 2017; Eichinger and Kirch, 2018) and the references in these works.

However, a crucial condition in most of the afore-mentioned works is the assumption of

homogeneous noise, i.e., that all errors have the same variance. In many applications,

however, this assumption is violated and the variance varies over time, σ2(i/n), say. In

addition to ion channel recordings, where open channel noise causes heterogeneous noise,

this problem arises for instance in genetic, e.g., in the analysis of array CGH data, see

(Muggeo and Adelfio, 2011; Arlot and Celisse, 2011). Further examples include economic

applications, for instance the real interest rate is modeled by Bai and Perron (2003) as

piecewise linear regression with covariates and heterogeneous noise. Hence, this setup is

of its own interest and not limited to ion channel recordings.

To illustrate the effects of missing heterogeneity we show in Figure 2.1 a reconstruction

by SMUCE (Frick et al., 2014a), implemented in the R package stepR (Pein et al., 2017a),

assuming homogeneous noise.

The constant variance assumption of SMUCE leads to overestimation of the standard

deviation, which is here pre-estimated by a global IQR type estimator based on differences

similar to (3.11), in the first half and underestimation in the second half. Therefore, in

Figure 2.1 SMUCE misses the first change-point and includes artificial change-points in

the second half to compensate for the too small variance it is forced to use, see also (Zhou,

2014). Note, that this flaw is not a particular feature of SMUCE, it will occur for any

sensible segmentation method which relies on a constant variance assumption. Hence,

from Figure 2.1 the fundamental difficulty of the heterogeneous (multiscale) change-point

regression problem becomes apparent: How to decide whether a change of fluctuations

of the data result from highly frequent changes in the expectation µ or merely from

an increase of the noise level? Apparently, if changes can occur on any scale this is a

notoriously difficult issue and proper separation of signal and noise cannot be performed

without extra information.
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(b) Simulated observations (black dots) together with the true signal (black line), the confidence
band (grey), the confidence intervals for the change-point locations (brackets) as well as the
estimates by our new method H-SMUCE (red dotted line) and by SMUCE (blue dashed line),
both with α = 0.1.

Figure 2.1.: Illustration of missing heterogeneity.

Indeed, the basis of our approach is that it is often a reasonable assumption to exclude

changes of the variance in constant segments of µ, see the examples above and Section

3.1.2 for the heterogeneous ion channel model. Under this relatively weak assumption, we

show in this work that estimation of µ for heterogeneous data becomes indeed feasible. In

addition, we also aim for a method which is robust when changes in the variance occur at

locations where the signal is constant, as we believe that this cannot be excluded in many

practical cases. To this end, we proposed in (Pein et al., 2017c) a new Heterogeneous

Simultaneous MUltiscale Change-point Estimator, H-SMUCE, which recovers the signal

under heterogeneous noise over a broad range of scales, controls the familywise error rate to

overestimate the number of change points, allows for confidence statements, obeys certain

statistical optimality properties and can be efficiently computed. At the same time it is

robust against heterogeneous noise on constant signal segments and as a by-product also

against more heavily tailed errors.

2.1. Heterogeneous change-point model

To be more specific, we assume the heterogeneous Gaussian change-point model

Yi = µ(i/n) + σ(i/n)εi, i = 1, . . . , n, (2.1)
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where now the variance σ2 is also given by an unknown piecewise constant function and

ε1, . . . , εn are assumed to be independent, standard Gaussian errors. For the following

theoretical results we assume that the variance function σ2 can have change-points only

at the same locations as the expectation function µ. In other words, (µ, σ2) is a pair of

unknown piecewise constant functions in

S :=

{
(µ, σ2) : [0, 1] 7→ R2, µ =

K∑
k=0

mk1l[τk,τk+1), σ
2 =

K∑
k=0

s2
k1l[τk,τk+1), K ∈ N

}
, (2.2)

with unknown change-point locations τ0 = 0 < τ1 < · · · < τK < 1 = τK+1 for some

unknown number of change-points K ∈ N and also unknown function values mk ∈ R and

s2
k ∈ R+ of µ and σ2. For technical reasons, we define µ(1) and σ2(1) by continuous exten-

sion of µ and σ2, respectively. For identifiability of µ we assume mk 6= mk+1 ∀ k = 0, . . . ,K

and exclude isolated changes in the signal by assuming that µ is a right continuous func-

tion. It is important to stress that in (2.2) we allow the variance to potentially have

changes at the locations of the changes of the signal, but the variance σ2 need not neces-

sarily change when µ changes, as we do not assume s2
k 6= s2

k+1. In particular, homogeneous

observations are still part of the model. Vice versa, we assume that within a constant seg-

ment of µ it may not happen that the variance changes, i.e., the local signal to noise ratio

is assumed to be constant on [τk, τk+1) for all k = 0, . . . ,K. We argue that this is a reason-

able assumption in many applications, in particular for ion channel recordings, see Section

3.1.2, since a change-point represents typically a change of the condition of the underlying

state. Moreover, for example, in many engineering applications a locally constant signal

to noise ratio is assumed (Guillaume et al., 1990), which motivates our modeling as well.

However, we stress that the restriction to model (2.2) is only required for our theory. For

the practical application we show in simulations in Section 2.4.3 that H-SMUCE is robust

against a violation of this assumption, i.e., when a change in variance may occur without

a change in the signal, and hence still works well in a general heterogeneous change-point

model with arbitrary variance changes.

For a better understanding it is illustrative to distinguish our setting from the case when

it is known before hand that changes in the variance occur necessarily with changes in the

signal. This increases potentially the detection power as under this assumption variance

changes can be used for finding signal changes, as well. The information gain due to

the variance changes for this case has been recently quantified by Enikeeva et al. (2016)

in terms of the minimax detection boundary for single vanishing signal bumps of size

δn ↘ 0. More precisely, if the base line variance is σ2
0 and the variance at the bump is

σ2
0 + σ2

n then the constant in the minimax detection boundary is b =
√

2σ0

√
2/(2 + c2)

for c = σ−1
0 limn→∞ σn/δn, see (Enikeeva et al., 2016, Theorems 3.1-3.3). For the par-

ticular case of homogeneous variance, i.e., σ2
n = 0, we obtain b =

√
2σ0 and the factor√

2/(2 + c2) = 1 becomes maximal, see also (Dümbgen and Walther, 2008; Frick et al.,

2014a). This reflects that no additional information on the location of a change can
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be gained from the variance in the homogeneous case. Comparing this to the hetero-

geneous case we see that when the variance change is known to be large enough, i.e.,

σ−1
0 limn→∞ σn/δn > 0, additional information for the signal change can be gained from

the variance change, as then b <
√

2σ0, provided it is known that signal and variance

change simultaneously.

In contrast, in the present setting the variance need not necessarily change when the signal

changes, hence the worst case of no variance change from above is contained in our model,

which lower bounds the detection boundary. The situation is further complicated due to

the fact that missing knowledge of a variance change can potentially even have an adverse

effect because in model (2.2) detection power will be potentially decreased further as the

nuisance parameter σ2(·) hinders estimation of change-points of µ. For this situation the

optimal minimax constants are unknown to us, but from the fact that the model with a

constant variance is a submodel of our model (2.2) it immediately follows that the mini-

max constant for a single bump has to be at least
√

2σ0. This will allow us to show that

H-SMUCE attains the same optimal minimax detection rate as for the homogeneous case

and 4σ0 instead of
√

2σ0 as the constant appearing in the minimax detection boundary.

Remarkably, the only extra assumption we have to suppose is that signal and variance

have to be constant on segments at least of order log(n)/n, see Theorem 13. This reflects

the additional difficulty to separate locally signal and noise levels in a multiscale fashion.

In other words, when we assume that the number of i.i.d. neighboring observations (no

change in signal and variance) in each segment is at least of order log(n), separation of

signal and noise is done by H-SMUCE in an optimal way (possibly up to a constant).

2.2. Methodology

Assuming the heterogeneous multiple Gaussian change-point model as described in Section

2.1, we propose the Heterogeneous Simultaneous MUltiscale Change-point Estimator,

H-SMUCE. Like the general multiscale regression estimator in (1.2), this estimator is

defined as the restricted maximum likelihood estimator

µ̂ := argmin
µ∈C(Y,q)

L(Y, µ) := argmin
µ∈C(Y,q)

n∑
i=1

(
Yi − µ(i/n)

)2
σ̂2
i

, (2.3)

with σ̂2
i := (v − u + 1)−1

∑
j∈[u/n,v/n] (Yj − µ(j/n))2 and u, v the smallest and largest

integers, respectively, such that µ is constant on the interval [u/n, v/n] and i/n is contained

in this interval. Here, the set of all candidate functions, which is the set of all piecewise

constant functions

M :=

{
µ : [0, 1] 7→ R, µ =

K∑
k=0

mk1l[τk,τk+1), K ∈ N

}
, (2.4)
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is restricted to the multiscale constraint

C(Y,q) := {argmin
µ∈M

|µ|0 s.t. Tn(Y, µ,q) ≤ 0}. (2.5)

The vector of critical values q = (q1, . . . , qn) will be defined in Section 2.2.1. In the

multiscale test statistic

Tn(Y, µ,q) := max
[ in ,

j
n ]∈D(µ)

T ji (Y, µ([i/n, j/n]))− qj−i+1 (2.6)

we choose for the interval set I the dyadic partition D, to be defined below, and for the

local test statistic T ji the likelihood ratio test statistic

T ji (Y,mij) := (j − i+ 1)

(
Y ij −mij

)2
2ŝ2
ij

, (2.7)

with Y ij := (j−i+1)−1
∑j

l=i Yl and local variance estimate ŝ2
ij := (j−i)−1

∑j
l=i (Yl − Y ij)

2.

The dyadic partition D is defined as

D :=

dn⋃
k=1

Dk, (2.8)

where dn := blog2(n)c is the number of different scales and

Dk :=

{[
1 + (l − 1)2k

n
,
l2k

n

]
, l = 1, . . . ,

⌊ n
2k

⌋}
(2.9)

defines the set of intervals from the dyadic partition with length 2kn−1. This choice allows

fast computation and simplifies the asymptotic analysis, since it contains at most n − 1

intervals. Nevertheless, our methodology can easily be adapted to other intervals systems,

see Remark 2.

2.2.1. Scale dependent critical values

For the definition of H-SMUCE it remains to determine the vector of critical values q in

(2.5). Since only the entries with indices 21, . . . , 2dn matter, we write, with slight abuse of

notation, q = (q1, . . . , qdn) until the end of Section 2. Then, we require that the multiscale

test on the r.h.s. in (2.5) is a level α test, i.e.,

sup
(µ,σ2)∈S

P(µ,σ2)

(
max

[ i
n
, j
n

]∈D(µ)

[
T ji
(
Y, µ([i/n, j/n])

)
− qlog2(j−i+1)

]
> 0

)
≤ α, (2.10)

where P(µ,σ2) stands for the model (2.1), (2.2) with expectation-variance pair (µ, σ2). To

this end, we consider a vector of standard Gaussian observations Z = (Z1, . . . , Zn) instead

of Y = (Y1, . . . , Yn), since the supremum in (2.10) is attained at µ ≡ 0 and σ2 ≡ 1, see
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the proof of Theorem 5. And, we define the statistics T1, . . . , Tdn with Dk in (2.9) as

Tk := max
[i/n,j/n]∈Dk

T ji (Z, 0) for k = 1, . . . , dn. (2.11)

Then, the critical values q1, . . . , qdn fulfill (2.10) if

P
(

max
k=1,...,dn

[Tk − qk] > 0

)
= 1− F (q1, . . . , qdn) = α, (2.12)

with F the cumulative distribution function of (T1, . . . , Tdn).

As the critical values q1, . . . , qdn are not uniquely determined by (2.12) they can be chosen

to render the multiscale test particularly powerful for certain scales. To this end, we

introduce weights

β1, . . . , βdn ≥ 0, with

dn∑
k=1

βk = 1, (2.13)

where βk = 0 means to omit the k-th scale, i.e., qk = ∞. Finally, we define q1, . . . , qdn

implicitly through
1− F1 (q1)

β1
= · · · = 1− Fdn (qdn)

βdn
, (2.14)

with Fk the cumulative distribution function of Tk. If βk = 0 we omit the corresponding

terms in the system of equations in (2.14). The weights determine the fractions between

the probabilities that a test on a certain scale rejects, and hence regulate the allocation of

the level α among the single scales. In summary, the choice of the vector of critical values

q = (q1, . . . , qdn) boils down to choosing the significance level α and the weights β1, . . . , βdn .

We discuss possible choices in Section 2.3.4 more carefully. If no prior information on scales

is available, a default option is always to set all weights equal, i.e., β1 = . . . = βdn = 1/dn.

The next result shows that the vector of critical values satisfying (2.12)-(2.14) is always

well-defined.

Lemma 1 (Existence and uniqueness). For any α ∈ (0, 1) and for any weights β1, . . . , βdn,

s.t. (2.13) holds, there exits a unique vector of critical values q = (q1, . . . , qdn) ∈ Rdn+ which

fulfills the equations (2.12) and (2.14).

An explicit computation of the vector q (or F ) appears to be very hard, since the statistics

T1, . . . , Tdn are dependent, although the dependence structure is explicitly known. Alter-

natively, it would be helpful to have an approximation for the distribution (and hence its

quantiles) of the maximum in (2.10), which, however, appears to be rather difficult, as

well. Therefore, we determine in Section 4.2.2 the vector q by Monte-Carlo simulations.

Note that the distribution does not depend on the specific element (µ, σ2) ∈ S, and hence

the critical values can be computed in a universal manner. We stress that the determina-

tion of the scale dependent critical values is not restricted to our setting and can also be

applied to multiscale testing in other contexts. Different to scale penalization and similar

to the block criterion in (Rufibach and Walther, 2010), no model dependent derivations are
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required and the critical values are adapted to the exact finite sample distribution of the

local test statistics. However, our approach allows additionally a flexible scale calibration

by the choice of the weights, see Section 2.3.4, and arbitrary interval sets can be used as

the following remark points out.

Remark 2. This approach can easily be adjusted to an arbitrary interval set I and to

all multiscale tests such that Lemma 1 is still satisfied. This requires that under the

null hypothesis the distribution of the local test statistics do not depend on the unknown

parameter as well as monotonicity and continuity of the cumulated distribution functions.

To this end, we replace the vector (T1, . . . , Tdn) by the vector (T1, . . . , Tn), empty scales

should be omitted, with

Tk := max
[i/n,j/n]∈I,
j−i+1=k

T ji (Z, 0). (2.15)

Again it remains to choose the significance level α ∈ (0, 1) and the weights β1, . . . , βn to

determine the critical values. Note, however, that the critical values and its bounds in

Lemma 3 and therefore the results in Section 2.3 (besides Theorems 5 and 6) will depend

on the specific system I and the specific local test statistics T ji and have to be computed

for each choice separately.

Although depending on the underlying signal, employing a larger interval set than D lead

in general to a better detection power, but at the price of a larger computation time.

Hence, in practice, a trade-off between computational and statistical efficiency may guide

this choice as well. For a discussion of the computation time see Section 4.5. Typical

choices are the system of all intervals (of order O(n2), most efficient, but computation-

ally expensive), the system of all intervals containing a dyadic number of observations

(O(n log(n), intermediate efficiency and computation time). Interesting choices might be

also approximating sets like Japp that were introduced in (Walther, 2010) and are larger

than the dyadic partition, but achieve the minimax boundary in the context of density

estimation.

2.3. Theory

In this section we collect our theoretical results. We start with finite bounds for the critical

values. These will allow to bound P(K̂ 6= K). With these bounds we obtain confidence

statements for the signal µ and its main characteristics. Finally, we investigate asymptotic

detection rates of H-SMUCE for vanishing signals.

2.3.1. Finite bounds for over- and underestimation

In the following we require upper bounds for the critical values, since the definition of the

critical values by the equations (2.12)-(2.14) is implicit.

Lemma 3 (Bound on critical values). Let q = (q1, . . . , qdn) be the vector of critical values
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defined by (2.12)-(2.14), then for every k ∈ {2, . . . , dn} such that

2−k log

(
n

2kαβk

)
≤ 1

2
(2.16)

we have

qk ≤ 8 log

(
n

2kαβk

)
. (2.17)

Remark 4. The log term of the bound (2.17) can be split into a scale dependent penalty

term log(n2−k) which is of the same order as the penalties in the homogeneous case in

(Dümbgen and Spokoiny, 2001; Frick et al., 2014a), and into the term log((αβk)
−1) which

incorporates the significance level α and the weight βk.

The following theorem shows that the significance level α controls the probability to over-

estimate the number of change-points.

Theorem 5 (Overestimation control I). Assume the heterogeneous Gaussian change-point

model (2.1). For a signal µ ∈M, let J (µ) be the set of its change-points and K := |J (µ)|
be its number of change-points. Let further K̂ be the estimated number of change-points

by H-SMUCE, i.e.,

K̂ := min

{
|J (µ)| : µ ∈M with max

[ i
n
, j
n

]∈D(µ)

[
T ji
(
Y, µ([i/n, j/n])

)
− qij

]
≤ 0

}
. (2.18)

Then, for any vector of critical values q with significance level α ∈ (0, 1) and weights

β1, . . . , βdn in (2.12)-(2.14), uniformly over S in (2.2) it holds

sup
(µ,σ2)∈S

P(µ,σ2)

(
K̂ > K

)
≤ α.

The theorem gives us a direct interpretation of the parameter α as the probability to

overestimate the number of change-points. This even holds locally, i.e., on every union of

adjoining segments of the estimator H-SMUCE with probability 1 − α there are at least

as many change-points as detected. Moreover, we strengthen the result by showing that

the probability to estimate additional changes decays exponentially fast and hence the

expected overestimation is small.

Theorem 6 (Overestimation control II). Under the assumptions of Theorem 5, we have

sup
(µ,σ2)∈S

P(µ,σ2)

(
K̂ > K + 2k

)
≤ αk+1, ∀ k ∈ N0.

Moreover,

sup
(µ,σ2)∈S

E(µ,σ2)

[
(K̂ −K)+

]
≤ 2α

1− α
.

To control the probability P(K̂ 6= K) we need additionally an upper bound for the proba-

bility to underestimate K. Unlike to the overestimation bounds in the Theorems 5 and 6
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the probability to underestimate cannot be bounded uniformly over S, since size and scale

of changes could be arbitrarily small. This is made more precise in Theorem 13 which

gives the detection boundary in terms of the smallest (standardized) jump size ∆ and the

smallest scale λ. The next theorem provides an exponential bound uniformly over the

subset

S∆,λ :=

{
(µ, σ2) ∈ S : ∆ ≤ inf

1≤k≤K

|mk −mk−1|
max (sk−1, sk)

and λ ≤ inf
0≤k≤K

(τk+1 − τk)
}
, (2.19)

with ∆, λ > 0 arbitrary, but fixed.

Theorem 7 (Underestimation control). Let S∆,λ be as in (2.19) with ∆, λ > 0 arbitrary,

but fixed, and kn := blog2(nλ/4)c. We define

η :=

1− 3 exp

− 1

48

(√
nλ∆2

32
−

√
16 log

(
8

λαβkn

))2

+

2

+

.

Under the assumptions of Theorem 5 and if nλ ≥ 32 and

(nλ)−1 log

(
8

λαβkn

)
≤ 1

512

are satisfied, then uniformly in S∆,λ

P(µ,σ2)

(
K̂ < K

)
≤ 1− ηK and E(µ,σ2)

[(
K − K̂

)
+

]
≤ K (1− η) . (2.20)

Roughly speaking, H-SMUCE detects any change-point of the signal µ under the as-

sumptions of Theorem 7 at least with probability η. A sharper version with different

probabilities η1, . . . , ηK is given in Theorem 19. Such a result clarifies the dependence on

the different weights, but is technically more elaborate. Combining Theorems 5, 6 and 7

gives upper bounds for the probability P(K̂ 6= K) and the expectation E[|K̂ − K|] that

H-SMUCE missspecifies the number of change-points.

Remark 8 (Vanishing errors). For a fixed signal (fixed ∆ and λ are sufficient) both errors

vanish asymptotically if α = αn → 0 is chosen such that log(αnβkn,n)/n → 0, with

triangular scheme β1,n, . . . , βdn,n for the weights in (2.14). We can achieve a rate arbitrary

close to the exponential rate by the choice αn = exp(−n/rn), with rn → ∞ arbitrarily

slow. The condition on the sequence βkn,n allows a variety of possible choices of the

weights, too. For instance, the choice β1,n = · · · = βdn,n = 1/dn, which weights all scales

equally, fulfils this condition.

A direct consequence is the strong model consistency of H-SMUCE.

Theorem 9 (Strong model consistency). Assume the setting of Theorem 5 and let (K̂n)n

be the sequence of estimated numbers of change-points by H-SMUCE, where K̂n is as K̂

with significance level αn and corresponding weights β1,n, . . . , βdn,n. Moreover, let S∆,λ
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be as in (2.19) with ∆, λ > 0 arbitrary, but fixed, and kn := blog2(nλ/4)c. Let ρ > 0 be

arbitrary, but fixed. If

lim
n→∞

n1+ρ

αn
= 0 and lim

n→∞

log (αnβkn,n)

n
= 0 (2.21)

holds, then K̂n → K, almost surely and uniformly in S∆,λ.

Again, there is a wide range of sequences αn and βkn,n to satisfy (2.21). Moreover, we still

have (weak) model consistency, if αn → 0 and the second condition of (2.21) holds.

2.3.2. Confidence sets

In this section we obtain confidence sets for the signal µ and for the locations of the

change-points. First, we show that C(Y,q) in (2.5) is a confidence set for the unknown

signal µ.

Theorem 10 (Confidence set). Assume the setting of Theorem 5 and let S∆,λ be as in

(2.19) with ∆, λ > 0 arbitrary, but fixed, and kn := blog2(nλ/4)c. Let C(Y, qn) be as in

(2.5) and qn be a vector of critical values determined by significance level α and weights

β1,n, . . . , βdn,n, with limn→∞ n
−1 log(βkn,n) = 0. Then,

lim
n→∞

inf
(µ,σ2)∈S∆,λ

P(µ,σ2) (µ ∈ C (Y, qn)) ≥ 1− α. (2.22)

This shows that the asymptotic coverage of C(Y,qn) is at least 1−α. Note that also the

length of the vector Y increases in n, but we suppressed it to simplify notation. Lemma

20 gives an exponential inequality similar to (2.20) which shows that C (Y,q) is also a

non-asymptotic confidence set, but at a different significance level. We further derive from

this set confidence intervals for the change-point locations.

Theorem 11 (Change-point locations). Assume the setting of Theorem 10, where α is

replaced by a sequence αn → 0. Let cn := rn/n ≤ λ/2 and kn := blog2(ncn/2)c s.t.

lim inf
n→∞

rn
log(n)

>
216

min(∆2, 1)
and lim

n→∞

log (αnβkn,n)

rn
= 0. (2.23)

Then,

lim
n→∞

sup
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
sup

µ̂∈C(Y,qn)
max

k=1,...,K
c−1
n |τk − τ̂k| > 1

)
= 0. (2.24)

Here, the rate cn is equal to the sampling rate 1/n up to the (logarithmic) rate rn depending

on the tuning parameters αnβkn,n. For example, if αnβkn,n � n−γ , γ ≥ 0, rn/ log(n) →
∞ is sufficient to satisfy (2.23). A non-asymptotic statement is given in Lemma 21.

For visualization of the confidence statements it is useful to further derive a confidence

band B(qn) for the signal as in (Frick et al., 2014a, Corollary 3 and the explanation

around). It can be shown that also the collection I(qn) = {K̂n, B(qn), [Lk, Rk]k=1,...,K̂n
},
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with [Lk, Rk] confidence intervals for the change-point locations according to Theorem

11, satisfies (2.22). Recall Figures 1.2 and 2.1 for an illustration. It is also possible to

strengthen the statements of this section to sequences of vanishing signals with ∆n → 0

and λn → 0 slow enough, but we omit such results.

2.3.3. Asymptotic detection rates for vanishing signals

So far we always considered a constant signal, in this section we focus on the detection of

vanishing changes when the number of observations increases. We start with the detection

of a single vanishing bump against a noisy background.

Theorem 12 (Single vanishing bump). Assume the heterogeneous Gaussian change-

point model (2.1) with sequences of bump signals µn(t) := m0 + δn1lIn(t) and σn(t) :=

1lICn (t) + sn1lIn(t), where δn 6= 0 is a sequence of change-point sizes, sn > 0 a sequence

of standard deviations on In ∈ D, which is a sequence of intervals with |In| → 0. Let

kn := blog2(n|In|)c and ∆n := |δn|/sn be the sequence of the signal to noise ratios. Let

further (K̂n)n be the sequence of the estimated numbers of change-points by H-SMUCE

(2.18), with significance levels αn and weights β1,n, . . . , βdn,n. We further assume√
n|In|∆n ≥ (4 + εn)

√
− log(|In|), (2.25)

with possibly εn → 0, but such that εn
√
− log(|In|)→∞ and

lim sup
n→∞

√
− log (αnβkn,n)

εn
√
− log(|In|)

<
1

4
,

lim inf
n→∞

n|In|
log(n)

> 64 and lim
n→∞

log (αnβkn,n)

n|In|
= 0, (2.26)

lim
n→∞

sn

√
|ICn |√
|In|

=∞ and (2.27)

lim inf
n→∞

log(βkn,n)

log(βmin,n)
> 0, with βmin,n := min{β1,n, . . . , βdn,n}. (2.28)

Then,

lim
n→∞

P(µn,σ2
n)

(
K̂n > 0

)
= 1. (2.29)

Conditions (2.25) and (2.26) are the main assumptions of the theorem to detect the vanish-

ing signal on In. We will discuss them together with the conditions of Theorem 13. We also

need the weak technical conditions (2.27) and (2.28) on the size of |ICn | and the minimal

weight βmin,n to ensure that the detection power on the complement ICn is large enough,

too. Condition (2.28) is for instance fulfilled by uniform weights β1,n = · · · = βdn,n = 1/dn,

but many other choices are possible, too. We further assumed In ∈ D, otherwise we have

to replace In by the largest subinterval which is an element of the dyadic partition. Such

an interval exists always and has at least length n−12blog2(n|In|/2)c > |In|/4. Therefore,
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omitting the condition In ∈ D would not change the rate. It is possible to strengthen

(2.29) further to limn→∞ P(µn,σ2
n)(K̂n ≥ K) = 1 if we increase all constants a little bit.

We now move to the detection of a signal with several vanishing change-points.

Theorem 13 (Multiple vanishing change-points). Assume the heterogeneous Gaussian

change-point model (2.1). Let (Kn)n := (|J (µn)|)n be the sequence of true number

of change-points. Let further (K̂n)n, αn and β1,n, . . . , βdn,n be as in Theorem 12. Let

S∆n,λn ⊂ S be a sequence of submodels as in (2.19) and kn := blog2(nλn/4)c. We further

assume

lim inf
n→∞

nλn
log(n)

> 512 and lim
n→∞

log (αnβkn,n)

nλn
= 0 (2.30)

as well as

(1) for large scales, i.e,. lim infn>0 λn > 0, the limit nλn∆2
n log(1/(αnβkn,n))−1 →∞,

(2) for small scales, i.e., λn → 0, the inequality√
nλn∆n ≥

(√
512 + C + εn

)√
− log(λn) (2.31)

with possibly εn → 0, but such that εn
√
− log(λn)→∞ and

lim sup
n→∞

√
log(8/(αnβkn,n))

εn
√
− log(λn))

<
1√
512

,

with C = 0 for Kn bounded and C = 16
√

6 for Kn unbounded.

Then,

lim
n→∞

sup
(µn,σ2

n)∈S∆n,λn

P(µn,σ2
n)

(
K̂n < Kn

)
= 0.

Theorems 12 and 13 state conditions on the tuning parameters αn and βkn,n as well

as on the length of the minimal scale |In| =: λn (to simplify notations we only write

λn in the following) and the standardized jump size ∆n to detect the vanishing signals

uniformly over S∆n,λn . If, in addition, limn→∞ αn = 0 holds, then we control also the

probability to overestimate the number of change-points and therefore the estimation of

the number of change-points is still consistent in the case of a vanishing signal. The

main condition in both theorems is that
√
nλn∆n has to be at least of order

√
− log(λn),

see (2.25) and (2.31). This is optimal in the sense that no signal with a smaller rate

can be detected asymptotically with probability one, see (Dümbgen and Spokoiny, 2001;

Chan and Walther, 2013; Frick et al., 2014a) for the case of homogeneous observations,

and note that this is a sub-model of our model. But different to the homogeneous case

we need, in addition, that λn is at least of order log(n)/n, see (2.26) and (2.30). Such

a restriction appears reasonable, since for the additional variance estimation only the

number of observation on the segment is relevant and not the size of the change. Finally,

we observe that the constants encountered in the lower detection bound for H-SMUCE

22



in (2.25) and (2.31) increase with the difficulty of the estimation problem, where the

difficulty is represented by the number of vanishing segments. All of these constants are

a little bit larger as the analogue constants for SMUCE in (Frick et al., 2014a, Theorem

5 and 6) reflecting the additional difficulty encountered by the heterogeneous noise. More

precisely, we have 4 instead of the optimal
√

2 for one vanishing segment,
√

512 instead

of 4 for a bounded number of vanishing segments and
√

512 + 16
√

6 instead of 12 for an

unbounded number of vanishing segments. Note again, that the optimal constants for the

heterogeneous case are unknown to us.

2.3.4. Choice of the tuning parameters

In this section we discuss the choice of the tuning parameters α and β1, . . . , βdn .

Choice of α The choice depends on the application. If a strict overestimation control

of the number of change-points K is desirable, α should be chosen small, e.g., 0.05 or

0.1, recall Theorems 5 and 6. This might come at the expense of missing change-points

but with large probability not detecting too many, recall Figure 1.2 and see also the

simulations in Section 2.4. If change-point screening is the primarily goal, i.e., we aim

to avoid missing of change-points, α should be increased, e.g., α = 0.5 or even higher,

since Theorem 7 shows that the error probability to underestimate the number of change-

points decreases with increasing α. If model selection, i.e., K̂ = K, is the major aim, an

intermediate level that balances the over- and underestimation error should be chosen, e.g.

α between 0.1 and 0.5. Both errors vanish super polynomially for the asymptotic choice

α = αn ∈ exp(−o(n)), see Remark 8. A finite sample approach is to weight these error

probabilities γP(K̂ > K) + (1− γ)P(K̂ < K), with γ ∈ (0, 1), and to choose α such that

its upper bound

γα+ (1− γ)

1−

1− 3 exp

− 1

48

(√
nλ∆2

32
−

√
16 log

(
8

λαβk

))2

+

2K

+


is minimized. This also allows to incorporate prior information on (λ,∆). Alternatively,

the bound on the expectation E[|K̂−K|] by combining Theorems 6 and 7 can be minimized

to take the size of the missestimation into account. Despite of all possibilities to choose

the ”best” α for a given application, comparing estimates at different α can be helpful to

trace the ”stability of evidence” of the estimated change-points at different significance

levels. Of course, the interpretation of such a ”significance screening” does not allow for a

frequentist interpretation of a significance level anymore as α has to be fixed in advance,

see for instance (Schervish, 1996). Nevertheless, it might give for instance some indication

whether to perform further experiments. Despite of this, for a fixed α the confidence

statements of H-SMUCE can also be used to support findings by other estimators.
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Choice of β1, . . . , βdn As a default choice we recommend equal weights β1 = · · · =

βdn = 1/dn. This choice fulfils, together with many other choices, the conditions of Theo-

rems 9 and 10. Unlike as for the significance level α only the bound for the underestimation

of the number of change-points depends on these weights. Note, that this gives the user

the possibility to incorporate prior information on the scales without violating the overes-

timation control in Theorems 5 and 6. If for instance changes are expected to occur only

on small segments then the detection power on these scales can be increased if the first

weights are chosen large and the other ones small (or even zero). In contrast, if the general

signal to noise ratio is expected to be very small, then it is nearly impossible to detect

changes on small scales and larger scales should be weighted more to detect at least the

changes on these scales. A quantitative influence of the weights on the detection power can

be seen in the underestimation bound in Theorem 19 which is a refinement of Theorem 7.

We also investigate such choices quantitatively in simulations in Section 2.4.2.

2.4. Simulations

In this section we compare H-SMUCE in simulations with CBS (Venkatraman and Ol-

shen, 2007), cumSeg (Muggeo and Adelfio, 2011) and LOOVF (Arlot and Celisse, 2011)

as they are also designed to be robust against heterogeneous noise. Moreover, we include

SMUCE (Frick et al., 2014a) in simulations with a constant variance as a benchmark to

examine how much the detection power of H-SMUCE decreases in this case, which may

be regarded as the price for adaptation to heterogeneous noise. In most of the simulations

we fix the weights β1, . . . , βdn = 1/dn and vary the significance level α. A simulation

with tuned weights can be found in Section 2.4.2. The results for H-SMUCE are ob-

tained by the R function stepFit.hsmuce in the HSMUCE package (Pein, 2016), but up

to small numerical errors the same results will be obtained by the stepR package using

the function stepFit. For circular binary segmentation (CBS) we call the function seg-

mentByCBS, http://cran.r-project.org/web/packages/PSCBS/, version 0.40.4, 2014-

02-04, with the standard parameters. For the cross-validation method LOOVF we use the

Matlab function proc LOOVF, http://www.di.ens.fr/~arlot/code/CHPTCV.htm, ver-

sion 1.0, 2010-10-27, with the parameter choice of the demo file. For cumSeg we call the

method jumpoints, http://cran.r-project.org/web/packages/cumSeg/, version 1.1,

2011-10-14, with the parameter k large enough such that the estimation is not influenced

by this choice. For SMUCE we call the function smuceR, http://cran.r-project.org/

web/packages/stepR, version 1.0-3, 2015-06-18, with the standard parameters, in partic-

ular the interval set of all intervals is used if n ≤ 1 000.

To avoid specific interactions between the signal and the dyadic partition we generate in

each repetition a random pair (µR, σ
2
R) ∈ S. All random variables are independent from

each other.

(a) We fix the number of observations n, the number of change-points K, a constant C

and a minimum value for the smallest scale λmin.
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(b) We draw the locations of the change-points τ0 := 0 < τ1 < · · · < τK < 1 =: τK+1

uniformly distributed with the restriction that λ := mink=0,...,K |τk+1 − τk| ≥ λmin.

(c) We choose the function values s0, . . . , sK of the standard deviation function σR by

sk := 2Uk , where U0, . . . , UK are uniform distributed on [−2, 2].

(d) We determine the function values m0, . . . ,mK of the signal µR such that

|mk −mk−1| =

√√√√C

n
min

(
τk+1 − τk

s2
k

,
τk − τk−1

s2
k−1

)−1

∀ k = 1, . . . ,K. (2.32)

Thereby, we start with m0 = 0 and choose randomly with probability 1/2 whether

the expectation increases or decreases.

By (2.32) we provide a situation where all change-points are similarly hard to find, recall

the minimax detection boundary from Section 2.3.3. An example has been displayed in

Figure 1.2 in the introduction, where H-SMUCE misses at α = 0.1 one change-point and

detects for α between 0.15 and 0.99 (only displayed for α = 0.5) the correct number of

change-points. In Figure 2.2 we see that CBS (Venkatraman and Olshen, 2007) finds

also all change-points, but detects false positives. Less good is the performance of cumSeg

(Muggeo and Adelfio, 2011) and LOOVF (Arlot and Celisse, 2011) which both miss several

changes and LOOVF adds also a false positive. We compare these methods now more

extensively. All simulations are repeated 10 000 times.

In the following we report the difference between the estimated K̂ and the true number K

of change-points as well as the mean of the absolute value of this difference. Additionally,

we use the false positive sensitive location error

FPSLE =
n

2K̂

K̂+1∑
k=1

|τlk−1 − τ̂k−1|+ |τlk − τ̂k|,

with lk ∈ {1, . . . ,K+1} such that (τ̂k−1 + τ̂k)/2 ∈ (τlk−1, τlk ], i.e., the left and right neigh-

bouring change-points to the middle point of (τ̂k−1, τ̂k], and the false negative sensitive

location error

FNSLE =
n

2K

K+1∑
k=1

|τk−1 − τ̂lk−1|+ |τk − τ̂lk |,

with lk ∈ {1, . . . , K̂ + 1} such that (τk−1 + τk)/2 ∈ (τ̂lk−1, τ̂lk ], see (Futschik et al., 2014,

Section 3.1), to rate the estimation of the locations of the change-points. We also show

the mean integrated squared (absolute) error MISE (MIAE) for all methods.

2.4.1. Simulation results

In this section we discuss the results of the simulations assuming model (2.1) and (2.2).

In Table 2.1 we consider a constant variance and in Table 2.2 heterogeneous errors. We
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(a) CBS.
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(b) cumSeg.
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(c) LOOVF.

Figure 2.2.: Observations (black points) and true signal (black line) together with esti-
mates by CBS, cumSeg and LOOVF for the data from Figure 1.2. All param-
eters are chosen as described in Section 2.4.

excluded LOOVF from simulations for larger n due to its large computation time, for more

details on the run times see (Pein et al., 2017c, Figure 8 in the Supplement).

All simulations confirm the overestimation control α for H-SMUCE from Theorem 5 and

the exponential decay of the overestimation in Theorem 6. For a constant signal, corre-

sponding to K = 0 in Table 2.1, H-SMUCE overestimates the number of change-points

even slightly less than SMUCE, whereas CBS and cumSeg overestimate hardly ever. In

the case of a constant variance we found that the detection power of H-SMUCE is only

slightly worse than SMUCE for K = 2, although SMUCE used instead of the dyadic

partition D the system of all intervals. The difference is larger for K = 10 and in this

case also CBS and cumSeg performs better than H-SMUCE, since the detection power

of H-SMUCE depends strongly on the lengths of the constant segments. Moreover, λmin

26



Table 2.1.: Simulations with constant variance and C = 200. The columns from left to right give the
setting, the method, the proportions of K̂ − K and the means of the corresponding error
criteria.

Setting Method ≤ −2 -1 0 +1 ≥ +2 |K̂ −K| FPSLE FNSLE MISE MIAE

n = 1000, H-SMUCE, α = 0.1 - - 0.965 0.035 0.000 0.035 17.75 4.73 0.0035 0.0365
K = 0, H-SMUCE, α = 0.3 - - 0.867 0.128 0.005 0.138 68.95 18.42 0.0045 0.0401
µ = µR ≡ 0, H-SMUCE, α = 0.5 - - 0.719 0.256 0.025 0.307 153.45 41.25 0.0061 0.0454
σ = σR SMUCE, α = 0.1 - - 0.965 0.034 0.001 0.036 17.90 5.03 0.0039 0.0371
≡ const SMUCE, α = 0.3 - - 0.832 0.160 0.008 0.177 88.45 24.80 0.0059 0.0435

SMUCE, α = 0.5 - - 0.667 0.298 0.035 0.370 184.90 50.94 0.0082 0.0499
CBS - - 0.991 0.000 0.009 0.018 8.90 1.26 0.0037 0.0351
cumSeg - - 0.999 0.001 0.000 0.001 0.30 0.06 0.0029 0.0345

n = 1000, H-SMUCE, α = 0.1 0.010 0.174 0.802 0.014 0.000 0.208 26.32 72.66 0.0132 0.0613
K = 2, H-SMUCE, α = 0.3 0.004 0.108 0.819 0.067 0.002 0.187 38.10 52.90 0.0114 0.0571
λmin = 30, H-SMUCE, α = 0.5 0.002 0.070 0.768 0.150 0.010 0.244 64.14 48.50 0.0111 0.0573
µ = µR, SMUCE, α = 0.1 0.003 0.074 0.912 0.011 0.000 0.092 16.96 34.03 0.0092 0.0513
σ ≡ 1 SMUCE, α = 0.3 0.001 0.040 0.892 0.065 0.002 0.112 32.24 27.39 0.0090 0.0513

SMUCE, α = 0.5 0.001 0.025 0.806 0.155 0.013 0.209 63.30 32.33 0.0095 0.0536
CBS 0.005 0.060 0.821 0.082 0.033 0.221 37.55 37.57 0.0111 0.0527
cumSeg 0.025 0.116 0.749 0.099 0.011 0.289 65.32 82.63 0.0364 0.0738

n = 1000, H-SMUCE, α = 0.1 0.009 0.160 0.815 0.015 0.000 0.194 27.14 68.91 0.0127 0.0611
K = 2, H-SMUCE, α = 0.3 0.004 0.098 0.829 0.067 0.001 0.176 37.77 49.63 0.0111 0.0572
λmin = 50, H-SMUCE, α = 0.5 0.002 0.063 0.774 0.152 0.009 0.237 63.46 46.06 0.0109 0.0573
µ = µR, SMUCE, α = 0.1 0.003 0.068 0.919 0.009 0.000 0.084 16.82 31.94 0.0091 0.0515
σ ≡ 1 SMUCE, α = 0.3 0.001 0.035 0.899 0.063 0.002 0.104 31.19 25.81 0.0090 0.0515

SMUCE, α = 0.5 0.001 0.020 0.819 0.147 0.013 0.195 59.86 30.23 0.0095 0.0537
CBS 0.005 0.058 0.824 0.083 0.031 0.215 37.50 36.27 0.0112 0.0532
cumSeg 0.023 0.110 0.769 0.090 0.008 0.262 59.74 79.25 0.0336 0.0741

n = 1000, H-SMUCE, α = 0.1 0.508 0.330 0.161 0.001 0.000 1.634 54.37 172.66 0.1112 0.1842
K = 10, H-SMUCE, α = 0.3 0.354 0.377 0.263 0.006 0.000 1.233 44.53 127.81 0.0817 0.1561
λmin = 30, H-SMUCE, α = 0.5 0.253 0.384 0.346 0.017 0.000 0.987 40.88 102.88 0.0679 0.1419
µ = µR, SMUCE, α = 0.1 0.163 0.352 0.485 0.001 0.000 0.721 29.14 77.49 0.0424 0.1193
σ ≡ 1 SMUCE, α = 0.3 0.093 0.301 0.598 0.007 0.000 0.513 24.23 56.17 0.0366 0.1099

SMUCE, α = 0.5 0.062 0.258 0.657 0.022 0.001 0.415 23.34 46.37 0.0342 0.1060
CBS 0.033 0.129 0.531 0.204 0.102 0.644 42.69 45.08 0.0417 0.1078
cumSeg 0.163 0.216 0.403 0.165 0.053 0.904 65.16 105.59 0.1107 0.1492

n = 1000, H-SMUCE, α = 0.1 0.445 0.356 0.198 0.001 0.000 1.474 59.32 162.03 0.0913 0.1801
K = 10, H-SMUCE, α = 0.3 0.303 0.384 0.307 0.005 0.000 1.104 47.34 120.10 0.0682 0.1532
λmin = 50, H-SMUCE, α = 0.5 0.213 0.379 0.390 0.018 0.001 0.881 41.98 96.70 0.0577 0.1398
µ = µR, SMUCE, α = 0.1 0.155 0.351 0.494 0.000 0.000 0.697 32.51 77.29 0.0426 0.1235
σ ≡ 1 SMUCE, α = 0.3 0.085 0.299 0.612 0.004 0.000 0.485 26.14 55.78 0.0368 0.1131

SMUCE, α = 0.5 0.054 0.252 0.680 0.014 0.000 0.381 23.81 45.39 0.0344 0.1086
CBS 0.027 0.135 0.524 0.203 0.111 0.653 45.64 44.88 0.0425 0.1116
cumSeg 0.165 0.217 0.389 0.179 0.050 0.904 63.73 104.37 0.1037 0.1522

plays a similar role as the number of change-points K, since the average constant segments

length decreases if λmin decreases or K increases. Worse results for smaller lengths are

due to the familywise error control α of H-SMUCE as it guarantees a strict control of

overestimating the number of change-points.

Similar results can be observed for n = 100 with heterogeneous errors. CBS performs

better than cumSeg and LOOVF, and in particular better than in the single change-point

setting. CBS outperforms H-SMUCE for K = 5, although H-SMUCE has a much smaller

tendency to overestimate the number of change-points, whereas in particular CBS and

LOOVF tend to overestimation. This can also be seen for the MISE and MIAE as these

measures are much more affected by underestimation than by overestimation. These find-

ings are also supported by the FPSLE and the FNSLE, the FPSLE is heavily affected by

overestimation, whereas the FNSLE is larger in case of underestimation.
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Table 2.2.: Simulations with heterogeneous errors and C = 200. The columns from left to right give the
setting, the method, the proportions of K̂ − K and the means of the corresponding error
criteria.

Setting Method ≤ −2 -1 0 +1 ≥ +2 |K̂ −K| FPSLE FNSLE MISE MIAE

n = 100, H-SMUCE, α = 0.1 0.000 0.125 0.873 0.002 0.000 0.128 1.51 4.07 0.8182 0.3308
K = 2, H-SMUCE, α = 0.3 0.000 0.042 0.945 0.013 0.000 0.055 1.04 1.70 0.4217 0.2482
λmin = 15, H-SMUCE, α = 0.5 0.000 0.016 0.940 0.043 0.000 0.060 1.63 1.26 0.2776 0.2291
µ = µR, CBS 0.000 0.001 0.925 0.058 0.016 0.092 2.03 0.79 0.2220 0.2143
σ = σR cumSeg 0.000 0.066 0.720 0.167 0.047 0.343 6.50 4.39 0.4898 0.3053

LOOVF 0.000 0.031 0.700 0.163 0.106 0.683 12.83 3.36 0.3167 0.2639

n = 100, H-SMUCE, α = 0.1 0.608 0.364 0.028 0.000 0.000 1.610 13.51 32.33 9.5104 1.8626
K = 5, H-SMUCE, α = 0.3 0.212 0.577 0.211 0.000 0.000 1.003 8.63 19.80 6.5362 1.3263
λmin = 15, H-SMUCE, α = 0.5 0.061 0.466 0.473 0.001 0.000 0.588 5.27 11.65 3.9992 0.9047
µ = µR, CBS 0.001 0.008 0.884 0.089 0.018 0.137 1.65 1.02 0.4539 0.3130
σ = σR cumSeg 0.098 0.230 0.544 0.117 0.012 0.588 6.93 12.13 1.2454 0.5441

LOOVF 0.031 0.112 0.520 0.152 0.184 1.648 14.61 6.92 0.5887 0.4042

n = 1000, H-SMUCE, α = 0.1 0.000 0.007 0.974 0.018 0.000 0.026 8.42 5.83 0.0195 0.0617
K = 2, H-SMUCE, α = 0.3 0.000 0.001 0.921 0.075 0.002 0.080 24.72 9.57 0.0193 0.0636
λmin = 30, H-SMUCE, α = 0.5 0.000 0.000 0.827 0.162 0.012 0.185 53.23 17.09 0.0204 0.0668
µ = µR, CBS 0.005 0.019 0.774 0.146 0.056 0.298 52.95 21.17 0.0347 0.0711
σ = σR cumSeg 0.022 0.161 0.683 0.103 0.030 0.387 64.04 92.66 0.0765 0.1112

n = 1000, H-SMUCE, α = 0.1 0.000 0.002 0.982 0.017 0.000 0.018 7.25 4.35 0.0182 0.0630
K = 2, H-SMUCE, α = 0.3 0.000 0.000 0.926 0.071 0.002 0.076 22.64 8.49 0.0196 0.0657
λmin = 50, H-SMUCE, α = 0.5 0.000 0.000 0.830 0.160 0.010 0.181 50.02 16.22 0.0214 0.0692
µ = µR, CBS 0.003 0.011 0.776 0.153 0.057 0.296 53.69 15.85 0.0355 0.0730
σ = σR cumSeg 0.016 0.155 0.699 0.098 0.031 0.370 60.63 84.69 0.0739 0.1132

n = 1000, H-SMUCE, α = 0.1 0.123 0.429 0.446 0.002 0.000 0.686 22.83 55.06 0.4045 0.2402
K = 10, H-SMUCE, α = 0.3 0.016 0.199 0.770 0.015 0.000 0.245 11.98 21.12 0.1863 0.1618
λmin = 30, H-SMUCE, α = 0.5 0.002 0.088 0.863 0.045 0.001 0.140 11.84 12.71 0.1220 0.1404
µ = µR, CBS 0.002 0.008 0.463 0.316 0.211 0.843 47.26 15.20 0.1274 0.1435
σ = σR cumSeg 0.439 0.243 0.187 0.085 0.046 1.674 94.91 228.44 0.3120 0.2806

n = 1000, H-SMUCE, α = 0.1 0.025 0.262 0.711 0.002 0.000 0.315 16.94 32.39 0.2102 0.1866
K = 10, H-SMUCE, α = 0.3 0.002 0.058 0.925 0.015 0.000 0.076 8.46 10.58 0.1009 0.1372
λmin = 50, H-SMUCE, α = 0.5 0.000 0.017 0.940 0.043 0.001 0.061 9.03 7.72 0.0860 0.1307
µ = µR, CBS 0.001 0.007 0.451 0.319 0.222 0.868 47.81 15.10 0.1293 0.1463
σ = σR cumSeg 0.433 0.254 0.197 0.082 0.035 1.601 97.00 223.47 0.2771 0.2794

n = 10000, H-SMUCE, α = 0.1 0.000 0.004 0.983 0.013 0.000 0.017 50.65 30.94 0.0016 0.0183
K = 2, H-SMUCE, α = 0.3 0.000 0.002 0.936 0.061 0.001 0.065 188.73 63.72 0.0016 0.0188
λmin = 30, H-SMUCE, α = 0.5 0.000 0.001 0.865 0.128 0.006 0.142 407.41 125.46 0.0016 0.0197
µ = µR, CBS 0.012 0.036 0.532 0.200 0.220 0.886 1548.96 373.22 0.0057 0.0235
σ = σR cumSeg 0.054 0.245 0.600 0.084 0.017 0.477 682.64 1457.08 0.0090 0.0379

n = 10000, H-SMUCE, α = 0.1 0.000 0.001 0.984 0.015 0.000 0.016 53.23 24.89 0.0014 0.0182
K = 2, H-SMUCE, α = 0.3 0.000 0.000 0.941 0.057 0.002 0.060 181.06 59.83 0.0014 0.0188
λmin = 50, H-SMUCE, α = 0.5 0.000 0.000 0.870 0.124 0.007 0.137 394.16 115.62 0.0016 0.0197
µ = µR, CBS 0.012 0.035 0.521 0.208 0.225 0.917 1601.54 366.42 0.0058 0.0238
σ = σR cumSeg 0.052 0.241 0.603 0.087 0.016 0.473 673.81 1430.47 0.0084 0.0377

n = 10000, H-SMUCE, α = 0.1 0.023 0.231 0.741 0.005 0.000 0.282 58.42 165.72 0.0178 0.0431
K = 10, H-SMUCE, α = 0.3 0.006 0.123 0.844 0.027 0.000 0.162 68.27 98.25 0.0122 0.0385
λmin = 30, H-SMUCE, α = 0.5 0.003 0.079 0.854 0.064 0.002 0.151 108.19 87.63 0.0103 0.0377
µ = µR, CBS 0.024 0.043 0.180 0.222 0.531 2.088 1286.59 525.95 0.0198 0.0475
σ = σR cumSeg 0.619 0.169 0.130 0.059 0.024 2.345 1000.55 3122.28 0.0433 0.0917

n = 10000, H-SMUCE, α = 0.1 0.009 0.165 0.819 0.007 0.000 0.190 59.11 124.05 0.0132 0.0418
K = 10, H-SMUCE, α = 0.3 0.001 0.064 0.905 0.029 0.001 0.097 67.32 65.54 0.0089 0.0375
λmin = 50, H-SMUCE, α = 0.5 0.000 0.029 0.900 0.067 0.003 0.102 103.42 60.04 0.0078 0.0368
µ = µR, CBS 0.019 0.034 0.162 0.228 0.557 2.203 1317.31 467.47 0.0198 0.0475
σ = σR cumSeg 0.607 0.188 0.131 0.051 0.023 2.277 997.64 3105.88 0.0405 0.0925

n = 10000, H-SMUCE, α = 0.1 0.609 0.284 0.107 0.001 0.000 1.908 155.65 504.02 0.1016 0.1031
K = 25, H-SMUCE, α = 0.3 0.278 0.399 0.318 0.006 0.000 1.044 94.53 263.30 0.0640 0.0789
λmin = 30, H-SMUCE, α = 0.5 0.140 0.371 0.470 0.019 0.000 0.696 84.07 182.54 0.0483 0.0703
µ = µR, CBS 0.015 0.024 0.069 0.128 0.765 3.348 921.91 409.98 0.0411 0.0723
σ = σR cumSeg 0.934 0.036 0.018 0.009 0.003 6.028 1043.82 3488.43 0.1159 0.1540

n = 10000, H-SMUCE, α = 0.1 0.396 0.383 0.220 0.001 0.000 1.334 146.74 387.66 0.0699 0.0945
K = 25, H-SMUCE, α = 0.3 0.103 0.359 0.528 0.010 0.000 0.591 85.33 175.03 0.0390 0.0715
λmin = 50, H-SMUCE, α = 0.5 0.038 0.241 0.690 0.030 0.001 0.352 78.74 114.01 0.0291 0.0647
µ = µR, CBS 0.010 0.017 0.055 0.120 0.799 3.529 934.29 346.33 0.0405 0.0726
σ = σR cumSeg 0.934 0.036 0.019 0.008 0.003 5.849 1053.35 3462.62 0.1022 0.1547
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In all simulations with heterogeneous errors and 1 000 observations H-SMUCE outper-

forms the other methods, for 10 000 observations this becomes even more pronounced. In

comparison to the simulation with 100 observations the tendency of CBS to overestimate

the number of change-points becomes then also more prominent. Finally, in further sim-

ulations (not displayed) we found that the detection power of all methods decreases for

smaller C in (2.32), but all results remain qualitatively the same. All in all, we found

that H-SMUCE performs well as sample size becomes larger, in particular if the constant

segments are not too short as indicated by assumption (2.30) in Theorem 13.

2.4.2. Prior information on scales

To demonstrate the effect of incorporating prior knowledge about those scales where

change-points are likely to happen we consider again the observations from Table 2.2 with

n = 10 000, K = 10 and λmin = 50. To this end, we use the adapted weights, where we

eliminate the smallest three scales k = 1, 2, 3, since all constant segments contain at least

50 observations and therefore these small scales are not needed for detection. Moreover,

we choose β̃4 = 1/4, β̃5 = 1/4, β̃6 = 1/6, β̃7 = 1/6, β̃8 = 1/12, β̃9 = 1/12 in decreasing

order, since change-points on smaller scales are more likely and harder to detect. For the

same reasons we eliminate the four largest scales k = 10, 11, 12, 13, too.

Table 2.3.: n = 10 000 observations, K = 10 change-points, C = 200 and λmin = 50 from Table 2.2.
H-SMUCE uses the weights β̃4, . . . , β̃9. The columns from left to right give the method, the
proportions of K̂ −K and the means of the corresponding error criteria.

Method ≤ −2 -1 0 +1 ≥ +2 |K̂ −K| FPSLE FNSLE MISE MIAE

H-SMUCE, α = 0.1 0.005 0.117 0.876 0.002 0.000 0.130 50.82 113.50 0.0107 0.0406
H-SMUCE, α = 0.3 0.000 0.032 0.952 0.016 0.000 0.049 48.39 49.84 0.0075 0.0368
H-SMUCE, α = 0.5 0.000 0.013 0.940 0.045 0.001 0.061 78.86 48.19 0.0072 0.0368

A comparison of Table 2.2 and 2.3 shows that the modified weights increase the detection

power of H-SMUCE for all significance levels, so we encourage the user to adapt the

weights if prior information on the scales where changes occur is available.

2.4.3. Robustness against model violations

We begin by investigating how robust the methods are against a violation of the as-

sumption that the standard deviation changes only at the same locations as the mean

changes. Such violations occur in many applications and it is often impossible to model

these changes precisely. We consider continuous changes as well as abrupt changes. Fig-

ure 2.3 shows the used standard deviation functions in Table 2.4 to examine robustness

against variance changes on constant segments. We consider with the sinus-shaped stan-

dard deviation σ1(t) := 1 + 0.5 sin(20πt) continuous changes, with the piecewise linear

standard deviation σ2(t) := 0.5 +
∑9

i=0 (10t− i)1l(0.1i,0.1(i+1)](t) continuous and abrupt

changes at the same time and with the piecewise constant standard deviation σ3(t) :=∑n/200
i=1 0.51l(200(i−1)/n, 200(i−1)/n+100/n](t) + 1l(200(i−1)/n+100/n, 200i/n](t) abrupt changes.
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Figure 2.3.: The standard deviation functions used in Table 2.4.

In Table 2.4 we see that H-SMUCE and CBS perform very robust against heterogeneous

noise on the constant segments, whereas, remarkably, the detection power of cumSeg is

even improved. Moreover, in additional simulations (not displayed) with less observations

we found that LOOVF is very robust, too.

Furthermore, we investigate robustness against heavy tails of the error distribution. In

Table 2.5 we consider t3-distributed errors which are scaled such that the expectation and

the standard deviation are the same as in Section 2.4.1.

As expected SMUCE is not robust against heavy tails, whereas H-SMUCE provides rea-

sonable results. In comparison to Gaussian errors H-SMUCE is not influenced for K = 0,

Table 2.4.: Simulations with standard deviations σ1(·)-σ3(·) from Figure 2.3 and C = 200. The columns
from left to right give the setting, the method, the proportions of K̂ −K and the means of
the corresponding error criteria.

Setting Method ≤ −2 -1 0 +1 ≥ +2 |K̂ −K| FPSLE FNSLE MISE MIAE

n = 1000, H-SMUCE, α = 0.1 - - 0.968 0.032 0.000 0.033 16.30 4.12 0.0013 0.0277
K = 0, H-SMUCE, α = 0.3 - - 0.876 0.118 0.005 0.129 64.60 15.91 0.0018 0.0306
µ = µR ≡ 0, H-SMUCE, α = 0.5 - - 0.734 0.239 0.027 0.293 146.75 36.45 0.0023 0.0338
σ = σ1 CBS - - 0.916 0.001 0.083 0.186 93.25 11.21 0.0045 0.0288

cumSeg - - 1.000 0.000 0.000 0.000 0.20 0.04 0.0011 0.0264

n = 1000, H-SMUCE, α = 0.1 - - 0.968 0.031 0.001 0.032 16.10 4.12 0.0013 0.0278
K = 0, H-SMUCE, α = 0.3 - - 0.876 0.118 0.005 0.129 64.55 15.73 0.0017 0.0306
µ = µR ≡ 0, H-SMUCE, α = 0.5 - - 0.734 0.241 0.024 0.292 145.80 35.28 0.0022 0.0340
σ = σ2 CBS - - 0.937 0.004 0.060 0.135 67.70 8.96 0.0034 0.0281

cumSeg - - 0.999 0.001 0.000 0.001 0.40 0.12 0.0011 0.0264

n = 1000, H-SMUCE, α = 0.1 - - 0.969 0.030 0.001 0.032 15.75 3.91 0.0007 0.0210
K = 0, H-SMUCE, α = 0.3 - - 0.875 0.119 0.006 0.130 65.10 16.31 0.0009 0.0227
µ = µR ≡ 0, H-SMUCE, α = 0.5 - - 0.737 0.236 0.026 0.290 145.15 36.09 0.0012 0.0250
σ = σ3 CBS - - 0.937 0.002 0.061 0.134 67.10 8.64 0.0019 0.0213

cumSeg - - 0.999 0.001 0.000 0.001 0.35 0.10 0.0006 0.0199

n = 10000, H-SMUCE, α = 0.1 0.013 0.185 0.796 0.005 0.000 0.218 661.16 755.83 0.0212 0.0684
K = 10, H-SMUCE, α = 0.3 0.003 0.076 0.890 0.031 0.001 0.113 543.91 548.21 0.0167 0.0585
λmin = 50, H-SMUCE, α = 0.5 0.001 0.041 0.886 0.069 0.003 0.117 513.55 468.37 0.0147 0.0542
µ = µR, CBS 0.000 0.001 0.191 0.155 0.653 2.636 1590.35 276.51 0.0092 0.0358
σ = σ1 cumSeg 0.206 0.118 0.413 0.193 0.070 0.984 790.10 1054.73 0.0146 0.0502

n = 10000, H-SMUCE, α = 0.1 0.014 0.205 0.776 0.006 0.000 0.238 421.19 513.32 0.0156 0.0556
K = 10, H-SMUCE, α = 0.3 0.001 0.077 0.894 0.027 0.001 0.108 348.50 358.14 0.0119 0.0475
λmin = 50, H-SMUCE, α = 0.5 0.000 0.038 0.897 0.062 0.002 0.105 344.93 311.35 0.0106 0.0446
µ = µR, CBS 0.000 0.000 0.215 0.174 0.611 2.362 1454.85 247.26 0.0085 0.0346
σ = σ2 cumSeg 0.114 0.102 0.467 0.236 0.082 0.795 756.12 720.95 0.0136 0.0478

n = 10000, H-SMUCE, α = 0.1 0.019 0.233 0.744 0.004 0.000 0.276 161.27 251.06 0.0053 0.0301
K = 10, H-SMUCE, α = 0.3 0.002 0.069 0.904 0.025 0.000 0.099 137.86 136.79 0.0036 0.0254
λmin = 50, H-SMUCE, α = 0.5 0.000 0.029 0.906 0.062 0.003 0.096 170.29 128.56 0.0033 0.0248
µ = µR, CBS 0.000 0.000 0.246 0.173 0.582 2.189 1134.85 214.71 0.0047 0.0263
σ = σ3 cumSeg 0.054 0.051 0.516 0.279 0.101 0.669 749.33 499.10 0.0070 0.0346
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Table 2.5.: Simulations with t3 distributed errors and C = 200. The columns from left to right give the
setting, the method, the proportions of K̂ − K and the means of the corresponding error
criteria.

Setting Method ≤ −2 -1 0 +1 ≥ +2 |K̂ −K| FPSLE FNSLE MISE MIAE

n = 1000, H-SMUCE, α = 0.1 - - 0.982 0.018 0.000 0.018 9.05 2.53 0.0031 0.0347
K = 0, H-SMUCE, α = 0.3 - - 0.927 0.071 0.001 0.074 37.05 10.31 0.0034 0.0361
µ = µR ≡ 0, H-SMUCE, α = 0.5 - - 0.824 0.167 0.009 0.185 92.40 26.35 0.0043 0.0392
σ = σR, SMUCE, α = 0.1 - - 0.001 0.001 0.999 11.859 5929.70 369.55 0.8710 0.1491

SMUCE, α = 0.3 - - 0.000 0.000 1.000 14.803 7401.65 397.77 0.9338 0.1674
SMUCE, α = 0.5 - - 0.000 0.000 1.000 16.862 8431.00 411.30 0.9730 0.1787
CBS - - 0.991 0.000 0.009 0.018 9.05 1.13 0.0058 0.0340
cumSeg - - 0.955 0.001 0.044 0.188 93.90 11.98 0.0682 0.0375

n = 1000, H-SMUCE, α = 0.1 0.008 0.136 0.848 0.007 0.000 0.160 25.70 62.95 0.0120 0.0578
K = 2, H-SMUCE, α = 0.3 0.003 0.086 0.876 0.035 0.000 0.127 29.74 44.61 0.0103 0.0537
λmin = 30, H-SMUCE, α = 0.5 0.001 0.055 0.851 0.090 0.003 0.152 44.21 38.62 0.0097 0.0524
µ = µR, SMUCE, α = 0.1 0.000 0.000 0.001 0.001 0.998 11.104 2683.40 250.21 0.3046 0.1232
σ ≡ 1, SMUCE, α = 0.3 0.000 0.000 0.000 0.000 1.000 13.984 3361.80 283.17 0.3264 0.1340

SMUCE, α = 0.5 0.000 0.000 0.000 0.000 1.000 15.991 3836.28 302.43 0.3400 0.1419
CBS 0.053 0.161 0.726 0.043 0.018 0.346 46.69 119.74 0.0241 0.0712
cumSeg 0.025 0.097 0.722 0.093 0.063 0.456 108.11 81.86 0.0557 0.0707

n = 10000, H-SMUCE, α = 0.1 0.002 0.079 0.916 0.004 0.000 0.086 93.09 119.69 0.0130 0.0425
K = 10, H-SMUCE, α = 0.3 0.000 0.025 0.957 0.017 0.000 0.043 86.32 81.78 0.0105 0.0397
λmin = 50, H-SMUCE, α = 0.5 0.000 0.012 0.950 0.038 0.000 0.050 99.93 76.24 0.0097 0.0389
µ = µR, CBS 0.467 0.148 0.167 0.107 0.111 2.516 1356.25 6254.20 0.0877 0.1308
σ = σR cumSeg 0.586 0.192 0.136 0.055 0.032 2.242 997.13 3005.71 0.0433 0.0906

underestimation is more distinct in the constant variance scenario and detection power is

even increased in the scenario with heterogeneous errors. In comparison, CBS is not influ-

enced for K = 0, too, underestimates and overestimates in the constant variance scenario

and is slightly worse with a tendency to underestimation in the scenario with heteroge-

neous errors, whereas cumSeg overestimates rarely, but heavily for K = 0, underestimates

and overestimates in the constant variance scenario and is robust in the last scenario.

In summary, H-SMUCE appear to be robust against a wide range of variance changes on

constant segments and to be only slightly affected by larger tails than Gaussian, in partic-

ular no tendency to overestimation was visible in our simulations. This may be explained

by the fact that the local likelihood tests of H-SMUCE are quite robust against heteroge-

neous noise, see for instance (Bakirov and Szekely, 2006; Ibragimov and Müller, 2010), and

against non-normal errors, see (Lehmann and Romano, 2005) and the references therein.

Unlike the number of change-points, the locations are sometimes miss-estimated, since the

restricted maximum likelihood estimator is influenced by changes of the variance. Instead,

more robust estimators, for instance local median and MAD estimators, could be used.

Real data examples were shown in Figure 3.4c and in (Pein et al., 2017c, Section 5) by

applying H-SMUCE to subsampled PorB recordings. They confirm the results of the simu-

lations. H-SMUCE works well on larger scales and does not tend to include false positives,

while it does not have a good detection power on smaller scales due to the strong fami-

lywise error control. Hence, in the next section we avoid subsampling of the ion channel

recordings and propose more sophisticated approaches to deal with the filtering. At the

price that no systematic theory is provided, since similar results to them in Section 2.3

would be very technical or even impossible.
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3. Ion Channel Recordings

In this section we extend the multiscale regression estimator (1.2) to models with filtered

observations. We start by modeling the recordings in Section 3.1, firstly with homoge-

neous noise and secondly with heterogeneous noise. Afterwards, we discuss in Section 3.2

the desired properties of an estimator for the signal underlying the ion channel record-

ings. In Section 3.3 we describe briefly the computational difficulties arising by the filter-

ing. Nonetheless, we present three different methods for estimating the underlying signal:

J-SMURF in Section 3.4, JULES in Section 3.5 and JILTAD in Section 3.7. The used

deconvolution techniques are explained in Section 3.6. After a discussion of how these

estimations can be used for analyzing ion channel recordings in Section 3.8, we compare

these methods with existing non-parametric estimation methods in an extensive simu-

lation study in Section 3.9. This section ends with an application of these methods to

Gramicidin A recordings to study their behavior on real data, too. For the sake of clar-

ity, we explain the general ideas for homogeneous noise and afterwards adaptations for

heterogeneous noise if required. And note that in the following we will use statistical

instead of electrophysiology terms. We say for instance non-parametric estimation instead

of model-free idealization.

3.1. Model

The homogeneous ion channel model was already introduced in (Hotz et al., 2013; Pein

et al., 2017d). Nevertheless, we start in Section 3.1.1 with a precise definition of this

model and illustrate afterwards the influence of the convolution on the signal for a better

intuition. Finally, in Section 3.1.2 we extend this model to heterogeneous noise.

3.1.1. Homogeneous ion channel model

Gating events of an ion channel occur usually on much smaller times scales, 1 ns–100 ns,

than the sampled observations are recorded, 1 kHz–100 kHz rates. Hence, channel record-

ings have the appearance of abrupt random changes (Hamill et al., 1981). Consequently,

the conductance of a channel is modeled by a piecewise constant signal

µ(t) =

K∑
k=0

mk 1l[τk,τk+1)(t), (3.1)
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where t from now on denotes physical time. The (unknown) conductance values are

denoted by m0, . . . ,mK , its (unknown) number of conductivity changes by K and the

(unknown) change-point locations by −∞ =: τ0 < 0 < τ1 < · · · < τK < τK+1 := τend.

Here, we denote the time when recording ends by τend. Moreover, we only consider change-

points after recording started at time 0 and assume for simplicity that the signal before

recordings started is constant and equal to the first function value. When truncating the

filter we will see that this is a less severe restriction than it seems for the moment, since

only a very short time period before will be relevant. Nonetheless, for an analysis of how

long the channel dwells in the same conductance level we exclude always the first and last

segment. We stress that this class of signals

M :=

{
µ : [−∞, τend] 7→ R, µ(t) =

K∑
k=0

mk1l[τk,τk+1)(t), K ∈ N

}
, (3.2)

with slight abuse of notation by redefiningM from (2.4), is very flexible as potentially an

arbitrarily number of change-points and function values can be imposed, see Figure 1.3 for

an estimation in this class. In comparison to hidden Markov models, we do not assume any

prior knowledge on the function values and on the distribution of change-point locations.

Allowing a new function value for every segment enables a reasonable estimation even in

the presence of artifacts, for instance in ion channel recordings base line fluctuations are

common. Nonetheless, an extension of our methods to the assumption of a known, small

alphabet of possible functions values is briefly discussed in Section 6.2.2.

The very small conductance of a single channel, typically in the range of picosiemens

up to few nanosiemens, requires sophisticated electronic recordings devices, including one

or several amplifiers (Molecular Devices, 2008). To stay in the transmission range of

the amplifier, high frequent noise components, e.g., caused by shot noise, are attenuated

by convolving the recordings with an analogue lowpass filter. Typically, a four, six or

eight pole lowpass Bessel filter is integrated in the hardware of the technical measurement

device. Finally, the recorded currents are digitized equidistantly with sample rate fs and

divided by the applied constant voltage. Thus, the recorded observations Y1, . . . , Yn are the

measured conductivity at equidistant time points ti = i/fs, i = 1, . . . , n, with sampling

rate fs = n/τend. And we assume that this time series results from convolving the signal

µ perturbed by standard Gaussian white noise η with an analogue lowpass filter, with

kernel F , also called impulse response, and digitization at sampling rate fs. Expressed as

a formula,

Yi =
(
F ∗ (µ+ σ0η)

)
(i/fs) = (F ∗ µ)(i/fs) + εi, i = 1, . . . , n, (3.3)

with noise level σ0 > 0 and convolution operator (f ∗ g)(t) =
∫∞
−∞ f(t− s)g(s)ds. Here,

n denotes the total number of observations, typically several hundred thousands up to

few millions. And the white noise η is specified such that WI :=
∫
I η(t)dt is a Gaussian

distributed random variable with expectation zero and variance |I| for every interval I ⊂ R
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of finite length and E[WIWJ ] = |I∩J | for all intervals I, J ⊂ R. For a precise definition and

a proof of existence see (Giné and Nickl, 2016, Example 2.1.11). Hence, the errors ε1, . . . , εn

are Gaussian and centered, E[εi] = 0, and have covariance Cov[εi, εi+j ] = σ2
0(F ∗F )(j/fs).

All data sets we analyze later are filtered with a 4-pole lowpass Bessel filter with normalized

cutoff frequency of 0.1, which equals the cutoff frequency in time divided by the sampling

rate. We denote the kernel by F and its antiderivative by F , also called step function.

In Figure 3.1 we show these two functions together with the resulting autocorrelation

function of this filter for sampling rate 1, i.e., with time domain equal to the sampling

points. Moreover, Figure 3.2 shows the convolution of the filter with a signal containing

a single change-point and a signal containing an isolated peak, computed by a truncation

of the filter as explained now.

Typically used lowpass filters have kernels with support the whole positive real numbers,

also called filters with infinite impulse response, but a quickly decaying kernel F . For

instance the kernels of Bessel filters decay exponentially fast (Proakis and Manolakis,

1996). Thus, we truncate the kernel F at some point, say L/fs, which provides further

simplification of our model. The trucated kernel is denoted by FL and rescaled such that∫∞
−∞ FL =

∫ L/fs
0 FL = 1, see (Hotz et al., 2013). Its antiderivative is denoted by FL. As

a working rule, we choose L such that the autocorrelation function (F ∗ F )(·)/(F ∗ F )(0)

of the analogue lowpass filter is below 10−3 at L/fs and afterwards. For a 4-pole Bessel

filter with normalized cutoff frequency 0.1 this choice leads to L = 11 and is confirmed

visually by comparing the measured observations with the convolution of the estimated

signal with the truncated kernel, see for instance the lower panels in Figures 1.3, 3.22 and

3.23. We also truncate the autocorrelation function at L/fs, resulting in an L-dependent

process. All in all, model (3.3) reduces to

Yi = (FL ∗ µ)(i/fs) + εi, i = 1, . . . , n, (3.4)

where ε1, . . . , εn are centered, Gaussian distributed random variables with covariance

Cov
[
εi, εi+j

]
=

{
σ2

0(F ∗ F )(j/fs), for |j| = 0, . . . , L,

0, for |j| > L.
(3.5)

Note that we truncate the autocorrelation function itself as this leads to more accurate val-

ues for lags close to L instead of convolving the truncated kernel with itself. Untruncated

and truncated kernel, their antiderivatives and untruncated and truncated autocorrela-

tion functions are compared in Figure 3.1. All filter functions are implemented in the R

function lowpassFilter in the package clampSeg (Pein et al., 2017b). We stress that all

integrals are computed analytically and exactly.

Figure 3.1 confirms that for all three functions the errors by truncation are very small,

almost invisible. Moreover, the convolution of a piecewise constant function (3.1) with the
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(a) Kernel. (b) Antiderivative. (c) Autocorrelation.

Figure 3.1.: Untruncated (black line) and truncated (red line) kernel function, antiderivative and auto-
correlation function of a four-pole Bessel lowpass filter with normalized cutoff frequency 0.1
and sampling rate 1. The filter length L = 11 is indicated by vertical red lines and the
autocorrelation values at positive integer time lags by red points.

truncated kernel is given by

(FL ∗ µ)(t) =
K∑
k=0

mk

∫ t−τk

t−τk+1

FL(s)ds =
K∑
k=0

mk

[
FL(t− τk)−FL(t− τk+1)

]
. (3.6)

Note that most of the differences are zero, since FL(t) = 0 if t ≤ 0 and FL(t) = 1 if

t ≥ L/fs. Hence, the convolution can be computed exactly and efficiently. For a better

understanding of how the filter acts on the signal and hence on the expectation of the

observations we show in Figure 3.2 the convolution for signals with a single change-point

and with a single peak, a short one as well as one longer than the filter length. If the

signal contains only one change-point,

µ(t) =

m0 if t < τ1,

m1 if t ≥ τ1,
(3.7)

the convolution is given by

(FL ∗ µ)(t) = m0

[
1−FL(t− τ1)

]
+m1FL(t− τ1)

=


m0 if t ≤ τ1,

m0

[
1−FL(t− τ1)

]
+m1FL(t− τ1) if τ1 < t < τ1 + L/fs,

m1 if t ≥ τ1 + L/fs.

(3.8)

For a peak,

µ(t) =


m0 if t < τ1,

m1 if τ1 ≤ t < τ2,

m2 if t ≥ τ2,

(3.9)
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the convolution reads as

(FL ∗ µ)(t) = m0

[
1−FL(t− τ1)

]
+m1

[
FL(t− τ1)−FL(t− τ2)

]
+m2FL(t− τ2). (3.10)

This is equal to m0 if t ≤ τ1, m1 if t ∈ [τ1 + L/fs, τ2] and m2 if t ≥ τ2 + L/fs.

(a) Single change. (b) Short peak. (c) Long peak.

Figure 3.2.: Signals (black line) containing one change-point, an short peak and a longer peak and
their convolutions (blue line) with a four-pole lowpass Bessel filter with normalized cutoff
frequency of 0.1 and sampling rate 104. Vertical red lines indicate the change-point locations
plus the filter length L/fs. The functions values, the change-point locations and the filter
are representative of the later simulations and Gramicidin A recordings.

We highlight two conclusions which will be very important in the following sections. First

of all, the convolution is constant and identical to the signal µ on the interval [τk +

L/fs, τk+1], which might be empty, but changes continuously on (τk, τk + Lfs). Secondly,

in Figure 3.2b the convolution does not reach the function value m1 = 20 pS. This is the

general case for peaks shorter than the filter length L/fs. Hence, deconvolution techniques

are necessary to estimate all function values correctly.

In a real data example the constant variance σ2
0 is also unknown, but can be pre-estimated

√
n-consistently by difference based type estimators, see (Tecuapetla-Gómez and Munk,

2017) and the references therein. We follow the suggestion of Hotz et al. (2013) and use

σ̂0 =
IQR (YL+1 − Y1, . . . , Yn − Yn−L)

2Φ−1(0.75)
√

2(F ∗ F )(0)
, (3.11)

with Φ−1 the quantile function of the standard normal distribution. This estimator is

consistent and usually slightly overestimates the variance for finitely many observations

depending on how many and how huge the changes in the signal are. An implementation

is given by the R function sdrobnorm in the stepR package (Pein et al., 2017a). Hence, in

the following sections the global variance σ2
0 is assumed to be known.

3.1.2. Heterogeneous ion channel model

We now model additional open channel noise which occur in some measurements. This

phenomenon describes measurements with larger noise on segments with a larger conduc-
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tance. Its name refers to the fact that a larger conductance results from an open pore.

It is caused by interference of the channel proteins with the membrane (Sigworth, 1985,

1986; Sigworth et al., 1987; Heinemann and Sigworth, 1988, 1990, 1991) and occurs for

some larger channels for some membrane systems, but it is hard to predict in advance

whether it will occur or not. For instance, in the PorB measurements it did not occur

when black lipid membranes where used, see Figure 1.1, but occurred when solvent-free

membranes where used, see Figure 3.3.

  

Figure 3.3.: Observations (grey points) of a representative conductance time series for
PorB mutant G103K recorded by the patch clamp technique using solvent-
free bilayers at 20 mV.

The membrane influences the channel heavily and, hence, the use of a different membrane

system often affects the noise levels, but also the gating dynamics and even the conductance

levels. For more details how the use of solvent-free and black lipid membranes affected
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the recordings with PorB see Section 5. Thus, using a different membrane system is not

always possible. Moreover, extracting the channel protein, inserting it in a membrane

and establishing the recordings is usually a work of several months up to years. Hence,

heterogeneous noise is not always avoidable and has to be included in the model.

Since the noise level is larger when the conductance is larger, we assume as in Section

2 that at the locations where the signal changes also the variance is allowed to change,

but does not have to. In more detail, we still assume a signal of form (3.1). But in (3.3)

the white noise is now scaled by a piecewise constant standard deviation function with

potential change-points at the same locations as the signal

σ(t) =

K∑
k=0

sk 1l[τk,τk+1)(t), (3.12)

s0, . . . , sK > 0, instead by a global standard deviation σ0. In other words, we assume a

signal-variance pair (µ, σ2) from the set

S :=

{
(µ, σ2) : [−∞, τend] 7→ R2, µ =

K∑
k=0

mk1l[τk,τk+1), σ
2 =

K∑
k=0

s2
k1l[τk,τk+1), K ∈ N

}
.

(3.13)

Note that this redefines S from (2.2). We truncate the kernel and autocorrelation function

of the lowpass filter in the same way as we did for the homogeneous model. Hence, the

resulting observations still have expectation (FL ∗ µ)(i/fs), but the covariance structure

is now

Cov
[
Yi, Yi+j

]
=

{ ∑K
k=0 s

2
k

[
A(i/fs − τk, j/fs)−A(i/fs − τk+1, j/fs)

]
for |j| = 0, . . . , L,

0 for |j| > L,

(3.14)

with

A(t, l) :=

∫ t

0
F (s)F (s+ j/fs)ds. (3.15)

A proof of (3.14) is given by Proposition 22. An analytic solution of A(t, l) is implemented

in the R function lowpassFilter. Hence, also (3.14) can be computed exactly and efficiently.

The major aim will be now to estimate the unknown signal µ taking into account the

convolution, the specific structure of µ in (3.1), and if the noise is heterogeneous the

structure of σ in (3.12). Before we will present the estimation methods, we discuss in the

next section their desired properties.

3.2. Requirements on the estimation

The estimation should be objective. This means no subjective choices by the experimenter

should be necessary during the estimation process, only few tuning parameters might be

chosen prior to the estimation. Although, this point might read self-evidently for many

statisticians, a subjective and time-consuming analysis by visual inspection is still com-
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mon in electrophysiology studies. Often, the event times are chosen manually or in a

semi-automatic way, as offered by standard recording software like pCLAMP 10 (Molec-

ular Devices). To maximize objectivity the amount of false positive detections should be

controlled statistically.

To be universally applicable, assumptions on the signal should be kept as mild as possible.

In particular, contrary to hidden Markov models, no parametric model should be assumed

for the gating dynamics. We stress that hidden Markov models are with justification

well established for analyzing ion channel recordings, see (Ball and Rice, 1992; Venkatara-

manan et al., 2000; Qin et al., 2000; de Gunst et al., 2001; Siekmann et al., 2011) among

many others. Their strong assumptions allow detection of events with a power that can

not be reached by non-parametric approaches, in particular not on small scales. Moreover,

their compact results, typically only the conductance levels and a transition or a Q-matrix

have to be estimated, can be interpreted well and often directly connected to biochemical

processes.

In the same spirit are approaches based on the conductance (current) distribution (Yellen,

1984; Heinemann and Sigworth, 1991; Schroeder, 2015). They does not provide an estima-

tion of the underlying signal, but estimate the parameter of the underlying Markov model

(or a similar assumed parametric model). Thereto, the smoothing effect of the filter is used

as a feature, since the recorded observations between the underlying conductance levels

provide information about the rates of a Markov model. These approaches can resolve the

gating dynamics on very small temporal scales, in particular still when events follow each

other quickly, which is in such a temporal resolution not possible by hidden Markov or

non-parametric estimation. On the other hand, the number of unknown parameters has

to be small to obtain good results.

However, hidden Markov models and fitting the conductance distribution require to pre-

determine a model for the gating dynamics, in particular to fix the number of states.

Although some model selection approaches exist, this is not an easy task. The Marko-

vian property is also not always valid, cf. (Fuliński et al., 1998; Mercik and Weron, 2001;

Goychuk et al., 2005; Shelley et al., 2010). Moreover, in the presence of artifacts the as-

sumption of few conductance levels that occur repeatedly leads to heavy missestimations or

require elaborate data cleaning, while in many of these situations non-parametric methods

provide still a reasonable estimation. We suggest to compare both approaches whenever

possible to verify results. We did this for instance for the PorB recordings with ampicillin

in (Bartsch et al., 2017). Additionally, non-parametric methods are often much faster, an

important point we discuss below. Finally, even when a Markov approach is preferred,

non-parametric methods, in addition to model selection approaches, can be used before

to select and verify the specific Markov model, in particular the number of states and

possible transitions, and to explore and potentially remove artifacts. Furthermore, fitting

the conductance distribution requires often an initial guess for the parameters which can

be provided by non-parametric methods.

As mentioned before the biggest disadvantage of non-parametric approaches is that they
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miss events that are short in time. However, for estimating the rates of a Markov model

this is not always an issue, since missing events can be taken into account, see Section 3.8.

For instance, the exact distribution of the observed times when events below a resolution

limit are missed is calculated by Hawkes et al. (1990) and estimators for the rates of a

Markov model that are corrected for missing events are provided by Qin et al. (1996);

Colquhoun et al. (1996); Epstein et al. (2016). All in all, hidden Markov models, fitting

the conductance distribution, and non-parametric estimation complement each other well

and should not be seen as competing approaches.

While the literature of hidden Markov models and fitting the conductance distribution

is comprehensive, in particular also from a theoretical perspective, we see a demand for

better working non-parametric approaches. For an overview about existing methods and

their limitations see the following paragraphs, the simulations in Section 3.9 and their

application to Gramicidin A measurements in Section 3.10. Hence, we will focus in this

work on non-parametric approaches.

Since a typical recorded time series consists of several hundred thousands up to few million

observations and a full study requires often the analysis of more than hundred time series,

the estimation should be fast, desirably almost linear in the number of observations. For

instance in the PorB analysis in Section 5, where each time series contained three million

observations and in each time series on average more than thousands events were found,

in total more than a billion observations had to be analyzed. This also shows again the

demand for fully automatic estimation methods.

While events with a large conductance difference (in comparison to the noise level) on

longer time scales are easy to detect by almost every approach, even a fixed threshold is

often enough, two common phenomena called subconductivity and flickering require more

evolved estimation methods. Subconductivity means changes between two conductance

values close to each other, while flickering describes events on very small time scales, often

only few observations long. Detection of flickering events is especially challenging due to

the filtering. For an illustration how the signal, and hence the expectation of the ob-

servations, is smoothed by filtering see Figure 3.2 and the explanations around. Finding

and analyzing such phenomena is especially important as both have typically their own

dynamics and can result from different molecular processes than the usual gating on larger

scales.

Hence, a good detection power is required on small, but also on large time scales. To

this end, we will follow in this section a multiscale approach as well. A first multiscale

approach for ion channel recordings, called J-SMURF, was proposed by Hotz et al. (2013).

It detects events on larger time scales well and controls at the same time the probability

to overestimate the number of change-points, but has almost no detection power on small

scales. For more details see Section 3.4, where we recall and extend this approach to

observations with heterogeneous noise, and the simulations and applications in Sections

3.9 and 3.10.

In comparison, many existing methods such as amplitude thresholding (Colquhoun, 1987;
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Sakmann and Neher, 1995) and slope thresholding (Basseville and Benveniste, 1983; Van-

Dongen, 1996) require additional filtering or manually chosen thresholds and, hence,

threaten to miss events on certain scales as the filter length predetermines the scales

on which events can be detected. On the other hand, many of these methods do not take

into account the filter and, hence, include a severe amount of false positives. We compare

our multiscale methods in Section 3 exemplarily with TRANSIT from VanDongen (1996)

and briefly with an estimation based on the minimal description length, MDL, proposed

by Gnanasambandam et al. (2017). All in all, we conclude that our multiscale method

JULES, proposed in (Pein et al., 2017d) and described in Section 3.5, is to our best knowl-

edge the first non-parametric estimation method for ion channel recordings that detects

events on very small time scales reliably, where the filter complicates estimation severely,

while still being able to detect events on large scales well.

Moreover, even if events are detected, precise estimation of the change-point locations and

the function values is difficult, in particular on small scales, due to the convolution of the

signal with the lowpass filter, see Figure 3.2. The only semi-automatic approach available

to fit such events is the SCAN software from Colquhoun and Sigworth (1995) which allows

time-course fitting. This means to estimate change-point locations and function values by

least squares fitting based on an approximation of the Bessel filter kernel by a Gauss

kernel, but interventions by the experimenter are required. Moreover, a function value

can only be estimated by least squares fitting if the event is long enough, otherwise it is

guessed by previously estimated values. Unfortunately, downloading their implementation

requires individual permission, and our request was not answered. We remark that the

last update was ten years ago. For a fully-automatic and precise estimation we present in

Section 3.6 the deconvolution approach which we proposed in (Pein et al., 2017d). The

deconvolution is performed locally, i.e., only few parameters are estimated from a small

amount of observations at a time, which allows fast computation.

In addition, as discussed in Section 3.1.2 methods that deal with open channel noise are

required. However, to the best of our knowledge no non-parametric approach assumes

such a model. Hence, either the heterogeneous noise or the filtering has to be ignored, or

the observations have to be subsampled to mitigate the filter effects. These approaches

are illustrated in Figure 3.4 for the observations in the middle panel of Figure 3.3 using

the estimators JULES (Pein et al., 2017d), which ignores the heterogeneous noise, and

H-SMUCE (Pein et al., 2017c), which ignores the filtering.

JULES detects many small events when conductance and variance are large, but not when

they are small. These findings are most likely noise or base line fluctuations, which are

also scaled by the open channel noise. These detections make the estimation less reliable.

Indeed, the rates of a simulated hidden Markov model with parameters similar to them

underlying the observations in Figure 3.3 could not be recovered by estimations using

JULES, see Section 3.9.7. This effect will be more severe when the variance heterogeneity

is larger. The effect of missing heterogeneous noise is also illustrated in Figure 2.1 for

independent observations. In comparison, H-SMUCE misses short events, see for instance

41



(a) Estimation by JULES, it takes into account the filtering, but not the variance heterogeneity.

(b) Estimation by H-SMUCE, it takes into account the variance heterogeneity, but not the filtering.

(c) Estimation by H-SMUCE using subsampled observations by a factor of eleven.

Figure 3.4.: Illustration of missing variance heterogeneity or the filtering for the observa-
tions in the middle panel of Figure 3.3.

the missed peaks around 10.2 s, 10.4 s or 10.7 s. This is even more severe when the ob-

servations are subsampled. Hence, we conclude that none of these approaches leads to

satisfactory results. Thus, there is a demand for methods that deal in addition to filtered

data and events on various time scales also with heterogeneous noise, while the correlation

structure is still explicitly given by the known filter, see Section 3.1.2. For this task we

propose in Section 3.7 a new method called JILTAD.
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3.3. Multiscale regression for filtered observations and its

problems

A straightforward extension of H-SMUCE or in general of the multiscale regression esti-

mator as described in Section 1.1 to filtered observations is not computational feasible.

A first issue already arises when specifying the hypotheses. For unfiltered observations

we test on all intervals on which the candidate function is constant whether its function

value is the expectation of the observations on the interval. For filtered observations the

expectation of the observations is not anymore given by the function value itself, but

rather by the convolution of the signal with the lowpass filter at the corresponding design

point. Thus, the expectation of the observations Yi, . . . , Yj is determined by the signal

on [(i− L)/fs, j/fs]. The other way around, information about the underlying signal on

an interval [i/fs, j/fs] is provided by the observations Yi+1, . . . , Yj+L−1. Hence, when the

candidate signal is constant on an interval [i/fs, j/fs] to use all the available information

for testing the hypothesis that the signal has function value mij on that interval versus

the alternative of a different function value requires knowledge of the candidate function

on
(
(i − L + 1)/fs, (j + L − 1)/fs

)
. This no issue for obtaining a multiscale test, but

does not allow to compute the corresponding multiscale estimator (1.2) by a dynamic

program as proposed in (Frick et al., 2014a) and outlined in Section 4.1. That’s because

a crucial step is the computation of the acceptance region of each single local test, but

this region depends now on the candidate function outside of the interval on which we

test, too. Similar issues arise for minimizing the cost functional, since (4.4) is not satisfied

due to the dependency of the observations. However, when dynamic programming is not

applicable, we doubt that it is possible to compute the estimator efficiently such that it

can be applied to hundred thousands and more observations. Hence, approximations are

necessary to obtain a computable estimator.

In what follows we present with J-SMURF, JULES and JILTAD three estimators which

uses multiscale regression combined with deconvolution. We remark that their analysis is

less theoretically and relies on simulations and real data applications, since the assumed

models are complicated and a theoretical analysis like in Section 2 for H-SMUCE would

be very technical. Instead we focus on estimators that can be computed efficiently and

work well for the given measurements.

3.4. J-SMURF

In this section we briefly present the Jump-Segmentation by MUltiResolution Filter,

J-SMURF, from Hotz et al. (2013), together with some small modifications we made.

Afterwards, we combine this approach with H-SMUCE from Section 2 to extend it to

heterogeneous noise.
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3.4.1. J-SMURF for homogeneous noise

As mentioned after Figure 3.2, the signal and the convolution of the signal with the lowpass

filter differ only at the beginning of each segment. Hence, if the signal is constant on an

interval [i/fs, j/fs] with function value mij and the first L observations Yi, . . . , Yi+L−1

are ignored, all other observations have constant expectation given by function value mij .

Hence, in J-SMURF tests are only performed on intervals longer than L/fs, and the

beginning of each interval is ignored.

Instead of using a test statistic similar to the one for independent observations

T ji (Y,mij) := (j − i− L+ 1)
(Y i+L,j −mij)

2

2σ2
0

, (3.16)

as in Hotz et al. (2013), we use the partial sum test statistic

T ji (Y,mij) := (j − i− L+ 1)2 (Y i+L,j −mij)
2

2Var
[∑j

l=i+L Yl

] , (3.17)

with Var
[∑j

l=i+L Yl

]
= σ2

0 (j− i+ 1−L)A(∞, 0) + 2
∑L

l=1 (j − i+ 1− L− l)+A(∞, l/fs)

and x+ = max(x, 0). This statistic adapts better to the correlation structure. Although,

corresponding tests at the same significance level are identical as the relative difference

is only a constant, such a scaling matters for a multiscale test if the quantiles are chosen

by scale penalization. Note that in (Hotz et al., 2013) the local test statistic is written as√
2T ji (Y,mij), but also the penalization and definition of q are changed accordingly.

Even more powerful, in particular on intervals only slightly larger than the filter length,

is the likelihood ratio test statistic for the given filtered model, i.e.,

T ji (Y,mij) :=

(
(Yi+L,j −mij)

tΣ−1
i+L,j1

)2

21tΣ−1
i+L,j1

, (3.18)

with Yi+L,j = (Yi+L, . . . , Yj)
t the vector of observations, mij and 1 vectors of the same

length with all entries equal to mij and 1, respectively, Σi+L,j the variance-covariance

matrix of the observations Yi+L, . . . , Yj given by (3.5) and (·)t the transposition. However,

its computation lasts much longer. A slightly worse detection power should not be a big

concern, since J-SMURF is mainly used when all events occur on large scales and here

the difference is negligible. Moreover, we will use J-SMURF in Section 3.7 as a first step

with improvements on smaller scales later on, but also therefore a slightly worse detection

power on small scales has no significant influence.

Tests are performed over all intervals on which the candidate function µ is constant and

that contains a dyadic number of observations equal to or larger than L. Note that Hotz

et al. (2013) performed tests on a different interval set. They tested over all intervals on

which the candidate function is constant and for which j − i+ 1− L is a dyadic number.
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Although depending on the true signal, their choice leads in general to a better detection

power on scales slightly larger than the filter length, but its computation lasts much longer.

The very long computation times of J-SMURF was one major criticism in (Gnanasam-

bandam et al., 2017). To be fair, both implementations differ in other points, too, and

a fast implementation of their set might be possible as well, but our approach was easier

to integrate in the dynamic programming framework of the stepR package (Pein et al.,

2017a).

The vector of critical values q = (q1, . . . , qn) is obtained by scale penalization as described

in Section 1.1 such that Tn is a level α test, but (j−i+1) in (1.6) is replaced by (j−i+1−L)

to account for the smaller amount of observations used in the test statistic.

Finally, J-SMURF is obtained by minimization of L(Y, µ) =
∑n

l=1

(
Yl − µ(l/fs)

)2
re-

stricted to all solutions in the optimization set C(Y,q) as defined in (1.3). This restricted

least squares estimator ignores the convolution and hence the estimated change-point lo-

cations are typically a little bit shifted to the right. For more details see the similar

discussion for JULES in Section 3.6.1. To correct for this, Hotz et al. (2013) suggested to

move all estimated change-point locations by a constant factor t0, defined by FL(t0) = 1/2,

to the left. Alternatively, the deconvolution approach from Section 3.6 can be used for

J-SMURF as well. In the simulations we will use the approach from Hotz et al. (2013).

For JILTAD we will use a deconvolution approach as in Section 3.6.

J-SMURF has good detection properties when events are long enough, at least longer than

the filter length L/fs, since no test is performed on scales below. For more details see the

simulation study and application in (Hotz et al., 2013) in which J-SMURF was used to

prove the existence of subgating by an acylated Gramicidin A derivative, see (Hotz et al.,

2013, Figure 8). Note that the recordings in Section 3.10 are of native Gramicidin A,

which does not show subgating, but flickering, i.e., events on very small time scales.

3.4.2. J-SMURF for heterogeneous noise

With the work in Section 2, an extension of J-SMURF to heterogeneous noise is rather

straightforward. The simplest choice for a local test statistic is the H-SMUCE test statistic

without taking into account the first L observations, i.e.,

T ji (Y,mij) := (j − i+ 1− L)
(Y i+L,j −mij)

2

2σ̂2
i+L,j

, (3.19)

with Y i+L,j = (j−i+1−L)−1
∑j

l=i+L Yl and σ̂i+L,j = (j−i−L)−1
∑j

l=i+L (Yl − Y i+L,j)
2.

This statistic allows the construction of a multiscale test, since the vector of critical values

can be chosen by weights as in Section 2.2.1, because under the hypothesis the distribution

of the local test statistic is independent of the unknown parameters. Alternatively, the

dependency can be taken into account explicitly. Firstly, by correcting the bias of the

mean value and of the variance estimate similar as above for the partial sum test. One

might call it a studentized partial sum test statistic, although it is not t-distributed due
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to the dependency. However, both statistics lead to the same multiscale test, since the

two statistics differ only by a constant scaling factor and we obtain the vector of critical

values by weights, where such a scaling has no influence. Secondly, the likelihood ratio test

statistic can be used. We found again in simulations (not displayed) that the likelihood

ratio test statistic is slightly more powerful on smaller scales, but much slower to compute.

Hence, we use the test statistic (3.19).

We define the final estimator as H-SMUCE in (2.3), in particular with the same functional

to minimize. Also this approach missestimates the change-point locations a little bit as it

does not take into account the convolution of the signal with the lowpass filter.

3.5. JULES

The major drawback of J-SMURF is that it has (almost) no power on small scales, since

no tests are performed on scales below the filter length L/fs. To tackle this issue we

present in this section our multiscale approach from (Pein et al., 2017d, Section III.A).

We disregard for the moment the underlying convolution of the signal with the lowpass

filter to obtain a computable multiscale regression estimator that takes into account scales

below the filter length. More precisely, we develop an estimator for the model

Yi = µ(i/fs) + εi, i = 1, . . . , n. (3.20)

Here, µ is still a function of type (3.1). Thus, similar to the independent model we have

a piecewise constant function without convolution perturbed by random Gaussian errors

ε1, . . . , εn, but they are L-dependent with known covariance structure given by the filter.

In other words, with respect to model (3.4), in a first step we aim for a piecewise constant

approximation of FL ∗ µ which will be refined in Section 3.5.2 via postfiltering to an

estimation of µ. Therefor, the key observation is again that the signal and its convolution

only differ at the first L design points of each segment. The final estimator of µ, called

JUmp Local dEconvolution Segmentation filter, JULES, is obtained in Section 3.6 by

combining this approach with local deconvolution. A summary of these steps is given in

Algorithm 1. Figure 1.3 shows exemplarily an estimation of the signal underlying the

observations in Figure 1.1.

3.5.1. Piecewise constant approximation

Assuming model (3.20), we use a multiscale estimator (1.2) with the same functional

L(Y, µ) as for J-SMURF, i.e., L(Y, µ) =
∑n

l=1

(
Yl − µ(l/fs)

)2
, but with local test statistic

T ji (Y,mij) := (j − i+ 1)2 (Y i,j −mij)
2

2Var
[∑j

l=i Yl

] , (3.21)
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Algorithm 1 Steps of JULES.

Data Y1, . . . , Yn, significance level α, regularization parameter γ2,
filter with kernel FL truncated at L/fs

Piecewise constant approximation by a multiscale estimator

Postfiltering to remove false positives

Detection step
Section 3.5

Final estimation µ̂ by local deconvolution Estimation step
Section 3.6

Estimation µ̂, i.e., all event times and amplitudes

with Var
[∑j

l=i Yl

]
= σ2

0 (j− i+1)(F ∗F )(0)+2σ2
0

∑L
l=1 (j − i+ 1− l)+(F ∗ F )(l/fs) and

x+ = max(x, 0). We use again a partial sum test, since it provides the best compromise

between detection power and computation time, as previously discussed for J-SMURF.

3.5.2. Postfiltering

As noticed in Figure 3.2, the signal µ and the convolution of the signal with the truncated

filter FL ∗µ only differ at the beginning of each segment, i.e., when µ changes abruptly at

τi from mi−1 to mi, FL ∗ µ changes on (τi, τi + L/fs) continuously from mi−1 to mi and

is afterwards constant and identical to the signal µ until the next change at τi+1 occur.

Consequently, the prior piecewise constant approximation might have multiple change-

points in [τi, τi + L/fs] instead one change-point at τ , but up to estimation errors the

change-point at τ does not cause change-points somewhere else, see (Boysen et al., 2009a;

Li et al., 2017) for a mathematically rigorous statement. To correct for this we merge

a segment with all subsequent segments for which the distance between the two starting

points is less than L/fs and if all changes are in the same direction. More precisely, we

set the starting point of the merged segments to the starting point of the first segment

and its function value to the value on the last segment. This ignores the small overshoot

of the Bessel filter, i.e., kernel values below zero, which potentially causes additional

changes in the opposite direction. We found that this has no significant effect for the

data we analyzed, since the overshoot is very small in comparison to the noise level, see

Figure 3.1, and could not be detected. Hence, simulations show that our aim to bound

the probability to overestimate the number of change-points from above by α is indeed

satisfied. However, a rigorous proof seems to be difficult and requires in comparison to

Theorem 5 more assumptions on the observations. For instance the atypical assumption

that the signal to noise ratio is low enough such that the overshoot of the Bessel filter is

not detected.
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3.5.3. Heterogeneous noise

Unfortunately, the approach is not feasible for heterogeneous noise. Since the expectation,

given by the convolution, is not constant on (τi, τi + L/fs), any local variance estimator

that assumes a constant expectation overestimates the variance severely. Hence, tests

using a test statistic similar to (2.7) have (almost) no power on such an interval. Thus,

such an approach is not able to detect events below the filter length and detects roughly

the same events as J-SMURF assuming heterogeneous noise. All in all, in the presence

of heterogeneous noise it is mandatory to take into account the convolution explicitly to

detect short events. We will propose such an approach in Section 3.7.

3.6. Local deconvolution

In this section we present the parameter estimation step of JULES from (Pein et al.,

2017d, Section III B). In this step the final estimation is obtained by estimating the precise

change-point locations τ̂1, . . . , τ̂K̂ and function values m̂0, . . . , m̂K̂ by local deconvolution.

As noted after Figure 3.2, a deconvolution approach is crucial for estimating events on

scales below the filter length with high accuracy. Nonetheless, this approach can be

applied to J-SMURF as well to correct the shifted change-point locations. To this end,

we split the constant segments in short and long ones. Basically, long segments are those

in which the function value can be estimated accurately without taking the lowpass filter

explicitly into account, details are given below. Pre-estimating the function value on long

segments allows to deconvolve the signal locally, i.e., to estimate at one time only few

parameters from only few observations, which makes the deconvolution computationally

feasible. These parameters are estimated by the maximum likelihood estimator, which is

computed by an iterative grid search, see below for algorithmic details.

3.6.1. Long segments

We refer to a segment [τ̂k, τ̂k+1) as long if we can estimate its function value m̂k accurately

without taking into account the lowpass filter explicitly. Recall from Figure 3.2 and the

explanations around that if the signal µ changes at τk, its convolution FL ∗ µ changes

continuously on (τk, τk+L/fs) and is constant on [τk+L/fs, τk+1] and equal to mk. Hence,

if the change-point τk is detected, its estimated location will be most likely in the interval

[τk, τk + L/fs]. The other way around, a detected change-point τ̂k implies a change-point

in the interval [τ̂k−L/fs, τ̂k] and, hence, a constant convolution on [τ̂k+L/fs, τ̂k+1−L/fs].

If the observations in this interval are enough to determine the function value, say ten or

more, by the median, i.e., m̂k = median(Yfsτ̂k+L, . . . , Yfsτ̂k+1−L), we denote the segment

as long and otherwise as short.
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3.6.2. Maximum likelihood estimation

Having the function values on long segments estimated enables us to perform the decon-

volution locally, i.e., at one time only few observations have to be taken into account and

only few parameters have to be estimated. More precisely, let [τ̂i−1, τ̂i) and [τ̂j , τ̂j+1),

i ≤ j, be two consecutive long segments (no long segment inside, but potentially some

short segments). Then, we aim to improve the estimated change-point locations τ̂i, . . . , τ̂j

and the estimated function values m̂i, . . . , m̂j−1. Note that the function values m̂i−1 and

m̂j are already estimated well by the median as described above. Recall that a detected

change-point τ̂ implies a change-point in [τ̂ − L/fs, τ̂ ] and that the function value m̂i

affects the convolution on (τ̂i, τ̂i+1 + L/fs). Therefore, we only have to take into account

the observations Yfsτ̂i−L+1, . . . , Yfsτ̂j+L−1 and maximize its likelihood in the parameters

to improve. This is equivalent to minimize

(Yi,j −mi,j)
tΣ−1

i,j (Yi,j −mi,j), (3.22)

with Yi,j := (Yfsτ̂i−L+1, . . . , Yfsτ̂j+L−1)t the vector of the observations,

mi,j =

((
FL ∗ µ

)(fsτ̂i − L+ 1

fs

)
, . . . ,

(
FL ∗ µ

)(fsτ̂j + L− 1

fs

))t
the vector of the expected conductance levels FL ∗ µ for a signal µ and Σi,j the known

correlation matrix of the observation vector given by (3.5). For the signal µ the number

of change-points and the function values m̂i−1 and m̂j are fixed by the prior estimation

and the change-point locations are restricted to the intervals [τ̂k − L/fs, τ̂k], k = i, . . . , j.

Minimization is performed by an iterative grid search, see below.

3.6.3. Regularization

For the Bessel filter used in the later analyzed recordings we have to regularize the correla-

tion matrix Σi,j in (3.22), since the matrix is ill-conditioned, i.e., has a condition number

around 10−4. Hence, small errors in the model, for instance in ion channel recordings

often base line fluctuations occur, are amplified and may result in a large missestimation.

A standard approach to cope with this is Tikhonov / L2 regularization, i.e., we replace

Σi,j by Σi,j + γ2I, with I the identity matrix and γ2 ≥ 0 a regularization parameter, see

(Engl et al., 2000, Chapter 5). Such a regularization allows quick computation of (3.22)

by the Cholesky decomposition, which can be stored, and by solving a triangular system

of equations using the banded structure of the matrix Σi,j + γ2I. This is implemented

in C++ by interfacing the FOTRAN routines dpbtf2 and dtbsv from the linear algebra

package LAPACK. Note that the correlation structure is determined by the filter and

hence the parameter γ2 can be chosen universally for all recordings on the same system.

For our data we choose the regularization parameter such that the convolution fits well to

the recordings, which is nicely confirmed by visual inspection as exemplary shown in the
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lower panels of Figures 1.3 and 3.22. Note, that this precalibration step has to be done

only on a small data excerpt in advance. We found that the results are robust in γ2, and

simply setting γ2 = 1 led to satisfactory results in all cases. For automatic choices, e.g.,

by cross-validation, and for other regularizations, e.g., truncated SVD, see (Vogel, 2002)

and the references therein.

3.6.4. Iterative grid search

We now describe how we compute the (local) maximum likelihood estimator by an iterative

grid search. In general, the computation of the estimator is difficult due to the non-

convexity of the optimization problem to minimize (3.22). Grid search means that we fix

for each change-point τ̂i, . . . , τ̂j a set of possible locations, the grid, and compute (3.22) for

all combinations and take the solution with the minimal value. Note that for given change-

point locations close formulas for the optimal levels m̂i, . . . , m̂j−1 exist, which allows fast

computation of (3.22). In theory such an optimization can be done for arbitrarily fine

grids. However, to keep it computationally feasible, we start with the observations grid.

More precisely, we use {τ̂k − L/fs, . . . , τ̂k} for the change-point τ̂k, k = i, . . . , j, since a

detected change-point τ̂k implies a change-point in the interval [τ̂k−L/fs, τ̂k]. Afterwards,

a refinement can be done by repeating the grid search iteratively with finer and finer

grids around the change-point locations found in the previous step. We found that this

refinement for estimating the locations with arbitrary precision works very well in practice.

We found it sufficient to iterate such a refinement twice, each with a ten times finer grid

between the neighboring grid points of the candidate location found in the previous step.

This approach is computationally feasible for a single change-point between two long

segments, i.e., only one change-point location has to be estimated, and for a peak, i.e.,

a short segment between two long segments, here we estimate the function value of the

short segment and the two change-point locations of the short segment between the two

long segments. In rare situations more than one short segment between two long segments

occur. The same approach could then be done for k consecutive short segments by looking

for k + 1 change-points between two long segments and estimating all k function values.

However, such an optimization is time consuming and not necessary for our data. Hence,

we abandon and simply return for these parameters the estimation from Section 3.5. For

the analysis we drop these segments which leads to potential miss of events if they are too

close together. Figure 3.12 shows that for the analyzed Gramicidin A recordings this only

occurs if the distance between two events is less than 3.2 ms, roughly 3 times the filter

length. This is much smaller than the estimated average distance between two events

of 0.3 s and hence the whole effect was indeed negligible. Also for the PorB recordings

we analyze in Section 5 the minimal required distance is much shorter than the average

distance.

50



3.7. JILTAD

JULES estimates events on small scales well if the noise is homogeneous, but an extension

of this approach to heterogeneous noise is impossible, see Section 3.5.3. Moreover, it does

not take into account the deconvolution for detection, which potentially reduces the de-

tection power. We will indeed see in simulations in Section 3.9.3 that the detection power

of the method we propose now is larger than the one of JULES.

To overcome these issues we propose in this work a new method called J-SMURF Improved

by Local Tests And Deconvolution, JILTAD, that takes into account the convolution ex-

plicitly for detecting events. As discussed in Section 3.3, this requires knowledge of the

signal in a neighborhood of the interval on which we test, which makes it difficult to com-

pute the corresponding multiscale estimator efficiently. Similar to the deconvolution we

overcome this burden by focusing firstly on large scales and then improving the estimation

on small scales. Events on large scales are detected by J-SMURF as described before with-

out taking into account the convolution explicitly. Then, in a second step we test locally

whether additional events on small scales have to be incorporated. For this the convolu-

tion is taken into account explicitly by assuming that signal and noise left and right of the

interval on which we test are given by the previous estimation by J-SMURF. The final

change-point locations and function values are again estimated by local deconvolution.

Exact details how to perform and combine these steps are described in the following. We

call this method J-SMURF Improved by Local Tests And Deconvolution, JILTAD. A

summary about these steps is given in Algorithm 2.

Algorithm 2 Steps of JILTAD.

Data Y1, . . . , Yn, significance level α, regularization parameter γ2,
filter with kernel FL truncated at L/fs

Detection of events on large scales by J-SMURF

Local tests to detect events on small scales
taking into account the convolution explixitly

Detection step

Final estimation µ̂ by local deconvolution Estimation step

Estimation µ̂, i.e., all event times and amplitudes

An exemplary estimation in Figure 3.5 for the observations in Figure 3.3 shows that at

presence of heterogeneous noise this method is indeed able to estimate events on small

scales well, while at the same time it does not include additional artificial change-points

in segments with larger variance.
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Figure 3.5.: Estimation by JILTAD (purple) of the signal underlying the observations in
Figure 3.3 and its convolution with the lowpass filter (red-purple).

3.7.1. J-SMURF step

We apply J-SMURF as described in Section 3.4 with significance level α1 < α. We do

not correct in this step for the shifted locations. This will be done by a deconvolution

approach as described in Section 3.7.2.

3.7.2. Local testing

To find events on small scales we test on all intervals containing l = 1, . . . , lmax observations

whether the estimation by J-SMURF is the underlying signal or whether an additional

event on the tested interval is significantly better. Here, lmax should be chosen such that

events on all larger scales are already detected by J-SMURF (or have such a small jump
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size that they are also not detectable by these tests). By default, we choose lmax = 20 for

homogeneous observations and lmax = 65 in the presence of heterogeneous noise.

As explained in Section 3.3, only the observations Yi+1, . . . , Yj+L−1 provide information

about the test problem and the signal on [(i − L + 1)/fs, (j + L − 1)/fs] affects the

expectation of these observations. Hence, for a local test on an interval [i/fs, j/fs] we

distinguish few scenarios depending on how many detected change-points are in [(i−L+

1)/fs, (j + L − 1)/fs]. If no change-point is detected we test a constant function versus

the alternative of an additional event on [i/fs, j/fs] with an arbitrary function value. If

one change-point is detected we test a signal with a change-point at the location that

maximizes the likelihood, details are given in the next paragraph, versus the alternative

of an additional event on [i/fs, j/fs] with arbitrary function value. If the test rejects, the

single change-point is replaced by two and the locations and function value are obtained in

the upcoming deconvolution step. A precise definition of the hypothesis is given below. In

the rare situation that two or more change-points are present we perform no local test to

save computation time, since the parameter of more than two change-points can anyway

not be estimated in the deconvolution step. However, similar as for the deconvolution

it is a straightforward extension to test at presence of more change-points or for more

change-points in the alternative, i.e., to test signals with k1 versus k2 change-points, but

at the price of a larger computation time. However, a different and much more challenging

question is the model selection task for how many change-points k2 we should test. For

instance, if J-SMURF found two change-points, whether we want to test for an additional

third change-point or for an additional peak given by two more change-points. Moreover,

we only test on intervals with start and end point at the observation grid. Also this can

be refined, again at the price of a larger computation time. We found that our choices are

sufficient for the data we analyze and allow fast computation.

Recall that change-points detected by J-SMURF are typically shifted slightly to the right,

since the convolution is ignored. Hence, even if the true underlying signal has only one

change-point in [(i−L+ 1)/fs, (j+L− 1)/fs] the hypothesis is often rejected. To correct

for this, we reestimate the locations of all isolated change-points by local deconvolution

as described in Section 3.6 without any refinement, only at the observation grid. This

includes a reestimation of the function values on long segments by medians as described

in Section 3.6.1. In other words, as the hypothesis we assume the signal which will be

obtained by deconvolution if no test rejects, up to refinements using finer grids. At the

same time, estimation of the function values on long segments by the median guarantees

that they are not too badly estimated even if few short peaks are missed.

Let [τL, τR] = [i/fs, j/fs] be now the interval on which we test. And let τ be the only

change-point in [(i − L + 1)/fs, (j + L − 1)/fs] with function value mL before and mR

afterwards and assume that all three parameters are already reestimated. This includes

the scenario of no change-point by setting mL = mR. Then, we decide whether a new
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segment on [τL, τR] is significantly better by testing the hypothesis

µ0(t) =

mL if t < τ,

mR if t ≥ τ
(3.23)

versus the alternative

µ1(m)(t) =


mL if t < τL,

m if τL ≤ t < τR,

mR if t ≥ τR,

(3.24)

with m ∈ R arbitrary. In case of heterogeneous noise the same structure is assumed for

variance functions σ2
0 and σ2

1 with values s2
L, s

2 and s2
R. On long segments, in addition to

the expectation, the variance is estimated by (3.11) using the same observations as used

for estimating the expectation. However, we require at least 25 instead of ten observations

in the definition of a long segment to guarantee a reasonable estimation of the variance.

3.7.3. Local test statistic for homogeneous noise

If the noise is homogeneous we use the (regularized) likelihood ratio test statistic

T ji (Y) := (Yi+1,j+L−1 − (m0)i+1,j+L−1)t Σ−1
i+1,j+L−1 (Yi+1,j+L−1 − (m0)i+1,j+L−1)

− (Yi+1,j+L−1 − (m1(m̂))i+1,j+L−1)t Σ−1
i+1,j+L−1 (Yi+1,j+L−1 − (m1(m̂))i+1,j+L−1) ,

with

m̂ := argmax
m∈R

(Yi+1,j+L−1 − (m1(m))i+1,j+L−1)t Σ−1
i+1,j+L−1 (Yi+1,j+L−1 − (m1(m))i+1,j+L−1).

Here, (m0)i+1,j+L−1 and (m1(m))i+1,j+L−1 are the vectors

(m0)i+1,j+L−1 =
(
(FL ∗ µ0)((i+ 1)/fs), . . . , (FL ∗ µ0)((j + L− 1)/fs)

)t
,

(m1(m))i+1,j+L−1 =
(
(FL ∗ µ1(m))((i+ 1)/fs), . . . , (FL ∗ µ1(m))((j + L− 1)/fs)

)t
and Σi+1,j+L−1 the covariance matrix of the observations Yi+1, . . . , Yj+L−1 given by (3.5),

regularized by Tikhonov regularization with parameter γ2 = σ2
0.

3.7.4. Local test statistic for heterogeneous noise

For detecting events we aim to use the information provided by potential variance changes

at the change-point locations of the expectation. As discussed in Section 2.1, this is dif-

ferent to the test problem to be robust against variance changes for which we proposed

H-SMUCE in Section 2. Note that if expectation and variance are tested simultaneously,

a multiscale regression estimator is difficult to compute. That’s because the usual com-

putation by a dynamic program relies on minimizing a cost functional on an intersection

of acceptance regions of tests included in the multiscale test, see Section 4.1. And these
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regions are for this setting two dimensional sets instead of one dimensional intervals. Al-

though such an optimization problem can be solved by Dykstra’s projection algorithm

(Dykstra, 1983) (and similar algorithm) it lasts too long when in the dynamic program

such problems have to be computed many times for a large number of sets. But since here

only testing is required it is computational feasible. This is another gain of the approach

to use the previous estimation by J-SMURF and to obtain the final parameters by decon-

volution.

The test problem is also different to the one in (Enikeeva et al., 2016), since we still al-

low the variance to be constant (s2 = s2
L or s2 = s2

R) when the expectation changes and

also m and s2 are unknown and have to be estimated from the observations. However,

an approach for known parameter by assuming an alphabet for the function values and

variance is described in Section 6.2.2. We stress that in the setting of this section the

parameter space for the alternative is large and even for unfiltered observations it is un-

known whether an adaptive test exists that is at least rate optimal for all alternatives. A

theoretical exploration of these questions is interesting but difficult and beyond the scope

of this work, where we aim for an estimator that works well in the algorithmically difficult

model of filtered observations and can be computed quickly. Hence, in the following we

aim for a test that provides a good power for the events in the measurements in Section

5.2, see Figure 3.3, and is computational feasible.

It follows from (3.14) that under the alternative the covariance is given by

Cov
[
Yl, Yl+r

]
=

{
wl,rs

2 + s2
LR,l,r for |r| = 0, . . . , L,

0 for |r| > L,
(3.25)

with

wl,r := A(l/fs − τL, r/fs)−A(l/fs − τR, r/fs) (3.26)

and

s2
LR,l,r := s2

L

[
A(∞, r/fs)−A(l/fs − τL, r/fs)

]
+ s2

RA(l/fs − τR, r/fs). (3.27)

We remark that the assumed structure in (3.23) and (3.24) for variance function leads to

an approximation for the covariance in (3.25), since further change-points in the variance

function are ignored. However, since the kernel decays exponentially and the constant

segments are by construction rather long, the resulting errors should be negligible, but

computation is simplified tremendously.

Since the likelihood function involves the inverse and the determinant of the covariance

matrix given by (3.25), computing the likelihood ratio test statistic requires time consum-

ing numerical optimization. Hence, computation of this test statistic on various intervals

for in total hundred thousands observations is not feasible. This already applies for the

computation of the maximum likelihood estimator for (m, s2). And even the computation

of other sensible estimators for (m, s2) jointly lasts probably very long.
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Instead we use for m the least squares estimator

m̂ := argmin
m∈R

j+L−1∑
l=i+1

(
Yl − E[Yl]

)2
= argmin

m∈R

j+L−1∑
l=i+1

(
Yl − vlm−mLR,l

)2
=

∑j+L−1
l=i+1 vl(Yl −mLR,l)∑j+L−1

l=i+1 v2
l

,

(3.28)

where it follows from (3.10) that

vl := FL(l/fs − τL)−FL(l/fs − τR) (3.29)

and

mLR,l := mL[1−FL(l/fs − τL)] +mRFL(l/fs − τR). (3.30)

This estimator is identical with the maximum likelihood estimator when the covariance

structure is ignored and the observations are assumed to be independent and to have

homogeneous noise, but the convolution of the signal with the filter is taken into account.

Moreover, it illustrates that taking into account more observations does not help, since

vl = 0 for l < i+ 1 or l > j + L− 1.

For estimating the variance s2 we use the weighted estimator

ŝ2 := max

(∑j+L−1
l=i+1 wl,0

(
Yl − vlm̂−mLR,l

)2 −B(s2
L, s

2
R)

A
, 0

)
, (3.31)

with A and B(s2
L, s

2
R) such that

E

[
j+L−1∑
l=i+1

wl,0
(
Yl − vlm̂−mLR,l

)2]
=: As2 +B(s2

L, s
2
R). (3.32)

It follows from (3.28) that the random variable of which we take the expectation in

(3.32) can be written as a quadratic form (Yi+1,j+L−1 − E[Yi+1,j+L−1])tC(Yi+1,j+L−1 −
E[Yi+1,j+L−1]), where all entries of the matrix C are non-negative and depend only on vl

and wl,0, l = i + 1, . . . , j + L − 1. Together with (3.25) the structure proposed in (3.32)

follows and A and B(s2
L, s

2
R) can be computed explicitly. The estimator m̂ is unbiased,

while for ŝ2 this would be true without the projection of negative values to zero in (3.31),

which however reduces the mean squared error.

Using these estimators, under the alternative the observation Yl has estimated expectation

m̂1,l := vlm̂+mLR,l and estimated variance ŝ2
1,l := wl,0ŝ

2+s2
LR,l,0. It follows from (3.8) and

(3.14) that under the null hypothesis the observation Yl has expectation m0,l := mL

[
1 −

FL(t−τ)
]
+mRFL(t−τ) and variance s2

0,l := s2
L

[
A(∞, 0)−A(l/fs−τ)

]
+s2

RA(l/fs−τ, 0).

To obtain a test statistic these estimators can be plugged into the likelihood ratio, but

its computation is rather slow and it is unclear how to regularize the covariance matrix,

see a similar discussion in Section 3.7.7 for the deconvolution. Thereto, we ignore the
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correlation of the observations and use the likelihood ratio test for this model which leads

to

T ji (Y) :=

j+L−1∑
l=i+1

log

(
s2

0,l

ŝ2
1,l

)
+

(Yl −m0,l)
2

s2
0,l

−
(Yl − m̂1,l)

2

ŝ2
1,l

. (3.33)

We are aware that this test statistic and its underlying estimators might be improvable

with respect to efficiency of the estimators and the power of the resulting test for its various

alternatives, but, as stressed before, we aimed for a test that has at least a good power

for the recordings in Section 5.2 and can be computed efficiently. This will be confirmed

by the simulations in Section 3.9.4 and in Section 4.5, respectively.

3.7.5. Multiple dependent rejections

Usually one event in the data causes rejections of multiple tests. We only keep the event

with the largest test statistic among all rejections on intervals that adjoin each other at

least. More precisely, two rejections on intervals [i1/fs, j1/fs] and [i2/fs, j2/fs], are only

considered as two separated events if the intervals are disjoint, let then w.l.o.g. j1 < i2,

and there exists an l ∈ {j1 + 1, . . . , i2 − 1} such that all tests on intervals containing l/fs

accept the hypothesis. The choice of the largest test statistic is a natural choice for all

tests on intervals of the same length, since they share the same distribution (under their

respective null hypotheses and alternatives). For tests on intervals of different lengths this

is an approximation, which we found works very well. That’s because usually the test

statistics are much larger when their alternative is true than when their null hypothesis

is true or the underlying model is different to their null hypothesis and alternative, which

outweighs the (slightly) different distributions (under their respective null hypotheses and

alternatives). Also note that a slight missestimation of the change-point locations does

not have a noticeable effect, since the final estimation of them is obtained by the upcoming

deconvolution step.

3.7.6. Critical values

We combine the multiscale tests of J-SMURF and the tests on small scales in the improving

step by a weighted Bonferroni correction to satisfy an overall significance level α. The

multiscale test of J-SMURF will be performed at a reduced significance level α1 < α and

the local tests are combined to a multiple test at significance level α2 = α − α1. To this

end, we obtain the critical values as described in Section 2.2.1 by using equal weights

β1, . . . , βlmax = 1/lmax. To speed up the required Monte-Carlo simulations we use a small

simplification. We generate observations according to the assumed model, see Section

3.9.1. But for computing the statistics we assume a constant estimation by J-SMURF

instead of performing the J-SMURF step. Since the estimation by J-SMURF leads with

probability at least 1 − α1 to a constant estimation this error is negligible. Like as for

JULES, this construction aims that the probability to overestimate the number of change-

points is bounded from above by α. Again this bound cannot be proven, but we found in
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simulations that for typical time series the probability is even smaller.

3.7.7. Local deconvolution

The final estimation is obtained by deconvolution as described in Section 3.6 with an ad-

justment on how to choose the grids. For J-SMURF and for the detection step of JULES

the estimated change-point locations are shifted to the right, since the convolution was

ignored. Hence, we use for a change-point τ̂ detected by J-SMURF (and not replaced by

two detected change-points by the local tests) still the grid {τ̂−L/fs, τ̂−(L+1)/fs . . . , τ̂}.
For a change-point τ̂ detected by the local tests we use instead {τ̂ − dL/2e/fs, . . . , τ̂ +

dL/2e/fs}, since the locations are not estimated precisely, but also not systematically

shifted to one side. The prior reestimation of the function values is adapted in the same

way. Everything else is performed in the same way as explained in Section 3.6.

This in particular means that we still use the likelihood function of observations with

homogeneous noise, although heterogeneous noise is assumed. Simulations show, see Sec-

tions 3.9.4 and 3.9.7, that this works reasonably well for the recordings we analyze in

Section 5.2. If the noise is larger and the relative difference of the noise values is large,

taking into account the heterogeneous noise might be beneficial. However, as discussed

before, the computation of the maximum likelihood estimator is too slow. Alternatively,

the estimators (3.28) and (3.31) could be used and plugged in the likelihood function.

Although this approach is computational feasible, it is unclear how to regularize the co-

variance matrix in the likelihood function. On the one hand, homogeneous noise is still

part of the model and hence a regularization is required to overcome the issues raised by

the ill-conditioned covariance matrix. On the other hand, in case of heterogeneous noise

Tikhonov regularization equalizes the variances which results in a biased estimation of

the change-point locations. All in all, the task of finding an appropriate regularization

appears to be difficult and unbiased estimation might be even impossible, since keeping

the variance levels and avoiding an ill-conditioned matrix might not be achievable at the

same time. Hence, we still use the homogeneous approach which appears to be robust

enough for our recordings, see Figure 3.5 and Section 3.9.4. Interestingly, we found in

simulations (not displayed) that this approach using the regularized correlation matrix of

homogeneous observations, which is for heterogeneous noise not anymore proportional to

the covariance matrix, works still better than a least squares approach.

3.8. Analysis of the gating dynamics

After we discussed in the previous sections extensively the estimation of the underlying

signal, we discuss in this section how to analyze the dynamics of an ion channel based

on these estimations. Such an analysis depends of course very much on the data and on

which questions are relevant. Nonetheless, we will outline some concepts in the following.

We analyze exemplary one PorB wild type measurement in the presence of ampicillin.
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An example of such a data set was shown in Figure 1.1 and an estimation by JULES in

Figure 1.3. The channel is most of the time open and the ion flow is only briefly blocked

by an ampicillin molecule. The main questions are how large is the conductance loss by

a blockage and how long and how frequently the channel is blocked. For more details,

for results based on all measurements and their interpretation see Section 5.1. We will

also analyze the Gramicidin A recordings in Section 3.10, the PorB recordings without

ampicillin, but with heterogeneous noise, in Section 5.2, and simulated data in Sections

3.9.6 and 3.9.7 in a similar way. This is also the reason why we discuss the analysis of the

PorB recordings in this section and not later. We stress that this is an empirical analysis

including approximations and subjective choices. Several analysis steps can be formalized

and improved, but the focus of this work is on estimating the underlying signals.

Naturally, the first step should always be to plot the data together with the estimation

of the signal to examine whether the estimation looks well. This also helps to identify

artifacts that might disturb the later analysis and have to be taken into account or be

removed by postfilter steps. Frequently, base line fluctuations, i.e., small conductance

changes, occur, see for instance the oscillations of the conductance around 11.5 s in Figure

3.21. They are caused by small defects in the membrane, which is unavoidable in the

recordings. There might be also periodic oscillations, resulting from the electronic or from

building vibrations (although damped). Moreover, short, but large conductance spikes,

often with a fixed frequency, caused by the electronic might be in the data as well. We

also suggest to zoom into single change-points or if occurring into single peaks together

with a plot of the convolution of the estimated signal with the assumed lowpass filter, see

the lower panels in Figures 1.3, 3.5, 3.22 and 3.23. If the convolution fits the observations

well, as it is the case in these figures, this a good verification of the assumed model, in

particular that the filter is specified correctly.

It is crucial for the analysis that not all events are observable, shorter events are missed,

see the simulations in Section 3.9.3. More precisely, we assume that only events with a

dwell time in an interval [a, b] are observed with probability one and no artifacts of that

length are detected. Other estimated events will be ignored for the analysis, since taking

into account events that are detected with a probability less than one either complicate

or even falsify the analysis. The same is true for lengths on which artifacts are observed.

We found in simulations, similar to them in Section 3.9.3, that for the PorB recordings in

Section 5.1 JULES is able to detect events of length at least 0.08 ms with almost proba-

bility one. Hence, we take into account all events with length between a = 0.08 ms and

b = 0.2 ms, since some shorter events are missed and some larger events might be rare

gating events of the channel itself and not caused by an ampicillin blockage.

Usually, before other questions can be answered, the number and values of the underlying

conductance levels have to be estimated. More precisely, we assume that the functions val-

ues of the underlying signal are all contained in a finite, usually small, alphabet {l1, . . . , lc}.
The number of conductance levels, also called states, i.e., the cardinality c of the alphabet,

and the values l1 < · · · < lc are the parameter of interest. Using such an alphabet also as
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an assumption for estimating the underlying signals is discussed in Section 6.2.2. Note that

in these experiments the zero level does not correspond necessarily to zero conductance,

since the base line has to be set manually. Hence, the amplitudes, i.e., the conductance

differences l2 − l1, . . . , lc − l1, are often more informative. The estimated function values

are assumed to be given by a mixture distribution with c components and the single com-

ponents have expectation l1, . . . , lc. The errors result from measurement errors and the

estimation error and are often assumed to be Gaussian distributed.

To estimate the components of the mixture, including the model selection task to estimate

the number of components, many statistical methods are available, for an overview see

(McLachlan and Peel, 2004) and the references therein. Moreover, histograms of the raw

data, also called point amplitude histograms, and of the estimated function values, also

called event histograms, can be used for visualization, see for instance (Bartsch et al.,

2017, Figure 5 C, D). Note that if events are short in time a raw data histogram might be

missleading due to filtering and that the channel is much longer, but not more frequently,

in some states than in other states. In case of only two or very few more conductance

levels histograms of the amplitudes, the differences between consecutive function values,

are often more informative. Such a histogram is shown in Figure 3.6 for the recordings

in Figure 1.1. Amplitude histograms for other data sets can be found in (Bartsch et al.,

2017, Figure 6).

Figure 3.6.: Histograms of the amplitudes between 0 nS and 2 nS of all blockage events
with residence time between 0.08 ms and 0.2 ms. Vertical red line indicates
the estimated amplitude of 1.1708 nS by the half sample mode.

Comparing them with the measurement before ampicillin was added, see (Bartsch et al.,

2017, Figure S9 in the Supporting Information), reveals one additional well separated

peak. Boundaries of this peak [l, u] = [0.9, 1.5] nS are visually determined. All other

events are neglected as they cannot be associated with an ampicillin blockage, most likely

they are detected base line fluctuations. This is supported by the fact that the amount of

events in the measurements without ampicillin and in the measurements with ampicillin,

but outside of the interval [l, u], are roughly the same. Here, the number of components
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c = 2 is obtained visually as the number of distinguishable ”significant” peaks in the

histogram, of course a subjective choice. A conductance loss by an ampicillin blockage,

i.e., the amplitude l2 − l1, of 1.1708 nS is estimated by the half sample mode (Robertson

and Cryer, 1974), computed in R by using the modeest package. Alternatively, other mode

estimators or estimators based on a Gaussian assumption can be used. But, we prefer the

half sample mode estimator, since this estimator is rather robust against outliers.

In the following, we analyze the dwell times of the channel in the constant conductance

segments. We restrict ourself to the simple model of only two conductance levels, c = 2,

and assume that the channel is most of the time in one level, only briefly interrupted

by short changes to the other level. For the recordings we analyze in this section this

is fulfilled, since the ion flow is only briefly interrupted by ampicillin blockage events.

Moreover, we will see that such a model is valid for PorB recordings without ampicillin

in Section 5.2 and for the Gramicdin A recordings in Section 3.10. Extensions to more

complicated models are possible, although not always straightforward, but beyond the

scope of this work where we focus on estimating the underlying signal.

For many recordings, and as we will see also for the PorB recordings, a time continuous

Markov model is a reasonable assumption. Note that often for each conductance level a

mixture of exponential distributions is assumed, resulting in a Markov model with more

than two states, but for the PorB recordings a simple two state model will be enough. More

precisely, we assume a sequence of independent times T̃1, . . . , T̃2ñ+1. These times describes

how long the channel dwells in a state before a change occur. Moreover, we assume

with C̃1, . . . , C̃ñ exponentially distributed residence times of the ampicillin molecules, or

more generally the dwell times in the closed state, and with Õ1, . . . , Õñ+1 exponentially

distributed times between two blockage events, in general the dwell times in the open

state. Thus, we have Õi = T̃2i−1, i = 1, . . . , ñ+ 1, and C̃i = T̃2i, i = 1, . . . , ñ, whereby we

assumed without loss of generality that channel is open at the beginning and end. And we

denote the exponential rates with λO for the open state and with λC for the closed state.

The rate λO is the frequency with which blockage events occur and 1/λC is the average

residence time.

Next, we have to discuss the influence of missing events. Missing events shorter than a

resolution limit a is heavily discussed in the literature. The exact distribution is calculated

by Hawkes et al. (1990), an estimator called MIL of the Q-matrix is suggested by Qin et al.

(1996) and integrated in the QuB software package (Nicolai and Sachs, 2013), the exact

maximum likelihood estimator for the Q-matrix for two conductance level is obtained by

Colquhoun et al. (1996) and recently a Bayesian approach is proposed by Epstein et al.

(2016). In this work for the small model of only two states we follow a simpler, more

direct approach which allows at the same time to verify the assumption of an underlying

two state Markov model.

By assumption we only observe closing events of length in the interval [a, b]. More precisely,

we have closing times C1, . . . , Cn such that for all Ci, i ∈ {1, . . . , n}, there exists an ji

in {1, . . . , ñ} with Ci = C̃ji and for all j ∈ {j1, . . . , jn} we have C̃j ∈ [a, b] and for all
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other j ∈ {1, . . . , ñ} \ {j1, . . . , jn} we have C̃j /∈ [a, b]. For the opening times O1, . . . , On+1

the connection is given by Oi :=
∑ji−1

l=ji−1+1 Õl + C̃l + Õji , i = 1, . . . , n + 1, with j0 = 0

and jn+1 = ñ, i.e., by the sum of all times until the next observable closing event occurs.

Both together, we observe the times T1, . . . , T2n+1, with Oi = T2i−1, i = 1, . . . , n+ 1, and

Ci = T2i, i = 1, . . . , n. Also these times are independent by construction and since all

times T̃1, . . . , T̃2ñ+1 are independent. In the following we assume that the estimated times

are realizations of T1, . . . , T2n+1, since the estimation is (almost) unbiased and the errors

are small, see Sections 3.9.3 and 3.9.4. This means C1, . . . , Cn are given by all τ̂i+1− τ̂i for

which τ̂i+1 − τ̂i ∈ [a, b] and m̂i − m̂i−1 ∈ [l, u] and O1, . . . , On+1 analogue. We now want

to verify the Markov assumption and estimate the rates λC and λO.

Instead of independence we only confirm that the times are uncorrelated by plotting the

empirical autocorrelations of lag l

γl :=


1

2n+ 1− l

2n+1−l∑
i=1

Ti Ti+l − C O
σ̂C σ̂O

, if l odd,

1

2n+ 1− l

n−l/2∑
i=1

CiCi+l/2 − C
2

σ̂2
C

+
1

2n+ 1− l

n+1−l/2∑
i=1

OiOi+l/2 −O
2

σ̂2
O

, if l even,

with C and O the means and σ̂C and σ̂O the empirical standard deviations of the closing

times C1, . . . , Cn and the opening times O1, . . . , On+1, respectively. Figure 3.7 confirms

that the times are uncorrelated. An extensions to statistical tests for uncorrelation or

independence might be possible as well. However, note that this confirmation and also

the upcoming confirmation of the exponential distributions are only given for events with

residence times between a = 0.08 ms and b = 0.2 ms, for all other lengths it is just an

assumption.

By construction, C1, . . . , Cn have density

fC1(x) =
λC exp(−λCx)1lx∈[a,b]

exp(−λCa)− exp(−λCb)
. (3.34)

The maximum likelihood and the moment estimator λ̂C for λC coincide and can be com-

puted by maximizing the likelihood function by the quasi-Newton method BFGS published

simultaneously by Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970). This

is performed in R by the function optim with method ’BFGS’ and start value C. Its good

performance is confirmed by simulations (not displayed). With this estimate at hand we

can verify the distribution assumption for C1, . . . , Cn derived from the Markov model by

tests, for instance by the Kolmogorov-Smirnov test, but note that its critical value have

to be corrected for the prior estimation of the rate (Lilliefors, 1969; Babu and Rao, 2004).

Also here, we only give an empirical verification by comparing visually the estimated ex-

ponential distribution with the histogram of the times C1, . . . , Cn, see Figure 3.8a. For

this data set we estimate an average residence time of 1/λ̂C = 0.0391 ms.

Since the residence times are much shorter than the times between two events we make
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Figure 3.7.: Empirical autocorrelations γ0, . . . , γ30. The values close to zero confirm un-
correlated times.

the approximation Oi ≈
∑ji

l=ji−1+1 Õl. Let p := p(λC) := P(C̃1 ∈ [a, b]) be the probability

that a blockage event is observable. Then, each Oi is the sum of N independent exponen-

tially distributed random variables, with rate λO, where N is a geometrically distributed

random variable with probability p and independent of the exponentially distributed ran-

dom variables. It follows that O1, . . . , On+1 are still exponentially distributed, but with

rate pλO, see Proposition 23. This rate is estimated by the usual maximum likelihood es-

timator for exponentially distributed observations 1/O and the probability p is estimated

by p̂ = p(λ̂C). Thus, the rate λO is estimated by λ̂O = 1/(p̂O) = 17.0744 Hz. And the

distribution assumption can be checked in the same way as for the residence times, see

Figure 3.8b.

In addition to estimation also confidence intervals can be obtained. For λO an exact con-

fidence interval is given by [χ2
2n(α/2)/

∑n
i=1Oi, χ

2
2n(1−α/2)/

∑n
i=1Oi]/p, with χ2

t (α) the

α-quantile of a chi-squared distribution with t degrees of freedom. Replacing p by the

estimate p̂ leads to an approximated confidence interval of [16.2134, 17.9572] Hz. For 1/λC

an asymptotic confidence interval of [0.0365, 0.0419] ms is obtained from the asymptotic

normal distribution of λ̂C with an analytically computable variance, see Proposition 24.

In Section 5.1 we have measurements with more than one channel inserted in the mem-

brane. In general, the analysis of such measurements is much more difficult due the

interference of events and that it cannot be decided which channel opens or closes. In this

special situation, where all events are so short that no inference is observed, the residence

times are not altered and the blockage frequency for one channel is obtained by dividing

the frequency of all channels by the number of channels. This number is determined by

the unblocked conductance level divided by the estimated amplitude.
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(a) Residence time of blockage events
with amplitude between l = 0.9 nS
and u = 1.5 nS.

(b) Distances between two blockage
events with residence time between
a = 0.08 ms and b = 0.2 ms and
amplitude between l = 0.9 nS and
u = 1.5 nS.

Figure 3.8.: Histograms of the residence times and distances between two blockage events
with amplitude between l = 0.9 nS and u = 1.5 nS.

Finally, we have to discuss how to combine the results of several measurements, i.e., the

same experiment is repeated m times under identical conditions. We model the ampli-

tudes and the rates λC and λO as random variables drawn from an unknown distribution

F . Uncertainty result from effects like how the channel is exactly positioned in the mem-

brane or whether the membrane is bent a little bit. Since m is typically very small, in

Section 5.1 only four, its distribution is hard to explore. In some experiments this error

might be negligible, but for the PorB recordings it dominates, since n is rather large such

that the estimation error for the rates is small. To visualize results the empirical mean

and standard deviation of the estimated amplitudes and rates are used, although it can-

not be ensured that the first and second moment of F exists. Nonetheless, two different

measurements, e.g., measurements from two different channels, like in Section 5.1 of the

PorB wild type and a mutant, can be compared, with statistically strict conclusions, by

non-parametric tests like the Wilcoxon signed-rank test.

3.9. Simulations

In this section we present the simulation study from (Pein et al., 2017d) in which we

compared JULES with the slope thresholding method TRANSIT (VanDongen, 1996) and

the multiresolution method J-SMURF (Hotz et al., 2013). In addition, we report in this

work results for JILTAD. Besides the version of JILTAD for homogeneous noise, we also

include its version for heterogeneous noise to examine how much detection power is lost

when the assumption of homogeneous noise is missing. Moreover, we perform similar

simulations with heterogeneous noise. For this model we focus on JILTAD assuming
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heterogeneous noise, since to our best knowledge no other non-parametric method is known

that takes into account the filter explicitly. For illustration of missing heterogeneous noise

we also include JULES in one simulation.

The purpose of the simulation study is threefold. First of all, we assess the ability of the

methods to detect and estimate an isolated peak. Then, we identify the minimal distance

at which the methods are able to separate two consecutive peaks. Finally, although none

of the methods rely on a hidden Markov model assumption, but since a hidden Markov

model is a very common assumption to analyze ion channel recordings, we examine their

ability to recover the parameters of a Hidden Markov model with one open state and two

closed flickering states, in particular how well the two flickering states can be separated.

All of these simulations focus on estimating events that are short in time, since this is

the most challenging task due to the filter and a satisfying estimation of events on larger

scales but with a small amplitude was already shown in (Hotz et al., 2013) by J-SMURF

which behaves on larger scales similar to JULES and JILTAD.

3.9.1. Data generation

We generate all signals and observations accordingly to the homogeneous and heteroge-

neous ion channel models we described in Section 3.1 such that they are in line with the

measured data we analyze in Sections 3.10 and 5. This means in particular that ampli-

tudes, dwell times and noise levels of the generated observations are chosen such that they

are similar to those of the analyzed datasets. We also simulate a 4-pole Bessel filter with

1 kHz cut-off frequency and sample the observation at 10 kHz.

The expectation of the observations, given by the convolution of the signal with the trun-

cated kernel FL of the lowpass Bessel filter, can be computed explicitly by (3.6). For

the errors we use for the homogeneous model the Durbin-Levinson algorithm (Brockwell

and Davis, 2006, proposition 5.2.1) to compute the coefficients of the moving average

process corresponding to the desired covariance structure. For the heterogeneous model

we oversample the observations by a factor of 100, i.e., we generate 100 times as many

independent Gaussian observations, discretize the filter accordingly, compute a discrete

convolution and rescale the observations such that they have the desired variance.

3.9.2. Parameter choices

We use the following specifications in these simulations and in the real data applications.

For the methods J-SMURF, JULES and JILTAD we apply their implementations in the

R package clampSeg (Pein et al., 2017b). To control the probability to overestimate the

number of change-points we choose a conservative significance level of α = 0.05. The

correlation matrix is regularized with parameter γ2 = 1. And, as mentioned before, we

truncate the kernel and autocorrelation function of the filter at L = 11 which corresponds

to the fact that the autocorrelation function is below 10−1 afterwards. All of these choices

are the default parameters. For TRANSIT we use the R function transit in the package
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stepR (Pein et al., 2017a) with default parameters.

3.9.3. Isolated peak with homogeneous noise

In this section we examine in simulations with 4 000 observations the detection and estima-

tion of an isolated peak. We consider a situation that is comparable to the analyzed data

in Section 3.10. More precisely, we simulate a signal with function values m0 = m2 = 40

and m1 = 20 and change-points at τ1 = 2000/fs and τ2 = (2000 + `)/fs, c.f. (3.1) and

Figure 3.9. The standard deviation of the errors εi in (3.4) is σ0 = 1.4. We are interested

in the performance of the methods in detecting the peak and estimating the change-point

locations τ1 and τ2 and the function value m1 as a function of `, the length of the peak

relative to the sampling rate fs.

For ` = 3, Figure 3.9 shows an example of simulated observations, estimations and their

convolutions with the Bessel filter in a neighborhood of the peak. Figure 3.10 shows for

` ∈ {0.1, 0.2, . . . , 5} in how many simulations the signal is correctly identified, i.e., only the

two change-points of the peak and no other change-point is detected. Finally, Tables 3.1-

3.3 summarize our results based on 10 000 repetitions for ` = 2, 3, 5. More precisely, we

define a peak as detected if there exists a j such that |τ̂j−τ1| < L/fs and |τ̂j+1−τ2| < L/fs

as a detected change-point is shifted at most L/fs by the filter. If only one change-point

but not a peak is within these boundaries we do not count it as a true detection, but

also not as a false positive, whereas all other change-points are counted as false positives.

For the estimated change-point locations and function values we only take into account

simulations in which the peak is detected and report the mean squared error, the bias

and the standard deviation. We also report trimmed versions for the estimated function

values, where we compute these error quantities only based on simulations with estimated

function value between 0 and 40.

Table 3.1.: Performance of JULES, JILTAD, TRANSIT and J-SMURF in estimating a signal with an
isolated peak having function values m0 = m2 = 40, m1 = 20 and change-points at τ1 = 0.2
and τ2 = τ1 + `/fs, ` = 2, 3, 5. The standard deviation of the error is σ0 = 1.4. Results are
based on 10 000 pseudo samples.

Method Length (`)
Correctly
identified

(%)

Detected
(%)

False
positive
(Mean)

JULES 2 65.17 65.17 0.0290
JILTAD 2 95.99 96.16 0.0029
JILTAD (het.) 2 87.09 87.18 0.0098
TRANSIT 2 0.01 96.02 19.9692
J-SMURF 2 0.00 0.00 0.1998

JULES 3 99.82 99.82 0.0004
JILTAD 3 99.95 100.00 0.0010
JILTAD (het.) 3 99.70 99.78 0.0037
TRANSIT 3 0.02 74.65 19.8013
J-SMURF 3 0.00 0.00 0.1846

JULES 5 100.00 100.00 0.0000
JILTAD 5 99.98 100.00 0.0004
JILTAD (het.) 5 99.94 99.97 0.0009
TRANSIT 5 0.00 98.20 19.8484
J-SMURF 5 0.00 0.00 0.1892
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(a) JULES (b) TRANSIT (c) J-SMURF

Figure 3.9.: Simulated observations (grey points), true signal µ (black) and estimations by JULES (red),
TRANSIT (blue) and J-SMURF (green). The estimations by JILTAD when assuming ho-
mogeneous noise and when assuming heterogeneous noise are identical with the estimation
by JULES. We also show the convolutions of the true signal (black) and of the estima-
tions by JULES (darkred) and TRANSIT (lightblue) with the lowpass 4-pole Bessel filter.
JULES and JILTAD provide a very accurate estimation, whereas TRANSIT shifts the two
change-points to the right and estimates a too small amplitude and J-SMURF misses the
peak.

We found that the detection power of JULES increases with the length ` in range between

1.1 to 3.1 times the sampling rate and is (almost) one for larger lengths while at the same

time almost no false positives are detected, resulting in a correct identification with a

probability of almost one for lengths a little bit larger than one quarter of the filter length.

Taking into account the convolution for testing, as JILTAD does, improves the detection

power noticeable, its detection power increases between 0.8 and 2.3. Allowing heteroge-

neous noise decreases the detection power mildly with an increase between 1 and 2.8, but

the detection power of JILTAD assuming heterogeneous noise is nonetheless still larger

Figure 3.10.: Correct identification rates of the methods for an isolated peak with length `. Curves are
based on 10 000 repetitions, each.
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Table 3.2.: Performance of JULES, JILTAD and TRANSIT in estimating a signal with an isolated peak
having function values m0 = m2 = 40, m1 = 20 and change-points at τ1 = 0.2 and τ2 =
τ1 + `/fs, ` = 2, 3, 5. The standard deviation of the error is σ0 = 1.4. Results are based on
10 000 pseudo samples and are given as multiples of the sampling rate fs = 104. We excluded
J-SMURF, since this method did not detect peaks of these lengths.

Method Length (`) f2
sMSE(τ̂1) fsBIAS(τ̂1) fsSD(τ̂1) f2

sMSE(τ̂2) fsBIAS(τ̂2) fsSD(τ̂2)

JULES 2 0.4022 -0.1047 0.6255 0.2677 0.0587 0.5141
JILTAD 2 0.2980 0.0141 0.5458 0.2979 -0.0131 0.5457
JILTAD (het.) 2 0.4178 -0.0638 0.6433 0.3872 0.0625 0.6191
TRANSIT 2 9.3427 2.6218 1.5713 24.1103 4.7920 1.0709

JULES 3 0.1170 0.0044 0.3420 0.1087 -0.0012 0.3297
JILTAD 3 0.1088 0.0070 0.3299 0.1094 -0.0024 0.3308
JILTAD (het.) 3 0.1334 0.0001 0.3653 0.1668 0.0080 0.4083
TRANSIT 3 13.0761 2.9386 2.1074 24.2032 4.7115 1.4162

JULES 5 0.0670 -0.0026 0.2588 0.0669 0.0025 0.2587
JILTAD 5 0.0670 -0.0026 0.2588 0.0669 0.0026 0.2587
JILTAD (het.) 5 0.0694 -0.0038 0.2635 0.0823 0.0051 0.2869
TRANSIT 5 15.4710 3.5622 1.6679 18.6559 4.0973 1.3670

than the one of JULES assuming homogeneous noise which illustrates how much detec-

tion power is lost by not taking into account the convolution. In comparison, TRANSIT

has a slightly larger detection power for very small lengths, but detects much more false

positives, resulting in almost no correctly identified signals. Moreover, its detection power

fluctuates for larger lengths in an uncontrollable way. J-SMURF is not able to detect such

small filtered peaks as it does not take into account the corresponding scales. However,

J-SMURF detect in most simulations a single change-point instead of the peak. But, in

roughly one fifth of the simulations the location is missestimated such that it is counted

as a false positive. We also briefly investigated MDL from Gnanasambandam et al. (2017)

(not displayed). To decrease the amount of false positives the authors suggested to as-

sume a minimal length for the events. Although this might be problematic for real data

applications with short events, we used for the simulations with l = 5 the assumption of

that length as prior information. But even under these conditions the number of events is

heavily overestimated. More precisely, on average 98.87 change-points are estimated in the

Table 3.3.: Performance of JULES, JILTAD and TRANSIT in estimating a signal with an isolated peak
having function values m0 = m2 = 40, m1 = 20 and change-points at τ1 = 0.2 and τ2 =
τ1 + `/fs, ` = 2, 3, 5. The standard deviation of the error is σ0 = 1.4. Results are based on
10 000 pseudo samples. We excluded J-SMURF, since this method did not detect peaks of
these lengths.

Method Length (`) MSE(m̂1) BIAS(m̂1) SD(m̂1) MSETrim(m̂1) BIASTrim(m̂1) SDTrim(m̂1)

JULES 2 222978.6771 -83.6452 464.7745 32.5343 -0.6010 5.6726
JILTAD 2 364264.8273 -146.4294 585.5415 35.2761 -0.2986 5.9322
JILTAD (het.) 2 232908.4428 -89.4288 474.2749 34.9639 -0.1520 5.9115
TRANSIT 2 112.7163 10.1733 3.0367 99.3660 9.7529 2.0609

JULES 3 552.8490 -1.0170 23.4919 12.3488 -0.7219 3.4393
JILTAD 3 1038.9324 -1.3235 32.2069 12.3993 -0.7256 3.4459
JILTAD (het.) 3 1041.2124 -1.2786 32.2441 12.5987 -0.6855 3.4828
TRANSIT 3 69.6075 7.0327 4.4891 47.2984 6.2367 2.8988

JULES 5 2.7763 -0.1081 1.6628 2.7763 -0.1081 1.6628
JILTAD 5 2.7762 -0.1079 1.6628 2.7762 -0.1079 1.6628
JILTAD (het.) 5 2.8281 -0.1017 1.6787 2.8281 -0.1017 1.6787
TRANSIT 5 26.8554 2.0811 4.7462 11.5351 1.4210 3.0849
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4 000 observations instead of the two change-points of the peak. Note that the simulated

observations are rather heavily filtered and as noted by Gnanasambandam et al. (2017)

their approach works better for unfiltered or hardly filtered recordings.

JULES and JILTAD estimate almost all detected peaks with high accuracy which increases

with the length of the peak. For short peaks in a few cases the amplitude is heavily over-

estimated, resulting in large mean squared error, bias and standard deviation, but much

smaller trimmed values. Notably, the results are very similar for JULES and both versions

of JILTAD. In many simulations their estimations are even identical as for instance in

Figure 3.9a, since they rely on almost the same deconvolution approach. Moreover, we

found that the convolved estimations fit the observations always very well, see Figure 3.9a

for an illustration. In comparison, Figure 3.9b and the values for the bias in Tables 3.2

and 3.3 show that TRANSIT miss-estimates the peak systematically, in particular the

amplitude is underestimated if the peak is smoothed by the filter. MDL shows a very

similar behavior as also this approach does not take into account the filter explicitly, see

Figure 3.26 for an illustration. Results for J-SMURF are not reported, since this method

did not detect the peaks.

The major difficulty of the devonvolution problem is that convolutions of signals with

larger amplitude but smaller length can look very similar to the convolution of a signal

with smaller amplitude but larger length. In fact, it is possible to show that the change-

points locations τi can by no method be estimated better than at 1/
√
n rate, instead of

the sampling rate 1/n without convolution, see (Boysen et al., 2009a) for a similar setting

and (Goldenshluger et al., 2006; Frick et al., 2014b) for further theoretical results for esti-

mating a peak from filtered data. Note that the filter is rather short ranged with a filter

length of eleven, but the peaks are very short in time with five or less observations and

the signal to noise ratio is with 20/1.4 ≈ 14.29 of medium size, since Gramicidin A has a

small conductance in comparison to other proteins, but is measured at the Port-a-Patch

with solvent-free lipid bilayers, which typically leads to a better signal to noise ratio as

for instance measurements using black lipid membranes.

Similar results were obtained in additional simulation studies (not included) with different

amplitudes and noise levels. For instance for the PorB recordings with ampicillin from

Figure 1.1 we found that a peak has to be at least of length l = 4 to be detected by

JULES with probability almost one. Also simulations (not displayed) where we shift the

two change-point locations by 0.1/fs, 0.25/fs, 0.5/fs, 0.75/fs and 0.9/fs lead to almost

identical results for JULES and JILTAD. This confirms their ability to estimate correctly

the location and amplitude of changes between sampling points.

3.9.4. Isolated peak with heterogeneous noise

In this section we carry out simulations similar to them in the previous section, but with

heterogeneous noise. More precisely, in accordance with the model in Section 3.1.2 and

with the estimated values in Section 5.2 for the observations in Figure 3.3, we choose
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function values m0 = m2 = 0, m1 = 0.32, variances s2
0 = s2

2 = 6.1 · 10−5 and varying

variance s2
1 ∈ {2 ·10−4, 5 ·10−4, 10−3, 2 ·10−3, 5 ·10−3} to examine the influence of different

noise levels. All other parameters, in particular the number of observations and the change-

point locations are as before. We only report results for JILTAD assuming heterogeneous

noise, since no other method is known that deals explicitly with this model. Results are

shown in Tables 3.4-3.6.

Table 3.4.: Performance of JILTAD in estimating a signal with an isolated peak having change-points at
τ1 = 0.2 and τ2 = τ1 + `/fs, ` = 2, 3, 5, function values m0 = m2 = 0, m1 = 0.32, variances
s2

0 = s2
2 = 6.1 · 10−5 and varying variance s2

1 ∈ {2 · 10−4, 5 · 10−4, 10−3, 2 · 10−3, 5 · 10−3}.
Results are based on 10 000 pseudo samples.

Method Length (`)
Correctly
identified

(%)

Detected
(%)

False
positive
(Mean)

s2
1 = 2 · 10−4 2 99.96 100.00 0.0008
s2

1 = 5 · 10−4 2 99.96 100.00 0.0008
s2

1 = 10−3 2 99.94 99.98 0.0010
s2

1 = 2 · 10−3 2 99.07 99.11 0.0014
s2

1 = 5 · 10−3 2 90.04 90.08 0.0042

s2
1 = 2 · 10−4 3 99.97 100.00 0.0006
s2

1 = 5 · 10−4 3 99.97 100.00 0.0006
s2

1 = 10−3 3 99.97 100.00 0.0006
s2

1 = 2 · 10−3 3 99.93 99.96 0.0006
s2

1 = 5 · 10−3 3 96.08 96.11 0.0024

s2
1 = 2 · 10−4 5 99.95 100.00 0.0010
s2

1 = 5 · 10−4 5 99.95 100.00 0.0010
s2

1 = 10−3 5 99.95 100.00 0.0010
s2

1 = 2 · 10−3 5 99.94 100.00 0.0012
s2

1 = 5 · 10−3 5 99.42 99.48 0.0018

Table 3.5.: Performance of JILTAD in estimating a signal with an isolated peak having change-points at
τ1 = 0.2 and τ2 = τ1 + `/fs, ` = 2, 3, 5, function values m0 = m2 = 0, m1 = 0.32, variances
s2

0 = s2
2 = 6.1 · 10−5 and varying variance s2

1 ∈ {2 · 10−4, 5 · 10−4, 10−3, 2 · 10−3, 5 · 10−3}.
Results are based on 10 000 pseudo samples and are given as multiples of the sampling rate
fs = 104.

Method Length (`) f2
sMSE(τ̂1) fsBIAS(τ̂1) fsSD(τ̂1) f2

sMSE(τ̂2) fsBIAS(τ̂2) fsSD(τ̂2)

s2
1 = 2 · 10−4 2 0.0331 0.0092 0.1818 0.0381 -0.0076 0.1951
s2

1 = 5 · 10−4 2 0.0515 0.0113 0.2267 0.0427 -0.0115 0.2062
s2

1 = 10−3 2 0.0677 0.0255 0.2590 0.0595 -0.0266 0.2424
s2

1 = 2 · 10−3 2 0.1532 0.0935 0.3801 0.1570 -0.0942 0.3848
s2

1 = 5 · 10−3 2 0.6628 0.3275 0.7454 0.6223 -0.3252 0.7188

s2
1 = 2 · 10−4 3 0.0120 0.0001 0.1097 0.0117 0.0010 0.1083
s2

1 = 5 · 10−4 3 0.0177 0.0040 0.1329 0.0177 -0.0022 0.1332
s2

1 = 10−3 3 0.0391 0.0181 0.1970 0.0388 -0.0152 0.1965
s2

1 = 2 · 10−3 3 0.1569 0.0846 0.3870 0.1533 -0.0802 0.3833
s2

1 = 5 · 10−3 3 1.1681 0.4668 0.9748 1.1058 -0.4515 0.9498

s2
1 = 2 · 10−4 5 0.0070 -0.0014 0.0835 0.0084 0.0013 0.0914
s2

1 = 5 · 10−4 5 0.0176 0.0036 0.1326 0.0189 -0.0037 0.1375
s2

1 = 10−3 5 0.0572 0.0217 0.2381 0.0591 -0.0215 0.2421
s2

1 = 2 · 10−3 5 0.2473 0.0985 0.4874 0.2464 -0.0976 0.4867
s2

1 = 5 · 10−3 5 2.0808 0.6363 1.2946 2.1605 -0.6520 1.3174

In most scenarios JILTAD has a good detection power and detects almost no false posi-

tives, see Table 3.4, only for a five times larger variance than in the real data and when

the peaks are short significantly many events are missed. Notably, contrary to (Enikeeva

et al., 2016), where the variance values are assumed to be known and at the peak larger
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Table 3.6.: Performance of JILTAD in estimating a signal with an isolated peak having change-points at
τ1 = 0.2 and τ2 = τ1 + `/fs, ` = 2, 3, 5, function values m0 = m2 = 0, m1 = 0.32, variances
s2

0 = s2
2 = 6.1 · 10−5 and varying variance s2

1 ∈ {2 · 10−4, 5 · 10−4, 10−3, 2 · 10−3, 5 · 10−3}.
Results are based on 10 000 pseudo samples.

Method Length (`) MSE(m̂1) BIAS(m̂1) SD(m̂1) MSETrim(m̂1) BIASTrim(m̂1) SDTrim(m̂1)

s2
1 = 2 · 10−4 2 0.1320 0.0194 0.3628 0.1320 0.0194 0.3628
s2

1 = 5 · 10−4 2 0.6953 0.0322 0.8333 0.1225 0.0215 0.3494
s2

1 = 10−3 2 2.3290 0.0888 1.5236 0.9686 0.0604 0.9824
s2

1 = 2 · 10−3 2 21.7896 0.7801 4.6025 11.7570 0.5806 3.3795
s2

1 = 5 · 10−3 2 294.6030 5.5640 16.2380 85.3154 3.6929 8.4668

s2
1 = 2 · 10−4 3 0.0002 0.0009 0.0152 0.0002 0.0009 0.0152
s2

1 = 5 · 10−4 3 0.0007 0.0018 0.0259 0.0007 0.0018 0.0259
s2

1 = 10−3 3 0.0023 0.0055 0.0473 0.0023 0.0055 0.0473
s2

1 = 2 · 10−3 3 1.7338 0.0806 1.3143 0.6608 0.0603 0.8107
s2

1 = 5 · 10−3 3 334.7102 5.0891 17.5739 62.1012 2.6210 7.4322

s2
1 = 2 · 10−4 5 0.0001 0.0001 0.0077 0.0001 0.0001 0.0077
s2

1 = 5 · 10−4 5 0.0003 0.0007 0.0179 0.0003 0.0007 0.0179
s2

1 = 10−3 5 0.0013 0.0033 0.0354 0.0013 0.0033 0.0354
s2

1 = 2 · 10−3 5 0.0055 0.0158 0.0725 0.0055 0.0158 0.0725
s2

1 = 5 · 10−3 5 203.0129 2.7499 13.9811 27.0030 1.1807 5.0608

than the background noise, the detection power is decreasing with increasing variance.

Hence, for recordings with a small change in the expectation in relation to the variances

but a large relative variance difference it would be valuable to use a different test statistic,

for instance one that focuses on comparing the variances.

We remark that the scenario of a mostly open channel with short closings is slightly more

difficult for JILTAD. More precisely, for function values with the same difference but vari-

ances s2
0 = s2

2 = 10−3 and s2
1 = 6.1 · 10−5 JILTAD misses most events of length l = 2, but

detects 97% events of length l = 3 and almost all of length l = 5. In Section 5.2 we also

have two measurements with variances roughly 2.5 · 10−5 and 0.05 and an amplitude of

0.95. Notably, for these data sets event detection works very well, almost with probability

one even for events of length l = 0.1. This can be explained by the larger amplitude of

0.95 and the smaller noise level for the closed state in which the channel is most of the

time.

In Tables 3.5 and 3.6 we found that estimation of the change-point locations and the func-

tion value works well for variances similar to the real data, but has some issues when the

variance of the peak is larger, in particular in the scenario of a five times larger variance.

For such observations it might be desirable to take into account the heterogeneous vari-

ance. For smaller variances the results for estimating the change-point locations are better

when the peak is longer, but for larger variances results are even worse when the peak is

longer. An explanation might be two effects with opposite influences. The different func-

tion value, and also the relative variance difference which is not used by JILTAD, provide

more information when the peak is longer, but then also the variance of the observations

is larger which hinders estimation. Estimation of the function value m1 is always more

accurate when the peak is longer. It seems that here the first influence dominates. In the

reversed scenario of short closing events, estimation of the change-point locations has a

large bias and variance for ` = 2, but improves dramatically with the length of the peak,
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since in this setting also the variance of the observations gets smaller when the length of

the peak increases. In the scenario of a larger variance heterogeneity and a larger ampli-

tude a small bias the estimation of all parameters is slightly biased which does not improve

in the length of the peak for the change-point locations, but for the function value m1.

All in all, these simulations confirm that JILTAD performs well for observations compara-

ble to them in Section 5.2, although the local tests ignore the correlation structure and in

the deconvolution step we still use the deconvolution approach designed for homogeneous

noise.

3.9.5. Separation of two consecutive peaks

In this simulation study we are interested in the performance of JULES and JILTAD in

separating two consecutive peaks as a function of d, the distance between them. We only

include JULES and JILTAD as these methods rely on deconvolution and, hence, separation

signifies an issues for them. Separation is necessary in the detection step, i.e., two peaks

have to be detected, but in particular in the deconvolution step as we are only able to

deconvolve both peaks individually if they are isolated. To this end, we consider a signal

with change-points at τ1 = 2 000/fs, τ2 = τ1 + 5/fs, τ3 = τ2 + d and τ4 = τ3 + 5/fs, with

τ0 = 0 and τend = 4 000/fs, and function values m0 = m2 = m4 = 40 and m1 = m3 = 20.

The standard deviation is assumed to be constant with σ0 = 1.4. Here we fixed the

length of the consecutive peaks at 5/fs, since want to focus on separation and we found

in Section 3.9.3 that peaks of this size are detected with (almost) probability one.

We identified three outcomes, all illustrated in Figure 3.11. First of all, perfect separation,

i.e., four change-points are detected and the local deconvolution yields estimates for all

parameters. Secondly, separation fails in the detection step, i.e., only 2 change-points

are detected and identified as one peak whose parameters are obtained by deconvolution.

Finally, separation fails in the deconvolution step, i.e., two peaks are detected but the

distance is so small that the deconvolution method cannot separate them, in other words,

no long segment is in between.

Figures 3.12-3.14 show the frequency at which each scenario occurred as a function of d,

the distance between the two peaks. For each value of d = {1, 2, . . . , 70} we performed

10 000 simulations. JULES potentially fails to detect both peaks when d ≤ 12, but the

frequency decreases rapidly with d. For d ∈ [4, 31] detection is often possible, but not the

separation in the deconvolution, whereas for d > 33 this scenario is no longer observed.

Finally, separation of the two peaks is possible with high probability as soon as the dis-

tance between them is at least 32/fs, roughly three times the filter length. This is equal to

the minimal distance of a long segment of ten observations plus the two shifts on the left

and right side of the segment by L = 11 to take the filter into account. This corresponds

to 3.2 ms for the Gramicidin A recordings, whereas the estimated average distance is with

1/3.28 s ≈ 0.3 s, see Section 3.10, much larger.

For JILTAD assuming homogeneous noise separation in the deconvolution step fails poten-
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(a) No separation in the detection
step, d = 3.

(b) No separation in the deconvo-
lution, d = 20.

(c) Perfect separation, d = 35.

Figure 3.11.: Examples for the different outcomes. Simulated observations (grey points), true signal µ
(black) and estimation (red), here exemplary by JULES.

tially for distances d between 2 and 5 and between 19 and 32, whereas for distances d ≥ 33

separation was almost always perfect. For all other distances the method failed to detect

two peaks. For very short distances only one change-point is detected by J-SMURF and we

can apply local tests which quickly detect two peaks, in particular faster than JULES, but

separation fails in the deconvolution step. But for d ≥ 6 J-SMURF detects two changes

resulting in a segment on which local tests can not be applied. For d > 19 J-SMURF still

detects two change-points, but the distance between them is large enough such that local

tests can be applied again. These tests detect the two peaks resulting in another segment

with no separation in the deconvolution step and for d ≥ 32 in two separated peaks. We

stress that the same length is required for JULES and JILTAD to separate two peaks,

Figure 3.12.: Results for JULES in estimating two consecutive peaks separated by distance d. Its fre-
quencies for no separation in the detection step (green), for successful detection, but no
separation in the deconvolution step (red) and for successful detection and deconvolution
(blue). Results are based on 10 000 simulations for each value of d.
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Figure 3.13.: Results for JILTAD assuming homogeneous noise in estimating two consecutive peaks
separated by distance d. Its frequencies for no separation in the detection step (green), for
successful detection, but no separation in the deconvolution step (red) and for successful
detection and deconvolution (blue). Results are based on 10 000 simulations for each value
of d.

but JULES indicates more realiably that more than one peak occurred, but could not be

deconvolved.

When heterogeneous noise is assumed, J-SMURF does not detect two change-points for

short distances and also the detection of two peaks by the local tests requires a longer

distance between them. Thus, the two peaks are not detected until d = 6 and separation

Figure 3.14.: Results for JILTAD assuming heterogeneous noise in estimating two consecutive peaks
separated by distance d. Its frequencies for no separation in the detection step (green), for
successful detection, but no separation in the deconvolution step (red) and for successful
detection and deconvolution (blue). Results are based on 10 000 simulations for each value
of d.
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in the deconvolution step requires a much longer distance of d ≥ 62. We do not show re-

sults for simulations with heterogeneous noise, since the results are identical as separation

depends on the method and distance between the peaks but not on the noise.

3.9.6. Hidden Markov model

In this section we simulate data from a three state hidden Markov model. None of the

considered methods rely on a hidden Markov assumption, but as such a model is often

assumed for ion channel recordings, it is instructive to investigate these methods in such

a scenario. More precisely, we simulate one open state with 40 pS and two closed states

with 20 pS and (20 + ∆) pS, i.e., the amplitudes of the two flickering states, 20 pS and

(20−∆) pS, differ by ∆ pS. The standard deviation of the errors εi in (3.4) is σ0 = 1.4 pS.

The dwell time in the open state is exponentially distributed with rate 2.5 Hz and the

channel switches to both closed states equally likely. For both closed states the channel

reopens quickly with rate 0.8 kHz. We generate five time series with 600 000 observations,

each.

In the following we analyze these data as outlined in Section 3.8. In accordance with the

definition of a short segment in Section 3.6 we define a closing event as a flickering event

if its dwell time is smaller than or equal to 2.6 ms. But, results are qualitative the same,

amplitude histograms are even quantitative very similar, if we increase or decrease this

threshold within a reasonable range. We do not show results for J-SMURF, since this

method is not able to detect such short flickering events, c.f. Figure 3.10. Figure 3.15

shows histograms of the estimated amplitudes of flickering events with a small bin width

of 0.5, visually chosen, to already see small indications of two different levels.

In Table 3.3 we found that the estimation of the function values by JULES and JILTAD

have a large mean squared error, mainly due to heavy overestimations in rare cases. Nev-

ertheless, we see in this simulation that both methods estimate and separate the two

amplitudes very well. For ∆ = 2 a tiny indication of two different amplitudes is seen, for

∆ = 3 the two peaks are distinct and for larger differences the two different states are

clearly detected. In comparison, TRANSIT finds some smaller amplitudes and hence the

separation is slightly less clear, but still possible for ∆ ≥ 3. We already saw in Figure

3.9 and Table 3.3 that TRANSIT estimates a too small amplitude, since short peaks are

smoothed by the filter.

Figure 3.16 shows the dwell times in the closed state and an exponential fit. For the fit

we take into account events with amplitude between l = 10 pS and u = 30 pS and dwell

times between a = 0.24 ms and b = 2.6 ms, since we cannot detect events with a dwell

time smaller than 0.24 ms reliably and they would disturb the analysis. For this case we

use ∆ = 0, i.e., consider only one closed state.

Apart from the fact that all methods miss extremely short events, <0.3 ms, which coincides

with Figure 3.10, JULES and JILTAD confirm an exponential distribution and estimate

with 0.80 kHz and 0.82 kHz, respectively, the rate very accurately. TRANSIT detects
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(a) JULES, ∆ = 2 (b) JULES, ∆ = 3 (c) JULES, ∆ = 4

(d) JILTAD, ∆ = 2 (e) JILTAD, ∆ = 3 (f) JILTAD, ∆ = 4

(g) TRANSIT, ∆ = 2 (h) TRANSIT, ∆ = 3 (i) TRANSIT, ∆ = 4

Figure 3.15.: Histograms of the amplitudes of detected events for various ∆ and dwell
time below 2.6 ms. Red tick marks are the true amplitudes, both with equal
probability.

additional spurious events with lengths between 0.4 ms and 0.5 ms and hence overestimates

the rate with 0.99 kHz slightly.

Figure 3.17 shows the distance between two flickering events which coincides with the

dwell time in the open state if other closing events are considered as spurious events. We

include events with a distance between 0.032 s and 1 s, as Figures 3.12-3.13 show that

JULES and JILTAD are not able to separate peaks with a smaller distance.

JULES, JILTAD and TRANSIT suggest an exponential distribution and estimate with

2.67 Hz, 2.70 Hz and 2.49 Hz, respectively, roughly the correct rate. All in all, we found
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(a) JULES (b) JILTAD (c) TRANSIT

Figure 3.16.: Histograms of the dwell time in the closed state for ∆ = 0 for closing events
with amplitude between 10 and 30 pS together with the true exponential
distribution with rate 0.8 kHz (black) and exponential fits (red) taking into
account missed events. We rescaled all lines such that the area under them
are standardized to one to make them comparable to the histograms.

(a) JULES (b) JILTAD (c) TRANSIT

Figure 3.17.: Histograms of the distance between two flickering events, i.e., events with am-
plitude between l = 10 pS and u = 30 pS and dwell time between a = 0.24 ms
and b = 2.6 ms, for ∆ = 0 together with the true exponential distribution
with rate 2.5 Hz (black) and exponential fits corrected for missed events (red).
We rescaled all lines such that the area under them are standardized to one
to make them comparable to the histograms.

that JULES and JILTAD recover the hidden Markov model well, while TRANSIT tends

to underestimate the amplitude.

3.9.7. Hidden Markov model with heterogeneous noise

We now extend these simulations to heterogeneous noise. We choose a closed state with

0.04 nS and two open states with 0.36 nS and (0.36 + ∆) nS, i.e., the amplitudes that differ

by ∆ nS. The standard deviation is
√

6.1 · 10−5 nS in the closed state and
√

10−3 nS in

both open states. The dwell time in the closed state is exponentially distributed with rate

5 hertz and the channel switches to both closed states equally likely. For both open states
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the channel closes quickly with rate 0.4 kHz. Note that up to a second open state these

values are similar to the recordings in Figure 3.3. We generate again five time series with

600 000 observations, each.

We analyze these data sets with JILTAD assuming heterogeneous noise. Additionally,

to illustrate ignoring heterogeneous noise we include JULES which assumes homogeneous

noise. We do not show results for H-SMUCE, which could serve as an illustration for

ignoring the filtering, since its lack of detection power on small scales was already clearly

visible in Figure 3.4. Figure 3.18 shows histograms of the estimated amplitudes of all

events with an amplitude between l = 0.2 nS and u = 0.5 nS with a small bin width of

0.005 nS.

(a) JULES, ∆ = 0.03 (b) JULES, ∆ = 0.04 (c) JULES, ∆ = 0.05

(d) JILTAD, ∆ = 0.03 (e) JILTAD, ∆ = 0.04 (f) JILTAD, ∆ = 0.05

Figure 3.18.: Histograms of the estimated amplitudes for various ∆. Red tick marks are
the true amplitudes, both with equal probability.

Using JULES we only find two open states when ∆ = 0.05. Contrary, with JILTAD we

already see for ∆ = 0.03 an unreliable tendency and a clear detection of two states for

∆ ≥ 0.04. This confirms that the detection of additional events as in Figure 3.4 hinders

indeed the analysis and unsurprisingly taking into account the heterogeneity explicitly

improves results.

We continue with an analysis of the dwell time in the open state and the distance between

two opening events. For this analysis we use ∆ = 0 and take into account all events with

dwell time between a = 0.28 ms and b = 10 ms. Figure 3.19 shows the dwell times in the
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open state and Figure 3.20 a histogram of the distances between two opening events.

(a) JULES (b) JILTAD

Figure 3.19.: Histograms of the dwell time in the open state for opening events with am-
plitude between l = 0.2 nS and u = 0.5 nS together with the true exponential
distribution with rate 0.4 kHz (black) and an exponential fit (red) taking
missed events into account. We rescaled all lines such that the area under
them are standardized to one to make them comparable to the histograms.

(a) JULES (b) JILTAD

Figure 3.20.: Histograms of the distance between two openening events, i.e., events with
amplitude between l = 0.2 nS and u = 0.5 nS and dwell time between a =
0.28 ms and b = 10 ms, together with the true exponential distribution with
rate 5 Hz (black) and exponential fits corrected for missed events (red). We
rescaled all lines such that the area under them are standardized to one to
make them comparable to the histograms.

We found that JILTAD recovers in both cases the exponential distribution very well and es-

timates both rates with 0.3856 kHz and 5.1931 Hz very accurately. In comparison, JULES

is not able to deconvolve all events due to the detection of additional spurious events,

compare Figure 3.4. This results in a huge missestimation of 0.6463 kHz and 3.9729 Hz.
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Notably, the times seem still to be exponentially distributed, probably since longer events

have a larger probability for additional false positives.

3.10. Analysis of Gramicidin A recordings

After simulated data generated by a hidden Markov model, we analyze in this section real

measurements of the small antibiotic peptide Gramicidin A produced by the soil bacterium

Bacillus brevis (O’Connell et al., 1990; Andersen et al., 2007). It forms an ion channel by

interleaflet dimerization (O’Connell et al., 1990; Andersen et al., 2005, 2007). Apart from

the classical slow gating by dimerization, also short closing events of the channel have

been observed which could be linked to the physical and chemical properties of the lipid

membrane; especially its hydrophobic thickness (Armstrong and Cukierman, 2002; Ring,

1986).

Measurements are performed in the Steinem lab (Institute of Organic and Biomolecular

Chemistry, University of Göttingen) with solvent-free lipid bilayers using the Port-a-Patch

and are recorded at a sampling rate of 10 kHz using a 1 kHz 4-pole Bessel filter. For more

details see (Pein et al., 2017d, Section V A). Note that we use these recordings more as

an illustration of the methods and less to obtain relevant biochemical results, for such a

study see Section 5.

3.10.1. Estimation of the underlying signals

Estimations are obtained by JULES, JILTAD, TRANSIT and J-SMURF with parameter

choices as in Section 3.9.2 and the MDL method (Gnanasambandam et al., 2017), here

applied without a minimal event length.

The recorded observations, Figure 3.21, show gating events between two states on vari-

ous time scales, but also several noise effects like outliers or varying conductance levels,

compare for instance the conductance from 10 s–25 s and 55 s–60 s. Note that such effects

raise substantial difficulties for methods that assume a Hidden Markov model or a similar

model. Contrary, our non-parametric methods JULES and JILTAD, Figures 3.22 and 3.23,

provide reasonable estimations covering all major features of the data and some smaller

fluctuations. In comparison, JILTAD finds additional events that are too short for JULES

to detect which is in accordance with the findings in Section 3.9.3. J-SMURF, Figure

3.24, works well on larger time scales but misses flickering events. TRANSIT, Figure 3.25,

is able to detect those events, but detects at the same time far too many false positives.

The zooms into single peaks, Figures 3.22-3.25 lower panels, demonstrate that JULES and

JILTAD fit the observation well, whereas J-SMURF detects small changes instead of peaks

and TRANSIT estimates too small amplitudes and also missestimates their location due

to the smoothing by the filter. MDL, Figure 3.26, has the same flaws as TRANSIT, but

detects even more events that are very likely false positives. Hence, in the following we

do not report results for J-SMURF and MDL.
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Figure 3.21.: Observations (grey points) of a representative conductance time series ob-
tained by the patch clamp technique for active Gramicidin A inserted into a
solvent-free lipid bilayer at 100 mV.

3.10.2. Analysis of flickering dynamics

The following analysis of the flickering dynamics of Gramicidin A is similar to the analysis

in Section 3.8. Note that flickering does not occur in all recordings. For this analysis we

focus on five time series, each with 600 000 data points, which show significant flickering.

We define a closing event as a flickering event if its dwell time is smaller than or equal

to b = 2.6 ms. For comparison we also study briefly the amplitude of the slow gating,

i.e., closing events with dwell time longer than 10 ms. Figure 3.27 compare the estimated

amplitudes of flickering events in [l, u] = [10, 30] pS (307 events) with the amplitudes

of slow gating events (44 events) of the same magnitude by kernel density estimates,
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Figure 3.22.: Observations (grey points) as in Figure 3.21 together with an estimation by
JULES (red) and its convolution with the lowpass filter (darkred).

performed by the R function bkde in the package KernSmooth (Wand and Jones, 1994)

with bandwidth 2, visually chosen. Other events are most likely caused by artifacts, for

instance base line fluctuations.

We see no distinct peak as in the simulations in Figure 3.15. Note that this also true when

we show histograms instead of kernel density fits, but kernel density fits allow a better

comparison of flickering with the gating on larger time scales. Hence, either multiple levels

are underlying or more likely additional errors occur. Recall for instance the conductivity

fluctuations in Figure 3.21. Moreover, we found that the flickering events are full-sized,

i.e., have the same amplitude as the slow gating events. In comparison, TRANSIT sug-

gests a smaller amplitude which can be explained by the fact that TRANSIT ignores the
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Figure 3.23.: Observations (grey points) as in Figure 3.21 together with an estimation by
JILTAD (orange) assuming homogeneous noise and its convolution with the
lowpass filter (darkorange).

smoothing effect by the filter. We already saw this effect in the simulations in Section 2.4,

see Figures 3.9 and 3.15 as well as Table 3.3.

Figure 3.28 shows the dwell times in the closed state and Figure 3.29 shows the distance

between two flickering events. The latter coincides with the dwell time in the open state if

other events, in particular events with smaller amplitude, are considered as artifacts and

not as gating. We take into account events with a dwell time between a = 0.31 ms for

JULES, a = 0.24 ms for JILTAD and a = 0.24 ms for TRANSIT and b = 2.6 ms.

Although the lipid system is totally different, our results are of a similar order than in

(Ring, 1986; Armstrong and Cukierman, 2002). Flickering events occur on average roughly

every second and are only around a millisecond long. We miss extremely short events in
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Figure 3.24.: Observations (grey points) as in Figure 3.21 together with an estimation by
J-SMURF (green) and its convolution with the lowpass filter (darkgreen).

accordance with the simulations, see Figures 3.10 and 3.16. By taking missed events

into account as described in Section 3.8 we confirm an exponential distribution, with rate

0.77 kHz based on JULES and with rate 0.85 kHz based on JILTAD, for the dwell times in

the closed state. In comparison, TRANSIT detects more short events resulting in a rate

of 1.46 kHz. However, many of them are most likely false positives, see Figure 3.25 and

Table 3.1 in the simulations.

In Figure 3.29, the histogram of the distances between two events, too many short dis-

tances are observed for a good exponential fit. Since such an effect was not observed in the

simulations, compare Figure 3.17, methodology reasons are unlikely. We speculate that

this is caused by artifacts, although most of them are of smaller amplitude and not taken
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Figure 3.25.: Observations (grey points) as in Figure 3.21 together with an estimation by
TRANSIT (lightblue) and its convolution with the lowpass filter (blue).

into account. Hence, to estimate the frequency of the events we only take into account

distances of length between a = 0.1 s and b = 1 s. Using also here a missed event correc-

tion leads to estimated rates of 2.59 Hz and 3.33 Hz based on the estimations by JULES

and JILTAD, respectively. In contrast, when we use TRANSIT we estimate a higher rate

of 5.62 Hz due to its many additional findings which are likely to be wrong, confer the

number of false positives in Table 3.1. We stress that we cannot exclude that a mixture of

two (or more) exponential distributions is underlying, but a more detailed analysis would

require more events or less artifacts.

All in all, the comprehensive simulation study from Section 3.9 and the real data appli-

cation from this section confirm indeed that JULES and JILTAD are able to detect and
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Figure 3.26.: Observations (grey points) as in Figure 3.21 together with an estimation by
MDL (lightbrown) and its convolution with the lowpass filter (brown).

estimate events that are short in time with very high precision, JULES only when the

noise is homogeneous, but JILTAD also when the noise is heterogeneous.
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(a) JULES (b) JILTAD (c) TRANSIT

Figure 3.27.: Kernel density estimates with bandwidth 2 of the amplitudes of events with
dwell time below 2.6 ms ( ) and above 10 ms ( ).

(a) JULES (b) JILTAD (c) TRANSIT

Figure 3.28.: Histograms of the dwell time in the closed state for closing events with am-
plitude between l = 10 pS and u = 30 pS together with exponential fits
( ) taking missed events into account. All lines are rescaled such that the
area under them are standardized to one to make them comparable to the
histograms.

(a) JULES (b) JILTAD (c) TRANSIT

Figure 3.29.: Histograms of the distance between two flickering events, i.e., events with
amplitude between l = 10 pS and u = 30 pS and dwell time below b = 2.6 ms,
together with exponential fits ( ) and the fits corrected for missed events
( ). All lines are rescaled such that the area under them are standardized
to one to make them comparable to the histograms.
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4. Computation and software

In Section 4.1 we describe how the multiscale regression estimator (1.2) and its variants

presented in this work can be computed efficiently by a pruned dynamic program. We also

detail the computation of the vector of critical values q in Section 4.2. Our estimators

are implemented in two R packages stepR (Pein et al., 2017a) and clampSeg (Pein et al.,

2017b), both are available on CRAN. An overview about the functions provided by these

two packages is given in Sections 4.3 and 4.4, respectively. Finally, in Section 4.5 we

examine the computation time of our estimators theoretically and empirically including

comparisons with state of the art methods. A discussion how these algorithms can be

parallelized see Section 6.2.3.

4.1. Computation of the multiscale regression estimator

The following dynamic program to compute the multiscale regression estimator (1.2) was

proposed in (Frick et al., 2014a) and presented in more detail in (Sieling, 2013), we high-

light in particular the pseudocode (Sieling, 2013, Algorithm 1). In the following we give

only a compact summary and present in Section 4.1.1 a faster algorithm for small interval

sets.

Let bi,j , bi,j ∈ R be the so called bounds

[bi,j , bi,j ] :=


{
mij ∈ R : T ji (Y,mij) ≤ qj−i+1

}
if [i/n, j/n] ∈ I,

[−∞,∞] else.
(4.1)

Note that the set in the first line of (4.1) is indeed an interval for all models considered

in this work, since the test statistics are unimodal, and can be computed by solving

T ji (Y,mij) = qj−i+1. Moreover, let Bi,j , Bi,j ∈ R be the intersected bounds

Bi,j := max
i≤s≤t≤j

[s/n,t/n]∈I

bs,t and Bi,j := min
i≤s≤t≤j

[s/n,t/n]∈I

bs,t. (4.2)

Consequently, to be accepted by the multiscale test a candidate function µ has to satisfy

mij ∈ [Bi,j , Bi,j ] on all intervals [i/n, j/n] on which it is constant with function value mij .

The other way around, if Bi,j > Bi,j no function in C(Y,q) can be constant on [i/n, j/n].

We define Rk as the smallest index 1 < r ≤ n such that for Y1, . . . , Yr no solution with

k − 1 change-points exists that is accepted by the multiscale test. These right limits are
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computed iteratively by R0 := 1 and

Rk := min
{
Rk−1 < r ≤ n : BRk−1,r

> BRk−1,r

}
, (4.3)

for k = 1, . . . , K̂, which allows at the same time to compute K̂. Note that this definition

is slightly different to its counterpart in (Sieling, 2013), but allows an easier definition of

the confidence intervals, see below.

We now assume that for a piecewise constant function µ ∈ M as in (2.4) the functional

L(Y, µ) can be written as

L(Y, µ) :=
K∑
k=0

L
(
(Ylk , . . . , Ylk+1−1),mk

)
, (4.4)

with lk = dnτke. With this assumption we can define the optimal local costs

ci,j :=

L ((Yi, . . . , Yj), m̂i,j) if Bi,j ≤ Bi,j ,

∞ else,
(4.5)

with local estimate

m̂i,j := argmin
m∈[Bi,j ,Bi,j ]

L ((Yi, . . . , Yj),m). (4.6)

Let k be the smallest number of change-points allowed by the multiscale test to reach

design point p, i.e., Rk−1 ≤ p < Rk. Then, the cumulated costs cp to reach design point

p are defined and computed iteratively by c0 := 0 and cp := cl(p) + cl(p)+1,p, p = 1, . . . , n,

with optimal last change-point location to reach design point p

l(p) := argmin
Rk−2≤l<Rk−1

cl + cl+1,p. (4.7)

Finally, the multiscale regression estimator can be obtained by computing and storing

the cumulated costs, the local estimates m̂l(p),p, p = 1, . . . , n, and optimal last change-

point locations iteratively until the last design point n is reached and by backtracking.

Later means to obtain the estimated change-point locations by setting τK̂ := l(n)/n and

recursively τk := l(nτk+1), k = K̂ − 1, . . . , 1, and the estimated functions value by m̂k :=

m̂nτk,nτk+1
, k = 0, . . . , K̂. Hence, this approach requires only linear storage space. A

discussion of its computation time is given in Section 4.5.

4.1.1. Speed up for small interval sets

In what follows we give a modification of this algorithm which reduces the computation

time remarkably when the interval set I is small, for example H-SMUCE uses the dyadic

partition D, which contains only O(n) intervals. We observe that we only have to compute

the optimal costs for those p in {Rk−1, . . . , Rk − 1} for which the last design point n is
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reachable with K̂−k change-points, since otherwise the solution has more than K̂ change-

points and is not contained in C(Y,q). By the same arguments, we have to consider in

(4.7) only those l(p) ∈ {Rk−2, . . . , Rk−1− 1} for which the last design point n is reachable

with K̂−k+1 change-points. Consequently, we define Lk as the smallest number 1 < r ≤ n
such that for Yr, . . . , Yn a piecewise constant solution with K̂ − k change-points exists

that is accepted by the multiscale test. These left limits can be computed iteratively by

LK̂+1 := n+ 1 and

Lk := min
{

1 ≤ r ≤ Lk+1 − 1 : Br,Lk+1−1 ≤ Br,Lk+1−1

}
,

for k = K̂, . . . , 1. It follows that the change-point τ̂k has to be in the interval [Lk/n,Rk/n],

since otherwise an additional change-point is necessary to fulfill the constraints proposed

by the multiscale test. Hence, we only consider p ∈ {Lk, . . . , Rk − 1} and replace in

(4.7) Rk−2 by Lk−1. The intervals [Lk/n,Rk/n], k = 1, . . . , K̂, are confidence intervals

for the change-point locations. For the computation of confidence bands we refer to

(Frick et al., 2014a; Sieling, 2013). Note that Rk−1 ≤ Lk always such that the dynamic

program requires at the maximum the same amount of steps and often less, but at the

price of computing L1, . . . , LK̂ before. This can be done by looking at the observations

in reverse order using dynamic programming, too. Since only the intersected bounds are

required its computation time scales with the size of the interval set I. We use this

algorithm when confidence intervals are requested by the user and the left limits have

to be computed anyway and when the interval system I is the dyadic partition D or all

intervals that contain a dyadic number of observations L, but not when it is the system of

all intervals and confidence intervals are not desired. See also Section 4.5 for a discussion

in which situations, in particular for which interval systems, this algorithm is faster than

the previous one.

4.2. Computation of the vector of critical values

In this section we explain how the vector of critical values q = (q1, . . . , qn) can be computed

based on Monte-Carlo simulations.

4.2.1. Scale balancing by penalization

We now describe how to obtain the global quantile qα at significance level α for a finite n.

Let M be the number of Monte-Carlo simulations and T
pl,n
n,1 , . . . , T

pl,n
n,M be i.i.d. copies of

the penalized multiscale statistic T
pl,n
n (ε, 0) as in (1.5). To this end, the choice M = 10 000

appears to be a good trade-off between computation time and approximation accuracy.

Then, the global quantile qα,n at significance level α is obtained as the empirical (1 − α)

quantile of these copies. Note that the (1−α) quantile of the limit distribution of T
pl,n
n (ε, 0),

see (Frick et al., 2014a, Theorem 1), can be used as well. However, an analytic computation

is very difficult. Hence, this quantile is typically approximated by the computation above
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for a very large n. From the global quantile qα,n the vector of critical values can be

obtained easily by (p−1
1,n(qα,n), . . . , p−1

n,n(qα,n)).

4.2.2. Scale balancing by weights

We now detail the computation of the vector of critical values obtained by weights. To

be more general, we describe the computation of the vector of critical values defined in

Remark 2. The algorithm only uses the continuity and monotonicity of the cumulative

distribution functions of the statistics T1, . . . , Tn, which ensures its flexibility.

Let M be the number of simulations and (T1,1, . . . , Tn,1), . . . , (T1,M , . . . , Tn,M ) be i.i.d.

copies of the vector (T1, . . . , Tn). We again suggest M = 10 000 as a default choice.

Moreover, let FM (·) denote the empirical distribution function of (T1, . . . , Tn) and FM,k(·)
the empirical distribution function of the random variable Tk. Then, we aim to find a

vector of critical values q̂M = (q̂M,1, . . . , q̂M,n) which satisfies with

α− 1

M
< 1− FM (q̂M ) ≤ α, (4.8)

an empirical version of condition (2.12), and with

1− FM,j1(q̂M,j1)

βj1
≤

1− FM,j2(q̂M,j2) + 1
M

βj2
for all j1, j2 ∈ {1, . . . , n}, (4.9)

an empirical version of condition (2.14). In the following we propose an iterative algorithm

to determine such a vector and show afterwards that this vector converges almost surely

to the vector of critical values q = (q1, . . . , qn) defined by (2.12) and (2.14). As the k-th

entry of the starting vector we choose the empirical (1−αβk)-quantile of the statistic Tk,

since the vector with these values satisfies condition (4.9) and the inequality

1− FM (·) ≤ α.

Afterwards, we reduce the entries until the lower bound from condition (4.8) is satisfied,

too. To ensure condition (4.9) in every iteration, we always reduce the entry which has

the smallest ratio
1− FM,k(q̂M,k)

βk
.

In Algorithm 3 the determination of the critical values is summarized in pseudocode.

The method has the advantage that we do not need specific assumptions on the distribution

of the vector (T1, . . . , Tn) and still get critical values which are adapted to the exact

finite sample distribution of (T1, . . . , Tn) and ensure therefore even for a finite number of

observations the significance level α.

The following theorem shows the convergence of this algorithm to q = (q1, . . . , qn).

Theorem 14 (Consitency of Monte-Carlo critical values). The empirical vector of critical

values q̂M = (q̂M,1, . . . , q̂M,n) converges almost surely in the number of simulations M to
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Algorithm 3 Determination of the critical values.

Input: The statistics T1, . . . , Tn as well as the significance level α ∈ (0, 1), the weights
β1, . . . , βn > 0, with

∑n
k=1 βk = 1, and the number of simulations M ∈ N.

Output: The vector of critical values q̂M = (q̂M,1, . . . , q̂M,n) fulfilling (4.8) and (4.9).
1: for i = 1, . . . ,M do
2: (T1,i, . . . , Tn,i)← realisation of (T1, . . . , Tn)
3: end for
4: for k = 1, . . . , n do
5: (Sk,1, . . . , Sk,M )← sort ((Tk,1, . . . , Tk,M ))
6: wk ←M − bαβkMc
7: end for
8: repeat
9: k̂ ← argmink=1,...,n β

−1
k (1− FM,k(Sk,wk))

10: wk̂ ← wk̂ − 1
11: until 1− FM (S1,w1 , . . . , Sm,wn) > α
12: wk̂ ← wk̂ + 1
13: return S1,w1 , . . . , Sm,wn

the vector of critical values q = (q1, . . . , qn) defined by (2.12) and (2.14).

4.2.3. Storing the results of the Monte-Carlo simulations

A Monte-Carlo simulation to generate M i.i.d. copies of the penalized multiscale statistic

T
p|I|0,n
n (ε, 0) or of the vector (T1, . . . , Tn) lasts potentially much longer, up to several hours

or days if the number of observations is in the millions, than the main calculations. For a

more detailed comparison of the computation times see Section 4.5. Thus, we suggest to

store the results and load them if they are required again. The stepR package, see Section

4.3, offers multiple possibilities to do so and by default some are executed.

The simulations can either be stored persistently on the file system for which the R package

R.cache is used or in the workspace. Loading from the workspace is faster, but either the

user has to store the workspace manually or in a new session simulations have to be

performed again. Moreover, storing in and loading from variables and files with a user

given path are supported.

Both, copies of the penalized multiscale statistic and of the vector (T1, . . . , Tn), can be

stored by all options. Note that the penalized multiscale statistic can be computed quickly

from the vector (T1, . . . , Tn). Hence, later is more flexible, but requires much more storage

space.

To avoid memory problems and resimulations if the number of observations is only slightly

different, Monte-Carlo simulations can also be performed for a (slightly) larger number of

observations. The overestimation control, (Frick et al., 2014a, (7)) and Theorem 5, is still

satisfied but the detection power is (slightly) smaller. By default, we perform simulations

for 2dlog2(n)e − 1 observations and store the copies of the vector (T1, . . . , Tn) on the file

system and copies of the penalized multiscale statistic in the workspace. More details are

given in the documentation of the function critVal in the stepR package.
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4.3. The R package stepR

The R package stepR (Pein et al., 2017a) offers an efficient computation of the multiscale

regression estimator (1.2), its confidence statements and connected terms, like the multi-

scale test statistic or bounds, by dynamic programs as described in Section 4.1. To speed

up computations the time consuming dynamic programs are written in C++ and inter-

faced by the R code. All computations can be performed for various parametric families,

which is in a strict sense the parametric distribution of the errors ε1, . . . , εn, but we use

this terminology also for the local test statistics and the functional L(Y,q) that define the

estimator, and several interval systems I. An overview is given at the end of this section.

To this end, the dynamic programs are written in an object oriented way with abstract

classes for the parametric families and the interval systems. This allows the addition of

a new family or interval system by only writing a new derived class with few functions

instead of writing a whole complicated dynamic program. Moreover, if for instance a class

for a new parametric family is implemented, its functionality is provided for all functions

and for all interval systems. Note that this also includes testing. The dynamic program is

tested well by several hundred checks such that only the new class has to be tested which

is less time consuming and much easier.

A first version was written by Hotz and Sieling (2015). We rewrote their package com-

pletely and also incorporated ideas from the packages HSMUCE (Pein, 2016), our previous

implementation of H-SMUCE, and FDRSeg (Li and Sieling, 2015). We added several new

functionalities like obtaining critical values by weights as described in Section 4.2.2 or the

computation of the multiscale test statistic. Moreover, in the new implementation also

the interval system is object oriented and not only the parametric family as before. We

also added the parametric family ’hsmuce’ and the dyadic partition as an interval system.

For smaller interval sets or when confidence statements are requested we compute the

estimator by a faster dynamic program as detailed in Section 4.1.1. Finally, for a faster

computation we do not pre-compute all bounds, but rather compute required bounds on-

line in the dynamic program.

The main function stepFit allows to compute the multiscale regression estimator µ̂ (1.2),

confidence intervals for the change-point locations and a confidence band for µ. The vector

of critical values q and the global quantile qα at significance level α can be computed by

the function critVal. Monte-Carlo simulations are automatically performed if required.

Moreover, as explained in Section 4.2.3 several possibilities to store the results are offered.

For given µ ∈ M the penalized multiscale statistic (1.5) and the vector of all unpenal-

ized statistics can be computed by the function computeStat. And the bounds (4.1) can

be computed by the function computeBounds. Monte-Carlo simulations are performed

by the function monteCarloSimulation. For completeness, we remark that also the func-

tions compareBlocks, neighbours, sdrobnorm, stepcand, steppath, stepsel from the previous

version are still available. Moreover, the package contains functions that are marked as

deprecated and will be removed in further versions, but are currently still available as an
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immediate deletion might lead to misunderstandings for some users.

Currently the following parametric famlies are provided: SMUCE for independent Gaus-

sian, Poisson, Binomial and Gaussian variance regression. H-SMUCE for independent

heterogeneous Gaussian observations and for L-dependent Gaussian observations with

known, but arbitrarily covariance structure, as it is requested by the detection step of

JULES. And it supports the following interval systems: All intervals with start and end

points at the design grid, all intervals that contain a dyadic number of observations L and

the dyadic partition D.

For more details see the vignette (Pein and Munk, 2017) and the documentation of each

function itself.

4.4. The R package clampSeg

The clampSeg package is specialized on estimating the signal underlying ion channel

recordings by non-parametric approaches. The current version (Pein et al., 2017b) only

offers an implementation of JULES, a version containing also J-SMURF and JILTAD is

not published so far. Note that J-SMURF as described in (Hotz et al., 2013) can be ac-

cessed by the R function jsmurf in the stepR package (Pein et al., 2017a), but shall be

moved to the clampSeg package, recall the previous note on deprecated functions. Also

for this package time consuming computations are written in C++ and interfaced by the

R code.

The main function jules allows estimation by JULES. An object providing the lowpass

filter functions, mainly the kernel function, its antiderivative and the autocorrelation func-

tion, can be created by the function lowpassFilter. Currently, only Bessel filters are sup-

ported. The global quantile qα can be derived in an universal manner by Monte-Carlo

simulations and for every significance level α by the function getCritVal, automatically

called if required. By default, α = 0.05 is chosen. This function performs required Monte-

Carlo simulations automatically and by default stores their results by calling the function

critVal from the stepR package. The detection and estimation step of JULES, as de-

scribed in Sections 3.5 and 3.6, can be obtained separately by the functions stepDetection

and deconvolveLocally, respectively. As an example the Gramicidin A recording shown in

the middle panel of Figure 3.21 is provided by the data object gramA.

4.5. Computation time

In this section we discuss the computation time of the proposed methods. We will see that

the computation time of the multiscale regression estimator is dominated by the Monte-

Carlo simulation to compute the vector of critical values. However, such a simulation

is required only once for each setting, since its result can be restored, see Section 4.2.3.

Thus, we firstly discuss how long a Monte-Carlo simulation lasts. For the discussion of the

computation time of the estimator itself we ignore this time. In the run time simulations we
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ensure that all required results are stored and only the loading times from the workspace

are included in the results. We do not discuss the complexity to compute the vector of

critical values, since in practice the run time for it is vanishingly small if the result of the

corresponding Monte-Carlo simulation is available. A discussion how the practical run

times can be reduced by parallelization is given in Section 6.2.3.

We assume that the local test statistic T ji (Y,m), the local cost L ((Yi, . . . , Yj), m̂i,j) and

the local estimate m̂i,j can be computed in constant time O(1) as soon as cumulated

sums
∑j

l=i γl of certain quantities γl are derived. For instance for H-SMUCE the length∑j
l=i 1, the cumulated sum of observations

∑j
l=i Yl and cumulated sum of of the squared

observations
∑j

l=i Y
2
l are required. We stress that this assumption is not true if the

likelihood ratio test statistic is used for correlated observations, e.g., (3.18).

A simple way to compute these sums is to compute
∑j

l=1 γl, j = 1, . . . , n, and then∑j
l=i γl =

∑j
l=1 γl −

∑i−1
l=1 γl. However, this computation can lead to large numerical

errors, since for short intervals with large indices two large numbers of almost equal size

are subtracted to obtain a much smaller number. This approach computes for instance

sometimes negative empirical variances due to numerical errors. Hence, we obtain these

sums iteratively. More precisely, for the interval system of all intervals we use the recursion∑j
l=i γl = γi +

∑j
l=i+1 γl =

∑j−1
l=i γl + γj and for the set of all intervals containing a

dyadic number of observations and the dyadic partition we use
∑j

l=i γl =
∑(i+j−1)/2

l=i γl +∑j
l=(i+j+1)/2 γl.

Under these assumptions all test statistics, all bounds and all intersected bounds can be

computed in O(|I|) steps. For the intersected bounds this follows from the recursion

formulas Bi,j := max{Bi+1,j , Bi,j−1, bi,j} and Bi,j := min{Bi+1,j , Bi,j−1, bi,j}.
It follows that the computation of the penalized multiscale statistic T

pj−i+1,n
n (Y, µ) as in

(1.5) and of the vector (T1, . . . , Tn) as in (2.15) requires O(|I|) steps and a whole Monte-

Carlo simulation O(M |I|). This means that the run time increases for the dyadic partition

linearly in the number of observations n, for the system of all intervals containing a dyadic

number of observations with order n log(n) and quadratically for the system of all intervals.

Table 4.1 shows exemplary run times. The simulations were performed on a single core

system with 1.8 GHz and 8 GB RAM in a 64-bit OS.

Table 4.1.: Run times of Monte-Carlo simulations using different interval sets.

Number of observations All intervals dyadic dyadic partition

27 = 128 5.79 s 2.96 s 2.63 s
210 = 1 024 183 s 11.76 s 7.41 s
216 = 65 536 11 997 min 16 min 6 min
220 = 1 048 576 - 6 h 2 h
224 = 16 777 216 - 103 h 32 h

Comparing them with the results in Figures 4.1 confirms that the Monte-Carlo simulation

dominates the computation of the estimator and storing of results is beneficial. Moreover,

it shows that Monte-Carlo simulations last much longer for the interval system of all

intervals. Hence, we could not perform a Monte-Carlo simulation for hundred thousands
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and more observations. And note that storing of Monte-Carlo simulations for all intervals

require storage space of order nM and hence is expensive as well. For smaller interval

sets we performed Monte-Carlo simulations up to 16 million observations and stored their

results for SMUCE and H-SMUCE.

We now discuss the computation time of the estimator itself. For the algorithm in Section

4.1 without the speed up from Section 4.1.1 the cumulated costs have to be computed for

each p in {Rk−1, . . . , Rk − 1}. And for each of these design points the last change-point

location can be in {Rk−2, . . . , Rk−1− 1}, see (4.7), and the corresponding local costs have

to be computed. Hence, the complexity is bounded by the data dependent term

O

 K̂∑
k=2

(Rk −Rk−1)(Rk−1 −Rk−2)

 , (4.10)

since at most the same amount of bounds has to be computed and the right limits are

obtained by the same iterations. This term can be bounded by O(n2), but for many

observations less computations are required, since from cl,p =∞ it follows that cl′,p =∞
for all l′ ≤ l. Ignoring some start locations is called pruning.

The computation of the left limits in advance requires to compute all bounds in the

intervals [Lk/n, (Lk+1 − 1)/n]. Hence, the complexity for it is bounded by

O

(∣∣∣∣{ [ in, jn
]
∈ I : ∃ k ∈ {0, . . . , K̂} s.t.

[
i

n
,
j

n

]
⊂
[
Lk
n
,
Lk+1 − 1

n

]}∣∣∣∣
)
. (4.11)

These computations allow to store the intersected bounds Br,Lk−1 and Br,Lk−1 for all

r = Lk−1, . . . , Lk−1 and for all k = 1, . . . , K̂. Hence, by the same arguments as for (4.10)

it follows that the complexity of the main dynamic program with the speed up in Section

4.1.1 is bounded by

O

 K̂∑
k=2

(Rk − Lk)(Rk−1 − Lk−1)

 . (4.12)

Combining (4.12) and (4.11) gives the complexity of the whole algorithm.

A general comparison of these computation times is difficult. Hence, we only highlight

certain special cases. For the system of all intervals (4.11) is of the same order as (4.10),

which shows that for this system no computation time is gained by the approach in Section

4.1.1. For smaller interval systems (4.11) is of a smaller complexity. An easy bound is the

number of intervals in I, i.e., O(|I|). Hence, for the dyadic partition this term is of order

O(n) and is always of the same or of smaller order than (4.12).

The term in (4.12) can again be bounded by O(n2) in the worst case, but the computation

time is in many cases much smaller. In particular, if the signal to noise ratios are large such

that the change-points are easy to detect and hence Rk−Lk is small. This is asymptotically

for instance the case for a fixed signal, where Rk − Lk stays more or less constant in n.

More precisely, by combining (4.12) with equation (2.24) we see that with probability
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tending to one (4.12) is of linear order, if αn → 0, but n−
1
2 log((αnβkn,n)−1)→ 0. (4.10),

(4.11) and (4.12) are also O(n) if the number of change-points increases linearly in the

number of observations and the change-points are evenly enough distributed.

In the following we examine the computation time empirically in a similar simulation study

as in (Maidstone and Pickering, 2014). More precisely, we generate data with varying

number of observations n and equidistant change-points. Thereby, we consider K = 10,

K =
√
n and K = n/100. The standard deviation is chosen to be one and the jump

size |mk −mk+1| equal to
√

200/n ∗ (K + 1). Upward and downward changes alternate.

This construction guarantees that with high probability all methods are able to detect all

change-points. All simulations are repeated 100 times. The simulations were performed

on a single core system with 1.8 GHz and 8 GB RAM in a 64-bit OS and terminated after

ten seconds.

We compare our implementation of the multiscale regression estimator SMUCE in (Pein

et al., 2017a), using all intervals, all intervals containing a dyadic amount of observations

and the dyadic partition, with the old implementation in (Hotz and Sieling, 2015) by

applying the function smuceR. Note that later uses all intervals until 1 000 observations

and all intervals containing a dyadic number of observations afterwards. We also compare

it with PELT (Killick et al., 2012) and binary segmentation (Vostrikova, 1981), BinSeg,

using the R function cpt.mean in the package changepoint. Both methods are known to

be fast and serve as a benchmark. All methods are called for independent homogeneous

Gaussian observations. The maximal number of change-points for binary segmentation is

set to Q = 2∗K. Note, that this choice incorporates prior knowledge about the true signal.

For all other parameters the default values are used. We stress that the computation

times of H-SMUCE is only slightly larger than the one of SMUCE assuming homogeneous

Gaussian observations, since computation of the test statistics and bounds are slightly

more expensive. In particular, they require additionally the computation of cumulated

sums of the squared observations. In (Pein et al., 2017c, Figure 8 in the Supplement)

we compared H-SMUCE, using the old implementation in (Pein, 2016), with all other

methods that are known to us to be robust against heterogeneous noise. We found that

H-SMUCE was significantly faster than these methods.

Figure 4.1 shows that in all settings the new implementation is much faster than the old

implementation. It is even slightly faster when it uses with the system of all intervals much

more intervals than smuceR (for n > 1 000 observations). Using all intervals that contains

a dyadic amount of observations leads to a slightly smaller computation time than using

the dyadic partition. This is surprising, since the dyadic partition has a smaller cardinality

and hence leads to a smaller complexity. Most likely this is caused by the fact that for

the dyadic partition it is more difficult to decide whether an interval is part of the system

or not. We think that this can be improved by precomputing all bounds, but this is not

implemented so far. This is possible for the dyadic partition, since only a linear storage

space is required. The computation time is much smaller if more change-points occur.

For a constant number of change-points the computation is much slower than PELT and
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(c) K = n/100.

Figure 4.1.: Mean computation time of various methods in the different settings. Note that
for purposes of visualization the x-axes are displayed non-equidistantly. Also
note that for the system of all intervals Monte-Carlo simulations are only be
performed until n = 30 000. Hence, no times are reported for a larger number
of observations.
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binary segmentation. In comparison, if the number of change-points increases linearly in

the number of observations, the computation time seems to increase only linearly in the

number of observations and the method is almost as fast as PELT, while binary segmen-

tation has a much larger computation time. Hence, in this setting the computation of the

multiscale regression estimator for one million observations lasts still less than a minute,

which allows its usage in large data applications.

Finally, we discuss the computation times of the methods for the ion channel recordings.

J-SMURF and the detection step of JULES are multiscale regression estimators and the

previous discussion applies. Hence, the computation time is roughly O(n), since for most

ion channel recordings change-points occur frequently. The additional tests in JILTAD

are of complexity O(l2maxn), since for each of the lmax scales 1, . . . , lmax roughly n tests

have to be performed and the complexity to compute a single test is at most of order

O(lmax), since the expectation (and variance) of at most lmax + L − 1 observations have

to be computed. The computation time of the local deconvolution is dominated by the

iterative grid search to deconvolve a single event, all other computations can be ignored.

The deconvolution of a single event is constant in the number of observations, since the

number of involved observations and the grid sizes do not increase. Moreover, the number

of involved observations is small and the covariance matrix is a band matrix, with band

size equal to L, which allows fast computation. Hence, the complexity of the deconvolu-

tion increases linearly in the number of events which increases for ion channel recordings

typically linearly in the number of observations. In summary, for a typical time series

the complexity to compute J-SMURF, JULES or JILTAD increases only linearly in the

number of observations.

This is confirmed by measuring the run times of JULES and JILTAD for the times series

generated in the Sections 3.9.6 and 3.9.7 which contain 600 000 observations each. For the

time series with homogeneous noise in Section 3.9.6 the computation of JULES lasts on

average 16 seconds and of JILTAD 30 seconds. For generated time series with heteroge-

neous noise in Section 3.9.7 the computation time of JILTAD is with roughly five minutes

a little bit larger. Similar results are obtained for the real data applications. Thus, the

theoretical considerations as well as the empirical run times confirm that these methods

can be computed efficiently, as requested in Section 3.2. Moreover, we found that for

JULES the run time is neither by the detection step nor by the deconvolution step domi-

nated. Depending on the number of events, in some measurements detection lasts longer

and in other measurements deconvolution lasts longer.
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5. Application

In this section we present the application from (Bartsch et al., 2017). We also refer to

this paper for more details about the biological and medical background, as well as for the

interpretations of the results. Against the background of multidrug-resistant bacteria we

explored together with the Steinem lab and other external collaborators the interaction of

the antibiotic ampicillin with channels of the bacterial porin PorB. Ampicillin is a broad-

spectrum antibiotic that inhibits the enzyme transpeptidase which is required for the cell

division of bacteria (Acred et al., 1962). One potential source of antibiotic resistance is a

prevented access of antibiotics trough the outer bacterial membrane (Delcour, 2009). For

its passage porins in the membrane play a key role (Delcour, 2003; Nikaido, 2003; Tanabe

et al., 2010). In (Bartsch et al., 2017) the outer membrane porin PorB from Neisseria

meningitidis, a pathogenic bacterium in the human nose and throat region (Virji, 2009),

is studied. It is frequently present in Neisseria meningitidis (Tanabe et al., 2010) and

has three equivalent pores formed by beta barrels. The wild type is compared with the

mutant G103K, since cells with this mutation are suspected to be more likely resistant to

antibiotics (Oppenheim, 1997; Olesky et al., 2002). In comparison, the mutant has a very

similar protein structure but a reduced pore size and differently charged surfaces at the

so called constriction zone, see (Bartsch et al., 2017, Figure 2). The constriction zone is

formed by an internal loop that folds back into each pore and is the smallest point to pass

the pore (Schulz, 2002). Hence, the electric fields in this region influence the transport

heavily (Delcour, 2003; Nikaido, 2003).

Besides other methods, in particular molecular dynamic simulations, patch-clamp exper-

iments were performed for a quantitative characterization of the interaction of the two

types with ampicillin. When an ampicillin molecule binds to the pore it blocks the ion

flow temporarily and, hence, this event can be detected by a conductance loss. Note that it

cannot be decided whether an ampicillin molecule really passes trough the channel or only

enters the channels but leaves to the same side. Single channel recordings using solvent-free

bilayers at the Port-a-Patch were used to explore the conductivity of the wild type and the

mutant without presence of ampicillin. These measurements contain heterogeneous noise

and hence no automatic analysis routine was available when writing the paper. We now

analyze these measurements using JILTAD, see Section 5.2. Secondly, measurements using

black lipid membranes with solvents were used to measure how frequently and how long

ampicillin blocks the pores of the wild type and the mutant as a function of the ampicillin

concentration and the applied voltage. The analysis of these quantities using JULES was

our main contribution to the paper and the results are presented in Section 5.1. Notably,
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the presence of solvent changed the protein properties severely. No heterogeneous noise is

present, the channel is mainly open (97% instead of 20%) which is desirable for analyzing

a blockage process, conductance losses of mono- and dimer size are not observed anymore

and also the conductance levels are slightly different. We start with the second type of

measurements to stay in the logic of this work to discuss first homogeneous noise and then

heterogeneous noise.

5.1. Results for the recordings with ampicillin

In this section we present the results of our analysis of the measurements using planar

black lipid membranes (BLMs). All of these measurements are recorded at sampling rate

50 kHz and were filtered with a four-pole Bessel lowpass filter with cutoff frequency 5

kHz, resulting in a normalized cutoff frequency of 0.1. A more detailed description of the

measurements is given in (Bartsch et al., 2017, Materials and Methods). For the wild type

as well as for the mutant G103K four measurements with 1 mM ampicillin concentration

and at different applied voltage levels of 40, 60, 80, 100 and 120 mV were recorded. For both

proteins in one of the recordings the ampicillin was added in steps to obtain measurements

with different ampicillin concentrations of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 millimol (mM) at

80 mV. In each measurement the recordings last at least five minutes and, hence, always

at least five time series, with 3 million observations each, were available. An example was

shown in Figure 1.1.

The underlying signals of each time series are estimated by JULES at significane level

α = 0.05 without any prior data cleaning. An exemplary estimation was shown in the

introduction in Figure 1.3. We stress that the residence times are much shorter than in

similar studies before (James et al., 2009; Danelon et al., 2006; Mahendran et al., 2010)

which made a deconvolution approach like in Section 3.6 mandatory. Estimation of the

amplitudes, residence times and the frequencies were described in Section 3.8. A two

state hidden Markov model was supported for all measurements. We stress again that

this confirmation is only given for events with residence times between a = 0.08 ms and

b = 0.2 ms ms, for all other lengths it is only an assumption. The estimated amplitudes

are in average 1.19 nS for the wild type and 0.81 nS for the mutant. A comparison with

the estimated amplitudes in Section 5.2, although influenced by the absence of solvent,

suggests that the observed events are a blockage of all tree pores at the same time. Such

a cooperative blockage by ampicillin was not found for porins before (James et al., 2009;

Nestorovich et al., 2002), but for instance for trimeric chitoporin trapping sugars (Suginta

et al., 2016). Blockage events of only one or two pores could not be observed which either

means that they are not present or that these events have much shorter residence time

such that they are not detectable.

Results of the estimated residence times and frequencies as functions of the voltage and

the concentration are shown in Figures 5.1 and 5.2. We stress that the averaged residence

times and frequencies based on estimations by JILTAD and a hidden Markov approach
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were for all measurements close to the values based on an estimation by JULES and lead

in all cases to the same conclusions. For the hidden Markov approach this is illustrated

in (Bartsch et al., 2017, Figure S9, Supporting information). In this section we focus on

the results obtained by JULES.

(a) Residence times. (b) Blockage frequencies.

Figure 5.1.: Voltage-dependent residence times and blockage frequencies of ampicillin for
PorB wild type and PorB G103K in the presence of 1 mM ampicillin. Four
measurements were averaged for each protein. The bars indicate confidence
intervals at 95% based on a normal approximation, but we stress that they
are not reliable and only given for a rough tendency, see the discussion at the
end of Section 3.8.

The residence times show a parabolic and the frequency a linear dependency on the voltage.

For all voltage levels the residence times are statistically significant larger for the mutant

than for the wild type, confirmed by the two-sample Wilcoxon signed-rank test at error

level 0.05. The linear dependency of the frequencies on the voltage is different, for the

mutant the frequency is increasing, but for the wild type decreasing. Interpretations of

these major findings are given below. We found as expected no significant dependency

of the residence times on the concentration. This means a larger amount of ampicillin

molecules in the solution does not effect the single molecule in the pore. The frequencies

increase linearly with the concentration which was also expected, since roughly described

the ampicillin molecules diffuse trough the solution and enter the pore if they are close to it

and in the right orientation. Consequently, in a fixed period of time each molecule has the

same small probability to enter the pore which also explains the exponential distribution.

If more molecules are available the waiting time is shorter, with a linear dependency. The

larger slope for the mutant does not provide any new information when linearity and a

larger value for the mutant than for the wild type at 1 mM is already known.

Molecular dynamics (MD) simulations revealed that during the passage through the pore

an ampicillin molecule binds in the constriction zone to the channel protein. The binding

is similar for the wild-type and the mutant, but the mutant G103K has one additional

contact for ampicillin on the extracellular side of the constriction zone (Bartsch et al., 2017,
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(a) Residence times. (b) Blockage frequencies.

Figure 5.2.: Residence times and blockage frequencies at increasing ampicillin concentra-
tions for PorB wild type and PorB G103K including confidence intervals (bars)
at 95% significance. The recordings were performed at 80 mV. The linear fit
weighted according to the confidence intervals shows no significant dependence
of the residence times on the ampicillin concentration. Averaged residence
times of 35 µs for the wild type and of 44 µs for the mutant were determined
using weighted means. For both proteins, the frequencies increase linearly in
the ampicillin concentration.

Figure 9) which results in a more stable bound to the pore and explains the longer residence

times. The translocation of ampicillin require several reorientations of the ampicillin

molecule. Thereby, different orientations of the ampicillin are allowed by the wild type

and the mutant. An applied voltage changes the electric fields within the pore which makes

reorientations easier or more difficult. Since different orientations are required for the wild

type and the mutant protein, a different dependency on the applied voltage is reasonable.

For more detailed explanations see (Bartsch et al., 2017, Figure 9C and the explanations

around). In general a passage trough the mutant seems to be more difficult, i.e., higher

energies are required, than trough the wild type which can explain an antibiotic resistance

for cells with the G103K mutation. Such explanations can be helpful for the development

of new drugs to mitigate the severe consequences of multidrug-resistant bacteria.

5.2. Analysis of PorB recordings with heterogeneous noise

In this section we analyze single channel recordings of the PorB wild type and of the

mutant G103K using solvent-free bilayers at the Port-a-Patch. They are sampled with

10 kHz sampling rate and filtered with a four-pole lowpass Bessel filter with normalized

cutoff frequency of 0.1. For each of the two proteins roughly ten measurements with one

up to ten time series with 600 000 observations each are available. An example was shown

in Figure 3.3. In this measurement the channel switches frequently between two conduc-

tance levels, roughly between 0.04 nS and 0.36 nS. The standard deviation in the closed
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state is roughly
√

6.1 · 10−5 nS and in the open state
√

10−3 nS. The noise is in many

measurements of this order, but we also have measurements with (almost) homogeneous

noise and two measurements with larger heterogeneity, there the variances are roughly√
2.5 · 10−5 nS and

√
0.05 nS. Moreover, in Figure 3.3 several artifacts are present, see

for instance the fluctuating base line in the first ten seconds. We stress that varying base

lines, large peaks and other artifacts are present in many measurements, in some such that

the channel dynamics could not be identified and we had to exclude these measurements

from the analysis. Since PorB forms three pores, four different conductance levels are

possible. However, in all measurements we analyzed the channel switches mostly between

two conductance levels, but different amplitudes are found that correspond to the mono-,

di- and trimer, see below. Such a cooperative opening and closing was observed before,

see (Song et al., 1998).

Since most measurements contain heterogeneous noise we use JILTAD for estimating the

signals, all parameters are chosen as described in Section 3.7. An exemplary estimation

of the signal underlying the observations in Figure 3.3 was shown in Figure 3.5.

Amplitudes and dwell times are analyzed as outlined in Section 3.8 and for each mea-

surement individually. Figure 5.3 shows a histogram of the estimated amplitudes in the

measurement from Figure 3.3.

Figure 5.3.: Histograms of the amplitudes between l = 0.2 nS and u = 0.5 nS. Vertical red
line indicates the estimated amplitude of 0.3194 nS by the half sample mode.

An amplitude of 0.3194 nS is estimated by the half sample mode. In total, the amplitudes

are estimated for eight measurements of the mutant G103K and for seven measurements

of the wild type. The estimated amplitudes cluster around 0.32 nS, 0.46 nS and 0.74 nS for

the mutant and 0.42 nS, 0.91 nS and 1.65 nS for the wild type. These values are similar to

the ones found in (Bartsch et al., 2017), with manually chosen events, of 0.13 nS, 0.36 nS

and 0.76 nS for the mutant and 0.44 nS, 0.89 nS and 1.52 nS for the wild type. The only

significant difference is an amplitude of 0.13 nS instead of 0.46 nS for the mutant. Note

that in the histogram in (Bartsch et al., 2017, Figure 3 D) a peak at 0.46 nS is visible,

but not found to be significant in the following estimation of the amplitudes by a Gaus-
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sian mixture method. Instead a peak at 0.13 nS is found. Such events are visible in two

measurements, but could not be distinguished from base line fluctuations in the analysis

using JILTAD. In our analysis, however, three measurements have events with amplitudes

around 0.46 nS which is to us a strong confirmation of such a level.

The amplitudes of the mutant are much smaller than those of the wild type. An explana-

tion is given by atomistic simulations. The wild type has two distinct pathways for anions

and cations, but in the mutant the cations pathway is disrupted, resulting in smaller

conductance. For more details see (Bartsch et al., 2017, Figure 4) and the explanations

around. In comparison to the amplitudes in Section 5.1 which correspond most likely to

the amplitude of the whole channel, i.e., of all three pores simultaneously, the amplitudes

are in these solvent-free measurements smaller for the wild type and slightly higher for

the mutant. Such slight differences of the amplitudes for different membrane systems are

common and reported for many channels (Neher and Eibl, 1977; Johannsson et al., 1981).

We now analyze the dwell time in the open state and how frequently the channel opens.

We take into account events with an amplitude between l = 0.2 nS and u = 0.5 nS and

with a dwell time in the open state between a = 0.1 ms and b = 200 ms. Histograms of the

dwell time in the open state are shown in Figure 5.4 for the measurement in Figure 3.3.

(a) All events between a =
0.1 ms and b = 200 ms.

(b) Short events between a =
0.1 ms and b = 5 ms.

(c) Long events between a =
20 ms and b = 200 ms.

Figure 5.4.: Histograms of the dwell times of opening events with amplitude between l =
0.2 nS and u = 0.5 nS.

Interestingly, the dwell times do not fit a single exponential distribution, but when we

split the events in short and long ones, both fit exponential distributions very well, with

an estimated average duration of 51.62 ms and 2.31 ms, respectively. Note that these esti-

mations are approximations, since an exponential distribution with a large rate generates

with a small probability a long event and vice versa, but since the average dwell times are

very different this error is negligible. Unfortunately, the result of a mixture of two expo-

nential distributions could not be confirmed by further measurements using solvent-free

membranes, since either the amount of events is very small or the gating events cannot

be separated from detected artifacts, but by measurements using black lipid membranes

without ampicillin. This hints that the PorB channels show flickering and normal gating
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at the same time. Next, we analyze how frequently both types of events occur, see Figure

5.5. For events with a long dwell time a missed event correction was necessary and we

only took into account distances between 50 ms and 1 s, since artifacts seems to disturb

shorter distances.

(a) Distance between two events with
dwell time between a = 0.1 ms and
b = 5 ms.

(b) Distance between two events with
dwell time between a = 20 ms and
b = 200 ms.

Figure 5.5.: Histograms of the distances between two short and between two long opening
events with amplitude between l = 0.2 nS and u = 0.5 nS.

In both cases the distances seem to be exponentially distributed and the estimated rates

are 2.67 Hz for the short events and 4.50 Hz for the long events. Hence, longer events occur

more often.
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6. Conclusion and outlook

6.1. Conclusion

This work provides two major contributions. First of all, we presented in Section 2 with

H-SMUCE an estimator for heterogeneous multiscale change-point inference and, in par-

ticular, established a comprehensive theory for the heterogeneous change-point model.

Secondly, we obtained in Section 3.5 with JULES for homogeneous observations and in

Section 3.7 with JILTAD for heterogeneous observations, but also usable for homogeneous

observations, two non-parametric methods for estimating the piecewise constant signal

underlying ion channel recordings. Their importance was illustrated by an electrophysiol-

ogy study in the severe context of multidrug-resistant bacteria, see Section 5.

H-SMUCE recovers the change-points well, while at the same time it is robust against het-

erogeneous noise and controls the probability to overestimate the number of change-points.

More precisely, the number of change-points is estimated consistently, see Theorem 9, and

vanishing signals are detected at the optimal minimax rate, see Theorems 12 and 13. In

addition, simultaneous confidence intervals for the change-point locations, see Theorem 11,

and a confidence band for the unknown signal, see the end of Section 2.3.2, are obtained.

Simulations show that H-SMUCE outperforms state of the art methods as long as the

constant segments are not too short, see Figure 2.2, and is robust against heterogeneous

noise even on constant signal segments, see Table 2.4, and as a by-product also against

more heavily tailed errors, see Table 2.5. Moreover, it can be computed efficiently by a

pruned dynamic program, see Section 4.1. For instance if change-points occur frequently

the computation time increases only linearly in the number of observations, see Section

4.5. Together with other mutiscale regression estimators, H-SMUCE is implemented in

the R package stepR (Pein et al., 2017a).

Patch clamp recordings to quantify the gating dynamics of ion channels are a major tool

in electrophysiology and a first step of their analysis is often the estimation of the underly-

ing signals from filtered observations. Our proposed non-parametric methods JULES and

JILTAD estimate these signals by combining multiscale estimation with local deconvolu-

tion. Simulations, Section 3.9, and real data applications, Sections 3.10 and 5, confirm

that their estimation is still accurate when events occur on very small temporal scales, in

particular also on scales below the filter length, where the smoothing effect of the filter

hinders estimation by common methods. Moreover, JILTAD estimates the underlying sig-

nals still well when open channel noise causes heterogeneous noise, a situation for which

previously no non-parametric estimation method existed. At the same time, we showed
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in Section 4.5 that both methods can be computed efficiently, usually its complexity in-

creases only linearly in the number of observations. Hence, an estimation for hundred

thousands up to few millions observations lasts typically only seconds up to few minutes

on a standard laptop. An R package clampSeg (Pein et al., 2017b) specialized for the

analysis of ion channel recordings provides an implementation of JULES, while JILTAD

is currently only available in an internal version, but will be published soon.

All in all, the simulations and data applications establish JULES and JILTAD as reli-

able, universally applicable, fully-automatic and efficiently computable non-parametric

estimators for the analysis of ion channel recordings, JILTAD even in the presence of het-

erogeneous noise. Only when events follow each other very quickly they are not applicable

as proposed, but can be refined at computational expenses.

We used in Section 5 these methods to explore the interaction of the antibiotic ampicillin

with the outermembrane porin PorB. The very short blockage times and the huge amount

of observations and events required an automatic analysis of these recordings with high

precision on small temporal scales. We found that the average residence time of ampicillin

is statistically significantly longer for the PorB mutant G103K than for the wild type.

In conjuncture with other findings this suggests that ampicillin passes the mutant less

likely which explains that bacteria with this mutation have an increased resistance against

antibiotics. Such explorations help to develop new drugs against resistant bacteria.

6.2. Outlook

6.2.1. Varying voltage

So far we only considered ion channel recordings with a constant applied voltage, but also

experiments with a varying voltage are interesting. That’s because not only the voltage

effects the channel, some channels are also effected by voltage changes. This includes

channels that show no gating when the voltage is constant, but can be activated by a

varying voltage. For other channels different dynamics are observed when the voltage

changes. One example is the protein channel Tim23 which shows severe stress effects.

More precisely, the channel tends to close when the voltage is high for a longer time

period, while when a varying voltage is applied the channel shows regular gating (for a

constant voltage the same applies for a short time period after a voltage change). And

even if a channel is not effected by voltage changes such experiments are interesting, since

often the dynamics at different voltage levels are examined, see for instance the analysis

in Section 5.1. While experiments with a constant voltage only allow to examine the

gating dynamics at few voltage points (or require huge experimental effort), with varying

voltage the dynamics can be analyzed for a whole range of voltages by a single experiment.

However, the analysis of such experiments is more difficult. In fact, recordings with varying

voltage might be of greater interest if better analysis routines are available.

To simplify the model we restrict ourself to recordings with a linear voltage. Since the
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conductance is still assumed to change only abruptly, it follows from Ohm’s law that the

current can be modeled as a piecewise linear function. Thereby, when the conductance

changes the slope changes, while the intercept is assumed to be a global constant. The

intercept is under perfect conditions zero, but often the electronic and other effects cause

a small intercept. An example of such a recording is shown in Figure 6.1.

  

Figure 6.1.: Observations (grey points) of a representative current time series of PorB
wild type with 1 mM ampicillin while a voltage ramp (red points) is applied.
The time series is recorded by the patch clamp technique using black lipid
membranes.

In addition to short blockage events by the ampicillin as in the recordings with constant

voltage, we see gating events on larger time scales. Since such events are not observed when

a constant voltage is applied, they are almost certainly caused by the voltage changes. The

zooms reveal that the recording looks locally as the recordings with constant voltage. This
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was expected, since the voltage varies only slowly.

An empirical data analysis confirms the model and suggests that the variance is quadratic

in the applied voltage. The parameters of the variance can assumed to be global, i.e.,

not affected by conductance changes. The global parameters can be determined by an

empirical analysis of longer linear segments, i.e., parts in which the conductance does not

change. Hence, we assume that the variance is known and without loss of generality that

the intercept is zero, since the global intercept can be subtracted from the observations.

Filtering and sampling is not influenced by the varying voltage. Thus, we model the

recorded current observations by

Yi =
(
FL ∗

(
µ · U + η

√
σ0 + σ1 · U + σ2 · U2

))( i

fs

)
, i = 1, . . . , n, (6.1)

with FL, µ and η as in Section 3.1.1, U the voltage function in time and σ0, σ1, σ2 ∈ R
such that σ0 + σ1U(t) + σ2U(t)2 > 0 for all t ∈ R. For given signal µ and variance param-

eters σ1, σ2, σ3 the expectation and covariance of the observations can still be computed

explicitly. For instance the convolution of a linear increasing function with the kernel is

also a linear increasing function but with a smaller slope.

Although of its great practical importance, to the best of our knowledge no estimation

method assumes this model or a similar one. Besides an analysis by manual chosen event

times, the most common approach to analyze such recordings is to divide by the applied

voltage. The resulting signal is piecewise constant, but the variance is not constant, which

however is assumed by most approaches, and in particular very large when the voltage is

close to zero. To overcome these issues, we aim to extend J-SMURF, JULES and JILTAD

to model (6.1). In the following we outline exemplarily an extension of JULES, but an

extension of J-SMURF and JILTAD should be possible as well.

For the local test statistics of the multiscale test the partial sum statistic can be modified

to

T ji (Y,mij) :=

(∑j
l=i Yl −

(
FL ∗ (mijU)

)
(l/fs)

)2

2Var
[∑j

l=i Yl

] . (6.2)

Note that, as mentioned before, the convolution and the variance can be computed ex-

plicitly. The required modifications for the computation of the critical values and of the

multiscale regression estimator as well as for the postfilter step are straightforward. Also

the local deconvolution approach can be used with slight adaptations. Here, maximizing

the likelihood function is again equivalent to minimizing (3.22), but mi,j writes now as

mi,j =

((
FL ∗ (µ · U)

)(fsτ̂i − L+ 1

fs

)
, . . . ,

(
FL ∗ (µ · U)

)(fsτ̂j + L− 1

fs

))t
and Σi,j is the known covariance matrix. Since only very few neighboring observations

are involved, the covariance matrix is almost a Toeplitz matrix. Hence, Tikhonov regu-

larization can still be used, with regularization parameter for instance the mean of the
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variances of the involved observations.

6.2.2. Fixed levels

A small alphabet {l1, . . . , lc} of potential conductance levels is a common assumption to

analyze ion channel recordings, in particular by hidden Markov models, see Section 3.8. If

open channel noise causes heterogeneous noise, we assume an alphabet {(l1, v2
1), . . . , (lc, v

2
c )}

of expectation and variance pairs. So far we did not assume an alphabet of fixed levels

for our non-parametric methods, in particular to be robust against artifacts. Consider ex-

emplary the situation that the conductance is for a second in the mid of two conductance

levels due to an artifact. The approaches in Section 3 will estimate one change-point at

the beginning and one at the end of this segment, which does not affect the whole analysis

noticeably. In comparison, a method that assumes only the two conductance levels is

forced to include many changes between the two conductance levels to obtain a convolu-

tion that is roughly at the observed conductance level. Hence, a single artifact can disturb

the whole analysis.

Despite these difficulties, such an approach is interesting, since it allows a better esti-

mation of very short events if artifacts does not disturb their estimation. To this end,

artifacts can be removed by data cleaning or be taken into account by postfiltering. In

the following we focus on the setting from Section 5.2 and on JILTAD assuming hetero-

geneous noise. Recall, that we found only two different levels in each measurement, but

heterogeneous noise. Consequently, we assume the alphabet {(l1, v2
1), (l2, v

2
2)}. Note that

this setting is simpler as a setting with more levels, but at the same time it also allows

the largest improvement in comparison to not assuming fixed levels. The levels can either

be pre-estimated by long segments or by using JILTAD as described in Section 3.7.

We now outline how JILTAD can be adapted to this model. First of all, we apply J-SMURF

without any adaptation, but project afterwards the estimated function values to the as-

sumed alphabet. A simple approach is to use the alphabet value that has the closest

Euclidean distance between the estimated function and the alphabet value for the expecta-

tion. Alternatively, more elaborate projections can be used, they may include an variance

estimation on the constant segments. Note that after the projection some jump sizes are

zero. We remove these change-points and assume for the following that m̂k−1 6= m̂k for

all k = 1, . . . , K̂. Next, we reestimate the change-point locations by local deconvolution,

which is in this setting more accurate, since only the locations, but not the function values

have to be estimated. Also for this estimation problem the corresponding likelihood func-

tion from the homogeneous case can be used. And we still suggest to use an iterative grid

search to compute the estimator, since despite the simplification the optimization problem

is still highly non-convex. Finally and most important, for the tests on small scales we take

into account the assumed levels. We stress that this improves detection power severely,

since the null hypothesis and the alternative are now both point hypothesis. Hence, a

test similar to the one in (Enikeeva et al., 2016) can be used. More precisely, the filtering
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has to be taken into account, for instance as in Section 3.7.4 by ignoring the correlation

structure. The final change-point locations can again be estimated by deconvolution as

described previously.

6.2.3. Parallel programming

Modern servers allow computation on multiple cores at the same time to speed up compu-

tations. In the following we want to outline how our algorithms can be parallelized. For

Monte-Carlo simulations this is trivial, since M times the same steps have to be performed

independently of each other. Here it can be expected that the computation time reduces

almost exactly by the number of available cores. Almost the same applies for the local

deconvolution. The computation time is dominated by the iterative grid search which has

to be performed for each single event individually and hence parallelization is straightfor-

ward. Also the local tests in JILTAD are of a similar structure. Thus, in the following we

focus on the dynamic program as described in Section 4.1.1.

The computation of the left limit Lk requires the computation of the intersected bounds

Br,Lk+1−1 and Br,Lk+1−1 for all r = Lk+1 − 1, . . . , 1 until Br,Lk+1−1 > Br,Lk+1−1. To sim-

plify notation we ignore the upper bounds and define L := Lk+1 − 1. The intersected

bounds can be computed iteratively by

Br,L = max{Br+1,L, Br}, with Br := max
s=r,...,L

[r/n,s/n]∈I

br,s. (6.3)

The maxima Br, r = L, . . . , 1, can be computed by different processes at the same time.

The process that computes Br needs usually a little bit more time than the process that

computes Br+1, since it has to compute one bound more. Otherwise, the process that

computes Br has to wait until Br+1 is computed to compute Br,L by the recursion for-

mula (6.3). And if Br,L > Br,L for one r all processes can be stopped and the computation

of Lk−1 can begin.

A similar approach is possible to compute the cumulated costs cp, p = Lk, . . . , Rk − 1,

at the same time. The computation of cp+1 requires to compute cr + cr+1,p+1 for r =

Rk−1−1, . . . , Lk−1. The computation of cr+1,p+1 require the intersected bound Br+1,p+1 =

max{Br+1,p, Br+2,p+1, br+1,p+1}, but the intersected bound Br+1,p have also to be com-

puted to compute cr+1,p. Hence, the process that computes cp+1 computes br+1,p+1 and

waits until the process that computes cp has computed Br+1,p. Note that the process that

computes cp+1 has the intersected bound Br+2,p+1 already computed in the previous step,

since it was required to compute cr+1 +cr+2,p+1. Also note that the computation of Br+1,p

only requires the computation of br+1,p and to wait for Br+1,p−1, since a similar recursion

applies. Hence, the waiting times are usually small. The stopping conditions are similar to

before. This shows that the dynamic program can be parallelized. Since at certain steps

some processes might have to wait until another process finished required computations,

the overall reduction will be less than by the number of cores, but still significant.
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A. Appendix

In this section we collect the proofs together with some auxiliary statements.

A.1. Proof of Lemma 1

Proof of Lemma 1. A single statistic T ji (Z, 0) has the c.d.f. F1,j−i(·) of an F-distribution

with (1, j − i) degrees of freedom. Thus, Fk(·) = F1,2k−1(·)|Dk| is continuous and strictly

monotonically increasing for positive arguments. Now, it follows from equation (2.14) that

qk = F−1
k

(
1− βk

β1

(
1− F1(q1)

))
for k = 2, . . . , dn. (A.1)

This together with equation (2.12) yields

G(q1) := F

(
q1, F

−1
2

(
1− β2

β1

(
1− F1(q1)

))
, . . . , F−1

dn

(
1− βdn

β1

(
1− F1(q1)

)))
= 1− α.

Note, that F is continuous and limqk→0 F (q1, . . . , qdn) = 0 for all k = 1, . . . , dn as well as

limq1,...,qdn→∞ F (q1, . . . , qdn) = 1. Thus, the function G is continuous, strictly monotoni-

cally increasing on [0,∞) and attains all values in [0, 1). Therefore, the existence of the

vector of critical values follows from the intermediate value theorem and the vector is also

unique.

A.2. Proof of Lemma 3

First of all, recall from the proof of Lemma 1 that the statistic Tk has c.d.f. F1,2k−1(·)|Dk|.
For every k = 1, . . . , dn we use the transformation

Uk := F1,2k−1 (Tk)
|Dk|

and the identity

Tk = F−1
1,2k−1

(
U
|Dk|−1

k

)
.

Here, F−1
1,2k−1

(·) denotes the quantile function of an F-distribution with (1, 2k−1) degrees

of freedom. Analogously, we define

qk,U := F1,2k−1 (qk)
|Dk|
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and have the identity

qk = F−1
1,2k−1

(
q
|Dk|−1

k,U

)
. (A.2)

Then, the events Uk > qk,U and Tk > qk are equivalent and therefore the vector qU =

(q1,U, . . . , qdn,U) satisfies similar conditions to the equations (2.12) and (2.14), i.e.,

1− P (U1 ≤ q1,U , . . . , Udn ≤ qdn,U ) = α (A.3)

and
1− P (U1 ≤ q1,U )

β1
= · · · =

1− P (Udn ≤ qdn,U )

βdn
. (A.4)

The following bounds can be interpreted as a weighted version of the Bonferroni-inequality.

Lemma 15. qk,U ≤ 1− αβk for k = 1, . . . , dn.

Proof. We have P (Uj ≤ qj,U ) = qj,U for j = 1, . . . , dn, since Uj is uniformly distributed.

Moreover, it follows from condition (A.4) that 1− qj,U = (1− qk,U )βj/βk. Combining this

with equation (A.3) and
∑dn

j=1 βj = 1 yields

α =1− P (U1 ≤ q1,U , . . . , Udn ≤ qdn,U )

≤
dn∑
j=1

P (Uj > qj,U ) =

dn∑
j=1

(1− qj,U ) =

dn∑
j=1

(1− qk,U )
βj
βk

=
1− qk,U
βk

,

which proves the assertion.

Lemma 16 bounds the quantile function of an F-distribution with (1, c) degrees of freedom.

Lemma 16 (Bounds on the F-quantiles). Let F−1
1,c (y) be the quantile function of an F-

distribution with (1, c) degrees of freedom, then

c
[(

1− y2
)− 1

c − 1
]
≤ F−1

1,c (y) ≤ c
[(

1− y2
)− 2

c− 1
2 − 1

]
.

Proof. We have from (Fujikoshi and Mukaihata, 1993, Theorem 4.2) that

c

[
exp

((
χ2

1

)−1
(y)

c

)
− 1

]
≤ F−1

1,c (y) ≤ c

[
exp

((
χ2

1

)−1
(y)

c− 1
2

)
− 1

]
,

with
(
χ2

1

)−1
(y) the quantile function of the chi-squared distribution with one degree of

freedom and Z a standard Gaussian distributed random variable. Moreover, we obtain for

all y ≥ 0

P
(
χ2

1 ≤ y
)

= P (−√y ≤ Z ≤ √y) = 2Φ (
√
y)− 1

⇐⇒
(
χ2

1

)−1
(y) = Φ−1

(
y + 1

2

)2

,
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where Φ−1(y) is the quantile of the standard Gaussian distribution. Furthermore, we have

from (Johnson et al., 1994, (13.48), p. 115) that

1

2

[
1 +

(
1− exp

(
−x

2

2

)) 1
2

]
≤ Φ (x) ≤ 1

2

[
1 +

(
1− exp

(
− x2

)) 1
2

]

and so for the quantile function one finds√
− log

(
1− (2y − 1)2

)
≤ Φ−1 (y) ≤

√
−2 log

(
1− (2y − 1)2

)
.

Combining the formulas proves the assertion.

Proof of Lemma 3. First of all, (A.2) and the equation |Dk| = bn2−kc yields

qk = F−1
1,2k−1

(
q
|Dk|−1

k,U

)
= F−1

1,2k−1

(
q
bn2−kc−1

k,U

)
≤ F−1

1,2k−1

(
q

2k/n
k,U

)
.

Moreover, it follows from the Lemmas 15 and 16 that

qk ≤ F−1
1,2k−1

(
q

2k/n
k,U

)
≤F−1

1,2k−1

(
(1− αβk)2k/n

)
≤
(

2k − 1
)[(

1−
(

(1− αβk)2k/n
)2
)− 2

(2k−1)− 1
2 − 1

]

≤2k
[(

1− (1− αβk)2k/n
)− 4

2k+1−3 − 1

]
.

Applying Bernoulli’s inequality (1− x)c ≤ 1− cx gives

qk ≤ 2k
[(

1− (1− αβk)2k/n
)− 4

2k+1−3 − 1

]
≤ 2k

[(
2kαβk
n

)− 4

2k+1−3

− 1

]
.

Moreover, for x, c > 0 the inequality cx ≤ 1 + 2x log(c) holds whenever x log(c) ≤ 1.

Together with the assumption k ≥ 2 we finally obtain

qk ≤ 2k

[(
2kαβk
n

)− 4

2k+1−3

− 1

]
≤ 4

2k+1

2k+1 − 3
log

(
n

2kαβk

)
≤ 8 log

(
n

2kαβk

)
if

2−k log

(
n

2kαβk

)
≤ 1

2

2k+1 − 3

2k+1
≤ 1

2
.

A.3. Exponential deviation bounds

For the subsequent proofs we have to bound the distribution function of a single test

statistic T ji (1.7) under the alternative. This is for the setting in Section 2 a bound for
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the c.d.f. of a non-central F-distribution.

Lemma 17. Let Y = (Y1, . . . , Yn) be a vector of i.i.d. Gaussian distributed random vari-

ables with expectation m ∈ R and variance s2 > 0. Let x+ := max(x, 0). Then, for any

δ 6= 0, q > 0

P (Tn1 (Y,m+ δ) ≤ q)

≤min
z≥0

{
exp

(
−1

2

(
∆
√
n

2
− q(1 + z)

∆
√
n

)2

+

)
+ exp

(
−(n− 1)

z − log(1 + z)

2

)}
,

(A.5)

where ∆ := |δ|/s.

Proof. Let T̃ ji (Y,m) := (j − i+ 1)
(
Y ij −m

)2
/s2. Then,

Tn1 (Y,m+ δ) =
T̃n1 (Y,m+ δ)

ŝ2
1n/s

2
.

The statistics ŝ2
1n/s

2 and T̃n1 (Y,m+ δ) are independent, since T̃n1 (Y,m+ δ) depends only

on the mean Y 1n. Hence, for all z ≥ 0

P (Tn1 (Y,m+ δ) ≤ q) =P
(
T̃n1 (Y,m+ δ) ≤ q ŝ

2
1n

s2

)
=P
(
T̃n1 (Y,m+ δ) ≤ q ŝ

2
1n

s2

∣∣∣∣ ŝ2
1n

s2
≤ 1 + z

)
P
(
ŝ2

1n

s2
≤ 1 + z

)
+ P

(
T̃n1 (Y,m+ δ) ≤ q ŝ

2
1n

s2

∣∣∣∣ ŝ2
1n

s2
> 1 + z

)
P
(
ŝ2

1n

s2
> 1 + z

)
≤P
(
T̃n1 (Y,m+ δ) ≤ q(1 + z)

)
+ P

(
ŝ2

1n

s2
> 1 + z

)
≤ exp

(
−1

2

(
∆
√
n

2
− q(1 + z)

∆
√
n

)2

+

)
+ exp

(
−(n− 1)

z − log(1 + z)

2

)
.

The first term of the last inequality follows from (Frick et al., 2014a, Lemma 7.3 and

the proof) and the second from (Spokoiny and Zhilova, 2013, Theorem 2.1), since (n −
1)ŝ2

1n/s
2 ∼ χ2

n−1.

It remains to show that the minimum in (A.5) is attained for some z ≥ 0. The function

(∆
√
n/2 − q(1 + z)/(∆

√
n))2

+ is strictly monotonically decreasing for z > 0 until the

function value zero is attained for some finite z. The function (n − 1)(z − log(1 + z))

is zero for z = 0 and strictly monotonically increasing on [0,∞). Therefore, the two

continuous functions intersect and the minimum is attained for some z ≥ 0.

The minimum in Lemma 17 cannot be determined analytically, but it can be computed

numerically. In Lemma 18 we estimate the right hand side further to obtain an explicit

exponential bound.
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Lemma 18. Let Y = (Y1, . . . , Yn), n ≥ 4, be a vector of i.i.d. Gaussian distributed random

variables with expectation m ∈ R and variance s2 > 0, then we have for all q > 0 with

q

n
≤ 1

8
(A.6)

as well as for all δ 6= 0 and ∆ := |δ|/s the bound

P (Tn1 (Y,m+ δ) ≤ q) ≤ 2 exp

(
− 1

48

(√
n∆−

√
2q
)2

+

)
. (A.7)

Proof. Let z > 0 be arbitrary, but fixed. Then, it follows from Lemma 17 that

P (Tn1 (Y,m+ δ) ≤ q) ≤ exp

(
−1

2

(
∆
√
n

2
− q(1 + z)

∆
√
n

)2

+

)
+ exp

(
−(n− 1)

z − log(1 + z)

2

)

≤2 exp

(
−min

[
1

2

(
∆
√
n

2
− q(1 + z)

∆
√
n

)2

+

, (n− 1)
z − log(1 + z)

2

])
.

The inequality

z − log(1 + z) ≥ 1

2

z2

1 + z
≥ 1

4
min

(
z2, z

)
yields

P (Tn1 (Y,m+ δ) ≤ q)

≤2 exp

(
−min

[
1

8
n

(
∆− 2q(1 + z)

∆n

)2

+

,
1

8
(n− 1) min

(
z2, z

)])

≤2 exp

(
−1

8
(n− 1) min

[
min

[(
∆− 2q(1 + z)

∆n

)2

+

, z2

]
,min

[(
∆− 2q(1 + z)

∆n

)2

+

, z

]])
.

Now, we minimize the r.h.s. in z ≥ 0. The functions z and z2 are both increasing, the

function (∆ − 2q(1 + z)/(∆n))2
+ in contrast is decreasing in z. Therefore, both inner

minima are attained and by solving the corresponding quadratic equations (note that we

have to take the solution with ∆− 2q(1 + z)/(∆n) ≥ 0) we get

P (Tn1 (Y,m+ δ) ≤ q)

≤2 exp

−1

8
(n− 1) min


(

∆− 2q
∆n

1 + 2q
∆n

)2

+

,

1 + 2 2q
∆n

(
∆− 2q

∆n

)
+
−
√

1 + 4 2q
∆n

(
∆− 2q

∆n

)
+

2
(

2q
∆n

)2


 .

Using the inequality
√

1 + 4x ≤ 1+2x−2x2 +4x3 for all x > −1/4 with x = 2q/(∆n)(∆−
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2q/(∆n))+ we find

P (Tn1 (YY,m+ δ) ≤ q)

≤2 exp

−1

8

n− 1

n
nmin

(∆− 2q
∆n

1 + 2q
∆n

)2

+

,

(
∆− 2q

∆n

)2

+

[
1− 2

2q

∆n

(
∆− 2q

∆n

)
+

] .

Next, we consider the two terms in the minimum separately. We assume w.l.o.g. that
√

2q/(∆
√
n) ≤ 1, since otherwise the r.h.s. in (A.7) is two. For the first term we distinguish

the cases 2q > ∆n and 2q ≤ ∆n. If 2q ≤ ∆n is satisfied, then

n

(
∆− 2q

∆n

1 + 2q
∆n

)2

+

≥ 1

4
n

(
∆− 2q

∆n

)2

+

=
1

4

(√
n∆− 2q

∆
√
n

)2

+

≥ 1

4

(√
n∆−

√
2q
)2

+
.

For the other case, when 2q > ∆n holds, we obtain with q/n ≤ 1/8

n

(
∆− 2q

∆n

1 + 2q
∆n

)2

+

≥1

4
n

(
∆− 2q

∆n
2q
∆n

)2

+

=
1

4
n

(
n∆2

2q
− 1

)2

+

=
1

4

n

2q

(
(
√
n∆)2

√
2q

−
√

2q

)2

+

≥
(√

n∆−
√

2q
)2

+
.

For the second term it follows with q/n ≤ 1/8 that

n

(
∆− 2q

∆n

)2

+

[
1− 2

2q

∆n

(
∆− 2q

∆n

)
+

]
=

(√
n∆− 2q

∆
√
n

)2

+

[
1− 4

q

n

(
1− 2q

∆2n

)
+

]
≥
(√

n∆−
√

2q
)2

+

1

2
.

This yields

P (Tn1 (Y,m+ δ) ≤ q) ≤2 exp

(
− 1

32

n− 1

n

(√
n∆−

√
2q
)2

+

)
≤2 exp

(
− 1

48

(√
n∆−

√
2q
)2

+

)
.

A.4. Proofs of Section 2.3

Proof of Theorem 5. The estimated number of change-points K̂ is by its definition in

(2.18) equal to the minimal number of change-points of all feasible functions. Therefore,

all functions with the true number of change-points (or less change-points) have to be
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infeasible, if the number of change-points is overestimated. Hence, by (2.12)

sup
(µ,σ2)∈S

P(µ,σ2)

(
K̂ > K

)
≤ sup

(µ,σ2)∈S
P(µ,σ2)

(
max

[ in ,
j
n ]∈D(µ)

[
T ji (Y, µ([i/n, j/n]))− qij

]
> 0

)

≤ P(0,1)

(
max

[ in ,
j
n ]∈D

[
T ji (Y, 0))− qij

]
> 0

)
= α,

where the last inequality follows fromD(µ) ⊂ D and that the distribution of T ji (Y, µ([i/n, j/n]))

does not depend on µ(·) and σ(·), as they are constant on intervals in D(µ).

Proof of Theorem 6. First of all, we show that it is enough to prove the result for µ ≡ 0

and σ2 ≡ 1 and hence K = 0. We have

sup
(µ,σ2)∈S

P(µ,σ2)

(
K̂ > K + 2k

)
= sup

(µ,σ2)∈S
P(µ,σ2)

(
max

[ in ,
j
n ]∈D(µ̃)

[
T ji (Y, µ̃([i/n, j/n]))− qij

]
> 0 ∀ µ̃ ∈M s.t. |J (µ̃)| ≤ K + 2k

)

≤ sup
(µ,σ2)∈S

P(µ,σ2)

(
max

[ in ,
j
n ]∈D(µ̃)

[
T ji (Y, µ̃([i/n, j/n]))− qij

]
> 0

∀ µ̃ ∈M s.t. J (µ) ⊂ J (µ̃), |J (µ̃)| ≤ K + 2k

)

≤P(0,1)

(
max

[ in ,
j
n ]∈D(µ̃)

[
T ji (Y, µ̃([i/n, j/n]))− qij

]
> 0 ∀ µ̃ ∈M s.t. |J (µ̃)| ≤ 2k

)
=P(0,1)

(
K̂ > 2k

)
,

where the last inequality follows from the same argument as in the proof of Theorem 5.

Now, we define R0 := 0 and iteratively

Rk+1 := min{t > Rk : ∃ s s.t. Rk < s < t and [s/n, t/n] ∈ D, T ts(Y, 0) > qlog2(t−s+1)},

with the convention min ∅ =∞. Then,

P0,1(Rk+1 ≤ n|R1 = t) ≤ P0,1(Rk ≤ n) for all t ∈ {1, . . . , n},

since for the l.h.s. the remaining k rejections R2, . . . , Rk+1 have to be in {t + 1, . . . , n}
instead of {1, . . . , n}. It follows

P0,1(K̂ > 2k) ≤ P0,1(Rk+1 ≤ n) =

n∑
t=1

P0,1(Rk+1 ≤ n|R1 = t)P0,1(R1 = t)

≤P0,1(R1 ≤ n)P0,1(Rk ≤ n) ≤ · · · ≤ P0,1(R1 ≤ n)k+1 ≤ αk+1,

119



where the last inequality is given by Theorem 5. It follows

sup
(µ,σ2)∈S

E(µ,σ2)

[
(K̂ −K)+

]
= sup

(µ,σ2)∈S

∞∑
k=0

P(µ,σ2)

(
K̂ −K > k

)
≤ sup

(µ,σ2)∈S
2
∞∑
k=0

P(µ,σ2)

(
K̂ −K > 2k

)
≤ 2

∞∑
k=0

αk+1 =
2α

1− α
.

The following theorem is a sharper version of Theorem 7 that shows different probabilities

for the detection of the change-points.

Theorem 19 (Underestimation control II). Let λj := τj+1−τj and kn,j := blog2(nλj/4)c,
j = 0, . . . ,K, as well as δj := |mj −mj−1| and

ηj :=

1− 3 exp

− 1

48

(√
nλj−1δ2

j

32σ2
j−1

−

√
16 log

(
8

λjαβkn,j−1

))2

+


+

×

1− 3 exp

− 1

48

(√
nλjδ2

j

32σ2
j

−

√
16 log

(
8

λjαβkn,j

))2

+


+

,

j = 1, . . . ,K. Under the assumptions of Theorem 5 and if nλj ≥ 32 and

(nλj)
−1 log

(
8

λjαβkn,j

)
≤ 1

512

are satisfied for all j = 1, . . . ,K, then

P(µ,σ2)

(
K̂ < K

)
≤ 1−

K∏
j=1

ηj and E(µ,σ2)

[(
K − K̂

)
+

]
≤

K∑
j=1

(1− ηj) .

Proof. For each j = 1, . . . ,K we consider the disjoint intervals Ij := [τj − λj−1/2, τj + λj/2)

and split them into disjoint intervals I+
j ∪ I

−
j = Ij such that µ(t) = µ+ ∀ t ∈ I+

j and

µ(t) = µ− ∀ t ∈ I−j , with µ+ := max(mj−1,mj) and µ− := min(mj−1,mj). With-

out loss of generality we assume µ+ = mj−1 and µ− = mj in the following. Then,

there exists subintervals J+
j ⊂ I+

j and J−j ⊂ I−j with J+
j , J

−
j ∈ D that have length

λ∗j−1 := n−12blog2(nλj−1/4)c = n−12kn,j−1 ≥ λj−1/8, since n|I+
j | = nλj−1/2 ≥ 3, and

λ∗j := n−12blog2(nλj/4)c = n−12kn,j ≥ λj/8, since n|I−j | = nλj/2 ≥ 3, respectively. It
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follows

P(µ,σ2)

(
K̂ < K

)
= 1− P(µ,σ2)

(
K̂ ≥ K

)
≤ 1− P(µ,σ2) (@ µ̂ ∈ C(Y,q), j ∈ {1, . . . ,K} : µ̂ is constant on Ij)

≤ 1− P(µ,σ2)

(
∀ j ∈ {1, . . . ,K} : @ m̂ ≤ (mj−1 +mj)/2 : TJ+

j
(Y, m̂) ≤ qkn,j−1

and

@ m̂ ≥ (mj−1 +mj)/2 : TJ−j
(Y, m̂) ≤ qkn,j

)
≤ 1−

K∏
j=1

P(µ,σ2)

(
@ m̂ ≤ (mj−1 +mj)/2 : TJ+

j
(Y, m̂) ≤ qkn,j−1

and

@ m̂ ≥ (mj−1 +mj)/2 : TJ−j
(Y, m̂) ≤ qkn,j

)
,

where we used in the last inequality that the events are independent, since all intervals are

disjoint. We denote by Z = (Z1, . . . , Zn) a vector of i.i.d. standard normally distributed

random variables. It follows from once again from the independence due to disjoint inter-

vals and from the Lemmas 7.1 in (Frick et al., 2014a), 3 and 18 that

P(µ,σ2)

(
@ m̂ ≤ (mj−1 +mj)/2 : TJ+

j
(Y, m̂) ≤ qkn,j−1

and

@ m̂ ≥ (mj−1 +mj)/2 : TJ−j
(Y, m̂) ≤ qkn,j

)
≥
[
1− P(µ,σ2)

(
∃ m̂ ≤ (mj−1 +mj)/2 : TJ+

j
(Y, m̂) ≤ qkn,j−1

)]
×[

1− P(µ,σ2)

(
∃ m̂ ≥ (mj−1 +mj)/2 : TJ−j

(Y, m̂) ≤ qkn,j
)]
≥ ηj ,

since

P(µ,σ2)

(
∃ m̂ ≤ (mj−1 +mj)/2 : TJ+

j
(Y, m̂) ≤ qkn,j−1

)
≤ P(µ,σ2)

(
Y J+

j
≤ (mj−1 +mj)/2 or TJ+

j
(Y, (mj−1 +mj)/2) ≤ qkn,j−1

)
≤ P(µ,σ2)

(
Y J+

j
≤ (mj−1 +mj)/2

)
+ P(µ,σ2)

(
TJ+

j
(Y, (mj−1 +mj)/2) ≤ qkn,j−1

)
≤ P

(
Z [0,λ∗j−1] ≥

δj
2σj−1

)
+ P

(
T[0,λ∗j−1]

(
Z,

δj
2σj−1

)
≤ qkn,j−1

)
≤ exp

(
− 1

64

nλj−1δ
2
j

σ2
j−1

)
+ 2 exp

− 1

48

(√
nλj−1δ2

j

32σ2
j−1

−
√

2qkn,j−1

)2

+


≤ 3 exp

− 1

48

√nλj−1δ2
j

32σj−1
−

√
16 log

(
8

λj−1αβkn,j−1

)2

+
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and the second term by symmetry arguments. Moreover, it follows

E(µ,σ2)

[(
K − K̂

)
+

]

≤E(µ,σ2)

 K∑
j=1

1l∃ m̂≤(mj−1+mj)/2:T
J+
j

(Y,m̂)≤qkn,j−1
or ∃ m̂≥(mj−1+mj)/2:T

J−
j

(Y,m̂)≤qkn,j


≤

K∑
j=1

(1− ηj) .

Proof of Theorem 7. The proof is analogue to the proof of Theorem 19, but with Ij =

[τj − λ/2, τj + λ/2).

Proof of Theorem 9. We prove the theorem with the Borel-Cantelli lemma. It follows from

Theorems 5 and 7 that

sup
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
K̂n 6= K

)
= sup

(µ,σ2)∈S∆,λ

P(µ,σ2)

(
K̂n > K

)
+ sup

(µ,σ2)∈S∆,λ

P(µ,σ2)

(
K̂n < K

)

≤αn + 1−

1− 3 exp

− 1

48

(√
nλ∆2

32
−

√
16 log

(
8

λαnβkn,n

))2

+

2K

+

≤αn + 6K exp

− 1

48

(√
nλ∆2

32
−

√
16 log

(
8

λαnβkn,n

))2

+

 ,

since under the given assumptions the conditions of Theorem 7 are satisfied. The upper

bounds for the error probabilities are summable if (2.21) is satisfied.

Lemma 20 (Confidence set). Assume the setting and assumptions of Theorem 7 and let

C(Y, q) be as in (2.5) with significance level α and weights β1, . . . , βdn. Let S∆,λ be as in

(2.19) with ∆, λ > 0 arbitrary, but fixed, and kn := blog2(nλ/4)c. If nλ ≥ 32 and

log
(

8
λαnβkn

)
nλ

≤ 1

512

hold, then uniformly in S∆,λ

P(µ,σ2) (µ ∈ C (Y, q)) ≥ 1− α− (1− ηK),

with η like in Theorem 7.

Proof. It follows from the definition of C (Y,q) in (2.5) as well as from Theorems 5 and
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7 that

inf
(µ,σ2)∈S∆,λ

P(µ,σ2) (µ ∈ C (Y,q))

= inf
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
max

[ i
n
, j
n

]∈D(µ)

[
T ji
(
Y, µ([i/n, j/n])

)
− qij

]
≤ 0, K̂ = K

)

= inf
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
max

[ i
n
, j
n

]∈D(µ)

[
T ji
(
Y, µ([i/n, j/n])

)
− qij

]
≤ 0, K̂ ≥ K

)

≥ inf
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
max

[ i
n
, j
n

]∈D(µ)

[
T ji
(
Y, µ([i/n, j/n])

)
− qij

]
≤ 0

)
− sup

(µ,σ2)∈S∆,λ

P(µ,σ2)

(
K̂ < K

)
≥1− α− (1− ηK).

Proof of Theorem 10. The statement is a direct consequence of Lemma 20.

Lemma 21 (Change-point locations). Assume the setting of Lemma 20. If cn is a sequence

with 0 < cn ≤ λ/2 and kn := blog2(ncn/2)c such that ncn ≥ 16 and

log
(

4
cnαβkn

)
ncn

≤ 1

256
(A.8)

hold, then uniformly in S∆,λ

P(µ,σ2)

(
sup

µ̂∈C(Y,qn)
max
τ∈J (µ)

min
τ̂∈J (µ̂)

|τ̂ − τ | > cn

)

≤ 1−

1− 3 exp

− 1

48

(√
ncn∆2

16
−

√
16 log

(
4

cnαβkn

))2

+

2K

+

.

Proof. Analogously to the proof of Theorem 19 we have

sup
(µ,σ2)∈S∆,λ

P(µ,σ2)

(
sup

µ̂∈C(Y,qn)
max
τ∈J (µ)

min
τ̂∈J (µ̂)

|τ̂ − τ | > cn

)
≤ sup

(µ,σ2)∈S∆,λ

P(µ,σ2)

(
∃ j ∈ {1, . . . ,K} and µ̂ ∈ C(Y,qn) : µ̂ is constant on [τj − cn, τj + cn)

)

≤1−

1− 3 exp

− 1

48

(√
ncn∆2

16
−

√
16 log

(
4

cnαβkn

))2

+

2K

+

.

Proof of Theorem 11. For n large enough such that (2.23) guarantees the assumptions of
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Lemma 21 it follows

P(µ,σ2)

(
sup

µ̂∈C(Y,qn)
max

j=1,...,K
c−1
n |τj − τ̂j | > 1

)
≤ P(µ,σ2)

(
K̂ > K or ∃ µ̂ ∈ C(Y,qn), j ∈ {1, . . . ,K} : µ̂ is constant on [τj − cn, τj + cn]

)
≤ P(µ,σ2)

(
K̂ > K

)
+ P(µ,σ2)

(
∃ µ̂ ∈ C(Y,qn), j ∈ {1, . . . ,K} : µ̂ is constant on [τj − cn, τj + cn]

)
≤ αn +

1−

1− 3 exp

− 1

48

(√
ncn∆2

16
−

√
16 log

(
4

cnαnβkn,n

))2

+

2K

+

 .

The assertion follows from αn → 0 and

lim
n→∞

√
ncn∆2

16
−

√
16 log

(
4

cnαnβkn,n

)
=∞,

whereby latter one is direct consequence of (2.23).

Proof of Theorem 12. We denote by Jn the longest subinterval Jn ⊂ ICn which is part

of the dyadic partition. Such an interval exists (at least for n large enough) always,

since |In| → 0, and has at least length |ICn |/8. Moreover, let kn := log2(n|In|) and

ln := log2(n|Jn|). Then, the Lemmas 7.1 in (Frick et al., 2014a) and 18 yield for any

θn > 0

lim
n→∞

P(µn,σ2
n)

(
K̂n > 0

)
= lim

n→∞
1− P(µn,σ2

n) (µ̂ is constant)

≥ lim
n→∞

1− P(µn,σ2
n) (∃ m̂ ≤ m0 + θn : TIn(Y, m̂) ≤ qkn or ∃ m̂ ≥ m0 + θn : TJn(Y, m̂) ≤ qln)

≥ lim
n→∞

1− P(µn,σ2
n) (∃ m̂ ≤ m0 + θn : TIn(Y, m̂) ≤ qkn)

− P(µn,σ2
n) (∃ m̂ ≥ m0 + θn : TJn(Y, m̂) ≤ qln)

≥ lim
n→∞

1− P(µn,σ2
n)

(
Y In ≤ m0 + θn

)
− P(µn,σ2

n) (TIn(Y,m0 + θn) ≤ qkn)

− P(µn,σ2
n)

(
Y Jn ≥ m0 + θn

)
− P(µn,σ2

n) (TJn(Y,m0 + θn) ≤ qln)

≥ lim
n→∞

1− 2P(µn,σ2
n) (TIn(Y,m0 + θn) ≤ qkn)− 2P(µn,σ2

n) (TJn(Y,m0 + θn) ≤ qln)

≥ lim
n→∞

1− 4 exp

(
− 1

48
(ΓIn)2

+

)
− 4 exp

(
− 1

48
(ΓJn)2

+

)
= 1,

if

ΓIn :=
√
n|In|

δn − θn
sn

−
√

2qkn →∞ and ΓJn :=
√
n|Jn|θn −

√
2qln →∞,

and if the conditions of Lemma 18 are satisfied. This is the case, since n|In| → ∞ and

n|Jn| → ∞, because of (2.26) and |In| → 0, as well as qkn/(n|In|) ≤ 1/8 and qln/(n|Jn|) ≤
1/8 hold at least for n large enough: The first one is a direct consequence of Lemma 3
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and (2.26)

qkn
n|In|

≤
8 log

(
1

|In|αnβkn,n

)
n|In|

≤ 1

8
,

since then the assumptions of Lemma 3 are also fulfilled. The second inequality follows

from Lemma 3, (2.26) and (2.28) as well as the fact that |In|/|Jn| → 0

lim
n→∞

qln
n|Jn|

≤ lim
n→∞

8 log
(

1
|Jn|αnβln,n

)
n|Jn|

≤ lim
n→∞

8 log
(

1
|Jn|αnβln,n

)
8 log

(
1

|In|αnβkn,n

) |In|
|Jn|

8 log
(

1
|In|αnβkn,n

)
n|In|

→ 0,

since then the assumptions of Lemma 3 are also fulfilled.

We define now θn =
√
γn/n via the equation√

γn|In|
s2
n

= cεn

√
log

(
1

|In|

)

for 0 < c < 1. Then, it follows from Lemma 3 and from
√
x+ y ≤

√
x +
√
y for x, y > 0

together with the assumptions of the theorem that

ΓIn =
√
n|In|

δn − θn
sn

−
√

2qkn

=
√
n|In|δ2

n/s
2
n −

√
γn|In|/s2

n −
√

2qkn

≥
√
n|In|∆2

n −
√
γn|In|/s2

n −

√
16 log

(
1

|In|αnβkn,n

)

≥(4 + εn)

√
log

(
1

|In|

)
− cεn

√
log

(
1

|In|

)
− 4

√
log

(
1

|In|

)
− 4

√
log

(
1

αnβkn,n

)

≥(1− c)εn

√
log

(
1

|In|

)
− 4

√
log

(
1

αnβkn,n

)
→∞,

since the conditions of Lemma 3 are satisfied, as shown above.

Moreover, we have ΓJn :=
√
n|Jn|θn −

√
2qln =

√
|Jn|γn −

√
2qln →∞ if√

|Jn|γn
2qln

≥

√√√√ |Jn|γn
16 log

(
1

|Jn|αnβln,n

) →∞,
where we used Lemma 3 again. Finally, it follows from the assumptions of the theorem
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that lim infn→∞ |Jn| ≥ lim infn→∞ |ICn |/8 > 0 and thus

√√√√ |Jn|γn
log
(

1
αnβln,n

) =

√
|In|γn

sn

√
log
(

1
αnβkn,n

) sn√|Jn|√
|In|

√
log
(

1
αnβkn,n

)
√

log
(

1
αnβln,n

)

≥
cεn

√
log
(

1
|In|

)
√

log
(

1
αnβkn,n

) sn√|ICn |/8√
|In|

√
log
(

1
αnβkn,n

)
√

log
(

1
αnβmin,n

) →∞.

Proof of Theorem 13. It follows from Theorem 7 that

P(µn,σ2
n)

(
K̂n < Kn

)
≤ 1−

[
1− 3 exp

(
− 1

48
(Γn)2

+

)]2Kn

+

≤ 6Kn exp

(
− 1

48
(Γn)2

+

)
,

with

Γn :=

√
nλn∆2

n

32
−

√
16 log

(
8

λnαnβkn,n

)
,

since the assumptions of Theorem 7 are satisfied by (2.30).

In case (1) it is enough to show Γn →∞, because Kn is bounded. Finally, Γn →∞ follows

from
nλn∆2

n

log
(

8
λnαnβkn,n

) →∞.
In case (2) for bounded Kn, Γn →∞ follows from

Γn =

√
nλn∆2

n

32
−

√
16 log

(
8

λnαnβkn,n

)

≥

(√
512√
32

+
εn√
32

)√
log

(
1

λn

)
−
√

16

√
log

(
1

λn

)
−
√

16

√
log

(
8

αnβkn,n

)

=
1√
32

(
εn

√
log

(
1

λn

)
−
√

512

√
log

(
8

αnβkn,n

))
→∞.

For unbounded Kn we have Kn ≤ 1/λn. It follows

Kn exp

(
− 1

48
(Γn)2

+

)

≤ exp

log

(
1

λn

)
− 1

48

(
C√
32

√
log

(
1

λn

)
+

1√
32
εn

√
log

(
1

λn

)
−
√

16

√
log

(
8

αnβkn,n

))2

+


≤ exp

(
− 1

48

(
1√
32
εn

√
log

(
1

λn

)
−
√

16

√
log

(
8

αnβkn,n

))2)
→ 0.
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A.5. Proofs of Section 3

In this Section we collect few propositions used for the analysis of ion channel recordings

in Section 3.

Proposition 22. The covariance of two observations Yi and Yi+j in the heterogeneous

ion channel model in Section 3.1.2 is given by

Cov
[
Yi, Yi+j

]
=

{ ∑K
k=0 s

2
k

[
A(i/fs − τk, j/fs)−A(i/fs − τk+1, j/fs)

]
for |j| = 0, . . . , L,

0 for |j| > L,

for all i = 1, . . . , n and 1− i ≤ j ≤ n− i, with A(t, l) as defined in (3.15).

Proof. Let δ be Diracs delta function. By definition of the observations and the white

noise process η, by the structure of the noise σ2 and by Fubini’s theorem for the third

equality it follows

Cov
[
Yi, Yi+j

]
=E

[(∫
R
F (t)σ(i/fs − t)η(i/fs − t)dt

)(∫
R
F (s)σ((i+ j)/fs − s)η((i+ j)/fs − s)ds

)]
=E

[∫
R

∫
R
F (t)σ(i/fs − t)η(i/fs − t)F (s)σ((i+ j)/fs − s)η((i+ j)/fs − s)dtds

]
=

∫
R

∫
R
F (t)F (s)σ(i/fs − t)σ((i+ j)/fs − s)E [η(i/fs − t)η((i+ j)/fs − s)] dtds

=

∫
R

∫
R
F (t)F (s)σ(i/fs − t)σ((i+ j)/fs − s)δ(t− s+ j/fs)dtds

=

∫
R
F (t)F (t+ j/fs)σ(i/fs − t)2dt

=
K∑
k=0

s2
k

∫ i/fs−τk

i/fs−τk+1

F (t)F (t+ j/fs)dt

=

K∑
k=0

s2
k

[
A(i/fs − τk, j/fs)−A(i/fs − τk+1, j/fs)

]
.

The zero for |j| > L follows from truncating the autocorrelation.

Proposition 23. Let Õ1, Õ2, . . . be independent and exponentially distributed random

variables, with rate λO. And let N be a random variable independent of Õ1, Õ2, . . . and ge-

ometrically distributed with probability p. Then, O :=
∑N

i=1 Õi is exponentially distributed

with rate pλO.

Proof. It follows that the random variable O is with probability (1 − p)n−1p equal to
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O(n) :=
∑n

i=1 Õi. Hence, O has cumulative distribution function

∞∑
n=1

p(1− p)n−1P(O(n) ≤ x).

Note that O(n) is the sum of n independent exponentially distributed random variables,

and hence Gamma distributed with shape parameter n and rate parameter λO. Hence, O

has density

∞∑
n=1

p(1− p)n−1λnOx
n−1 exp(−λOx)

Γ(n)
=pλO exp(−λOx)

∞∑
n=1

(1− p)n−1λn−1
O xn−1

(n− 1)!

=pλO exp(−pλOx).

This is the density of an exponential distribution with rate pλO.

Proposition 24. The sequence
√
n(λ̂C − λC) is asymptotically normal distributed with

mean zero and variance σ2 := Var[C1]/V 2
λC

, with

VarλC [C1] =
1

λ2
C

+
(λCa+ 1)2/λ2

C exp(−λCa)− (λCb+ 1)2/λ2
C exp(−λCb)

exp(−λCa)− exp(−λCb)
− EλC [C1]2 ,

EλC [C1] =
1

λC
+
a exp(−λCa)− b exp(−λCb)

exp(−λCa)− exp(−λCb)

and

VλC :=
(b− a)2 exp(−λC(a+ b))

(exp(−λCa)− exp(−λCb))2
− 1

λ2
C

.

Therefore,
[
λ̂C − z1−α/2σ/

√
n, λ̂C + z1−α/2σ/

√
n
]
, with za the a-quantil of the standard

normal distribution, is an asymptotic 1− α confidence interval for λC .

Proof. We proof the theorem with (van der Vaart, 2007, Section 5). We also use a similar

notation. The expectation and variance follow by direct calculations using the density

fC1(x) in (3.34). To prove consistency of λ̂C we use (van der Vaart, 2007, Lemma 5.10).

We have parameter space Λ := [0,∞). Moreover, we define

Ψn(λ) := n
a exp(−λa)− b exp(−λb)

exp(−λa)− exp(−λb)
+
n

λ
− nC

and

Ψ(λ) := n
a exp(−λa)− b exp(−λb)

exp(−λa)− exp(−λb)
+
n

λ
− na exp(−λCa)− b exp(−λCb)

exp(−λCa)− exp(−λCb)
− n

λC
.

For each n, Ψn(λ) is continuous and its only root is λ̂C , since λ̂C is defined as the minimizer

of Ψn(λ). Also Ψ(λ) is continuous and its only root is λC . Finally, it follows from the law

of large numbers that Ψn(λ)→ Ψ(λ) in probability for every λ ∈ Λ. This was to show to

prove consistency.
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To show asymptotic normality we use (van der Vaart, 2007, Theorem 5.21). Let

ψλ(x) :=
a exp(−λa)− b exp(−λb)

exp(−λa)− exp(−λb)
+

1

λ
− x.

This function is measurable for all λ. ψλ1(x)−ψλ2(x) is independent of x and continuous.

Hence, ||ψλ1(x)−ψλ2(x)|| ≤ ψ̇(x)||λ1−λ2|| is satisfied for a constant ψ̇(x). Consequently,

ψ̇(x) is measurable and has existing second moment. Moreover, P||ψλC ||2 = PψλCψTλC =

Var[C1] < ∞ exists. Also VλC exists and our definition in the proposition matches the

definition in (van der Vaart, 2007, Theorem 5.21). By definition of λ̂C , Pnψλ̂C = 0 =

oP (n−1/2). This was to show and the assertion follows from (van der Vaart, 2007, Theorem

5.21).

A.6. Proofs of Section 4

Proof of Theorem 14. We prove the assertion with (van der Vaart, 2007, Theorem 5.9)

which states three conditions for the convergence of a Z-estimator. Note that the conver-

gence in probability can be replaced by almost sure convergence, if the assumptions hold

almost surely. We define

Ψ (θ) := |F (θ)− (1− α)|+
n∑
k=2

∣∣∣∣1− F1 (θ1)

β1
− 1− Fk (θk)

βk

∣∣∣∣
and

ΨM (θ) := |FM (θ)− (1− α)|+
n∑
k=2

∣∣∣∣1− FM,1 (θ1)

β1
−

1− FM,k (θk)

βk

∣∣∣∣
as well as Θ := [0,∞)n, θ0 := q and θ̂M := q̂M . Now, (4.8) and (4.9) yield

ΨM (q̂M ) ≤ 1

M

(
1 +

n− 1

min{β1, . . . , βn}

)
= o(1)

almost surely. In addition, Lemma 1 shows that the vector of critical values q is unique.

Moreover, supθ∈[0,∞)n ‖FM (θ)− F (θ)‖ and supθk≥0 ‖FM,k(θk)− Fk(θk)‖ for all k ∈ {1, . . . , n}
converge to zero almost surely. Thus, all assumptions of (van der Vaart, 2007, Theorem

5.9) are satisfied and the assertion follows.
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