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Abbreviations

6PGL 6-phosphoglucono-δ-lactone

6PGLase 6-phosphoglucono-δ-lactonase

6PG 6-phosphogluconate

6PGDH 6-phosphogluconate dehydrogenase

A5P Arabinose 5-phosphate

A. thaliana Arabidopsis thaliana

aa Amino acid

ACP Acyl carrier protein

ACT Acetate

Ae. hydrophila Aeromonas hydrophila

Ala Alanine

AMP Adenosine monophosphate

Arg Arginine

Asn Asparagine

Asp Aspartic acid

ATP Adenosine triphosphate

BisTris Bis-(2-hydroxy-ethyl)-amino-tris(hydroxymethyl)-methane

Bs Bacillus subtilis (B. subtilis)

BSA Bovine serum albumin

C. thermophilum Chaetomium thermophilum

CC Correlation coefficient

CD Circular dichroism

Ci. amalonaticus Citrobacter amalonaticus

Cl. beijerinckii Clostridium beijerinckii

CoA Coenzyme A

CV Column volume

Cys Cysteine

D. melanogaster Drosophila melanogaster

DESY Deutsches Elektronen-Synchrotron

DHA Dihydroxyacetone
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DHAP Dihydroxyacetone phosphate

DHB Dihydroxybenzoic acid

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

DTT Dithiothreitol

E1 Pyruvate dehydrogenase

E2 Dihydrolipoyl transacetylase

E3 Dihydrolipoamide dehydrogenase

E4P Erythrose 4-phosphate

E. coli Escherichia coli (Ec)

EC Enzyme commission

EDTA Ethylenediaminetetraacetic acid

ESRF European Synchrotron Radiation Facility

eq. Equation

F6P Fructose 6-phosphate

FAD Flavin adenine dinucleotide

FBP Fructose 1,6-bis(phosphate)

FBPA Fructose-1,6-bis(phosphate) aldolase

FMN Flavin mononucleotide

FSA Fructose 6-phosphate aldolase

Ftu Francisella tularensis (F. tularensis)

G3P Glycerol 3-phosphate

G6P Glucose 6-phosphate

G6PDH Glucose-6-phosphate dehydrogenase

GA3P Glyceraldehyde 3-phosphate

GDH α-Glycerophosphate dehydrogenase from rabbit muscle

Gln Glutamine

Glu Glutamic acid

Gly Glycine

GOL Glycerol

HEPES 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

His Histidine
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His6-tag Hexa-histidine tag

HPLC High-pressure liquid chromatography

Ile Isoleucine

IPTG Isopropyl β-D-thiogalactopyranoside

L. monocytogenes Listeria monocytogenes

LB Lysogeny broth

LC Liquid Chromatography

Leu Leucine

Lys Lysine

M1P Mannitol 1-phosphate

MALDI Matrix-assisted laser desorption/ionization

MALS Multiangle light scattering

MBP Mannitol-1,6-bis(phosphate)

MCS Multiple cloning site

MES 2-(N-morpholino)ethanesulfonic acid

Met Methionine

MOPS 3-(N-morpholino)propanesulfonic acid

MRW Mean residue weight

MS Mass Spectrometry

MW Molecular weight

MWCO Molecular weight cut-off

M. tuberculosis Mycobacterium tuberculosis

NAD+ Nicotinamide adenine dinucleotide (oxidized form )

NADH Nicotinamide adenine dinucleotide (reduced form)

NADP+ Nicotinamide adenine dinucleotide phosphate (oxidized form )

NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)

nd Not detectable

ND Not determined

Ni2+-NTA Ni2+ nitrilotriacetic acid

NMR Nuclear magnetic resonance

NRPS Nonribosomal peptide synthetases

OD Optical density
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PAGE Polyacrylamide gel electrophoresis

PCP Peptidyl carrier protein

PCR Polymerase chain reaction

PDB Protein data bank

PDH pyruvate dehydrogenase

PDHc pyruvate dehydrogenase complex

PEG Polyethylene glycol

PEGmme Polyethylene glycol monomethyl ether

PIPES 1,4-Piperazinediethanesulfonic acid

PPP Pentose phosphate pathway

Phe Phenylalanine

PMSF Phenylmethanesulfonylfluoride

PNS Phosphopantetheine

Pro Proline

psi Pound-force per square inch

R5P Ribose 5-phosphate

R5PI Ribose-5-phosphate isomerase

RBS Ribosomal binding site

rmsd Root-mean-square deviation

RNA Ribonucleic acid

rpm Revolutions per minute

RT Room temperature

Ru5P Ribulose 5-phosphate

Ru5PE Ribulose-5-phosphate-3-epimerase

S. cerevisiae Saccharomyces cerevisiae (Sc)

S6P Sorbitol 6-phosphate

S7P Sedoheptulose 7-phosphate

Sa. typhi Salmonella typhi

Sh. sonnei Shigella sonnei

SDS Sodium dodecyl sulfate

SEC Size Exclusion Chromatography

Ser Serine
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Sme Streptomyces melanovinaceus

Sli Streptomyces lividans

St. Streptomyces

Str. Streptococcus

SOC Super optimal broth with catabolite repression

Tac Thermoplasma acidophilum (T. acidophilum)

TAE Tris-Acetate-EDTA-Buffer

TAL Transaldolase

TCS Thrombin cleavage site

TEMED N,N,N’,N’-Tetramethylethylenediamine

ThDP Thiamine diphosphate

Thr Threonine

TIM Triosephosphate isomerase

TK Transketolase

TLS Translation/libration/screw

TMAE Trimethylaminoethyl

TOF Time-of-flight

Tris Tris-(hydroxymethyl)-aminomethan

Trp Tryptophan

TSB Tryptic soy broth

Tyr Tyrosine

UV Ultraviolet fraction of electromagnetic radiation

UV-Vis Ultraviolet and visible fraction of electromagnetic radiation

v/v Volume/volume

Val Valine

w/v Mass/volume

wt Wild type

X5P Xylulose 5-phosphate

XDS X-ray Detector Software
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1 Materials and methods

1.1 Materials

Chemicals
Product Supplier
Acetic acid Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Acetonitrile Fisher Scientific (Leicestershire, UK)
Acrylamide Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Agar AppliChem GmbH (Darmstadt, Germany)
Agarose AppliChem GmbH (Darmstadt, Germany)
Ammonium acetate Sigma-Aldrich (Munich, Germany)
Ammonium chloride Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Ammonium hydrogen carbonate Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Ammonium sulfate AppliChem GmbH (Darmstadt, Germany)
Antifoam 204 Sigma-Aldrich (Munich, Germany)
d-Arabinose 5-phosphate, disodium salt
trihydrate

Sigma-Aldrich (Munich, Germany)

Barium chloride, dihydrate Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Beef extract powder Sigma-Aldrich (Munich, Germany)
Bis-(2-hydroxy-ethyl)-amino-
tris(hydroxymethyl)-methane (BisTris)

AppliChem GmbH (Darmstadt, Germany)

Bromphenol blue, sodium salt AppliChem GmbH (Darmstadt, Germany)
Bovine serum albumin (BSA) AppliChem GmbH (Darmstadt, Germany)
Calcium chloride, hexahydrate Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Carbenicillin, disodium salt AppliChem GmbH (Darmstadt, Germany)
Coomassie Brilliant Blue G250 AppliChem GmbH (Darmstadt, Germany)
Cover plates, 18 mm (siliconized) Jena Bioscience GmbH, (Jena, Germany)
Cryoloops (0.05 - 0.5 mm) Hampton Research Corp, (CA, USA)
Crystallization plates, greased Hampton Research Corp, (CA, USA)
Dihydroxybenzoic acid (DHB) Bruker Daltonics (Bremen, Germany)
Dimethylsulfoxide (DMSO) Sigma-Aldrich (Munich, Germany)
Dithiothreitol (DTT) AppliChem GmbH (Darmstadt, Germany)
Ethanol (denatured) Frau Magerkuth Apotheke (Karlsruhe, Germany)
Ethanol (purest) Nordhäuser Spirituosen GmbH (Nordhausen, Germany)
Ethidium bromide Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Ethylenediaminotetraacetic acid
(EDTA)

AppliChem GmbH (Darmstadt, Germany)

Flavin adenine dinucleotide disodium
salt di-hydrate (FAD)

AppliChem GmbH (Darmstadt, Germany)

Flavin mononucleotide momosodium
salt di-hydrate (FMN)

AppliChem GmbH (Darmstadt, Germany)

Formamide Sigma-Aldrich (Munich, Germany)
Formic acid Sigma-Aldrich (Munich, Germany)
d-Fructose 6-phosphate, disodium salt
hydrate

Sigma-Aldrich (Munich, Germany)

d-Glucose Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
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Glycerol (87 %) AppliChem GmbH (Darmstadt, Germany)
Glycerol (anhydrous) AppliChem GmbH (Darmstadt, Germany)
Glycine Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Glycylglycine AppliChem GmbH (Darmstadt, Germany)
Guanidinium chloride AppliChem GmbH (Darmstadt, Germany)
2-[4-(2-hydroxyethyl)piperazin-1-yl]
ethanesulfonic acid (HEPES)

AppliChem GmbH (Darmstadt, Germany)

Hydrochloric acid (37 %) Th.Geyer GmbH & CoKG (Renningen, Germany)
Imidazole AppliChem GmbH (Darmstadt, Germany)
Isopropyl β-D-thiogalactopyrano- side
(IPTG)

Carl Roth GmbH & Co. KG (Karlsruhe, Germany)

Kanamycin sulfate AppliChem GmbH (Darmstadt, Germany)
d-Lactose 1-hydrate AppliChem GmbH (Darmstadt, Germany)
(+/–)-α-Lipoic acid Sigma-Aldrich (Munich, Germany)
(+/–)-α-Lipoamide Sigma-Aldrich (Munich, Germany)
Magnesium chloride, hexahydrate Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Magnesium sulfate, hydrate Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
d-Mannitol 1-phosphate lithium salt Carl Roth GmbH & Sigma-Aldrich (Munich, Germany)
2-(N-morpholino)ethanesulfonic
acid (MES)

AppliChem GmbH (Darmstadt, Germany)

3-(N-morpholino)propanesulfonic acid
(MOPS)

AppliChem GmbH (Darmstadt, Germany)

β-Mercaptoethanol Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Manganese(II) chloride, tetrahydrate AppliChem GmbH (Darmstadt, Germany)
Methanol Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Nicotinamide adenine dinucleotide
(NADH)

AppliChem GmbH (Darmstadt, Germany)

Oatmeal agar Sigma-Aldrich (Munich, Germany)
1,4-Piperazinediethanesulfonic acid
(PIPES)

AppliChem GmbH (Darmstadt, Germany)

d-Pantothenic acid calcium salt AppliChem GmbH (Darmstadt, Germany)
Phenylmethanesulfonylfluoride
(PMSF)

AppliChem GmbH (Darmstadt, Germany)

Phosphoric acid (85 %) Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Polyethylene glycol (PEG) 200 AppliChem GmbH (Darmstadt, Germany)
Polyethylene glycol (PEG) 400 Sigma-Aldrich (Munich, Germany)
Polyethylene glycol (PEG) 3350 Hampton Research Corp, (CA, USA)
Polyethylene glycol (PEG) 6000 Carl Roth GmbH & Co. KG (Karlsruhe, Germany)
Polyethylene glycol (PEG) 8000 Sigma-Aldrich (Munich, Germany)
Polyethylene glycol monomethyl ether
(PEGmme) 2000

Fluka Chemie AG (Buchs, Switzerland)

di-Potassium hydrogen phosphate anhy-
drous p.A

AppliChem GmbH (Darmstadt, Germany)

Potassium di-hydrogen phosphate anhy-
drous

AppliChem GmbH (Darmstadt, Germany)

Potassium hydroxide AppliChem GmbH (Darmstadt, Germany)
(–)-Riboflavin Sigma-Aldrich (Munich, Germany)
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d-Ribose 5-phosphate, disodium salt di-
hydrate

Sigma-Aldrich (Munich, Germany)

SYPRO R© Orange protein stain BioRad Laboratories GmbH (Munich, Germany)
Sodium chloride AppliChem GmbH (Darmstadt, Germany)
Sodium dodecyl sulfate (SDS) AppliChem GmbH (Darmstadt, Germany)
di-Sodium hydrogen phosphate anhy-
drous

AppliChem GmbH (Darmstadt, Germany)

Sodium hydroxide AppliChem GmbH (Darmstadt, Germany)
Sodium sulfate anhydrous AppliChem GmbH (Darmstadt, Germany)
Starch, soluble Sigma-Aldrich (Munich, Germany)
Streptomycin sulfate AppliChem GmbH (Darmstadt, Germany)
N,N,N’,N’-
Tetramethylethylenediamine (TEMED)

Carl Roth GmbH & Co. KG (Karlsruhe, Germany)

Thiamine hydrochloride AppliChem GmbH (Darmstadt, Germany)
Thiamine diphosphate Sigma-Aldrich (Munich, Germany)
2-Amino-2-hydroxymethyl-propane-
1,3-diol (Tris)

AppliChem GmbH (Darmstadt, Germany)

Tryptic soy broth Sigma-Aldrich (Munich, Germany)
Tryptone AppliChem GmbH (Darmstadt, Germany)
Yeast extract AppliChem GmbH (Darmstadt, Germany)
Yeast extract for high-density fermenta-
tion

Ohly GmbH (Hamburg, Germany)

Enzymes
Product Supplier
α-Glycerophosphate Dehydrogenase Sigma-Aldrich (Munich, Germany)
Triosephosphate Isomerase from
rabbit muscle (Type III,
ammonium sulfate suspension)
DNase I AppliChem GmbH (Darmstadt, Germany)
FastAP (Thermosensitive Alkaline
Phosphatase)

Thermo Fisher Scientific (Braunschweig,
Germany)

Lysozyme AppliChem GmbH (Darmstadt, Germany)
Phusion R© High Fidelity Thermo Fisher Scientific (Braunschweig,

Germany)
DNA polymerase
Restriction endonucleases Thermo Fisher Scientific (Braunschweig,

Germany)
SUMO-protease provided by Dr. Stefan Lüdtke
T4-DNA-Ligase Thermo Fisher Scientific (Braunschweig,

Germany)
Taq DNA polymerase Thermo Fisher Scientific (Braunschweig,

Germany)
Thrombin from bovine plasma Sigma-Aldrich (Munich, Germany)
Sequencing Grade Modified Trypsin, porcine Promega Corporation (Mannheim, Germany)



Materials and methods 17

Bacterial strains

Product
Supplier

E. coli-BL21 (DE3) Invitrogen
TM

, (Karlsruhe, Germany)
E. coli-BL21 Star

TM
(DE3) Invitrogen

TM
, (Karlsruhe, Germany)

E. coli-DH5α Invitrogen
TM

, (Karlsruhe, Germany)
E. coli-Rosetta (DE3) Invitrogen

TM
, (Karlsruhe, Germany)

E. coli-Rosetta 2 (DE3) Invitrogen
TM

, (Karlsruhe, Germany)
E. coli-SoluBL21 (DE3) Invitrogen

TM
, (Karlsruhe, Germany)

E. coli-Top10 Invitrogen
TM

, (Karlsruhe, Germany)
E. coli-XL1-Blue Stratagene, (Heidelberg, Germany)
St. melanovinaceus United States Department of Agriculture/

Agricultural Research Service, (Peoria, USA)

Vectors
Product Supplier
pCDFDuet-1 Novagen (Schwalbach/Ts., Germany)
pET28a Novagen (Schwalbach/Ts., Germany)
pET-SUMO Invitrogen

TM
, (Karlsruhe, Germany)

pJET1.2 Fisher Scientific GmbH, (Schwerte, Germany)
pMA-T GeneArt

TM
(Regensburg, Germany)

pMA-RQ GeneArt
TM

(Regensburg, Germany)
pMK-RQ GeneArt

TM
(Regensburg, Germany)

pQE-60 QIAGEN (Hilden, Germany)

Commercially synthesized plasmids
Name Vector Insert
QncN-pET28a pET28a QncN
QncM-pET28a pET28a QncM
pMA-RQ-QncL pMA-RQ QncL
SliE3-pET28a pET28a SliE3

Generated plasmids
Name Vector Insert
QncM-pET-SUMO pET-SUMO QncM
QncNL-pET-SUMO pET-SUMO QncN/QncL
SmeE3-pJET1.2 pJET1.2 SmeE3
SmeQncNML-pJET1.2 pJET1.2 QncN/QncM/QncL
SmeQncNML-pET28a pET28a QncN/QncM/QncL
QncNL-pCDFDuet-1 pCDFDuet-1 MCSI: His6-tag–TCS–QncN

MCSII: QncL
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Kit systems and solutions
Product Supplier
Champion

TM
pET-SUMO Protein Invitrogen

TM
, (Karlsruhe, Germany)

Expression System
CloneJet PCR cloning Kit Thermo Fisher Scientific (Braunschweig, Germany)
GC-buffer Thermo Fisher Scientific (Braunschweig, Germany)
HF-buffer Thermo Fisher Scientific (Braunschweig, Germany)
MasterPure

TM
Gram positive DNA Epicentre (Madison, USA)

Purification Kit
dNTP mix (10 mM) Thermo Fisher Scientific (Braunschweig, Germany)
NucleoSpin

TM
Plasmid Kit Macherey Nagel (Düren, Germany)

NucleoSpin
TM

Gel and PCR Clean-Up
Kit

Macherey Nagel (Düren, Germany)

Bradford reagent, 5x concentrate SERVA Electrophoresis GmbH (Heidelberg,
Germany)

DNA and protein standards
Product Supplier
Gel filtration standard BioRad Laboratories GmbH (Munich, Germany)
Gene Ruler

TM
1kb DNA-Ladder Thermo Fisher Scientific (Braunschweig, Germany)

PageRuler Unstained Protein Thermo Fisher Scientific (Braunschweig, Germany)
Ladder
Peptide Calibration Standard II Bruker Daltonics (Bremen, Germany)
Prestained Protein Molecular Thermo Fisher Scientific (Braunschweig, Germany)
Weight Marker
Unstained Protein Molecular Thermo Fisher Scientific (Braunschweig, Germany)
Weight Marker

Crystallization screens
Product Supplier
Additive Screen

TM
Hampton Research Corp, (CA, USA)

JBScreen Classic 1 – 10 Jena Bioscience GmbH, (Jena, Germany)
JBScreen Nuc-Pro HTS Jena Bioscience GmbH, (Jena, Germany)
JCSG-plus

TM
Molecular Dimensions Limited (Suffolk, United Kingdom)

MIDAS
TM

Molecular Dimensions Limited (Suffolk, United Kingdom)
Morpheus

TM
Molecular Dimensions Limited (Suffolk, United Kingdom)

Natrix HT
TM

Hampton Research Corp, (CA, USA)
ProPlex

TM
HT-96 Molecular Dimensions Limited (Suffolk, United Kingdom)

The AmSO4 Suite QIAGEN (Hilden, Germany)
The PGA Screen

TM
Molecular Dimensions Limited (Suffolk, United Kingdom)
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1.2 Devices

Cell cultivation
Product Supplier
Biofermenter, Biostat C Sartorius AG (Göttingen, Germany)
Incubation shaker, Unitron Infors AG (Bottmingen, Switzerland)
Laminar flow Prettl R©-Telstar Bio-II-A Telstar (Terrassa, Spain)

Cell disruption
Product Supplier
Microfluidizer, M-110S Microfluidics (Newton, MA, USA)
Mortar Grinder RM 200 Retsch GmbH (Haan, Germany)
Sonoplus GM 70 Bandelin GmbH & Co. KG (Berlin, Germany)

Centrifuges and rotors
Product Supplier
Avanti

TM
HP-30I Beckmann Coulter GmbH (Krefeld, Germany)

Rotor JA-10 Beckmann Coulter GmbH (Krefeld, Germany)
Rotor JA-30.50 Ti Beckmann Coulter GmbH (Krefeld, Germany)
Avanti

TM
J-20XPI Beckmann Coulter GmbH (Krefeld, Germany)

Rotor JLA-8.1000 Beckmann Coulter GmbH (Krefeld, Germany)
Centrifuge tubes Beckmann Coulter GmbH (Krefeld, Germany)
Eppendorf 5810R Eppendorf AG (Wesseling-Berzdorf, Germany)
Rotor A-4-81 Eppendorf AG (Wesseling-Berzdorf, Germany)
Mikro 200 Hettich GmbH & Co. KG (Tuttlingen, Germany)
Rotor 2424 B Hettich GmbH & Co. KG (Tuttlingen, Germany)
Optima

TM
L-90K Ultracentrifuge Beckman Coulter GmbH (Krefeld, Germany)

Rotor SW40 Ti Beckman Coulter GmbH (Krefeld, Germany)
Rotor SW60 class GH Beckman Coulter GmbH (Krefeld, Germany)
Universal 320R Hettich GmbH & Co. KG (Tuttlingen, Germany)
Rotor 1420 A/B Hettich GmbH & Co. KG (Tuttlingen, Germany)
Rotor 1617 A Hettich GmbH & Co. KG (Tuttlingen, Germany)
Rotor 1620 A Hettich GmbH & Co. KG (Tuttlingen, Germany)
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Liquid chromatography
Product Supplier
ÄKTAprime plus GE Healthcare Europe (Munich, Germany)
ÄKTApurifier GE Healthcare Europe (Munich, Germany)
Fractogel R© EMD TMAE 650 (S) Merck KGaA (Darmstadt, Germany)
HiPrep

TM
26/10 desalting GE Healthcare Europe (Munich, Germany)

HisPrep
TM

FF 5 mL GE Healthcare Europe (Munich, Germany)
Superdex

TM
75 HiLoad

TM
16/60 GE Healthcare Europe (Munich, Germany)

prep grade
Superdex

TM
75 10/300 GL GE Healthcare Europe (Munich, Germany)

Superdex
TM

200 HiLoad
TM

16/60 GE Healthcare Europe (Munich, Germany)
prep grade
Superdex

TM
200 10/300 GL GE Healthcare Europe (Munich, Germany)

Superloop (50 mL, 150 mL) GE Healthcare Europe (Munich, Germany)

UV-Vis-Spectroscopy
Product Supplier
Chirascan plus CD Spectrometer Applied Photophysics Ltd., UK
NanoDrop 2000 Thermo Scientific, USA
Stopped-flow system SX.20 Applied Photophysics Ltd., UK
UV-Vis spectrometer, V-650 Jasco GmbH, (Groß-Umstade, Germany)
UV-Vis spectrometer, V-630 Jasco GmbH, (Groß-Umstade, Germany)
Precision cuvettes, suprasil Hellma GmbH & Co.KG (Mühlheim, Germany)

X-ray
Product Supplier
X-ray MicroMax

TM
-007 rotating-anode generator, Rigaku Corp., (MI, USA)

X-stream
TM

2000 Cryogenic Crystal Cooler
Mar 345dtb image plate

Miscellaneous
Product Supplier
Arium R©pro VF Sartorius AG (Göttingen, Germany)
C1000 thermal cycler BioRad Laboratories GmbH (Munich,

Germany)
CFX96

TM
Optical Reaction Module BioRad Laboratories GmbH (Munich,

Germany)
Thermocycler TProfessional Biometra (Göttingen, Germany)
miniDAWN TREOS

TM
Light Scattering

Instrument
Wyatt Technology Corporation (Santa Barbara,
USA)

MTP target frame III Bruker Daltonics (Bremen, Germany)
Optilab T-rEX Refractive Index Detector Wyatt Technology Corporation (Santa Barbara,

USA)
pH-electrode Minitrode Hamilton Bonaduz AG (Bonaduz, Switzerland)
pH-electrode InLab R© Easy DIN Mettler-Toledo GmbH (Giessen, Germany)
REFLEX

TM
III MALDI-TOF mass

spectrometer
Bruker Daltonics (Bremen, Germany)
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1.3 Commodities

Product Supplier
Spin-X R© UF concentrator 6, 20 mL (5 – 100 kDa
MWCO)

Corning GmbH (Kaiserslautern, Germany)

ZelluTrans/Roth R© dialysis membrane (3.5 kDa
MWCO)

Carl Roth GmbH & Co. KG (Karlsruhe,
Germany)

ZipTipC18
TM

pipette tips Merck KGaA (Darmstadt, Germany)

1.4 Utilized Primers

All primers were purchased from Sigma-Aldrich (Munich, Germany). Restriction sites, as well as

mutated bases are highlighted in red.

Mutagenesis primers
Name Sequence
TacTALE60Q sense 5’-GGTCCGGTAAGCGTTCAGGTGGTTTCAACAAAGTACG-3’
TacTALE60Q antisense 5’-CGTACTTTGTTGAAACCACCTGAACGCTTACCGGACC-3’
TacTALF132Y sense 5’-CCTACGTATCACCATATGTTGGAAGACTTGACG-3’
TacTALF132Y antisense 5’-CGTCAAGTCTTCCAACATATGGTGATACGTAGG-3’
TacTALS130A sense 5’-GCGTAACCACGGCTCCAACGCTC-3’
TacTALS130A antisense 5’-GAGCGTTGGAGCCGTGGTTACGC-3’
TacTALN108A sense 5’-CAGAGCACATAAATACAGCCTGTACTCTTG-3’
TacTALN108A antisense 5’-CAAGAGTACAGGCTGTATTTATGTGCTCTG-3’
TacTALN108L sense 5’-GCACATAAATACACTGTGTACTCTTGTTTTCAATCC-3’
TacTALN108L antisense 5’-GGATTGAAAACAAGAGTACACAGTGTATTTATGTGC-3’
TacTALD211C sense 5’-GCAAAATTCCTGGAATGCTGGAAAAAAGTTTCTCC-3’
TacTALD211C antisense 5’-GGAGAAACTTTTTTCCAGCATTCCAGGAATTTTGC-3’
TacTALT30C sense 5’-CGTAACCACGAATCCATGCCTCATATCCAAAGAGG-3’
TacTALT30C antisense 5’-CCTCTTTGGATATGAGGCATGGATTCGTGGTTACG-3’
TacTALK86Q sense 5’-GGAGACAATGCTGTTGTACAGATACCGATGACTGAGG-3’
TacTALK86Q antisense 5’-CCTCAGTCATCGGTATCTGTACAACAGCATTGTCTCC-3’
TacTALS130A/F132Y sense 5’-GTAACCTACGTAGCACCATATGTTGG-3’
TacTALS130A/F132Y antisense 5’-CCAACATATGGTGCTACGTAGGTTAC-3’
QncNpDuetNdeI sense 5’-CCGCGCGGCAGCCACATGGCAGCACC-3’
QncNpDuetNdeI antisense 5’-GGTGCTGCCATGTGGCTGCCGCGCGG-3’

Cloning primers
Name Sequence
T5 terminator forward 5’-GTTCTGAGGTCATTACTGG-3’
T5 terminator reverse 5’-CCAGTAATGACCTCAGAAC-3’
SumoQncM forward 5’-ATGACCACCGTTGAAAATCTGG-3’
SumoQncM reverse 5’-GCTATTCAGACCTTTTGC-3’
pJETQncNML forward 5’-GTGGCAGCACCGACCCACGGACC-3’
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pJETQncNML reverse 5’-TCAGCTGTCGAGGAGACGGGCGAGTGACTCC-3’
pET28aQncNML forward 5’-[Phos]GCAGCACCGACCCACGGACCGACAGC-3’
pET28aQncNML reverse 5’-[Phos]CATGGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC-3’
pJETSmeE3 forward 5’-ATGCATGGAGGACGTGACGTGGCGAACGACG-3’
pJETSmeE3 reverse 5’-TCAGTCGTGGGAGTGCAGAGGCTTGC-3’
pET28aSmeE3 forward 5’-GGCCATGCCATATGCATGGAGGACGTGACGTGGCGAACGACG-3’
pET28aE3 reverse 5’-CCGGTACGCTCGAGTCAGTCGTGGGAGTGCAGAGGCTTGC-3’

Sequencing primers
Name Sequence
T5 promotor 5’-CCCGAAAAGTGCCACCTG-3’
T7 promotor 5’-TAATACGACTCACTATAGGG-3’
T7 terminator 5’-AGCTAGTTATTGCTCAGCGG-3’
ACYCDuetUP1 5’-GGATCTCGACGCTCTCCCT-3’
DuetUP2 5’-TTGTACACGGCCGCATAATC-3’
DuetDOWN1 5’-GATTATGCGGCCGTGTACAA-3’
SUMO forward 5’-AGATTCTTGTACGACGGTATTAG-3’
pJET1.2 forward, 23-mer 5’-CGACTCACTATAGGGAGAGCGGC-3’
pJET1.2 reverse, 24-mer 5’-AAGAACATCGATTTTCCATGGCAG-3’
QncNL1 5’-GGTGCTAAACAGGTCCAGCAGTGC-3’
QncNL2 5’-GCACGTGCCTTTGGTATTCC-3’
QncNL3 5’-GGTTGGGCACATATTCATCC-3’
QncNML1 5’-GGTGTCCTCCGCAGGTTGC-3’
QncNML2 5’-GCAGCGCGACCACATTGCCGAGC-3’
QncNML3 5’-GCTCGTGATCCAGTTCAATACC-3’
QncNML4 5’-CGTGATCGCCGAGATCATGTTCG-3’
QncNML5 5’-CGAAAAACAGTGGGAAGCTCTCG-3’

1.5 Media

LB medium (Bertani, 1951)

Compound Concentration
Yeast extract 0.5 % (w/v)
Tryptone 1 % (w/v)
NaCl 0.5 % (w/v)

LB-agar plates

Compound Concentration
Yeast extract 0.5 % (w/v)
Tryptone 1 % (w/v)
NaCl 0.5 % (w/v)
Agar 2 % (w/v)
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Oatmeal-agar plates

Compound Concentration
Oatmeal agar 7.25 % (w/v)

High-density fermentation medium

Compound Concentration
Yeast extract 5 % (w/v)
NH4Cl 0.05 % (w/v)
Antifoam 1 mL for 6 L medium
Glucose 0.5 % (w/v)
MgSO4 2.75 mM
K2HPO4 63.15 mM
Kanamycin sulfate 50 μg/mL

Carbenicillin 100 μg/mL

Feeding solution

Compound Concentration
Yeast extract 30 % (w/v)
Glycerol 25 % (v/v)

ZYM5052 auto-induction medium (Studier, 2005)

ZY
Compound Concentration
Yeast extract 0.5 % (w/v)
Tryptone 1 % (w/v)

25xM
Compound Concentration
Na2HPO4 25 mM
KH2PO4 25 mM
NH4Cl 50 mM
Na2SO4 5 mM

50x5052
Compound Concentration
Glycerol 25 % (w/v)
D-Glucose 2.5 % (w/v)
D-Lactose 10 % (w/v)

The pH of 25xM was adjusted with KOH to 7.0. 8 mL 50x5052, 16 mL 25xM and 2 mM MgSO4

were added to 400 mL ZY after treatment by autoclave (20 min, 121 ◦C).
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M9 minimal medium (Studier, 2005)

10x M9 salt solution
Compound Concentration
Na2HPO4 478 mM
KH2PO4 220 mM
NaCl 86 mM
NH4Cl 187 mM

1000x trace element solution (in 60 mM HCl)
Compound Concentration
FeCl3 50 mM
CaCl2 20 mM
MnCl2, ZnSO4 10 mM each
CoCl2, CuCl2, NiCl2 2 mM each
Na2MoO4, Na2SeO3, H3BO3 2 mM each

The pH of the 10x M9 salt solution was adjusted with KOH to 7.0. 50 mL of the M9 salt solution,

500 μL of the 100 mM CaCl2 stock solution, 500 μL of the 1 M MgSO4 stock solution, 100 μL

of the 1000x trace element solution and 3 mL of the 50 % (v/v) glycerol solution were added to

446 mL water after treatment by autoclave (20 min, 121 ◦C).

Seed medium for Streptomyces cultivation

Compound Concentration
Soluble starch 2.4 % (w/v)
Yeast extract 0.5 % (w/v)
Tryptone 0.5 % (w/v)
Beef extract 0.3 % (w/v)

100x Salt solution
Compound Concentration
K2HPO4 230 mM
KH2PO4 220 mM

The pH of the seed medium and salt solution was adjusted to 7.0. The seed medium was supple-

mented with 1.0 % (w/v) glucose, 1x salt solution and 0.2 g/L MgSO4 after treatment by autoclave

(45 min, 121 ◦C).

TSB/glycine-medium

Compound Concentration
Tryptic soy broth 3 % (w/v)
Glycine 0.5 % (w/v)

The pH of the medium was adjusted to 7.0. The medium was supplemented with 5.0 % (w/v) glucose

after treatment by autoclave (45 min, 121 ◦C).
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1.6 Methods

1.6.1 Molecular Biology

1.6.1.1 Determination of DNA Concentration

The DNA concentration was measured using a NanoDrop 2000 device. The absorbance (A260) of

the DNA solution was measured at 260 nm (path length d = 1cm). The DNA concentration (c) was

calculated according to the Beer-Lambert equation (eq. 1.6.1) using an extinction coefficient of

ε = 20(mL/ng · cm−1) according to the manufacturer’s manual (Thermo Scientific, USA).

A260 = c ·ε ·d (1.6.1)

1.6.1.2 Plasmid Transformation

Plasmid DNA was transferred into different chemical competent E. coli-strains for the purpose

of plasmid proliferation (DH5α, XL1-Blue and Top10) or for the recombinant protein expression

(BL21 (DE3), BL21 Star
TM

(DE3), SoluBL21 (DE3), Rosetta (DE3) and Rosetta 2 (DE3)). The

chemical competent cells were prepared according to Inoue et al. (1990) or acquired by purchase

(for details see page 17).

For the plasmid transformation, 1 μL of DNA solution (5 ng/μL) was added to 50 μL of respective

chemical competent cells. The cells were incubated on ice for 30 min. After heat shock (30 s, 42 ◦C)

and further incubation on ice for 5 min, the cells were supplied with 1 mL SOC-medium. The cells

were grown for 1 h at 37 ◦C.

The selection of transformants, containing plasmid DNA of interest, took place on LB-agar plates

(section 1.5) supplemented with appropriate antibiotic (100 μg/mL carbenicillin, 50 μg/mL kanamycin

or 50 μg/mL streptomycin).

1.6.1.3 Isolation of Plasmid DNA

In order to isolate plasmid DNA, 10 mL of LB medium culture (OD600 = 2.5 – 3.5) of transformed

E. coli cells were pelleted by centrifugation (8 ◦C, 3220 x g, 10 min). The cell pellet was used
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for plasmid isolation using NucleoSpin
TM

Plasmid Kit according to the manufacturer’s manual

(Macherey Nagel, Germany).

1.6.1.4 DNA Sequencing

The sequence of the generated gene constructs was determined by a company (Seqlab [Göttingen,

Germany] or GATC Biotech AG [Constance, Germany]) and checked for correctness. The primers

utilized for the sequencing reaction are listed on page 22.

1.6.1.5 Polymerase Chain Reaction

Polymerase chain reaction (PCR, (Mullis et al., 1986)) was used to amplify specific DNA frag-

ments for cloning procedure, as well as for the introduction of desired mutations into the insert

sequence. Phusion R© DNA-polymerase was used in the standard approach according to the supplier’s

instructions (MBI Fermentas, Germany).

The designed protein variants were generated using the QuikChange site-directed mutagenesis

protocol (Stratagene, La Jolla, USA) adapted for Phusion R© DNA-polymerase.

The methylated template DNA was digested using DpnI restriction endonuclease according to the

manufacturer’s manual (MBI Fermentas, Germany).

DNA fragments amplified in the polymerase chain reaction were purified using the NucleoSpin
TM

Gel and PCR Clean-Up Kit according to the manufacturer’s manual (Macherey Nagel, Germany).

1.6.1.6 DNA Fragment Separation via Agarose Gel Electrophoresis

In order to separate DNA fragments by their sequence length, agarose gel electrophoresis was used

for analytical or preparative purposes. The DNA solution was mixed with 6x DNA gel loading

dye (Thermo Scientific
TM

, Germany) in a 1:5 volume ratio and loaded onto a 1 % agarose/TAE gel.

The electrophoresis was performed at constant voltage of 100 V in TAE-buffer (40 mM Tris/HCl,

20 mM acetic acid, 1 mM EDTA, pH 7.0). The gel was stained for 30 min in an ethidium bromide

bath (2 μg/mL). The DNA detection was carried out by exposure of the ethidium bromide stained

gel to UV light. The size of distinct DNA-fragments was determined using Gene Ruler
TM

1kb

DNA-Ladder as a size standard. In the preparative approach, the DNA fragment of expected size
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was extracted from the agarose slice using NucleoSpin
TM

Gel and PCR Clean-Up Kit according to

the provided manual (Macherey Nagel, Germany).

1.6.1.7 General Cloning Procedure

In order to insert a desired sequence into the multiple cloning site (MCS) of the appropriate

vector (e.g. pET28a or pCDFDuet-1), sticky-end cloning was used as standard approach. The

coding sequence containing plasmid or PCR amplificat and the target vector were digested using

appropriate restriction endonucleases (NcoI and HindIII or NdeI and XhoI) according to the

supplier’s instructions (MBI Fermentas, Germany).

The linearized target vector was dephosphorylated using thermosensitive alkaline phosphatase

(FastAP) following the manufacturer’s protocol (MBI Fermentas, Germany). The DNA fragments

were isolated and purified as described in section 1.6.1.6.

The sequence to be inserted was ligated into the linearized dephosphorylated target vector using

T4-DNA-ligase corresponding to the product information (MBI Fermentas, Germany).

The resulting plasmid containing the desired sequence in the MCS was transferred into a chemical

competent E. coli strain as described in section 1.6.1.2. The plasmid DNA was isolated according to

section 1.6.1.3 and the insert of the isolated construct was verified by sequencing (section 1.6.1.4).

1.6.1.8 Generation of the QncNL-pCDFDuet-1 Construct

In order to recombinantly co-express the QncN- and QncL-subunits, the coding sequences of

the respective proteins were cloned into the MCSI and MCSII of pCDFDuet-1 vector, respec-

tively. The codon optimized (E. coli) sequence of the QncN-subunit was synthesized by GeneArt
TM

(Regensburg, Germany). The gene was supplied as an NdeI/HindIII-insert in the pET28a vector

(QncN-pET28a). The sequence, containing a His6-tag, thrombin cleavage site (TCS), NdeI restric-

tion site and the QncN gene was cloned as an NcoI/HindIII-insert from the QncN-pET28a plasmid

into the MCSI of the pCDFDuet-1 vector. The sequence of the NdeI restriction site (CATATG) was

mutated to CACATG.

The codon optimized (E. coli) sequence of the QncL gene was supplied by GeneArt
TM

(Regens-

burg, Germany) as an SfeI/SfeI-insert in pMA-RQ vector (pMA-RQ-QncL). The QncL gene was
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cloned into the MCSII of pCDFDuet-1 vector using the NdeI/XhoI restriction sites. The resulting

QncNL-pCDFDuet-1 plasmid containing the coding sequence of an N-terminal His6-tag, thrombin

cleavage site (TCS) and the QncN gene in the MCSI and the coding sequence of the QncL-subunit

as an NdeI/XhoI insert in the MCSII of the pCDFDuet-1 vector was transferred into the chemical

competent E. coli XL1-blue strain. The inserts of the QncNL-pCDFDuet-1 construct were verified

by sequencing using the ACYCDuetUP1, DuetDOWN1, DuetUP2, QncNL1-3 and T7 terminator

sequencing primers (see page 22).

1.6.1.9 Generation of the QncM-pET-SUMO Construct

The codon optimized (E. coli) sequence of the QncM component was synthesized by GeneArt
TM

(Regensburg, Germany). The QncM gene was supplied as NdeI/XhoI-insert in the pET28a vec-

tor (QncM-pET28a). The insert was amplified using Taq DNA polymerase in a PCR approach

(section 1.6.1.5) according to the manufacturer’s manual (MBI Fermentas, Germany). The am-

plified DNA fragment was cloned into the pET-SUMO vector (Champion
TM

pET-SUMO Protein

Expression System) using TA-Cloning R© according to the manufacturer’s manual (Invitrogen
TM

,

Germany).

The resulting QncM-pET-SUMO plasmid containing the coding sequence of an N-terminal His6-tag,

SUMO fusion protein and the QncM component was transferred into the chemical competent E. coli

XL1-blue strain. The plasmid DNA was isolated as described in section 1.6.1.3. The sequence of

the gene of interest was verified by sequencing using the T7 terminator sequencing primer (see

page 22).

1.6.1.10 Generation of the QncNL-pET-SUMO Construct

A DNA fragment from the QncNL-pCDFDuet-1 construct, containing the coding sequences of

QncN- and QncL-subunits was amplified using Taq DNA polymerase in a PCR approach (sec-

tion 1.6.1.5) according to the manufacturer’s manual (MBI Fermentas, Germany). The amplified

DNA fragment was cloned into the pET-SUMO vector (Champion
TM

pET-SUMO Protein Expres-

sion System) using TA-Cloning R© according to the manufacturer’s manual (Invitrogen
TM

, Germany).

The resulting QncNL-pET-SUMO plasmid contains the coding sequence of an N-terminal His6-tag,

SUMO fusion protein and the QncN-subunit, as well as the coding sequence for the QncL-subunit
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and an additional T7-promotor and ribosomal binding site (RBS) originating from the pCDFDuet-1

vector. The construct was transferred into the chemical competent E. coli XL1-blue strain. The

plasmid DNA was isolated as described in section 1.6.1.3. The sequences of the genes of interest

were verified by sequencing using the SUMO forward, DuetDOWN1, DuetUP2, QncNL1-3 and

T7 terminator sequencing primers (see page 22). A schematic overview of the cloning strategy for

generation of the QncNL-pET-SUMO construct is shown in the appendix part (Scheme B.1).

1.6.1.11 Cultivation of Streptomyces melanovinaceus

The Streptomyces melanovinaceus (St. melanovinaceus, Sme) strain (NRRL 12388) was kindly

provided by the Agricultural Research Service of United States Department of Agriculture. The

strain was cultivated according to Tomita et al. (1983), Nikodinovic et al. (2003) and Shepherd et al.

(2010) in 20 mL seed medium (section 1.5) for 24 h at 28 ◦C under constant shaking (200 rpm).

This pre-culture was used to inoculate 20 mL TSB/glycine-medium in a 100 mL culture flask. The

TSB/glycine-culture was grown for 72 h at 28 ◦C under constant shaking (200 rpm).

1.6.1.12 Isolation of Genomic DNA from St. melanovinaceus

In order to isolate St. melanovinaceus genomic DNA, 1 mL of the TSB/glycine culture was cen-

trifuged (30 min, 8 ◦C, 21382 x g). The mycelium pellet was subjected for the isolation of the

genomic DNA using MasterPure
TM

Gram positive DNA Purification Kit according to the manufac-

turer’s manual (Epicentre, USA).

1.6.1.13 Sequencing of Genomic DNA from St. melanovinaceus

A part of genomic DNA from St. melanovinaceus was sequenced by Dr. Anja Poehlein (Georg-

August University of Göttingen, Department of Genomic and Applied Microbiology). The

draft sequence was automatically annotated by the Integrated Microbial Genomes Database

(https://img.jgi.doe.gov/, Markowitz et al. (2012)).

1.6.1.14 Storage of Recombinant E. coli Cells

For the long-term storage, E. coli cells were prepared as a glycerol stock solution. 0.5 mL of

an LB medium cell culture (OD600 = 0.6 – 0.8) were mixed with 0.5 mL glycerol stock solution
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(65 % (v/v) glycerol, 1 mM MgSO4, 25 mM Tris/HCl, pH 8.0), flash frozen in liquid nitrogen and

stored at -80 ◦C.

1.6.1.15 Storage of St. melanovinaceus as a Glycerol Stock

The St. melanovinaceus mycelium was stored as a glycerol stock. 0.5 mL of the St. melanovinaceus

culture (seed medium culture or TSB/glycine culture, section 1.6.1.11) were mixed with 0.5 mL

glycerol solution (final concentration: 25 % (v/v)), flash frozen in liquid nitrogen and stored at

-80 ◦C.

For long-term storage, a glycerol stock of a St. melanovinaceus spore suspension was prepared.

200 μL of the seed medium culture (section 1.6.1.11) were transferred to an oatmeal-agar plate and

incubated for a week at 28 ◦C. The sporulated culture was used to prepare glycerol stocks according

to Shepherd et al. (2010). The spores of a freshly sporulated oatmeal-agar plate were re-suspended

in 3 mL sterile water. The St. melanovinaceus spores containing suspension was diluted in 35 mL

sterile water and vigorously mixed using a vortex mixer. The suspension was filtered using a sterile

cotton filter. The filtrate was discarded and the remaining spores were collected in 10 mL sterile

water and pelleted via centrifugation (10 min, 8 ◦C, 2000 x g). The pellet was re-suspended in

1 mL sterile water. The St. melanovinaceus spores suspension was mixed with glycerol solution

(50 % (v/v)) in a 1:1 volume ratio, flash frozen in liquid nitrogen and stored at -80 ◦C.

1.6.1.16 Generation of the SmeE3-pJET1.2 Construct

The native coding sequence of the E3 component from St. melanovinaceus (SmeE3) was amplified

from the isolated St. melanovinaceus genome in a PCR approach using pJETSmeE3 forward and

reverse primers (see page: 21). The amplified PCR product was isolated according to section 1.6.1.6.

The purified DNA fragment was cloned into the pJET1.2 vector (CloneJet PCR cloning Kit) using

blunt-end cloning according to the manufacturer’s manual (MBI Fermentas, Germany).

The resulting SmeE3-pJET1.2 plasmid, containing the coding sequence of the SmeE3 gene was

transferred into the chemical competent E. coli DH5α strain. The plasmid DNA was isolated as

described in section 1.6.1.3. The sequence of the gene of interest was verified by sequencing using

the pJET1.2 forward, 23-mer and pJET1.2 reverse, 24-mer sequencing primers (see page 22).
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1.6.1.17 Generation of the SmeQncNML-pET28a Construct

In order to generate a DNA construct for a more natural expression of the QncN/L component,

the original gene sequences for QncN/QncL-subunits and the QncM protein were cloned into

the pET28a vector. The coding cassette, containing the gene sequences for all three proteins,

was amplified from the St. melanovinaceus genomic DNA using the PCR technique (primers:

pJETQncNML forward and pJETQncNML reverse). The PCR product was isolated according to

section 1.6.1.6. The purified DNA fragment was cloned into the pJET1.2 vector (CloneJet PCR

cloning Kit) using blunt-end cloning according to the manufacturer’s manual (MBI Fermentas,

Germany).

The resulting SmeQncNML-pJET1.2 plasmid, containing the coding cassette for the QncN, QncL

and QncM proteins was transferred into the chemical competent E. coli XL1-blue strain. The

plasmid was isolated as described in section 1.6.1.3. The QncNML-cassette was cloned from the

resulting SmeQncNML-pJET1.2 plasmid into the pET28a vector according to section 1.6.1.7 using

NcoI and XhoI restriction endonucleases.

The resulting construct contains a DNA sequence originating from the pJET1.2 plasmid between

the NcoI restriction site and the start codon of QncN from SmeQncNML coding cassette. In order to

remove this additional sequence, a PCR amplification was applied using pET28aQncNML forward

and pET28aQncNML reverse primers. The resulting PCR product was ligated using T4-DNA-ligase

according to the product information (MBI Fermentas, Germany).

The SmeQncNML-pET28a construct, containing the coding cassette for QncN/QncL-subunits

and the QncM protein was transferred into the chemical competent E. coli XL1-blue strain. The

plasmid DNA was isolated as described in section 1.6.1.3. The sequences of the genes of interest

were verified by sequencing using the QncNML1-5, as well as T7 terminator/promotor sequencing

primers (see page 22).

1.6.2 Protein Preparation

1.6.2.1 Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis (SDS-PAGE)

In order to monitor the purification process of the respective proteins and to evaluate the homogene-

ity of a protein sample, sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE)
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was applied (Laemmli, 1970). This method allows to separate denatured proteins by molecular

weight. In order to visualize the separated proteins, the polyacrylamide gel was stained with

Coomassie Brilliant Blue G250 after the electrophoresis. The molecular weight of the proteins

assigned to the distinct bands detected on the gel was estimated using molecular weight size markers

listed on page 18.

1.6.2.2 Determination of Protein Concentration

The protein concentration was determined according to the method published by Bradford (1976)

using a commercially available Bradford reagent according to the manufacturer’s manual (SERVA

Electrophoresis GmbH, Germany). The reagent was calibrated using different bovine serum albumin

solutions of known concentration (0.1 – 0.9 mg/mL).

In addition to the Bradfordmeasurements, the concentration of the active sites of the E3 component

from St. lividans (SliE3), containing enzyme bound FAD, was determined optically, using the

intrinsic absorption signal of the cofactor at 458 nm.

The molar extinction coefficient (ε458) of enzyme bound FAD in SliE3 was determined according

to the method published by Hopkins andWilliams (1995). The absorbance of SliE3 containing

solutions (0.5 – 15.0 mg/mL SliE3, 10 mM KH2PO4/K2HPO4, 0.3 mM EDTA, pH 7.6) was measured

at 458 nm, as well as in presence of 4.5 mM guanidinium chloride (incubated for 1 h at RT) at

450 nm in a 1 mL quartz cuvette with a path length of 1 cm. The concentration of FAD was optically

determined at 450 nm using the molar extinction coefficient of free FAD (ε450 = 11800 M−1cm−1

(Hopkins andWilliams, 1995)) in guanidinium chloride containing buffer according to the Beer-

Lambert equation (eq. 1.6.1).

The determined concentration of free FAD in guanidinium chloride containing buffer was plotted

against the measured absorption of the enzyme bound FAD at 458 nm. The slope of the applied

linear regression corresponds to the molar extinction coefficient (ε458) of enzyme bound FAD in

SliE3 at 458 nm according to the Beer-Lambert equation (eq. 1.6.1).

The protein concentration of TacTAL was determined by measuring the intrinsic absorption signal of

aromatic amino acid residues (especially Tyr and Trp) and cystines at 280 nm. The concentration of

TacTAL (wild type and variants) was measured in a NanoDrop 2000 device. The molar extinction co-

efficients (ε280) were calculated using the ProtParam online-tool (http://web.expasy.org/protparam/,
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Gasteiger et al. (2005)) according to Edelhoch (1967), Gill and von Hippel (1989) and Pace et al.

(1995). An overview of calculated molar extinction coefficients is shown in the appendix part

(Table A.1).

1.6.2.3 General Expression Test

In order to determine the cultivation conditions for the optimal recombinant expression of particular

proteins, a preliminary expression test was performed. As standard approach, different E. coli-

strains (BL21 (DE3), BL21 Star
TM

(DE3), SoluBL21 (DE3), Rosetta (DE3) and Rosetta 2 (DE3))

were used for the recombinant expression. The cells were grown in three different media (LB

medium, ZYM5052 autoinduction medium or M9 minimal medium). Optionally, the recombi-

nant expression was performed at different temperatures (16 ◦C or 37 ◦C). Additionally, different

concentrations of IPTG (0.05 mM, 0.1 mM, 0.2 mM or 1 mM) were used for the induction.

Expression of the protein of interest was verified via SDS-PAGE. The cells were harvested via

centrifugation (30 min, 8 ◦C, 5749 x g). In order to analyze the solubility of the recombinantly

expressed protein, 1 g of cell pellet was re-suspended in 70 mL of appropriate lysis buffer supple-

mented with 500 μM PMSF. The cell disruption was achieved via sonication. After centrifugation

(30 min, 8 ◦C, 75000 x g), the soluble and insoluble fractions were analyzed via SDS-PAGE.

1.6.2.4 Recombinant Expression of the His6-QncN/L Component

For recombinant, heterologous co-expression of QncN- and QncL-subunits, the QncNL-pCDFDuet-1

plasmid (section 1.6.1.8) was transferred into the BL21 Star
TM

(DE3) E. coli strain. The transfor-

mants were used to inoculate 200 mL of LB medium supplemented with 50 μg/mL streptomycin

sulfate. This pre-culture was incubated overnight at 30 ◦C under constant shaking (200 rpm) in

a 1 L baffled flask. The pre-culture was used for the inoculation (final OD600 = 0.1) of 400 mL

main-culture (ZYM5052 autoinduction medium supplemented with 1 mM (+/–)-α-lipoic acid,

1.5 mM thiamine hydrochloride, 250 μM d-pantothenic acid calcium salt and 50 μg/mL streptomycin

sulfate). The main-culture was incubated at 30 ◦C under constant shaking (220 rpm) in a 2 L baffled

flask. After an OD600 of 0.4 – 0.5 was reached, the main-culture was cooled to 16 ◦C and incubated

for 24 h under constant shaking (220 rpm).
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The recombinant expression of QncN- and QncL-subunits was verified via SDS-PAGE (sec-

tion 1.6.2.1). The cells were harvested via centrifugation (30 min, 8 ◦C, 5749 x g). The flash

frozen cell pellets were stored at -20 ◦C.

1.6.2.5 Purification of the His6-QncN/L Component

The purification of QncN/L component was performed based on a previously published protocol

(Peng et al., 2012). For the cell disruption, 10 – 15 g of cells were re-suspended on ice in 20 – 30 mL

loading buffer (50 mM MOPS, 20 mM imidazole, 300 mM NaCl, 400 μM ThDP, 2.5 mM MgCl2,

10 % (v/v) glycerol, pH 7.8) supplemented with 500 μM PMSF. After addition of a tip of a spatula

of lysozyme, the cell suspension was stirred for 30 min at 8 ◦C. In order to digest DNA molecules,

DNase I was added to a concentration of 5 μg/mL. After further incubation for 1 h at 8 ◦C under

constant stirring, the cell disruption was completed by 3 – 4 passages through the microfluidizer

device (80 psi). The cell debris were removed via centrifugation (30 min, 8 ◦C, 75000 x g).

The soluble fraction was applied onto a 5 mL HisPrep
TM

fast flow column, equilibrated with loading

buffer. In order to remove unspecifically bound proteins, the column was washed with washing

buffer (50 mM MOPS, 50 mM imidazole, 300 mM NaCl, 400 μM ThDP, 2.5 mM MgCl2, 10 % (v/v)

glycerol, pH 7.8) until the flow-through did not contain any detectable amounts of protein. QncN/L

component was eluted with the elution buffer (50 mM MOPS, 300 mM imidazole, 300 mM NaCl,

400 μM ThDP, 2.5 mM MgCl2, 10 % (v/v) glycerol, pH 7.8).

The concentration of QncN/L component was adjusted to a concentration of 5 – 10 mg/mL (Bradford

reagent, section 1.6.2.2) using a centrifugal concentrator (20 mL, 100 kDa MWCO, 4 ◦C, 3220 x g).

The protein was dialyzed overnight at 8 ◦C against storage buffer (50 mM MOPS, 50 mM NaCl,

400 μM ThDP, 2.5 mM MgCl2, 10 % (v/v) glycerol, pH 7.8) in a 1:2000 ratio. The purity of the

isolated protein was assessed by SDS-PAGE. The protein was stored on ice for a couple of days.

1.6.2.6 Recombinant Expression of the His6-SUMO-QncM Component

In order to recombinantly express the QncM SUMO-fusion protein in its physiological active holo-

form, the Sfp-pQE60 plasmid (kindly provided by Prof. Dr. M. A. Marahiel [Philipps-University,

Marburg]) was co-transferred into the QncM-pET-SUMO plasmid containing BL21 Star
TM

(DE3)

E. coli strain. The Sfp-pQE60 plasmid contains the coding sequence for the phosphopantetheinyl
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transferase from Bacillus subtilis (BsSfp). BsSfp catalyzes the transfer of the phosphopantetheinyl

moiety from CoA to the conserved Ser-residue of ACP homologs (Marahiel et al., 1997; Mofid

et al., 1999; Peng et al., 2012; Quadri et al., 1998).

The transformants were used to inoculate 200 mL of LB medium supplemented with 50 μg/mL

kanamycin sulfate and 50 μg/mL carbenicillin. This pre-culture was incubated overnight at 30 ◦C

under constant shaking (200 rpm) in a 1 L baffled flask.

The pre-culture was used for the inoculation (final OD600 = 0.1) of 6 L high-density fermentation

medium supplemented with 50 μg/mL kanamycin sulfate and 50 μg/mL carbenicillin. The fermentation

was performed in a 10 L fermenter, while stirring (200 – 1500 rpm). The cells were grown at 37 ◦C.

The glycerol feeding was started after the glucose in the medium was consumed. When an OD600

of 24 was reached, the culture was cooled to 18 ◦C before it was supplemented with 50 μM IPTG

(expression start), 1 mM d-pantothenic acid calcium salt and additional 50 μg/mL carbenicillin.

The fermentation occurred at constant O2-concentration of 25 % (airflow 5 L/min) and pH 7.0

(automated adjustment with 10 % NaOH or 10 % H3PO4). After 22 h (OD600 of 100), the cells

were harvested via centrifugation (30 min, 8 ◦C, 5749 x g). The cell pellet (1.4 kg) was stored at

-80 ◦C. The expression of SUMO-QncM was verified via SDS-PAGE.

1.6.2.7 Purification of the holoQncM Component

The His6-tagged SUMO-QncM fusion-protein was purified using Ni2+-NTA affinity chromatog-

raphy. 50 g of cells from high-density fermentation were re-suspended in 100 mL loading buffer

(50 mM MOPS, 40 mM imidazole, 300 mM NaCl, 1 mM DTT, 10 % (v/v) glycerol, pH 7.6) supple-

mented with 500 μM PMSF. After addition of a tip of a spatula of lysozyme, the cell suspension

was stirred for 30 min at 8 ◦C. In order to digest DNA molecules, DNase I was added to a final

concentration of 5 μg/mL together with 5 mM MgCl2. After further incubation for 1 h at 8 ◦C under

constant stirring, the cell disruption was completed by 3 – 4 passages through the microfluidizer

device (80 psi). The cell debris were removed via centrifugation (30 min, 8 ◦C, 75000 x g).

The soluble fraction was applied onto 3x5 mL HisPrep
TM

fast flow columns, previously equili-

brated with loading buffer. In order to remove unspecifically bound proteins, the columns were

washed with the loading buffer until the flow-through did not contain any detectable amounts of
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protein. The His6-tagged SUMO-QncM protein was eluted with the elution buffer (50 mM MOPS,

250 mM imidazole, 300 mM NaCl, 1 mM DTT, 10 % (v/v) glycerol, pH 7.4).

The fractions containing the His6-tagged SUMO-QncM protein were pooled and the elution buffer

was exchanged by loading buffer using a HiPrep
TM

26/10 desalting column. The desalted protein

was supplemented with 80 nM SUMO-protease, in order to cleave the N-terminal fused His6-tagged

SUMO-protein. The SUMO-protease cleavage was performed overnight at 8 ◦C.

After SUMO-protease cleavage, the protein solution was applied onto 3x5 mL HisPrep
TM

fast flow

columns, equilibrated with the loading buffer, in order to remove cleaved His6-tagged SUMO-

protein. The flow-through, containing untagged holoQncM protein, was collected.

The protein concentration was adjusted to 40 mg/mL using a centrifugal concentrator (20 mL,

5 kDa MWCO, 4 ◦C, 3220 x g). The flash frozen protein solution can be stored at -80 ◦C for

several month.

Before usage, the protein was applied onto a Superdex
TM

75 HiLoad
TM

16/60 prep grade column,

equilibrated with the storage buffer (100 mM imidazole, 100 mM NaCl, 10 % (v/v) glycerol, pH 7.4)

supplemented with 1 mM DTT. The purity of the isolated protein was assessed by SDS-PAGE.

1.6.2.8 Recombinant Expression of the His6-SliE3 Component

The codon optimized (E. coli) sequence of SliE3 was synthesized by GeneArt
TM

(Regensburg, Ger-

many). The SliE3 gene was supplied as an NdeI/XhoI-insert in pET28a vector (SliE3-pET28a). The

SliE3-pET28a plasmid was transferred into BL21 Star
TM

(DE3) E. coli strain. The transformants

were used to inoculate 200 mL of LB medium supplemented with 50 μg/mL kanamycin sulfate. This

pre-culture was incubated overnight at 30 ◦C under constant shaking (200 rpm) in a 1 L baffled

flask. The pre-culture was used for the inoculation (final OD600 = 0.1) of 400 mL main-culture

(ZYM5052 autoinduction medium supplemented with 0.5 g/L riboflavin, 75 μg/mL FMN and 50 μg/mL

kanamycin sulfate). The main-culture was incubated at 30 ◦C under constant shaking (200 rpm) in

a 2 L baffled flask. After an OD600 of 0.4 – 0.5 was reached, the main-culture was cooled to 16 ◦C

and incubated for 24 h under constant shaking (200 rpm).

The expression of SliE3 was verified via SDS-PAGE. The cells were harvested via centrifugation

(30 min, 8 ◦C, 5749 x g). The flash frozen cell pellets were stored at -20 ◦C.
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1.6.2.9 Purification of the SliE3 Component

Since the recombinantly expressed SliE3 protein contains an N-terminal His6-tag linked by the

thrombin cleavage site (TCS), the purification of SliE3 component was performed using Ni2+-NTA

affinity chromatography. 10 g of cells were re-suspended on ice in 40 mL loading buffer (50 mM

KH2PO4/K2HPO4, 50 mM imidazole, 300 mM NaCl, pH 7.6) supplemented with 500 μM PMSF

and 250 μM FAD. After addition of a tip of a spatula of lysozyme, the cell suspension was stirred

for 30 min at 8 ◦C. In order to digest DNA molecules, DNase I was added to a concentration of

5 μg/mL together with 1 mM MgCl2. After further incubation for 1 h at 8 ◦C under constant stirring,

the cell disruption was completed by 3 – 4 passages through the microfluidizer device (80 psi). The

cell debris were removed via centrifugation (30 min, 8 ◦C, 75000 x g).

The soluble fraction was applied onto 2x5 mL HisPrep
TM

fast flow columns, previously equilibrated

with the loading buffer. In order to remove unspecifically bound proteins the columns were washed

with the loading buffer until the flow-through did not contain any detectable amounts of protein.

The SliE3 protein was eluted with the elution buffer (50 mM KH2PO4/K2HPO4, 250 mM imidazole,

300 mM NaCl, pH 7.6).

The SliE3 containing fractions were pooled and the elution buffer was exchanged by loading buffer

using a HiPrep
TM

26/10 desalting column. The desalted protein was supplemented with a tip of

a spatula of thrombin from bovine plasma and 250 μM FAD, in order to cleave the N-terminal

His6-tag. The thrombin cleavage was performed overnight at 8 ◦C.

After thrombin cleavage, the protein solution was applied onto 2x5 mL HisPrep
TM

fast flow columns,

equilibrated with the loading buffer, in order to separate the cleaved fragments and to remove

uncleaved His6-tagged SliE3. The flow-through was collected and its volume was reduced to 1 mL

using a centrifugal concentrator (20 mL, 50 kDa MWCO, 4 ◦C, 3220 x g).

The concentrated protein was applied onto a Superdex
TM

200 HiLoad
TM

16/60 prep grade column,

equilibrated with the storage buffer (50 mM KH2PO4/K2HPO4, 150 mM NaCl, pH 7.6), to remove

the free FAD and the remaining thrombin from bovine plasma.

Finally, the concentration of the SliE3 component was adjusted to approximately 60 mg/mL (Brad-

ford reagent, section 1.6.2.2) using a centrifugal concentrator (20 mL, 50 kDa MWCO, 4 ◦C,

3220 x g). The amino acid sequence of the resulting protein is identical with the native sequence

of untagged protein, except the three additional amino acid residues (Gly-Ser-His) remaining on
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the N-terminal part after thrombin cleavage. The purity of the isolated protein was assessed by

SDS-PAGE.

1.6.2.10 Recombinant Expression of the TacTAL Wild Type Protein and Variants

The pET28a-construct containing the coding sequence for transaldolase from Thermoplasma

acidophilum, as well as for the N- and C-terminal subunits of transketolase (TKI/TKII) inserted

between NdeI and HindIII restriction sites of MCS (TacTAL-pET28a), was used as described by

Lehwess-Litzmann (2011).

The TacTAL-pET28a plasmid was transferred into the BL21 Star
TM

(DE3) E. coli strain. The

transformants were used to inoculate 200 mL of LB medium supplemented with 50 μg/mL kanamycin

sulfate. This pre-culture was incubated overnight at 30 ◦C under constant shaking (200 rpm) in

a 1 L baffled flask. The pre-culture was used for the inoculation (final OD600 = 0.1) of 500 mL

main-culture (LB-medium supplemented with 50 μg/mL kanamycin sulfate). The main-culture was

incubated at 37 ◦C under constant shaking (200 rpm) in a 2 L baffled flask. After an OD600 of

0.6 – 0.8 was reached, the recombinant expression of TacTAL was induced by addition of 200 μM

of IPTG.

The expression of TacTAL was verified via SDS-PAGE. The cells were harvested via centrifugation

(30 min, 8 ◦C, 5749 x g). The flash frozen cell pellets were stored at -20 ◦C.

1.6.2.11 Purification of the TacTAL Wild Type Protein and Variants

The purification of TacTAL wild type protein and variants was performed based on a previ-

ously published protocol (Lehwess-Litzmann et al., 2011a). For cell disruption, 20 g of cells

were re-suspended in 40 – 60 mL of lysis buffer (100 mM Tris/HCl, pH 7.5) supplemented with

500 μM PMSF and 1 mM EDTA. After addition of a tip of a spatula of lysozyme, the cell sus-

pension was stirred for 15 min at RT. In order to digest DNA molecules, DNase I was added to a

concentration of 5 μg/mL together with 5 mM MgCl2. After further incubation for 45 min at RT under

constant stirring, the cell disruption was completed by 3 – 4 passages through the microfluidizer

device (80 psi). The cell debris were removed via centrifugation (30 min, 8 ◦C, 75000 x g).

The soluble fraction was subjected to fractional ammonium sulfate precipitation at 8 ◦C. Firstly,

the soluble fraction was treated with 25 % of saturation (NH4)2SO4 and incubated for 30 min,
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under constant stirring. After centrifugation (20 min, 8 ◦C, 75000 x g), the pellet, containing E. coli

proteins, was discarded. The supernatant was subjected to a second precipitation procedure using

50 % of saturation (NH4)2SO4. After another centrifugation step, the supernatant was used for

the last precipitation step (80 % of saturation (NH4)2SO4), in order to salt out the TacTAL protein.

After centrifugation, the supernatant was discarded. The pellet, containing TacTAL, was dissolved

in a small volume of the loading buffer (20 mM Tris/HCl, pH 7.5). The protein solution was

dialyzed against 1 L loading buffer overnight at 8 ◦C.

Since TacTAL is a thermophilic protein, most of the remaining E. coli proteins can be removed via

heat precipitation. For this purpose, the concentration of the dialyzed protein solution was adjusted

to 10 mg/mL. The solution was heated for 30 – 45 min at 60 ◦C, under constant shaking (500 rpm).

The denatured E. coli proteins were removed via centrifugation (30 min, 8 ◦C, 75000 x g).

In order to purify TacTAL to homogeneity, anion-exchange chromatography was used. The

supernatant from the heat precipitation was applied onto a 50 mL TMAE-column, equilibrated with

the loading buffer. To remove unspecifically bound proteins the column was washed with 19 % of

the elution buffer (20 mM Tris/HCl, 1 M NaCl, pH 7.5) until the flow-through did not contain any

detectable amounts of protein. Finally, a custom elution buffer gradient (Table 1.6.1) was applied.

The TacTAL elutes between 22 % and 30 % of the elution buffer (220-300 mM NaCl).

Table 1.6.1: Elution buffer gradient for the purification of TacTAL using TMAE anion-
exchange chromatography. The TacTAL elutes between 22 % and 30 % of the elution buffer.

Elution buffer (%) Volume (xCV)

19 3
22 2

22-30 1
30 1

100 2

In case of the TacTAL disulfide variant (TacTALT30C/D211C), a final gel filtration step was performed,

in order to ensure the homopentamer formation. The TacTAL containing fractions from the previous

step were pooled and the volume was reduced to 1 mL using a centrifugal concentrator (20 mL,

50 kDa MWCO, 12 ◦C, 3220 x g). The solution was applied onto a Superdex
TM

200 HiLoad
TM

16/60 prep grade column, equilibrated with the gel filtration buffer (20 mM Tris, 150 mM NaCl,

pH 7.5). The gel filtration step was performed at 8 ◦C.
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The buffer was exchanged by the storage buffer (20 mM GlyGly, pH 7.5) and the concentration

of the TacTAL protein was adjusted to approximately 50 mg/mL using a centrifugal concentrator

(20 mL, 50 kDa MWCO, 12 ◦C, 3220 x g). The protein can be stored at 8 ◦C for a couple of weeks.

1.6.3 X-Ray Crystallography

1.6.3.1 Finding of Crystallization Conditions for holoQncM- and SliE3 Components

In order to find the conditions for crystallization of the holoQncM and SliE3 proteins, an automated

crystallization screen was performed. The screen was carried out by Michael Franke in the

department of Molecular Structural Biology (Institute for Microbiology and Genetics, Georg-

August-University Göttingen). The crystallization screen was applied at 4 ◦C using the solutions

listed on page 18.

The screen conditions, which resulted in crystallization of the respective protein, were reproduced

manually using the hanging-drop vapor diffusion approach. The diffraction ability and the quality of

the crystals were tested in-house (CuKα radiation, wavelength 1.5418 Å) using the devices provided

by the department of Molecular Structural Biology (listed on page 20).

Furthermore, an additive screen was performed for the holoQncM protein according to the manufac-

turer’s manual (Hampton Research Corp, USA), in order to improve the crystallization conditions

from the initial crystallization screen.

The resulting crystallization conditions for the holoQncM- and SliE3 components are discussed in

the results part (sections 3.2.3 and 3.2.7).

1.6.3.2 Crystallization of TacTAL Wild Type Protein and Variants

The crystallization of the TacTAL wild type protein and variants was performed as published

before (Lehwess-Litzmann et al., 2011a,b) using the hanging-drop vapor diffusion method. 3 μL of

protein solution (16 mg/mL TacTAL in 14 mM GlyGly and 6 mM Tris-HCl, pH 7.5) were mixed at

RT with 3 μL of the reservoir solution (188 mM ammonium acetate, pH 4.4, 10 % (w/v) PEG 6000

and 25 % (v/v) glycerol). For the intermediate studies, the protein solution was supplemented with

either 34 mM F6P, 24 mM A5P or 34 mM M1P before mixing with the reservoir solution. The

crystallization mix was equilibrated against 250 μL of the reservoir solution.
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Under this conditions TacTAL can crystallize in two different space groups either C2221 or P21

(Lehwess-Litzmann et al., 2011a). In order to obtain the preferred space group C2221, the crystal-

lization solution was microseeded with previously obtained TacTAL-crystals of the aforementioned

space group and incubated for 10 min at 30 ◦C. The protein crystals were grown for 7 – 14 days at

20 ◦C.

TacTALT30C/D211C was co-crystallized with 34 mM F6P and/or 1 mM DTT (before mixing with

the reservoir solution). Additionally to the co-crystallization approach, resting state crystals were

soaked with 100 mM F6P and/or 50 mM DTT solved in the reservoir solution. The soaking

procedure was performed at 20 ◦C for 2 or 10 min.

1.6.3.3 X-ray Data Collection and Processing

The diffraction data collection of single protein crystals was performed under cryogenic conditions

(100 K) using synchrotron radiation (ESRF, beamline ID23-1 [Grenoble, France]; DESY, beamline

P13 [Hamburg, Germany]). Diffraction images were indexed, integrated and scaled using the XDS

package (Kabsch, 2010).

1.6.3.4 Initial Structure Determination

Since the crystallization of TacTAL results in nearly isomorphous protein crystals, with a maximal

deviation of the cell constants lower than 3 %, the previously published structures (PDB entries:

3S0C and 3S1V (Lehwess-Litzmann et al., 2011a,b)) were used as the initial models for the

rigid-body refinement.

As no published structural information about the SliE3 and holoQncM proteins are available, the

molecular replacement approach was used for the initial phase determination for SliE3 diffraction

data. This was performed using phaser crystallographic software (McCoy et al., 2007). The search

model was generated from the previously published structure of dihydrolipoamide dehydrogenase

of glycine decarboxylase from Pisum sativum (40 % sequence identity, PDB entry 1DXL (Faure

et al., 2000)) using the phenix.sculptor software (Bunkóczi and Read, 2011).

For the holoQncM protein, there are no published structures available, which would be suitable for

the molecular replacement approach (sequence identity > 30 %). The initial phase determination

was performed by Dr. Piotr Neumann (Department of Molecular Structural Biology, Institute
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for Microbiology and Genetics, Georg-August-University Göttingen) using the ARCIMBOLDO_-

LITE-software (Sammito et al., 2015).

The resulting structure models were completed manually using the Coot-software (Emsley et al.,

2010; Emsley and Cowtan, 2004).

1.6.3.5 Model Building and Refinement

All structure models were manually improved and refined against the diffraction data in an iterative

manner using the Coot-software (Emsley et al., 2010; Emsley and Cowtan, 2004) and phenix.refine

crystallographic package (Adams et al., 2010). The last few refinement cycles were performed

using TLS parameterization. The TLS-grouping was chosen automatically by phenix.refine crystal-

lographic package (Adams et al., 2010). The geometry of the final model was validated using the

MolProbity server (Chen et al., 2010). The structure representation was performed with PyMOL

Molecular Graphics System (Schrödinger, LLC).

1.6.4 UV-Vis Spectroscopy

1.6.4.1 Concentration Measurement of NADH, FAD and Lipoamide

The concentrations of lipoamide, NADH and FAD in solution were determined optically. The

absorbance was measured at 333 nm (lipoamide), 340 nm (NADH) and 450 nm (FAD) in a

1 mL quartz cuvette with a path length of 1 cm. The concentration was calculated accord-

ing to the Beer-Lambert equation (eq. 1.6.1) using published molar extinction coefficients

(NADH: ε340nm = 6220M−1cm−1 (Haid et al., 1975), FAD: ε450nm = 11300M−1cm−1 (Koziol,

1971), lipoamide: ε340nm = 150M−1cm−1 (Reed et al., 1958)).

1.6.4.2 Steady-State Measurements of TacTAL Wild Type Protein and Variants

The steady-state kinetics of TacTAL wild type protein and variants were measured in a coupled

spectrophotometric assay to detect the formation of the first product glyceraldehyde 3-phosphate

(GA3P). The auxiliary enzymes used for the assay are triosephosphate isomerase (TIM) and

α-glycerophosphate dehydrogenase (GDH) (Tsolas and Joris, 1975). The formed GA3P as result

of cleavage of fructose 6-phosphate (F6P) by TacTAL is converted to dihydroxyacetone phos-
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phate (DHAP) by TIM, followed by reduction to glycerol 3-phosphate (G3P) and simultaneous

oxidation of NADH to NAD+ by GDH (scheme 1.1 A). The oxidation of NADH was monitored

spectrophotometrically in an UV-Vis spectrometer (V-650, Jasco GmbH) at 340 nm and 30 ◦C.

A B

Scheme 1.1: Minimal reaction sequence of transaldolase/aldolase activity assay coupled to
NADH oxidation. The cleavage of F6P by TacTAL results in the formation of GA3P. The
auxiliary enzyme TIM, converts GA3P to DHAP. Subsequently GDH reduces DHAP to G3P. The
simultaneous oxidation of NADH monitors the activity (depletion of absorbance at 340 nm). A: In
presence of E4P, the transaldolase reaction takes place (reversible transfer of a DHA-unit from F6P
to E4P). B: The aldolase side-reaction results in the aldolytic cleavage of F6P to DHA and GA3P.

The reaction mixture (200 μL) contained 3 – 4 U/mL TIM/GDH [8 mM (NH4)2SO4], 0.22 mM

NADH, 2 mM E4P, and varying concentrations of F6P (0.1 – 100 mM) in 20 mM GlyGly (pH 7.5).

The reaction was started by the addition of the enzyme to the reaction mixture (final concentrations:

0.015 – 1.0 mg/mL).

The transaldolase activity of the disulfide variant (TacTALT30C/D211C) was additionally measured

under reducing conditions. The enzyme solution (1 mg/mL) was supplemented with 20 mM DTT

and incubated for 10 min. The transaldolase reaction was started by addition of reduced enzyme

to the DTT free reaction mixture (final concentrations: 0.05 mg/mL TacTALT30C/D211C, 1 mM DTT).

Sets of triplicates were measured for each F6P concentration. The reduced enzyme was freshly

prepared for each v/[S]-characteristic data set immediately before measurement, in order to avoid the

loss of activity of the variant during the experiment.

The aldolase activity of TacTAL wild type protein and variants with enhanced aldolase activity was

measured in absence of E4P using the same coupled spectrophotometric assay as described above

(scheme 1.1 B).

The measured initial rates were plotted against substrate concentration ([S]). The macroscopic

kinetic constants (Vmax and Kapp
M ) were determined by fitting of the data according to the Michaelis-

Menten-equation (eq. 1.6.2) (Michaelis andMenten, 1913). The specific activity (Aspec) as well as
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the turnover number per active site (kcat) were calculated from the determined Vmax considering the

respective enzyme concentration.

Vmax = maximal activity

v =
Vmax · [S]
KM + [S]

at substrate saturation (1.6.2)

KM = Michaelis constant

1.6.4.3 pH-Dependency of Enzymatic Activity of TacTAL Variants

For the variants showing enhanced aldolase activity (TacTALF132Y, TacTALE60Q/F132Y and

TacTALFSA-mimic), pH-dependency of the enzymatic activity was measured under steady-state

conditions at 30 ◦C. The activity measurements were performed at constant ionic strength using

a three-component buffer system (50 mM acetic acid, 50 mM MES and 100 mM Tris (Ellis and

Morrison, 1982)), which keeps the ionic strength constant (0.1 M) at different pH (4.5 – 9.5).

The reaction mixture (200 μL) contained 3 – 4 U/mL TIM/GDH [8 mM (NH4)2SO4], 0.22 mM

NADH, 50 mM F6P in three-component buffer of different pH (5.6 – 9.2). The reaction was started

by addition of the enzyme to the reaction mixture (final concentrations: 0.025 – 0.125 mg/mL).

The pH-value of the reaction mixture was measured immediately after the experiment. The

measured aldolase activity (Vapp) was plotted versus the respective pH-value. The pKa values of the

enzyme-substrate complex (pKES1 and pKES2) as well as the aldolase activity at the pH-optimum

(Vmax) were determined by fitting the data according to equation 1.6.3 for bell-shaped plots or

equation 1.6.4 for sigmoidal plots.

Vapp =
Vmax

1 + 10(pKES1−pH) + 10(pH−pKES2) + V0 Vapp = measured activity (1.6.3)

Vmax = activity at pH-optimum

Vapp =
Vmax

1 + 10(pKES1−pH) + V0 V0 = offset (1.6.4)

The pH-stability of the variants was tested by measurements of far-UV-CD-spectra of the protein

after incubation (5 min) in 10 mM KH2PO4/K2HPO4 of respective pH. A far-UV-CD spectrum of a

protein gives a characteristic signature for secondary structures (e.g. α-helices and β-sheets) and

can be used to distinguish between folded and denatured protein (Kelly et al., 2005).
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The CD-spectra were recorded in a wavelength range of 180 – 260 nm (step: 1 nm, time per

point: 5 s) using a 300 μL quartz cuvette with a path length of 0.1 cm. The enzyme concentration

was 92.5 μg/mL. The measurement was performed at 30 ◦C.

The CD-spectra were corrected for buffer (10 mM KH2PO4/K2HPO4, pH 7.8). The data were

normalized by scaling to peptide-bound concentration according to equation 1.6.5 (Kelly et al.,

2005).

Θ = molar ellipticity (mdeg)

[Θ]MRW =
Θ ·MRW
10 · c ·d

(deg · cm2 ·dmol−1) MRW = mean residue weight (Da) (1.6.5)

c = protein concentration (mg/mL)

d = optical path length (cm)

Tris was described as an inhibitor of the fructose 6-phosphate aldolase from E. coli (EcFSA)

(Schürmann and Sprenger, 2001). Because the three-component buffer contains 100 mM Tris, its

inhibition ability was tested for TacTALE60Q/F132Y under the steady-state conditions. The steady-

state activity was measured as described above (section 1.6.4.2) in 20 mM Tris (pH 7.5) as buffer

substance and compared with the activity in 20 mM GlyGly. The tested F6P concentration was

50 mM.

1.6.4.4 Stopped-Flow Measurements of TacTAL Wild Type Protein and Variants

In order to analyze the kinetic properties of the donor half-reaction (cleavage of F6P), a rapid mixing

method (dead time of approx. 1.5 ms) was performed using a stopped-flow device. The reaction

was monitored using a coupled spectrophotometric assay as described above (section 1.6.4.2). The

solution, containing TacTAL (0.44 mg/mL), TIM/GDH (200 U/mL) and NADH (0.44 mM) in 20 mM

GlyGly (pH 7.5) was rapidly mixed with the substrate solution (0.1 – 100 mM F6P in 20 mM

GlyGly, pH 7.5). The measurements were performed at 30 ◦C. The mixing ratio was 1:1.

The idea of the experiment is comparable to the classic kinetics of the chymotrypsin-catalyzed

conversion of p-nitrophenyl ester substrates (Hartley and Kilby, 1952, 1954). The apparent

rate constants (kobs) were determined by fitting of progress curves according to either single- or

double-exponential equations combined with a linear term (equation 1.6.6 or 1.6.7, respectively) as

previously described (Lehwess-Litzmann, 2011).
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kobs
1 ,kobs

2 = first order rate constants

A340(t) = a1 · e−kobs
1 ·t− v · t + y0 a1,a2 = amplitudes (1.6.6)

A340(t) = a1 · e−kobs
1 ·t + a2 · e−kobs

2 ·t− v · t + y0 v = aldolase steady-state activity (1.6.7)

y0 = offset

The measured apparent rate constants (kobs) were plotted versus respective substrate concentrations

([S]). The data was fitted according either to the equation 1.6.8 for data showing an optimum or to

the equation 1.6.9 for data with a saturation.

kmax
obs = first order rate constant

kobs =
kmax

obs

1 +
Kapp

S
[S] +

[S]
KI

at substrate saturation (1.6.8)

Kapp
S = equilibrium constant of the fast

kobs =
kmax

obs · [S]

Kapp
S + [S]

substrate binding pre-equilibrium (1.6.9)

KI = inhibition equilibrium constant of

the putative substrate inhibition

1.6.4.5 Activity Assay for QncN/L Component

The activity of the QncN/L component was measured in a spectrophotometric assay using F6P as

donor-substrate. The QncN/L component transfers the C2-unit from F6P to the phosphopantetheine

moiety of the holoQncM component. The transfer reaction results in the reduction of the lipoyl

moiety of the enzyme. The catalytic cycle of the QncN/L component is completed by the reoxidation

of the dihydrolipoyl moiety by the E3 component (Peng et al., 2012). This reaction is coupled

to NAD+ reduction (scheme 1.2 A). The concomitant NADH formation can be monitored by

measuring the absorbance at 340 nm. The activity of the QncN/L component was determined by

the linear fit of the initial phase of the progress curve.

The reaction mixture (200 μL) contained 1 mM NAD+, 30 mM F6P, 2.5 μM SliE3, 3 mg/mL holo-

QncM, 400 μM ThDP and 2.5 mM MgCl2 in 50 mM MOPS supplemented with 10 % (v/v) glycerol

(pH 7.5). The reaction was started by the addition of the enzyme to the reaction mixture (final

concentration: 0.5 mg/mL). The activity measurements were performed at 20 ◦C.
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The apparent specific activity (Aspec) as well as the apparent turnover number per active site (kcat)

were calculated from the initial reaction rate at saturated F6P-concentration (30 mM) taking the

enzyme concentration into account.

1.6.4.6 Steady-State Measurements of the SliE3 Component

The activity of the SliE3 component was analyzed by measurement of lipoamide reduction by

SliE3 enzyme using NADH as reducing equivalent. This reaction corresponds to the reverse

reaction of the SliE3 component in physiological context (scheme 1.2 A) using lipoamide acting

as an artificial substrate (scheme 1.2 B). In this assay, the E3 component reduces the lipoamide

to dihydrolipoamide using NADH. The NADH consumption was used to monitor the progress

of the reaction by absorbance depletion at 340 nm. The NAD+ resulting from the reaction acts

as an activator of some orthologous E3 enzymes (Argyrou and Blanchard, 2001). In order to

avoid the perturbation of the initial phase of the reaction by the product activation effect of the

concomitant NAD+ formation, NAD+ was added to the reaction mixture in a concentration resulting

in constitutively activated E3 component according to Argyrou and Blanchard (2001).

S S

ThDP

QncN QncL

QncM SH

SH SH

ThDP

QncN QncL

QncM S
OH

O

*

QncM

SH

QncM

S

OH

O*

A B

Scheme 1.2: Minimal reaction sequence of the E3 component activity assay. A: Reaction in
physiological context. The E3 component fulfills the catalytic cycle of the QncN/L component by
the reoxidation of the dihydrolipoyl moiety using NAD+ (Peng et al., 2012). B: Reaction used in
the activity assay. E3 component reduces the lipoamide using NADH (Argyrou and Blanchard,
2001).

The reaction mixture (1 mL) contained 0.2 mM NADH, 50 μM NAD+, and varying concentrations

of lipoamide (0.1 – 3.0 mM) [5.25 % Ethanol] in 45 mM KH2PO4/K2HPO4 (pH 7.6) supplemented
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with 135 mM NaCl. The reaction was started by the addition of the enzyme to the reaction

mixture (final concentration: 10 nM, determined using SliE3-bound FAD extinction coefficient,

section 1.6.2.2). The activity measurements were performed at 20 ◦C.

The measured initial rates were plotted against the lipoamide concentration. The macroscopic

kinetic constants (Vmax and Kapp
M ) were determined by fitting of the data according to the Michaelis-

Menten-equation (eq. 1.6.2) (Michaelis andMenten, 1913). The specific activity (Aspec) as well as

the turnover number per active site (kcat) were calculated from the determined Vmax considering the

enzyme concentration.

1.6.4.7 Stopped-Flow Measurements of the SliE3 Component

The intermediates of the reduction of the E3-bound FAD by NADH can by studied via fast-kinetics

stopped-flow absorbance spectroscopy measurements (Argyrou et al., 2002). For this purpose,

the SliE3 solution was rapidly mixed (dead time of approx. 1.5 ms) in a stopped-flow device

with an NADH solution at 4 ◦C. The mixing ratio was 1:1 giving either 10x excess or equimolar

concentration of NADH compared to the final SliE3-concentration (20 μM) in 50 mM imidazole

supplemented with 150 mM NaCl (pH 7.6). The spectra of E3-bound FAD were recorded using a

photo-diode array. For single wavelength measurements, a photomultiplier was used.

1.6.5 Analytical Methods

1.6.5.1 Size Exclusion Chromatography Coupled Multiangle Light Scattering (SEC-

MALS)

In order to analyze the oligomerization state of the holoQncM component in solution, size exclu-

sion chromatography coupled multiangle light scattering (SEC-MALS) was performed. 500 μL

holoQncM sample (0.2 mg/mL) was applied onto a Superdex
TM

75 10/300 GL, equilibrated with the

storage buffer (100 mM imidazole, 100 mM NaCl, 10 % (v/v) glycerol, pH 7.4). The eluted solution

(flow rate 0.3 mL/min) was subsequently analyzed using the miniDAWN TREOS
TM

light scattering

instrument in combination with an Optilab T-rEX refractive index detector. The SEC-MALS

experiment was performed at RT.
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1.6.5.2 MALDI-TOF Mass Spectrometry

The QncM component was co-expressed with phosphopantetheinyl transferase from Bacillus

subtilis (BsSfp) in order to obtain the protein in its physiological relevant holo-form. The phos-

phopantetheinyl transferase BsSfp catalyzes the phosphopantetheinylation of Ser33 of the QncM

component in vivo. The presence of this post-translational modification after the protein purification

was verified using MALDI-TOF mass spectrometry.

In order to obtain peptide fragments in a molecular weight region sufficient for the MALDI-TOF

experiment, the holoQncM protein was digested using modified porcine trypsin. This sequencing

grade trypsin is modified by reductive methylation of lysine residues to avoid autolytic digestion

(Keil-Dlouhá et al., 1971; Rice et al., 1977). 15 μL of sample, containing 170 μM holoQncM

in 50 mM MOPS (pH 7.8), 50 mM NaCl and 1 % (v/v) glycerol were supplemented with 25 μL

of NH4HCO3 solution (25 mM) and mixed with 10 μL of trypsin solution (100 μg/mL, prepared

according to manufacturer’s manual [Promega Corporation, Germany]). The tryptic digestion was

conducted by incubation of the mixture at 37 ◦C for 3.5 h. An overview of the expected holoQncM

fragments after tryptic cleavage is shown in the appendix part (Table A.2).

The digested sample was mixed with formic acid (85 % (v/v)) in a 1:1 volume ratio. The sample

was prepared using ZipTipC18
TM

pipette tip. The ZipTipC18
TM

pipette tip was prepared according to

manufacturer’s manual (Merck KGaA, Germany) using 70 % (v/v) acetonitrile supplemented with

0.3 % (v/v) formic acid as wetting and elution solution and 1 % (v/v) formic acid as equilibration and

washing solution.

The purified sample was mixed with DHB in a 1:1 volume ratio and transferred to a MALDI-TOF-

MS carrier.

The measurements were performed in the department of Molecular Microbiology and Genetics

(Institute for Microbiology and Genetics, Georg-August-University Göttingen) with Dr. Oliver

Valerius.

1.6.5.3 Liquid Chromatography Mass Spectrometry

The isolated proteins (QncN/L and E3 components) were verified using liquid chromatography

mass spectrometry (LC-MS) in the department of Molecular Microbiology and Genetics (Institute
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for Microbiology and Genetics, Georg-August-University Göttingen). The sample preparation was

performed by members of Dr. Oliver Valerius’ research group (same department) according to

a published protocol (Shevchenko et al., 1996). The LC-MS measurements and the data analysis

were carried out by Dr. Oliver Valerius in a similar way as described in Koch et al. (2016). The

data were searched against an E. coli FASTA-database expanded for the St. melanovinaceus amino

acid sequences of interest. The search was performed using the Proteome Discoverer software and

the SequestHT search engine. For the QncL component, lipoylation of lysines was set as variable

modification.

1.6.5.4 ThermoFluor Assay

In order to optimize the buffer conditions for the holoQncM component, the ThermoFluor assay

was applied. This method allows to analyze the thermostability of proteins under different buffer

conditions. Six buffer substances and a pH-range of 4.6 – 9.4 were screened (for details, see

Table A.9 in the appendix part). The reaction mixture contained 100 mM of the respective buffer

substance, 5x concentrated SYPRO R© Orange protein stain, 10 μM holoQncM and 10 % (v/v) glycerol.

SYPRO R© Orange gives a fluorescence signal by interacting with hydrophobic patches of the protein.

Assuming a direct linear correlation between the thermal denaturation of the protein and the

exposure of the hydrophobic protein regions to the stain-containing environment, the melting curve

can be recorded by measuring the SYPRO R© Orange fluorescence signal.

The ThermoFluor measurements were performed in the department of Molecular Structural Biology

(Institute for Microbiology and Genetics, Georg-August-University Göttingen). The temperature

range was 20 – 95 ◦C. The temperature increment (1 K/30 s) was performed using a C1000 thermal

cycler. The thermal protein unfolding was monitored using a CFX96
TM

Optical Reaction Module

(excitation: 515 – 535 nm, detection: 560 – 580 nm).
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2 Mechanistic Characterization of Transaldolase from

Thermoplasma Acidophilum

2.1 Introduction

2.1.1 Thermoplasma Acidophilum

Thermoplasma acidophilum was first isolated and described by Darland et al. (1970). Initially,

the organism was annotated as mycoplasma because of the lack of a cell wall. They isolated the

organism from samples from self-heating coal refuse piles. In spite of its anthropogenic origin, it

was the only known habitat of Thermoplasma acidophilum for nearly two decades. Segerer et al.

(1988) could isolate the organism from natural hot acidic solfatara fields and suggested this kind of

biotopes as its natural habitat. Thermoplasma acidophilum culture grows optimally at a temperature

of ∼59 ◦C under acidic conditions (pH 1 – 2). This thermophilic and acidophilic properties are

name giving for the prokaryote. According to the suggestion that the stability of the cells under

extreme conditions is caused by the nature of the cell membrane (Brock, 1967), the cell membrane

of Thermoplasma acidophilum was analyzed in further studies. Analysis of the cell membrane

behavior of the cultivated Thermoplasma acidophilum strain showed that the membrane is stable

at acidic conditions, but the change of the pH to values > 8 induces cell lysis (Belly and Brock,

1972). Although the acidic conditions are necessary for the organism to survive, the intracellular

pH is nearly neutral (Hsung and Haug, 1975). Further analysis of the membrane composition

showed that the membrane of Thermoplasma acidophilum does not contain ester-bound fatty acids,

which are usual for bacterial membranes (Langworthy et al., 1972), but long-chain isopranols

linked as diglycerol tetraethers (Langworthy, 1977; Langworthy et al., 1972). These ether lipids

were suggested to form monolayers, which is in contrast to the bilayer of the bacterial membrane.

Today this kind of membrane is known in a number of prokaryotes, which belong to the kingdom

of archaea. Thermoplasma acidophilum belongs to this kingdom as well, but was first annotated

as mycoplasma because the archaea were not yet classified at the time of its discovery. This

classification was done later on, based on the phylogenetic analysis of ribosomal RNA sequences

(Woese and Fox, 1977). Finally, the complete genome sequence of Thermoplasma acidophilum

was published by Ruepp et al. (2000) giving new opportunities for further studies.
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2.1.2 Pentose Phosphate Pathway

Beside the unique membrane composition of archaea, these organisms exhibit differences in the

metabolic pathways compared to the other kingdoms of life, as it is the case for the pentose

phosphate pathway (PPP). Bacterial and eukaryotic cells use the pentose phosphate pathway to

generate reducing equivalents in form of NADPH and sugar phosphates of different carbon chain

lengths. The sugar phosphates are important precursors for biosynthesis of aromatic amino acids

and nucleotides, while NADPH is used for the redox reactions in anabolic processes such as

the biosynthesis of fatty acids. The pentose phosphate pathway can by subdivided in two parts:

the oxidative and the nonoxidative branch. The oxidative branch converts glucose 6-phosphate

(G6P) to ribulose 5-phosphate (Ru5P) and results in the reduction of two NADP+ molecules to

NADPH per one G6P molecule. The nonoxidative branch, containing the enzymes ribulose-5-

phosphate-3-epimerase (Ru5PE), ribose-5-phosphate isomerase (R5PI), transketolase (TK) and

transaldolase (TAL), generates the sugar phosphate precursors. The nonoxidative PPP connects

different metabolic pathways (glycolysis, biosynthesis of aromatic amino acids, biosynthesis of

nucleotides and oxidative PPP) in a reversible manner (scheme 2.1).

Phylogenetic analysis of the archeal genome sequences showed that archaea do not have the

complete set of genes for the enzymes of the pentose phosphate pathway (Soderberg, 2005).

All genomes analyzed in this study (13 genomes) are lacking the gene orthologs for the en-

zymes of the oxidative PPP except the genome of Halobacterium in which an ortholog for the

6-phosphogluconate dehydrogenase could be annotated. Moreover, only three of the analyzed

genomes, such as the genome of Thermoplasma acidophilum, contain the complete set of genes

for the nonoxidative PPP. Other analyzed organisms are lacking at least the gene ortholog for

transaldolase. In this context, alternative pathways were suggested for archeal organisms, compen-

sating for the missing pentose phosphate pathway enzymes (Aono et al., 2015; Orita et al., 2006;

Soderberg, 2005)
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G6P 6PGL 6PG Ru5P
G6PDH 6PGLase 6PGDH
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Scheme 2.1: The pentose phosphate pathway (PPP). G6P: glucose 6-phosphate; G6PDH:
glucose-6-phosphate dehydrogenase; 6PGL: 6-phosphoglucono-δ-lactone; 6PGLase: 6-
phosphoglucono-δ-lactonase; 6PG: 6-phosphogluconate; 6PGDH: 6-phosphogluconate dehy-
drogenase; Ru5P: ribulose 5-phosphate; Ru5PE: ribulose 5-phosphate-3-epimerase; R5PI: ribose-
5-phosphate isomerase; R5P: ribose 5-phosphate; X5P: xylulose 5-phosphate; TK: transketolase;
S7P: sedoheptulose 7-phosphate; GA3P: glyceraldehyde 3-phosphate; TAL: transaldolase; E4P:
erythrose 4-phosphate; F6P: fructose 6-phosphate. Adapted from (Soderberg, 2005).

2.1.3 Transaldolase

Since the transaldolase activity was observed for the first time in preparations from liver and yeast

(Horecker and Smyrniotis, 1955, 1953), transaldolases were found in most other eukaryotes,

prokaryotes and some archaea. Transaldolases catalyze the reversible transfer of dihydroxyacetone

units from ketose phosphates (donor substrate) to the C1 position of the aldose phosphates (acceptor

substrate). According to their mechanism of action, transaldolases are related to the aldolases

and are a part of the nonoxidative pentose phosphate pathway, where they catalyze the reversible

conversion of F6P and E4P into S7P and GA3P (scheme 2.2, Horecker and Smyrniotis (1953)).

Depending on the catalytic mechanism, aldolases are classified into two classes. Class I aldolases

use a lysine residue in the active site, which forms a reactive Schiff-base intermediate with the

substrate (Gefflaut et al., 1995; Horecker et al., 1972) and class II aldolases, which contain a

bivalent cation in the active site for catalytic purposes (Morse and Horecker, 1968). Transaldolases

mechanistically belong to the class I aldolases.
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Scheme 2.2: Transaldolase reaction in physiological context. Transaldolase (TAL) catalyzes
the reversible transfer of a dihydroxyacetone unit from ketose phosphates (fructose 6-phosphate
[F6P] or sedoheptulose 7-phosphate [S7P]) to the C1 position of the aldose phosphates (erythrose
4-phosphate [E4P] or glyceraldehyde 3-phosphate [GA3P]).

Samland and Sprenger (2009) subdivided the transaldolase family into five subfamilies based on

phylogenetic analysis of 46 coding sequences for transaldolases and related proteins from different

origins. The "classical" transaldolases belong to the subfamily I. The polypeptide chains of these

enzymes contain 310 – 350 amino acid residues. Nonactive isoforms of transaldolase in plants

belong to the subfamily II. The transaldolases of the third subfamily have longer polypeptide

chains (∼380 aa). Transaldolase from Thermoplasma acidophilum (TacTAL) belongs to the fourth

subfamily, whose subunits contains about 220 amino acid residues (223 aa in TacTAL). Enzymes of

the fifth subfamily have similar polypeptide chain length as these of the subfamily IV, but catalyze

an aldolase reaction (reversible aldolytic cleavage of sugar phosphate) instead of the transaldolase

reaction. Fructose 6-phosphate aldolase from Escherichia coli (EcFSA) belongs to this type of

enzymes (Schürmann and Sprenger, 2001).

2.1.4 Crystal Structure of TacTAL

According to analytical ultracentrifugation experiments, TacTAL forms homopentamers and ho-

modecamers (dimer of homopentamers) in solution (Lehwess-Litzmann, 2011). The equilibrium

constant for the pentamer/decamer equilibrium was determined as KD = 0.44 μM. Under the used

conditions, TacTAL crystallized in two different space groups: C2221 and P21 (Lehwess-Litzmann

et al., 2011a). The asymmetric unit of the structure in the C2221 space group is a homopentamer,

while a homodecamer is the asymmetric unit of the structure in the P21 space group. This ho-
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modecamer can be reconstructed from the homopentamer in C2221 when applying the symmetry

operations of the space group.
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Figure 2.1.1: The monomer of TacTAL. Red: α-helices; purple: β-strands; blue: loops. A:
Structure of a monomer of TacTAL B: Topology of a monomer of TacTAL (de Beer et al., 2014;
Hutchinson and Thornton, 1990; Laskowski, 2009). PDB entry: 3S1V (Lehwess-Litzmann et al.,
2011b).

A monomer of TacTAL exhibits a TIM-barrel fold (figure 2.1.1). The basic topology of this fold

is a (β/α)8-barrel structure, consisting of a β-barrel of eight parallel β-strands surrounded by eight

α-helices (Lehwess-Litzmann et al., 2011b). These secondary structure elements are ordered in an

alternating sequence connected via short loops. In a monomer of TacTAL, two additional helices

(α2 and α7) are inserted in this basic fold, flanking the C-terminal end of the β-barrel. Additionally,

a C-terminal α-helix (α11) from the neighboring monomer covers the C-terminal end of the β-barrel

(figure 2.1.2). This helix interacts with the helix α2. In classical transaldolases, which usually

form homodimers (Samland and Sprenger, 2009), a corresponding C-terminal α-helix is present

too, but it covers the β-barrel of the own monomer. In both cases, the resulting folding unit has a

similar overall topology but in case of TacTAL, this unit is composed from different monomers.

This inter-subunit helix swapping is assumed to contribute to the pentamer formation as it was

described for the EcFSA (Samland et al., 2012; Thorell et al., 2002).
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The C-terminal α-helix residues Thr201 and Asp211 perform hydrogen bonds with the side chains of

Gln117 and Thr30 of the neighboring subunit, respectively. Additionally, the side chain of Thr201 can

interact with the backbone carbonyl of Ile111. The residues Phe208 and Trp212 perform hydrophobic

interactions with Pro29 and Tyr42, respectively. The side chain of Tyr42 coordinates the backbone

nitrogen of the Ile222 residue. Finally, the C-terminal carboxyl group forms a salt bridge with Arg47.

Beside the interaction of the C-terminal helix with the neighboring subunit, the barrel structures of

the monomers interact with each other as well. The side chain of Asp23 interacts with the Lys123

residue, which in turn coordinates the backbone carbonyl of Met1. The backbone carbonyl of

Ala182 residue is coordinated by the side chain of Tyr157. In addition, the hydrophobic interactions

stabilize the pentamer formation, since the interaction surface between the monomers is faced with

hydrophobic residues.

A

TacTAL

B

EcTAL

Figure 2.1.2: Inter-subunit helix swapping between two neighboring subunits of TacTAL. A:
The C-terminal α-helix of the subunit A (green) covers the β-barrel of the neighboring subunit
E (gray). PDB entry: 3S1V (Lehwess-Litzmann et al., 2011b). B: A subunit of EcTAL. The
C-terminal α-helix (green) and the β/α-barrel belong to the same polypeptide chain. PDB entry:
1ONR (Jia et al., 1996).

Two pentamers of TacTAL form a homodecamer. In this homodecamer, the C-terminal ends of

the β-barrels of one pentamer are face-to-face oriented to the C-terminal ends of the β-barrels of

the opposite pentamer (Lehwess-Litzmann et al., 2011b). A pentamer in this decameric structure

is rotated around the noncrystallographic five-fold symmetry axis by 18 ◦ relative to the other

pentamer (figure 2.1.3). The active site entrances of the opposite subunits of the homopentamer

are oriented towards each other. Similar quaternary structure was described for the related EcFSA

(Thorell et al., 2002).

Fructose 6-phosphate aldolase from Escherichia coli (EcFSA) is a class I aldolase, which was

first described by Schürmann and Sprenger (2001). EcFSA exhibits a similar overall structure
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(Z-score=30, rmsd=1.5; on basis of the Cα positions in a monomer) and shows 31.1 % identity

and 60.9 % similarity to TacTAL based on structure-assisted alignment (Di Tommaso et al., 2011;

Holm and Rosenström, 2010). Surprisingly, this novel enzyme does not show transaldolase activity,

but fructose 6-phosphate aldolase activity. EcFSA does not transfer three-carbon units from donor

substrates to acceptor substrates, but catalyzes the reversible cleavage of the ketose-phosphate

substrate.

A

EcFSA

B

TacTAL

C D

Figure 2.1.3: Crystal structures of TacTAL and EcFSA. A: Front view of the homopentamer of
EcFSA as secondary structure. PDB entry: 1L6W (Thorell et al., 2002). B: Front view of the
homopentamer of TacTAL as secondary structure. PDB entry: 3S1V (Lehwess-Litzmann et al.,
2011b). C: Side view of the homodecamer of EcFSA. The homopentamers are represented as
secondary structure or surface. PDB entry: 1L6W (Thorell et al., 2002). D: Side view of the
homodecamer of TacTAL. The homopentamers are represented as secondary structure or surface.

The subunits of TacTAL crystallized in resting state adopt two different conformational states

(„open“ and „closed“) (Lehwess-Litzmann, 2011). In the „closed“ state, the flexible N-terminal

part (6 – 55 aa) interacts with the C-terminal α-helix of the neighboring subunit (figure 2.1.4). Two

interactions especially were assumed to play a significant role in the stabilization of the „closed“

state: a hydrogen bond between the residues Thr30 and Asp211 and the hydrophobic interaction

between residues Pro29 and Phe208 (Lehwess-Litzmann, 2011; Lehwess-Litzmann et al., 2011b).
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Both of these interactions are not present in the „open“ state because of the spatial separation of the

respective residues. The residues Pro29 and Thr30 are located in the helix α2, while their respective

interaction partners Phe208 and Asp211 are located in the C-terminal α-helix of the neighboring

subunit. The entrance of the active site in the „open“ state is ∼3.8 Å wider compared to the active

site in the „closed“ state (Lehwess-Litzmann, 2011).

α11
α2

A

Pro29

Phe108

7.7 Å

4.6 Å

B

open
closed

Asp211
Thr304.7 Å

2.7 Å

C

Figure 2.1.4: TacTAL monomer in its „open“ and „closed“ states. The polypeptide backbone
is represented as cartoon, the interacting residues as sticks. Gray: „closed“ state; orange: „open“
state. A: The α-helices α11 and α2 are close to each other in the „closed“ state, but separated in the
„open“ state. B: The residue Phe208 of the α11-helix interacts with the residue Pro29 of the α2-helix
in the „closed“ state but not in the „open“ state. C: The residue Asp211 of the α11-helix interacts
with the residue Thr30 of the α2-helix in the „closed“ state but not in the „open“ state.

2.1.5 Active Site and the Reaction Mechanism of TacTAL

As a member of the class I aldolase family, transaldolase catalyzes its reaction using an active site

lysine, which forms the Schiff base intermediate with the substrate (Venkataraman and Racker,

1961). In TacTAL, this lysine (Lys86) is located in the β4-strand of the barrel structure. Interestingly,

the corresponding lysine residue of the mechanistically related class I fructose-1,6-bis(phosphate)

aldolase (FBPA) is located in the β6-strand of the barrel (Jia et al., 1996). In this context, a common

ancestor was suggested, which evolved into the present-day aldolases and transaldolases. During the

evolution, a circular permutation occurred on gene level resulting in circular permuted TIM-barrel

structures. The circular permutation events are suggested to be a common principle in the evolution

of proteins belonging to the TIM-barrel family (Nagano et al., 2002) and were assumed to play a

role in the evolution of non-TIM-barrel enzymes too, as it was suggested for the 1,3-1,4-β-glucanase

(Heinemann and Hahn, 1995).

For the reaction of TacTAL, the reactive lysine in the active site of transaldolase has to be deproto-

nated for the nucleophilic attack on the sugar’s carbonyl group (Stellmacher et al., 2015). This

is performed by a conserved glutamate residue (Glu60 in TacTAL). This glutamate is the general
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Scheme 2.3: Proposed reaction mechanism of transaldolase/aldolase. The transaldolase reac-
tion (TAL) results in the reversible transfer of a dihydroxyacetone unit from ketose phosphates
(donor substrate) to the C1 position of the aldose phosphates (acceptor substrate). The aldolase
reaction (FSA) results in the reversible cleavage of the ketose-phosphate substrate. Both activities
share the first half-reaction (steps 1 – 5) of the catalytic cycle. The main difference between
the mechanisms is the protonation of the carbanion/enamine intermediate (Schiff base in FSA).
Published in Sautner et al. (2015).

acid-base catalyst of transaldolase (Lehwess-Litzmann et al., 2011b). Once deprotonated, the

lysine residue can perform the nucleophilic attack on the carbonyl carbon of the donor-substrate,

resulting in the formation of the carbinolamine intermediate (scheme 2.3, steps 1 and 2). The

carbinolamine’s C2 hydroxy group formed upon the nucleophilic attack and tautomerization step is

protonated by the general acid-base catalyst Glu60 and followed by dehydration (steps 3 and 4).

After water elimination, the Schiff base intermediate is formed. Deprotonation of the C4 hydroxy

group by the glutamate residue and the subsequent rearrangement result in the aldol cleavage of

the intermediate (step 5). After product release, the reactive lysine remains modified as covalently

linked carbanion/enamine intermediate. This reaction sequence describes the donor half-reaction
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of the catalytic cycle. The acceptor half-reaction starts with the binding of the acceptor substrate

followed by the nucleophilic attack of the carbanion/enamine intermediate on the carbonyl group

of the acceptor substrate. Because of the reversible nature of the catalytic steps, the acceptor

half-reaction corresponds to the reverse donor half-reaction.

The proton transfer reactions between the catalytic glutamate and the intermediates are facilitated

by the catalytic water molecule observed in the active site, which is conserved in transaldolases (Jia

et al., 1997; Thorell et al., 2002). However, the presence of this catalytic water molecule during

all catalytic steps is in question (Lehwess-Litzmann, 2011; Tittmann, 2014). This catalytic water

molecule is coordinated by the residues Glu60 and Thr110 (figure 2.1.5). In the structure containing

the F6P-Schiff base intermediate in the active site this water is additionally coordinated by the C4

hydroxy group of the intermediate (Lehwess-Litzmann et al., 2011b).

F6P-Schiff base

Asp6

Glu60

Lys86 Thr110

Asn28

W1

Phe132

C4OH Figure 2.1.5: Catalytic water in the active
site of TacTAL. The selected active site
residues (gray) and the F6P-Schiff base inter-
mediate (yellow) are represented as sticks. The
polypeptide backbone (cyan) is shown as sec-
ondary structure. The catalytic water molecule
(W1, framed) is shown as red sphere. The in-
teraction partners of the water are labeled in
red.

While most of the active site residues of TacTAL that are important for the catalysis and/or substrate

binding are conserved in the related EcFSA (Asp6, Asn28, Lys86, Thr110, Arg135 and Ser167), some

important active site residues are different and replaced in EcFSA by hydrophobic (Ser58→ Phe,

Asn108 → Leu and Ser130 → Ala) or homologous residues (Glu60 → Gln, Phe132 → Tyr and

Arg169 → Lys). The absence of the transaldolase’s general acid-base catalyst Glu60 (Gln59 in

EcFSA) and the presence of a tyrosine residue at the position of Phe132 (Tyr131 in EcFSA) are of

particular interest. It could be shown that a single mutation of the corresponding phenylalanine

residue to tyrosine in the E. coli transaldolase and TacTAL results in a variant with stimulated

aldolase activity (Lehwess-Litzmann, 2011; Schneider et al., 2008).

According to the proposed reaction mechanisms (scheme 2.3) of TacTAL and EcFSA, both enzymes

share the first half-reaction (donor half-reaction) of the catalytic cycle. In the case of TacTAL, those

reactions are acid-base catalyzed by the residue Glu60. The absence of the equivalent residue in



Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum 61

the active site of EcFSA is therefore surprising, since the acid-base catalyzed aldol-cleavage of the

substrate is also a part of the reaction mechanism of this enzyme. With exception of Asp6, only

the residue Tyr131 can perform the acid-base catalysis in the active site of EcFSA. The Asp6 is

suggested to play an important role in the substrate binding and its correct orientation but does

not sufficiently participate on the acid-base catalysis (Lehwess-Litzmann et al., 2011b). In the

TacTAL structure containing the F6P-Schiff base intermediate, this residue coordinates the C3 and

C5 hydroxy groups of the intermediate. On this basis, one can assume that the Tyr131 residue takes

over the role of the transaldolase’s glutamate residue as the general acid-base catalyst.

The main difference in the catalytic mechanism of FSA compared to the reaction catalyzed by TAL

is the protonation of the carbanion/enamine intermediate. In the case of TAL, this intermediate im-

mediately reacts with the acceptor substrate (transaldolase reaction), while in FSA, the intermediate

is protonated, forming a DHA-Schiff base intermediate (scheme 2.3). The DHA-Schiff base cannot

attack the acceptor substrate nucleophilically but can be hydrolyzed (aldolase reaction). In this

context, the Tyr131 residue in EcFSA is assumed to protonate the carbanion/enamine intermediate.

On the other hand, the Glu60 residue in TacTAL does not perform that protonation.

Tyrosine side chains are known to perform proton transfer reactions in other class I aldolases as

in the case of the mammalian fructose-1,6-bis(phosphate) aldolase (FBPA). During the catalytic

reaction of the rabbit muscle FBPA the C-terminal tyrosine residue (Tyr363) located on the flexible

terminus acts together with Lys146 and Glu187 as the acid-base catalyst for the aldolytic cleavage of

the substrate fructose 1,6-bis(phosphate) into the dihydroxyacetone phosphate and glyceraldehyde

3-phosphate (St-Jean and Sygusch, 2007). Interestingly, the deletion of this tyrosine residue by

treatment of the protein with carboxypeptidase results in a decrease of the aldolase activity and in

an increase of the transaldolase activity (Rose et al., 1965).

The relative orientation of the tyrosine residue in the active site of EcFSA differs from that of the

glutamate in TacTAL. While the transaldolase’s glutamate residue is oriented in same direction

as the reactive lysine residue (towards the active site entrance), the aldolase’s tyrosine residue is

oriented in the opposite direction (towards the reactive lysine). These two situations are common in

different transaldolases and aldolases and are named as co-aligned and opposite-faced, respectively

(Tittmann, 2014).

TacTAL was the first transaldolase in whose active site a reactive F6P-Schiff base intermediate

could be trapped in crystallo (Lehwess-Litzmann et al., 2011b). The C3 and C5 hydroxy groups of
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Scheme 2.4: Coordination of the F6P-Schiff
base intermediate in the active site of
TacTAL. Adapted from Lehwess-Litzmann
et al. (2011b)

the intermediate are coordinated by Asp6 (figure 2.4). The C4 hydroxy group is coordinated by the

Asn28 residue and the catalytic water molecule. The phosphate group is coordinated by the residues

Arg135, Arg169 and Ser167.

The C1 hydroxy group exhibits two alternative conformations („up“ and „down“). This group

in the „up“ conformation is coordinated by the residue Thr110 (figure 2.1.6 A) and the „down“

conformation is coordinated by the residue Ser130 (figure 2.1.6 B). Both interactions were analyzed

in previous works (Lehwess-Litzmann, 2011; Sautner, 2012). The TacTALT110V variant with

interrupted „up“ coordination showed a greatly impaired transaldolase activity (Lehwess-Litzmann,

2011). Apart from the coordination of the C1 hydroxy group, this threonine coordinates the catalytic

water molecule and is suggested to coordinate the C2 hydroxy group of the carbinolamine inter-

mediate (Schörken et al., 2001). The TacTALS130A variant with interrupted „down“ coordination

exhibits an impaired donor half-reaction activity (Sautner, 2012). However, crystallographic stud-

ies on this variant showed that the C1 hydroxy group of the F6P-Schiff base intermediate trapped in

the active site adopts both alternative conformations despite the missing interaction partner (Ser130)

in the variant. In the case of the variant, the „down“ conformation is coordinated by the residue

Asn108, which is spatially close to the original interaction partner Ser130. A corresponding variant

of transaldolase from Escherichia coli (EcTALS176A) showed highly impaired transaldolase activity

(Schörken et al., 2001).
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Figure 2.1.6: „Up“ and „down“ conformations of the C1 hydroxy group of the F6P-Schiff
base intermediate in the active site of TacTALwt co-crystallized with F6P. The selected active
site residues (gray) are represented as sticks. The polypeptide backbone is shown as secondary
structure (cyan). The catalytic water molecule is shown as the red sphere. The respective hydrogen
bond interactions are represented as black dashes. A: The „up“ conformation of the intermediate
(yellow) is coordinated by Thr110 (framed). B: The „down“ conformation of the intermediate
(yellow) is coordinated by Ser130 (framed).

2.1.6 Motivation

Since the transaldolase activity was first described by Horecker and Smyrniotis (1953), extensive

information about the mechanism of action and the structure of the enzyme was gathered. More

than half of this information was contributed during the last 20 years. During the last decade,

studies on the transaldolase from Thermoplasma acidophilum enriched the structural basis for

the understanding of the catalytic mechanism. The structure of TacTAL co-crystallized with the

substrate F6P was the first observation of a reactive intermediate in the active site of transaldolase.

However, some important mechanistic and structural aspects remain unexplained. Due to the lack

of structural information about the intermediates appearing prior to the Schiff base formation, the

role of the active site residues, which do not participate directly on the acid-base catalysis but

contribute to the binding process and presumably to the correct orientation of the substrate and/or

intermediates, is unclear.

One of the tasks of the present work was to complement the previous efforts regarding the coordina-

tion of the substrate’s C1 hydroxy group in its „down“ conformation. This group is located directly

next to the substrate’s carbonyl group, which is the reactive group in the course of the essential

Schiff-base formation. The coordination of the C1 hydroxy group is assumed to be important for

the correct orientation of the carbonyl group during the nucleophilic attack of the reactive lysine
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(Schörken et al., 2001). Furthermore, this interaction is suggested to contribute to substrate binding

and correct positioning of the intermediates.

A further aim of the thesis was to obtain structural information about the substrate bound in the

active site of TacTAL as Michaelis complex and the carbinolamine intermediate, in order to provide

a structural basis for a deeper understanding of the reaction mechanism.

In the beginning of the millennium, an enzyme with a novel activity was found in Escherichia

coli (Schürmann and Sprenger, 2001). The enzyme catalyzes the reversible cleavage of fructose

6-phosphate and was referred to as fructose 6-phosphate aldolase (FSA). Although EcFSA is

structurally similar to the TacTAL and catalyzes a mechanistically similar reaction, the determinant

of the reaction selectivity remained unclear. Different TacTAL variants mimicking the situation in

the active site of EcFSA should be designed, in order to investigate how both enzymes discriminate

between transaldolase and aldolase activities.

Structural analysis of TacTAL showed the co-existence of two different conformational states

(„open“/„closed“) for single subunits of the homopentamer (Lehwess-Litzmann et al., 2011b).

Interestingly, the structures of TacTAL co-crystallized with the substrate F6P do not exhibit dif-

ferent conformations. All subunits, which bind the substrate in the active site, are present in

the „closed“ conformation. Assuming the presence of different conformational states in solution,

the conformational-selection mechanism for substrate binding was suggested (Lehwess-Litzmann

et al., 2011b). The role of these conformational changes in the catalysis can be investigated by

introduction of a disulfide bond, cross-linking the flexible regions and arresting the „closed“ con-

formation. This conformational arrest can be unlocked by applying reducing agents such as DTT

or β-mercaptoethanol giving the possibility to analyze the TacTAL in its constitutively „closed“

conformation.
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2.2 Results

2.2.1 Crystallographic Studies on Enzyme Bound Intermediates

In order to gather deeper insights into the catalytic cycle of the transaldolase, the relative orientations

of the intermediates occurring during the transaldolase reaction in the active site were analyzed

using the crystallographic approach.

The crystal structure of TacTALwt co-crystallized with d-fructose 6-phosphate (F6P) was determined

and refined as described in section 1.6.3. The initial model was refined against the experimental data

to 1.51 Å resolution (table A.3 in the appendix). The final model corresponds to the diffraction data

with Rwork = 15.98 % and Rfree = 18.58 % (table A.5 in the appendix). All subunits of the pentamer

in the asymmetric unit are existent in the „closed“ conformation. An additional electron density

was observed in all five active sites. This electron density was interpreted as F6P covalently linked

to the reactive lysine (Lys86) forming the F6P-Schiff base intermediate (figure 2.2.7 B) according

to the proposed catalytic mechanism (scheme 2.3). The C1OH-group of the intermediate shows two

alternative conformations, which were named in previous work as „up“ and „down“ conformations

(Lehwess-Litzmann et al., 2011b). The intermediate’s C1OH-group in the „up“ conformation

interacts with the Thr110 residue and participates in the hydrogen bond network between Thr110,

Glu60 (general acid-base catalyst in TacTAL reaction), the catalytic water and the C4OH-group of

the intermediate (figure 2.2.7 A). In the „down“ conformation it interacts with Ser130 and partakes

in the hydrogen bond network between Ser130, Asn108 and Ser58. This observation corresponds

well to the previously published results of Lehwess-Litzmann et al. (2011a,b).

The Glu60 residue in the active site of TacTAL is suggested to be the general acid-base catalyst

for the transaldolase reaction (Lehwess-Litzmann, 2011; Lehwess-Litzmann et al., 2011b). The

proton transfer reactions are facilitated by the catalytic water molecule in the active site. This

water molecule is coordinated by the Thr110 and Glu60 residues as well as by the C4OH-group of

the F6P-Schiff base intermediate. A single-mutation of the corresponding residue to glutamine

in E. coli transaldolase (Glu96→ Gln) results in a variant showing a highly affected transaldolase

activity (Schörken et al., 2001). Likewise, the transaldolase activity of the TacTALE60Q variant

was described as greatly impaired, considering the loss of the general acid-base catalyst (Lehwess-

Litzmann, 2011; Lehwess-Litzmann et al., 2011b). Moreover, the mass spectrometric analysis of

the reaction intermediates showed a minor accumulation of the F6P-carbinolamine intermediate in
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Figure 2.2.7: Active site of TacTALwt co-crystallized with F6P. The selected active site residues
(gray) are represented as sticks. The polypeptide backbone is shown as secondary structure (cyan).
A: The C1OH-group of the F6P-Schiff base intermediate (yellow) shows two alternative confor-
mations („up“ and „down“). The intermediate’s C1OH-group in the „up“ conformation (yellow)
interacts with Thr110 (framed) and partakes in the hydrogen bond network (blue dashes) between
Thr110, catalytic water (W1), Glu60 (labeled in blue) and the C4OH-group of the intermediate. The
intermediate’s C1OH-group in the „down“ conformation (green) interacts with Ser130 (framed) and
participates in the hydrogen bond network (red dashes) between Ser130, Asn108 and Ser58 (labeled
in red). B: mFO-DFC simulated annealing omit map (green mesh, contour level 3σv).

the variant, which was not detected neither for wild type enzyme nor for other analyzed variants

(Lehwess-Litzmann, 2011). This finding is not surprising, since the protonation of the carbinolamine

intermediate is performed via acid-base catalysis prior to water elimination resulting in the formation

of the Schiff base intermediate, which was the only intermediate detected for the wild type

enzyme. However, the major fraction of the observed intermediates appearing during the reaction

of the TacTALE60Q variant in presence of F6P and E4P was represented by the F6P-Schiff base

intermediate (Lehwess-Litzmann, 2011).

The observed rate constant for the donor half-reaction in absence of E4P (consisting of the binding

of F6P, F6P-carbinolamine intermediate formation, F6P-Schiff base intermediate formation, F6P-

Schiff base intermediate cleavage and GA3P-release) is two orders of magnitude lower compared

to the wild type reaction according to the stopped-flow measurements (see figure C.4 in the

appendix, for a representative progress curve). The observed first order rate constant for the

reaction of TacTALE60Q after rapid mixing with F6P (final concentration 10 mM) was determined

to kobs = 0.7 s−1 (kobs = 55.9 s−1, for the wild type reaction).

In order to obtain structural information about the covalently linked intermediate in the active site

of TacTALE60Q, the variant was co-crystallized with F6P. The initial model was refined against the
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diffraction data from a single crystal to 1.65 Å resolution (table A.3 in the appendix). The final

model corresponds to the diffraction data with Rwork = 16.23 % and Rfree = 19.43 % (table A.5 in

the appendix). An additional electron density was observed in all five active sites and interpreted

as the F6P-Schiff base intermediate (figure C.6 in the appendix). A similar situation was recently

reported for the corresponding variant (Glu96→ Gln) of transaldolase from E. coli (Stellmacher

et al., 2016).

The active site of the variant is superimposable with the active site of TacTALwt (rmsd = 0.133 Å

based on Cα atoms of a monomer, figure 2.2.8 B). Although the F6P-carbinolamine intermediate was

previously detected by mass spectrometric analysis of the variant (Lehwess-Litzmann, 2011), the

respective intermediate could not be trapped in the structure of the TacTALE60Q variant. The reasons

are most probably the consequence of the relative long timeframe of the crystallization approach

(7 – 14 days for crystallization compared to 10 min for the mass spectrometry measurements) and/or

the relative small population of the F6P-carbinolamine intermediate compared to the F6P-Schiff

base intermediate. The carbinolamine intermediate is another intermediate of interest appearing

prior to the Schiff base formation.

In order to mimic the F6P-carbinolamine intermediate, TacTALwt was co-crystallized with

d-mannitol 1-phosphate (M1P). The subject of interest was the relative orientation of the carbino-
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Figure 2.2.8: Active site of TacTALE60Q co-crystallized with F6P. A: The C1OH-group of the
F6P-Schiff base intermediate (yellow) shows two alternative conformations („up“ and „down“).
The mutated residue (Glu60 → Gln, framed) is labeled in red. The catalytic water is coordinated by
Thr110, Gln60 and the intermediate’s C4OH-group (black dashes). The selected active site residues
(gray) are represented as sticks. The polypeptide backbone is shown as secondary structure (cyan).
B: Superposition of the active sites of TacTALE60Q (gray; ligand: yellow) and TacTALwt (cyan,
ligand: purple).
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lamine’s C2OH-group in the active site of transaldolase. M1P is a structural analogue of F6P

differing in the formally reduced carbonyl group compared to the F6P structure (OH-group in

M1P). This C5OH-group in the structure of M1P is assumed to mimic the C2OH-group of the

F6P-carbinolamine intermediate formed after the nucleophilic attack of the reactive lysine on

the substrate’s C2-carbonyl group. The formation of the OH-group implies a change of the

C2-atom’s hybridization state (from sp2 for a C2-carbonyl group to sp3 for a C2OH group). This

change results in the introduction of a new stereocenter. Since the chirality of the developing

stereocenter is unknown, both enantiomers (R vs. S) are possible. The structural analogue of F6P

with an S-stereocenter at C2 position is sorbitol 6-phosphate (S6P), whereas M1P mimics the

(2R)-carbinolamine (scheme 2.5). Both substances are able to inhibit the physiological reaction of

transaldolase (data not shown).
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Scheme 2.5: Structural formula of S6P, F6P
and M1P. While the F6P structure exhibits a
carbonyl group at C2 position, the molecules of
S6P and M1P contain a hydroxy group at the
corresponding carbon atom (highlighted in red).
The different (S)/(R)-configuration is denoted,
respectively. Note the reverse atom numbering
(blue numbers) in case of M1P nomenclature
compared to S6P and F6P.

The interaction of S6P with the active site of TacTALwt was analyzed in previous studies. Unfor-

tunately, the co-crystallized analogue did not bind properly into the active site of the wild type

enzyme and showed multiple conformations (Lehwess-Litzmann, 2011).

The structure of TacTALwt co-crystallized with M1P was determined to 1.85 Å resolution (table A.3

in the appendix) and refined against the diffraction data with Rwork = 18.39 % and Rfree = 21.88 %

(table A.5 in the appendix). While the subunits B, C and E were modeled as „closed“ conformation,

the subunits A and D were modeled as mixed „open“/„closed“ alternative conformations. Additional

electron densities observed in the active sites of subunits B, C, D and E were interpreted as the

non-covalently bound M1P (figure C.7 in the appendix). In the active site of the subunit A only the

phosphate group of M1P could be modeled into the electron density. The electron density around

the ligand’s C3-atom and the C3 hydroxy group is missing, implying a higher flexibility of this
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group. Aldol cleavage of M1P is unfavorable, because the essential Schiff base formation is already

impaired due to the lack of the carbonyl group in the structure of the ligand.

According to the refined structure, M1P is present in the active site with an occupancy of ∼70 –

80 %. Furthermore, a resting state water molecule was modeled near the C5OH-group of M1P

(figure 2.2.9 A). Since the distance between this water molecule and the C5OH-group of the ligand

is too short for a co-existence of both (∼1.6 Å), the water is assumed to be present only in active

sites, which did not bind M1P. In this context, the water molecule was modeled and refined with an

occupancy of ∼20 – 30 %. A water molecule on this position is present in the resting state structure

of TacTALwt (PDB entry: 3S0C (Lehwess-Litzmann et al., 2011a,b)) and is coordinated by Thr110,

Glu60 and Lys86. This water is displaced compared to the position of the catalytic water molecule

observed in the structure of the wild type enzyme co-crystallized with F6P by ∼0.7 Å.
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Figure 2.2.9: Active site of TacTALwt co-crystallized with M1P. A: M1P (yellow sticks) is
present with partial occupancy in the active site of TacTALwt in a similar conformation as the F6P-
Schiff base intermediate. The reactive lysine (framed) shows two alternative conformations. The
C5OH-group of M1P presumably mimics the C2OH-group of the F6P-carbinolamine intermediate.
This group is coordinated by Thr110 and one of the conformations of Lys86, which is coordinated
by Glu60 (red dashes). A resting state water (W1, framed), corresponding to the catalytic water, is
present near the C5OH-group of M1P. This water is in hydrogen bond distance to Thr110, Gln60

and Lys86 in both conformations (gray dashes). The C6OH-group of M1P is coordinated by Ser130

and Asn108 (blue dashes) corresponding to the „down“ conformation of the C1OH-group of the
F6P-Schiff base intermediate. The selected active site residues (gray) are represented as sticks. The
polypeptide backbone is shown as secondary structure (cyan). B: Superposition of the active sites
of TacTALwt co-crystallized with M1P (gray) and F6P (cyan). The non-covalently bound M1P
(yellow) is displaced relatively to the F6P-Schiff base intermediate (purple). The water molecules
in the structures of TacTALwt co-crystallized with F6P or M1P are represented as orange or red
spheres, respectively.

The reactive lysine (Lys86) was modeled into the electron density in two alternative conformations

(figure 2.2.9 A). One of the conformers is oriented towards the C5-atom of M1P. The distance
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between the lysine’s Nε and ligand’s C5 atoms is ∼1.8 Å, which is too long for a carbon-nitrogen

covalent bond (∼1.469 – 1.499 Å (Allen et al., 1987)) but too short for the co-existence of both

atoms at their refined positions. Therefore, this conformer of the reactive lysine was assumed

to be present in the fraction of the non-occupied active sites (occupancy of ∼20 – 30 %). The

second conformation of Lys86 is coordinated by Glu60. The interatomic distance between the

ε-amino group of the lysine conformer and the C5OH-group of the ligand is sufficient for a

hydrogen bond interaction (∼2.8 Å). Furthermore, the ε-amino group of the reactive lysine in both

conformations can interact with the main chain carbonyl of Thr27 as in the case of the F6P-Schiff

base intermediate trapped in the active site of TacTALwt co-crystallized with F6P (interatomic

distances of ∼2.8 – 2.9 Å; figure C.5 in the appendix).

The orientation of the C2, C3, and C4 hydroxy groups of the M1P molecule bound in the active

site of TacTALwt, as well as the coordination of the phosphate group, is comparable to the binding

mode of the corresponding groups of the F6P-Schiff base intermediate (figure 2.2.9 B). However,

the M1P molecule is displaced towards the entrance of the active site compared to the Schiff

base intermediate (displacement of the phosphate group by ∼0.9 Å). The C6OH-group of the non-

covalently bound M1P molecule is coordinated by the residues Asn108 and Ser130 corresponding to

the „down“ conformer of the C1OH-group of the F6P-Schiff base intermediate.

The C5OH-group of the M1P molecule is oriented towards the position of the catalytic water

molecule present in the active site of TacTALwt co-crystallized with F6P. This group is coordinated

by the residues Thr110 and Lys86. The C5OH-group is assumed to mimic the C2OH-group of the

F6P-carbinolamine intermediate formed upon nucleophilic attack of the catalytic lysine on the C2

carbonyl group of the F6P substrate. In the case of the real F6P-carbinolamine intermediate, the

interaction of the C2 hydroxy group with the ε-amino group of the lysine residue is not possible,

because the lysine is covalently linked to the C2 atom. The residue Thr110 is conserved in all

transaldolases (Samland and Sprenger, 2009). Beside its role in the coordination of the catalytic

water, this conserved threonine residue was already assumed to coordinate the C2 hydroxy group of

the carbinolamine intermediate (Schörken et al., 2001). A single-mutation of the Thr110 to valine

results in a TacTAL variant showing a two orders of magnitude lower turnover number and one

order of magnitude higher apparent Michaelis constant for substrate F6P compared to the wild type

enzyme (Lehwess-Litzmann, 2011).
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The catalytic water molecule is assumed to mediate the proton transfer reactions between the general

acid-base catalyst (Glu60) and the substrate/intermediates during catalysis (Lehwess-Litzmann,

2011; Lehwess-Litzmann et al., 2011b). A corresponding water molecule is not present in the active

site of wild type enzyme co-crystallized with M1P. According to the proposed catalytic mechanism

(scheme 2.3) the C2OH-group of the carbinolamine intermediate is protonated by Glu60 prior to

water elimination resulting in the formation of the F6P-Schiff base intermediate. In absence of the

catalytic water, the observed distance between the C5 hydroxy group of M1P and the acid-base

residue Glu60 is too long for a direct proton transfer (∼4.6 Å) but could be possible assuming a

local flexibility of the active site.

The carbinolamine intermediate is a result of the nucleophilic attack of the catalytic lysine on the

carbonyl group of the donor substrate bound in the active site as Michaelis-complex. To elucidate

the relative orientation of the substrate F6P in the Michaelis-complex an inactive TacTAL variant

(TacTALK86Q) was generated and co-crystallized with F6P. The replacement of the reactive lysine

(Lys86) by glutamine results in a variant unable to form the carbinolamine- and the Schiff base

intermediates.

The structure of TacTALK86Q co-crystallized with F6P was determined to 1.75 Å resolution

(table A.3 in the appendix) and refined against the diffraction data with Rwork = 20.88 % and

Rfree = 25.04 % (table A.5 in the appendix). All five subunits of the homopentamer in the crystallo-

graphic asymmetric unit were observed in „closed“ conformation. The donor substrate F6P was

modeled in all five subunits into the observed electron density as non-covalent complex and refined

to an occupancy of ∼70 – 80 % (figure C.8 in the appendix). As in the case of wild type protein

co-crystallized with M1P the middle part of the F6P molecule, especially the C4 hydroxy group

(corresponding to the C3OH in M1P), is not represented by the corresponding difference electron

density.

The C3, C4 and C5 hydroxy groups, as well as the phosphate group of the non-covalently bound

F6P, are coordinated by the active site residues in similar way as the corresponding groups

of the F6P-Schiff base intermediate (figure 2.2.10 B). Compared to the transaldolase structure

containing the F6P-Schiff base intermediate in the active site, the non-covalently bound F6P is

shifted towards the entrance of the active site by approximately one carbon position. The C1OH

group is coordinated by Thr110 corresponding to the „up“ conformer of the C1OH-group of the

F6P-Schiff base intermediate.
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The C2 carbonyl of the non-covalently bound substrate is oriented towards the general acid-base

catalyst Glu60 but the interatomic distance between the side chain carboxyl group of the glutamate

residue and the carbonyl oxygen of F6P is too long for a hydrogen bond interaction (∼4.9 Å). The

only active site residue placed in the hydrogen bond distance to the C2 carbonyl oxygen is the

introduced Gln86 (figure 2.2.10 A). In this context, a transient interaction between the lysine’s

ε-amino group and the carbonyl oxygen of F6P could be possible. The catalytic water observed in

the active sites of TacTAL structures containing the F6P-Schiff base intermediate is not present in

the active site of the variant.
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C2O/C3OH
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F6P

Asn108

Asn28

Lys86
Gln86

C1OH

Figure 2.2.10: Active site of TacTALK86Q co-crystallized with F6P. A: F6P (yellow sticks) is
present with partial occupancy in the active site of TacTALK86Q. The mutated residue (Lys86 →Gln,
framed) is labeled in red. This residue is coordinated by Glu60 and Ser58 (black dashes). The C2-
carbonyl oxygen of F6P is coordinated by Gln86 (blue dashes). The catalytic water is absent. The
C1OH-group of F6P is coordinated by Thr110 (red dashes) corresponding to the „up“ conformation
of the C1OH-group of the F6P-Schiff base intermediate. The selected active site residues (gray)
are represented as sticks. The polypeptide backbone is shown as secondary structure (cyan).
B: Superposition of the active sites of TacTALK86Q (gray) and TacTALwt (cyan) co-crystallized
with F6P. The non-covalently bound F6P (yellow) is displaced relatively to the F6P-Schiff base
intermediate (purple). The catalytic water molecule in the structure of TacTALwt is represented as
red sphere.

According to the Bürgi-Dunitz trajectory for the nucleophilic attack on a sp2 electrophile, the

perfect trajectory angle between the nucleophile and the plane defined by the carbonyl group

(direction: nucleophile→C→O) is ∼105 ± 5 ◦ (figure 2.2.11 C; (Bürgi et al., 1973, 1974)). When

transferring the non-covalently bound F6P from the structure of the TacTALK86Q variant into the

active site of the structure of wild type protein, the corresponding angle for the nucleophilic attack

of the lysine residue on the sugar’s carbonyl group is ∼58.7 ◦ (figure 2.2.11 A). Consequently,

a reorientation of the substrate’s carbonyl group (e.g. by rotation of the carbonyl group around

the C2-C3 bond axis in the F6P molecule) and/or of the flexible lysine residue is necessary for a
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nucleophilic attack of the lysine’s Nε-atom on the carbonyl group. At this point, it should be noted,

that the relative orientation of the substrate’s carbonyl group in the active site of TacTALK86Q could

differ from the orientation of this group in the environment of the wild type protein. The only

interaction partner of the carbonyl’s oxygen in the active site of the variant is Gln86, which is not

present in the active site of TacTALwt.

Light et al. (2014) determined the crystal structure of an inactive variant of transaldolase from

Francisella tularensis (FtuTAL) co-crystallized with F6P. In this study, the reactive lysine was

mutated to a methionine giving an inactive FtuTALK135M variant. When transferring the non-

covalently bound F6P molecule observed in the active site of the variant (PDB entry: 3te9) into

the active site of the FtuTAL wild type enzyme (PDB entry: 3tk7), the relative orientation of the

reactive lysine to the plane of the carbonyl group shows an obtuse Nε-C2-O2 angle of ∼118.7 ◦

(figure 2.2.11 B) close to the ideal Bürgi-Dunitz angle of ∼105 ± 5 ◦ (figure 2.2.11 C; (Bürgi et al.,

1973, 1974)). Furthermore, they suggested larger conformational changes in the C1-C2-C3 region

of the substrate molecule taking place along with the formation of the Schiff base intermediate.

reactive lysine

F6P

A

58.7°

TacTAL reactive lysine

F6P

B

118.7°

FtuTAL

C

105 ± 5°

Figure 2.2.11: Ideal Bürgi-Dunitz angle compared to the non-covalently bound F6P in
TacTAL and FtuTAL (Light et al., 2014). A: Non-covalently bound F6P (yellow sticks) from the
TacTALK86Q structure modeled into the active site of the wild type protein. The reactive lysine (gray
sticks) is placed relatively to the plane of the carbonyl group (cyan) in an acute Nε-C2-O2 angle
(red dashes) that is unfavorable for the nucleophilic attack. B: Non-covalently bound F6P (yellow
sticks) from the FtuTALK135M structure (PDB entry: 3te9 (Light et al., 2014)) modeled into the
active site of the wild type protein (PDB entry: 3tk7 (Light et al., 2014)). The reactive lysine (gray
sticks) is placed relatively to the plane of the carbonyl group (cyan) in an obtuse Nε-C2-O2 angle
(red dashes) that is convenient for the nucleophilic attack. C: A scheme of the perfect orientated
nucleophile (Nu) relatively to the plane of the carbonyl group (blue) with a Bürgi-Dunitz Nu-C-O
angle (red dashes) of ∼105 ± 5 ◦ (Bürgi et al., 1973, 1974).
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2.2.2 Interactions of the Intermediate’s C1OH-Group with the Active Site of TacTAL

The Schiff base formation is the central and most important event in the catalytic cycle of TacTAL.

The reactive groups directly involved in the Schiff base formation are the ε-amino group of the

enzyme’s reactive lysine and the carbonyl group of the sugar substrate. The C1 hydroxy group is

the direct neighbor of the carbonyl group in the F6P molecule (scheme 2.6). The interaction of the

active site with this group is suggested to contribute to efficient catalysis of the transaldolase reaction.

The coordination of the C1 hydroxy group assures the correct orientation of the substrate molecule

(especially the orientation of the carbonyl group in a position favorable for the nucleophilic attack)

or the orientation of the intermediates appearing along the catalytic cycle in the active site.
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Scheme 2.6: Structural formula of A5P and
F6P. A5P lacks the carbon atom and the hy-
droxy group at the first position compared to
the F6P structure. In contrast to F6P (ketose
sugar), A5P is an aldose sugar. The remaining
atoms in both structures are stereochemically
equivalent.

As previously described (section 2.2.1 and (Lehwess-Litzmann, 2011; Lehwess-Litzmann et al.,

2011b)), the C1OH-group of the F6P-Schiff base intermediate adopts two alternative conformations

(„up“ and „down“) in the active site of TacTAL. In its „up“ conformation the C1 hydroxy group

interacts with the hydroxy group of the Thr110 residue. A replacement of this threonine by

an isosteric valine residue results in a variant showing a greatly impaired transaldolase activity

(Lehwess-Litzmann, 2011). This effect cannot be strictly assigned to the interruption of the

hydrogen bond with the C1OH-group in its „up“ conformation alone. Besides the coordination

of the C1OH-group in its „up“ conformation, the residue Thr110 coordinates the catalytic water

molecule and is assumed to coordinate the C2 hydroxy group of the carbinolamine intermediate

(Schörken et al., 2001).

The interaction partner of the „down“ conformation of the intermediate’s C1OH-group in the

active site of TacTAL is the residue Ser130. In a previous work, this residue was replaced by an

alanine residue giving a variant showing a moderate loss in activity of the donor half-reaction in
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single-turnover experiments (Sautner, 2012). The C1OH-group of the intermediate in the active

site of this variant is coordinated by the residue Asn108 located closely to the mutated serine residue.

Complementary, the influence of the interaction of the C1OH-group with the active site can be

analyzed using arabinose 5-phosphate (A5P) as a donor substrate. A5P is an aldose sugar showing

the same stereochemistry as the natural ketose sugar substrate F6P. In contrast to the F6P molecule,

A5P does not contain an equivalent for the C1OH-group in its structure (scheme 2.6).

A5P was described as competitive inhibitor of transaldolases from different organisms (Caillau

and Paul Quick, 2005; Sprenger et al., 1995; Williams et al., 1978) and as a substrate for the

structurally and mechanistically related enzyme fructose 6-phosphate aldolase (Garrabou et al.,

2009; Guérard-Hélaine et al., 2015). Single-turnover analysis of the TacTAL reaction with A5P as

donor substrate using a coupled spectrophotometric assay detecting the formation of glyceraldehyde

3-phosphate (GA3P) showed the formation of the product (Sautner, 2012). This finding implies the

conversion of A5P as substrate at least in the donor half-reaction of the catalytic cycle of TacTAL.

In the present work, both possible interaction partners (Asn108 and Ser130) of the C1 hydroxy

group’s „down“ conformation were replaced by alanine giving the double-mutation variant

TacTALN108A/S130A. The single-turnover reaction of the variant after rapid mixing with F6P as

donor substrate was analyzed using stopped-flow spectroscopy. The crystal structures of the variant

co-crystallized with F6P and the wild type enzyme co-crystallized with A5P were determined.

2.2.2.1 Perturbation of the Interaction between the Intermediate’s C1OH-Group and the

Active Site of TacTAL impairs the donor half-reaction

The importance of the interaction of the C1OH-group of the donor substrate with the active site

residues of TacTAL was investigated analyzing the donor half-reaction of wild type enzyme and

variants using the stopped-flow technique. The reaction was performed in single-turnover mode. To

do so, the acceptor substrate is not present in the reaction mixture. Thus, each active site can interact

with the substrate only once after rapid mixing of the enzyme with the donor substrate and can

catalyze the cleavage of only one substrate molecule assuming the very slow aldolase side-reaction

of transaldolase as negligible. The reactive lysine residue remains as carbanion/enamine-conjugate

after the first product glyceraldehyde 3-phosphate (GA3P) is released. In this state, the lysine

residue is not able to perform a nucleophilic attack on the next donor substrate molecule resulting



76 Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum

in an accumulation of the carbanion/enamine intermediate (scheme 2.7). The progress curves show

a clearly defined exponential burst-phase (carbanion/enamine intermediate accumulation) prior to a

linear decay, reflecting the aldolase side-reaction of TacTAL (figure 2.2.19 A).

Scheme 2.7: Minimal reaction sequence of transaldolase single-turnover (donor half-
reaction). The cleavage of F6P by TacTAL results in the formation of GA3P. The auxiliary
enzyme TIM converts GA3P to DHAP. Subsequently, GDH reduces DHAP to G3P. The simul-
taneous oxidation of NADH monitors the accumulation of the carbanion/enamine intermediate
(decrease in absorbance at 340 nm).

The first order rate constant (kmax
obs ) for the donor half-reaction of the TacTALN108A/S130A variant

in the single-turnover conversion of F6P was determined according to equation 1.6.8 (in methods

part). This rate constant (kmax
obs = 0.37±0.07 s−1) is significantly lower than the rate constants of the

respective single-mutation variants (∼4x for TacTALN108A and ∼50x for TacTALS130A; (Sautner,

2012)). Furthermore, the constant is two orders of magnitude lower than the rate constant of the

TacTALwt single-turnover reaction with the same donor substrate (table 2.2.1). Importantly, the

single-turnover rate constant of TacTALN108A/S130A in reaction with F6P is nearly equal to the

constant of TacTALwt in reaction with A5P as donor substrate (0.37±0.07 s−1 and 0.34±0.01 s−1

(Sautner, 2012), respectively).

The apparent equilibrium constant of the fast pre-equilibrium (Kapp
S ) for the donor half-reaction

of the TacTALN108A/S130A variant with F6P is similar to that of the TacTALS130A variant for the

same reaction. This value is two to three fold higher than the constant for the donor half-reaction

of the TacTALwt with F6P (table 2.2.1). However, the single-mutation of Asn108 to alanine does

not influence the Kapp
S of the donor half-reaction with F6P compared to the wild type enzyme.

On the other hand, the Kapp
S constant for the donor half-reaction of the TacTALwt with A5P is

∼25x lower than the constant for the reaction with F6P and ∼55x lower than the constant for the

TacTALN108A/S130A reaction with F6P.

The plot of the observed first order rate constants (kobs) for the donor half-reaction of TacTALN108A/S130A

versus substrate concentration shows an optimum at F6P concentrations around 5 mM (fig-
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Table 2.2.1: Overview of microscopic kinetic constants for the donor half-reaction of
TacTALwt and variants. kmax

obs =first order rate constant at substrate saturation; Kapp
S =apparent

equilibrium constant of the fast pre-equilibrium; KI=apparent inhibition equilibrium constant of
the putative substrate inhibition. ND=not determined. The margin of error is given as the standard
deviation of the fitted data (sets of triplicates). *taken from Sautner (2012).

Constant S130A* N108A* N108A/S130A wt+A5P* wt+F6P*

kmax
obs (s−1) 18.11 ± 1.22 1.63 ± 0.10 0.37 ± 0.07 0.34 ± 0.01 60.31 ± 4.12

Kapp
S (mM) 2.19 ± 0.36 0.59 ± 0.24 1.60 ± 0.65 0.029 ± 0.004 0.70 ± 0.17

KI (mM) 203.1 ± 95.2 ND 13.28 ± 5.53 – 40.42 ± 10.27

ure 2.2.12), while the rate constants are getting lower at higher substrate concentrations. This

observation correlates well with the situation in the case of the donor half-reaction of TacTALwt

with F6P (Lehwess-Litzmann, 2011; Sautner, 2012; Sautner et al., 2015). However, the data

for the donor half-reaction of TacTALwt with A5P show a hyperbolic dependency on substrate

concentration with a saturation at lower millimolar range.
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Figure 2.2.12: Pre-steady-state analysis of the donor half-reaction of TacTALwt and variants.
The measurements were performed at 30 ◦C. The error bars represent the standard deviation of the
mean value calculated from the measurement of triplicates. A: Dependency of the observed rate
constant (kobs) on F6P concentration (0.05 – 50 mM) for TacTALwt and variants. The data were
fitted according to eq. 1.6.8 (solid line). *data from Sautner (2012) B: Dependency of kobs on A5P
concentration for TacTALwt (Sautner, 2012). The data were fitted according to eq. 1.6.9 (solid
line). Inset: Dependency of kobs on F6P concentration for TacTALN108A/S130A.

In summary, a mutation of Asn108 and/or Ser130 to alanine greatly impairs the donor half-reaction

of TacTAL. The analysis of the single-turnover measurements of the donor half-reaction of the

TacTALN108A/S130A variant with F6P in comparison to the single-mutation variants and the wild
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type protein underlines that the deletion of both interaction partners of the substrate’s C1OH-group

results in the highest effect on the first order rate constant of the single-turnover reaction. The

determined first order rate constant for the donor half-reaction of the TacTALN108A/S130A variant

with F6P is comparable to that of wild type reaction with A5P. Note that in the latter case, the

corresponding interaction is interrupted because of the absence of the C1OH-group in the A5P

substrate.

2.2.2.2 An Additional Water Molecule is Present in the Active Sites of TacTALwt and

TacTALN108A/S130A Co-Crystallized with A5P and F6P, Respectively

In order to obtain structural insights with regard to the interaction of substrate’s C1OH-group with

the active site, the TacTALwt protein and the TacTALN108A/S130A variant were co-crystallized with

A5P and F6P, respectively.

In the refined structure of TacTALwt co-crystallized with A5P (1.82 Å resolution, Rwork = 15.65 %

and Rfree = 18.16 %, tables A.3 and A.5 in the appendix) an additional electron density was

observed in all five active sites and interpreted as the A5P-Schiff base intermediate (figure C.9 in

the appendix). The intermediate is coordinated by the active site residues in a similar way as the

F6P-Schiff base except for the absent C1OH-group. The A5P-Schiff base intermediate is displaced

towards the entrance of the active site by approximately 0.5 Å compared to the F6P-Schiff base

intermediate in the active site of the TacTALwt protein (figure 2.2.14 A). This displacement causes

the more relaxed all-trans conformation of the reactive lysine, which is nearly fully expanded in

the A5P-Schiff base intermediate structure and „U-shaped“ in the F6P-Schiff base intermediate

structure (figure C.11 in the appendix).

An additional water molecule was observed in the active site occupying the position of the C1

hydroxy group of the F6P-Schiff base intermediate in its „down“ conformation in the active site of

TacTALwt (figure 2.2.13 A and B). This water molecule is displaced from the exact position of the

C1 hydroxy group (∼0.9 Å) and is coordinated by the residues Asn108 and Ser130 (figure 2.2.14 A).

The catalytic water molecule in the structure containing the A5P-Schiff base intermediate is

displaced towards the intermediate by ∼0.4 Å from its position in the structure with the F6P-Schiff

base intermediate.
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Figure 2.2.13: Active sites of TacTALwt and TacTALN108A/S130A co-crystallized with F6P
and/or A5P. The C1OH-group of the F6P-Schiff base intermediate is shown in the „down“
conformation (the „up“ conformation is omitted). The active site residues partaking in the hydrogen
bond network (dashed lines) of the „down“ or „up“ conformation are labeled in red or blue, respec-
tively. The selected active site residues are represented as gray sticks. The polypeptide backbone
is shown as secondary structure (cyan). A: TacTALwt co-crystallized with F6P. The F6P-Schiff
base intermediate is represented as yellow sticks. B: TacTALwt co-crystallized with A5P. The
A5P-Schiff base intermediate is represented as purple sticks. The space of the absent C1OH-group
of the intermediate is occupied by an additional water molecule (framed). C: TacTALN108A/S130A
co-crystallized with F6P. The F6P-Schiff base intermediate is represented as yellow sticks. The
mutated residues Asn108 → Ala and Ser130 → Ala are framed (dashed). The space of the absent
side chains is occupied by an additional water molecule (framed).

The structure of TacTALN108A/S130A co-crystallized with F6P was determined to 1.63 Å resolution

(table A.3 in the appendix) and refined against the diffraction data with Rwork = 16.56 % and

Rfree = 19.27 % (table A.6 in the appendix). An additional electron density was observed in all five

active sites and interpreted as the F6P-Schiff base intermediate (figure C.10 in the appendix).

The relative orientation of the F6P-Schiff base intermediate in the active site of the variant is

comparable to that of the intermediate in the active site of the wild type enzyme (figure 2.2.14 B). In

contrast to the A5P-Schiff base intermediate in TacTALwt, the F6P-Schiff base intermediate is only

slightly displaced (∼0.2 Å) towards the reactive lysine in the active site of the variant compared to

its position observed in the active site of the wild type protein.

In spite of the lacking interaction partners of the C1OH-group in its „down“ conformation in

the variant, this group could be observed in both conformations („up“ and „down“) as in the

case of TacTALwt co-crystallized with F6P. According to the occupancy refinement, the „down“

conformation of the hydroxy group is present in the active site of the variant to 44 – 55 % (depending
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on the pentamer’s subunit), while the corresponding occupancy values in the active site of the wild

type protein were determined to 48 – 60 %.

As in the case of the TacTALwt structure co-crystallized with A5P, an additional water molecule

is present in the active site of the variant occupying the area near the side chain of Asn108 residue

(Ala in the variant). This water molecule is coordinated by the residue Ser58 and the intermediate’s

C1 hydroxy group („down“ conformation). Compared to the position of the additional water

molecule observed in the active site of TacTALwt co-crystallized with A5P, the corresponding water

molecule present in the active site of the variant is displaced by ∼2.5 Å away from the intermediate

(figure 2.2.14 C). The position of the catalytic water molecule in the active site of the variant is

comparable to its position observed in the wild type enzyme.

In contrast to the structure of the A5P-Schiff base intermediate, the conformation of the Schiff base-

forming lysine residue in the active site of the variant is similar to the corresponding conformation

in the structure of wild type protein.
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Figure 2.2.14: Superposition of active sites of TacTALwt and TacTALN108A/S130A co-
crystallized with F6P and/or A5P. The C1OH-group of the F6P-Schiff base intermediate is
shown in the „down“ conformation (the „up“ conformation is omitted). The selected active site
residues are represented as sticks. The polypeptide backbone is shown as secondary structure.
A: TacTALwt (gray) co-crystallized with F6P (yellow sticks) superposed with TacTALwt (cyan)
co-crystallized with A5P (purple sticks). The water molecules are represented as red or orange
spheres, respectively. B: TacTALwt (gray) co-crystallized with F6P (yellow sticks) superposed
with TacTALN108A/S130A (cyan) co-crystallized with F6P (purple sticks). The water molecules are
represented as red or orange spheres, respectively. C: TacTALwt (gray) co-crystallized with A5P
(purple sticks) superposed with TacTALN108A/S130A (cyan) co-crystallized with F6P (yellow sticks).
The water molecules are represented as orange or red spheres, respectively.
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The residue Ser58 participates in the hydrogen bond network relating to the „down“ conformation

of the intermediate’s C1OH-group. This residue is conserved in a number of transaldolases

from different origins (plants, mammals, insects, fungi, bacteria and archaea; [figure C.17] in the

appendix). Ser58 can adopt three different conformations (A, B and C) as it could be shown in

one of the five subunits of TacTALwt structure co-crystallized with F6P (figure 2.2.15). In the

remaining four subunits this residue exhibits only two alternative conformations (A and B), while

the C-conformation is not present. In the structures of the TacTALwt co-crystallized with A5P and

TacTALN108A/S130A co-crystallized with F6P, this residue is present in all five subunits mainly in its

B- or C-conformation, respectively. While the Ser58 residue does not interact with the Schiff base

intermediate directly, it is located in hydrogen bond distance either to the side chain of the Asn108

residue (conformations A and B) or to the backbone nitrogen of the Thr27 residue (conformation

C). In this context, the A- and B-conformations of the serine residue contribute to the hydrogen

bond network corresponding to the „down“ conformation of the Schiff base intermediate’s C1OH-

group. On the other hand, the C-conformation of the residue could indirectly communicate with

the Nε-atom of the Schiff base-forming lysine via the interaction with the backbone of the Thr27

residue (figure C.5 in the appendix).

Figure 2.2.15: Different conformations of Ser58 in the
structure of TacTALwt co-crystallized with F6P. The
conformations A and B are in hydrogen bond distance
to the side chain of Asn108 (black dashes), which con-
tributes to the hydrogen bond network relating to the
„down“ conformation of the intermediate’s C1OH-group
(green dashes). The conformation C interacts with the
backbone nitrogen of the Thr27 residue (black dashes),
whose backbone carbonyl oxygen is in hydrogen bond
distance to the Nε-atom of the Schiff base-forming lysine
(green dashes). The selected active site residues (gray)
and the F6P-Schiff base intermediate (yellow) are repre-
sented as sticks. The polypeptide backbone is colored in
cyan.
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Interestingly, a serine residue at the corresponding position is not present in the related enzyme

fructose 6-phosphate aldolase (FSA). The sequence and structure of FSA are highly similar to

those of TacTAL. This enzyme catalyzes the reversible aldolytic cleavage of F6P via Schiff base

chemistry and is mechanistically related to TacTAL (scheme 2.3). According to the multiple

sequence alignment of known FSA proteins the position of the Ser58 in the sequence of TacTAL is
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occupied by either phenylalanine or histidine in the analyzed FSA sequences (figure C.18 in the

appendix).

2.2.3 Analysis of TacTAL Variants with Enhanced Aldolase Activity

Although FSA is mechanistically related to TacTAL, the direct environments of the reactive lysines

in both enzymes are not comparable. On one hand, the hydrogen bond network corresponding

to the „up“ conformation of the intermediate in the active site of TacTAL is different in FSA

from Escherichia coli (EcFSA). The catalytic water molecule participating in this hydrogen bond

network is additionally coordinated by a tyrosine residue, which is not present in the active site of

TacTAL (phenylalanine in TAL). Furthermore, the general acid-base catalyst in TacTAL (Glu60) is

replaced in the active site of EcFSA by an acid-base neutral glutamine residue (figure 2.2.16). The

absence of a residue corresponding to the transaldolase’s general acid-base catalyst in the active

site of EcFSA is surprising, since FSA is assumed to catalyze its reaction via acid-base catalysis

as in the case of TAL. As previously published by Schneider et al. (2008) a single-mutation of a

phenylalanine residue (tyrosine in FSA, vide supra) by a tyrosine in the active site of transaldolase

from Escherichia coli or human, provides an enhanced aldolase activity compared to the wild

type proteins. A similar observation was described by Lehwess-Litzmann (2011) for TacTAL.

A replacement of Phe132 residue in the active site of TacTAL by a tyrosine results in a highly

stimulated aldolase activity of the variant.

F6P-Schiff base

Lys86

Thr110

Ser58
Phe

Ser130
Ala

Asn108
Leu

Phe132
Tyr

Glu60
Gln

W1

W2

Figure 2.2.16: Superposition of the active sites of
TacTALwt and EcFSA. The residues present in the
EcFSA are underlined. Residues are numbered accord-
ing to their position in TacTAL. The selected active
site residues and the F6P-Schiff base intermediate in
TacTAL (transparent yellow) are represented as sticks.
The polypeptide backbone is shown as secondary struc-
ture (gray: TacTAL, cyan: EcFSA). Residues correspond-
ing to the „down“ or „up“ conformation (hydrogen bond
network) are labeled in red or blue, respectively. Residues
relevant for the acid-base catalysis are framed. The cat-
alytic (W1) or resting state (W2) water molecules in the
active sites of TacTAL or EcFSA are shown as red or or-
ange spheres, respectively. PDB entry for EcFSA: 1L6W,
(Thorell et al., 2002).
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Taking into account the absence of an acid-base catalyst, equivalent to the TacTAL’s Glu60 residue

and the presence of the aforementioned tyrosine in the active site of EcFSA, one can assume that

the tyrosine residue takes over the role of the general acid-base catalyst in EcFSA. In the present

work, a variant of TacTAL was generated and analyzed, in which the residues Glu60 and Phe132

were replaced by glutamine and tyrosine residues, respectively. The resulting TacTALE60Q/F132Y

variant shows the identical acid-base constellation as in the active site of EcFSA.

On the other hand, the residues involved in the hydrogen bond network of the „down“ conformation

in the active site of TacTAL are hydrophobic residues in the active site of EcFSA (Ser58→ Phe,

Asn108 → Leu and Ser130 → Ala). In order to mimic the direct environment of the reactive

lysine of EcFSA in the active site of TacTAL, a fivefold variant was generated (TacTALFSA-mimic).

The active site of the variant contains the previously introduced mutations Glu60 → Gln and

Phe132→ Tyr as well as the hydrophobic residues as described before (Ser58→ Phe, Asn108→ Leu

and Ser130→ Ala).

2.2.3.1 Introduction of a Phe/Tyr-Mutation and Simultaneous Removal of the General

Acid-Base Catalyst Glu60 in TacTAL’s Active Site Results in a Highly Efficient

Aldolase

The steady-state kinetic measurements for the TacTAL variants with enhanced aldolase activity

were performed as described in section 1.6.4.2. The used coupled spectrophotometric assay

detects the formation of the first product glyceraldehyde 3-phosphate (GA3P). The both activities

(transaldolase and aldolase) result in the formation of this product. Therefore, in presence of

acceptor substrate E4P it cannot be discriminated between transaldolase and aldolase reaction.

However, in absence of acceptor substrate only the aldolase activity can occur. The measured

activity was plotted against the substrate concentration (figure 2.2.17) and fitted according to the

Michaelis-Menten-equation (eq. 1.6.2).

TacTALwt catalyzes the aldolytic cleavage of the donor substrate F6P as a very slow side reaction.

The turnover number for this reaction was determined to kcat = ∼(2.25 ± 0.01)·10−3 s−1 (data not

shown). The introduction of a tyrosine residue in the active site of TacTAL giving the TacTALF132Y

variant results in an increase of the aldolase activity in terms of kcat by two orders of magnitude

compared to wild type (table 2.2.2). The second mutation of Glu60 to glutamine enhanced this

activity by an additional factor of three. Further introduction of bulky hydrophobic residues in



84 Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum

Figure 2.2.17: Dependency of the aldolase ac-
tivity (cleavage of F6P into GA3P and DHA)
of TacTAL variants on F6P concentration.
The steady-state measurements were performed
at 30 ◦C. The substrate concentration was varied
(0.1 – 100 mM). The rectangles, triangles and
circles indicate the measured aldolase activity
of TacTALFSA-mimic (125 μg/mL), TacTALF132Y
(120 μg/mL) and TacTALE60Q/F132Y (35 μg/mL),
respectively. The Michaelis-Menten fits
(eq. 1.6.2, solid line) are depicted by green, blue
and red lines, respectively.

Table 2.2.2: Overview of macroscopic kinetic constants for aldolase activity (cleavage of F6P
into GA3P and DHA) of EcFSAwt, TacTALwt and TacTAL variants. The margin of error is
given as the standard deviation of the fitted data (sets of triplicates). nd = not detectable. *taken
from Schneider et al. (2008), **published in Sautner et al. (2015), ***data provided by Lietzow
(2015).

Protein kcat (s−1) Kapp
M (mM) kcat /Kapp

M (s−1M−1)

TacTALwt (2.25 ± 0.01)·10−3 nd nd
TacTALFSA-mimic*** (2.41 ± 0.02)·10−2 2.41 ± 0.09 10.00
TacTALF132Y** 0.24 ± 0.01 12.30 ± 1.50 19.51
TacTALE60Q/F132Y** 0.62 ± 0.01 1.50 ± 0.10 413.33
EcFSAwt* 1.30 ± 0.30 12.00 ± 3.00 108.33

the „down“ site of the active site (Ser58→ Phe, Asn108→ Leu and Ser130→ Ala) results in a 5x-

variant (TacTALFSA-mimic) with a greatly impaired aldolase activity compared to the double variant

(TacTALE60Q/F132Y). The aldolase activity of the TacTALFSA-mimic variant is one order of magnitude

lower than that of the TacTALF132Y variant. This result is surprising since the TacTALFSA-mimic

variant reflects the situation in the active site of EcFSA better than the double variant regarding the

relative positions of particular amino acid residues in the active site. However, the TacTALFSA-mimic

variant still shows one order of magnitude higher aldolase activity compared to TacTALwt.

In order to estimate the transaldolase activity (reversible transfer of a DHA-unit from the donor F6P

to the acceptor E4P) of the variants, the steady-state measurements were performed in presence

of 2 mM E4P. The presence of the acceptor substrate (E4P) does not influence the activity of

the TacTALF132Y variant and inhibits only slightly the activity of the TacTALE60Q/F132Y variant

(decrease in activity by ∼10 %). In other words, the transaldolase activity of the variants is either

lower than the respective aldolase activity or equal to that. Thus, the transaldolase activity of the
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Table 2.2.3: Overview of macroscopic kinetic constants for transaldolase activity (reversible
transfer of a DHA-unit from F6P to E4P) of TacTALwt and variants. The margin of error is
given as the standard deviation of the fitted data (sets of triplicates). ND = not determined. *taken
from Lehwess-Litzmann (2011), **published in Sautner et al. (2015), ***data provided by Lietzow
(2015).

Protein kcat (s−1) Kapp
M (mM) kcat /Kapp

M (s−1M−1)

TacTALwt* 13.86 ± 0.65 2.30 ± 0.36 6026.1
TacTALFSA-mimic*** ≤ 2.82 ·10−2 ND ND
TacTALF132Y** ≤ 0.24 ND ND
TacTALE60Q/F132Y** < 0.62 ND ND
TacTALE60Q* 0.12 ± 0.01 0.49 ± 0.13 244.90

variants is much lower than the corresponding activity of the wild type protein (table 2.2.3). The

addition of E4P slightly stimulates the activity of the TacTALFSA-mimic variant (increase in activity

by ∼10 %). This activation effect in presence of E4P could mean that the TacTALFSA-mimic variant

catalyzes the transaldolase reaction slightly better than the aldolase reaction and could be a hint

for the impaired protonation of the carbanion/enamine intermediate in this variant compared to the

TacTALE60Q/F132Y variant, which is essential for the aldolase reaction.

The apparent Michaelis constant (Kapp
M ) for the aldolase reaction of TacTALF132Y is approximately

equal to that of EcFSAwt (table 2.2.2). This value is fivefold higher than the corresponding

constant for the transaldolase reaction of TacTALwt. The introduction of the second mutation

(Glu60→ Gln) leads to lower Kapp
M (∼8x lower compared to the single-mutation variant) as well as

to a higher turnover number. Both effects give a TacTAL variant with a higher catalytic efficiency

(kcat /Kapp
M = 413.33 s−1M−1) than in case of the native fructose 6-phosphate aldolase from E. coli

(kcat /Kapp
M = 108.33 s−1M−1, (Schneider et al., 2008)). The Kapp

M value for F6P conversion catalyzed by

the TacTALFSA-mimic variant is similar to that of TacTALwt but because of the low turnover number

the catalytic efficiency of this variant is one order of magnitude lower compared to EcFSAwt.

In other words, the introduction of a single Phe→ Tyr mutation in the active site of transaldolase

(E. coli: Phe178, human: Phe189, Thermoplasma acidophilum: Phe132) is the minimum requirement

to induce the aldolase activity (Lehwess-Litzmann, 2011; Sautner et al., 2015; Schneider et al.,

2008). The additional mutation of the original general acid-base catalyst of TacTAL (Glu60) to

glutamine results in a variant with a greatly improved catalytic efficiency towards the aldolase

reaction. This double-variant (TacTALE60Q/F132Y) shows the best results in terms of kcat, Kapp
M and
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kcat /Kapp
M for the aldolase activity compared to other variants introduced in this section. Further

introduction of a hydrophobic surface in the „down“ site of the TacTAL’s active site (mutations:

Ser58→ Phe, Asn108→ Leu and Ser130→ Ala) to mimic the situation in the active site of EcFSAwt

results in the worst „aldolase“ analyzed in this work.

2.2.3.2 The Active Site of TacTALFSA-mimic Variant Shows a Different pKa Behavior Com-

pared to Other Variants with Enhanced Aldolase Activity

Glu60 is the general acid base catalyst in the active site of TacTAL (Lehwess-Litzmann et al.,

2011b). Replacement of this residue by glutamine and subsequent introduction of the Phe132→ Tyr

mutation results in a TacTAL variant showing high aldolase efficiency. Since the original general

acid-base catalyst is not present in the active site of the variant, the newly introduced tyrosine

residue is assumed to take over the role of Glu60 in acid-base catalysis. In order to analyze the pKa

behavior in the active site of the variants with enhanced aldolase activity, the dependency of the

turnover number on the pH was measured under the steady-state conditions.

The observed aldolase activity plotted versus pH shows bell-shaped curves in the case of the

TacTALF132Y and TacTALE60Q/F132Y variants (figure: 2.2.18A) and sigmoidal curve in the case of

the TacTALFSA-mimic variant (figure: 2.2.18 B).

The estimated pKES values for the TacTALF132Y and TacTALE60Q/F132Y variants are similar to the

constants estimated for the transaldolase reaction of TacTALwt (Lehwess-Litzmann, 2011) and

show the highest aldolase activity at pH around 7.9 (table: 2.2.4).

The pKa behavior in the active site of the TacTALFSA-mimic variant is different compared to the

variants discussed above. The pH-dependency plot of this variant shows a sigmoidal progression.

The highest aldolase activity of this variant was measured at pH ≥ 8.5. The activity optimum of

this variant at alkaline pH corresponds well to the published activity optimum of EcFSAwt (optimal

activity at pH around 8.5, Schürmann and Sprenger (2001)).

Schürmann and Sprenger (2001) described a significant inactivation effect of EcFSAwt by Tris in

concentrations >10 mM. Tris is one component of the three-component buffer system, which was

used for the pH-dependency measurements in order to keep the ionic strength constant at different

pH. In the case of TacTALE60Q/F132Y as representative variant with enhanced aldolase activity, Tris

was assumed as non-inhibiting substance, since a replacement of GlyGly as the standard buffer



Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum 87

pH

5 6 7 8 9 10

R
e

la
ti

v
e

 a
c

ti
v
it

y
 (

%
)

20

40

60

80

100 TacTAL
F132Y

TacTAL
E60Q/F132Y

pH

5 6 7 8 9 10

R
e
la

ti
v
e
 a

c
ti

v
it

y
 (

%
)

0

20

40

60

80

100

TacTAL
S58F/N108L/S130A/E60Q/F132Y

A B

Figure 2.2.18: pH-dependency of aldolase activity (cleavage of F6P into GA3P and DHA)
of TacTAL variants. The measurements were performed at 30 ◦C. The F6P concentration was
50 mM. The error bars represent the standard deviation of the mean value calculated from the
measurement of triplicates. A: TacTALF132Y and TacTALE60Q/F132Y (final concentrations 0.1 mg/mL

and 0.025 mg/mL, respectively). Bell-shaped curves showing an optimum at pH around 7.9 B:
TacTALFSA-mimic (final concentration 0.125 mg/mL), data provided by Lietzow (2015). Sigmoidal
curve showing the highest aldolase activity at pH ≥ 8.5.

compound in the activity assay (see previous section) by 20 mM Tris does not show any effect on

the activity.

To rule out denaturation effects, stability of the protein at different pH was tested by recording

far-UV-CD-spectra at respective pH. The variants were assumed as stable in the used pH range,

since only minor changes in secondary structure occur, first at a pH below 5.9 (figure: C.1 in the

appendix).

Table 2.2.4: Overview of the estimated pKa values for the enzyme-substrate complex of
TacTALwt and variants. The aldolase reaction (cleavage of F6P into GA3P and DHA) was
measured. The margin of error is given as the standard deviation of the fitted data (sets of tripli-
cates). nd = Not detected. *Lehwess-Litzmann (2011), values for transaldolase reaction (reversible
transfer of a DHA-unit from F6P to E4P), **data provided by Lietzow (2015).

Protein pKES1 pKES2

TacTALwt* 6.4 9.5
TacTALFSA-mimic** 6.4 ± 0.1 nd
TacTALF132Y 6.2 ± 0.1 9.7 ± 0.2
TacTALE60Q/F132Y 5.9 ± 0.1 9.9 ± 0.1
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2.2.3.3 Co-Existence of Two Potential Acid-Base Catalysts (Glu60 and Tyr132) in the Ac-

tive Site Perturbs the Donor Half-Reaction of TacTAL

In addition to the steady-state analysis of TacTAL variants with enhanced aldolase activity, the

donor half-reaction was analyzed, using the stopped-flow technique. In contrast to the steady-

state measurements, giving information about macroscopic kinetic constants, this rapid mixing

absorbance spectroscopy method allows to resolve the pre-steady-state region of the reaction and to

obtain information about the microscopic kinetic constants for transient kinetic processes.

Measurement of the NADH oxidation coupled to the transaldolase/aldolase reaction after rapid

mixing of TacTALwt with F6P results in a progress curve consisting of an exponential burst phase

followed by a linear phase (figure 2.2.19 A). The linear phase corresponds to the steady state

of the aldolase side-reaction and the exponential burst phase corresponds to the initial transient

carbanion/enamine intermediate formation. Fitting of the progress curve according to equations

1.6.6 and 1.6.7 gives an observed first order rate constant (kobs) for the exponential burst phase

and the slope of the linear phase. The apparent turnover number per active site for the aldolase

reaction (kapp
cat ) can be calculated from the linear slope, considering the enzyme concentration. The

exponential burst phase represents the carbanion/enamine intermediate accumulation (kobs > kapp
cat )

and describes all processes until the GA3P release (binding of F6P, F6P-carbinolamine intermediate

formation, F6P-Schiff base intermediate formation, F6P-Schiff base intermediate cleavage and

GA3P-release; see scheme 2.7).

The progress curve for the reaction of the TacTALF132Y variant after rapid mixing with the substrate

does not show an exponential burst phase and describes only the linear steady-state of the aldolase

reaction (figure 2.2.19 B). The absence of a burst phase suggests that the rate limiting step is

situated before GA3P is released (kobs < khydrolysis). Since the observed first order rate constant for

the donor half-reaction of TacTALwt with F6P was determined to kmax
obs = 60.31 ± 4.12 s−1 (Sautner,

2012) and kcat for the TacTALF132Y variant to 0.24 ± 0.01 s−1 (section 2.2.3.1), the introduction of

a Phe132→ Tyr mutation in the active site of TacTAL impairs the donor half-reaction by a factor of

at least 250.

An additional mutation (Glu60→Gln) resulting in the TacTALE60Q/F132Y variant restores the activity

of the donor half-reaction. The progress curves of this variant consist of an exponential phase

prior to a linear aldolase steady-state phase (figure 2.2.19 C). The corresponding kobs of the burst

phase for this variant after mixing with 10 mM F6P (final concentration) is comparable to the kobs
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determined for the wild type protein under the same conditions (46.9 ± 1.4 s−1 and 55.9 ± 0.5 s−1,

respectively). Furthermore, the progress curve of the variant shows an additional lag phase during

the first 40 – 50 ms of the reaction, which could not be detected for the wild type in a similar

experiment. The duration of this lag phase is independent from the substrate concentration (figure

2.2.19 D).

The previous crystallographic structural studies showed that TacTAL can exist in two conforma-

tional states („open“ and „closed“; Lehwess-Litzmann et al. (2011b)). Furthermore, a conforma-

tional selection mechanism was suggested for substrate binding assuming the existence of the

conformational states in solution (Lehwess-Litzmann et al., 2011b). In contrast to the induced fit

mechanism, in which the substrate binding event induces the conformational adaption of the active

site (as suggested for a broad range of different enzymes (Fan et al., 2014; Gonçalves et al., 2012;

Moscato et al., 2016; St-Jean et al., 2005)), the conformational selection mechanism postulates an

equilibrium between different conformational states of the protein with different affinities for the

substrate (Boehr et al., 2009; Hammes et al., 2009).

Assuming the conformational selection mechanism for the substrate binding (the substrate binds

preferentially to either „open“ or „closed“ state giving a productive enzyme-substrate complex), the

substrate binding event, followed by the reaction, would result in an „open“/„closed“ equilibrium

shift under single-turnover conditions. In this case, the lag phase would describe the „open“/„closed“

conformational change of the protein before substrate binding (scheme 2.8). A similar situation

was described for the Bacillus 1,3-1,4-β-glucanase (Abel et al., 2001).

TacTALA + F6P TacTALcarbinolamine

H2O

TacTALSchiff base TacTALcarbanion/enamine

GA3P

kobs

TacTALB

klag

H2ODHA

khydrolysis

Scheme 2.8: Minimal reaction sequence of aldolase reaction catalyzed by transaldolase. F6P
binds preferentially to a distinct TacTAL conformation („open“ or „closed“). The cleavage of F6P
by TacTAL results in the formation of GA3P. The auxiliary enzyme TIM converts GA3P to DHAP.
Subsequently, GDH reduces DHAP to G3P. The simultaneous oxidation of NADH monitors the
accumulation of the carbanion/enamine intermediate (decrease in absorbance at 340 nm). After the
protonation of carbanion/enamine intermediate, a hydrolysis reaction can occur (steady state of
aldolase reaction).
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Figure 2.2.19: Representative stopped-flow progress curves (cleavage of F6P into GA3P and
DHA) of TacTALwt and variants recorded at 340 nm. The measurements were performed at
30 ◦C. The F6P concentration was 10 mM after mixing with the enzyme. The deviation of the
applied fit (for details, see Materials and Methods) from the data is shown as residuals-plot. kobs =

observed rate constant of the burst phase. kapp
cat = apparent rate constant in steady state. A: TacTALwt

(final concentration 0.22 mg/mL). The progress curve shows a burst phase (first order reaction) and a
linear phase (steady-state depletion of substrate). The observed rate constant of the burst phase (kobs)
plotted against the applied F6P concentration shows an optimum curve progression (inset, eq. 1.6.8,
section: 1.6.4.4, data from Sautner (2012)). The green dashed line corresponds to the hyperbolic fit
for F6P ≤ 12 mM. B: TacTALF132Y (final concentration 0.17 mg/mL). The progress curve shows only
the linear phase (steady-state depletion of substrate) and no burst phase (rate limiting step before
hydrolysis). The data was taken from Lehwess-Litzmann (2011). C and D: TacTALE60Q/F132Y
(final concentration 0.22 mg/mL). The progress curves (final concentrations of F6P: 0.1 mM, 1 mM,
5 mM and 20 mM) show a lag phase independent from the substrate concentration prior to a burst
phase and a subsequent linear phase (for explanation, see text). Published in Sautner et al. (2015).
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The same situation was observed for the reaction of the TacTALFSA-mimic variant with F6P. The

respective progress curves comprise a lag-phase (first 40 – 50 ms) prior to an exponential burst phase

(kobs = 57.9 ± 1.65 s−1) followed by the linear aldolase steady-state phase (see figure C.3 in the ap-

pendix for a representative progress curve). The TacTALFSA-mimic is the variant showing the lowest

steady-state aldolase activity compared to related variants (TacTALF132Y and TacTALE60Q/F132Y),

but the donor half-reaction of the variant is not impaired compared to the wild type enzyme and

the TacTALE60Q/F132Y variant. Therefore, the introduction of a hydrophobic surface in the „down“

site of the active site of the TacTALE60Q/F132Y giving the TacTALFSA-mimic variant impairs at least

one of the reaction steps after GA3P-release (protonation of the carbanion/enamine intermediate,

hydrolysis of the DHA-Schiff base intermediate or the release of DHA).

Assuming the „open“/„closed“ equilibrium is present in the case of TacTALwt as well, the absence

of the lag phase in the respective stopped-flow progress curves can be explained by suggesting a

very fast conformational change process, making the duration of the lag phase shorter than the

dead time of the experiment (∼1.5 ms). In this context, the process of conformational changes is

presumably impaired in the TacTALE60Q/F132Y and TacTALFSA-mimic variants compared to the wild

type enzyme.

2.2.3.4 Relative Orientation of the Catalytic Tyrosine is Geometrically Favorable for a

Direct Protonation of the Central Intermediate

The structure of the TacTALE60Q/F132Y variant co-crystallized with F6P was determined to 1.80 Å

resolution (table A.3 in the appendix) and refined against the diffraction data with Rwork = 16.22 %

and Rfree = 19.38 % (table A.6 in the appendix). In this structure, two of the five subunits (B and

C) of the pentamer in the asymmetric unit exhibit the „closed“ conformation. One subunit (E) is

present mainly in the „open“ conformation. The remaining two subunits (A and D) exhibit mixed

conformational states. In the active sites of subunits with the „closed“ conformation an additional

discontinuous electron difference density was observed (figure 2.2.20 A). The part of the electron

density, which is fused with the density of the reactive lysine was interpreted as the covalently

linked dihydroxyacetone unit (DHA-Schiff base intermediate). The remaining electron density

was interpreted as the enzyme bound product glyceraldehyde 3-phosphate (GA3P) formed upon

the F6P cleavage. The carbonyl moiety of GA3P was not modeled because of the absence of the

corresponding electron density. The phosphate moiety of GA3P is displaced towards the active site
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entrance by ∼0.75 Å (∼0.90 Å in subunit C) compared to the F6P-Schiff base intermediate observed

in the wild type protein (figure 2.2.20 B). For this reason, an attempt to model the F6P-Schiff base

intermediate into the electron density observed in the active site of the variant was not successful.

Asn28
Gln60

GA3P

Tyr132

Ser130
Asn108

Thr110

Lys86 W1
DHA Asp6

A
Asp6

Arg169

Arg135

GA3P

Phe132
Tyr132

Glu60
Gln60

F6P

Thr110 W1

DHA

Lys86

B

Figure 2.2.20: Active site of TacTALE60Q/F132Y co-crystallized with F6P. A: mFO-DFC simu-
lated annealing omit map (green mesh, contour level 2.5σv). The selected active site residues (gray)
and the DHA-Schiff base intermediate (yellow) are shown in ball-and-stick representation. The
Schiff base-forming lysine residue is colored in purple. The catalytic water molecule (W1) is shown
as red sphere. B: Superposition of the active sites of TacTALE60Q/F132Y (gray; ligands: yellow) and
TacTALwt (cyan). The mutated residues (Glu60 → Gln and Phe132 → Tyr are framed (dashed). The
catalytic water molecule (W1) is shown as red or blue sphere in TacTALE60Q/F132Y and TacTALwt,
respectively. Published in Sautner et al. (2015).

According to the proposed catalytic mechanism for the transaldolase/aldolase reaction (scheme 2.3),

the protonation state of the DHA-Schiff base intermediate discriminates between the two activities

(transaldolase vs. aldolase). If the intermediate is present in its carbanion/enamine form, the

transaldolase reaction will take place (reversible transfer of a DHA-unit to the carbonyl carbon

of the acceptor aldose phosphate). In the case of the protonated DHA-Schiff base intermediate,

aldolase reaction will occur (reversible cleavage).

A further analysis of the relative orientation of the DHA-Schiff base intermediate in the active

site of the variant underlines the role of the introduced Tyr132 residue as the general acid-base

catalyst in the variant. The tyrosine’s hydroxy group is perfectly oriented for a direct proton transfer

onto the intermediate’s C3-atom, whereas the position of the introduced Gln60 residue in place of

the transaldolase specific general acid-base catalyst (Glu60) is unfavorable for a direct or water

mediated protonation (figure 2.2.21).

The catalytic water molecule present in the active site of the variant is displaced towards the

intermediate by ∼1.0 Å (∼0.6 Å in subunit C) compared to its position in the active site of the
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Figure 2.2.21: DHA-Schiff base intermedi-
ate in the active site of TacTALE60Q/F132Y.
The selected active site residues (gray) and
the intermediate (yellow) are shown in ball-
and-stick representation, the catalytic water
molecule as red sphere. The Schiff base-
forming lysine is colored in purple. The rel-
ative orientation of Gln60 (Glu in TacTALwt) to
the intermediate’s C3-atom is unfavorable for a
direct or water mediated proton transfer, other
than the position of the Tyr132 residue, which is
geometrically convenient for the direct protona-
tion. The hydrogen atoms were added in their
riding positions for the purpose of representa-
tion. Published in Sautner et al. (2015).
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wild type protein co-crystallized with F6P. The water molecule in the active site of the variant

is coordinated by the active site residues Thr110, Gln60 and Tyr132. This is in contrast to the

coordination of the water molecule in the active site of the wild type protein, which is coordinated

by only two active site residues Thr110 and Glu60 because it lacks the Tyr132 side chain (Phe132 in

the wild type protein). These residues are corresponding to the hydrogen bond network including

the C1OH-group of the F6P-Schiff base intermediate in its „up“ conformation in the active site of

wild type enzyme.

The C1OH-group of the DHA-Schiff base intermediate in the active site of the TacTALE60Q/F132Y

variant is coordinated by the residues Asn108 and Ser130 corresponding to the „down“ conformation

of the same group in the F6P-Schiff base intermediate structure. This hydrogen bond network is

not present in the active site of EcFSA (figure 2.2.22 A). The TacTALFSA-mimic variant mimics the

situation in the active site of EcFSA (figure 2.2.22 B). In the active site of this variant, only one

residue (Arg169→Lys in EcFSA) is different compared to the active site of EcFSA.

The structure of the TacTALFSA-mimic variant co-crystallized with F6P was determined to 1.90 Å

resolution (table A.3 in the appendix) and refined against the diffraction data with Rwork = 17.80 %

and Rfree = 20.99 % (table A.6 in the appendix). Two of the five subunits (D and E) of the pentamer

in the asymmetric unit exhibit mixed conformational states. The remaining three subunits (A, B

and C) are present in the „closed“ conformation. An additional electron difference density was

observed in all five active sites of the pentamer (figure C.12 A in the appendix). This electron

density was interpreted as the F6P-Schiff base intermediate (figure 2.2.23 A).
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Figure 2.2.22: Superposition of the active sites of variants with enhanced aldolase activity
co-crystallized with F6P and EcFSA. A: TacTALE60Q/F132Y (gray) containing DHA-Schiff base
intermediate (yellow sticks). The selected active site residues are shown as sticks, the catalytic
water molecule as red (variant) or orange (EcFSA) sphere. While the residues related to the „up“
conformation of the intermediate’s C1OH-group in the variant are identical with the corresponding
residues in EcFSA (cyan; PDB entry: 1L6W, (Thorell et al., 2002)), the residues corresponding
to the „down“ conformation are different (rad labels: TacTALE60Q/F132Y, blue labels: EcFSA). B:
TacTALFSA-mimic (gray) containing F6P-Schiff base intermediate (yellow sticks). The environment
of the reactive lysine in the variant and EcFSA (cyan) is identical. The residues are numbered
according to their position in TacTALFSA-mimic.

The relative orientation of the F6P-Schiff base intermediate in the active site of the variant is compa-

rable to the wild type situation (figure 2.2.23 B). However, the C1 hydroxy group is coordinated by

Thr110 corresponding to its „up“ conformation (figure 2.2.23 A). The conformation of the reactive

lysine residue in the active site of the variant is different compared to the wild type enzyme, with

the highest difference in the C-Cα-Cβ-Cγ torsion angle. This angle was determined to 70.8 – 80.8 ◦

(depending on the analyzed subunit) in the structure of the F6P-Schiff base intermediate in the

active site of TacTALwt and to 170.3 – 177.2 ◦ in the TacTALFSA-mimic variant.

Surprisingly, no proper electron density for the catalytic water molecule was present in the active

site of the variant as in the case of the wild type enzyme. Only a weak mFO-DFC electron density

appearing first at a contour level of 3.5σv could be observed in the active site of the variant implying

a low occupancy of the water molecule. For this reason, the catalytic water molecule was not

modeled into the active site of the variant (figure C.12 B in the appendix).

The structure of the F6P-Schiff base intermediate in the active site of the previously discussed

TacTALE60Q/F132Y variant was determined from another crystal of the variant co-crystallized with

F6P (1.90 Å resolution, Rwork = 18.23 % and Rfree = 22.01 %; tables A.4 and A.8 in the ap-
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Figure 2.2.23: Active site of TacTALFSA-mimic co-crystallized with F6P. A: The selected active
site residues (gray) and the F6P-Schiff base intermediate (yellow) are represented as sticks. The
polypeptide backbone is shown as secondary structure (cyan). The C1OH-group is oriented
towards Thr110 corresponding to the „up“ conformation. B: Superposition of the active sites of
TacTALFSA-mimic (gray, ligand: yellow) and TacTALwt (cyan, ligand: purple) co-crystallized with
F6P. The mutated residues are labeled in red. The residues present in the variant are underlined.
The catalytic water molecule (W1) in TacTALwt is shown as red sphere.

pendix). The relative orientation of the F6P-Schiff base intermediate in the active site of the

TacTALE60Q/F132Y variant is comparable to the situation in the active site of TacTALFSA-mimic (fig-

ure 2.2.24). In contrast to the TacTALFSA-mimic variant, the C1OH-group of the intermediate in the

active site of the TacTALE60Q/F132Y variant is present mainly in its „down“ conformation. Although

a mFO-DFC difference density corresponding to the alternative „up“ conformation could be ob-

served in the active site of the variant, the alternative conformation was not modeled because of the

weak electron density (figure C.13 B in the appendix). The same is true for the mFO-DFC difference

density corresponding to the catalytic water molecule as in the case of the TacTALFSA-mimic variant

(figure C.13 A in the appendix).

Figure 2.2.24: Superposition of the
active sites of TacTALFSA-mimic and
TacTALE60Q/F132Y co-crystallized with
F6P. The mutated residues are labeled in red.
The residues present in the TacTALFSA-mimic
are underlined. The selected active site residues
and the F6P-Schiff base intermediate (yellow:
TacTALE60Q/F132Y, purple: TacTALFSA-mimic)
are represented as sticks. The polypeptide back-
bone is shown as secondary structure (gray:
TacTALE60Q/F132Y, cyan: TacTALFSA-mimic).
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As previously described, the TacTALE60Q/F132Y variant shows a lag-phase during the first 50 ms

after rapid mixing with substrate F6P using a stopped-flow device, which is independent from

the substrate concentration. This lag-phase was interpreted to correspond to the conformational

„open“/„closed“ change of the variant’s active sites. The subunit B of TacTALE60Q/F132Y variant

containing DHA-Schiff base intermediate exhibits the „closed“ conformation, while the subunit

E from the same structure exists mainly in the „open“ conformation. The superposition of both

subunits shows that the conformational change indeed could play a role in the catalysis. Active site

residues interacting with the intermediate or catalytic water in the „closed“ conformation, do not

perform this interaction in the case of the „open“ conformation (figure 2.2.25).

DHA

Lys86

Thr110

Asn28

Asp6

GA3P

Tyr132

Gln60

B

W1

Figure 2.2.25: Superposition of the active
sites of TacTALE60Q/F132Y co-crystallized
with F6P in their „open“ and „closed“ states.
The selected active site residues, the DHA-
Schiff base intermediate (yellow) and the prod-
uct GA3P (yellow) are represented as sticks,
the catalytic water molecule (W1, „closed“ con-
formation) as red sphere. The polypeptide back-
bone is shown as secondary structure (gray:
„closed“ subunit B, orange: „open“ subunit
E). Residues interacting with the intermediate
(black dashes), which have different position in
„open“ or „closed“ conformations are labeled
in red. Published in Sautner et al. (2015).

2.2.4 Studies on „Open“/„Closed“ Conformations of TacTAL

The structure of transaldolase from Thermoplasma acidophilum contains a homopentamer in the

crystallographic asymmetric unit and is suggested to form homodecamers (dimer of pentamers)

in solution (Lehwess-Litzmann, 2011; Lehwess-Litzmann et al., 2011b). A prominent feature of

the interaction of the pentamer’s subunits with each other is the inter-subunit helix swapping, in

which a C-terminal α-helix of a subunit interacts with the TIM-barrel of the neighboring subunit.

The subunits of the pentamer in the resting state structure of wild type TacTAL are not equivalent

and exhibit „closed“ or „open“ conformations, while in the structure co-crystallized with substrate

F6P all five subunits are present in the „closed“ conformation. The major difference between the

„open“ and „closed“ conformations is the orientation of the flexible N-terminal part (residues 6 – 55)

relative to the remaining chain. This part interacts with the C-terminal α-helix in the „closed“ but
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not in the „open“ conformation. Additionally, a minor flexibility of the C-terminal α-helix could be

observed as well.

In the crystal structure of the TacTALE60Q/F132Y variant, containing the DHA-Schiff base interme-

diate in two of five active sites, the subunits with bound intermediate were observed in „closed“

conformation, while the remaining subunits exhibit mainly „open“ conformation or mixed confor-

mations (figure 2.2.26). The presence of a substrate-independent lag-phase in the pre-steady state

of the aldolase reaction catalyzed by the variant could be the first indication that the conformational

changes are present in solution as well and could be important for the catalysis.

ClosedOpen

Figure 2.2.26: „Open“ and „closed“ conformations of functional subunits in
TacTALE60Q/F132Y. The functional subunits B („closed“) and E („open“) are shown as
surface model. The C-terminal α-helix of the neighboring subunit (C and A, respectively) is colored
in cyan. The flexible N-terminal part (residues 6 – 55) is colored in orange/red (red: highest
amplitude of flexibility). The active site cavity is indicated in green.

The residue Asp211 located at the C-terminal helix interacts with the Thr30 located in the flexible

N-terminal region of the neighboring subunit (figure 2.2.27). As described by Lehwess-Litzmann

(2011), both residues are located in hydrogen bond distance to each other in the „closed“ conforma-

tion (the interatomic distance between the threonine’s hydroxy group and aspartate’s carboxyl is

2.7 Å), while these residues are separated from each other in the „open“ conformation (4.7 Å).

The residues Asp211 and Thr30 were replaced by cysteine residues giving the TacTALT30C/D211C

variant, in order to arrest the „closed“ conformation in all five subunits by formation of a disulfide

bridge between the introduced residues Cys211 and Cys30. Since the disulfide bridge forming
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open
closed

Asp211
Thr304.7 Å

2.7 Å

Figure 2.2.27: Relative orientation of Asp211

and Thr30 to each other in the „open“ and
„closed“ conformation. In the „closed“ con-
formation, both residues form a hydrogen bond
(interatomic distance between the threonine’s
hydroxy group and aspartate’s carboxyl: 2.7 Å).
In the „open“ conformation this distance is elon-
gated to 4.7 Å.

residues are located at neighboring subunits, the homopentamer of the TacTALT30C/D211C variant is

covalently cross-linked. Importantly, the arrest of the „closed“ conformation in the variant can be

unlocked using reducing agents (e.g. in presence of DTT or β-mercaptoethanol).

The structure of the TacTALT30C/D211C variant in resting state was determined to a resolution of

2.25 Å (Rwork = 16.84 % and Rfree = 20.98 %; tables A.3 and A.6 in the appendix). A continuous

electron density between the sulfur atoms of introduced cysteines residues, as well as the interatomic

distance of ∼2.05 Å, clearly indicates an intersubunit disulfide bridge formed in all five subunits

of the variant (figure 2.2.28). The torsion angle C-S-S-C (τ) is 94.9 – 104.6 ◦ (depending on the

subunit), which fits well to the natural distribution of τ-angles as described by Bhattacharyya

et al. (2004). The usual interatomic distance for a disulfide bond with τ-angles of 75.0 – 105.0 ◦ is

2.031±0.015 Å as reported by Allen et al. (1987).

When superposing subunits of TacTALT30C/D211C with the subunits from the wild type protein

co-crystallized with F6P, in which all five subunits are present in the „closed“ conformation,

the distance between the corresponding backbone’s Cα atoms of the compared subunits is lower

than 1 Å (figure 2.2.29). On the other hand, when plotting the corresponding distance for the

subunits of the resting state structure of TacTALT30C/D211C compared to the subunit in the „open“

conformation observed in the resting state structure of the wild type enzyme (PDB entry: 3S0C,

(Lehwess-Litzmann et al., 2011b)) against the residue number, the plot shape is similar to the plot

resulting from the comparison between the „open“ and „closed“ conformations of subunits from

the wild type protein. This plot clearly shows the difference between the „open“ and „closed“

conformations in their N-terminal part with a maximal deviation in corresponding Cα-positions

of ∼7 Å. In other words, the subunits of the resting state structure of TacTALT30C/D211C variant are

comparable to the subunits in the „closed“ conformation of wild type enzyme (rmsd = 0.257 Å,



Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum 99

A B

Cys30

Cys211A

B

CD

E

Figure 2.2.28: Introduction of an intersubunit disulfide bridge in TacTAL. A: The introduced
cysteine residues at positions 30 and 211 (Thr and Asp in wild type enzyme, respectively) form a
disulfide bridge between the flexible N-terminal part and the C-terminal α-helix of the neighboring
subunit. The pentamer’s subunits (A – E) are represented as surface and indicated by different
colors. The polypeptide backbone of subunits C and B is shown in tube representation in black
and red, respectively. The sulfur atoms of the introduced disulfide bridge (red frame) are shown as
yellow spheres. B: mFO-DFC simulated annealing omit map of TacTALT30C/D211C in resting state.
The difference electron density map is shown as green mesh (contour level 3σv). The polypeptide
backbone of subunits C and B is shown in tube representation in black and red, respectively. The
introduced cysteine residues are represented as sticks.

based on Cα atoms of a monomer) and differ from the „open“ state (rmsd = 1.221 Å) in a similar

way as in the case of the wild type („open“) to wild type („closed“) comparison (rmsd = 1.290 Å).

The structure of the variant co-crystallized with F6P was determined to a resolution of 2.05 Å

(Rwork = 16.64 % and Rfree = 20.62 %; tables A.3 and A.6 in the appendix). As in the case of the

resting state structure, the introduced disulfide is present in its oxidized form (disulfide bridge) and

all five subunits of the homopentamer exhibit the „closed“ conformation. The F6P-Schiff base

intermediate could be observed in the active site of all five subunits (figure 2.2.30 A). The active site

of the variant co-crystallized with F6P is superimposable with the active site of the corresponding

wild type structure (figure 2.2.30 B).

In order to obtain a structure of the variant containing reduced cysteines (unlock of the conforma-

tional arrest), the protein was co-crystallized with 1 – 2 mM DTT. Unfortunately, no crystals of

the TacTALT30C/D211C variant could be observed under reducing conditions. For this reason, the

previously obtained resting state crystals were soaked with the reservoir solution supplemented

with 50 mM DTT for 10 min at 20 ◦C. The structure was determined to a resolution of 2.15 Å

(Rwork = 17.98 % and Rfree = 21.40 %; tables A.4 and A.7 in the appendix). Surprisingly, the intro-
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Figure 2.2.29: Comparison of the „open“/„closed“ conformations observed in resting state
wild type structure with the resting state of TacTALT30C/D211C. A: Distance (Å) between the
backbone Cα atoms of compared subunits plotted vs. residue number (calculated using (Kleywegt,
1996)). Black solid line: „open“ vs. „closed“ conformation in resting state of TacTALwt (PDB entry:
3S0C, (Lehwess-Litzmann et al., 2011b)), blue solid line: „closed“ conformation of TacTALwt
vs. resting state of TacTALT30C/D211C, red solid line: „open“ conformation in resting state of
TacTALwt vs. resting state of TacTALT30C/D211C. The conformational state of TacTALT30C/D211C is
similar to the „closed“ conformation in wild type. B: Functional subunit of TacTALwt in „closed“
conformation as secondary structure. The C-terminal α-helix of the neighboring subunit is contoured
in red. The color scale indicates the difference in the interatomic distance (Å) between backbone
Cα atoms compared to the „open“ conformation.

duced cysteines were inspected to form disulfide bonds in all five subunits and were not reduced

as expected. The cause of this observation is unclear. The introduced disulfide is located on the

surface of the homopentamer in a region, which does not contribute to the crystallographic contacts.

Consequently, the introduced disulfide bridge was assumed to be accessible for the reducing agent

DTT. A longer incubation of the crystal in the soaking solution was not possible, because the

crystals started to dissolve after 10 min.

Another resting state crystal was soaked with the reservoir solution containing 50 mM DTT

and 100 mM F6P for 2 min at 20 ◦C. The structure was determined to a resolution of 2.10 Å

(Rwork = 19.56 % and Rfree = 23.02 %; tables A.4 and A.7 in the appendix). In this case as well, the

introduced residues Cys211 and Cys30 are present as oxidized disulfides in all subunits, in spite of

the presence of DTT in the soaking solution. An additional electron difference density was observed

in the active sites of all five subunits. This electron density was interpreted as the F6P-Schiff base

intermediate (figure C.15 in the appendix). The intermediate is coordinated by the active site

residues in a similar way as observed in the active site of the variant co-crystallized without DTT

(figure 2.2.31). The C1OH-group of the intermediate is oriented in the „down“ conformation. The
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Figure 2.2.30: Active site of TacTALT30C/D211C co-crystallized with F6P. A: The selected active
site residues (gray) and the F6P-Schiff base intermediate (yellow) are represented as sticks, the
catalytic water molecule as red sphere. The polypeptide backbone is shown as secondary structure
(cyan). The C1OH-group is present in two alternative conformations (green: „up“, yellow: „down“).
B: Superposition of the active sites of TacTALT30C/D211C (gray, ligand: yellow) and TacTALwt
(cyan, ligand: purple) co-crystallized with F6P. The catalytic water molecule is shown as orange
(TacTALwt) or red (TacTALT30C/D211C) sphere.

Schiff base-forming lysine adopts its all-trans conformation, comparable to the lysine observed in

the wild type structure co-crystallized with A5P.

The presence of the F6P-Schiff base intermediate in the active site of the variant after soaking

indicates that two minutes of soaking, seem to be sufficient for the diffusion of F6P into the crystal.

In this context, ten minutes of treatment with the DTT containing solution were assumed to be

sufficient as well. However, a different behavior in diffusion of different substances to the different

positions in the crystal lattice cannot be excluded.

Soaking of a resting state crystal with F6P containing solution without addition of DTT resulted

in a structure (resolution=2.50 Å, Rwork = 19.77 % and Rfree = 23.40 %; tables A.4 and A.7 in the

appendix) with an additional electron difference density in the active site, which was interpreted

as covalently linked F6P-carbinolamine intermediate in the active sites of subunits C, D and E

(figure C.16 in the appendix). In the active sites of the remaining two subunits (A and B), the

F6P-Schiff base intermediate was modeled.

The relative orientation of the F6P-carbinolamine intermediate in the active site of the variant is

comparable to the orientation of the carbinolamine-mimic M1P in the active site of the wild type

enzyme (figure 2.2.32 B). While the phosphate groups of the intermediate and the enzyme bound

M1P are superimposable, the C2-atom of the intermediate is displaced by ∼0.7 Å compared to
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Figure 2.2.31: Active site of TacTALT30C/D211C soaked simultaneously with F6P and DTT.
A: The selected active site residues (gray) and the F6P-Schiff base intermediate (yellow) are
represented as sticks, the catalytic water molecule as red sphere. The polypeptide backbone is
shown as secondary structure (cyan). The C1OH-group is coordinated by Ser130 corresponding to
the „down“ conformation. B: Superposition of the active sites of TacTALT30C/D211C soaked (gray,
ligand: yellow) with DTT/F6P and co-crystallized (cyan, ligand: purple) with F6P. Orange sphere:
catalytic water molecule in structure co-crystallized with F6P, red sphere: catalytic water molecule
in structure soaked with F6P and DTT.

the M1P structure. The C1OH-group adopts the „down“ conformation. The C2 hydroxy group

is coordinated by Thr110. The catalytic water molecule is not present in the active site of the

F6P-carbinolamine intermediate containing structure.

Compared to the structure of the F6P-Schiff base intermediate observed in the structure of the

variant co-crystallized with F6P, the carbinolamine intermediate is displaced by ∼0.7 Å towards

the entrance of the active site (figure 2.2.32). The C2-atom of the carbinolamine intermediate is

displaced by ∼1.0 Å caused inter alia by the sp3-hybridization of the carbon in the carbinolamine

compared to the sp2-hybridized carbon of the Schiff base. The catalytic lysine residue adopts the

all-trans conformation in the structure of the F6P-carbinolamine intermediate.
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Figure 2.2.32: Active site of TacTALT30C/D211C soaked with F6P. A: The selected active site
residues (gray) and the F6P-carbinolamine intermediate (yellow) are represented as sticks. The
polypeptide backbone is shown as secondary structure (cyan). The C1OH-group is coordinated
by Ser130 corresponding to the „down“ conformation. B: Superposition of the active sites of
TacTALT30C/D211C (gray, ligand: yellow) soaked with F6P and TacTALwt (cyan, ligand: purple)
co-crystallized with M1P. The relative orientation of the F6P-carbinolamine intermediate trapped
in TacTALT30C/D211C is comparable to that of the carbinolamine-mimic M1P in the active site of
TacTALwt. Red sphere: resting state water molecule in TacTALwt (absent in TacTALT30C/D211C).
C: Superposition of the active sites of TacTALT30C/D211C soaked (gray, F6P-carbinolamine inter-
mediate: yellow) and co-crystallized (cyan, F6P-Schiff base intermediate: green) with F6P. Red
sphere: catalytic water molecule in F6P-Schiff base intermediate containing structure (absent in
the case of F6P-carbinolamine intermediate).

In order to analyze, if the „closed“-state arrest of the subunits in the TacTALT30C/D211C variant

influences the catalysis, steady-state measurements, as well as single-turnover analysis, were

performed.

The steady-state measurements for the TacTALT30C/D211C variant were performed under oxidizing

(absence of DTT) and reducing (presence of 1 mM DTT [final concentration]) conditions (fig-

ure 2.2.33). The turnover number for the oxidized form (the „closed“ conformation is stabilized

by an inter-subunit disulfide bound) of the variant was determined to kcat = 1.1 ± 0.3 s−1 and

the apparent Michaelis constant to Kapp
M = 0.60 ± 0.08 mM. The treatment of the variant with

20 mM DTT (final concentration of 1 mM DTT in reaction mixture; for details, see section 1.6.4.2)

results in a ∼4 fold higher turnover number and a ∼50 fold higher apparent Michaelis constant.

However, because of this high increase of the apparent Michaelis constant, the catalytic efficiency

of the variant under reducing conditions (kcat /Kapp
M = 0.14 s−1M−1) is one order of magnitude lower

compared to the oxidizing conditions (kcat /Kapp
M = 1.83 s−1M−1), while the turnover number is higher.
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Figure 2.2.33: Dependency of the transal-
dolase activity of TacTALT30C/D211C on F6P
concentration (0.1 – 74 mM). The rectangles
and circles indicate the measured transaldolase
steady-state activity of TacTALT30C/D211C
(50 μg/mL, 30 ◦C) in its reduced (pre-incubated
with DTT) and oxidized form, respectively. The
Michaelis-Menten fits (eq. 1.6.2, solid line) are
indicated by red and blue, respectively. The
margin of error for the macroscopic kinetic con-
stants is given as the standard deviation of the
fitted data (sets of triplicates). Data provided
by Lietzow (2015).

In order to satisfy the complete reduction of all cysteines in the molecule, the variant was pre-

incubated with 20 mM DTT for at least 10 min. Because the incubation of the enzyme in DTT

containing buffer for 4 h results in 40 – 50 % loss in transaldolase activity, the enzyme/DTT pre-mix

was prepared freshly every 40 min during the experiment (loss in activity of ∼5 %). The origin of

the inactivating effect of DTT on the variant is unclear. However, the incubation of the variant with

1 mM DTT for 10 min does not influence the secondary structure of the protein according to CD

measurements (figure C.2 in the appendix).

The transaldolase activity of the TacTALT30C/D211C variant is ∼4 or ∼15 fold lower (under

reducing or oxidizing conditions, respectively) than the activity of the wild type enzyme

(kcat = 13.86 ± 0.65 s−1, (Lehwess-Litzmann, 2011)). The apparent Michaelis constant of

the variant determined under oxidizing conditions is ∼4 fold lower, while the same constant

determined under reducing conditions is ∼12 fold higher compared to the wild type enzyme

(Kapp
M = 2.30 ± 0.36 mM, (Lehwess-Litzmann, 2011)). The treatment of the wild type enzyme

with DTT did not show any effect on the turnover number or apparent Michaelis constant of

transaldolase reaction.

In addition to the steady-state measurements the pre-steady-state analysis of the variant was

performed under oxidizing (absence of DTT) and reducing (presence of 1 mM DTT after mixing

with F6P in a 1:1 volume ratio) conditions using stopped-flow technique (figure 2.2.34).

The dependency of the observed first order rate constant (kobs) on the substrate concentration of

the variant in its oxidized form is comparable to the single-turnover kinetics of the wild type. The

first order rate constant (kmax
obs ) was determined to 46.88 ± 2.99 s−1 (for wild type: 60.31 ± 4.12 s−1

(Sautner, 2012)). The apparent equilibrium constant of the fast pre-equilibrium (Kapp
S ) for the
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Figure 2.2.34: Pre-steady-state analysis of
the donor half-reaction of TacTALT30C/D211C
in its reduced and oxidized forms. The mea-
surements were performed at 30 ◦C. The er-
ror bars represent the standard deviation of the
mean value calculated from the measurement of
triplicates. The rectangles and circles indicate
the observed rate constants (kobs) depending on
F6P concentration (0.05 – 50 mM) for reduced
(pre-incubated with DTT) and oxidized form,
respectively. The data were fitted according
to eq. 1.6.8 (red and blue, respectively). Data
provided by Lietzow (2015) and Lisa-Marie
Funk. [F6P] (mM)
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donor half-reaction of the variant in its oxidized form was determined to 0.41 ± 0.09 mM which

is ∼2 fold lower than the corresponding constant for the wild type enzyme (0.70 ± 0.17 mM

(Sautner, 2012)). The respective constants for the reduced form of the variant ware determined

to kmax
obs = 13.77 ± 1.32 s−1 and Kapp

S = 2.52 ± 0.57 mM. In contrast to the steady-state results, the

arrest of conformational „open“/„closed“ dynamics in the oxidized form of the TacTALT30C/D211C

variant influences the donor half-reaction only marginal. The reduction of the disulfide bound

between Cys30 and Cys211 impairs the first order rate constant (kmax
obs ) at least by a factor of three.

The apparent equilibrium constant of the fast pre-equilibrium (Kapp
S ) of the donor half-reaction

under reducing conditions is increased by a factor of six.
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2.3 Discussion

During the last few decades, an extensive knowledge regarding the mechanism of action of transal-

dolase was obtained. Previous investigations on transaldolase from Escherichia coli contributed

information about the geometry of the active site (Jia et al., 1996). In further studies, catalytically

important residues could be identified by mutagenesis and structural analysis of invariant residues

located in the active site (Schörken et al., 2001). Finally, the transaldolase from Thermoplasma

acidophilum emerged as a good model enzyme for further investigations on the mechanism of

catalysis. Crystallographic analysis of this thermostable transaldolase contributed the structural in-

formation about the orientation of the F6P-Schiff base intermediate in the active site, which was the

first observation of a reactive intermediate in crystallo for this class of enzymes (Lehwess-Litzmann

et al., 2011b). In these studies, the Glu60 residue was identified as the general acid-base catalyst,

which contrasts the previous assumption that an aspartate residue (Asp6 in TacTAL) participates in

the acid-base catalyzed aldol cleavage as well (Schörken et al., 2001). However, the impact of the

different conformational states observed in the structure of TacTAL („open“ and „closed“) on the

catalysis remained unclear.

Intrinsic dynamic processes in enzymes are reported to play an important role during catalysis or

for substrate recognition (Boehr et al., 2009; Eisenmesser et al., 2005; Hammes et al., 2011). A

mechanism in which the enzyme adopts different conformational states convenient for the respective

catalysis step was described for the dihydrofolate reductase from Escherichia coli (Boehr et al.,

2006). This strategy allows the enzyme to catalyze its reaction in the most efficient way and was

reported for a number of different enzymes (Hammes et al., 2011; Hammes-Schiffer and Benkovic,

2006; Henzler-Wildman et al., 2007; Wolf-Watz et al., 2004). Intrinsic dynamic processes

take place during the catalytic cycle of aldolase from rabbit muscle, an enzyme structurally and

mechanistically related to transaldolase. A tyrosine residue acting as the acid-base catalyst for the

protonation of the central DHAP-carbanion/enamine intermediate prior to the hydrolysis reaction is

located in the flexible C-terminus of the protein. This residue is not present in the active site during

the DHAP-carbanion/enamine intermediate formation, which is acid-base catalyzed by a glutamate

residue similar to the transaldolase reaction. When the DHAP-carbanion/enamine intermediate

is formed and the first product is released, the C-terminus adopts a conformation, in which the

tyrosine’s hydroxy group is perfectly oriented for the proton transfer onto the intermediate (St-Jean

and Sygusch, 2007). Protonation of the intermediate is necessary for the hydrolysis reaction to
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occur. In this case, the dynamic process provides a spatial separation of the reactants along the

catalytic cycle.

In the case of TacTAL, two different conformational states („open“ and „closed“) were observed in

the crystal structure of the protein in resting state (Lehwess-Litzmann, 2011). In the „closed“ state

the flexible N-terminal part (6 – 55 aa) interacts with the C-terminal α-helix of the neighboring

subunit. The active site entrance of the subunits in „closed“ conformation is ∼3.8 Å narrower

compared to the active site in the „open“ conformation (Lehwess-Litzmann, 2011). In order to

investigate the importance of the conformational changes in TacTAL for the catalysis, the enzyme

was covalently arrested in its „closed“ conformation by the introduction of an intersubunit disulfide

bond. A double-mutation variant (TacTALT30C/D211C) was generated and analyzed structurally and

kinetically.

The use of designed disulfide bridges is a convenient method to cross-link protein molecules or

protein domains (Cedervall et al., 2015; Kufareva et al., 2016). In contrast to chemical cross-

linking (e.g. by the use of glutaraldehyde as cross-linker), cysteine residues and disulfide bonds

are common in natural proteins and they can be introduced in a selective manner. Furthermore,

the designed disulfide bridges can be used to provide thermal stability to mesophilic proteins as it

was described for 1,3-1,4-β-glucanase from Bacillus terquilensis (Niu et al., 2016). In the present

work, the disulfide bridge was introduced in TacTAL in order to arrest the protein in a distinct

conformation as recently published for other enzymes (Giganti et al., 2015; Zaremba and Siksnys,

2015)

In the resting state structure of the variant, the introduced cysteine residues were found to form

a disulfide bond cross-linking the C-terminal α-helix with the flexible N-terminal part of the

neighboring subunit. The geometry of this disulfide bond corresponds well with the preferred

geometries of disulfide bonds as observed in numerous structures (Allen et al., 1987; Bhattacharyya

et al., 2004; Pellequer and Chen, 2006).

According to the fact that the monomers of TacTAL’s homodecamer (dimer of pentamers) are

unable to adopt the „open“ conformation without the breaking of the disulfide bridge, all five

subunits of the homopentamer in the asymmetric unit were observed in the „closed“ conformation

although the variant was crystallized in resting state (figure 2.3.35). This is in contrast to the wild

type protein, whose resting state structure shows different conformations.
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211

30

Figure 2.3.35: Superposition of „open“ and
„closed“ conformations of TacTALwt (orange
and green, respectively) with a subunit of
TacTALT30C/D211C (yellow). The main chain
is represented as secondary structure. The side
chains of the interacting residues are shown as
sticks.

Although the introduced disulfide bond preserves the „closed“ conformation by covalent linkage,

an absolute arrest of protein dynamics cannot be assumed for sure. The flexible region of TacTAL

contains 50 amino acid residues (residues 6-55). A local arrest of the flexibility by the introduced

disulfide bond is most probably insufficient to prevent remaining regional flexibility. However, the

conformational equilibrium in this region is assumed to be shifted towards the „closed“ state. The

introduced cysteines replace the residues Asp211 and Thr30, which interact with each other in the

„closed“ state of the wild type protein by hydrogen bonding. In presence of a reducing agent (e.g.

DTT or β-mercaptoethanol) the cysteines are existent as thiols and do not form a covalent bond.

The „closed“ state is suggested to be destabilized under reducing conditions, because of the lacking

hydrogen bond between the mutated residues Asp211 and Thr30 as in the case of wild type situation.

Consequently, the „open“/„closed“ equilibrium of the reduced variant is suggested to be shifted

towards the „open“ state. In other words, the designed variant is assumed to be present mainly in

the „closed“ conformation under oxidizing conditions and mainly in the „open“ conformation under

reducing conditions but the occurrence of regional flexibility cannot be excluded in both cases.

According to the single-turnover analysis of the variant, the „closed“ conformation is important for

the donor half-reaction consisting of the catalytic steps from substrate binding (F6P) to the release

of the first product (GA3P). The reaction rates determined for the variant are comparable to those of

the wild type protein, other than the rates in presence of DTT unlocking the conformational arrest

and destabilizing the „closed“ state. In the latter case, the rate constant is significantly decreased.

In steady-state experiments, the addition of DTT results in a higher turnover number and higher

Michaelis-constant compared to the oxidizing conditions. Based on these results, a model can be

proposed, in which substrate binding and catalysis of the donor half-reaction are performed by the

enzyme in its „closed“ conformation. On the other hand, the adoption of the „open“ conformation is
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necessary for efficient catalysis of the acceptor half-reaction (DHA-unit transfer to the C1-position

of E4P and release of the second product S7P). This corresponds well to the previous suggestion

of the conformational-selection mechanism for the substrate binding (Lehwess-Litzmann et al.,

2011b). In this case, the protein is present in different conformational states showing different

affinities for the substrate (Vogt and Di Cera, 2012; Vogt et al., 2014). Vogt and Di Cera (2013)

suggested a preeminent role of the conformational selection mechanism for ligand binding in nature.

An alternative mechanism for the substrate binding is the induced-fit mechanism, in which the

substrate-binding event induces the conformational adaption of the active site. The conformational-

selection and induced-fit mechanisms are edge cases in the natural complexity regarding the ligand

binding and dynamic processes. In this context, mixed situations were proposed as well (Vogt and

Di Cera, 2013).

The residues Thr30 and Asp211 are not a part of the active site. A virtual rotamer of Thr30 could

interact with the active site’s residue Asn28, which coordinates the C4 hydroxy group of the F6P-

Schiff base intermediate but this conformation of Thr30 was not observed in any structure of

TacTAL so far. Although both introduced mutations are not located in the active site, the steady-

state activity of the variant is significantly impaired compared to the wild type activity irrespective

of the redox-state of the disulfide. This underlines the importance of the dynamic processes (per

se) for the catalysis, which is assumed to be perturbed for the variant in both cases (reducing or

oxidizing conditions).

The incubation of the TacTALT30C/D211C variant with 20 mM DTT for four hours results in ∼50 %

loss in activity. This effect remains unexplained. One possibility could be a covalent modification

of the cysteine residues by DTT over the time destabilizing the correct fold. Another explanation

could be the potential lower stability of the enzyme in its „open“ state. Furthermore, a perturbation

of the homopentamer formation because of the missing interaction between the side chains of Thr30

and Asp211 is assumable but unlikely, since the pentamer is stabilized by a number of interactions

and the removed interaction is only present in the „closed“ state of the protein. The oligomerization

state of the variant under reducing conditions could be analyzed using analytical gel-filtration or

the size exclusion chromatography coupled multiangle light scattering. Another method giving the

information about the oligomerization state is the analytical ultracentrifugation as it was performed

for TacTALwt in previous work (Lehwess-Litzmann, 2011).
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The analysis of the pre-steady state kinetics of the aldolase active variant TacTALE60Q/F132Y in reac-

tion with F6P provides further evidence for conformational changes of the enzyme in solution. The

progress curves of the pre-steady-state kinetics of the aldolase-active variant TacTALE60Q/F132Y in

reaction with F6P show a lag phase during the first 50 ms. The duration of this phase is independent

from the substrate concentration. This lag phase could be a further evidence that TacTAL undergoes

conformational changes in solution, which are important for the catalysis. According to the confor-

mational selection mechanism, the substrate is assumed to bind preferentially to the „closed“ state

of TacTAL giving a productive enzyme-substrate complex. The aldol cleavage of the substrate after

the binding event results in an „open“/„closed“ equilibrium shift under single-turnover conditions.

In this case, the lag phase would describe the „open“/„closed“ conformational change of the protein

before substrate binding. A similar observation was published for the 1,3-1,4-β-glucanase from

Bacillus licheniformis (Abel et al., 2001). A lag phase in the very beginning of the progress curves

of the single-turnover reaction of the disulfide variant TacTALT30C/D211C could be observed, but

was not discussed in the present work because of the poor data quality in this sensible region of

the curve. However, under oxidizing conditions the lag phase was observed only at low substrate

concentration (≤ 1 mM). The duration of this lag phase was supposed to depend on substrate

concentration and could describe the substrate binding process. Under the reducing conditions, the

duration of the lag phase was supposed to be independent from the substrate concentration.

The TacTALE60Q/F132Y variant mimics the acid-base constellation of the active site of fructose

6-phosphate aldolase from Escherichia coli (EcFSA), which is structurally and mechanistically

related to transaldolase. Other than transaldolase, which catalyzes the reversible transfer of a

dihydroxyacetone-unit from a donor-substrate (e.g. F6P) to the carbonyl-carbon of an acceptor-

substrate (e.g. E4P), fructose 6-phosphate aldolase catalyzes the reversible cleavage of the sugar

substrate (Schürmann and Sprenger, 2001). As previously published, a single-mutation of the

particular phenylalanine residue in the active site of transaldolase (Thermoplasma acidophilum:

Phe132, Escherichia coli: Phe178, human: Phe189) by tyrosine enhances the aldolase activity of

transaldolase and impairs the transaldolase activity (Lehwess-Litzmann, 2011; Schneider et al.,

2008).

Although EcFSA catalyzes its reaction via acid-base catalysis akin transaldolase, an equivalent for

the general acid-base catalyst of TacTAL (Glu60) is substituted by a glutamine residue in the active
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site of EcFSA. In this context, the aforementioned tyrosine residue was suggested to take over the

role of the transaldolase specific glutamate as the general acid-base catalyst.

Tyrosine residues were indicated as the acid-base catalysts for a number of enzymes (Daniels

et al., 2014; Schwans et al., 2013; Sun and Toney, 1999). Moreover, a tyrosine residue emerged

as the acid-base catalyst in the designed non-natural aldolases (Bjelic et al., 2014; Giger et al.,

2013; Zhu et al., 2009). Although the tyrosine side chain is a weak acid with a pKa of 9.7 ± 0.5

in aqueous solution (Harris and Turner, 2002), this pKa can be lowered in the environment of

the active site by up to 4 units, caused by the stabilization of the negative charge of the phenolate

anion via hydrogen bonds or positively charged residues such as arginine (Schwans et al., 2013;

Sun and Toney, 1999). In the active site of EcFSA an arginine residue (Arg134) is placed in the

direct environment of the catalytic tyrosine (Tyr131), which is conserved in TacTAL (Arg135) as

well (Stellmacher et al., 2015). As suggested by Stellmacher et al. (2015), this arginine residue

could lower the pKa of the catalytic tyrosine in EcFSA as well as in the transaldolase variants with

enhanced aldolase activity (variants containing Phe132→ Tyr mutation, referring to TacTAL).

The protonation state of the DHA-Schiff base intermediate (or carbanion/enamine intermediate,

respectively) formed upon the aldol cleavage reaction discriminates between the two activities

(transaldolase vs. aldolase). If the intermediate is present in its carbanion/enamine form, the

transaldolase reaction will take place (reversible transfer of a DHA-unit to the carbonyl carbon of

the acceptor aldose phosphate). In the case of the protonated intermediate (DHA-Schiff base), the

aldolase reaction will occur (reversible cleavage). According to the analysis of the DHA-Schiff

base intermediate trapped in the active site of the TacTALE60Q/F132Y variant, the relative orientation

of the hydroxy group of the introduced tyrosine residue is favorable for direct proton transfer onto

the intermediate’s C3-atom. On the other hand, the geometry of the active site is unfavorable

for a direct or water mediated protonation of this atom by the transaldolase specific acid-base

catalyst glutamate. This observation explains why a single mutation of the phenylalanine residue

to tyrosine in the active site of transaldolase provides the aldolase activity. When comparing the

available structures of different transaldolases and aldolases, the respective acid-base catalysts

can be subdivided in two groups: co-aligned (acid-base catalyst is oriented in same direction as

the reactive lysine) and opposite-faced (acid-base catalyst is oriented towards the reactive lysine

(Tittmann, 2014)).
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In this context, the single-mutation variant TacTALF132Y contains two potential acid-base catalysts

in the active site: the co-aligned transaldolase specific Glu60 and the opposite-faced aldolase

specific Tyr132. This variant shows a stimulated aldolase activity and greatly impaired transaldolase

activity. According to the pre-steady-state analysis the hydrolysis of the central DHA-Schiff base

intermediate is not rate limiting for the conversion of F6P but one of the previous steps including

F6P binding, formation of the intermediates (F6P-carbinolamine, F6P-Schiff base) and the release

of the first product GA3P (first half-reaction). Compared to TacTALwt, the first half-reaction

of the variant is at least three orders of magnitude slower. The additional replacement of the

Glu60 residue to glutamine restores the activity of the first half-reaction. The rate constant of this

reaction for the TacTALE60Q/F132Y variant is comparable to that of the wild type enzyme and is not

rate limiting anymore. Remarkably, the catalytic efficiency of the variant under the steady-state

conditions is higher than that of the natural EcFSA. A similar situation was published for the

transaldolase from Escherichia coli (Stellmacher et al., 2015). Here as well, an additional mutation

of the transaldolase specific general acid-base catalyst (Glu96) to a glutamine together with the

introduced tyrosine residue (Tyr178) results in a double-mutation variant (EcTALE96Q/F178Y) with

higher aldolase activity compared to the single-mutation variant (EcTALF178Y).

While the replacement of Glu60 by glutamine together with the introduced Phe132 → Tyr mu-

tation improves the rates of the first half-reaction in the TacTALE60Q/F132Y variant compared to

TacTALF132Y, a single Glu60 → Gln mutation in the active site of TacTAL impairs the first half-

reaction by two orders of magnitude in TacTALE60Q compared to the wild type. Furthermore, the

TacTALE60Q variant was previously described to show greatly impaired transaldolase steady-state

activity, without the stimulation of the aldolase activity (Lehwess-Litzmann, 2011; Lehwess-

Litzmann et al., 2011b). A complementary replacement of the corresponding glutamine residue

by a glutamate in the active site of EcFSA would result in an EcFSAQ59E variant with similar

acid-base situation as in the case of the TacTALF132Y variant (two potential acid-base catalysts Glu

and Tyr are present in the active site). The aldolase activity of this variant is reported to be impaired

compared to the wild type EcFSA (Stellmacher et al., 2015). The relation between EcFSAQ59E and

EcFSAwt is the same as the relation between TacTALF132Y and TacTALE60Q/F132Y. Surprisingly,

the double-mutation variant of EcFSA (EcFSAQ59E/Y131F) did not show any transaldolase activity,

although the acid-base situation in this variant is the same as in TacTAL (Stellmacher et al., 2015).

Moreover, this variant is not able to catalyze the aldolase reaction anymore.
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In other words, the presence of both potential acid-base catalysts (co-aligned glutamate and opposite-

faced tyrosine) impairs catalysis of the aldolase reaction, especially its first half-reaction (all steps

until the release of the first product), which becomes rate limiting. A prominent exception is the

mammalian glycolytic enzyme fructose-1,6-bis(phosphate) aldolase (FBPA) which contains both:

a glutamate residue at the position corresponding to the transaldolase specific general acid-base

glutamate and a tyrosine residue positioned equivalently to the FSA specific general acid-base

tyrosine (Tittmann, 2014). Nevertheless, the mammalian FBPA efficiently catalyzes the cleavage

of the substrate fructose 1,6-bis(phosphate). During the catalysis of the first half-reaction of the

mammalian FBPA, the glutamate residue acts as the acid-base catalyst akin to the catalysis of the

corresponding reaction by transaldolase (figure 2.3.36), while the catalytic tyrosine residue located

at the C-terminal position of the flexible C-terminus is not present in the active site (Maurady et al.,

2002; St-Jean et al., 2005). Once the first half-reaction is completed and the first product GA3P is

released, the C-terminal tyrosine enters the active site at a position favorable for the protonation

of the central DHAP-carbanion/enamine intermediate similar to the reaction of FSA (St-Jean and

Sygusch, 2007). Interestingly, the treatment of the FBPA enzyme with carboxypeptidase giving a

truncated version of the enzyme, which does not contain the C-terminal tyrosine residue, results

in loss of the aldolase activity but in stimulation of the transaldolase activity (Rose et al., 1965).

However, archeal fructose-1,6-bis(phosphate) aldolases catalyze the reaction using only a tyrosine

residue as multi-functional acid-base catalyst similar to EcFSA (Tittmann, 2014). The reason for

the impaired donor half-reaction in presence of both acid-base catalysts is unclear. One possible

explanation could be the re-orientation of the hydrogen bond network in the active site of the

variants with both acid-base catalysts, resulting in a for the catalysis unfavorable orientation of the

hydrogen atoms.

Aside from the difference in the acid-base situations in the active sites of TacTAL and EcFSA, the

direct environment of the reactive lysine differs in both enzymes as well. While the transaldolase

contains the hydrophilic residues Ser58, Asn108 and Ser130, in the active site of EcFSA these residues

are replaced by the hydrophobic residues Phe, Ala and Leu, respectively. In order to investigate

the impact of these residues for the catalysis, a five-fold variant was generated (TacTALFSA-mimic).

The active site of the variant contains the previously introduced mutations Glu60 → Gln and

Phe132→ Tyr as well as the hydrophobic residues as described before (Ser58→ Phe, Asn108→ Leu

and Ser130→ Ala).
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Figure 2.3.36: Comparison of the active sites of TacTALwt and TacTALE60Q/F132Y with the
mammalian FBPA. The selected active site residues (gray) and the respective intermediates
(yellow) are shown as sticks. The catalytic water molecule (W1) is shown as red sphere. The
residue acting as acid-base catalyst is highlighted in red. A: TacTALwt with F6P-Schiff base
intermediate. The co-aligned glutamate is the multi-functional acid-base catalyst for all steps
of the catalysis. B: TacTALE60Q/F132Y with DHA-Schiff base intermediate. The opposite-faced
tyrosine is the multi-functional acid-base catalyst for all steps of the catalysis. C: Mammalian
FBPA with FBP-Schiff base intermediate. The co-aligned glutamate is the acid-base catalyst for
the first half-reaction of the catalysis. The catalytic tyrosine is absent in the active site. PDB
entry: 1ZAI (St-Jean et al., 2005). D: Mammalian FBPA with DHAP-Schiff base intermediate.
The opposite-faced tyrosine is now present in the active site to perform the protonation of the
carbanion/enamine intermediate, which is necessary for the hydrolysis. PDB entry: 2QUU (St-Jean
and Sygusch, 2007).

Surprisingly, the TacTALFSA-mimic variant shows the lowest aldolase activity compared to other

variants analyzed in this work, although the topology of the active site of the variant is nearly equal

to that of EcFSA. However, the aldolase activity of the variant is one order of magnitude higher

than the aldolase side reaction of TacTALwt. The first half-reaction for the conversion of F6P by

TacTALFSA-mimic is not impaired, according to the pre-steady-state analysis. This finding implies

that the introduction of the hydrophobic surface in the direct environment of the catalytic lysine
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affects at least one step in the catalysis after the release of the first product (protonation of the

carbanion/enamine intermediate, hydrolysis of the DHA-Schiff base intermediate and/or the release

of the second product DHA).

The variant shows a different pH dependency of the turnover number under steady-state conditions.

While the observed aldolase activities of the TacTALF132Y and TacTALE60Q/F132Y variants plotted

versus pH exhibit bell-shaped curves with an optimum at pH around 7.9, the TacTALFSA-mimic

variant shows a sigmoidal progression with the highest aldolase activity at pH ≥ 8.5. A measurement

of the steady-state activity at the pH values higher than 9.5 was not possible because of the

limitations of the three-component buffer system used in the assay. Regarding this pH properties,

the TacTALFSA-mimic variant behaves similar to the natural EcFSA (Stellmacher et al., 2015).

The hydrophobic environment of the reactive lysine in EcFSA is suggested to lower the pKa of

the lysine (Stellmacher et al., 2015). However, a mutation of the alanine residue located in this

environment (Ala129) to a serine residue as present in the active site of transaldolase (Ser130) results

in an EcFSAA129S variant with significantly improved catalytic efficiency (Castillo et al., 2010).

Recently, a number of variants with regard to this area of the active site of EcFSA were designed

and analyzed (Güclü et al., 2016; Szekrenyi et al., 2014). In these studies, the examined variants

showed a broad range of selectivity for different donor-substrates giving a good tool for applications

in synthetic chemistry.

In contrast to EcFSA, the corresponding residues in the active site of TacTAL are substituted by the

hydrophilic residues Ser58 (Phe in EcFSA), Asn108 (Leu) and Ser130 (Ala). This residues form a

hydrogen bond network with each other. Moreover, Ser130 coordinates the C1 hydroxy group of the

intermediate. The C1OH-group of the F6P-Schiff base intermediate trapped in the active site of

TacTALwt exhibits two alternative conformations („up“ and „down“). In its „up“ conformation the

C1OH-group is coordinated by Thr110, while the aforementioned residue Ser130 coordinates the

„down“ conformation.

The C1 hydroxy group is the direct neighbor of the carbonyl group in the F6P molecule. This

carbonyl group is directly involved in the formation of the covalent intermediate, which is essential

for the catalysis. The covalent intermediate such as carbinolamine is formed upon the nucleophilic

attack of the ε-amino group of the enzyme’s reactive lysine onto the substrate’s carbonyl group.

In this context, the coordination of the neighboring C1 hydroxy group could be important for the
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correct orientation of the carbonyl group for the nucleophilic attack and for the proper positioning

of the intermediates appearing during the catalytic cycle (Schörken et al., 2001).

In the present work, the interaction of the substrate’s „down“ conformer with the active site

was investigated. This interaction was interrupted by removing the interaction partners in the

direct environment of the C1 hydroxy group in the TacTALN108A/S130A variant, or by removing the

C1OH-group using A5P as donor-substrate.

In previous work, it could be shown that A5P can be converted by transaldolase and acts as

alternative substrate at least during the donor half-reaction (Sautner, 2012). The conversion of

A5P by EcFSA was described as well (Garrabou et al., 2009; Guérard-Hélaine et al., 2015).

The analysis of the donor half-reaction of the TacTALN108A/S130A variant in a single-turnover

reaction with F6P and of the wild type in reaction with A5P showed that in both cases the reaction

is greatly impaired. Importantly, the observed first order rate constants for both reactions are nearly

equal to each other. These constants are two orders of magnitude lower than the corresponding rate

constant for single-turnover conversion of the natural donor-substrate by the wild type enzyme.

These results demonstrate the importance of the interactions between the substrate’s C1OH-group

and the active site for the catalysis.

The structure of the A5P-Schiff base intermediate trapped in the active site of the wild type

enzyme is comparable to that of the F6P-Schiff base intermediate. However, the intermediate

is shifted towards the entrance of the active site resulting in a relaxed all-trans conformation of

the Schiff base-forming lysine residue. Compared to the structure of the wild type enzyme with

the F6P-Schiff base intermediate in the active site, the catalytic water molecule in the structure

containing A5P-Schiff base intermediate is displaced as well. These minor differences in the

relative orientation of the Schiff base intermediate and the catalytic water could contribute to the

low reactivity of A5P in reaction of TacTAL. The position of the catalytic water molecule relatively

to the intermediate is assumed to be important for the catalysis, since this water facilitates the proton

transfer between the general acid-base catalyst and the intermediate (Schörken et al., 2001). A

comparable A5P-Schiff base intermediate structure observed in the active site of the transaldolase

from Francisella tularensis (FtuTAL) was recently published by Light and Anderson (2014).

A5P was described as competitive inhibitor of transaldolases from different organisms (Caillau and

Paul Quick, 2005; Sprenger et al., 1995; Williams et al., 1978). Taking into account the present
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results, A5P is most likely a competitive high affinity but low activity substrate of transaldolase as

previously suggested (Light and Anderson, 2014; Sautner, 2012). In the single-turnover reaction

of wild type with A5P, the enzyme is already saturated at A5P concentration of ∼0.5 mM, which is

one order of magnitude lower than the concentration of F6P needed to saturate the enzyme under

comparable conditions.

Although the TacTALN108A/S130A variant showed a similar decrease in activity in single-turnover

reaction with F6P as in the case of the reaction of wild type with A5P, the structure of the F6P-

Schiff base intermediate observed in the active site of the variant is comparable to that of the

intermediate in the active site of the wild type enzyme.

Remarkably, in the active sites of both structures with perturbed C1 hydroxy group coordination

(TacTALN108A/S130A + F6P and TacTALwt + A5P) an additional water molecule was observed

occupying the positions of the absent groups, which is not present in the active site of the wild type

enzyme with F6P-Schiff base intermediate. However, the positions of these water molecules are

not equivalent in both structures. The contribution of this water molecule to the perturbation of the

activity remains unclear.

Previously, the single-mutation variants (TacTALN108A and TacTALS130A) were analyzed struc-

turally and kinetically (Sautner, 2012). Both variants showed significantly affected single-turnover

conversion of F6P. Surprisingly, this effect was much stronger in the case of the TacTALN108A-

variant, although the residue Asn108 in the structure of the wild type does not directly interact with

the Schiff base intermediate but coordinates the residue Ser130. Notably, in the active site of the

TacTALN108A-variant an additional water molecule could be observed as well. In the structure

of the TacTALS130A variant, the C1 hydroxy group of the intermediate was coordinated by the

Asn108 residue. This observation implies that the Asn108 residue can transiently coordinate the

intermediate’s hydroxy group in the wild type enzyme, for example during the conformational

change from „up“ to „down“ conformation (rotation around the C1-C2 bond).

In the active sites of all these structures, the C1 hydroxy group was present in both conforma-

tions, even in the TacTALN108A/S130A variant, in which both possible interaction partners are

absent. The only exception is the F6P-Schiff base intermediate observed in the active site of

the TacTALFSA-mimic variant, where the C1 hydroxy group was coordinated only by the Thr110

residue, corresponding to the „up“ conformation. In the case of the TacTALFSA-mimic variant, the

coordination of the „down“ conformation is not possible because of the introduced mutations
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(Ser58→ Phe, Asn108→ Leu and Ser130→ Ala). Interestingly, the single-turnover conversion of

F6P was not significantly affected in the variant, but the aldolase specific second half-reaction.

The residue Ser176 in the active site of Escherichia coli transaldolase (EcTAL) corresponding to the

Ser130 of TacTAL was analyzed by Schörken et al. (2001). A replacement of this residue by alanine

results in an EcTAL variant showing only 2.5 % residual transaldolase activity. The importance of

this residue for the coordination of the substrate’s C1 hydroxy group and for the correct orientation

of the intermediates was proposed. This serine residue is conserved in transaldolases as well as in

fructose-1,6-bis(phosphate) aldolases (Jia et al., 1996).

The investigation of the impact of the interaction of the substrate’s „up“ conformer with the residue

Thr110 for the catalysis is difficult. This residue is strictly conserved in transaldolases and suggested

to play a multi-functional role in substrate binding and catalysis, such as the coordination of the

catalytic water molecule (Schörken et al., 2001). Furthermore, this threonine residue was suggested

to coordinate the C2 hydroxy group of the covalently linked carbinolamine intermediate formed

upon nucleophilic attack on the carbonyl group by the reactive lysine. In previous works, this

residue was replaced by an isosteric valine residue (Lehwess-Litzmann, 2011). The resulting variant

showed a greatly impaired transaldolase activity. However, this effect cannot be strictly assigned to

the interruption of the hydrogen bond with the C1 hydroxy group in its „up“ conformation alone,

because of the multi-functionality of the threonine residue.

In the wild type structure co-crystallized with M1P as carbinolamine mimic the corresponding

group is indeed coordinated by Thr110. The relative orientation of M1P fits well to the orientation of

the F6P-carbinolamine intermediate observed in the active site of TacTALT30C/D211C variant soaked

with F6P. A catalytic water molecule is not present in the active sites occupied by the carbinolamine

intermediate or mimic M1P. A resting state water molecule located in the area between the position

of the carbinolamine’s C2 hydroxy group and the position of the catalytic water molecule observed

in the structure containing F6P-Schiff base intermediate is most probably replaced by the substrate’s

C2 oxygen along with the binding process and the carbinolamine formation as previously assumed

by Lehwess-Litzmann (2011) and Tittmann (2014) for the transaldolase. A similar situation was

reported for the 2-keto-3-deoxy-6-phosphogluconate aldolase (Fullerton et al., 2006). In the latter

case, the eliminated water molecule transiently co-exists with the catalytic water molecule in the

active site. Both water molecules act as separated proton relays in different catalytic steps.
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According to the proposed mechanism of catalysis of transaldolase, the carbinolamine’s C2 hydroxy

group is protonated by the general acid-base catalyst Glu60 necessary for the Schiff base intermedi-

ate formation upon water elimination. In the structure of the carbinolamine intermediate, there is

not enough space for a catalytic water molecule between the carbinolamine’s C2 hydroxy group and

the general acid-base catalyst Glu60. Therefore, the direct protonation of the hydroxy group by the

glutamate is assumable. This however, would require locale flexibility of the intermediate and/or

catalytic glutamate because the distance between the respective groups is too long for an interaction.

It should be noted that a mechanism, in which a water molecule facilitates the proton transfer before

the Schiff base is formed, cannot be excluded for sure. However, in this case the regional flexibility

is also necessary, which would allow enough space between the catalytic glutamate and the hydroxy

group of the intermediate for the transient presence of such a water molecule.

Similar crystallographic studies were performed for fructose-1,6-bis(phosphate) aldolase (FBPA;

(Lafrance-Vanasse and Sygusch, 2007; St-Jean et al., 2005)). In these studies, mannitol-1,6-

bis(phosphate) (MBP) was used as the mimic for the carbinolamine intermediate. In contrast to

TacTALwt co-crystallized with M1P, the carbinolamine specific hydroxy group of MBP trapped

in the active site of rabbit muscle FBPA is located in hydrogen bond distance from the acid-base

catalyst glutamate (St-Jean et al., 2005).

In the structure of the disulfide variant TacTALT30C/D211C soaked with the substrate F6P the F6P-

carbinolamine intermediate could be observed. Albeit the moderate resolution (2.5 Å), this is the

first observation of a natural carbinolamine intermediate for the class of enzymes. The relative

orientation of the intermediate in the active site corresponds well to that of the carbinolamine mimic

M1P bound in the active site of TacTALwt.

In the structure of the catalytically inactive TacTALK86Q variant with the F6P-Michaelis-complex,

a catalytic water molecule is absent as well. The sugar’s carbonyl oxygen is oriented towards the

virtual position of this water molecule. This observation supports the suggestion that the catalytic

water molecule is not present in the active site before the Schiff base intermediate is formed. Most

likely, the catalytic water is a result of the water elimination upon the protonation of the C2 hydroxy

group of the carbinolamine intermediate. Once formed, this water molecule can facilitate the proton

transfer during the catalysis of the further reaction steps such as water-mediated deprotonation of

the C4 hydroxy group of the intermediate by the acid-base Glu60.
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In the active sites of the TacTAL variants with enhanced aldolase activity TacTALE60Q/F132Y and

TacTALFSA-mimic containing F6P-Schiff base intermediate, the catalytic water molecule is absent as

well (or present with low occupancy). In the case of these variants, the introduced general acid-base

Tyr132 can participate in all proton transfer reactions directly, in contrast to the transaldolase specific

catalyst Glu60.

The proposed mechanisms for the reactions catalyzed by TacTAL and FSA (illustrated on

TacTALE60Q/F132Y) are shown in schemes 2.10 and 2.9, respectively. These catalytic mechanisms

are comparable to the mechanisms reported by Lehwess-Litzmann (2011) and Stellmacher et al.

(2015).

The single-turnover analysis of the wild type enzyme shows a non-hyperbolic dependency of

the observed first order rate constants on the substrate concentration. While the rate constants

increase with increasing substrate concentration up to ∼5 mM, the rate constants are decreasing at

higher concentrations of F6P. The origin of this observed substrate induced inactivation remains

unclear. A possible explanation could be a negative cooperativity between the monomers of the

homopentamer or homodecamer as previously suggested by Lehwess-Litzmann et al. (2011b). An

allosteric inhibition, in which the substrate binds to an additional binding site, would be another

explanation. However, in the available structures of TacTAL co-crystallized or soaked with F6P

the substrate was never observed bound at a different location as the active site. In all available

structures of TacTAL, a glycerol and an acetate molecules are bound between the entrances of

the opposite active sites of the homodecamer (figure 2.3.37). Both substances are present in the

crystallization solution. The glycerol molecule is coordinated by the residues Asp137 and Arg176.

The acetate molecule is coordinated by Asn170. This cavity could be a potential allosteric binding

site for the acceptor substrate E4P or product GA3P. However, there is no evidence for binding

of F6P to this site. The presence of these additional ligands could be a crystallographic artifact.

Further studies with this regard are required.
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Figure 2.3.37: Glycerol and acetate
molecules bound between two opposite
active sites of the homodecamer. Glycerol
and acetate molecules (green) and F6P bound
as Schiff base (yellow) in the active sites of
the opposite subunits in the homodecamer are
represented as sticks. The subunits belonging
to the interacting homopentamers (gray/cyan)
are represented as secondary structure.

F6P-Schiff base
GOL

ACT

F6P-Schiff base

NH2Lys86

CH2OPO3
2-

O

OH

OH

OH

HO

F6P-Carbinolamine

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2 OH

DHA-Enamine/Carbanion

CH

OH

N
H

Lys86

CH2OH

CH2OPO3
2-

O

OH

OH

N
H

Lys86

CH2OH

F6P

OH

Thr110

OH

Thr110

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2 O

OH

Thr110

H H

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2

OH

Thr110

O
H

H

H

OH

Thr110

O
H H

OH

N
H

Lys86

CH2OH OH
H
NLys86

HOCH2 O

OH

Thr110

H H

OH
H
NLys86

HOCH2 O

OH

Thr110

H

F6P-Schiff base

GA3P

HO

Tyr132

HO

Tyr132

O

Tyr132

O

Tyr132

O

Tyr132

H

OH

Thr110

O

H

H

O

Tyr132

O

Tyr132

HO

Tyr132

DHA-Schiff base DHA-Carbinolamine DHA

OH

O

CH2OH

Scheme 2.9: Proposed mechanism for the catalysis of the FSA reaction illustrated on
TacTALE60Q/F132Y variant. A tyrosine residue is the general acid-base catalyst.



122 Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum

OHO

Glu60

NH2Lys86

CH2OPO3
2-

O

OH

OH

OH

HO

F6P-Carbinolamine

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2 OH

DHA-Enamine/Carbanion

CH

OH

N
H

Lys86

CH2OH

CH2OPO3
2-

O

OH

OH

N
H

Lys86

CH2OH

F6P

OH

Thr110

OHO

Glu60

OH

Thr110

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2 O

OO

Glu60

OH

Thr110

H H

CH2OPO3
2-

OH

OH

OH
H
NLys86

HOCH2

OO

Glu60

OH

Thr110

O
H

H

H

H CH2OPO3
2-

O

OH

OH

OHO

Glu60

OH

Thr110

O
H H

OH

N
H

Lys86

CH2OH

O CH2OPO3
2-

H

OH

OH

OHO

Glu60

OH

Thr110

O
H H

OH
H
NLys86

HOCH2

CH2OPO3
2-

OH

OH

OH

OO

Glu60

OH

Thr110

O
H

H
OH

H
NLys86

HOCH2 O

OO

Glu60

OH

Thr110

H H

CH2OPO3
2-

OH

OH

OH

OH
H
NLys86

HOCH2 O

OHO

Glu60

OH

Thr110

H

CH2OPO3
2-

OH

OH

OH

OHO

Glu60

NH2Lys86

O

OH

HO

OH

Thr110

CH2OPO3
2-

OH

OH

OH

F6P-Schiff base

E4P

GA3P

S7P-Schiff base

S7P-CarbinolamineS7P

Scheme 2.10: Proposed mechanism for the catalysis of the TacTAL reaction. A glutamate residue
is the general acid-base catalyst.



Mechanistic Characterization of Transaldolase from Thermoplasma Acidophilum 123

2.4 Outlook

The results reported in the present work together with those of the preceding works of Lehwess-

Litzmann (2011) form a good basis for further investigations on transaldolase from Thermoplasma

acidophilum. Especially the dynamic process of the „open“/„closed“ conformational change should

be analyzed in more detail. The observed rate constants for the equilibrium of the conformational

change could be determined using temperature jump approach. The sequence of TacTAL contains

two tryptophan residues. Both residues are located in the regions relevant for the „open“/„closed“

conformational change. The Trp19 residue is located in the flexible N-terminal part and the Trp212

residue in the C-terminal α-helix, which interacts with the flexible part. Preliminary temperature

jump experiments using the fluorescence signal of these tryptophan side chains showed a time

depending exponential change of the fluorescence after temperature jump.

The progress curves recorded in pre-steady-state region of the reaction of the TacTALE60Q/F132Y

variant with F6P exhibit a lag phase, which is independent from the substrate concentration. This

lag phase is assumed to describe the „open“/„closed“ conformational change process in solution.

In order to prove this assumption, a disulfide bridge can be introduced in the TacTALE60Q/F132Y

variant. The resulting TacTALE60Q/F132Y/T30C/D211C variant, which is arrested in the „closed“ state,

should not show such a lag phase in the beginning of the pre-steady state. However, the limitations

of the local-arrest approach should be taken into account (regional flexibility could be possible).

Control measurements regarding the reduced form of TacTALT30C/D211C variant can be performed

analyzing the TacTALD211A or TacTALT30A variants. These variants do not contain a disulfide

bridge cross-linking the „closed“ conformation, but the hydrogen bond between the residues Thr30

and Asp211 is absent too. Because this interaction is assumed to be important for the stabilization

of the „closed“ state of the protein, the „open“/„closed“ equilibrium would be shifted towards the

„open“ state as suggested for the TacTALT30C/D211C variant in its reduced form.

The communication between the subunits of TacTAL remain uninvestigated. Variants with regard

to the binding site of glycerol and acetate in crystallo could be analyzed structurally and kinetically.

If this binding site is not a crystallographic artifact, the variants TacTALR176A or TacTALD137A

would show affected kinetic properties compared to the wild type enzyme. The residues Asp137

and Arg176 coordinate the glycerol molecule in TacTAL structures and are located between the

entrances of the two opposite active sites of the homodecamer.
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2.5 Summary

The results introduced in the present work are mainly based on the pre-steady state and steady-state

analysis supported by structural information from crystallographic studies. Different variants of

TacTAL were generated and analyzed, using these methods. The „closed“ conformation of TacTAL

could be arrested in the TacTALT30C/D211C variant. It could be shown that the „closed“ state is

important for the binding of the substrate F6P and the catalysis of the donor half-reaction (until the

release of the first product GA3P). On the other hand, the „open“ conformation is necessary for the

acceptor half-reaction (reaction with E4P and/or release of the second product S7P).

Furthermore, the transaldolase activity of TacTAL could be transformed into fructose-6-phosphate

aldolase activity of the TacTALE60Q/F132Y variant. The acid-base situation in the active site of the

variant is the same as in the active site of natural EcFSA. It could be shown, that the introduced

Tyr132 residue takes over the role of the general acid-base catalyst Glu60. This tyrosine residue

is placed in favorable orientation for the direct protonation of the central carbanion/enamine

intermediate, which discriminates between the aldolase and transaldolase activity.

The analysis of the interaction between the substrate’s C1 hydroxy group and the active site showed

that the deletion of the respective interaction partner on the part of the enzyme (TacTALN108A/S130A

variant) or on the part of the substrate (A5P as substrate) results in comparable decrease of the

donor half-reaction activity.

The binding mode of the substrate F6P in the active site of TacTAL as Michaelis complex was

analyzed. To do so, the catalytically inactive variant TacTALK86Q was generated and co-crystallized

with F6P. The carbonyl group of the substrate is oriented in an acute attacking angle relative to the

lysine in the active site of the wild type enzyme. This angle is unfavorable for the nucleophilic attack

of lysine’s ε-nitrogen on the electrophilic carbonyl. However, the orientation of the substrate’s

carbonyl group in the active site of TacTALK86Q could be affected by the variant specific interaction.

Finally, the relative orientation of the F6P-carbinolamine intermediate in the active site was analyzed

in the structure of TacTALwt co-crystallized with the carbinolamine mimic M1P. This structure

corresponds well to those of the F6P-carbinolamine intermediate trapped in the active site of the

TacTALT30C/D211C variant soaked with F6P. According to these structures, the C2 hydroxy group

formed upon the nucleophilic attack of the catalytic lysine residue on the substrate’s carbonyl

group is coordinated by the active-site residue Thr110. The catalytic water molecule is absent
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in the active sites of those structures. This water molecule is present in structures containing

the F6P-Schiff base intermediate and is assumed to mediate the proton transfer reactions during

catalysis. The fact that the corresponding water molecule could not be observed in the active sites

containing the F6P-carbinolamine intermediate or carbinolamine mimic underlines the previous

suggestion that the catalytic water is a result of water elimination prior to the Schiff base formation

(Lehwess-Litzmann, 2011; Tittmann, 2014). Therefore, this water molecule cannot be present in

steps before the Schiff base intermediate is formed. However, a transient presence of an equivalent

resting state water molecule in the active site, which facilitates the protonation of the carbinolamine,

cannot be excluded.



126 Preliminary Analysis of the QncN/L-M Protein System from Streptomyces Melanovinaceus

3 Preliminary Analysis of the QncN/L-M Protein System from

Streptomyces Melanovinaceus

3.1 Introduction

3.1.1 Quinocarcin

Streptomyces melanovinaceus is a bacterium, which was first isolated from a soil sample and

described by Tomita et al. (1983). The strain produces a pigment resulting in a characteristic mauve

wine color of the culture. This property is name giving for the organism. Furthermore, Streptomyces

melanovinaceus produces and excretes the antibiotic quinocarcin.

Quinocarcin was first isolated from Streptomyces melanovinaceus culture broth by Takahashi

and Tomita (1983). The structure of the antibiotic (scheme 3.1) was determined by NMR spec-

troscopy and X-ray crystallography (Hirayama and Shirahata, 1983; Takahashi and Tomita, 1983).

Quinocarcin belongs to the tetrahydroisoquinoline family of antibiotics. It exhibits an activity

against gram-positive bacteria and an antitumor activity (Scott andWilliams, 2002).
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Scheme 3.1: Structural formula of quinocarcin. Adapted from Williams et al. (1992).

Quinocarcin can adopt two alternative conformations (Hill et al., 1988). The syn and anti conforma-

tions are shown in scheme 3.1. It could be shown that the anti-conformer can form an oxazolidinyl
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radical (Williams et al., 1992). The formation of this radical is necessary for the self-redox dispro-

portionation resulting in the formation of superoxide followed by oxidative DNA cleavage (Tomita

et al., 1984; Williams et al., 1992). Furthermore, it was suggested that quinocarcin can directly

interact with the DNA molecule (Tomita et al., 1984).

Since the first total synthesis for the quinocarcin was published by Fukuyama and Nunes (1988)

a number of synthesis strategies were reported (Chiba et al., 2012; Scott and Williams, 2002;

Wu et al., 2008). The most recent organic synthesis for quinocarcin was published by Chiba et al.

(2013).

3.1.2 The Role of the QncN/L-M Protein System in the Biosynthesis of Quinocarcin

The in vivo biosynthesis of the quinocarcin is catalyzed in a nonribosomal peptide assembly

line (Hiratsuka et al., 2013; Peng et al., 2012). Nonribosomal peptide assembly lines consist

of nonribosomal peptide synthetases (NRPS). These enzymes catalyze peptide synthesis from

single amino acids. Additionally, non-amino acids building blocks such as polyketides can be

incorporated into the nonribosomal peptide assembly line (Winn et al., 2016). The nonribosomal

peptide synthetases are assembled from different modules. In general, a single module catalyzes the

incorporation of one single building unit. Usually, each module is subdivided into three domains:

the adenylation domain, the peptidyl carrier protein (PCP) domain and the condensation domain.

The adenylation domain recognizes amino acids and activates the substrate as aminoacyl-AMP

intermediate using ATP. Once activated, the building block can be transferred onto the thiol group

of the phosphopantetheine moiety of the PCP domain. This results in a PCP-bound aminoacyl

thioester. The PCP domain functionally related to the acyl carrier protein (ACP), a protein from

fatty acid synthesis. The reactive group of these proteins is a phosphopantetheine moiety, which

is covalently linked to a conserved Ser residue. The condensation domain catalyzes peptide bond

formation between two activated PCP-bound aminoacyl thioester resulting in the formation of a

PCP-bound dipeptidyl thioester, which can be further elongated in a similar way. The intermediates

of the nonribosomal peptide assembly lines are always covalently linked to the PCP domain during

synthesis, until the final product is formed. In many prokaryotes, the single modules are present as

protein subunits, which interact with each other, rather than existing as a large multi-domain protein

(Winn et al., 2016). Beside this basic domain architecture, many assembly lines contain auxiliary
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domains/proteins, which provide additional activities such as epimerization or redox reactions

(Walsh, 2008).

The gene cluster of the nonribosomal peptide assembly line of the quinocarcin synthesis in Strep-

tomyces melanovinaceus was recently identified and analyzed by Hiratsuka et al. (2013). They

proposed a biosynthetic pathway for quinocarcin based on results from bioinformatic, cell biological

and kinetic methods. This pathway involves a group of proteins, which were previously described

by Peng et al. (2012), namely the proteins QncN, QncL and QncM. These proteins are of particular

interest, since they incorporate an unusual building unit (hydroxyacetyl moiety) derived from an

unusual precursor (ketose phosphate) into the nonribosomal peptide assembly line of quinocarcin.

According to the sequence analysis, QncN, QncL and QncM proteins are similar to enzymes from

central sugar metabolism. The QncN protein shows 64 % identity and 74 % similarity to the E1α

subunit of pyruvate dehydrogenase (PDH; EC 1.2.4.1) from Streptomyces coelicolor and is similar

to the pyrophosphate-binding domain of transketolase (Peng et al., 2012). The QncL protein

can be subdivided in four domains (D1 – D4). The N-terminal D1 domain corresponds to the

aminopyrimidine-binding domain of transketolase and the E1β subunit of PDH. The D2 domain is

similar to the C-terminal domain of transketolase. The D3 and D4 domains correspond to the lipoyl

attachment and the catalytic domains of the E2 component of PDH complex (PDHc), respectively.

It was suggested, that the QncN and QncL components form a heterodimer similar to the αβ het-

erodimer of the E1 component from PDHc. The human E1 component forms a dimer of αβ het-

erodimers (Ciszak et al., 2003). Two cofactor molecules (ThDP) bind on the interface between

the two αβ heterodimers. The cofactor binding is necessary for the catalysis of the decarboxy-

lation of pyruvate, resulting in the formation of the 2-hydroxyethyl ThDP. This kind of higher

oligomerization can be assumed for the QncN/L component as well.

The D3 and D4 domains of the QncL subunit are similar to the domains of the E2 component. This

component of the PDHc is a dihydrolipoyl transacetylase (EC 2.3.1.12) and catalyzes the transfer

of the C2 unit from the intermediate of the E1 reaction to the thiol group of the phosphopantetheine

moiety of coenzyme A. The covalently bound lipoyl moiety is essential for the transfer reaction.

This prosthetic group is located at the lipoyl attachment domain (D3 in QncL). The E2 component

of the PDHc forms homotrimers (Mattevi et al., 1992). The active sites of the catalytic domains

(D4 in QncL) are formed on the trimer interface. The E2 trimers are organized to oligomerization

states of higher degree such as 20-mers or octamers of homotrimers (Izard et al., 1999; Perham
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and Hooper, 1977; Zhou et al., 2001). A higher order of organization of the QncN/L heterodimers

is therefore very likely.

Peng et al. (2012) could show that the QncN/L component catalyzes the ketol cleavage of ketose

substrates from the pentose phosphate pathway (xylulose 5-phosphate, fructose 6-phosphate and se-

doheptulose 7-phosphate) rather than the decarboxylation of pyruvate or hydroxypyruvate. Xylulose

5-phosphate was described as the best substrate for the QncN/L reaction. This reaction corresponds

to the donor half reaction of transketolase, an enzyme from the pentose phosphate pathway. They

proposed a catalytic mechanism in which the enzyme transfers a hydroxyacetyl unit resulting from

the oxidative ketol cleavage of the ketose phosphate catalyzed by the QncN/L component to the

thiol group of the phosphopantetheine moiety of the QncM component (scheme 3.2), which is

homologous to the acyl carrier protein. The protein is suggested to supply the hydroxyacetyl unit,

derived from the reaction of the QncN/L component into the nonribosomal peptide assembly line

of the quinocarcin biosynthesis (Hiratsuka et al., 2013; Peng et al., 2012). This hydroxyacetyl unit

is the origin of the C5 and C6 atoms in the skeleton of quinocarcin (scheme 3.1).
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After the transfer of the hydroxyacetyl unit to the QncM molecule, the lipoyl moiety remains in its

reduced form as dihydrolipoyl. The reoxidation of this group is necessary for the conversion of the

next substrate molecule. The oxidation of the dihydrolipoyl group is assumed to be performed by

the E3 component of PDHc (Peng et al., 2012). The E3 component is a dihydrolipoamide dehydro-

genase (EC 1.8.1.4) and catalyzes the reversible, NAD+-depended oxidation of the dihydrolipoyl

moiety resulting in the reoxidized lipoyl group and in generation of NADH. The active site of the

enzyme contains a FAD molecule and a catalytic disulfide. The catalytic cycle of the E3 component

can be subdivided in two half-reactions: oxidative and reductive half-reactions (Argyrou et al.,

2002). The oxidative half-reaction consists of the catalytic steps leading to the oxidation of the

dihydrolipoyl moiety, which results in the reduced E3 component (scheme 3.3). The reductive

half-reaction includes the catalytic steps leading to the reduction of NAD+ and the reoxidation of

the enzyme.
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3.1.3 Motivation

The QncN/L-M protein system is an interesting subject for kinetic and structural analysis. The pro-

teins exhibit sequence similarity to enzymes from the central metabolism such as transketolase and

pyruvate dehydrogenase complex. The QncN/L component combines the activities of transketolase

and dihydrolipoyl transacetylase. The investigation of the catalytic cycle of this protein system can

provide new information for a deeper understanding of the mode of action of these enzymes from

the central metabolism.

The aim of the work presented here was to establish protocols for the expression and purification

of the QncN/L and QncM components. Additionally, spectrophotometric kinetic methods for

the analysis of the related enzymes transketolase and pyruvate dehydrogenase complex should

be applied to the QncN/L-M protein system. Finally, crystallization conditions for the single

components should be identified, providing the basis for the structural analysis of the system.
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3.2 Results

3.2.1 Recombinant Expression and Purification of the QncN/L Component

In the present work, different DNA constructs were generated in order to establish a suitable

expression and purification protocol for the QncN/L component yielding a reasonable amount of

catalytic active protein.

The SmeQncNML-pET28a construct containing the native coding cassette from the Streptomyces

melanovinaceus genome was tested for expression in different E. coli strains (section 1.6.2.3). The

cultivation was performed in LB medium at 16 ◦C. Although the SmeQncNML-pET28a construct

contains coding sequences for all three proteins (QncN, QncL and QncM) only the QncN protein

was expressed in E. coli (DE3) BL21 Star
TM

and Rosetta 2 strains. However, after cell disruption

the protein was in the insoluble fraction (figure 3.2.1).
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fractions after cell disruption.

Another construct, which was tested for the expression, is the QncNL-pET-SUMO construct. In

contrast to the SmeQncNML-pET28a construct, which contains DNA sequences isolated from the

Streptomyces melanovinaceus genome, the coding sequences in the QncNL-pET-SUMO construct

are codon optimized for the recombinant expression in E. coli strains. The expression of each

component is controlled by the respective T7-promotor. His6-tagged SUMO protein is fused to the

QncN component (N-terminal). Two E. coli (DE3) strains (SoluBL21 and BL21 Star
TM

) were tested

for the expression in three different cultivation media (LB, M9 minimal medium and ZYM5052

auto-induction medium) at 16 ◦C. In all cases, the expression of both proteins occurred properly but

the proteins were in the insoluble fraction after cell disruption.

The published protocol for the recombinant expression and purification of the QncN/L component

remains the best available protocol (Peng et al., 2012). The proteins were recombinantly expressed

in the BL21 Star
TM

E. coli (DE3) strain containing the QncNL-pCDFDuet-1 construct. This
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construct includes codon optimized (E. coli) sequences for the QncN and QncL subunits. The

sequence of the QncN protein contains an N-terminal His6-tag. The protein was purified to

homogeneity yielding ∼0.25 mg protein per 1 g cell pellet.
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SUMO construct (SDS-PAGE, 12 %). -/+ IPTG: before and after induction with 50 μM IPTG,
respectively. P and S: pellet and supernatant fractions after cell disruption. NiNTA: fractions after
Ni2+-NTA.

The lipoylation of the QncL subunit was verified by liquid chromatography mass spectrometry

(data not shown). This post-translational modification is essential for the catalytic activity of the

enzyme.

The activity of the protein for the substrate F6P was determined in presence of SliE3 and holoQncM

components as described in section 1.6.4.5. After ketol cleavage of the F6P and the transfer of a

hydroxyacetyl unit to the phosphopantetheine-moiety of the holoQncM component the reduced

lipoyl-moiety of the QncL subunit is reoxidized by the E3 component coupled to the conversion of

NAD+ to NADH. The formation of NADH can be monitored spectrophotometrically at 340 nm

(figure 3.2.3). The specific activity was determined to Aspec = 34 mU/mg, which is comparable to

the published activity (Peng et al., 2012). After the storage of the protein on ice for one week, the

activity of the enzyme dropped to ∼20 %.
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Figure 3.2.3: F6P-depended reduction of
NAD+ in a spectrophotometric assay. The
formation of NADH can be monitor at
340 nm. After ketol cleavage of the F6P and
the transfer of a hydroxyacetyl unit to the
phosphopantetheine-moiety of the holoQncM
component the reduced lipoyl-moiety of the
QncL subunit is reoxidized by the E3 compo-
nent coupled to the conversion of NAD+ to
NADH. Inset: difference spectra using the start
spectrum (red line) as baseline.

3.2.2 Recombinant Expression and Purification of the holoQncM Component

The implementation of the published expression and purification protocol for the holoQncM

component results in very low protein yields (∼0.25 mg per 1 g cell pellet). In order to improve the

expression of the protein, the QncM-pET-SUMO construct was generated. This construct contains

the codon optimized (E. coli) coding sequence for the QncM component fused to the His6-tagged

SUMO protein. The use of the QncM-pET-SUMO construct for the recombinant expression results

in a significant improvement of the protein amount purified from 1 g cell pellet (∼1.3 mg).

In order to find the best buffer conditions for the purification and storage of the protein, the

ThermoFluor assay was applied (figure 3.2.4). The buffer conditions used for the storage of the

protein are 100 mM imidazole (pH 7.4), 100 mM NaCl, 10 % (v/v) glycerol and 1 mM DTT. The

flash frozen protein solution can be stored at -80 ◦C for several month.

Figure 3.2.4: Normalized melting curves
of the holoQncM protein in presence of
SYPRO R© Orange. The best four buffer con-
ditions are represented: BisTris pH 6.0 (red),
imidazole pH 6.2 (green), imidazole pH 7.8
(blue) and imidazole pH 8.2 (dark blue).

In order to recombinantly express the QncM SUMO-fusion protein in its physiological active holo-

form, the Sfp-pQE60 plasmid (kindly provided by Prof. Dr. M. A. Marahiel [Philipps-University,
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Marburg]) was co-transferred into the QncM-pET-SUMO plasmid containing BL21 Star
TM

(DE3)

E. coli strain. The Sfp-pQE60 plasmid contains the coding sequence for the phosphopantetheinyl

transferase from Bacillus subtilis (BsSfp). BsSfp catalyzes the transfer of the phosphopantetheinyl

moiety from CoA to the conserved Ser-residue of ACP homologs such as the QncM component

(Marahiel et al., 1997; Mofid et al., 1999; Peng et al., 2012; Quadri et al., 1998). The post-

translational modification (phosphopantetheinylation of Ser33) of the protein was verified by

MALDI-TOF mass spectrometry (data not shown). The phosphopantetheinylation of the QncM

component is necessary for its physiological function.

3.2.3 Crystal Structure of the holoQncM Component

After the automated crystallization screen (section 1.6.3) and subsequent additive screen (page 18)

diffracting crystals of the holoQncM protein could be obtained. For the crystallization, 2 μL of

the protein solution (10 mg/mL holoQncM in 100 mM imidazole, 100 mM NaCl, 10 % (v/v) glycerol,

1 mM DTT, pH 7.4) were mixed at RT with 2 μL of the reservoir solution (25 % (w/v) PEG-

monomethyl ether 2000, 100 mM HEPES, pH 7.5) and 0.4 μL of the additive solution (100 mM

BaCl2). This crystallization mix was equilibrated against 250 μL of the reservoir solution according

to the hanging-drop vapor diffusion approach. The crystals were grown for 7 – 10 days at 8 ◦C.

Single crystals were cryoprotected by transfer into 85 % (v/v) of the reservoir solution supplemented

with 10 % (v/v) glycerol and 5 % (v/v) PEG400. The cryoprotection procedure was performed at 8 ◦C

for ∼30 s. The single crystals were flash frozen in liquid nitrogen and stored for several weeks.

The diffraction data were collected using synchrotron radiation (DESY, beamline P13, Ham-

burg, Germany) under cryogenic conditions (100 K). The data were processed as described in

section 1.6.3.3. HoloQncM crystallizes in an orthorhombic space group P212121. The initial

phase determination was performed by Dr. Piotr Neumann (Department of Molecular Structural

Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen) using the

ARCIMBOLDO_LITE-software (Sammito et al., 2015).

The resulting initial model containing twelve poly-alanine α-helices was completed manually using

the Coot-software (Emsley et al., 2010; Emsley and Cowtan, 2004). The model was refined against

the experimental data to 1.70 Å resolution (table A.4 in the appendix). The final model corresponds

to the diffraction data with Rwork = 20.21 % and Rfree = 23.20 % (table A.8 in the appendix).
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The crystallographic asymmetric unit contains three copies of the holoQncM molecule, which

are arranged in a trimer. Each molecule consists of four α-helices connected by loops. In two of

the three molecules, the residue Ser33 is covalently modified by the phosphopantetheine moiety.

Because only the phosphate moiety of the prosthetic group exhibits a proper electron density, only

this part of the cofactor was modeled into the structure. The remaining parts (pantothenate and

β-mercaptoethylamine) of the cofactor are assumed to be flexible. A flexible phosphopantetheine

moiety of the holoQncM component corresponds well to its physiological function as carrier unit.

The modified Ser33 residues are oriented towards the three-fold symmetry axis of the trimer within

the asymmetric unit.

A B

Figure 3.2.5: Crystal structure of the holoQncM protein. Polypeptide backbone is represented
as secondary structure. A: Three copies of holoQncM in the asymmetric unit are represented
as secondary structure. B: mFO-DFC simulated annealing omit map (green mesh, contour level
3.0σv). Only the phosphate group of the phosphopantetheine moiety covalently linked to Ser33 was
modeled (sticks).

Although the holoQncM component crystallizes as a trimer in the crystallographic asymmetric unit,

this oligomerization state is assumed to be a crystallographic artifact. The SEC-MALS analysis

of the oligomerization state of the holoQncM component in solution results in the detection of

monomers and dimers but not of trimeric states.

3.2.4 Purification of the SliE3 Component

The codon optimized (E. coli) sequence of SliE3 was synthesized by GeneArt
TM

(Regensburg,

Germany). The SliE3 gene was supplied as an NdeI/XhoI-insert in pET28a vector (SliE3-pET28a).

The coding sequence used in the present work starts with the sequence MHGGRDVANDAS.

According to the actual sequence deposited in the UniProt-data bank (http://www.uniprot.org;
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(UniProt Consortium, 2015)) the codon for the Val7 residue is annotated as start codon. This results

in an offset (+6 aa) of the residue numbers of the sequence used in this work compared to the actual

sequence in the data bank. In the present work, the residue numbering refers to the sequence used

for the expression of SliE3 component plus three amino acid residues remaining on the N-terminus

after thrombin cleavage (section 1.6.2.9). The SliE3 component was purified based on the protocol

for the E3 homolog from E. coli (Tietzel, 2015). The purification results in 8 mg protein per 1 g of

cell pellet.

In order to determine the concentration of the active sites containing FAD, the molar extinction

coefficient of the enzyme bound cofactor was determined optically, using the intrinsic absorption

signal of the cofactor at 458 nm (section 1.6.2.2). The molar extinction coefficient of the enzyme

bound FAD was determined to ε458 = 11171 M−1cm−1 (figure 3.2.6). The comparison of the protein

concentration determined using Bradford assay with the concentration of the enzyme bound FAD

shows that ∼70 % of the active sites are occupied by the cofactor. The presence of FAD in the

active site of SliE3 is necessary for its catalytic activity.

Figure 3.2.6: Molar extinction coefficient of the SliE3 Bound FAD. A: Absorption spectra of
the enzyme bound FAD (black line) and the free FAD after addition of 4.5 mM guanidinium chloride
(red line). B: Absorbance of the SliE3 containing solution (different concentrations) plotted versus
the concentration of free FAD calculated from the absorbance after addition of 4.5 mM guanidinium
chloride. The slope of the linear regression (red line) corresponds to the molar extinction coefficient
of the enzyme bound FAD.

3.2.5 Steady-State Analysis of the SliE3 Component

In the physiological context SliE3 component uses NAD+ to oxidize the dihydrolipoyl moiety

(scheme 1.2 A in the methods). This reversible reaction results in the reoxidation of the lipoyl
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moiety and in generation of reducing equivalents (NADH). The activity of the SliE3 component was

analyzed by measurement of the lipoamide reduction by the SliE3 enzyme using NADH as reducing

equivalent corresponding to the reverse physiological reaction (scheme 1.2 B in the methods). The

NADH consumption was used to monitor the progress of the reaction as absorbance depletion

at 340 nm (figure 3.2.7 A). The NAD+ resulting from the reaction acts as an activator of the E3

component from Mycobacterium tuberculosis (Argyrou and Blanchard, 2001). This activation

effect could be shown for the SliE3 as well (figure 3.2.7 A). In order to avoid the perturbation of the

initial phase of the reaction by the product activation effect of the concomitant NAD+ formation,

NAD+ was added to the reaction mixture in a concentration resulting in constitutively activated E3

component according to Argyrou and Blanchard (2001).

Figure 3.2.7: Steady-state analysis of SliE3 in reaction with lipoamide and NADH. A: Rep-
resentative progress curves in presence (red line) and absence (black line) of NAD+. Note the
activation effect along with the NAD+ formation during the first 150 s of the reaction (black line). B:
Michaelis-Menten analysis of the reduction of lipoamide (0.1 – 3.0 mM) by SliE3 (10 nM, 20 ◦C).
The Michaelis-Menten fit (eq. 1.6.2, solid line) is indicated by red. Circles indicate the measured
steady-state activity.

The turnover number was determined to kcat = 114.61 ± 2.70 s−1 (based on the concentration

of the FAD containing active sites). The apparent Michaelis constant for substrate lipoamide

is Kapp
M = 1.54 ± 0.07 mM, resulting in the catalytic efficiency of kcat /Kapp

M = 74.42 s−1mM−1.

Because of the low solubility of the substrate in water, the steady-state measurements could not

be performed at lipoamide concentrations higher than 3 mM. Consequently, measurements at

saturating concentrations of the substrate could not be performed (figure 3.2.7 B). The macroscopic

kinetic constants resulting from the hyperbolic Michaelis-Menten fit were verified using the double

reciprocal plot (Lineweaver and Burk, 1934). The values calculated from the parameters of the

linear regression correspond well to the constants resulting from the hyperbolic fit (figure 3.2.8).



Preliminary Analysis of the QncN/L-M Protein System from Streptomyces Melanovinaceus 139

Figure 3.2.8: Double reciprocal plot for the
lipoamide conversion by SliE3.

3.2.6 Stopped-Flow Measurements of the SliE3 Component

The catalytic cycle of the E3 component can be subdivided in two half-reactions: oxidative and

reductive half-reactions (Argyrou et al., 2002). The oxidative half-reaction consists of the catalytic

steps in up to the oxidation of the dihydrolipoyl moiety resulting in the reduced E3 component. The

reductive half-reaction includes the catalytic steps corresponding to the reduction of NAD+ and the

reoxidation of the enzyme. Because all the catalytic steps are reversible, the enzyme can be reduced

using NADH (reverse reductive half-reaction). As described by Argyrou et al. (2002) the reverse

reductive half-reaction can be subdivided in three phases: the formation of the NAD+-FADH2

intermediate, the S−-FAD charge transfer and the formation of the fully reduced enzyme (EH4).

The appearance of these phases corresponds to characteristic changes in the UV-Vis spectrum

compared to that of the oxidized form of the E3 component (Eox).

Figure 3.2.9: Stopped-flow measurements of the SliE3 component. Eox: SliE3 in its oxidized
form (without the addition of NADH) A: 20 μM SliE3 after mixing with 20 μM NADH. B: 20 μM
SliE3 after mixing with 200 μM NADH.
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The formation of the NAD+-FADH2 intermediate corresponds to a depletion in absorbance at

400 – 500 nm and an increase in absorbance at 550 – 700 nm. The S−-FAD charge transfer is

characterized by the increase in absorbance at 500 – 550 nm (figure 3.2.9 A). The enzyme can be

completely reduced (FAD and the disulfide are both reduced) using an excess of NADH. This EH4

state of the enzyme is characterized by loss in absorbance at 400 – 500 nm (figure 3.2.9 B).

3.2.7 Crystal Structure of the SliE3 Component

The crystallization conditions for the SliE3 component were determined using the automated crys-

tallization screen (section 1.6.3). For the crystallization, 2 μL of the protein solution (7 mg/mL SliE3

in 50 mM KH2PO4/K2HPO4, 150 mM NaCl, pH 7.6) were mixed at RT with 1 μL of the reservoir

solution (20 % (w/v) PEG3350, 200 mM NH4Cl). This crystallization mix was equilibrated against

250 μL of the reservoir solution according to the hanging-drop vapor diffusion approach. The

crystals were grown for 7 – 10 days at 8 ◦C.

Single crystals were cryoprotected by transfer into the cryoprotectant solution (22 % (w/v) PEG3350,

25 % (v/v) PEG200, 200 mM NH4Cl, 100 mM KH2PO4/K2HPO4, 300 mM NaCl, pH 7.6). The

cryoprotection procedure was performed at 8 ◦C for ∼30 s. The single crystals were flash frozen in

liquid nitrogen and stored for several weeks.

The diffraction data were collected using synchrotron radiation (DESY, beamline P13, Hamburg,

Germany) under cryogenic conditions (100 K). The experimental data were processed as described

in section 1.6.3.3. SliE3 crystallizes in an orthorhombic space group P212121. The initial phasing

was performed using the molecular replacement approach (section 1.6.3.4).

The model was refined against the experimental data to 2.02 Å resolution (table A.4 in the appendix).

The final model corresponds to the diffraction data with Rwork = 23.35 % and Rfree = 27.39 %

(table A.8 in the appendix).

The crystallographic asymmetric unit contains one functional homodimer of SliE3. Each monomer

consists of the FAD-binding domain (10 – 155 aa), the NAD+-binding domain (156 – 285 aa), the

central domain (286 – 353 aa) and the interface domain (354 – 471 aa) (Chandrasekhar et al.,

2013). Each monomer contains a FAD molecule in the active site. The first few N-terminal residues

were not modeled, due to the lack in electron density (chain A: 1-13 aa, chain B: 1-12 aa). This part

of the protein is assumed to be flexible.
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A B

Figure 3.2.10: Crystal structure of the SliE3 protein. Polypeptide backbone is represented as
secondary structure. The FAD molecule is shown as space-filling model. A: The functional dimer
in the asymmetric unit. The monomers are colored in green or cyan. Each monomer contains
a FAD molecule (yellow) in the active site. B: The domain architecture of a SliE3 monomer.
FAD-binding domain: cyan, NAD+-binding domain: yellow, central domain: red, interface domain:
green. Enzyme bound FAD molecule is colored in gray.

3.2.8 Sequence of the E3 Component from Streptomyces Melanovinaceus

As the sequence of the genome of Streptomyces melanovinaceus is not published and the coding

sequence of the native E3 component is unknown, the homologous E3 protein from Streptomyces

lividans was analyzed in the present work. SliE3 component was described to catalyze the reox-

idation of the dihydrolipoyl moiety of the QncL subunit (Peng et al., 2012). In order to obtain

information about the coding sequence of the native E3 component, the Streptomyces melanov-

inaceus strain was cultivated (section 1.6.1.11). The genomic DNA was isolated (section 1.6.1.12)

and sequenced by Dr. Anja Poehlein (Georg-August University of Göttingen, Department of

Genomic and Applied Microbiology). The draft sequence was automatically annotated by the

Integrated Microbial Genomes Database (https://img.jgi.doe.gov/, Markowitz et al. (2012)).

The sequence of the gene annotated as dihydrolipoyl dehydrogenase (E3 component, EC: 1.8.1.4)

was used for the primer design to amplify the coding sequence from Streptomyces melanovinaceus

using the PCR technique (figure 3.2.11). The amplified coding sequence for the E3 component

from Streptomyces melanovinaceus (SmeE3) was cloned into the pJET1.2 vector (CloneJet PCR

cloning Kit) using blunt-end cloning according to the manufacturer’s manual (MBI Fermentas,

Germany).
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1 ATGCATGGAGGACGTGACGTGGCGAACGACGCCAGCACCGTTTTCGACCTAGTGATCCTCGGCGGTGGTAGCGGCGGTTACGCCGCGGCC 90
91 CTGCGCGGAGCGCAGCTGGGCCTGGACGTCGCTCTGATCGAGAAGGGCAAGGTCGGCGGCACCTGCCTGCACAACGGTTGTATCCCCACG 180
181 AAGGCCCTGCTGCACGCCGGTGAGATCGCCGACCAGGCGCGCGAGTCCGAGCAGTTCGGTGTCAAGGCCACCTTCGAGGGCATCGACATC 270
271 GACGCCGTCCACAAGTACAAGGACGACGTGATCTCGGGCCTGTACAAGGGTCTGCAGGGTCTCATCGCCTCGCGCAAGGTCACCTACATC 360
361 GAGGGTGAGGGACGGCTCTCCTCCCCCACCTCGGTGGATGTGAACGGCCAGCGCGTCCAGGGCCGCCACGTGCTGCTCGCGACCGGCTCC 450
451 GTGCCGAAGTCGCTGCCGGGCCTGGAGATCGACGGCAACCGCATCATCTCGTCGGACCACGCGCTCAAGCTGGACCGCGTCCCGAAGTCC 540
541 GCGATCGTCCTGGGCGGCGGCGTCATCGGCGTCGAGTTCGCCTCGGCGTGGACGTCCTTCGGTACCGACGTGACGATCATCGAGGGCCTG 630
631 AAGCACCTCGTCCCGGTCGAGGACGAGAACAGCTCGAAGCTTCTTGAGCGCGCCTTCCGCAAGCGCGGCATCAAGTTCAACCTCGGTACG 720
721 TTCTTCCAGGGCGCCGAGTACACGCAGGACGGCGTCCGTGTGACCCTCGCCGACGGCAAGACCTTCGAGGCCGAGGTGCTGCTGGTCGCC 810
811 ATCGGCCGCGGCCCGGTCTCGCAGGGCCTGGGCTACGAGGAGGCCGGCGTCGCGATGGACCGCGGTTACGTCCTGGTCGACGAGTACATG 900
901 CAGACCAACGTGGAGACCGTCTCGGCCGTGGGTGACCTGGTCCCGACGCTCCAGCTCGCGCACGTCGGCTTCGCCGAGGGCATCCTGGTG 990
991 GCGGAGCGGCTGGCCGGTCTGAAGACCGTTCCGATCGACTACGACGGTGTCCCGCGGGTGACGTACTGCCACCCCGAGGTCGCCTCCGTG 1080
1081 GGCATCACCGAGGCCAAGGCCAAGGAGCTCTACGGCGCGGACAAGGTCGTCGCTCTGAAGTACAACCTCGCGGGCAACGGCAAGAGCAAG 1170
1171 ATCCTCAAGACCGCGGGCGAGATCAAGCTCGTCCAGGTCAAGGACGGTGCCGTGGTCGGCGTCCACATGGTCGGTGACCGTATGGGCGAG 1260
1261 CAGGTCGGCGAAGCCCAGCTGATCTACAACTGGGAGGCGCTGCCCGCCGAGGTCGCGCAGCTCATCCACGCCCACCCGACCCAGAACGAG 1350
1351 GCGATGGGCGAGGCCCACCTGGCCCTGGCCGGCAAGCCTCTGCACTCCCACGACTGA 1407

Figure 3.2.11: The coding sequence for the E3 component from Streptomyces melanov-
inaceus.

3.3 Discussion

Additionally to the studies on transaldolase from Thermoplasma acidophilum, the protein system

containing the QncN/L, QncM from Streptomyces melanovinaceus and the E3 component from

Streptomyces lividans was preliminarily characterized in the present work. The components of the

system are similar to enzymes from central metabolism (transketolase, pyruvate dehydrogenase

complex and acyl carrier protein) in terms of sequence and mechanism of action. Investigations on

this protein group can provide new insights for deeper understanding of the mechanism of action of

the enzymes involved in the sugar metabolism. Furthermore, these proteins are members of the

nonribosomal peptide assembly line of quinocarcin biosynthesis. As a novel kind of antibiotics,

quinocarcin and its synthesis is an interesting subject for investigations. Establishing protocols

for working with the enzymes from nonribosomal peptide assembly lines in vitro could give new

opportunities in synthesis strategies of pharmaceutical important compounds.

In the present work, the QncM and E3 components could be expressed and purified with suf-

ficient yields. QncM is an acyl carrier protein (ACP) homolog and plays an important role in

the synthesis of quinocarcin, supplying the hydroxyacetyl unit derived from ketose phosphate

into the nonribosomal peptide assembly line. A crystallization protocol for the biological active

phosphopantetheinylated holo-form of the protein was established. Surprisingly, the asymmetric

unit of the determined structure contains a homotrimer of holoQncM. This trimer is assumed to be

a crystallographic artifact. The size exclusion chromatography coupled multiangle light scattering

experiment results in the detection of a major fraction of monomeric holoQncM and a minor fraction

of holoQncM dimers. A homotrimer of holoQncM was not detected. The presence of dimers

can be explained by the oxidized form of holoQncM. A dimerization under oxidizing conditions

was reported for the ACP homologs from Escherichia coli (Rock et al., 1981) and Plasmodium
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falciparum (Gallagher and Prigge, 2010). The phosphopantetheinyl groups of the protein form a

disulfide bond with each other under oxidizing conditions, resulting in dimer formation. In order

to verify the suggestion that holoQncM forms disulfide linked dimers at oxidizing conditions,

SEC-MALS experiment using DTT containing buffer should be performed.

The addition of 10 mM BaCl2 to the crystallization mix significantly improved the crystal quality

of holoQncM in terms of diffraction ability. The stabilizing effect of divalent cations on the protein

fold was reported for ACP from E. coli (Tener andMayo, 1990) and for ACP from Vibrio harveyi

(Chan et al., 2010). It is to assume that the addition of divalent cations (MgCl2 or CaCl2) to the

purification and storage buffers could further improve the purification protocol for the holoQncM

component.

The structure of holoQncM exhibits a Trp31-His36 dyad located in the direct environment of the

phosphopantetheinylated Ser33 residue. These residues interact with each other by hydrogen bond

(figure 3.3.12). This motive is conserved in some bacterial homologs of ACP but not in the protein

from E. coli (Ramelot et al., 2011). The role of this structural motive is unclear. As this pair is

located near the entrance of the hydrophobic pocket, which binds the acylated prosthetic group, the

Trp-His dyad is suggested to be important for the recognition of the acyl chain covalently linked to

the phosphopantethein moiety (Crosby and Crump, 2012).

Figure 3.3.12: Trp31-His36 dyad near the
phosphopantetheinylated Ser33 residue in
holoQncM structure. The main chain is
shown as secondary structure (gray), the
residues Trp31, His36, Ser33 and the phosphate
group of the phosphopantetheinyl moiety (PNS)
as sticks.

Ser33
PNS

Trp31

His36

Another protein, which was analyzed in the present work, is the E3 component. Due to the lack

in sequence information about the original E3 component from Streptomyces melanovinaceus,

the homologous protein from Streptomyces lividans (SliE3) was subjected for investigations. The

SliE3 component is reported to be able to recognize the dihydrolipoyl moiety of the QncL subunit

and to catalyze its oxidation (Peng et al., 2012). SliE3 component arises as a good model for

the investigations on the dihydrolipoyl dehydrogenase. The protein could be purified in its active
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form with sufficient yields. The spectroscopic methods for the kinetic analysis as described by

Argyrou and Blanchard (2001); Argyrou et al. (2002) for the dihydrolipoyl dehydrogenase from

Mycobacterium tuberculosis could be applied to the SliE3 component. The protein efficiently

catalyzes the reversible reduction of the lipoamide using NADH as reductant. Furthermore, the

characteristic absorption bands for the formation of the reaction intermediates during the catalysis

can be monitored using stopped-flow spectroscopy. Finally, the crystallization conditions and the

crystal structure of the component were determined in this work. These methods give a good basis

for the kinetical and structural analysis of the catalytic cycle of the dihydrolipoyl dehydrogenase.

The Streptomyces melanovinaceus strain could be cultivated and the genomic DNA was iso-

lated. Using the information from the genome sequencing (Department of Genomic and Applied

Microbiology), the coding sequence for the original dihydrolipoyl dehydrogenase from Strep-

tomyces melanovinaceus could be identified. The sequences of the E3 component from Strep-

tomyces melanovinaceus and Streptomyces lividans share 91.2 % identity and 97.0 % similarity

(figure 3.3.13).

lividans: 1 MHGGRDVANDASTVFDLVILGGGSGGYAAALRGAQLGLDVALIEKNKLGGTCLHNGCIPTKALLHAGEVADQSRESEQ 78
melanovinaceus: 1 MHGGRDVANDASTVFDLVILGGGSGGYAAALRGAQLGLDVALIEKGKVGGTCLHNGCIPTKALLHAGEIADQARESEQ 78

lividans: 79 FGVKTSFEGVDMAGVHKYKDEVIAGLYKGLQGLVASRKITYIEGEGRLSSPTSVDVNGQRVQGRHVLLATGSVPKTLP 156
melanovinaceus: 79 FGVKATFEGIDIDAVHKYKDDVISGLYKGLQGLIASRKVTYIEGEGRLSSPTSVDVNGQRVQGRHVLLATGSVPKSLP 156

lividans: 157 GLEIDGNRIISSDHALTLDRVPKSAIVLGGGVIGVEFASAWKSFGSEVTVIEGLKHLVPVEDENSSKLLERAFRKRGI 234
melanovinaceus: 157 GLEIDGNRIISSDHALKLDRVPKSAIVLGGGVIGVEFASAWTSFGTDVTIIEGLKHLVPVEDENSSKLLERAFRKRGI 234

lividans: 235 KFNLGTFFQKAEYTQDGVKVTLADGKEFEAEVLLVAIGRGPVSQGLGYEENGVATDRGFVLVDEYMRTNVPTISAVGD 312
melanovinaceus: 235 KFNLGTFFQGAEYTQDGVRVTLADGKTFEAEVLLVAIGRGPVSQGLGYEEAGVAMDRGYVLVDEYMQTNVETVSAVGD 312

lividans: 313 LVPTLQLAHVGFAEGILVAERLAGLKTVPVDYDGVPRVTYCHPEVASVGLTEARAKEVYGADKVVSIKFPLGGNGKSR 390
melanovinaceus: 313 LVPTLQLAHVGFAEGILVAERLAGLKTVPIDYDGVPRVTYCHPEVASVGITEAKAKELYGADKVVALKYNLAGNGKSK 390

lividans: 391 ILKTAGEIKLVQVKDGAVVGVHMVGDRMGEQVGEAQLIYNWEALPAEVAQLIHAHPTQNEALGEAHLALAGKPLHMHD 468
melanovinaceus: 391 ILKTAGEIKLVQVKDGAVVGVHMVGDRMGEQVGEAQLIYNWEALPAEVAQLIHAHPTQNEAMGEAHLALAGKPLHSHD 468

Figure 3.3.13: Sequence alignment of the E3 components from Streptomyces melanovinaceus
and Streptomyces lividans. The sequence for St. lividans was taken from UniProt-server
(http://www.uniprot.org; 2012) The sequence alignment was performed using Clustal Omega
server (http://www.ebi.ac.uk/Tools/msa/clustalo/; (Goujon et al., 2010; McWilliam et al., 2013;
Sievers et al., 2011)). Red: fully conserved residues, blue: residues with similar properties, black:
residues with weakly similar properties, gray: neutral.

The residue Ser27 (numbering refers to the position of the residue in the amino acid sequence

of the purified protein) is of particular interest. In the coding sequences for the dihydrolipoyl

dehydrogenase from selected model organisms, the corresponding residue is a proline (alignment

not shown). However, the Ser27 residue is conserved in a number of Streptomyces species (alignment

not shown). Interestingly, the analysis of the naturally occurring mutation in the dihydrolipoyl

dehydrogenase gene from the lesser grain borer (Rhyzopertha dominica) and the rust-red flour

beetle (Tribolium castaneum) showed that a mutation of the proline residue to the Streptomyces
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specific serine results in insects, which are resistant against phosphine (Chen et al., 2015; Kaur

et al., 2015; Schlipalius et al., 2012). Additionally, a number of other mutations in dihydrolipoyl

dehydrogenase gene, which lowers the phosphine sensitivity of the insects, were reported. However,

the mechanism of this resistance is not understood so far. In the structure of the SliE3 component,

the residue Ser27 is located in the FAD-binding domain near the catalytic disulfide bond and would

be able to influence the E3 reaction (figure 3.3.14).

Figure 3.3.14: The active site of the SliE3
component. The main chain is shown as
secondary structure (gray), the residues Ser27,
Cys55, Cys60 and the FAD (yellow) as sticks.

Ser27

FAD

Cys60

Cys55

The E3 component catalyzes the oxidation of the dihydrolipoyl moiety of the QncL subunit

completing the catalytic cycle of the QncN/L-M protein system. The QncL and QncN subunits

form together the QncN/L component, which provides the main catalytic functionality of the

system. This component catalyzes the ketol cleavage of the ketose phosphate and the transfer of a

hydroxyacetyl unit to the phosphopantetheine moiety of the holoQncM component. Unfortunately,

the previously published expression and the purification protocol for the QncN/L component (Peng

et al., 2012) could not be optimized in the present work. The protein yields per 1 g cell pellet are

low compared to the other components (E3 and QncM). The overall activity of the protein complex

could be determined applying the continuous spectrophotometric assay, which is similar to the

activity assay for the mechanistically related pyruvate dehydrogenase complex from Escherichia

coli (Nemeria et al., 1998). In previous studies, this activity was determined using a discontinuous

HPLC based assay, in which the formation of the hydroxyacetylated holoQncM was detected (Peng

et al., 2012). The activity assay used in the present work detects the reduction of NAD+, which is

catalyzed by the E3 component along with the QncN/L reaction. The determined activity using this

assay is consistent with the published activity.



Appendix

A Tables

Table A.1: Estimated properties of TacTALwt and variants. Molecular weights (MW), molar
extinction coefficients (ε280nm) and isoelectric points (pI) were calculated with ProtParam online-tool
(http://web.expasy.org/protparam/) (Gasteiger et al., 2005).

Protein MW (Da) ε280nm (M−1cm−1) pI

TacTALwt 24464.5 16960 6.44
TacTALE60Q 24463.5 16960 6.91
TacTALK86Q 24464.5 16960 6.10
TacTALF132Y 24480.5 18450 6.44
TacTALE60Q/F132Y 24479.5 18450 6.91
TacTALN108A/S130A 24405.5 16960 6.44
TacTALT30C/D211C (oxidized) 24452.6 17085 6.90
TacTALT30C/D211C (reduced) 24454.6 16960 6.90
TacTALFSA-mimic 24522.7 18450 6.91

Table A.2: Expected holoQncM fragments after tryptic cleavage. The fragments were calcu-
lated with PeptideCutter online-tool (http://web.expasy.org/peptide_cutter/) (Gasteiger et al., 2005).
The modified serine residue and the mass of the resulting modified peptide are indicated by red.

Position (aa) Peptide sequence Peptide
length (aa) Mass (Da)

28 MTTVENLVADVLGLAPEDIDDDTGPATR 28 2929.203

35 GEWTSLR 7
847.926
1188.26

50 HVQIVVAIEATYGIR 15 1668.957
54 LTAR 4 459.546
57 EVR 3 402.451
60 SCR 3 364.42
63 SVR 3 360.414
66 GLK 3 316.401
72 QALSAK 6 616.715
76 GLNS 4 389.409
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Table A.9: Buffer conditions screened in the ThermoFluor assay. The pH-step was 0.4.

Substance pH Substance pH

MES 4.6–7.4 Phosphate 5.8–8.6
BisTris 5.2–8.0 HEPES 6.0–8.8

Imidazole 5.4–8.2 Tris 6.6–9.4

B Schemes

T7 RBS His6 Thrombin QncN T7 RBS His6 Thrombin QncL

T7 RBS His6 Thrombin QncN T7 RBS QncL

T7 RBS His6 SUMO QncN T7 RBS QncL

pET28a

pCDFDUET-1

pETSUMO

Scheme B.1: Cloning strategy for generation of the QncNL-pET-SUMO construct.
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C Figures

Figure C.1: Representative CD-spectra for
the pH-titration of TacTAL (the data for
TacTALFSA-mimic are shown). The far-
UV-CD spectra were recorded at 30 ◦C in
10 mM KH2PO4/K2HPO4 (pH 4.9–8.5, sec-
tion 1.6.4.3). CD spectra at different pH are
indicated by respective color (see legend). Mi-
nor changes in secondary structure occur first
at a pH below 5.9.

Figure C.2: Far-UV-CD spectra of
TacTALT30C/D211C in presence and ab-
sence of DTT. The CD spectra were recorded
under the same conditions as described in
section 1.6.4.3 (pH 7.5, 0.125 mg/mL TacTAL,
30 ◦C). Blue solid line: absence of DTT
(oxidized form); red solid line: presence of
DTT (reduced form). The HT-plot (bottom)
shows the high-voltage value of the detector
at respective wavelength. No changes in
secondary structure of the variant could be
detected after incubation with 1 mM DTT.
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Figure C.3: Representative stopped-flow
progress curve (cleavage of F6P into GA3P
and DHA) for TacTALFSA-mimic recorded at
340 nm. The measurements were performed
at 30 ◦C. The F6P concentration was 10 mM
after mixing with enzyme (final concentration
0.22 mg/mL). The deviation of the applied fit (for
details, see Materials and Methods) from the
data is shown as residuals-plot. The progress
curve consists of a lag-phase prior to an ex-
ponential burst phase followed by the linear
aldolase steady-state phase. kobs = observed
rate constant of the burst phase.
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Figure C.4: Representative stopped-flow
progress curve for TacTALE60Q recorded at
340 nm. The measurements were performed
at 30 ◦C. The F6P concentration was 10 mM
after mixing with enzyme (final concentration
0.22 mg/mL). The deviation of the applied fit (for
details, see Materials and Methods) from the
data is shown as residuals-plot. The progress
curve consists of an exponential burst phase fol-
lowing by the linear aldolase steady-state phase.
kobs = observed rate constant of the burst phase. Time (s)
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Figure C.5: Active site of TacTALwt co-
crystallized with F6P. The selected active
site residues (gray) and the F6P-Schiff base-
intermediate (yellow) are represented as sticks.
The ε-amino group of the reactive lysine
(framed) is placed in hydrogen bond distance
to the oxygen atom of the main chain carbonyl
of Thr27.

F6P-Schiff base
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Glu60

Lys86

Asn28

W1
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Figure C.6: mFO-DFC simulated annealing
omit map of TacTALE60Q co-crystallized
with F6P. The difference electron density map
is shown as green mesh (contour level 3σv).
The selected active site residues (gray) and the
F6P-Schiff base-intermediate (yellow) are rep-
resented as sticks. The polypeptide backbone
is shown as secondary structure (cyan).
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M1P

Asp6

Glu60

Lys86

Thr110

Ser130

W1

Phe132

M1P

Asp6

Lys86
W1

Phe132

Figure C.7: mFO-DFC simulated annealing omit map of TacTALwt co-crystallized with M1P.
The difference electron density map is shown as green mesh (contour level 2.5σv). The selected
active site residues (gray) and the non-covalently bound M1P (yellow) are represented as sticks.
The polypeptide backbone is shown as secondary structure (cyan). The C3OH-group is not covered
by the electron density.
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Figure C.8: mFO-DFC simulated annealing omit map of TacTALK86Q co-crystallized with
F6P. The difference electron density map is shown as green mesh (contour level 2.5σv). The
selected active site residues (gray) and the non-covalently bound F6P (yellow) are represented as
sticks. The polypeptide backbone is shown as secondary structure (cyan). The C4OH-group is not
covered by the electron density.

A5P

Asp6

Glu60
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Thr110
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Phe132

W2 Figure C.9: mFO-DFC simulated annealing
omit map of TacTALwt co-crystallized with
A5P. The difference electron density map is
shown as green mesh (contour level 3σv). The
selected active site residues (gray) and the A5P-
Schiff base-intermediate (yellow) are repre-
sented as sticks. The polypeptide backbone
is shown as secondary structure (cyan).
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Figure C.10: mFO-DFC simulated anneal-
ing omit map of TacTALN108A/S130A co-
crystallized with F6P. The difference electron
density map is shown as green mesh (contour
level 3σv). The selected active site residues
(gray) and the F6P-Schiff base-intermediate
(yellow) are represented as sticks. The polypep-
tide backbone is shown as secondary structure
(cyan).

F6P

Asp6

Glu60

Lys86

Thr110

Ser58

Ala130

Ala108

Asn28

W1

Phe132

W2

Figure C.11: Different conformations of the
reactive lysine in the structures of TacTALwt
co-crystallized with F6P or A5P. The confor-
mation of the reactive lysine (gray sticks) in the
structure of the F6P-Schiff base-intermediate
(yellow sticks) is U-shaped, while the reactive
lysine (cyan sticks) in the structure of the A5P-
Schiff base-intermediate (purple sticks) exists
in its fully extend, all-trans conformation.
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Figure C.12: Electron density maps for the TacTALFSA-mimic variant co-crystallized with F6P.
The selected active site residues (gray) and the F6P-Schiff base-intermediate (yellow) are repre-
sented as sticks. The polypeptide backbone is shown as secondary structure (cyan). A: mFO-DFC
simulated annealing omit map. The difference electron density map is shown as green mesh
(contour level 3σv). B: 2mFO-DFC electron density map (blue mesh, contour level 1σv) for the
intermediate and mFO-DFC electron density map (green mesh, contour level 2.5σv) for the catalytic
water molecule (W1, red sphere). Because of the weak electron density, the catalytic water molecule
was not modeled.
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Figure C.13: Electron density maps for the TacTALE60Q/F132Y variant co-crystallized with
F6P. The selected active site residues (gray) and the F6P-Schiff base-intermediate (yellow) are
represented as sticks. The polypeptide backbone is shown as secondary structure (cyan). A:
2mFO-DFC electron density map (blue mesh, contour level 1σv) for the intermediate and mFO-DFC
electron density map (green mesh, contour level 2.5σv) for the catalytic water molecule (W1, red
sphere). Because of the weak electron density, the catalytic water molecule was not modeled. B:
2mFO-DFC electron density map (blue mesh, contour level 1σv) for the intermediate and mFO-DFC
electron density map (green mesh, contour level 2.5σv). Additional positive electron density is
present corresponding to the „up“ conformation of the intermediate. Because of the weak electron
density, the „up“ conformation of the intermediate was not modeled.
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Figure C.14: mFO-DFC simulated anneal-
ing omit map of TacTALT30C/D211C co-
crystallized with F6P. The difference electron
density map is shown as green mesh (contour
level 3σv). The selected active site residues
(gray) and the F6P-Schiff base-intermediate
(yellow) are represented as sticks. The polypep-
tide backbone is shown as secondary structure
(cyan).
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Figure C.15: mFO-DFC simulated annealing
omit map of TacTALT30C/D211C soaked with
F6P and DTT, simultaneously. The differ-
ence electron density map is shown as green
mesh (contour level 3σv). The selected active
site residues (gray) and the F6P-Schiff base-
intermediate (yellow) are represented as sticks.
The polypeptide backbone is shown as sec-
ondary structure (cyan).
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Figure C.16: mFO-DFC simulated annealing
omit map of TacTALT30C/D211C soaked with
F6P. The difference electron density map is
shown as green mesh (contour level 2.5σv). The
selected active site residues (gray) and the F6P-
carbinolamine-intermediate (yellow) are repre-
sented as sticks. The polypeptide backbone is
shown as secondary structure (cyan).

F6P-carbinolamine

Asp6

Glu60

Lys86

Thr110

Ser130 Asn108

Phe132

A. thaliana 156 KLVPGRVSTEVDARLAYDTNGIIRKVHDLLRLYNEIDVPHDRLLFKIPATWQGIEA 211 (Theologis et al., 2000)
F. tularensis 90 DVIEGKVSSEVDARVSFNSATTIDYAKRIIARYESNGIPKDRVLIKIAATWEGIKA 145 (Larsson et al., 2005)
E. coli 87 KLVPGRISTEVDARLSYDTEASIAKAKRLIKLYNDAGISNDRILIKLASTWQGIRA 142 (Sprenger et al., 1995)
C. thermophilum 88 EIIPGKVSTEVDAAFSFDTQKSVEKALHLIK----AGVSKDRVLIKIASTWEGIKA 139 (Amlacher et al., 2011)
D. melanogaster 97 KVVPGRVSTEIDARLSFDTKKSVEKALKLIALYKSLGVDKERILIKLASTWEGIKA 152 (Adams et al., 2000)
Homo sapiens 97 KKIPGRVSTEVDARLSFDKDAMVARARRLIELYKEAGISKDRILIKLSSTWEGIQA 152 (Banki et al., 1994)
Mus musculus 97 KKIPGRVSTEVDARLSFDKDAMVARARRLIELYKEAGVGKDRILIKLSSTWEGIQA 152 (Kusuda et al., 1998)
S. cerevisiae 99 KIVPGRVSTEVDARLSFDTQATIEKARHIIKLFEQEGVSKERVLIKIASTWEGIQA 154 (Schaaff et al., 1990)
Zea mays 160 DGADGYVSVEVSPRLANDTQGTVEAAKWLHKVV-----NRPNVYIKIPATAECVPS 210 (Alexandrov et al., 2009)
M. tuberculosis 103 DGVDGRVSIEVDPRLAHETEKTIQQAIELWKIV-----DRPNLFIKIPATKAGLPA 153 (Cole et al., 1998)
St. coelicolor 109 GGRDGRVSIEVDPRLAHDTAATVAEARQLSWLV-----DRPNVMIKIPATKAGLPA 159 (Bentley et al., 2002)
B. subtilis 49 DVVKGSVSAEVISL---KAEEMIEEGKELAKI-------APNITVKIPMTSDGLKA 94 (Trach et al., 1988)
T. acidophilum 51 KIVDGPVSVEVVST---KYEGMVEEARKIHGL-------GDNAVVKIPMTEDGLRA 96 (Ruepp et al., 2000)

Figure C.17: Sequence alignment of the transaldolases from different species. A Ser residue
(yellow box) located at n − 2 position of the general acid-base catalyst Glu is conserved in
transaldolase sequences of different origins (plants, mammals, insects, fungi, bacteria and ar-
chaea). The sequences were taken from UniProt-server (http://www.uniprot.org; (UniProt Con-
sortium, 2015)) The multiple sequence alignment was performed using Clustal Omega server
(http://www.ebi.ac.uk/Tools/msa/clustalo/; (Goujon et al., 2010; McWilliam et al., 2013; Sievers
et al., 2011)). Red: fully conserved residues, blue: residues with similar properties, black: residues
with weakly similar properties, gray: neutral.

L. monocytogenes 46 ELTDKQVFVQTVGFTYEEILADARMLLTMFGKDKIAIKIPAHEAGTNVIDT 96 (Guérard-Hélaine et al., 2015)
Ae. hydrophila 50 LGPKARLFAQVMAKTETEMVREAFALRELD-R-DLVIKIPVCEEGLAAIKT 96 (Guérard-Hélaine et al., 2015)
E. coli 50 MGGQGRLFAQVMATTAEGMVNDALKLRSII-A-DIVVKVPVTAEGLAAIKM 96 (Schürmann and Sprenger, 2001)
Sh. sonnei 50 IGDEGILFAQTMSRDAQGMVEEAKRLRDAI-P-GIVVKIPVTSEGLAAIKI 96 (Yang et al., 2005)
Ci. amalonaticus 50 IGEHGVLFAQTMSRDAQGMVNEAKRLNNAV-P-GIVVKIPVTSEGLVAIKQ 96 (Ainala et al., 2013)
Sa. typhi 50 IGEEGTLFAQTMSRDAKGMVEEAKRLNNAI-P-GIVVKIPVTAEGLAAIKL 96 (Parkhill et al., 2001)
Cl. beijerinckii 50 LPEGAQLHAQVVSLTAEKMVDEAQHMIEVLGK-DTYIKIPVTPEGIKAMKL 96 (Guérard-Hélaine et al., 2015)
Str. pneumoniae 51 IGSTPSIHVQVISQDFEGILKDAHKIRRQAGD-DIFIKVPVTPAGLRAIKA 98 (Guérard-Hélaine et al., 2015)
Str. suis 51 IGPNASLHVQVVAKDYEGILADAKKIRELAPE-NIYIKVPVTPAGLAAMKT 98 (Guérard-Hélaine et al., 2015)
Str. agalactiae 51 IGREASLHVQVVAKDYQGILDDAAKIRQETDD-DIYIKVPVTPDGLAAIKT 98 (Guérard-Hélaine et al., 2015)
Str. pyogenes 51 IGDKASIHVQVIAQDYEGILKDAAEIRRQCGD-SVYVKVPVTTEGLAAIKT 98 (Guérard-Hélaine et al., 2015)
Str. gordonii 51 IGEGPSIHVQVVAKDYEGILKDAAKIRKRCGD-AVYIKVPVTPDGLAAIKT 98 (Guérard-Hélaine et al., 2015)

Figure C.18: Sequence alignment of the FSA proteins from different prokaryotes.The residue
in place of TacTAL’s Ser58 is replaced by either phenylalanine or histidine in sequences of FSA
(yellow box). The sequences were taken from UniProt-server (http://www.uniprot.org; (UniProt
Consortium, 2015)) The multiple sequence alignment was performed using Clustal Omega server
(http://www.ebi.ac.uk/Tools/msa/clustalo/; (Goujon et al., 2010; McWilliam et al., 2013; Sievers
et al., 2011)). Red: fully conserved residues, blue: residues with similar properties, black: residues
with weakly similar properties, gray: neutral.
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