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1 Introduction 

Amorphous materials were already known by the early civilizations on Earth. In fact, it is believed 

that the first contact of mankind with glasses was the use of obsidian by primitive men both in 

weapons and decorative goods. Later on, the first glass-preparation was reported by Phoenician 

sailors, who accidentally melted soda blocks during lunchtime, giving rise to the first glass 

preparation around 5000 B.C1. However, it was not until 600 B.C. when the earliest written 

testimonies of glassmaking procedures were reported in the clay tables of King Assurbanipal of 

Mesopotamia2. Apart from some questionable advices regarding sheep sacrifices and gods 

worshipping, much of the instructions given back in that table are still valid and currently applied. 

Glasses can be formed by different experimental techniques, such as sputtering deposition3, laser 

deposition4 or melt quenching5. Regardless of the differences among these techniques, the 

common goal of all of them is to avoid long range ordering during the formation of the solid. 

Recently, in 1960, Klement et al., managed to quench a metallic liquid into the glassy state, forming 

the first metallic glass6. By means of that technique, an alloy melt is cooled down with cooling rate 

high enough to avoid crystallization. Ever since, preparation techniques have rapidly developed and 

a wide range of metallic glasses are nowadays available in bulk7,8 which have attracted much 

interest both from the fundamental point of view and from the perspective of practical applications. 

Mechanically, metallic glasses were found to exhibit higher elastic limit9, wear corrosion10 and lower 

damping11 than many other materials including their crystalline counterparts. Such properties have 

motivated their implementation in sporting goods, mechanical actuators springs and luxury items12. 

On the other hand, metallic glasses made of magnetic elements were found to show exceptionally 

soft magnetic behavior13,14. That fact, together with their high electrical resistivity, motivated their 

massive implementation in magnetic cores of electrical transformers15,16. Additionally, magnetic 

metallic glasses show outstanding magnetomechanical coupling, which motivated their use as 

sensors and actuators17,18,19. 

Regardless of their well-known macroscopic mechanical and magnetic behavior, the microscopic 

origin of macroscopic phenomena remains only partially understood to this day. In this context, 

Argon postulated the local deformation unit in amorphous matter as the so-called Shear 

Transformation Zone (STZ)20. Argon’s concept of Shear Transformation Zones was merged to the 

Potential Energy Landscape framework of Goldstein21 by Samwer and Johnson22. According to that 

model, a glass accommodates stress by the collective shear of tens of atoms. Such cluster forms the 

plastic core of the STZ, whose shearing induces an Eshelby stress field with quadrupolar 

symmetry23. Such quadrupolar field is able to soften other spots and therefore induce a cascade 

deformation event or avalanche24. The ability of a triggered STZ to substantially modify the 
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surrounding elastic matrix, generating avalanches of STZ’s, or on other words the cooperativity 

among STZ’s25 is a key parameter that governs the macroscopic deformation behavior of metallic 

glasses, which ranges from ductile to brittle depending on the experimental conditions26. However, 

the way the dynamics among STZ´s take place remains unclear, and the topology and cooperativity 

of their interactions are still debated27. 

In this context, the deformation of metallic glasses has been extensively studied from the point of 

view of avalanche dynamics during the last two decades. Many experimental28,29,30 and 

theoretical31,24,32 evidence hint at deformation events exhibiting typical features of avalanche 

processes, as is the wide distribution of scales and intermittency33,34. There is thus hope that 

statistical analysis of the intermittent deformation signal and careful comparison against different 

models, would shed light into features which still remain elusive, as for instance the topology and 

cooperativity of the deformation process. 

This work is devoted to the study of metallic glasses by means of a statistical analysis of the 

intermittent deformation signal. The first part of the memoir deals with the analysis of avalanches 

produced during creep deformation of non-magnetic Pd77.5Cu6Si16.5 ribbons. A crossover in the 

avalanche statistics observed by Krisponeit et al30 is analyzed under a wide range of experimental 

conditions. The underlying transition is physically interpreted in terms of the macroscopic strain 

rate and inertia35. The second part of the work focuses on the analysis of the avalanches produced 

during creep deformation of magnetostrictive Fe-rich 2605SA1 glasses from Metglas Inc. A 

crossover was also observed in these samples, which suggest the universality of that transition. 

Furthermore, avalanches under different magnetic field intensities and orientations were also 

analyzed. Analysis of experiments under magnetic fields suggest an interplay between magnetic 

domain walls and STZ ´s which affects the crossover transition and the dynamic heterogeneities in 

the glass. Specifically, a certain magnetic domain wall orientation along 45° with respect to the 

applied stress seems to maximize the regime of inertial avalanches and dynamic heterogeneities. 

Finally, the last part of this memoir deals with the analysis of the magnetomechanical coupling 

during stress-strain measurements at room temperature. Those measurements were performed on 

two alloys: highly magnetostrictive 2605SA1 and Fe2Co73Si10B15 with vanishing magnetostriction 

in it unstrained state. The results obtained were interpreted both from a macroscopic approach (by 

means of the analysis of the macroscopic Young modulus as a function of the magnetic field) and 

from the point of view of the avalanches (by an analysis of the intermittent deformation signal). 

The main magnetomechanical effect appears to be governed by magnetic wall rotation upon stress 

increase, which leads to a non-linear addition of the magnetic and mechanical energies. 

This work is divided into seven chapters. After an introduction, Chapter 2 provides a summary of 

general features of glasses, including the glass transition and an overall description of their 

mechanical and magnetic properties. In particular, the phenomenon of the magnetomechanical 

coupling and its physical origin is treated as well. An introduction is also given to the field of 

avalanche dynamics, and the state of the art of avalanche analysis in metallic glasses is overviewed 

there. In Chapter 3 the different experimental equipment used to produce the data analyzed 

throughout this memoir are presented, with particular emphasis on the Dynamic Mechanical 

Analyzer and a modification thereof that was implemented to include magnetic field driving. The 

analytical methods employed for the analysis of such data in the context of avalanche dynamics are 

then described in Chapter 4. Chapter 5 presents the experimental results, which are subsequently 

discussed in detail in Chapter 6. To conclude, in Chapter 7 the main conclusions of this work are 

summarized, and a few suggestions for possible future research are gathered. 
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2 Theoretical background 

2.1 Vitrification and the glass transition 

Amorphous materials in general, and glasses in particular, are characterized by the lack of long 

range order, in sharp contrast with crystals whose main feature is the presence of an ordered 

microscopic lattice. 

When a glass forming liquid is cooled below its freezing point Tm it may crystallize through a first 

order transition into its crystalline phase. This is due to the fact that at Tm the condition for 

thermodynamic equilibrium is achieved by the crystalline phase. Such condition is given by the 

minimization of its free energy 

 

F = U − TS                                                                            (2.1) 

 

where U and S are respectively the internal energy and entropy and T the absolute temperature. In 

principle, one might expect a minimum of F to correspond to a minimum of U and a maximum of 

S, but the derivatives of U and S with respect to the temperature have generally the same sign. 

Therefore, the temperature plays the key role of determining the weight of each of the components 

of the free energy. At very high temperatures the entropy term governs the free energy and the 

system is at equilibrium in its liquid phase, which is characterized by high entropy and internal 

energy. The freezing point is defined as the temperature at which the internal energy term becomes 

dominant for the minimization of the free energy. If that is the case, the system undergoes 

crystallization in equilibrium, since this is the configuration that minimizes the internal energy, at 

the expense of minimizing the entropy as well. It should be recalled that crystallization is a first 

order transition since many physical quantities as the enthalpy or volume show a discontinuity at 

that point. 

The aforementioned considerations only apply in the case of thermodynamic equilibrium. If the 

melt is cooled fast enough, the high viscosity increase rate hampers crystallization and the system 

is driven into the so-called super cooled liquid regime36,37. As the system is quenched further, it 

eventually falls out of equilibrium and forms a glass (metastable disordered solid), through the so-

called glass transition 38,39. 
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Figure 2.1 depicts the vitrification process by showing schematically the temperature dependence 

on volume and enthalpy. The temperature range at which volume and enthalpy derivatives with 

respect to the temperature change, defines the glass transition temperature Tg. The glass transition 

temperature Tg is also defined as the temperature at which characteristic relaxation times reach 

100 s38,40.  

 

Figure 2.1 Temperature dependence of a liquid volume or entalphy at constant 
pressure.38 

 

The glass transition temperature depends on the cooling rate and so does the final glassy state. Tg 

increases with the cooling rate, since as the latter increases it becomes more challenging for the 

system to relax at a comparable rate38,41,42. In Figure 2.1, Tga and Tgbrepresent two temperatures of 

the glass transition accomplished with cooling rates Ṫa, Ṫb respectively, where |Ṫa| < |Ṫb|. The 

energy branch of the glass depends on the temperature at which the undercooled liquid falls out 

of equilibrium, i.e., its glass temperature. An undercooled liquid quenched at higher rates would 

fall out of equilibrium at higher temperatures and at higher energy levels than the same liquid 

quenched at lower rates. In Figure 2.1 the glassy branch denoted as (b) represents a preparation 

path with higher cooling rate than branch (a). 

The glass transition is also related to the ergodicity of the system, i.e., the ability of the material to 

explore the whole configurational space. In that sense, the glass transition can be understood as a 

crossover from an ergodic state in the supercooled liquid regime, in which the system is able to 

explore the majority of the configurational space (except the configuration which correspond to 

the crystal), to a glassy non ergodic state in which the system is trapped in a given configurational 

state38. That means that the configurational degrees of freedom are sharply reduced at the glass 

transition. That fact is reflected in a reduction of the specific heat Cp
glass

< Cp
liq

.Specific heat at the 

supercooled liquid phase is dominated by configurational degrees of freedom, whereas the main 

contribution of the specific heat at the glassy state are only vibrational degrees of freedom43. 

Since a glass is in a metastable state, its configuration is continuously evolving towards lower 

energetic configurations44. Such a process is called aging or structural relaxation, and it is of outmost 

importance since aging also involves the evolution of mechanical, magnetic or chemical properties 

of the glass45,26. Typically aging is negligible at temperatures T≪Tg, but it starts to play a role as the 

temperature approaches Tg 44. On the other hand, a glass can be externally driven in order to bring 
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it back to its original state. Such a process is called rejuvenation, and can be done by mechanical 

treatments46, or cyclic cryogenic baths47,48. A special kind of glasses are the so called ultra-stable 

glasses. Such glasses are prepared at a low enough cooling rate so the system achieves a low deep 

minima in the configurational space3,49. Recent findings seem to indicate that in the case of ultra-

stable glasses a heat treatment below Tg would not induce aging, but rather a process known as 

anti-aging, characterized by an increase of the potential energy, due to the temperature 

treatment50. 

It has been already mentioned that the viscosity 𝜂 increases dramatically at the vicinity of the glass 

transition, which results in an increase of the relaxation times and in the eventual formation of the 

glass. The functional dependence of the viscosity with the temperature upon cooling is used to 

classify the different glass formers51. More precisely, the glass formers are termed as “strong” if the 

change of viscosity follows an Arrhenius law, of the form: 

 

𝜂(𝑇) = 𝜂0 𝑒𝑥𝑝 (
𝐸

𝑅𝑇
)                                                                           (2.2) 

 

where R is the universal gas constant and E represents a constant activation Energy. A canonical 

example of strong glass former are SiO2 glasses (common window glass). On the other hand, the 

glasses are termed as “fragile” if their viscosity follows the Vogel-Fulcher-Tammann law (VFT), given 

by the expression: 

 

𝜂(𝑇) = 𝜂0 𝑒𝑥𝑝 (
DT0

(T − T0)
)                                                                 (2.3) 

 

Where D, 𝜂0 and T0 are constants. O-terphenyl and toluene are two classical examples of fragile 

glasses. 

Angell proposed a way to represent the viscosity data which allows to easily classify the glass 

formers between strong and fragile51. The so-called Angell-plot consists on the representation of 

the logarithm of the viscosity as a function of 
Tg

T
. An example of such representation can be found 

in Figure 2.2 in which the strong liquids can be identified as those that follow the upper straight 

line, whereas fragile ones depart from such linear behavior. 
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Figure 2.2 Angell representation of the logarithm of glass former viscosities as a 

function of 
𝑻𝒈

𝑻
. Strong glass formers show linear behavior in such scaling, whereas 

fragile glasses deviate from linearity 38. 

 

The fragility of a glass former can be quantified by means of the fragility index m52, given by the 

expression: 

 

𝑚 =
𝑑(log (𝜂))

𝑑(
𝑇
𝑇𝑔

)
                                                                            (2.4) 

 

evaluated at T = Tg 

The fragility is proportional to the increase of viscosity when approaching the glass transition. 

Fragile systems present a sharp increase of the viscosity in the vicinity of Tg, while for strong glass 

formers the viscosity increase is constant and governed by an Arrhenius behavior.  

More recently, an analytic relationship between fragility and viscosity of metallic glasses and their 

interatomic potential has been established53. According to such model, which reproduces 

successfully experimental data, the viscosity can be expressed in a double exponential closed-form 

function of only one free parameter, the atomic volume 𝑉𝑐, by means of the following expression: 

 

𝜂(𝑇)

𝜂0
= exp {

𝑉𝑐𝐶𝐺

𝐾𝑇
exp [(2 + 𝜆)𝛼𝑇𝑇𝑔 (1 −

𝑇

𝑇𝑔
)]}                                           (2.5) 

 

where 𝐶𝐺 is a prefactor independent of T, 𝛼𝑇 the expansion coefficient and 𝜂0 a normalization 

constant. The parameter λ represents the steepness of the inter-atomic potential and can be 
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estimated from fitting the leftmost flank of the first peak of radial distribution function, by means 

of a power-law approximation 𝑔(𝑟)~(𝑟 − 𝜎)𝜆 54. Such steepness of the leftmost flank of 𝑔(𝑟) 

determines the fragility of the system, since metallic glasses with steeper repulsive part of the 

interatomic interaction are found to be more fragile than those with softer repulsions. The softness 

or steepness of the interatomic potential is mainly determined by the electronic configuration of 

the atoms due to electron overlap and Pauli exclusion repulsion between electronic shells. Atoms 

with d-shell valence electronic bands are found to favor the softness of the interatomic potentials 

compared with those with outer s-shell band 53. 
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2.2 General features of the glassy state 

Although from the structural point of view a glass does not differ much from a liquid, it is on the 

dynamical properties where the main differences between a glass and a liquid arise. This subsection 

aims to provide a short overview of some of the signatures of the glassy state. In order to measure 

how quickly correlations decay within a system, a correlation function 𝐶(𝑡) can be defined as 

follows40: 

 

𝐶(𝑡) =
1

𝑁
∑〈𝜑𝑘(𝑡)𝜑𝑘(0)〉

𝑁

𝐾=1

                                                                (2.6) 

 

In Eq (2.6) 𝜑𝑘(𝑡) represents a generic quantity relative to the particle k, at a given time 𝑡 and N 

denotes the number of particles in the system. A typical choice for 𝜑𝑘(𝑡) in experiments is the 

Fourier transform of density fluctuations. At high temperatures, and after a short transient ballistic 

regime, 𝐶(𝑡) is expected to represent a dissipative regime with exponential relaxation. 

 

𝐶(𝑡) = 𝐶𝑜 exp (−
𝑡

𝜏
)                                                                             (2.7) 

 

As the liquid approaches the glass transition, not only the relaxation time 𝜏 increases, but also the 

shape of 𝐶(𝑡) changes qualitatively, as it is shown in Figure 2.3 (a) 55,56. Figure 2.3 (a) shows the self-

intermediate scattering function for a glass obtained by numerical simulations38. It can be seen 

there that as the temperature is decreased, the function decays by means of a two-step relaxation 

process. First a fast relaxation takes place, followed by a plateau, and finally a non-exponential 

decay occurs. Typically, these two processes are known as 𝛽 and 𝛼 relaxation. The separation of 𝛽 

and 𝛼 relaxation can also be seen from dielectric experiments in which the temperature 

dependence of the peak relaxation frequency is measured57. Figure 2.3 (b) shows that the relaxation 

peak splits into slow 𝛼 and fast 𝛽 relaxations as Tg is approached 38. 
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Figure 2.3 (a) Self-intermediate scattering function as a function of time for 
different temperatures calculated from simulations in Lennard-Jones glass. (b) 
Temperature dependence of the peak dielectric relaxation frequency of a 
glass.former  38 

 

The onset of both relaxation processes can be further investigated with the help of another 

variable, the Mean Squared Displacement MSD of a given particle 𝑖, given by the expression: 

 

〈𝑟2(𝑡)〉 =  
1

𝑁
∑〈‖𝑥⃗𝑖(𝑡) − 𝑥𝑖(0)‖2〉

𝑖

                                                             (2.8) 

 

Figure 2.4, shows the evolution of MSD as a function of time for different temperatures calculated 

numerically in a Lennard-Jones system 56. 

 

Figure 2.4   Mean-Square-Displacement (MSD) as a function of the logarithm of time 
in a Lennard-Jones system 56 

 

At temperatures higher that the glass transition, MSD shows a first ballistic regime where 

〈𝑟2(𝑡)〉~𝑡2 and collisions are negligible, followed by a diffuse regime, where 〈𝑟2(𝑡)〉~𝑡 and 

collisions dominate. However, as the temperature approaches Tg, both regimes are separated by a 
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plateau. Such plateau represents the cage-effect of the neighboring atoms that prevents particle 

diffusion. The slow 𝛼-process corresponds to the escape from the cage, while the fast 𝛽-processes 

are associated to vibrations confined in the cage56. 

It has been noticed that the 𝛼-relaxation shown in Figure 2.3 (a) is non-exponential. In fact, such 

decay can be successfully fitted with a Kohlrausch-Williams-Watts (KWW) stretched exponential 

function58: 

 

𝐶(𝑡) = 𝐶0𝑒𝑥𝑝 [−(𝑡
𝜏⁄ )

𝛽
]                                                                    (2.9) 

 

The exponent 𝛽 is always 𝛽 < 1. At temperatures T ≫ Tg , 𝛽 approaches unity and therefore the 

KWW function (Equation (2.9)) give rise to an exponential decay. At that temperatures, the plateau 

also disappears and the whole relaxation process is a simply exponential decay. On the other hand, 

at temperatures approaching Tg, 𝛽 decreases with the temperature, thus producing a higher 

deviation from the exponential decay. 

Two different hypotheses have been proposed to explain the non-exponential decay. The first one, 

often called homogeneous explanation, is that the relaxation takes place non-exponentially all over 

the glass, so the non-exponential behavior is an intrinsic local property of the glass. The second 

option, referred as heterogeneous assumption, proposes that relaxation takes place exponentially 

but with different exponents at different regions. Thus, when the global relaxation time is 

measured, the spatial average of the different exponential decays would produce the stretched 

exponential. Global non-exponential behavior of metallic supercooled liquids is believed to arise 

mainly from a heterogeneous distribution of exponential relaxations59,60. 

Heterogeneous dynamics are also the source of another feature of supercooled liquids approaching 

the glass transition, namely the Stoke-Einstein violation. The Stoke-Einstein (SE) relation, provides 

a relation between diffusion coefficient D and the viscosity 𝜂: 

 

𝐷~
𝑇

𝜂
                                                                                           (2.10) 

 

This relation does not hold close to the glass transition since D can be much larger than 
𝑇

𝜂
. The 

reason for this phenomenon is that the liquid divides into fast and slow regions, often called liquid 

and solid-like regions, as it approaches the glass transition. In such scenario, diffusivity is mainly 

determined by the liquid-like region, whereas the main contribution for the viscosity comes from 

the solid-like clusters 38. Further evidence of heterogeneities in glasses was given by measurements 

of the local indentation modulus by Acoustic Atomic Force Microsocopy. Figure 2.5 depicts the map 

of the local contact resonance frequency for amorphous PdCuSi and crystalline (100)-SrTiO2. Such 

maps show that the glass exhibit a much wider distribution of local modulus than the crystal61. 
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Figure 2.5 Map of the local contact resonance frequencies of (a) PdCuSi glass and 
(b) (100)-SrTiO2 crystal61. 
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2.3 The Potential Energy Landscape 

In 1969 Goldstein proposed a topographic framework to interpret the metastable dynamics of 

glasses and supercooled liquids21. Such paradigm, that has been adopted and extended by many 

authors ever since, is commonly known as the Potential Energy Landscape (PEL)62,63. 

The Potential Energy Landscape is the potential energy function of a system composed by N 

constituents: 𝜙(𝑟1 … 𝑟𝑁), where 𝑟𝑖 includes the position, orientation and vibration of the 

constituents. For notational simplicity, the multidimensional surface 𝜙(𝑟1 … 𝑟𝑁) is often 

represented as a function of a generalized coordinate that includes all the degrees of freedom 

(𝑟1 … 𝑟𝑁). 

 

Figure 2.6 (a) Schematic illustration of a Potential Energy Landscape of a glass. (b) 
Mean energy per particle of a Lennard-Jones glass as a function of temperature 38. 

 

Figure 2.6 (a) shows an example of the PEL of a glass. The absolute minimum corresponds to the 

thermodynamic equilibrium position at temperatures lower than the melting point. Such minimum 

is therefore associated to the crystalline structure. The rest of the PEL is composed by local minima, 

known as Inherent States (IS’s). Such IS’s are separated by potential energy barriers, and they share 

a saddle point (the top of the barrier) which is referred as transient state38. 

The glass transition can be understood in terms of the ergodicity in the exploration of the PEL. 

Figure 2.6 (b) shows the potential energy per atom as a function of the temperature computed by 

means of molecular Dynamics Simulation in a Lennard-Jones glass38. For high temperatures, the 

average potential energy reaches a plateau. That implies that the kinetic energy is higher than the 

highest energy barrier in the PEL, and the system diffuses freely through the PEL. As the 

temperature is reduced some energy walls become inaccessible, and the system is confined in 

certain regions of the PEL. If the cooling rate is low enough, the system will have time to access the 

minimum corresponding to the thermodynamic equilibrium and crystallize. However, at high 

cooling rates the configuration will be trapped in a IS corresponding to a local minimum. The depth 

of such IS would be inversely proportional to the cooling rate, which in turn governs the rate of 

ergodicity reduction during quenching. As shown in Figure 2.3 (a), in terms of relaxation dynamics 



17 
 

the free diffusion regime would correspond to the simple exponential decay, whereas as soon as 

the PEL topography becomes relevant, the relaxation would result into a stretched exponential 

described by the KWW function. 

At temperatures low enough for the system to be trapped in a local minima, transitions between 

IS’s can be described by simple Transition State Theory64. According to that theory, the transition 

rate is given by the following expression: 

 

𝜙̇ = 𝜙0 exp (−
𝐸

𝐾𝐵𝑇
)                                                                                (2.11) 

 

Where 𝜙̇ represent the transition rate, 𝐸 the energy barrier and 𝐾𝐵 the Boltzmann constant. In this 

context 𝛼-processes has been associated to transitions between neighboring basins, and 𝛽-

relaxations to transitions between the fine structure (sub-basins) inside a certain basin, as depicted 

in Figure 2.7 63. Within the PEL framework, the Shear Modulus G is proportional to the second 

derivative of the potential energy with respect to the strain 
𝑑2𝜙

𝑑𝜀2  . Considering the aforementioned 

relation between shear modulus and the curvature of the PEL, a linear relationship between the 

shear modulus and energy barriers can be written as follows 22,64: 

 

𝐸 = (
8

𝜋2
) 𝛾𝑐

2𝐺𝛺                                                                                      (2.12) 

 

where 𝛾𝑐 represents the critical shear strain limit, which was shown by Samwer and Johnson to be 

proportional to (
𝑇

𝑇𝑔
)

2

3
 in metallic glasses22, and 𝛺 is the effective STZ volume.  

Given the relation between energy barriers and local shear modulus shown in Equation 2.12, 

heterogeneous mechanical properties of glasses61 manifest themselves as a wide distribution of 

energy barriers in the PEL. Recent theoretical works, demonstrate that such distribution broadens 

under stress and temperature driving 65,66. Such heterogeneities have also been associated to the 

storage of enthalpy and mechanical softening67. In this context, T. Dziuba experimentally showed 

that crystals, ultrastable glasses and normal glasses exhibit a narrowing width of their elastic 

hetereogeneities distribution. Such difference results in crystals exhibiting a narrow distribution of 

elastic properties, normal glasses a much greater dispersity, and ultrastable glasses a moderate 

dispersion in a middle point between crystals and standard glasses68. 
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Figure 2.7 Schematic section of a PEL, in which the anelastic reversible 𝛽-processes 
and the plastic irreversible 𝛼-processes are represented.63  

 

The fragility of a metallic glass is also apparent in the topology of its PEL. Strong glasses are 

characterized by Arrhenius behavior with a constant activation energy over all range of 

temperatures. In terms of the PEL, such behavior implies that the landscape of a strong glass former 

must be homogeneous, with the same energy barriers sampled at different temperatures. In 

contrast, fragile glasses with super-Arrhenius behavior exhibit activation energies that increase 

dramatically (faster than exponentially) as the temperature approaches Tg. Super-Arrhenius scaling 

translates in terms of PEL in a very heterogeneous landscape.  

Figure 2.8 illustrates the topological difference between the PEL of strong and fragile glasses.  

Strong glass formers show homogeneous landscapes and fragile systems exhibit a much 

heterogeneous topography with a richer fine structure. 

 

 

Figure 2.8 Schematic representation of the Potential Energy Landscape of a (a) 
strong and (b) fragile glass .38 

 

Transitions between IS’s can be promoted either by mechanical or thermal driving. Such transition 

can evolve into liquid-like flow if a metallic glass is subjected to mechanical stresses above it yield 

stress 𝜎𝑌, or temperatures above its glass transition Tg. In this context, Molecular Dynamics 

simulations have shown that liquid-like flow is indeed generated by a coupling of temperature and 
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stress 69,70. It can be seen in Figure 2.9 that yielding, (quantified by the viscosity) can be achieved by 

means of increasing temperature, stress or a combination of both. 

 

 

Figure 2.9 Two dimensional plot of the viscosity as a function of normalized stress 
and temperature calculated by means of molecular dynamics simulations69 

 

Experimentally, the effect of stress and temperature on the activation of irreversible plastic events 

in PdCuSi glasses was estimated by M. Schwabe et al., by means of creep-recovery experiments 71. 

It was observed that at temperatures 
T

Tg
< 0.9 both stress and temperature seem to contribute in 

a similar way to the damping, suggesting that both excitations promote the same kind of structural 

rearrangements. More recently, Yu et al., studied in detail the microscopical features of strain 

induced glass transition by means of molecular dynamics simulations 72. It was observed that in the 

case of strain-induced yielding, dynamical heterogeneities are reduced, which induces a decrease 

of the system fragility. 

Such difference between temperature and mechanical driving can be understood in the framework 

of the PEL and taking into account the scalar and vectorial character of temperature and stress 

respectively 73. Temperature effectively reduces the height of every barrier in the PEL in an isotropic 

manner. It results in an increase of the number of accessible states and therefore increases the 

ergodicity. In contrast, the effect of mechanical stress is to reduce the energy barriers along certain 

orientation and to increase them along the opposite. Hence, mechanical driving induces an 

effective tilt and deformation of the PEL. Through this process, some IS’s are destroyed and the 

resulting PEL exhibit a more homogeneous distribution of Energy barriers. Such homogenization 

effect is the underlying mechanism for the fragile-to-strong transition observed by Yu et al., in 

strain-driven yielding72. 
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2.4 Mechanical properties of metallic glasses 

2.4.1 General features and deformation modes 

Due to the absence of long range order (LRO), metallic glasses exhibit remarkable mechanical 

properties compared to their crystalline counterparts5. Among them are their high hardness, 

corrosion and wear resistance10,74, high yield strength9, and low mechanical damping, but also their 

limited ductility and thermal instability that lead to embrittlement upon ageing75. 

Figure 2.10 shows the elastic limit 𝜎𝑌 as function of the Young modulus 𝐸 for more than 1500 

metals, alloys, composites and metallic glasses. It can be seen there that metallic glasses stand out 

of the right upper edge of the property map. Metallic glasses present in average 2% of elastic strain, 

in contrast to the typical 0.2% of crystalline materials76. Vitrified metals also perform better than 

crystalline matter in terms of the resilience (
𝜎𝑌

2

𝐸
) which quantify the capacity of a given material to 

store elastic energy9. Taken together with their low damping, those features make these materials 

suitable candidates for practical use in springs, as well as for wave transmission12. 

 

Figure 2.10 Elastic limit and Young modulus for more than 1500 metals, alloys, 
composites and metallic glasses 9. 

 

On the other hand, one of the main limitations for the practical use of metallic glasses (apart from 

their production cost) is their lack of plasticity. At low temperatures, and above the yield stress 𝜎𝑌, 

metallic glasses respond to mechanical load by strain localization in narrow shear bands77,78,79.  
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Shear band initiation and arrest have been associated to the serrated flow in the plastic region, and 

eventually lead to crackling and failure80,81,79 .Many efforts have been devoted to the enhancement 

of low temperature plasticity of metallic glasses, either by combination with other phases82 alloy 

selection or mechanical treatments83. However, the achievement of fair values of ductility, 

particularly under tension remains elusive and is still one of the main drawbacks for the structural 

implementation of metallic glasses. 

The response to mechanical load of metallic glasses depends dramatically on the experimental 

conditions, temperature, stress and stress rate. Spaepen summarized for the first time the 

deformation regimes of vitrified metals in a stress-temperature map77, and C.A. Schuh et al. 

extended that map with recent results and the analysis of the strain rate in their extended review84. 

 

Figure 2.11 Stress-Temperature deformation map for amorphous materials84 
 

Figure 2.11 shows the different deformation modes as function of the normalized stress and 

temperature 
𝑇

𝑇𝑔
. At low values of stresses and temperatures the glass does not flow, and the only 

deformation that takes place is instantaneous and elastic. In the low stress and high temperature 

regime, the glass flows. At low stresses the flow is Newtonian, characterized by a linear relation 

between the strain rate and stress (𝜀̇~𝜎), whereas at high temperatures and moderate higher 

stresses the system switches to non-newtonian flow, where the dependence of 𝜀̇ on 𝜎 is no longer 

linear. Last, at high enough stresses and low temperatures, glass deformation occur via 

inhomogeneous flow by means of the shear banding phenomenon. 
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Figure 2.12 Shear rate-Temperature deformation map for amorphous materials 84 

 

Figure 2.12 illustrates the influence of the shear rate on the deformation mode. The strain rate 

selects the kind of relaxation processes that can take place, and together with the damping, 

determines the existence inertial effects. In the high temperature regime, the glass would only flow 

if it is mechanically loaded at moderate rates. Whether the flow is Newtonian or non-Newtonian 

depends also in the ratio of strain rate and temperature. Low temperatures and high rates promote 

non-newtonian flow. In contrast, high temperatures and low rates induce Newtonian flow. In the 

low temperature regime the shear rate determines the size of the serrations in the serration flow, 

which are proportional to the energy released through shear banding79.Low rates promote big 

serrations, while high rates reduce the serration size from the stress-strain curve. 
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2.4.2 Microscopic origin of plasticity on metallic glasses 

Deformation modes of crystals are understood in terms of a competition between the different 

deformation mechanisms (i.e. dislocation climb, glide, diffusional flow..)85. In contrast, all modes of 

deformation described in Figure 2.11 and Figure 2.12 for amorphous metals can be understood in 

terms of the same microscopic deformation process84. Some theories postulated that, at the 

microscopic level, plasticity takes place by diffusive jumps of individual atoms86,77. However, 

experimental87 and theoretical88,89,90 evidence suggests show that plasticity in amorphous systems 

can be better described through the Shear Transformation Zone or STZ process. The STZ operation 

was postulated by Argon in 1979 to describe plasticity in amorphous solids20. In this picture, the 

stress is accommodated by a plastic rearrangement of clusters of about 100 atoms91, often called 

soft spots or STZs, embedded in the amorphous matrix. The triggering of a STZs propagates an 

Eshelby stress field92 with quadrupolar symmetry, which induces an effective softening and 

hardening of the amorphous matrix along certain directions. Contrary to the case of dislocations in 

crystals, STZs are not structural defects, and can only be defined by it transience or triggering93. 

However, the location for the triggering of potential STZs is believed to be affected by the local 

properties of the glassy matrix. In this context, Falk recently pointed out that the local yield stress 

seems to be the best parameter for prediction of potential STZ sizes94. Figure 2.13 shows an STZ 

pattern experimentally observed in a colloidal glass87. The color code represents the non-affine 

displacement of the atoms, which is the difference between the total displacement and the 

displacement that would be expected from a purely elastic relation between the strain and stress. 

A central plastic core can be distinguished, as well as a quadrupolar shaped strain displacement 

field, in good agreement with theoretical predictions95,96. 

 

 

Figure 2.13 Shear Transformation Zone observed in a sheared colloidal glass by 
means of confocal microscopy87 

 

The triggering of STZs may take place independently in the glassy matrix or coupled with 

neighboring STZs along certain orientations. The resulting process is a consequence of the 

competition between a random distribution of potential sites in the whole volume of the glassy 

matrix and the ability of the STZs stress field to induce a soft spot in the vicinity of an already 
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triggered STZ. Such phenomenology has been numerically analyzed by E.R. Homer et al. by Monte 

Carlo Simulations25. Figure 2.14 shows a deformation-map which depicts the STZ cooperativity as a 

function of the stress and temperature. 

 

Figure 2.14 Stress-temperature map of the STZ cooperativity calculated from 
kinetic Montecarlo simulations25 

 

Figure 2.14 shows three distinct zones in the deformation map. At low stresses and temperatures, 

the glass deforms elastically, which is associated to the so-called STZs self-activation. In fact, the 

probability of the same STZs to be back-triggered upon unloading within the elastic region is 

negligible, but the elastic region is characterized by the ability of the amorphous matrix to 

accommodate stress without percolation of STZs. At low temperatures and high stresses, the STZs 

performs nearest-neighbor activation. That means that the quadrupolar interactions play a 

dominant role and the activation of the STZ is mostly determined by the location of previous ones 

and their effect in the local mechanical properties. Such cooperativity of STZs, which may take place 

in the form of avalanches of STZs30 is believed to be in the origin of the strain localization and shear 

banding. Finally, the homogeneous flow that takes place at high temperatures is generated by 

independent activation of STZs across the whole volume of the material or by coupling through the 

whole system. In such scenario STZs triggering can be modelled as an independent process. 

However, the way in which the dynamics among STZs take place remains unclear, and there is hope 

that the statistical analysis of the intermittent deformation signal generated by the avalanches may 

shed some light in this problem. The field of the avalanche dynamics and its application to the study 

of plasticity in amorphous matter is introduced in section 2.6 
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2.5 Magnetic properties of metallic glasses 

2.5.1 Structural disorder and magnetic order 

Magnetism in the solid state is one of the most studied topics in the field of physics14. Therefore, 

there is a huge variety of theories and models to understand the wide range of phenomenology in 

this matter14,97,98. However, from a simplified point of view, there are two main approaches to 

analyze magnetic order. Magnetism could be modelled by the presence of localized magnetic 

moments which interact through exchange and dipolar interaction, or could be thought of as the 

exchange splitting of delocalized spin polarized electronic wave functions14. The former approach 

is suitable to understand magnetism coming from unpaired 4f electrons, which is the case for rare 

earth alloys. In such situation, the 4f shell is highly localized and well shielded by outer electrons, 

thus yielding to vanishing overlap integrals with neighbor atoms. The latter approach is best suited 

for the magnetism of transition metals (TM), like Fe, Co, Ni, whose features arise from highly 

delocalized d-orbitals, which overlap with other bands, either from the same atom or from other 

ligands. In this case, according to the Stoner Criterion, the wave function becomes spin polarized if 

the following condition is fulfilled: 

 

𝐼𝐷(𝐸𝐹) > 0                                                                                (2.12) 

 

Where 𝐼 is the stoner exchange parameter and 𝐷(𝐸𝐹) represents the density of states at the Fermi 

level.  

The experiments on magnetic samples through this work were performed in Co and Fe rich alloys. 

Therefore, in the following only magnetism coming from delocalized 3d bans is considered. 

The wave function of the TM is partially mixed due to interaction with the ligands present in the 

alloy. Such mixing depends on the overlap integrals which in turn depend on the interatomic 

distance, among other parameters. In addition, the environment of a given atom produces an 

electrostatic field that also interacts with the magnetic orbital through spin orbit interaction. Due 

to the lattice symmetry, in crystalline materials such electrostatic field is homogeneous and known 

as crystalline field, which is the source of the global magneto-crystalline anisotropy14. 

The main consequence of the amorphous state in TM-based metallic glasses is that both the crystal 

field and the overlap integrals are not constant anymore but rather depend of the local 

environment of each site. The distribution of overlap integrals give rise to a distribution of different 

occupation of the magnetic orbitals at different sites. Besides, the crystal field is substituted by local 

anisotropy fields with a distribution of preferred directions that varies from site to site according to 

the local environment. In the case of 3d-glasses the exchange correlation length is larger than the 

characteristic length of the local anisotropy, so the latter is averaged out99,100.  

The lack of magneto-crystalline anisotropy, and the absence of structural defects or grain 

boundaries in which magnetic walls may be pinned, is the cause of the excellent soft behavior of 
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3d based magnetic metallic glasses. These two factors favor their easy magnetization, either by wall 

motion or rotation processes.  

A final remark for this subsection is that in words of O’Handley: “magnetism, even in 3d alloys, is 

predominantly a local phenomenon determined by the immediate environment about potentially 

magnetic atoms”101. The importance of the local environment is therefore a common characteristic 

of plasticity and magnetism in metallic glasses. 

2.5.2 Magnetostriction: Local origin and macroscopic effect 

The term magnetostriction was defined as the change in dimensions of a magnetic material when 

subjected to an external bias field102.Such coupling between the magnetic and elastic properties of 

the solid arises from the dependence of the anisotropy energy on the lattice strain. A common 

parameter to quantify the magentostriction of a material is the saturation magnetostriction 

constant 𝜆𝑠, which is defined as follows: 

 

𝜆𝑠 =
𝐿𝑠 − 𝐿𝐷

𝐿𝐷
                                                                                   (2.13) 

 

where 𝐿𝑆 and 𝐿𝐷 represent the length of the sample in the magnetically saturated and 

demagnetized state respectively. 𝜆𝑠 ranges from -10 to +30 x10−6 101 

Another parameter to characterize magnetoelastic effects is the so called magnetoelastic coupling 

coefficient 𝐾2, which represents the transference ratio between the magnetic and mechanical 

energy, and is such that 𝐾2 < 1103. A review of different experimental techniques to measure 𝐾2 is 

given in 104, which includes resonance and Young modulus measurements. 

There are two main microscopic sources of magnetostriction, which are usually referred as one-ion, 

or local field contribution and two-ion or anisotropic exchange contribution105,106,99. The single ion 

component of the magnetostriction is associated to the deformation of the local units or short 

range order around the magnetic atom106 .The coupling is originated by the spin orbit interaction, 

which couples the magnetization direction to the distortion of the surrounding local structure 

through the electron orbitals. The two-ion component is associated to the rigid rotation of these 

local units, which can reduce their energy by their reorientation which respect to the direction of 

magnetization107. According to O’Handley the one-ion term should be proportional to the third 

power of the saturation magnetization, whereas the two-ion term should follow a quadratic 

relation with the saturation magnetization 101. Therefore, the total magnetostriction can be written 

 

𝜆𝑆(𝑇) = 𝛼[𝑀𝑆(𝑇)]3 + 𝛽[𝑀𝑆(𝑇)]2                                                                (2.14) 

 

where 𝛼, 𝛽 are proportionality constants and 𝑀𝑆 is the saturation magnetization. Experiments on 

Fe-rich alloys suggest that the main contribution of magnetostriction in that case is the one-ion 

mechanism. In Co-rich alloys the experimental results can only be explained by a combination of 
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both mechanisms as depicted in Eq (2.14). Competition of both mechanisms is the origin of the 

vanishing magnetostriction in certain alloys of Fe and Co108,109. Figure 2.15 shows a triangular map, 

which displays the magnetostriction 𝜆𝑠 for for Fe,Co and Ni alloys of different composition. It can 

be seen that Fe-rich alloys exhibit high and positive 𝜆𝑠, whereas Co-rich composition show low 

negative 𝜆𝑠. The solid line indicates the composition of vanishing magnetostriction. 

 

 

Figure 2.15 Triangular Map of magnetostriction values as a function of the element 
composition for Fe,Co and Ni alloy.The solid line indicates the composition with 
vanishing magnetostriction 14 

 

One of the main macroscopic effects of magnetostriction is the so-called 𝛥𝐸-effect14,103. 𝛥𝐸-effect 

is the difference between the young modulus measured with and without an external magnetic 

bias field, and is represented in a normalized form, as follows  

 

𝛥𝐸

𝐸
=

𝐸 − 𝐸𝐻

𝐸
                                                                           (2.15) 

 

Where 𝐸, 𝐸𝐻 represent the young modulus measured with and without an applied field. In some 

metallic glasses 𝛥𝐸 can reach values 𝛥𝐸~0.9 

 The origin of the 𝛥𝐸-effect is the anisotropy induced by the magnetoelastic coupling. Due to this 

anisotropy, an extra strain 𝜆𝑆 is exerted by the magnetic domains along their direction of 

magnetization. If those domains rotate towards the direction of deformation during the 

deformation process, the sample exhibits and extra strain 𝜆𝑆 on top of the normal elastic strain 
𝜎

𝐸
. 

Such extra strain is experimentally measured as a reduction of the Young modulus, which is the 𝛥𝐸-

effect110. Livingston showed analytically that the magnetomechanical coupling, and therefore the 
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𝛥𝐸-effect is maximized when the applied field equals the anisotropy field of the magnetostrictive 

sample 103. 

Figure (2.16) shows the 𝛥𝐸-effect in a Fe40Ni40P14B6 glass with two different domain patterns, 

parallel (𝐸∥)  and perpendicular (𝐸⊥)  to the ribbon longitudinal axes. In both cases the mechanical 

stress and magnetic field are applied along the longitudinal axes. It can be seen that a significant 

reduction of the Young modulus (𝛥𝐸-effect) only take place in the 𝑬⊥ case, since there is a rotation 

of the domains towards the direction of deformation. No further modulus reduction take place for 

high field intensities since the magnetization is saturated. 

 

Figure 2.16 Young modulus as a function of magnetic field intensity for a metallic 
glass with magnetic domains parallel (𝑬∥) and perpendicular (𝑬⊥) to the applied 
bias field14 

 

Magnetostriction is a key parameter for the industrial application of magnetic metallic glasses. 

Materials with vanishing magnetostriction are suitable for applications in which their soft magnetic 

behavior need to remain insensitive to mechanical stresses, as is the case of transformers. On the 

other hand, magnetostrictive glasses are of great use for sensing applications17,18,19 .The coupling 

between the mechanical and magnetic properties allows the wireless operation of metallic glasses-

based devices, which have been implemented in density111,viscosity112,stress 113and biological 
114sensors. 
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2.6 Crackling noise, avalanche dynamics and 

intermittency 

A system is said to crackle when it responds to a smooth load with intermittent discrete events of 

a wide distribution of sizes 33,34. Many physical systems in nature exhibit crackling behavior, 

including Earth tectonic plate dynamics115( whose manifestation are the feared earthquakes), snow 
116, or sand117 avalanches, friction in surfaces118, domain wall motion in magnetic materials119,120 

(known as Barkhausen Noise), materials undergoing martensitic transformations121, 

superconductor dynamics122 and turbulence in plasma flow123 among others. 

Strikingly, phenomenology associated to crackling noise has also been observed in many non-

physical systems, as diverse as fluctuations in stock markets124, decision making problems125, and 

neuronal networks126. This kind of intermittent behavior is then generally referred as avalanche 

dynamics. The wide range of avalanching systems suggest that those dynamics should not depend 

on the microscopic details but rather in global features as the topology and interaction among the 

units of the process under consideration33 . 

Avalanche dynamics were initially associated to critical points in phase transitions. In this context, 

a paradigmatic model is the Random Field Ising Model (RFIM)127. In a simplified version of that 

model, a magnetic sample is represented as a lattice of domains, with a two state spin variable 𝑆𝑖 =

−1, +1 and the force on each domain is given by the following expression: 

 

𝐹𝑖 = 𝐻(𝑡) + ∑ 𝐽𝑆𝑗

𝑗

+  ℎ𝑖(𝑅)                                                                   (2.16) 

 

Where 𝐻(𝑡) represents the external field, J the exchange coupling with 𝑗 neighboring spins and ℎ𝑖 

is a local anisotropy field which represents randomness and other kind of disorder modulated by 

the parameter R. Numerical simulation of RFIM shows that if 
𝐽

𝑅
>>1 the system responds to a smooth 

driving force 𝐻(𝑡) by a collective flipping of many spins. As a result, the system responds to a 

smooth driving with big changes of magnetization (events) only. On the other hand, if 
𝐽

𝑅
≪ 1 the 

randomness suppresses interactions and all spins flip independently. As a consequence, the system 

responds to the driving force 𝐻(𝑡) with many small events. Avalanches with a wide range of values 

take only place for a certain value of disorder 𝑅𝐶, which defines a critical point.  

RFIM and other theories provide a model for the avalanche phenomenology but do not explain why 

do avalanches take place in nature. If it would be required to bring a system to a critical point to 

observe this behavior it should be extremely difficult to obtain experimental confirmation of that 

behavior. However there is multiple experimental evidence of avalanching systems33. To address 

this issue, Bak Tang and Wiesenfeld proposed the idea of the Self-Organized-Criticality (SOC)128,129. 

According to their theory, in many circumstances real systems tend to self-organize themselves 

towards a critical point. Therefore, it is not necessary to fine tune experiments to observe this 

behavior. However, the ultimate reason for this phenomenon is still unknown, and may depend on 
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the specific system under study. In this context, recent results in avalanche dynamics in brain tissue, 

suggest that the assumption of SOC satisfactorily agrees with optimal performance of information 

transmission and time reaction of the brain 130,131. 
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2.7 Statistical analysis of avalanches 

The study of avalanching systems is performed by means of the statistical analysis of the 

avalanches. Generally speaking, an intermittent signal can be divided in avalanches and inter-event 

times. Relevant avalanche parameters are their size, energy and duration. The wide distribution of 

events is attributed to self-similarity which is associated to a power law probability distribution of 

several avalanche parameters. In case of high resolution experiments or simulations, avalanche 

shapes and velocity profiles can be analyzed, which is believed to provide deeper insights about the 

underlying mechanisms132. Figure 2.17 shows the probability distribution of Barkhausen Noise 

avalanches sizes produced by amorphous and crystallized samples under different conditions. The 

data scale with two different exponents, which are 𝜏1 = −1.5 (solid line), and 𝜏1 = −1.27 (dashed 

line) that the author associates to different universality classes.133 

 

 

Figure 2.17 Probability distribution of avalanche sizes in Barkhausen Noise 
experiments for amorphous and crystalline samples 133. 

 

Avalanching systems can be classified in different universality classes according to their statistical 

features, which are given by the exponents of the power law distribution among other quantities 
24. The fact that different systems display the same avalanche statistical features suggests that they 

share dynamical properties, independently of their microscopic details. One example of universality 

class is the Mean Field (MF) approximation, which assumes that interactions between system 

constituents can be modelled as the interaction between one of those constituents and an effective 

field134,135. The fact that Earthquakes produce avalanches with analogous statistics as porous 

samples under compression suggests that, despite the remarkable difference in length scale, both 

dynamical systems share the same universality class136. Table 2.1 provides an overview of the 

avalanche exponents expected from different models137,138. 
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Table 2.1 (a) Scaling exponents for different universality classes. (b) Scaling exponents as 
function of damping 𝚪 

 
 

Perfect power laws predicted by avalanche dynamics theory can be deformed or modified due to 

several reasons. For instance, inertial effects have been shown to produce a deformation of the 

power law distribution of avalanche sizes and the generation of characteristic hump 139,140,141. 

Besides, as shown in stick-slip simulations, the distribution of avalanche sizes departs from a clean 

power law shape as the system is driven from a subcritical to a supercritical state changing the 

coupling strength parameter142 . Figure 2.18 (a) shows the effect of the cooperativity factor 𝛼 on 

the probability distribution of avalanche sizes in a stick-slip model simulation. A perfect power law 

arises for the critical value of cooperativity  𝛼 = 𝛼𝑐 = 0.99. such power law is truncated by a cut-

off for subcritical cooperativity  𝛼 < 𝛼𝑐, and the probability of small avalanches is reduced in the 

supercritical state  𝛼 > 𝛼𝑐
142. Figure 2.18 (b) shows that a characteristic hump appears as a 

consequence of inertia. Inertial effects are controlled by the damping: underdamped systems 

exhibit high inertial effects, whereas in overdamped systems the inertia is suppressed. The events 

can be divided in small power law distributed avalanches (light yellow) and big inertial avalanches 

with a characteristic length scale (dark yellow)139. 
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Figure 2.18 (a) Effect of the cooperativity parameter 𝜶 on the avalanche size 
probability distribution in a stick-slip model 142. (b) Inertial effects on the probability 
distribution of avalanche sizes calculated from an elasto-plastic model. The events 
are divided in small power law distributed avalanches (light yellow) and big inertial 
avalanches with a characteristic length scale139 

 

A change in the underlying dynamics that govern an avalanching system has an impact on the 

statistical features of the avalanches, which reflects in a crossover on the scaling exponents. A 

crossover can take place due to a change in the experimental conditions143,138 ,or due to a transition 

in the underlying mechanism that govern the process under study144.  

Finally, as pointed out in a recent work from E.K.H Salje et al.145, the measured response of a 

dynamical system can be the result of a superimposition of several dynamical process, and may 

separately follow power laws with different exponents. In that case, the resulting signal may display 

an exotic exponent which would be a result of the mixing of each of the underlying processes. 
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2.8 Crackling Noise in metallic glasses 

Avalanche dynamics and crackling noise have been studied extensively in the context of 

deformation of materials, both amorphous and crystalline. The first experiments of Crackling Noise 

produced during deformation, were done by Becker et al., in sheared Zinc crystals in 1932146.Back 

then, the authors already associated it with “dislocation avalanches”. More recently J. Weiss 

measured the crackling of different crystals with Acoustic Emission experiments, and differentiated 

between wild (crackling) noise and mild (gaussian) noise147,148. A higher amount of crackling noise 

was observed in crystals with FCC lattice compared to HCP structures .That difference was 

associated to long-range interactions and anisotropic glide mechanism which is favoured in HCP 

structures. In addition the effect of polycrystallinity and grain size was analyzed and its impact 

resulted to be more complex than simple introduction of a finite size effect149,150. 

In the context of amorphous materials, the most obvious intermittent behavior can be found in the 

serrated flow which is observed when a material is sheared at stresses above the yield stress 𝜎 >

𝜎𝑌 80.Some experiments have shown avalanche distribution with exponents compatible with the 

mean field universality class28,151, in agreement with a Mean Field plasticity model31. On the other 

hand, other results obtained by Molecular Dynamics simulations152, elasto-plastic24, and fully 

tensorial models153, yield critical exponents incompatible with the mean field approach. However, 

recent results obtained from elasto-plastic models show that the MF exponents are recovered in 

the limit of high strain rates154. 

A physical interpretation for the failure of Mean Field models is that it assumes a positively definite 

elastic kernel, which is not the case for the Eshelby quadrupolar propagator. A STZ favors the trigger 

of other STZ´s along certain directions but hampers it along others. Such asymmetry or anisotropy 

is at odds with a mean field approach. Recent results in molecular dynamic simulations show that 

small avalanches take also place in the so-called elastic region of the stress-strain curve152. Those 

avalanches share statistical features with the ones that take place in the plastic region. 

Avalanche dynamics concepts have also been applied to the analysis of creep deformation of a 

Pd77.5Cu6Si16.5 metallic glass at high temperatures30. Waiting times between resolvable events 

were analyzed and a crossover was observed in their probability distribution. That crossover was 

interpreted as a signature of a transition from a regime of 3D activation of STZ´s characterized by 

an exponent 𝜏 = 1.4 ± 0.1 to a correlated nano-shear bands characterized by an exponent 𝜏 =

0.8 ± 0.1. Figure (2.19) shows the distribution of waiting times split in two regimes with different 

slopes. 
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Figure 2.19 Waiting time probability distribution measured during a creep test on 
Pd77.5Cu6Si16.5 at 𝜎 = 15 MPa and T= 593 K. The distribution is split into two regimes with 
different slopes, originating from the first 100 min of the creep curve and the subsequent 
part. 

 

The magnetoelastic coupling has been shown to have an influence on the avalanche behavior of 

metallic glasses. Numerical simulation have shown that the mechanical and magnetic instabilities 

take place simultaneously in magnetic metallic glasses155. Also, measurements of Barkhausen noise 

under different mechanical stresses showed that magnetic avalanche sizes are enhanced with 

applied stresses. That effect can be observed in Figure 2.20 (a) by the increase of the voltage in the 

pick-up coil as the applied stress increases and in Figure 2.20 (b) by a shift towards higher values of 

the cut-off of the avalanche size power law distribution156.  

 

 

Figure 2.20 (a) Barkhausen noise signal of a magnetic metallic glass for different 
values of mechanical stress. (b) Probability distribution of Avalanche size (Power of 
the voltage peaks) for different values of applied stress. The inset shows how cut-
off shifts towards higher avalanche sizes as the mechanical stress increases.156 
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3 Experimental techniques 

In this chapter the different experimental techniques used to produce the results discussed 

throughout this thesis are presented. Each of the subsections introduce briefly the working 

principle of each of the techniques, as well as the specific features of the used set-up. Additionally, 

an example is included of an experimental result acquired with the described set-up. Special 

emphasis was placed in the description of the Dynamic Mechanical Analyzer (DMA) since it was the 

main tool for the production of the results of this thesis. In particular, it is described in detail the 

modification that was implemented in such device in order to apply a magnetic field during the 

mechanical tests. 

 

3.1 Metallic glass preparation 

The experiments described in this work were performed on several metallic glasses of different 

compositions. The study of the avalanches in non-magnetic glasses was carried out in Pd-rich 

ribbons of composition Pd77.5Cu6Si16.5, that were prepared by the melt-spinning technique. Two 

different alloys were used for the experiments on magnetic samples: commercial Fe-rich 2605SA1 

alloy with magnetostriction 𝜆𝑆 = 27 ×  10−6, provided by Tobias Herold from Metglas Inc., and a 

Co-rich alloy with nominal composition Fe2Co73Si10B15 and vanishing magnetostriction, prepared 

in the Laboratory of Applied Phyisics in Iaçi by N.Lupu and co-workers. In the following of this sub-

section, the fabrication details of the Pd77.5Cu6Si16.5 samples are summarized. 

The first step for the melt-spinning preparation is to gather the right amount of crystalline 

components to lead to the nominal composition Pd77.5Cu6Si16.5 in atomic percentage. To do that, 

the necessary weight of each of the elements was calculated, so the atomic proportion was kept to 

77.5% Pd, 6% Cu 16.5%Si, for a total weight of approximately 5 g. The required weights for each of 

the components were estimated making use to the atomic weight of each of the elements and 

through the following formula: 
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𝑃𝑖
𝑤 =

𝑃𝑖
𝑎𝑡𝑊𝑖

∑ 𝑃𝑗
𝑎𝑡𝑊𝑗𝑗

                                                                                 (3.1) 

 

Where 𝑃𝑖
𝑎𝑡 stands for the atomic percentage of the element (𝑖: Pd, Cu, Si), 𝑊𝑖 represents the 

atomic weight of each of the elements(𝑊𝑃𝑑 = 106.4 𝑔/𝑚𝑜𝑙 𝑊𝐶𝑢 = 63.55 𝑔/𝑚𝑜𝑙 𝑊𝑆𝑖 = 28.09 𝑔/

𝑚𝑜𝑙), and 𝑃𝑖
𝑤 the weight percentage. Substituting the values of 𝑊𝑗 and 𝑃𝑖

𝑎𝑡 in the equation above, 

one obtains: 

𝑃𝑃𝑑
𝑊 = 90% 𝑃𝐶𝑢

𝑊 = 4.9% 𝑃𝑆𝑖
𝑊 = 5.1 % 

which leads for a total amount of 5 g of sample to 4.5 g of 𝑃𝑑, 0.245 g of 𝐶𝑢 and 0.255 g of 𝑆𝑖. 

After collecting the right amount of each component, the next step is to prepare a crystalline pre-

alloy. It was done making use of an arc-melter which was previously fluxed and purged six times 

with Ar and then kept at a 600 mbar Ar atmosphere. Even in an Ar-rich atmosphere, the pre-alloy 

might still undergo some oxidation due to the high temperatures achieved during arc-melting. 

Therefore, as an extra prevention, a Zr sample was also introduced in the arc-melter. Since Zr has a 

high oxidation tendency, it acts as sinkhole or trap for the oxygen molecules that might still be in 

the chamber, preventing the oxidation of the actual sample.  

Subsequently of the arc-melting, the resulting melt is introduced in a melt-spinner5, whose chamber 

was previously fluxed six times with Ar and afterwards set to an Ar atmosphere of 400 mbar in the 

chamber and 700 mbar in the pressure tubes. The sample tube’s nozzle has 2mm of diameter and 

the Cooper wheel rotation frequency was set to 35 Hz. The sample tube is wrapped by a coil that 

acts as induction furnace, which reaches a temperature of 1315 °C before shooting. The shooting 

of the melt from the sample holder to the wheel is achieved by releasing pressure from the tubes, 

which presses the melt across the nozzle and fires it against the rotating wheel. When the melt 

impacts the rotating wheel, it gets quenched in a ribbon shape and gets thrown towards a 4 m tube 

which is attached to the extreme of the melt-spinner. This tube provides some flying distance for 

the quenched melt, which reduces the bents and wrinkles in the final ribbon.  
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3.2 Structural characterization 

The structure of the samples was studied by means of X-ray diffraction (XRD) experiments. XRD 

working principle is based on the interaction of an incident radiation and the crystallographic planes 

of a given material: If a crystalline material is illuminated by X-ray radiation, the lattice 

crystallographic planes will produce destructive and constructive interference of the diffracted 

wave. The condition for the constructive interference wave is given by Bragg´s Law 157: 

 

2𝑑 sin𝜃 = 𝑛𝜆                                                                                   (3.2) 

 

where d is the interatomic distance of a given family of planes, 𝜃 the angle of diffraction, n is a 

positive integer and 𝜆 is the wavelength of the incident radiation. 

A crystalline material, which is characterized by structural long range order, produces very sharp 

peaks on the XRD patterns. Those sharp peaks are a consequence of the evident structural 

anisotropy of a crystal and the existence of family of planes that act as scattering centers. On the 

other hand, an amorphous material is characterized by the absence of long range order. This implies 

that is not possible to define crystallographic planes, and therefore a XRD spectrum of an 

amorphous sample do not show sharp peaks, but instead it displays the so-called amorphous halo 

which is related to the Short Range Order (SRO) which is still present in the amorphous state.  

In the context of the present work, the main objective with the structural analysis is to make sure 

that the samples are amorphous. This test is especially important for the self-prepared 

Pd77.5Cu6Si16.5 samples, but it is also crucial for the samples that were mechanically tested at high 

temperatures, in order to check if the sample crystallized during the test. 

Another important aspect that must be taken into account to perform XRD experiments is the 

wavelength or Energy of the incident radiation. One first point that must be taken care of, is that 

the energy should be high enough in order to produce radiation with wavelength comparable to 

the interatomic distance (on the order of Angstroms) to have enough resolution to resolve the 

structure. A second important aspect is that the incident energy should not match the energy of an 

electronic transition of an element present in the material under analysis. If that were the case, the 

incident radiation would be absorbed by such element and it will be later released in the form of 

fluorescence emission. The consequence of that process would be an extremely low signal to noise 

ratio in the XRD spectra. 

The Pd77.5Cu6Si16.5 samples were structurally analyzed making use of a Siemens D8 

Diffractometer. Such device is equipped with a Cu 𝐾 𝛼 radiation source with wavelength 𝜆 =

1.574 Å. The energy of the Cu 𝐾 𝛼 radiation (8046 eV) is very close to the energy of a K-transition 

in iron (7112 eV). Therefore, given to the arguments given above, this source is not suitable for the 

study of the magnetic samples, due to the iron content of both alloys. Consequently, In order to 

measure the XRD spectra of the magnetic samples a Mo X-ray source was installed in a Siemens 

D5000 Diffractometer. Such Mo source produces X-ray with 𝐾 𝛼=0.71073 Å, and allows to measure 

the X-ray spectra of the magnetic alloys. Figure 3.1 shows two examples of diffraction spectra 

measured with the Siemenes D8 equiped with a Cu 𝐾𝛼 source and the Siemenes D5000 equiped 
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with a Mo 𝐾𝛼 source respectively. None of the spectrum show sharp peaks, which are characteristic 

of crystalline phase. Instead, an amorphous halo can be appreciated, and in the case of the Fe-rich 

alloy a second peak can be seen which is related to the medium range order and has been 

connected with the presence of structures of icosahedral clusters 158. 

 

 

Figure 3.1 (a) XRD spectra of As-cast Pd77.5Cu6Si16.5 measured with 𝐶𝑢 𝐾𝛼 
radiation. (b) XRD spectra of As-cast 2605SA1 measured with a 𝑀𝑜 𝐾𝛼 source. 
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3.3 Thermal characterization 

The thermal properties of the metallic glasses such as glass transition temperature Tg or 

crystallization temperature TX were measured by means of a power compensated Differential 

Scanning Calorimeter DSC-7 from Perkin Elmer. The DSC test measures the amount of heat required 

to increase the temperature of a sample and a reference (in our case we used an empty pan) as a 

function of temperature. The actual measured quantity with this technique is the difference 

between the heat flow between the sample and reference. This heat flow is sensitive to structural 

rearrangements or relaxation processes, and can be used to experimentally probe Tg and TX. 

Prior to any measurement the DSC must be calibrated. This is done by running two temperature 

scans on highly pure In and Zn samples respectively, whose melting temperatures and enthalpy of 

fusion are known. After performing both runs on the In and Zn the experimental values for the 

melting temperature of Zn TZn
m , melting temperature of In TIn

m and the entalphy of fusion of Indium 

∆HIn, are typed in the calibration wizard so the apparatus corrects it measured values to adjust 

them to the theoretical ones. It is important to calibrate the DSC using the same temperature rate 

as the one that will be used for the subsequent measurement, since the calibration parameters are 

temperature-rate dependent. Once the machine is calibrated, the actual measurement can be 

started. It consists in a temperature ramp at a certain heating rate Ṫ starting from room 

temperature up to a certain temperature Tf such as Tf>TX, followed by a cooling ramp back to room 

temperature and finished by a second ramp at the same 𝑇̇ until Tf, as is depicted schematically in 

Figure 3.2 (a). Given that in the moment of the third ramp the sample should be already crystallized, 

it is used as baseline, that subtracted to the first ramp, leads the typical DSC signal in which Tg and 

TX can be clearly identified. Figure 3.2 (b) shows a an example of DSC measurement for a 

Pd77.5Cu6Si16.5 ribbon, in which the crystallization temperature TX can be measured from the 

exothermic peak, and the glass transition temperature Tg can be estimated from the hump prior to 

the crystallization minimum. 

 

Figure 3.2 (a) Schematic representation of a typical DSC protocol. (b) Example of a 
DSC measurement carried on an as-cast Pd77.5Cu6Si16.5 measured at heating rates 
of 20 K/min. Tg and TX can be estimated from the heat flow peak and sharp 

minimum respectively. 
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3.4 Magnetic characterization  

The Fe based 2605SA1 and the Fe2Co73Si10B15 samples were magnetically characterized 

measuring their hysteresis loops using a Physical Property Measuring System (PPMS) by Quantum 

Design set-up with the Vibrating Sample Magnetometer (VSM) option. The VSM operation is based 

in the Faraday induction law. The sample is oscillated by means of a linear motor near a pick-up 

coil, and the induced voltage is measured synchronously159. A hysteresis loop can be measured by 

sweeping the DC magnetic field applied to the sample, and measuring the induced voltage, which 

is proportional to the magnetization of the sample. In addition, the VSM sample holder can be 

equipped with the oven option, which allows to increase the sample temperature until 500 °C. This 

option is useful to measure the Curie temperature 𝑇𝐶  of the magnetic samples. Figure 3.3(a) shows 

a plane of the main components of the PPMS in the VSM operation mode. Figure 3.4 displays an 

example of an hysteresis curve and M(T) curves measured by VSM. 

 

 

Figure 3.3 Main components of the PPMS equipped with the VSM option from 
Quantum Design: Linear motor (top) and coil set (bottom) 159. 
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Figure 3.4 (a) Hysteresis loop measured along the width direction of 2605𝑆𝐴1 
ribbon. (b) M(T) vs T curve of the same ribbon measured with a magnetic field of 
300 Oe. 

 

Figure 3.4 (a) shows an example of hysteresis loop. Such measurement allows to measure magnetic 

properties such as the coercitive field, saturation magnetization, anisotropy field, magnetic 

remanence and susceptibility. Figure 3.4 (b) displays a Magnetisation vs Temperature curve, which 

allows to estimate the Curie temperature TC, as the temperature in which the magnetization 

vanishes. 

 

  



44 
 

3.5 Dynamic mechanical analysis (DMA) 

The Dynamic mechanical Analysis (DMA) is a technique to investigate the mechanical properties of 

materials, typically viscoelastic behavior of polymers and glasses. The historical precursor of the 

DMA can be found in the first attempts to study elasticity by means of an oscillatory experiments 

made by Poynting in 1909 160. However, commercial instruments were not available in the market 

until the 1950´s, in which the Weissenberg Rheogoniometer was developed 161. Although it use was 

initially constrained to research, DMA has become a standard technique that can be commonly 

found in analytical laboratories. A DMA allows to stablish a precise Force (either static or dynamic) 

and temperature on a given sample and to read out accurately the displacement or strain exerted 

on the sample. 

All the mechanical tests in this work were performed making use of a Dynamic Mechanical Analyzer 

from Perkin Elmer, model DMA-7. A picture of the set-up is shown in Figure 3.5 (a). The analyzer 

sits on top of an anti-vibration table and is housed in a MBRAUN atmosphere controlled glovebox 

which is connected to a LEYBOLD TRIVAC B vacuum pump and to a 𝑁2 source. The purpose of the 

glovebox is to allow to perform the experiments in a 𝑁2-rich environment, and avoid oxidation of 

the samples. The pump is programmed to keep to pressure values between 2.5 and 4.5 mbar. The 

pressure is only reduced when the samples are installed or removed, in order to facilitate the 

operation inside the glovebox. During the experiments, the pump is disconnected to diminish the 

vibrations and a glass safety valve is opened instead. This valve is designed to only allow the gas to 

come out of the glovebox, and allows to release possible overpressure in the chamber during the 

experiments. The safety valve is shown in the inset of Figure 3.5 (a). The main chamber of the 

glovebox, where the DMA sits, is accessed through a floodgate. Every sample or tool that needs to 

be brought to the main chamber, enters through this floodgate. The floodgate is fluxed and pumped 

4 times with 𝑁2 in order to eliminate the oxygen before any item is brought inside the main 

chamber. Figure 3.5 (b) shows a sketch of the DMA-glovebox set-up. 
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Figure 3.5 (a) Picture of the DMA and glovebox set up in the Mechanical Analysis 
Laboratory of the 1st Institute of Physics in Göttingen. (b) Sketch of the different 
components of the glovebox-DMA set-up. 

 

The DMA-7 allows to establish a Force on the range from 0-1000 mN, with a resolution of 0.1 mN 

and with a frequency in the range 0-100 Hz. The temperature can be increased until 550 °C with a 

resolution of 0.1 °C. The main limitation of the measurements is the sample displacement 

resolution, which is 15 nm and determines the analysis of the data. The following subsections focus 

on the description of the DMA operation principle, calibration procedures, and the different 

experimental protocols used through this work. 
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3.5.1 DMA operation 

The DMA consists in four main components, all of them aligned along the device´s vertical axis: The 

core rod with the measuring system, a displacement detector based in a Linear Variable Differential 

Transformer (LVDT), a linear motor and a furnace. Figure 3.6 (a) shows an overall scheme of the 

device. 

All the experiments described in this work were performed in tensile geometry on ribbon shaped 

samples. In such set-up, a quarz probe whose bottom edge is finished in a double-hooked shape is 

assembled to the bottom of the core rod. Additionally, a hollow cylindrical piece surrounds the 

quarz probe. Both the quarz probe and the bottom of the hollow cylinder are built with holes that 

fit in the sample clamps. Previously, the ribbon was attached to a couple of clamps on an aluminum 

mold that allows to make sure that the system clamp-sample-clamp stays aligned. Both clamps are 

attached to the hook of the cylinder and to the hollow tube respectively. Once the sample is 

mounted on the rod, the furnace must be moved upwards so the sample sits surrounded by the 

furnace during the experiment. A thermocouple is attached to the inner part of the hollow tube in 

order to measure and control the temperature of the sample. A scheme of the sample housing in 

tensile device is shown in Figure 3.6 (c). 

One of the key components of a DMA is the displacement measurement system, whose accuracy 

limits the spatial resolution of the apparatus. The DMA-7 uses a Linear Variable Differential 

Transformer LVDT to measure small displacements. Figure 3.6 (b) provides a schematic view of the 

LVDT set-up. The LVDT consists in a set of three coils wrapped around a common axis, which in this 

case is the movable vertical core rod, and it working principle is based on the Faraday induction and 

Ampere circuital laws. In the initial configuration, the primary coil sits symmetrically around a piece 

of the rod covered by a magnetically permeable material. The primary coil is feed by an AC current 

which, following Ampere´s law, creates a magnetic flux along the core axis which is enhanced 

further due to the magnetically permeable piece. That magnetic flux will induce, due to Faraday´s 

Induction law, an electromotive force on both secondary coils giving rise to measurable voltages 𝑉1 

and 𝑉2 in both coils respectively. In the initial configuration, in which the primary coil sits exactly 

centered on the magnetic piece, the electromotive force induced in both coils is, for symmetry 

reasons, exactly the same. However, if the central rod moves, and therefore the magnetic piece, 

such symmetry will be broken and the induced voltage on both secondary coils will be different. 

Knowing the characteristics of the coils and magnet, the displacement of the rod can be 

backtracked from the voltage difference in both coils. Finally, since the sample is attached to the 

central rod, any displacement of the rod is associated to sample deformation.  

Lastly, the DMA makes use of a linear motor to apply the force, and a ceramic furnace to bring the 

sample into the desired temperature. The oven is set around the sample at the bottom of the DMA 

structure, and it is surrounded by a cooling block with a fluid flow in order to keep the heat flow 

constrained in the sample´s housing area. 
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Figure 3.6 (a) Cross-section of the Dynamic Mechanical Analyzer and it main 
components. (b) Sketch of the LVDT. (c) Illustration of the DMA tensile set-up. 
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3.5.2 DMA calibration 

In order to assure the accuracy of the measurements is it of foremost importance that the DMA is 

properly calibrated. A full calibration is recommended to be done once a year and every time that 

any component is changed. The calibration is done through a calibration wizard that guides the user 

through several steps that must be done in order. The whole DMA calibration procedure is 

summarized in the following paragraph, a more detailed version of the calibration protocol can be 

found in the official user manual 162: 

1. Internal friction calibration: This must be done before starting the calibration wizard. It 

measures the friction of the inner core, which may increase due to a misalignment of the 

machine. It must be kept to values lower than 80 μN. If that’s not the case the supporting 

legs of the DMA must be adjusted until the friction value is reduced. 

2. Restore defaults: The calibration parameters must be set to the default ones before 

starting the calibration wizard. Before starting, the DMA must be mounted with the parallel 

Plate kit which is required for the first calibration steps. 

3. DMA calibration: This is the name of the first step in the calibration wizard. In this step the 

system calibrates the friction as a function of the frequency, the amplitude of the sine wave, 

system damping and inertia. 

4. Height Calibration: This step is used to calculate the ordinate axis of the DMA. It is done 

using a 10 mm height displacement standard. The system measures the ordinate value and 

the value is corrected to fit the known value of the standard. 

5. Force calibration: In this step a 50 g standard must be placed on a plastic tray on top of the 

central rod. In an analogous way as for the height standard, the software measures the 

force exerted by the standard and corrects the measured value with the expected one. 

6. Eigendeformation calibration: This is the procedure to estimate the system compliance. To 

do that, a steel cylinder calibration standard is used, the DMA presses against it and the 

displacement values are recorded. After doing this calibration, the compliance of the 

system is subtracted from every measurement. 

7. Temperature calibration: This is the procedure for calibration of the thermocouple used to 

measure the temperature. The thermocouple is attached directly to the outer cylinder, 

which is a different model depending in the experimental set-up. Therefore, before 

performing this calibration the set-up must be changed to the definitive one that will be 

used in our experiments (tensile-set up). This way, the temperature calibration will be 

performed with the thermocouple in the exact same position as it will be during the 

experiments, increasing the accuracy of the calibration. In this procedure, a temperature 

scan is run over two standard samples of Sn and Zn whose melting points are known (Tm
Sn =

231.9 °C, Tm
Zn = 420 °C). The temperature scans are done applying the minimum force 

required to keep the samples straight in the holder. From the experimental elongation vs 

temperature data, the temperature at which the sample breaks (Tm,exp
Sn , Tm,exp

Zn ) can be 

estimated. Comparing those values with the theoretical ones, the software performs a 

regression and calibrates the temperature. 

8. Furnace calibration: This last step performs a calibration between the user chosen upper 

and lower limit temperatures for the oven operation. This is an automatized process and 

after it the DMA is ready to be used. 
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3.5.3 Creep measurements 

A creep test consists in the measurement of the deformation as a function of time under the 

application of a constant stress at constant temperature163. Given the simplicity of the protocol, it 

is one of the most fundamental mechanical tests that can be made. Despite of the simplicity of the 

test, creep flow is broadly used to characterize materials and analyze their viability for certain 

applications, i.e., big amount of creep deformation would be catastrophic in turbine blades, since 

that may lead to contact their housing and the failure of the piece, whereas some creep in concrete 

can be positive since it relieves tensile stress that may otherwise lead to cracking. 

Typically, a creep test is preceded by some temperature equilibration, in which the sample is kept 

for some time at the working temperature but with a small applied force. The small force is needed 

when working in tensile geometry to keep the sample straight during the equilibration. Also very 

often, after the creep measurement the force is reduced again to a small value and the deformation 

evolution is analyzed. Such behavior is called “recovery”, and when it is also studied the whole 

experiment is referred as “creep-recovery” test. A schematic illustration of a creep-recovery 

protocol is shown in Figure 3.7 (a). Classic examples of information that can be retrieved from a 

creep-recovery test are the elastic, anelastic and plastic strain 𝜀𝑒𝑙 , 𝜀𝑎𝑛, 𝜀𝑝𝑙  and the shear viscosity 

𝜂, that can be calculated from the regime of quasi-steady state plastic flow through the equation: 

𝜂 =
𝜎

3𝜀̇
 164. Figure 3.7 (b) shows a schematic creep curve in which the magnitudes 𝜀𝑒𝑙 , 𝜀𝑎𝑛, 𝜀𝑝𝑙  are 

indicated. 

 

 

Figure 3.7 (a) Schematic representation of a creep-recovery protocol. (b) Schematic 
creep curve, reproduced from 163. 

 

 

 

 



50 
 

3.5.4 Stress-strain measurements 

This experimental protocol consists on the application of a stress ramp to a sample kept at a 

constant temperature. In this thesis, all the stress-strain curves were done keeping a constant stress 

rate 𝜎̇. Although it can also be done adjusting the stress rate to keep a constant strain rate 𝜀̇, we 

chose the former protocol for simplicity. The reason is that the DMA analysis is intrinsically stress-

controlled. Therefore, the attempt to measure with a constant strain rate condition implies the use 

of an internal feedback loop that hampers the analysis of the fine structure of the data. The 

differences between the stress-controlled and strain controlled protocols, in the context of the 

avalanche analysis will be discussed in detail in following sections of the thesis. 

Commonly, the result of a stress-strain experiment is represented by plotting the applied stress in 

the abscissa axis and the strain in the ordinates, leading to the so-called stress-strain curve. If the 

applied stress and/or temperature are high enough, two regimes can be distinguished in a stress-

strain curve. The first one is the elastic regime, and it is characterized by a linear relationship 

between stress and strain following Hooke´s law. Although the actual existence of a purely elastic 

regime in metallic glasses is currently questioned, as was discussed in the previous chapter152, the 

elastic regime was historically defined by a good fit of the Hook´s law to the stress-strain curve, 

regardless of the fine structure of the data. The Elastic Modulus (Young modulus in the case of 

tensile uniaxial deformation) can be determined from the elastic region as the proportionality 

constant between the stress and strain: 𝜎 = 𝐸 𝜀. If the stress overcomes a certain value called yield 

stress 𝜎𝑌, the sample undergoes the plastic regime, which is identified by a constant average stress 

value. The ductility of a sample can also be characterized by the amount of strain that the sample 

undergo after reaching the yield stress and before failing. Although metallic glasses generally show 

almost no tensile ductility at room temperature, which leads to brittle fracture almost immediately 

after reaching the yield stress, many attempts have been made to increase the metallic glass 

ductility, as was discussed in the previous chapter. Figure 3.8 displays a sketch of a stress-controlled 

stress-strain protocol and an example of two stress-strain curves of metallic glasses in tension and 

compression. 

 

 

Figure 3.8 (a) Sketch of a stress-controlled stress-strain protocol. (b) Experimental 
stress-strain curves of Ti-based Bulk metallic glasses measured in tension and 
compression respectively 165 
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3.6 Magnetic-DMA analysis 

One of the main objectives of this thesis is the study of the deformation behavior of metallic glasses 

under simultaneous magnetic and mechanical load. Therefore the DMA had to be modified to be 

able to apply a magnetic field while conducting the standard mechanical tests. Such magnetic field 

is generated by several arrangements of permanent magnets surrounding the sample holder. Those 

permanent magnets were installed in tailored aluminum magnet holders, which kept them fixed 

and at a controlled position. This way, standard mechanical tests (creep-recovery, stress-strain and 

others) could be performed with the superposition of a magnetic field H⃗⃗⃗ to the mechanical field σ⃗⃗⃗. 

In the following paragraph, the two holders that were used are described in detail, as well as the 

permanent magnets and their calibration. To conclude, an overview of the available range of 

intensities and orientations with our set-up is given, and a test of the lack of interferences of the 

magnetic fields with the magnetically sensitive components of the DMA is provided. 

When operated in tensile geometry, a ribbon shaped sample is placed vertically inside the 

cylindrical oven, surrounded by an also cylindrical cooling block, in a way in which the applied stress 

is parallel to the length of the ribbon. The magnet holders are placed in the space between the 

furnace and the cooling block, as is depicted in Figure 3.9 (a). 

Two different aluminum holders were built and designed to be able to establish magnetic fields 

along different orientations. The first holder consists in a hollow cylindrical tube that fits between 

the furnace and the cooling, leaving a small space in between to diminish thermal conductivity. This 

cylindrical shape is perforated by two opposite rectangular cavities of 36 x 14 x 7 mm that allow to 

place a pair of rectangular permanent magnets, situated one in front of the other. The height h and 

distance d between the magnets can be adjusted placing Aluminum spacers between the magnets 

and the base and inner diameter of the holder respectively. Figure 3.9 (b) shows a picture of this 

magnet holder, and the spacers. Such set-up was used in combination with rectangular permanent 

magnets built with the magnetic poles in the opposite faces. This way, a nearly constant magnetic 

field can be stablished along the plane of the section of the sample, in a crossed field geometry 

respect to the stress. The intensity of the magnetic field can be adjusted changing the spacing d and 

the magnet material. NdFeB and 𝑆m2Co17 permanent magnets of different thicknesses were used 

for this purpose. The magnetic field produced by each of the magnet-pairs as a function of the 

spacing distance d was calibrated with a Hall probe outside of the glovebox. In order to maximize 

the accuracy of the calibration, we reproduced the DMA environment by placing a furnace and 

cooling block in the calibration set-up. Figure 3.10 shows the calibration curves for the three 

rectangular permanent magnets used in the first holder. It can be seen in Figure 3.10, that 

combining the different materials and spacing d, the set-up allows to establish a magnetic field 𝐻⃗⃗⃗1in 

the range 100-1000 Oe. Finally, by rotating the holder, the angle  between the magnetic field and 

the ribbon width direction can be accurately controlled.  

The second device was designed to house two cylindrical shaped permanent magnets in circular 

holders. The circular holders are 20 mm diameter pieces perforated with rectangular cavities of 6 x 

6x 12 mm. Figure 3.9 (c) shows a schematic representation of the holder. This set-up allows to 

rotate the magnets within the plane of the applied stress. In combination with magnets polarized 

along the axial direction, it allows to establish a magnetic field 𝐻⃗⃗⃗2 and to control the angle formed 

with the stress field 𝜙. In this case there is no room to change the spacing of the magnets, and the 
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intensity must be kept constant. This holder was feed by a pair of cylindrical axially polarized AlNiCo 

magnets, which produce a magnetic field of ~120 Oe on the sample position. An overview of the 

experiment geometry and the different angles that can be accessed with both magnet holders is 

shown in Figure 3.9 (d). Last, tailored clamps made of non-magnetic steel were used in order to 

avoid artifacts coming from the interaction of the magnetic field with the clamps. 

 

 

Figure 3.9 Magnetic Dynamic Mechanical Analyzer 

(a) Location of the magnet holder in the DMA. (b) Top view of the magnet holder 
designed to host rectangular permanent magnets. (c) Schematic front view of the 
magnet holder designed to host cylindrical magnets. (d) Overview of the magnetic-
DMA geometry and the different orientations that can be accessed with both 
magnet holders. 

 

An Important consideration that must be taken into account is that operating the Magnetic-DMA 

set-up limits the working temperature of the DMA due to the Curie temperature of the magnets. 

Table 3.1 displays the maximum operation temperatures of the magnets used in this work. It can 

be appreciated, that the material choice involves to find a compromise between the maximum 

operating temperature (limited by the Tc of the material) and intensity of the produced field. In this 
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context, it is worth to be noticed, that due to their low 𝑇𝑐, Nd magnets were not suitable for creep 

experiments, which require high temperatures.  

 

 Table 3.1 Maximum operation temperatures of the different magnets 

 

Magnet type Maximum operation Temperature 

NdFeB (25 x 10 x 4 mm) 80 °C 

Sm2Co17 (25 x 10 x 3 mm) 300 °C 

Sm2Co17 (20 x 6 x 1.5 mm)) 300°C 

AlNiCo (5 dia x 10 thick) mm 500 °C 

 

 

Figure 3.10 Calibration of permanent magnets: H vs d curves for the three 
rectangular magnets measured with a Hall probe at room temperature. 

 
 

Prior to the measurements, it is important to make sure that the magnetic field generated by the 

magnets is confined in the sample holder area and do not affect the measurement device itself, like 

the LVDT or linear motor. In this sense the shape of this particular DMA model (DMA-7) is an 

advantage because the LVDT is placed approximately 20 cm above the sample holder. That test was 

done performing several mechanical measurements with the non-magnetic Pd77.5Cu6Si16.5 

samples, with and without the highest achievable magnetic field (950 Oe).Figure 3.11 shows the 

result of a stress-strain curve of Pd77.5Cu6Si16.5 with and without magnetic field. It can be seen 

that there are no significant differences in the outcome, which demonstrates that the measuring 

device itself is not affected by the field. 
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Figure 3.11 Experimental stress-strain curves of Pd77.5Cu6Si16.5 samples measured 
at room temperature at zero field (black line) and at H=950 Oe (red line) 
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4  Analytical methods 

In the previous section the experiments which provided the data that have been studied in this 

work were introduced. This chapter focuses on the description of the analysis procedures of such 

experimental data. In particular, the filtering procedure, the statistical analysis, and the different 

figures of merit that have been used to interpret the data are be discussed. Particular attention is 

payed to take into account the finite spatial and temporal resolution of the experiments. These 

limitations, that are intrinsic to any experimental measurement, play a basic role in the choice of 

the figures of merit. This chapter is divided in two subsections, which focus on the analysis of the 

data produced by creep and stress-strain measurements respectively. 
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4.1 Analysis of creep curves 

4.1.1 The waiting time (∆𝒕) analysis 

As previously defined in Chapter 3, a creep curve displays the evolution of the strain as a function 

of time under the application of a constant stress 𝜎 and at a given temperature T. This thesis is 

concerned with the study of tensile creep on ribbon shaped samples, in which the deformation 

takes place mainly along the ribbon length axis.  

Figure 4.1 (a) shows a creep curve of a Pd77.5Cu6Si16.5 sample measured at a constant tensile stress 

𝜎 = 25 MPa and temperature 
T

Tg
= 0.95 during two hours. A first glance of the data shown in Figure 

4.1 (a) might suggest that the deformation takes place smoothly. However, a closer look reveals a 

non-periodic, jerky fine structure of horizontal steps all of them separated by a distance ∆L = 15 

nm, which is the DMA spatial resolution. Figure 4.1 (b) displays a zoom of the experimental data in 

the period of time between 16790 and 16850 seconds, where a structure of horizontal arrays of 

data points separated 15 nm can be seen. 

 

Figure 4.1 (a) Tensile creep deformation of a Pd77.5Cu6Si16.5 ribbon subjected to a 

stress of 𝜎 = 25 MPa and temperature 
T

Tg
= 0.95 during two hours. (b) Zoom of 

the creep deformation in the interval 𝑡 = (16790-16850) seconds, which reveals a 
staircase –like fine structure of horizontal jumps separated by 15 nm. 

 

 After a process of filtering which is detailed in the following paragraph, the horizontal steps that 

can be appreciated in Figure 4.1 (b) will be referred as waiting times ∆𝑡´s. These will be the main 

quantities for the analysis of the creep measurements. In some parts of the analysis the notation 

∆𝑡(𝑡) will be used. In that case ∆𝑡 refers to the waiting time, (the length of the horizontal step) and 

𝑡 indicates the experimental time in which that waiting time starts, i.e. the position of the first point 

of the horizontal step. 

 It should be noticed that the staircase-like shape of the fine structure of the data is a consequence 

of the limits in the spatial resolution of the apparatus. This constrain makes impossible to resolve 

individual deformation events, which- as discussed in the theory section- are expected to take place 
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in length scales below this resolution limit. Thus, a waiting time ∆𝑡 represents the required time to 

accumulate enough deformation events so the total deformation exerted by the sum of them adds 

up to 15 nm. The non-resolvable microscopic deformation activity could be classified into a 

succession of avalanches of different magnitudes ∆𝐿𝐴𝑉 and durations ∆𝑡𝐴𝑉, and some periods of 

absence of activity or inter-event times ∆𝑡𝑖𝑡. Taking that into account, a waiting time ∆𝑡 can be 

defined as the sum of the avalanche durations and inter-event times that take place until the total 

deformation carried out by the avalanches reach a value of 15 nm. This condition can be 

mathematically expressed as: 

 

∆𝑡 = ∑ ∆𝑡𝐴𝑉𝑖

𝑖

+  ∑ ∆𝑡𝑖𝑡𝑗

𝑗

            for ∑ ∆𝐿𝐴𝑉𝑖
= 15

𝑖

𝑛𝑚                                  (4.1) 

 

Since none of the quantities ∆𝑡𝐴𝑉, ∆𝑡𝑖𝑡 nor their number i,j can be experimentally resolved, there 

are infinite possibilities of deformation patterns that may lead to a given waiting time. 

Figure 4.2 (a) presents a sketch of a waiting time (blue line) and two possible non-resolvable 

trajectories that lead to the same experimental waiting time (red lines). It illustrates the fact that 

different microscopic deformation processes may produce the same waiting time. Figure 4.2 (b) 

depicts the different components of the fine structure of a waiting time, the avalanches (with 

duration ∆𝑡𝐴𝑉 ) and the inter-event times ∆𝑡𝑖𝑡. 

 

Figure 4.2 (a) Plot of a waiting time(blue line) and two deformation trajectories (red 
lines) that would give rise to that waiting time (L: length, t: time). (b) Representation 
of the main components of an inttermittent deformation process: i) Avalanches: 
characterized by their size, duration and shape and ii) inter-event times. The 
avalanches have been plotted with a symetrical shape for simplicity.  

 

 In conclusion, the variable waiting time ∆𝑡 provides a coarse-grained quantity which is inversely 

proportional to the avalanche activity. i.e. short waiting times are related with periods of higher 

deformation activity and vice versa. However, given the already mentioned experimental limits in 

spatial resolution, it is not possible to know the nature and distribution of events that lead to a 

given waiting time. 
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4.1.1.1  Data filtering 

As stated in the paragraph above, raw experimental data should be filtered in order to translate the 

fine structure of the creep curve to a set of waiting times. The reason is that the creep curve is 

affected by instrumental noise, which results in the observed down jumps in the fine structure of 

the data. Such jumps, which would imply a shortening of the sample, are unphysical under applied 

tensile stress and have to be filtered out. 

In a previous work, J.O. Kriponeit et al., proposed a filtering method to determine the transition 

between two adjacent horizontal levels, and to define the waiting time between them 30. Their 

method is based in a comparison of the percentages of data points of two adjacent levels before 

and after each step position, in order to define one of each data points as the transition between 

two waiting times. The step position assigned as transition position is the first one that, leaves less 

data points remaining from the upcoming step than data points have been passed from the 

preceding step. In both cases such values are normalized with respect to the number of data points 

in each of the steps. In order to compute this position, one defines two variables 𝑃(𝑡), 𝑞(𝑡) which 

refer to two adjacent levels, as follows 

𝑃(𝑡) defines the normalized number of points counted in the lower level at the temporal step 𝑡 and 

is defined by: 

 

𝑃(𝑡) =
∑ 𝑝(𝑡)𝑡´<𝑡

𝑁𝑑
                                                                                  (4.2) 

 

Where ∑ 𝑝(𝑡)𝑡´<𝑡  represents the total number of points counted until the time position 𝑡 in the 

lower level, and 𝑁𝑑 is the total number of points in the lower level. 

𝑞(𝑡) is the normalized number of points at the upper level that still have not been counted t a given 

temporal step 𝑡, and can be defined by: 

 

𝑞(𝑡) =
∑ 𝑝(𝑡)𝑡´>𝑡

𝑁𝑢
                                                                               (4.3) 

 

Where 𝑁𝑢 denotes the total number of points in the upper level. 

Making use of the functions 𝑃(𝑡) and 𝑞(𝑡), the transition between two adjacent levels is 

determined by the minimum time 𝑡 which fulfills 

 

 𝑃(𝑡) > 𝑞(𝑡)                                                                                       (4.4) 

 

The experimental data is filtered by applying this technique to every pair of adjacent levels, so the 

final result is a staircase-like shape, which corresponds to a sequence of waiting times ∆𝑡(𝑡). Figure 
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4.3 displays a schematic illustration of the filtering method, where the transition time has been 

chosen by comparing the functions 𝑃(𝑡), 𝑞(𝑡).  

 

 
Figure 4.3 Illustration of the filtering method. The corresponding algorithm compares the value 
of the functions 𝑃(𝑡), 𝑞(𝑡) between each pair of horizontal steps. The values of 𝑃(𝑡), 𝑞(𝑡) are 
shown for each time step, and the transition or jump is defined by the shortest time that fulfils 
𝑃(𝑡) > 𝑞(𝑡). 

 

4.1.1.2 Data binning and logarithmic binning  

In the context of avalanche dynamics, data interpretation is based in the analysis of distributions of 

certain quantities. Those distributions are estimated by histograms of the variables under study, 

and such process implies that data must be binned. Binning consists on dividing the entire range of 

values into a series of intervals and then count how many values fall into each interval. The 

histogram is then drawn by plotting the center of the bins in the x-axis and representing the number 

of cases that fell on each of intervals in the respective y-axis. This process implies a certain degree 

of arbitrariness, since the number of bins has to be decided by the analyst.  

A particular case of binning which is especially relevant for the analysis presented in this work is the 

so-called logarithmic binning. This method is suitable for data sets whose histograms will be 

represented in double-logarithmic scale. It is particularly recommended for statistical ensembles in 

which the probability of certain value 𝑃(𝑥) decreases dramatically with the magnitude of the value 

𝑥. Logarithmic binning is defined in a way that produces an equidistant set of bins in the logarithmic 

scale. That is achieved by defining bins with an appropriate increasing size in the original linear 

space. Since in this case, bins have different widths, the total number of counts in each bin should 

be normalized by the bin width, which provides an estimate of the probability density. 

Figure 4.4 below, shows the difference between linear and logarithmic binning. This is done by 

comparison of the histograms calculated with each method for the same waiting time set. Figure 

4.4 (a) displays the representation in linear space of the probability distribution of waiting times, 

computed by linear (red) and logarithmic (blue) binning for the same number of bins. Notice that 

the distance between the blue dots, which correspond to the bin centers, increases with the waiting 

time size. Figure 4.4 (b) shows the same distributions represented in logarithmic scale. In this case 

the blue curve, which corresponds to logarithmic binning extends to a wider range, and bin centers 

turn out to be equidistant. This is in sharp contrast with the distribution calculated with linear 

binning, which shows an accumulation of bin centers at the right of the histogram.  
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Figure 4.4. Comparison between linear and logarithmic binning. (a) Linear 
representation of the waiting time distribution 𝑃(∆𝑡) obtained from a Fe-rich 

SA2605 ribbon measured at 𝜎 = 15 MPa and 
𝑇

𝑇𝑔
= 0.85, calculated with linear 

binning (red) and logarithmic binning (blue). (b) logarithmic scale representation of 
the waiting time distribution 𝑃(∆𝑡) obtained from the same experiment calculated 
with linear binning (red) and logarithmic binning (blue) 

 

4.1.1.3 Evaluation of power-law distributed data 

As described in theory section, one of the features of avalanching systems is the fact that the 

probability distribution of several relevant quantities scale as a power law, given by the following 

expression: 

 

𝑃(𝑆)~𝐴𝑆−𝜏                                                                                    (4.5) 

 

Computing the logarithm of both side terms of the expression above leads to: 

 

log(𝑃(𝑆)) ~ log(𝐴) − 𝜏 log(𝑆)                                                                (4.6) 

 

A standard approach to check whether the distribution of a given parameter scales as a power law, 

consists in the estimation of its probability and it subsequent representation in double-logarithmic 

scale. Such distribution is compatible with a power law, if the double-logarithmic plot scale shows 

linearity over a certain regime, and the exponent 𝜏 can be calculated from a linear regression in 

that regime. In order to perform a linear regression which the same weight over the whole fitting 

range, equidistant binning in the log-scale is required. This suggests the use of a logarithmic binned 

histogram for this kind of analysis. 

It should be stressed, that the linearity in the double-log representation is a necessary but not 

sufficient condition for a power law distribution. In fact, many functions 𝑃(𝑆) may show a linear 

decay over a limited regime when plotted in double log representation, as long as 𝑃(𝑆) decreases 
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sufficiently fast with the variable S. Thus, in order to support the hypothesis of power law scaling, 

it is important to check whether linearity is preserved over an extended range of values of the 

variable under study. In relevant literature, authors often talk about the decades of power law 

scaling. The number of decades of power law scaling in a certain data set turns out to be one of the 

strongest arguments to support the hypothesis of a power law probability distribution of such set.  

In the theory chapter it was recalled that many of the usual power law distributions are expected 

to be truncated by an exponential cut-off. This cut-off may have different origins, according to the 

variable under study, in particular fine-size and finite time effects. The points belonging to the cut-

off should not be used in the linear regression, in order to estimate accurately the exponent 𝜏. 

 

4.1.1.4 Estimation of crossover in the waiting time distribution 

Krisponeit et al reported a crossover in the statistics of the waiting times produced during a creep 

measurement of an amorphous Pd77.5Cu6Si16.5 ribbon measured at T=320 °C and an applied stress 

of 𝜎 = 12 MPa during one week30. According to their result, the waiting times measured until a 

certain time from the beginning of the experiment (estimated to be 𝑡𝑐𝑟𝑜𝑠𝑠~100 min), showed a 

power law distribution with an exponent 𝜏~ − 1.5 ± 0.1. The distribution of the remaining of the 

waiting times (measured from 𝑡 = 𝑡𝑐𝑟𝑜𝑠𝑠  until the end of the experiment 𝑡 = 1 week) exhibited 

instead a power with an exponent 𝜏~ − 0.8 ± 0.1. 

In this work, the effect of the experimental conditions on such crossover are investigated. To do 

that, a precise definition for the figure of merit 𝑡𝑐𝑟𝑜𝑠𝑠 is required. This is done by defining 𝑡𝑐𝑟𝑜𝑠𝑠 as 

the time that divides the data in two subsets (𝑡 < 𝑡𝑐𝑟𝑜𝑠𝑠) and (𝑡 > 𝑡𝑐𝑟𝑜𝑠𝑠) in such a way that 

minimizes the error of the fit of the experimental waiting time distributions of both subsets 

𝑃1(∆𝑡|𝑡 < 𝑡𝑐𝑟𝑜𝑠𝑠) and 𝑃2(∆𝑡|𝑡 > 𝑡𝑐𝑟𝑜𝑠𝑠) and an ideal power law distribution 𝑃1~∆𝑡−1.5 and 

𝑃2~∆𝑡−0.8 respectively.  

In order to calculate 𝑡𝑐𝑟𝑜𝑠𝑠 the creep curve is divided in two subsets at different experimental times 

𝑡𝑖. For each 𝑡𝑖 value, the squared error between 𝑃1(∆𝑡|𝑡 < 𝑡𝑖) and 𝑃2(∆𝑡|𝑡 > 𝑡𝑖) and ideal power 

laws fits 𝑃̃1~∆𝑡−1.5 and 𝑃̃2~∆𝑡−0.8 is calculated. In each iteration, the error value is calculated and 

𝑡𝑖 is increased, ranging from zero to the total experimental times in intervals of one second. At the 

end of the loop, 𝑡𝑐𝑟𝑜𝑠𝑠 is chosen as the time 𝑡𝑖 with the minimum error. 

 Figure 4.5 (a) shows the creep curve of Pd77.5Cu6Si16.5 sample measured with a tensile stress of 

𝜎 = 25 MPa, and a temperature 
𝑇

𝑇𝑔
= 0.95. The crossover is represented with a coloured 

background. Figure 4.5 (b) shows the distribution of the waiting times, before the crossover, after 

the crossover and for the whole creep curve, measured for the aforementioned conditions.  
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Figure 4.5 (a) Creep curve of a Pd77.5Cu6Si16.5 subjected to a tensile stress of 𝜎 =

25 MPa 
𝑇

𝑇𝑔
= 0.95. The crossover is shown by the colored background and takes 

place at 𝑡𝑐𝑟𝑜𝑠𝑠 = (1.64 ± 0.6)x104 𝑠. (b) Waiting time distribution before the 
crossover 𝑃1(∆𝑡|𝑡 < 𝑡𝑖), after the crossover 𝑃2(∆𝑡|𝑡 > 𝑡𝑖) and for the whole 
experimental time. 

 

In order to estimate the error bars for the figure of merit 𝑡𝑐𝑟𝑜𝑠𝑠, the same procedure was repeated 

for the exponents 𝜏 = 1.5 ± 0.2, 𝜏1′ = −1.3, 𝜏1′′ = −1.7. The two crossover times obtained by the 

selection of 𝜏1′ and 𝜏1′′ are used as lower and higher end for the error bar 𝑡𝑐𝑟𝑜𝑠𝑠.  
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4.1.2 Strain rate analysis 

Waiting times analysis, which focuses on the study of the intermittency in the creep signal in the 

context of the avalanche dynamics, has been described in former paragraphs. In addition, the creep 

measurements have been analyzed from the perspective of the average strain rate, as will be now 

discussed below. 

To begin with, the intermittency from the creep curves was removed by applying a moving average 

filter to the creep curves. That process leads to smooth, differentiable curves, without any fine 

structure. Then, the average strain rate 𝜀̇(𝑡) and it derivative 𝜀̈(𝑡) were calculated upon 

differentiation of the smoothed creep curves. Figure 4.6 displays the evolution of the strain and its 

two first derivatives in time 𝜀̇(𝑡) and 𝜀̈(𝑡) as a function of time in a creep measurement performed 

on a Pd77.5Cu6Si16.5 ribbon subjected to a tensile stress of 𝜎 = 25 MPa and a temperature of 
𝑇

𝑇𝑔
=

0.95.  

 
Figure 4.6 Evolution of the strain, strain rate, and second derivative of the strain as a function of 
the experimental time in a creep experiment performed in a Pd77.5Cu6Si16.5 ribbon subjected to 

a tensile stress of 𝜎 = 25 MPa and a temperature of 
T

Tg
= 0.95. The creep signal has been 

smoothed, applying a moving average filter with a window size of 100 seconds, in order to 
remove the fine structure of the data so that time derivatives could actually be computed. Inset: 
zoom of strain rate and second derivative of the strain at early times of the creep measurement. 

 
 

Figure 4.6 shows that although the (filtered) strain and its derivatives are continuous functions, the 

average strain rate 𝜀̇(𝑡) decreases dramatically with time at early experimental times, to eventually 

reach an steady state value, characterized by almost zero-valued second derivative of the strain 

𝜀̈(𝑡). In fact, two regimes can now be distinguished, an initial transient, characterized by high values 

of the modulus of the strain rate 𝜀̇(𝑡), and it derivative 𝜀̈(𝑡) and a second regime in which the strain 

rate approaches a constant value.  
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A figure of merit 𝑡𝜀̇ is proposed to characterize such transition. Specifically, 𝑡𝜀̇ is defined as follows: 

 

𝑡𝜀̇ = 𝑚𝑖𝑛(𝑡)             such that        𝜀(𝑡) <  𝛼 𝜀𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒                                     (4.7) 

 

Where 𝜀𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒, represents the average steady state strain rate, and 𝛼 is an arbitrary 

proportionality constant. The procedure for estimating 𝑡𝜀̇ consists firstly in finding the experimental 

times 𝑡𝛼1
 and 𝑡𝛼2

 that fulfill the condition given by equation (4.7) for the values of alpha of 𝛼1 = 20 

and 𝛼2 = 10. 𝑡𝜀̇ is then defined as the average of those values and 𝑡𝛼1
 and 𝑡𝛼2

, that are also used 

to define the upper and lower limits of the error bars respectively. Figure 4.7 shows a closer look 

to the evolution of the strain rate as a function of time for the Pd77.5Cu6Si16.5 ribbon subjected to 

a tensile stress of 𝜎 = 25 MPa and a temperature of 
𝑇

𝑇𝑔
= 0.95. The values 𝑡𝜀̇, 𝑡𝛼1

, 𝑡𝛼2
 are also 

shown in the graph. 

 

 

Figure 4.7. Strain rate as a function of time for a Pd77.5Cu6Si16.5 ribbon subjected 

to a tensile stress of 𝜎 = 25 MPa and a temperature of 
T

Tg
= 0.95. the crossover in 

strain rate 𝑡𝜀̇ is shown as well as its lower and higher bounds 𝑡𝛼1
and 𝑡𝛼2

. 

 

At this juncture, it should be observed that estimating 𝑡𝜀̇ in principle relies in the choice of the 

threshold above, which in turn depends on the values selected for the constants 𝛼1 and 𝛼2. It is 

shown in Appendix A that such choice does not qualitatively change the functional dependence of 

𝑡𝜀̇ on temperature and stress. 
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4.1.3 Energy distribution analysis 

The creep measurements can be also analyzed from the point of view of the Potential Energy 

Landscape (PEL) that has been introduced in the theory section. In this framework, every change 

on the system’s configuration can be associated to a transition between local minima in the PEL. 

Since a given waiting time Δ𝑡 is inversely proportional to the configuration change rate, using the 

Transition State Theory it can be associated to an effective energy barrier in the following way: 

 

Δ𝑡(𝑡) = Δ𝑡0𝑒
(

𝐸(𝑡)
𝐾𝑇

)
                                                                              (4.8) 

 

Where 𝐸(𝑡) represents the effective energy barrier that corresponds to the transition represented 

by the waiting time ∆𝑡(𝑡), T is the temperature, K the Boltzmann constant and ∆𝑡0 is a 

proportionality constant. 

It is important to note than in the PEL picture the energy barriers are all static and do not evolve 

with time. However In equation (4.8) the time dependence on Δ𝑡(𝑡) and 𝐸(𝑡) was written to 

represent that the configuration state of the system does evolve with time, and through this 

evolution the system undergoes different energy barriers whose height depend on the current 

configurational state. From equation (4.8) the effective Energy barrier 𝐸(𝑡) can be estimated from 

a given waiting time Δ𝑡(𝑡), which is the measurable variable. 

 

𝐸(𝑡) = KT [log(Δ𝑡(𝑡)) − log (Δ𝑡0)]                                                        (4.9) 

 

For every creep measurement the waiting times ∆𝑡 (𝑡) as a function of the experimental time can 

be computed following the methods shown in section 4.1.1. Using Eq (4.9) the variable waiting time 

can be translated into the effective barrier 𝐸(𝑡). Notice that the constant log (Δ𝑡0) is set to zero for 

simplicity, so all energy values are arbitrarily shifted by a constant amount. Figure 4.8(a) shows an 

example of creep measurement on 2605SA1 sample at stress 𝜎 = 15MPa and temperature 
T

Tg
⁄ =0.95. Figure 4.8(b) displays the estimation of the energy barriers derived from equation (4.3).  

It can be seen that while 𝐸(𝑡) increases as a function of time, it does not so monotonically, but 

rather shows a certain amount of dispersion. To measure quantitatively such dispersion, a Locally 

Estimated Scatter –plot Smoother (LOESS) fit was performed to the 𝐸(𝑡) vs t plots. Being LOESS a 

non-parametric method, no particular mathematical function need to be assumed. Using the LOESS 

fit, the residuals can be calculated as the difference between the experimental and the fitted Energy 

values: 

 

∆𝐸(𝑡) = 𝐸(𝑡)𝑒𝑥𝑝 − 𝐸(𝑡)𝑓𝑖𝑡                                                             (4.10) 

 

Given the definition of the residuals described by equation (4.10) the parameter Δ𝑡0 cancels out.  



66 
 

To quantitatively characterize the dispersion of the Energy barriers, the probability distribution of 

the residuals 𝑃(Δ𝐸) is calculated. The Full Width half Maximum (FWHM) of the energy residuals 

distribution will be the figure of merit for the analysis of the dispersion of the energy barriers during 

the creep measurements and will be denoted as 𝑊 in this memoir. Figure 4.8(c) displays the 

evolution of the Energy residuals ∆𝐸(𝑡) calculated from a creep measurement of 2605SA1 sample 

at stress 𝜎 = 15MPa and temperature 𝑇
𝑇𝑔

⁄ =0.95, and Figure 4.8 (d) represents the probability 

distribution of such residuals and the value of 𝑊 in eV. 

 

 

Figure 4.8 Energy dispersion analysis of a creep curve. (a) Creep curve of a Fe-rich 

2605SA1 measured at stress 15 MPa and temperature T Tg
⁄ =0.95. (b) Scatter plot 

of the Energy barrier as a function of the experimental time. (c) Evolution of the 
Energy residuals, using a non-parametric LOESS fit on the scatter plot. (d) 
Probability distribution function of the distribution of residuals 𝑃(∆𝐸), the Full 
Width Half Maximum (𝑊) provides a quantitative measure of the dispersion in the 
scatter plot. 
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4.2 Analysis of stress-strain curves 

4.2.1 The effective modulus analysis 

In section 3.5.4 the stress-strain test was introduced. Throughout this work all the stress-test 

measurements have been done in tensile geometry, and in a stress-controlled configuration of the 

DMA. Thus, the apparatus applies a stress ramp, with a constant stress rate 𝜎̇, and measures the 

tensile deformation exerted by the sample as a function of the applied stress at a given sampling 

rate. The sampling rate is synchronized to the stress rate, so the machine records the deformation 

response to every stress change.  

A stress-strain curve is typically represented by plotting the elongation or strain on the horizontal 

axis (abscissa), and the applied stress on the vertical (ordinate) axis. However, in order to study the 

fine structure of the data, the resulting curve has to be analyzed with switched axis. This way the 

independent variable- the applied stress- is represented in the abscissa and the dependent variable 

and outcome of the experiments is exhibited in the ordinate, as it is shown in Figure 4.9 (a). A close 

look to the data represented this way, reveals an analogous fine structure as in the case of the creep 

measurements already discussed. Data are arranged in the shape of horizontal steps, equidistantly 

spaced in the vertical axis by the amount of 15 nm. As already mentioned, the reason for this fine 

structure is the finite resolution of the apparatus, and therefore the same filtering method applies 

for the stress-strain measurement. Figure 4.9 (b) displays the fine structure of a stress-strain test, 

in which the staircase-like shape can be appreciated.  

 

Figure 4.9 (a) strain versus stress measured in a stress ramp conducted on a Fe-rich 
2605SA1 ribbon at T=30 °C with a stress rate of 1.25 X 10−2 MPa/s from 𝜎 = 10 −
30 MPa. The inset reveals a fine structure of the data, which motivates the 
definition of the effective modulus. (b) Scatter plot representing the evolution of 
the effective modulus with respect to the applied stress for the stress-strain curve 
shown in Figure 4.9 (a) 

 

However, in this case the physical meaning of the horizontal steps is different. In the case of the 

stress-strain test they represent the total amount of the stress increment necessary to deform the 

sample beyond the resolution limit. Since the magnitude of the deformation jumps is constant (and 
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given by the spatial resolution of 15 nm of the machine), each stress interval can be associated to 

a region of an effectively constant Young Modulus in a coarse grained approximation. Such quantity 

is given by: 

 

𝐸𝑒𝑓𝑓(𝑡) =
∆𝜎(𝑡)

∆𝜀
                                                                                (4.11) 

 

It should be pointed, that this analysis do not imply claiming that the actual deformation behavior 

of the sample is purely elastic at any given time. Instead, the definition of 𝐸𝑒𝑓𝑓 is constrained by 

the fine structure of the data. Such effective modulus includes the contribution of all the elastic and 

plastic deformation events that may occur in the vicinity of a time 𝑡 that cannot be told apart due 

to the limits in the experimental resolution of the apparatus. When measured with an oscillatory 

force and with a resolution high enough to measure accurately small phase angles between strain 

and stress, those elastic and plastic events would contribute to the storage and loss modulus. 

Through the aforementioned analysis, from each stress-strain measurement the effective modulus 

of the mechanical response 𝐸𝑒𝑓𝑓 can be calculated as a function of the driving stress. Figure 4.9 (b) 

displays the scatter plot of the 𝐸𝑒𝑓𝑓(𝑡) as a function of the applied stress calculated from the stress-

strain test shown in Figure 4.9 (a).  

The probability distribution of the effective modulus can be calculated by means of a histogram, as 

it was discussed in previous sections. Figure 4.10 shows the probability distribution of the effective 

modulus for the Fe-rich 2605SA1 ribbon at T=30 °C with a stress rate of 1.25 X 10−2 MPa/s. 

 

Figure 4.10 Probability distribution function of the effective modulus measured 
from a stress-strain experiment of Fe-rich 2605SA1 ribbon at T=30 °C with a stress 
rate of 1.25 X 10−2 MPa/s from 𝜎 = 10 − 30 MPa. 
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4.2.2 Avalanche analysis in stress-strain curves: the renormalized 

modulus  

To analyze the data in terms of the avalanche behavior a renormalization of the effective modulus 

𝐸𝑒𝑓𝑓(𝑡) is proposed. Such normalization is made by computing the ratio of the effective modulus 

𝐸𝑒𝑓𝑓(𝑡) to the global macroscopic modulus of each of the experiments 𝐸𝑚𝑎𝑐𝑟𝑜, which is calculated 

from a linear fit of the stress-strain curve. The global macroscopic modulus 𝐸𝑚𝑎𝑐𝑟𝑜 does not include 

any information regarding the intermittency of the data and provides a description of the averaged 

linear behavior. 

The normalized modulus 𝐸̂(𝑡) =
𝐸𝑚𝑎𝑐𝑟𝑜

𝐸𝑒𝑓𝑓(𝑡)
 gives an insight of the deviation from the linear behavior. 

In metallic glasses, such deviations are expected to be caused by a wider distribution of local elastic 

properties compared to the crystalline materials61, as well as by the mechanical avalanches. As 

discussed in the theory chapter, in a stress-controlled experiment, mechanical avalanches produce 

an instantaneous strain burst in the material, which would trigger an instantaneous decrease of the 

effective modulus 𝐸𝑒𝑓𝑓. Therefore, the definition of 𝐸̂ is useful to identify the avalanches by means 

of the condition 𝐸̂ > 1, the normalized modulus value being proportional to the amount of strain 

carried out by those avalanches. Figure 4.11 displays the probability distribution function of the 

normalized modulus 𝑃(𝐸̂) calculated in a strain stress test of a 2605SA1 ribbon at T = 300 K with 

a stress rate of 1.25 X 10−2 MPa/s. It can be observed that the distribution is centered around the 

value 𝐸̂ = 1, which would correspond to a perfectly linear behavior, but there are few events which 

fulfil the condition 𝐸̂ > 1, that characterize the strain bursts or avalanches. 

 
Figure 4.11 Probability distribution of the renormalized modulus 𝑃(𝐸̂) calculated from a stress-
strain experiment of Fe-rich 2605SA1 ribbon at T=300 K with a stress rate of 1.25 X 10−2 MPa/s 
from 𝜎 = 10 − 30 MPa. 
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5 Results 

In this chapter, the experimental results are presented and analyzed according to the methods 

introduced in section 4.  

Subsection 5.1 focuses on the quantitative study of creep curves of a non-magnetic Pd77.5Cu6Si16.5 

alloy. The experimental data is analyzed from the point of view of the avalanche regime and the 

macroscopic strain rate, making use of the figures of merit 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇. The role played by the 

experimental parameters stress and temperature on the avalanche behaviour and macroscopic 

strain rate is described and briefly discussed. 

In Subsection 5.2, creep curves of a Fe-rich 2605SA1 alloy under simultaneous stress and magnetic 

field driving are analyzed. The experimental results are organized in several subsections. Each of 

them focuses on the influence of the different experimental parameters: Temperature, stress, 

magnetic field intensity and magnetic field orientation around two axes of symmetry.  

Finally, in subsection 5.3 room temperature stress-strain measurements of magnetic alloys under 

magnetic field driving are shown. Mechanical tests were perfomed on two different compositions: 

highly magnetostrictive Fe-rich 2605SA1, and low magnetostrictive Fe2Co73Si10B15 alloy. The 

effect of the magnetic field on both the macroscopic behavior and the intermittency in the 

deformation is analayzed.  
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5.1  Creep deformation of a non-magnetic sample  

The aim of the experiments shown in this subsection is to study the effect of the stress and 

temperature on the avalanche behavior of a Pd77.5Cu6Si16.5 metallic glass. In order to do that, 

several creep experiments were done under different conditions of stress and temperature. All the 

experiments were performed on freshly prepared 40 𝜇𝑚 thick, 2 mm width and 15 mm long ribbons 

prepared by melt spinning technique according to section 3.1. 

Prior to the creep measurements, the element composition of the alloy was analyzed by means of 

dispersive X-rays. Figure 5.1 shows the EDX spectrum, in which the spectral lines of Pd, Cu and Si 

stand out clearly from the noisy background. Table 5.1 displays the atomic percentage of the 

elements calculated from the quantitative analysis of such spectrum. The element percentage 

shown in Table 5.1 confirms that the alloy preserved the nominal composition Pd77.5Cu6Si16.5 after 

the whole fabrication process. 

 

 

Figure 5.1 EDX spectrum of Pd77.5Cu6Si16.5 alloy 
 

Table 5.1 Quantitative analysis of the EDX spectrum of Pd77.5Cu6Si16.5 

 

Element Atomic percentage [%] 

Pd 78.1 ± 0.6 
Cu 6.2 ± 0.8 
Si 15.7 ± 0.3 

 

The thermal properties of the alloy, such as the crystallization and glass transition temperatures 

TX and Tg, were also measured prior to the creep test, in order to choose the temperature range 

of the experiments. TX and Tg were measured through a DSC scan performed with a heat rate of 

20 K/min. According to the DSC scan shown in Figure 5.2 the glass transition and crystallization 

temperatures of the alloy are estimated to be: Tg = 621 ± 10 K and TX = 685 ± 10 K. 
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Figure 5.2 DSC scan of Pd77.5Cu6Si16.5 measured with a heat rate of Ṫ = 20 K/min. 
The glass transition and crystallization temperatures can be estimated from the 
heat hump and crystallization peaks respectively: Tg = 621 ± 10 K and TX =

685 ± 10 𝐾 
 

 

The structure of the samples was analyzed prior and after the creep tests by means of X-Ray 

Diffraction experiments. The analysis of the As-cast material allows to ensure that the samples are 

amorphous before the mechanical test, and therefore is a basic test to check the validity of the 

fabrication method. The analysis of the samples after being tested, permit to check that the sample 

did not crystallized nor oxidized during the measurement. Figure 5.3 displays a sample of the XRD 

spectra of the samples measured in this section. All the measurements show the characteristic 

amorphous halo, which is the signature of the amorphous state and the lack of crystalline phase. It 

can be seen that even for the measurements performed at the higher temperatures and mechanical 

loads the structure remains amorphous after the test. The inset shows that for the highest 

temperature (
T

Tg
= 0.97) the amorphous halo was punctuated by two crystallization peaks which 

disappeared after polishing the sample. That is a signature of a small amount of surface oxidation, 

in which the bulk is still amorphous. Therefore, that sample was taken into account for the analysis. 
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Figure 5.3 XRD spectra of Pd77.5Cu6Si16.5 samples. i) As cast. ii) Creep at 
T

Tg
=

0.8, σ = 12. iii) Creep at 
T

Tg
= 0.89, σ = 12. iv) Creep at 

T

Tg
= 0.94, σ = 36 MPa. 

v) Creep at 
T

Tg
= 0.97, σ = 12 MPa. Inset: V*) Creep at 

T

Tg
= 0.97, σ = 12 MPa 

before polishing 
 

After the sample characterization, a first set of creep tests was conducted to check if the 

crossoverreported by Krisponeit et al.,30 take place for a wide range of experimental conditions. 

Thus, creep experiments were performed  at stress and temperaturas in the range σ = {2–12} MPa 

and 
𝑇

𝑇𝑔
 = {0.85−0.94 }. In each of the experiments a freshly prepared sample from the very same 

sample batch was subjected to the corresponding constant stress and temperature during a week. 

An overview of these creep experiments is given in Figure 5.4, which presents the creep curves 

measured at 𝜎 = 2, 8 and 12 MPa for each of the temperatures 
𝑇

𝑇𝑔
= 0.85, 0.89, 0.92 and 0.94 
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Figure 5.4 (a) Creep curves at 
T

Tg
= 0.85 and σ = 2 MPa (black line), σ = 8 MPa 

(red line), and σ = 12 MPa (green line). (b) Creep curves at 
T

Tg
= 0.89 and σ = 2 

MPa (black line), σ = 8 MPa (red line), and σ = 12 MPa (green line). (c) Creep 

curves at 
T

Tg
= 0.92 and σ = 2 MPa (black line), σ = 8 MPa (red line), and σ = 12 

MPa (green line). (d) Creep curves at 
T

Tg
= 0.94 and σ = 2 MPa (black line), σ = 8 

MPa (red line), and σ = 12 MPa (green line.) 
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The fine structure of the creep measurements presented in Figure 5.4 was analyzed using the 

waiting time analysis, and the crossover was estimated following the method described in Chapter 

4. The waiting time distribution for each of the experiments shown in Figure 5.4 is presented in 

Figure 5.5, shown below. That figure is arranged in a stress-temperature map fashion. The 

distribution shown in each square corresponds to the creep test performed with the stress and 

temperature values that corresponds to its position in such stress-temperature map. The 

background color represents the magnitude of the figure of merit 𝑡𝑐𝑟𝑜𝑠𝑠(𝜎, 𝑇) as indicated in the 

legend on the right hand side. 

 

 

Figure 5.5 Stress-Temperature map. Each square represents the waiting time 
distribution before and after the crossover time 𝑡𝑐𝑟𝑜𝑠𝑠 under the stress and 
temperature that corresponds with it position. The background color describes the 
magnitude of 𝑡𝑐𝑟𝑜𝑠𝑠

35. 
 

Figure 5.5 shows that the waiting time distribution shows a crossover for a wide range of 

experimental conditions. Moreover, in Figure 5.6 it can be seen how the exponent of the waiting 

time distribution before and after the crossover is substantially different for each of the 

experimental conditions under analysis. The error bars and the dispersion in the data shown in 

Figure 5.6 implies that the exponent of the second regime 𝜏2 remains fairly constant among all the 

experiments, with a value 𝜏2 = 0.8 ± 0.1 whereas the first regime exponent 𝜏1 shows a higher 

amount of dispersion. Yet for the majority of the cases the fitted value is compatible with 𝜏1 =

−1.5 within the error bars. 

 



77 
 

 

Figure 5.6 Exponents of the waiting time distributions in the stress-temperature 
map. Red symbols represents the exponent of the distribution before the crossover 
and green symbols correspond to the distribution after the crossover. The dashed 
lines represent the intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 

 

From Figure 5.5 it can be also inferred that the crossover time increases both with the applied stress 

and temperature. In order to analyze in detail the dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 with the stress and 

temperature, more experiments were done to explore further the σ -T space by adding two sets of 

experiments to the results of Figure 5.5. In the first set, the stress was kept constant (σ = 12 MPa) 

among the different experiments and the temperature was swept through the range 
𝑇

𝑇𝑔
= 0.67 −

0.98. In the second set, the temperature was kept constant 
𝑇

𝑇𝑔
 = 0.94, the stress was swept in the 

range σ = 2–35 MPa, which corresponds to 
𝜎

𝐸
= (0.05 − 0.6) x 10−3, normalizing by the Young 

modulus.  
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Figure 5.7 Creep measurements used to investigate the quantitative dependence 
of 𝑡𝑐𝑟𝑜𝑠𝑠 with the stress and temperature. (a) Tests done keeping a constant stress 

𝜎 =  12 MPa and sweeping the temperature in the range T Tg
⁄ = 0.8 − 0.97. (b) 

Set of measurements performed keeping aconstant temperature T Tg
⁄ = 0.94 and 

sweeping the stress in the range 𝜎 = 2 − 36 MPa. 
 

Additionally, the creep curves are analyzed from the point of view of the strain rate. According to 

the macroscopic strain rate, the curves can be divided in two regimes: A transient characterized by 

high values of the strain rate and its derivative and a second regime in which the strain rate 

approaches a steady state value. The experimental time in which this transition takes place, 𝑡𝜀̇, is 
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estimated using the method described in Chapter 4. The evolution of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ as a function of 

the stress and temperature is depicted in Figure 5.8 shown below. 

 

 

Figure 5.8 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 (red) and 𝑡𝜀̇ (blue) with the temperature at a 
fixed stress. (b) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 (red) and 𝑡𝜀̇ (blue) with the stress at a fixed 
temperature35. 

 

Figure 5.8 shows that there is a clear correlation between 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ since both quantities show 

the same functional dependence with the stress and temperature. That result implies that the 

macroscopic strain rate is correlated to the avalanche regime or vice-versa, as has been reported 

in several simulations154 and experiments166. In addition both figures of merit present different 

functional dependence with the temperature and stress. This result suggests a different role of the 

temperature and stress in the deformation process. These results are interpreted and discussed in 

detail in Section 6. 
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5.2 Creep deformation of a magnetic glass under 

stress and magnetic driving 

In this subsection the role of the magnetic field in the deformation process is analyzed through the 

study of creep experiments carried out on Fe-rich 2605SA1 metallic glass. Different set of 

experiments were performed in order to focus on the influence of the temperature, stress and 

magnetic field separately. Also, to analyze in detail the influence of the magnetetoelastic coupling, 

the magnetic field analysis is divided in three different sections: The study of the field intensity 

(under two different mechanical stresses), the analysis of the influence of the azimuthal angle 

between the magnetic field and the width axis 𝜃, and the influence of the polar angle between the 

magnetic and mechanical fields 𝜙.  

5.2.1 Sample characterization 

The element distribution of the 2605SA1 sample was studied by means of dispersive X-ray 

spectroscopy (EDX). Figure 5.9 shows the EDX spectrum, in which Fe, Si and C lines can be clearly 

seen. Table 5.2 provides the quantitative analysis from that spectra, which allows to estimate the 

atomic percentage of each element. From Table  it can be inferred that the magnetism of the 

2605SA1 alloy, comes uniquely from the iron atoms. 

 

Figure 5.9 EDX pattern of the 2605SA1 alloy. The dispersive X-ray shows emission 
lines corresponding to Fe, Si and C 

 

Table 5.2 Quantitative analysis of the EDX spectrum of 2605SA1 

 

Element Atomic percentage % 

Fe 80.5 ± 0.6 
Si 8.4 ± 0.1 
C 11.1 ± 2.2 
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The thermal properties of the metallic glass were characterized by Differential Scanning Calorimetry 

(DSC) as introduced in section 3. Figure 5.10 shows the result of the DSC scan, measured with a heat 

rate of Ṫ = 20 𝐾/𝑚𝑖𝑛. It shows a clear crystallization peak which takes place at TX = 782 ± 10 K. 

Also, the inset of the figure shows that the Curie transition also shows off as a small hump located 

at TC = 674 ± 10 K. Both values are in good agreement with the specifications provided by the 

material provider167 which are TX
prov

= 781 K and TC
prov

= 672 K. 

 

 

Figure 5.10 DSC scan of 2605A1 measured with a heat rate of Ṫ = 20 K/min. The 
Curie and crystallization temperatures can be estimated from the heat hump and 
crystallization peaks respectively: TC = 674 ± 10 𝐾 and TX = 782 ± 10 𝐾. 
However the glass transition temperature is difficult to estimate accurately. 

 

In the DSC scan the glass transition is not appreciable. In order to estimate it, temperature scans 

were performed on 16mm x 1mm x 40 𝜇m ribbon subjected to different stresses. From the 

deformation vs Temperature curve, the glass transition can be estimated as the temperature in 

which the sample increases substantially its flow rate Tε̇. Figure 5.11 displays the results from the 

temperature scans and the calculation of Tε̇ as a function of the applied stress. Tε̇ measured at the 

lowest stress is used for the estimation of the glass transition temperature: Tg~ Tε̇(𝜎 =

2.5 MPa) = 685 ± 5 𝐾. 
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Figure 5.11 (a) Temperature scans of 2605A1 ribbons performed for several 

constant mechanical loads at a constant heating rate Ṫ = 10 K/min. (b) 
Temperature in which the strain rate leaves the linear regime 𝑇𝜀̇ as a function of 
the mechanical load calculated from the curves shown in (a). A linear regression to 
the data yields a relationship: 𝑇𝑔(𝜎) = (694 ± 6) − (2.5 ± 0.3) 𝜎. 

 

The magnetic properties of the glass were characterized measuring the hysteresis loops and the 

demagnetization curve by means of Vibrating Sample Magnetometer (VSM), as described in section 

3. Figure 5.12.a displays the hysteresis loop of a 2605SA1 ribbon. Since the magnetic response 

depends on the direction of magnetization, the hysteresis loops were measured along the three 

main axes of symmetry of the ribbon. From the hysteresis loops, the anisotropy fields along the 

width and length directions can be estimated to be HA
L = 110 ± 20 𝑂𝑒 and HA

W = 300 ± 20 𝑂𝑒. 

Along the thickness direction, the magnetization do not increase significantly in this range of fields, 

as it corresponds to the out-of-plane magnetization of a ribbon shaped sample. The coercive field 

lays in the interval Hc = 10 ± 5 Oe in every orientation. Figure 5.12.b shows the demagnetization 

curve of the same alloy. The measurement consists in a temperature scan with an applied field of 

300 Oe. The Curie temperature corresponds to the temperature at which the sample loses it 
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magnetization, and can be estimated from this figure to be TC = 670 ± 10 K. That value matches 

the TC value obtained from the DSC scan in Figure 5.10. The inset of Figure 5.12.b shows several 

hysteresis loops measured at different temperatures, and shows how the saturation magnetization 

decreases with the temperature. 

 

 

Figure 5.12 (a) Hysteresis loops of 2605SA1 measured by means of VSM. The 
different curves represent the magnetisation curves along the three main axes of 
symmetry of the ribbon: length (red), width (blue) and thickness (green). (b) 
Magnetisation vs Temperature curve M(T) vs T of 2605SA1 measure under a small 
field H=300 Oe. The inset shows the histeresis curves measured along the width 
direction at the temperatures: 373,473,573 and 673 K. 
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To check if the samples remained in the amorphous state after the different tests, the structure of 

each sample was investigated by X-Ray Diffraction experiments. Given the high Fe component of 

the 2605SA1 alloy, the XRD measurements were performed in the Diffractometer D5000 equipped 

with a Mo source, as it was discussed in the experimental techniques section. 

Figure 5.13 displays several characteristic XRD spectra of the samples investigated through this 

section. All the spectra show the typical features of an amorphous structure, characterized by the 

amorphous halo. Also, a second maximum can also be appreciated, which is characteristic of a 

certain degree of medium range order158. The samples kept the amorphous state even under the 

highest mechanical and magnetic load. The inset of Figure 5.13 shows a fully crystallized 26052A1 

ribbon for comparison with the glassy samples. That sample was annealed during 10 min above the 

crystallization temperature. 

 

 

Figure 5.13 XRD spectra of the 2605SA1 alloy. i) As cast. ii) 
T

Tg
= 0.8, 𝜎 = 15 MPa. 

iii) 
T

Tg
= 0.95, 𝜎 = 15 MPa. iv) 

T

Tg
= 0.95, 𝜎 = 15 MPa. v) 

T

Tg
= 0.8, 𝜎 = 15 MPa, 

|𝐻⃗⃗⃗| = 500, 𝜃 = 0, 𝜙 = 0. vi) 
T

Tg
= 0.8, 𝜎 = 15 MPa, |𝐻⃗⃗⃗| = 200, 𝜃 = 0, 𝜙 = 45. 

Inset: Fully crystallized sample annealed 10 minutes above TX 
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5.2.2 The influence of temperature on creep deformation. 

The current subsection focuses on the study of the role of the temperature on the creep 

deformation of the 2605SA1 glass. In order to do that, several experiments were carried out 

sweeping the temperature in the range 
T

Tg
= 0.7 − 1. All tests were done in absence of magnetic 

field and with the same constant mechanical stress 𝜎 = 15 MPa, for a duration of two hours. Before 

starting the creep tests, the samples were equilibrated at the working temperature during 5 

minutes subjected to a small stress 𝜎 = 2 MPa. 

 Figure 5.14 shows the creep curves for the different experimental conditions. From the inspection 

of Figure 5.14(a) it can be seen that the strain exerted by the sample increases with the working 

temperature. In addition, the curvature of the creep curves seems also to be influenced by the 

temperature, since the average slope increases as the temperature is increased. 

Figure 5.14(b) displays the waiting time distribution corresponding to the creep curves shown in 

Figure 5.14(a). A clear power law regime can be seen for each of the experiments, followed by a 

cut-off whose value decreases with increasing temperature. Also, the distributions show an initial 

higher slope which is characteristic of the crossover. In the case of the experiment performed at 
T

Tg
= 0.7 the sample did not show enough deformation in order to measure the waiting times. 

Therefore, it was not consider for further analysis. 
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Figure 5.14 (a) Creep tests of 2605SA1 ribbons, all subjected to the same 
mechanical stress ( 𝜎 = 15 MPa) and different temperatures. (b) Waiting time 
distribution calculated from the creep curves shown in (a). The dashed line 
represents a perfect power law with exponent 𝜏 = −0.8. 

 

Figure 5.15 depicts the waiting time distribution before and after the crossover time 𝑡𝑐𝑟𝑜𝑠𝑠 for each 

of the creep measurements shown in Figure 5.14 . In each of the experiments, the waiting time 

distribution shows a power law shape. In every case, the waiting time distribution changes from a 

steeper exponent at lower experimental times to a less step distribution at longer waiting times. 

Figure 5.15. (f) shows the numerical fit of the power law exponents before and after the crossover. 

It shows that most of the exponents of the power law distribution before the crossover (𝜏1) lay 

within the range 𝜏1 = −1.5 ± 0.1. Additionally, the exponents of the waiting time distribution 

after the crossover (𝜏2) show values in the range 𝜏2 = −0.8 ± 0.1,  
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Figure 5.15 Waiting time distributions before and after the crossover time, for the 

creep measurements on Fe –rich 2605SA1 under several temperatures. a) 
T

Tg
=

0.8, 𝜎 = 15 MPa. (b) 
T

Tg
= 0.85, 𝜎 = 15 MPa. (c) 

T

Tg
= 0.9, 𝜎 = 15 MPa. (d) 

T

Tg
=

0.95, 𝜎 = 15 MPa. (e) 
T

Tg
= 0.97, 𝜎 = 15 MPa. (f) Fit of the power law exponents 

before and after the crossover calculated from the curves (a)-(e), the dashed lines 
represent the intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 

 

Figure 5.16 shows the dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the temperature, calculated following the 

procedure indicated in section 4. Both quantities 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ seem to increase with the 

temperature, although 𝑡𝑐𝑟𝑜𝑠𝑠 appears to be less temperature sensitive as it was in the case of a 

Pd77.5Cu6Si16.5. A physical interpretation for this difference is given in Chapter 6. 
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Figure 5.16 Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the temperature at a fixed stress 𝜎 =
15 MPa. 

 

The creep measurements were also analyzed from the point of view of the dispersion of the energy 

barriers, making use of the figure of merit 𝑊 defined in in Chapter 4. Figure 5.17(a) shows the time 

evolution of the effective energy barriers calculated making use of the transition state theory for 

each of the working temperature. Figure 5.17 (b) depicts the evolution of the residuals, which are 

the difference between the experimental Energy values and a non-parametric LOESS fit to each of 

the curves depicted in Figure 5.17 (a). The probability distribution of the residuals of the energy 

barrier is shown in Figure 5.17(c). From Figure 5.17(b) and (c) it can be seen that the dispersion 

increases with the temperature. The amount of the dispersion is quantified by 𝑊, defined as the 

Full Width Half Maximum FWHM of the probability distributions shown in Figure 5.17 (c). The 

dependence of 𝑊 with the temperature is shown in Figure 5.17(d) 
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Figure 5.17 (a) Effective energy barrier as a function of experimental time 
calculated from the Transition State Theory for the creep measurements done at 
𝜎 = 15 MPa and several temperatures. (b) Residuals Vs time. The residuals are 
calculated as the difference between the energy values and a LOESS fit. (c) 
Probability distribution of the residuals for the different temperatures. (d) 
Evolution of 𝑊as a function of temperature. 

 

Figure 5.17 (d) reveals that 𝑊 shows a similar temperature dependence as 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇. The 

connection between the three figures of merit will be further discussed in Chapter 6. 
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5.2.3 The influence of mechanical stress on creep deformation 

In this subsection the influence of the mechanical stress on the creep measurements of 2605SA1 is 

analyzed. In order to do that, the temperature was kept constant to 
T

Tg
= 0.8 and several creep 

experiments were performed, sweeping the mechanical stress in the range 𝜎 = 11 − 50 MPa. The 

upper stress limit is determined by the maximum force that can be applied by the DMA, whereas 

the minimum is determined by the minimum stress that produces appreciable deformation on the 

samples. Figure 5.18(a) depicts the creep curves measured at different mechanical stresses. The 

average slope of the curves increases with the stress and so does in general the initial instantaneous 

elastic deformation. Only in the case of 𝜎 = 50 and 𝜎 = 25 this order is inverted. That may be due 

to differences in the clamping, but it does not affect the waiting time analysis since the elastic 

deformation is not taken into account for it. 

Figure 5.18(b) shows the waiting time distribution corresponding to the creep measurements 

presented in Figure 5.18(a). A power law regime over almost three decades can be observed, and 

the dashed line suggests a similar slope for each of the cases. A crossover on the scaling can also be 

appreciated, since the distribution of the short waiting times present a steeper slope than the long 

ones. The mechanical stress affects as well the cut-off, which shift to lower waiting times as the 

stress increases. 
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Figure 5.18 (a) Creep tests of 2605SA1 ribbons subjected to different mechanical 

stresses and kept at the same temperature 
T

Tg
= 0.8 . (b) Waiting time distribution 

calculated from the creep curves shown in (a). The dashed line represents a perfect 
power law with exponent 𝜏 = −0.8. 

 

Figure 5.19 displays the distribution of waiting times separated at the crossover time 𝑡𝑐𝑟𝑜𝑠𝑠. The 

waiting time distribution from each of the experiments presents a clear power law regime except 

the case of the highest stress 𝜎 = 50 MPa. In that case the distribution of the waiting times for 𝑡 >

𝑡𝑐𝑟𝑜𝑠𝑠 is not a straight line anymore, but shows a hump at long waiting times, a feature that will be 

discussed in the next chapter. Finally, Figure 5.18(f) show numerical fits of the power laws 

exponents before (𝜏1) and after (𝜏2) the crossover for each of the experiments. It shows that both 

exponents take the values 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 
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Figure 5.19 Waiting time distributions before and after the crossover time, for the 

creep measurements of 2605SA1 ribbons measured at temperature 
T

Tg
= 0.8 and 

under several mechanical stresses. (a) 𝜎 = 15 MPa. (b) 𝜎 = 19 MPa. (c) 𝜎 =
22 MPa. (d) 𝜎 = 25 MPa. (e) 𝜎 = 50 MPa. (f) Fit of the power law exponents 
before and after the crossover calculated from the curves (a)-(e), the dashed lines 
represent the intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 

 

The creep measurements are also analyzed from the point of view of the dispersion of the energy 

barriers. Following a similar procedure as it was shown in Figure 5.17, 𝑊 can be calculated from 

each creep curve, providing a quantitative measure of the dispersion. Figure 5.20 shows the 

dependence of the three figures of merit 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ and 𝑊 with the mechanical stress. Figure 5.20 

(a) depicts the dependence of 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ with the applied stress. It can be seen that two magnitudes 

seem to have a linear dependence with the stress, and their values almost overlap. That’s is the 
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same case as it was for the Pd77.5Cu6Si16.5 measurements. Figure 5.20 (b) shows the functional 

dependence of 𝑊 with the mechanical stress, and also a roughly linear dependence can be 

observed. All three figures of merit show a similar functional dependence with the mechanical 

stress, a fact that suggests a correlation between the avalanche regime and the dispersion of the 

energy barriers in the PEL. 

 

 

Figure 5.20 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with stress for a fixed temperature 
T

Tg
= 0.8 

for the 2605SA1 alloy (b) 𝑊 as a function of the mechanical stress for the same 
composition at the same temperature. 
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5.2.4 The influence of magnetic field intensity on creep deformation 

In this subsection and the two following ones the results regarding the study of the influence of the 

magnetic field on the creep deformation process of 2605SA1 metallic glass are presented. Since the 

magnetic field is a vectorial quantity, and so is the stress, not only it intensity should be considered 

but also it orientation with respect to the mechanical stress. Taking that into account, the study of 

the magnetic field effect is divided in three subsections, which focuses on the influence of it 

intensity, and orientation. The study of the orientation is as well divided into two independent parts 

which study the influence of the angle 𝜃 within a plane perpendicular to the stress and the angle 𝜙 

with respect to the stress. 

The experiments shown in the current subsection focus on the study of the influence of the 

intensity of the magnetic field. Since it turned out that the influence of the magnetic field depends 

itself on the mechanical load, all the experiments were performed for two different tensile stresses, 

𝜎 = 15 and 𝜎 = 25 MPa. Figure 5.21 (a) shows a set of creep experiments performed at 
T

Tg
= 0.8, 

𝜎 = 15 and several intensities of magnetic field applied along the width direction of the ribbon 

(𝜃 = 0, 𝜙 = 0). As shown in Figure 5.12 the sample magnetization decreases with temperature. 

Therefore, the temperature of the experiments was chosen to be the lowest at which the sample 

deforms sufficiently in order to be able to perform a waiting times analysis. 

Figure 5.21(b) shows the waiting time distribution calculated for the experiments shown in Figure 

5.21(a). A power law regime can be appreciated in the double logarithmic plot, as well as an initial 

higher slope, which suggest a crossover in the waiting time distribution. The cut-off is shifted to 

shorter waiting times when the magnetic field was applied. 
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Figure 5.21 (a) Creep measurements of 2605SA1 performed at 
𝑇

𝑇𝑔
= 0.8, 𝜎 = 15 for 

different intensities of magnetic field oriented along the width direction (𝜃 = 0, 𝜙 = 0). 
(b) Double logarithmic representation of the waiting time distribution calculated from the 
creep measurements shown in (a)  

 

Figure 5.22 shows the waiting time distribution splitting the data between before and after the 

crossover time 𝑡𝑐𝑟𝑜𝑠𝑠. It can be seen in Figure 5.22 (a)-(e) that there is a significant change of slope 

at 𝑡𝑐𝑟𝑜𝑠𝑠, but the power law shape is well preserved in each of the cases. Figure 5.22 (f) shows the 

fit of the experimental power laws and it demonstrates that, except the measurement at |𝐻⃗⃗⃗| =

640 Oe, the values of the experimental exponents before (𝜏1) and after (𝜏2) the crossover are 

contained in the range 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. The experiment corresponding to 

|𝐻⃗⃗⃗| = 640 Oe presents a lower slope of 𝜏2~ − 0.5 in the second regime. 
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Figure 5.22 Waiting time distributions before and after the crossover time, for the 

creep measurements of 2605SA1 ribbons at temperature 
𝑇

𝑇𝑔
= 0.8, 𝜎 = 15 MPa 

and under several intensities of magnetic field along the width direction 

(𝜃 = 0, 𝜙 = 0). (a) |𝐻⃗⃗⃗| = 0 Oe. (b) |𝐻⃗⃗⃗| = 150 Oe. (c) |𝐻⃗⃗⃗| = 340 Oe. (d) |𝐻⃗⃗⃗| = 500 

Oe. (e) |𝐻⃗⃗⃗| = 640 Oe. (f) Fit of the power law exponents before and after the 

crossover calculated from the curves (a)-(e), the shaded areas represent the 
intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 

 

The three figures of merit, 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ and 𝑊, are shown in Figure 5.23. All of three magnitudes 

present a maximum which is located in the range 150-500 Oe, which matches the value of the 

anisotropy field along the width orientation HA
W = 300 ± 20 Oe shown in figure 5.12. All the 

values of applied field are higher than the coercive field which is estimated to be Hc ≈ 10 Oe. Such 

maximum of the figures of merit can be interpreted in terms of the orientation of domain walls and 

and will be discussed in next section. 
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Figure 5.23 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the magnetic field intensity 
applied along the width direction (𝜃 = 0, 𝜙 = 0), calculated from creep 

measurements on 2605SA1 ribbons for a fixed temperature 
𝑇

𝑇𝑔
= 0.8 and several 

stresses. (b) 𝑊as a function of magnetic field intensity, applied along the width 
direction (𝜃 = 0, 𝜙 = 0), calculated from creep measurements on 2605SA1 

ribbons for a fixed temperature 
𝑇

𝑇𝑔
= 0.8 and stress 𝜎 = 15 MPa. 

 

As was previously stated, the influence of the magnetic field intensity is expected to be stress 

dependent. All the measurements shown in this subsection, were repeated for a higher value of 

mechanical stress 𝜎 = 25 MPa. Figure 5.24 (a) displays the creep curves measured at 
T

Tg
= 0.8, 𝜎 =

25 and several intensities of magnetic field applied along the width direction of the ribbon 

(𝜃 = 0, 𝜙 = 0). Figure 5.24(b) shows the waiting time distribution calculated from such creep 

measurements. A power law regime can be clearly seen, as well as an initial higher slope, which 

suggest a crossover in the waiting times statistics. 
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Figure 5.24 (a) Creep measurements of 2605SA1 perfermed at 
𝑇

𝑇𝑔
= 0.8, 𝜎 = 25 for 

different intensities of magnetic field oriented along the width direction 
(𝜃 = 0, 𝜙 = 0). (b) Double logarithmic representation of the waiting time 
distribution calculated from the creep measurements shown in (a)  

 

Figure 5.25 shows the waiting time distribution splitting the data between before and after the 

crossover time 𝑡𝑐𝑟𝑜𝑠𝑠. It can be seen in Figure 5.25(a)-(e) that there is a significant change of slope 

at 𝑡𝑐𝑟𝑜𝑠𝑠, but the power law shape is well preserved in each of the cases. Figure 5.22(f) shows the 

fit of the experimental power laws and it can be seen that the experimental exponents before (𝜏1) 

and after (𝜏2) the crossover oscillate around the values 𝜏1 = −1.5 and 𝜏2 = −0.8. However, in this 

set of experiments some of the deviations are larger than ±0.1. particularly, the experiment 

performed at H=340 Oe shows a dip and peak of the first and second exponents 𝜏1, 𝜏2 respectively.  
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Figure 5.25 Waiting time distributions before and after the crossover time, for the 

creep measurements of 2605SA1 ribbons at temperature 
𝑇

𝑇𝑔
= 0.8, 𝜎 = 25 MPa 

and under several intensities of magnetic field along the width orientation 

(𝜃 = 0, 𝜙 = 0). (a) |𝐻⃗⃗⃗| = 0 Oe. (b) |𝐻⃗⃗⃗| = 150 Oe. (c) |𝐻⃗⃗⃗| = 340 Oe. (d) |𝐻⃗⃗⃗| = 500 

Oe. (e) |𝐻⃗⃗⃗| = 640 Oe. (f) Fit of the power law exponents before and after the 

crossover calculated from the curves (a)-(e), the dashed areas represent the 
intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 
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Last, the three figures of merit, 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ and 𝑊, are shown in Figure 5.26. In contrast with the creep 

measurements at 𝜎 = 15 MPa, these magnitudes do not show a maximum. Instead, they increase 

almost monotonically with increasing magnetic field. This change in behavior in comparison with 

the measurements at 𝜎 = 15 MPa will be analyzed and discussed in Section 6, and will be 

interpreted in terms of the anisotropy field 𝐻𝐴(𝜎), which is stress-dependent. 

 

 

Figure 5.26 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the magnetic field intensity 
applied along the width direction (𝜃 = 0, 𝜙 = 0) calculated from creep 

measurements on 2605SA1 for a fixed temperature 
𝑇

𝑇𝑔
= 0.8 and stress 𝜎 = 25 

MPa. (b) 𝑊 as a function of magnetic field intensity applied along the width 
direction (𝜃 = 0, 𝜙 = 0) calculated from creep measurements on 2605SA1 for a 

fixed temperature 
𝑇

𝑇𝑔
= 0.8 and stress 𝜎 = 25 MPa. 



101 
 

5.2.5 The influence of magnetic field orientation on creep deformation: 

azimuthal angle 𝜽  

In this subsection the influence of the magnetic field orientation within a plane perpendicular to 

the stress field is analyzed. Such perpendicular plane to the direction of the mechanical stress is 

characterized by the constrain 𝜙 = 0, as defined in Chapter 3. The orientation within that plane 

can be described by the angle 𝜃, which ranges from 𝜃 = 0 in the case that the magnetic field is 

applied along the width of the sample, to 𝜃 = 90 which represents a magnetic field applied along 

the thickness of the ribbon. Figure 5.27 depicts schematically the magnetic field orientation during 

the experiments described in this subsection. 

 

Figure 5.27 Schematic view of the magnetic field orientation with respect to the 
mechanical stress and ribbon axes used in the experiments described in the current 
subsection  

 

In order to explore the influence of the angle 𝜃, a set of creep measurements were performed 

keeping constant the stress, temperature, and intensity of magnetic field (
T

Tg
= 0.8, 𝜎 =

15 MPa, |𝐻⃗⃗⃗| = 500 Oe) and varying such angle. 

Figure 5.28 (a) displays the creep curves for this set of experiments and Figure 5.28(b) present the 

waiting time distributions of the creep curves shown in Figure 5.28(a). A power law regime can be 

appreciated for each of the experiments, as well as a higher slope for short waiting times. 
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Figure 5.28 (a) Creep measurements of 2605SA1 performed at 
T

Tg
= 0.8, 𝜎 =

15 MPa, |𝐻⃗⃗⃗| = 500 𝑂𝑒, 𝜙 = 0) for different angles 𝜃. (b) Double logarithmic 

representation of the waiting time distribution calculated from the creep 
measurements shown in (a)  

 

Figure 5.29 shows the waiting time distribution splitting the data between before and after the 

crossover time 𝑡𝑐𝑟𝑜𝑠𝑠. It can be seen in Figure 5.29 (a)-(e) that there is a significant change of slope 

at 𝑡𝑐𝑟𝑜𝑠𝑠, but the power law shape is well preserved in each of the cases. Figure 5.29(f) shows the 

fit of the experimental power laws. The experimental exponents before (𝜏1) and after (𝜏2) the 

crossover oscillate around the values 𝜏1 = −1.5 ± 0.2 and 𝜏2 = −0.8 ± 0.2 respectively. 
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Figure 5.29 Waiting time distributions before and after the crossover time, for the 

creep measurements of 2605SA1 performed at 
𝑇

𝑇𝑔
= 0.8, 𝜎 = 15 MPa, |𝐻⃗⃗⃗| =

500 𝑂𝑒, 𝜙 = 0) for different angles 𝜃. (a) 𝜃 = 0. (b) 𝜃 = 20°. (c) 𝜃 = 45°. (d) 𝜃 =
60°. (e) 𝜃 = 90°. (f) Best fit of the power law exponents before and after the 
crossover calculated from the curves (a)-(e), the coloured areas represent the 
intervals 𝜏1 = −1.5 ± 0.1 and 𝜏2 = −0.8 ± 0.1. 

 

The three figures of merit, 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ and 𝑊 are shown in Figure 5.30. It can be observed how all of 

them decrease their magnitude as the angle shifts from 𝜃 = 0 towards 𝜃 = 90°. That change in the 

angle 𝜃 corresponds to a rotation from the width direction towards the thickness direction of the 
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sample. Since the anisotropy along the out-of-plane direction is much higher than along the sample 

width, a decrease in the magnetic field effect is expected as the angle approaches 𝜃 = 90°. These 

results are discussed further in the chapter 6. 

 

 

Figure 5.30 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the angle 𝜃 for creep experiments 

performed on 2605SA1 at ,
𝑇

𝑇𝑔
= 0.8, 𝜎 = 15 MPa , |𝐻⃗⃗⃗| = 500 Oe, 𝜙 = 0).(b) 𝑊 as 

a function of the angle 𝜃 for creep experiments performed on 2605SA1 at ,
𝑇

𝑇𝑔
=

0.8, 𝜎 = 15 𝑀𝑃𝑎 , |𝐻⃗⃗⃗| = 500 𝑂𝑒, 𝜙 = 0 
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5.2.6 The influence of magnetic field orientation on creep deformation: 

polar angle 𝝓  

The influence of the angle between the magnetic and stress field is analyzed in this subsection. In 

order to do that, the angle 𝜃 is fixed to 𝜃 = 0, and the angle 𝜙 between the stress and magnetic 

field is swept from experiment to experiment making use of a magnet holder feed with a couple of 

AlNiCo cylindrical magnets. Thus, the set of creep measurements shown below were performed 

keeping constant the stress, temperature, and intensity of magnetic field (
T

Tg
= 0.8, 𝜎 =

15 MPa, |H⃗⃗⃗| = 120 𝑂𝑒) and varying the angle 𝜙. Figure 5.31 illustrates schematically the 

orientation of the magnetic field used during the experiments shown in this subsection. 

 

Figure 5.31 Schematic view of the magnetic field orientation with respect to the 
mechanical stress and ribbon axes used in the experiments shown in the current 
subsection 

 

Figure 5.32 (a) displays the creep curves for this set of experiments. Although the elastic 

deformation varies between each measurement, no clear change in the slope during the anelastic 

deformation can be appreciated from a first inspection of that figure. Figure 5.32(b) presents the 

waiting time distributions of the creep curves shown in Figure 5.32(a).The waiting time distribution 

decay in every case with a power law fashion, and a crossover can be appreciated for short waiting 

times. 
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Figure 5.32 (a) Creep measurements of 2605SA1 performed at 
𝑇

𝑇𝑔
= 0.8, 𝜎 =

15 MPa, |𝐻⃗⃗⃗| = 120 𝑂𝑒, 𝜃 = 0) for different angles 𝜙. (b) Double logarithmic 

representation of the waiting time distribution calculated from the creep 
measurements shown in (a)  

 

Figure 5.33 shows the waiting time distribution splitting the data between before and after the 

crossover time 𝑡𝑐𝑟𝑜𝑠𝑠, for some of the creep measurements presented in Figure 5.32. Figure 5.33(a)-

(e) show a significant change of slope at 𝑡𝑐𝑟𝑜𝑠𝑠, and a power law shape which is well preserved in 

each of the cases. Figure 5.33.(f) shows the fit of the experimental power laws. The exponents of 

the waiting time distributions after the crossover (𝜏2) have all values in the range 𝜏2 = −0.8 ± 0.1. 

In the case of the first regime, the experiments performed at angles between 𝜙 = −45,45 show 

exponents in the range 𝜏1 = −1.5 ± 0.1. However, as the magnetic field approaches a parallel 

orientation with respect to the stress (𝜙 = ± 90 − 80), there is a significant shift of the exponents 

𝜏1, which approach values from 𝜏1 = −1.8 up to − 2. 
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Figure 5.33 Waiting time distributions before and after the crossover time 

calculated from creep measurements of 2605SA1 performed at 
𝑇

𝑇𝑔
= 0.8, 𝜎 =

15 𝑀𝑃𝑎, |𝐻⃗⃗⃗| = 120 𝑂𝑒, 𝜃 = 0) for different angles 𝜙 . (a) 𝜙 = −90 Oe. (b) 𝜙 =

−60°. (c) 𝜙 = −30°. (d) 𝜙 = 30°. (e) 𝜙 = 90°. (f) Power law exponent fit before 
and after the crossover calculated from the curves (a)-(e). Coloured areas represent 
the intervals 𝜏1 = −1.5 ± 0.1 𝑎𝑛𝑑 𝜏2 = −0.8 ± 0.1. 

 

The evolution of the three figures of merit, 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ and 𝑊 with the angle 𝜙 is shown in Figure 

5.34. Despite the fluctuation of the data, it can be observed in Figure 5.34.(a) that the crossover 

times approach minimum values when the stress and magnetic field are parallel aligned 
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(|𝜙| → 90°). The rest of the values of 𝑡𝑐𝑟𝑜𝑠𝑠 show a small 𝜙-dependence, and fluctuate around an 

average value. That average value increases for the values 𝜙 = 30, −60 in which the crossover time 

is increased. The values of 𝑡𝜀̇ follow a similar tendency, although in this case the dispersion in the 

data is bigger. 

The evolution of 𝑊 shown in Figure 5.34(b) share some features with the evolution of 𝑡𝑐𝑟𝑜𝑠𝑠(𝜙) 

shown in Figure 5.34(a). 𝑊 oscillates around a mean value for all the experimental conditions 

except for 𝜙 = −45, 60 in which two sharp peaks can be distinguished. Such behavior is discussed 

in terms of the magnetoelastic coupling and the orientation of domain walls with respect to the 

Shear Transformation Zones in Chapter 6. 

 

 

Figure 5.34 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the angle 𝜙 for creep experiments 

performed on 2605SA1 at ,
𝑇

𝑇𝑔
= 0.8, 𝜎 = 15 MPa , |𝐻⃗⃗⃗| = 120 𝑂𝑒, 𝜃 = 0). (b) 𝑊 as 

a function of the angle 𝜃 for creep experiments performed on 2605SA1 at ,
𝑇

𝑇𝑔
=

0.8, 𝜎 = 15 𝑀𝑃𝑎 , |𝐻⃗⃗⃗| = 120 Oe, 𝜃 = 0) 
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5.3 Stress-strain measurements of magnetic 

glasses under magnetic driving 

The current section focuses on the analysis of stress-strain curves under both magnetic and 

mechanical driving. The motivation to perform these experiments was that they could be done at 

room temperature, which is not the case for creep experiments since a minimum temperature of 

T=540K is required in order to measure appreciable deformation flow in the magnetic compositions. 

This fact, makes it possible to use 𝑁𝑑 magnets and therefore increase the available field intensity 

range until 1000 Oe. Additionally, since the magnetization decreases with temperature, the coupled 

magneto-mechanical effects are expected to be maximized at low temperatures. 

All the experiments in this section were performed using two different alloys: a magnetostrictive 

2605SA1, with magnetostriction constant 𝜆𝑠 = 27 x 10−6, and a Fe2Co73Si10B15 metallic glass 

with vanishing magnetostriction. The purpose of choosing these two alloys is to analyze the 

influence of the magnetostriction on the magneto elastic coupling effects.  

Figure 5.35 displays the EDX spectra of the Co-rich alloy. It presents emission lines corresponding 

to Co, Fe and Si. Table 5.3 shows the element atomic percentage of such alloy calculated from the 

quantitative analysis of such spectra. It must be noted that in this technique, the emission lines of 

the light elements like B cannot be resolved. EDX analysis reveals that Co is the major magnetic 

component in this alloy. 

 

Figure 5.35 EDX spectra of Fe2Co73Si10B15 
 

Table 5.3 Quantitative analysis of the Fe2Co73Si10B15 spectra. 

 

Element Atomic percentage [%] 

Co 71.8 ± 0.7 
Fe 14.6 ± 0.4 
Si 13.6 ± 0.2 
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The magnetic properties of the Co-rich glass were characterized measuring the hysteresis loops by 

means of Vibrating Sample Magnetometer (VSM) at room temperature, as described in section 3. 

Figure 5.36(a) shows the hysteresis loops measured along the main axes of symmetry of a Co-rich 

ribbon. The coercive field measured along each orientation is very low with values in the order Hc =

10 ± 5 Oe. Anisotropy fields along width and length orientations can be estimated from the 

hysteresis loops to be HA
L = 105 ± 10 and HA

W = 360 ± 20 Oe. Figure 5.36(b) shows a DSC scan 

of the Co-rich alloy measured with a heat rate Ṫ = 20 K/min. Crystallization takes place at the 

temperature Tx = 822 ± 5 K. On the other hand no clear signature of either the glass or the 

ferromagnetic-paramaganetic transitions can be observed in the DSC scan. 

 

 

Figure 5.36 (a) Hysteresis loops measured along the three main axes of symmetry 
of the Co-rich alloy by means of Vibrating Sample Magnetometer. (b) Differential 
Scanning Calorimeter measurement of the Co-rich alloy. 
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After each of the measurements, the structure of the samples was investigated through XRD 

experiments to make sure that the structure remained amorphous. Figure 5.37 shows a sample of 

XRD spectra for both compositions. It can be seen that none of them crystallized during the 

experiments, which would have been unlikely given that they were conducted at room 

temperature. 

 

 

Figure 5.37 (a) XRD spectra of the Co-rich alloy. i) As cast. ii) Stressed under field 

|𝐻⃗⃗⃗| = 340 Oe. iii) Stressed under field |𝐻⃗⃗⃗| = 500 Oe. iv) Stressed under field |𝐻⃗⃗⃗| =

700 Oe. v) Stressed under field |𝐻⃗⃗⃗| = 950 Oe. (b) XRD spectra of the Fe-rich alloy. 

i) As cast. ii) Stressed under field |𝐻⃗⃗⃗| = 340 Oe. iii) Stressed under field |𝐻⃗⃗⃗| = 500 

Oe. iv) Stressed under field |𝐻⃗⃗⃗| = 700 Oe. v) Stressed under field |𝐻⃗⃗⃗| = 950 Oe 

 

With the aim to study the effect of a magnetic field in the local mechanical response of magnetic 

metallic glasses, tensile stress-strain tests were performed on both alloys under several magnetic 

field intensities ranging from H=0-1000 Oe and in two different orientations (𝜃 = 0 and 𝜃 = 90°) 

at a controlled temperature T=300 K. 

The strain produced by a freshly prepared amorphous sample that was subjected to a stress ramp 

protocol ranging from  =10 to 30 MPa at a Force rate of 30 mN/min is measured for each of the 

experimental conditions (fixed |𝐻⃗⃗⃗|, 𝜃 and composition). The ramp is run from 10 MPa in order to 

ensure that the sample stays straight during the whole run. Each protocol was repeated four times 

to collect more data and improve the statistics of further analysis. Figure 5.38 show the stress-strain 

curves for all the different experimental conditions. Figure 5.38(a)-(b) show the result of the stress-

strain test performed with the magnetic field applied along the out of plane direction (𝜃 = 90 °) 

for the Co-rich and Fe-rich alloys respectively. With the magnetic field applied in such geometry, no 

clear change of slope can be appreciated in the stress-strain curves. Figure 5.38(c) shows the 

experimental stress-strain curves corresponding to a magnetic field applied along the width 

direction (𝜃 = 0) of the non magnetostrictive Co-rich alloy. It can be seen that in this case, the slope 

of the stress-strain curves increases slightly as the magnetic field intensity increases. A more 

dramatic effect can be appreciated in the case of the magnetostrictive Fe-rich alloy exposed to a 

magnetic field along the width direction (𝜃 = 0). Figure 5.38(d) shows that in that case, for 

magnetic field intensities between |𝐻⃗⃗⃗| = 340 − 700 Oe, the stress-strain curves are separated in 

two regions by a kink located at a certain stress 𝜎𝑘. The first region (𝜎 < 𝜎𝑘) is characterized by a 

lower slope, which corresponds to a lower Young modulus. The slope of the second region 
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(𝜎 > 𝜎𝑘) is much higher, which corresponds to Young modulus value closer to the corresponding 

to the non-magnetized sample. The stress at which this kink takes place (𝜎𝑘), shifts to higher values 

as the field intensity is increased, until the whole effect vanishes when a field of |𝐻⃗⃗⃗| = 950 Oe is 

applied. 

 

 

Figure 5.38 (a) Stress-strain curves of Fe2Co73Si10B15 under different intensities of 
magnetic field applied along the out-of-plane direction (𝜃 = 90°). (b) Stress strain 
curves of 2605SA1 under different intensities of magnetic field applied along the 
out-of-plane direction (𝜃 = 90°). (c) Stress-strain curves of Fe2Co73Si10B15 under 
different intensities of magnetic field applied along the width direction (𝜃 = 0). (d) 
Stress-strain curves of 2605SA1 under different intensities of magnetic field applied 
along the width direction (𝜃 = 0). All test are perfomed with a force rate of 30 
mN/min and at a constant temperature T=300K.  

 

The influence of the magnetic field in the macroscopic Young modulus is summarized in Figure 5.39. 

Figure 5.39(a) displays the evolution of the macroscopic Young modulus as a function of the applied 

field applied along the directions 𝜃 = 0 and 𝜃 = 90° for the Co-rich alloy and Figure 5.39 (b) shows 

the analogous information in the case of the magnetostrictive Fe-rich alloy. In both cases the 

macroscopic Young modulus is calculated by the linear fit of the stress-strain curves shown in Figure 

5.38. 

A first inspection of the curves shown in Figure 5.39 reveal that the Young modulus do not seem to 

be affected by the magnetic field when it is applied along the out-of-plane direction (𝜃 = 90°). As 

it will be discussed in Chapter 6, that is an expected result since the susceptibility of ribbon samples 



113 
 

along the out-of-plane direction is almost negligible, and therefore the sample almost does not 

change it magnetic state when subjected to a magnetic field along that direction. However, the 

data corresponding to the magnetic field applied along the 𝜃 = 0 direction reveal important 

changes in the Young modulus. The Co-rich alloy shows an increase of the Young modulus for 

magnetic fields |𝐻⃗⃗⃗| > 200 Oe, the change of the Young modulus takes place in the order of 50% 

and it remains roughly constant for all the range of higher magnetic fields. On the other hand the 

magnetostrictive Fe-rich alloy show a dramatic decrease of the Young modulus for magnetic fields 

in the interval |𝐻⃗⃗⃗| = 340 − 700 Oe. This is the so called ∆𝐸-effect14,110, and in this case the 

decrease of the Young modulus reaches values higher than the 50%. 

 

Figure 5.39 (a) Macroscopic Young modulus 𝐸𝑚𝑎𝑐𝑟𝑜 as a function of the intensity of 
magnetic field for the CoFeSiB metallic glass. (b) Macroscopic Young modulus 
𝐸𝑚𝑎𝑐𝑟𝑜 as a function of the intensity of magnetic field for the2605SA1 metallic 
glass. 

 

Figure 5.40 shows the statistical analysis of the intermittency on the stress-strain curves. As 

described in Chapter 4, the fine structure of the stress-strain curves can analyzed as an array of 
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effective modulus 𝐸𝑒𝑓𝑓(𝜎). Then, a normalized modulus can be defined as 𝐸̂ =
𝐸𝑚𝑎𝑐𝑟𝑜

𝐸𝑒𝑓𝑓
. In a stress 

controlled experiment, mechanical avalanches would show up as strain bursts, which would induce 

an instantaneous reduction of the effective modulus 𝐸𝑒𝑓𝑓. Therefore, the definition of 𝐸̂ allows to 

identify the avalanche behavior with the condition 𝐸̂ > 1. 

 
Figure 5.40 (a) Distribution of normalized modulus 𝑃(𝐸̂) of Fe2Co73Si10B15 under magnetic 

driving (b) Distribution of normalized modulus 𝑃(𝐸̂) of 2605SA1 under magnetic driving. Figure 

5.40 (b) Inset. 𝑃(𝐸̂) for 𝜃 = 0, |𝐻⃗⃗⃗| = 200, 340, 500 and 640 Oe. 

Squares represent experiments measured under magnetic field applied along 𝜃 = 0 and triangles 
along = 90° 168. 

 

Figure 5.40(a) shows the probability distribution of the normalized modulus for the Co-rich alloy 

exposed to the different magnetic field conditions. It can be seen that all the experiments collapse 

in a master plot which presents a symmetric peak around 𝐸̂ = 1. Data shown in Figure 5.40(b) 
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corresponds to the magnetostrictive alloy. While most of the measurements on this alloy collapse 

as well in a master plot, few of them deviate from the collapse and it distribution appear to show a 

certain regime of power-law scaling, as it is shown in the inset of Figure 5.40(b). The experiments 

whose distributions do not collapse with the others correspond with the conditions in which the 

∆𝐸-effect is maximized. This result is discussed in detail in the next chapter. 

Figure 5.41.(a) shows the non-normalized distribution of effective modulus 𝐸𝑒𝑓𝑓 corresponding to 

the 2605SA1 alloy under magnetic loading along 𝜃 = 0. It can be seen that as the magnetic field 

intensity increases, a left peak emerges which corresponds to a Young modulus 𝐸~25GPa. The 

height of this peak increases with the magnetic field and reaches a maximum at the condition |𝐻⃗⃗⃗| =

700 Oe. This peak disappears when the field intensity reaches the value |𝐻⃗⃗⃗| = 950 Oe. Figure 

5.41(b) shows the distribution of effective modulus of 2605SA1 subjected to a magnetic field of 

H=500 Oe, separated between the modulus measured before and after the kink located at 𝜎𝑘 in the 

stress-strain curve. It shows that the low moduli are located almost uniquely before the kink. After 

the kink the distribution of effective modulus is centered around E~100 GPa, which corresponds 

to the Young modulus of the demagnetized sample. These results are discussed in detail in Chapter 

6. 

 

Figure 5.41 (a) Distribution of effective modulus of the 2605SA1 alloy under 
magnetic loading along 𝜃 = 0 for different intensities of applied field. (b) 
Distribution of effective modulus of 2605SA1, under an applied field of H=500 Oe 
separated in two regimes according to the kink that takes places at 𝜎𝑘 = 12.5MPa: 
𝑃(𝐸𝑒𝑓𝑓) for 𝜎 < 𝜎𝑘 (red) and 𝑃(𝐸𝑒𝑓𝑓) for 𝜎 > 𝜎𝑘 (blue) 
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6 Discussion 

6.1 Creep deformation of a non-magnetic sample 

6.1.1 Characterization of sample properties 

The study of avalanches produced during creep deformation of non-magnetic samples was 

performed on Pd77.5Cu6Si16.5 ribbons prepared by melt spinning. XRD measurements shown in 

Figure (5.3) confirmed that the as-cast ribbons were structurally amorphous, and that they 

remained amorphous after the different creep protocols. Additionally, good match between the 

nominal composition Pd77.5Cu6Si16.5 and the actual element distribution was confirmed by means 

of EDX measurements shown in Figure 5.1 and Table 5.1. Finally, crystallization and glass transition 

temperatures were estimated from DSC scans and both values Tg = 621 ± 10 K , Tx = 685 ± 10 K 

are in good agreement with literature values of the same composition30,71,169. 

6.1.2 Crossover in the waiting time distribution 

J.O. Krisponeit et al., reported a crossover of the waiting time distribution generated by a 

Pd77.5Cu6Si16.5 ribbon subjected to a creep measurement with experimental conditions 𝜎 =15 

MPa, 
T

Tg
= 0.95 30. The exponent of the power law distribution was shown to change from 𝜏1 =

−1.5 ± 0.2 for waiting times measured at experimental times 𝑡 < 100 min to 𝜏2 = −0.8 ± 0.2 in 

the case of waiting times measured at 𝑡 > 100 min. Such crossover was associated to a transition 

in the underlying deformation mechanism from a deformation regime governed by uncorrelated 3-

dimensional stress-driven plastic events to a regime in which the deformation is mainly carried out 

by the thermal assisted collective activation of nano-shear bands in 2 dimensions. 

The stress-temperature map shown in Figure 5.5 shows the existence of the crossover for a wide 

range of temperatures and stresses. Moreover, it can be seen that the time 𝑡𝑐𝑟𝑜𝑠𝑠 at which such 

crossover takes place increases as both applied stress and temperature increase. The functional 

dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 with stress and temperature was separately analyzed, and the results were 

shown in figure 5.8.  
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Additionally, following the method described in Section 4.1.2, the creep measurements were also 

analyzed from the point of view of the macroscopic strain rate. In that context, the creep curve can 

be divided into an initial transient characterized by high values of the strain rate 𝜀̇ and its time 

derivative 𝜀̈, and a subsequent pseudo-steady state, 𝑡𝜀̇ being the time at which such transition takes 

place. The clear correlation of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ shown in Figure 5.8. indicates a dependence of the 

avalanche regime on the overall strain rate35. 

The dependence of the avalanche regime on the driving rate has been analyzed in detail by K. 

Martens et al., in the framework of an elasto-plastic model for amorphous systems 154. By means of 

sweeping the driving rate in strain controlled simulations, it is shown by Liu et al., 154 that the critical 

exponents of the avalanches tend towards the mean field predictions as the driving rate is 

increased. In contrast, for low driving rates such exponents are clearly differentiated from the 

predicted by Mean Field theory as can be seen in Table 2.1 (a). In the case of strong driving, the 

recovering of Mean Field behavior was associated to suppression of strong mechanical correlations. 

Besides, M. Robbins et al., and Barrat et al., analyzed the effect of inertia and damping by tuning 

the damping parameter Γ in molecular dynamics simulations and elasto-plastic models 

respectively170,139. They demonstrated that inertia (controlled by Γ) has an impact in the critical 

exponents and promotes the emergence of events with a characteristic scale, which shows up as a 

hump in the power law distributions. Also in that context, T. Egami et al. showed by means of 

numerical analysis that avalanche behavior is promoted in fast quenched glasses compared to those 

obtained at lower cooling rates171. Such phenomenon was associated to the higher density of local 

minima on the fast quenched PEL.  

The dependence of the avalanche crossover on the macroscopic rate shown in Figure 5.8 is 

consistent with the interpretation of the crossover given by Krisponeit et al., 30 and the findings 

regarding driving rate effects given by Liu et al, and Salerno et al ,154,170. In particular, avalanches in 

the initial regime are highly inertial due to the high strain rate, and can therefore be well modelled 

in the mean field approximation, whereas the second regime corresponds to an overdamped 

scenario of thermally activated correlated events. The shift of 𝑡𝑐𝑟𝑜𝑠𝑠 towards higher times as either 

stress or temperature are increased can be understood in terms of the influence of both excitations 

on the PEL. Since temperature is a scalar quantity, its influence on the PEL consists in an isotropic 

reduction of all the energy barriers. On the other hand, mechanical stress induces an anisotropy in 

the system’s exploration of the PEL, which can be understood as an effective tilt of the energy 

barriers. Such tilt actually reduces the barriers along a certain direction, and increase them along 

their opposite ones. The difference between mechanical and thermal excitation is reflected in the 

different functional dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 with stress and temperature show in Figure 5.8. The 

increase of low energy barriers can be associated to the promotion of flow units in the glassy matrix, 

that were shown to increase upon heating by Wang et al.172. 

In contrast with the aforementioned strain controlled simulations154,139,170 the crossover in the 

creep experiments under discussion is not produced by a change on the driving rate. In the case of 

a stress-controlled creep experiments no external strain rate is imposed. In contrast, the sample is 

subjected to a constant load during the whole experiment. Thus, the change of strain rate 

characterized by 𝑡𝜀̇ should be a consequence of an internal process of the material. Such slowing 

down of the dynamics can be understood as an exhaustion of the low energy barriers in the PEL. At 

early stages of deformation, the system explores the PEL by hopping over the lowest energy 

barriers. Only after those low barriers have been all overcome, that regime is saturated and the 

system explores inherent states separated by higher effective energies, which corresponds to the 

second avalanching regime. The fact that 𝑡𝑐𝑟𝑜𝑠𝑠 increases both as the stress and temperature 
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increase is in good agreement with the previous interpretation in terms of the low energy barriers 

of the PEL.  

Finally, the evolution of 𝑡𝑐𝑟𝑜𝑠𝑠 as a function of temperature can be used to estimate an activation 

energy for the crossover assuming an Arrhenius relationship between 𝑡𝑐𝑟𝑜𝑠𝑠 and temperature: 

𝑡𝑐𝑟𝑜𝑠𝑠 = 𝑡𝑜𝑒
(−

𝐸𝐴
𝐾𝐵𝑇

)
. Figure 6.1 shows the evolution of the natural logarithm of 𝑡𝑐𝑟𝑜𝑠𝑠 as a function 

of 
𝑇𝑔

𝑇
. The evolution of log (𝑡𝑐𝑟𝑜𝑠𝑠) with respect to 

Tg

T
 suggests that the data can be divided between 

a low and high temperature regime corresponding to 
T

Tg
< 0.9 and 

T

Tg
> 0.9 respectively 

 

Figure 6.1 Natural logarithm of 𝑡𝑐𝑟𝑜𝑠𝑠 as a function of the 
Tg

T
 plotted in an Angell 

plot fashion. Dashed lines represent Least Squares fits calculated in the two regimes 
T

Tg
< 0.9 and 

T

Tg
> 0.9. 

 

The activation Energy calculated at low temperatures is 𝐸𝐴 (
T

Tg
< 0.9) = 0.47 ± 0.14 eV, whereas 

EA (
T

Tg
> 0.9) = 2 ± 0.2 eV. The activation energy for the crossover at lower temperatures is in 

good agreement with the value for activation energy measured by Schwabe et al. for damping in 

Pd77.5Cu6Si16.5 at temperatures 
T

Tg
< 0.9, (𝐸𝐴 ≈ 0.41 eV) 71 and the activation energy for the 

𝛽 −process found by for the same system by Hachenberg et al. (𝐸𝐴 ≈ 0.67 eV ) 173. Such good 

match suggests that these three independent experiments describe the same underlying 

mechanism, and that avalanches might be due to the interaction of 𝛽 −like events. On contrast, 

the higher activation energy found at temperatures approaching Tg seems to indicate an onset of 

activation of correlated processes (𝛼-processes), which could be related to avalanches involving a 

higher number of STZ´s. 
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6.1.3 The influence of stress and temperature on the waiting time 

distribution shape 

Besides the shift of the crossover that was discussed in the previous section, stress and temperature 

affect the waiting time power law distribution in different ways. Figure 6.1 (a) shows the waiting 

times power law distribution of the second regime (𝑡 > 𝑡𝑐𝑟𝑜𝑠𝑠) corresponding to creep 

measurements performed at 𝜎 = 8 MPa and several temperatures in the range 
𝑇

𝑇𝑔
= 0.85 − 0.94 

replotted from Figure 5.5. It can be seen that the exponential cut-off shifts to lower waiting times 

as the temperature is increased, and analogous results are found comparing experiments under 

different applied stresses. Intuitively, such shift can be understood as a consequence of the 

effective decrease of the energy barriers as the temperature is increased. Such effect make longer 

waiting times less likely to occur as temperature is raised. 

Figure 6.2(b) displays the waiting times distribution of the second regime, corresponding to creep 

measurements performed under several mechanical stresses at 
𝑇

𝑇𝑔
= 0.89, replotted as well from 

Figure 5.5. Figure 6.2(b) shows the development of a plateau or small hump previous to the 

exponential cut-off of the distributions as the mechanical stress is increased. The distortion of 

power law scaling was associated by Eurich et al 142 to the changes in cooperativity of the system. 

Thus, the slight distortion of the power-law shape shown in Figure 6.2 (b) might be due to the stress-

induced correlations. 

 

 

Figure 6.2 (a) Waiting time distribution yield upon creep measurements performed 

at 𝜎 = 8 MPa and T Tg
⁄ = 0.85, 0.89, 0.92 and 0.94. (b) Waiting time distribution 

obtained from creep measurements performed at T
Tg

⁄ = 0.89 and σ =

2, 8 and 12 MPa 
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6.1.4 Physical interpretation of the waiting times 

Due to limitation in the apparatus spatial resolution, the fine structure of a given waiting time 

cannot be resolved in terms of avalanche durations Δ𝑡AV and inter-events times Δ𝑡it , as was 

discussed in section 4.1.1 and schematically shown in Figure 4.2. For this reason, the interpretation 

of the waiting times in terms of classical avalanche parameters, such as size, duration, or inter-

event time has remained elusive.  

However, under suitable hypotheses it is possible to associate a given waiting time Δ𝑡 to typical 

avalanche magnitudes. More precisely, in the hypothetical case of high avalanche activity, it could 

be assumed that inter-events times are negligible. Instead, many avalanches would be being 

triggered through the sample and as a result there would be an almost continuous overlap of 

events. If such were the case, it could be inferred that Equation 4.1 would simplify as follows: 

 

Δ𝑡 =  ∑ Δ𝑡𝐴𝑉𝑖

𝑖

 ∑ Δ𝑡𝑖𝑡𝑗

𝑗

~ ∑ Δ𝑡𝐴𝑉𝑖

𝑖

                                                           (6.1) 

 

In that situation, in which only avalanche durations contribute to the waiting time Δ𝑡, one could 

define, through a coarse grain transformation 174, an effective avalanche of 15 nm and the waiting 

time would be equivalent to the duration of such avalanche ∆𝑡 → ∆𝑡𝐴𝑉. 

On the other hand, if a regime in which avalanches are scarce is assumed, the contribution from 

inter-event times would be dominant within a given waiting time. Moreover, even if some 

avalanches take place, their total duration must be negligible compared to the total quiet or inter-

event time. In such scenario, Equation 4.1 could be approximated by the following expression: 

 

Δ𝑡 =  ∑ Δ𝑡𝐴𝑉𝑖

𝑖

 ∑ Δ𝑡𝑖𝑡𝑗

𝑗

~ ∑ Δ𝑡𝑖𝑡𝑗

𝑗

                                                             (6.2) 

 

In that case, a given waiting time would be mainly composed by the superposition of several inter-

event times, and Δ𝑡 →  Δ𝑡𝑖𝑡. 

The critical exponent predicted by mean field theories for avalanches duration scaling 

𝑃(Δ𝑇𝐴𝑉)~Δ𝑇𝐴𝑉
−𝜏 is 𝜏 = −2 31, whereas elasto-plastic models predict 𝜏 = −1.424. On the other 

hand it was found that inter-event times in earthquake activity exhibit a crossover from a power 

law scaling with exponent 𝜏 = −2.4 to 𝜏 = −0.9 136. Besides, as pointed out by Salje et al 145 a 

measured exponent may be the consequence of several underlying processes and therefore some 

exponent mixing is expected in real experiments. In this context, measured exponents before the 

crossover 𝜏1~ − 1.5 are compatible with a superposition of mean field avalanches and few inter-

event times in which avalanches are dominant. The scaling shown in the second regime 𝜏2~ − 0.8 

is much closer to the measured earthquakes inter-event times, which suggest that avalanches are 

scarcer in such regime. The approximations illustrated in Equations (6.1),(6.2) are then compatible 
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with the interpretation given by Krisponeit et al30 of a transition from mean field stress-driven 

plastic events to the thermal assisted collective activation of nano-shear bands. 
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6.2 Creep deformation in magnetic metallic 

glasses 

6.2.1 Characterization of sample properties 

Creep experiments performed in magnetic metallic glasses were carried out in Fe-rich 2605SA1 

ribbons from Metglas Inc. exhibiting positive magnetostriction with saturation magnetostriction 

𝜆𝑆 = 27 x 10−6 167,175. 

The structure of the ribbons was checked before and after the creep measurements by XRD scans. 

Figure 5.13 shows diffraction patterns under different loading conditions, and it can be appreciated 

that the structure remained amorphous in every case. EDX spectrum reveals the composition of the 

sample which is 80% Fe. It must be noted that light atoms cannot be accurately detected by 

dispersed X-rays. However a small percentage of Boron is expected according to the manufacturer 

technical bulleting 167. 

Samples have been magnetically characterized by means of VSM measurements, which yield a Curie 

temperature Tc = 672 K in good agreement with literature and Metglas Inc. technical bulletin 167. 

Most of the creep measurements were performed at T = 553 K, a temperature high enough to 

observe substantial creep deformation at the available stress range, but yet remaining in the 

ferromagnetic phase, which was checked by means of VSM measurements with oven mode shown 

in Figure 5.12 (b). Young modulus E was estimated from the slope of stress-strain measurements 

performed at room temperature to be E = 105 ± 10 GPa, in good agreement with Metglas 

technical bulleting specification167. 

DSC scans provided a precise measure for the crystallization and Curie temperature in good 

agreement with the company technical data, but no clear signature of the glass transition could be 

appreciated. Therefore, Tg was estimated by means of temperature scans under different uniaxial 

stresses in the DMA. This way, Tg is estimated as the temperature in which the slope 
∂ε

∂T
 significantly 

deviates from linear behavior. The glass transition temperature was approximated by the 

temperature at which 
∂ε

∂T
 deviated from linearity subjected to the lowest mechanical stress 

Tg~Tg(𝜎 = 2 MPa) = 685 ± 5 𝐾. 
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6.2.2 The influence of stress and temperature on creep deformation 

Figures 5.15 and 5.19 show the existence of a crossover in the distribution of waiting times yield 

during creep measurements of 2605SA1 under different conditions of stress and temperature. The 

exponents of the waiting times corresponding to the first (𝑡 < 𝑡𝑐𝑟𝑜𝑠𝑠) and second (𝑡 > 𝑡𝑐𝑟𝑜𝑠𝑠) 

regimes oscillate around values compatible with 𝜏1 = −1.5, 𝜏2 = −0.8 within error bars, in analogy 

with the results found in Pd77.5Cu6Si16.5. Moreover, figures 5.16 and 5.20 (a) show that 𝑡𝑐𝑟𝑜𝑠𝑠 

increases as both stress and temperature increase, but exhibits a different functional dependence 

with each of them as it was the case in Pd77.5Cu6Si16.5 experiments.  

Additionally, figures 5.16 and Figure 5.20 (a) demonstrate the correlation between the avalanche 

regime and strain rate by showing the similar evolution of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with temperature and stress 

respectively. There is a qualitative match between both figures of merit, which is also quantitative 

in the case of the stress dependence shown in Figure 5.20 (a). The aforementioned results suggest 

that the strain-rate dependent crossover in the creep deformation regime discussed in section 6.1 

is not a specific feature of Pd77.5Cu6Si16.5 but is rather a common feature of metallic glasses. 

In addition, the dispersion of effective energy barriers quantified by 𝑊 provides an estimation of 

the heterogeneity of the PEL, which has been associated to the fragility of the system72, enthalpy 

storage and mechanical softening67. The ability of the experimental parameter 𝑊 to depict the 

fragile-to-strong transition upon mechanical yielding shown in simulations72 is discussed in 

Appendix B. 

Figures 5.17(d) and 5.20(b) show the evolution of 𝑊 with temperature and stress for constant 

stress and temperature respectively. It can be seen that 𝑊 increases as both temperature and 

stress are ramped with analogous functional dependence as 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇. This fact suggests a 

correlation between the avalanche regime and the dynamical heterogeneities, being the duration 

of the first avalanching regime proportional to the heterogeneity degree or fragility. 

Remarkably, values of 𝑡𝑐𝑟𝑜𝑠𝑠 in the case of Fe-rich 2605SA1, are roughly two orders of magnitude 

smaller than for Pd77.5Cu6Si16.5, measured in similar conditions in terms of 
𝜎

𝐸
,

T

Tg
. Taking into 

account that the first avalanche regime was associated in Section 6.1.2 to the overcome of low 

energy barriers, such result suggests that the PEL of the Fe-rich alloy has smaller density of low 

energy minima. That possibility is further supported by DSC scans of both alloys. Pd77.5Cu6Si16.5 

samples exhibit a clear enthalpy hump previous to crystallization in contrast with the Fe-rich alloy. 

Since enthalpy storage has been associated to elastic heterogeneities and shallow minima in the 

PEL67, the comparison between calorimetric and avalanche dynamics experiments supports the 

picture of the initial avalanche regime being enhanced by elastic heterogeneities. 
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6.2.3 The influence of the magnetic field on creep deformation 

In order to interpret the influence of the magnetic field on the mechanical deformation during 

creep tests, the impact of both mechanic and magnetic driving on the magnetic domain structure 

and domain wall motion should be taken into account. Due to the preparation technique and shape, 

as-cast 2605SA ribbons exhibit a longitudinal anisotropy 𝐾𝑢 which results in a pattern of 

longitudinal domains along the length axes176. In the case of an alloy with positive magnetostriction, 

such anisotropy is further increased when a stress is applied along the ribbon length axes103. In this 

scenario, a magnetic field applied along any other direction would induce a rotation of the domains 

with an angle which results from a balance between the anisotropy and the magnetostatic energy 

in the minimization of the free energy. Such interplay between the anisotropy and bias field can be 

quantified by an anisotropy field 𝐻𝐴, which represents the field required to saturate the sample 

along a certain direction: 

 

sin(𝛼) =
𝐻

𝐻𝐴
  (𝐻 ≤ 𝐻𝐴)                                                                         (6.3) 

 

where 𝛼 represents the angle of magnetization rotation with respect to the longitudinal direction 

and 𝐻 the applied field. A detailed analysis of the magnetic domain configuration and its 

dependence on the mechanical stress and magnetic field in creep and stress-strain experiments is 

given in Appendix C. Following the results shown in there, the anisotropy field is given by: 

 

𝐻𝐴𝜎 =
2𝐾𝑢 + 3𝜆𝑆𝜎

𝑀𝑠
                                                                              (6.4) 

 

where 𝐾𝑢 represents the longitudinal anisotropy, 𝜆𝑆 the saturation magnetostriction, 𝑀𝑠 the 

saturation magnetization and 𝜎 the mechanical stress. 

Subsection 5.2.5 focuses on the analysis of the influence of the intensity of magnetic field applied 

along the width direction (𝜃 = 0, 𝜙 = 0) on the creep deformation measured at 
𝑇

𝑇𝑔
= 0.8 under 

two different mechanical loads 𝜎 = 15, 25 MPa. As shown in Equation (6.4), the anisotropy field 

increases with the stress for 𝜆𝑆 > 0 alloys. It then follows that domain wall rotation angles 𝛼 

induced during creep measurements at 𝜎 = 15 MPa should be larger than those achieved at 𝜎 =

25 MPa. 

The measurements done at 𝜎 = 15 MPa yield a maximum of the three figures of merit 𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇ , 𝑊 

corresponding to an applied field 𝐻 = 350 Oe. The evolution of the three figures of merit as a 

function of field intensity are replotted from figures 5.2.3 and 5.2.6 in figure 6.2 for the reader 

convenience. Such result suggests the existence of a given domain wall orientation 𝛼𝑐 in which the 

inertial avalanche regime and dynamic heterogeneities are maximized. In contrast, measurements 

performed at higher stress 𝜎 = 25 MPa show no maximum of the three figures of merit, but instead 

a monotonic increase of all three as a function of field intensity. Such behavior in turn suggests that 
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the range of field intensities is not enough to achieve the preferred domain orientation 𝛼𝑐 at 𝜎 =

25 MPa. 

 

 

Figure 6.3 (a) Evolution of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ as a function of magnetic field intensity 

calculated from creep measurements of 2605SA1 measured at 𝜎 = 15 MPa, 
T

Tg
=

0.8. (b) Evolution of 𝑊as a function of magnetic field intensity calculated from 

creep measurements of 2605SA1 measured at 𝜎 = 15 MPa, 
T

Tg
= 0.8. (c) Evolution 

of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ as a function of magnetic field intensity calculated from creep 

measurements of 2605SA1 measured at 𝜎 = 25 MPa, 
T

Tg
= 0.8. (d) Evolution of 𝑊 

as a function of magnetic field intensity calculated from creep measurements of 

2605SA1 measured at 𝜎 = 25 MPa, 
T

Tg
= 0.8. 

 

The analysis of the influence of the azimuthal angle 𝜃 on the creep deformation for a constant field 

intensity shown in Figure 5.30 reveals a decrease of the magnitude of the three figures of merit as 

the angle 𝜃 is increased. An increase of 𝜃 implies a rotation of the applied field towards the out-of-

plane orientation. As the bias field moves towards an out-of-plane orientation, the susceptibility 

dramatically decreases as shown in the hysteresis loop in Figure 5.12 and so does the magnetic field 

influence on the domain structure. Therefore, the effect of increasing 𝜃 is the recovering of the 

longitudinal arrangement of magnetic domains.  

In subsection 5.26 the influence of the polar angle 𝜙 on the creep deformation was analyzed. 

Despite some variability on the data, a decrease of 𝑡𝑐𝑟𝑜𝑠𝑠 can be seen as the magnetic field is aligned 
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towards the longitudinal direction (𝜙 = −90, 90). Remarkably, maximum values of 𝑡𝑐𝑟𝑜𝑠𝑠 are 

obtained at angles in the surroundings of 𝜙 = −45, 45. Such maxima are especially sharp in the 

case of 𝑊 in which two peaks at 𝜙 = −45, +60 degrees can be clearly seen. The evolution of 

𝑡𝑐𝑟𝑜𝑠𝑠, 𝑡𝜀̇  and 𝑊 as function of the angle 𝜙 is replotted from Figure 5.32 in Figure 6.3 for the reader 

convenience. 

 

 
Figure 6.4 (a) Dependence of 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑡𝜀̇ with the angle 𝜙 for creep experiments performed on 

2605SA1 at 
T

Tg
= 0.8, 𝜎 = 15 MPa |𝐻⃗⃗⃗| = 120 Oe. (b) 𝑊 as a function of the angle 𝜙 for creep 

experiments performed on 2605SA1 
T

Tg
= 0.8, 𝜎 = 15 MPa |𝐻⃗⃗⃗| = 120 Oe. 

 

The influence of both |𝐻⃗⃗⃗| and 𝜙 on the avalanches (𝑡𝑐𝑟𝑜𝑠𝑠) and heterogeneities (𝑊) reveals the 

complexity of the magneto-mechanical coupling. In particular, the non-monotonic dependence of 

both 𝑡𝑐𝑟𝑜𝑠𝑠 and 𝑊 with respect to |𝐻⃗⃗⃗| and 𝜙 suggests a non-linear coupling between the magnetic 

and mechanical subsystems and the existence of a certain domain wall orientation 𝛼c which 

maximizes the initial avalanche regime and the heterogeneities degree. Furthermore, Figure 6.3 (b) 

reveals a symmetric behavior of 𝑊(𝜙) which implies that is the direction of domain 

walls with respect to the tensile stress, and not their orientation, what more substantially affects 

the avalanche regime. 

The coupling between the avalanche regime and the magnetization can be interpreted in terms of 

an interplay between Shear Transformation Zones and domain walls through magneto-elastic 

coupling. Under tensile loading, STZs are known to preferentially align along a roughly 45° with 

respect to the maximum stress component due to their Eshelby field interaction23,177. On the other 

hand, as discussed in Chapter 2, magnetostriction is a local phenomenon, which influences the local 

environment inducing a local anisotropy around the magnetic atoms106,107. If domain walls are 

oriented parallel to the STZ preferential alignment direction (~ ± 45° under tensile loading), 

cascades of STZs can be triggered while keeping stress and magnetic field parallel along the domain 

wall. Thus, such an arrangement would be the most favorable for the STZ operation, which is in 

agreement with the experimental results. A schematic description of such orientation of domain 

walls with respect to STZs is illustrated in Figure 6.5. 
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Figure 6.5 Schematic illustration of the relative orientation of the STZ stress field 
( 𝜎⃗ ) and the magnetization vector ( m⃗⃗⃗⃗ ) in a domain wall oriented 45° respect the 
longitudinal axis. Dashed lines represent domain walls and red and green arrows 
indicate the STZ stress field and magnetization vector respectively.  
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6.3 Magnetoelastic coupling in stress-strain 

measurements 

In addition to creep experiments, the effect of the magnetomechanical coupling in the deformation 

has been studied in stress-strain tests. The motivation for these experiments is double. On the one 

hand stress-strain tests allows to measure deformation at room temperature, a regime in which 

creep is negligible. Since magnetic order is inversely proportional to temperature, magneto-

mechanical effects are expected to be maximized in such regime. On the other hand, in contrast to 

creep experiments, during stress controlled stress-strain tests the stress is constantly increased at 

a given stress rate 𝜎̇. Taking into account Equation 6.4, that means that the effective anisotropy is 

constantly modified through the magnetostriction term 3𝜆𝑆𝜎, which translates into magnetization 

rotation during the experiment. Thus, stress-strain tests provide the opportunity to analyze the 

effect of domain rotations on the mechanical properties. In order to analyze the role played by the 

magnetostriction, all the experiments were performed on both Fe-rich 2605SA1 167 and Co-rich 

Fe2Co73Si10B15 ribbons, exhibiting the former positive magnetostriction 𝜆𝑆 = 27 x 10−6 and the 

latter vanishing magnetostriction in its unstressed state109,108. 

Figure 5.36 displays the global effect of the magnetic field on the mechanical behavior by means of 

the analysis of the macroscopic Young Modulus E of both samples under different applied magnetic 

fields. In both alloys, E does not vary significantly as a consequence of a magnetic field oriented 

along the out-of-plane direction (𝜃 = 90). Such small influence is expected from the shape of the 

hysteresis loops shown in Figures 5.12 (a) and 5.32 which show that both alloys undergo negligible 

magnetization along the out of plane direction for the available field intensity range. 

On the other hand, the impact of a magnetic field oriented along the width of the ribbon (𝜃 = 0) 

on the mechanical response of the samples can be interpreted in terms of the rotation of the 

magnetic domains of a magnetostrictive material, which give rise to the so called 𝛥𝐸-effect110. More 

precisely, as domains rotate, they exert an extra strain whose sign depends on the sign of the 

magnetostriction 𝜆𝑆, which may induce a significant change in 𝐸. Such effect has been typically 

described by the addition of an extra strain contribution as depicted by equation 6.5, shown 

below14: 

 

𝐸 =
𝜎

𝜀𝑒 + 𝜀𝜆
                                                                                (6.5) 

 

Where 𝜀𝑒represents the normal elastic strain and 𝜀𝜆 the magnetostrictive strain arising from the 

domains. As discussed in the previous subsection and Appendix C, the domain orientation is a result 

of a balance between the anisotropy and the applied field, which is described by equation 6.3. 

However, in the case of a stress-strain experiment, the effective anisotropy 2𝐾𝑢 + 3𝜆𝑆𝜎 changes 

continuously due to the imposed stress rate 𝜎̇. That change of stress induces a magnetization 

rotation during the experiment, in contrast with the static domain configuration that takes place 

during creep measurements.  
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The evolution of the Young modulus as a function of the applied field in the Fe-rich alloy can be 

understood as follows: for small fields (𝐻 < 200) no significant rotation is induced in the magnetic 

domains, which remain parallel to the length orientation, and therefore the elastic modulus 

remains unaffected and similar to literature values167. As a field of moderate intensity 

(200 < 𝐻 > 900 Oe) is applied, the magnetization initially rotates by a given angle 𝛼. The sample 

magnetization rotates back throughout the experiment as the stress is increased and so does the 

anisotropy term (2𝐾𝑢 + 3𝜆𝑆𝜎). Through that rotation, the magnetic domains contribute with an 

extra magnetostrictive strain 𝜀𝜆 which reduces the effective quasi-static Young modulus as shown 

in equation (6.5). Once a certain stress 𝜎𝐾 is applied, whose value increase with 𝐻, the 

magnetization is fully returned to the longitudinal direction and the Young modulus recovers its 

demagnetized value. Finally, in the case of the highest magnetic field (𝐻 = 900 Oe) no decrease of 

𝐸 can be seen. Such result can be associated to a fully saturation of the sample along the width 

axes and the incapability of the applied stress to induce any rotation. 

Co-rich alloys exhibit vanishing 𝜆𝑆 in their unstressed state, but are known to increase their 

magnetostriction modulus towards negative values under uniaxial stresses178. This is due to the fact 

that both one ion and two ion components of magnetostriction exhibit different values of their 

stress derivatives. Therefore although they compensate each other in the unstrained state that 

compensantion does not hold under stress178. That means that these alloys can be expected to 

exhibit a small negative magnetostriction during the stress-strain test. Hence, the anisotropy term 

represented by Equation (6.3) is reduced as the stress increases, which implies that the magnetic 

domains tend to rotate from the longitudinal towards the perpendicular direction as stress 

increases. Through such rotation, the magnitude of the negative strain exerted by the domains 

along the longitudinal direction is reduced, and therefore the Young modulus is reduced as well. In 

contrast to 𝜆𝑆 > 0 alloys, if a magnetic field is applied perpendicular to the stress, the magnetic and 

the magnetostrictive energy contributions do not compete with each other and both tend to align 

the magnetization along the direction perpendicular to the stress. Thus, 𝐸 would be reduced as 

long as neither the stress nor magnetic field are high enough to saturate the magnetization along 

the perpendicular orientation with respect to the tensile stress.  

The data shown in Figure 5.46 (a) are in good agreement with the interpretation given above. It can 

be seen therein that the macroscopic Young modulus of the Co-rich sample increases when a field 

𝐻 > 200 Oe is applied along the direction 𝜃 = 0. That condition corresponds to the field required 

to saturate the magnetization along the width axes. In the remaining cases, it can be concluded that 

domain rotation reduces 𝐸 by providing a contribution that vanishes as soon as a field sufficiently 

intense to saturate the magnetization is applied, which turns out to be 𝐻 > 200 in this case. 

The effect of the magnetic field can also be analyzed from the point of view of the fine structure of 

the data. Figure 5.37 shows the distribution of the normalized modulus 𝐸̂ =
𝐸𝑚𝑎𝑐𝑟𝑜

𝐸𝑒𝑓𝑓(𝑡)
. It is important 

to highlight that the definition of 𝐸𝑒𝑓𝑓(𝑡) given in Chapter 4, do not consist in linearizing the stress-

strain curve and claim that the actual deformation behavior of the sample is purely elastic at any 

given time. Instead, 𝐸𝑒𝑓𝑓(𝑡) is defined according to the fine structure of the data. The effective 

modulus includes the contribution of all the elastic, anelastic and plastic deformation events that 

may occur in the vicinity of a time 𝑡 and cannot be told apart due to limits in the actual experimental 

resolution. Those elastic and plastic events would contribute to the storage and loss modulus, if 

measured with an oscillatory force and with a resolution high enough to accurately keep track of 

small phase angles between strain and stress179. 
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As mentioned in Chapter 4, the value of 𝐸̂ is proportional to the strain carried out by the avalanches 

when 𝐸̂ > 1. Due to technical constrains the minimum detectable modulus, for the size of the 

studied samples, is roughly 𝐸𝑒𝑓𝑓~5 GPa. This limitation implies that the maximum measurable 

values of the normalized modulus are restricted to 𝐸̂~102, which hinders the assertion of precise 

functional patterns in the data. In addition, since the experiments were performed within the so-

called elastic regime, only few, small-size avalanches are expected to occur, leading to limited 

statistics that also contribute to the narrow range of scaling, which can be appreciated in Figure 

5.37. 

The analysis of the dependence on the magnetic field of the effective modulus reveals a difference 

between the Fe-rich and Co-rich alloys. On Figure 5.37(a) it can be observed a very good collapse 

of the 𝑃(𝐸̂) for all the experimental conditions in the Co-rich alloy. The data show a peak centered 

in 𝐸̂ = 1 which corresponds to an effective modulus that matches the global macroscopic one, a 

feature to be expected in the linear region. The symmetric width around the peak can be associated 

to heterogeneities in the mechanical properties, but also to the contribution of some inevitable 

noise in the measurement. Finally, the asymmetric tail at values 𝐸̂ > 1 can be associated to the 

occurrence of few strain bursts or avalanche processes. It should be highlighted that the collapse 

holds for all the experimental conditions in this alloy, including those that shown a significant 

change of 𝐸. This fact suggests that the superposition principle between mechanical and magnetic 

energy holds for all the intensities and orientations of magnetic field in this alloy with vanishing 

magnetostriction. 

Figure 5.37(b) represents the data for the Fe-rich alloy, which shows a remarkable difference when 

compared to Figure 5.37(a). Although the vast majority of the data can be collapsed in a curve 

similar to the previous one, few data clearly deviates from such collapse. Non-collapsing data 

correspond with those experimental conditions in which a drop of the macroscopic modulus take 

place. In such cases the probability distribution of 𝐸̂ separates from the symmetric shape and shows 

a small region of roughly power law decay, which can be appreciated in Figure 5.37 (b) inset. Whilst 

the limited accessible range of 𝐸̂ prevents robust affirmation about a power law distribution and 

its specific exponent, it is clear that the magnetic field causes the collapse breakdown. Physically, 

this implies that the magnetic and mechanical energies are added in a non-linear way through the 

magnetoelastic coupling. Moreover, in those cases the probability of 𝐸̂ > 1 is much higher than for 

the rest of the collapsed data, a fact which reflects an enhancement of avalanching activity. Those 

events are not uniformly distributed over the whole range of applied stresses. It can be seen in 

Figure 5.38 that stress-strain curves of the Fe-rich sample measured under the condition 

(200 < 𝐻 > 900 Oe) exhibit two different slopes separated by a kink located at 𝜎 = 𝜎𝐾. The 

analysis of the distribution of effective modulus separated in two regimes 𝜎 < 𝜎𝐾 and 𝜎 > 𝜎𝐾, 

shown in Figure 5.38 (b), reveals a predominance of smaller effective modulus 𝐸𝑒𝑓𝑓, and therefore 

of higher renormalized modulus 𝐸̂, in the initial regime 𝜎 < 𝜎𝐾. As previously argued, the first 

regime is characterized by the rotation of the magnetostrictive domains towards the stress 

direction. Hence, it can be concluded that mechanical avalanches are promoted by the rotation of 

the magnetic walls. 

In conclusion, it has been shown that the magnetization affects the instantaneous mechanical 

response in magnetostrictive metallic glasses, by increasing the number of big avalanches as the 

magnetic walls rotate towards the applied stress orientation. In those cases, there is a breakdown 

of the collapse and the data seems to show a power law –like decay. It is worth to highlight that a 

linear softening of the sample would not have any impact of the 𝐸̂ distribution. Therefore, the 



132 
 

breakdown of the collapse can be associated to a non-linear addition of the magnetic energy on 

top of the mechanical energy168.  
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7 Conclusions and outlook 

7.1 Conclusions 

The scope of this work is the study of deformation processes in metallic glasses by means of a 

statistical analysis of the intermittency in the deformation signal. In particular, this work can be 

divided into three parts: i) Study of avalanches produced during creep deformation of 

Pd77.5Cu6Si16.5 under different mechanical stresses and temperatures, ii) Analysis of avalanches 

during creep deformation of magnetostrictive Fe-rich 2605SA1 ribbons under magnetic driving, and 

iii) Deformation study of Fe-rich and Co-rich alloys subjected to tensile stress-strains tests under 

different magnetic excitation. The main results obtained on such issues are shortly summarized 

below. 

Firstly, the analysis of a broad set of creep tests performed on Pd77.5Cu6Si16.5 ribbons allows to 

conclude that the crossover observed by Krisponeit et al.30 takes place over a wide range of stresses 

and temperatures. Moreover, comparison with the average strain rate suggests an intimate relation 

between avalanche regimes and strain rate35. The initial avalanche regime would be governed by 

fast triggering of STZs cascades which would produce inertial avalanches. Upon exhaustion of the 

first regime, a second stage develops associated to the formation of 2D correlated nano-shear 

bands. Several theoretical works154,141 point out that mean field descriptions successfully described 

avalanches under high rate driving, or in an underdamped state, whereas that approach fails as 

soon as inertia becomes negligible. According to such view, interactions among STZs in the first 

regime could be better described by a mean field approach, whereas 2D nano-shear bands after 

the crossover would not be consistent with a mean field approximation. Finally, the slowing down 

of the dynamics can be associated to a thorough exploration of the Potential Energy Landscape 

(PEL). More precisely, the system overcomes low energy barriers at the beginning of the creep 

experiment, which results in fast deformation rates. Higher energy barriers are explored only when 

the lower ones have been exhausted, thus yielding lower deformation rates. 

A crossover in the waiting times statistics is also observed in creep tests performed on a 

magnetostrictive Fe-rich metallic glass. Similar exponents and dependencies of the crossover with 

respect to the stress and temperature as those found for Pd77.5Cu6Si16.5 point towards a universal 

transition in metallic glasses exposed to creep deformation. In this sense, the shorter inertial regime 

in the Fe-rich alloy compared with Pd77.5Cu6Si16.5 can be attributed to a lower density of minima 

in the Fe-alloy PEL. Experiments combining stress, temperature, and magnetic driving yield 
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evidence of the influence of the magnetic excitation on the avalanche dynamics. In particular, 

experiments with varying intensity and polar angle 𝜙 suggest the enhancement of the mean field 

avalanching regime and dynamic heterogeneities in the PEL by a certain domain wall orientation 

𝛼𝐶. Although experimental constraints hamper precise estimates of 𝛼𝐶, the results obtained are 

compatible with the value 𝛼𝐶~45° with respect to the applied uniaxial stress. Such experimental 

result can be interpreted in terms of a magnetically induced anisotropic modification of local yield 

stresses around magnetic atoms. Such anisotropy would facilitate the STZ triggering along a certain 

axis determined by the magnetization. Thus, the condition to maximize the coupling between the 

stress field generated by an STZ and the magnetization is accomplished if domain walls are oriented 

parallel to the STZ preferential alignment (~ ± 45° under tensile loading). In that scenario, the 

stress field generated by cascades of STZ´s is parallel to the magnetization along the domain wall. 

The last part of this memoir focuses on the analysis of stress-strain tests of Fe-rich and Co-rich 

magnetic alloys under magnetic driving. In contrast with creep experiments, rotation of domains is 

expected to occur during the tests due to the imposed stress rate 𝜎̇. In this case, the change in the 

macroscopic Young modulus as a function of the applied field can be understood as a consequence 

of rotations of the domain walls of magnetostrictive magnetic domains. In this context, the Fe-rich 

magnetic alloy is known to exhibit positive high magnetostriction, whereas the Co-alloy exhibits 

small negative magnetostriction under uniaxial stress. Analysis of the data fine structure reveals a 

difference between the behavior of both alloys. On the one hand, the collapse of the normalized 

modulus 𝐸̂ for every experimental condition in the Co-rich alloy suggests that a superposition 

principle between magnetic and mechanic energies holds in all cases. On the other hand, a 

promotion of periods of high activity associated to 𝐸̂ > 1 is observed in the Fe-rich alloy under the 

application of certain magnetic fields which induce domain rotations. As a consequence, the 

distribution of normalized modulus departs from the collapsed shape through the addition of a 

power law tail. Such fact reveals the non-linear addition of magnetic and mechanical energies. 

In conclusion, this work provides experimental evidence of the existence of a crossover on the 

waiting time distribution during creep deformation in several glassy systems. Such crossover is 

associated to the average strain rate and is determined by the density of shallow minima in the PEL. 

Furthermore, the influence of magnetic excitation on avalanche dynamics is studied in two 

magnetic glasses under two different protocols. Analysis of creep measurements and stress-strain 

tests under magnetic fields allows to distinguish two different contributions of the 

magnetomechanical coupling. First, creep measurements permit to investigate the dependence of 

the orientation of domain walls with respect to the applied stress. The results in this regard hint at 

the existence of a certain domain wall orientation 𝛼𝐶~45° which maximizes the impact on the 

deformation. Second, stress-strain tests allow to study the influence of wall rotations on the 

mechanical response. Such process promotes bursts of deformation which show up as a breakdown 

of the normalized modulus collapse. To conclude, both analyses reveal the complexity of the 

magneto-mechanical coupling, in which non-linear and orientational effects appear to play a big 

role. 
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7.2 Outlook 

The experimental results discussed in this memoir show the complex mechanisms governing the 

magneto-mechanical coupling, which include non-linear and orientational effects. These results call 

for further experiments to provide a deeper insight into the microscopical origin of such coupling. 

Some personal suggestions for future research pathways are listed below. 

As discussed in section 6.2 the orientation of magnetic domain walls with respect to the applied 

stress seems to play an important role in the magnetomechanical effect on the mechanical 

avalanches. Therefore, it would be of great interest to measure avalanches on samples with 

engineered domain patterns and orientation. Domain tailoring in metallic glasses can be performed 

by means of thermal annealing under stress and magnetic fields 180,181,182. Thus, the role played by 

domain wall orientation could be accurately analyzed by means of appropriately treated samples. 

Another interesting fact that deserves further attention is the local effect of magnetostriction on 

the mechanical environment of magnetic atoms and its influence on the STZ operation. Given the 

difficulty of resolving atomic positions in deformation experiments on metallic glasses, Molecular 

Dynamics simulations might assist in this regard. On the other hand, both single STZs and 

percolation of STZs ensembles were successfully observed by confocal microscopy in deformation 

experiments on colloidal glasses87. The influence of magnetic fields on local shearing events could 

be monitored if similar experiments could be done involving magnetically-coated spheres under 

the application of an external bias field, for example, by means of an electromagnet. Such 

experiments would allow for direct observation of the effect of a magnetic field on STZ interactions. 

Also, time scales of magnetomechanical effects that were discussed in terms of rotation and 

orientation of magnetic walls might be analyzed by means of ultrasound measurements of Young 

modulus under magnetic driving. In contrast with the experiments shown through his memoir, 

ultrasound experiments, at high enough frequencies, only probe fast processes. Such experiments 

may help to separate the influence of the magnetomechanical coupling in slow (𝛼) and fast (𝛽) 

relaxations.  

More generally, to achieve a better understanding of the magnetomechanical coupling effect on 

avalanches, it would be advisable to perform deformation experiments with higher resolution. 

Although waiting time analysis has demonstrated its utility for the description of avalanching 

processes, the limited DMA-7 resolution constrains the intermittency to be described by a single 

parameter (i.e., the waiting time duration). In contrast, more sensitive methods like acoustic 

emission measurements147,183 could characterize avalanches with more detail, thus permitting to 

quantify sizes, duration and shape profiles. Such complete description would allow for avalanche 

characterization beyond power law exponents, which is believed to yield a more complete picture 

of the underlying process132. Besides, acoustic emission experiments can be done using several 

transducers placed at different sample locations. That would allow to investigate the localization of 

avalanches. 

Finally, although mechanical and magnetic avalanche events have been shown to be simultaneously 

triggered in numerical simulations155, a synchronous analysis of both mechanical and magnetic 

phenomena has never been experimentally carried out. Such experimental set-up would be 

technologically challenging, given the difficulty to reach high accuracy on both mechanical and 
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magnetic measurements at the same time. However, if a Kerr-effect microscope and a high 

precision DMA could be combined without resolution loss in each device, it should be possible to 

monitor deformation avalanches, Barkhausen noise and domain structure at the same time. It is 

likely that such experiment would significantly improve the understanding of magneto-mechanical 

coupling in metallic glasses and its influence on the underlying avalanche dynamics. 
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Appendix A. Influence of parameters 𝜶𝟏, 𝜶𝟐 on 𝒕𝜺̇ 

 

The procedure to define the crossover according to the average strain rate was introduced in 

Section 4.1.2. 𝑡𝜀̇ is computed as the experimental time which fulfils the condition (4.1), which is 

rewritten below: 

 

𝑡𝜀̇ = 𝑚𝑖𝑛(𝑡)             such that        𝜀(𝑡) <  𝛼 𝜀𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒                                      (A. 1) 

 

Making use of condition (A.1) with two parameters: 𝛼1, 𝛼2 two experimental times are 

obtained𝑡𝛼1
, 𝑡𝛼2

. The crossover time 𝑡𝜀̇ is then calculated as the average of 𝑡𝛼1
and 𝑡𝛼2

, and the 

upper and lower limits of the error bar are estimated from 𝑡𝛼1
 and 𝑡𝛼2

 respectively. 

The results shown in this memoir are calculated using the values 𝛼1 = 20, 𝛼2 = 10. This appendix 

is devoted to the study of the influence of the parameters 𝛼1, 𝛼2 on the estimation of 𝑡𝜀̇. Figure A.1 

below shows the crossover time 𝑡𝜀̇ calculated from the creep measurements of 2605SA1 at 

constant temperatures and several stresses making use three different sets of parameters: 

(𝛼1 = 10, 𝛼2 = 5) , (𝛼1 = 20, 𝛼2 = 10) and (𝛼1 = 40, 𝛼2 = 20) . 

 

 

Figure A.1 (a) Evolution of 𝑡𝜀̇ as function of stress calculated from creep 

measurements of 2605SA1 at 
𝑇

𝑇𝑔
= 0.8, calculated using (𝛼1 = 10, 𝛼2 = 5). (b) 

Evolution of 𝑡𝜀̇ as function of stress calculated from creep measurements of 

2605SA1 at 
𝑇

𝑇𝑔
= 0.8, calculated using (𝛼1 = 20, 𝛼2 = 10). (c) Evolution of 𝑡𝜀̇ as 

function of stress calculated from creep measurements of 2605SA1 at 
𝑇

𝑇𝑔
= 0.8, 

calculated using (𝛼1 = 40, 𝛼2 = 20) 
 

Figures A.1 (a), (b) and (c) show the evolution of 𝑡𝜀̇ as a function of stress calculated using the 

parameters (𝛼1 = 10, 𝛼2 = 5) , (𝛼1 = 20, 𝛼2 = 10) and (𝛼1 = 40, 𝛼2 = 20) respectively. Since 
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parameters 𝛼1, 𝛼2 define the threshold for the fulfillment of condition (4.1), 𝑡𝜀̇ values decrease as 

𝛼1, 𝛼2 increase. However, it can be seen that qualitatively the functional dependence of 𝑡𝜀̇ with 

stress does not depend on the choice of 𝛼1, 𝛼2. Such independence is highlighted in Figure A.2, 

which shows the evolution of normalized values of 𝑡𝜀̇ calculated using the three different sets of 

(𝛼1, 𝛼2) as a function of stress and temperature. From Figure A.2 it can be inferred that, although 

the specific value of 𝑡𝜀̇ depends on the choice of (𝛼1, 𝛼2) , the qualitative functional dependence 

of 𝑡𝜀̇ remains invariant under different thresholds. 

 

 

Figure A.2 (a) evolution of normalized 𝑡𝜀̇ as function of stress calculated from creep 

measurements of 2605SA1 at 
𝑇

𝑇𝑔
= 0.8, for different thresholds (𝛼1 = 10, 𝛼2 =

5), (𝛼1 = 20, 𝛼2 = 10) and (𝛼1 = 40, 𝛼2 = 20). (b) Evolution of normalized 𝑡𝜀̇ as 
function of temperature calculated from creep measurements of 2605SA1 at stress 
𝜎 = 15 MPa for different thresholds (𝛼1 = 10, 𝛼2 = 5), (𝛼1 = 20, 𝛼2 =
10) and (𝛼1 = 40, 𝛼2 = 20) 
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Appendix B. Evaluation of 𝑾 as fragility estimator 

 

The experiments described in this appendix were performed in order to test the fitness of 

parameter 𝑊 defined in Chapter 4, as an estimator of the heterogeneities in the PEL. The analysis 

presented herein attempts to check if the strain induced fragility transition observed by Yu et al., in 

Molecular Dynamics simulations 72 could be monitored measuring 𝑊 in creep experiments. 

As discussed in section 6.2, Tg in Fe-rich 2605SA1 glasses was estimated from the deviation of the 

slope 
𝜕𝜀

𝜕𝑇
 from linear behavior in temperature scans under uniaxial tensile mechanical stress, being 

the yielding temperature estimated as a function of the applied stress 𝜎. The analysis described in 

this appendix was performed on creep experiments measured under constant normalized 

temperatures 
T

Tg(σ)
, but with different ratios between mechanical and thermal excitation i.e., 

yielding temperatures reached at low stresses and high temperatures or at higher stresses and 

lower temperatures. 

The evolution of 𝑊 as function of the mechanical stress 𝜎 under condition of constant 
T

Tg(σ)
 

calculated from creep measurements in Fe-rich 2605SA1 is shown in Figure B.1. A decrease of 𝑊 as 

a function of increasing stress is observed, which is in good agreement with the finding of Yu et al., 

in molecular dynamics72 and reflects the difference between mechanical and thermal driving 

described in Chapter 2. The result shown in figure B.1 supports the applicability of 𝑊 as an 

experimental estimator of heterogeneities in the PEL throughout this memoir. 

 

 

Figure B.1 Evolution of 𝑊 as function of mechanical stress 𝜎 at constant 
T

Tg(σ)
 

calculated from creep measurements of 2605SA1 
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Appendix C. Magnetic domains in ribbons under 

tensile loading 

 

In order to interpret the influence of the magnetic field on the mechanical deformation during 

creep tests, the influence of both mechanical and magnetic driving on the magnetic domain 

structure should be taken into account. Due to the preparation technique, as-cast ribbons in 

absence of external bias field exhibit a longitudinal anisotropy 𝐾𝑢 which results in a pattern of 

longitudinal domains along the length axis 176,184. A magnetic field applied longitudinally 

(𝜃 = 0, 𝜙 = 90, −90) would induce the growth of those domains whose magnetization lays in the 

same direction as the applied field, through domain wall motion, resulting in an increase of the 

macroscopic magnetization 𝑀⃗⃗⃗. In such scenario, there would be no domain rotation, since the 

domains were already aligned along the magnetic field orientation. 

On the contrary, a magnetic field applied perpendicular to the longitudinal axes induces a domain 

rotation towards the field direction. The orientation of the magnetization, is determined as a 

balance between the anisotropy and magnetostatic energy contributions14,103. Both energy terms 

are shown in equation (C.1), in which for simplicity is assumed that the applied field lays in the 

ribbon plane (𝜃 = 0) 

 

𝑈 =  𝐾𝑢𝑐𝑜𝑠2(𝛾) − 𝑀𝑠𝐻𝑐𝑜𝑠(𝛾 − 𝜙)                                                           (C. 1) 

 

Where 𝛾 is the angle of the magnetization with respect to the ribbon width, 𝐾𝑢 represents the 

anisotropy along the length direction, 𝑀𝑠 the saturation magnetization and 𝜙 the angle of the bias 

field with respect to the width direction. 

In the case of a magnetic field applied along the width direction (𝜃 = 0, 𝜙 = 0), the minimization 

of the energy in equation (C.1) leads to: 

 

𝑐𝑜𝑠(𝛾) =
𝑀𝑠𝐻

2𝐾𝑢
= 𝑀𝑠

𝐻

𝐻𝐴
  (𝐻 ≤ 𝐻𝐴)                                                         (C. 2) 

 

Were 𝐻𝐴 =
2𝐾𝑢

𝑀𝑠
 denotes the anisotropy field, which represents the field required to rotate the 

magnetization along the width direction. In the case of a magnetostrictive material, the anisotropy 

would read: 
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𝐻𝐴𝜎 =
2𝐾𝑢 + 3𝜆𝑆𝜎

𝑀𝑠
                                                                        (C. 3) 

 

Therefore, the effect of a mechanical stress on the domain rotation would depends on the sign of 

the magnetostriction 𝜆𝑆. In the case of materials with 𝜆𝑆 > 0, a tensile stress will hamper the 

domain rotation 𝛼 produced by a magnetic field perpendicular to that stress. On the other hand, a 

tensile stress applied to a 𝜆𝑆 < 0 alloy will promote the domain rotation, since the anisotropy 

field is reduced through the magnetostriction.
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