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Phenomenology at a future 100 TeV circular collider

Piero Ferrarese

Abstract

Run 1 of the Large Hadron Collider (LHC) has been one of the most successful experiments in
particle physics. We are now approaching the end of LHC Run 2, and whether we will discover
new physics or not, the high energy particle physics community is already inspecting various
possibilities for the future generation of colliders. One of the most intriguing scenarios deals
with the exploration of energies so far not reached, with energy scales up to several TeVs, as
for example a /s = 100 TeV hadron-hadron collider. This thesis inspects the phenomenological
potential of such a machine from two different viewpoints. First, the perturbative Quantum
Chromodynamics (QCD) perspective. Monte Carlo event generators play an essential role for
data analysis and interpretation at the LHC, and they are vital for exploring the potential of
future machines. We aim at improving our current perturbative QCD descriptions with precise
predictions through resummation methods. These represent all-orders analytical results which
properly account for divergences appearing in the calculations, as those related to the emission
of soft gluons. We discuss the automation of soft-gluon resummation within the SHERPA Monte
Carlo event generator framework. We present comparisons between resummed and parton-
showered predictions, thereby inspecting which are the necessary steps to be taken in passing
from Monte Carlo simulations at the LHC to a Future Circular Collider. In the second part of
the thesis we discuss the phenomenology related to Vector Boson Scattering at /s = 100 TeV in
a Composite Higgs model scenario, based on the coset SU(4)/Sp(4). We predict limits for the
appearance of resonant and non-resonant excesses in the production channel pp — ZZjj. This
process provides one of the most interesting possibilities for finding deviations from the Standard
Model at a Future Circular Collider.






Phanomenologie an einem zukiinftigen 100 TeV Hadronbeschleuniger

Piero Ferrarese

Zusammenfassung

Run 1 des Large Hadron Colliders (LHC) war eines der erfolgreichsten Experimente in der Teil-
chenphysik. Wir ndhern uns nun dem Ende von LHC Run 2, und ob wir neue Physik entde-
cken oder nicht, die Hochenergiephysik-Gemeinschaft priift bereits verschiedene Optionen fiir die
zukunftige Generation von Collider. Eines der faszinierendsten Szenarien beschéaftigt sich mit
der Erforschung von Energien, die bisher nicht erreicht wurden, mit Energieskalen bis zu eini-
gen Teraelektronenvolt, wie zum Beispiel einem /s = 100 TeV Hadron-Hadron-Beschleuniger.
Diese Arbeit untersucht das phdnomenologische Potenzial einer solchen Maschine aus zwei ver-
schiedenen Gesichtspunkten, einerseits der perturbativen Quantenchromodynamik (QCD) an-
dererseits dem Entdeckungspotenzial fiir ein spezifisches Szenario neuer Physik. Monte-Carlo
Ereignisgeneratoren spielen eine wesentliche Rolle fiir die Datenanalyse und -interpretation am
LHC, und sie sind entscheidend fiir die Erforschung des Potenzials zukiinftiger Maschinen. Ge-
genstand dieser Arbeit ist die Verbesserung unserer aktuellen perturbativen QCD-Vorhersagen
mittels praziser Methoden der Resummation von kinematischen Logarithmen. Diese Resumma-
tionsmethoden représentieren analytische Ergebnisse fiir den Einfluss der Abstrahlung weicher
Gluonen. Wir diskutieren insbesondere die Automatisierung von Soft-Gluon Resummation im
SHERPA Monte Carlo Ereignisgenerator. Wir prisentieren Vergleiche zwischen Resummations-
und Parton-Shower-Vorhersagen und machen darauf basierende Extrapolationen vom LHC zu
einem zukiinftigen 100 TeV Hadron-Hadron-Beschleuniger. Im zweiten Teil der Arbeit diskutieren
wir die Phanomenologie des Vektor-Boson-Streuungsprozesses bei /s = 100 TeV in einem Com-
posite Higgs-Modell Szenario, basierend auf dem Coset SU(4)/Sp(4). Wir schitzen das Nachweis-
potenzial fiir Resonanz- und Nicht-Resonanz Exzesse im Produktionskanal pp — ZZjj. Dieser
Prozess bietet eine der interessantesten Moglichkeiten, Abweichungen vom Standardmodell der
Teilchenphysik an einem zukiinftigen Ringbeschleuniger zu finden.
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CHAPTER 1

Introduction

The last years have been quite successful for the high-energy particle physics community.
The Large Hadron Collider (LHC) permitted the exploration of energies that were pre-
viously out of reach. Up to 2012, the Standard Model of particle physics (SM) [1-3] was
still missing the experimental discovery of one of its building blocks, the Higgs particle.
With the discovery of the Higgs boson by the CMS (Compact Muon Solenoid) and AT-
LAS (A ThoroidalL ApparatuS) collaborations, the Standard Model becomes a theory
almost completely tested [4,5]. The hunt for the Higgs boson lasted almost 60 years,
and might be considered one of the greatest achievement for high-energy physics. Still
the mechanism that spontaneously breaks Electroweak Symmetry is to be unveiled. De-
spite several theories for a natural, dynamical explanation of the generation of the Higgs
potential being proposed, the exact nature of this mechanism is still unknown. What we
need is an explanation without enormous fine-tuning and preferably with a dynamical
origin without the ad-hoc terms that occur with the Higgs boson in the Standard Model.

The physics program at the LHC includes not only the search for the main decay
channels of the Higgs boson, but also measurements of masses, couplings and parameters,
as predicted from the Standard Model of particle physics. While always looking for
excesses and deviations of cross sections from the SM predictions, the LHC has repeated
almost all of the measurements taken at the Tevatron, the pp collider at the Fermi
National Laboratory. This has been performed from the perspective of the energy frontier
- opposed to what is usually defined as the precision frontier, as in the case of a lepton-
lepton collider like the Large Electron-Positron Collider LEP - probing a larger region
in the phase space and collecting more data. This has been possible partly thanks
to the big developments and efforts of the community for the construction of Monte
Carlo software, which allows the calculation of precise predictions to be compared with
experimental data. Through Quantum Field Theory principles and prescriptions we are
able to compute the cross sections of colliding particles, which are compared to measured
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data; though, in the current status, we are able to treat a small number of particles at
a time.

Our first principle knowledge, Quantum Field Theory, is only able to treat a small
number of particles at a time. A scattering of 2 — 4 particles is, in most cases, already
quite challenging to compute. Collisions take place in a busy environment, which con-
tains 10!! protons per bunch scattering each other in the collision tunnel every 25 ns.
The most intriguing part of this picture is the fact that we do not know exactly how
the inner part of the proton behaves. The quarks, of which a proton is composed, are,
in turn, one of the building blocks of the Standard Model. Any meaningful observ-
able cross section calculation in Quantum Field Theory is performed through the fields
representing quarks, not protons.

Monte Carlo algorithms, or the art of generating pseudo-random events for a given
- usually quite complicated - probability distribution, allow us to narrow down the
integration time of cross sections, and are used to generate sets of momenta for the
particles in the events, probabilistically chosen. In this way, performing an analysis,
as for the real events collected at the colliders, it is possible to compare measurements
and theory predictions. The integration of the matrix element for the process, along
with the subsequent showering according to Quantum Chromodynamics (QCD), and
the inclusion of low-energy effects, such as hadronisation and further hadron decays, as
well as the simulation of multi-parton interactions and other non-perturbative effects,
build a complete multi-purpose Monte Carlo software for particle physics.

Perturbation theory organises calculations as a power series expansion in the coupling
constant, ag in the case of QCD, as this keeps a small enough value. For a Monte Carlo
event generator it is possible to compute all leading (O(as(Q?))) and next-to-leading
0(a?(Q?)) order cross sections. Currently, some next-to-next-to leading order (NNLO)
results, both at integrated and differential level are already fully automated [6-9], and,
despite some major issue in the automation process, this is going to be very likely the
near future standard precision available for a Monte Carlo simulation software.

Fixed-order calculations, which could provide a great level of precision, even with the
increasing number of orders in the perturbative expansion are not complete, therefore
it is necessary to include all-order predictions. Due to our lack of knowledge of the
behaviour of QCD at low energy scales, we are only able to approximate these effects.
Still, parton-shower algorithms, simulating the emissions of QCD partons from a parent
one, describe with a good degree of precision the low-energy region of the differential
distributions. Then, starting from a fully differential set of events, generated according
the matrix element for the given process, it is possible to evolve the particles in the event
through the parton-shower, from the production scale down to a cut-off scale, usually
around 1 GeV.

Run 1 at the LHC provided, between 2009 and 2013, an integrated luminosity of
nearly 30 fb~!, with protons colliding up to a centre of mass energy /s = 8 TeV.
Run 2 should collect, between 2015 and 2018, events corresponding to an integrated
luminosity L ~ 100 fb~!, with collisions taking place at centre of mass energy of /s =
13 TeV. We want to present here a couple of measurements from the LHC that can help



understanding what we present in this thesis, i.e. jet cross sections and vector-boson-
scattering measurements. In fig. 1.1, we present a result from the ATLAS collaboration,
the measurement of the inclusive jet multiplicity at /s = 7 TeV: QCD is fascinating,
but is highly non-perturbative at low energies, around the order of hundreds GeV. The
colliding beams scatter giving rise to a di-jet structure, from which further particles are
emitted. The increasing energy available for the collision allows for the production of
several jet objects. This is a nice example where jet phenomenology studies are allowed
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Figure 1.1.: Measurement of the inclusive jet multiplicity in pp collisions at /s = 7 TeV
from the ATLAS collaboration [10].

by accurate predictions provided by Monte Carlo algorithms [11,12].

In fig. 1.2 we present the measurement of the differential invariant mass distribution
from the CMS collaboration, in ZZ vector-boson-scattering (VBS) events. This is one
of the most challenging measurements at LHC, due to its tiny cross section, and a large
background. Nonetheless, it could be the door for revealing the true nature of the Higgs
boson: it is indeed a handle that could provide a precise measurement of the Higgs
tri-linear coupling, and eventual deviation from its Standard Model value could trigger
for many interesting Beyond Standard Model scenarios [13-17]. All of this could shed
light on the understanding of the real nature of the Higgs particle.

The Standard Model of particle physics is a great success, also because up to now no
obvious deviations from the SM predictions were found, and it has become challenging
to create new models, which could describe phenomena not yet explained by the SM.
Therefore, it is necessary to explore new frontiers, try to reach precision not yet probed,
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Figure 1.2.: The mzz distribution in the ZZjj selection together with the SM prediction
and two hypotheses for the anomalous quartic coupling strengths. Points
represent the data, filled histograms the expected signal and background
contributions. Data collected from the CMS collaboration, at /s = 13 TeV
and L = 35.9fb~! [18].

or energy scales currently not accessible. It is of paramount importance to understand
whether the Higgs particle is indeed the very same predicted by the Standard Model,
making it the first fundamental scalar particle, or if some other mechanism is present,
that at the TeV energy scale reproduces the particle we detect. On the other hand,
there are several open questions, for example, the dynamical generation of the masses,
in particular that of the top quark, and it would be of great interest to study the
unitarization of WW scattering at high energy.

Already looking at the future, CERN inspects different opportunities for building a
future collider able to probe the most interesting processes out there. Several options
have been proposed to date, including a linear accelerator [19] and a brand new lepton
collider [20]. The possibilities span two different scenarios, as already mentioned: the
energy frontier, and the precision one. The latter relies on lepton colliders, which allow
for precision measurements, thanks to the fact they do not have composite objects as
colliding particles. This avoids lot of issues related to the busy environment typical of the
scattering of strongly interacting particles. On the other hand, due to intrinsic design,
they allow only for smaller centre of mass energy collisions compared to a hadron-hadron
machine. With energy frontier it is meant the idea of pushing forward the centre-of-mass
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Figure 1.3.: Sketch showing the purpose for the geographical site of a /s = 100 TeV
hadron collider. In blue the actual LHC ring is shown, in dashed grey the
idea for the future hadron collider. The perimeter will be around 100 km,
across France and Switzerland.

energy, exploring the so called multi-TeV regime. For some years a group of study has
been established to investigate the possibility to build a /s = 100 TeV hadron-hadron
machine, usually called FCC-hh, Future Circular Collider - hadron-hadron [21,22].

In fig. 1.3 we can see the sketch of the project for the installation of such a machine.
It is definitely an ambitious project, which will break every record set by the LHC. The
long-term plan of CERN includes the usage of the LHC tunnel and facilities for at least
other 20 years, where the collaborations are scheduling a High Luminosity run, which
will reach around 4000 fb=! of integrated luminosity in 10-12 years of operation. This is
the same as the initial luminosity target of the FCC-hh. The luminosity reach for the
FCC is the same, as baseline target, with a possible increase.

It is easy indeed to understand how important Monte Carlo simulations are in this
particular situation: with their precision and range of applicability, they are of big help
in designing future possibilities, predicting what could be possible to detect at hadron
colliders with a center of mass energy larger than those employed today. They can
help to build analysis strategies. In this sense, it is also important to clarify which
approximations, which we are using at the energies of the LHC, will be still valid in a
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different environment, at higher energies.

This thesis deals with the physics opportunities and challenges of a /s = 100 TeV
hadron collider machine. Our aim is to study the validity of present Monte Carlo tools in
such an extreme environment, and furthermore, probe the possibility to compare Monte
Carlo results with analytical exact methods, such as the resummation of logarithmic
enhancements happening in QCD theories. On the other hand, we want to inspect the
phenomenological possibilities related to the measurement of the vector boson scattering
process. We study a particular Beyond Standard Model realisation to get exclusion limits
on the production of exotic modes, with a focus on unitarity of amplitudes.

The outline of the thesis is as follow: in chapter 2 we present the tools and methods
developed so far inherent to the Monte Carlo simulations for high-energy particle physics.
In chapter 3 we present a study of the relation between numerical implementations like
parton showers, with more exact methods such as resummation, comparing predictions
for jet rates at a future hadron collider at /s = 100 TeV. Finally, in chapter 4 we
present a novel treatment of VBS amplitudes within a Composite Higgs realisation.



CHAPTER 2

Perturbative Quantum Chromodynamics and Collider Phenomenology

2.1. Collider phenomenology basics and Monte Carlo
simulations

2.1.1. The lagrangian and the coupling constant

Quantum Chromodynamics (QCD) is the theory describing the interactions between
quarks and gluons, the fundamental particles that make up composite hadrons such as
the proton, neutron and pion. QCD is a non-abelian gauge theory based on the group
SU(3). The QCD analog of the electric charge in Quantum Electrodynamics is colour. It
is the result of several theoretical and experimental efforts starting back in the 1950s. In
the present chapter we revise the main features of this successful theory, with particular
focus on the main techniques employed in the context of high-energy particle physics
Monte Carlo event generators.

The charge associated to the SU(3) symmetry group is called colour. The Lagrangian
is

T LA pa
Laep =Y g (ilDij — mgbij) Vej — ZF#VF Y, 2.1
q
where 1)4; is the Dirac spinor associated to the quark fields, with an index ¢ =1,...,3

running through the colour charge, and ¢ labelling the flavour index of the fermions;

is the covariant derivative, in which we can recognise the strong coupling constant g2 =
47 and the boson fields associated to the gluons A. While the quarks belong to the
fundamental representation of SU(3), the gluons - as mediators of the strong interaction
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- live in the adjoint, therefore the index runs over the corresponding dimension A =
1... ,N% — 1 = 8. The representation of the Dirac matrices, v,, we use here is shown
in appendix A, together with the generators of the SU(3) group t;;. The so-called field-
strength tensor, F ;3/, is proportional to the commutator of the covariant derivative and
reads

Fi, = 0uA) — O, AL +ifapcALAS 2.3

where fapc are the structure constants of the group, {tA, tB] = ifapct®.

One of the most peculiar feature of Quantum Chromodynamics is asymptotic freedom.
This concept was predicted by Gross, Wilczek and Politzer in 1973 [23,24], and they
have been rewarded with the Nobel prize for their research. Using Wilczek’s words from
his Nobel lecture: “Antiscreening, or asymptotic freedom, implies instead that a charge
of intrinsically small magnitude catalyzes a cloud of virtual particles that enhances its
power. I like to think of it as a thundercloud that grows thicker and thicker as you move
away from the source.” [25]. Differently from what happens in the electroweak sector, the
force of the strong interactions becomes large at low energies, Q* < 10! GeV? ~ A?QCD,
and decreases with the increasing energy. Thanks to this particular behaviour, it is
possible to employ perturbation theory to get predictions at energy scales greater than
some GeV, computing scattering amplitudes and observables in terms of an expansion
in the coupling constant a.

Confinement at low energies, with which we mean A(%CD scales, is another important
property of QCD. This means that we cannot directly observe colour charged particles,
either gluons or quarks, only bound states, that are singlet objects. These are called in
full generality hadrons, and are divided into mesons and baryons, if they are composed
of 2 or 3 quarks, respectively. Confinement is emerging in QCD as linearly rising term
in the potential between strong particles. For example, in a e™ — e~ scattering in which
a quark pair is created, as these start moving away from each other, the linear potential
favours the creation of another pair, rather than the separation of the charges. This is a
typical behaviour of non-abelian theories, as this is a direct consequence of the fact the
the mediators in these theories carry a charge, opposed to what happens in QED.

Although it is hard to get predictions, a rich phenomenology of hadron physics is well
described by employing QCD first principles, as it happens with what is called “the
eightful Way” [26]. Often, in the regime where perturbation theory is not valid, lattice
calculations are employed. In general there is a lack of understanding in what really
happens inside a hadron.

Ultraviolet divergences are present also in QCD, as typical of many Quantum Field
Theories. Perturbation theory requires renormalisation in order to properly take care
of these, thus retrieving a divergence-free model. This introduces an energy scale, /ﬁ%,
at which the renormalisation procedure is performed. Therefore, the definition of ob-
servables through the coupling constant, which is not independent of the scale Q? at
which it is evaluated, is rather depending on the ratio Q2/ ,u%%. Running the coupling
constant through the Callan-Symanzik equation, one of the renormalisation group equa-
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tions (RGEs),

0 das 0 Oa

2 2 0Qs 2/, 2 . _ 9 Oog
=+ I'Q“/ug,as) =0, defining [(as) = ,
(MRaM%{ MR@M%8043> (Q7/1g, as) (avs) HR(’M%

24

and solving it using treating the coupling constant in perturbative theory, it is possible
to write the expansion

Blas) = —Boas (L+ Bras + Boa? +0(ad)) 2.5

which at lowest order gives

as(ug) :
s (Q?) = . with  Bg = (11C4 — 4nTR)/(127). 2.6
’ 1+ Boors(n,) log @2/ ng !

The constants C4 and Tk arising in the beta function expansion 2.6 can be computed
from the structure functions of SU(3): facpfecp = Cadap and tf}tg =Tréap. Cs =
N¢ = 3 is the colour factor associated with a gluon emission off a gluon - N¢ is the
number of colours in the theory, based on the group SU(N¢); Cpoiy = tf}t;‘k, Cp =
(N& —1)/(2N¢) = 4/3 related to gluon emission off a quark. nj is the number of
active quark flavours, to be chosen depending on the energy-scale at which a process
takes place. It is possible to rewrite the coupling constant in terms of a more physical

quantity, the Aqcp
1

Bolog Q%/A3cp |
which at lowest order appear as a Landau pole. The Aqcp, being a dimensionful param-
eter, roughly separates the regime in which QCD can be treated through perturbation
theory, to the region of the phase space in which confinement is responsible for the emer-
gence of the hadrons. QCD has stood a long list of measurements over the years, proving
itself as a good candidate as theory of the strong interactions. In fig. 2.1 we report as
an example the measurement of the strong coupling, that perhaps summarises best this
hypothesis.

g 2.7

2.1.2. The cross section

The rate at which a process happens
R(s) = a(s)L 2.8

is proportional to the cross section, o(s), and the luminosity £. Here s = (p1+p2)? is the
Mandelstam variable s. The Large Hadron Collider is in its Run 2 phase, where proton-
proton collisions occur at a centre-of-mass energy at /s = 13 TeV. The luminosity is
proportional to the number of particles passing each other per unit time through unit
transverse area at the interaction point, and is a parameter related to the design of the
collider. The full expression reads

RV 2.9

™ Ny \/BilfﬂyEil?Ey7
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Figure 2.1.: Summary of strong coupling, ag, measurements as function of the energy
scale Q2. Within the brackets it is indicated the order in the o, perturbative
expansion employed in the calculation. Figure is taken from [27].

where f is the revolution frequency, n is the number of bunches, and N; is the number
of particles (in our case proton and anti-proton); 7 is the relativistic factor, and j;, E;
are respectively the betatron oscillation and the transverse emittance of the beams. The
theory understanding is instead fully comprised in the cross section. Experiments like
CMS and ATLAS at the LHC measure physical observables and inclusive cross section
rates. Cross sections are computed making use of theory models, as perturbative QCD
(pQCD), and more in general the full Standard Model theory, or any of its extensions.

In pQCD calculations, we can derive expressions for our building blocks in the theory,
i.e. quarks and gluons, but not for the physically observed colourless hadrons. In order
to directly compare theory predictions with experimental data as collected at colliders,
we need to take into account also non-perturbative effects, as we do not have a complete
knowledge of how quarks and gluons interact within a hadron. The corner stone of this
reasoning is that the hard subprocess occurs at high energies and the interaction can be
separated from low-energy - Q2 < Aéc p - phenomena. Therefore, the total cross section
for a general process of two scattering hadrons can be written in a factorised form. A
formal proof of the factorisation property at high energies can be given in the context of
operator product expansion (OPE) or within the mass-singularity method [28-30]. The
full cross section for the collision between A and B, with final state particles f, is written

10
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Tap(Ta5)

P2

Figure 2.2.: A pictorial representation of a hadron-hadron scattering. s = (p; + p2)?
is the center of mass energy at which the two hadron scatter: in this case
2 partons are chosen according to their PDFs, and thus the partonic cross
section o, (xqxps) is computed.

therefore as
1 1
o@ansr =3 [ dva [ deofulwas ) fo(an, 13)0u 1 (Q = aurps). 20
a,b

Following Feynman'’s reasoning [31], a high-energy interaction between two hadrons has
to be regarded as an interaction between their components, which are the partons. These
components carry a fraction of the total momentum of the colliding hadrons. This model
is very useful in describing high-energy interactions: in eq. 2.10 we define the probability
density functions (PDF) f, and f;, that exactly describe the probability to find a quark
inside a hadron with longitudinal momentum fraction z; and energy Q2. ,u% is the
factorisation scale, describing in some way the separation between perturbative and
non-perturbative regimes in the PDF. A pictorial representation for a general process
is depicted in fig. 2.2. The PDF is completely independent of the underlying hard
subprocess, meaning universal, depending on the hadron involved in the scattering only,
and thus it could be experimentally measured in other processes, at lower energies. The
differential partonic cross section is expressed through the Fermi Golden Rule,

(277)454 (Pa + Py — 9 HEARC _dp
daa,Hf(cf) = Maps £ H 2.11
4 [(pa-pp)* — mZm 5]1/2 32E

as usual in Quantum Field Theory. M is the amplitude of the process, which is derived
directly from the Feynman rules. The product over the 3-momenta of the final-state par-
ticles accounts for the phase-space, encoding all the kinematics of the process. The de-
nominator accounts for the fluz of incoming particles in the scattering. S = [] " identiea! 1 /]
accounts for a symmetry factor in case of identical particles in the final state. For a given

11
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process, AB — f, the partonic cross section sums over all possible initial states. For ex-
ample, the pp — tt X is given by the sum of all possible partonic scattering. At a
hadron collider like the LHC, the detectors are cylindrical and cover the beam line up to
certain values for the longitudinal angle #. Measuring the position and the magnitude
of the energy deposits in the detectors,the reconstruction of the energy and momentum
py the particles is possible. The beam line is identified with the z-axis, and given that
the protons center of mass does not coincide with that of the partons colliding, usually
variables (or combinations of them) invariant under Lorentz boost along it are employed.
One simple example is the transverse momentum pp

pr = \/Pi + P} 2.12

Rapidity and pseudo-rapidity are defined as

1 E+p. 1 1+ cosé
. — “log Y _ogcot 0/2; 2.1
y=gloep— = n=gleg— oy =logeot 6/2; 3

differences of these two variables are invariant under Lorentz boost along the z-axis,
in both laboratory and rest frames, and they are in direct correspondence with the
scattering polar angle 6. Of course the azimuthal angle ¢ is itself defined as invariant
under longitudinal boost. From these basic variables one can construct observables
better characterising the events. It is possible to measure the differential cross sections
with respect to these observables, for example do/dpr, do/dn.

Having defined the coordinates of the system, we can already start to discuss how
actual calculations take place. Due to the high dimensionality of any meaningful scat-
tering process (3n — 4, given n partons in the final state; the —4 factor comes from the
momentum-conservation relation), the evaluation of eq. 2.11 is not a trivial procedure.
Due to our incapability of getting precise results at non-perturbative energies, PDFs are
extracted from experimental data, e.g. Deep Inelastic Scattering collisions, data from
the Tevatron (pp collisions), as well as LHC runs. In addition, the factorised form of the
final cross section, eq. 2.10, requires an adequate way to convolute the PDFs and the
partonic cross sections. Monte Carlo methods provide an excellent way to solve these
puzzling issues. A natural way of generating actual events, i.e. momenta according to
the respective differential cross section probability, comes directly with the Monte Carlo
algorithm itself.

Outcomes from a Relativistic Quantum Field Theory have to be interpreted as well
in a probabilistic way. A general observable is constructed as a function of the final

momenta,
M2

Oz/d(IJ ey Pn)=—=0(0,p1,...,Pn), 2.14
where d®(p1, ..., p,) denotes the differential phase space and I(s) the flux factor, which
is defined in eq. 2.10. The integration is performed using Monte Carlo methods: the
integral in 2.14 is evaluated generating a large number of phase-space points. Every
generated point comes with a weight; these points and weights are stored, and thus a
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2.1. Collider phenomenology basics and Monte Carlo simulations

general expectation value, that is exactly the differential cross section, can be generated
in the following way

1 .
(0) = ~ > w (®(pits - pin)) O (R(pi, - - i), 2.15

where N is the total number of points generated. Eq. 2.15 is a very general statement:
currently there are several different software implementations for generating pseudo-
events for high-energy scattering at colliders. Many Monte Carlo event generators have
been developed in the last 20 years, we cite here three of them, which are defined
to be multi-purpose, as they cover several aspects of the process simulation at colliders,
HERWIG [32], PYTHIA [33] and SHERPA [34]. The current work has been mainly developed
within the SHERPA framework, and the present work focuses on this particular generator.

2.1.3. Fixed-order calculations

The prescription for computing meaningful physical observables has mostly become stan-
dardised. We focus for the first two chapters on the Standard Model theory, comprising
the QCD Lagrangian and the electroweak one, Lgw, based on the SU(2) x U(1) sym-
metry group:

1 . _
Lpw =~ (Wi W™ + By B ) + 0310, Wy 5+ 2.16
+|Duo? + 10T — MN6'¢)? — y ¥, 16V, - 2.17

The covariant derivative is defined as D,, = 0,,6;; + z'ngT“WZ-’“ +Yij95wB", i and j
run with the SU(2) fundamental representation, meaning that the fields ¥, ; are SU(2)
doublets. We stress here the fact that ¥ in this case contains also the leptons flavour
families, in addition to the three composed of quarks. W, and B, are respectively the
boson fields associated to the SU(2) adjoint and the U(1) symmetries, and Wj ,,, and B,
their field-strengths. The scalar field , ¢, acquires a Vacuum Expectation Value VEV v
that triggers the spontaneous symmetry breaking at the core of the Higgs mechanism. It
is defined in unitary gauge as ¢1 = (O (h+v)/ \/i)), where h is the local fluctuation
field later associated with the Higgs particle. The y, are the Yukawa couplings with
which we can write mass terms for the fermions, through the gauge invariant ¥;Up
bilinear, where L and R represent the left and right chiral part of the doublet. In
appendix A we give explicitly the representation of the 75 matrix. 7T; are the SU(2)
generators, whose properties are exposed in app. A. Finally we have the full Lagrangian
Lsm = Lqep + Lew, with which we can generate predictions.

In perturbation theory, the amplitude, and thus the cross section, is expanded in
powers of the coupling g, providing g < 4w. From the QCD Lagrangian in eq. 2.1
and the electroweak one in eq. 2.16, the Feynman rules are derived and employed to
compute the amplitudes for any process within the Standard Model. This is a fully
general procedure that could be extended to any operator appearing in a Lagrangian, for
example for arbitrary beyond Standard Model theories. The order of a general diagram

13



2. Perturbative QCD and Collider Phenomenology

S ey

Figure 2.3.: Main Feynman diagrams contributing to the process eTe™ — qg. The left
amplitude is LO order accurate, that is O(a?); the center and right diagrams
contribute to the NLO amplitude, O(aa)

is equivalent to the number of vertices appearing in the amplitude. For a general process
PaPb — D1 - - - P the n — order amplitude reads

M(Pas Pb; D1y - - - Pn) = gA1 + G Az + -+ O(g"). 2.18
LO NLO

A basic calculation in pQCD is eTe™ — ¢¢; we want to recall it here, as it is prepara-
tory to the rest of the present work. In fig. 2.3 the diagram topologies contributing to
the LO and NLO amplitudes for this process are depicted. The LO cross section arising
from the left diagrams reads, at order O(a?) in the electromagnetic coupling,

4ra?
L0 = ?Qf s 2.19

where @ is the charge of the quark, labeled by the flavour index f. The central and
right diagrams constitute the perturbative correction at first order in the strong cou-
pling. Both contributions need to be carefully discussed. The one-loop virtual correction
contains ultraviolet divergences, which need to be handled carefully. This contribution
contains also infrared divergences, which are embedded in the vertex correction. There
are also infrared divergences in the real emission diagram, the central one in fig. 2.3.
Looking carefully at the matrix element for the real-emission diagram only,

2 1 1 Qg 3:%—#:0% .
Oqgqqg = UL03§Q(1/0 dxlA deCF% (1 — 1’1)(1 = 562) ,with x; = 2qu‘/\/§' 2.20

The terms in the denominator diverge clearly; rewriting 1 — x1 = 2pypy, = 2E,E4(1 —
cos f44) it is simple to check that there is a soft pole, arising from £, — 0, and a collinear
one, 0,4 — 0. We have to regulate these divergences, typically introducing an arbitrary
cutoff € in the momentum fraction xz;, and picking afterwards the limit e — 0. Computing
the total cross section, summing up the virtual and real contributions, ¢ = or + ov,
these divergences cancel out and the resulting cross section is the following one

930
47"

ONLO = 0103 > @ 2.21
q
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2.1. Collider phenomenology basics and Monte Carlo simulations

The cancellation of infrared divergences is a general result, proved by theorems from
Kinoshita, Lee and Nauenberg [35,36], that generalise results valid in Quantum Electro-
dynamics [37].

Soft and collinear divergences appear almost everywhere in pQCD calculations, and
from an experimental and physical point of view they necessitate cautious discussion.
Experimentally, no detector can resolve a gluon emission at very small angle, or arbi-
trarily soft energy. This sums up to the fact that we do not observe directly coloured
particles in nature, but just their colourless bound states. Therefore, in the PDFs there
is a dependence on the factorisation scale u%: soft emissions below this scale are not
considered part of the hard subprocess, but rather in the hadron PDF; collinear ones,
belonging to both long and short range interactions, are properly treated through a
running procedure. In any case, the dependence of the PDF on ,u% is unphysical. In
analogy to the dependence on the renormalisation scale, ,u%%, there is a running equation
for the parton distribution, describing its dependence on the ,u% scale, which was first
derived by Altarelli and Parisi [38], later taking the name of DGLAP equations, thanks
to contributions from Dokshitzer, Gribov and Lipatov [39,40]. The parton distribution
functions obey the following integro-differential evolution equation:

2 1

Q) =2 (L re.Q)p o). 222

z &

In the equation x is the usual fraction of longitudinal momentum, Q? is the scale at which

the process takes place. This equation allows one to run the parton distribution function

from the scale of the scattering, @2, down to the scale where non-perturbative effects

happen. The DGLAP equations include the introduction of the splitting kernels P(x),

which have to be interpreted in a probabilistic way. These splitting functions denote

the probability of finding a parton a inside another parton b with momentum fraction

x of the parent parton momentum. Due to the characterisation in terms of subsequent

emission of a parton from another, it is straightforward to compute as expansion in the

coupling «s, as every emission carries a power of the strong coupling constant. Given

the possible combinations of emitted partons and emitter, we have at leading order in
as the following kernels

dlogQ?  2n

1+ 22 3
Pysqe(x) = Cr [M + 55(1 — 33)] )
14+ (1—2)2
Pq%gq(l”) = Pq%qg(l —z)=CF (x)] ) 995
T l1—z 11C4 — 4n T,
Pysgg(x) =2C4 A=), +—Fa(l- x)] +0(1 — x)#,

Pysqq(®) = Tp [#? + (1 — 2)?] .

The prescription (1 — z)4+ indicates the regularisation of the divergent part of the
Altarelli-Parisi splitting kernels; higher orders in the strong coupling o could be found
in refs. [41-43].
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2. Perturbative QCD and Collider Phenomenology

2.1.4. The emergence of jets

In high energy physics, a typical pattern observed within a collider detector is that of
a jet, a narrow cone of hadrons. After the scattering the partons radiate further and
ultimately cluster, forming hadron structures, which in turn decay, evolving in this way
down to non-perturbative scales. At hadron colliders the most probable processes to
measure - after elastic and diffractive scattering - are di-jet events, originating from
simple QCD scattering of wvalence quarks in the protons. But jets can also come from
further radiation of a gluon, or from hadronic decays of electroweak particles. Non-
perturbative corrections happen at scales Q% ~ A(QQCD < F, building intrajet activity.
This means they are not emissions that could be classified as a new jet, but rather they
modify its internal structure. This phenomenon motivates the idea for the concept of
local parton-hadron duality, i.e. the fact that we can describe our theory in terms of
partons, even though we experimentally observe colourless hadronic jets.

Jets were extensively used to prove QCD as the non-abelian gauge theory of quarks
and gluons describing the strong interactions. One initial extremely important result,
for example, involves 2- and 3-jet events in electron-positron colliders at the PETRA
collider. This also provided an easy connection to a measurement of oy, as a 3-jet event
is interpreted as a gluon emission from a quark, directly proportional to the strong cou-
pling. This is a typical example of jet rates, in particular R3 = 0941/09; we will discuss
these extensively in sec. 3.2. Afterwards, increasing the centre of mass energy, it was
possible to measure 4 jet events, thus having a direct handle to the gluon self-coupling,
establishing the non-abelian structure of the strong interactions, providing a nice con-
firmation of QCD as the right underlying theory for the strong interactions. Later, they
were used to characterise the global geometry of the events, with the increasing usage
of event-shape variables, that improve the as measurements and provide a good handle
on pQCD properties, as we will see in sec. 3.1. These measurements and results are now
standard concepts well established and known, but would have never happened without
the development of jet physics and Monte Carlo generators. With colliders such as the
TEVATRON and the LHC, jet machinery and tools became more and more essential for
precise measurements in QCD as well as for the analyses of EW processes.

Jets are ubiquitous, so they are the soft and collinear singularities, and they affect, to
some extent, almost any experimental search. From a theoretical point of view, it is then
important to define appropriate observables, not prone to divergences coming from this
particular QCD feature. Theory studies on jet production and definition have a long
history; a first attempt to reproduce jet cross sections in perturbation theory is due to
Sterman and Weinberg [44] in 1977. However, the definition of a jet is not unique, and
the treatment of soft and collinear divergences is not always trivial. Following [45], we
define a jet algorithm as a sequence of operations to cluster together final-state particles
in a meaningful way. The parameters that define the distance among the particles and
the recombination scheme for clustering form together the jet algorithm. We recall some
important features jet algorithms must satisfy, already declared back in the 1990s [46]:

e simple to implement in an experimental analysis;
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2.1. Collider phenomenology basics and Monte Carlo simulations

e simple to implement in the theoretical calculation;

e defined at any order in perturbation theory;

e yield a finite cross section at any order in perturbation theory;

e yield a cross section that is relatively insensitive to hadronisation.

The first algorithms were iterative ones, which exploit a top-down strategy, trying to
find a suitable cone for energy deposits of the jets. Some of these definitions are infrared
and collinear unsafe, meaning that they are too sensitive to the emission of a further soft
and/or collinear parton. This leads to serious problems in reconstructing the events, as
a soft/collinear emission could completely change the jet reconstruction in the events,
leading to very different topologies for the same event. Hence, IR-safe sequential recom-
bination algorithms are preferred to iterative cone algorithms. These relatively new tools
follow a bottom-up approach, and they are believed to reflect in a deeper way the un-
derlying pQCD structure of the jet. The first appearing is the JADE algorithm [47,48].
This is infrared and collinear safe, but has a non-proper handling of soft contributions,
leading to complicated logarithmic structures in higher-order calculations. We describe
in the following the two algorithms most employed at the LHC: the Cambridge-Aachen
and the k; algorithms (which together form the generalised k; algorithms).

Cambridge-Aachen algorithm

This algorithm [49,50] is extensively employed especially in jet-tagging techniques, with
which electroweak heavy objects decaying to hadrons could be recognised, as we will see
in chapter 3.2. The method is implemented by fixing a dimensionless variable R, and
then running through the following items:

1. for any pair of particles 4,7 find the minimum of the distance d;;

o ARG (i)’ + (9= 65)°
ij — R = R ;

2.24

2. if dj; < d;p = 1, cluster the particles together (i.e. a new particle is defined with
momentum given by the sum of the respective 4-momenta p = p; + p;); otherwise
this is a final jet, and remove it from the list of particles;

3. go back to 1 until no particles are left.

k; algorithms

This method includes two different algorithms [51], k; and anti-k;, parametrised by a
parameter p = 1, —1, respectively (actually the Cambridge-Aachen algorithm falls as well
in this classification, with p = 0). These algorithms first employed at electron-positron
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2. Perturbative QCD and Collider Phenomenology

colliders, and later generalised for hadron-hadron environments [52]. This generalisation
has been imposed by the necessity of using longitudinally invariant variables: the total
energy has been substituted with the transverse momentum variable. The hadron collider
version reads:

1. for any pair of particles 4,5 find the minimum of the distances:

dij = min (7, 7)) g™ 2.25
dip = i, 2.26

2. if d;; < d;p, cluster the particles together; otherwise this is a final jet, and remove
it from the list of particles;

3. go back to 1 until no particles are left.

In fig. 2.4 we can see the difference in the reconstruction with the three algorithms here
described. The plots show the transverse momentum and rapidity of partons in a event,
and the coloured ares describe jets reconstructed with the used algorithm.

2.1.5. CS formalism

Due to the need of treating separately divergent pieces in NLO calculations, subtrac-
tion algorithms have been developed to carefully treat such terms in numerical imple-
mentations as in Monte Carlo software. Various methodologies exists, e.g. Catani-
Seymour [53], FKS [54] and antenna [55,56] subtraction schemes. We focus here on the
Catani-Seymour formalism, as it is largely employed within SHERPA.

Higher order calculations in perturbation theory are often performed for jet observ-
ables: the complicated pattern of cancellations of infrared and collinear divergences
requires quantities that are insensitive to further low-momentum or small-angle emis-
sions. Fully inclusive calculations are the simplest quantities to be computed in QCD
perturbation theory, and do not require any special treatment, thanks to the fact that
the cancellation of infrared divergences happens at the integrand level. In exclusive
cross-sections, the complicated phase space for multi-parton configurations leads to dif-
ficulties not trivial to handle, also due to the different number of final-state particles in
the real and virtual terms.

Subtraction methods treat independently real and virtual divergences, isolating them
in a process-independent way, such that after the cancellation is achieved, it is possible
to perform the remaining part of the calculation with any method - a Monte Carlo
algorithm for example. The divergent term from both virtual and real corrections is
subtracted, returning a finite, on1,0:

ONLO = / [dor — doa] +/ doa —I—/ dov, 2.27
m+1 m+1 m
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p, [GeV]

B CamfAachen, R=1

Figure 2.4.: Difference in the jet reconstruction of partons with the anti-kr, kr and
Cambridge-Aachen algorithms. Figures taken from [52].

where o4 is the diverging subtraction term. Here m is the number of particles in the
final state for the LO process, and m + 1 contains the real emission. We want to stress
that the real emission piece belongs to a phase-space with different dimensionality from
that of the virtual correction. Thus, for the purposes of the Monte Carlo integration,
the term [ 41 doa needs to be integrated over its additional 1-particle phase space, such
that it cancels out the divergent part of the virtual correction, giving

ONLO :/ [dogr — doa] +/ [dav+/daA . 2.28
m+1 m 1
The Born cross section we are looking at is of the type
do® = Zd¢n(171, ooy P Q)| My (p1,y - - ,pn)leﬁn) (P1y--yDn), 2.99
m

(n)

where FJn encodes exactly the jet definition in the phase space, and as previously
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discussed, infrared/collinear safety ask for the following constraints:

F§n+1)(p17'--7pj:)\qa"'vpn-l-l)_>F§n)(p17"'7pn+1) ) lf )\_>O7 2.30
F 1, pipgs s pns) = FS 01,0y Pt 2.31

if pi—=zp,pj—>1—-2)p.

The presence of a universal subtraction term relies on the fact that exactly in the
soft/collinear limit, the cross section for the production of an additional parton fac-
torises, being independent of the actual hard process we are evaluating. Factorisation
properties of the matrix elements can be inferred from the QED bremsstrahlung, and
then generalised to QCD.

In the Catani-Seymour formalism, the subtraction term is generalisable to any process,
and is written in term of dipoles:

doa = Y do® ® dVaipole, 2.32

dipoles

where do® denotes the Born-level differential cross-section, that is the one coming from
the LO order accurate matrix-element calculation. The sum over the dipoles is needed
since there are various kinematic configurations that mimic the additional emission in
do®. In this way do? is a local counter-pole for the real emission matrix element. Dipole
configurations are shown in fig. 2.5

T 1

Figure 2.5.: Dipole factorisation: a general n + l-parton matrix element is translated
into a sum over n-parton diagrams with an emission from a dipole.

The factorisation property could be written as

Mpi1> = [ Mp? @ > Vi 2.33
ij,k

Vi;k is the dipole, depending on the partons ¢, j and k. Let us discuss briefly the
appearance and factorisation of collinear and soft singularities. The Catani-Seymour
formalism defines one parton as the emitter, from which an emitted particle is radiated;
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the spectator is needed in order to properly treat the recoil after the emission. In the
soft limit we parametrise the 4-momentum pz-‘ of a final-state gluon as

P =", A—0, 2.34

where )\ is a scale parameter and ¢* and arbitrary 4-vector. The matrix element for a
real emission reads

Qs

’M|721+1 X VA

(n+ 11J"(q)" (@) |n + 1)y, 2.35

where the |n) is a vector in colour and helicity space; the J#(q) is the eikonal current:

i "
Jg) ~ S TP 4, P 2.36
7

pi-q Pa-9q

where the T are the colour generators associated to the charges in the dipole. Eq. 2.36
is not an exact factorisation, since the eikonal current in eq. 2.36 leads to colour correla-
tions, and outside the strict limit A = 0 the phase space does not factorise exactly. The
collinear singularities can be disentangled using the identity

PrPi B PkDPi PP
= + , 2.37
(pe@)(Pia)  pr-qi+pr)-q  pi-qpi+pr)-q
we finally find a more suitable form for our purpose:
1 T.T; ;
Mpi1|2 = —nln+ 1Ly 2.38
Piq (pi + Pr)q

where the dots indicate for similar contributions involving other combinations of partons.
We highlight that, for the sake of simplicity, we expose here only the final-state final-
state case, in which both the spectator and the emitter belong to the final-state particles.
Obvious generalisation to initial-state partons involves the PDF distribution.

In order to present the collinear behaviour, we now rewrite the momenta of the involved
particles with the help of Sudakov variables

2 M
kx  n

1—22p-n’

2 H
kr n

pf = 2p + Ky — P = (1= 2)p —kp - 2.39

z 2p-n
where kp is the transverse momentum of the emitted particle with respect to the dipole,
n* is an auxiliary light-like vector, specifying the direction in which k7 — 0. Through
this adjustment we can approximate the matrix element, neglecting terms O(1/k2.), as

1 N

R}

’Mn—i-l’Q X

From egs. 2.38, 2.40 we write directly the final, factorised form of the squared matrix
element for the production of an additional parton, valid both in the collinear and soft
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enhanced regions; this is achieved through the dipole definition:

nt1(n+1n+ 1)1 = Z Dijk(P1,. .. Pnt1) + non-singular terms, 2.41
ki, j
Dy i ) L . 2.42
ij,k\P1y---sPn+1) = — .
1 n—+ 2pi 'pj
T, - T; ~ ~

n(ligy ek U V1, L),
T
For a proper treatment of recoil effects, partons ¢ and j in the full n + 1 matrix element
have been replaced by the ij and k, respectively the emitter and the spectator, fulfilling
the following relations:

_ 1 . Yij k
= s Py =p +pf =1k 2.43
Yij k

with
Dipj

pipj + Pipk + Pidk
The splitting matrices Vj;, closely related to the Altarelli-Parisi splitting kernels, are
defined in the helicity space and depend on the kinematic variables

2.44

Yij k =

5 1_z — _ PPk _ Pibk
' T pipk+ Pk Dijpk’

2.45

the T; are the colour charges, depending on the colour algebra SU(3). It is easy to prove
that the correct soft and collinear limits are reached when

Yije — 0,2 —1,% —0 soft, 2.46
—k‘%
Yijk — R ,Zi=1—2%; — 2z  collinear. 2.47

Having parametrised in a fully general way the collinear and infrared singularities of a
further emission of coloured parton off an ensemble of quarks and gluons, it is possible
to define the diverging counter term appearing in eq. 2.32 in terms of the sum over the

dipoles Zk#’j Dij ke

do* =S dgni1 Y Y DiF. 2.48
n+1 pairs;i,j k#1,j
2.1.6. All order calculations

So far, we have discussed fixed-order calculations, whose technology has been intensively
developed over the last 20 years. Nevertheless, the truncation of the perturbative series
leads to unpleasant consequences: as we have seen there are regions in the phase-space
that are enhanced due to collinear and soft emissions. First of all a miscancellation of
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soft and collinear singularities in the higher orders in the series can happen for certain
observables, leading to unphysical enhancements. This depends on the fact that there
could be regions of the phase space in which the higher-order corrections are of the same
magnitude of the calculation at fixed order.

To better characterise this behaviour, we rewrite the emission pattern for an additional
parton in the soft and collinear limit in terms of the Catani-Seymour splitting variables,

kr and z:
! K dk? (k) [7mex dz
doy ~ dao/ — / —Pi;(2). 2.49
kg Ry ™ z

min z

Using the definition of the splitting kernels and the «g expression in eq. 2.6, we can
straightforwardly integrate and a double logarithmic pattern is evident,
2
do; ~ doglog —g log 1_& 2.50
kO 1— Zmin
This pattern gives enhancements for every kind of observable sensitive to soft or collinear
emissions.

In general, large logarithms are ubiquitous in high-energy particle physics, and they
are not, only originating from soft and collinear emissions: whenever two different scales
exist in a process, it is much likely that some variable is plagued by a logarithmic en-
hancement. Over the years two methods have established for properly treating these
kind of issues, parton showers and resummation. These two methods address respec-
tively numerically and analytically the problem of getting all-order results, providing
meaningful distributions for the desired process.

2.1.7. Parton showers

The aim of a parton shower is to evolve incoming and outgoing strongly interacting
partons from a high virtuality, Q2 > A<2QCD down to a scale Q% ~ AéCD where pertur-
bative results are no more valid. This evolution is performed according to the DGLAP
equations 2.22. A typical parton shower associates a probability for its possible branch-
ing to every parton in the initial/final state, or for no branching at all, and then the
state is evolved generating random successions from this probability distribution. This
operation is performed for every subsequent daughter parton, and so on, down to the
non-perturbative cutoff scale. Although being a numerical implementation, parton show-
ers correctly describe the leading logarithm behaviour, thanks to the correct treatment
of collinear emissions coming from the DGLAP evolution. Parton showers make use
of the ordering of the evolution variable, which allows the treatment of soft emissions.
This effect is clearly seen when describing the evolution through the coherent branching
formalism, we briefly describe here.

Coherent branching

Coherent branching essentially is a property of QCD emissions that is easily employed
in a numerical implementation of a parton shower, as it simply states that subsequent
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emissions have to happen inside a cone with opening angle determined by the dipole
emitting the daughter parton [57-60]. The argument is present also in electromagnetic
theory, known as Chudakov effect.

If a parton is radiated from a QCD dipole with inverse wavelength larger than the
transverse momentum between the original parton and its colour partner, the radiated
quanta can not resolve the individual colour charge of the radiating parton. In this case,
radiation can be emitted only with a precise colour charge. Following ref. [41], we recast
the general matrix element for an additional emission in terms of the antenna pattern

dw dQ? «
2p. . m. 1— 0: ;
L i 2.52

pi-qpj-q (1= cosbig)(l—cosbjq)
Cjj is a colour factor dependent on the emission pattern, d2 the solid angle for the
emission and w the energy of the emitted gluon. p; and p; are the momenta of the
partons in the process, and 6;; the angle between the two, and ¢ is the momentum of the
emitted gluon. For simplicity we are considering all the partons as massless. The antenna
pattern in eq. 2.52 can be separated, thus highlighting the two collinear singularities:

Wij = Wiji + Wi, 2.53
1 1 1

Wiii == | Wi, — . 2.54

RO ( it 1 — cos b, 1—(:050]-,1)

It is easy to see that after azimuthal integration
2 d¢zq 1

Wi — if 0. <0,

/0 o2r ' 1 —cos Oiq ! R K
=0 otherwise. 2.55

Analogous consideration applies for the other antenna singularity W;;;. In QCD a
careful treatment of the colour charge leads to different radiation patterns, depending
on the actual emitting dipoles, differentiating the effect from the one happening in
QED. For the case of two quarks ¢g forming a colour singlet, we have C;; = T? = Tj2,
with T2 = Cr = 4/3. For a colour singlet with two quarks and a gluon, 7,7,k with

T, = T; + T; = —Tj}, the expression for the emission of a gluon n is more complicated:
W =T (Wiji + Wiki = Win) + Tf (Wi + Wik j — Wigi)+ 2.56
- ~ 1 1
+ T (Wiki + Wik + 5 Wakk + 5 Wik)
. ~ 1
with Wi, = §(Wzkz — Wiji). 2.57

In the limit of 7 and j collinear, we can approximate Wi ~ Wi 1 ~ Wiy 1, and VNij,i ~
Wikj ~ %Wlkﬂj, defining

Wik.ij = Wik10(0h, — 03). 2.58
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2.1. Collider phenomenology basics and Monte Carlo simulations

Thus, the antenna pattern is
T Wiji + T Wijj + T Wik g + T Wik i 2.59

From eq. 2.59 we interpret that each parton i, and k emits according to its colour
charge squared. Incoherent contributions are suppressed inside the half-angle 6;;, while
at larger angles they emit proportional to TlQ. It can be proved [39] through the analysis
of the Feynman diagrams contributing to the emission that the dominant contributions
come from the so-called ladder diagram, as depicted in fig. 2.6, with strongly ordered
branchings.

ty, Ty

. ,656‘ fﬁﬁﬁ'“
560

Figure 2.6.: Example of ladder diagrams containing only gluon emissions. The represen-
tation on the left shows the evolution of an initial state: from the PDF f, to
the hard subprocess matrix element. On the right-hand side we have instead
a final-state evolution: from the hard subprocess down to the fragmentation
function where hadronisation occurs. The hard process happens at a scale
tn ~ @Q?, the PDF f, and the fragmentation function D, are both at a scale
to, but the ordering is reversed in the two cases. Strong ordering means
to <t <--- <ty

The Catani-Seymour dipole inspired shower

The Altarelli-Parisi splitting kernels in eqs. 2.23 defined with the , prescription are
not directly suitable for a Monte Carlo implementation. Some adjustment is therefore
needed to properly treat the singular part of the kernels and maintain the accuracy of
the shower algorithm.

The unregularised splitting kernels, i.e. the kernels without the plus prescription,
are regularised, in the parton shower, with the use of a cutoff. The singularities are
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2. Perturbative QCD and Collider Phenomenology

still there, as we already know these cancel in the final sum of the real and virtual
contributions. The Sudakov form factor [61] is introduced: it resums the singularities

below the cutoff scale
t dt/ Zmax a
t)zexp{z-/ / —P Pji(2)
j to Zmin

modifying the DGLAP equations - in the following the case of an initial state parton
shower with the evolution of a PDF f(z,t) - in

: 2.60

gtf(:n £ = /‘f;‘;P( V(22 t) + fx’t;)tgtm). 2.61

A further integration gives

Fla,t) = A1) f(ato) + t: o ﬁ((t,))/f;jp( V(@) t). 2.62

We employ here an evolution variable ¢, since this result is general to various algorithms.
The emissions are therefore classified as resolved and unresolved: if a branching occurs, it
is described by the Altarelli-Parisi kernel, where an emission below the cutoff scale results
in an emission that cannot be detected, and is properly taken into account through the
resummed Sudakov factor, that accounts for the virtual contribution, and is interpreted
as the probability of evolving from a scale ¢ down to a scale tg without any branching.

Eq. 2.62 is now suitable for a Monte Carlo implementation. The Catani-Seymour
algorithm [62] employs as evolution variable the transverse momentum of the emitted
parton with respect to the parent dipole k:%, defined as in eq. 2.39. The angular ordering
constraint is translated up to subleading contributions to

ko > kg > > kG, 2.63

where k2 is the cutoff scale of the parton shower algorithm. Using the Catani-Seymour
formalism, we can account for the same splitting structure in eq. 2.62 through the sum
over the dipoles V;; ;. Taking, as an example, the splitting F'F', with both emitter and
recoiling parton in the final state, the Sudakov form factor reads

AFp (k7 maxs kg) =

T, max? dk ~
= exp /2 T / dZZ J(yij,k)<‘/;j7k(zi, yij,k» . 2.64
z] k#zg Z] kg

The boundaries of the integration over the splitting kernel are

1 K2
ez (brmae) = 5 | 1F4/1- oy 2.65
,max
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2.1. Collider phenomenology basics and Monte Carlo simulations

and the Jacobian, J(y;jx) = 1 — yijk, comes from the fact that we account for the
singular structure of the matrix element through the Catani-Seymour variable y;; ;.. It is
possible to prove that dkr/kr corresponds to dy;ji/vyij k. at leading logarithm accuracy.
It is common practice to evaluate the strong coupling o at the actual scale of emission,
k2., since this results in the proper treatment of the leading logarithms [63].

With this at hand, it is possible to depict the algorithm in these few steps

1. define the dipoles and choose a dipole configuration;

2. starting from the initial scale Q?, generate a random number R and solve for k2
the equation

A@Y) .
NG R; 2.66

3. exit the parton-shower if k2. < k2

4. generate the momentum fraction z according to the appropriate splitting kernel
P(z)!

5. update the kinematic variables for the new configuration of partons. A new parton
has been emitted in this way from the dipole;

6. restart from point 1.

Point 5 and the usage of Catani-Seymour splitting variables allow for a proper treat-
ment of recoil effects in the parton shower, as designed in SHERPA. As last remark we
want to stress that in the parton shower approximation only diagrams at orders 1/N¢
are considered. This means performing a large- No approximation, at the price of losing
colour correlations between the partons. We perform a deeper analysis of this in chap. 3.

2.1.8. Resummation

In order to perform analyses as one would do with real data, Monte Carlo methods have
been preferred over analytical calculations and then over the years the parton-shower
technology has become the standard approach for the simulations of high-energy colli-
sions. However, we have to say that an analytical approach is possible, and returns more
accurate results. On the other hand, the resummation procedure is less generalisable
to any kind of variable, meaning that it is highly process dependent. Nonetheless, it
is preferable when looking for high precision computations. Resummation results are
invaluable when one wants to extract QCD parameters, such as the strong coupling, the
quark masses or parton distribution functions. Usage of resummation analytical results
begun already at the HERA collider, the electron-proton collider for Deep Inelastic Scat-
tering studies. There were performed measurements of event shape distributions [65],
and were studied the existence of power corrections 1/@Q to the perturbative series [66]

Yin SHERPA this is accomplished through an overestimate; this simplifies the procedure because the
inverse sampling method can be employed, as the primitive function is known.
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Thrust, 1 — T, at 133 GeV
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Figure 2.7.: 1 —T thrust distribution with and without parton shower. The hard process
topology is ete™ — jjj, where j stays for any of the light quarks. The
process is generated with pr; = 0.1 GeV in order to avoid singularities,
with the purpose to enhance as much as possible the matrix element. Jets
are reconstructed with the anti-kr algorithm with R = 0.1. It is possible,
therefore, to see how the non-showered samples, in blue, are enhanced at
low values of thrust, and how the parton shower, in red, describes correctly
the peak, resumming the double logs. Data points, in black, are taken from

OPAL collaboration [64] at /s = 133 GeV

and non-global single logarithms [67]. Also at LEP, measurements of the jet rates and
of the strong coupling have been performed through the comparison with resummed
results [68]. On top of that, resummed results give a good handle to non-perturbative
phenomena and therefore are employed in testing the phenomenological models.

Usually it is possible to rewrite eq. 2.18 in terms of an enhanced kinematical variable
Vv

0= ascologV + a2(c1log? V + calog V) + ... + O(alog" V). 2.67

It is indeed clear that if logV > 1 the series is not anymore convergent and one finds
terms

aslogV ~ 1. 2.68

These enhanced terms need to be resummed at all orders, thus reorganising the pertur-
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bative expansion

o= Z (a? log?™ V) arL + Z (a? logZ—t V) aNtL + ..., 2.69
n

n

where the dots indicate subleading corrections and the labels LL and NLL stay for
leading logarithm and next-to-leading logarithm, respectively. This improved series is
valid as as L < 1, in the enhanced region of the phase space.

In this work we focus only on the so-called Sudakov logarithms, which are those stem-
ming from soft and collinear emissions, such as in eq. 2.49. We stress this, as depending
on the type of logarithm to be resummed, the procedures differ slightly: for example
there are resummation methods for threshold logarithms [69], for small-z effects in the
PDFs [70,71]. Mainly two recipes for resumming Sudakov large logarithms exist, the first
based on standard pQCD [72] and the second exploiting effective theory methods, Soft
Collinear Effective Theory [73,74]. All the methods rely on the factorisation properties
of the phase space in the region of the enhanced behaviour; as consequence the series
exponentiate. We now discuss the very first result of pQCD resummation, that is the
NLL distribution of the thrust variable [75].

Thrust and soft-gluon resummation

Thrust, 7', is a global event shape variable which characterises the geometrical distribu-
tion of the energy in the event: it is a very good handle on two jets events, in fact it
reaches its maximum value in the case of dijet events, T'— 1. It departs from this value
when the configuration of the events contains more than two jets. The definition

2.70

where p; are the three momenta of the particles in the final state and » is an arbitrary
unit vector, is suitable for electron-positron colliders. The hadron-hadron collider version
is modified with longitudinal invariant observables, as usual:

T — max i PTa |

2.71
nr > ’PT,i|

Since this variable is maximised for the di-jet event configuration, thrust is highly sen-
sitive to soft and collinear emissions in the region T' — 1 of the phase space. The
perturbative expansion of the differential distribution contains terms of the form

log?"1(1 - T)

Ap(T) x T

when T — 1, 2.72

for every power n of the strong coupling constant. In addition we have to state that other
difficulties are present in the perturbative prediction, which are furthermore alleviated by
the resummation program, and those are a significant dependence on the renormalisation
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scale p and on hadronisation corrections. Following ref. [72], we introduce the event
shape fraction for the thrust distribution

1 1do
T) = AT === 2.
f(T) AT 73

that is basically an integrated distribution, retrieving the fraction of events with value of
thrust up to 7. Exponentiation of this observable means that at high thrust we expect
a behaviour

f(1) = C(as) exp [G(as,log1/7)] + D(as,7) with 7=1-T, 2.74

writing L = log 1/7 we define the functions above as

Clag) =1+ ) Cna™, 2.75
n=1
oo n+l

Glas, L) =Y > Gumad" 2.76
n=1m=1

= Lgi(asL) 4 ga(asL) + asgs(asL).

The remainder function D(as,7) vanishes as 7 — 0, as it contains no logarithmic-
enhanced terms. This expansion is valid for asL < 1, that is a larger phase-space region
than o L? < 1.

The resummation involves the following steps: first, one has to prove the factorisa-
tion of the QCD matrix elements in the soft and collinear region is not spoiled by the
particular observable one desires to resum; second, the series has to be reorganised in
an exponential form. The coherent branching formalism, relying mainly on the colour
coherence property described above is, is very useful for carrying out this program. It
is known some variables do not exponentiate, then the factorisation and exponentia-
tion proof has to be performed for every variables one wants to resum. This results in
a big dependence of the procedure on the process and variable for which it has to be
performed, rendering in this way cumbersome the automatisation of such methods.

Expanding thrust in the enhanced region of phase space we find

. 2.717

with s the usual Mandelstam variable; after dividing the event into two hemispheres
by the plane orthogonal to the thrust axis, k and k are the total momenta of the two
different hemispheres. Proving that an emission in one hemisphere remains confined to
that hemisphere until the end of the QCD evolution leads to the proper factorisation
property. The higher terms are proportional to 72 and then they contribute to the
remainder function, D(«as, L). To logarithmic accuracy one finds

(1) = Bp (K2 + k> < )5 2.78
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employing the jet mass distribution J(k2, s) at a scale s, and evolving the state through
the coherent branching formalism, the event fraction can be rewritten as

/ dik? / AT )T (.. 2.79

Solving eq. 2.79with the help of the Laplace transform J(s) = [3° dk2eF J (K2, s), it is
possible to find the LL and NLL functions ¢g; and gs:

g(osl) = —— B?g 7 [(1 = 2600,L) log(1 — 260 L) = 2(1 — foas L) log(1 — foas L)]
2.80
g2(asL) = 02,30 [2log(1 — 2Bpas L) — log(1 — 2Bpas L)] +
— 3Cr log(1 — BoasL) — w [log(1 — BoasL) — log(1 — 2Bpas L] +
2mBo
Crp

- 5 [log(1 — 2Bpas L) — 2log(1 — 2Bpaes L)+
B4

1
+ B log?(1 — 2Bpas L) — log?(1 — Boas L| +
—logI' (1 — g1(asL) — asLgy(asL)) .

In the above expression are present the Gamma function I'(z), the Euler number g ~
0.5772 and £ = (201 — 97% — 10ns)/18. We can see that the LL resummation program
gives back the correct high-thrust (low 7) behaviour

f(r) ~ exp(—2asCpL?), 2.81

in the limit agL < 1. This is a typical Sudakov suppression, an effect we already
encountered in the parton shower approach. At low values of thrust it can be noted that
the LL resummed result is no longer reliable: this is in full agreement with the fact that
the resummation is valid when oL < 1. The thrust distribution has kinematical limits,
depending on the number of jets, but the values cannot be less than 0.5 for multi-jet
observables. Adding the NLL function shifts this spurious effect. In fig. 2.8, we plot the
integrated thrust distribution at NLO and at NLL. The NLO distribution is divergent,
as expected: the thrust variable is completely insensitive to virtual corrections, therefore
terms coming from that contribution have no effect on the differential distribution. The
NLL curve nicely shows the Sudakov-like structure, and the spurious terms introduced
in the right side of the distribution.

2.1.9. Matching fixed and all order

Parton showers and resummation lead to an improvement of the perturbative prediction,
adding all-orders effects, thus reducing the uncertainties and better predicting the shapes
of the distributions - we have to note, in fact, that fixed-order calculations are important
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Figure 2.8.: Integrated thrust distributions for the NLO case (red) and the resummed
one NLL accurate (blue). The Sudakov peak is evident in the resummed
distribution, and also the fact that the resummed distribution gives results
outside the kinematical limits for thrust.

for the normalisation, where all-order methods are necessary for the correct shape of the
distribution. In any case both methods, and in particular parton showers, rely on several
assumptions and are valid mostly in the soft and collinear limit of additional emissions.
That means we better trust these results in some regions of the phase space, which are
exactly those characterised by low energy emissions. Regarding the leftover phase space,
it is better to employ fixed-order calculations, which better describe the hard part of the
collision.

Two methods have been developed over the years: matching and merging. Matching
exactly indicates the procedure of unifying the emissions from the parton shower and the
matrix element in different region of the phase space. While this is relatively simple for a
LO calculation, it becomes non-trivial for a NLO one, as the real emission of the matrix
element calculation could be double-counted, given that an additional hard parton is
already generated in the NLO cross section. Two matching techniques exist nowadays,
MCaNLO [76] and POWHEG [77,78]. On the other hand a merging prescription allows
us to add real-emission matrix elements to a fixed-order calculation, properly treating
double-counting issues and naturally choosing the starting conditions for the showering.
This approach improves the accuracy of the leading logarithmic approximation that
one can reach through a standard parton shower, which is de-facto an approximated
real-emission calculation. The inclusion of exclusive real-emission samples, although
not being a full higher-order calculation, improves the description of variables involving
additional hard jets. The basic idea relies on the fact that the real emission matrix
element is rather simple to compute when compared to the virtual part that contains
loop diagrams, which makes the calculation more complicated. Several algorithms exist:
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CKKW [79-81] and MLM [82] for merging samples with tree-level calculations; general-
isation to NLO fixed-order matrix elements are available [83,84]. In fig. 2.9 we present
the transverse momentum of the Z boson, in Drell-Yan events at the LHC. Date are
taken from ATLAS collaboration, [64]. The samples generated comprise the LO order
one, labeled as 0-jet case, the sample with an additional parton emitted, 1-jet, and with
2 additional partons, 2-jets. We can see how the merging prescription is relevant for the
prediction of variables which are sensitive to the modelling of additional emissions, such
as the transverse momentum of the Z gauge boson.

%1071*
V) B —e— ATLAS data
< C
& 102 —— merged
- — o
= = — 1
31073? >
g —————
10 4
107 £ | -
107% &
E\\\\\\\\\\\\‘\\\\‘\\\\\\\\\\\\
1.4 E-
1.3
% 1.2 E
1.1
2 10k
J 09 E-
S 08 E
0.7 =
S8 E | | | | | |
0.57\\\\\\\\\\\\\\\\\\\\\\\\\\\
o 50 100 150 200 250 300 350

pr(Z)

Figure 2.9.: Merging of real-emission fixed-order calculation and showering samples, gen-
erated with SHERPA. Comparison to data measured at LHC by ATLAS [85]
shows agreement for the merged sample. The process under consideration
is Drell-Yan Z production decaying to leptons.

Matching in the MC@NLO version [76] could be summarised using the NLO formalism
of Born-weighted NLO cross section

dog(¢n) = dog(¢n) + dov(dn) + doi(dn) — / dgr1op(us10(t — pgy)),  2.82

where B, V, I and D stand for Born, virtual, real integrated and subtraction terms,
respectively. t is the evolution variable, and ,ué is the scale at which matching is per-
formed. Introducing the hard remainder function, that accounts for the region of the
phase space where the NLO calculation is trusted - opposed to a soft one, where parton
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shower emissions are employed -

dUH,n(¢n+1) = dUR,n(¢n+1) - dUD(¢n+1)9(Mé - t); 2.83

the Sudakov form factor now reads

t op(on, ¢1)]
Ap(to,t) = — | dpr——7"71 2.84
( 0 ) eXp |: to ¢1 dO’B(¢n>

and events are generated according to

- 7
do = [ asudan(on) [ Anttoid) + [ a6 20 N (¢ i) | 4 [ dgndon(Gusa).

to dO'B(an)

2.85

Regarding merging, we briefly describe the simplest case, MEPSQLO. We summarise
the generation of events through the following expression for the mean value of an
observable

ﬂ2Q Qg
o= [ A6ana(0n) |Antto i) + [ 00052 S B At i) |+ 256
0 J

+/d¢)n+1 [UB,n+1(¢n+l) - O'B,n(d)n)% ZP](Z) A(t’,U?Q)‘g(Qn—i—l - cht)y
J

where Pj(z) is the Altarelli-Parisi splitting kernel, op denotes the Born cross section,
n + 1 is the number of final state partons and ¢, in general is the phase space for the
process. From this formulation we can highlight the procedure for a multi-jet merging:
the merging scale Qcyt defines the two regions where parton shower emissions and real-
emission matrix elements interchange. Matrix element emissions are vetoed for @ <
Qcut, conversely for what concerns parton shower radiation. Multi-jet merging has been
challenging due to the introduction of a backward clustering algorithm: from a fully
showered sample we need to reconstruct the history of branchings in order to identify the
corresponding core process. Truncated shower is the paradigm employed within SHERPA
to implement numerically eq. 2.86. Vetoing shower emissions leads to additional weights,
which must be considered during the showering; the Sudakov Veto Algorithm is therefore
employed [86,87]. This happens multiplying every line with an additional acceptance
or rejection probability and in this way it is possible to avoid double-counting effects.
The dependence on the merging scale is therefore canceled by the combination of vetoed
matrix-element events and shower emissions.

We state here that for resummation calculations matching prescriptions are also
needed, as we have seen that results as in eq. 2.80 are not fully reliable outside the
proper region asL < 1: we discuss in detail novel matching methods for resummed
calculations in chapter 3.
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2.1.10. Non-perturbative effects

After discussing perturbative results, in order to achieve a result comparable to any
meaningful measurement performed at hadron-hadron colliders, non-perturbative effects
have to be taken into account. These reactions happen at a scale Q2 ~ A(QQCD, and are
therefore classified as long-range interactions, meaning that they should not affect the
short-range, high-energy part of the calculations. However, they account for important
aftermaths that would render a perturbative calculation not as precise in the direct
comparison with data. This approach is known as parton-hadron duality [88], basically
stating

/dsw(s)ptheory(s) = /dsw(s)pexp(s), 2.87

where p is the spectral density and w(s) is a weight function - to be identified with the
distribution of an observable. This would be a trivial statement if we would have known
the full perturbative series at all orders. Since this is not the case, and we actually
do not know how to describe QCD below Aqcp, how gluon and quarks condensate
and behave at those energy, to assume eq. 2.87 is definitely not self-evident. Proofs of
this rely on the Operator Product Expansion of Wilson lines [89,90]. Hence, the task
is to phenomenologically model the irreducible smearing of order Axp due to hadron
formation.

When speaking of adding non-perturbative effects to the generated samples we indicate
a handful of tools, implementing different processes. First of all, a string [91,92] or
cluster [93] model connects the showered particles into colour singlets. In the former
model this is performed simulating a linear potential between the quarks, in the latter by
creating colour-singlet clusters, directly from ¢g pairs or from non-perturbative splittings
of gluons. Common to both models is the fact of joining colour connected partons, that
is always the case with a shower, which implements only planar diagrams, in the large-
N¢ approximation. In the last few years several novel colour reconnection models have
been implemented, which take into account subleading effects coming from non-planar
diagrams [94-96]. Finally, hadrons are decayed. Another source of non-perturbative
physics lays in the remnants of the scattering beams: models of primordial kp exist,
trying to describe the average transverse momentum of the parton selected for the hard
scattering within the proton. This effect could come from different sources: Fermi motion
within the hadron, some unresolved initial state radiation or low-x effects in the PDFs.
Usually a Gaussian primordial kp is chosen. Last, multiple parton interactions [97] are
simulated: in a realistic scenario the particles not taking part in the hard scattering
do interact in some way, what usually is defined as underlying event; one must take
into account for the elastic and inelastic parts of the scattering, classifying and treating
the diffractive and non-diffractive terms therein. More extensive discussion of these
effects could be found in ref. [98]. Due to the phenomenological nature of these models,
tuning to actual data from the experiments is performed, in order to choose the proper
parameters that better describe the interactions.

Despite the focus of the current work on pQCD methods, the usage of non-perturbative
results is necessary for comparing to data, especially for observables directly sensitive
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to hadron properties, as could be the energy distribution within a jet. We present
in fig. 2.10 the comparison of a simulated di-jet sample with and without the non-
perturbative corrections, for the p and 1 observables. These are defined as

1 pr(r—or/2,r +dr/2)

") — , 2.88
)= N 2™ 0
1 0
Y(r) = pj;( .7) : 2.89
]Vjets jets T (07 R)

where r is the radius within a reconstructed jet with R parameter. The differential jet
shape p describes the average fraction of jet momentum within an annulus of r — o7 /2
and r+0r/2, where the integrated 1 represents the average jet momentum inside a cone
of radius r concentric to the jet axis. Good agreement with data, taken from [99], is
present only after the inclusion of these.
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Figure 2.10.: p and 1 jet-shape variables are here compared to measured data at the
LHC, showing the agreement of the Monte Carlo simulations with data
only after the inclusion of hadronisation and multiple-parton interactions.
Measurement of jet shapes in inclusive jet production in pp collisions at
V/s =T TeV based on L = 3pb~! of data. Jets are reconstructed in |n| < 5
using the anti-k7 algorithm with 30 < pr < 600 GeV and |y| < 2.8 [99].

2.1.11. Presentation of the tools

We want to stress here, that for the purpose of Monte Carlo generation, where pseudo-
events are generated and compared with the data measured at colliders, parton showers
are usually preferred. A chain of different software tools, comprising

e fixed order calculation and decay of hard particles,
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QCD showering and other all-order effects,

hadronisation,

hadron decays,

other non-perturbative effects,

has become a standard procedure for generating Monte Carlo events. Resummation
techniques, on the other hand, provide a deeper understanding of the underlying pQCD
structure of the all-order results. We discuss in chapter 3 how the two methods relate
to each other.

A vast variety of tools for the hard process integration have been implemented over
the years. Due to the high number of amplitudes which must be evaluated, helicity
amplitudes methods (see [100] for a nice overview) are preferred to the academic sum-
ming of spinors and polarisation vectors through completeness relations. In this frame-
work, the amplitudes are treated as complex numbers, then summed and finally squared.
Within SHERPA, two fully automatic matrix element generators are offered, AMEGIC and
CowMmix [101,102]. These implementations are results of independent methods and ef-
forts, therefore have slightly different features. AMECIC implements the Catani-Seymour
subtraction method, generating the local counter-term for the given process. COMIX im-
plements the Berends-Giele recursion relations [103], and is particularly suited when
computing final states with high multiplicity.

Due to the intrinsic diversity in the calculation of virtual processes, loop diagrams
underwent a different development history. Several Monte Carlo implementations have
been released, and SHERPA interfaces to some of them in order to provide NLO QCD
cross sections: BLACKHAT [104], OPENLOOPS [105] and in the latest versions also RECOLA
[106,107], in order to implement EW corrections to the hard process.

These tools are relevant for the computation of the matrix elements; as these are at
hands, SHERPA takes care of integrating the phase space differential in eq. 2.14, through
a multi-channel algorithm dividing the complicated phase space into channels identify-
ing the peaks coming from the dominant Feynman diagrams, treating them indepen-
dently [101]. VEGAS optimisation is available [108], as well as other basic Monte Carlo
integrators, like RAMBO [109], SARGE [110] or HAAG [111].

Two parton showers are available in the latest version of SHERPA, one based on the
Catani-Seymour dipole, CSSHOWER and the other implementing a slightly different form
of the dipoles in the soft and collinear limit, DIRE [112]. Results for both showers have
been cross checked against the other major Monte Carlo programs.

Concerning soft QCD, SHERPA implements a cluster hadronisation model, described
in [113] and implemented in the module AHADIC; the HADRONS++ module further decay
the primordial hadrons and other unstable particles, such 7 leptons. Multiple parton
interactions are accounted for through the AMISIC module, implementing the model
in [114].
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2.2. Collider phenomenology at a 100 TeV hadron collider

After presenting the main tools and concepts used for studies and analyses of high energy
particle physics experiments, we want to better outline the target machine we are going
to use as benchmark for the present work. It is better to characterise such a project
through a comparison to the actual running machine, LHC.

A big role in differentiating a /s = 100 TeV machine with respect to a /s = 13 TeV
one is played by the PDFs. Still unexplored kinematical regions, as the very low x regime,
x < 107° or the high-Q?, \/Q? > 10* GeV [115], could be probed with an FCC machine.
An understanding of how parton luminosities scale with the increasing centre of mass
energy is needed. Given that, forecasting the knowledge of the PDFs contents from now
to the next generation of colliders is not trivial, since more data have been collected at
Run I and also now at Run II of LHC, and for sure we will have improvements from a
High Luminosity Run in the coming years. Nevertheless, we can speculate a little with
the current knowledge in our possession. Additional information and progress about
global PDFs will come from other possible experiments, e.g. electron-nucleon, electron-
ion colliders.

Parton luminosities, as the name suggests, are a concept inherited from the definition
of luminosity in eq. 2.9. Since the overall energy carried by a parton in the hadron is less
than the center of mass energy, it is useful to define the differential parton luminosity:

dLZ‘j 1 1
—_ 2.
L 1+, /0 dzidzox 90
X {(xlfi(xla %) o fi(za, p?)) + (1 4> 2)] o1 — z122). 291

The Kronecker’s delta in front of the definition applies to the case in which we are
considering the same parton. We can recast the usual eq. 2.10 as

Ldr [1dL;
U(s):Z/ T[ J}é@-j. 2.92

— J; T Ls dT
ij

From eq. 2.92 we notice that the scaling is driven by the parton luminosities: the partonic
cross section in fact is dependent on the coupling, which in turn depends slightly on the
energy scale. 7y acts as a cutoff scale, indicating the lowest center of mass energy at
which the hard subprocess can be initiated. In figs. 2.11 parton luminosities for the LHC
and the FCC are represented. Lines indicating equal energy scale ) and same luminosity
are depicted. We show distributions for the case of quark-quark, quark-antiquark, quark-
gluon, gluon-gluon. For a meaningful comparison of the actual setups employed at the
LHC PDFs containing top quarks have been separated from those considering just the
light quarks - up to the b quark. We can note in fact the mass threshold mop, = 173 GeV
at which the top quarks start comparing within the proton. One can easily see how big
is the role of QCD radiation in an FCC environment, as gluon-gluon initiated processes
are enhanced with respect to the quark-antiquark ones luminosity at 13 TeV. In fig. 2.12
a ratio of the LHC and FCC luminosities are shown; this quantity helps us to inspect,
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Figure 2.11.: Parton luminosities for the quark-quark, quark-antiquark, quark-gluon and
gluon-gluon cases. In (a) /s = 13 TeV, in (b) /s = 100 TeV. PDF
set NNPDF 2.3 NLO with as = 0.118 has been employed. Top quark
contributions are excluded and plotted separately, but with the same colour
code, and have sensitively lower values. Lines of equal ) and luminosity
are depicted.

in detail, the occurrence of the production of object of mass Mx at the two colliders.
For example, we can estimate that an object with Mx ~ 5 TeV produced through the
gluon-gluon combination will have roughly an increased probability of being produced
R ~ 10°, demonstrating how relevant are QCD processes and tools for computing these
predictions in such an environment. In chapter 3 we further discuss the need for precise
calculation in pQCD; in chapter 4 we estimate the scaling of production cross sections
for background processes for our Beyond the Standard Model search exactly through the
help of parton luminosities.

To support the validity of this argument, we present in fig. 2.13 the theoretical cross
sections for some relevant processes at a future 100 TeV collider. These have been
obtained with SHERPA, with /s = 100 TeV with the NNPDF 3.0 NLO PDF set; jets
are reconstructed with the anti-k; algorithm with a parameter R = 0.4, requiring a
minimum transverse momentum for the jets pr min = 50 GeV. Photons have additional
cuts R = 0.4 and p7min = 50 GeV. Standard Model parameters are imposed through
the G, scheme, G, = 1.6639 x 107° GeV~2, my = 91.188 GeV, my = 125 GeV and
as = 0.118. Cross sections are leading-order accurate; GF and VBF stay for the Higgs
production modes, gluon fusion and vector boson fusion, respectively. These results
have to be compared to the corresponding measurements at the LHC: for example tt
production, we can estimate roughly a factor 20 x 10 from the ratio of the PDFs as in
fig. 2.12 from the relevant production modes, gg and ¢¢. This would account for an
increase of the cross section of order 102, as it turns out comparing figs. 2.14 and 2.13,
from which we can assess 013 Tev ~ 200 pb and o199 Tev ~ 10 pb.
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Figure 2.12.: Parton luminosities ratio for the quark-quark, quark-antiquark, quark-
gluon and gluon-gluon cases, between /s = 13 TeV and /s = 100 TeV.
Top quarks are excluded when considering quark PDFs. The PDF set
employed is NNPDF 2.3 NNLO with o, = 0.119.

2.3. Conclusion

In this chapter we presented a general introduction to Quantum Chromodynamics as-
pects of the physics at colliders, with a particular focus to hadron-hadron machines.
We described the whole process of computing predictions suited for physics studies at
such colliders. In particular we aimed at presenting how all-order calculations, in the
a, coupling constant, could be achieved, both through numerical methods - like the
parton showers - and more analytical methodologies - as resummation. We reviewed
the state-of-the-art material on the subject from the point of view of the comparison
between these two approaches.

This material has been introductory to our presentation of physics opportunities at a
hadronic future collider. In particular, after looking at the scaling of PDF luminosities
and at the overall cross sections for the main processes, we would like to briefly discuss
what is the aim of such a collider, and its potential. In general, the machine can be
regarded as an unprecedented opportunity to directly probe new physics up to scale of
multi-TeVs, with mass reaches spanning from few TeV, to 40-50 TeV [117]. The main
branches of study in this direction comprehends potential dark matter candidates, and
new symmetries of the space time, as supersymmetry. Whatever will be the solution to
the Standard Model puzzle, a big part of the theory community is convinced that new
physics should be around this scale.

Thanks to its high luminosity, the FCC could be regarded also as a precision machine.
It is estimated that the Higgs self-coupling could be measured at order of some percentage
points, whereas the top Yukawa coupling could be probed with more accuracy than
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Leading-order cross sections at a 100 TeV pp collider
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Figure 2.13.: We present inclusive cross sections for different categories of processes,
simulated with SHERPA at a 100 TeV hadron-hadron collider. QCD, single-
and multiple-gauge-bosons, photons, Higgs are presented. Setup is fully
described in ref. [116].

LHC nowadays [118]. Another important test of the Standard Model would be the
measurement of triple and quadruple Higgs couplings, for which test scenario and theory
analyses are not yet fully clear. Of course, from the precision point of view, the FCC
has to be regarded as a complementary machine to a real precision collider, as a lepton-
lepton machine would be. In any case, new directions in how theoretical uncertainties,
systematical ones and background estimations are balancing are opened by the potential
reach of such a machine.

Challenges are posed either when considering highly boosted objects, which will re-
quire also a careful design of the detectors resolution and depths, or from a crowded
environment that arise from such energetic collisions. Overall, from a purely theoreti-
cal point of view, higher order corrections will for sure be an important topic, in order
to lower the amount of theoretical uncertainties. The interplay of these with all-order
effects, either computed by means of numerical algorithms, or with analytical methods
such resummation, will be a challenge, especially in the integration of multi-purpose
tools, as Monte Carlo event generators in the LHC era.

Although being a great opportunity for the study of still unexplored regions of the
phase space, providing inestimable amount of data useful for the understanding of the
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2. Perturbative QCD and Collider Phenomenology

dynamic of the Higgs mechanism, the presence of new physics, as well as the direct and
indirect measurements of the Higgs self-couplings, a 100 TeV collider is challenging also
from the point of view of the detector design.

The phase space coverage of the produced particles will allow us to measure events
in regions of pseudo-rapidity not covered by the multi-purpose detectors as ATLAS and
CMS [116]: one of the first challenges is the large 1 acceptance for the detectors. In
addition, a huge quantity of pileup events are expected: these are effects accounting for
the non-negligible probability for a single bunch to produce several separate interactions.
Pile-up is classified as either in-time or out-of-time: the former regards additional inter-
actions in the detectors overlapping with the hard-scattering process; the latter refers to
events belonging to the successive bunch crossings (for example, at the LHC, the bunch-
crossing interval is of 25 ns, therefore, the electronics and detectors has to take this
specification into account). Pile-up has an impact on jet kinematics and substructure,
leading to non-negligible contributions. Some jet reconstruction techniques [119-123]
are already designed explicitly to subtract these contributions, but npjenp ~ 1000, as
expected at the FCC-hh, is nevertheless challenging for the further development of these
techniques. Furthermore, pileup contributions account for much more radiation, which
is not relevant for the analyses but anyway present and detected by the trackers and
calorimeters. This intense environment requires a careful study and design of the future
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Figure 2.14.: The measurements at the LHC of inclusive cross sections for different cat-
egories of processes; data taken from the ATLAS experiment.
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detector systems.

The conceptual design report of the detectors and of the overall FCC-hh experiment
is due for the end of 2018. Due to the larger n acceptance and a bigger interest in
forward physics compare to the LHC, one of the purposes for a possible detector is to
have an ATLAS/CMS-like central region detector, with higher resolution trackers and
calorimeters, and a forward region detector similar to that of the LHCb experiment
running in these days, as designed in [124]. The combination of the two layouts should
enhance the overall acceptance, giving access to regions currently not covered by the
two main multi-purpose detectors, ATLAS and CMS. The conceptual design comprises
a central magnet of 4 T, meaning double the magnetic field compared to ATLAS. Barrel
electromagnetic calorimeters with energy resolution of o /E ~ 10%/+v/E and hadronic
calorimeters with og/E ~ 50 %/ VE; trackers are designed to have energy resolution of
op/E ~ 10 %. The rapidity coverage, calorimeters comprised, aim to a goal of |n| ~ 6.0;
the forward detectors will be located farer from the central region and they will be
properly shielded, to reduce radiation load and contamination. Target for the muon
resolution is around 5%, with a rapidity coverage |n| < 4.0. The focus is overall on
“low-pp” physics, coming for example from W/Z/Higgs or top decays, but shifted more
to forward angles with respect to the beams.

The latest updates in ref. [125] on the overall layout of the FCC-hh setup comprise
two high-luminosity experiments and two other experiments combined with injection,
meaning the possibility to vary the incoming particles of one of the beam, allowing for
example heavy-ions or leptons collisions with protons.

With this information at hand, we discuss in the coming chapters possible directions
on how Monte Carlo event generators at the present state can help us understanding
the challenges posed by such a collider, and to design possible analysis strategies for
processes not yet probed at the LHC.
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CHAPTER 3

Resummation

This chapter presents the study of precise calculations for a future hadron collider. At
a /s = 100 TeV, negligible effects at LHC energies begin to have an impact on the
simulations. We employ resummation in the forthcoming discussion, not only as a valid
alternative to the parton-shower, but rather as a tool to gain a greater insight into
the accuracy of calculations. We would like to demonstrate how such method could be
automated within a Monte Carlo multi-purpose software, and how it could be used to
trace the logarithmic structure and accuracy of the parton-shower algorithms. Resum-
mation methods, despite being fully analytical, are highly process dependent, whereas
the parton shower can easily adapt to different processes, and for this reason is today the
usual tool employed for producing all-order results. Automation of resummation meth-
ods therefore could be one important target for the particle physics community, having
an alternative to parton showers, which could even gain more insights in the physics at
colliders.

First resummed calculations were specially employed in predictions for global vari-
ables at lepton colliders. Event shape variables, like thrust in section 2.1.8 have been
successfully employed at LEP and in DIS experiments in order to measure the strong
coupling. These observables measure the flow of energy-momentum in the event, for
example, continuously encoding the transition from a two-jet to a three-jet event, as
in the case of thrust. This information would not be available through jet finder algo-
rithms, which would always give a discrete jet structure, also in the case of absence of
prong-like shapes in the event. Globalness, i.e. being sensitive to radiation at any point
of the phase space, leads to a remarkable simplification in the factorisation property of
the phase space with respect to QCD radiation. The enhancements coming from soft
and collinear emissions, typically at values of the event-shape variable related to the
di-jet structure, have pushed the research towards the understanding of QCD dynamics
itself and in the development of all-order techniques as soft-gluon resummation itself.
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3. Resummation

This property allows to have a good handle to the QCD parameters, like the quark and
gluon colour factors and the g function of the strong coupling. Tests of QCD colour
structure [126] and Monte Carlo generators validations [127,128] have been carried out
thanks to the presence of resummed results for event-shape variables. In fact, the pres-
ence of power corrections of order (A/Q)?, which stem from hadronisation corrections,
have been computed in this framework and permit a better understanding of soft QCD
corrections.

Despite the busy QCD environment typical at hadron colliders, such as the LHC, an
unprecedented number of experimental measurements have been carried out by both the
ATLAS and CMS collaborations, including the Higgs boson discovery [129,130]. For
many of these experimental analyses, several non-global event shapes are used. These
are defined "non-global”, in the sense that they characterise the events in a confined
region of the phase space, usually within a jet.These variables are a generalisation of
global event-shape variables. They are employed to characterise energy-momentum flow
within a jet, in order to both better understand QCD radiation and to construct tagging
algorithms for the decays of heavy resonances such as weak bosons, top quarks and Higgs
bosons. Among others, we present jet subjettiness:

_ Yopprrmin ARy, ARy g, ... ,ARN

3.1
>k P1 kR0
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where pr . is the transverse-momentum of the k-th constituent in a reconstructed jet,

and AR;j, = 1/Anik + Ag; . is the distance in the rapidity-azimuth plane between a
candidate subjet, ¢, and the given constituent k; Ry is the jet radius of the original
reconstructed jet. Subjettiness is widely employed at the LHC, in order to reconstruct
heavy objects decaying to hadrons, giving rise to two- and three-prong structures within
a fat jet. A characterisation in terms of logarithmic accuracy of these new variables is
mandatory, but the loss of globality in the definition of the variable renders resummed
calculations cumbersome, leading to a non-trivial factorisation of the phase space. In
spite of that, resummed results have recently been achieved, within Soft and Collinear
Effective Theory [67,131], and in section 3.2 we will show a valuable approach to study
subjet rates. The extension of resummation methods to non-global observable is a key
point for starting employing on a wider range of variables analytical resummed results.
It is a topic that lies outside the scope of this thesis, but it is important to stress out its
importance in the running experiments.

We start discussing soft-gluon resummation as developed within the CAESAR frame-
work [132], showing how resummed results could be achieved generalising this approach
within SHERPA [133] for events at hadron-hadron colliders. Next, we directly compare re-
summed results obtained through the generating functional method to events generated
at a 100 TeV collider.
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

3.1. Soft-gluon resummation: the semi-numerical CAESAR
approach

At the level of the integrated cross section, soft and/or collinear QCD radiation leads
to divergences proportional to aglog?(7) and aglog(7). In general, at hadron colliders,
the divergences are classified in terms of the strong coupling, ag, and the particular
enhanced logarithm, L = log1/v, where the logarithm is enhanced in the phase-space
region sensible to soft and collinear emission, v — 0, where v = 7 in the thrust case. Our
distribution depends on combinations of powers of the strong coupling and logarithm like
a’ log?" v, leading logarithms (LL), a’ log?"~! v next-to-leading logarithms (NLL) and
so on. Following ref. [72], it is possible to resum to all-orders in ag these divergences using
the coherent-branching algorithm in QCD, getting a reliable prediction for the process.
This approach, fully analytical, is process dependent, and in most cases involves lots of
calculations, which are hard to generalise and automate. Over the past few years the
community has begun to focus more on the parton-shower formalism to get an all-orders
prediction that relies on some approximations but it is more convenient and easy to
automate than the resummation one.

In the early 2000’s, a framework has been developed to account for a semi-automatic
generalised resummation of a large class of event-shape variables at lepton and hadron
colliders, including, among others, thrust, jet broadening, F-parameter and the exclusive
ki-algorithm jet-rates [132]. The Caesar approach defines a resummation program for
a general observable, V' = V(qi, g2, ..., qy), which has to be infrared and collinear safe.
After a certain number of particles, n, the variable tends smoothly to zero for momentum
configurations that approach the n-jet limit. The cross section is defined through the
introduction of a function, H(q1, g, . .. ), selecting the hard jets:

> don
g9 — Z /d@Nm}f(ql,...,qN). 3.2

N=n—n;

The integrated cross section is conveniently rewritten through the introduction of the
event fraction we already employed in chapter 2:

dog
Zg—( = Z/dUB dUB fO'B,(S(U)J—C(pni+1a o 7pn)7 3.3
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where op is the Born cross section and dos/dop represent the probability to produce
a Born event with n — n; outgoing hard momenta, py,11,...,Pn, in a given scattering
channel 4, and v is the actual value taken by the general variable V' in the given event.
f(v) is the integrated event fraction, which represents the probability of having a value
for the observable smaller than v. The variable value should vanish for a Born hard
event consisting of n hard legs, which allows a simple parametrisation for an additional
emission k, soft and collinear to the Born leg /¢

V (k,{p}) = d¢ (g)az el gy (). 3.4
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{p} denotes the ensemble of Born legs momenta. kf, n¢ are computed with respect to
the original parent Born dipole (the one before the emission). a, b, d and g are set to
parametrise the observable under consideration. For the case of thrust 7 for example,
we have ay = by = dy = g¢(¢p¢) = 0 for every ¢ in the event.

For the resummation program to work, two conditions have to be valid: recursive
infrared and collinear safety (rIRC) and continuous globalness. These are not at all
new concepts in typical resummation calculations, instead they harden the standard
globalness and infrared collinear safety prescriptions.

e Asking for a global observable means that the variable departs from the null value,
which, by definition, is reached in the case where only the Born legs are present in
the event, for any additional emission. This translates into the following require-
ments to the Caesar parametrisation

oV (. {p}) . VD) atb, 35

0 10g kf fixed ng,pp , 0 log kf fixed zyg,¢y

having defined z; to be the longitudinal momentum fraction of the emission, always
with respect to the original parent dipole. The two formulations exhibit the same
constraint, but in the soft (and eventually collinear) and collinear (eventually soft)
limits respectively.

e rIRC imposes that, any further soft/collinear emission has the same scaling prop-
erty for the observable; in addition it could be shown that there exists some € < 1
such that emissions below ev do not contribute significantly to the observable value.
These conditions can be formulated in two limits:

1. the limit 1
lim ~V({p}, k1(9161), - -, B (Vm&m)) 3.6

is well-defined and non-zero; in eq. 3.6 v; = v/&;
2. the following limits are identical and well-defined
1 _ _ _
lim lim jV({p}, kl (’Ulgl), ey km(vmfm), km+1(vm+1§m+1)) 3.7

§m+1ﬁ0 v—0 v
= i V({p}, ka(0€0), . o (6m)) - 3.8

3.1.1. The radiator and the multiple emissions terms

We now discuss the parametrisation in eq. 3.4 in the concrete case of the thrust variable.
Defining one momentum for each hemisphere .S; in the plane orthogonal to the thrust
axis nr,

q1 = Zpi221p+kt1+51]5, 3.9
1€S]

42 = Zpi222p+/€t2+§223, 3.10
1€So
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where p and p are light-like momenta. We can rewrite thrust 7 =1 —1T as

Q* @

This simplifies in the case of soft and/or collinear emissions (¢ + ¢3)/Q* < 1 as

1 2 2
7'21—Q(’ql'nT‘-l-’anTD:l—\J1+2<+> 3.11

2 n

7 + ﬁ 07 /QY) =>_V(ks), 3.12
Q@ Q =
where we omit the {p} ensemble of Born legs.
We recast the cumulative distribution defined in eq. 3.3 as a Sudakov exponential,
comprising the virtual corrections to the Born process, times an infinite tower of n
additional emissions, according to the matrix element M, in the following equation

¥ (v) = exp {—/[dk M2 (k } Z /H [dk;) M2 (k))O(v — V({k;})).  3.13

Introducing a small parameter, €, which has the same purpose as the shower cutoff,
it is possible to further divide the phase space of the emissions, encoding those with
V < ev in the exponentiated virtual correction term, and counting the other as resolved
emissions. Thanks to rIRC, in particular eq. 3.7, unresolved emissions do not contribute
significantly at NLL. Thus, the cumulative distribution becomes

S(v) = exp [ /[dk]Mz(k:)(l — 0w - V(k))| x 3.14

X Z m/ H [dk;] M2 (k;)O(v — V ({k;})O(V ({ki}) — ev).

We can recombine the virtual corrections, which account for the appropriate running
of the coupling in a similar fashion to what is performed in the parton showers, evalu-
ating the coupling at the scale of the emission, a(k?). This recombination is done by
expanding the exponential around the single emission matrix element coming from the
first emission. That is the one accounting for the most important effect on the value of
the observable

exp [_/ [dk][M Z(kﬂ} — ¢ Rlev) — = R(o)=R'logv/en+O(R") 3.15
€v1

where R’ = OR/OL. R(v) is often called the gluon radiator, and can be computed
directly from the single-emission matrix element, with the adequate boundaries coming
from the event-shape variable constraints

2 Q° dk2 o (k2) Q
=y R Al w2
R(U) = 2 Cr [/Q%Q/(a'*'be) th - <10g A + Bg) + 3.16
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where Q12 is the energy scale of the emitting dipole and By includes the contribution
from the large-n integration over the splitting function

1
Bez/ dz(Zp(Z)—1>. 3.17
0 z 2

In fig. 3.1.1 we show the splitting of the phase space for the emission as in the integral
of eq. 3.16, in which it is possible to note that, for the purpose of NLL resummation,
the allowed phase space is that constrained by the transverse-momentum lower cutoff,
in terms of €, the upper k; boundary, coming by the kinematics, and the constraints due
to the variable parametrisation.
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Figure 3.1.: Constraints on the single-emission contributions in the Lund plane, defined
by the longitudinal fraction momentum, z, and the ratio of the transverse
momentum of the emission, k?, and the hard scale of the process, Q2. Dif-
ferent areas are highlighted, coming from boundaries of the integrals (lower
and upper k;) and from requirements on the variable, as in eq. 3.16.

From the splitting of the virtual contributions as in eq. 3.15 we can define a function,
F(v), which encodes a dependence on single-emission independent contributions, i.e.

S(0) = exp [— / (AR M2(R)O(V (k) — v)} « F(v), with 318

Z /Hdk | M2 (k). 3.19

F(v) = exp [— / [dE] M2 (k

The reasoning above is valid for a simple eTe™ — jj process and to arbitrary logarith-
mic accuracy and is fully general and easily generalisable. In going from a lepton-lepton
collider to a hadron-hadron one, two complications arise: there is a non-trivial colour
structure, already for relatively simple processes like pp — jj, and we have to account
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

for DGLAP-like effects coming from the evolution of the hadronic initial state. Defin-
ing L =Inl/v and A = agfyL, the general integrated distribution at hadron-hadron
colliders, accurate to NLL is

E, L
In f(v ZCZ{W +7“g()<1ogdg—bgan>—|—BgT<a+be> 3.20

2L

“a+tb 2
+Zl ¢ ‘W “UE) 4 10 S(T(L/a)) + W F(C, . -»Cn;w )
xfﬂ ”F)

where Cp = Cp, C4 are the colour factors for the respective leg. We have defined

) (L) _ /QQ L]{:?as(k?)l Q 2 e—2L.(a+by) dithOZs(th) £ +10g (kﬁt)a/b[
14 Q2e—2L/(atby) k;t2 T k;t Q2e—2L/a k:tQ ™ by Q

3.21
L 1
ry(L) = 87:;2 ) _ b [T (L/a) —T(L/(a+0b))], with 3.22
O dk? ag(kp)
T(L) = /Q N~ 3.23

Contributions in egs. 3.22 all come from the radiator, R(v), which was discussed in
eq. 3.16. Substituting in the one-loop accurate expression for the running coupling, it
is possible to evaluate the integrals in eq. 3.22 and recovering the result in eq. 2.80. S
encodes the colour flow of the underlying Born event. It is relevant only for hadron
colliders, as the colour flow for simple processes in lepton machines is trivial. We discuss
them separately in the following. The evolution of the PDFs is taken into account
through the ratio of the two parton distribution functions

q(z, pEo¥ (b))
q(z, 1)

; 3.24

in fact, collinear emissions are properly taken into account up to the factorisation scale,
as usual, but placing a limit, v, on the value of the observable actually implies vetoing
emissions (k;/Q)*** < v. Hard collinear emissions, by construction, do not affect the
values of observables, and the parton density function scales with a factor of the order,
Qut/(@tbe)  The old parton density function at scale p% is then replaced by the parton
density evaluated at lower scale u%vw (atbe),

3.1.2. The soft function

When considering more than 2 QCD charged partons in a resummed calculation, the
only difference is in the radiator function. This function becomes a sum over dipoles,
which are constructed by pairing the various colour-charged particles in the event, such
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3. Resummation

that we rewrite the function R(v) as

R(w)= 3 Cdipole ( > [W(L) +74(L) (log dy — by log 2@@) + 3.25

dipoles {edipole

+ BT(L/(a+ be))} + 2T (L/a)log QC‘QPOI) :

By rearranging the sum over dipoles and over the associated legs, it is possible to write
the radiator function as a single sum over Born legs and a function encoding all the
dependence over dipoles, the latter being what we have defined to be the S “soft”
function:

R(v) = Z Cy {TK(L) +ry(L) (log dy — belog 2QEZ> + B/T(L/(a+ b))+ 3.26
1

—log S (T(L/(a)))] ,
where, in the case n = 3, the S function takes the form
log S(t) = —t lCA log C)ngZq/g] . 3.27
Qqq'

From n = 4 legs, the situation is more complicated, because loop-corrections that are in-
cluded through the proper treatment of the running coupling must be taken into account
when computing the colour flow. A loop diagram appearing in a ¢q¢ — g¢ exchange would
already introduce a non-trivial colour flow; this is indeed one of the simplest processes
we could think for the colour algebra. Needless to say, for diagrams involving gluons, in
order to resum to all orders, the number of colour-flow combinations increases almost
exponentially. Looking at eq. 3.26, it is evident that contributions ending up in the soft
function are exactly soft - i.e. unresolved - large-angle contributions.

As we have seen in the parton shower formalism, the treatment of colour flow in
the hard QCD event is not simple. There, the large No approximation is employed,
where N¢ denotes the number of colour charges, i.e. SU(N¢). This approximation
was introduced by 't Hooft [134] to simplify the treatment of meson-meson exchanges.
Basically, one considers the limit No — oo, while keeping a;N¢ fixed. This introduces
considerable simplification, and mainly we have some topologies of diagrams contributing
most; diagrams are classified in powers of 1/N¢. Graphically, a large- N theory depicts
the quarks as a single colour-flow line, and gluons as a double line, with opposite flow,
as it would be if the gluon is regarded as a ¢ pair. It is then simple to count the 1/N¢
powers of a diagram: in fig. 3.2 bottom, for example, we can see the introduction of two
gluon lines overlapping, a typical non-planar diagram. Following the colour flow, it is
evident to see that this diagram is 1/N¢ suppressed with respect to a planar diagram
as in fig. 3.2 right.

The function S appearing in eq. 3.20 [135,136] can be expressed as a matrix element
in the colour space of the hard scattering: defining |mg) a vector in the colour space,
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

£

Figure 3.2.: Example diagrams for visualising the colour flow in the large N¢ approx-
imation. Large-N¢ flow is projected over the Feynman diagrams for the

process qq — qq with additional gluon exchange, at order a2 a?.

such that the Born amplitude is |Mpom|? = (mo|mo), one can write

(mo|mo)

S = , 3.28
where I is the soft anomalous dimension, resumming to all orders the soft, large-angle
contribution and £ is the single-logarithmic evolution variable. The dependence on the
strong coupling is completely contained in the evolution variable. For global event-shape
variables, the soft anomalous dimension can be written as

r =23 T Ty log &4 4 T;-T 3.29

——Zi-jOgQ-i-Z?T Z i-4j, .
i<j i,j=II,FF

where Q?j = 2p; - pj, is the invariant mass of the dipole, as before. II and F'F' denotes
the fact that dipoles are initial-initial or final-final. Being I" and I'f non-commutative,
the evaluation of eq. 3.28 is not trivial. This results in an additional phase for the soft
function, that accounts for the exchange of Coulomb-Glauber partons.

In the 2 — 2 case the dipoles are classified in terms of the Mandelstam variables,

Vs = Q12 = Qs4, V-t = Q13 = Q24 and /—u = Q14 = Qa3. Therefore, the soft

anomalous dimension becomes

F:—(Tl-T3+T2‘T4>T—(Tl-T4+T2-T3)U, 3.30
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3. Resummation

where we defined
—t . —U .
T=log— +ir and U =log— +im. 3.31
s s

In eq. 3.30 we employed the conservation of the overall colour charge in the event, which
can be expressed as

(i T) Img) = 0. 3.32
=1

Hence, an automation of the soft function calculation should define and compute the
colour basis and metric, calculate of the operators T; - T; and finally decompose the am-
plitude in this colour basis. Despite the difficulties, technologies to deal with the colour
bases and mixing matrices exist, [137-139], through the construction of appropriate and
optimised bases for the general SU(N¢) algebra. This topic is intrinsically connected to
the construction of multi-leg QCD partial-amplitudes [140]. The approach pursued by
ref. [133] in particular exploits existing tools which provide colour-ordered amplitudes,
such as computed in COMIX, in order to calculate the soft function. In this approach,
the I' matrix is expressed in the same basis of the colour amplitudes within in COMIX.

A colour basis is defined through the rules for the interaction vertices of the process,
and in general simplification rules for three-gluon vertices and exchange of a gluon in
qq — qq' scattering diagrams exist, depicted in figs. 3.3 and 3.1.2.

Figure 3.3.: Factors associated to the gqg and the ggg vertices in QCD.

Nevertheless, the colour bases employed are non-orthogonal, meaning

(calcs) = cap # 0ap P = (cap) ™', 3.33

where we define a general element of the basis |c,), for which by definition cq~c?? = 65.
The soft function in such a basis is rewritten as

ot _
Tr (He I€/20 F£/2) ca5H769:fypchCa5950

= 3.34
Tr (cH) CapH™P

S(6) =

The matrix, G, is the exponential of the I' anomalous dimension contracted with the
proper metric

9045(5) = Cory €XP (_gcﬂ/ér&fi) . 3.35
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

— tat

tr tat t¢)

_—
S S

Figure 3.4.: Simplification of the gqg and the ggg vertices in the colour flow formalism
in QCD.

As a concrete example, we present the quark-quark scattering case. In fig. 3.5 the two
contributing diagrams to the process are presented, showing in the large-N¢ limit the
colour connection between the external lines. The basis elements could be read from the
figure directly,

c1 5]25]4 , o 5345” . 3.36

11 713 11 713

The metric and its inverse, which are defined in eq. 3.33, are therefore

1 L 1 _1
Cap = ( 1 NC) ; = < 1 NC) ) 3.37
o L “ne L
thus, the soft anomalous dimension is
r Ng1< T ]\}C(T—U)> 5.8
IB —_ — 1 . .
¢ Ng N—C(T -U) 0

In this simple example it is easy to see that off-diagonal elements are suppressed
by a N¢ factor: this feature is present in any process, and therefore the large-N¢
approximation can be implemented by simply extracting the diagonal matrix from the
soft-anomalous dimension. This is a nice approximation, which helps us to relate and
compare the resummed results to the standard parton shower approach.

In an ordinary calculation, given the size of this matrix and the dimensionality of the
bases as in tab. 3.1, one of the intrinsic complications is the evaluation of the exponential
of this matrix. Within SHERPA the software libraries chosen allow the computation of
up to 8 legs in the final state in a reasonable amount of time. This is far beyond the
previous state of the art for NLL resummed calculation at hadron colliders.

95



3. Resummation

Figure 3.5.: The two colour flow diagrams contributing to the ¢¢’ scattering. They are
related to the s and ¢ or v Feynman diagrams, respectively.

Subprocess | gggg | 5g | 6g | Tg
Dim. basis | 5 16 | 79 | 421

Table 3.1.: Dimension of the non-orthogonal bases for subprocesses with gluons. The
colour flow is rapidly increasing with the further addition of a gluon leg.
Results extracted from [133].

Combining the colour-ordered partial amplitudes available through COMIX, and the
soft anomalous dimension computed in the proper basis, it is possible to obtain a predic-
tion for the soft function in a Monte Carlo-fashion. We have to note that some patholo-
gies related to No = 3 due to the non-orthogonality, and therefore over-completeness of
the basis, have to be taken into account [133].

In fig. 3.6 we show a comparison of the resummed result for the thrust distribution
1/odo/dr, for the subprocess gg — gg, at /s = 14,100, TeV: the difference in the two
distributions comes from the evaluation of the colour flow, that is exactly the compu-
tation of the I matrix. The red line describes the full colour evaluation, whereas the
blue one labels the large-N¢ approximation. It is worth noting that the difference in
the colour evaluation does not change between the two different centre of mass energies,
meaning that the kinematics does not affect the colour flow. The large-N¢o approxima-
tion is there obtained simply keeping the diagonal I' matrix, suppressing all off-diagonal
entries. The only effect of the increased energy is to shift the maximum value for thrust
to higher values: this is understood when noting that more energy allows for a larger
phase space. Nevertheless, matching is here not considered, and in any case the maxi-
mum allowed value for thrust would not change between the LHC and an FCC. From this
reasoning, we could derive that in principle, the leading colour behaviour could already
be well described by the parton shower also at higher energies, given that the colour
flow contribution seems not to dramatically change the results. We stress here that,
by construction, the gluonic channels are widely influenced by the colour algebra. The
overall effect on pp — jj + X is reduced when considering all the scattering channels:
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach
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Figure 3.6.: Resummed distributions for subprocess 2 — 2 with 4 gluons, at 8 GeV.
Comparison between the large- NV, and full color-flow at /s = 14 TeV in (a)
and /s =100 TeV in (b).

this is indeed due to the fact that the matrix element is contributing less to the overall
process, and the effect is averaged out by the other kinematic channels, with less colour
flow contributions, as those represented in fig.3.5.

3.1.3. Matching fixed-order to all-order

In complete analogy to what happens when matching matrix element to the parton
shower, a matching prescription is needed for the resummation. The resummation ap-
proach is valid in the logarithmic enhanced region of the phase space of the observable
under consideration, asL < 1. Outside this regime the resummed prescription adds
spurious terms that spoil the perturbative calculation.

Some techniques have been developed already in [72]; the difficulty arises from the
ambiguity in the matching prescription which comes from the non-logarithmic terms,
what we have defined for a general exponentiated expression the “remainder” in eq. 2.74,
and in general by the truncation of the perturbative expansion at a given order. The
only rigorous statement of the factorisation theorem is

log f(v) = log C(as) + log exp[G(as,log 1/v)] + vanishing terms v—0, 3.39
where we label with vanishing terms contributions canceling order by order in pertur-

bation theory. Thus, in general it is possible to construct a resummed prescription with
different functions, which fulfil eq. 3.39

f(v) = C(v, o) exp {@(as,log 1/1})} + D(v,as), 3.40
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3. Resummation

leading to the uncertainty in defining a unique recipe.

The “log-R” prescription [72] and the multiplicative “mod-R” ones [141] are the most
widely employed in order to compare experimental measurements and analytical resum-
mation, as in [142]. They are defined at lowest order, respectively by

ORI (B0 - Saw)

fv) = Fo@) fiog-r(V) = P 3, p( - )] 3.41

Faoar(v) = [&(1 /o) (1 RO Sl el “max)E“)] . 840
oo+ 01 oL

We have defined (v) as the partial integrated cross section as in eq. 3.3. The algorithms
are based on the subtraction of the divergent terms in the fixed-order result, which are
correctly described by the resummed result. The r superscript labels the resummed
distribution, and the r,1 denotes the expanded resummed result at first order, that
cancels the divergence in the fixed-order calculation. The 0 and 1 indices label the order
in the perturbative expansion and ¥ indicates the usage of the modified logarithmic

prescription
= 1 1 \? 1 p
L=-log||— ) — +1), zy =X Xy, 3.43
p Tyv TV Umax

where vyax is the maximum kinematically allowed value for the event shape under con-
sideration. This modification of the logarithmic structure is indeed necessary for the
matching to get the proper maximum kinematical value, defining i(vmax) =0. xyand p
modifies the logarithm respectively at low and high values of the observable v, and they
introduce terms that are subleading at NLL accuracy [142].

For a more convenient Monte Carlo implementation, quantities should be differen-
tials, in this way suitable for an event by event generation and analysis. Therefore, the
following matching to fixed-order perturbative result is adapted [133]

dgmatched do* N ( doFo do™! )

3.44

dv dv

dv dv
where ¢",679 and o™! are the full resummed, perturbative fixed-order and first order
expansion of the fully resummed cross-section, respectively. The last two terms are
separately divergent, but the combination is finite. In fig. 3.7 we present the matching
prescription of eq. 3.44 for a single event in the phase space for three-jet production at
a lepton-lepton and DIS colliders respectively. The modified logarithmic prescription
in eq. 3.43 is in these results already implemented, such that the maximum value for
the resummed distribution matches exactly the maximum kinematical value allowed,
v = 1/3, for thrust with three jets in the final state.

In the SHERPA implementation, this proceeds as follow. The resummed and expanded
differential distributions in eq. 3.44 are directly computable within the CAESAR frame-
work, exploiting the soft function described in section 3.1.2. The expanded resummed
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Figure 3.7.: Complete NLL and matched to LO resummed distribution for thrust 7 at
ete™ (left) and for DIS process (right). Arbitrary units. The distribution is
not integrated over the whole phase space, but evaluated just for one point.
To note, especially in the left case, the right behaviour of the matched
distribution, that falls to 0 reaching the physical maximum allowed value of
thrust for a final state of 3 partons - that is 1/3.

functions are defined as following

G2 = —
P

3.45

— a4+ by
n

By 1 _ 2Eg) 1 Q12>
Gu=-|3C log dy — by log =2t ) + ~log 212 3.46
u [Z f(a+bﬁa(a+bf) (Og N A o)

=1
+1M LR Jo, Ph(we/2)q™ (2, p3)
a capHP = 2(a + by)q (x, M%)

It is sufficient to note that the divergent structure and the colour flow in the I' soft
anomalous dimension in eq. 3.29 is comparable to the soft and collinear limit of the
Catani-Seymour matrix elements. This is accomplished in SHERPA exploiting the Catani-
Seymour subtraction method, as implemented in AMEGIC, after taking into account two
major differences:

e replace the kernel V; by the factor 2log Q;j)r/@12 and rescaling by the a value
of the observable parametrisation;

e restrict the splitting function F;; on the region of the phase space belonging to
the enhanced double-logarithmic term.

In fig. 3.8 are presented the matched and resummed-only results for the process pp — jj
at /s = 8 TeV, with asymmetric cuts on the leading jets, pr1 = 100 GeV and pro =
80 GeV. As expected, the resummed distributions considerably differ towards the high
values of the 7 observable, whereas for 7 — 0 they approach the same value.
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Figure 3.8.: Matched and resummed-only distributions for the process pp — jj at a
hadron collider with /s = 8 TeV

3.1.4. A Monte Carlo evaluation of the multiple emissions contribution

Eq. 3.19 is composed of a suppression term coming from the virtual contribution, and
an infinite sum over resolved, correlated, emissions:

' ER/(v) o0 1 m+1 n dC/L 2 d¢z
:T(U):ll_{%mgo% L 1[2_:104 0 / 1 gCl) 3.47

X exp (R/(U) log%i_r}rb V({p}, ]ﬁ%}. R km+1) ,

where (; = v;/v. The explicit limit ¢ — 0 and v — 0 and the rIRC conditions ensure
that the J function contains only single logarithms, thanks to the ordering log1/v >
log1/e > 1. The results presented so far for 7 at lepton and hadron colliders exploit
the fully integrable form of the F function. Thanks to the simple factorisation of this
observable, it is possible to write

m

T({p}, k1(VC1)s ..oy Em (V) = ZT({p}, ki (0G)) = EZQ , with §; =v;/v, 3.48

i

from which we derive a factorised expression for eq. 3.19

m+1 1 / m+1
F= hml (H / d@) (log ¢1)e T8 2i= & 3.49
ml

60



3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

The main simplification in eq. 3.49 comes from the last term in eq. 3.47. Because thrust
is additive, we can factorise the complex exponential, thus allowing a direct integration.
Following ref. [72], we introduce a Mellin transformation, which allows to compute the
integral

m m—+1
e—R/ log Ej:-gl <j — R/ dizef log Z dV 6Z/Z H e*I/Cj , 3.50
Z 2miv -
7j=2
through which we obtain the final expression
dv ’ / G_WER/
T R/ _ v—R'logv—R'vg _ 3.51
(F) = | 50 Tl+R)’

where v is the Euler-Mascheroni constant, and I" is the Euler function.

In general, the evaluation of F(v) is not as simple as in the case of thrust: in general
the event-shape observable parametrisation is not additive, and there could be different
coefficients for every leg. This has already been addressed by authors in ref. [132],
through a Monte Carlo algorithm. In the following we want to stress the similarity of
the Monte Carlo evaluation of the F(v) with the parton-shower formalism, in order to
establish some connections.

The integrals in eq. 3.47 can be evaluated with the importance sampling method,
carefully described in app. B, with sampling function g(v) = 1/v. There are two nu-
merical issues arising, which are the presence of the limit lim. .o and the sum over an
infinite number of emissions. These two elements are however related, since the cutoff
€ divides exactly the domain in the phase space belonging to the unresolved emissions,
providing the exponential Sudakov-like suppression, and the resolved correlated emis-
sions, accounted for exactly through the infinite sum over the index m. We take the fully
analytical result for thrust in eq. 3.51 as a benchmark and present two versions of the
Monte Carlo evaluated F function in fig. 3.9, respectively with ¢ = 0.01 and 0.001. As
expected, reducing the value of the cutoff increases the number of additional emissions
which must be considered: in agreement with the fact that more radiation becomes re-
solved. In fig. 3.10 is evident how the choice of the cutoff and of the number of additional
emissions affect the Monte Carlo evaluation, especially at low values of the cutoff and of
the number of legs.

As, for a general observable, for which the F(v) function is not additive, a full re-
summed result is not available, in order to generate pseudo-events in a Monte Carlo
fashion we have to consider the treatment of the convergence of the series and, there-
fore, the stopping point of the algorithm. This will depend on the number of subsequent
emissions, and on the cutoff scale. This is complete similarity to what happen in the
parton shower, but within a fixed theoretical scheme. Hence, we could interpret the
values thrown by the Monte Carlo algorithms as the momenta of the particles emitted,
as we do in the parton shower approach. For the purpose of the convergence, we sketch
the following prescription:

e fix the value of the cutoff, €, and the number of additional legs m;
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€ = 0.01 cutoff

€ = 0.001 cutoff
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Figure 3.9.: Independent evaluation of the F, with importance sampling, g(x) = 1/&;.
Different numbers of additional emissions are presented, for a cutoff ¢ = 0.01
in (a) and € = 0.001 in (b). The benchmark is the analytical result for thrust.
A different cutoff implies an higher number of additional emissions for the
function to converge.
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Figure 3.10.: Comparison of the convergence of the Monte Carlo numerical evaluation
with different cutoffs ¢ = 0.01 and € = 0.001 and fixed number of additional
emissions, m = 4.
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3.1. Soft-gluon resummation: the semi-numerical CAESAR approach

divide the R’ domain into bins;

integrate the F(R’) for each bin;

check the convergence bin-per-bin

increase the number of legs and restart the algorithm until the convergence coeffi-
cient is ¢ < 0.05 for each bin.

We use the following estimator for the convergence:

EnJrl
1o

c=1- , 3.52
where we indicate with ¢ the F(v) evaluated with n additional emissions. This estimator
has to be interpreted as the impact of adding a new emission to the previous one. As
we know that the emission is in any case ordered in transverse momentum, when we
reach a sufficient small cutoff, we can easily say that the convergence is reached. This
happens again thanks to the CAESAR initial hypothesis of recursive infrared safety and
to the globalness of the observable under consideration. In fig. 3.11 we present results
for the last 4 bins in the distribution with € = 0.001 of fig. 3.9. The series converges
with m = 22.

018 Convergence of the numerical F(v) function
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‘ — R e(17,18
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Figure 3.11.: Convergence of the series of integrals in eq. 3.47. We stop adding emissions
when the ratio between the values of the evaluation of 1 — F(v)p41/F (V)
at the last bin on the right of the plot is smaller than 0.05.

The Catani-Seymour inspired shower generates momenta, therefore particle candi-
dates, according to the Sudakov form factor

A(kﬁ_ ,max’ kﬁ_ 0) =

— exp Zz/i‘md’ﬂ/

ij k)#’b] Zmin

2 3.53
52(7:) UCTRNGEACITIR)
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3. Resummation

Here, k| is the transverse momentum of the emission, computed with respect to the
parent dipole, that is, with respect to the dipole before any emission. V;; 1 is the splitting
function for the given spectator, emitter and emitted particles (ij, k), and could be
found in chapter 2; J(y) is a jacobian factor emerging from the change of variable, from
the transverse momentum k| to the Catani-Seymour y. It has been already shown in
ref. [132] that the difference between this and the Caesar one, kr, gives contributions at
order NNLL. Therefore, we can neglect these effects in this analysis. Concerning the z;
longitudinal fraction of the momentum, we can write

v _ ke _B L de_dx

Q?% & Zq

using n = %log % and k2 = 2120Q. Here, % is computed with respect to the original
(parent) dipole. Choosing the proper z, i.e. the one with respect to the emitter, coincides
with the choice of the z; computed in the Catani-Seymour formalism, up to some recoil
correction. This correction contributes anyway beyond next-to-leading log accuracy.
In addition, the CAESAR formalism for NLL resummation only takes into account
the primary emission off a leg, which avoids furthermore big differences in the recoil
contribution, given that the difference in the transverse momentum and longitudinal
fraction is of order ~ z;_1k;. In Fig. 3.12 the sampling of kr and z from properly
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Figure 3.12.: Lund plane pattern of emissions with k7 and z computed as in the Caesar
prescription.

adapted SHERPA is shown. This is in agreement with the boundaries of the typical Lund-
plane variables plot, as one could argue from fig. 3.1.1, by remapping the variables. This
suggests that further studies could be performed in order to directly employ the parton
shower as a sampler for the F integration.
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3.2. All-orders average jet multiplicities

In this paragraph we have shown one example of how the resummation formalism can
play a role in foreseeing how QCD phenomena evolve with the increasing centre of mass
energy at a hadronic collider. We have presented original results on the colour flow, and
an approach to compute the single logarithmic function F(v) exploiting Monte Carlo
algorithms, and that could be easily implemented within SHERPA. In the following we
describe another, different, case, in which resummation and analytical QCD results can
help improve the understanding of current techniques, and how the evolution of these
will look like in an FCC-like environment.

3.2. All-orders average jet multiplicities

Jet production at hadron colliders is one of the most striking signatures of the validity
of QCD as the theory of strong interactions. As introduced in chapter 2, the generalised
k; algorithms are widely employed at colliders. With these kind of prescriptions, it is,
in fact, possible to have a good handling on the underlying theoretical properties of the
event. Through the coherent branching formalism and the related generating functionals,
it is possible to compute jet rates and jet average multiplicities in a similar fashion to
resummation. These are global quantities, as the phase space is sliced in term of the
resolution parameter of the particular jet algorithm, and therefore do not suffer of the
presence of any non-global logarithms. The boundary condition coming from the jet
algorithm is equivalent to the IR cutoff condition appearing in the branching algorithm
or in the parton shower, as in eq. 2.65.

Our aim is to revise the generating function formalism, following ref. [143], and to em-
ploy the analytical results there achieved to predict the inner structure of jets produced
at a future hadron collider at /s = 100 TeV. In collisions at the LHC, in particular
during Run II, several techniques for reconstructing hadronically decaying boosted ob-
jects have been developed and widely employed [144-154]. They are all joined by the
fact that they exploit jet substructures: the main idea behind this being that a jet orig-
inating from QCD radiation is intrinsically different from one stemming from the decay
of heavy resonances. The more these objects are boosted, the narrower decay products
become, such that, by reconstructing the object as jet with a slightly larger cone size
than usual, R = 1.0, it is possible to capture all the radiation from the parent particle
within a single jet. By boosted objects we mean particles with scales p% > m%/, where
my is the mass of the particle under consideration. Variables are then constructed in
order to highlight the intrinsic differences between the objects. For example, one of the
variables employed is subjettiness. The theoretical question arising is: are we able to
predict jet substructures? In particular, in our work, we try to address whether the
all-order methods employed at the LHC will also be valuable in an extreme environment
such as a 100 TeV hadron collider.
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3. Resummation

3.2.1. Generating functional formalism

The generating functional formalism allows for a precise treatment of the soft and
collinear singularities arising in QCD radiation. This is accomplished through succes-
sive derivations of the generating functionals, that are differently defined for gluons and
quarks and for different processes. The algorithms for which the following discussion
applies are described in sec. 2.1.4. In particular, the good theoretical properties of the
generalized k; algorithms are optimal, when combined with this analytical approach,
in order to gain further understanding of QCD evolution within a jet. The logarithms
we discuss here always stem from the existence of soft and collinear radiation, and are
mainly of the form log1/R and log Q/ER, where R is the resolution parameter of the
algorithm, ) the hard scale of the process and Er the minimum jet energy.

The evolution scale for coherent parton showering is £ = 1 — cos § with 6 the emission
angle. The probability to have a single resolvable gluon, emitted from a quark of energy
E at a scale £ is computed in term of the Altarelli-Parisi splitting kernels,

£ de’ 1 s k.?
P, (E, &) = /{Ré/ER/E dzaz(wt)qu(z), 3.55

where the running coupling is evaluated at the transverse momentum scale of the emis-
sion, th = 22E?%¢', as shown also in the last section,

O‘S(k?) 1

T boln(z2E2E/A2) 390

with by = (11C4 — 2ny)/12. Defining &; = as(E%E)/n, i.e. in terms of the coupling at
the hard scale, we can rewrite at next-to-double-log accuracy (NDLA)

QS(th)

™

and

= a, — bya? {2 Inz+In (glﬂ 3.57
Py(E,£) = CrpasIn (5 )

) () -3
%Cpboo‘@ In @R) In (}i) {2 In (}i) +1In <§R)

The probability for no-resolvable emissions is expressed in term of the Sudakov form
factor

. 3.58

Aq(Ev ‘S) = exp [_{‘PQ(E> 5)] : 3.59

By definition, the generating function for resolved jets from a quark (i = ¢) or gluon
(i = g) of energy E at scale £ is [41,42,155]

®;(u, E, &) = i u" R\ (E,€) , 3.60

n=0
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3.2. All-orders average jet multiplicities

where R! is the corresponding n-jet rate, which is the probability of finding n resolved
jets. The jet rates can be recovered from the generating function by successive differen-
tiation at u = 0:

1 0"

Ri(E,€) = 9

®i(u, E, ) 3.61

u=0

The average multiplicity of resolved jets is obtained by differentiating at «w = 1. Writing
the average jet multiplicity from a quark or gluon of energy F at scale £ as N;(F, &), we
have

o0
; 0
Ni(E,€) = 3 n RL(E,§) = =-@i(u, E,€) 3.62
n=0 u u=1
The generating functions, ®, 4, must thus satisfy the boundary condition
Di(u, E,{r) =1+ (u—1)O(FE — ER) . 3.63

The generating function for ete™ annihilation at centre of mass energy Fp, is that
for two quarks of energy E.n/2, each filling one hemisphere:

Dee = [Pg(u, Eon/2,1)]° . 3.64

We expect that initial state radiation does not significantly affect the parton content
in the reconstruction of a boosted object, and therefore we employ the results obtained
in ref. [143], though in principle one should take the showering effects from the initial
PDFs into account. In any case, we expect that the contribution of the initial radiation
to the jet substructure to be negligible. Defining suitable variables

k =log E/ER , A=logé/ér , 3.65

we write the average jet multiplicity from the jet rates, obtaining at order O(a3)

Nrp =2+ (2%)\ — ;/\) Cr

1 1
—l—a3<1021€)\+1b0(2l€+)\)+1710)\—3102)\>Cn2)\2 3.66
s\ 18 A 2 0 A 18 fur 79 A F . .

Here, the terms in by originate from including the running coupling expression. We see
that these terms enhance the average jet multiplicity with respect to a fixed-coupling
calculation.

To achieve a NDLA result as in ref. [156], we write in terms of the generating functions,

0D

_ ., 0%
ou 2

u=1 au

— 2N, 3.67

u=1
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3. Resummation

where N 4 is the average quark and gluon jet multiplicities and satisfies the equations

§ qg 1 s L2 )
Ny (E,€) =1+ 3 é /E o dz2 ;ﬂt)qu(z)Ng(zE,g ) 3.68
_ ¢ dé'/ ! as(th) /
g =1+ [ G [ P N E.€)
+ PQQ(Z) [2NQ(E7 5/) - Ng(Ev fl)} } . 3.69

It can be shown [143] that the expressions for the average jet multiplicities in terms
of the logarithmic variables in eq. 3.65 are equivalent to the following partial derivatives
equation (PDE)

O*N, 3 ONy
DN = Cras (Ng 1ok ) 3.70
with boundary conditions Ny (x,0) = Ny (0, A) = 1.
Similarly, we find from eq. 3.69
9*N, 11 ny\ ON ng_ ON,
o |CaN, Ca+ L 9] g, 3.71
DrON a[A <12 +6>6/<;+3a8/€’
where to the required accuracy, we may set, in the last term
ONg  CrINg
9 _ 28z 3.72
Ok Cy Ok’
so that finally
82N 11 ny  nyCp\ ON,
s |CaNy — ( =Ca + =+ — 9} : 3.73
orox @ { A (12 % 3CA) O

with boundary conditions Ny(x,0) = Ng(0,\) =1
Note that the ny dependence in eq. 3.73 is very weak and vanishes in the large-N¢
limit:
ng nyCrp  ny  ny
6 3Ca G6NZ 54
This is because at large N¢o a ¢q pair from gluon splitting radiates like a gluon, due to
the similar overall charge.
Dropping the non-singular parts of the splitting functions, we have

C

3.74

N=2N, =2+2-E (N, - 1), 3.75
Ca
where 82N
a5 = CadaNy . 3.76

In the leading double log approximation DLA | ay is constant. Then the solution to
eq. 3.76 is a modified Bessel function:

N, (1, \) = ;(C“‘(W—Io (2v/Caasmr) - 3.77
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3.2. All-orders average jet multiplicities

The asymptotic behaviour for large argument of the modified Bessel function, y o

QKA
ey

2y’

implies that, for high energy and small cone size,
&)t oo () m ()]
Nee ~2(1—— Caasl In(—
( OA)+ﬁcA A% 2Eg) "\ )l

exp [ \/C’Aas In (EEZ) In (;R)] . 3.79

Taking into account the running of a@s; to NLO, we have

Io(y) ~ 3.78

N

Or 8)\IO (2v/Cadrd) = [1 = bo(25 + N + O(a3)}lo (2v/Cadssd) . 3.80

Thus, if we drop terms of relative order o2, the solution to eq. 3.76 is

Ny = [1+bo(26 + Nag] o (2v/Cacer) 3.81

which agrees with the byp-dependent terms in eq. 3.66. However, for large k and/or A,
bo(2k + N)as ~ 1 and therefore we need to take into account the running of «ay to all
orders.

Treating the running of «, to all orders but still neglecting the finite parts of the
splitting functions, we have in place of eq. 3.76

PN, N,
0rkON T2k +A+p)’

3.82

with ¢; = Ca/bp. These equations are not easy to solve and a solution could be more
easily found through a numerical discretisation method, which we describe in detail in
app. C. The building blocks are now ready, and we can use these results for generating
predictions and comparing with simulations at a potential 100 TeV future hadron-hadron
collider.

3.2.2. Results at a 100 TeV hadron collider

In light of the formalism just described, we discuss in the following how the generating
functionals could be used in order to trace results obtained with parton showers, in
particular with SHERPA. Furthermore, as we did for the thrust case, we discuss which
implications these results can have in the design of a future circular collider. Results
presented in this paragraph were first presented in [116].

Large-area QCD jets, “fat-jets”, are assumed to contain the hadronic decay products of
the produced resonance, as well as the majority of the associated QCD radiation. Their
use at colliders is prototypical for jet substructure analyses. Subjet methods are based
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3. Resummation

on the fact that the subjet structures originating from the decay of heavy boosted objects
appear substantially different from a standard QCD jet. Two-body decay kinematics, as
in the gauge bosons or the Higgs decays, lead to two-prong subjet structures, while the
top quark originates a three-prong one. Mass constraints on the reconstructed subjets
help to increase the discriminating power of these techniques.

At the LHC, typical radii for such fat-jets are of the order of R = 1, but it is clear
that larger boosts — larger transverse momenta — will necessitate smaller radii, usually
of the order of R ~ 2M /pr, where M is the mass of the heavy particle. Assuming a top
quark with a transverse momentum of around 3.5 TeV, originating from a hypothetical
7 TeVresonance, the resulting fat-jet will have a radius of around R =~ 0.1 only. This
clearly poses a considerable challenge for the granularity of future detectors, and it is
nicely depicted in fig. 3.13. In this figure we show the distances between the jet axis and
the first subjet in pr are shown. It is evident how with the increasing boost of the jet,
the subjets become narrower, up to be collimated in a region of dR ~ 0.01.

We simulate with SHERPA the W and top productions and hadronic decays at /s =
100 TeV; the simulation comprises showering and hadronisation. We reconstruct the fat
jet with the anti-k; algorithm with a parameter R = 1.0, and match it to the truth-
particle in the Monte Carlo parton level event. Subjets are reconstructed with the
anti-k; algorithm with a parameter R = 0.1. In fig. 3.13 we present the AR(J, jo,1),
the distance between the first subject and the jet-axis; subjets are ordered in trans-
verse momentum. We present events for top quark, W gauge boson and QCD di-
jet processes. The reconstruction is organised such that we divide in different slices
of transverse momentum the reconstructed jets: results are depicted for the ranges
pr € (0.5,1)-(1,2)-(2,5)-(5,10) TeV. Boosted objects with pr > 2 TeV become so colli-
mated that the subjects lay within the R = 0.05 region of the fat jet. This indicates that
the decaying objects are so near in the phase space that the n—¢ resolution of the detector
will probably not be enough for observing two different objects. This is just an assump-
tion based on the fact that nowadays detectors have a resolution 7 — ¢ ~ 0.05 x 0.01!,
motivating a deeper study and design of detectors and techniques for a 100 TeV collider
project.

However, assuming suitable fat-jets have been identified, specialised tagging methods
are used, which analyse their substructure. This is achieved through, for example,
re-clustering the large-jet constituents into smaller subjets, or in terms of jet-shape like
measures. For reviews of the currently available techniques see Refs. [144,157-159]. Vital
for all these approaches is a good theoretical understanding of both the backgrounds
from pure QCD jets and the radiation pattern of the heavy resonance and its decay
products. The complexity of the tagging methods used often allows for a comparison
of the response from different Monte-Carlo generators only. However, there is a lot of
activity to develop predictive analytical techniques, see for instance Refs. [160-165].

In the following the focus will be on some rather coarse feature of large-area QCD jets
at high transverse momentum, namely the mean number of small-R subjets (ngubjets)
found inside fat-jets. Results will be finally compared to the corresponding observable

for what concern trackers - calorimeters have usually less resolution power
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3.2. All-orders average jet multiplicities

AR(j,jo.1) @ 100 TeV - W and top hadronic jets matched to parton truth
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Figure 3.13.: AR(j;) of different topologies of boosted jets, reconstructed with the
Cambridge-Aachen algorithm. This is the distance between the jet axis
and the first subjet (ordered in transverse momentum). Categories fall in
different slices of the transverse momentum of the reconstructed jet, pr.
We can notice how with the increasing boost, the subjets become narrower.
Process simulated for top hadronic decay, W hadronic decay and QCD jets
samples with SHERPA, at /s = 100 TeV. MEPS@QLO? stands for the fact
we merged samples up to the second real emission for the process under
consideration.

for highly-boosted hadronic decays of top quarks and W-bosons. The number of subjets
found inside a larger jet is expected to carry information on the QCD colour charge
of the jet initiating particle. Broadly speaking, at lowest order one expects the scaling
behaviour (neubjets) < Ca for colour octets and (ngupjets) < C'r for colour triplets. Based
on such considerations one can attempt to discriminate gluon from quark jets [166,
167], i.e. assign a corresponding likelihood based on the jet-internal QCD activity. For
hadronic decays of colour singlets, a reduced and more collimated QCD radiation can be
expected, resulting in a smaller number of subjets to be found. Considering the physics
case of highly-boosted hadronic decays, rather small radii Rqupjet need to be considered.

To set the stage, Fig. 3.14 compiles the expectation for the average number of anti-
kr subjets found inside large-area Cambridge-Aachen jets of size Rg 4 = 1.0 [168] as
a function of the fat-jet transverse momentum. This potentially allows contact to be
made with LHC results in the future. Results are obtained from a SHERPA dijet sim-
ulation, invoking parton showers but neglecting any non-perturbative corrections, like
parton-to-hadron fragmentation and the underlying event. While the results shown here
were obtained from the parton shower based on Catani-Seymour dipoles [62], they have
carefully been checked and confirmed using the independent DIRE shower implementa-
tion [169] in SHERPA.

In all results, two benchmark values for Rgpjer are considered, Rgypjet = 0.05 and 0.1.
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3. Resummation

Furthermore, two threshold values for the subjet transverse momentum are used, namely
pgflbjet > 20, 10 GeV. Clearly, (nsubjets) grows with smaller Rgypjet and p%lbjet cut. For
the mixture of quark and gluon jets given by the LO matrix elements in this calculations
setup, a mean number of subjets of (ngupjets) ~ 5 for pg‘?t = 3.5 TeV, pf‘,?bjet > 10 GeV
and Rgpjet = 0.1 is found. In the following, the LO matrix elements for quark and
gluon production will be considered separately, in order to contrast them individually.
However, for all considered parameter choices the slope of the (ngupjets) distributions
levels off for large values of the fat-jet pp, corresponding to very collimated jet-energy
profiles. In this regime of large pr, the actual jet inside the fat-jet area becomes to be
of a size comparable to the subjet size, and it becomes increasingly harder to push more
subjets into the jet.

(Msubjets) for inclusive QCD Rc/a = 1.0 jets at FCC
20

- /5 =100 TeV —— PP S 20 GeV, Rypjer = 0.1
B —— P > 10 GeV, Ryypjer = 0.1
PO > 20 GeV, Rygpjer = 0.05 —
P > 10 GeV, Ryypjer = 0.05
anti-kr jets

<nsubjets>

15

10

|

parton-shower level |

o) L L L L ‘ L L L ‘ L L L ‘ L L L ‘ L L L T
2000 4000 6000 8000 10000
pr fat jet [GeV]

Figure 3.14.: Average number of subjets inside Cambridge-Aachen jets of R = 1.0 in
inclusive QCD-jet production. Subjets are reconstructed using the anti-kr
jet finder with Rgupjer = 0.05, 0.1 and p?lb]et > 10, 20 GeV. Results are
presented at parton level.

Using very small Rgpjet and p?l biet is not only an experimental challenge for recon-

struction algorithms but also induces large logarithms that need to be resummed in order
to obtain a reliable prediction. We employ in the following generalised longitudinally-
invariant kp algorithms, kp, anti-kp and Cambridge-Aachen, we already described in
chapter 2. For this class of jet algorithms there are predictions resummed for small R
to all-orders of (aslog R?) [170,171], and for small R and small transverse-momentum
threshold pr min of (o log R%log(pr/pT.min)) to double and next-to-double logarithmic
approximation [143,167]. In particular, Ref. [143] derived resummed predictions for jet
rates and the mean number of jets to double-logarithmic (DLA) and next-to-double-
logarithmic approximation (NDLA), accounting for effects of the running of the strong
coupling. It should be noted that at this level of accuracy the results are independent
of the parameter p that distinguishes the jet algorithms.
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3.2. All-orders average jet multiplicities

In Fig. 3.15, resummed predictions to DLA and NDLA accuracy including the effect
of the running of a, to one-loop order are presented for (ngubjets) for both light-quark
and gluon initiated jets of size R = 1.0. It can be observed that for all combinations
of Rgupjer and pf‘,fﬂrorfﬁf gluons induce a larger mean number of subjets than quarks, as
naively expected from the colour charges. The NDLA corrections are most sizeable for
Rgubjet = 0.05, where they reduce the DLA prediction significantly.

In Fig. 3.16 the comparison of the (ngybjets) distribution for a SHERPA parton-shower
simulation and the corresponding NDLA prediction for quark- and gluon-initiated jets is
presented. For the shower simulation, the processes pp — ¢¢ and pp — gg at parton level
have been considered, respectively. Given the large jet transverse momenta investigated
here, initial-state parton-shower effects are rather suppressed and a comparison to the
pure final-state evolution hypothesis of the resummed calculation is applicable?. For
the case of quark-initiated jets, the resummed predictions agree well with the parton-
shower results, and the dependence on the fat-jet transverse momentum is very well
reproduced. For Rgpjet = 0.05 the resummation overshoots the shower prediction by
about 10%. When comparing the results for gluon jets, somewhat larger deviations are
observed. Once again the parton shower nicely reproduces the shape of the resummed
prediction. However, the NDLA results overshoot the Monte-Carlo simulation by about
20% for Rgubjet = 0.1 and 25% when Rgupjer = 0.05. It has been observed before
that resummed predictions for gluon jets tend to produce larger deviations from shower
generators [167] and that the latter predict somewhat lower rates, in particular when
considering small jet radii. Since in general gluons radiate more than quarks, they are
thus more sensitive to missing higher-order terms. For Rgupjet values as small as 0.1 or
even 0.05 the analytic resummation of terms like (a5 log(1/R2, )" to all orders [170] or

subjet
jet-clustering logarithms as discussed in [172] might need to be considered. Furthermore,

2This hypothesis has explicitly been checked and confirmed by switching off initial-state splittings in
the SHERPA parton shower.
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Figure 3.15.: NDLA (solid) and DLA (dashed) predictions for the mean number of sub-
jets inside R = 1.0 light-quark (left panel) and gluon (right panel) initiated

jets for different choices of pir ™" and Raupjet-
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Nsubjets) for QCD light-quark Rc/a = 1.0 jets at FCC

Nsubjets) for QCD gluon Reya = 1.0 jets at FCC
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Figure 3.16.: Average number of subjets inside R = 1.0 light-quark (left panel) and
gluon (right panel) initiated jets. A SHERPA parton-shower simulation
(histograms) is compared to a corresponding NDLA resummed predictions
(solid curves) for different choices of p?bjet and Rgubjet-

explicit calculations of the NNDLA contributions to kr jet rates turn out to give sizeable
corrections and improve the agreement with parton-shower simulations®.

Overall, one can conclude that parton-shower predictions for the mean-number of
subjets in large-area jets give reliable results that are in reasonable agreement with
analytical estimates from resummed calculations. However, in particular for the case of
gluon jets higher-logarithmic contributions seem to yield sizeable corrections. However,
for subjet radii not too small the techniques presented allow for realistic perturbative
predictions to be made for very large jet transverse momenta and rather small subjet
pr thresholds. Certainly, for a dedicated comparison against data, non-perturbative
corrections from hadronisation and the underlying event need to be included. However,
these are largely independent of the flavour of the particle that seeds the jet evolution and
thus will not critically change the above picture. Instead, apart from slightly washing
out some of the differences between quark and gluon jets, only a modest offset in the
mean number subjets is expected.

The observable at hand, (nsubjets) as a function of the transverse momentum of a
large-area jet, will now be considered as a discriminator for QCD jets and hadronic
decays of heavy particles. In Fig. 3.17, a comparison for the mean number of subjets
found inside Cambridge—Aachen jets of R = 1.0 containing the hadronic decay products
of top-quarks, W-bosons and light-quark QCD jets is presented. In the analysis of the
top-quark and W-boson decays, the reconstructed fat-jet that is closest to the direction
of the actual resonance is being analysed. The quark-jet distribution is obtained from
the analysis of pp — ¢¢ events. For Rgypjer and p?lbjet the values 0.1 and 10 GeV are
considered, respectively.

Most notably, jets containing the decay jets of boosted W — qq’ decays feature a rather
small number of subjets. This is related to the colour-singlet nature of the W-boson. Its

3Private communication with Bryan Webber based on unpublished results.
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<”subjets> for QCD, Top and W-boson Rc/a = 1.0 jets at FCC
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Figure 3.17.: Average number of subjets inside Cambridge—Aachen jets of R = 1.0 origi-
nating from hadronic top-quark and W-boson decays, and QCD quark-jet
production. Subjets are reconstructed using the anti-kr jet finder with

Rgupjer = 0.1 and pf_,?bjet > 10 GeV. Results are presented at parton level.

decay jets are very collimated at high transverse momentum, with no colour—connection
to the rest of the event, that characterise the quark or gluon jets. This results in a rather
constant expectation of just two subjets for pg‘i‘t > 2 TeV. At pf_,i‘t ~ 1 TeV three subjets
are resolved on average, corresponding to the emission of one additional jet from the two
decay partons. This prominent feature makes it easily possible to distinguish hadronic
W-boson decays, or similarly Higgs-boson decays, from QCD jets.

The identification of top-quark decays based on (ngupjets) seems much harder. The
distribution peaks around pf_ﬁ‘t ~ 1 TeV with a value of (nsupjets) ~ 5.5. This is signif-
icantly higher than what is observed for light-quark jets and even for gluon jets, and
it is due to the hadronic decays assumed for the tops, i.e. t — bW+ — bqq’, which
yield three jets — two more than the original quark. With increasing transverse mo-
mentum the top-jet distribution approaches the light-quark result, reflecting the fact
that beyond pg‘%‘t ~ 4 TeV the decay products are extremely collimated and basically
radiate with their combined colour charge Cr as light-quark jets do. To illustrate this
fact Fig. 3.18 compiles the (ngubjets) distribution for undecayed top quarks and bottom
quarks. Three values of p?bjet are considered, 5, 10 and 20 GeV while Rgpjet is fixed to
0.1. Mass effects, namely the shielding of collinear singularities, yield a suppression of
radiation off top quarks up to pr values of 4 TeV. The radiation off bottom-quarks is
at high transverse momenta as considered here compatible with the light-quark distri-
butions presented in fig. 3.16. It can be concluded that at FCC collisions energies the
identification of very boosted hadronic decays becomes extremely challenging. The ob-
servable presented here, i.e. (ngupjets) Of large-area jets, provides sensitivity to the QCD
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Figure 3.18.: Average number of subjets inside Cambridge—Aachen jets of R = 1.0
originating from stable top-quark and bottom-quark production. Sub-
jets are reconstructed using the anti-kr jet finder with Rgupjer = 0.1 and

p?lbjet > 5,10, 20 GeV. Results are presented at parton level.

colour charge of the jet-initiating particle, either a QCD parton or a heavy resonance.
For QCD quark and gluon jets the results obtained from parton-shower simulations are
in reasonable agreement with predictions from all-orders resummation calculations at
NDLA accuracy.

3.3. Conclusion

In the present chapter resummation effects in simulations at a future collider have been
presented. The first approach discussed is the CAESAR one, which is a general frame-
work that accounts for the resummation of soft and collinear logarithms in global event
shapes, at a hadronic collider. After introducing the main concepts, results on the colour
flow in pp collisions have been presented, with a comparison between LHC and FCC
collisions. These have been obtaining by combining existing tools within the SHERPA
multi-purpose event generator. The colour flow, accounted for in the CAESAR frame-
work by the soft function, which comprises an evolution equation, parametrised by an
anomalous dimension matrix, can be evaluated by mean of the large-N¢o approximation
too. Through this simplification, it has been possible to make a connection between
the resummation approach and the parton shower one, as the latter is by default large-
N¢ accurate. Events at FCC and LHC energies have been generated, showing that the
overall contribution of the full-N¢ colour flow to the process is marginal, and therefore,
the large- N¢ approximation, as used in the parton shower could be valuable also in the
scenario of a future collider.

We present a discussion over the single-logarithmic function present in the CAESAR
approach. An independent Monte Carlo evaluation has been presented, and possible
integration within a Monte Carlo event generato discussed. Due to its similarity to the
Sudakov factor in the parton shower, it could be an interesting tool again helping us in
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comparing resummation effects as performed in the parton shower approach.

In the second part of the chapter we continue our diagnosis of resummation in parton
showers by mean of another analytical resummation method, the so called generating
functionals one. After a short introduction of the prescription, direct comparison be-
tween showered and fully NDLA have been presented, showing an overall agreement
between the two methods at 100 TeV. Our analysis focuses on the average number of
subjets within a “fat” jet. This kind of objects are widely employed in boosted searches,
and as starting point for the reconstruction of several hadronically decaying particles,
as top quarks, Higgses and gauge bosons.

The present discussion shows from one side that parton showers, although being a
numerical Markov chain employed for iteratively solving the evolution equation, is a
good tool, with accurate prediction properties. This comparison goes in the direction
of carefully describing jet substructure techniques from a theoretical point of view, as
in ref. [173]. Further studies could also improve the understanding of new technologies.
For example recent results [174,175] discuss NLO accurate parton-shower, and a careful
understanding and check of the parton-shower log-accuracy is needed, before going to
the next accuracy level.
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CHAPTER 4

Beyond Standard Model

This chapter discusses the phenomenology of a particular Beyond Standard Model theory
at a proton-proton future circular collider with centre of mass energy /s = 100 TeV. The
ultimate goal is to study the scattering of gauge bosons, a handle to the intrinsic nature
of the Standard Model, and of its BSM completion, whatever it will be. We perform
the study within the context of Composite Higgs models, in particular employing the
symmetry breaking pattern SU(4)/Sp(4). We make use of unitarity methods to set
natural parameters for the model, in order to generate predictions. We first present
the necessary context following refs. [176,177], understanding what is still missing to
the Standard Model, and what inconsistency we try to address; in between, we present
the unitarity method we employ. In section 4.2 we present the actual SU(4)/Sp(4)
Composite Higgs model, and finally we describe the procedure we apply for getting
reliable predictions, and an analysis to be performed at a future /s = 100 TeV hadron
collider.

4.1. Going Beyond

The Standard Model of particle physics, whose Lagrangian is summarised in egs. 2.16
and 2.1, successfully describes almost all measured high-energy physics data to date. The
Higgs boson discovery [178,179] in 2012 by the ATLAS and CMS collaborations [4,5,180]
confirm the last missing piece of the puzzle. Despite its success, the Standard Model
is not a complete nor final theory. Gravitational interactions are not included, and
seemingly there is not yet a satisfactory quantum theory for them. Also, non-vanishing
neutrino masses are not predicted within the Standard Model, and, in general, the
Hierarchy problem is posed by the simple formulation of the Higgs boson mass and
its introduction through the Electroweak Symmetry Breaking. The current paradigm
largely employed when trying to describe the Standard Model is that of Effective Field
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Theory. Following other historical working example, such as the Fermi theory, we should
look at the Standard Model as an effective theory, valid up to some scale A%M, before
or near to the so-called Planck scale, md . = fic/G = (10'9)? GeV?. The Fermi
theory with four-fermion interactions is valid below the scale of the gauge-boson masses
A? ~ m%, and afterwards the Standard Model is the right theory to employ, which
describes the same mechanism as the Fermi theory through the introduction of boson
mediators. We also expect that, for the Standard Model, a more complete theory exists,
enlarging its validity domain and describing the phenomena with a deeper understanding,
just as what happens for the Fermi theory. Usually, such a theory is referred to as the
UltraViolet (UV) completion.

In an effective field theory, operators in the Lagrangian are classified according to
their mass dimension

_ 1 1
Loy=L3F4 4 —pd=5 4~ pd=6, | 4.1

ASM A%M

The dimensional analysis of the operator composing the Lagrangian is a powerful tool
when we want to match the effective theory with the fundamental one. Some new
physics must exist in some form, and it might arise at very high energy scales that
we cannot currently access. Since a Quantum Field Theory describing Nature has to
be renormalizable (meaning d < 4 for the Standard Model), in order to not contain
divergences, from power counting it directly follows that operators with d > 4 have
to be suppressed by a power of the Standard Model cutoff in order to restore the right
dimension for the term in the Lagrangian density. From this point of view, we understand
why the effects of operators with d > 4 are not included in the “canonical” Standard
Model Lagrangian of the previous section: they are suppressed by powers of the cut-
off energy so that they give very small contributions and can be safely neglected. It
is worth noting that the Lagrangian with operators d = 4 already accounts for almost
every process measured today, and those not yet accounted for could be regarded as in
the following.

A key role in the SM description is played by the so-called “accidental” symmetries.
These are not imposed in the theory, as for example the Poincaré and gauge symme-
tries, but they are a consequence of the truncation of the Lagrangian up to 4-dimensional
operators. For the lagrangian with operators d < 4, baryon and lepton number conser-
vation belong to this class. The fact that those symmetries are not imposed as principles
means that the fundamental theory could violate them. Accidental symmetries are a big
phenomenological success of the theory, so it is remarkable that they could arise at the
typical Standard Model energy scale. One such symmetry is baryon number conserva-
tion, which forbids the proton decay - in other words proton lifetime is greater than the
age of the universe.

At the level of d = 4 operators, baryon number is exact and the proton is exactly
stable. However there are d = 6 operators [181] like, for example,
aﬁveij

1
Oabcd = 5€

A2 €ki(QL.0,i,a97 3.5.6) (AL kLD 1) 4.2

80
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where € is the Levi-Civita anti-symmetric tensor, the gs are quarks spinors and ¢ denotes
a lepton doublet; o, 3,~ are SU(3) indices, i, j are SU(2) ones, and a, b, ¢, d refers to the
generation. This operator violates baryon number, thus leading to proton decay. We
can give a crude estimate, based on dimensional analysis,

1 1 5

~ AR % "y my, . 4.3

The proton can thus be made arbitrarily long lived, for large enough energies Agyr.

The Super-Kamiokande experiment in Japan has set an experimental bound on the

decay of the proton 7 = 1/T'(p — eT7%) > 1.4 x 103 years [182]; this incredibly long

lifetime is very easy to understand in the Standard Model. Given the present bound we
estimate the decay width I',,

1 1
. < — 9% 10764 4.4
PR 35 % 10 15 x 1021 OOV — 2 X 10T GeV
m
= Agy > P ) ~3.7x%x10"®GeV . 4.5
SM = Tp (&rrp) % ¢

The second important accidental symmetry is lepton flavour conservation. After di-
agonalising the lepton Yukawa’s, we find that the d = 4 Lagrangian is invariant under
the transformations

U(l)LeXU(l)L“XU(l)LT, 4.6

under which the three leptons families rotate independently. This symmetry forbids any
flavour-changing transition in the lepton sector. Experimentally, processes like flavour-
violating decays of the p are indeed largely suppressed [27]

Br(p~ — e ) <3.3x 1078 4.7
Br(p~ — e ete™) <27 x1078, 4.8

in the Standard Model with large Agps, as expected . However by the observation
of neutrino masses and oscillations, we know that lepton flavour is a good approximate
symmetry, but not an exact one. But this is not a failure of the Standard Model, actually
could be a great success. At d = 4, lepton flavour is exact and neutrinos are massless,
but both these features are violated by a five-dimensional operator [183]

1 -
(UL H)((LHE) 4.9
Asm
where ¢ is the lepton doublet, H the Higgs doublet field and the superscript ¢ indi-
cates the charge conjugates. After the Higgs acquires a Vacuum Expectation Value, the
operator in eq. 4.9 leads to a Majorana neutrino mass

’U2

~ , 4.10
Asn

my
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4. Beyond Standard Model

that can lead to neutrino oscillation and masses. The stringent limit on m,, comes from
the Troitsk experiment [184] m,, < 2.3€eV, and an overall limit >~, m, < 0.23eV, which
could be naturally accounted for if Agys ~ 6 x 1014 GeV. It is interesting to note that
the first evidence of new phenomena beyond Standard Model, such as neutrino masses
and oscillations, could come from the first sector with higher dimensionality than d = 4,
which is the least suppressed by the scale of new physics.

By the arguments presented up to now, it seems extremely plausible that the Stan-
dard Model is the valid theory of Nature up to very high energies, far above the current
and foreseen experimental reach, to the order of the so-called Grand Unification Scale,
Mgyt ~ 10" GeV. This is however contradicted by another argument, the so-called
Hierarchy Problem, which can be formulated as follows. By power-counting, i.e. dimen-
sional analysis, we estimate that an operator with d > 4 must be suppressed by the
appropriate power of Agys, but exactly the same argument leads us to conclude that an
operator with d < 4 must instead be enhanced by the appropriate power of the scale
Asm

L= L2 4 AL, L8t 4.11

The only such operator actually contained in the Standard Model Lagrangian is the
Higgs boson mass term

m%H? ~ cA\% H? 4.12

where c is an unknown coefficient. Then, comparing Agy ~ 1016 GeV with the measured
Higgs mass mpy = 125 GeV

(m%{)true

~ 10716 4.13
(m%()estimate

Why the power-counting estimate is so badly violated? This is the essence of the Hi-
erarchy Problem. This is not a mathematical inconsistency of the theory. The fact
that the Higgs mass estimated by dimensional analysis as in the previous section is so
large does not forbid us to obtain the correct Higgs pole mass, 125 GeV. As made very
clear in the Wilson approach to Quantum Field Theory, m;QJhys = m%]v + 62m, where
5%2m comes from radiative corrections and it is associated with physics below the cut-off
A%,,. Classifying the Higgs boson as fundamental scalar particle means that this is not
protected by large radiative corrections, so that dm can be very large and compensate for
mp,uyv. The main correction at one-loop order ¢° comes from the particle with largest
Yukawa coupling, the top quark. Its radiative contribution to the Higgs mass is not the
only one, there are others arising from the gauge bosons, Higgs self-coupling, and almost
every other particles, and they are summing with different signs. They are considerably
smaller compared to the top-quark contribution, due to their smaller masses.

We compute dm? by regularising the integral appearing in the loop correction with a
cut-off, obtaining

d*k 1 _:LA%

Smy = 3\2 /

~ A2+ .| ~0.1A2 4.14
[k|<Asm (27T)4 k2 272 [ * } SM

82



4.1. Going Beyond

where \; is the Yukawa coupling and A is the regularising cut-off. The correction is
quadratically divergent in the energy scales. To quantify the precision with which the
UV and IR term have to cancel, we can define

A max [cAZ,,,0m3;] - (125GGV)2 ( Asn )2 415
- m% my 400GeV ) '

,pole

where A defines the amount of cancellation we need to reproduce the experimentally
observed Higgs mass. In the scenario of no new physics below the Planck scale it would
be needed to set the A parameter down to a precision of a very unnatural number of
digits. Briefly, the unknown coefficient, ¢, appearing in eq. 4.12 has to be ¢ ~ 10728 in
order to reproduce my = 125 GeV. This inconsistency is introduced by the fact that we
do not yet know exactly the origin of the Higgs boson.

The Hierarchy Problem regards only scalar particles, as the Higgs boson in the Stan-
dard Model. For example, let us consider the electron, a fermion, and compute its main
radiative correction. Using a cut-off regularisation as before to renormalise our theory,
we find that

A
Sme = —"m, log — 4.16
7 m

In this case the dependence of the correction from the energy scale is logarithmic, than
we can say that the contribution of the self-energy diagram gives a small correction to
the electron mass. This is very simply understood in terms of symmetry: in the limit of
vanishing mass m. — 0, the theory acquires a global chiral symmetry, the left-handed
and right-handed component of the electron spinor are decoupled: the action is invariant
under phase transformation:

v — ey U — e¥ripp 4.17

Since me # 0, chiral symmetry is not exact, but approximate, the correction to the
electron mass is proportional to the fermion mass itself. A small break implies a small
correction. All fermion masses are protected by this mechanism, since the Standard
Model is a chiral theory. So we may think that a similar mechanism based on symmetries
could preserve the Higgs mass to its right value. We know Electroweak Symmetry
Breaking is the paradigm to solve the puzzle of the masses in the Standard Model
Lagrangian, but we do not know much more, nor we understand exactly its dynamics:
it is sufficient to think of the hierarchy in the fermionic masses between the different
families, that has not yet an explanation. Up to now there is no satisfactory theory
explaining why we have three different generations of quarks and leptons, with mass
spectra at different energy scales.

The existence of new physics beyond the Standard Model is also suggested by other
experimental evidence, in particular the existence of Dark Matter and of neutrino masses.
Other problems arise if we try to explain baryogenesis and the existence of flavours.
The power spectrum of the Cosmological Microwave Background allows to estimate the
density of the various components of the universe, in particular we have experimental
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confirmation that invisible (i.e. Dark Matter and Dark Energy) components are largely
dominating over the baryonic component. We have Q. isinieh? = 0.127 [185]; €; is
defined as the ratio between the density of the i-th component of the universe and
critical density p. = (3H3)/(87G) - currently we have Qo ~ 1 and Qpgryonich? = 0.0222
(here h? is the Hubble parameter) within a very precise range. This shows that the
relative abundance of baryonic constituents compared to that of invisible matter is low,
confirming the fact that there has to be something else in the universe. Experimental
evidence for neutrino masses are given by neutrinos flavour oscillations, measured in the
relative abundance of neutrinos coming from the sun. However, currently we have no
direct information that such problems are directly related to energies we are going to
explore at the Large Hadron Collider, 13 — 14 TeV. So which are the possible scenarios?
One is fine-tuning: we choose the parametrizations of the model in such a way that the
cancellation happens. But with this situation rises the naturalness problem: how is it
natural to fine-tune quantities to reach the values we want? If we want to make the
cancellation accidental, we do not also want a large fine-tuning, and so this argument
implies that new physics must arise at energies explored by the LHC, for example,

A <100 = Agpr ~ 13-14 TeV . 4.18

The other possibility is that new physics arises and so new particles, new phenomena,
or something else that goes beyond what we actually know, could cancel out these diver-
gences. For example, one of the solutions to the Hierarchy problem, studied in the last
thirty years, is Supersymmetry, in which boson masses are related to their fermionic su-
perpartners, then there is a chiral symmetry protecting from large radiative corrections.
The Composite Higgs [186-188] is another solution, different from Supersymmetry.

The mechanism that protects the Higgs mass in the composite scenario is dimensional
transmutation. This is the phenomenon, happening in QCD too, if we would not consider
quark masses, for which we derive from a dimensionless quantity, like a5, a dimensionful
one, like A(QQCD, that is exactly the typical scale of confinement for the theory. Above
that scale, the composite particles are insensitive to corrections. This could be shown
making use of the renormalisation group equation, as in ref. [189].

Pictorially, if we treat the Higgs is a composite state of a new-strongly interacting
sector, the dimensionality of the Higgs mass operator, written in terms of the constituents
of the new strong sector, is not d = 2, but it could be even d > 4, so we have no
problem explaining why the Higgs mass is relatively light. The mass is also protected
by symmetry, so the radiative corrections do not imply divergences. For example, if the
Higgs is a composite state made of two 1 fermions of the new strong sector, we could
write

dim [H] ~ dim 1| — dim [H?] = 6. 4.19

From the altered dimension of the field corresponding to the Higgs boson, it follows that
correction are suppressed by powers of Agys, and, as it was for the example of the proton
decay, the Higgs is protected by corrections from F ~ Mgyr. The theory is therefore
parametrised in term of the only scale of this new strong sector, at which confinement
happens, as for QCD.
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Rather being a fundamental, point-like particle, the Higgs would now be an object
with a proper and finite geometric size lfy. The typical confinement scale would be
something like m, = 1/ly. In this way, quanta with wavelength bigger than [z would
treat the Higgs as a fundamental particle. Conversely, the Higgs would be transparent
to objects with higher energy scales than m2, that is, with wavelength bigger than the
its typical size. This is completely in analogy to a gluon hitting a gq pair, giving rise
to colour coherence effect: if the gluon is soft, it will not resolve the quark pair, and
display them as colour neutral particle. In this way the Higgs particle is insensitive to
corrections of energy order bigger than its confinement scale m?2.

In this picture, all the resonances (we globally call p) must have the same mass, within
an energy range determined by an order of magnitude, for example. Then if the Higgs
boson belongs to this picture, it would be surrounded by other strong resonances (of
spin 1/2, 1, 2), all at the same mass. To get a Higgs mass of about 125 GeV the energy
scale of the new strong sector would be 100 GeV, and we have strong bounds on the
production of such particles, since they would be at an energy range explored so far. For
example, a large splitting between the Higgs and spin-1 resonances is strongly suppressed
by comparison with Electroweak Precision Test (EWPT), and such a situation would
require

2
(”“;) <1/400, 4.20
mp
that is a large fine-tuning. However, in the QCD picture we also know of particles
lighter than the other resonances: these are the pions, that we construct as pseudo-
Nambu-Goldstone bosons. This is the same feature that we require for the Higgs boson
in our Composite Higgs model, it has to be a pseudo-Nambu Goldstone boson coming
from the spontaneous breaking of the global group § — H. If the symmetry were
exact, the Higgs would be massless; a symmetry breaking induces the Higgs to acquire
a relatively high mass, but are protected by the underlying Goldstone symmetry. We
present in the following briefly the case of pions in QCD, as it works as an example
both for understanding the idea beneath the Composite Higgs models in general, and
has been the inspiration for our work on unitarity and Goldstone Boson Scattering in
section 4.3.

4.1.1. A case of study

In QCD we have scalar particles: the pions are the lightest mesons in the mass spectra
with m, ~ 100 MeV. How are their masses protected from being close to other composite
states (resonances), with m, ~ 1GeV? The chiral symmetry is the answer to this
question. If only the two lightest quarks, w and d, are considered, the quark sector of
the QCD Lagrangian reads

L= q(ip+m)q. 4.21
j=u,d

This Lagrangian is invariant under various global symmetries. The first one is a phase
transformation of the quark fields. This is the accidental baryon symmetry described
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above, and it leads to the conservation of baryon number, by which we classify the
hadrons in mesons and baryons.

g’ — 3G Blq] = = Blq] = —= 4.22
Thus, the classification splits in:
e mesons: Blqq| = 0;
e baryons: Blqqq] = 1.

Introducing a notation that manifestly shows symmetries that couple different flavours,

we write:
U
q= (d) . 4.23

L=q(i)q. 4.24

We have neglected the masses of the quarks, which are small compared to the energy scale
we are dealing with. This Lagrangian is invariant under a 2 x 2 unitary transformation:

3
¢ =exp [Z Oéia'i] q 4.25

0

The lagrangian becomes:

0;,(i=1,2,3) are the Pauli matrices and o¢ is the unit matrix. So this U(2)y is the
U(1) phase transformation mentioned above, composed with a SU(2)y transformation.
This is an exact symmetry in the case that the u and d masses are degenerate. The
subscript V stands for vectorial, since the associated current is vectorial:

JZ = (j'yuaiq . 4.26

Decomposing the quark fields in terms of their chiral components, and neglecting the
quark masses, the Lagrangian becomes

L =qrilqr + qrilqr 4.27

We can note that QCD with two massless flavours of quarks possesses chiral symmetry:
SU(2)r x SU(2)r. This symmetry does not appear in the observed spectrum of QCD. If
it existed, every hadron would have a symmetric partner with opposite parity (since the
chirality is opposite). Colour condensation (which means the operator gg has a non-zero
expectation value, (0| (au + ch) |0) ~ (250MeV)3, breaks down the chiral symmetry
to SU(2)y x U(1)p. The composite operator gg connects left and chiral components
of the quark fields. Three broken generators implies three massless Nambu-Goldstone
bosons. In the spectrum there is not anything like these, but we can note that three
low-mass hadrons exist: 7°,7%. The explanation for such a pattern of the spectrum is
again spontaneous symmetry breaking: u and d are not massless, though their masses
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are very small compared to Agcp. In addition, electromagnetic interactions split the
mass spectrum of the three pions: 7& have different mass than 70, because u and d have
different charge with respect to electromagnetic interactions. These pions are particles
we call them pseudo Nambu-Goldstone (NG) bosons. In fact, they do not come from a
broken exact symmetry, but from a broken approximate one.

4.2. The Fundamental Minimal Composite Higgs Model

Composite Higgs (CH) models are among the most promising candidates to address
some of the SM weaknesses, dynamically generating the EW scale through a vacuum
condensate and at the same time explaining the mass gap between the Higgs boson and
the other composite states by the identification of the Higgs with one of the pseudo-
Nambu Goldstone boson (NGB) of the underlying global symmetry breaking [176,186—
188,190]. The Fundamental Minimal Composite Higgs Model (FMCHM) is based on the
coset SU(4)/Sp(4), which is the simplest global symmetry breaking pattern which can
be realised in terms of an underlying fermionic gauge theory!. The simplest underlying
theory realising this symmetry breaking is based on the SU(2) gauge theory with two
Dirac fermions transforming according to the fundamental representation of the gauge
group [192-194]. This scenario has been studied as CH model in Refs. [193,194].

The Fundamental Minimal Composite Higgs Model describes the composite dynam-
ics of the electroweak sector in the Standard Model; such a unified description has
first been presented in [194]. A new strong sector is introduced, and the breaking of
the related global symmetry produces the Higgs, as a pseudo Nambu-Goldstone bo-
son. Depending on the representation of the new fermions, (pseudo-)real or complex,
the unbroken quantum flavour symmetries are bounded to be of the type SU(2Ny) or
SU(Ny) x SU(Ny). In the case of pseudo-real representation, we expect a symmetry
breaking pattern SU(2Ny) — Sp(2Ny¢). The fermionic condensate of the new sector
therefore transforms in the antisymmetric 2-index representation of SU(2Ny). We focus
on the symmetry breaking SU(4) — Sp(4). The dimensions of the groups are 15 and 10,
respectively, according to the Goldstone Theorem we end up with 5 different massless
Goldstone bosons, transforming as (2,2) @ (1,1) in the SU(2) x SU(2) subgroup of the
Sp(4) group. A fourplet is present, from which we can construct the Higgs and the
three Goldstones which we identify with the Standard Model gauge-boson longitudinal
polarisations.

The new Lagrangian is

1 _ _
L= —F F™ 4+ U (iy"Dy = m)U + D (iy* Dy —m) D 4.28

U and D are the two new fermionic fields, each with mass m. A global symmetry SU(4)
is present for massless fermions , which is broken down to Sp(4) through the introduction

!The minimal CH model, SO(5)/SO(4), can be realised with the inclusion of 4-fermion operators [191].
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of the mass. Thus, it is possible to rewrite the Lagrangian as

1 : - f
L= —ZFIZ,F‘”“’+iU7“DuU+iD7“DuD+%QT(—ia2)C’EQ+% (Q"(—ie?)CEQ)

4.29
where
Ur 0 0 10
| DL 10 0 01
Q= QL E= 1 0 0 0 4.30
Dy, 0 -1 0 0
C' is the charge conjugation operator and Uy, = —iaQCU]Z{. Under infinitesimal transfor-

mation of SU(4), the Lagrangian transforms as

15
Q— (1 +iy anT"> , 4.31

n=1

. 15
m n I . 2 n n\T
L—>L+7§jaQ(—w)C(ET +(T")"E) Q +hec. . 4.32

n=1

Here T are the 15 SU(4) generators. Therefore, the Lagrangian is invariant if
ET"+(TM'E =0, 4.33
leading us to the definition of the Sp(4) algebra. The condensate state
(UU + DD) # 0 4.34

originates the symmetry breaking. Standard Model electroweak fermions are identified
as Qr = (Ur, Dr) for a SU(2), doublet with Y = 0, Uy, and Dy, for two SU(2), singlets
with YV = £1/2.

In these models the fermionic condensate generating the EW scale is misaligned with
respect to the vacuum that breaks the EW group, thus the acquisition of a vacuum
expectation value (vev) by the fermionic condensate creates a hierarchy between the NGB
decay constant f and the EW scale v. Two different vacuum values exist, (QQ) = X,

_fios 0 o [0 1
EB—(O _7:02) and EH—E—<_1 O), 4.35

with o9 being the second Pauli matrix and E the Sp(4) metric. The first conserves
electroweak symmetry, the latter instead breaks it completely, leading to a Technicolor
model.

We can construct the Lagrangian for the first vacuum by defining the 10 generators of
the unbroken group, as they transform as ¥ — uXu” with u € SU(4), so they transform
as

T*-Yp+3p-T%" =0. 4.36
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4.2. The Fundamental Minimal Composite Higgs Model

We define the 10 S; generators to be normalised as in app. A. We can there identify the
generators of SU(2)y, rotations with S; with ¢ = 1,2,3 and Sg as the generator of the
hypercharge U(1)y group. The 5 broken generators are reported in app. A, and through
them it is possible to write the Lagrangian through the non-linear 3 construction

L= f*TrD,X D', 4.37

having constructed the Goldstone field
itix

and using the covariant derivative obtained from the minimal coupling approach. Ex-
panding the Lagrangian in powers of the Goldstone fields ¢; it could be seen that no
mass term for the Standard Model gauge bosons appears. As the generator Sg has been
chosen such that Q = T3 +Y = S5 + Sg, one could note Q- X5 + X5 - QT = 0, where
Yy = 2v2iX4-Yp. It is then easy to see that if the ¢4 acquires a vev, (¢4) = v, the
electroweak symmetry is therefore broken, the ¢;, i = 1,2, 3 are eaten by the W and Z
bosons, the fluctuations around ¢4 are identified with the Higgs field and an additional
singlet scalar particle is present, ¢° = 7.

To construct the full phenomenological model, the authors in [193] use a superposition
of the two different vacua g and X7, parametrised by an angle 6 interpolating through
the two different extremes, i.e. electroweak symmetry conserved or fully broken. The
Yo vacuum therefore reads

Yo =cosf¥Xp+sinfXy, 4.39

and 2820 = 1. The broken generators are defined in term of the previously defined X;
with ¢ =1,...,5 and the unbroken S;:

Slﬂ&l , Yo = cosXs + sin9S2ﬂ55 ,Y3 =cosfX3 + Sin053ﬂ56

Yi=X4,Y5 =cosfX5 —sinfSg . 4.40

Y] = cosfX; —sinf

Unbroken and broken generators are defined through V, -¥g+ X¢-V, =0 and Y;- ¥y —
Y0-Y; =0..

We use the Callan-Coleman-Wess-Zumino (CCWZ) construction [195,196] to write the
effective Lagrangian. We construct the Lagrangian through the gauge Maurer-Cartan
one-forms w,,

wo i = G Do, 4.41
Dy =08, —iW\S; —iB,Ss  i=1,2,3 4.42
x, =2Tr [Yow,] Y 4.43
L= f*Triz,a", 4.44
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where f is the Goldstone decay constant. Imposing the W boson mass we recover an
explicit expression of the Goldstone constant in term of Standard Model quantities and
the vacuum alignment angle

v= fsinf . 4.45

where 6 is the misalignment angle. Standard Model couplings between the Higgs and
gauge bosons can be read off the Lagrangian in eq. 4.41.

Generally, the alignment angle of the condensate matters for the gauge bosons, as the
SU(2)r, is just one of the subgroup of the bigger SU(4), and also for the mechanism that
generates the top mass. The potential is written exploiting the formalism by Coleman
and Weinberg [197], in which the loop contributions are computed. The minimisation
of the loop-induced potential with respect to the misalignment angle fixes its value. In
refs. [193,198,199] the following contributions were derived:

1. loops of gauge bosons

3
Viauge = —Cogfo > Tr (S-S0 (57 %) ) = Cyg fi Tr (S°- T+ (8°- %))
i=1
4.46

where Cy is an unknown loop factor, g and ¢’ are the usual Standard Model
couplings for the electroweak symmetry;

2. top-loops, where the top mass is generated through a 4-fermion operator
Ye
A2 Q) T Py 4.47

The potential reads

Viep = —Cohfd S 1T (P32 1.48

(0%

where « is the SU(2);, index, and the projectors P% select the components 17 1)
that transform as a doublet under SU(2)r; A; is some new dynamical scale, and
C; an unknown loop factor, as before. We note here that the first term in the
expansion of the 4-fermion operator gives rise to the top mass, always parametrised
by the vacuum misalignment angle 6 and the new dynamical scale f, myio, =

yiv/(2v2).

3. Terms explicitly breaking the SU(4) symmetry are present, giving rise to other
contributions to the Higgs potential and mass. A possible way to embed such
terms is to add the masses of the techni-fermions through SU(4) violating terms.
We could assume the masses to be aligned with the gauged sector, having, for
example, M = pdp, where ¥ p is the vacuum configuration in eq. 4.36, and y is a
free parameter. The potential is written as

Vin = Cr fATr (25-%) . 4.49

As above, (), is an unknown loop coefficient, and X is the Goldstone field.
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4.2. The Fundamental Minimal Composite Higgs Model

The first contribution coming from gauge bosons is quite small compared to the top
and the explicitly breaking ones, and it is therefore neglected. The minimisation of the
top quark piece of the potential would bring us to a vacuum aligned with a Technicolor
scenario, § = 7/2; the explicitly breaking term V, on the other hand contributes to
offset the ground state from the § = 7/2 value. The combined minimisation implies

2Cy,

oS Omin = — o
Y Lt

for y,Cy > 2|Cp| 4.50
where y; = 2\/§mt0p /v. This indicates a naturally not so small angle, since this would
require y;Cy very close to 2C,,, which is not in principle justified due the different origins
of these two terms. On the other hand, large angles are not favoured by data due to
deviations of the Higgs couplings from the SM predictions, which upset EW precision
observables (EWPO) resulting in an upper bound [200]

sinf < 0.2 EWPO 4.51

This limit depends mildly on the fermion content and dynamics of the underlying theory
but is dominated by Higgs coupling modification. It can also be alleviated by cancella-
tions from other composite states [201].

4.2.1. Vector Resonances

The composite vector resonances in FMCHM have been studied in Ref. [201] making
use of the hidden local symmetry (HLS) approach [202]. We write two replicas of the
Goldstones living both in the 5 representation of SU(4)

& = exp [JZC Z 7ro7aYa] , & =exp l; Z m’aYal a=1,...,5 4.52

and then we gauge the first field with the Standard Model respective vectors, and the
second with the new vectors:

wp,i(z) = i€] () D) 4.53

Dy, = 0, —igW,,S; —ig'B,Ss  i=1,2,3 4.54
10 5

Dyy=0,—igy ViVa—igy AauYa i=1,2,3 4.55
a a

x,u,i =2Tr [Yaww] Ya, 4.56

where x,,; are the projections onto the broken generators Y,, which we used to construct
the Chiral Lagrangian, as before.

In the FMCHM a vast spectrum of 15 heavy composite vector resonances is expected,
with very peculiar phenomenology. They can be associated with the broken generators
Y, and the unbroken ones V,

10 5
Fu=Vut+tAu=> ViVa+ > AlYa, 4.57

a=1 a=1
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forming a 10 and a 5 multiplet of Sp(4). The lowest dimension Lagrangian is given by

1 1
Ly = “2 (FuwF" >+§fg (Touzy)

1
+ G ft () o ff (wo K2y KT)

1
+ 3 f?% (D"K D,KT') . 4.58

F v is the field strength tensor of F,. The K field is introduced to break the two
remaining copies of Sp(4), Sp(4)p x Sp(4): to the diagonal final Sp(4):

K =exp[ik*V*/ fk] , 4.59
and it transforms like
K — K' = h(go, m0) K b (g1, 1), 4.60
thus its covariant derivative takes the form
D,K = 0,K —ivo, K +iKvy, . 4.61

The 10 pions contained in K are needed to provide the longitudinal degrees of freedom
for the 10 vectors VZ, while a combination of the other pions 7’ acts as the longitudinal
degrees of freedom for the Aj. It should be reminded that out of the 5 remaining scalars,
3 are exact NGBs eaten by the massive W and Z bosons, while 2 remain as physical
scalars in the spectrum: one Higgs-like state plus a singlet 7.
The EW wvev is
v? = ( F2— 2 ff) sin0 = f2sin?6, 4.62

where fr =1/ f2 — r2f2. We neglect possible direct couplings of F ,, to fermions, which
are generated in our set-up only through the mixing with EW gauge bosons.
The masses of V,, and A, (without EW interactions) are given respectively by

MV:W and MA:g\)f%.
These masses have been estimated with lattice calculations for the FMCHM SU(2) gauge
theory with 2 Dirac fermions, My = 3.2(5) TeV/sin 6 and M4 = 3.6(9) TeV/sin 6 [203].

Once the masses are fixed there are 2 extra free parameters which were not computed
from first principles: g and r. These parameters basically determine the branching ratios
into fermions or bosons. If 7 = 1 the fermion decays dominate, once |r — 1| 2 0.1 the
diboson decays dominate.

We now evaluate the trilinear couplings between heavy vectors and the Goldstone
bosons, which will be important for our analysis of the Goldstone Boson Scattering.
They come from the fx term in 4.58. Only couplings to V,, are generated, which can
be expressed as

_ 9fk 463

29f%(1—1?)
f2
—abc

= igv(pa — pp) 2", 4.64

TV}, - Tr(YYV) (po — 1)
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where
My  MZ(1—1?)

gV = -4y = —— =,
2f V25 f?

and 2% = 1 for (c,a,b)= (1,3,2), (2,3,1), (3,1,2), (4,1,4), (5,2,4), (6,3,4), (7,5,3), (8,5,4),
(9,5,1), (10,2,5), 2% = —1 by interchanging a > b above and Z%¢ = 0 otherwise.

4.65

4.2.2. Scalar isosinglet o

Additional scalars are a common feature in composite extensions of the SM, see e.g. [204,
205]. The scalar singlet o can be incorporated in a simple general way

1 1 1
L, = 5/ﬁ;(a)fz<:1cua:“> + 5(’9“08“0 - §M302, 4.66

with k(o) = 1+ K'o/f + k"0%/(2f) + ---. The potential (which must be added to
L,) generates a tadpole term that drives the vev to o. In addition, it also generates
a mixing term with the Higgs boson, h = ¢4. These effects are however small when a
very heavy scalar is considered. Mixing between h and o is, for small 6, approximately

2
o~ 2k [200]. For M, 2 5 TeV, o < 0.00125 is very small and will be neglected in the

follown;ﬁg analysis.

The relevant parameters here are M, and «’. The lattice prediction for the SU(2) gauge
theory with 2 Dirac fermions has large uncertainty, M, = 4.7(2.6) TeV/sin 6 [203]. We
will see that unitarity of VBS provides more stringent limits on the parameters of this

state. The trilinear couplings between ¢ and the NGBs read

O Ty : —22'970]9& “Dp 4.67

with g, = k'/2.

4.3. Unitarity Implications

Striking evidence of new strong dynamics at high scales is the presence of strong Vector
Boson Scattering (VBS) [206-211], or more generally strong Goldstone Boson Scatter-
ing (GBS), including physical pseudo-NGBs (the Higgs boson itself and others in non-
minimal CH realisations) and longitudinal VBS, which are related to the GBS by the
Goldstone Boson Equivalence Theorem (GBET) [212]. The strong nature of the NGBs
in CH models manifests itself in GBS through the miscancellation of Feynman diagrams
and the divergent behaviour of the scattering amplitudes according to the Low Energy

Theorems (LET) [213]

S 5 .9

F =2 sin“ @, 4.68
with m a NGB and s the Mandelstam variable. This is in contrast with the well behaved
amplitudes of the SM, which approach —mz /v? ~ 0.26 at high energies. The growing

behaviour of GBS amplitudes must eventually be controlled by strong effects at high

A(rm — 7)) ~
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energies, either in the form of broad continuum enhancements or in the form of composite
resonances, saturating unitarity in a similar way to what happens in hadron physics. In
this case, the possibility to probe such high scales at the LHC, or at a higher energy
machine such as the FCC 100 TeV collider, remains to be quantified.

To tackle this problem the first question that arises is how to estimate the actual
scale of resonance formation or strong continuum effects. The unitarity of 2 — 2 GBS
amplitudes has been used as a tool to set limits on the scale of new physics or strong
interactions, and on the mass of a heavy Higgs boson [209,214,215]. We pursue this idea
in the context of CH models, as done in ref. [216].

Through the analysis of the GBS amplitudes and under the guidance of unitarity
principles we set limits on the scale of resonance formation, in particular in the scalar
channel which is only poorly described by lattice calculations. We will show that near
the scale of leading-order (LO) unitarity violation the continuum of LET dominates the
scattering amplitudes and prevents the formation of Breit-Wigner resonances. We will
also argue that we can not only set constraints on the masses of resonances, but also
on their couplings, if we assume basic criteria of saturation of unitarity and analyticity
provided by the Inverse Amplitude Method (IAM) of unitarisation.

Following our assessment of resonance profiles via the study of unitarisation of GBS
amplitudes, we estimate the potential to observe strong effects in realistic observables,
whether resonances or strong continuum effects dominate the amplitudes. We analyze
the production cross sections of heavy vector resonances through weak boson fusion
(VBF) and Drell-Yan (DY) and non-resonant and scalar-resonant scenarios of strong
VBS in pp — jjZZ — jj4¢ channel.

In light of the results from the study of the amplitudes unitarity, we study the possi-
bility of observing signals of strong VBS and heavy vector production at the LHC and
a future 100 TeV collider.

In order to analyse unitarity, it is imperative to include higher order terms due to
the strong relation between perturbativity and unitarity. Since the CCWZ Lagrangian
in eq. 4.44 is an effective non-renormalizable theory, each order in the perturbation
expansion has to be accompanied by a tower of higher dimension operators in order to
carry out the renormalisation program. The d = 4 Lagrangian is given by

Ly = Lo(ara"z,z,) + Li(atz,)(ax,)

+  Lo(ata¥)(xpxy) + L3tz a’z,) , 4.69

where the L; are the so-called bare low energy constants, which represent the relative
strengths encoded by the respective terms in the Lagrangian. The () symbols stands for
the trace, Tr, of the operators. These are unknown and we set them using the constraints
from the unitarisation methods.

When talking about unitarity, we always refer to the unitarity of the S-matrix. It is
well known in perturbation theory that the evolution of a state |i) to another one |f),
at time ¢ — oo, in general to be defined as asymptotical states, is described in term of
the S-matrix,

lim |t) = S]i) . 4.70
f—oo
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The relevant matrix element is therefore proportional to
(FISIDI2 471

Summing up the probability of finding all possible final states leads us to the condition
of unitarity of the scattering matrix S

Y WSfISI P = (ST fISl) = (il STs)i) =1, 4.72
f f

where we have used the completeness relation 3° ;| f)(f| = id. Splitting the S matrix as
S =1+ 1T, where 1 encodes the non-interaction probability, we find the expression of
the optical theorem,

(T —T" =4T'T . 4.73

When we compute T" using perturbation theory, we are fated to be incomplete due to
the lack of higher order terms. In this approximation, it is possible that an apparent
violation of unitarity is present. The typical example of this behaviour is exactly the
scattering of gauge-bosons, in the absence (or partial absence) of the Higgs boson, or,
at lower energies, meson-meson scattering. In this way one loses the predictability of
resonances, which is one of the most typical feature of strongly interacting theories; nev-
ertheless, different methods exist to enhance the applicability region to higher energies.
These methods have been implemented and studied in the context of the full 2 — 6
matrix elements framework for strong VBS in Ref. [217].

A phenomenological approach to describe the physics beyond the perturbative regime
in Goldstone scattering is given by unitarisation models. Forcing the amplitudes of GBS
to satisfy the unitarity condition and maintain the low energy behaviour. Unitarisation
models are intended to represent the approximate magnitude of these amplitudes beyond
the perturbative regime and have been able, in some cases, to describe the first resonances
of QCD. In view of the great similarities between low energy QCD and the Electroweak
physics, the ideas of unitarisation models have been translated to a strong symmetry
breaking sector in many studies [15,218-223]. They are not complete quantum field
theories and, in particular, they typically violate crossing symmetry, but despite those
deficiencies, these models still carry out their phenomenological purpose of estimating the
magnitude of strong V'V scattering cross sections much above the perturbative regime.
Several Unitarisation Methods have been proposed within the studies of scattering of
pions, exactly our case of study, and inspire the current work. Examples are the Padé
approximant [224], the N/D approach [225] or the explicit introduction of resonances
[226], the K-matrix already developed in the '40s [227,228].

Besides violating crossing symmetry, the K-matrix unitarisation procedure spoils the
singularity structure of the fixed-order amplitudes. In the N/D protocol, unitarity is
exactly restored with the extra quality of improved analytical properties, at the cost
of introducing a new mass parameter [229]. A special case of the N/D method is
the so-called Inverse Amplitude Method (IAM), which maintains the proper analytical
structure of fixed order calculation with the correct branching cuts and without the need

95



4. Beyond Standard Model

for extra parameters. It also produces very interesting phenomenological consequences
in the context of strong vector boson scattering. It has been widely and successfully
used in the description of low energy pion-pion scattering and has given remarkable
results describing meson dynamics beyond the perturbative regime, reproducing the
first resonances in each isospin-spin channel up to 1.2 GeV [230]. For certain values
of the chiral coefficients, the unitarized amplitudes, both by N/D and IAM protocols,
present poles that can be interpreted as dynamically generated resonances.

In dealing with strongly interacting particles, it is usual to project the amplitudes
with definite angular momentum J

A(s,t) = 32w Z ay(s)(2J + 1)Py(cos ),
J=0
1 0
aj(s) = o s dtA(s,t,u)Py(z), 4.74

where z is the cosine of the scattering angle and P;(z) are the Legendre polynomials,
and A(s, t,u) is the amplitude for the scattering under consideration, expressed in terms
of the Mandelstam variables. In this basis it is easy to derive directly from the unitarity
of the S matrix expressed in eq. 4.72 the partial-wave unitarity condition, under the
conditions s > s, so, above the threshold energy, s;,, for the process, and below
inelastic thresholds,

Imay(s) = |as(s)|*. 4.75

In order to force elasticity (and thus make direct use of eq. 4.75) it is customary to
expand the amplitudes in definite conserved quantum numbers before expanding them
in partial waves.

We derive the Inverse Amplitude Method using dispersion theory, as shown in ref.
[230], which we follow for the below derivation. Basically any partial wave obtained
from a relativistic Quantum Field Theory present a complex structure in the s plane.
This should exhibit a cut structure from the threshold value, s;,, to co. Applying
Cauchy’s theorem to the amplitude, it is possible to recover integral equations known as
dispersion relations. Usually it is possible to write “subtracted” dispersion relations, in
the case of a general complex function f(z) # 0 as |z| — oo, which is indeed our case.
This is basically the relation for f(s) — f(0), that simplifies as

s [ds Imf(s)
=f0O)+— | ————— 4.76
fls) = f( )+7T/ s’ s —s—ie’
as Imf(0) = 0.
Going back to partial-wave amplitudes, we could write a three-times subtracted dis-
persion relation as
3 o0 TImays(s')ds’

S
= Cy+ C1s + Cos® + =
a[J(S) ()+ 18+ 28 + 7 Jar S/S(SI*S*’L'G)

+LC(ary) , 477

with C; the subtraction coefficients and M the general threshold mass for the process.
LC defines the left cut contribution. The number of subtraction depends on the order of
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accuracy we are employing in our calculation. Our amplitudes at leading and next-to-
leading order a(o)(s) and aM) present both cuts and we can compute them perturbatively

a9(s) = ag + ars, 4.78

3 o T (1) /d /
al(s) = by + bys + bas® + = {ma”(s)ds”

LC(aM) . 4.79
7 Jmz $3(s' — s — ie) +LCE@™)

The TAM relies on the fact the function 1/ay; exhibits the same analytic structure as
ary itself, apart from some pole contribution. Thus, writing G(s) = (ag(?]))2 /ary, we can

write the subtracted version

3 ImG(s')ds’

G(s) = Go + Gis + Gas® + = + LC(G(s) + PC, 4.80
T

M2 sB(s' — s — ie)

where PC' denotes the pole contributions, and G; the usual subtracted terms. Expanding
eq. 4.80 and substituting with eqgs. 4.78 and 4.79, we can compute

(0)? 3 oo W) o
ary T Ima; ;7 (s")ds 1) O ()
) ag+ays—byg—by —bas e —3’3(3’—s—z’e)+LC(aU(S))+PC ay;—ayj -

4.81
We approximated ImG ~ —Imaglj) on the cut and neglected pole contributions. So,
finally, we can write the formula for the TAM procedure we employ to force unitarisation

apy ~ ——19 4.82
(0) (1)
ary —arg

4.3.1. Unitarity constraints in SU(4)/Sp(4) VBS

In the chiral Lagrangian of pions the w7 scattering amplitudes can be expanded in the
usual definite isospin I [213,225]. The generalisation of such procedure is presented for
the case of SU(2N)/Sp(2n) theories in ref. [231], and we redirect there for details on
the calculations of the amplitudes. For SU(4)/Sp(4), just like isospin, we expect that
specially at high energies Sp(4) is approximately unbroken and we can therefore expand
the 2 — 2 NGB scattering in definite multiplets of Sp(4), as

5®5=1010® 14, 4.83

and assume they correspond to pure elastic channels, with no mixing among them. We
note that the Higgs boson is also part of the NGB scattering. The VBS topology can
be seen as a special case of this scattering, with the longitudinal modes related to the
eaten NGB 7 (i=1,2,3) through the equivalence theorem.

From the d = 2 Lagrangian in eq. 4.41 we get the LO amplitudes. We will consider
only the leading spin, i.e. the scalar J = 0 for the singlet channel 1 = A, ao(s), the
vector J = 1 for the 10 = B representation (since the J = 0 amplitude vanishes), ap1(s),
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and the scalar for 14 = C, aco(s). The corresponding partial wave amplitudes at LO
are:

(0) S
= 4.84
@a0(5) 167 f2’ i
(0) s
= 7 4.
aBl(S) 1927Tf2 ) 85
0 —S

A real-valued amplitude can never satisfy the unitarity condition, eq. 4.75. The ab-
sorptive and imaginary part of the amplitude comes at first order at loop level, and
fulfils the perturbative unitarity relation

Ima™W(s) = a9 (s)]?, 4.87

where a(l)(s) is the correction from the effective energy expansion. As long as perturba-
tivity is under control this relation is sufficient to avoid unitarity violation, which makes
the relation between unitarity and perturbativity evident. This observation allows us to
define another criterion of unitarity, which is

la(s)| < 1. 4.88

Therefore, according to eq. 4.84 unitarity is fated to be violated at energies

Vs > AVTf. 4.89

Since from EWPO we expect sin < 0.2, we need to reach partonic energies of the order
of V3 > 8 TeV to observe strong VBS effects. Such energies could, in principle, be at
the extreme corner of the LHC, but it seems more feasible to reach those energies at a
higher energy machine, such as a 100 TeV collider. Even for lower angles, e.g. § = 0.1,
unitarity violation would take place around /s ~ 16 TeV, which is within the reach of
a 100 TeV machine.

The next-to-leading order (NLO) correction to the partial wave amplitudes, which
includes the tree level diagrams involving dimension-6 operators, eq. 4.69, and one-loop
diagrams, is given by

2 -
Wy — 8 1<29461<8)2-) QLA} 4
ayo(s) = 3277 | 1622 12+18 og e + 2mi +3 Alp)| .90
2 -
) s 1 35 1 (s) 1 ) 9 ]
= 0 ~ 2 log (=) 4 — °I 491
@51(5) 327 1 _167r2< 32 el ) tm) Falem) )
2 -
Wy _ 5 1 (83_41 (8) 1~) 2 } 4.92
aco(s) 3o/ |Ton2 \1a2 98 \z) T5™) F3lelm] '
We defined the following combinations of Wilson coefficients:
La(u) = Lo(u) + 68L1 () +36La(n) + 17Ls(n)
Lp(p) = 2Lo(p) —4L1(p) + 2L2(p) — Ls(p) ,
Lo(p) = 8Li(p) + 16Lo(p) + 2Ls(p) . 4.93
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E(u) are renormalised in the MS scheme and run according to the renormalisation

group equations,
kg 1%
| — 4.94
1672 % (;m) ’

with kr = —43/6, 1/4, —4/3 for I = A, B, C, respectively. Of the 4 coefficients only 2
are independent for what concerns this process. In particular we have

Li(n) = L1 (o) +

Le(p) =

=N

(La(m) +10Lp(p)) - 4.95

The correction is always in the direction of making unitarity bounds stronger. We
show in fig. 4.1 the energy where unitarity is lost in the A0 channel, at NLO (Anro) as
a function of 54(8 TeV) and at LO (vertical black line, Arp) for sin = 0.2. The result
for different @ is very similar, indeed if we choose the renormalisation scale proportional
to /s, < /s we find that the amplitudes depend only on the ratio s/f? apart from
logarithmic corrections from the running of the effective coefficients. We also show in
the shaded areas the regions where the K-factor K = |aN19(s)|/|a™C(s)| -1 is K > 50%
(blue area), K < —50% (green area) and K > 100% (brown area), where perturbativity
is jeopardised. We define a9 (s) = a0 (s) + a(V(s) and a’9(s) = a0 (s).

We notice that the NLO correction can never further postpone unitarity violation
and therefore the LO limit, A;p, is an important physical scale. This observation has
interesting consequences. If the NLO corrections to |a(s)| are positive, they will lead to
a broad continuum enhancement at least as strong as the LO amplitude or to resonance
formation before the scale of LO unitarity violation, ¢.e., the mass of the resonance obeys
M < Apo. For the scalar A0 channel this implies M, < 1.7 TeV/sin 6, which is more
stringent than lattice results on the scalar spectrum of SU(2) gauge theory with 2 Dirac
fermions, which provide M, = 4.7(2.6) TeV/sin 6. If the NLO corrections are negative
at /s < Apo, they must grow rapidly to cross the LO amplitude before Ao and should
be very likely controlled by a more strongly bounded and narrower resonance. In either
case, the LO amplitude enhancement can be regarded as the weakest and smoothest
possible strong effect in GBS before unitarity violation.

We concentrate here on the IAM due to its good analytical properties and the dynam-
ical generation of resonances, which we aim to compare with the effective description of
sec. 4.2. The IAM defines the unitarised amplitude

IAM ag?])(s)
QM (5) = L) 4.96
1— ay; (s)
(0)
ay; (s)

For low energies this amplitude restores the chiral amplitudes while fully satisfying the
unitarity condition. From the denominator of the IAM amplitudes a mass and a running
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>100%

--------
—_————

LA(8TeV)

Figure 4.1.: Unitarity violation scale of a4(s) as a function of L(8 TeV) for sinf =
0.2 at NLO (blue solid) and LO (black solid). Also shown the regions of
perturbativity loss K = |aVF9(s)|/|a™C(s)| — 1 > 50% (blue shaded area),
K > 100% (brown area) and K < —50% (green area).

width can be extracted

2f2 M3
M; = 1 (29 fz’\ ' PA:16 A27
1672 (ﬁ) + gLA(MA) 7Tf
(f3/6) M3
M = 1 35 27 ’ FB:19232’
1672 (*@) + gLB(MB) 7Tf
—(f%/2 M3
MZ = - 83<f/2)A , I‘c:6402. 4.97
1672 (m) + §LC(MC) f

The amplitudes can then be written in a particularly simple form by choosing a dy-
namical renormalization scale u = /s,

—I'r /My

IAM(S) —
5= M} +ibhs + 32ms b 150 og ()

al 4.98

with kj given in eq. 4.94.

As a specific example and benchmark scenario we now make use of lattice results
My = Mp = 3.2(5) TeV/sinf. The corresponding effective coefficient can be extracted
from eq. 4.97, Lg(My) = 2.225 x 1073, and it is independent of #. The J = 1 partial
wave amplitude for this scenario is shown for sinf = 0.2(0.15) in fig. 4.2. We use
renormalisation scale u = /s.
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Figure 4.2.: Absolute value of partial wave amplitude aéﬁM (s) shown together with
a¥EO(s) and ak9(s) for sinf = 0.2 and 0.15.

For the scalar channel the lattice result M, = M4 = 4.7(2.6) TeV/sin 0 has very large
uncertainty. The mass of an eventual resonance is also proportional to the scale f, thus
we define the parameters

o M[Sine

I1=A0B,C. 4.
TeV '’ B, %9

vr

The effective coefficient for channel A is La(M,) = —0.0229556 + 0.181548/v%4. The
corresponding unitarised amplitude is shown in fig. 4.3 for different values of v4. For
large values of v4 2 1.5 a broad enhancement takes the place of the typical Breit-Wigner
peak of a resonance.

We now look at unitarisation of the C' channel. As mentioned before, the effective
coefficients are linearly dependent according to eq. 4.95; therefore, if we choose to fix
lattice inspired vp = 3.2, we find the relation among v¢o and v4, shown in fig. 4.4. We
conclude that this eventual resonance must be at higher scales.

4.3.2. Vector Resonances

Both in this and the following sections, we use the chiral Lagrangians described in
section 4.2 including vector and scalar states to estimate their parameters in the light
of unitarity considerations just explored. Let us start with the vector case.

At tree-level the projections can all be computed from the single master amplitude
A(s,t,u) of the process 7t7~ — 770, The vector states contribute with trilinear
couplings to the NGBs and also by modifying the quartic coupling of NGBs to recover
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Figure 4.3.: Absolute Value of partial wave amplitude a shown together with

a£0(s) and kg (s).

the correct LET behaviour, giving

S—u s—t 3s
A(s, t,u) = —g? . 4.100
(5,8, u) gV(t—M3,+u—M3.+M3.)

The projections are given by

Aals,t,u) = BA(s,t,u) + AL, s,u) + A(u,t, ),
Ap(s,t,u) = A(t,s,u) — Au, s, t),
Ac(s,t,u) = Aty s,u) + Alu, s, t). 4.101

Further expanding in partial waves we get

2 M2
a%o(s) = — gg (2+3—) 2(—- )1og(1+M2 )1 : 4.102
2
v gv $ S
_ _ 4.1
W1(8) = 5o 3= 2) 202 03
M? M,
—( 5V+2)<2_(2 V+1)log(1+M2)>].

The J = 1 amplitude is shown in fig. 4.5 for sinf = 0.2 and lattice inspired value of
mass My = 3.2 TeV/sinf. We show 3 different values of the vector coupling ay = 0.8,
1, 1.2. We can see that ay must be close to 1 to better describe the dynamical inspired
IAM amplitude. Moreover, the departure from ay = 1 creates large deviations from
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Figure 4.4.: Value of v¢ as a function of vy for fixed value of vp = 3.2.

the LO amplitude at low energy. We therefore take ay = 1 as a natural value. The

total width of the decay into the NGBs is given by 'y = %MV. The choice ay = 1
reproduces the total width provided by TAM method, eq. 4.97.

A remark about the EW and photon exchange follows. It is well known that low-mass
boson exchange leads to large logarithmic enhancements due to the so-called “excep-
tional” phase-space regions, e.g., the terms log(l + 37>) when ¢ — 0 . These large
logarithms usually need to be resummed for improved pgrturbative calculations. Never-
theless, this EW physics is not relevant for the present analysis, belonging to a different

energy scale for the process under consideration [209,212].

4.3.3. Scalar isosinglet o

The o contribution to the master amplitude is given by

9 8 5

—g = 4.104
gUfQS_MOQa 0

A(s,t,u) =
with g, = k'/2.

The total width of o into NGBs is given by I', = 539)‘2%:}% Requiring a width similar
to IAM leads to g, ~ 0.63.

We show in the left-hand panel of fig. 4.6 the a4(s) amplitudes, including the o
contribution for g, = 0.63 and v4 = 1. We also show the contribution from the v state
with ay = 1, which further postpone unitarity violation. In the right-hand panel, we
show the equivalent api(s) amplitudes, including the o contribution.

For larger values of v4 2 1 the growing behaviour of the LO piece renders difficult for
a resonance to unitarise the amplitude. This fact is illustrated in fig. 4.7 where we show
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Figure 4.5.: Absolute value of partial wave amplitude a%;(s) + a%;(s) together with
LO, NLO and IAM equivalents, for three values of ayy = 0.8, 1, 1.2 and
sinf = 0.2.
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Figure 4.6.: Left panel: absolute value of partial wave amplitudes a%(s)+a%o(s)+a%o(s)
together with LO, NLO and IAM equivalents. Right panel: equivalent am-
plitudes for B1 channel, a%,(s) + a%;,(s) + a%,(s). Parameters are vq = 1,
sinf = 0.2, g, = 0.63.

the a40(s) amplitudes for 3 values of v4 = 0.5, 1, 1.5, using the IAM unitarisation model
(solid curve), the fixed width o resonance (dashed) or a running width, I'p;, — Lzuns,
(dotted). The resummation of the self-energy diagrams lead to momenta dependent
widths, or running widths, which are typically important for heavy and broad resonances.
An ad-hoc incorporation of such running width, is however, not usually recommendable
due to large extra mis-cancellations which worsen unitarity problems at higher energies,
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4.4. Experimental signatures at Future Colliders

and can be cured with a running width gauge invariant method as in ref. [232]. It can
be seen that values of M, too close or larger than unitarity violation scale, M, ~ Ao,
prevent any meaningful use of resonant propagation and a broad continuum appears
instead. Moreover, close to the peak the running width approach slightly ameliorates
the lineshape description.

Similarly, large couplings can also jeopardise the resonant description and violate uni-
tarity. Extra contributions to the width can dampen down and unitarise the amplitude,
but nevertheless not helping in the description of the lineshape. In fig. 4.8 we show the
aao(s) amplitudes for 3 values of g, using the IAM unitarisation model (cyan), a fixed
width (solid) and a running width (dashed).

20—
[— L0 — up=t ]
Ua=0.5 usa=1.5
15 A A

1.0F========mg=mmmm oo :

|axo ()l

0.5+

0.0

Figure 4.7.: Absolute value of partial wave amplitudes a%,(s) + a%,(s) for va = 0.5,
1, 1.5, using the TAM unitarisation model (solid curve), a fixed width o
resonance (dashed) and a running width (dotted).

4.4. Experimental signatures at Future Colliders

So far we have discussed the implications of the Composite Higgs model in the coset
SU(4)/Sp(4) with respect to the Standard Model realisation at amplitude level. In
the SM prediction, the Higgs exchange would provide an almost exact cancellation
of the contributions in the scattering of longitudinal gauge bosons. Introducing the
Higgs as a pseudo-Nambu Goldstone boson coming from the symmetry breaking pat-
tern SU(4)/Sp(4) we have seen there is a miscancellation of the various diagrams
parametrised by the vacuum misalignment angle, 8. This leads to a general enhancement
of the amplitudes of the longitudinal boson scattering, and from this follows the need
for a unitarisation procedure, as the process violates the unitarity requirement. Ideally,
the enhancement translates to the typical observable of the process we are considering,
but from the point of view of the experiment this is not as simple as the situation we
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Figure 4.8.: Absolute value of partial wave amplitudes a%,(s) + a%,(s) for g, = 0.4,
0.63, 0.8, using a fixed width (solid curve) and a running width (dashed)
compared to the IAM (cyan).

have depicted.

At the LHC proton-proton collisions happen, so the VBS process is embedded into a
bigger class of scattering processes. The real emission of a gauge boson from the quarks
contained in the proton leads to the generation of a particular signature, two energetic
forward-backward jets. This, together with the final state coming from the core process
- vector boson scattering - gives a particular signature. Other topologies of diagrams,
which have no similarity to VBS also belong to the same process class, V'V jj at order
O(agw)?*. We expect anyway that there will be an enhancement in the VBS topology,
and this has to be traced in all the experimental observables. In particular, the invariant
mass distribution of the V'V system is sensitive to virtual particle exchange, in our LET
case, to the Higgs particle, and then to the modification introduced by the new coupling.
This observable is then also the suitable one when studying the exchange of new particles
like the o we have introduced in eq. 4.66 and the vectors of eq. 4.57.

Historically a more detailed phenomenological study of VBS signatures starts among
the ’80’s and ’90’s, [14,15,215,233]. Of course, the focus there is on the Higgs exchange,
and there are still discussion of Higgless scenarios. After the Higgs boson discovery the
target is shifting to other models and issues, in particular the search for an explanation
of the dynamical generation of the Higgs boson itself and of the Electroweak Symmetry
Breaking in general. We refer the reader to [13] for an excellent summary of studies pre-
and post-Higgs discovery. The use of unitarisation methods is largely standard practice,
for VBS. With our work, we want to address a systematic treatment for the general
search of Beyond Standard Model VBS unitarisation effects.

The characterisation of the VBS signal has been extensively discussed. Of the different
channels it comprises, WW, WZ and ZZ, each with their decay channels, WW and
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W Z suffer from non-negligible background contributions, tt process in particular, and
in general by reconstruction issues. For all channels the estimation of the irreducible
background is something to address carefully. Everyone agrees on the fact that the
Z 7 — 44 is the cleanest channel. It has few backgrounds to consider - the SM electroweak
Z 737 and the QCD ZZ plus jets production. From the point of view of the experimental
reconstruction, it is as well an optimal candidate. However, it is penalised by a very tiny
cross-section. The decay channel to ZZ — 202v has a great impact on the sensitivity
calculation, but has some issues on the MET requirements and reconstruction. In the
following, we will discuss just the ZZ — 4¢ channel, for the reasons cited above. To
account for the tiny rate of events, a luminosity range of the order of ~ lab™! are
required, combined with multi-TeV centre of mass energies.

Striking signatures of the V'V jj signals include two energetic forward jets, peaked at
pr ~ My /2. In this case, usual high-pr jet requirements will not work, suppressing
most of the signal contribution. The absence of color flow (at leading order) in the
partonic subprocess generates the large gap in pseudorapidities between the two jets
stemming from the initial proton bunch, generating also a large invariant mass for the
two tagged jets. This selection criterion particularly helps in suppressing the QCD
background. As we want to investigate the high invariant mass tail of the ZZ system,
further requirements on the hardness of this and related observables are implemented.

In previous sections we found that the dynamically inspired parameters are ay ~ 1
and My ~ 3.2 TeV/sin 6 in the vector sector and g, = 0.63 and M, < 1.2 TeV/sinf in
the scalar sector. Alternatively, LET behaviour gives a meaningful benchmark scenario
for the non-resonant continuum (below unitarity violation). In all cases, the scenario is
sinf < 0.2. In the following we study these scenarios in realistic observables at hadron

colliders.

Composite vector states can have a large mixing with the SM weak bosons, which gen-
erates minimal coupling to fermions. We assume there is no direct coupling to fermions,
although this is a possibility. Complementary production modes, either via Drell Yan
(DY) or via Vector Boson Fusion (VBF), as well as complementary decay modes into
fermions or bosons are neglected. We will discuss the vector phenomenology in sec-
tion 4.4.1. Similarly, the o scalar resonance mixes with the Higgs boson and generates
minimal couplings to SM fermions proportional to their masses, which would lead to its
production through gluon fusion via a loop of top-quarks. However, this mixing should
be small and the dominant channel has to be VBF production with decay to weak bosons.
This signature falls in the same class of process of strong VBS, VV — VV. Due to the
intrinsic high compositeness scale of CH models for sinf < 0.2, these typical strong
effects will more likely be observable at a future 100 TeV machine than at the LHC.

In proton-proton collisions, VBS is embedded in more complicated processes where a
quark in each proton emits a gauge boson, V. These scatter amongst themselves and
produce two Vs along with the 2 extra remnant jets in the forward-backward region of
the detector. The Vs subsequently decay into jets and/or leptons. This process has been
scrutinised for a long time [14,233-249] with an increasing degree of sophistication, in
particular in the context of CH models [16,17] and for Walking Technicolor with the
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Higgs identified as the first scalar excitation [250], and more recently for a future 100
TeV collider [13,22,251].

The goal we pursue in sec. 4.4.2 is to assess the possibility of distinguishing the CH
scenario from the SM predictions, looking at the high energy region of M(VV). In the
CH scenario an overall excess or a resonance is expected. We consider only the simplest
and cleanest VBS channel where 2 Z decay into leptons, pp — jjZZ — jj4l. The
only relevant backgrounds are SM electroweak ZZjj and QCD ZZ+jets production.
Other VBS channels, WW, WZ and other decay channels will definitely improve the
discriminant power presented here [251].

4.4.1. Vector Phenomenology

To get cross sections and branching ratios (BR) for the composite vectors we make use
of the full model presented in ref. [201]. It was implemented in the UFO format [252]
via the FEYNRULES package [253] and is available in the HEPMDB?. We use the PDF
set NNPDF 2.3 at LO [254]3. We use MADGRAPH [256] to compute the cross sections
for both DY and VBF productions. For the calculation of VBF cross sections we have
selected the minimum set of gauge invariant diagrams in pp — V'V jj which contain the
VBF topology and applied a minimum transverse energy on the jets, pr(j) > 20 GeV,
to avoid singularities.

The heavy masses of these states My 2 16 TeV (since siné < 0.2) have to be probed
at higher energies than those available at the LHC. A 100 TeV machine like the FCC
is the natural candidate. The limits on production cross section times branching ratio
(0 x BR) of general vectorial resonance p at the FCC have been derived in Ref. [257].
This study is based on the exclusion sensitivities of two LHC analyses [258,259] and on
the scaling of cross sections due to the evolution of the parton luminosities. The limits
are provided as a function of the resonance mass, M), for two different decay channels:
p — {T¢~ and p — WZ, and two integrated luminosities L = 1, 10ab~!. In tab. 4.1
we show the exclusion limits at 95%CL on ¢ x BR for sinf = 0.2, corresponding to
M, ~ 16 TeV (apart from mixing effects), and sin§ = 0.15 with M, ~ 21.3 TeV.

From the vast spectrum of 15 vector states, the iso-triplet V%* will be the most
dominantly produced. The second triplet S%* is only a bit heavier, nearly degenerate
with V0% but has lower cross section once decays into fermions and weak bosons are
included. It could dominate in the Higgs decay channels, which were not considered
in Ref. [257]. The A%* states will also be produced in a proton-proton collision, but
they are heavier and will be more difficult to observe. Other states do not mix with
SM particles and are much harder to produce. Therefore, it is safe to assume the first
observed peak will come from the V%% states and we will neglect the other contributions.

Once sinf = 0.2, 0.15, My = 3.2 TeV/sinf and M4 = 3.5 TeV/sin 6 are fixed, we are
left with 2 extra free parameters: g and r. For r = 1 the decay into fermions dominates.

2http://hepmdb.soton.ac.uk/hepmdb:0416.0200
30nly the first two families of quarks are included, even though the third family is known to be
important for a centre of mass energy of 100 TeV [255].
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Llab '] [ decay | M, =16 TeV | M, = 21.3 TeV

1 0= 1228 x10 % pb | 3.7x107° pb
10 00~ | 4.01 x 107" pb | 7.49 x 10~7 pb
1 WZ | 40x10~%pb | 3.78 x 10~% pb

10 WZ | 3.73x107° pb | 5.41 x 10~° pb

Table 4.1.: Exclusion limits at 95%CL on the ox BR production process pp — p, in
two different decay modes, p — £1¢~ and p — W Z. Values for two different
luminosities, 1 and 10ab™! and two different masses, M, = 16 TeV (21.3
TeV) are extracted from [257]. Centre-of-mass energy of /s = 100 TeV.

Once r departs from 1, the diboson decay channel becomes more important and rapidly
overcomes the fermion channel.

In fig. 4.9 we can see the excluded region at 95% of confidence level in the plane (g, r)
for sin@ = 0.2 (left panel) and sinf = 0.15 (right panel). The full parameter space for
6 = 0.2 can be excluded with a luminosity L = 10ab~* (dashed line). For § = 0.15 there
is a region g > 8 and |r — 1| = 0.1 which will not be excluded with 10ab~!.

Lines of dynamically inspired |ay | = 1 are also depicted in the plots.

1.4 pp — p@100TeV, sind =0.2 14 pp—)p@lOOTeV.siné"zo. 15
- I
B (¢ -L=1lab! L0 -L=10ab"! B (70 -L=1lab’! (¢~ -L=10ab7!

22 WZ-L=1ab! () WZ-L=10ab™! =22 WZ-L=1ab! V.Zy WZ-L=10ab!
T

1
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Figure 4.9.: 95% CL exclusion regions in (g, r)-plane for sin § = 0.2 (left) and sin§ = 0.15
(right) in the p — WZ (blue contour, hashed) and p — £1¢~ (red, shaded)
channels. L = 1ab™! (solid contour) and L = 10ab~!.

4.4.2. Strong VBS in pp — jjZZ — 5544

To model the non-resonant excess and the ¢ resonance we have implemented the La-
grangian in eq. 4.66 in the UFO format via the FEYNRULES package. We consider the
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following benchmark scenarios:

LET non-resonant enhancement: this is the Lagrangian in eq. 4.66 without o.
It is the simplest and most conservative effect of strong VBS in CH models and is
a general feature not specific to the SU(4)/Sp(4) realisation. The observation of this
excess gives an indirect probe of the Higgs coupling to weak bosons [13]. At the LHC,
the measurement of hZZ coupling can reach 3% accuracy in the most optimistic case
or 5% in a more realistic scenario (at 1 standard deviation) [260]. These deviations
correspond to sinf ~ 0.24 and ~ 0.31 respectively. We show that even with only the
77 — 4f channel we may exclude sinf = 0.2. We consider also sinf = 0.15, 0.1. We
note that the energies beyond LO unitarity violation have negligible contribution for our
analysis.

Scalar o resonance: we summarise the analysed benchmark scenarios we have con-
sidered in table 4.2 . The first 4 scenarios in the table will be analysed for a 100 TeV
machine and the last one is an optimistic case to be analysed at LHC energies.

sinf wva M,[TeV] T,[TeV] ¢, collider

0.2 1.2 6 2.81 0.63 FCC
0.15 0.9 6 1.58 0.63 FCC
0.1 0.6 6 0.7 0.63 FCC
0.1 038 8 2.69 0.8 FCC
0.2 038 4 1.34 0.8 LHC

Table 4.2.: Parameters of benchmark scenarios for the CH model with o resonance.

Events for the process pp — jjZZ — ete~p* ™ jj have been simulated at LO with
the multi-purpose generator SHERPA [34]. We imported the UFO model through the BSM
module [261] available for the COMIX matrix element generator [102]. All the samples
were generated at LO accuracy, and are showered through the CSSHOWER module, the
Catani-Seymour dipole based shower [62]. Description of the relevant process handled by
such modules within SHERPA have been present in chapter 2. We have used dynamical

2
factorisation and renormalisation scales ,u% = ,u%% = (p’él + p%) . The NNLO CT14

PDF set [262] in the 4 flavour scheme has been employed *. The SM parameters used
are: apw = 1/127.9, Mz = 91.18GeV, Gr = 1.16639 x 107> GeV and ag(Mz) =
0.118. Besides the CH scenario described above, we produced events for the relevant
backgrounds: SM EW ZZjj, and the QCD ZZ+jets, merged up to the second jet at LO
accuracy through the MEPSQLO [263] algorithm as implemented in SHERPA.

We would like to stress out the importance of gauge invariance in this study. The
cancellations are so delicate that even fixed width effects can produce a large fake en-
hancement at high energies. One way out is to use the complex mass scheme to restore

“Here again the 3rd family PDF, including the top-quark, may play an important role at 100 TeV. This
would lead to a process with 2 b-jets in the final state, allowing for a b-tagging on the forward jets,
and could be treated as a different process.

110



4.4. Experimental signatures at Future Colliders

gauge invariance. Our approach is instead to set all the widths of the gauge bosons to
zero, since due to the implemented generation cuts we do not have kinematic regions
where the internal boson propagators go on-shell. Z-bosons are decayed a posteriori with
the SHERPA decay handler.

An analysis routine has been implemented in the RIVET framework [264]. Final state
particles are identified within |p| < 6. One pair of isolated opposite charged muons
and one of electrons with prmin = 30GeV and || < 4 are identified to reconstruct
the Z bosons. If more than one lepton of the same type is present we take the one
with highest pr. The reconstructed Z mass is required to be in the window 65 GeV <
m(Z) < 115 GeV, in order to suppress the non-ZZ backgrounds. Jets are reconstructed
with the anti-k7 clustering algorithm, with R = 0.4 and p7min = 30 GeV. Moreover,
typical kinematic selection cuts to enhance VBS topology have been implemented for
LHC (FCC): the two jets are back-to-back in the forward-backward region of the detector
forming a system with large invariant mass, while the Z-bosons are central and highly
energetic. These cuts are summarised in tab. 4.3.

cut 100 TeV 14 TeV
2 jets prj > 30 GeV | |n| > 3.5, | pr; > 30 GeV , |n;| > 3.,
Mj1 My <0 Mj1 My <0
77 invariant mass myy > 3TeV myy > 3TeV
di-jet invariant mass mj; > 1 TeV mj; > 1 TeV
Zs centrality Inz| < 2. Inz| < 2.
7Zs momentum pr,z, > 1 TeV pr,z; > 0.5 TeV

Table 4.3.: Selection cuts implemented in the analyses at the FCC and LHC.

For the statistical assessment we performed a simple counting experiment analysis.
We define S = ogL and B = opL, where L is the considered integrated luminosity
and og p are the effective cross sections after the application of all selection cuts for the
CH scenario (S) and for the SM prediction (B), both comprising QCD ZZ+jets. We
have multiplied the final cross section by a factor of 2 assuming the decay channels with
2 pairs of identical leptons can be reconstructed with similar efficiency to the channel
2e2p. We model the probability to observe a number of events k with a smeared Poisson
and mean value A, given by either S or B,

1 1+4-€ k
P(k; N €) = Z/l— dxex)‘(x]j\!) 4.105

where € models a flat systematic and theoretical uncertainty, related to scale dependence
and experimental systematic error.

QCD corrections to boson-boson production via vector boson fusion [265-268] at the
LHC turn out to be below 10%. At the FCC this is expected to be even lower. EW
corrections, on the other hand, are known to increase with energy and can be very
large and negative for VBS [269]. In W*W* channel at the LHC the EW correction
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is k ~ —25% for M(£¥¢*) > 500 GeV for LHC energies. To partially account for such
large corrections we consider a flat error up to € = 40%.

A good estimator of the discriminatory power of the analysis is given by the probability
to exclude the SM assuming one of the CH scenarios describes Nature. This probability
is given by

1-8=>Y" PkS) 4.106
k=m
where m is defined by
> P(k;B) = 95%". 4.107
k=0

Non-resonant excess at 100 TeV

The non-resonant enhancement cannot be observed at the LHC, due to its tiny rate,
we therefore study this scenario at a 100 TeV collider. We investigate in more detail
possible signatures at the LHC in 4.4.1, for the strongest channel, the vector production.
In fig. 4.10 (left panel) we show the distributions of the reconstructed ZZ system
invariant mass, for the scenario with sinf = 0.2,0.15,0.1. The corresponding 1 — 3 is
shown in the right panel as a function of luminosity, L. The central solid line assumes
a systematic error ¢ = 20%. The upper and lower dashed lines refer to no-systematic
and e = 40%, respectively. The vertical dashed line highlights the benchmark value of
luminosity used in the limits set on the vectorial resonances, L = 10ab~!. The line
1 — 8 = 0.5 indicates the exclusion assuming the mode of the distribution is observed.
We can see that for the case sinf = 0.2 we have a probability 1 — 8 2 50% of
excluding the SM already around L ~ 3ab~!. For sinf = 0.15 we need more statistics,
with L > 25ab~! we can reach a good probability to exclude the SM. For siné = 0.1 the
situation is more complicated and considering the other VBS channels is unavoidable.

Heavy scalar at 100 TeV

The o resonance has a more pronounced excess at lower energies and a better probabil-
ity to be observed. In fig. 4.11 (a) we present the invariant mass of the reconstructed
77 system for the resonant scenarios listed in tab. 4.2. We note that the o resonance
postpones the unitarity violation with respect to the plain LET scenario, and the high
energy behaviour beyond the resonance peak approaches the SM prediction for a large
energy range. For this reason we add a selection M(ZZ) < 10 TeV to avoid contam-
ination from non-resonant areas. In fig. 4.11 (b) the corresponding 1 — 5 are shown.
We note a probability 1 — 8 > 50% even for sinf = 0.15, which could be in particular
stronger than vector resonance searches.

5To ensure exact 95% in the formula above we use fractional values in the sum.
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Figure 4.10.: In (a) the ZZ system reconstructed invariant mass distribution for sinf =
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4. Beyond Standard Model

Heavy scalar at the LHC

The LHC is not the most obvious machine to observe signal of strong VBS in CH
models due to the high intrinsic compositeness scales. However, nothing prevents some
dynamical mechanism from producing a lighter state.

BSM searches through VBS have been analysed by the ATLAS and CMS collabora-
tions [258,270,271]. In [272] in particular the production of scalar resonances in VBS in
the ZZ — 4 channel at /s = 14 TeV, for L = 300 — 3000fb~! has been considered. For
a resonance of mass M, = 1 TeV with g, = 2.5 they predict a sensitivity of 9.4 standard
deviations at 3ab~!. Unfortunately, our motivated scenarios have larger masses and
smaller couplings. We consider here g, = 0.8, M, = 4 TeV as an optimistic case.

pp— ZZjj @ 14 TeV
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Figure 4.12.: ZZ invariant mass at the LHC for the composite scenario devised for LHC
(90 = 0.8, M, = 4 TeV) and the SM backgrounds (EW ZZjj and QCD
Z7+jets).

In fig. 4.12, we show the invariant mass of the reconstructed ZZ system at /s =
14 TeV. The effective cross section found is only o = 2.9 x 10~%ab. As already noted,
the ZZ channel has the smallest cross-section amongst the VBS channels and including
all the other channels is imperative for this search. Another source of improvement could
come from the mixing of o with the Higgs, which at this mass could give some small
gluon fusion contribution. Further and more detailed study is required.

4.5. Conclusion
In this chapter we present new results for a possible analysis of Vector Boson Scattering

events at a future 100 TeV hadron collider. We study this process within a particular
realisation of the Composite Higgs model with coset SU(4)/Sp(4).
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4.5. Conclusion

The VBS process is one of the most challenging to measure at the LHC, due to its
tiny rate, and the large backgrounds coming from top quarks production. Always with
the aim of showing the potential of a 100 TeV future collider, we first present a novel
prescription to impose the free parameters of the model, in order to generate meaningful
events at a future collider. We use the unitarity of the amplitude, a first principle
required in quantum field theory for describing real objects, as paradigm to constrain
the couplings of the new particles present in the models. Through a direct comparison
of the analytically unitarised amplitudes, and those partially unitarised by the presence
of a resonance, we derived the optimal parameters for the model.

We present an analysis of the pp — ZZjj process, and extract sensitivity reaches at
a future circular collider, getting a concrete indication of which luminosity would be
required to rule out (or discovery) such new particles predicted in this scenario. We
perform the same analysis at the LHC, in order to show that this is completely out its
sensitivity reach. Further studies are needed, in order to complete the analysis adding the
missing channels of the VBS process, which would account for a even greater sensitivity,
given the higher cross sections, compared to the ZZjj channel. An interesting outcome
to be inspected would be also a possible sensitivity estimation of the indirect Higgs
self-coupling, which would prove the FCC also a valuable precision machine.
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CHAPTER b

Conclusions

5.1. Conclusions

The LHC Run 1 and 2 have been the most exciting times in high-energy particle physics.
The experimental confirmation of the existence of the Higgs boson has finally completed
the already successful theory that is the Standard Model of particle physics. Never-
theless, it is already necessary to consider what could be next. The CERN is already
scheduling a High Luminosity LHC run in ten years from now, in which more data will be
collected, and perhaps an increase in centre-of-mass energy could even be implemented.

New frontiers for the forthcoming colliders are already being investigated at CERN.
There are two main options: the precision and the energy frontiers. While the first would
be interesting if new physics is discovered at the LHC, the second is the most likely if no
new physics is discovered in the coming years. In this thesis we have revised some of the
physics opportunities at a /s = 100 TeV hadron-hadron collider. This can be regarded
as a bigger version of the LHC, where particles of masses of the order of tens of TeV
could be observed.

Monte Carlo event generators, which have become a standard tool in the LHC era,
allow us to study the possible physics outcomes of such a machine. More precision and
attention to details is always needed in developing these powerful tools, in order to better
simulate what happens during the collisions. The present thesis analyses two aspects of
Monte Carlo programs to be employed at a 100 TeV collider.

We first present, in chapter 3, attempts for the automation of resummation of soft-
gluons for global event shape variables within SHERPA, following the Caesar formalism.
We have shown how resummed results could be used to analyse the colour flow in the
event, allowing us to verify whether subleading contributions at the LHC can become
relevant at an FCC-hh machine. This can be seen, in particular, in the comparison
of large-N¢ versus full colour treatment in section 3.1.2, where we verify that there is
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5. Conclusions

no major change in going from a /s = 14 TeV collider to a 100 TeV one. An impor-
tance sampling Monte Carlo method has been implemented for the evaluation of the
single-logarithmic function, F(v), sketching an algorithm for reaching convergence while
calculating the function. This serves as starting point for a possible implementation of
the F function through the parton shower within SHERPA.

New results regarding jet-rate predictions at a future circular collider at /s = 100 TeV
have been presented. We performed an analysis comparing analytical results at next-to-
double-logarithmic approximation (NDLA), computed through the generating functional
mechanism, and parton showered events within SHERPA. These novel contributions shed
new light on the relation between resummation and parton showers, and could actually
help the community in designing further developments in all-order calculations, in sight
of the future particle physics experiments.

The second main topic of the thesis has dealt with the analysis of one of the possible
extensions of the Standard Model, the Composite Higgs scenario. We studied the pos-
sibility of detecting Vector Boson Scattering at a /s = 100 TeV. We have shown the
implications of Goldstone Boson Scattering unitarity in the spectra of Composite Higgs
scenarios, in particular for the coset we have chosen SU(4)/Sp(4). We have made defi-
nite predictions for the possible range of the mass of an eventual o-like composite scalar
resonance, which can be described as a Breit-Wigner peak only if M, < 1.2 TeV/sin6.
For masses heavier than this, the non-resonant growing behaviour overcomes and dilutes
any possible peak, building up a continuum picture. Inspired by models of unitarisa-
tion which proved to be successful in predicting the first resonances in pion-pion and
pion-kaon scattering data, we estimate the parameters of the Composite Higgs effective
description, with which we simulate the Goldstone Boson Scattering at a /s = 100 TeV
collider.

Limits on the production cross section of heavy composite vectors in the Fundamental
Minimal Composite Higgs Model, SU(4)/Sp(4), and a first assessment of strong Vector
Boson Scattering in CH in the simplest channel pp — jjZZ — jj4¢ have been provided.
In the best case scenario, the non-resonant behaviour could, in principle, be detected,
and indirect limits on the hV'V coupling could be placed, with a precision of a few
percent. Luminosity increase, up to £ ~ 10ab™!, will be needed in order to have a
meaningful set of events for the scenario with smallest vacuum misalignment angle 6.

To trace an outlook of this work, we expose two main branches. Regarding resumma-
tion, it would be a great achievement to build an algorithm that samples the F function
through the parton shower algorithm already implemented in SHERPA. In this way a
complete, automated software for generating resummed prediction in a Monte Carlo
fashion will be available, allowing then to use resummed analytical results in the same
way we do today with the parton showers. Furthermore, this tool could be used to bet-
ter understand the logarithmic structure of parton showers. To enhance the results we
found for the jet rates, it would be interesting to implement, within the generating func-
tional formalism, the initial state radiation contributions, which up to now have not been
considered, and a better way of including the dependence on the jet algorithm. The dis-
crepancy between the resummation result and the parton shower outcome is particularly
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5.1. Conclusions

enhanced in the gluon production, which is mostly affected by strong effects.

Concerning the study of Composite Higgs models at a future collider, a possible im-
provement of our analysis could come from the inclusion of other Vector Boson Scattering
channels, like WWjj and W Zj4, which both have bigger cross sections, but necessitate
a longer study of background sources. By including this, stronger limits could be placed
on the production of resonances and non-resonant scenarios. A careful analysis and
comparison of the precision with which the Higgs couplings could be indirectly mea-
sured would also be interesting and allow a better design and analysis of the possibilities
at a future FCC-hh collider.
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A.0.2. SU(3) generators
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APPENDIX B

Monte Carlo algorithms

In multidimensional integration, Monte Carlo algorithms are often preferred to standard
numerical methods, as for example, numerical quadrature rules. This is because the
scaling of the convergence error is always 1/4/N, independently of the dimension of the
integral.

Given an integral

I= /dd:cf(a;) , B.1
where z is a vector with dimension d, the law of large number ensures that
1N
]&@mﬁgﬂxn) =1. B.2

The variance of the function can be expressed as

o2(f) :/dd:c (flz)=1T)? . B.3

As direct consequence of eq. B.2, it follows that

2

N 02
/dxl/dmN (&Zf(mn) —I) = J(Vf) . B.4
n=1

defining in this way the average error for a Monte Carlo estimate as o(f)/vV N. As an
exact value for o(f) is not always simple to compute, the following estimate is usually
employed

S?=——3%" (f(zn) - B)* . B.5
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B. Monte Carlo algorithms

Importance sampling belongs to the variance reduction techniques. The idea behind
this is the fact that some regions of the parameter space have exactly more “importance”
for the evaluation of the integral. Sampling more frequently these values allow to reduce
the estimator variance. Distributions employed in the algorithm are then biased with
the modified distribution allowing to sample more “important” values, but the output
is correct by a weight, such that the final estimator is unbiased. The weight is given
by the likelihood ratio of the true underlying distribution with the biased simulation
distribution.

Importance sampling corresponds to a change of integration variables

/d:cf(m) :/]f;éjz))p(x)dx = /]‘];Egd]?(x), B.6

where J
0

pw) == ori,...,0x,

If we choose p(z) to be positive-valued, p(z) > 0 and normalised to one, [dap(z) =1,

we can treat p(z) as a probability density function. Then, generating random z1,...,zyx
according to the probability P(z), we have the following estimator for the integral I

P(z). B.7

_ 1 al f(zn)
E_N;p(xn). B.8

It directly follows that the variance estimator is

52:1§:(f($n)>2_E2_ B.9

N n=1 p(xn)
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APPENDIX C

Generating functionals details

Following ref. [143], we write the splitting function for the gluon, through the Altarelli-
Parisi splitting kernels Py,(2) and Pyy(2),

& d / 1 s kQ
r(B0 = [ G [ 2 e+ R c1

which gives to NDLA

Py(E,€) = asln (§R> Cyln <Ji) - bo} I

eaatnll Jn(5) n(£) n(()]. e

and the gluon Sudakov factor is
Ay(B,€) = exp [~y (E,€)] . C3

Note that all this is independent of the value of p, so that all the inclusive generalized
k; algorithms are equivalent at this level of precision.

Writing
Ny(# = ma, A =nb) = finn
Ng(k =ma, A =nb) = gmn , C4
we have )
g:;i ~ % [Om+1,n4+1 — Im+1,n — Gmnt1 + Gmon) C5
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C. Generating functionals details

and
cgNg - Cqg Im+1,n+1 " Imi1n C6
(26 + A+ p) 412m+Da+n+1)b+p  2(m+1)a+nb+pu ’
9m,n+1 Im,n .7

+2ma+(n—|—1)b+,u+2ma+nb+u '

Equating these expressions, one can solve iteratively for g,,41,n4+1 starting from the
boundary values gon = gm0 = 1.

To include the finite parts of the splitting functions, we may write (3.70) and (3.73)
with equivalent precision as

O*Ny d N,
Z"'99 1-d, — )| —-9 .
RN | 99 < &9 35) 26+ X+ pu C8
where ¢y g = Cr.a/by and

3 11 ny

dg = = C.9

d, = — )
4’ 9 12+6N3

The partial derivative equations (C.8) can be solved numerically by a simple extension
of the method outlined above. For the discretized x-derivative, we use

ON, 1

Ok 2a [gm+1,n+1 + 9m+1n — Gmn+1 — gm,n] . C.10

We can then write the right-hand side of (C.8) as

Cg (1- 5g)gm+1,n+1 + (1- 5g)gm+1,n
412m+1a+n+1)b+p  2m+1)a+nb+p
(0 +0)gmmer (14300 -
2ma+ (n+1)b+pu  2ma+nb+pl’ ’
where 5 5 11
ny
§g=—dy == (= + =L C.12
9 af a<12+6N3> ’
and equate this to (C.5).
Similarly, to obtain the quark jet multiplicity we write
O*N 1
Ok aq)\ ~ % [fm+1,n+1 - fm+1,n - fm,n+1 + fm,n] ) C.13
equate this to (C.11) with ¢4, d, replaced by
Cr 3
=—, §;=— 14
“a by’ 1 2a C

to obtain the discrete equivalent of (3.70), and solve iteratively for fy, 11,41 starting
from the boundary values fo, = fmo = 1.
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