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Chapter 1 General Introduction 

1.1 Nickel-based Enzyme System 

Seven out of the eight known nickel enzymes play important roles in the usage 

and/or production of gases (H2, O2, CO2/CO, CH4 and NH3) (Figure 1) in the 

global biological C, N and O cycles. [1] For examples, Hydrogenase gener-

ates/utilized hydrogen gas; Ni-SOD generates oxygen; CODH interconverts CO 

and CO2; ACS utilizes CO; MCR generates methane; urease produces ammonia 

(Table 1). [1] It has been found that the nickel sites in enzymes exhibit extreme 

plasticity in nickel coordination and redox chemistry.  

 

Figure 1: Selected nickel-containing enzyme systems involved in the regulation 

of global gas cycles and energy conversion processes. 

Table 1: Nickel-containing enzymes. 

Enzyme Reaction 

Hydrogenase 

Ni-SOD 

CODH 

ACS 

2H+ +2e-  H2 (ΔE0 = -414 mV) 

2H+ +2O2- H2O2 + O2 

2H+ +2e- +CO2  CO + H2O (ΔE0 = -558 mV) 

CH3-CFeSP + CoASH + CO  CH3-CO-SCoA + CFeSP 
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Urease 

Glx I 

ARD 

 

MCR 

H2N-CO-NH2 + 2H2O  2NH3 + H2CO3 

Methylglyoxal  Loctate + H2O 

1,2-Dihydroxy-3-oxo-5-(methylthio)pent-1-ene + O2  

 HCOOH + Methylthiopropionate + CO 

CH3-COM + CoBSH  CH4 + CoM-SS-CoB  

 

Although limited in number, Ni-containing enzymes exhibit a rich diversity of 

metallocenter structures and participate in a variety of important reactions. 

Several of the Ni-dependent enzymes require auxiliary proteins that participate 

in Ni delivery for metallocenter assembly or organometallic cofactor synthesis. 

Clearly, many exciting avenues of investigation exist for those interested in Ni! 

Therefore, understanding bio-related Ni chemistry is very useful.  

1.2 β-Diketiminato and pyrazole chemistry background 

The β-diketiminato unit (often called “nacnac” because of its addition of two ni-

trogen atoms to the common acac ligand) has gained great attention as a sup-

porting ligand because the properties and reactions of the metal complexes are 

highly dependent since its introduction in 1968. [2] Backbone (β-C) or the N-aryl 

substituents influence the β-diketiminato sterics. The common substituents at 

the backbone are methyl, tBu or CF3. The N-aryl substitutes of β-diketiminato 

ligands often contain Dipp, Tipp, Dep and Mes and so on (Figure 2). [3] N-Aryl 

β-diketiminato ligands have been most widely used, and they support a variety of 

metals in many oxidation states. Complexes of N-aryl β-diketiminto ligands have 

shown great reactivity and selectivity for a variety of methodologies, [4] including 

polymerization and functionalization of alkenes and cross-coupling reactions. In 

addition, late transition metal β-diketiminato complexes, such as Fe, Co and Ni, 

have been used to build low coordinate metal centers, mimicking the active sites 

of metalloproteinase. [5] Some late transition metal β-diketiminato complexes 

undergo monomer-dimer equilibrium that are highly sensitive toward the nature 
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of the aryl substituents in the β-diketiminato ligand. As the dinuclear active spe-

cies, some bis(β-diketiminato) ligands (Figure 3, I, II and III) were designed in 

recent years. [6]  

 

Figure 2: Substituent patterns and abbreviations in β-diketiminato ligands. 

 

Figure 3: Some new bis(β-diketiminato) ligands reported in literatures.[6] 

Pyrazolate ligands have rich coordination chemistry that includes exo-bidentate 

bridging (μ-η1:η1), terminal monodentate (η1), endo-bidentate (η2) and side-on, 

pentadentate (η3) coordination modes (Figure 4). [7] In Meyer group, pyra-

zole-based ligands with a variety of chelating side arms represent valuable 

bridging scaffolds for pre-organizing two metal centers in a fashion which allows 

for metal-metal cooperativity during substrate transformations. [8] The met-

al···metal distance can be controlled by varying the length of the chelating side 

arms, short lengths favoring large inter-metallic distances and vice versa. [8] Sev-

eral pyrazolate-bridged binuclear first-row transition metal complexes have re-

cently appeared in literature. [8,9]  
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Figure 4: Typical coordination modes of pyrazolate ligands (R=H, alkyl, or aryl) 

towards metal ions (M, M’). a) exo-bidentate; b) endobidentate; c) monodentate; 

d) pentadentate. 

  

Figure 5: β-Diketiminato combine with pyrazole complexes in literature. [10] 

The first bulky β-diketiminato combine with pyrazole complexes were reported 

in 2006 by Holland (Figure 5). [10] In this work, both η1 and η2 coordination to 

iron(II) and nickel(II) can be observed in the pyrazolate by the diketiminato an-

cillary ligand used. Account of the pyrazolate and β-diketiminato work, a new 

dinucleating scaffold H3L1 (L1 = 

[{NC(Me)C(H)C(Me)NC6H3(iPr)2(CH2)}2(C3N2H)]3-) (Scheme 1) that features a 

central pyrazolate bridging two-diketiminato compartments was introduced by 

Manz. 
[11] 
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Scheme 1: The scaffold was developed and employed as H3L1 by Manz.[11] 

1.3 Preliminary work 

 

Scheme 2: Synthetic procedure for 2.  

Manz was able to synthesize a new dinucleating ligand scoffold comprising two 

nacnac compartments spanned by a central pyrazolate-bridge (H3L1). The bi-

metallic dinickel(II) dihydride complex 2 has been synthesized already from 1 

with 2.5 equivalents KHBEt3 and characterized intensively. [11] Complex 2 was 

determined by x-ray diffraction and showed pairwise H2/D2 exchange without 

H/D scrambling. Furthermore, it has been exploited for the reaction of 2− or 

[2-D]− with phenylacetylene. Treating [2-D]− with phenylacetylene leads to D2 

formation and two-fold reduction of the substrate, giving a product complex 

with unusual styrene-1,2-diyl bridging unit in the bimetallic pocket.[11] Large 

parts of the project have recently published in Journal of the American Chemical 

Society (JACS), together with results from the present work. Parts of chapter 3 

of the present monograph have been adapted from this publication with per-

mission from ACS and from Manz doctoral thesis. [11]  
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For the pairwise H2/D2 exchange, however, it is unknown whether the K+ cation 

plays an important role in the process or not. Extensive experiments have now 

been performed in order to understand the H2/D2 exchange mechanism. In ad-

ditional, Manz produced complexes [L1Ni2(NxHy)]z- that contain bridging units 

N2H3(1−), N2H2(2−), N2H(1−) and NH2(1−) relevant to intermediates of the ni-

trogenase mechanism, which are derived from N2H4 with 1. [11a] A new way to 

these nitrogenase intermediates from the dinitrogen molecule will be discussed 

in this doctoral thesis.  
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Chapter 2 Objective 

Molecules like H2, N2, O2, CO, CO2, NO and N2O and so on are small but fascinat-

ing, universal and easily available. These molecules are involved in elementary 

reactions relevant to the efficient and reversible storage of energy. [12] The acti-

vation of these small molecules has a significant impact in biology, medicine, 

industry catalysis and environment protection. Mastering the chemistry of 

those molecules represents a prime challenge in the 21st century.  

  

Scheme 3: Goals of the work, using the dinuclear dinickel complexes; the 

numbers above the arrows corresponding to the chapters.  

The bimetallic dinuclear nickel(II) dihydride complex showed pairwise H2/D2 ex-

change without H/D scrambling property. [11] However, still some questions have left 

unanswered. This represented a starting point for this work. As depicted in 

Scheme 3, the results of this project are described in chapter 3. 

In addition, reactivity towards phenylacetylene from 2 was further exploited by 

Manz. [11] Treating [2-D]− with phenylacetylene leads to D2 formation and 
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two-fold reduction of the substrate, giving a product with unusual sty-

rene-1,2-diyl bridging unit in the bimetallic pocket. Inspired by the H2/D2 ex-

change mechanism studies and phenylacetylene activation, reductive activation 

of O2 was our first goal (chapter 4). 

Owing to their importance, respective peroxo as well as persulfido complex 

have attracted much attention, resulting in a vast number of complexes for 

structural reactivity studies. In chapter 5, the dinuclear disulfido complex and 

its reactivity will be elaborately discussed. 

Studies on the reactivity of the dinuclear nickel(II) dihydride complex towards 

dinitrogen (N2) are explained in chapter 8. When providing an extra proton, 2 

showed reactivity to the inert N2 molecule and allows to isolate the exclusive 

[N2]− monoanionic radical complex which is characterized by x-ray diffraction 

and various spectroscopies. Moreover, N2 to NH3 conversion was studied in this 

doctoral thesis. Other nitrogenase intermediates (N2H4, N2H3, N2H2 and NH2) 

were isolated in the system. These works are presented in chapter 8. The reac-

tivity of [N2]− monoanionic radical complex towards carbon monoxide, as the 

isoelectronic species of N2, has been also investigated and is described in chap-

ter 9. 

At last (chapter 10), a new scoffold ligand with bulky phenyl groups in the sub-

stituents was synthesized. The new system is similar to H3L1, thus allowed us to 

compare between the two related dinuclear nickel(II) hydride complexes and 

their reactivity. 
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Chapter 3 Pairwise H2/D2 Exchange Mechanism Stu

dy 

Abstract: A new dinuclear nickel(II) dihydride complex Na[L1Ni2II(H)2] (3) was 

formed from nickel bromide precursor (1) with NaHBEt3 in THF solution. The 

dinuclear nickel(II) dihydride species shows pairwise H2/D2 exchange, just as 

with the complex K[L1Ni2II(H)2] (2). A mechanistic picture was provided by DFT 

calculations which suggested facile recombination of the two hydrides within 

the bimetallic cleft, with a moderate enthalpy barrier of ~62 kJ/mol, to produce 

H2 and an antiferromagnetically coupled [L1NiI2]− species. Interaction with the 

Lewis acid cation (Na+ or K+) significantly stabilizes the dihydride core. Treat-

ment of 2 with dibenzo(18-crown-6) (DB18C6) led to the separated ion pair 

[L1Ni2II(H)2][K(DB18C6)] (4). The new [L1Ni2II(H)2][K(DB18C6)] (4) species 

could easily remove H2 in the solid state, which was confirmed by SQUID and 

headspace GC experiments. Kinetic data for the M[L1(Ni−H)2]→H2 transition 

derived from 2D 1H EXSY spectra confirmed first-order dependence of H2 re-

lease on 2 or 3 concentration and a strong effect of the alkali metal cation M+. 

Complex [L1NiII2(H)2]− having two adjacent terminal hydrides thus represents a 

masked version of a highly reactive dinuclear nickel(I) core.  

  



CHAPTER 3. MECHANISM STUDY OF H2/D2 EXCHANGE 

10 

 

3.1 Introduction 

Hydride complexes of transition metals play an important role in organometal-

lic chemistry especially related to homogeneous catalysis. [13] It often function 

as key intermediates for transferring proton (H+), hydrogen atom (H·), or hy-

dride (H-) between molecules. Hydride complexes are also implicated in biolog-

ical inorganic chemistry, where hydrides are known or thought to be present in 

key intermediates in H2 utilization by hydrogenases[14] and in N2 reduction by 

iron-molybdenum nitrogenases. [15]  

 

Figure 6: Selected examples of iron(II) and nickel(I/II) hydride complexes 

supported by -diketiminato ligands.[17-22] 

The nitrogenase background provides a strong impetus for synthetic efforts 

targeting the use of transition metal hydrides as masked low-valent complexes 

capable of reductively activating small molecules. [16] -Diketiminato ligands 

have proven extremely valuable in this content, and a particularly rich chemis-

try has evolved from the iron and nickel type IV complexes with M(-H)2M core 

mainly developed by the groups of Holland and Limberg, respectively (Figure 6; 

including variants thereof with other aryl and backbone substituents). [5c, 17] 

These bimetallic hydrides were shown to readily eliminate H2 when treated 

with external donors or upon heating, leading to a variety of iron(I) and nickel(I) 

complexes.[18, 19] Several other metal hydride complexes bearing polydenate or 

polyhapto ligands have been prepared using the super hydride route. [20] 



CHAPTER 3. MECHANISM STUDY OF H2/D2 EXCHANGE 

11 

 

Bis(β-diketiminato)pyridine-ligated dinuclear nickel(II) hydride complex 

(PYP)–Ni(μ-H)Ni (Figure 6, V) has an unique Ni-H→Ni core, which can be gen-

erated from (PYP)–Ni(μ-Br)NiBr with KHBEt3. [20b] Diiron dihydride complex 

(PYP)–Fe2(μ-H2) was obtained from the reaction of (PYP)–Fe2(μ-Br2) and 

KHBEt3 at room temperature using the same ligand system. [20d] 

A cyclophane type scaffold containing three -diketiminato binding pockets, 

developed recently by Murray and coworkers, gave access to tris(-hydride) 

trimetallic clusters such as the tri-iron(II) complex VI (Figure 6).[21] The latter 

showed CO-induced reductive elimination of H2 to produce a low-valent FeI2FeII 

species that reversibly regenerates the tri-hydride complex under H2 atmos-

phere. [22] 

Infrared spectroscopy could be a very useful characterization tool for identify-

ing metal-hydride complexes. Not many iron[23] and cobalt[24] complexes with a 

terminal hydride ligand have been reported. Nickel complexes with a terminal 

hydride ligand typically show a Ni-H stretching band at 1690–2000 cm-1, alt-

hough sometimes the intensity of the band could be too weak for a definitive 

identification. [25] 
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Figure 7: “T”-shaped NiI center complexes.[26-28] 

A “T”-shaped nickel(I) species were generated from H2 elimination in corre-

sponding nickel hydride complexes reported by the Gade group in 2014. [26] In 

solution, this Ni(II) hydride complex (Figure 7, VII) was found to be in equilib-

rium with the planar T-shaped, three-coordinate Ni(I) species (Figure 7, VII). 

Except for this “T”-shaped NiI species, other analogous NiI species (Figure 7, IX 

and X) were reported by the Caulton
[27] and Lee[28] groups, respectively. The 

coordination of σ-donors is not seen because of the σ-antibonding character of 

the SOMO dx2-y2 of a d9 center NiI metalloradical. The latter (Figure 7, X) shows 

reactivity towards unsaturated molecules (C2H4 and CO2). Finally, hemolytic 

cleavage of challenging σ-bonds in substrates, such as H2N-NH2 and H3C-CN 

highlights the power of utilizing the NiI metalloradical. [28] 
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3.2 Synthesis of sodium dinuclear nickel(II) dihydride com-

plex 

 

Scheme 4: Synthetic route for 3. 

In order to study the influence of the K+ cation coordination at the hydride unit 

in 2-, the K+ ion was successively replaced by Na+ ion, as the small ion radius of 

Na+(0.97 Å) vs K+(1.33 Å) [29] could be expected to lead to significant geometric 

changes. Treatment of 1 with 2.5 equivalents of NaHBEt3 in THF gave a red so-

lution in 20 mins and gas evolution was observed. The crude bimetallic com-

pound 3 was obtained in 76% yield (Scheme 4). 3 was characterized by x-ray 

diffraction, FT-IR, 1D and 2D NMR spectroscopies and elemental analysis (C, H 

and N).  

Suitable crystals for x-ray diffraction were grown from pentane diffusion into a 

solution of 3 in THF or by layering hexane on a solution of 3 in THF at RT. Its 

structure is similar to the previously reported potassium analogue 2. [11] In 2, 

the K+ ion is hosted between the two aryl rings of the DIPP substituents via cat-

ion-π interactions and locates within the plane defined by the pyrazo-

late-bridged dinuclear nickel dihydride core, presumably supported by attrac-

tive K+∙∙∙hydride interactions. The distance between K+ and the centroid of the 

DIPP aryl rings is 2.84 Å, which lies in the typical range for cation-π bonding of 

K+ to aromatic systems. However, the smaller Na+ ion is situated above the py-

razolate-bridged dinickel dihydride core and outside of the DIPP cleft, with 
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close contacts to the two hydrides, the two pyrazolate-N atoms, and coordinat-

ed by two additional THF ligands. The molecular structure is shown in Figure 8 

and selected bond lengths (Å) and angles (°) are listed in Table 2. 

3 crystallizes in the triclinic space group P-1. As shown in Figure 8, each nickel 

center is held within a N, N–chelate of a β–diketiminato arm and hydride ligand. 

Moreover, the two nickel centers are coordinated in square-planar fashion, with 

the sum angle of 360.26° and 359.90°, respectively. The distance of the two 

nickel ions of 4.105(5) Å is similar to 2 (4.158(7)/4.164(7) Å), suggesting that 

the alkali metal cation does not exert any major influence on the dinickel dihy-

dride core. 

The 1H NMR spectrum showed a single set of resonance for the pyrazolate lig-

and and the two hydride ligands, indicating C2v symmetry in solution. There 

must be rapid motion that enables the sodium to change it position in solution. 

The hydride resonance is at –23.54 ppm in 3 (Figure 9), slightly low field 

shifted compared with 2 (–24.16 ppm) (Figure 10). The alkali metal cation in 2 

and 3 obviously have only a minor effect on the electronic shielding of the hy-

drides. 
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Figure 8: Molecular structures (50% probability thermal ellipsoids) of 2[11] 

(top; only one of two independent molecules shown) and 3 (bottom). Most hy-

drogen atoms except the Ni-bound hydride omitted for clarity. 

Table 2: Selected bond lengths (Å) and bond angles (°) for 3. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N4 1.869(2) O1-Na1-Ni2 136.14(6) 

Ni1-N1 1.872(2) O2-Na1-Ni2 91.50(5) 

Ni1-N3 1.905(2) N2-Na1-Ni2 40.28(4) 

Ni1-H1 1.37(2) N1-Na1-Ni2 66.25(4) 

Ni2-N6 1.866(2) O1-Na1-Ni1 94.97(5) 

Ni2-N2 1.882(2) O2-Na1-Ni1 179.40(6) 

Ni2-N5 1.921(2) N2-Na1-Ni1 65.25(4) 

Ni2-H2 1.40(2) N1-Na1-Ni1 37.78(4) 

Na1–H1  2.26(2) Ni2-Na1-Ni1 88.98(2) 

Na1–H2  2.50(2) Ni2-Na1-H1 81.3(5) 

Na1–O1  2.313(2) Ni1-Na1-H1 25.3(5) 

Na1–O2  2.336(2) Ni2-Na1-H2 29.4(6) 

Na1∙∙∙Ni2 2.847(8) Ni1-Na1-H2 73.2(5) 

Na1∙∙∙Ni1 3.008(8) N4-Ni1-N1 176.93(7) 
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Ni1∙∙∙Ni2 4.105(5) N4-Ni1-N3 95.78(7) 

  N1-Ni1-N3 84.39(7) 

  N4-Ni1-Na1 119.59(5) 

  N1-Ni1-Na1 62.28(5) 

  N3-Ni1-Na1 127.82(5) 

  N4-Ni1-H1 89.9(9) 

  N1-Ni1-H1 90.2(9) 

  N3-Ni1-H1 172.7(9) 

  Na1-Ni1-H1 44.9(9) 

  N6-Ni2-N2 178.19(7) 

  N6-Ni2-N5 96.30(7) 

  N2-Ni2-N5 83.93(7) 

  N6-Ni2-Na1 116.50(5) 

  N2-Ni2-Na1 61.83(5) 

  N5-Ni2-Na1 112.97(5) 

  N6-Ni2-H2 89.4(10) 

  N2-Ni2-H2 90.2(10) 

  N5-Ni2-H2 173.4(10) 

 

Figure 9: 1H NMR spectrum (300 MHz) of 3 in THF-d8. Residual solvents are 

marked with an asterisk (*). 
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Figure 10: 1H NMR spectra (400 MHz) of 2 and 3 (300 MHz) or in THF-d8. Re-

sidual solvents are marked with an asterisk (*). 

VT 1H NMR experiments were conducted to understand the Na+ cation motion 

in solution. With the temperatures changing (Figure 11), the CH3 group of the 

isopropyl substituents separate into two different doublets below 243 K, The “S” 

shape for the Ni-H peak at different temperature is possibly caused by the com-

bined effects of the sodium cation motion and its dissociation equilibrium fash-

ion. (Figure 12) Possible configurations of 3 are shown in Scheme 5. 

 

Scheme 5: Possibility configurations of 3 at different temperatures in THF. 
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Figure 11: VT 1H NMR spectra (0–7.5 ppm) (400 MHz) of 3 under H2 atmos-

phere. Residual solvents are marked with an asterisk (*). 

 

Figure 12: VT 1H NMR spectra (400 MHz) of the Ni-H region of 3 in THF-d8. The 

“S”-shape suggests a temperature depending binding of a Na+ or a structure 

rearrangement of 3. 
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Scheme 6: One-step exchange of 3 with D2. 

 

Figure 13: 2H NMR spectra (77 MHz) of H/D exchange of 3-D in THF. After 

loading of dried D2. Ni-D has formed and excess free D2 exists in the solvent 

(Bottom). Pump-freeze-thaw procedure removes excess D2 (Middle). After 

loading of the dried H2, the Ni-D signal has vanished and new free D2 forms 

immediately (Top). Residual solvent signals are marked with an asterisk (*). 

  

Figure 14: 1H NMR spectra (400 MHz) of H/D exchange of 3-D in THF-d8. After 

loading of dried D2, no Ni-H signal is observed (Bottom). After loading of dried 

H2, 3 is formed (Top). Residual solvent signals are marked with an asterisk (*). 

Upon addition of D2 (1 atm) to a degassed solution of 3 in THF-d8, the nickel 

bound hydrogen atoms are rapidly exchanged to give the deuterated 3-D 

(Scheme 6). The reaction is reversed upon addition of H2 to solutions of the 

deuterated complex in THF. This is proven by 2H NMR, which showed a reso-

nance of 4.52 ppm for free D2 (Figure 13 and Figure 14).  

Ni-D D2 
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As shown in Figure 15, the two bimetallic dihydride complexes show a Ni-H 

stretching band at 1961 cm-1 (for 2) and 1846 cm-1 (for 3), which are corre-

sponding to other Ni-H stretching at 1690-2000 cm-1. [30] The Ni-H absorption 

band shifted to 1367 cm-1 upon deuteration (for 2) [ν(Ni-H)/ν(Ni-D) ≈ 1.43, 

calcd: 1.414] and 1337 cm-1 (for 3) [ν(Ni-H)/ν(Ni-D) ≈ 1.38, calcd: 1.414]. In 

line with the NMR data, the observed trend for the Ni-H stretches suggests that 

the Ni-H bond strength is affected in opposing directions by the alkali metal 

cation being located along the Ni-H vector, or perpendicular to it above the Ni-H 

bond. 

 
Figure 15: (a) FT-IR spectrum of fresh crystalline material of 2; (b) Overlay of 

FT-IR spectra of 2 and 2-D in the range 2200–1000 cm-1; (c) FT-IR spectrum of 

in fresh crystalline material of 3; (d) Overlay of FT-IR spectra of 3 and 3-D in 

the range 1900–1000 cm-1. 
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To directly monitor the exchange processes and to confirm the pairwise ex-

change of both hydrides of a single molecule of 2− and 3−, the following NMR 

experiment was designed: a solution of 2 was treated with a small amount of 

HD, not sufficient for full conversion to K[L1Ni2(H)(D)] (2-HD) but adjusted to 

provide roughly equal peak intensities for the two isotopologues. The reaction 

mixture then contained 2, 2-HD, H2, and HD, all of which are detectable in the 

1H and 2H NMR (Figure 16) spectrum. The hydride resonances of 2 and 2-HD 

differ slightly (−24.16 vs −24.18 ppm at rt; −24.03 vs −24.05 at 273 K) 

(Figure 17) because of a secondary isotope effect between the two hydrides. 

Importantly, the two-dimensional 1H EXSY spectrum of the mixture (Figure 18) 

revealed correlations only between 2 and H2 as well as between 2-HD and HD, 

clearly evidencing a pairwise exchange of H2 and HD, respectively, without any 

scrambling. All possible exchange processes in this scenario are shown in the 

upper part of Figure 18. To provide mechanistic insight for the H2/D2 exchange 

process and to explain the effect of the alkali metal ions on the stability of (and 

H2 release from) the dihydride complex, 1H-1H EXSY of 2 with H2 experiments 

were performed. 

 

Figure 16: 2H NMR spectrum (77 MHz) of 2-HD under Ar atmosphere in THF at 

298 K. Residual solvents are marked with an asterisk (*). 
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Figure 17: 1H NMR spectrum (400 MHz) of a 1:2 mixture of 2 and 2-HD under 

Ar atmosphere in THF-d8 at 298 K. The two isotopologuous complexes cannot 

be distinguished by 1H NMR except for their hydride resonances (–24.16 vs –

24.18 ppm, RT). Residual solvents are marked with an asterisk (*). 

 

Figure 18: 1H-1H EXSY spectrum (400 MHz, 0.5 s mixing, 273 K) of a mixture of 

K∙2, K∙2-HD, H2 and HD in THF-d8 (bottom) and the possible exchange process-

es (top). 
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DFT Calculations. In collaboration with the group of Ricardo Mata, possible 

pathways for H2/D2 exchange were probed through DFT calculations. A scheme 

of pairwise mechanisms considered is displayed in Figure 19. For ease of dis-

cussion, we consider 2− without K+ cation as the reactant, D2 as the entering 

molecule and 2-D−+H2 as the products. The K+ or Na+ cation were removed in 

this first set of calculations to allow for more flexibility in the exchange paths. 

The first question is finding the preferred binding mode of D2 to the complex. 

Although the η2-H2 coordination is often discussed (G in Figure 19), we found 

no stable minimum for this structure. All attempts for a side-on coordination to 

the Ni centres resulted in an end-on weak coordination to the metal 

(r(H-Ni)≈2.6 Å, A in Figure 19). We carried out an extensive search of minima, 

placing the entering molecule close to the Ni centres in different orientations. 

The other minimum found was one whereby the entering D2 occupies the posi-

tion of the K+ (C in Figure 19). The latter is 11 kJ/mol less stable than the other 

minimum.  
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Figure 19: Concerted reaction pathways for H2/D2 exchange considered in this 

study. 

As shown in Figure 19, all concerted pathways for insertion of D2 starting from 

the aforementioned minima were particularly high in energy. The lowest con-

nected path for insertion was through an early H2 recombination in the pocket. 

Due to the high energies involved, we only obtained one half of the reaction 

path, which provided a lower bound for the electronic energy barrier of 

136 kJ/mol. This would be too high in energy, so we excluded the possibility of a 

concerted mechanism. Another reason for exclusion is that a symmetric path-

way would necessarily go through a double end-on H2/D2 coordination to Ni (D 

in Figure 19), which would be too unstable. 
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An alternative to the substitution mechanism would be a non-concerted path-

way, with H2 leaving the pocket and D2 coordinating afterwards at the empty NiI 

sites. This would also be consistent with the non-scrambling exchange of H2/D2. 

Two sets of constrained optimizations were performed, fixing the distance be-

tween the two hydrides in 2 and 2−. The results are shown in Figure 20. 

  

Figure 20: Potential energy surface plots for the recombination of the coordi-

nated H atoms in 2− and 2. Relaxed scans were computed along the H-H dis-

tance at the BP86-D3/def2-SVP level. The dotted vertical line represents the 

bond distance in the H2 molecule at the same level of theory (0.767 Å). The ref-

erence point is provided by the most stable geometry; in both cases a distance 

of 2.1 Å is maintained. 

In Figure 20 are shown the results at the level of theory used for the optimiza-

tions (BP86-D3/SVP), and also energies for the meta-GGA M06L functional with 

a larger basis, but using the same geometries. For each point in the curve the 

singlet, the triplet and the broken symmetry state (with the two lone electrons 

at the Ni centers) were computed. Up to 0.95 Å the pure singlet state is the most 

stable. With shorter H-H distances, the broken symmetry state is found to be 

lowest, with the triplet still lying higher above in energy. The energy order of 

the states was further confirmed with the B3LYP and PBE0 functional at 

r(H-H)=0.8 Å, providing the same qualitative picture. All results reported (in-

cluding the optimized structures) correspond to the lowest electronic state 

found at each point.  
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Both BP86 and M06L agree in that H2 recombination is favored when the K+ 

cation is not present. We start by discussing the latter curves. Estimation to the 

barrier for removal of the H2 is provided at distances slightly above the optimal 

H-H bond value. In the case of 2−, both methods agree in a barrier of about 60 

kJ/mol. Carrying out a linear interpolation of the M06-L/TZVP energy curve, 

the barrier can be approximated by the energy value at the H2 equilibrium bond 

distance, a value of 62.5 kJ/mol. The disagreement between the two functional 

is foremost in the shape of the curve. In the case of BP86, we found a shallow 

minimum, which we were able to fully optimize and characterize at 

r(H-H)=1.16 Å. This feature is not visible in the M06L curve. The electronic 

structure of this minimum is similar to the hydride complex, still keeping the 

Ni-H bonds. Due to the flatness of the potential in this region it was not possible 

to converge the transition state to the lower neighboring minimum. The impact 

of the zero-point vibrational energy correction on the energies cited above 

should be very small since the Ni-H harmonic vibrational frequency is roughly 

half of the H-H stretch frequency in the hydrogen molecule. 

In 2, the estimated activation barrier for removal of H2 would lie between 

80-105 kJ/mol (102.2 kJ/mol in the case of M06-L/TZVP). Along the relaxed 

surface scan the K+ remained relatively fixed in its position, approximately in 

plane with the leaving H2 and thereby raising the energy. It is likely that the re-

ported values correspond to an upper estimate. The cation could potentially 

change its position along the faces of the ligand rings, lowering the barrier. 

The electronic structure calculations carried out quite clearly go against any 

concerted mechanism for substrate substitution. In a first step, the hydrides 

should recombine to H2, leaving the pocket and two NiI centers with one vacant 

coordination each. The barrier for H2 formation is quite low in the absence of K+ 
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(about 60 kJ/mol), but could also be lowered if there is an exchange with the 

solvent or the cation is displaced.  

 

Figure 21: 1H NMR spectrum (400 MHz) of 3 in THF-d8 with 1 equivalent H2O 

at different reacting times. Residual solvents are marked with an asterisk (*). 

In Manz work, 2 reacts with one equivalent of H2O to generate an intermediate 

hydride-hydroxide species, K[L1(Ni-H)(Ni-OH)].[11a] The hydride and hydroxide 

resonance are formed at –26.00 ppm and –2.07 ppm in the 1H NMR spectrum, 

respectively. The new intermediate species showed a weak O-H stretching vi-

bration at 3622 cm-1 in the IR spectrum. [11a] Whereas, no similar intermediate 

was observed by NMR spectroscopy in the reaction of 3 with water (Figure 21). 

The difference suggests that the alkali metals (K+ and Na+) play an important 

role in the intermediate formation process. 
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3.3 Dissociation hydride-K+ interaction in bimetallic dinickel(II) 

complex 

 

Scheme 7: Synthetic route for 4. 

In complexes 2 and 3, the alkali metal (K+ or Na+) is closely associated with the 

two hydride ligands. In addition, it exhibit different reactivity towards water. To 

further assess the effect of the alkali metal cation (K+ or Na+) and to prepare a 

new dinuclear dinickel dihydride complex with a vacant cleft, 2 was treated 

with (18-crown-6), [2,2,2]cryptand or DB18C6 to separate the K+ cation from 

the [L1Ni2(H)2]− anion (Scheme 7). No obvious color change was associated 

with these reactions, but the ionic products become poorly soluble in THF; 

these differences in solubility suggest that the alkali metal cations remain 

closely associated with the [L1Ni2(H)2]− anion and that contact ion pairs are 

present in THF solutions of 2 and 3. Unfortunately, all crystallizing attempts for 

x-ray diffraction using [18-crown-6] or [2,2,2]cryptand failed. However, single 

crystals for x-ray diffraction using DB18C6 were obtained by layering hex-

ane/Et2O on a solution of 4 in THF at –30°C.  

In 2 and 3, the hydride ligands were located in the density difference map and 

their positions were allowed to refine freely. In 4, a fixed isotropic displacement 

parameter of 0.08 Å2 was applied to the hydride ligands. 4 crystallizes in the 

monoclinic space group C2/c. The asymmetric unit contains two crystallograph-



CHAPTER 3. MECHANISM STUDY OF H2/D2 EXCHANGE 

29 

 

ically independent molecules with crystallographically imposed C2 symmetry 

(the idealized point group of the anion is C2v); one of the two molecules is 

shown in Figure 22, selected bond lengths (Å) and angles (°) are listed in Ta-

ble 3.  

 

Figure 22: Molecular structure (50% probability thermal ellipsoids) of the an-

ion of 4 (a, only one of two independent molecules shown) and 4 (b). Most hy-

drogen atoms omitted for clarity, except for the nickel-bound hydrides. Sym-

metry transformations used to generate equivalent atoms: (') –x, y, 3/2–z. 

Table 3: Selected bond lengths (Å) and angles (°) for 4. 

Atoms Bond lengths Atoms Bond Angles 

Ni1-N3 1.873(2) N3-Ni1-N1 177.25(8) 
Ni1-N1 1.886(2) N3-Ni1-N2 96.97(7) 
Ni1-N2 1.920(2) N1-Ni1-N2 83.99(7) 

Ni2-N13 1.862(2) N13-Ni2-N11 177.22(8) 

Ni2-N11 1.879(2) N13-Ni2-N12 96.76(9) 
Ni2-N12 1.916(2) N11-Ni2-N12 83.86(9) 
Ni1∙∙∙Ni1' 4.115(7)   
Ni1–H1  1.46(3)   

 

As shown in Figure 22, The core structure of the “naked” [L1Ni2(H)2]− complex 

anion shows no significant differences compared to the neutral 2 and 3. In 4, 

the two nickel centers are coordinated in square-planar fashion, with the sum 

of angles being 359.95°. Each nickel center is held within an N, N–chelate of a β–

diketiminato arm and bears a hydride ligand. Two Ni···Ni distances in the two 
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crystallographically independent molecules are 4.115 Å and 4.064 Å, respec-

tively. The nickel-hydride ligands distances of 1.464 Å and 1.444 Å are longer 

than 2 and 3. Selected metrical parameters of the three dinuclear nickel(II) di-

hydride complexes are listed in Table 4. In fact, Ni-H bonds in the range 

1.32(2)–1.40(2) Å determined for 2 and 3 are shorter than most terminal Ni-H 

bonds reported in literature. However, all these data have to be considered with 

caution because of inherent ambiguities of H atom position derived from x-ray 

crystallography. In the absence of neutron diffraction data, NMR and IR signa-

tures (vide infra) can be considered more reliable for assessing differences 

among the Ni-H moieties in the three compounds. 

Solid structure is a diamagnetic reflecting the low-spin d8 configuration of the 

nickel(II) ions. However, VT NMR spectrum of 4 in THF-d8 shows a 1/T (curie) 

behavior from the broad peaks indicating a paramagnetic species (Figure A6). 

It indicates that 4 is highly sensitive and decayed when crystals were dried un-

der reduced pressure or kept at rt for some times. These findings will be dis-

cussed in more detail below.  

 

Figure 23: (a) FT-IR spectrum of fresh crystalline material of 4; (b) Overlay of 

FT-IR spectra of 4 and 4-D in the range 2200–1100 cm-1; 

As shown in Figure 23, after the K+ cation was dissociated by DB18C6, the Ni-H 

stretching band at 1913 cm-1 is similar to 2 and 3. The Ni-H absorption band 

shifted to 1310 cm-1 upon deuteration (for KL1Ni2(μ-H)2) [ν(Ni-H)/ν(Ni-D) ≈ 
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1.413, calcd: 1.414]. The metrical parameters of the three nickel(II) dihydride 

compounds are shown in Table 4. 

Table 4: Metrical parameters for 2, 3 and 4. 

Complex 2 3 4 

Ni···Ni 4.158/4.164 4.105 4.115/4.064 

Ni–N 1.878(2)-1.911(2) 1.866(2)-1.921(2) 1.862(2)-1.921(2) 

Ni–H 1.32(2) - 1.38(3) 1.37(2)/1.40(2) 1.44(3)/1.46(3) 

K–Cg 3.098(2) -3.239(2) - - 

M–H 2.45(3) - 2.53(3) 2.26(2)/2.50(3) - 

Na–N - 2.567(2)/2.705(2) - 

Ni∙∙∙M 3.781(5) - 3.831(5) 
2.847(8)/ 

3.008(8) 
- 

N–Ni–N 

(opposite) 

176.55(7) - 
178.66(7) 

176.93(7)/ 

178.19(7) 

177.22(8)/ 

177.25(8) 

N–Ni–H 

(opposite) 

172.5(12) - 
174.7(10) 

172.7(9)/ 

173.4(10) 

171.0(13)/ 

172.4(13) 

ν (cm-1) 

(H2/D2) a 
1961/1367 1843/1337 1907/1353 

a, Frequency of the Ni-H vibration determined by IR spectroscopy on solid sam-

ples of 2, 3 and 4. 

H2 loss from the “naked” dinuclear nickel(II) dihydride. Since the DFT cal-

culation indicates that 4 easily release the H2 from the Ni-H, we carried out 

temperature dependent magnetometric measurements for 2 and 4, respectively, 

and monitoring the headspace of crystal of 4 by GC-MS experiment. The GC-MS 

experiment indeed shows the gradual formation of H2.  
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Figure 24: (a) χmT vs. T measurement in the temperature range of 2–295 K at 

0.5 T for solid samples of 2. The solid red lines represent the best global fit with 

PI = 5.4 % (S = 1) and TIP = 60.10*10–6 cm3·mol–1; (b) χmT vs. T measurement in 

the temperature range of 2–295 K at 0.5 T for solid samples of 4 using crystal-

line material in a NMR tube with mother liquor. 

  

Figure 25: (a) χmT vs. T measurement in the temperature range of 2–295 K at 

0.5 T for solid samples of 4 of crystalline material and dried in glove box for 1 

hour. (b) χmT vs. T measurement in the temperature range of 2–295 K at 0.5 T 

for solid samples of complex 4 using crystalline material dried under vacuum 

for 15 hour. 

Magnetic susceptibility data for crystalline material of 2 collected in the tem-

perature range from 2–295 K, showed essentially diamagnetic behavior up to 

room temperature (Figure 24a). The solid red lines represent the best fit with 

PI = 5.4 % (S = 1) and TIP = 60.10×10–6 cm3·mol–1. 4 was collected on freshly 

crystalline material that was sealed with a small amount of mother liquor in an 

a b 

 

a b 
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NMR tube to prevent the loss of the solvents and/or molecular hydrogen. The 

magnetic susceptibility of this sample showed diamagnetism (Figure 24b). 

When crystals of 4 were dried in a glovebox atmosphere for 1 h (mother liquor 

evaporated without applying vacuum), however, a paramagnetic contribution 

arises that amounts to 0.32 cm3·mol−1·K (corresponding to 1.6 μB) at 295 K. 

SQUID data for a sample of crystalline 4 that has been thoroughly dried under 

vacuum for 15 h (resulting in a powder sample) shows a magnetic moment of 

0.5 cm3·mol−1·K (corresponding to 2.0 μB) at 295 K, not too far from the value 

expected for two S = 1/2 ions (2.45 μB for g = 2.0). The decrease of μB upon 

lowering the temperature (shown as χM T vs T plot in Figure 25b) indicates 

significant antiferromagnetic coupling. These experiments provide experi-

mental evidence for the idea that the dinickel(II) dihydride core 4−, in the ab-

sence of any alkali metal ion within the dihydride cleft, is prone to facile loss of 

H2 and can be viewed as a masked dinickel(I) species. The presence of K+ (or 

Na+) obviously stabilizes the dinickel(II) dihydride complex and prevents H2 

loss, in line with the DFT results. 

 

Scheme 8: Interconversion between square planar NiII and “T”-shaped NiI 

metalloradical species. 
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Figure 26: X-band EPR spectra (black line) in THF at 146 K of 5. Frequency = 

9.413 GHz, power = 10 mV. Simulations (red trace) provide (species 1, 84%) 

g1= 2.128, g2 = 2.061, g3 = 2.0225; (species 2, 16%) g1= 2.11, g2 = 2.07, g3 = 2.03; 

(species 2) 

Reductive elimination of H2 from 2− or 4− can be expected to yield a {L1NiI2} 

species. Related to the “T”-shaped NiI species [26-28], we presumed that the 

square planar geometry in d8 low spin NiII changes to the “T”-shaped of dx2-y2 

based radical in d9 NiI system. Consistent with the SQUID and GC experiments, 

the electron paramagnetic resonance (EPR) spectrum (Figure 26) of 5 (84%) 

shows three g values at frozen THF at 145 K or room temperature with ligand 

hyperfine structure resolved. It indicates that 5 is a double “T”-shaped Ni(I) 

species. The rhombic spectrum has principal g values of 2.128, 2.061 and 

2.0225 and gav = 2.071. And a second (16%) unidentified species with g values 

of 2.11, 2.07 and 2.03 was observed in the EPR spectrum. In additional, the 

x-band EPR spectroscopic data for a known “T”-shaped NiI species is g = 1.99, 

2.22 and 2.33.[28] A structure optimization of 5 at the B3LYP/def2-SVP level was 

carried out setting out from the structure of 5 without the terminal two hydride 

ligands (Figure 27).  
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Figure 27: Structure of 5 as optimized at the B3LYP/Def2-SVP level. Most 

hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Ni1-Ni2 

4.107, Ni1–N1 1.893, Ni1-N3 1.914, Ni1-N4 1.859, Ni2–N2 1.893, Ni2-N5 1.914, 

Ni2-N6 1.859, Ni1-H 2.538, Ni1-H 2.292.  

Keep a sample of 4 in a closed flask under vacuum for a week and dissolving the 

complex in THF under Ar atmosphere. Suitable crystals for x-ray diffraction 

were obtained by layering hexane/Et2O on a solution of 5 in THF at RT. Complex 

5 has better solubility than 4. As shown in Figure 28, owing the low resolution 

as well as disorder, the data of 5 only allowed us to depict a model of its struc-

ture. The distances of Ni-N3 and Ni-N5 of 1.951 Å and 1.948 Å are longer than 4 

with 1.92 Å. In the crystal structure, it clearly indicates that the two NiI atoms 

adopt “T”-shaped configuration. 

 

Figure 28: Molecular structure (30% probability thermal ellipsoids) of the an-

ion of 5 (a) and 5 (b). All hydrogen atoms omitted for clarity.  



CHAPTER 3. MECHANISM STUDY OF H2/D2 EXCHANGE 

36 

 

3.4 Kinetics of H2/D2 exchange  

NOESY is useful for determining which signals arise from protons that are close 

to each other in space even if they are not bonded. A NOESY spectrum yields 

through space correlation via spin-lattice relaxation. NOESY also detects chem-

ical and conformation exchange. It called EXSY when used for this purpose.  

When 2 was keep under H2 atmosphere or 2-D under D2 in THF-d8 or THF solu-

tion, 1H–1H/2D-2D NOESY spectra indicated that the coupling resonance be-

tween the Ni-H and H2 or Ni-D and D2 (Figure 29 and Figure 31).  

 

Figure 29: 1H-1H EXSY spectrum (400 MHz, 0.5 s mixing) of 2 (0.4 M) under H2 

atmosphere in THF-d8 at 253 K. Cross peaks between the H2 and hydride sig-

nals increase with increasing temperature and are therefore due to the ex-

change. 
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Table 5: Rate constants k (s-1) for the (Ni-H)2→H2 exchange in 2 (0.1, 0.2, 0.3 

and 0.4 M) as function of temperatures. 

T/K 
k /s-1 

0.1 M 0.2 M 0.3 M 0.4 M 

278 0.264 0.222 0.221 0.16 

273 0.154 0.13 0.131 0.112 

268 0.081 0.07 0.074 0.068 

263 0.045 0.035 0.039 0.038 

258 0.02 0.018 0.018 0.02 

253 0.012 0.008 0.009 0.008 

 

Figure 30: Eyring plots (a) and Arrhenius plots (b) for the (Ni-H)2 → H2 ex-

change in 2 (0.1, 0.2, 0.3 and 0.4 M). Straight lines were separately fitted for the 

temperature regimes (average) at 283–308 K. 

1H-1H EXSY spectra of mixtures containing 2 and H2, recorded in the tempera-

ture range from 253 to 278 K (in steps of 5 K), showed exchange between H2 

and the Ni-bound hydrides. Rate constants for the exchange (Table 5), extract-

ed from the EXSY spectra, were used to construct Eyring plots and Arrhenius 

plots (Figure 30) from which activation parameters could be derived. While a 

full EXSYCALC analysis was hampered by partial peak overlap that introduced 

large errors, it was possible to use two EXSY peaks to obtain pseudo-first order 

rate constants for the transition [L1(Ni-H)2]− → H2 in the initial build up regime 

(kexmix < 0.2), which is in the temperature range from 253 to 278 K (spectra 
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recorded in steps of 5 K). Samples with different concentrations of 2 yielded 

essentially the same pseudo-first-order rate constants (Figure 30a), in agree-

ment with the reaction being first order in [L1(Ni-H)2]−. Arrhenius plotting 

(Figure 30b) gives an apparent activation energy Ea = (74.1  0.4) kJ mol‒1 for 2, 

attributed to the rate determining loss of H2 from the dinickel(II) dihydride core 

(Eyring analysis gives ΔHǂ = (72.1 ± 1.5) kJ mol‒1). A similar hydride exchange 

between 2-D and D2 was observed in 2H-2H EXSY spctrum (Figure 31) but not 

quantitatively analyzed due to the much lower sensitivity of 2H. 

 

Figure 31: 2H-2H EXSY spectrum (77 MHz, 0.1 s mixing) of 2-D under D2 at-

mosphere in THF at 298 K (diagonal peak is not properly phased). A weak ex-

change peaks appears in the upper left corner between the D2 (4.5 ppm) and 

hydride (-24 ppm) signals. Residual solvents are marked with an asterisk (*). 

1H-1H EXSY spectra of mixtures containing 3 and H2, recorded in the tempera-

ture range from 253 to 298 K (every 5 K recorded), showed exchange between 

H2 and the Ni-bound hydrides (Table 6). 
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Table 6: Rate constants k (s
-1

) for the (Ni-H)2→H2 exchange in 3 as function of 

temperatures. 

T/K k / s-1 

278 0.617 

273 

268 

0.465 

0.368 

263 0.271 

258 0.167 

253 0.079 

 

Figure 32: Arrhenius plots (a) and Eyring plots (b) for the (Ni-H)2→H2 ex-

change in 3. Straight lines were separately fitted for the 253-278 K. 

From the analysis of the 1H-1H NOESY spectra of 3 under H2 atmosphere, 

first-order rate constants k were obtained for each temperature (278 K to 253 K) 

and used to derive the activation parameters ΔH‡= (39 ± 3) kJ·mol-1 from an 

Eyring plot (Figure 32a, Table 6). Arrhenius plotting (Figure 32b) gives an 

apparent activation energy Ea = (39.2  0.6) kJ mol‒1. 
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3.5 Summary 

 

Scheme 9: Synthetic routes for the dinuclear nickel(II) hydride 2, 3, 4 and double “T”-shaped 5. 
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In summary, a new bimetallic dinuclear nickel(II) hydride 3 was synthesized 

from 1 with NaHBEt3. The reversible H/D exchanges of M[L1Ni2(μ-H)2] (M= K 

and Na) with D2 are associated to one step substitution of both Ni-H hydrogen 

atoms with the interacting substrate (D2). Based on density functional theory 

(DFT) calculations which confirm the experimental results, a mechanistic picture 

of the exchange process was established. During all experiments no signs of an 

incipient HD formation was detected, which is in accordance with the 

non-scrambling exchange process. Meanwhile, a new double “T”-shaped NiI spe-

cies (5) was obtained from complex 4 of solid state loss H2 and characterized by 

x-ray diffraction. Therefore, the [L1NiII2(H)2]–
 complex (2

−
) can be viewed as a 

masked form of a reactive, antiferromagnetically coupled [L1NiI2]–
 species. The three 

bimetallic dinickel dihydride complexes increasingly recognized as a mean of 

avoiding unstable low-valent metal species or thermodynamically unfavorable 

one-electron reduced intermediates during the reductive activation of small 

molecules. The present bimetallic system based on the pyrazolate-bridged 

bis(nacnac) ligand appears particularly well suited for exploiting this concept. 

Next stage is studying the activation and transformation of a range of rather inert 

substrates using the new dinickel dihydride complex.  
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Chapter 4 Dioxygen binding to a bimetallic dinickel(II) 

dihydride complex and redox interconversion of the 

μ-1,2-peroxo and superoxo intermediates 

Abstract Ni-O2 intermediates have gained significant attention in the last few years with the 

identification of some new structure types. Lewis acid NiII complexes have been proven to 

react with dioxygen to give a very unstable organoperoxo complex, as proposed for the 

quercetin 2,4-dioxygenase enzymatic system. We herein report a new μ-1,2-peroxo dinick-

el(II) motif (6) which was obtained from a reaction of 2 with dioxygen. Excess dioxygen re-

action with peroxo complex (6) generated a new μ-1,2-superoxo dinickel(II) compound (9). 

The thermal stable peroxo and superoxo bimetallic dinickel(II) complexes exhibit a μ-1,2- 

bonding geometry and have been investigated by UV/vis-, rRaman-, IR-, EPR spectroscopies, 

ESI mass spectrometry, SQUID measurement and DFT calculation. Eventually, interconver-

sion of the μ-1,2-peroxo (6) and the μ-1,2-superoxo (9) via an excess of dioxygen or ele-

mental potassium, respectively, has been accomplished. 
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4.1 Introduction 

In principle, superoxo and peroxo nickel intermediates are not formed directly 

from the reaction of NiII complexes with O2, but require prior reduction to NiI.[31] 

Even though, NiII species which show reactivity towards O2 are known in litera-

ture, the nature of the initial and final products are still very ambiguous. [32] Re-

cently, two outstanding examples have published from NiII species with oxygen 

directly and the final product was identified. [33,34] 

 

Figure 33: The reported superoxo ligand binding to the nickel metal. [35-38] 

Few superoxo nickel compounds were synthesized from dioxygen and NiI pre-

cursors (Figure 33). Ni–O2 adducts (Figure 33, XI and XII) reported by Riordan 

group, resulted from one–electron reduction of O2 by the respective NiI precur-

sors at low temperature. These superoxo nickel complexes only exist at low tem-

perature; they could only be characterized by DFT calculations and spectrosco-

pies. [35] The β-diketiminato superoxo nickel adduct (Figure 33, XIII) has been 

easily isolated by Yao and Driess et.al. in 2008, and its characterized by x–ray 

crystallography for the first time, and so far, the only crystallographically. The O–

O bond length of 1.347(2) Å suggests that superoxo character and O–O stretching 

in IR spectrum is 971 cm-1. [36] In 2005, Rettenmeier and Gade et.al. obtained a 

new superoxo species (Figure 33, XIV) by exposing a chiral pincer ligand nickel(I) 

precursor to dioxygen. Unfortunately, this compound is only stable at low tem-
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perature again. [37] Except for these superoxo compounds derived from oxygen 

and NiI precursor, some nickel superoxo complexes also can be obtained from a 

NiII precursor targeted with H2O2. [38]  

 

Figure 34: The reported peroxo ligand binding to the nickel. [39-42] 

Furthermore, there are some other nickel peroxo complexes reported 

(Figure 34). The β–diketiminato superoxo nickel adduct (Figure 34, XVI) can be 

further converted into a peroxo ligand O22- by one electron reduction from ele-

mentary potassium at RT in THF solution by Yao and Driess et.al. in 2009. [39] The 

O–O distance of 1.468(2) Å is typically for metal peroxo compounds (1.4–

1.5 Å). [40] The crystal structure showed uncommon [Ni(μ-η2:η2-O2)K] core in 

which the K+ atom was weakly coordinated to the peroxo ligand (average K–O 

distance of 2.7 Å). In addition, Riordan et.al (Figure 34, XV)[41] and Gade et.al 

(Figure 34, XVII)[37] observed an interesting pattern in these superoxo and 

peroxo nickel(II) interconversion. The nickel(I) fragment reacts with oxygen 

most likely via a superoxo intermediate to give the only peroxo–bridged nickel 

complex characterized to data. In addition, a high valent NiIII peroxo species 

(Figure 34, XVIII) was observed by Nam et.al. in 2009 using 

[NiII(12-TMC)(O2)] (12-TMC = 

1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) with five equivalents of 

H2O2 in the presence of trimethylamine in CH3CN at 0℃, which was characterized 

by x-ray crystallography. [42] 
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Figure 35: The reported peroxo ligand binding to the nickel. [47] 

Transition-metal hydroperoxo (Cu and Fe) complexes play an important role in 

the enzymatic activation and the transport of dioxygen[43] as well as reactive in-

termediates in catalytic oxygenations. [44] Although great efforts have been made 

to synthesize such metal complexes, only a limited of them have been structurally 

and spectroscopically characterized. [45] For over a decade, nickel hydroperoxo 

species have been considered to be a deactivated form of [NiFe] hydrogenase 

generated by oxygen. [46] Until now, only one example about nickel(II) hydroper-

oxo was reported by Gade in 2015 (Figure 35, XIX). [47] Selected spectroscopic 

features of these superoxo, peroxo and hydroperoxo with nickel metal are listed 

in Table 7.  
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Table 7: Selected spectroscopic features of synthetic mononuclear superoxo, peroxo and hydroperoxo species. 

 S 
Ni-O (Å) 

[a]
 

r(O-O) 

[Å]
 [a]

 

ν(Ni-O) 

[cm
-1

] 

(△[
18

O] 

[cm
-1

] 
[c]

 

ν(O-O) 

[cm
-1

] 

(△[
18

O] 

[cm
-1

] 
[c]

 

λmax [nm] 

(ε [M
-1

cm
-1

]) 
[d]

 
g values 

[e]
 Ref 

Superoxonickel 

[NiII(O2)(PhTtAd)] 1/2 1.85b - - - 

310(5900), 
386(2900), 

450(2500), 
845(350) 

2.24, 2.19, 2.01 35a 

[NiII(O2)(14-tmc)] 1/2 1.98 - 437(–21) 1131(–64) 
345(5900), 

328(sh), 
2.29, 2.21, 2.09 35b 

[NiII(O2)(13-tmc)] 1/2 1.91 - - 1130(–60) 

339(800), 
845(130), 

684(60) 

2.25, 2.21, 2.06 38b 

[NiII(O2)(Nacnac)] 1/2 
1.817(2) 
1.840(2) 

1.347(2) - 971(–52) 

360(1500), 
845(170), 

980(430) 

2.14, 2.12, 2.07 36 

Peroxonickel 

[Ni
II
(O2)(

t
BuNC)2] 0 

1.902(7) 

1.808(8) 
1.45(1) - 898 (–50) 380(316), 600(38) - 48 

[(Nacnac)Ni
II
(O2)K(solv)] 0 

1.820(2) 

1.820(2) 
1.468(2) - 829 (–47) - - 39 
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[Ni
III

(O2)(12-tmc)]
+
 1/2 

1.884(3) 

1.894(3) 
1.386(4) - 1002 (–57) 

350(300), 400(280) 

650(100), 900(80) 
2.2, 2.17, 2.06 42 

[Ni
III(

O2)(13-tmc)]
+
 1/2 

1.897(3) 

1.898(3) 
1383(4) - 1008 (–58) 

400(150), 700(80) 

900(50) 
2.19, 2.07 38b 

Hydroperoxonickel 

[Ni
II
(OOH)(iso-pmbox)] 0 1.846(2) 1.492(2) - - - - 47 

[a] Unless otherwise stated, bond lengths are determined by x-ray diffraction. [b] Bond length determined by XAS. [c] Frequency of the Ni-O 

and O-O vibrations and the corresponding shifts upon labeling with 
18

O determined by Raman or IR spectroscopy. [d] Uv-vis absorption features 

determined in solution. [e] g values determined by EPR spectroscopy. 
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4.2 Synthesis of a μ-1,2-peroxo bridged dinickel(II) complex 

 

Scheme 10: Synthetic route for 6  

As mentioned in chapter 3, the [L1NiII2(H2)]– complex can be viewed as a masked 

form a reactive, antiferromagnetically coupled [L1NiI2]– species. In this concept, it 

has been exploited for the reactivity of [L1NiII2(H2)]– toward dioxygen.  

Treatment of a THF solution of 2 with one equivalent dioxygen (prior dried over 

concentrated H2SO4) (Scheme 10) results in a rapid color change from orange to 

dark red and formation of a new species identified by 1H NMR spectroscopy 

(Figure 36). A new resonance corresponding with H2 is also observed in in situ 

NMR spectra of reaction mixtures, implying H2 upon reaction of 2 with dioxygen. 

When 2-D was treated with dioxygen and the reaction monitored by 2H NMR 

spectroscopy, the formation of D2 was clearly detected (Figure 37).  
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Figure 36: 1H NMR spectrum (400 MHz) of 6 in THF-d8. Residual solvents are 

marked with an asterisk (*). 

 

Figure 37: 2H NMR (77 MHz) spectrum of excess O2 introduced into 2-D. Resid-

ual solvents are marked with an asterisk (*). 

This formation of 6 is supported by x-ray diffraction and UV-Vis, FT-IR, Raman 

spectroscopies and ESI-MS spectrometry. Suitable crystals for x-ray diffraction 

were obtained by layering hexane on a solution of 6 in THF at −30°C. 6 crystaliz-

es in the triclinic space group P-1. There are two crystallographically distinct 

molecules per asymmetric unit: one of the two molecules is 6, the other one is 

hydroxide nickel complex (11). The molecular structure of 6 is shown in 

Figure 38 and selected bond lengths (Å) and angles (°) are listed in Table 8. As 

shown in Figure 38, a six-membered {N2Ni2O2} twisted ring was formed by the 

nickel atoms, the nitrogen atoms from pyrazolate ligand and the oxygen atom 

from peroxo ligand. The two nickel(II) ions are hosted in the two {N3}-tridentate 
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binding sites of the trianionic ligand scaffold, bridged by the pyrazolate and a 

peroxo ligand. The distance of 3.880(1) Å between the two nickel(II) ions of 6 is 

shorter than 2. The Ni–N(β-diketinato) distances are in the range of 1.904(2)–

1.911(2) Å, which is longer than the distances of Ni-N(Pz) (1.835(2) and 

1.854(2) Å), but similar to other mononuclear nickel peroxo complexes coordi-

nating nacnac ligand (Figure 34, XVI). The Ni-O-O-Ni torsion angle around the 

O–O axis is 81.41(28)°. The K+ ion interacts with two aryl rings of the DIPP sub-

stitutes via cation-π (2.840(1) and 2.830(1) Å) and coordinates to both peroxo 

oxygen atom (O1 and O2) with 2.515(2) Å and 2.545(2) Å, respectively. The O-O 

separation of 1.482(2) Å is analogous to other metal peroxo complexes (1.4–

1.5 Å). [40] 

 
Figure 38: Molecular structure (50% probability thermal ellipsoids) of 6 (only 

one of two molecules shown). All hydrogen atoms omitted for clarity. 

Table 8: Selected bond lengths (Å) and angle (°) for 6. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.854(3) N1-Ni1-O1 91.04(13) 
Ni1-O1 1.861(3) N1-Ni1-N3 82.48(14) 
Ni1-N3 1.909(3) O1-Ni1-N3 170.45(13) 
Ni1-N4 1.922(3) N1-Ni1-N4 175.98(14) 
Ni2-N2 1.835(3) O1-Ni1-N4 92.93(13) 
Ni2-O2 1.861(3) N3-Ni1-N4 93.67(13) 
Ni2-N6 1.904(3) N2-Ni2-O2 90.45(13) 
Ni2-N5 1.911(3) N2-Ni2-N6 176.13(14) 

O1-O2 1.482(2) O2-Ni2-N6 92.99(13) 
K1-O1 2.545(2) N2-Ni2-N5 82.89(14) 



CHAPTER 4. DIOXYGEN ACTIVATION 

51 

 

K1-O2 2.515(4) O2-Ni2-N5 169.57(14) 
Ni1···Ni2 3.880(8) N6-Ni2-N5 93.45(14) 
K-Cg (1) 2.840(1) O2-O1-Ni1 118.2(2) 
K-Cg (2) 2.830(1) O1-O2-Ni2 118.0(2) 

  Ni1-O1-O2-Ni2 81.41(28) 

Cg(1) = centroid of the ring carbon atoms C10, C11, C12, C13, C15, C15 (left side); 

Cg(2) = centroid of the ring carbon atoms C28, C29, C30, C31, C32, C33 (right 

side). 

6 has been characterized by positive ion ESI-MS spectrometry in THF/MeCN 

mixture solution as well. The ESI-MS (+) of 6 exhibits a prominent signal at m/z = 

793.34, (Figure 40), whose mass and isotope distribution pattern corresponds 

to [6+H]+ (calcd m/z = 793.26). Two peaks for labelling peroxo compounds were 

observed which shifted to m/z = 819.24 (6+Na)+ and 835.19 (6+K)+ when 6 was 

prepared with isotopically enriched 18O2 (Figure 40).  

 

Figure 39: ESI-MS(+) of 6 in THF/CH3CN. The inset shows the experimental 

(upper) and simulated (lower) isotopic distribution pattern for [6+H]+. 
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Figure 40: Experimental (16O2 and 18O2) (upper) and simulated (16O2) (lower) 

isotopic distribution pattern for [6+H]+ (a) and [6+Na]+ (b). 

 

Figure 41: (a) Comparison of the IR spectra of crystalline material of 6 prepared 

using 16O2 (black) and 18O2 (red) in the range of 450 cm-1 to 1000 cm-1; (b) Com-

parison of the rRaman spectra of crystalline material of 6: prepared using 16O2 

(black) and 18O2 (red) in the range of 400 cm-1 to 1100 cm-1.  

Resonance Raman data of crystalline material of 6-16O2 revealed a signal at 

720 cm−1, which shift to 680 cm-1 upon 18O2 labelled (Δ16O2−18O2 = 40 cm−1, Fig-

ure 41b). However, comparison of IR spectra of 6 prepared using 16O2 and 18O2 

between 450 and 1000 cm-1, no obvious difference was observed. In view of the 

data from Raman and literature, I assigned the 16O-16O stretching vibration mode 

in 6 of 757 cm-1 (ν(18O−18O) = 714 cm-1) (Δ16O2−18O2 = 43 cm−1, Figure 41a).  
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Figure 42: χmT vs. T measurement in the temperature range of 2–295 K at 0.5 T 

for solid samples of 6. The solid red lines represent the best global fit with PI = 

2.8 % (S = 1) and TIP = 430*10–6 cm3·mol–1. 

Magnetic susceptibility data for 6 collected in the temperature range from 2–

295 K in crystalline material, show essentially diamagnetic behavior up to room 

temperature (Figure 42). 

 Reactivity of 6 towards Na+ and PPh3 

Cation Exchange. No color change was observed in the reaction of 6 with excess 

NaBArF4 in THF-d8 for few days (Scheme 11). However, the 1H NMR spectrum 

showed the resonance for isopropyl and CH3 group in the DIPP substituents 

changed (Figure 43). It is assigned that a new species was formed. Nevertheless, 

suitable crystals for x-ray diffraction were obtained from hexane layer into THF –

30°C in two days. Owing the low resolution as well as disorder, the data of 7 only 

allowed us to depict a model of its structure similar to 6. In the x-ray crystallog-

raphy, the Na+ cation is fixed by the two DIPP substituents.  
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Scheme 11: Cation exchange between the K+ and Na+. 

 

Figure 43: Comparison the 1H NMR spectra of 6 and 7 in THF-d8. Residual sol-

vents are marked with an asterisk (*). 

Reaction with PPh3. As expected, 6 is a gentle oxygenation reagent as shown by 

its reaction with PPh3 to afford PPh3=O and an unidentified dinickel species 

(Scheme 12).  

Time depending 1H (Figure 44) and 31P NMR (Figure 45) spectra demonstrate 

the slow process of conversion from 6 to a new nickel species. After keeping the 

sample in THF-d8 for two days, characteristic proton resonance of pyrazole of 6 

decreased in the 1H NMR spectrum (Figure 44). Eventually, 6 was completely 

consumed after few days. In the 31P NMR, a new peak at 23.51 ppm for PPh3=O [49] 

was observed in one hour and gradually increase in the next two days 

(Figure 45). Same 1H NMR spectrum of the unidentified nickel species was ob-

served from 2 with NMe3→O also. Related to literature,[36] I presumed that the 

unidentified new species is a dinickel μ-oxo complex. Recently, the unique 
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NiII(μ-O)NiII core characterized by x-ray diffraction was reported by Xue and 

co-worker.[50] This research project in our group is still going on.  

 

Scheme 12: Generate new dinuclear nickel(II) species from 2 or 6. 

  

Figure 44: Slow transformation of 6 to KL1Ni2(μ-O) in the presence of PPh3 at 

room temperature in THF-d8 demonstrated by stacked 1H NMR spectra 

(400 MHz). Residual solvents are marked with an asterisk (*). 
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Figure 45: Time depending consuming of PPh3 with 6 at the room temperature 

in THF-d8 to new species process by stacked 31P NMR spectra (160 MHz). 

  



CHAPTER 4. DIOXYGEN ACTIVATION 

57 

 

4.3 Dissociation the peroxo-K+ interaction in bimetallic dinick-

el(II) complex 

 

Scheme 13: Synthetic route for 8.  

In the solid state of 6, the K+ cation has interaction with the peroxo ligand. To 

further assess the electronic structure of peroxo without the effect of the alkali 

metal cations, 6 was treated with (18-crown-6), [2,2,2]cryptand or DB18C6 to 

separate the K+ cation from the [L1Ni2(O2)]− complex anion. No obvious color 

change was associated with these reactions, but the ionic products become 

poorly soluble in THF (Scheme 13); these differences in solubility suggest that 

the K+ cation remain closely associated with the [L1Ni2(O2)]− anion and that con-

tact ion pairs are present in THF solutions of 8. Unfortunately, all crystallizing 

attempts for x-ray diffraction using (18-crown-6) and [2,2,2]cryptand failed. 

Suitable crystals for x-ray diffraction using DB18C6 were obtained by layering 

mixture solvent Et2O/Hexane on a solution of 8 in THF at −300C.  

It became obvious that, similar to the 6, the product is composed of the ligand–

nickel unit, binding a peroxo ligand entity. In 8, the potassium is situated in the 

DB18C6 ligand and coordinated by two more THF ligands. The core structure of 

the “naked” complex anion is showed in Figure 46 and selected bond lengths (Å) 

and angles (°) are listed in Table 9. The distance of Ni···Ni and peroxo ligand of 

3.880(7) Å and 1.465(2) Å, respectively, are shorter than 6. And the Ni-O-O-Ni 
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torsion angle around the O–O axis is defined as 89.92(1)°, which is close to a 

right angle (90°).  

 

Figure 46: Molecular structure (50% probability thermal ellipsoids) of the anion 

of 8 (a) and 8 (b). Most hydrogen atoms omitted for clarity. Symmetry transfor-

mations used to generate equivalent atoms: (') x, 3/2-y, 1-z. 

Table 9: Selected bond lengths (Å) and angles (°) for 8. 

Atoms Bond lengths Atoms Bond angles 

Ni1-O1 1.834(2) O1-Ni1-N1 91.08(8) 
Ni1-N1 1.843(2) O1-Ni1-N3 90.90(8) 
Ni1-N3 1.894(2) N1-Ni1-N3 175.89(9) 
Ni1-N2 1.906(2) O1-Ni1-N2 172.80(8) 
O1-O1’ 1.465(2) N1-Ni1-N2 82.16(8) 

Ni1···Ni1’ 3.791(7) N3-Ni1-N2 95.69(8) 
  O1'-O1-Ni1 113.81(12) 
  Ni1-O1-O1’-Ni1’ 89.92(1) 

 

8 is a diamagnetic compound and should lead to a rise of sharp signals in the 1H 

and 13C NMR spectra in the common chemical shift range at RT. However, at RT 

(Figure 47) or even at low temperature (Figure A11), the ligand system of 8 has 

broad peaks in the 1H NMR spectrum. The resonance associated to the isopropyl 

CH function was overlaid by the solvent (THF-d8), but was distinguished by 

means of a 1H-1H COSY experiment. (Figure A14)  
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Figure 47: 1H NMR spectrum of 8 in THF-d8 (400 MHz) at RT. Residual solvents 

are marked with an asterisk (*). 

 

Figure 48: (a) UV-Vis spectra of 2, 6 and 8; (b) Variable temperatures (293 

K-193 K) UV-Vis spectra in THF of 8. 

A new absorption band in the UV-Vis spectrum (Figure 48a) at 512 nm (ε ≈ 240 

M-1·cm-1) in 6 and 518 nm (ε ≈ 320 M-1·cm-1) in 8 grew up after insert the dioxy-

gen into 2 or 4, which is attributed to the O22-→Ni(II) charge transfer (CT) transi-

tions. A similar band was reported in the complexes XVI and XVIII (Figure 34). 

The band at 380 nm (ε ≈ 700 M-1·cm-1) and a shoulder around 410 nm (ε ≈ 530 

M-1·cm-1) in 8 were assigned to the ligand π→π* transitions. With decreasing 

temperature (Figure 48b), the wavelength at 518 nm increased, which suggested 

the change in torsion angle (Ni-OO-Ni) and molecule orbital overlap of nickel and 

oxygen. 
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Figure 49: (a) IR spectrum of 8-16O2; (b) IR spectrum of 8-18O2; (c) Comparison 

of the IR spectra of 8: Without (black) and after 18O labelling (red) in the range of 

1000 cm -1 to 600 cm-1. (d) Comparison of the rRaman spectra of 8 (Normalized): 

Without (black) and after 18O labelling (red) in the range of 400 cm -1 to 

1000 cm-1. 

The resonance Raman vibration of O-O stretching was observed at 755 cm-1 

(ν(18O-18O) = 715 cm-1) (Δ16O2−16O2 = 40 cm−1, Figure 49d), which is blue-shifted 

compared to 6 with O-O stretching vibration at 720 cm-1. The O-O stretching vi-

bration in 8 appears at 780 cm-1 in IR spectrum (ν(18O-18O = 728 cm-1) 

(Δ16O2−18O2 = 52 cm−1, Figure 49c). The differences of 6 and 8 in IR and Raman 

spectra indicate that the peroxo ligand acts as a weaker electron acceptor with-

out potassium ion interaction. The stronger σ donor interaction of the bridging 

peroxo removes more electron density from the antibonding O22- π* orbital, re-

sulting in a stronger O-O bond. Interestingly, the observed O–O stretching fre-

quency of 6 and 8 are significantly lower than that other reported “side–on” 

Ni-peroxo compounds (Table 7). [39, 42] Nevertheless, in comparison with the 

previously reported “end-on” bridging dinickel peroxo complexes XV[41] and 
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XVII[47], the O-O resonance Raman vibrational bands for 6 and 8 were found at 

similar wave-numbers. 

The electronic structure of 8 is supported by the results of DFT studies 

(Figure 50; B3LYP hybrid functional, def2-tzvp and def2tzvp/j basis sets). The 

large Ni-O-O-Ni torsion angle and O-O distance in 6 and 8 are 81.41° and 89.91°, 

1.482 Å and 1.468 Å, respectively. Whereas in the DFT calculation, the torsion 

angle of Ni-O-O-Ni is 83.7° and O-O bond distance is determined as 1.395 Å 

(Table 10). A possible explanation for these differences is because of the K+ cat-

ion position in the complex. The calculations of IR spectrum for O-O stretching 

frequency in DFT are much longer than the experimental data of 6 and 8 

(Table 11). The reason of the difference is stay ambiguous.  

 

Figure 50: Calculated of molecular structure of the anion of 8. 
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Figure 51: Calculated IR spectrum of the anion of 8. 

Table 10: Selected distances (Å) and angles (°) of the anion for 8. 

 d(O-O) /Å d(Ni···Ni) /Å φ(Ni-O-O-Ni) /° 

EXP (6) 1.482 3.880 81.41 

EXP (8) 1.468 3.791 89.91 

DFT 1.395 3.836 83.7 

Table 11: ν(O···O) (IR) of the anion for 8. 

 ν(16O-16O) /cm-1 ν(18O-18O) /cm-1 Δν/cm 

EXP (6) 757 714 43 

EXP (8) 780 728 52 

DFT 857 810 48 
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4.4 Synthesis of an μ-1,2-superoxo bridged dinuclear nickel(II) 

complex  

During the synthesis of 6, a paramagnetic shift was observed in the 1H NMR 

spectrum when 2 react with excess oxygen. To understand and identify the par-

amagnetic product, UV-Vis spectroscopy was employed to distinguish the new 

species.  

 

Figure 52: (a): VT UV-Vis spectra changes upon cooling from 293 K to 183 K in 

THF solution. (b) Plots of absorption at different temperatures.  

The electronic spectra of 9 displays features at 312 (ε ≈ 650 M-1·cm-1) and 364 (ε 

≈ 880 M-1·cm-1) nm, which are assigned ligand π→π* transfer. However, three 

weak bands at 461 (ε ≈ 200 M-1·cm-1) and 560 (ε ≈ 130 M-1·cm-1) nm as well as 

720 (ε ≈ 20 M-1·cm-1) nm are similar to that of complex XIII (Figure 33). The 

most likely explanation for the obtained UV-Vis spectrum is the formation of a 

superoxo dinickel complex while 2 reacts with excess dioxygen.  
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Scheme 14: Synthetic route for 9. 

Suitable crystals for x-ray diffraction were obtained by layering hexane on a solu-

tion of 9 in THF at –30°C. The molecular structure of 9 is shown in Figure 53 and 

selected bond lengths (Å) and angles (°) are listed in Table 12. 9 crystallizes in 

the monoclinic space group P21/c. As shown in Figure 53, an almost planar 

six-membered {N2Ni2O2} ring was formed by the two-nickel atoms, the nitrogen 

atoms from pyrazolate ligand and the oxygen atom from superoxo ligand. The 

two nickel(II) ions are hosted in the two {N3}-tridentate binding sites of the tri-

anionic ligand scaffold, bridged by the pyrazolate and a peroxo ligand. The two 

nickel(II) ions distance of 3.810(5) Å in 9 is similar to 8 of 3.791(5) Å, which are 

all shorter than 6 of 3.880(8) Å. The Ni-O-O-Ni torsion angle around the O–O axis 

is defined as 22.71(32)°. The remarkable short O–O bond length of 1.326(2) Å, 

demonstrates superoxo character. In contrast, peroxo ligands have O–O ligands 

bond lengths longer than 1.40 Å.  

The superoxo character of 9 was confirmed by spectroscopies measurements and 

DFT calculation. Resonance Raman data of crystalline material of complex 9-16O2 

revealed a signal at 1007 cm−1, which shift to 951 cm-1 upon 18O2 labelled. 

(Δ16O2−18O2 = 56 cm−1, Figure 54b). The superoxo nature of 9 is also consistent 

with the 16O-16O stretching vibration mode of 982 cm-1 (ν(18O-18O)=934 cm-1).  
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Figure 53: Molecular structure (50% probability thermal ellipsoids) of 9. All hy-

drogen atoms omitted for clarity.  

Table 12: Selected bond lengths (Å) and angles (°) for 9. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.832(2) N1-Ni1-O1 94.65(7) 
Ni1-O1 1.834(2) N1-Ni1-N3 83.43(7) 
Ni1-N3 1.881(2) O1-Ni1-N3 175.16(8) 
Ni1-N4 1.901(2) N1-Ni1-N4 175.88(8) 

Ni2-O2 1.828(2) O1-Ni1-N4 87.95(8) 
Ni2-N2 1.837(2) N3-Ni1-N4 94.22(7) 
Ni2-N5 1.884(2) O2-Ni2-N2 94.99(7) 
Ni2-N6 1.907(2) O2-Ni2-N5 175.87(8) 
O1-O2 1.326(2) N2-Ni2-N5 82.92(7) 

Ni1···Ni2 3.810(5) O2-Ni2-N6 87.36(7) 
  N2-Ni2-N6 177.57(7) 
  N5-Ni2-N6 94.78(7) 
  O2-O1-Ni1 132.78(14) 
  O1-O2-Ni2 131.01(14) 

  Ni1-O1-O2-Ni2 22.71(32) 
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Figure 54: (a) Comparison of the IR spectra of crystalline material of 9 prepared 

using 16O2 (black) and 18O2 (red) in the range of 500 cm-1 to 1500 cm-1; (b) Com-

parison of the Raman spectra of crystalline material of 9: prepared using 16O2 

(black) and 18O2 (red) in the range of 800 cm-1 to 1150 cm-1. 

9 has been characterized by positive ion ESI-MS spectrometry in THF/CH3CN 

solution as well. The ESI-MS (+) of 9 shows three dominating peaks for the ions, 

deriving from 9 together with different cation (Figure 55) (m/z = 792.4 for 

[9+K]+, 776.4 for [9+Na]+ and 754.3 for [9+H]+). When isotopically labelled 9 is 

prepared, the mass peak corresponding to 9 shifted to m/z = 796.4 (Figure 56b).  



CHAPTER 4. DIOXYGEN ACTIVATION 

67 

 

 

Figure 55: ESI-MS (positive) of 9 in THF/CH3CN. The inset shows the experi-

mental (upper) and simulated (lower) isotopic distribution pattern for [9+K]+. 

 

Figure 56: Experimental (16O2 and 18O2) (upper) and simulated (16O2) (lower) 

isotopic distribution pattern for and [9+Na]+ (a and b). 
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Figure 57: (a) X-band EPR spectra (black line) of 9 in THF at 145 K. Frequency = 

9.41 GHz, power = 15 mV. Simulations (red trace) provide gav = 2.07; (b) χmT vs. 

T measurement in the temperature range of 2–295 K at 0.5 T for solid samples of 

superoxo. The solid red lines represent the best global fit for data sets with S 

= 1/2 and g = 2.10. The decrease of χmT below 20 K is due to the combined effect 

of field saturation and weak intermolecular interaction according to a Weiss 

temperature of about Θ = –1.7 K. 

The X-band EPR measurement in a frozen THF at 154 K of 9 in crystalline mate-

rial reveals a paramagnetic ground state with spin of S =1/2 (Figure 57a). The 

rhombic spectrum has principal g values of 2.02, 2.06 and 2.12, and the average g 

= 2.07. Meanwhile, the second species (6% amount) of paramagnetic substance 

was observed in the EPR spectrum and g value is at 2.07, which is similar to the 

KO2 g value at 160 K in literature. [51] This first species average g value is in 

agreement with the effective magnetic moment observed for a solid sample in the 

temperature range 5–300 K (0.41 cm3·mol–1·K, corresponding to μeff = 1.81 μB 

with gav = 2.100. Figure 57b). The anisotropic g values of the first species are 

quite closely to complex VIII with g = [2.138, 2.116 and 2.067]. Therefore, we 

assume that the unpaired electron is mostly located on the superoxo ligand.  

S = 1/2 

g = 2.097 
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Figure 58: Cyclic voltammogram of 9 in THF 0.1 M Bu4NPF6 as an electrolyte at a 

scan rate of 50, 100, 200, 400 and 800 mV·s -1 vs. Fc/Fc+. 

Cyclic voltammetry (CV) of 9 in a 0.1 M solution of NBu4PF6 in THF at RT showed 

a reversible redox wave of scan of 100 mV/s-1 at E1/2 = –1.22 V (vs Fc/Fc+), as 

well as an irreversible oxidation at higher potential (around +280 mV) 

(Figure 58). It indicates that 9 may be reduced by one electron to the peroxo 

dinickel complex. The similar behavior was observed in complex XIII. [39] Reac-

tion of 9 with elemental potassium results in a rapid color change from brown to 

red at room temperature. The final product 6 was identified by 1H NMR spectrum 

after the work-up.  



CHAPTER 4. DIOXYGEN ACTIVATION 

70 

 

 

Figure 59: Spin density plot of 9. Mulliken Spin Population: Ni1 = 0.080426, Ni2 

= 0.079847, O1 = 0.398559, O2 = 0.399162.* Contour value: 0.08. 

 

Figure 60: Calculated IR spectrum of 9. 
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Table 13: Selected distance (Å) and angles (°) for 9. 

 d(O-O)/Å d(Ni···Ni)/Å φ(Ni-O-O-Ni)/° 

Exp 1.326 3.810 22.7 

DFT* 1.357 3.838 34.3 

Table 14: ν(O···O) (IR) for 9. 

 ν(16O-16O)/cm-1 ν(18O-18O)/cm-1 Δν/cm-1 

Exp 982 934 48 

DFT* 950 895 54 

 

The electronic nature of 9 as suggested by its geometric structure and magnetic prop-

erties was also confirmed by DFT calculations (Figure 59). The energy–minimized 

DFT calculated structure of 9 is in good agreement with that obtained by x-ray dif-

fraction. The calculations revealed that the HOMO of 9 is the π* orbital located on the 

superoxo ligand. The unpaired electron can be estimated at the Ni center (15%), and 

in the superoxo ligand (around 80%). As shown in Table 13, the bond lengths of the 

superoxo ligand and the distance between the two nickel atoms are 1.357 Å and 3.838 

Å, respectively. They are longer than the experimentally determined values of 1.326 

and 3.810 Å. For the 
16

O-
16

O dioxygen stretching-vibration a value of 950 cm
-1

 was 

calculated compared to experimental data (982 cm
-1

) as it is red shifted. (Table 14 

and Figure 60) 
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4.5 Cleavage the oxygen-oxygen bond 

 

Scheme 15: Cleavage the O-O bond from 6 and 9 in THF. 

It has been proven that the hydroperoxo metal complex (especially in copper) 

can be obtained from hydrogen atom abstraction from superoxo metal species or 

protonation from peroxo metal species. [52] The copper-hydroperoxo species spur 

us to synthesized hydroperoxo nickel complex from 6 and 9. And, until now, only 

one hydroperoxo nickel example in structural characterization was reported by 

Gade in 2015. [47]  

Reaction of 6 with [H-Lut]OTf or treatment of 9 with TEMPO-H in THF at RT or 

even at –78°C result in color change in 20 mins (Scheme 15). Dark green crystals 

were obtained from hexane layered into THF at –30°C in two days. In the solid 

state, the green compound is dinuclear nickel(II) hydroxide complex (11). Moni-

toring the hydrogen atom transfer (HAT) or protonation reaction by UV-Vis spec-

tra, no intermediate was observed in these procedures. However, treatment of 



CHAPTER 4. DIOXYGEN ACTIVATION 

73 

 

the 6 with [H-Lut]OTf in CH3CN at 243 K (Figure 61), the band at 512 assigned to 

the O22-→Ni charge transfer shifted to 460 nm, and a new band at 325 nm come 

out. Resonance Raman spectra of the hydroperoxo compound that were recorded 

using a 457 nm laser displayed only a weak band in the CH3CN solution, and nei-

ther the assignment of the Ni-O nor of the O-O vibrational modes was possible by 

labeling experiments using 18O2. 

 

Figure 61: Monitoring the 6 with [H-Lut]OTf in CH3CN at 243 K.  

Complex 11 crystallizes in the C2/c space group. The distance of two nickel of 

3.47 Å is shorter than 6 and 9 (Figure 62). In the 1H NMR spectrum, the proton 

of the hydroxide occurs at –7.25 ppm in THF-d8 (Figure 63).  
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Figure 62: Molecular structure (30% probability thermal ellipsoids) of 11. Most 

hydrogen atoms omitted for clarity, except for the OH unit.  

 

Figure 63: 1H NMR spectrum of the 11 in THF-d8. Residual solvents are marked 

(*). 

 

Figure 64: IR spectra of 11 (a) and 11-OD (b) after exchange with D2O. 



CHAPTER 4. DIOXYGEN ACTIVATION 

75 

 

Exchange with D2O was proven by means of 1H NMR and IR spectroscopy. After 

the addition of five equivalents of D2O to a water free sample of 11 in THF-D8, the 

associated signal (3622 cm-1) has vanished immediately, Upon exchange with 

D2O the signal of hydroxide vanishes, while a new sharp band emerges at 

2633 cm-1 (ν(O-H)/ν(O-D) ≈ 1.38) which is attributed to the O-D stretching vi-

bration (Figure 64b)
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4.6 Summary 

 

Scheme 16: Transformation between the complex 6, 7, 8, 9 and 11. 

From last chapter, we can conclude that [L1NiII2(H)2]− complex in 2 can be viewed 

as a masked form of a reactive, antiferromagnetically coupled [L1NiI2]−. Thus, de-

finitive elucidation of the peroxo binding mode in [L1Ni2(μ-η1,η1-O2)] was suc-

cessfully prepared from 2 with dioxygen, revealing an “end-on” peroxo species 6 

with a cis-geometry. In addition, 6 can further react with dioxygen resulting in a 

superoxo complex 9. The two thermal stable peroxo and superoxo dinickel(II) 

complexes exhibit a μ-1,2- bonding geometry and have been investigated by 

UV-vis-, resonance Raman-, infrared-, EPR spectroscopies, SQUID measurements 

and DFT calculation. From the 6/9 redox potential in combination with chemical 

reduction and oxidation agents with K/O2, interconversion of the μ-1,2-peroxo 

and superoxo intermediates had been done successfully. Meanwhile, a “naked” 

peroxo complex 9 was obtained from 6 with DB18C6 in THF solution. Ongoing 

works focus on continuing to develop the peroxo and superoxo reactivity.   
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Chapter 5 Disulfur binding to the dinuclear nickel(II) 

dihydride and stepwise transformation to the sul-

fide-ligand-radical 

Abstract: A new μ-1,2- motif bimetallic dinuclear nickel(II) disulphide was iso-

lated after reacting the K[L1Ni2(H2)] (2) with elemental sulfur with concomitant 

release of H2 and characterized by x-ray diffraction. K[L1Ni2(μ-η1,η1-S2)] (12) 

shows reactivity towards H2O, PPh3 and O2 and result in the corresponding hy-

drosulfide (SH-) (13), μ-sulfide (S2-) (14), and μ-sulfide radical (S-) (16) com-

plexes in appropriate condition. The thiol (SMe-) (15) nickel(II) complex was 

gained from μ-sulfide (S2-) nickel complex (16) with MeI. In addition, intercon-

versions between S22-, S2- and S- have been done successfully from chemical re-

duction or oxidation agents.  
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5.1 Introduction 

Coordination chemistry of the transition metals bearing the ligands SH-, S2-, S2-, 

S22-, or S23- found widespread interesting during the last two decade because they 

could serve as models for biological system. Understanding the nature of the 

metal-sulfur linkages at active sites can offer insight on ways to improve catalysis 

and provide a better understanding of cluster formation and cluster interconver-

sion reactions in general. Therefore, many multinuclear and binuclear complexes 

coordinating sulfur have been described, in which the metal atoms are bridged 

by unsubstituted sulfur atoms. [53] Nickel sulfides, in particular, are key compo-

nents of natural hydrogenases. [54] 

In these sulfur motifs, to the best of our knowledge, only one μ-1,2 disulfide nick-

el complex (Figure 65, XXI) was reported in literature with crystal structure, and 

some other examples of “end-on” motif (Figure 65, XX) are in spectroscopies 

characteristic so far. [55,56]  

 

Figure 65: Selected examples of nickel(II) S22- or S2- complexes.  
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It is less known about the complexes containing the paramagnetic supersulfide 

S2- ligand, despite the fact the species can be key intermediates in met-

al-mediated X-X bond activation.[57] Interesting nickel supersulfide S2- complex 

(Figure 65, XXII) supported by β-diketiminato ligand has been reported by 

Driess et.al. in 2008 and exhibit sulfur-ligand-centered radical character. [53e] The 

compound featuring a four-member, rectangular-shaped S4 ring in the solid state 

(Figure 65, XXIII). Sulfur transfer from XXII to PPh3 furnishes PPh3=S and the cor-

responding disulfide nickel complex (Figure 65, XXIV) in quantitative yield.  

Some terminal sulfide (S
2-

) complexes are known with transition metals [58] with dif-

ferent ligand systems. Nickel and iron linear sulfide complexes were reported by the 

group of Holland[59] and Limberg
[60], respectively (Figure 66). The existence of the 

[Ni=S] intermediate has been proven by Jones, and the sulfide–bridge–radical 

intermediate could react with substances containing nitrones.[61] Driess and 

co-workers reported that the [Ni=S] intermediate rapidly dimerizes to formed the 

disulfide bridged complex (Figure 65, XXIII)[53e]. However, the only structural 

characterized [Ni=S] intermediate was introduced by Hayton and coworker in 

2015 (Figure 66, XXVI).[62] The short Ni-S distance of 2.064(6) Å–2.084(1) Å are 

reflecting a partial multiple-bond character between the nickel and sulfur. The 

new nickel sulfide radical compound reacts with N2O,[62] CS2,[63] CO[64] and NO[64], 

which led to the formation of novel nickel sulfide species complexes. 

 

Figure 66: Selected examples of NiII S2- (XXV) or S- (XXVI) complexes.[59,60] 
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Reduction or oxidation of the disulfide motif from S2 to S22–, S2– and S·– requires 

two, four or one electrons (Scheme 17). In literature, mostly they only talked 

about the sulfur substance from S8 to S22–, S22– to S2– or S2– to S·– directly. [53-64] 

Therefore, how to reduce the S2 to S– step by step is an interesting work. Hence, 

we designed a new system, which can be used to study the “step-by-step” trans-

formation with dinickel metals.  

 

Scheme 17: Stepwise transformation of the dichalcogen S2 substance. 

5.2. Synthesis of a μ-1,2-disulphide dinuclear nickel(II) com-

plex  

 

Scheme 18: Synthetic route for 12. 

The structural novelty of the nickel oxygen site provide ample inspiration for 

synthetic sulfur model studies, particularly those aimed at understanding the 

reactivity of sulfur ligated.  

Treatment of a THF solution of 2 with stoichiometry elemental sulfur results in a 

rapid color change from orange to blood red (Scheme 18) and formation of a 

new species identified by 1H NMR spectroscopy (Figure 67). A new resonance 

corresponding with H2 is observed in 1H NMR spectra of reaction mixtures, im-

plying H2 evolution upon reaction of 2– with sulfur. When 2-D was treated with 
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elemental sulfur and the reaction monitored by 2H NMR spectroscopy, the for-

mation of D2 was clearly detected. The new species is diamagnetic and gives rise 

to sharp signals in the 1H and 13C NMR spectra in the typical chemical shift range 

at RT for L3- ligands (Figure 67). The 1H NMR spectrum of this compound re-

vealed a symmetric species as expected in solution state. The resonance associ-

ated to the isopropyl CH function was overlaid by residual solvent (THF-d8), but 

was distinguished by means of a 1H-1H COSY experiment (Figure A21). 

  

Figure 67: 1H NMR (400 MHz) spectrum of 12 in THF-d8 at room temperature. 

Residual solvents are marked with an asterisk (*). The inset shows 2H NMR 

spectrum (77 MHz, 298K) of 2 with elemental sulfur.  

Red plate-like crystals suitable for x-ray diffraction were obtained by layering 

hexane on a solution of 12 in THF at –30°C in 80% yield. As expected, the new 

species is similar to 6. As far as we are aware, 12 is the first μ-1,2-disulphide bi-

metallic nuclear nickel complex with K+ cation. 12 crystallized in the monoclinic 

space group P21/n with four molecules in the unit cell. The molecular structure 

of 12 is shown in Figure 68 and selected bond lengths (Å) and bond angles (°) 

are listed in Table 15. The nickel centers are coordinated in a slightly distorted 

square-planar fashion with the sum angles being 360.14° and 361.02°, respec-

tively. Each nickel center is hosted within the nitrogen atom from the pyrazolate 
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ligand system and the disulfide ligand. The Ni···Ni distance of 4.290(2) Å is long-

er than the previously discussed 2 and 6, which is related to the large van der 

waals radius of sulfur as for hydrogen and oxygen. The S-S distance of 2.036(3) Å 

is similar to XXI (Figure 65) (2.045(1) Å)[56], which implies a less activated S-S 

bond (compared with S8) in the disulphide bridge, possibly due to a reduced 

back-donation from the nickel centers compared to those disulphide nickel com-

plexes. The Ni–S distances of 2.167(2) Å and 2.160(2) Å in 12 are close to the 

Ni-S distance in XXI.[56] The K+ is sandwiched between the two aryl groups of the 

DIPP in 12, which is similar to 2 and 6 also. The aryl(center)-alkali metal dis-

tances amount 3.357(2) Å and 3.259(2) Å, which implies cation-π interaction. 

The potassium cation is also tightly coordinated to both disulfide atoms (S1, S2), 

with K1-S1 and K1-S2 separation of 3.103(2) Å and 3.157(2) Å, respectively. The 

Ni1-S1-S2-Ni2 torsion angle 81.20(2)° is similar to the angle observed in 6 with 

81.41(3)°. 

 

Figure 68: Molecular structure (50% probability thermal ellipsoids) of 12. All 

hydrogen atoms omitted for clarity. 

Table 15: Selected bond lengths (Å) and bond angles (°) for12. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N3 1.915(5) N3-Ni1-N4 92.4(2) 

Ni1-N4 1.925(5) N3-Ni1-N1 84.9(2) 

Ni1-N1 1.928(6) N4-Ni1-N1 177.1(2) 

Ni2-N5 1.904(5) N3-Ni1-S1 170.03(2) 

Ni2-N6 1.914(6) N4-Ni1-S1 92.41(2) 

Ni2-N2 1.931(6) N1-Ni1-S1 90.41(2) 
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Ni1-S1 2.167(2) N5-Ni2-N6 93.8(2) 

Ni2-S2 2.160(2) N5-Ni2-N2 84.4(2) 

S1-S2 2.036(3) N6-Ni2-N2 174.1(2) 

K1-S1 3.103(3) N5-Ni2-S2 167.80(2) 

K1-S2 3.157(3) N6-Ni2-S2 92.51(2) 

Ni1···Ni2 4.290(2) N2-Ni2-S2 90.38(2) 

K1–Cg(1) 3.357(3) Ni1-S1-S2  108.48(1) 

K1–Cg(2) 3.259(3) Ni2-S2-S1  106.89(1) 

  S1-K1-S2 37.95(7) 

  Ni1-S1-S2-Ni2 81.20(2) 

Cg(1) = centroid of the ring carbon atoms C10, C11, C12, C13, C15, C15 (left side); 

Cg(2) = centroid of the ring carbon atoms C28, C29, C30, C31, C32, C33 (right 

side). 

 
Figure 69: (a) UV-Vis spectra of the 12 at different temperatures (293 K–203 K) 

in THF; (b) Plots of the absorption bands at different temperatures. 

Further analysis data have done by UV-Vis, IR and Raman spectroscopy for 12. 

The UV-Vis spectrum of 12 displays an intense band at λmax = 465 nm (ε ≈ 130 

M-1·cm-1) and a similar intense band at ∼ 520 nm (ε ≈ 149 M-1·cm-1) was ob-

served (Figure 69a). It is tentatively assigned to the disulfide π*σ NiII and 

π*νNiII dx2-y2 charge-transfer (CT) transitions, respectively, from comparison 

with the absorption spectra of analogous Cu2(µ-η1,η1-S2) [65].  

 Reactivity. Exposure of 12 to air affords a gradual color change from blood 

red to brown in two hours. 1H NMR spectroscopy indicates that the brown com-

plex is a hydrosulfide-bridged complex. The result will be discussed in chapter 
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5.3. 

Meanwhile, sulfur transfer from 12 to PPh3 furnishes Ph3P=S and the corre-

sponding dinuclear nickel sulfide 14 in quantitative yield (Scheme 19). Time 

dependent 1H and 31P NMR spectra demonstrate the slow conversion from 12 to 

14. During two days, the characteristic proton resonances for pyrazole of 12 

gradually decrease (Figure 70). In the 31P NMR, a new peak for S=PPh3 at 

42.16 ppm was observed in one hour and gradually increased in the next two 

days (Figure 71). Eventually, 12 was completely consumed after three days. The 

x-ray structure of 14 will be discussed in chapter 5.4. 

 

Scheme 19: Reaction of 12 with PPh3 in THF-d8. 
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Figure 70:1H NMR illustrates slow conversion of 12 to 14 in the presence of 

PPh3 at RT in THF-d8 demonstrated. Residual solvents are marked with an aster-

isk (*). 

 

Figure 71: 31P NMR illustrates slow conversion of PPh3 to PPh3=S at RT in 

THF-d8 of 12 to 14.  
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Figure 72: (a) Monitoring the band at 450 and 520 nm in UV-vis spectroscopy 

from 12 with PPh3; (b) changing the absorbance of 12 with PPh3 at 450 and 520 

nm upon the time consuming.  

Monitoring the reactivity of 12 with PPh3 in UV-Vis spectroscopy, the absorption 

bands at 450 and 520 nm which are belong to the disulphideπ*σNiII and 

π*νNiII dx2-y2 are decreasing with time consuming. After few hours, the bands 

are stable. (Figure 72),  

5.3 Synthesis of a hydrosulfide dinuclear nickel(II) complex 

 

Scheme 20: Synthetic route for 13. 

As we mentioned of the reactivity of 12, the hydrosulfide bridged 13 was ob-

tained from 12 to air. Besides this way, several other pathways were found for 

synthesizing of this complex. The procedures were described in the experimental 

section.  

450 

520 
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Dark green crystals suitable for x-ray diffraction were obtained by layering hex-

ane on a solution of 13 in THF at RT in 73% yield. 13 crystallized in the mono-

clinic space group P21/c with four molecules in the unit cell. Both nickel centers 

are coordinated in a slightly distorted square-planar fashion. The molecular 

structure of 13 is shown in Figure 73 and selected bond lengths (Å) and bond 

angles (°) are listed in Table 16. The Ni···Ni distance of 3.707 Å is shorter than 

11. The Ni1-S1-Ni2 angle 111.7(4)° is similar to 11 also. The Ni-SH bond lengths 

of 2.274(5) Å and 2.265(5) Å are significantly shorter than other reported NiII-SH 

complexes. [66] The SH protons could be unambiguously located in a fouri-

er-difference map and defined by 1H NMR spectrum. 

 

Figure 73: Molecular structure (50% probability thermal ellipsoids) of 13. Most 

hydrogen atoms omitted for clarity except for SH unit.  

Table 16: Selected bond lengths (Å) and bond angles (°) for 13. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.826(2) N1-Ni1-N4 173.91(7) 

Ni1-N4 1.894(2) N1-Ni1-N3 82.38(6) 

Ni1-N3 1.896 (1) N4-Ni1-N3 94.49(6) 

Ni1-S1 2.274(5) N1-Ni1-S1 84.25(5) 

Ni2-N2 1.829(1) N4-Ni1-S1 99.64(5) 

Ni2-N6 1.899(1) N3-Ni1-S1 163.72(5) 

Ni2-N5 1.901(2) N2-Ni2-N6 176.86(6) 

Ni2-S1 2.265(5) N2-Ni2-N5 81.94(6) 

Ni1···Ni2 3.707(5) N6-Ni2-N5 95.03(6) 

  N2-Ni2-S1 84.52(5) 
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  N6-Ni2-S1 98.57(5) 

  N5-Ni2-S1 165.18(5) 

  Ni2-S1-Ni1 109.510(19) 

 

 

Figure 74: 1H NMR spectrum (300 MHz) of 13 in CDCl3. Impurity is indicated(*). 

13 is diamagnetic complex and gives rise to sharp signals in the 1H and 13C NMR 

spectra in the typical chemical shift range for the pyrazolate and β-diketiminato 

ligands (Figure 74). In the 1H NMR spectrum, the bridged hydrosulfide protons 

resonate at δ = –3.49 ppm. The positive ion ESI-MS of a freshly prepared THF so-

lution of 13 shows a nickel-containing fragment at m/z = 755.47 (13+H)+. A weak 

vibration of the S-H was observed at 2557 cm-1 in the IR spectrum for 13. The 

origin of the SH vibration could be verified by the FT-IR measurement of the 

deuterated 13-SD, which was synthesized by H/D exchange using deuter-

on-methanol (MeOD). The S-D band lies at ν(S–D) 1817 cm-1 (ν(S-H)/ν(S-D) = 

1.41) (Figure A26), which is similar to literature. [67] 
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5.4 Synthesis of μ-1,1-sulfide nickel(II) complex  

 

Scheme 21: Synthetic routes for 14. 

In chapter 5.2, 14 was obtained from 12 by treating with PPh3. Here, a new syn-

thetic procedure was introduced (Scheme 21). No obvious color change was ob-

served from 2 with PPh3=S in THF solution. The experimental process was mon-

itored by 1H NMR spectroscopy. A weak and broad peak at 4.55 ppm was ob-

served during the reaction of 2 with PMe3=S in the NMR tube, which is attributed 

to the H2 release (Figure 75). The 1D and 2D NMR spectra of 14 were shown in 

Figure 76 and appendix 

 

Figure 75: Monitoring the reaction of PMe3=S with 2 in THF-d8 (400 MHz). Re-

sidual solvents are marked with an asterisk (*). 
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Figure 76: 1H NMR spectrum (400 MHz) of 14 in THF-d8. Residual solvents are 

marked with an asterisk (*). 

No obvious color change was observed in 2 with PMe3=S at RT. Nevertheless, or-

ange crystals suitable for x-ray diffraction were obtained by layering hexane on a 

solution of 14 in THF in two days. 14 crystallized in the triclinic space group P-1 

with two molecules in the unit cell. The molecular structure of 14 in ORTEP dia-

gram is shown in Figure 77 and selected bond lengths (Å) and bond angles (°) 

are listed in Table 17. A five-membered planar ring was formed by the nickel 

centers, nitrogen atom from pyrazolate and the μ-sulfide ligand. It became clear 

that the new μ-sulfide compound is similar to the hydrosulfide complex. The two 

nickel centers are coordinated by the S atom and the N atom in a square planar 

fashion (sum of bond angles 361.07° and 360.02°, respectively). The distance of 

two nickel centers with 3.652(5) Å is slightly shorter than 13 with 3.707(5) Å. 

The Ni-S distances in 14 of 2.224(7) Å and 2.240 (7) Å are shorter than related 

13 (2.274 Å and 2.265 Å). The Ni1-S-Ni2 angle 109.05(3)° is also smaller than 13. 

The alkali-metal, K+ cation, is located outside the molecule anion and coordina-

tion with three THF molecules and pyrazole-N. The aryl-alkali metal distances 

amount 2.994(7) Å, which implies that the cation-π interaction between the po-

tassium and five-member ring.  
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Figure 77: Molecular structure (30% probability thermal ellipsoids) of the anion 

of 14 (a) and 14 (b). All hydrogen atoms omitted for clarity.  

Table 17: Selected bond lengths (Å) and bond angles (°) for 14. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.816(2) N1-Ni1-N4 176.47(9) 

Ni1-N4 1.904(2) N1-Ni1-N3 82.01(10) 

Ni1-N3 1.925(2) N4-Ni1-N3 94.51(9) 

Ni1-S1 2.240(7) N1-Ni1-S1 86.10(7) 

Ni1-K1 3.198(7) N4-Ni1-S1 97.40(6) 

Ni2-N2 1.820(2) N3-Ni1-S1 168.02(7) 

Ni2-N6 1.914(2) N1-Ni1-K1 72.26(7) 

Ni2-N5 1.932(2) N4-Ni1-K1 109.43(6) 

Ni2-S1 2.244(7) N3-Ni1-K1 105.21(7) 

Ni2-K1 3.791(7) S1-Ni1-K1 69.47(2) 

K1-N1 3.160(2) N2-Ni2-N6 176.17(9) 

K1-N2 3.446(2) N2-Ni2-N5 82.12(9) 

K1-S1 3.197(1) N6-Ni2-N5 94.41(9) 

Ni1···Ni2 3.652(5) N2-Ni2-S1 85.81(7) 

  N6-Ni2-S1 97.73(6) 

  N5-Ni2-S1 167.60(7) 

  N2-Ni2-K1 65.09(6) 

  Ni1-S1-Ni2 109.05(3). 
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Figure 78: (a) positive ion ESI-MS of 14; (Inset) experimental (upper) and sim-

ulated (middle and bottom) isotopic distribution pattern for the peaks pattern 

around m/z = 755.47 and 792.29 characteristic for the [14+H]+ and [14]+; (b) 

ESI-MS (-) spectrum of 14; (Inset) experimental (upper) and Simulated (bottom) 

isotopic distribution pattern for the peaks pattern around m/z = 753.32 charac-

teristic for the [14−K]–. 

14 has been characterized by positive and negative ion ESI-MS in MeCN/THF 

mixture solvent (Figure 78). Positive ion ESI-MS (Figure 78a) spectrometry 

shows two dominate peaks characteristic for 14 and 13 compounds. Main peak 

corresponds to the [13+H]+, and the signal of 793.37 is attributed to the [14+H]+. 

In the negative ion ESI-MS (Figure 78b), the dominate peak belongs to the 

[14−K]- signal. 

 

Figure 79: (a) UV-Vis spectra of 14 at different temperatures (293 K – 193 K) in 

THF; (b) Plots of the absorption bands at different temperatures. 

The UV-Vis spectrum (Figure 79a) of 14 displays bands at 460, 376, 351 and 

275 nm. The bands at 275 (ε ≈ 11100 M-1·cm-1) and 351 nm (ε ≈ 4910 M-1·cm-1) 



CHAPTER 5. SULFUR ACTIVATION 

93 

 

are assigned to the ligand-metal charge–transfer transitions. The intense band at 

460 nm (ε ≈ 2000 M-1·cm-1) is to the sulfide π*σNiII charge-transfer (CT) transi-

tions corresponds to literature. [65] 

  

Figure 80: CV of 14 in THF at RT, with NBu4PF6 as supporting electrolyte (0.1 M) 

at different scan rates. 

Cyclic voltammetry (CV) of 14 in a 0.1 M solution of NBu4PF6 in THF (Figure 80) 

at room temperature showed a reversible redox wave of scan of 100 mV at E1/2 = 

–1.25 V (vs Fc/Fc+). It indicates that 14 may be oxidized by one electron to the 

sulfur radical dinickel complex. The chemical oxidation experiment will be dis-

cussed in the next section. 
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 Reactivity of 14.  

 

Scheme 22: Reactivity of 14 towards MeI.  

As shown in Scheme 22, 14 exhibits reactivity towards CH3I. Treatment of 14 

with CH3I at RT results in a rapid color change from red to green. Green crystals 

suitable for x-ray diffraction were obtained by layering hexane on a solution of 

15 in THF at –30°C. 15 crystallized in the triclinic space group P-1 with two mol-

ecules in the unit cell. The molecular structure of 15 in ORTEP diagram is shown 

in Figure 81 and selected bond lengths (Å) and bond angles (°) are listed in Ta-

ble 18. As expected, the sulfide was methylated from MeI in THF solution. The 

distance of C-S is 1.841(3) Å.  

 

Figure 81: Molecular structure (30% probability thermal ellipsoids) of 15. Most 

hydrogen atoms omitted for clarity. 
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Table 18: Selected bond lengths (Å) and bond angles (°) for 15. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.821(2) N1-Ni1-N3 81.84(9) 

Ni1-N3 1.899(2) N1-Ni1-N4 176.16(9) 

Ni1-N4 1.899(2) N3-Ni1-N4 94.95(9) 

Ni1-S1 2.281(8) N1-Ni1-S1 86.00(7) 

Ni2-N2 1.818(2) N3-Ni1-S1 167.70(7) 

Ni2-N5 1.895(2) N4-Ni1-S1 97.13(7) 

Ni2-N6 1.890(2) N2-Ni2-N5 81.88(10) 

Ni2-S1 2.264(8) N2-Ni2-N6 173.28(9) 

C40-S1 1.841(3) N5-Ni2-N6 95.59(9) 

Ni1···Ni2 3.649(8) N2-Ni2-S1 86.11(7) 

  N5-Ni2-S1 162.93(7) 

  N6-Ni2-S1 97.61(7) 

  C40-S1-Ni1 97.80(1) 

  C40-S1-Ni2 92.74(1) 

  Ni1-S1-Ni2 106.81(3) 

 

 

Figure 82: Stepwise protonation of 14 with [H-Lut]OTf at RT in THF, monitored 

by UV−vis absorption spectroscopy (1 cm path length). The asterisk marks the 

isosbestic point at 368 nm. Inset: decrease of the absorption at 343 nm depend-

ing on the number of equivalents of [H-Lut]OTf added. 
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As shown in Figure 82, when 14 reacts with [H-Lut]OTf, the characteristic 

charge transfer (CT) absorption band of 14 at 455 nm and 343 nm decrease, the 

band at 375 nm increase, with a clean isosbestic point (*) at 368 nm. Transfor-

mation was complete after 1 equivalent of acid was added, and 13 was stable in 

the presence of excess acid.  

5.5 Synthesis of a μ-1,1-sulfide radical nickel(II) complex 

 

Figure 83: CV of 12 in THF at RT, with NBu4PF6 as supporting electrolyte (0.1 M) 

at different scan rates. 

Cyclic voltammogram (Figure 83) of 12 in a 0.1 M solution of NBu4PF6 in THF at 

RT shows two quasi-reversible redox wave E1/2 at –1.2 and -1.26 V implying that 

the disulphide nickel complex may be oxidized by one electron to supersulfide 

nickel species. In fact, the chemical oxidation of 12 dissolved in THF with 

[FeCp2]BF4 at –30°C leads to an immediate color change of the solutions from 
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wine-red to brown-black (Scheme 23). UV-Vis spectrum of the species in THF 

displays bands at 270 (ε ≈ 2800 M-1·cm-1), 319 (ε ≈ 1280 M-1·cm-1), 373 (ε ≈ 820 

M-1·cm-1) and 457 nm (ε ≈ 200 M-1·cm-1) in Figure 84a. It confirms that a new 

species was obtained from the chemical oxidation. 

 

Scheme 23: Synthetic route for 16. 

 

Figure 84: (a) UV-Vis spectra of 16 at different temperatures (293 K–193 K) in 

THF; (b) Plots of the absorption bands of 16 at different temperatures.  

Green block shape crystals suitable for x-ray diffraction were obtained in 70% 

yield by layering hexane on a solution of 16 in THF at –30°C. 16 crystallized in 

the monoclinic space group P21/c with four molecules in the unit cell. The molec-

ular structure of 16 is shown in Figure 85 and selected bond lengths (Å) and 

bond angles (°) are listed in Table 19.  
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Figure 85: Molecular structure (50% probability thermal ellipsoids) of 16. All 

hydrogen atoms omitted for clarity. 

Table 19: Selected bond lengths (Å) and bond angles (°) for16. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.825(2) N1-Ni1-N3 82.03(9) 

Ni1-N3 1.896(2) N1-Ni1-N4 177.01(9) 

Ni1-N4 1.898(2) N3-Ni1-N4 95.00(9) 

Ni1-S1 2.278(7) N1-Ni1-S1 85.33(7) 

Ni2-N2 1.827(2) N3-Ni1-S1 166.54(7) 

Ni2-N5 1.893(2) N4-Ni1-S1 97.66(7) 

Ni2-N6 1.893(2) N2-Ni2-N5 82.25(9) 

Ni2-S1 2.289(7) N2-Ni2-N6 174.11(10) 

Ni1···Ni2 3.705(5) N5-Ni2-N6 94.47(9) 

  N2-Ni2-S1 85.15(7) 

  N5-Ni2-S1 165.18(7) 

  N6-Ni2-S1 98.72(7) 

  Ni1-S1-Ni2 108.44(3) 

 

Selected metrical parameters of the three sulfide complexes are listed in 

Table 20. 14 appears shorter Ni-S distance than 13 and 16. In the solid state, no 

proton close to the sulfide bridge ligand was observed. The Ni-S bond lengths in 

16, however, are slightly longer than the additive covalent radii for nickel-sulfur 

single bonds (2.13 Å). [ 68 ] For comparison, [{LtBuNi}(μ-S)],[62] 

[{(IPr)Ni}2(μ-S)2](IPr=1,3-bis(2,6-diiso- propylphenyl)imidazol-2-ylidene),[53e] 

and [{PhB(CH2StBu)3}Ni]2(μ-S)[58e] display comparable Ni–S bond lengths of 
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2.0651(7), 2.0972(6), 2.0714(4) and 2.084(6) Å, respectively, despite each pos-

sessing a bridging S2- or S- ligand. Overall, this suggests similar magnitudes of 

π-bonding in both classes of materials.  

Table 20: Selected metrical parameters of 13, 14 and 16. 

Complex 13 14 16 

Ni···Ni (Å) 3.707 3.652 3.705 

Ni-S (Å) 
2.274 

2.264 

2.240 

2.244 

2.278 

2.289 

Ni-N (Å) 1.826-1.900 1.816-1.932 1.825-1.898 

Ni-S-Ni (°) 109.51 109.05 108.45 

 

The 1H and 13C NMR spectra of 16 show a paramagnetically shifted resonance. 

However, the x-band electron paramagnetic resonance (EPR) measurement of a 

frozen THF at 10 K revealed that NiIII exists at low concentration of 16 

(Figure 86a). And the x-band EPR spectrum of 16 in THF in 2 mM revealed no 

NiIII exists in the solution anymore and the intensity of the spectra account for 

only ca. 20% of the expected spin concentration (numerical integration and 

comparison with a CuII standard) (Figure 86b). The difference of EPR spectra in 

different concertation remind the sulfur radical 16 may has two different valence 

transfer in the solution. One of them is the unpaired electron moves between the 

Ni-S systems (Scheme 24a). The other possibility for the low concentration is a 

dimerization transfer from the sulfur radical complex (Scheme 24b). 
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Figure 86: (a) X-band EPR spectra of 16 at low concentration in frozen THF so-

lution at 30 K. (b) X-band EPR spectra of 16 at 2 mM in frozen THF solution at 

30 K. 

 

Scheme 24: Possible formulation of the Ni-S species in the solution. 
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Figure 87: (a) χmT vs. T measurement in the temperature range of 2–295 K at 

0.5 T for solid samples of 16. The solid red line represents the best fit g = 2.0 

(54%) with DI= 46 % (S = 0) and TIP = 507×10–6 cm3·mol–1. 

Magnetic susceptibility data for 16 collected in the temperature range from 2–

295 K in crystalline material, shows essentially paramagnetic behavior of S = 1/2 

spin system (54%) (Figure 87). The solid red line represents the best fit and rel-

atively high amount of diamagnetic impurity with DI = 46 % (S = 0) and TIP = 

507×10–6 cm3·mol–1. An explanation for the essential amount of diamagnetic im-

purity could be fast decomposition of 16 at RT. 
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Figure 88: Spin density plot of 16. Mulliken Spin Population: Ni1 = 0.151717, 

Ni2 = 0.133588, S3 = 0.619900. 

 

Figure 89: Calculated IR spectrum of 16. 
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Table 21: Selected distance (Å) and angles (°) for 16. 

 d(Ni-S)/Å d(Ni···Ni)/Å φ(Ni-S-Ni)/° 

Exp 2.278/2.290 3.705 108.4 

DFT* 2.189/2.199 3.600 110.2 

 

The electronic nature of 16 as suggested by its geometric structure and magnetic 

properties was also confirmed by DFT calculations (Figure 88). The spin density can 

be estimated at the Ni center (28%), and at the sulfur ligand (around 62%). Therefore, 

the unpaired electron mostly located on sulfur atom. As shown in Table 21, the dis-

tances of Ni-S of 2.278/2.290 Å are larger in the experimental data than the DFT cal-

culations of 2.189/2.199 Å. It can be assigned that the unpaired electron stays in the 

Ni-S-Ni system in the solid state. 
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5.6 Summary 

   

Scheme 25: Activation and transformation of the substrates contains sulfur in 

the dinuclear nickel(II) complexes.  

In this chapter, we could show that the reaction of elemental sulfur with 2 results 

in quite different reaction products depending on the exact reaction conditions 

(Scheme 25). 

Firstly, elemental sulfur can react in similar way as dioxygen does with 2 and S22- 

can be formed. This the first “end-on” heteronuclear dinuclear nickel(II) disul-

phide complex. 

Secondly, treatment of 12 with PPh3, H2O and [Cp2Fe]BF4 result into different 
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species with μ-sulfide, hydrosulfide and sulfur monoanionic radical. 

Thirdly, interconversion between 13, 14 and 16 have successfully done by chem-

ical agents. 

At last, the dinuclear nickel μ-sulfide complex reactivity toward CH3I is verified. 

In addition, further thermodynamics between 13, 14 and 16 are ongoing.  
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Chapter 6 Deprotonation and Isomeri-

zation of Phenylhydrazine in the dinu-

clear nickel(II) complex 

Abstract: A new dinuclear nickel(II) phenylhydrazido(1-) complex (17) was 

synthesized from dinickel bromide precursor (1) with phenylhydrazine in the 

presence of KC8. Treatment of 17 with KH or in the presence of diben-

zo(18-crown-6) leads two hetero-bimetallic trinuclear complexes (18 and 19). 

For these two complexes, two geometrical isomers are present in solution, and 

mechanistic insight into the isomerization process was obtained by VT 1H NMR 

spectroscopy. 
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6.1 Introduction 

In the last two decades, many chemists studied the reactivity of coordinated 

dinitrogen towards protons, other hydrogen sources and relevance to the 

mechanism of action nitrogenase. [69] A large number of transition metal com-

plexes containing substituted or unsubstituted hydrazido, hydrazine or diazene 

ligands have been reported. [70] However, only few examples were reported with 

nickel as the desired metal. [71,72] As shown in Figure 90 (XXVI-XXIX), there has 

been some effort to obtain synthetic phenylhydrazido mode for the nickel or 

iron phenylhydrazine in the -diketiminato ligand by Limberg[72] and Holland[73] 

groups.  

 

Figure 90: Selected examples of nickel(II) and iron(II/III) phenylhydra-

zine/phenylhydrazido/diazene complexes supported by -diketiminato ligand.
[72,73]
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6.2 Synthesis of phenylhydrazido bridged complex 

 

Scheme 26: Synthetic route for 17. 

Previously, treatment of 1 with hydrazine dissolved in THF solution led to ap-

propriate products, so that phenylhydrazine was employed instead of the par-

ent N2H4.[11a] However, this reaction only works in the presence of stoichiome-

try KC8 or tBuOK (Scheme 26). During the reaction of 1 with phenylhydrazine 

in the presence of KC8 in THF solution, gas evolution (H2) was found and a dark 

red solution was obtained immediately. However, same compound was ob-

tained even though excess KC8 was employed in the reaction. This complex was 

fully characterized by x-ray diffraction, 1D and 2D NMR, FT-IR spectroscopy, 

ESI-MS spectrometry and CV measurement as well as elemental analysis. 

Dark red crystals suitable for x-ray diffraction were obtained by slow diffusion 

of pentane into a solution of 17 in THF at room temperature. 17 crystallizes in 

the triclinic space group P-1, the molecular structure of 17 is shown in Fig-

ure 91 and selected bond lengths (Å) and angles (°) are listed in Table 22. 17 

contains an anionic phenylhydrazido(1−) ligand binding in a μ-η1:η1-mode, and 

thus the two Ni ions are surrounded by four N donor atoms in a distorted 

square planar way. The Ni-NPh-NH-Ni torsion angle around the N–N axis is 

78.66(3)°. The N-N bond length of the phenylhydrazido(1−) ligand amounts to 

1.441(4) Å and therefore lies within the range that is typical for 

η1-organohydrazido(1−) ligands citation. [ 74 ] The bond length of Ni-NH2 
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(1.946(3) Å) is slightly longer than that of Ni-NPh bond length (1.914(3) Å). This 

is in contrast to the literature known complexes XXVI
[72]

 and 

[Ru(η
2
−NH2NPh)(dmpe)2]BPh4

[ 75 ]
, where the Ni−NPh and Ru−NPh bonds are 

significantly longer than the Ni−NH2 and Ru−NH2 bonds. 

 

Figure 91: Molecular structure (50% probability thermal ellipsoids) of 17. 

Most hydrogen atoms omitted for clarity, except for the NH2 group.  

Table 22: Selected bond lengths (Å) and angles (°) for 17. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.852(3) N1-Ni1-N3 83.62(11) 

Ni1-N3 1.882(3) N1-Ni1-N4 169.45(11) 

Ni1-N4 1.897(3) N3-Ni1-N4 95.08(11) 

Ni1-N7A 1.914(3) N1-Ni1-N7A 89.61(11) 

Ni2-N2 1.862(3) N3-Ni1-N7A 164.58(12) 

Ni2-N5 1.881(3) N4-Ni1-N7A 94.05(11) 

Ni2-N6 1.903(3) N2-Ni2-N5 83.40(11) 

Ni2-N8A 1.946(3) N2-Ni2-N6 174.99(11) 

N7A-N8A 1.441(4) N5-Ni2-N6 94.44(11) 

Ni1-N7A 1.914(3) N2-Ni2-N8A 90.14(11) 

Ni2-N8A 1.946(3) N5-Ni2-N8A 172.69(11) 

Ni1···Ni2 3.918(2) N6-Ni2-N8A 92.27(11) 

  N8-N7-Ni1 116.02(2) 

  N7-N8-Ni2 120.74(2) 

  Ni1-N7A-N8A-Ni2 78.66(3) 
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Figure 92: 1H NMR (400 MHz) spectrum of 17 in THF-d8. Residual solvents are 

marked with an asterisk (*).  

 

Figure 93: 1H-15N HMBC (52 MHz) spectrum of 17 in THF-d8. 

The resulting phenylhydrazido(1−) ligand undoubtedly is bound as the NH2–

NPh−tautomer: The two protons were located in the fourier map and further 

support came from NMR experiments. For the NH protons of the NH2–NPh ani-

onic unit, two doublet resonances with an integral of one were found at 

1.60 ppm and 2.16 ppm in the 1H NMR spectrum, respectively (Figure 92). The 

assignment of the NH was also confirmed using a 2D 1H−15N HMBC experiment 

(Figure 93). Two 15N correlations with these two protons (2JNH = 67.74 Hz) be-

came evident, suggesting two NH protons, residing at the same N atom. In order 

to know the stereochemistry of the NH2 group of the bridging phenylhydrazido, 

a 1H-1H NOESY experiment was conducted. It reveals a weak NOE correlation of 
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one NH protons to the phenyl group of the bridging phenylhydrazido at room 

temperature (Figure 94).  

 

Figure 94: 1H-1H NOESY (400 MHz) spectrum of 17. The protons belonging to 

the NH2NPh bridged show a NOE correlation to the CH proton of the phenyl 

groups. 1JNH correlation of 17 are marked. 

Apart from the NH2 resonance, the ortho protons from phenylhydrazido reso-

nance is at 9.36 ppm, low field shifted compared with XXVI (5.06 ppm) (Figure 

90). [72] This may be because the phenyl ring from phenylhydrazido unit current 

effect to the ligand. To investigate the two protons, a variable temperature 1H 

NMR was conducted from 183 K to 323 K (Figure 95). From 263 K to 243 K, no 

signals were observed for the ortho protons of phenyl group. On cooling to 233 

K, the 1H NMR spectrum appears two separate broad doublets at 8.80 and 9.84 

ppm, respectively. The two peaks could result from a hindered rotation of the 

phenyl group at low temperatures. No coupling resonance was found in the 

1H-1H NOESY between the isopropyl group and the ortho protons of the phenyl 

group, which implies that the phenyl group only shown rotation activity with-

out vibration of the ligand planar.  
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Figure 95: The field from 8.4 to 10.0 ppm in variable temperature (183 K – 

323 K) 1H NMR (400 MHz) spectra of 17 in THF-d8. 

 
Figure 96: (a) FT–IR spectrum of 17 in crystalline material; (b): positive ion 

ESI-MS of 17 in THF; (Inset) experiment (upper) and simulated (lower) isotope 

distribution pattern for the peak pattern around m/z = 829.6 characteristic for 

the [17+H]+ ion. 

IR spectroscopy (Figure 96a) of 17 clearly shows two bands belonging to the 

stretching vibration of an NH moiety at 3294 and 3220 cm–1, thus further prov-

ing the presence of such a functionally. Additionally the positive ion ESI–MS 
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spectrum (Figure 96b) of 17 shows a major peak m/z = 829.6 consistent with 

the simulated isotope pattern of the molecular ion peak [17+H]+.  

6.3 Deprotonation of phenylhydrazido bridge complex  

 

Scheme 27: Synthetic route for 18. 

In order to examine whether it is possible to further activate the N−N bond of 

the phenylhydrazido(1−) ligand, 17 was treated with one equivalent KH, which 

led to a color change from red to green in two hours (Scheme 27). 18 was 

completely characterized by x-ray diffraction, 1D and 2D NMR, FT-IR spectros-

copy and elemental analysis. 

Black block crystals were obtained by layering hexane into THF solution at –

30°C in two days, which was suitable for single-crystal x-ray diffraction and the 

yield of the compound was about 43%. 18 crystallizes in the triclinic space 

group P-1. The molecular structure of 18 was shown in Figure 97 and selected 

bond lengths (Å) and angles (°) were listed in Table 23. In the case of XXVI, the 

phenylhydrazido(1−) was singly deprotonated by KC8, and the K+ cation was 

fixed by 18-crown-6. Nevertheless, the new species is in a bad crystal quality so 

that no x-ray diffraction data is present for comparison with our data. To our 

best knowledge, 18 is the first Ni-K phenylhydrzido(2-) complex which has 

been structurally characterized. 

The anion of 18 is obviously like 17. In the solid structure of 18 (Figure 97), 
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the K+ cation is coordinated by the pyrazole-N and three THF molecules, and 

locates between the pyrazole and phenyl rings. The distances between the K+ 

cation and the phenyl group, pyrazole moieties are 2.973(2) Å and 3.129(2) Å, 

respectively. The distance of the two nickel atoms of 3.850(7) Å is slightly 

shorter than the parent phenylhydrazido 17. In 18, the distance of N−N in 

NNHPh unit with 1.404(3) Å is shorter than 17 with 1.441(2) Å. The dihedral 

angle of between the pyrazole and the phenylhydrazido ring is about 88.223(8)°. 

The Ni-NPh-NPh-Ni torsion angle around the N–N axis as defined is 73.55(1)°.  

 

Figure 97: Molecular structure (50% probability thermal ellipsoids) of 18. 

Most hydrogen atoms omitted for clarity, except for N7-H.  
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Table 23: Selected bond length (Å) and angles (°) for 18. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.872(3) N1-Ni1-N7 93.48(11) 

Ni1-N7 1.907(3) N1-Ni1-N4 170.42(11) 

Ni1-N4 1.913(3) N7-Ni1-N4 91.64(11) 

Ni1-N3 1.932(3) N1-Ni1-N3 82.44(12) 

Ni2-N2 1.843(3) N7-Ni1-N3 169.82(12) 

Ni2-N8 1.903(3) N4-Ni1-N3 93.77(12) 

Ni2-N6 1.904(3) N2-Ni2-N8 87.19(11) 

Ni2-N5 

N7-N8 

1.908(3) 

1.404 (3) 

N2-Ni2-N6 

N8-Ni2-N6 

173.28(12) 

95.09(11) 

Ni1···Ni2  3.850(7) N2-Ni2-N5 82.95(12) 

K-Cg(1)  3.129(2) N8-Ni2-N5 165.79(11) 

K-Cg(2)  2.973(2) N6-Ni2-N5 95.86(12) 

  N8-N7-Ni1 118.09(1) 

  N7-N8-Ni2 121.83(2) 

  N8-N7-C40 113.38(1) 

  Ni1-N7-N8-Ni2 73.55(1) 

  Ni1-N1-K1A 110.11(1) 

  Pz-K-Ar 101.00(3) 

Cg(1) = centroid of the ring carbon atoms C1, C2, C3, N1, N2 (pyrazole ring); 

Cg(2) = centroid of the ring carbon atoms C40, C41, C42, C43, C44, C45 (phenyl 

ring).  

 

Figure 98: 1H NMR (400 MHz) spectrum of 18 in THF-d8. Inset: excerpt range 

8.5 – 11.5 ppm. Residual solvents are marked with an asterisk (*). 
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To further confirm the identity, an NMR spectroscopic analysis was performed. 

1H and 13C {1H} NMR spectra (Figure 98 and Figure A33) showed that the 

complex is diamagnetic and asymmetric. The resulting phenylhydrazido(2−) 

ligand undoubtedly is bound as the NH–NPh− tautomer: the proton was located 

in the fourier map and further support came from NMR experiments. The as-

signment of NH was also confirmed using a 2D 1H−15N HMBC experiment. One 

15N correlation with this one proton became evident, suggesting NH proton 

(Figure 99). Additionally, IR spectroscopy (Figure 100a) of 18 clearly showed 

the presence of a NH function through a band belonging to its stretching vibra-

tion at 3244 cm–1.  

 

Figure 99: 1H-15N NMR (52 MHz) spectrum of 18. 

 
Figure 100: (a) ATR–IR spectrum of 18 in crystalline material. (b) UV-vis spec-

trum of 18 in THF. 

Two separate broad peaks around 9.17 and 10.57 ppm as well as a sharp peak 

at 9.35 ppm were observed in the 1H NMR spectrum (Figure 98) of 18 at RT. It 

attributed that the K+ is dissociation equilibrium in solution at RT (Scheme 28). 

NH 
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In order to investigate the different configuration, VT NMR experiments were 

conducted (Figure 101). At higher temperature (above 273K), the two broad 

peaks disappeared and the sharp peak gains intensity. At temperatures between 

273 K and 243 K, the sharp peak vanishes. When decreasing the temperature 

even more, four broad peaks (two new weak broad peaks) can be observed in 

the 1H NMR spectra. It assumed that the K cation and the proton of NH group 

position influenced the 1H NMR spectrum with temperatures changing 

(Scheme 28). A new experiment was conducted to prove the hypothesis. It will 

be discussed in the next section. 

 

Figure 101: VT 1H NMR spectrum of 18 in THF-d8. 
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Scheme 28: K+ dissociation equilibrium and two possible configurations of 18 

in solution state.  

 

Scheme 29: Protonated of 18 with galvinoxy in THF. 

Since the bimetallic dinickel phenylhydrazido(2–) complex was synthesized, 

H-atom-transfer agents were employed to remove the final H atom in 18. Un-

fortunately, all attempts to generate the phenylhydrazido radical complex failed. 

When the galvinoxyl free radical was used (Scheme 29), an EPR silent reaction 

mixture and some purple crystals were obtained in two days. The x-ray struc-

ture indicated that the purple compound is a potassium galvinoxyl complex 

(Figure 102).  

  

Figure 102: Molecular structure of byproduct using 50% thermal ellipsoids.  
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6.4 Dissociation the phenylhydrazido-K+ interaction in bime-

tallic nickel(II) complex 

 

Scheme 30: Synthetic route for 19. 

From the 1H NMR  experiments (Figure 101) conducted for 18, it is assumed 

that the K+ cation and the hydrogen atom in the NH group have an influence on 

the chemical shift of the hydrogen atom of the phenyl group upon the tempera-

ture change. To remove this influence and separate the K+ cation from the anion, 

DB18C6 was employed. Treatment of a THF solution of 18 with DB18C6 re-

sulted in a color change from deep green to blackish green in 20 mins 

(Scheme 30). The color change suggested that a new species was generated. 

The new 19 was completely characterized by x-ray diffraction, 1D and 2D NMR, 

UV-vis and FT-IR spectroscopy as well as elemental analysis. 

Black crystals suitable for x-ray diffraction were obtained by slow diffusion of 

pentane/Et2O into a solution of 19 in THF at room temperature. 19 crystallizes 

in the Pbca space group. The molecular structure of 19 is shown in Figure 103 

and selected bond lengths (Å) and angles (°) are listed in Table 25. 

It became obvious that, similar to the case of the 18, the product is composed of 

the ligand–nickel unit, binding a (PhNNH)2– entity. The K+ is coordinated to the 

six oxygen atoms of the crown ether and two Et2O molecules. The distance of 

the N-N bond in PhNNH(2–) ligand is 1.401 Å, which is same of 18. The distance 
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of the two nickel centers of 3.835(7) Å is slightly shorter than in 18 

(3.850(7) Å). The dihedral angle between the ligand and the phenylhydra-

zido(2–) ring of 84.087(14)° is smaller than 18 of 86.478(80)°. Selected met-

rical parameters of the phenylhydrazido(1–/2–) complexes are listed in 

Table 24.  

Table 24: Selected metrical parameters of 17, 18 and 19. 

Complex 17 18 19 

Space group Triclinic Triclinic Orthorhombic 

Ni···Ni (Å) 3.943 3.850 3.835 

N-N distance (Å) 1.460 1.403 1.400 

Ni-NPh 1.911 1.903 1.901 

Ni-NH 1.962 1.907 1.898 

NH stretching 

(cm-1) 

3294 

3220 
3244 3244 

N-N-C(Ph) (°) 112.12 113.38 112.24 

Ni-N-N-Ni(°) 78.54 73.55 71.90 

δ(NH) (ppm) 1.60/2.10 1.35 1.53 

 

To further confirm the identity of the solution state of 19, an NMR spectroscop-

ic analysis was performed. As expected, the complex was diamagnetic, and the 

1H (Figure 104) and 13C {1H} NMR (Figure A37) data revealed that the potas-

sium anion is encapsulated by the crown ether in the solution. The difference 

between the 1H NMR spectra of 19 and 18 lies in the NH shift, which is at 1.53 

ppm and 1.35 ppm, respectively. The position of the NH proton was confirmed 

by 1H-15N HMBC (Figure 105). Additionally, the field of NH proton in 19 in 1H 

NMR spectrum is similar to the spectrum of XXVII (Figure 90). [72]  
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Figure 103: Molecular structure (50% probability thermal ellipsoids) of the 

anion of 19 (a) and 19 (b). Most hydrogen atoms omitted for clarity, except for 

N8-H.  

Table 25: Selected bond lengths (Å) and angle (°) for 19. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.853(3) N1-Ni1-N7 87.76(13) 

Ni1-N7 1.901(3) N1-Ni1-N4 171.03(12) 

Ni1-N4 1.916(3) N7-Ni1-N4 95.83(13) 

Ni1-N3 1.916(3) N1-Ni1-N3 82.62(13) 

Ni2-N2 1.858(3) N7-Ni1-N3 162.59(13) 

Ni2-N8 1.898(3) N4-Ni1-N3 95.85(13) 

Ni2-N6 1.913(3) N2-Ni2-N8 94.15(13) 

Ni2-N5 1.934(3) N2-Ni2-N6 170.40(13) 

N7-N8 1.401(6) N8-Ni2-N6 90.89(13) 

Ni1···Ni2 3.835(7) N2-Ni2-N5 82.38(13) 

  N8-Ni2-N5 168.80(14) 

  N6-Ni2-N5 94.14(13) 

  N8-N7-Ni1 121.6(2) 

  N7-N8-Ni2 119.0(2) 

  Ni1-N7-N8-Ni2 71.90(3) 
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Figure 104: 1H NMR (400 MHz) spectrum of 19 in THF-d8. Residual solvents 

are marked ^. * Dibenzo(18-crown-6); # Pentane. 

 

Figure 105: 1H-15N HMBC (52 MHz) spectrum of 19 in THF-d8. 

In the 1H NMR spectrum of 19 at RT, a peak at 9.35 ppm for ortho protons of the 

phenyl group is observed, which is the same as 17. With the temperature rising 

(above 293 K), 19 has same variation tendency for phenyl ring of phenylhydra-

zido(2–) as 17. It indicates that the phenyl group of phenylhydrazido(2–) rota-

tion free without K+ position influence. When decreasing the temperature, the 

signal of the ortho protons of phenyl group in the phenylhydrazido(2–) split 

gave four doublets with an integration of 1:2:1:2. The four peaks are at 8.64, 

8.93, 9.84 and 10.61 ppm in the 1H NMR spectrum. Taking the 1H NMR experi-

ments of 17 and 18 into consideration, it is assumed that the two isomers of 19 

exist at low temperature in the solution state. The two-possible configurations 

are shown in Scheme 31. The hydrogen atom in the NH group of phenylhydra-

zido(2-) is on the same/opposite side as the phenyl group of the phenylhydra-

zido(2-).  
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Figure 106: The field of 1H NMR (400 MHz) spectra in THF-d8 from 8.4 to 

10.0 ppm in VT (193 K–313 K) of 19. 

 

Scheme 31: Two possible configurations of 19 in solution. 

The IR spectrum revealed band at 3244 cm-1 for the NH stretching vibration. 

The band is the same for 18, and similar to XXVII with 3309 cm-1. [72]  
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6.5 Dehydrogenation and protonation of phenylhydrazine 

bridge complex 

 

Scheme 32: Synthetic route for 20. 

The redox chemistry of 17 was further exploited since the deprotonation of the 

phenylhydrazido(1-) was successfully done. DIAD, TEMPO, TBP and galvinoxy 

radical were used for the oxidize of phenylhydrazido(1–) ligand, however, the 

desired result was not achieved. Nevertheless, dehydrogenation of the phenyl-

hydrazido(1-) in 17 was achieved with Pb(OAc)4 under light exclusion giving 20 

IR spectrum (Figure 107a) of 20 shows no NH stretching. Additionally, the 

positive ion ESI-MS (Figure 107b) of 20 shows a major peak at m/z = 827.6 

consistent with the simulated isotope pattern of [20+H]+. Attempt for recrystal-

lized the suitable single crystals for x-ray diffraction could not be obtained yet. 
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Figure 107: (a) FT-IR spectrum of 20 in crystalline material; (b) ESI-MS of 20 

in THF; (Inset) experiment (upper) and simulated (lower) isotope distribution 

pattern for the peak pattern around m/z = 827.50 characteristic for the 

[20+H]+ ion. 

 

Scheme 33: Synthetic route for 21. 

Addition of the proton source [H-Lut]X (X = CF3SO3, BF4) into the THF solution 

of 17 results in an immediate color change from red to green. A green precipitate is 

formed within 10 mins with CF3SO3 as the counter ion. When changing the counter 

ion from CF3SO3
–
 to BF4

–
, green precipitate was formed at –30°C in two hours. 

This newly precipitated species exhibit bad solubility in THF, toluene, pentane 

and hexane, among others.  
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Figure 108: 11B NMR and 19F NMR spectrum of 21 in CD3CN. 

11B and 19F NMR spectra of the green crude precipitate revealed one signal at 

−1.14 and –151.23 ppm, respectively, which clearly showed the BF4
– counter ion 

in 21 (Figure 108). In comparison to the IR spectrum of 17, 21 shows three 

additional bands at 3354, 3307 and 3285 cm-1, which are assigned to the 

(NHNH2Ph) bridge band vibrations. These vibrations for the N-H stretch are 

very similar to the mononuclear iron complex with a “side on” bound phenylhy-

drazine complex at 3346, 3271 and 3230 cm-1 [76]. A new band at 1023 cm-1 in-

dicated the BF4 counter ion in the new complex. Additionally, the positive ion 

ESI–MS spectrum of 21 shows a major peak at m/z = 829.6 consistent with the 

simulated isotope pattern of [M-BF4]+. Until now, no suitable crystals for x-ray 

diffraction were obtained.  
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6.6 Summary 

 

Scheme 34: General transformation between the 17, 18, 19, 20 and 21. 

In summary, we present the oxidized, protonated and deprotonated phenyldra-

zine species in this chapter. The nickel bromide precursor (1) reacts with phe-

nylhydrazine in the presence of KC8 yield a new phenylhydrazido(1–) bridge 17 

by H2 evolution. Deprotonation of 17 with KH at RT led to H2 formation, and a 

new phenylhydrazido(2–) complex 18 is produced. In the phenylhydrazido(2–) 

complex 18, the potassium cation is fixed by the pyrazolate and phenylhydra-

zido(2–) ligand system. When potassium chelating reagent DB18C6 used, the 

potassium can be removed away of the pyrazolate ligand system. On the other 

hand, the phenylhydrazido(1–) can be dehydrogenated by means of Pb(OAc)4, 

which result in a new μ-1,2-diazendo moiety. 
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Chapter 7 Azobenzene Activation 

Abstract: In this work, we explore the N=N bond reduction reaction using the 

[L1Ni2(H2)]- species with or without K+ cation. Specifically, this “naked” dinu-

clear nickel(II) dihydride complex (4) reacts with azobenzene (PhN=NPh) to 

perform a two-electrons reduction, where two electrons come from H2 reduc-

tive elimination and the N-N single bond formed. Whereas the alkali metal ions 

(K+) significantly stabilized the dihydride complex against H2 release, the azo-

benzene (PhN=NPh) demonstrate one-electron reduction from the dinuclear 

nickel(II) dihydride (2).  
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7.1 Introduction 

Azobenzene, as the simplest example of an aryl azo compound, is linked by an 

N=N double bond, which is investigated cleavage by transition and f-block metal 

complexes in the last three decades. [77] The product from reduction of RN=NR 

is typically an imido complex with a coordinated NR group. Some synthetic 

2Fe-2S clusters cleave azobenzene to form bridging imido groups in cub-

ane-type products were reported also. [78] In past years, many early transi-

tion-metal,[79] lanthanide,[80] and main-group metal complexes[81] bearing re-

duced azobenzene ligands have been synthesized. However, the research efforts 

have been mainly focused on the N–N bond activation of azobenzene. Mecha-

nistic studies on the reaction of a β-diketiminato subunits bridged Fe(μ-H)Fe 

complex with azobenzene, which leads to N=N bond cleavage, indicated that 

substrate binding triggers reductive H2 release. [82, 83].  

Treating [L1NiII2(H)2]− (2−) with phenylacetylene leads to H2 formation and 

twofold reduction of the substrate, giving a product complex with unusual sty-

rene-1,2-diyl bridging unit in the bimetallic pocket. [11] Alkali metal ions Na+ 

and K+ were found to be closely associated with the dinickel dihydride core in 

2− and also with the olefinic C=C bond in the case of acetylene. [11] In this 

mechanism, dihydride reductively eliminate H2 to generate a coordinately un-

saturated species in which the NiII have been reduced to NiI by a total of two 

electrons, and the resulting reduced species can thus be generated without any 

strong reducing agents. In this chapter, we focus on the one or two electron re-

duction of the N-N double bond and the cleavage of the N-N double bond of az-

obenzene.  
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7.2 Two electron reduction the azobenzene 

 

Scheme 35: Synthetic routes for 22.  

Treatment of a THF solution of 4 with azobenzene results in an immediate the 

color change from orange to black (Scheme 35). No intensity gas was observed 

during the reaction. Beside this way, anther pathways were found for synthe-

sizing of 22. The procedures were described in the experimental section. 

Crystals suitable for x-ray diffraction were obtained by layering a hexane/Et2O 

mixture on a solution of 22 in THF at –30°C. 22 crystallized in the monoclinic 

space group P-1, and molecular structure was shown in Figure 109. To our the 

best knowledge, 22 is the first dinuclear nickel complex binding an azoben-

zene(2–) ligand in a μ-1,2 geometry. Taking the structure of 22 consideation, I 

presumed the two hydride ligands reductively eliminated H2 to generate a co-

ordinating unsaturated species [L1Ni2I]– in which the metals have been reduced 

by a total of two electrons and the resulting reduced the azobenzene substrate 

even though no gas was observed. The distance of N-N bond of 1.401 Å is longer 

than the N=N bond of free azobenzene with 1.25 Å, and is closer to the N-N 

bond of free hydrazine (1.45 Å). [84] Surprisingly, the related 22 is not charac-

terized by longer N-N bonds, but rather the N-C(Ph) bond diminishes to 1.408 Å 

(cf. 1.443 Å in trans azobenzene)[79b]. The N-N-Ph bond angle (109.145° and 

109.78°) is also changed on reduction; it is unlike that in the parent azobenzene 

(120°) but is remarkably close to the values expected for a tetrahedral atom. 
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The azobenzene molecule is no longer coplanar; the plane of the arene ring is 

twisted by 64.977° from the C-N-N plane. [85] 

 

Figure 109: Molecular structure (50% probability thermal ellipsoids) of the 

anion of 22 (a) and 22 (b). All hydrogen atoms omitted for clarity. 

  

Figure 110: (a) VT UV-vis spectrum of 22 in THF from 400 nm to 900 nm. (b) 

FT-IR spectrum of 22 in crystalline material.  

The UV-vis spectrum (Figure 110a) has a distinct absorption at 473 nm (ε= 

470 M−1·cm−1) and a small broad band at 585 nm (ε= 220 M−1·cm−1) in THF so-

lution. No N-N vibration can be distinguished from IR spectroscopy 

(Figure 110b). The ESI-MS(+) of THF/CH3CN (Figure A41) mixture solutions 

of 22 shows a dominate peak characteristic of the [K(DB18C6)]+, and a small 

peak at m/z = 665.46 is characteristic for the [L1Ni+2H]+.  
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Figure 111: Cyclic voltammogram curves of 22 in THF/0.1 M NBu4PF6 as an 

electrolyte at scan rates 100, 500 and 1000 mV/s vs Fc/Fc+ in the –2.5–1.5 V 

potential range.  

The cyclic voltammogram of 22 in THF at room temperature exhibits a reversi-

ble redox wave of 100 Mv/s-1 at E1/2 = –1.91 V (vs Fc/Fc+) (Figure 111), as well 

as two irreversible oxidation at higher potential. It indicates that the azoben-

zene(2-) may be oxidized by one electron to the azobenzene radical complex.  
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7.2 One electron reduction of azobenzene  

 

Scheme 36: Synthetic routes for 23.  

Without the alkali metal (K+) interaction of the dihydride complex, the azoben-

zene was reduced by two electrons to an azobenzene(2–) species. Related the 

previously work in chapter 3, the alkali metal ions (K+) significantly is stabilized 

the dihydride complex against H2 release. Keep this in mind, treatment of com-

plex 2 with azobenzene in THF solution results in an immediate a color change 

from red to black. Suitable crystals for x-ray diffraction were obtained from 

hexane layer into THF at –30°C in two days with 10% yield (The yield increased 

to 70% when employing a new method that is discussed in experimental sec-

tion). Surprisingly, 23 exhibits a monoanionic azobenzene(1–) radical bridge 

compound. The N–N distance in azobenzene(1−) of 1.353 (4) Å is in between 

that of the N=N double bond in azobenzene (1.25 Å) and the sp3-sp3 N–N single 

bond typical of hydrazine (1.45 Å), [84a] thus showing that the azobenzene is 

reduced. 23 crystallizes in the triclinic space group P-1, and the molecular 

structures in ORTEP are shown in Figure 112 and selected bond lengths (Å) 

and angles (°) are listed in Table 26. To the best of our knowledge, this is the 

first nickel complex with a bridging azobenzene radical.  
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Figure 112: Molecular structure (50% probability thermal ellipsoids) of 23. All 

hydrogen atoms omitted for clarity. (a) top view; (b) side view; (c) azobenzene 

ligand, N atoms from pyrazolate ligand and nickel central. 

Table 26: Selected bond lengths (Å) and angles (°) for 23. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.892(2) N1-Ni1-N3 82.27(10) 

Ni1-N3 1.899(2) N1-Ni1-N4 171.37(10) 

Ni1-N4 1.934(2) N3-Ni1-N4 91.21(10) 

Ni1-N7 1.959(2) N1-Ni1-N7 86.47(10) 

Ni2-N2 1.868(2) N3-Ni1-N7 159.31(11) 

Ni2-N5 1.889(2) N4-Ni1-N7 101.41(10) 

Ni2-N6 1.920(2) N2-Ni2-N5 82.77(10) 

Ni2-N8 1.921(2) N2-Ni2-N6 173.42(10) 

N7-N8 1.353(4) N5-Ni2-N6 93.45(10) 

Ni1-Ni2 3.993(7) N2-Ni2-N8 86.04(10) 

  N5-Ni2-N8 168.13(10) 

  N6-Ni2-N8 98.05(10) 

  N8-N7-Ni1 117.81(18) 

  N7-N8-Ni2 120.51(19) 

  Ni1-N7-N8-Ni2  121.10(19) 

  C40-N7-Ni1 111.05(18) 

  C46-N8-Ni2 121.10(19) 

  C40-N7-N8-C46 163.62(25) 
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Scheme 37: Two possible conformations of the azobenzene radical.  

 

Figure 113: Selected examples of binding modes of azobenzene motifs. [80a, e] 

As shown in Scheme 37, the azobenzene radical adopts an E–conformation, the 

two phenyl rings are located in on the opposite sides of the ligand. A similar 

conformation was reported with the Sm metal. [80a] However, here the azoben-

zene was not reduced by the metal but coordinated with a N=N double bond in 

the original state with the azobenzene (Figure 113) [80a]. The Ph−N=N−Ph di-

hedral angle of 23 is 66.123°, which is larger than that found in the azobenzene 

radical complexes. [80a] The torsion angle of C(Ph)–N=N–C(Ph) is 163.62°. A similar 

value of azobenzene radical was observed in the known complexes 

(C5Me5)2Sm(PhNNPh)(THF) (1.32 and 1.39 Å),[80a]  

[η5-2,5-(Me3C)2-3,4-Me2C4P]2 Tm(PhNNPh) (1.35 Å),[80e] 

[η5-2,5-(Me3Si)2-3,4-Me2C4P]2Sm(PhNNPh) (1.35 Å),[80e] 

[(iPr3Si)2N)]2Sm(PhNNPh) (1.357 Å),[80i] and (nacnac)Mg(PhNNPh) (1.35 Å) [81f] 

in which the azobenzene ligands are unambiguously described as radical mono 

anion. Each nickel center hosts in the two {N3}-tridentate binding sites and li-

gated by an extra nitrogen atom from azobenzene ligand. Ni1 adopts a twisted 

tetracoordinated geometry with a sum angle of 361.37°. Additionally, the dis-



CHAPTER 7 AZOBENZYL ACTIVATION 

136 

 

tance between the two nickel and the torsion angle of Ni-N-N-Ni is 3.993(7) Å 

and 86.91°, respectively.  

The UV-Vis spectrum (Figure 114) of 23 has an obvious absorption at 465 nm 

(ε = 600 M-1 cm-1) and two broad feature at 579 (ε = 625 M-1 cm-1) and 731(ε = 

586 M-1 cm-1) nm in THF, which can be ascribed to the presence of the electron 

in the lowest antibonding orbital. [86] Similarly, the azobenzene radical com-

pounds (nacnac)Mg(PhNNPh) [81f] and Na(PhNNPh) [86] have bands at 404, 

628 nm and 433, 628 nm, respectively.  

 

Figure 114: (a) VT UV-vis spectrum of 23 in THF from 293 K to 193 K. (b) plots 

of the absorption band at different temperatures. 

The x-band EPR spectrum of 23 in THF at room temperature, shows a narrow 

and almost isotropic spectrum with g1 =g2 =g3 = 2.043 (Gaussian line shapes) 

with no discernable hyperfine interactions to the central metal ion or the ni-

trogen atoms (Figure 115a). Thus, shape and position of the signal support 23 

to be a typical organic radical, with the allocation of the unpaired electron in 23 

on the azobenzene-bridged ligand. Whereas the Mg-nacnac compounds with an 

azobenzene radical, the unpaired electron located on the two nitrogen nuclei (I 

= 1). The 14N coupling constant is ~7.6 G.[81f]  
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Figure 115: Experiment and simulated at room temperature EPR spectra of 23 

in THF. (a) 298 K; (b) 153K.  

23 can also be generated by a one reduction involving the monoanionic [N2]– 

nickel complex 24 (chapter 8.2), which is generated and isolated by the reaction 

of 2 with N2 in the presence of external [H]+. Freshly generated 24 mixing with 

1 equivalent azobenzene in THF, gave a color change from brown to black. The 

UV-Vis changes correspond with those seen for the azobenzene radical complex 

obtained from 1a with azobenzene. Isolation of the solid product and redissolu-

tion into THF also gives the same EPR spectrum. 

The electronic nature of 23 is suggested by its geometric structure 

(Figure 116). The energy–minimized DFT calculated structure of 23 is in good 

agreement with that obtained by x-ray diffraction. The unpaired electron is lo-

cated on the azobenzene ligand with around 65%. The distance of dinitrogen 

atoms of the azobenzene ligand and the two nickel centers of 1.340 Å and 

3.979 Å from DFT calculation are slightly shorter than the experimental data of 

1.353 Å and 3.993 Å (Table 27). The calculated IR spectrum shows the dinitro-

gen stretch at 1234 cm-1 for the 14N-azobenzenyl bridging ligand (Table 28). 
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Figure 116: Spin density plot of 23. Mulliken Spin Population: Ni1 = 0.094794, 

Ni2 = 0.055976, N9 = 0.249510, N10 = 0.372491. 

 

Figure 117: Calculated IR spectrum of 23. 
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Table 27: Selected distances (Å) and angles (°) for 23. 

 d(N-N)/Å d(Ni···Ni)/Å Φ(Ni-N-N-Ni)/° 

Exp 1.353 3.993 86.9 

DFT 1.340 3.979 89.2 

Table 28: ν(N···N) (IR) for 23. 

 ν(14N-14N)/cm-1 ν(15N-15N)/cm-1 △ν/cm-1 

Exp - - - 

DFT 1234 1215 21 
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Figure 118: Cyclic voltammogram curves of 23 in THF/0.1 M NBu4PF6 as an 

electrolyte at scan rates 100, 500 and 1000 mV/s vs Fc/Fc+ in the –3.0–0.5 V 

potential range. Impurity is marked (*). 

The cyclic voltammogram of 23 in THF at room temperature exhibits a qua-

si-reversible redox wave of 100 Mv/s-1 at E1/2 = –1.91 V (vs Fc/Fc+) 

(Figure 118). It indicates that the azobenzene(1-) may be reduced by one elec-

tron to the azobenzene(2–) complex. Reaction of 23 with elemental potassium 

results in a rapid color change from purple to brown in the presence of DB18C6 

at room temperature. The final product 22 was identified by 1H NMR spectrum 

after the work-up.  

 

  

* 



CHAPTER 7 AZOBENZYL ACTIVATION 

141 

 

7.4 Summary 

 

Scheme 38: Activation of azobenzene and reduce the azobenzene monoanionic 

radical. 

In summary, the two different [L1Ni2]– and [L1Ni2(H2)]– cores (with or without 

K+ cation stabilized) can be viewed as two different species for azobenzene ac-

tivation. In case of the [L1Ni2]– core, the azobenzene has two electrons reduc-

tion and a N-N single bond formation. Whereas in the [L1Ni2(H2)]– core, the az-

obenzene substance is only reduced once to generate a new azobenzene(1-) 

monoanionic radical complex. Meanwhile, the new azobenzene monoanionic 

radical is allowed reduced by elemental potassium. This paradigm may be use-

ful for understanding the role of the K+ cation in the dinickel dihydride system 

(Scheme 38). Ongoing works are focusing on cleaving the N-N double bond and 

protonating the N-N single bond.  
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Chapter 8 N2 to NH3 Conversion in the 

dinuclear nickel(II) cofactor 

Abstract: Treatment of 2 with N2 in the presence of stoichiometric H+ allowed 

isolation of [N2] – mono-radical bimetallic dinickel(II) complex and it was char-

acterized by x-ray diffraction first time. The anionic [N2]– species can be func-

tionalized by a hydrogen atom transfer to generate the N2H – bridging complex. 

Then the [N2H]– as an intermediate for the reduction of N2 to NH3 when sup-

plied with reduction agent KH at room temperature. In addition, nitrogenous 

intermediates, including hydrazine (N2H4), Hydrazido (N2H3– or N2H22–) were 

isolated and characterized by x-ray diffraction, and interconversion has suc-

cessfully done by chemical regent.  
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8.1 Introduction 

The conversion of dinitrogen to more valuable compounds is a challenge that 

has confirmed by chemists for over a century. In nature, the dinitrogen is re-

duced by nitrogenase enzymes, which contain large metalloproteins and pro-

mote a sequence of proton-coupled electron-transfer reactions to accomplish 

the reduction. [87] Industrially, the Haber-Bosch ammonia synthesis hydrogen-

ates N2 at high temperature (> 400oC) and high pressure (> 200 atm) over an 

iron-based catalyst surface. [88] The energy issues inspiring the transition metal 

complexes with N2 as one of the ligands have allowed chemists to conduct fun-

damental studies into dinitrogen reduction.  

 

Figure 119: Most common binding motifs with dinitrogen complexes. 

It is now well known that N2 can coordinate to almost all transition metal, and a 

range of different binding modes have been observed (Figure 119). [89] When 

dinitrogen acting as a ligand, the commonly observed oxidation states are 0, 2– 

and 4–, and a few examples for complexes with 3– radical anion. [90] Until now, 

the mono anionic 1– oxidation state of N2 was only detected in the MO (M = Mg, 

Ca) surfaces at low temperatures. [91]  

Though the transition metals with dinitrogen compound is well known. Sur-

prisingly, over the past decades, only few isolable Ni(N2) compounds were re-

ported in literature. [18, 92] And Ni complexes are generally considered to bind 

N2 without substantial bond weakening, [89] and previous efforts toward N2 

splitting in Ni metal were unsuccessful.  
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Figure 120: Dinitrogen compounds with nickel in the -diketiminato ligand. 

[92b,c] 

The impressive dinitrogen nickel complexes work from Limberg et.al., [92b, c] they 

are able to isolate a neutral complex and odd or evenly charged reduction 

products stemming from a precursor material (Figure 120, XXX-XXXIV). The 

remarkable example for XXXI from the series of the nickel dinitrogen complex-

es is an analogous regarding the linearity of the MN2M bridge. However, a typi-

cal spectrum for XXXI was observed from EPR measurement, and without any 

14N2 coupling. It is attributes the electron couples very strongly antiferromag-

netically to one of the original unpaired NiI electrons, and the question arises as 

to whether it has been added to a d orbital (→Ni0) or to an N-based orbital. On 

the other hand, the stretching frequencies for the N-N bond in these compounds 

(XXX-XXXIV) are decrease while the bond distance of dinitrogen enlarges. 

(Table 29). [92b,93] Some other Ni–N2 adducts were reported since the remarka-

ble nickel dinitrogen by Limberg and co-workers, but no any weakly activation 

were happened for these nickel dinitrogen compounds. Some “side-on” and 

“end-on” Ni-N2 examples were shown in Figure 121. [92e-i] 
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Table 29: Reported stretching frequencies (cm-1) and bond length (Å) for the 

N– N bond of free N2 and activated forms. 

 N2[94] XXX XXXI XXXII XXXIII XXXIV 

νIR – 2164 – – - - 

νRaman 2331 – 1825 1696 1689 1685 

d(NN) 1.098 1.120 1.143 1.185 1.195 1.192 

 

Figure 121: Selected examples for the Ni-N2 adducts were reported since 

2010. [92d-f,92k] 

N2 to NH3 conversions have been reported in many transition metals al-

ready, [95.96] but not for the nickel center metal. The favorable thermodynamics 

associated with N2 hydrogenation to ammonia demonstrates that the challenge 

with nitrogen fixation is principally kinetic in origin. The pathways typically 

associated with both proton-coupled electron transfer (PCET) or Hydrogen 

atom transfer (HAT) often avoid high-energy intermediates and therefore may 
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facilitate smooth N-H bond formation and ultimately release of free ammonia, 

offering a potential advantage over conventional dinitrogen reduction strate-

gies. [97] It is important to note that the homogeneous ammonia synthesis cata-

lysts reported by Schrock and Nishibayashi could operate by PCET or HAT, [98] as 

the combination of strong pyridinium acids and metallocene reductants can, in 

principle, lead to the in situ formation of pyridinyl radical species with exceed-

ingly weak N-H bonds (BDFE N-H ~35 kcal/mol) 

 

Figure 122: Delivery of a hydrogen atom equivalent to a bound dinitrogen 

fragment by a pyridinyl radical species. 

 

Figure 123: The bridging hydrides of E4 (green) are positioned to share a Fe 

“vertex”, as suggested by hydride protonation (hp) mechanism of H2 release 

upon N2 binding.  

Biology is offering blueprints for the use of metal hydride species in the reduc-

tive binding and activation of inert substrates. In this case, reducing equivalents 



CHAPTER 8 N2 TO NH3 CONVERSION 

147 

 

are stored as hydrides, preferably at multi-metallic sites, which upon reductive 

elimination of H2 unmask the low-valent metal species. This strategy avoids 

strong reducing agents and may bypass highly unfavorable one-electron re-

duced substrate intermediates. The prominent metallobiosite exploiting this 

mechanism is the FeMo cofactor of nitrogenase, where binding of inert N2 is 

preceded by charging of the Fe/S active site with four electrons and four pro-

tons, and is accompanied by the obligatory release of one molecule of H2. [99, 100] 

It has recently been shown that photolysis of the charged state, denoted E4(4H) 

according to the Low-Thorneley kinetic scheme for the nitrogenase mecha-

nism,[100a] generates an intermediate E4(H2;2H) described as an H2 complex of 

the doubly reduced Fe/S cluster. [101] It has further been suggested that this H2 

complex may be a thermally populated intermediate on the trajectory of reduc-

tive elimination of H2 from, and reaction of N2 with, the E4(4H) state 

(Figure 123). 

Recently, Manz has prepared complexes including μ-η1,η1-ligands like N2H4, 

N2H3–, N2H2–, N2H– from 1 with N2H4, which are supposed to represent im-

portant intermediates in the process of N2 fixation and activation. In his work, 

the compounds of N2Hx (x = 1, 2, 3 or 4) species were characterized by x-ray or 

spectroscopies. [11] In an effort to access and rationalize the dinitrogen fixation 

in the dinickel system, we sought to (i) do dinitrogen activation in the masked 

[L1NiI]– species; (ii) expand the interconversion between all the NXHY (x = 1 and 

2, y = 0, 1, 2, 3 or 4) species.  
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8.2 Synthesis [N2]– monoanionic radical 

 

Scheme 39: Synthetic route for 24. 

H2 reductive elimination from metastable hydride complexes have been used 

previously as a route to dinitrogen complex, [102] there are three literature ex-

amples of N2 binding directly from crystallographically verified hydride com-

plexes. [92c,103] This H2-N2 exchange is interest in the context of catalytic N2 re-

duction because the formation of N2 complexes in this way avoids the use of 

harsh reducing agents. Solution of 2 in aromatic and hydrocarbon solvents 

show no signs of decomposition or new species by 1H NMR when heated to 

60°C for several days under Ar or N2 atmosphere.  

Inspired the work from FeMo-co hydride protonation (hp) and reductive elimi-

nation (re) mechanism study from Hoffmann,[100a] two new approaches were 

tried to do the dinitrogen activation (Scheme 39). (I) Treatment of 2 with ab-

solutely dry [H-Lut][OTf] or [H-Lut][BF4] under N2 atmosphere results in a col-

or change from orange to brown red immediately, and gas evolution was ob-

served. The gas was verified and was quantified as 1.4 equivalents (vs 1 equiva-

lent of 2) by analyzing the gas phase of the reaction mixture using gas chroma-

tography (Table A1, Table A2 and Figure A42). After the reaction, colorless 

substance (KCF3SO3) was obtained from parent solution. Filter the parent solu-

tion and the volatile removed under vacuum. The crude product can dissolve in 

many solvents, such as pentane, hexane, diethyl ether, THF and toluene. Never-

theless, suitable crystals for x-ray diffraction were obtained from hexane lay-



CHAPTER 8 N2 TO NH3 CONVERSION 

149 

 

ered into saturation solution of 24 in THF at –30°C. (II) afterward, a new 

method was observed to produce the dinitrogen complex. Treatment of 2 with 2 

equivalents strong Lewis acidic BCF (tri(pentafluorophenyl)borane) gives a 

color change from orange to brown-red in 20 mins and evolution of gas bubbles 

was observed slowly. No precipitate was observed from the reaction mixture 

even after a prolonged period. Suitable crystals for x-ray diffraction were ob-

tained from THF slow evaporation at room temperature in a week. 

Treatment of 2 with stoichiometry BCF in solution of THF-d8, 1H NMR spectrum 

indicates that still has unreacted 2. The peak at –2.91 ppm in the 11B NMR 

(Figure 124) and three peaks at -136.07 ppm (d, 3JFF = 23 Hz, 6F), –168.1 ppm 

(t, 3JFF = 20 Hz, 3F) and –171.0 ppm (m, 6F) in the 19F NMR spectrum were ob-

served (Figure 125), which are similar to the K[HBCF] complex spectrum in the 

11B and 19F NMR. [104] A paramagnetic resonance was observed in the 1H NMR 

spectrum (Figure 126) once two equivalents of BCF was added.  

 

Figure 124: 11B NMR spectrum of 2 with 1 equiv BCF in two days. 
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Figure 125: 19F NMR spectrum of 2 with stoichiometry BCF in two days 

 

Figure 126: 1H NMR spectrum of 2 with one equivalent BCF and two equiva-

lent BCF. 
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Figure 127: Molecular structure (50% probability thermal ellipsoids) of 24. All 

hydrogen atoms omitted for clarity.  

Table 30: Selected bond lengths (Å) and angles (°) for 24. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.865(1) N1-Ni1-N7 87.07(5) 

Ni1-N7 1.884(1) N1-Ni1-N3 83.80(5) 

Ni1-N3 1.886(1) N7-Ni1-N3 169.39(5) 

Ni1-N4 1.898(1) N1-Ni1-N4 175.35(5) 

Ni2-N2 1.874(1) N7-Ni1-N4 94.54(5) 

Ni2-N8 1.883(1) N3-Ni1-N4 94.98(5) 

Ni2-N5 1.899(1) N2-Ni2-N8 87.37(5) 

Ni2-N6 1.907(1) N2-Ni2-N5 83.13(5) 

N7-N8 1.132(4) N8-Ni2-N5 170.35(5) 

Ni1-Ni2 3.962(5) N2-Ni2-N6 178.25(5) 

  N8-Ni2-N6 94.01(5) 

  N5-Ni2-N6 95.51(5) 

  N8-N7-Ni1  139.5(2) 

  N7-N8-Ni2  138.5(2) 

  Ni1-N7-N8-Ni2  2.82(6) 

 

24 was characterized by x-ray diffraction, FT-IR-, Raman-, UV-Vis-, EPR-, XES-, 

spectroscopies, CV-, SQUID- measurements and DFT calculations as well as el-

emental analysis (C, H and N). 24 crystallizes in the monoclinic space group 

P21/c with four molecules in the unit cell. The molecular structure of 24 in OR-

TEP diagram is shown in Figure 127 and selected bond lengths (Å) and an-
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gles (°) are listed in Table 30. An almost planar six-membered {N2Ni2N2} ring 

was formed by the two nickel center atoms, pyrazolate–N and dinitrogen ligand. 

In 24, two nickel(II) ion host in the two {N3}-tridentate binding sites of the tri-

anionic ligand scaffold, bridged by the pyrazolate and nitrogen atom from dini-

trogen ligand (Figure 127). Both nickel centers are coordinated in an expected 

square-planar fashion, with the sum angles being 360.3° and 360.03°, respec-

tively. This is in agreement with the low-spin d8 configuration. The distance of 

the two nickel ions and torsion angle of Ni-N-N-Ni are 3.962(5) Å and 2.82(6)°, 

respectively. The N-N bond distance of dinitrogen ligand of 1.132 is consistent 

with other reported Ni(N2) complexes (Table 35),[92] and is slightly longer than 

the free dinitrogen molecule of 1.10 Å. [94] Compared with other transition met-

als dinitrogen compounds, [89] the dinitrogen molecule is weakly activated. To 

our the best knowledge, complex 24 is the first [N2]– monoanionic radical com-

plex characterized by x-ray diffraction. 

From the solid state, 24 is not a neutral molecule if the dinitrogen is considered 

as a neutral molecule fashion. Then there is one proton missing in the solid 

structure. However, the 1H NMR spectrum of 24 in THF-d8 shows a paramag-

netically shifted resonance (contained some decayed hydroxide nickel complex 

11). Then the question arises as the paramagnetically shifted resonances from 

the unpaired electron added to a d orbital (→NiI) or to an N-based orbital. It is 

noteworthy that to the NiI compound, reduction results in a large decrease in 

the vibrational energy (299 cm-1 for the dinickel (I/0) and 428 cm-1 for the 

dinickel (0) species), although N-N bond distance increase by < 0.1 Å for the 

two electron reduction [105]. One electron reduction of [NiNNNi] core in XXXI by 

potassium has N-N bond length at 1.143 Å and rRaman frequencies at 

1825 cm-1. [92b] In order to know whether the unpaired electron is located on 

the nickel center or on the dinitrogen ligand; firstly the IR and rRaman spec-

trum were employed. A sharp band separately observed at 1896 cm-1 in IR 
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spectra and at 1900 cm-1 in rRaman, which are attributed to the 14N2 stretching 

of dinitrogen ligand (Figure 128). The dinitrogen ν(N2) band for 24 appear at 

lower frequencies than the value for free dinitrogen molecule (2331 cm-1)[106] 

and XXX (2164 cm-1)[92b], XXXV (2156 cm-1)[92e], XXXVII (2223 cm-1 and 

2234 cm-1) [92f] and XXXVIII (2145 cm-1)[92i], but the value is similar to XXXI 

(1825)[92b]. The 15N2 stretching of 24 in IR and rRaman were observed at 

1830 cm
-1

 and 1836 cm
-1

, respectively (
14

N–15
N = 63 cm

-1
) (ν(

14
N2)/ν(

15
N2) = 1.034; 

calcu ν(14N2)/ν(15N2) = 1.035) (Figure 128). Two bands (1900 and 1836 cm-1) 

for N2 stretching in labeling 24 were observed. We assumed that 15N2 ligand 

exchanged with 14N2 in solution.  

In XXXI, DFT predicts a doublet ground state and a spin-density distribution 

corresponding to one spin-up electron at each nickel atom and one spin-down 

electron in an N-N π* orbital between the Ni atoms. And EPR spectrum is typical 

for NiI species. Therefore, I believed that the unpaied electron has been added 

to a d orbital of nickel instead of N-based orbital. [92b]  

 

Figure 128: (a) IR spectra (3500–500 cm-1) of 24 in crystalline material at 

room temperature; the 14N2 spectrum is in black and 15N2 spectrum is in red. (b) 

Resonance Raman spectra (1600–2000 cm-1) of 24 in crystalline material at 

room temperature; the 14N2 spectrum is in black and 15N2 spectrum is in red.  
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24 was analyzed by UV-vis spectroscopy (Figure 129) which showed a new 

band at 320 nm (ε = 1600 M-1·cm-1) and a shoulder around 500 nm (ε = 400 

M-1·cm-1). These two bands are assigned to N2→NiII charge transfer (CT) transi-

tions.  

 

Figure 129: (a) UV-vis spectra in THF of 2 and 24; (b) VT UV-vis spectra in THF 

from 293 K to 193 K of 24. 

In collaboration with Eckhard Bill and Van Gastel Maurice from Max-Planck In-

stitute for Chemical Energy Conversion, X-band EPR, cw Q-band EPR and Davies 

ENDOR on THF solutions of 24 were performed to confirm the identity of 24 

has S=1/2 in solution. X-band EPR measurements of 24 in solid state at 10 K 

shows wide splitting (Figure 130a), whereas in THF solution at 30 K demon-

strates a different and much more narrow peak (Figure 130b). No clearly in-

formation were obtained for 24 in solid or solution X-band EPR spectra. The 

cw-Q-band EPR was conducted for 24. Q-band EPR measurements of 24 in THF 

at 30 K exhibits two components in solution (Figure 131a). The spectrum can 

be simulated with two sub-spectra corresponding to the two components which 

the component 24-1 (green) with g values (2.13, 2.13 and 1.99) (gav = 2.08) and 

the component 24-2 (blue) with g values (2.08, 2.08 and 2.06) (gav = 2.07). The 

ratio of the two components is around 0.44:0.56.  
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Figure 130: (a) X-band EPR spectra of 24 in solid material at 30K, Frequency = 

9.6 GHz, power = 2 mV. (b) First derivative (upper) and theoretical absorption 

(lower) x-band EPR spectra of 24 in THF at 30 K. Frequency = 9.6 GHz, power = 

0.05 mV. 

 

Figure 131: (a) First derivative (upper) and theoretical absorption (lower) 

cw-Q-band EPR spectra of 24 in THF at 30 K; (b) Simulated EPR spectra with 

two sub-spectra corresponding to 24-1 (green) and 24-2 (blue). 
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Table 31: the g values of the components and component ratio. 

 24-
1
 (green) 24-

2
 (blue) 

gx 2.13 2.08 

gy 2.13 2.08 

gz 1.99 2.06 

ratio (%) 43.6 56.4 

  

Figure 132: (a) Theoretical absorption pulse Q-band spectrum of 24 in THF at 

10 K, Frequency = 34 GHz, power = 5 mV; (b) Simulated EPR spectrum, alterna-

tive fit with conditions for three component, the first two sub spectra (green 

and blue) suggest nickel-based spin; whereas the sub spectrum 24-3 (turquoise) 

is corresponds to the N2 based. (c) Simulated EPR spectrum, alternative fit with 

conditions for 24-3 (turquoise) taken (hyperfine interaction with two 14-N). 
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Table 32: the g values of the components and components ratio. 

 24-
1
 (green) 24-

2
 (blue) 24-

3
 (turquoise) 

gx 2.34 2.14 2.08 

gy 2.18 2.15 2.07 

gz 1.98 1.99 2.05 

ratio (%) 8.0 76.2 15.8 

 

However, the hyperfine Q-band spectrum clearly showed that three compo-

nents in solution of 24. The sub-spectra of green part with g values are 2.34, 

2.18 and 1.98 and blue part with g values are 2.14, 2.15 and 1.99, respectively 

(Figure 132). The wide-split g values of the first two sub spectra suggest nick-

el-based spin. Two simulations were done for the third component. The tur-

quoise sub spectrum (Figure 132b) show that the 14N with g values of 2.08, 

2.07 and 2.020 or hyperfine interaction (Figure 132c) in the two 14N with g 

values of 2.080, 2.07 and 2.05. I presumed that the three components are three 

configurations of 24 in solution (Figure 133). 

 

Figure 133: Three possible configurations of 24 in solution. 

EPR measurements show that 24 has three components in solution. The elec-

tronic nature of 24 suggested by its geometric structure was confirmed by DFT 

calculations (Figure 134). The energy–minimized DFT calculated structure of 

24 is in good agreement with that obtained by X-ray diffraction. The unpaired 

electron can be estimated at the Ni center around 50 % and at the N2 ligand 

around 45 %. Therefore, the unpaired electron are delocalized on the [NiNNNi] 

system. The distance of Ni···Ni and N2 ligand of 1.151 Å and 3.964 Å from DFT 
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calculation are longer than the experimental data of 1.132 Å and 3.962 Å 

(Table 33). The N2 stretching of 1927 cm-1 for 14N2 in calculated IR spectrum is 

lower than experimental data of 1896 cm-1 (Figure 135 and Table 34).  

 

Figure 134: Spin density plot of 24. Mulliken Spin Population: Ni1 = 0.251814, 

Ni2 = 0.251829, N1 = 0.218855, N2 = 0.222082. 
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Figure 135: Calculated IR spectrum of 24. 

Table 33: Selected distances (Å) and angles (°) for 24. 

 d(N-N)/Å d(Ni···Ni)/Å Φ(Ni-N-N-Ni)/° 

Exp 1.132 3.962 2.82 

DFT 1.151 3.964 2.4 

Table 34: ν(N···N) (IR) for 24. 

 ν(14N-14N)/cm-1 ν(15N-15N)/cm-1 △ν/cm -1 

Exp 1896 1836 60 

DFT 1927 1863 64 

 



CHAPTER 8 N2 TO NH3 CONVERSION 

160 

 

 

Figure 136: Cyclic voltammograme of 24 in THF/0.1 M Bu4NPF6 at a scan rate 

of 50 mV/s vs Fc/Fc+. 

The electrochemical behavior of 24 was investigated by cyclic voltammetry in 

the presence of 0.1 M NBu4PF6 in THF solution at RT (Figure 136). The cyclic 

voltammetry shows a quasi-reversible redox wave of scan of 100 mV/s-1 at E1/2 

= –1.28 V (vs. Fc/Fc+), indicates that the dinitrogen radical is possible reduce to 

diazendio.  
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Table 35: Comparison with bond lengths and ν (N2) stretching vibration frequencies of formally monovalent iron, cobalt and nickel di-

nitrogen and compounds reported previously. 

Complex Coordination Nr. M-N (Å) N-N (Å) ν NN (cm− 1) Ref 

Free N2 - - 1.098 2331 106 

[Fe(nacnacMe)]2(μ-N2) 3 1.745(3), 1.775(2) 1.186(7), 1.172(5) 1810 a 108 

K2[Fe(nacnacMe)]2(μ-N2) 3 1.741(5); 1.761(7) 1.215(6) 1625, 1437 108 

[Fe(nacnacMe)(tBupy)]2(μ-N2) 4 1.816(2) 1.151(3) 1770a 108 

[Fe(nacnactBu)]2(μ-N2) 3 1.770(5), 1.779(5) 1.182(5) 1778b 5c 

K2[Fe(nacnactBu)]2(μ-N2) 3 1.763(6), 1.765(6) 1.241(6) 1589a/1123 5c 

Na2[Fe(nacnactBu)]2(μ-N2) 3 1.749(3), 1.746(3) 1.238(4) 1583a/1127 5c 

[Co(nacnactBu)]2(μ-N2) 3 1.840(8) 1.139(2) 1742 107 

K2[Co(nacnactBu)]2(μ-N2) 3 1.750(1) 1.220(2) 1599 107 

Na2[Co(nacnactBu)]2(μ-N2) 3 1.743(7), 1.735(6) 1.211(3) 1598 107 

Mg[Co(nacnactBu)]2 - - - 1868 108 

[Ni(nacnactBu))]2(μ-N2) 3 1.836(3), 1.830(3) 1.120(4) 2164b 92b 

K[Ni(nacnactBu))]2(μ-N2) 3 1.770(7) 1.143(8) 1825a 92b 

K2[Ni(nacnactBu))]2(μ-N2) 3 1.931(5) 1.185(8) 1696a 92b 

[SiPiPr3]Ni(μ-N2) 5 1.905(2) 1.087(2) 2223b 92f 
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[SiPPh3]Ni(μ-N2) 5 1.891(2) 1.083(2) 2234b 92f 

[DIMPY](Ni)(μ-N2) 4 1.099(1) 0.92 2156b 92e 

[Cu3(nacnacMePh2)](μ-N2) 3,4 2.209(2), 2.028(2) 1.096(1) 1952a 105 

[(SiPipr
3)Fe(N2)]Na(THF)3 5 1.763(3) 1.147(4) 1891b 76 

[(SiPipr
3)Fe(N2)]Na(12-crown-4)2 5 1.795(3) 1.132(4) 1920b 76 

[(TPB)Fe-NN]Na 5 1.776(2) 1.149(3) 1877b 76 

[(TPB)Fe-NN]Na(12-crown-4) 5 1.776(2) 1.144(3) 1905b 117 

[{(AltraPhos)Fe}2(μ-N2)]K(18-crown-6) 5 1.783(3) 1.135(4) 1925b 109 

L1Ni2(μ-N2) 4 1.884(3), 1.875(2) 1.132(4) 
1893b/1098b 

1900a 
this work 

a rRaman spectra; b IR spectra 
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8.3 Hydrogen atom transfer to dinitrogen monoanionic radical 

 

Scheme 40: Synthetic routes for 25. 

The first N-H bond-forming step in hypothetical dinitrogen reduction cycle gen-

erates a transition metal diazenido ligand, M-N=NH. While a number of substi-

tuted diazenides, M-N=N-E have been prepared with boryl[110], silyl[111], benzyl[112] 

and alkyl[113] substituents, the only structurally characterized “parent” (E=H) 

example by Schrock. [114]. 

Attempt to chemically reduce μ-η1: η1-N2 to μ-η1: η1-N2H with well–defined hy-

drogen-atom-transfer agents (i.e., catechol, hydroquinone and 1,4 cyclohexadiene) 

did not yield the desired products. Only decay hydroxide 11 was obtained be-

cause the dinitrogen bridge compound is extremely sensitive to moisture. In or-

der to prevent 11 formation from the reduce μ-N2 reaction, dried TEMPO–H 

(65.2 kcal mol-1 in benzene)[115] was employed for the HAT reaction, leading to 

the isolation of the targeted compounds. As a consequence, the bond dissociation 

free energies (BDFE) in N-H bond of 25 is more than BDFE of TEMPO-H (Eqs 1 

and 2).  

BDFEN-H ＜ BDFER-H        1 

[M]-N=NH+R·→[M]-N≡N + R-H 

BDFER-H ＜ BDFEN-H        2 

[M]-N≡N + R-H → [M]-N=NH+R· 

25 from this reaction was identified from 1D and 2D NMR, IR-, Raman-, XES- 

spectroscopies and x-ray diffraction. The molecular structure of 25 in ORTEP 
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diagram is shown in Figure 137 and selected bond lengths (Å) and angles (°) are 

listed in Table 36. 25 crystallizes in the monoclinic space group P21/c with two 

molecules in the unit cell. As shown in Figure 137, a six-membered {N2Ni2N2} 

ring was formed by the two nickel atoms, the nitrogen atoms from pyrazolate 

ligand and other two nitrogen atoms from diazenido(1-) ligand. The distance of 

N-N of 1.275 Å for the N2H- is in the range of complexes with diazenido ligand 

(1.20 – 1.29 Å). [116] 

 

Figure 137: Molecular structure (30% probability thermal ellipsoids) of 25. 

Most hydrogen atoms omitted for clarity, except for the N8-H.  

Table 36: Selected bond lengths (Å) and angles (°) for 25. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.844(3) N1-Ni1-N7 91.05(16) 

Ni1-N7 1.869(4) N1-Ni1-N3 83.43(14) 

Ni1-N3 1.898(3) N7-Ni1-N3 174.48(17) 

Ni1-N4 1.922(4) N1-Ni1-N4 176.40(13) 

Ni2-N2 1.857(3) N7-Ni1-N4 91.75(17) 

Ni2-N8 1.858(4) N3-Ni1-N4 93.77(14) 

Ni2-N5 1.902(3) N2-Ni2-N8 90.82(16) 

Ni2-N6 1.925(3) N2-Ni2-N5 83.02(14) 

N7-N8 1.275(6) N8-Ni2-N5 172.66(14) 

Ni1···Ni2 3.892(7) N2-Ni2-N6 176.70(15) 

  N8-Ni2-N6 91.99(16) 

  N5-Ni2-N6 94.30(14) 

  N8-N7-Ni1 131.0(3) 

  N7-N8-Ni2 131.2(3) 

  C2-N1-Ni1 119.5(3) 
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  Ni1-N7-N8-Ni2 47.55(6) 

 

In HAT experiment, no obvious color change found during the reaction. The la-

beling diazenido bridging compound was prepared by this way under Ar atmos-

phere. In the resonances Raman spectrum, the N2 unit in 25 has diazene charac-

ter with the νNN = 1392 cm-1 and is shifted further to 1323 cm-1 upon 15N2 en-

richment (Figure 138). In comparison to free diazene (νNN = 1529 cm-1) [117], 

mononuclear complex with “end-on” coordinated N=NH (νNN =1457 cm-1) [114] or 

dinuclear complex with end-on coordinate NH=NH or N=N (νNN =1365 cm-1 or 

1358 cm-1) [118], the N=N stretching frequency for 25 is agreement with the range 

of these complexes. To our best knowledges, this is the first bimetallic complex 

with end-on N2H– ligand. 

 

Figure 138: Comparison of the Raman spectra of 25: Without (black) and after 

15N labelling of the “NiNNNi” subunit (red) in the range of 1000 cm -1 to 

1600 cm-1. 

In Manz work, the μ-η1, η1-N2H bridging dinickel complex was obtained by oxi-

dize the hydrazido complex (27) with 2,2,6,6-tetramethylpiperidin-1-yl)oxyl 

(TEMPO). The solid state of 25 was clearly characterized by x-ray diffraction. [11a] 

However, investigations on complex 25 by NMR showed that temperature above 
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0°C led to decomposition of 25 in solution. Whereas, treatment 27 with a milder 

oxidant (galvinoxyl free radical) results in a much clear reaction (Scheme 41). It 

could be shown that the clean 25 is stable in solution at RT.  

 

Scheme 41: Synthetic route for25 from 27 and 29. 

In the 1H NMR spectrum, a shifted resonance that is attributed to the N=NH pro-

ton at 9.46 ppm was observed (Figure 139). VT 1H NMR spectra (Figure A44) 

show that an asymmetric structure 25 even at high temperature (above 293 K). It 

indicates that the proton in the N=NH unit has fast dynamic rearrangement. The 

15N shift of the NH was determined by means of 1H-15N HMBC (52 MHz) to give a 

resonance at 3 ppm (JNH = 74 Hz) (Figure 140). The IR spectrum shows a band at 

3025 cm-1 (Figure 141a), which was assigned to the NH stretching vibration of 

the bridging ligand. Compared to free diazene (υ = 3128 cm-1) [117], µ-η1,η1-N2H (υ 

= 3242 cm-1) and µ-η1,η1-N2HAr (υ = 3220 cm-1) [119] ligands, the NH vibration of 

the compound is significantly weak. The lower wavenumber may be attributed to 

the negative charge of the diazene ligand. The positive ion ESI-MS spectrometry 

of 25 shows a dominating peak characteristic of the [25+H]+ at 753.49, and the 

isotope patterns matched this simulated. (Figure 141b)  
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Figure 139: 1H NMR spectrum (400 MHz) of 25 in THF-d8. Residual solvents are 

marked (*). 

 

Figure 140: 1H–15N HMBC (52 MHz) spectrum of 25 in THF-d8. 1JNH correlations 

of 25 are marked.  
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Figure 141: FT-IR spectrum of 25 in fresh crystalline material and ESI-MS in 

THF. The inset shows the experimental (top) and simulated (bottom) isotopic 

distribution pattern for [25+H]+ . 

 

Figure 142: 1H NMR spectra of the 25 with different amounts of glavinoxyl free 

radical. (a) 25; (b) with 1 eq. galvinoxyl radical; (c) with 2 eq. galvinoxyl radical. 

NH peaks are marked. 

Following the clean compound was obtained from 27 with galvinoxyl free radical, 

a series of experiments to identify intermediate compound (Ni-NH=NH-Ni) were 

conducted. 1H NMR spectra show the presence of the diazenido and hydrazido in 

1:1 ratio of 1 equivalent galvinoxyl free radical reacts with 27 in THF at room 

temperature. It indicates that the Ni-NH÷NH-Ni bridging is not formed during 

this process. Pure diazenido complex can be obtained if only 2 equivalents Gal-
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vinoxyl free radical reaction with hydrazido bridging compound. However, a 

paramagnetic substance was obtained once 3 equivalents galvinoxyl radical was 

employed. X–band EPR measurements of the crystals in frozen THF at 153 K re-

vealed a paramagnetic ground state with spin of S = 1/2 also (Figure 143). The 

rhombic spectrum of EPR measurements indicate an oxidation state of + I at the 

nickel ions. The EPR spectrum could be simulated reasonably well by adopting a 

set of rhombic g values (2.32, 2.12 and 2.05) (gav = 2.16). The g values are con-

sistent with the reported NiI species (LNiI(CH3Ph)[120] (2.46, 2.17 and 2.14) and 

LNiI(2,4-Lutidine)[121] (2.44, 2.13 and 2.07), L = {ArNC(Me)}2CH-).  

 

Figure 143: X-band EPR spectrum of 27 with 3 equivlents Galvinoxyl, in THF at 

158 K (microwave frequency 9.450 GHz, power 8 mW, modulation 0.4 mT/100 

kHz). The red line is a powder simulation with g as indicated.  Organic radical. 

The EPR spectrum shows the paucity of NiI species, obtained from 27 reaction 

with excess galvinoxyl radical. However, the x-ray diffraction unequivocally 

demonstrates that the bridge is N=NH unit. It indicates that the NiI species is in 

equilibrium with 25 in solution in presence of galvinoxyl radical.  
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Figure 144: 25 and 24-1 are in equilibrium in the presence of galvinoxyl. 

Besides of the HAT reaction and oxidize of hydrazido, complex 25 also can be 

obtained from 29 with TlOTf at room temperature. Treatment 29 with TlOTf in 

the young NMR tube, the color changed from green to brown immediately. The 

compound in this method was characterized by x-ray diffraction in low yield 

(~10%).  

8.4 Cleavage of N-N double bonds 

 

Scheme 42: Synthetic routes for 26. 

Attempts to chemically reduce μ-N2 to μ-NH2 at RT or elevated temperature with 

reductant (KH, NaH and NaBH4) did not yield the desired product. However, after 

HAT reaction, a diazenido complex was obtained from dinitrogen radical com-

pound. Dissolving 25 in presence of KH in THF in two hours, the color changed 

from red to yellow. After work-up of the reaction mixture, 1H NMR and 1H–15N 

HMBC spectra indicated that the new compound is amido compound. The two 

spectra were shown in the Figure 145 and Figure 146.  
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Figure 145: 1H NMR (400 MHz) spectrum of 26. Residual solvents are marked 

(*). 

 

Figure 146: 1H-15N HMBC (52 MHz) spectrum of 26. 

 

Scheme 43: Alternative proposed pathways for the formation of 26. 

One possible conceivable mechanism for the formation of 26 might proceed as 

follows. The diazenido (N=NH)1– 25 was first converted to an intermediate nickel 

diazenido (N=N)2– species by deprotonation with KH. Then the bimetallic dinick-

el complex is unstable and captured the hydrogen atom from solvent or KH, 

which results amido bridge 26 (Scheme 43).  
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Figure 147: Molecular structure (50% probability thermal ellipsoids) of 26. Most 

hydrogen atoms omitted for clarity, except for NH2 group.  

Table 37: Selected bond lengths (Å) and angles (°) for 26. 

Atoms Bond lengths Atoms Bond lengths 

Ni1-N1 1.803(3) N1-Ni1-N3 173.22(10) 

Ni1-N3 1.895(2) N1-Ni1-N2 81.29(12) 

Ni1-N2 1.906(2) N3-Ni1-N2 95.03(11) 

Ni1-N4 2.003(2) N1-Ni1-N4 83.62(11) 

N4-Ni1' 2.003(2) N3-Ni1-N4 100.36(10) 

  N2-Ni1-N4 164.44(11) 

Symmetry transformation used to generate equivalent atoms: (') 1-x, y, 3/2-z.  

Yellowish block crystals suitable for x-ray diffraction were obtained by layering 

hexane on a solution of 26 in THF at –30°C. The molecular structure of 26 is 

shown in Figure 147 and selected bond lengths (Å) and angles (°) are listed in 

Table 37. 26 crystallizes in the monoclinic space group P21 with two molecules 

in the unit cell. As shown in Figure 147, a six-membered {N2Ni2N2} ring was 

formed by the two nickel atoms, the nitrogen atoms from pyrazolate ligand and 

other two nitrogen atoms from hydrazine ligand. The two nickel atoms are planar 

tetracoordinated by three nitrogen atoms from pyrazolate ligand and another 

nitrogen atom from amido ligand. 
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Scheme 44: keep 26 under elevated temperature (70°C) for 15-17 weeks. 

As presented in Manz work (Scheme 44) [11a], at elevated temperatures (60–

70 °C), 27 was slowly transformed to the amido 26 in 15-17 weeks. Coordinated 

hydrazine is known to disproportionate and decompose to ammonia and dini-

trogen [Equation 1], especially in the presence of transition metals. [122] 

3N2H4→4NH3 + N2     [Equation 1] 

 

Scheme 45: Synthetic route for 26 from complex 1  

Beside the two methods for the amido complex from 25 and 27, a new approach 

is introduced to synthesize from 1. Treatment of a solution of 1 with NH3 (0.5 M 

in THF) at –780C for 2 hours and warm to RT stirred for 10 hours, the color 

changed from brown to red (Scheme 45). Suitable crystals for x-ray diffraction 

were obtained by layering hexane on a solution of 26 in THF at –300C in two days. 

The products were identified by 1H NMR also (Figure 145 and Figure 146).  

Indophenol Assay. To a frozen solution of 26 (10 mg, 3.9 μ mol) was added HCl 

in diethyl ether, which resulted in an immediate color change from red to brown. 

The mixture was warmed to room temperature and stirred overnight, after which 
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all volatiles were removed under reduced pressure. The pale-yellow residue was 

dissolved in a phosphate buffer (5 mL, 50 mM, pH 6.94), filtered through a 

fine-fritted glass funnel packed with celite, the residue was washed with deion-

ized water (3 × 1 mL), and the filtrate was diluted to 10 mL with deionized water 

in a volumetric flask. Ammonia was quantified as 0.6 equivalents using the indo-

phenol method as previously published. [123] 

8.5 Protonation of hydrazido bridge complex 

 

Scheme 46: Synthetic route for 28. 

It has been already proven that the hydrazido bridge complex can be protonated 

by [H-Lut]OTf at room temperature. [11a] However, information regarding the 

structure of the complex in the solid state was not reported. Good quality crystals 

for x-ray diffraction could be obtained during the course of this work by changing 

the counter anion from triflate to tetrafluoroborate ion. Treatment of 27 with one 

equivalent [H-Lut]BF4 in THF results in a color change from red to green imme-

diately (Scheme 46). 28 was able to characterize by 1D and 2D NMR, IR-, UV-vis- 

spectroscopies, X-ray diffraction, and elemental analysis.  

Green block crystals for x-ray diffraction were grown by layering hexane on a 

solution of 28 in THF at – 30°C in two days. The asymmetric unit contains two 

crystallographically independent molecules; one of the two molecules is shown 

in Figure 148. 28 crystallizes in the monoclinic space group P21 with two mole-

cules in the unit cell. The molecular structure of 28 in ORTEP diagram is shown 
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in Figure 148 and selected bond lengths (Å) and angles (°) are listed in Table 38. 

As shown in Figure 148, a six-member {N2Ni2N2} ring was formed by the two 

nickel atoms, the nitrogen atoms from pyrazolate ligand and other two nitrogen 

atoms from hydrazine ligand. The two nickel atoms are planar tetracoordinated 

by three nitrogen atoms from pyrazolate ligand and another nitrogen atom from 

hydrazine ligand.  

The distances of nickel centers and N-N bond are 3.973(5) Å and 1.470(3) Å, re-

spectively, which are all longer than 27. The distance of Ni-N(hydrazine) of 

1.945 Å and 1.950 Å are also longer than 27. Even though the hydrazine ligand 

has longer distance than hydrazido ligand, the torsion angle ≮Ni1-N7-N8-Ni2 = 

89.10° is slightly smaller than 27, which is attributed to the pyrazole with much 

more torsion resistance. Furthermore, hydrogen bonds were observed in the hy-

drazine ligand and solvent molecules and the distances of the hydrogen bonds 

are 1.952(6) Å and 2.013(6) Å.  

 

Figure 148: Molecular structure (50% probability thermal ellipsoids) of 28. 

Most hydrogen atoms omitted for clarity, except for the N2H4 unit.  

Table 38: Selected bond length (Å) and angles (°) for 28.  

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.870(6) N1-Ni1-N3 83.7(3) 

Ni1-N3 1.878(6) N1-Ni1-N4 175.5(3) 

Ni1-N4 1.900(6) N3-Ni1-N4 94.5(3) 

a b 
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Ni1-N7 1.945(6) N1-Ni1-N7 88.0(2) 

Ni2-N2 1.858(6) N3-Ni1-N7 171.7(3) 

Ni2-N5 1.875(6) N4-Ni1-N7 93.9(2) 

Ni2-N6 1.889(6) N2-Ni2-N5 83.3(3) 

Ni2-N8 1.950(6) N2-Ni2-N6 177.1(2) 

N7-N8 1.470(3) N5-Ni2-N6 93.9(3) 

Ni1···Ni2 3.973(1) N2-Ni2-N8 87.1(2) 

  N5-Ni2-N8 170.0(3) 

  N6-Ni2-N8 95.6(2) 

  N8-N7-Ni1  116.0(5) 

  N7-N8-Ni2  113.6(5) 

  Ni1-N7-N8-Ni2  89.1(3) 

 

The 1H NMR spectrum of 28 revealed a symmetric species as expected in solution. 

The resonance associated to the isopropyl CH function was overlaid by the resi-

due solvent (THF-d8), but was distinguished by means of a 1H-1H COSY experi-

ment. A resonance at 3.74 ppm corresponds to a normalized integral of four, 

which is assigned to the neutral hydrazine ligand N2H4 (Figure 149). The found 

resonance concurs with other reported proton resonances of bridged μ–η1,η1–

N2H4 in dimeric iron and tungsten complexes. A side on η2–N2H4 coordinated 

mononuclear NiII complex showed a 1H NMR shift at 3.50 ppm. In 1H-15N HMBC 

spectrum, the 1JNH correlation occurred at –348 ppm (1JNH = 71 Hz). [124] 

Investigation by IR spectroscopy revealed bands at 3204, 3247, 3260 and 

3382 cm-1, which lie in the typical range of NH stretching. In comparison, free 

hydrazine has N–H absorption at 3329 cm-1 and 3398 cm-1, [125] and absorption at 

3270–3114 cm-1 has been observed for some other N2H4 bridged ligand. [124] 

Moreover, IR clearly showed two bands at 1623 cm-1 and 1648 cm-1 that can be 

assigned to the NH2 deformation vibrations. Further experiments showed that it 

is possible to perform reaction with complex 28 with KH in Young NMR tube as 

alternative route to 27. 
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Figure 149: 1H NMR (400 MHz) spectrum of 28 in THF-d8 at RT. Residual sol-

vents are marked (*).  

 

Figure 150: 1H-15N HMBC (52 MHz) spectrum of 28 in THF-d8 at room tempera-

ture. 

 

 NH2 
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8.6 Synthesis the diazenido complex 

 

Scheme 47: Synthetic route for 30. 

The µ-η1:η1–HN-NH species (29), which is incorporation of the potassium 

clamped by the two DIPP groups, was characterized by x-ray and spectroscopies 

very well. [11a] No further reactivity was observed in this complex for redox 

chemistry. Inspirations of 4, DB18C6 and cryptand then employed to rupture the 

metal-π interaction. Adding the DB18C6 into 29 results in the color changed 

gradually from deep green to brown in 30 mins.  

No suitable crystals for x-ray diffraction were obtained because of the crystals 

are easily decomposed even in solution. But the 1H NMR spectrum confirms that 

the K+ was dissociated by the DB18C6 (Figure 151). The singlet proton reso-

nance of N2H22- in 29 is at 1.03 ppm, which is shifted to 1.63 ppm in 30 

(Figure 151) in 1H NMR. The 1H–15N HMBC experiment illustrates the N2H22– 

ligand presence (Figure 152). The 1JNH correlation with 15N chemical shift at –

239 ppm (1JNH = 14 Hz), which is similar to the N2H22– in 29  
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Figure 151: Comparison the 1H NMR spectra (400 MHz) of 29 and 30 in THF–d8. 

Residual solvents (THF–d8) are marked (*). 

 

Figure 152: 1H–15N HMBC spectrum (52 MHz) of 30. The μ-η1:η1-N2H2 ligand 

shows a strong 1JNH correlation.  

The NH stretching vibration of 29 is at 3190 cm-1 in the IR spectroscopic 

(Figure 153a). After dissociate the K+ cation from [L1Ni(N2H2)]- by DB18C6 or 

[2,2,2]cryptand, the NH stretching vibration appears at 3263 and 3123 cm-1 for 

30 and 31 (Figure 153b).  

 

Figure 153: IR spectrum of 29 (a), 30 (b) and 31 (c). 
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However, black block crystals suitable for x-ray diffraction were obtained from 

THF or toluene slow evaporation at room temperature while the [2,2,2]cryptand 

instead of the DB18C6. The molecular structure of 31 is shown in Figure 155 

and selected bond lengths (Å) and angles (°) are listed in Table 39.  

 

Figure 154: Molecular structure (50% probability thermal ellipsoids) of 29. [11a] 

Most hydrogen atoms omitted for clarity, except for the N2H2 unit.  

 

Figure 155: Molecular structure (50% probability thermal ellipsoids) of the an-

ion of 31. Most hydrogen atoms omitted for clarity, except for the N2H2 unit.  

Table 39: selected bond length (Å) and angles (°) for 31. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.884(2) N1-Ni1-N7 85.73(12) 

Ni1-N7 1.885(3) N1-Ni1-N3 83.09(10) 

Ni1-N3 1.928(2) N7-Ni1-N3 165.60(13) 
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Ni1-N4 1.892(2) N1-Ni1-N4 175.74(11) 

Ni2-N2 1.884(2) N7-Ni1-N4 96.29(12) 

Ni2-N8 1.892(3) N3-Ni1-N4 95.48(10) 

Ni2-N5 1.931(2) N2-Ni2-N8 87.12(12) 

Ni2-N6 1.899(2) N2-Ni2-N5 82.79(10) 

N7-N8 1.431(5) N8-Ni2-N5 167.93(13) 

Ni1-Ni2 3.939(6) N2-Ni2-N6 176.62(11) 

  N8-Ni2-N6 95.48(12) 

  N5-Ni2-N6 94.88(10) 

  N8-N7-Ni1  116.1(2) 

  N7-N8-Ni2  115.3(2) 

  Ni1-N7-N8-Ni2  92.91(7) 

 

31 crystallizes in the orthorhombic space group Pbca with eight molecules in the 

unit cell. As shown in Figure 155, an twist six-membered {N2Ni2N2} ring was 

formed by the two central nickel atoms, pyrazolate–N and hydrazido(2-) ligand. 

Both metal centers are coordinated in an expected square-planar fashion, with 

the sum angles of 360.3° and 360.03°, respectively. This is in agreement with the 

low-spin d8 configuration. The distance of the two nickel centers and the torsion 

angle of Ni-N-N-Ni are 3.939(5) Å and 92.91(6)°, respectively. No 1D and 2D NMR 

spectrum provided because 31 has bad solubility in THF and toluene. The NH 

stretching vibration of 31 is at 3123 cm-1 in the IR spectroscopic (Figure 153c). 
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8.7 Synthesis of terminal ammonia nickel complex 

 

Scheme 48: Synthetic route for 32.  

Using the LiNH2 with 1 in THF solution resulted in a color change from brown to 

red in two days. Whereas, the 1H NMR spectrum demonstrated two species (am-

ido and ammonia bridging) existing. However, treatment of 1 with NaNH2 in THF 

solution resulted in a color change from brown to orange in two day 

(Scheme 48). The crude product was detective by 1H NMR and 13C NMR after 

filtration indicated that the new compound features a terminal ammonia ligand.  

In the 1H NMR spectrum, a signal set for the protons of the pyrazole ligands in the 

regular shifted resonances from 0–10 ppm was observed that was characteristic 

for an asymmetrical dinickel complex. Notable features in the 1H NMR spectrum 

include a signal for terminal ammonia ligand. The N-H peak of NH3 group was 

located at –3.28 ppm (Figure 156), and a diagnostic band was observed at 

3023 cm-1 by IR spectroscopy (Figure A54). The 1H–15N HMBC is shown in Fig-

ure 157. 1JNH correlation for the NH3 occurred at –400.1 ppm (1JNH = 57 Hz), 

which is close to the free NH3 molecule (1JNH = 61.2 Hz). [126] The 2D NMR spectra 

of 32 are shown in Appendix. The proton of NH of the series NxHy species in 1H 

NMR spectra is shown in Figure 158 and Figure 159.  

The asymmetry of the compound is reflected by the 1H NMR experiment, in par-

ticular by distinct resonances associated to the isopropyl and methylene group. 

The isopropyl group was separated to two multi-peaks at 3.21 ppm and 3.84 ppm. 
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However, the integration of the two isopropyl groups is two. It indicates that the 

intramolecular C–H amination was happened in the methylene group. Some 

small red crystals were obtained from hexane layered in to THF at –30℃. Unfor-

tunately, the crystal of 32 is not suitable for x-ray diffraction.  

 

Figure 156: 1H NMR (400 MHz) spectrum of 32 in THF-d8 (400 MHz). 

 

Figure 157: 1H-15N HMBC (52 MHz) of 32. A correlation of the 1H–15N resonance 

is observed for the NH3 bridging ligand.  



CHAPTER 8 N2 TO NH3 CONVERSION 

184 

 

 

Figure 158: left: the spots of the d(N-N) and ν(N-N) in the series complexes; Right: 

the plots of the NH resonance of these complexes.  

 

Figure 159: 1H NMR spectra of the series of NxHy complexes; (a) 28, (b) 27; (c) 

29, (d) 25, (e) 26 and (f) 32. 
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8.8 X-ray emission spectroscopy  

In collaboration with the group of Serena DeBeer, the complexes 24, 25 and 27 

were further characterized by Kβ X-ray emission spectroscopy (XES). Additional-

ly, the spectrum for the nickel(II) precursor 1 was recorded, which allowed to 

distinguish between N2Hx (x = 0, 1 and 2) and ligand-related features. 

X-ray Emission Spectroscopy (XES) has found many application in transition 

metal chemistry as it provides useful information about ligand identity, met-

al−ligand bonding, and metal spin state.[127] The experiment involves the detec-

tion of the emission of photons (electron decay) following the ionization of an 

Ni-1s electron. There are three features of an XES spectrum that contain the most 

relevant chemical information: the Kβ′ and Kβ1,3 lines resulting from an electric 

dipole allowed 3p to 1s transition, [128] and the Kβ2,5 and Kβ′′ lines (or valence to 

core region, V2C) arising from a valence electron (ligand np or ns) to metal 1s 

transition. [129] The Kβ1,3 (main line, ∼7030−7080 eV) region is dominated by 

3p-3d exchange correlation with some contribution from 3p spin−orbit coupling, 

resulting in sensitivity toward spin state, but little sensitivity toward ligand iden-

tity. [128]  

X-ray emission measurement for 24 (N2), 25 (N2H) and 27 (N2H3) were recorded 

in HERFD-XAS. An analysis of the synchrotron data suggests that it is consistent 

with the expected electronic structure. DFT calculations are in agreement with 

the intensity variations observed in the VTC XES data.  

Figure 160a shows the Ni Kβ mainline (3p -> 1s transitions) for this series col-

lected with Debeer’s house experiment. While there is some difference in the 

spectra each of the Ni dimers reaches its maximum at 8265.1 eV compared with 

the maximum of Ni(acac)2 at 8265.8 eV.  
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Figure 160: (a) Kβ main line emission and (b) valence to core XES spectra for 24, 

25 and 27 highlighting the paramagnetic of L1Ni2(μ-Br) as compared to the dia-

magnetic of the other compounds.  

 

Figure 161: (a) XAS spectra of complexes 24, 25 and 27 collected at CHESS 

synchrotron; (b) VTC XES spectra of complexes 24, 25 and 27calculated with 

density functional theory.  

As shown in Figure 161a, the Ni(acac)2 as measured is likely Ni(acac)2(H2O), 

whereas 24, 25 and 27 are more rigorously square planer. This change in sym-

metry manifests itself in the edge of the XAS spectrum which is dominated by 1s -> 

4p transitions. In the case of the octahedral Ni(acac)2(H2O)2 complex all 1s -> 4p 

transitions will be nearly degenerate. However, in the case of 24, 25 and 27 the 

1s -> 4pz transition is found at significantly lower energy than the 1s -> 4px/y due 
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to the absence of an axial ligand. This 1s -> 4pz transition gives rise to the feature 

at ~8.342 keV in all of 24, 25 and 27, and the 1s -> 4px/y would be found at high-

er energy. DFT calculation results of 24, 25 and 27 show in the Figure 161b.  

Table 40: Parameters comparing optimized geometries and crystal structures 

for 24, 25 and 27 

 24 24 (exp) 25 25 (exp) 27 27 (exp) 

N-N 1.151 1.132 1.237 1.275 1.448 1.467 

Ni-N 1.861 1.883 1.879 1.858 1.935 1.907 

Ni-N 1.858 1.884 1.807 1.869 1.880 1.889 

 

To gain more insights about 24, 25 and 27, we carried out a detailed analysis by 

mapping the electronic-structure in different transition.  

 

Figure 162: Calculated V2C spectrum of 24 with the molecular orbitals that 

strongly contribute to the observed transitions.  
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Figure 163: Calculated V2C spectrum of 25 with the molecular orbitals that 

strongly contribute to the observed transitions. 

 

Figure 164: Calculated V2C spectrum of 27 with the molecular orbitals that 

strongly contribute to the observed transitions.  
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Table 41: Parameters from Fits to experiments XES of Main Line and V2C using 6 

peaks to model the V2C for 24, 25 and 27. 

 24 25 27 

Peak 1 (eV) 8321.5 8329.84 8329.53 

Peak 1 int. 1.18 1.78 1.36 

Peak 2 (eV) 8326.9 8329.89 8329.79 

Peak 2 int. 1.87 1.99 1.24 

Peak 3 (eV) 8329.9 8329.91 8329.99 

Peak 3 int. 1.86 1.87 1.37 

Peak 4 (eV) 8330.0 8330.07 8330.21 

Peak 4 int.  3.14 2.02 2.48 

Peak 5 (eV) 8330.7 8330.26 8330.64 

Peak 5 int.  1.59 1.58 1.14 

Peak 6 (eV) 8332.9 8334.18 - 

Peak 6 int. 1.04 1.51 - 

 

In summary, the individual transitions are plotted as sticks below the envelopes. 

For two reasons it is difficult to analyze the spectrum in terms of orbital popula-

tions. Firstly, it is clear that the valence to core region is comprised of many indi-

vidual transitions, so the spectrum cannot be attributed to a single orbital. 

Moreover, looking at some of the most intense transitions reveals that the under-

lying orbitals are very delocalized. Consequently it is difficult to ascribe intensity 

to particular orbital types i.e. N p-orbitals, but the XAS spectra and the Kβ main-

line spectra are consistent with low spin Ni(II). 
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8.9 Summary 

In summary, the monoaninoic [N2]– radical complex was isolated from the dini-

trogen insert into [L1Ni2(H2)]– species and characterized by x-ray diffraction and 

spectroscopy. In particular, the N2– anion does effectively facilitate the delivery of 

H-atoms to N2 generating the N2H– bridging. Eventually the N2H– nickel complex 

easily produce NH3 though chemical reduction. In addition, the demonstration 

that the [L1Ni2]– cleft can accommodate the nitrogenous intermediates including 

N2H4, N2H3–, N2H22– (“naked” or within K+ diazene species) and that interconver-

sion by chemical reduction or protonation. All the complexes and interconversion 

are shown in Scheme 49. The XAS spectra and the Kβ mainline spectra for 24, 25 

and 27 are consistent with low spin NiII for all the complexes.  
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Scheme 49: Interconversion in a range of the NxHy. (The gray part is still ongoing) 
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Chapter 9 CO activation 

Abstract: A new nickel carbonyl has been realized using the [N2]– monoanionic 

radical dinuclear nickel(II) complex (29) with carbon monoxide at RT. Interest-

ingly, the carbon monoxide has some [CO] character and characterized by x-ray 

diffraction, IR-, EPR- spectroscopies and DFT calculation.  
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9.1 Introduction 

Carbon monoxide is a key natural small molecule utilized in various organome-

tallic reactions. In fact, nickel mono-carbonyl species are relatively uncommon 

and their reactivity is therefore still unexplored comprehensive. NiI-CO species 

have been proposed as potential active species in the so-called “paramagnetic 

mechanism”. [130] However, the chemical validity has not been evaluated in terms 

of the reactivity of the monovalent nickel mono-carbonyl adducts. Several nickel 

carbonyl complexes and their reactivity were reported by the Limberg [131,132] and 

Lee[133], respectively (Scheme 50: XXXIX - XLII).  

 

Scheme 50: Selected examples of Ni-CO complexes and acetyl-coenzyme syn-

thase (ACS) catalysis . [131-133]  

Complex XXXIX was obtained from CO with mixed-valence nickel hydride com-

plex in THF. The trigonal planar coordinated Ni centers hold by two potassium 

ions. The CO absorption is at far lower wave number (1772, 1754 cm-1).[131] Con-

sidering the low coordination number and oxidation state of the nickel central, 

the new type Ni-CO unit seemed ideal for the CODH/ACS catalysis. A new 
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C(O)CH3 species (XLI) was obtained  from the MeI with XXXIX at RT. The 

C(O)CH3 resonance is at 243.8 ppm in the 13C NMR spectrum, which is character-

istic for η2 -acetyl ligands. And the CO and isotopic 13CO absorption is at 

1584 cm-1 and 1545 cm-1 in the infrared spectroscopy spectrum, respectively. [132] 

In 2014, Lee reported three different oxidation state of nickel carbonyl species 

(XL), [133] formally +2, +1 and 0. The reactivity of these three nickel carbonyl spe-

cies with MeI was examined to compare and contrast the C-C bond formation 

(XLII).  

9.2 Synthesis carbon monoxide radical  

 

Scheme 51: Synthetic route for 33. 

In order to establish a new nickel carbonyl species, an experiment was conducted 

from 2 with CO at 50℃ directly. But 1H NMR spectroscopy indicates that final 

product with more than three species. Unfortunately, the analysis data of the 

mixture are not allowed us to figure out exactly what they are. Since the [N2]– 

monoanionic radical compound isolated with impressive yield, it is an oppor-

tunity to do the carbon monoxide activation from [N2]– species.  

Treatment of a solution of [N2]– monoanionic radical complex in THF with CO 

(priority dried under concentrated H2SO4) at –78°C results a color change from 

brown-red to wine-red in 1 hour. Its UV-Vis spectrum (Figure 165) displays a 

similar band to 33, attributing that the CO has similar electron structure of N2.  
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Figure 165: (a) UV-vis spectra of 24 and 33 in THF solution; (b) Variable tem-

peratures UV-vis spectra of complex 33 in THF solution.  

IR spectroscopy was employed since the UV-Vis spectroscopy identified the new 

species unclearly. In the IR spectrum, three bands at 1958, 1879 and 1735 cm-1 

(Figure 166a) were observed for the crude product, which are different from 

[N2]– species of 1896 cm-1. But only one band at 1735 cm-1 (Figure 166b) for 33 

was observed in crystalline material in IR spectrum. To confirmed its assignment 

of ν(CO), the 13C isotopologue CO was used to synthesize 33. Two medium bands 

at 1912 and 1837 cm-1 (ν(12CO)- ν(13CO) = 46/42 cm-1) for crude products 

(Figure 167a) and 1691 cm-1 (ν(12CO)- ν(13CO) = 44 cm-1) (Figure 167a) band 

for microcrystalline material were observed. It indicates that the three bands are 

all belongs to different CO molecule. According the DFT calculated IR spectrum of 

33, the [CO]– (Figure 168) monoanionic radical stretching located at 1760 cm-1, 

which is similar to the experimental data of 1735 cm-1 (Table 42). Therefore, I 

believed that at least two different species were generated in this reaction.  
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Figure 166: IR spectrum of 33 of 12CO in crude and microcrystal materials.  

 

Figure 167: IR spectrum of 33 of 13CO in crude and microcrystal materials. 

 
Figure 168: Calculated IR spectrum of 33. 
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Table 42: ν(C···O) (IR) for 33. 

 ν(12C- 16O)/cm-1 ν(13C-16O)/cm-1 Δν/cm -1 

Exp 1735 1693 42 

DFT 1760  1720 40 

 

Nevertheless, orange single crystals suitable for x-ray diffraction were obtained 

by layering hexane or pentane on a solution of 33 in THF –30°C. The molecular 

structure of 33 is shown in Figure 169 and selected bond lengths (Å) and angles 

(°) are listed in Table 43. 33 crystallizes in the monoclinic space group P21/c 

with four molecules in the unit cell. As shown in Figure 169, an almost planar 

six-membered {N2Ni2CO} ring was formed by the nickel center, pyrazolate and 

carbon monoxide ligands. Both metal centers are coordinated in an expected 

square-planar fashion as was the case for the previously mentioned complexes 

containing nitrogen based bridging ligands. And the distance of the two nickel 

and torsion angle of Ni-C-O-Ni are 3.914(5) Å and 9.077(6)°, respectively. The 

bond distance of carbon monoxide of 1.200(4) Å is only slightly shorter than the 

doubly bridging CO 1.22 Å and longer than that in free CO molecule (1.128 Å) [134]. 

Its longer than the dinitrogen ligand bridged of 24. 

 

Figure 169: Molecular structure (50% probability thermal ellipsoids) of 33. All 

hydrogen atoms omitted for clarity.  
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Table 43: Selected bond lengths (Å) and angles (°) for 33.  

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.850(2) N1-Ni1-N3 83.83(10) 

Ni1-N3 1.881(2) N1-Ni1-O1 89.96(10) 

Ni1-O1 1.891(3) N3-Ni1-O1 171.08(11) 

Ni1-N4 1.900(2) N1-Ni1-N4 175.97(10) 

Ni2-C40 1.860(3) N3-Ni1-N4 94.72(10) 

Ni2-N2 1.866(2) O1-Ni1-N4 91.89(10) 

Ni2-N5 1.922(2) C40-Ni2-N2 89.94(11) 

Ni2-N6 1.923(2) C40-Ni2-N5 172.06(11) 

C40-O1 1.200(4) N2-Ni2-N5 82.85(10) 

Ni1···Ni2 3.914(5) C40-Ni2-N6 93.14(11) 

  N2-Ni2-N6 176.65(10) 

  N5-Ni2-N6 94.15(10) 

  C40-O1-Ni1 136.2(2) 

  O1-C40-Ni2 136.2(2) 

  Ni1-C-O-Ni2 9.077(6)  

 

The two nickel atoms adopt d8 square planar configuration, it indicates that the 

unpaired electron stay in the CO ligand rather than nickel. To our best knowledge, 

this is the first [CO]– monoanionic radical complex and characterized by x-ray 

diffraction. The X-band EPR measurement in a frozen THF at 154 K of 33 in crys-

talline material reveals a paramagnetic ground state with spin of S =1/2. The 

elaborate discussion of EPR spectrum needs more professional understanding.  

33 has been characterized by ESI-MS spectroscopy in a THF solution as well. The 

positive ion ESI-MS of 33 in THF solution shows three dominating peaks for the 

ions, deriving from [L1Ni2]+ (m/z = 723.52), [L1Ni2(COH)+H]+ (m/z = 751.46) and 

[L1Ni2(COH)+K]+ (m/z = 789.31). When complex 33 prepared with isotopically 

labelled 13CO, the mass peak corresponding to 33 shifted to m/z 752.38 

[L1Ni2(13COH)+H]+ (Figure 170). This shift is one mass unit upon substitution of 

12CO with 13CO indicates that complex contains a CO unit.  
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Figure 170: (a) ESI–MS ion spectrum of 33 and (b) 33-13CO in THF; (Inset) Ex-

periment (upper) and Simulated (lower) isotope distribution pattern for the 

peak pattern around m/z = 789.31 for the [L1Ni2(12COH)+K]+ and around m/z = 

752.38 characteristic for the [L1Ni2(13COH)+H]+. 

The electronic nature of 33 as suggested by its geometric structure was con-

firmed by DFT calculations (Figure 171). The energy – minimized DFT–

calculated structure of 33 is in good agreement with that obtained by x–ray dif-

fraction. According the DFT calculation, the bond length of CO unit of 1.184 Å is 

slightly shorter than the experiment data (Table 44). However, the distance of 

the two nickel(II) ions from DFT of 4.023 Å is longer than the experiment data. 

The HOMO of 33 from DFT calculation reveal that unpaired electron principally 

located on the Ni-C system. The spin density of Ni1 and Ni2 are 0.138 and 0.422, 

respectively. And the spin density of O and C are 0.010 and 0.338, respectively. 
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Figure 171: Spin density plot of 33. Mulliken Spin Population: Ni1 = 0.137693, 

Ni2 = 0.421986, O = 0.009731, C = 0.337647. 

Table 44: Selected distances (Å) and angles (°) for 33. 

 d(C-O) /Å d(Ni···Ni)/Å φ(Ni-C-O-Ni) /° 

Exp 1.200 3.914 9.1 

DFT 1.184 4.023 9.1 

 

 Reactivity 

 

Scheme 52: Reactivity towards MeI. 

Complex 33 does not show any reactivity toward iodomethane directly. However, 

in presence of K, complex 33 shows reactivity towards MeI. Treatment of 33 with 

MeI in the presence of K results in a color change from brown-red to orange 

(Scheme 52). The crude product has three bands at 1993, 1842 and 1626 cm-1 in 

IR spectrum (Figure A56). Unfortunately, all crystallizing attempts for x-ray dif-

fraction failed. 
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9.3 Summary 

 

Scheme 53: Activation of carbon monoxide and methylation of the [CO] – radical. 

In summary, we have reported the synthesis and characterization by x-ray dif-

fraction and IR, MS, EPR spectroscopies of the first monoanionic [CO]– radical 

complex. The reactivity of the remarkable [CO]– radical species with iodome-

thane was examined (Scheme 53). Ongoing works are focusing on methoxide 

and methylation of the [CO]– radical complex. 
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Chapter 10 Metal-ligand Cooperation in 

C-H and H2 Activation and Interconver-

sion between Mono- and Dihydride 

Dinickel(II) Complexes and Reactivity 

Abstract: A new compartmental ligand scoffold H3L2 (L2 = 

({NC(Me)C(H)C(Me)NC6H3(Ph)2(CH2)}2(C3N2H)3-) was synthesized and gave a 

series of Ni-H complexes, which are isolated after reacting the precursor 

[L2Ni2(μ-Br)] with MHBEt3 (M = K and Na). Surprisingly, only monohydride 

dinickel complex (40) was obtained when the alkali metal is K+. And mono- and 

di- hydride mixture complexes were observed in the 1H NMR spectroscopy and 

were characterized by x-ray diffraction once the alkali is Na+. Monohydride com-

plex easily transfers to dihydride complex under H2 atmosphere. Reactivity of 

these Ni-H species towards to H2O and Lewis acid were studied. 
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10.1 Introduction 

 

Figure 172: Dinickel dihydride complexes with different alkali metal (K+, 

Na+). [11b] 

 

Figure 173: Ligand H3L1 was employed in previous work, and new ligands sys-

tem proposed for next stage.  

We had previously shown that a serious of dinuclear nickel(II) dihydride com-

plexes (Figure 172) M[L1Ni2II(H2)] (M =Na and K), which are characterized by 

x-ray diffraction and exhibit pairwise H2/D2 exchange property. [11] In order to 

extend nickel chemistry, we chose to follow a different strategy in the next work, 

(i) elongation of the linkages between the central pyrazole; (ii) change bulky 

group in the backbone of β-diketiminato; (iii) introduced different group in the 

substitutes; (iv) linkage two different groups in the N-aryl substitutes. 

(Figure 173) In this chapter, a new phenyl substituent instead of isopropyl sub-

stituent has successfully done.  
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10.2 Synthesis of nickel bromide precursor 

 
Scheme 54: Synthetic route for 35. 

The multistep synthesis of the new ligand H3L2, starting from recently reported 

pyrazole building blocks, is described in the experimental section. [11b] As H3L1 

ligand, nickel bromide precursor was synthesized by the reaction of the 

H3L2 (L2 = ({NC(Me)C(H)C(Me)NC6H3(C6H5)2(CH2)}2(C3N2H)3-) with 

[NiBr2(dme)](dme =1,2-dimethoxyethane) in the presence nBuLi in THF solution 

at 50 °C in 56 % yield. The yields of 35 dropped to 12% when the reaction was 

preformaed at RT. Suitable crystals for x-ray diffraction were obtained from the 

CH2Cl2 slow evaporation.  

The molecular structure of 35 is shown in Figure 174 and selected bond lengths 

(Å) and angles (°) are listed in Table 45. Two nickel centers are in an almost 

square–planar coordination environment and the distance of 3.781(7) Å in the 

two nickel atoms is slightly shorter than in 1 of 3.807(5) Å [11a]. The Ni1-Br1-Ni2 

angle of 105.82(2)° is close to the valence angles for a tetrahedral coordination 

geometry (109.47°).  

At room temperature, 1H NMR spectrum of 35 in CD2Cl2 displayed a series of lig-

and peaks without apparent coupling (Figure 175). The positive ion ESI-MS of 

35 in THF shows a prominent peak characteristic of the [35+H]+ at 937.2. And 

the isotope patterns matched this simulated (Figure A57). 
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Figure 174: Molecular structure (50% probability thermal ellipsoids) of 35. All 

hydrogen atoms have been omitted for clarity.  

Table 45: Selected bond lengths (Å) and angles (°) for 35. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.841(2) N1-Ni1-N3 82.82(10) 

Ni1-N3 1.879(2) N1-Ni1-N4 178.75(10) 

Ni1-N4 1.892(2) N3-Ni1-N4 95.93(10) 

Ni2-N2 1.836(2) N1-Ni1-Br1 85.70(7) 

Ni2-N5 1.877(2) N3-Ni1-Br1 168.33(7) 

Ni2-N6 1.885(2) N4-Ni1-Br1 95.55(7) 

Ni1-Br1 2.365(4) N2-Ni2-N5 83.03(10) 

Ni2-Br1 2.376(4) N2-Ni2-N6 177.90(10) 

Ni1···Ni2 3.781(7) N5-Ni2-N6 95.36(10) 

  N2-Ni2-Br1 85.83(7) 

  N5-Ni2-Br1 168.84(7) 

  N6-Ni2-Br1 95.76(7) 

  Ni1-Br1-Ni2 105.821(15) 
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Figure 175: 1H NMR (400 MHz) spectrum of 35 in CD2Cl2. Residual solvents are 

marked with an asterisk (*).  

10.3 Synthesis of bimetallic dinickel(II) monohydride complex 

 

Scheme 55: Synthetic route for 36. 

35 represents a suitable precursor for the synthesis of the dinickel dihydride 

complex which is like the previous work from Manz. [11a] Treatment of 35 with 2 

equivalents KHBEt3 in THF solution results in a color change from green to red in 

30 mins (Scheme 55). And the new species has a resonance at –26.12 with inte-

gration of one where is typically hydride ligand of diamagnetic nickel hydride 

resonate (from –6 to –26 ppm) [25f] in the 1H NMR spectrum (Figure 176). Except 

for the Ni-H resonance, the 1H NMR spectrum indicates that the new species is an 

asymmetric complex, which the resonances shift signals at 4.43, 4.21, 4.06 and 

4.00 ppm are corresponding to CH2Pz groups and the integration of these four 
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peaks is 1:1:1:1. The 1JCH correlation of these peaks is 128.93 Hz.  

 

Figure 176: 1H NMR (400 MHz) spectrum of 36 in THF-d8. Residual solvents are 

marked with an asterisk (*). 

Suitable crystals for x-ray diffraction were obtained from pentane slow diffusion 

on a solution of 36 in THF at RT. The molecular structure of 36 is shown in Fig-

ure 177 and selected bond lengths (Å) and angles (°) are listed in Table 46. The 

x-ray crystallography of 36 indeed confirms only one hydride ligand coordinate 

with Ni central, and the terminal hydride ligand stays in the Fourier map. One of 

the two nickel centers connected with hydride ligand is surrounded by its ligand 

in a distorted square-planar fashion. The Ni-H distance in 36 of 1.291(3) Å is 

shorter than 2, 3 and 4. Whereas the second one is located in twist tetrahedrally 

coordination environment. The distance between the two nickel atoms of 

4.266(7) Å is much longer than the corresponding 35 (3.782 (7) Å). Meanwhile, 

the nearby phenyl groups of side arm are subject to C-H oxidative addition to 

generate NiPh-(“NNN”). The structure of 36 is completed by one K+ cation locat-

ed by the intramolecular phenyl group from substitute, pyrazolate linked and the 

intermolecular phenyl group. A consequence of these K-arene/N contacts 

(2.78-3.28 Å) involves a 1D chain formation. (Figure 177c). 
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Figure 177: Molecular structure (50% probability thermal ellipsoids) of the an-

ion of 36 (a, only one of two independent molecules shown), 36 (b) and 1D chain 

of 36 (c). Most hydrogen atoms omitted for clarity, except for the nickel-bound 

hydrides.  

Table 46: Selected bond lengths (Å) and angles (°) for 36. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N4 1.879(3) N4-Ni1-N1 177.22(15) 

Ni1-N1 1.910(3) N4-Ni1-N3 95.71(14) 

Ni1-N3 1.915(3) N1-Ni1-N3 85.02(13) 

Ni1-K1A 3.074(4) N4-Ni1-K1A 112.35(13) 

Ni2-N6 1.877(4) N1-Ni1-K1A 64.88(13) 

Ni2-C41 1.902(4) N3-Ni1-K1A 101.8(4) 

Ni2-N2 1.933(3) N6-Ni2-C41 89.12(17) 

Ni2-N5 1.936(4) N6-Ni2-N2 167.15(14) 

Ni2-K1A 3.835(2) C41-Ni2-N2 98.58(16) 

Ni1-H1 1.291(3) N6-Ni2-N5 92.88(15) 

Ni1···Ni2 4.266(8) C41-Ni2-N5 158.55(17) 

  N2-Ni2-N5 83.72(14) 

  N6-Ni2-K1A 117.7(2) 

  C41-Ni2-K1A 91.30(15) 
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  N2-Ni2-K1A 52.3(2) 

  N5-Ni2-K1A 106.53(16) 

 

Scheme 56: Preparation of dinuclear nickel(II) dihydride complex from 36. 

Treatment of 36 in THF-d8 with 1 atm H2, 1H NMR spectrum did not show a new 

species generation. However, a dinuclear nickel(II) dihydride complex KL3Ni2(H2) 

can be obtained in a J-Young tube containing the monohydride bridge compound 

36 with high pressure H2 (≥ 3 atm) (Scheme 56). 1H NMR spectrum (Figure 178) 

of the new dihydride complex KL3Ni2(H2) revealed a lower filed shifted from –

26.12 ppm to –23.79 ppm, which is similar to complex 2. [11] And the new 

KL3Ni2(H2) complex only exists under H2 atmosphere. 

 

Figure 178: 1H NMR spectrum (300 MHz) of 36 with H2 (3 atm) in THF-d8. Re-

sidual solvents are marked with an asterisk (*). 
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10.4 Synthesis of bimetallic dinickel(II) dihydride complex 

 

Scheme 57: Preparation of 37 and 38 in one pot from 35 with NaHBEt3.  

The alkali metals (Na and K) have led to great interest in investigations on the 

Ni-H coordination compounds in the H3L1 ligand. With this background in mind, 

we are interested in the fundamental hydride chemistry of the bulky ligand with 

different alkali metals. Upon addition of 2 equivalents NaHBEt3 to 35 processes 

two diamagnetic species (Scheme 57), 37 and 38, in different ratios (1:1 or 2:3) 

depending on the reaction times. Fortunately, the coexistence of 37 and 38 in this 

case are confirmed by x-ray crystallographic analysis. Single crystals of 37 and 

38 suitable for x-ray diffraction were obtained from Et2O/THF and hexane/THF 

double solvent recrystallization systems, respectively.  

It became obvious that, similar to the 36, 37 is a monohydride nickel complex 

with Na cation. And, the x-ray crystallography shows that 38 is a bimetallic 

dinickel(II) dihydride complex as 3 with Na+ cation. 38 is highly soluble in non-

polar solvents such as THF, suggesting that in solution it maintains the structure 
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in which the sodium is surrounded by arenes. The molecular structures of 37 and 

38 in ORTEP diagram is shown in Figure 179 and selected bond lengths (Å) and 

angles (°) are listed in Table 47. 38 crystallizes in the triclinic space group P-1. 

The two nickel central were coordinated in square-planar fashion, with the sum 

of 360.58° and 359.86°, respectively. The distance of the two nickel atoms of 

4.057(6) Å is shorter than 2 and 3. The sodium is coordinated by the two hydride 

ligands and two THF molecules.  

 

Figure 179: Molecular structure (50% probability thermal ellipsoids) 37 (a), 38 

(c) and of the anion of 37 (b), 38 (d). Most hydrogen atoms omitted for clarity, 

except for the nickel-bound hydrides. 
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Table 47: Selected bond lengths (Å) and angle (°) for 38. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N4 1.859(3) N4-Ni1-N1 178.19(11) 

Ni1-N1 1.863(3) N4-Ni1-N3 96.62(10) 

Ni1-N3 1.914(2) N1-Ni1-N3 84.57(10) 

Ni1-Na1 2.958(1) N4-Ni1-Na1 117.82(8) 

Ni2-N6 1.873(2) N1-Ni1-Na1 60.38(8) 

Ni2-N2 1.873(2) N3-Ni1-Na1 115.13(8) 

Ni2-N5 1.903(3) N4-Ni1-H1 91.5(15) 

Ni2-Na1 3.006(1) N1-Ni1-H1 87.2(15) 

Ni1···Ni2 4.057(6) N3-Ni1-H1 170.0(14) 

H1···H2 2.040(5) Na1-Ni1-H1 55.5(14) 

Ni1-H1 1.40(3) N6-Ni2-N2 175.91(11) 

Ni2-H2 1.46(3) N6-Ni2-N5 96.25(11) 

  N2-Ni2-N5 84.06(10) 

  N6-Ni2-Na1 123.42(9) 

  N2-Ni2-Na1 59.51(8) 

  N5-Ni2-Na1 118.86(8) 

  N6-Ni2-H2 91.6(11) 

  N2-Ni2-H2 88.6(11) 

  N5-Ni2-H2 168.9(11) 

  Na1-Ni2-H2 50.0(11) 

  H1-Na1-H2 50.24(1) 

  N1-Na1-H1 53.52(9) 

  N2-Na1-H2 56.09(7). 

 

1H NMR spectrum (under H2 atmosphere) shows the pyrazolate ligand reso-

nances and dihydride ligands, indicating C2v symmetry in solution. And the dihy-

dride ligands resonances are at –23.61ppm (Figure 180), slightly low shifted 

compared with complex KL3Ni2(H2) (–23.79 ppm).  
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Figure 180: 1H NMR spectrum (400 MHz) of 38 in THF-d8 under H2. Residual 

solvents are marked with an asterisk (*). 

Exposure of a solution of 38 in THF or THF-D8 to a D2 atmosphere led the color 

change from deep red to orange (Figure 181a). Meanwhile, H-D exchange medi-

ated formation of the corresponding 38. As shown in the 1H NMR spectrum 

(Figure 181a), the hydride resonance of the new sodium complex is at –23.61 

ppm. After exchange with D2, however, the 2H NMR indicates that the hydride 

peak of – 23.57 ppm is slightly different (–0.04 ppm) from the undeuteride 38 

(Figure 181b). In addition, reaction of mixture with D2 under the conditions 

yield (Ni-D)2 complex with incorporation of deuterium atom into the benzylic 

“arm”. It might be suggested that 37 is represent in solution in equilibrium with 

38 and is responsible for the unusual reactivity with H2.  

And this reaction is reversed upon addition of H2 to solutions of the deuterated 

complexes in THF. to 38− is most conveniently followed via 2H NMR spectroscopy, 

which shows the disappearance of the signals for Ni−D around −24 ppm (con-

comitant for the appearance of Ni−H in the 1H NMR spectrum) and the rise of a 

signal at 4.57 ppm originating from D2 (Figure 181). Surprisingly, no HD for-

mation is observed during the initial stages of the reaction. 
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Scheme 58: Possibility process route for the H2–D2 exchange of 38. 

 

Figure 181: (a) 1H NMR spectrum of 38 under H2 atmosphere. (b) 2H NMR spec-

trum of 38–D2. (d) after the degassing sample was loaded with H2, the deu-

tero-hydrido signal at –23.57 ppm disappeared and a new signal occurred at 

4.57 ppm (D2).   
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10.5 Reactivity towards water 

 

Scheme 59: Reactivity towards H2O of 37 and 38. 

In order to understand the relationship between nickel hydride complexes (36, 

37 and 38) and 39, a1H NMR experiment with 38 and one equivalent of water in 

THF-d8 was performed to reveal the formation of the intermediate. After the ad-

dition of water, 38 is consumed, as can be observed by the decrease of the char-

acteristic hydride and pyrazolate resonance. At the same time, the characteristic 

at 6.06 ppm emerged alongside other resonance in the low field at -0.86 ppm. In 

additional, a characteristic for pyrazolate resonance at 5.63 ppm was observed 

(Figure 183). 

A similar result was reported by Manz[11a] for the reaction of 2 with water. The 

chemical shifts for the hydride ligand (δ{1H} = 26.00 ppm) and the hydroxo lig-

and (δ{1H} = -2.07 ppm) are comparable to the shifts observed for 

Na[L3Ni2(OH)(H)] despite the fact that the two compounds are quite similar.  



CHAPTER 10 MONO AND DIHYDRIDE INTERCONVERSION 

216 

 

However, addition of one equivalent of water into a solution of 37 in THF-d8 at 

room temperature led to color change from red to green immediately, and inten-

sity gas was observed. 1H NMR spectrum indicates that the new species is 39 

without any intermediate formation. Suitable crystals for x-ray diffraction were 

obtained by layering hexane on a solution of 39 in THF in two days. The molecu-

lar structure of 39 is shown in Figure 182 and selected bond lengths (Å) and 

angles (°) are listed in Table 47. 39 crystallizes in the monoclinic crystal space 

group P21/c with six molecules in the unit cell. Hydroxyl complex is a diamag-

netic and gives to sharp signals in the 1H and 13C NMR spectra in the common 

chemical shift range for the pyrazolate ligands. The bridging hydroxide protons 

resonate at δ = –6.06 ppm in the 1H NMR spectrum (Figure 184), and the ν(O-H) 

stretching modes appears in the IR spectra at 3605 cm-1 (Figure 185a). After the 

addition of an excess (5 equivalents) of D2O to the water free decayed 39 in THF–

d8, the bridge hydroxide signal has vanished immediately and the ν(O-D) 

stretching is at 2681 cm-1 (ν(O-H)/ ν(O-D) = 1.35). 

 

 

Figure 182: Molecular structure (50% probability thermal ellipsoids) of 39. 

Most hydrogen atoms omitted for clarity, except for OH unit. 
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Table 48: Selected bond lengths (Å) and angles (°) of 39. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N1 1.802(3) N1-Ni1-N4 175.13(12) 

Ni1-N4 1.884(2) N1-Ni1-N3 81.41(12) 

Ni1-N3 1.891(3) N4-Ni1-N3 95.11(11) 

Ni1-O1 1.973(2) N1-Ni1-O1 82.67(10) 

Ni2-N2 1.797(3) N4-Ni1-O1 100.73(10) 

Ni2-N6 1.883(2) N3-Ni1-O1 164.06(11) 

Ni2-N5 1.894(3) N2-Ni2-N6 176.55(12) 

Ni2-O1 1.977(2) N2-Ni2-N5 81.28(11) 

Ni1···Ni2 4.105(5) N6-Ni2-N5 95.48(11) 

  N2-Ni2-O1 82.66(10) 

  N6-Ni2-O1 100.52(10) 

  N5-Ni2-O1 163.74(10) 

  Ni1-O1-Ni2 122.13(11) 

 

 

Figure 183: Reactivity toward H2O and monitoring this reaction by 1H NMR. 
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Figure 184: 1H NMR spectrum (400 MHz) of 39 and 39-OD in THF-d8. Residual 

solvents are marked with an asterisk (*). 

 

Figure 185: (a) IR spectrum in crystalline material and (b) ESI-MS (+) (in THF) 

of 39. 



CHAPTER 10 MONO AND DIHYDRIDE INTERCONVERSION 

219 

 

10.6 Reactivity towards lutidinium triflate 

 

Scheme 60: Synthetic route for 40. 

To better understand the influence of the substitute and the chemical properties 

of the dihydride and monohydride complex its reactivity toward the weak acid 

[H-Lut]OTf has been investigated also. Similar to the H3L1 ligand, we thought the 

38 with [H-Lut]OTf in the presence of N2 can generate dinitrogen bridge complex. 

However, upon addition of one equivalent of [H-Lut]OTf with dinickel monohy-

dride and dihydride mixture in THF without any color change and no gas was 

observed during the reaction process (Scheme 60). In this reaction it is very 

easy to get hydroxide bridge complex. A similar reaction was happened in the 

Limberg and co-works which was using the diiron dihydride complex with 

[H-Lut]OTf. [20d] 

Suitable crystals for X-ray diffusion were obtained from THF slow evaporation 

under hexane atmosphere. The triflate bridging compound was characterized by 

x-ray diffraction, 1H and 13C NMR, FT-IR, ESI-MS spectroscopy and elemental 

analysis (C, H and N). The molecular structure of 40 is shown in Figure 186 and 

selected bond lengths (Å) and angles (°) are listed in Table 49. As shown in Fig-

ure 186, the two nickel centers were coordinated in square-planar fashion, with 

the sum of 359.95° and 361.25°, respectively. In this structure of 40, each nickel 

center is held within an N,N-chelate of a β-diketiminato arm and oxygen from 
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triflate ligand. And the distance of the two nickel of 4.401 Å is longer than 35. 

To further confirm the identity, an NMR spectroscopic analysis has been per-

formed. Form 1H and 13C {1H} NMR spectroscopy, the complex is diamagnetic and 

highly symmetric structure in the solution. In the 1H NMR spectrum 

(Figure 187), a signal set for the protons of the ligand in the normal ranging filed 

were observed that was characteristic for C2h symmetrical diamagnetic nickel(II) 

complex. 19F NMR spectrum (Figure 188) showed a signal at –77.81 ppm that is 

for the triflate ion. It indicates that the triflate is not coordinated to the nickel 

central in the solution state. 

 

Figure 186: Molecular structure (50% probability thermal ellipsoids) of 40. All 

hydrogen atoms omitted for clarity.  

Table 49: Selected bond lengths (Å) and angles (°) for 40. 

Atoms Bond lengths Atoms Bond angles 

Ni1-N3 1.850(1) N3-Ni1-N4 92.54(6) 

Ni1-N4 1.893(1) N3-Ni1-O1 176.19(6) 

Ni1-O1 1.928(1) N4-Ni1-O1 87.24(6) 

Ni1-N1 1.938(1) N3-Ni1-N1 84.97(6) 

Ni2-N5 1.856(1) N4-Ni1-N1 177.43(6) 

Ni2-N6 1.891(1) O1-Ni1-N1 95.21(5) 

Ni2-O2 1.925(1) N5-Ni2-N6 94.21(6) 

Ni2-N2 1.931(1) N5-Ni2-O2 169.15(6) 

  N6-Ni2-O2 88.65(6) 

  N5-Ni2-N2 85.49(6) 

  N6-Ni2-N2 173.18(6) 
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  O2-Ni2-N2 92.90(6) 

  S1-O1-Ni1 132.72(8) 

  S1-O2-Ni2 126.71(8) 

 

 

Figure 187: 1H NMR (400 MHz) spectrum of 40 (Some byproduct 39 was ob-

served). Residual solvents are marked with an asterisk (*). 

 
Figure 188: 19F NMR spectrum of 40. 

The IR spectrum of 40 shows three additional strong bands at 1229 cm−1 and 

696 cm−1, which can be assigned to the triflate vibrations. [135] 
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10.7 Summary 

To conclude, a bunch of bimetallic dinickel(II) complexes based on an expand 

bis(β-diketiminato) ligand system was prepared and their structures and behav-

ior. Bimeatllic dinickel(II) monohydride complex was isolated after reacting the 

precursor complex L2Ni2(μ-Br) with KHBEt3 in THF. However, bimetallic dinick-

el(II) monohydride and dihydride complexes were obtained from the precursor 

complex with NaHBEt3. VT 1H NMR experiments suggest that 38 is present in 

solution in equilibrium with 37 and is responsible for the unsual reactivity with 

H2. Furthermore, 36, 37 and 38 exhibit reactivity toward to H2O and Lewis acid.  
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Chapter 11 Experimental Section 

11.1 Material and Methods 

All manipulations were performed under an anaerobic and anhydrous atmos-

phere of dry argon by using standard Schlenk techniques or in a glove box (O2 < 

0.5 ppm, H2O < 0.5 ppm). Chemicals used were either present in the working 

group or were purchased from commercial sources or their synthesis is de-

scribed below. Glassware was dried at 120°C. THF, Diethyl ether, Pentane and 

Hexane were dried over sodium in the presence of benzophenone; DCM and 

CHCl3 were dried over P4O10; MeCN (CH3CN), EtCN (CH3CH2CN) and Et3N (trime-

thylamine) were dried over CaH2; MeOH and EtOH were dried over Mg. Toluene 

is used after drying over molecular sieve using a Mbraun PLC; all solvents were 

distilled prior to use. THF–d8 is also dried over sodium in the presence of benzo-

phenone to use and keep in 3 Å molecular sieve condition. Na and K were pur-

chased as dispersions in mineral oil, they were washed repetitively with hexane 

and fried in vacuum prior to use. 1H NMR, 2H NMR, 13C NMR, 19F and 11B NMR 

spectra were recorded on Bruker Avance 300 or 400 spectrometers at room 

temperature or low temperature. Chemical shifts are reported in parts per mil-

lion relative to residual proton and carbon signals of the solvent (CDCl3, δH = 7.26, 

δC = 77.16 ppm; CD2Cl2, δH = 5.32, δC = 53.84 ppm; DMSO-d6, δH = 2.50, δC = 

39.52 ppm; THF, δH = 1.73 and 3.59 ppm; δC = 25.31 and 67.21 ppm, CD3CN, δH = 

1.94, δC = 1.32 and 118.26 ppm).  

All gas (15N2, 16O2, 18O2, 12CO, 13CO and 12CO2) was dried over sulfuric acid (95%) 

for overnight. H3L1 was prepared according the literature. [11] S=PMe3 was syn-

thesized using a modified published [136] synthesis in which PMe3 was stirred 

with 1/8 molar equivalents of S8 in toluene for 12 hours. [H-Lut]OTf was synthe-

sized using a modified published [137] and dried at 90–100°C for overnight. An-
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hydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H) [ 138 ], 

[NiBr2(dme)] (dme=1,2-dimethoxyethane) [139], 2,4,6-tri-tert-butylphenol radical 

were synthesized from literature directly. [ 140 ] BCF 

(Tris(pentafluorophenyl)borane) was bought from abcr and dried at 110 °C for 

overnight and used subsequently.  

UV-vis spectra were recorded on a Cary 50 Bio (Varian) or Cary 5000 (Varian) 

using quartz cuvettes (d = 1 cm or 0.1 cm). Low temperature UV−vis spectra 

were measured with a Varian Cary 50 Bio instrument coupled to a quartz immer-

sion probe (5 mm, Hellma Analytics). Temperature stability was qualitatively as-

sessed using the quartz immersion probe. Spectra were analyzed by Cary win UV 

software. Solid state spectra were recorded using the cary 5000 Bio spectropho-

tometer but with a Praying MantisTM diffuse reflection attachment equipped with 

a sample chamber with quartz window (Harrick Scientific Products).  

Electron ionization (EI) mass spectra were recorded with a Finnigan MAT 8200. 

ESI-MS were recorded on Brucker HCT ultra spectrometer.  

IR spectra of solid samples were measured with a Cary 630 FTIR spectrometer 

equipped with a DialPath and Diamond ATR accessory (Agilent) placed in a 

glovebox (MBRAUN UNIlab, argon atmosphere). IR bands were labeled according 

to their relative intensities with vs (very strong), s (strong), m (medium), w 

(weak), and very weak (vw). 

Cyclic voltammetry (CV) experiments were performed using a Perkin–Elmer 

model 263A and a three electrodes setup consisting of a glassy carbon-working 

electrode, a platinum wire counter electrode and an Ag/AgCl reference electrode. 

Ferrocene was used as an internal standard with E0(Fc+/Fc) = 0 V. All studies 

were performed in deoxygenated THF containing NBu4PF6 (0.1 M) as supporting 

electrolyte.  
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X-band EPR spectra were measured with a Bruker E500 ELEXSYS spectrometer 

equipped with a standard cavity (ER4102ST, 9.45 GHz). Continuous-wave (cw) Q 

band EPR measurements were performed on a Bruker E500 Elexsys Q-band 

spectrometer equipped with an Oxford ESR910 flow cryostat and an ER4102ST 

rectangular cavity. Pulsed EPR spectra were recorded on a Bruker SuperQ FT EPR 

spectrometer and a Bruker E580 spectrometer. The sample temperature was 

maintained constant with an Oxford Instruments Helium flow cryostat (ESP910) 

and an Oxford temperature controller (ITC-4). The microwave frequency was 

measured with the built-in frequency counter and the magnetic field was cali-

brated using an NMR field probe (Bruker ER035M). EPR spectra were simulated 

using Easy Spin [141] or XSophe. [142]  

Samples for XES experiments were prepared in an inert atmosphere nitrogen 

glovebox as finely ground dilutions in boron nitride pressed into 1 mm Al spacers 

and shipped to the experimental site in triple glass jars with fluoropolymer seals 

on the lids and sealed with Teflon and electrical tape. XES spectra were recorded 

with a crystal array spectrometer, which employs three spherically bent Ge(620) 

crystals (100 mm diameter, 1 m radius of curvature) aligned on intersecting 

Rowland circles. A silicon drift detector was used to detect the resultant fluores-

cence. Samples were positioned at 45 degrees with respect to the incident beam, 

and were maintained at a temperature of less than 100 K with an ARS helium 

diplex cryostat (CHESS) or Oxford CF1208 cryostat (SSRL). A helium-filled flight 

path was utilized between the cryostat and the spectrometer to minimize signal 

attenuation of the fluorescence. Spectra were normalized to the incident flux I0 

measured in a He-filled ion chamber (SSRL) or N2-filled (CHESS). The spectrom-

eter energy resolution is estimated at ∼2.5 eV.  

Temperature-dependent magnetic susceptibility measurements for peroxo and 

superoxo dinickel complexes were carried out with a Quantum-Design 

MPMS-XL-5 SQUID magnetometer equipped with a 5 Tesla magnet in the range 
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from 295 to 2.0 K at a magnetic field of 0.5 T. The powdered sample was con-

tained in a Teflon bucket and fixed in a non-magnetic sample holder. Each raw 

data file for the measured magnetic moment was corrected for the diamagnetic 

contribution of the Teflon bucket according to Mdia(bucket) = χg∙m∙H, with an ex-

perimentally obtained gram susceptibility of the Teflon bucket. The molar sus-

ceptibility data were corrected for the diamagnetic contribution using the Pascal 

constants and the increment method according to Haberditzl. [143] Magnetic 

measurement for 4 was collected on freshly crystallized material that was sealed 

with a small amount of mother liquor in an NMR-tube to prevent the loss of sol-

vents and/or molecular hydrogen. Additionally, complex 4 was isolated and dried 

in glove-box atmosphere for 1 h (4*) or dried in vacuum for 15 h (4**). For 2, the 

powdered sample was contained in a Teflon bucket and fixed in a non-magnetic sam-

ple holder. Each raw data file for the measured magnetic moment was corrected for 

the diamagnetic contribution of the sample holder and the sample. 

Experimental data were modelled with the julX program [144] using a fitting pro-

cedure to the spin Hamiltonians:  

 2121
ˆˆ2ˆ SSBgSSJH B


   (Eq. S1) for 4 

or   

SBgH B


 ˆ  (Eq. S2) for complexes 2, 6, 9, 16 and 24 

Temperature-independent paramagnetism (TIP) and paramagnetic impurities 

(PI) were included according to ccalc = (1  PI)·c + PI·cmono + TIP. Intermolecular 

interactions were considered in a mean field approach by using a Weiss temper-

ature Θ. [145] The Weiss temperature Θ (defined as Θ = zJinterS(S + 1)/3k) relates to 

intermolecular interactions zJinter, where Jinter is the interaction parameter be-

tween two nearest neighbor magnetic centers, k is the Boltzmann constant 
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(0.695 cm–1∙K–1) and z is the number of nearest neighbors.  

Raman spectra of compounds have been recorded using a HORIBA Scientific 

LabRAM HR 800 (400-1100 nm) spectrometer with open-electrode CCD detector and 

a confocal pinhole with user controlled variable aperture in combination with a free 

space optical microscope, and a He:Ne-laser (633 nm) or diode laser (457 nm). All 

spectra were recorded at room temperature. Raman measurements were performed 

under air at room temperature with the sample mounted on a glass slide. All samples 

are measured in the crystalline material. 

Calibration plot of GC quantification of H2: A 10 mL flask was charged with THF (2 

mL) and a magnetic stir bar. In addition, 0.8 mL of CH4 was injected into the closed 

system as an internal standard. A sample of H2 was injected to the flask (0.1, 0.2, 0.4, 

0.8 and 1.2 mL, at 1 atm). An aliquot of the headspace was then injected into 

GC-2014 gas chromatography with ShimAdzu, Shincarbon column (4.0 m × 2.00 mm, 

oven temperature 100°C, carrier gas Ar, 180 KPa). A calibration plot was obtained 

by plotting the ratio of the GC peak integrations H2/CH4 versus the amount of hydro-

gen added to the flask.  

Elemental analyses were performed by the analytical laboratory of the Institute 

of Inorganic Chemistry at Georg-August-University using an Elementar Vario EL 

III instrument. 

Column chromatographic purifications (63–200 μm particle size) were per-

formed on silica. TLC was performed on silica gel (Macherey-Nagel, Polygram SIL 

G/UV254). 

  



CHAPTER 11 EXPERIMENT SECTION 

228 

 

11.2 Experiment 

11.2.1 Synthesis of Ligand Precursors and Ligands 

 

Scheme 61: Syntheses route for the Ligands.  

Ligand precursors I, II, III, H3L1 was prepared according the literature. [11] 

 

Under anaerobic conditions a solution of PhB(OH)2 (2.19 g, 18.0 mmol) in etha-

nol (12 mL) was added to a solution of 2,6-dibromoaniline (1.51 g, 6.00 mmol) in 

toluene (60 mL). Aqueous Na2CO3 solution (2 M, 25 mL) and Pd(PPh3)4 (0.83 g, 

0.72 mmol) were added, and the mixture was refluxed for 20 h at 85°C. The or-

ganic layer was separated, and the aqueous phase extracted with ether (3 × 50 

mL). The combined organic phases were dried over MgSO4 in air, and solvent was 

removed. The black residue was purified on a silica column eluted with ethyl ac-

etate: hexane = 1:9 (v:v). Solvent was removed from the eluate, and the residue 

was crystallized from hot hexanes to afford pure 2,6-diphenylaniline as a white 
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solid. [146] 

1H NMR (CDCl3, 300 MHz) = 3.74 (br, 2H, NH2), 6.90 (t, 1H, Ar), 7.14 (t, 2H, Ar), 

7.37 (m, 2H, Ar), 7.52(m, 8H, Ar). 

 

 

L2. A mount of 2,6-diphenylaniline (0.106 mol, 18.76 g) was added to a solution 

of 2,4-pentanedione (16.4 mL, 0.159 mol) and p-toluenesulfonic acid in toluene 

(100 mL) in a round-bottom flask. The resulting mixture was heated to reflux for 

8 hours, and water was removed as a toluene azeotrope using a Dean and Stark 

apparatus. The diethyl ether solution was washed one or two times by a little 

dilute hydrochloric acid to eliminate raw materials and the by-product diketimi-

nate. The reaction mixture was then evaporated to dryness. The resulting solid 

was recrystallized from hot hexane to afford the product. 

1H NMR (CDCl3, 300 MHz) = 1.15 (s, 3H, CH3), 1.78 (s, 3H, CH3), 4.63 (s, 1H, CH), 

7.11-7.30 (m, 13H, Ar), 12.08(br, 1H, NH). 

 

 

L1. A mixture of 2,6-diisopropylaniline (0.106 mol, 18.79 g, 20 mL, 1 equiv), 

2,4-pentanedione (0.116 mol, 11.66 g, 11.96 mL,1.1 equiv) and p-toluenesulfonic 

acid (0.5 g) in toluene (100 mL) was refluxed for 6 h, with azeotropic removal of 

water using a Dean-stark trap. After removing the solvent, the crude product was 

washed by 30 mL water and extracted by 120 mL Et2O divided three times. The 

diethyl ether solution was washed one or two times by a little dilute hydrochloric 

acid to eliminate raw materials and the by-product diketiminate. The resulting 
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brown solid was recrystallized from hexane at –30 °C to afford the product. 

1H NMR (CDCl3, 300 MHz) = 1.15 (d, 6H, CH3), 1.22 (d, 6H, CH3), 1.63 (s, 3H, CH3), 

2.12 (d, 3H, CH3), 3.02 (d, 1H, CH), 5.21 (s, 1H, CH), 7.27 (m, 3H, Ph), 12.05 (s, 1H, 

NH).  

 

 

H3L1[11]: Molecular Weight: 608.90 g/mol (C39H56N6) 

1H NMR (CDCl3, 300 MHz) = 1.06 (d, 12H, (CH3)CHPh), 1.15 (d, 12H, (CH3)CHPh), 

1.64 (s, 6H, CH3CCH), 1.95 (s, 6H, CH3CCH), 2.84 (m, 4H, CHPh), 4.39 (s, 4H, 

CH2Pz), 4.72 (s, 2H, CHCCH3), 6.01 (s, 1H, 4-Pz), 6.99-7.16 (m, 6H, Ar).  

13C NMR (CDCl3, 300 MHz) = 19.17(CH3CCH), 21.62 (CH(CH3)2), 

22.77 (CH(CH3)2), 23.76 (CH(CH3)2), 32.08, 40.06 (CH2Pz), 94.52, 101.20 (4C-Pz), 

122.80 (Ph), 123.57(Ph), 138.10 (Ph), 146.28 (3,5C-Pz), 155.58 (CH3CCH), 

166.22 (CH3CCH). 

ATR-IR (ν/cm-1) = 3190 (br)(NH), 3130 (NH), 3104 (NH), 3060 (w), 3020 (w), 

2960 (m), 2923 (w), 2867 (w), 1621 (vs), 1551 (vs), 1501 (w), 1454 (m), 1432 (m), 

1377 (m), 1361 (m), 1292 (m), 1284 (m), 1268 (m), 1226 (m), 1179 (m), 1159 (m), 

1090 (m), 1049 (m), 1020 (m), 1005 (w), 934 (w), 919 (w), 879 (w), 819 (w), 804 (w), 

784 (s), 758 (s), 728 (s), 695 (m), 664 (w), 626 (w), 607 (w), 582 (w), 519 (w), 

497 (w). 

Elemental analysis (%) calc. for C39H56N6·(C4H8O): C 72.84 H 9.47 N 12.34; 

Found C 72.92 H 9.20 N 12.48. 
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H3L2: Under an argon atmosphere, a solution of [Et3O]+[BF4]- (2.09 g, 11 mmol, 

2.2 equiv) in CH2Cl2 (40 mL) was slowly added to a solution of 

4-(2,6-diphenylphenyl)amino-3-penten-2-one (3.6 g, 11 mmol, 2.2 equiv) in 

CH2Cl2 (40 mL) at 0°C, then the reaction solution was stirred overnight at ambi-

ent temperature. Et3N (1.11 g, 11 mmol, 1.54mL, 2.2 equiv) was added at 0°C and 

the mixture was stirred for another 0.5 h at room temperature. A solution of eth-

ylene diamine (1 g, 5 mmol, 1 equiv) in Et3N (1.01g, 10 mmol, 1.4 mL, 2 equiv) 

was added to the reaction solution and the stirring was continued overnight. The 

volatiles were removed in vacuo and the obtained residue was treated with 50 

mL of toluene for 30 mins. [Et3NH]+[BF4]- precipitated as an oily solid. After 

filtration, toluene was removed under reduced pressure to afford a yellow solid. 

After recrystallization from ethanol/pentane = 1:3 at room temperature, white 

powder were obtained. 

Molecular Weight: 744.96 g/mol (C51H48N6) 

1H NMR (CDCl3, 300 MHz) = 1.30 (s, 6H, CH3CCH), 1.73 (s, 6H, CH3CCH), 4.19 (s, 

4H, CH2Pz), 4.28 (s, 2H, CHCCH3), 5.55 (s, 1H, 4-Pz), 7.09-7.34 (m, 26H, Ph), 10.61 

(br, 1H, NH).  

13C NMR (CDCl3, 75 MHz) = 18.07, 21.36, 38.84, 93.70, 99.96, 121.82, 125.21, 

126.67, 127.27, 128.22, 132.66, 140.20, 145.46, 154.43, 165.21.  

MS (ESI): m/z (%) = 745.93 (M+H)+ (100).  

Elemental analysis (%) calc. for C51H48N6 (744.39 g/mol): = C 82.25 H 6.57 N 

11.17; Found C 82.21 H 6.50 N 11.28.   
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11.2.2 Complexes Syntheses  

L1Ni2(µ-Br) (1). 

This complex was prepared according to the literature. [11] 

Molecular Weight: 803.17 g/mol (C39H53N6Ni2Br) 

1H NMR (CDCl3, 300 MHz) = 6.91-6.80 (m, 2H, Ar), 6.73-6.75 (d, JH-H = 6 Hz, 4H, 

Ar),5.46 (s, 1H, Pz), 4.68 (s, 2H, CHCCH3), 4.07 (s, 4H, CH2Pz), 3.30-3.20 (m, 4H, 

CH(CH3)2), 1.95 (s, 6 H, CH3CCH), 1.39 (d, JH-H = 6 Hz, 12H, (CH3)2CH), 1.26 (s, 6H, 

CH3CCH), 0.95 (d, JH-H = 6 Hz, 12H, (CH3)2CH).  

1H NMR (THF-d8, 300 MHz): = 6.79-6.95 (m, 6H, Ar), 5.53 (s, 1H, Pz), 4.77(s, 2H, 

CHCCH3), 4.15(s, 4H, CH2Pz), 3.33-3.40 (m, 4H, CH(CH3)2), 2.01 (s, 6H, CH3CCH), 

1.47 (d, JH-H = 6 Hz, 12H, (CH3)2CH), 1.30 (s, 6H, CH3CCH), 1.02 (d, JH-H = 6 Hz, 12 

H, (CH3)2CH).  

13C NMR (CDCl3, 75 MHz) = 159.74 (CHCCH3), 153.24 (3(5)-Pz), 147.66 (Ar), 

141.50 (Ar) 125.43 (Ar), 123.30 (Ar), 97.24 (CH2Pz), 91.51 (4C-Pz), 54.44 

(CHCCH3), 28.13 ((CH3)2CH), 24.84 ((CH3)2CH), 23.37 (CH3), 21.53 (CH3). 

ATR-IR (ν/cm-1) = 3058 (w), 2959 (m), 2923 (m), 2862 (m), 1555 (m), 1532 (vs), 

1462 (vs), 1435 (s), 1399 (s), 1381 (s), 1369 (vs), 1313 (s), 1279 (s), 1252 (s), 

1236 (m), 1186 (m), 1175 (s), 1093 (s), 1052 (s), 1032 (m), 1012 (m), 957 (m), 

935 (m), 795 (vs), 759 (vs), 745 (vs), 542 (m). 

Elemental analysis (%) calc. for C39H53N6Ni2Br·(CH2Cl2)1.5 (926.15 g/mol) = C 

52.48 H 6.10 N 9.07; Found C 52.77 H 6.45 N 9.33.  

 

NaL1Ni2(µ-H)2 (3) 

A solution of NaHBEt3 in THF (1.0 M) (0.75 mL, 0.75 mmol, 3 equiv) was added 

dropwise to a stirred brown solution of 1 (200 mg, 0.25 mmol, 1 equiv) in THF 

(2 mL) at room temperature. After stirring the resulting red-brown solution for 2 

hours, all volatiles were removed in vacuo. The red-brown residue was washed 
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twice with hexane (40 mL). After concentration in vacuo and get red powder 

(130 mg, 0.17 mmol, 68 %). The crude powder was recrystallization from Pen-

tane diffusion to a solution of 3 in THF at room temperature yield orange block 

crystals 

3-D: In a Young tube, a solution of 3 in THF (0.5 mL) was freeze-thaw degassed 

under vacuum three times. Then dry D2 (ca. 1 atm) was then introduced to the 

headspace of the flask at room temperature. 

Molecular Weight: 892.47 g/mol (C39H55N6Ni2Na·2THF) 

1H NMR (THF-d8, 300 MHz) = 6.75 - 6.86 (m, 6H, Ar), 5.61 (s, 1H, 4-Pz), 4.58 (s, 

2H, CHCCH3), 4.27 (s, 4H, CH2Pz), 3.41-3.49 (m, 4H, (CH3)2CHPh), 1.86 (s, 6H, 

CH3CCH), 1.23 (s, 6H, CH3CCH), 1.04 (dd, 24H, JH-H = 6 Hz, (CH3)2CHPh), – 23.54 

(s, 2H. Ni-H). 

2H NMR (THF, 77 MHz) = –23.54 (s, 2H. Ni-D). 

13C {1H} NMR (THF-d8, 100 MHz) = 157.91 (CHCCH3), 156.99 (CHCCH3), 155.16 

(Ar), 139.26 (Ar), 123.15 (Ar), 122.21 (Ar), 95.95 (CH2Pz), 91.91 (4-Pz), 51.35 

(CHCCH3), 27.25 (CH3), 25.39 (CH3), 21.53 (CH3), 19.61 (CH3). 

ATR-IR (ν/cm-1) = 3052 (w), 2953 (m), 2962 (m), 1846 (Ni-H) (m), 1554 (m), 

1521 (s), 1511 (s), 1459 (vs), 1373 (vs), 1396 (s), 1313 (m), 1271 (m), 1251 (m), 

1231 (m), 1189 (m), 1100 (m), 1049 (m), 933 (m), 891 (m), 796 (m), 756 (m), 

725 (m), 716 (m), 644 (m), 575 (m), 544 (w). 

Anal. Calcd. (%) for [NaNi2(C39H53N6)O2]·(C4H8O)2: C 59.07, H 6.74, N 10.60; 

found: C 59.32, H 6.82, N 10.37. 

ATR-IR (ν/cm-1) = 1337 (Ni-D) (w). 

 

[L1Ni2(µ-H2)]–[K(Dibenzo(18-crown-6))]+ (4) 

DB18C6 (7.2 mg, 0.02 mmol) was added into a solution of 2 (15.2 mg, 0.02 mmol) 

in THF (2 mL) at room temperature. After stirring the resulting red solution for 2 

hours, all volatiles were removed in vacuo. The red residue was washed twice 
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with hexane (10 mL). Suitable crystals for x-ray diffraction were obtained by lay-

ering hexane on a solution of 4 in THF at –30°C. (Yield: 90%) 

4-D2: In a Young tube, a solution of 4 in THF (0.5 mL) was freeze-thaw degassed 

under vacuum three times. Then dry D2 (ca. 1 atm) was then introduced to the 

headspace of the flask at room temperature. 

Molecular Weight: 1343.70 (C59H79N6O6Ni2K) 

1H NMR (THF-d8, 400 MHz) = –23.99 (s, Ni-H). 

ATR-IR (ν/cm-1) = 3052 (w), 2982 (m), 2955 (m), 2924 (m), 2863 (m), 1907 

(Ni-H) (m), 1595 (m), 1503 (vs), 1452 (s), 1436 (s), 1426 (s), 1396 (s), 1366 (s), 

1356 (m), 1320 (s), 1298 (w), 1270 (w), 1246 (vs), 1211 (vs), 1191 (w), 

1118 (vs), 1094 (m), 1055 (s), 1020 (w), 943 (s), 902 (m), 848 (w), 796 (m), 

778 (m), 756 (s), 741 (vs), 726 (vs), 715 (vs), 646 (w), 629 (w), 600 (m), 560 (w), 

522 (w). 

ATR-IR (ν/cm-1) = 1318 (Ni-D) (s). 

 

[L1NiI2]–[K(Dibenzo(18-crown-6))]+ (5) 

Keep the complex 4 under the vacuo for three days to remove the dihydrogen 

molecule from Ni-bound hydrides. The residue was washed with hexane (5 mL). 

Suitable crystals for x-ray diffraction were obtained by layering pentane/Et2O on 

a solution of 5 in THF at –30°C. 

Magnetic susceptibility: μeff=1.6 B (dried 1 hour); μeff=2.0 B (dried 15 hour) 

ATR-IR (ν/cm-1) = 3062 (w), 2950 (m), 2931 (m), 2864 (m), 1595 (m), 1519 (s), 

1503 (s), 1452 (w), 1436 (w), 1427 (s), 1401 (s), 1357 (m), 1309 (s), 1239 (vs), 

1209 (vs), 1193 (w), 1124 (vs), 1089 (m), 1058 (s), 1022 (w), 982 (s), 953 (m), 

941 (w), 900 (w), 848 (w), 797 (m), 782 (m), 757 (s), 739 (vs), 718 (vs), 645 (w), 

633 (w), 600 (m), 522 (w). 
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KL1Ni2(µ-η1, η1-O2) (6) 

(a) Dioxygen (prior dried over concentrated H2SO4) (1.28 mg, 890 μL, 0.04 mmol, 

1 equiv) was added into a solution of 2 (30.5 mg, 0.04 mmol, 1 equiv) in THF (1 

mL) at room temperature. The color changes from orange to red immediately. 

Suitable crystals for x-ray diffraction were obtained from THF at –30 °C as red 

block crystal. (Yield: > 95%, from 1H NMR)  

(b) 9 (33 mg, 0.04 mmol, 1 equiv) and potassium (0.8 mg, 0.02 mmol, 2 equiv) 

were suspended in THF (2 mL) at room temperature, and a color changes from 

brown to red occurred immediately. The mixture was stirred for 2 hours, and 

then the solid components were filtered off. Suitable crystals for x-ray diffraction 

were obtained by layering hexane on a solution of 6 in THF at –30°C. (Yield: 

60%) 

6-18O2: The synthesis of 6-18O2 was achieved by the same procedure as reported 

above for 6 but employing 18O2. 

Molecular Weight: 792.3 g/mol-1 (C39H53N6Ni2KO2) 

1H NMR (THF-d8, 400 MHz) = 6.91 (m, 6H, Ar), 5.99 (s, 1H, 4-Pz), 4.53 (s, 2H, 

CHCCH3), 3.82 (s, 4H, CH2Pz), 3.69-3.79 (m, 4H, CH(CH3)2), 1.78 (s, 6H, CH3), 1.49 

(d, 12H, 2JH-H = 8 Hz, CH(CH3)2), 1.08 (d, 12H, 2JH-H = 8 Hz, CH(CH3)2), 1.02 (s, 6H, 

CH3). 

13C NMR (THF-d8, 100 MHz) = 160.01 (CHCCH3), 157.13 (CHCCH3), 151.77 

(3,5-Pz), 150.72 (Ar), 144.74 (Ar), 123.46 (Ar), 122.18 (Ar), 96.53 (CHCCH3), 

90.43 (4-Pz), 50.15 (CH2Pz), 27.77 (CH3), 22.09 (CH3), 20.93 (CH3). 

ATR-IR (ν/cm-1) = 3055 (w), 2958 (m), 2924 (m), 2864 (m), 1555 (m), 1527(vs), 

1460(s), 1433 (vs), 1397 (vs), 1369 (m), 1315 (s), 1257 (vs), 1196 (w), 1055 (s), 

1031 (vs), 1014 (vs), 859 (m), 799 (s), 774(m), 757 (s) (16O-16O),732 (s), 683 (w), 

623 (w), 589 (w), 548 (w). 

ATR-IR (ν/cm-1) = 714 (m)(18O-18O). 

Raman (ν/cm-1) = 720 (16O-16O), 680 (18O-18O). 
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ESI-MS (THF): m/z (%) = 793.3 (100) (M+H)+ (6-16O2), 819.2 (100) (6+Na)+ 

(6-18O2). 

UV-vis (THF): λmax = 272, 370, 384, 510 nm. 

Anal. Calcd. (%) for [(C39H53N6)KNi2O2]: C 59.07, H 6.74, N 10.60; found: C 59.32, 

H 6.82, N 10.37. 

 

NaL1Ni2(µ-η1, η1-O2) (7) 

NaBArF4 (18 mg, 0.02 mmol, 1 equiv) was added into a solution of 6 (16 mg, 0.02 

mmol, 1 equiv) at room temperature. The mixture was stirred for 2 hours, and 

then the solid components were filtered off. Suitable crystals for x-ray diffraction 

were obtained by layering hexane on a solution of 7 in THF at –30°C. 

Molecular Weight: 778.25 g/mol (C39H53N6Ni2NaO2) 

1H NMR (THF-d8, 400 MHz) = 6.95 (br, 6H, Ar), 5.59 (s, 1H, 4H-Pz), 4.55 (s, 2H, 

CHCCH3), 3.82 (s, 4H, CH2Pz), 1.80 (s, 6H, CH3), 1.50 (d, 12H, 3JH-H = 4 Hz, (CH3)2 

CH), 1.08 (d+s, 18H, CH3+(CH3)2CH). 

 

[L1Ni2(µ-η1, η1-O2)]-[K(Dibenzo(18-crown-6))]+ (8) 

DB18C6 (7.2 mg, 0.02 mmol, 1 equiv) was added into a solution of 6 (16 mg, 0.02 

mmol, 1 equiv) in THF (2 mL) at room temperature resulting the color from 

wine-red to cherry red. After stirring the resulting red solution for 2 hours, all 

volatiles were removed in vacuo. The red residue was washed twice with hexane 

(10 mL). Suitable crystals for x-ray diffraction were obtained by layering hex-

ane/Et2O on a solution of 8 in THF at –30°C (yield: 80%). 

8-18O2: The synthesis of 8-18O2 was achieved by the same procedure as reported 

above for 8 but employing 18O2. 

Molecular Weight: 1154.76 g/mol (C59H77N6O8Ni2K) 

1H NMR (THF-d8, 400 MHz) = 6.83 – 6.94 (m, Ar + Dibenzo(18-crown-6)), 5.57 (s, 

1H, 4H-Pz), 4.49 (br, 2H, CHCCCH3), 4.14 (Dibenzo(18-crown-6)), 4.08 
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(Dibenzo(18-crown-6)), 3.79 (br, 4H, CH2Pz), 1.40 (s, 12H, CH3), 1.05 (s, 12H, 

CH3). 

13C {1H} NMR (THF-d8, 100 MHz) = 149.39, 144.47, 135.22, 126.21, 123.94, 

121.94, 121.78, 113.45, 113.39, 113.15, 106.12, 97.71, 96.07, 92.59, 70.32, 69.17, 

56.45, 56.07, 32.59, 28.99, 27.35, 26.43, 25.90, 23.98, 22.96, 21.18, 20.79, 14.48.  

ATR-IR (ν/cm-1) = 3058 (w), 2952 (m), 2925 (m), 2860 (m), 1663 (w), 1594 (m), 

1547 (m), 1522 (s), 1502 (s), 1438 (s), 1402 (vs), 1320 (m), 1308 (m), 1281 (w), 

1247 (vs), 1209 (s), 1123 (vs), 1099 (w), 1083 (w), 1055 (vs), 987 (w), 953 (w), 

940 (s), 912 (w), 900 (w), 807 (w), 796 (m), 778 (m) (16O-16O), 739 (s), 715 (s), 

600 (m), 582 (w). 

ATR-IR (ν/cm-1) = 728 (m)(18O-18O). 

Raman (ν/cm-1) = 755 (
16

O-
16

O), 715 (
18

O-
18

O). 

UV-vis (THF): λmax = 274, 380, 410, 520 nm. 

ESI-MS (CH3CN): m/z (%) = 755.44 (15) (L1Ni2(O2)+2H)+ (8-16O2), 759.44 (20) 

(L1Ni2(18O2)+2H)+ (8-18O2). 

Anal. Calcd. (%) for [K(C20H24O6)(C4H8O)2]+[Ni2(C39H53N6)O2]-: C 61.95, H 7.22, N 

6.47; found: C 62.12, H 7.33, N 6.18. 

 

L1Ni2(µ-η1,η1-O2) (9) 

(a) A solution of 2 in THF (10 mL) was cooled to –78°C. The nitrogen atmosphere 

in the young flask was replaced with dry dioxygen. After stirring for 2 hours, the 

reaction mixture was allowed to warm to room temperature and was further 

stirred overnight. The color of the solution changed from orange to brown-red. 

Volatiles were concentrated to 2 mL. Suitable crystals for x-ray diffraction were 

obtained by layering hexane on a solution of 9 in THF at –30°C. (yield: 60%) 

(b) Dioxygen (prior dried over concentrated H2SO4) (1.28 mg, 890 μL, 0.04 mmol, 

1 equiv) was added into a solution of 6 (31.7 mg, 0.04 mmol, 1 equiv) in THF (1 

mL) at room temperature. The color changed from red to brown in 20 minutes. 
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Suitable crystals for x-ray diffraction were obtained by layering hexane on a solu-

tion of 9 in THF at –30°C. (yield: 70%) 

9-18O2: The synthesis of 9-18O2 was achieved by the same procedure as reported 

above for 9 but employing 18O2. The setup was prepared using a method similar 

to that described for 15N2 starting from 18O2. 

Molecular Weight: 753.3 g/mol (C39H53N6Ni2O2) 

ATR-IR (ν/cm-1) = 3058 (w), 2956 (m), 2924 (m), 2865 (m), 1553 (m), 1532 (s), 

1461 (s), 1437 (s), 1394 (s), 1369 (s), 1313 (s), 1252 (s), 1234 (s), 1187 (s), 

1176 (s), 1092 (m), 1032 (s), 982 (16O-16O) (s), 936 (m), 916 (m), 870 (w), 

797 (s), 759 (s), 743 (s), 714 (m), 588 (m), 565(m). 

ATR-IR (ν/cm-1) = 936 (m)(18O-18O). 

Raman (ν/cm-1) = 1007 (16O-16O), 951 (18O-18O).  

ESI-MS (THF:CH3CN = 10:1): m/z (%) = 792.4 (100) (M+K)+ (9-16O2), 776.4 (20) 

(9+Na)+ (9-16O2), 754.3 (5) (9+H)+ (9-16O2); 796.4 (100)(9+K)+ (9-18O2). 

UV-vis (THF): λmax = 312, 364, 461, 560, 720 nm. 

Anal. Calcd. (%) for [Ni2(C39H53N6)O2]: C 62.13, H 7.09, N 11.15; found: C 62.50, 

H 7.39, N 10.19. 

 

L1Ni2(µ-OH) (11) 

(a) Treatment of 6(31.77 mg, 0.04 mmol, 1 equiv) in THF (2 mL) with [H-Lut]OTf 

(10.28 mg, 0.04 mmol, 1 equiv) resulted in a color change from red to orange 

immediately. The mixture was stirred for 1 hour. After filtration, suitable crystals 

for x-ray diffraction were obtained by layering hexane on a solution of 11 in THF 

at –30°C. (yield: 80%) 

(b) Treatment of 9 (15.10 mg, 0.02 mmol, 1 equiv) in THF (1 mL) with TEMPO-H 

(3.14 mg, 0.02 mmol, 1 equiv) resulted color change from brown to brown red in 

20 mins. The reaction mixture was allowed to react for 12 hours at −30°C. Suita-

ble crystals for x-ray diffraction were obtained by layering hexane on a solution 
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of 11 in THF at –30°C. (yield: 80%) 

(c) Treatment of 2 (30.56 mg, 0.04 mmol, 1 equiv) in THF (2 mL) with H2O re-

sulted in a color change from red to orange immediately and intensity gas was 

observed. The mixture was stirred for 1 hour. After filtration, suitable crystals for 

x-ray diffraction were obtained by layering hexane on a solution of 11 in THF at –

30°C. (Yield: 80%) 

Molecular Weight: 740.27 g/mol (C39H54N6Ni2O) 

1H NMR (THF-d8, 400 MHz) = 6.94 – 6.98 (t, 4H, Ar), 6.80 - 6.82 (d, 2H, Ar), 5.48 

(s, 1H, Pz), 4.60 (s, 2H, CHCCH3), 4.01 (s, 4H, CH2Pz), 3.32 - 3.37 (m, 4H, 

CH(CH3)2), 1.86 (s, 6H, CH3CCH), 1.61(d, 12H, 2JH-H = 4 Hz, (CH3)2CH), 1.08 (s+d, 

18H, CH3CCH+(CH3)2CH). 

13C NMR (THF-d8, 100 MHz) = 21.36 (CH3), 23.73 (CH3), 25.89 (CH3), 29.20 (CH3), 

55.14 (CH2Pz), 91.62 (4-Pz), 98.25 (CHCCH3), 125.33 (Ar), 126.14 (Ar), 142.56 

(Ar), 145.40 (Ar), 159.36 (CHCCH3), 161.25 (CHCCH3). 

ATR-IR (ν/cm-1) = 3608 (m, OH), 3058 (w), 2955 (m), 2864 (m), 1553 (m), 

1529 (vs), 1462 (s), 1436 (s), 1394 (vs), 1381 (vs), 1323 (m), 1314 (m), 

1271 (m), 1251 (m), 1234 (m), 1196 (w), 1159 (w), 1104 (w), 1082 (w), 

1060 (m), 1018 (m), 946 (m), 874 (m), 799 (s), 756 (vs), 732 (vs), 709 (w), 

649 (m).  

Anal. Calcd. (%) for [Ni2(C39H53N6)OH]: C 63.28, H 7.35, N 11.35; found: C 63.18, 

H 7.23, N 11.49. 

 

KL1Ni2(µ-η1, η1-S2) (12) 

Elemental sulfur (2.56 mg, 0.04 mmol, 1 equiv) was added into a solution of 2 

(30.5 mg, 0.04 mmol, 1 equiv) in THF (1 mL) at room temperature. The color 

changes from orange to blood red immediately and intensity gas was observed. 

Suitable crystals for x-ray diffraction were obtained by layering hexane on a solu-

tion of 12 in THF at -30 °C (Yield: > 95%, from 1H NMR)  
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Molecular Weight: 826.50 g/mol (C39H53N6Ni2S2K) 

1H NMR (THF-d8, 400 MHz) = 6.91 (m, 6H, Ar), 5.99 (s, 1H, 4-Pz), 4.53 (s, 2H, 

CHCCH3), 3.82 (s, 4H, CH2Pz), 3.69-3.79 (m, 4H, CH(CH3)2), 1.78 (s, 6H, CH3), 1.49 

(d, 12H, JH-H = 8 Hz, CH(CH3)2), 1.08 (d, 12H, 3JH-H = 8 Hz, CH(CH3)2), 1.02 (s, 6H, 

CH3). 

13C NMR (THF-d8, 100 MHz) = 159.79 (Cq-Me), 158.25 (Cq-Me), 156.42 (3(5)C-Pz), 

144.16 (Ar) 124.61 (Ar), 122.48 (Ar), 97.23 (CHCCH3), 91.97 (4C-Pz), 

50.83(CH2Pz) 28.62 ((CH3)2CH), 26.43 (CH3iPr), 24.30 (CH3iPr), 21.90 (CH3). 

ATR-IR (ν/cm-1) = 3052 (w), 2954 (m), 2924 (m), 2862 (m), 1555 (m), 1528 (vs), 

1462 (m), 1433 (vs), 1398 (vs), 1315 (m), 1276 (m), 1249 (m), 1232 (w), 

1209 (w), 1188 (w), 1124 (w), 1097 (w), 1054 (m), 1030 (m), 954 (w), 934 (w), 

900 (w), 856 (w), 795 (m), 744 (s), 729 (m), 713 (m), 646 (w), 625 (w), 547 (w), 

521 (w), 425 (m) (S-S). 

UV-vis (THF): λmax = 270, 375, 405, 465, 520 nm. 

Anal. Calcd. (%) for [KNi2(C39H53N6)S2][C4H8O]: C 61.89, H 7.37, N 10.07; found: 

C 61.53, H 7.11, N 11.17. 

 

L1Ni2(µ-SH) (13) 

(a) Elemental sulfur (2.56 mg, 0.04 mmol, 1 equiv) was added into a solution of 1 

(30.5 mg, 0.04 mmol, 1 equiv) in THF (2 mL) in the presence of KC8 at room 

temperature. Then the brown suspension solvent was stirred for two days at 

room temperature. Suitable crystals for x-ray diffraction were obtained by layer-

ing hexane on a solution of 13 in THF at –30°C. (Yield: 80%)  

(b) Treatment of 14 (33 mg, 0.04 mmol, 1 equiv) in THF (2 mL) with [H-Lut]OTf 

(10.28 mg, 0.04 mmol, 1 equiv) resulted in a color change from red to brown 

immediately. The mixture was stirred for 1 hour. After filtration, Suitable crystals 

for x-ray diffraction were obtained by layering hexane on a solution of 13 in THF 

at –30°C. (yield: 80%) 
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(c) Treatment of 12 in THF (2 mL) under air resulted in a color change from red 

to brown in 2 hours. Suitable crystals for x-ray diffraction were obtained by lay-

ering hexane on a solution of 13 in THF at –30°C. (Yield: 80%) 

Molecular Weight: 756.34 g/mol (C39H54N6Ni2S) 

1H NMR (CDCl3, 400 MHz) = 6.96 (d, 2H, Ar), 6.84 (d, 4H, Ar), 5.55 (s, 1H, 4-Pz), 

4.74 (s, 2H, CHCCH3), 4.23 (s, 4H, CH2Pz), 3.21-3.29 (m, 4H, CH(CH3)2), 2.02 (s, 

6H, CH3), 1.47 (d, 12H, JH-H = 8 Hz, CH(CH3)2), 1.33 (s, 6H, CH(CH3)2), 1.02 (d, JH-H 

= 8 Hz, 12H, CH3). 

1H NMR (THF-d8, 400 MHz) = 6.95 (d, 2H, JH-H = 12 Hz, Ar), 6.85 (d, 4H, JH-H = 8 Hz, 

Ar), 5.56 (s, 1H, 4-Pz), 4.75 (s, 2H, CHCCH3), 4.23 (s, 4H, CH2Pz), 3.29 (m, 4H, 

CH(CH3)2), 1.99 (s, 6H, CH3CCH), 1.48 (d, 12H, JH-H = 4 Hz, CH(CH3)2), 1.30 (s, 6H, 

CH3CCH), 1.01 (d, 12H, JH-H = 8 Hz, CH(CH3)2), -3.61 (s, 1H, SH). 

13C NMR (THF-d8, 100 MHz) = 160.02, 158.71, 152.91, 148.40, 140.62, 125.30, 

123.57, 96.70 (CH2Pz), 91.10 (4-Pz), 54.43 (3(5)C-Pz), 27.80 (CH3), 23.42 (CH3), 

22.75 (CH3), 20.53 (CH3). 

ATR-IR (ν/cm-1) = 3056 (m), 2951 (m), 2924 (m), 2864 (w), 2557 (s) (SH), 

1556 (m), 1530 (vs), 1464 (vs), 1434 (vs), 1398 (vs), 1359 (m), 1313 (s), 

1282 (w), 1250 (m), 1233 (w), 1191 (w), 1126 (w), 1108 (w), 1087 (w), 

1075 (w), 1056 (w), 1032 (m), 1009 (w), 983 (w), 934 (w), 916 (w), 860 (w), 

795 (s), 760 (vs), 741 (vs), 714 (w), 641 (w), 543 (w), 529 (w). 

ATR-IR (ν/cm-1) = 1817 (SD) 

UV-vis (THF): λmax = 299, 380 nm. 

Anal. Calcd. (%) for [Ni2(C39H53N6)SH]: C 61.93, H 7.20, N 11.11; found: C 62.18, 

H 7.43, N 10.61. 

 

KL1Ni2(μ-S) (14) 

(a) PPh3 (2.26 mg, 0.01 mmol, 1 equiv) was added into a solution of 12 in THF-d8 

at room temperature. Completely conversion happened in around 40 hours. 1H 
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and 31P NMR spectra were shown in the 5.2.  

(b) S=PMe3 (4.3 mg, 0.04 mmol, 1 equiv) was added into a solution of 2 (30.5 mg, 

0.04 mmol, 1 equiv) in THF (1 mL) at room temperature. No obvious color 

changing was observed. Suitable crystals for x-ray diffraction were obtained from 

hexane layering into THF at -30°C as red block crystals in two weeks. (Yield: 95%, 

from 1H NMR)  

(c) 13 (16.5 mg, 0.02 mmol, 1 equiv) and excess potassium hydride were sus-

pended in 2 mL of THF at room temperature. Intense gas (H2) development was 

observed, and a color changes from brown to red occurred in 2 hours. The mix-

ture was stirred for 4 hours continue, solid components were filtered off. Re-

crystallization of the crude product by layering hexane on a solution of 14 in THF 

at –30°C yields red block crystal. (Yield: 60%) 

(d) 16 (33 mg, 0.04 mmol, 1 equiv) and excess potassium were suspended in 2 

mL of THF at room temperature, and a color changes from brown to red occurred 

immediately. The mixture was stirred for 2 hours continue, solid components 

were filtered off. The final product was identified by 1H NMR.  

Molecular Weight: 794.43 g/mol (C39H53N6Ni2S2K) 

1H NMR (THF-d8, 400 MHz) = 6.77 (m, 2H, 3JH-H =4 Hz, Ar), 6.67 (d, 4H, 2JH-H = 8 

Hz, Ar) 5.46 (s, 1H, 4-Pz), 4.47 (s, 2H, CHCCH3), 4.12 (s, 4H, CH2Pz), 3.42 (m, 4H, 

CH(CH3)2), 1.82 (s, 6H, CH3), 1.33 (d, 12H, 2JH-H = 8 Hz, (CH3)2CH), 1.16 (s, 6H, 

CH3), 0.95 (d, 12H, 2JH-H = 8 Hz, (CH3)2CH) 

13C NMR (THF-d8, 100 MHz) = 159.18, 158.75, 153.91, 149.77, 141.46, 124.27, 

123.28, 96.07 (CH2Pz), 91.29 (4-Pz), 53.88 (3(5)C-Pz), 28.66 (CH3), 26.41 (CH3), 

25.37 (CH3), 21.62(CH3). 

ATR-IR (ν/cm-1) = 3056 (w), 2954 (s), 2928 (s), 2861 (s), 1549 (s), 1520 (vs), 

1458 (s), 1431 (s), 1400 (vs), 1377 (w), 1366 (w), 1321 (w), 1308 (vs), 1288 (w), 

1252 (m), 1231 (m), 1190 (m), 1079 (m), 1055 (vs), 1027 (m), 1005 (w), 

950 (w), 938 (w), 894 (m), 855 (w), 806 (w), 793 (s), 754 (vs), 726 (vs), 711 (vs), 
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659 (w), 640 (w), 542 (w), 523 (m).  

ESI-MS (THF:CH3CN = 10:1): m/z (%) = 754.49 (100) (14–K+H)+, 755.47 (100) 

(16+H), 792.38 (50) (14–K +H)+, 793.25 (17+H)+, 753.32 (14–K)- 

UV-vis (THF): λmax = 275, 351, 376, 460 nm. 

Anal. Calcd. (%) for [KNi2(C39H53N6)S·(THF)2]: C 60.14, H 7.41, N 8.95; found: C 

60.28, H 7.55, N 8.64 

 

L1Ni2(μ-SCH3) (15) 

A solution of 14 (16 mg, 0.02 mmol, 1 equiv) in THF (2 mL) was treated with ex-

cess CH3I (2 M in Butyl Methyl) with stirring. The solution color changed from 

orange to green immediately. The reaction was stirred at room temperature for 

30 mins. Suitable crystals in black block for x-ray diffraction were obtained by 

layering hexane on a solution of 15 in THF at –30°C. 

Molecular Weight: 770.37 g/mol (C39H53N6Ni2SCH3)  

ATR-IR (ν/cm-1) = 3052 (w), 2953 (m), 2922 (m), 2864 (m), 1550 (m), 1528 (vs), 

1460 (w), 1435 (s), 1394 (vs), 1380 (vs), 1312 (vs), 1266 (w), 1251 (w), 

1178 (m), 1084 (m), 1055 (m), 1033 (m), 940 (w), 799 (s), 763 (vs), 739 (vs), 

595 (w), 546 (w), 527 (w), 463 (w), 437 (m), 404 (m).  

ESI-MS (THF:CH3CN = 10:1): m/z (%) = 791.30 (15+H)+. 

 

L1Ni2(μ-S) (16) 

(a) S=PMe3 (4.3 mg, 0.04 mmol, 1 equiv) was added into a solution of 24 (30 mg, 

0.04 mmol, 1 equiv) in THF (1 mL) at room temperature. The color changes from 

brown-red to deep-brown in 10 mins. There is some orange piece formed in 20 

mins also. Suitable crystals for x-ray diffraction were obtained by layering hexane 

on a solution of 16 in THF at –30°C as red block crystals in two days. 

(b) To a precooled and blood red solution of 12 (16.5 mg, 0.02 mmol, 1.00 equiv) 

in THF (2 mL) was added [Cp2Fe][BF4] (8.1 mg, 0.030 mmol, 1.5 equiv). The reac-

tion mixture was allowed to react for overnight at −35°C. To the resulting red 
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solution hexane (20 mL) was added, causing precipitation of a black powder. The 

solution was removed via a syringe and the solid was washed with hexane 

(20 mL) and then dried under reduced pressure to give the crude product. Black 

block crystals suitable for x-ray diffraction were obtained by layering hexane on a 

solution of 16 in THF at −30°C. 

(c) To a pre-cooled and brown solution of 13 (15.6 mg, 0.02 mmol, 1 equiv) in 

THF (1 mL) was added TBP (3.2 mg, 0.04 mmol, 2 equiv). The reaction mixture 

was allowed to react for 12 hours at −30°C. Green single crystals suitable for 

x-ray diffraction were obtained by layering hexane on a solution of 16 in THF at 

−30°C in two days 

Molecular Weight: 755.34 g/mol (C39H53N6Ni2S) 

ATR-IR (ν/cm-1) = 3231 (br, w) 3051 (w), 2956 (m), 2866 (m), 1550 (m), 

1530 (m), 1462 (w), 1434 (m), 1390 (m), 1310 (w), 1276 (m), 1245 (s), 

1150 (m), 1028 (vs), 982 (w), 954 (w), 916 (w), 865 (w), 800(w), 760 (m), 

730 (m), 637 (vs), 572 (m), 517 (s). 

UV-vis (THF): λmax = 270, 319, 373, 457 nm. 

 

L1Ni2(µ-η1, η1-NNH2Ph) (17) 

Phenylhydrazine (5 μL, 0.05 mmol, 1 equiv) was added to a solution of 1 (40 mg, 

0.05 mmol, 1 equiv) and KC8 (7 mg, 0.05 mmol, 1 equiv) in 2 mL THF at room 

temperature. During the reaction, a color changes from brown to dark red oc-

curred immediately and intense gas (H2) is generated. The mixture was stirred 

for 16 h and fileted. After filtration, THF was removed in vacuo to yield dark red 

powder. Recrystallization of the crude product from Pentane diffusion into THF 

at room temperature yield red needle crystals of 17. (18.35 mg, 0.019 mmol, 

37%) 

Molecular Weight: 830.36 g·mol-1. (C45H60N8Ni2) 

1H NMR (THF-d8, 400 MHz) = 9.36 (d, 2H, 3JH-H = 8 Hz, Ph o-H), 7.30 (d, 2H, 3JH-H 
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= 4 Hz, Ar ), 7.04 (t, 2H, 3JH-H = 12 Hz, Ph m-H), 6.93 (t, 2H, 3JH-H = 8 Hz, Ar), 6.80 

(d, 1H, 3JH-H = 16 Hz, Ar), 6.65 (d, 1H, 3JH-H = 12 Hz, Ar), 6.37 (t, 1H, 3JH-H = 8 Hz, 

Ph p-H), 5.43 (s, 1H, 4-Pz), 4.81 (s, 1H, CH3CCH), 4.63(s, 1H, CH3CCH), 3.99 (q, 

4H, 3JH-H = 12 Hz, CH2Pz), 3.81 (t, 2H, 3JH-H = 20 Hz, CH(CH3)2), 3.08 (t, 1H, 3JH-H = 8 

Hz, CH(CH3)2), 2.77 (t, 1H, 3JH-H = 8 Hz, CH(CH3)2), 2.16 (s, 1H, NH), 2.10 (d, 3H, 

JH-H = 8 Hz, (CH3)2CH), 1.99 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH), 1.93 (d, 6H, 3JH-H = 12 

Hz, CH3CCH), 1.61 (s, 1H, NH), 1.47 (d, 6H, 3JH-H = 12 Hz, CH3CCH), 1.10 (m, 9H, 

(CH3)2CH), 0.85 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH), 0.71 (d, 3H, 3JH-H = 12 Hz, 

(CH3)2CH), 0.31 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH).  

13C {1H} NMR (THF-d8, 100 MHz) = 20.19 (CH3), 20.37 (CH3), 22.36 (CH3), 

22.63 (CH3), 22.82 (CH3), 23.53 (CH3), 23.61 (CH3), 25.07 (CH3), 25.31 (CH3), 

25.39 (CH3), 26.14 (CH3), 26.98 (CH3), 27.00 (CH(CH3)2), 27.23 (CH(CH3)2), 

28.13 (CH(CH3)2), 28.24 (CH(CH3)2), 51.05 (CH2Pz), 51.34 (CH2Pz), 90.85 (4C-Pz), 

96.40 (CHCCH3), 97.93 (CHCCH3), 112.85 (Ar), 122.26 (Ar), 122.63 (Ar), 

124.42 (Ar), 124.60 (Ar), 124.97 (Ar), 126.05 (Ar), 127.25 (Ar), 141.30 (Ar), 

142.14 (Ar), 142.91 (Ar), 143.30 (Ar), 144.03 (Ar), 146.55 (Ar), 153.29 (CHCCH3), 

153.32 (CHCCH3), 158.94 (CHCCH3), 158.98 (CHCCH3), 159.30 (Ar), 159.55 (Ar), 

160.48 (Ar).  

MS (ESI) m/z (%): = 829.5 (100)(17+H)+, 721.4 (5)(17-NH2NPh)+.  

AIR-IR (ν/cm-1) = 3296.09 (w, NH), 3218.79 (w, NH), 3048.20 (w), 3013.55 (w), 

2945.58 (m), 2920.28 (m), 2860.28 (m), 1596.85 (w), 1556.52 (m), 1526.58 (s), 

1445.43 (s), 1424.14 (s), 1390.22 (vs), 1309.06 (s), 1271.14 (s), 1249.86 (s), 

1181.34 (s), 1087.54 (m), 1023.68 (m), 981.11 (m), 929.88 (w), 848.73 (w), 

797.51 (w), 763.58 (s), 746.95 (vs), 733.65 (vs), 729.66 (vs), 687.08 (vs), 

644.51(w), 593.29 (m), 546.06 (w), 524.77 (w), 508.14 (w), 422.99 (s), 

405.70 (s).  

Elemental analysis (%) calc. for C39H53N6Ni2 (C6H5N2H2) (828.36 g/mol): C 

52.48 H 6.10 N 9.07; Found C 52.77 H 6.45 N 9.33. 
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KL1Ni2(µ-η1, η1-NNHPh) (18) 

17 (16.5 mg, 0.02 mmol, 1 equiv) and potassium hydride (0.8 mg, 0.02 mmol, 1 

equiv) were suspended in 2 mL of THF at room temperature. Intense gas (H2) 

development was observed, and a color changes from dark-red to dark green 

occurred in 2 hours. The mixture was stirred for 4 hours continue, solid compo-

nents were filtered off. Black rhombus block crystals suitable for x-ray diffraction 

were obtained by layering hexane on a solution of 18 in THF at –30°C with 60% 

yield.  

Molecular Weight: 866.32 g·mol-1. 

1H NMR (THF-d8, 400 MHz) = 10.51 (br, 1H, Ph o-H), 9.11 ((br, 1H, Ph o-H), 6.99 

(m, 3H, Ph m-H and p-H), 6.79 (t, 2H, 3JH-H = 8 Hz, Ar), 6.69 (d, 1H, 3JH-H = 4 Hz, 

Ar), 6.64 (d, 2H, 3JH-H = 12 Hz Ar), 6.60 (d, 1H, 3JH-H = 12 Hz, Ar), 5.47 (s, 1H, 4-Pz), 

4.51 (s, 1H, CHCCH3), 4.45 (s. 1H, CHCCH3), 4.15 (m, 1H, CH(CH3)2), 3.93 (m, 2H, 

CH2Pz), 3.80 (m, 2H, CH2Pz), 3.30 (m, 1H, CH(CH3)2), 3.06 (m, 1H, CH(CH3)2), 

2.89 (m, 1H, CH(CH3)2), 2.02 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH), 1.80 (m, 6H, 

(CH3)2CH + CH3)2CH), 1.69 (s. 3H, CH3CCH), 1.31 (s. 7H, CH3CCH and NH), 1.07 (t, 

6H, 3JH-H = 8 Hz, (CH3)2CH), 0.88 (m,3H, CH3CCH), 0.84 (d, 3H, 3JH-H = 4 Hz, 

(CH3)2CH). 

13C {1H} NMR (THF-d8, 100 MHz) = 20.20 (CH3), 20.38 (CH3), 22.21 (CH3), 22.63 

(CH3), 23.28 (CH3), 23.53 (CH3), 25.39 (CH3), 26.92 (CH(CH3)2), 27.12 (CH(CH3)2), 

27.61 (CH(CH3)2), 28.20 (CH(CH3)2), 51.06 (CH2Pz), 51.39 (CH2Pz), 91.05 (4C-Pz), 

95.44(CHCCH3), 95.84(CHCCH3), 112.84, 122.40, 122.76, 123.14, 124.41, 124.60, 

124.97, 126.05, 127.25, 127.91, 128.03, 141.11,1 41.31, 142.14, 143.30, 146.56, 

152.19, 153.29 (CHCCH3), 153.32 (CHCCH3), 158.94 (CHCCH3), 158.98 (CHCCH3), 

159.31, 159.55, 160.48 (Ar).  

AIR-IR (ν/cm-1) = 3244 (vw, NH), 3054 (w), 2952 (m), 2861 (m), 1584 (m), 

1549 (s), 1523 (s), 1461 (s), 1433 (vs), 1400 (vs), 1316 (m), 1306 (m), 1282 (m), 

1271 (m), 1250 (m), 1228 (m), 1184 (m), 1159 (m), 1109 (w), 1086 (w), 
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1053 (m), 1025 (m), 1017 (m), 973 (m), 894 (w), 844 (w), 793 (m), 756 (m), 

744 (m), 730 (m), 697 (m). 

UV-Vis (THF) = 243 (1016), 264 (998), 377 (391), 587 (505); 

Elemental analysis (%) calc. for C45H59N8Ni2K: C 62.33 H 6.86 N 12.93; Found C 

62.77 H 6.75 N 12.33. 

 

[K(dibenzo(18-crown-6))]+[L1Ni2(µ-η1, η1-NHNPh)]- (19) 

A THF solution of 18 and DB18C6 were stirred for 2 hours, then solid compo-

nents were filtered off. Suitable crystals for x-ray diffraction were obtained by 

layering hexane/Et2O on a solution of 19 in THF at –30°C in 70% yield. 

Molecular Weight: 1226.48 g·mol-1. 

1H NMR (THF-d8, 400 MHz) = 9.36 (d, 2H, 3JH-H = 8 Hz, Ph o-H), 7.31 (s, 1H, Ar), 

7.29 (d, 2H, 3JH-H = 4 Hz, Ar), 7.04 (t, 2H, 3JH-H = 8 Hz, Ar), 6.93 (m, 9H, diben-

zo(18-crwon-ether)+Ar), 6.87 (m, 6H, dibenzo(18-crwon-ether)), 6.87 (dd, 1H, 

3JH-H = 8 Hz, Ar), 6.65 (dd, 1H, 3JH-H = 8 Hz, Ar), 6.38 (tt, 1H, 3JH-H = 8 Hz, Ar), 5.43 

(s, 1H, Pz), 4.81 (s, 1H. CHCCH3), 4.69 (s, 1H, CHCCH3), 4.07 (m, 12H, diben-

zo(18-crwon-ether) + CH2Pz), 3.98 (m, 16H, dibenzo(18-crwon-ether)), 3.84 (d, 

1H, CH2Pz), 3.79 (d, 1H, CH2Pz), 3.39 (t, 4H, 3JH-H = 8 Hz, diben-

zo(18-crwon-ether)), 3.08 (m, 1H, CH(CH3)2), 2,77 (m, 1H, CH(CH3)2), 2.10 (d, 3H, 

3JH-H = 8 Hz, (CH3)2CH), 1.98 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH), 1.93 (d, 6H, 3JH-H = 12 

Hz, CH3CCH), 1.53 (s, 1H, NH), 1.57 (d, 6H, 3JH-H = 12 Hz, CH3CCH), 1.11 (m, 18H, 

m, 9H, (CH3)2CH + pentane), 0.85 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH), 0.71 (d, 3H, 3JH-H 

= 12 Hz, (CH3)2CH), 0.31 (d, 3H, 3JH-H = 8 Hz, (CH3)2CH).  

13C {1H} NMR (THF-d8, 75.5 MHz) = 14.69, 22.37 (CH3), 22.63 (CH3), 23.54 (CH3), 

23.61 (CH3), 24.86 (CH3), 25.39 (CH3), 26.15 (CH3), 26.99 (CH3), 27.00 

(CH(CH3)2), 27.24 (CH(CH3)2), 28.13 (CH(CH3)2), 28.24 (CH(CH3)2), 51.06 

(CH2Pz), 51.34 (CH2Pz), 65.33 (18-crown-6), 66.62 (18-crown-6), 67.22 

(18-crown-6), 67.84 (18-crown-6), 69.17 (18-crown-6), 90.87(4C-Pz), 96.41 

(CHCCH3), 97.94 (CHCCH3), 111.90 (18-crown-6), 112.85 (Ar), 120.81, 122.27 
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(Ar), 122.64 (Ar), 124.42 (Ar), 124.60 (Ar), 124.97 (Ar), 126.06 (Ar), 127.26 (Ar), 

141.30 (Ar), 142.13 (Ar), 142.90 (Ar), 143.29 (Ar), 144.03 (Ar), 146.55 (Ar), 

147.96 (18-crwon-6), 153.29 (CHCCH3), 153.32 (CHCCH3), 158.98 (CHCCH3), 

159.30 (Ar), 159.65 (Ar), 160.48 (Ar). 

AIR-IR (ν/cm-1) =3244 (br, w, NH), 2953 (m), 2926 (m), 2860 (m), 1595 (w), 

1572 (m), 1544 (m), 1530 (m), 1517 (s), 1504 (vs), 1471 (m), 1432 (s), 1402 (vs), 

1380 (m), 1316 (w), 1303 (m), 1268 (w), 1246 (vs), 1209 (vs), 1184 (m), 1157 

(m), 1123 (vs), 1056 (s), 1021 (m), 976 (m), 943 (vs), 902 (m), 855 (m), 845 (m), 

793 (m), 779 (m), 733 (vs), 689 (s), 599 (m), 565 (s), 539 (s), 516 (s). 

Elemental analysis (%) calc. for C65H83N8O6Ni2: C 63.60 H 6.82 N 9.13; Found C 

63.82 H 6.95 N 8.21. 

 

L1Ni2(µ-η1, η1-N=NPh) (20) 

17 (16.5 mg, 0.02 mmol, 1 equiv) and excess Pd(OAc)4 were suspended in 2 mL 

of THF at room temperature. The mixture was stirred for a day in the dark envi-

ronment. There is no obviously color changing after reaction. The solution was 

then filtered through celite. The red powder was analyzed by ESI-MS and IR 

spectroscopy.  

Molecular Weight: 828.36 g·mol-1. 

MS (ESI) m/z (%): = 827.5 (100) (20+H)+. 

AIR-IR (ν/cm-1) = 2953 (m), 2926 (m), 2860 (m), 1595 (w), 1572 (m), 1544 (m), 

1530 (m), 1517 (s), 1504 (vs), 1471 (m), 1432 (s), 1402 (vs), 1380 (m), 1316 (w), 

1303 (m), 1268 (w), 1246 (vs), 1209 (vs), 1184 (m), 1157 (m), 1123 (vs), 

1056 (s), 1021 (m), 976 (m), 943 (vs), 902 (m), 855 (m), 845 (m), 793 (m), 

779 (m), 733 (vs), 689 (s), 599 (m), 565 (s), 539 (s), 516 (s). 

 

 

L1Ni2(µ-η1, η1-NNH2Ph)(BF4) (21) 
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[H-Lut]BF4 (5 mg, 0.02 mmol, 1 equiv) was added into the solution THF of 17 

(16.6 mg, 0.02 mmol, 1 equiv) resulted the colore change from red to green 

immediately. The mixture was stiired for 4 hours and green precipitate was 

obtained. The green powder was analyzed by NMR and IR spectroscopy. 

Molecular Weight: 918.21 g·mol-1. (C45H61N8Ni2BF4) 

19F NMR (CD3CN, 376 MHz) = –151.23 ppm. 

11B NMR (CD3CN) = –1.14 ppm.  

MS (ESI) m/z (%): = 829.5 (100)(21-BF4)+. 

AIR-IR (ν/cm-1) = 3354 (w, br, NH,), 3307(w, br, NH,), 3285 (w, br, NH,), 3054, 

2961, 2927, 2868, 1664, 1644, 1588, 1555, 1527, 1483, 1459, 1434, 1398, 1313, 

1280, 1252, 1183, 1053, 1026, 934, 864, 797, 758, 746, 693, 625, 594, 554, 519.  

 

[K(Dibenzo(18-crown-6))]+[L1Ni2(µ-η1,η1-PhN-NPh)]- (22) 

(a) Azobenzene (7.29 mg, 0.04 mmol, 1 equiv) was added into a solution of 4 (42 

mg, 0.04 mmol, 1 equiv) in THF (1 mL) at room temperature. The color changes 

from orange to blood red immediately. Suitable crystals for x-ray were obtained 

by layering hexane on a solution of 22 in THF at -30 °C.  

(b) 23 (36.2 mg, 0.04 mmol, 1 equiv) and potassium (0.8 mg, 0.02 mmol, 2 equiv) 

were suspended in 2 mL of THF at room temperature, and a color change from 

black to dark red occurred in 20 mins. The mixture was stirred for 2 hours con-

tinue. Suitable crystals for x-ray were obtained by layering hexane on a solution 

of 22 in THF at –30 °C.  

Molecular Weight: 1304.99 g/mol (C71H87N8O6Ni2K) 

ATR-IR (ν/cm-1) = 3048 (w), 2957 (m), 2924 (m), 2864 (m), 1595 (w), 1572 (m), 

1554 (m), 1503 (vs), 1452 (vs), 1431 (vs), 1399 (vs), 1359 (w), 1317 (m), 

1307 (m), 1247 (vs), 1211 (s), 1125 (vs), 1089 (m), 1054 (s), 1022 (m), 989 (w), 

956 (w), 941 (s), 900 (m), 850 (w), 794 (w), 778 (w), 736 (vs), 690 (s), 600 (m), 

532 (s), 510 (s). 
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UV-vis (THF): λmax = 372, 462, 577, 738 nm. 

 

L1Ni2(µ-η1, η1-PhNNPh) (23) 

(a) Azobenzene (2.56 mg, 0.04 mmol, 1 equiv) was added into a solution of 2 

(30.5 mg, 0.04 mmol, 1 equiv) in THF (1 mL) at room temperature. The color 

changes from orange to blood red immediately and intensity gas was observed. 

Suitable crystals for x-ray diffraction were obtained by layering hexane on a solu-

tion of 23 in THF at –30°C in 10% yield. 

(b) Azobenzene (2.56 mg, 0.04 mmol, 1 equiv) was added into a solution of 

24(30.5 mg, 0.04 mmol, 1 equiv) in THF (2 mL) at room temperature. The color 

changes from brown to black immediately. Suitable crystals for x-ray diffraction 

were obtained by layering hexane on a solution of 23 in THF at –30°C. Yield: 75%. 

Molecular Weight: 605.49 g/mol (C51H63N8Ni2K) 

ATR-IR (ν/cm-1) = 3058 (w), 2954 (m), 2926 (m), 2869 (m), 2843 (m), 1623 (m), 

1593 (m), 1553 (m), 1525 (m), 1504 (vs), 1453 (s), 1433 (m), 1399 (m), 

1364 (m), 1321 (m), 1282 (s), 1246 (vs), 1228 (s), 1211 (s), 1157 (s), 1124 (vs), 

1097 (m), 1088 (m), 1062 (m), 1048 (m), 1030 (vs), 959 (s), 940 (s), 898 (w), 

856 (w), 775 (m), 751 (vs), 637 (vs), 600 (m), 573 (m), 516 (m).  

UV-vis (THF): λmax = 372, 462, 577, 738 nm. 

Anal. Calcd. (%) for [Ni2(C39H53N6)(C12H10N2)][C4H8O]: C 61.89, H 7.37, N 10.07; 

found: C 61.53, H 7.11, N 9.67. 

 

L1Ni2(µ-η1,η1-N2) (24) 

(a) 2 (318 mg, 0.4 mmol, 1 equiv) and [H-Lut]OTf (64.5 mg, 0.4 mmol, 1 equiv) 

were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at 

room temperature in a dinitrogen atmosphere. All volatiles were subsequently 

removed under vacuum, and the resulting solid was dried under vacuum. Suita-

ble crystals for x-ray were obtained by layering hexane on a solution of 24 in THF 
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at –30 °C. The mother liquor was pumped down, dissolved in THF, and layered 

with hexane to afford a second crop. 

(b) 2 (318 mg, 0.4 mmol, 1 equiv) and tris(pentafluorophenyl)borane (204.8 mg, 

0.4 mmol, 2 equiv) were dissolved in THF (5 mL), and the reaction mixture were 

stirred for 2 days at room temperature in a dinitrogen atmosphere. Suitable 

crystals for x-ray diffraction were obtained from THF slow evaporation in a week.  

24-15N2: The solid 2 (318 mg, 0.4 mmol, 1 equiv) and [H-Lut]OTf (64.5 mg, 0.4 

mmol, 1 equiv) were loaded into a two-neck round-bottom flask and a T-adapter 

attached to a Yong-flask of 15N2 which was dried from H2SO4 (95%) for 2 days 

and Vacuum. The hoses used were placed under vacuum for at least 12 hours 

before use. After 12 hour, 2 mL THF was added into the two-neck round-bottom 

flask and the solution was stirred for 4 hours. After 4 hours, the solution followed 

an analogous work-up procedure as a described for unlabeled 24. IR and Raman 

spectra are the same as for the unlabeled material expect the stretching of N2. 

Detection of evolved H2 from 2 with [H-Lut]OTf: In the N2 box, the same flask 

used for the H2 calibration was charged with 2 (15.2 mg, 0.02 mmol), [H-Lut]OTf 

(5.1 mg, 0.02 mmol) and stir bar. The flask was then closed. 2 mL of THF was 

then injected and the mixture was stirred at room temperature for 3 hours. The 

whole set-up was then taken out of the glove box, 0.8 mL CH4 was added and the 

headspace was subjected to GC-2014 analysis as describe in the general methods. 

The integration ratio was compared to the calibration plot to quantify the 

amount of free hydrogen released from the reaction. 

Molecular Weight: 751.27g·mol-1 (C39H53N8Ni2) 

ATR-IR (ν/ cm-1) = 3056 (w), 2959 (m), 2920 (m), 2862 (m), 1896 (14N≡14N)(m), 

1618 (w), 1551 (s), 1528 (s), 1459 (s), 1433 (s), 1393 (s), 1312 (s), 1250 (vs), 

1230 (vs), 1174 (s), 1092 (s), 1030 (vs), 945 (s), 915 (s), 866 (s), 795 (s), 755 (s), 

732 (s), 641 (vs), 575 (s), 516 (vs), 480 (s), 435 (m), 399 (m).  

ATR-IR (ν/ cm-1) = 1830 (15N≡15N) (m).  
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Raman (ν/ cm-1) = 1900 (14N=14N); 1836 (15N=15N). 

UV-vis (THF): λmax = 276 (12680), 320 (9090), 378 (5750). 

Elemental analysis (%) calc. for C39H53N8Ni2: C 62.35 H 7.11 N 14.92; Found C 

62. 73 H 7.47 N 14.37. 

 

L1Ni2(μ-η1,η1-N=NH) (25) 

(a) To a pre-cooled and red solution of 27 (15.6 mg, 0.02 mmol, 1 equiv) in THF 

(2 mL) was added TEMPO (3.2 mg, 0.04 mmol, 2 equiv). The reaction mixture 

was allowed to react for 12 hours at −35°C. Green single crystals suitable for 

x-ray diffraction were obtained by layering hexane on a solution of 25 in THF at 

−35°C. Attention: The compound is unstable at room temperature under this condi-

tion.  

(b) To a pre-cooled and red solution of 27 (15.6 mg, 0.02 mmol, 1 equiv) in THF 

(2 mL) was added galvinoxyl radical (16.82 mg, 0.04 mmol, 2 equiv). The reac-

tion mixture was allowed to react for 12 hours at −30 °C. Brown single crystals 

suitable for x-ray diffraction were obtained by layering hexane on a solution of 

25 in THF at −30°C Yield: 10 mg. 

(c) To a pre-cooled and brown solution of 24 (15.6 mg, 0.02 mmol, 1 equiv) in 

THF (1 mL) was added TEMPO-H (3.2 mg, 0.04 mmol, 2 equiv). The reaction 

mixture was allowed to react for 12 hours at −30 °C. Green single crystals suita-

ble for x-ray diffraction were obtained by layering hexane on a solution of 25 in 

THF at −35°C in two days. 

(d) 29 (15.6 mg, 0.02 mmol, 1 equiv) and TlOTf (7.07 mg, 0.02 mmol, 1 equiv) 

were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at 

room temperature in a dinitrogen atmosphere. All volatiles were subsequently 

removed under vacuum, and the resulting solid was dried under vacuum. The 

crude powder was recrystallization by layering hexane on a solution of 25 THF at 

−30°C. 
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25-15N2: Firstly have to synthesize 24-15N2 under Ar atmosphere in case of the 

14N2 exchange with 15N2 ligand. The solution of 24-15N2 followed an analogous 

work-up procedure as a described for unlabeled 24 of method C. rRaman spectra 

are the same as for the unlabeled material expect the stretching of N2H. 

Molecular Weight: 752.32 g·mol-1 (C39H54N8Ni2) 

1H NMR (THF-d8, 400 MHz) = 9.46 (s, 1H, NH), 7.15 (t, 1H, 3JH-H = 8 Hz, Ar), 6.97 

(d, 2H, 3JH-H = 8 Hz, Ar), 6.89 (t, 1H, 3JH-H = 8 Hz, Ar), 7.15 (d, 2H, 3JH-H = 8 Hz, Ar), 

5.70 (s, 1H, Pz), 4.99 (d, 2H, 3JH-H = 8 Hz, CHCCH3), 4.99 (d, 2H, 3JH-H = 8 Hz, 

CHCCH3), 4.24 (d, 2H, 3JH-H = 12 Hz, CH2Pz), 3.40 (m, 2H, CH(CH3)2), 3.20 (m, 2H, 

CH(CH3)2), 2.02 (d, 6H, 3JH-H = 8 Hz, CH3), 1.58 (d, 6H, 3JH-H = 8 Hz, CH3), 1.12 (d, 

6H, 3JH-H = 8 Hz, CH3), 1.05 (dd, 12H, 3JH-H = 8 Hz, CH3), 0.88 (d, 6H, 3JH-H = 8 Hz, 

CH3).  

13C {1H} NMR (THF-d8, 100 MHz) = 162.61 (CHCCH3), 161.74 (CHCCH3), 161.26 

(CHCCH3), 160.68 (CHCCH3), 160.27 (3(5)-Pz), 159.46 (3(5)-Pz), 147.31 (Ar), 

144.89 (Ar), 143.31 (Ar), 143.12 (Ar), 125.35 (Ar), 125.01 (Ar), 124.93 (Ar), 

122.60 (Ar), 99.18 (CHCCH3), 98.89 (CHCCH3), 92.87 (4-Pz), 54.31 (CH2Pz), 

53.93 (CH2Pz), 29.22 (CHCH3), 28.87 (CH3), 28.53 (CH3), 25.31 (CH3), 24.04 (CH3), 

21.38 (CH3). 

ATR-IR (ν/cm-1) = 3054 (w), 3022 (m), 3958 (m), 2923 (m), 2862 (m), 1558 (s), 

1524 (w), 1456 (w), 1434 (w), 1396 (w), 1369 (N=N, w), 1308 (w), 1282 (w), 

1247 (w), 1232 (w), 1186 (w), 1175 (w), 1104 (w), 1089 (w), 1074 (w), 1055 

(w), 1030 (w), 1015 (w), 956 (w), 936 (w), 914 (w), 865 (w), 855 (w), 800 (w), 

793 (w), 759 (w), 741 (w), 713 (w), 672 (w), 652 (w), 641 (w), 623 (w), 568 (w), 

547 (w), 525 (w), 439 (w), 411 (w), 403 (w). 

Raman (ν/cm-1) = 1392 (14N=14N), 1323(15N=15N).  

UV-vis (THF): λmax = 270(1174), 315 (shoulder) (319), 384 (428). 

Elemental analysis (%) calc. for C39H54N8Ni2: C 60.70 H 7.61 N 13.06; found C 

60.33 H 7.47 N 13.39. 
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L1Ni2(μ-η1,η1-NH2) (26) 

(1) A solution of 27 (100 mg, 0.169 mmol) in THF (20 mL) was rapidly stirred at 

70°C for 13 weeks. After concentration of the solution to 2 mL and cooling to 

room temperature, brown-red crystals suitable for x-ray diffraction were grown 

by layering hexane on a solution of 26 in THF.  

(2) A solution of 25 (14.6 mg, 0.02 mmol) with KH in THF (20 mL) was rapidly 

stirred for 1 hour, the color changes from brown to orange in 10 mins. Brown-red 

crystals suitable for x–ray diffraction were grown by layering hexane on a solu-

tion of 26 in THF in 2 days. 

(3) 1 (100 mg, 0.125 mmol, 1 equiv) and NH3 (0.5 M in THF) (10 mL) were sus-

pended in THF at –78°C for 2 hours. Then the solution was allowed to room 

temperature and stirred for overnight. The color changed from brown to yel-

low-red. Brown-red crystals suitable for x–ray diffraction were grown by layering 

hexane on a solution of 26 in THF. 

Molecular Weight: 739.29 g·mol-1 (C39H55N7Ni2) 

1H NMR (THF-d8, 400 MHz) = 6.99 (t, 2H, Ar), 6.87 (d, 4H, Ar), 5.54 (s, 1H, 4-Pz), 

4.66 (s, 2H, CHCCH3), 4.16 (s, 4H, CH2Pz), 3.37 (m, 4H, CH(CH3)2), 1.92 (s, 6H, 

CH3), 1.53 (d, 12h, (CH3)2CH), 1.18 (s, 6H, CH3), 1.08 (d, 12h, (CH3)2CH), –3.87 (s, 

2H, NH2) 

13C {1H } NMR (THF-d8, 100 MHz) = 20.48 (CH3), 22.79 (CH3), 23.06 (CH3), 

24.85 (CH3), 27.89 (CH(CH3)2), 54.56 (CH2Pz), 90.61 (4-Pz), 96.54 (CHCCH3), 

124.37 (Ar), 124.93 (Ar), 140.24 (Ar), 146.93 (Ar), 149.84 (3,5-Pz), 

158.49(CH3CCH), 160.28 (CH3CCH). 

ATR-IR (ν/cm-1) = 3348 (w), 3333 (w), 3311 (vw), 3059 (w), 2960 (vs), 2927 (s), 

2867 (s), 2235 (w), 2082 (w), 1680 (m), 1629 (m), 1557 (s), 1531 (vs), 1463 (s), 

1439 (vs), 1404 (vs), 1322 (m), 1260 (m), 1195 (w), 1098 (m), 1048 (m), 

956 (w), 936 (w), 802 (m), 764 (m), 735 (m) . 
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L1Ni2(μ-η1,η1-N2H3) (27) 

(a) Hydrazine in THF (1.0 M) (0.75 mL, 0.75 mmol, 3 equiv) was added to a solu-

tion of 1 (200 mg, 0.25 mmol, 1 equiv) in 3 mL of THF at room temperature. 

During the reaction, a color change from brown to dark red occurred immediately. 

The mixture was stirred for 20 hours and filter. Suitable crystals for x-ray were 

obtained from pentane slow diffusion on a solution of 27 in THF at -30 °C. (75 mg, 

37%)  

(b) Hydrazine in THF (1.0 M) (40 μL, 0.04 mmol, 2 equiv) was added to a solution 

of 2 (15 mg, 0.02 mmol, 1 equiv) in 1 mL of THF at room temperature. The mix-

ture was stirred for 10 mins and filter. Suitable crystals for x-ray were obtained 

from pentane slow diffusion on a solution of 27 in THF at -30 °C. The compound 

was identified from 1H NMR spectroscopy. 

Molecular Weight: 754.31 g·mol-1 (C39H56N8Ni2) 

1H NMR (THF-d8, 400 MHz): = 6.83-7.11 (m, 6H, Ph), 5.69 (s, 1H, 4-Pz), 4.76(s, 

1H, CH), 4.58(s, 1H, CH), 4.0 (d, 4H, 3JH-H = 12 Hz, CH2Pz), 3.42-3.47 (m, 4H, 

(CH3)2CHPh), 2.26 (s, 2H, NH2), 1.95 (s, 3H, CH3), 1.85 (s, 3H, CH3), 1.42 (s, 3H, 

CH3), 1.30 (s, 3H, CH3), 1.20 (t, 12H, 3JH-H = 9 Hz, (CH3)2CHPh), 1.04 (t, 12H, 3JH-H = 

9 Hz, (CH3)2CHPh), -0.90 (s, 1H, NH).  

13C {1H} NMR (THF-d8, 100 MHz): = 20.59 (CH3), 20.79 (CH3), 23.09 (CH3), 

23.18 (CH3), 23.62 (CH3), 25.39 (CH3), 27.48 (CH(CH3)), 27.61 (CH(CH3)), 

50.34 (CH2Pz), 51.13 (CH2Pz), 91.28 (4-Pz), 95.84 (CHCCH3), 96.75 (CHCCH3), 

122.35 (Ar), 123.69 (Ar), 124.13 (Ar), 125.83 (Ar), 142.43 (Ar), 144.32 (Ar), 

145.51 (Ar), 153.51 (3,5-Pz), 155.04 (3,5-Pz), 157.86(CHCCH3), 158.31(CHCCH3), 

159.25 (CHCCH3), 160.58 (CHCCH3).  

ATR-IR (ν/cm-1) = 3301 (w), 3271 (w), 3254 (w), 3160 (w), 3054 (w), 2961 (m), 

2923 (m), 2862 (m), 1558 (s), 1529 (vs), 1460 (vs), 1437 (vs), 1399 (vs), 

1367 (s), 1312 (s), 1278 (s), 1261 (s), 1252 (s), 1232 (s), 1190 (s), 1172 (s), 

1093 (s), 1072 (s), 1054 (s), 1031 (s), 1017 (s), 956 (w), 933 (s), 912 (m), 
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867 (m), 798 (s), 760 (vs), 736 (vs), 707 (s), 647 (m), 623 (s), 519 (s), 484 (s), 

458 (s), 445 (s), 423 (s), 408 (s). 

UV-vis (THF): λmax = 262 (12680), 360 (5780). 

Elemental analysis (%) calc. for C39H56N8Ni2: C 60.70 H 7.61 N 13.06; found C 

60.33 H 7.47 N 13.39. 

 

L1Ni2(μ-η1,η1-N2H4)(BF4) (28) 

Treatment of 27 (30 mg, 0.04 mmol, 1 equiv) in THF (2 mL) with [H-Lut]BF4 (8 

mg, 0.04 mmol, 1 equiv) results in a color change from red to green immediately. 

The mixture was stirred for 1 hour. After filtration, green crystals suitable for 

x-ray diffraction were obtained by layering hexane on a solution of 28 in THF at 

−30°C. 

Molecular Weight: 842.12 g·mol-1(C39H57N8Ni2BF4) 

1H NMR (THF-d8, 400 MHz) = 7.35 (t, 2H, 3JH-H =12 Hz, Ar), 7.18 (d, 4H, 3JH-H =8 

Hz, Ar), 6.00 (s, 1H, 4H-Pz), 4.99 (s, 2H, CHCCH3), 4.25 (s, 4H, CH2Pz), 3.72 (s, 4H, 

NH2), 2.10 (s, 6H, CH3CCH), 1.50 (s, 6H, CH3CCH), 1.17 (d, 12H, 3JH-H =8 Hz, 

(CH3)2CH), 1.09 (d, 12H, 3JH-H =4 Hz, (CH3)2CH). 

13C NMR (THF-d8, 100 MHz) = 20.84 (CH3), 22.85 (CH3), 23.19 (CH3), 24.02 (CH3), 

27.73 (CH(CH3)2), 52.39 (CH2Pz), 93.09(4-Pz), 98.09 (CHCCH3), 124.88 (Ar), 

127.41 (Ar), 143.33 (Ar), 155.94 (3,5-Pz), 158.98 (CHCCH3), 161.74 (CHCCH3). 

ATR-IR (ν/cm-1) = 3300 (w), 3284 (w), 3265 (w), 3201 (w), 2963 (m), 2940 (m), 

2861 (m), 1650 (s), 1626 (w), 1563 (s), 1531 (s), 1463 (s), 1434 (s), 1393 (s), 

1320 (s), 1285 (vs), 1241 (vs), 1222 (vs), 1178 (s), 1152 (vs), 1093 (m), 

1053 (w), 1027 (vs), 932 (w), 885 (w), 807 (s), 768 (s), 754 (m), 714 (m), 

635 (vs), 572 (s), 559 (m), 517 (vs), 559 (m), 517 (s), 448 (m), 416 (m). 

UV-vis (THF): λmax = 264 (10620), 364 (5580).  

Elemental analysis (%) calc. for C39H54N8Ni2: C 60.70 H 7.61 N 13.06; Found C 

60.33 H 7.47 N 13.39. 
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[K(DB18C6)][L1Ni2(μ-η1,η1-N2H2)] (30) 

27 (40 mg, 0.05 mmol, 1 equiv) and excess potassium hydride were suspended in 

2 mL of THF at room temperature. Intense gas (H2) development was observed, 

and a color changes from dark-red to dark green occurred in 2 hours. The mix-

ture was stirred for 4 hours continue, solid components were filtered off. Then 

DB18C6 was added to the green solution and the mixture stirred for next 30 mins. 

The color changes from deep green to brown-green in 30 mins. Black rhombus 

block crystals suitable for x-ray diffraction were obtained by layering hexane on a 

solution of 30 in THF at −30°C.(Yield: 80%) 

Molecular Weight: 1152.3 g·mol-1 (C59H89N8Ni2O6K) 

1H NMR (THF-d8, 400 MHz) = 7.41 (br, 4H, DB18C6), 6.83 (br, 4H, DB18C6), 6.81 

(d, 2H, Ar), 6.75 (d), 4H, Ar), 5.52 (s, 1H, 4-Pz), 4.79 (s, 2H, CHCCH3), 3.73(s+m, 

8H, CH2Pz+CH(CH3)2), 1.79 (s, 6H, CHCCH3), 1.66 (s, 2H. NH), 1.27(s, 6H, 

CHCCH3), 1.10 (d, 12H, 3JH-H = 8 Hz, (CH3)2CH), 0.97(d, 12H, 3JH-H = 8 Hz, 

(CH3)2CH). 

13C NMR (THF-d8, 100 MHz) = 14.41, 15.73, 21.51, 22.69, 23.25, 25.90, 26.43, 

28.27, 28.93, 35.12, 47.80, 55.59, 92.53, 95.82, 97.58, 111.13, 121.89, 123.22, 

123.59, 125.41, 125.98, 141.27, 142.59, 148.01, 148.42, 150.88, 152.33, 156.95, 

157.69, 159.52, 161.33.  

ATR-IR (ν/cm-1) = 3263 (NH, br, w), 3065 (w), 2951 (m), 2924 (m), 2861 (m), 

1594 (m), 1545 (m), 1517 (s), 1502 (s), 1452 (s), 1434 (s), 1402 (vs), 1380 (w), 

1358 (w), 1319 (m), 1303 (w), 1246 (vs), 1208 (s), 1122 (vs), 1079 (w), 1055 (s), 

1025 (w), 941 (m), 900 (w), 844 (w), 796 (w), 761 (m), 737 (vs), 726 (s), 

668 (w), 656 (w), 631 (w), 600 (m).  

 

[K(cryptand)][L1Ni2(μ-η1,η1-N2H2)] (31) 

29 (40 mg, 0.05 mmol, 1 equiv) and cryptand were mixed in THF at room tem-

perature for 3 hours. The color changes from deep green to brown. Recrystalliza-
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tion of the crude product from THF or Toluene slow evaporation yielded black 

rhombus block crystals. (Yield: 80%) 

ATR-IR (ν/cm-1) = 3118 (w), 3051 (w), 3013 (w), 295w (m), 2865 (m), 2804 (m) 

1550 (m), 1515 (vs), 1499 (m), 1477 (s), 1460 (s), 1428 (s), 1404 (s), 1353 (s), 

1306 (m), 1294 (w), 1229 (w), 1190 (w), 1126 (vs), 1103 (m), 1075 (s), 981 (w), 

947 (s), 932 (m), 878 (w), 862 (w), 827 (w), 795 (w), 750 (m), 723 (s), 646 (w), 

582 (w), 565 (w), 521 (w). 

 

L1Ni2(μ-NH3) (32) 

A suspension of excess NaNH2 in THF (2 mL) was added dropwise to a stirred 

solution of 1 (100 mg, 0.025 mmol) in THF (8 mL). After 2 days, the mixture was 

dried under vacuum. The residue was extracted with THF (8 mL) and filtered 

through Celite. The resulting dark red yellow solution was cooled to −30 °C 

overnight to yield a yellow crystalline solid (21 mg). The mother liquor was 

concentrated to 5 mL and returned to the freezer for additional product 

crystallization. 

Molecular Weight: 739.29 g·mol-1 (C39H55N7Ni2) 

1H NMR (THF-d8, 400 MHz) = 6.97 (s, 3H, Ar), 6.87 (d, 2H, Ar), 6.70 (t, 1H, Ar), 

5.67 (s, 1H, 4-Pz), 4.58 (s, 1H, CHCCH3), 4.19 (s, 2H, CH2Pz), 4.02 (s, 1H, CHCCH3), 

3.96 (s, 2H, CH2Pz), 3.84 (m, 2H, CH(CH3)2), 3.20(m, 2H, CH(CH3)2), 1.83(s, 3H, 

CH3), 1.79(s, 3H, CH3), 1.41(d, 6H, CH3), 1.31(s, 3H, CH3), 1.12(d, 6H, CH3), 1.08(d, 

6H, CH3), 0.97(s, 6H, CH3), -3.28 (s, 3H, NH3). 

13C NMR (THF-d8, 100 MHz) = 20.82 (CH3), 23.11 (CH3), 23.72 (CH3), 25.39 (CH3), 

26.88 (CH(CH3)2), 27.44 (CH(CH3)2), 49.59 (CH2Pz), 50.89 (CH2Pz), 89.23 (4-Pz), 

94.13 (CHCCH3), 95.92 (CHCCH3), 121.92 (Ar), 122.55 (Ar), 123.94 (Ar), 139.94 

(Ar), 140.24 (Ar), 142.59 (Ar), 147.91 (Ar), 151.83 (3,5-Pz), 157.40 (CH3CCH), 

158.72 (CH3CCH). 

ATR-IR (ν/cm-1) = 3054 (w), 3023 (w) (NH3), 2956 (m), 2924 (m), 2865 (m), 

1552 (m), 1530 (s), 1460 (s), 1426 (s), 1404 (vs), 1358 (s), 1311 (s), 1274 (m), 



CHAPTER 11 EXPERIMENT SECTION 

259 

 

1252 (m), 1224 (w), 1190 (w), 1178 (w), 1102 (w), 1088 (w), 1044 (m), 

1032 (m), 1010 (m), 933(w), 900 (w), 799 (w), 787 (s), 759 (vs), 732 (s), 

719 (w), 646 (w), 621 (w), 597 (w), 561 (w), 534 (w). 

Elemental analysis (%) calc. for C39H54N8Ni2: C 60.70 H 7.61 N 13.06; found C 

60.33 H 7.47 N 13.39. 

 

L1Ni2(μ-η1,η1-CO) (33)  

In a Schlenk-tube (50 mL), a solution of 24 (42 mg, 0.05 mmol, 1 equiv) in THF 

(2 mL) was freeze-thaw degassed under vacuum three times. High purity and 

dried CO (ca. 1 atm) was then introduced to the flask at –78 °C. The reaction so-

lution was stirred at room temperature for overnight during which time the color 

of the solution became red-brown. The volatiles were filtered and orange crystals 

were obtained by layering hexane or pentane on a solution of 33 in THF at –30°C 

in 2 days.  

33-13CO: The solution of 33-13CO followed an analogous work-up procedure as 

described for unlabeled 33. IR and rRaman spectra are the same as for the unla-

beled material expect the stretching of CO triple bond.  

Molecular Weight: 751.28 g·mol-1 (C40H53N6Ni2O) 

ATR-IR (ν/cm-1) = 3058 (w), 2957 (m), 2925 (m), 2865 (m), 1735(CO·-) (m), 

1556 (m), 1525 (m), 1450 (m), 1436 (m), 1397 (m), 1369 (m), 1314 (m), 

1277 (m), 1251 (m), 1234 (m), 1188 (m), 1073 (m), 1055 (w), 1033 (m), 

935 (m), 917 (m), 868 (m), 796 (m), 760 (m), 744 (m), 714 (m), 644 (m), 

620 (m), 578 (m), 549 (m), 522 (m). 

ATR-IR (ν/cm-1) = 3058 (w), 2957 (m), 2925 (m), 2865 (m), 1691(13CO·-) (m), 

1556 (m), 1525 (m), 1450 (m), 1436 (m), 1397 (m), 1369 (m), 1314 (m), 

1277 (m), 1251 (m), 1234 (m), 1188 (m), 1073 (m), 1055 (m), 1033 (m), 

935 (m), 917 (m), 868 (m), 796 (m), 760 (m), 744 (m), 714 (m), 644 (m), 

620 (m), 578 (m), 549 (m), 522 (m). 



CHAPTER 11 EXPERIMENT SECTION 

260 

 

ESI-MS (THF): m/z (%) = 789.3 ((33+H)+K)+(60). 

Elemental analysis (%) calc. for C40H53N6Ni2O: C 63.95 H 7.11 N 11.19; found C 

64.12 H 7.15 N 10.96.  

 

L1Ni2(μ-η1,η1-CH3CO) (34)  

In a Schlenk-tube (50 mL), a solution of 33 with excess elemental potassium in 

THF (3 mL) was stirred at –78°C and then warmed up to room temperature for 

overnight. MeI was added using a micro-syringe at –30°C, resulting in an imme-

diate color change from red to orange. The reaction mixture was stirred for 1 

hour at room temperature and volatiles were removed under vacuum. The re-

sulting product 34 was isolated as orange solid after drying under vacuum. 

ATR-IR (ν/cm-1) = 3058 (w), 2958 (m), 2925 (m), 2866 (m), 1993 (m), 1842 (m), 

1626 (CH3C=O)(m), 1548 (m), 1532 (s), 1464 (w), 1435 (s), 1399 (m), 1371 (m), 

1315 (m), 1280 (m), 1251 (vs), 1175 (w), 1158 (w), 1093 (w), 1030 (vs), 

959 (w), 935 (w), 916 (w), 865 (w), 799 (s), 762 (s), 747 (s), 637 (vs), 579 (m), 

546 (m), 518 (m). 

 

L2Ni2(µ-Br) (35). This complex was prepared in a similar way to the method for 

complex 2 using H3L2 instead of H3L1 and at 50°C. 

1H NMR (CD2Cl2, 300 MHz): = 7.90 (d, 8H, Ar), 7.34-7.46 (m, 12H, Ar), 7.07 (s, 6H, 

Ar), 5.45 (s, 1H, 4-Pz), 4.48 (s, 2H, CHCCH3), 3.92 (s, 4H, CH2Pz), 1.82 (s, 6H, 

CH3CCH), 1.35 (s, 6H, CH3CCH). 

13C NMR (CD2Cl2, 75 MHz): = 160.83, 159.32, 154.02, 148.60, 141.76, 137.94, 

131.04, 130.52, 128.17, 127.17, 126.99, 97.52 (CH2Pz), 92.43 (4C-Pz), 55.01 

(CHCCH3), 24.22(CH3), 21.67 (CH3). 

ATR-IR (ν/cm-1) = 3025 (w), 2922 (m), 1597 (w), 1549 (m), 1529 (s), 1496 (w), 

1456 (w), 1428 (w), 1392 (s), 1314 (w), 1280 (w), 1261 (w), 1206 (w), 1179 (w), 

1085 (w), 1072 (w), 1029 (m), 1016 (m), 957 (w), 946 (w), 912 (w), 872 (w), 
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802 (m), 752 (s), 732 (m), 695 (vs), 611 (m), 589 (m), 539 (w), 504 (w). 

ESI-MS (THF): m/z (%) = 939.3 (100)(M+H)+. 

Elemental analysis (%) calc. for C51H35N6Ni2Br·(CH2Cl2)4: C 51.65 H 4.18 N 6.57; 

Found C 51.89 H 4.20 N 6.61. 

 

KL2Ni2(µ-H) (36) 

A solution of KHBEt3 in THF (1.0 M) (0.75 mL, 0.75 mmol, 3 equiv) was added to 

a stirred brown solution of 35 (250 mg, 0.25 mmol, 1 equiv) in THF (4 mL) at 

room temperature. After stirring the resulting red solution for 40 minutes all 

volatiles were removed in vacuo. The red residue was washed twice with hexane 

(20 mL). After concentration in vacuo and get red powder (134 mg, 0.15 mmol, 

60%). The crude powder was recrystallization from pentane diffusion into THF 

at room temperature yield red block crystals of 36. 

Molecular Weight: 896.20 g/mol (C51H45N6Ni2K) 

1H NMR (THF-d8, 400 MHz) = 8.54 (d, 2H, JH-H = 8 Hz, Ph), 7.75 (d, 2H, JH-H = 8 Hz, 

Ph), 7.66 (d, 1H, JH-H = 8 Hz, Ph), 7.47 (d, 2H, JH-H = 8 Hz, Ph), 6.85 (m, 16H, Ph), 

6.37 (t, 1H, JH-H = 8 Hz, Ph), 6.28 (t, 1H, JH-H = 8 Hz, Ph), 5.69 (s, 1H, 4-Pz), 4.49 (s, 

1H, CHCCH3), 4.43 (d, JH-H = 16 Hz, 1H, CH2Pz), 4.25 (s, 1H, CHCCH3), 4.21 (d, 1H, 

JH-H = 20Hz, CH2Pz), 4.07 (d, 1H, JH-H = 20Hz, CH2Pz), 3.97 (d, 1H, JH-H = 20Hz, 

CH2Pz), 1.91 (s, 4H, CH3CCH), 1.04 (s, 4H, CH3CCH), 0.88 (t, 2H, CH3CCH), –26.12 

(s, 1H, Ni-H). 

13C {1H} NMR (THF-d8, 100 MHz) = 19.04 (CH3CCH), 19.81 (CH3CCH), 

22.02 (CH3CCH), 22.31 (CH3CCH), 51.06 (3(5)C-Pz), 51.48 (3(5)C-Pz), 

91.81 (4C-Pz), 96.58 (CH2Pz), 102.64 (CHCCH3), 119.72 (Ph), 121.86 (Ph), 

122.30 (Ph), 123.16 (Ph), 124.21 (Ph), 124.54 (Ph), 125.12 (Ph), 125.27 (Ph), 

125.57 (Ph), 125.68 (Ph), 126.62 (Ph), 127.09 (Ph), 127.72 (Ph), 127.42 (Ph), 

127.64 (Ph), 128.72 (Ph), 128.93 (Ph), 129.88 (Ph), 130.02 (Ph), 131.12 (Ph), 

131.30 (Ph), 134.71 (Ph), 135.69 (Ph), 136.15 (Ph), 138.92 (Ph), 140.99 (Ph), 
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141.04 (Ph), 141.81 (Ph), 142.05 (Ph), 142.10 (Ph), 153.52, 155.30, 155.88, 

155.99, 157.75, 158.18, 158.42, 159.56.  

ATR-IR (ν/cm-1) = 3136 (w), 3023 (w), 2911 (w), 2851 (w), 2815 (w), 1599 (w), 

1565 (w), 1531 (w), 1510 (s), 1491 (m), 1457 (s), 1421 (s), 1387 (vs), 1303 (m), 

1266 (m), 1248 (m), 1203 (m), 1154 (m), 1067 (m), 1015 (m), 997 (m), 853 (m), 

796 (m), 770 (m), 748 (vs), 691 (vs), 630 (m), 604 (m), 539 (m). 

 

NaL2Ni2(µ-H) (37) 

A solution of NaHBEt3 in THF (1.0 M) (0.75 mL, 0.75 mmol, 3 equiv) was added to 

a stirred brown solution of 35 (250 mg, 0.25 mmol, 1 equiv) in THF (4 mL) at 

room temperature. After stirring the resulting red solution for 40 minutes all 

volatiles were removed in vacuo. The red residue was washed twice with hexane 

(20 mL). After concentration in vacuo and get red powder (130 mg, 0.15 mmol, 

60%).The crude powder was recrystallization by layering Et2O on a solution of 

37 in THF at room temperature. 

Molecular Weight: 882.32 g/mol (C51H45N6Ni2Na) 

1H NMR (THF-d8, 400 MHz) = 8.54 (d, 2H, JH-H = 8 Hz, Ph), 7.75 (d, 2H, JH-H = 8 Hz, 

Ph), 7.66 (d, 1H, JH-H = 8 Hz, Ph), 7.47 (d, 2H, JH-H = 8 Hz, Ph), 6.85 (m, 16H, Ph), 

6.37 (t, 1H, JH-H = 8 Hz, Ph), 6.28 (t, 1H, JH-H = 8 Hz, Ph), 5.69 (s, 1H, 4-Pz), 4.49 (s, 

1H, CHCCH3), 4.43 (d, JH-H = 16 Hz, 1H, CH2Pz), 4.25 (s, 1H, CHCCH3), 4.21 (d, 1H, 

JH-H = 20Hz, CH2Pz), 4.07 (d, 1H, JH-H = 20Hz, CH2Pz), 3.97 (d, 1H, JH-H = 20Hz, 

CH2Pz), 1.91 (s, 4H, CH3CCH), 1.04 (s, 4H, CH3CCH), 0.88 (t, 2H, CH3CCH). –25.67 

(s, 1H, Ni-H). 

13C {1H} NMR (THF-d8, 100 MHz) = 19.04 (CH3CCH), 19.81 (CH3CCH), 

22.02 (CH3CCH), 22.31 (CH3CCH), 51.06 (3(5)C-Pz), 51.48 (3(5)C-Pz), 

91.81 (4C-Pz), 96.58 (CH2Pz), 102.64 (CHCCH3), 119.72 (Ph), 121.86 (Ph), 

122.30 (Ph), 123.16 (Ph), 124.21 (Ph), 124.54 (Ph), 125.12 (Ph), 125.27 (Ph), 

125.57 (Ph), 125.68 (Ph), 126.62 (Ph), 127.09 (Ph), 127.72 (Ph), 127.42 (Ph), 
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127.64 (Ph), 128.72 (Ph), 128.93 (Ph), 129.88 (Ph), 130.02 (Ph), 131.12 (Ph), 

131.30 (Ph), 134.71 (Ph), 135.69 (Ph), 136.15 (Ph), 138.92  (Ph), 140.99 (Ph), 

141.04 (Ph), 141.81 (Ph), 142.05 (Ph), 142.10 (Ph), 153.52, 155.30, 155.88, 

155.99, 157.75, 158.18, 158.42, 159.56. 

 

NaL2Ni2(µ-H2) (38) 

A solution of NaHBEt3 in THF (1.0 M) (0.50 mL, 0.50 mmol, 2.5 equiv) was added 

dropwise to a stirred brown solution of 35 (250 mg, 0.25 mmol, 1 equiv) in THF 

(2 mL) at room temperature. After stirring the resulting red-brown solution for 

40 mins, all volatiles were removed in vacuo. The red-brown residue was washed 

twice with hexane (40 mL). After concentration in vacuo and get red powder 

(129 mg, 0.15 mmol, 60 %). The crude powder was recrystallization from pen-

tane diffusion into THF at room temperature yield red block crystals of 38. 

38-D, In a Young tube, a solution of 38 in THF (0.5 mL) was freeze-thaw de-

gassed under vacuum three times. Then dry D2 (ca. 1 atm) was then introduced 

to the head space of the flask at room temperature. 

Molecular Weight 861.35 g/mol (C51H47N6Ni2) 

1H NMR (THF-d8, 400 MHz) = 7.71-7.69 (d, 8H, Ar), 7.23-7.19 (m, 14H, Ar), 

7.13-7.10 (m, 4H, Ar), 5.46 (s, 1H, 4-Pz), 4.29 (s, 2H, CHCCH3), 4.06 (s, 4H, CH2Pz), 

1.68 (s, 6H, CH3CCH), 1.34 (s, 6H, CH3CCH), –23.61(s, 2H. Ni-H). 

13C NMR (THF-d8, 75 MHz) = 158.13, 156.23, 156.16, 156.06, 142.54, 130.26, 

129.88, 127.03, 125.49, 123.21, 96.90, 91.87, 52.34, 25.40, 22.23, 19.51, 13.40. 

ATR-IR (ν/cm-1) = 3052 (m), 3024 (m), 2973 (m), 2950 (m), 2920 (m), 2853 (m), 

1896 (Ni-H) (m), 1595 (w), 1559 (m), 1519 (m), 1451 (m), 1427 (m), 1377 (vs), 

1313 (m), 1269 (s), 1210 (m), 1179 (w), 1068 (m), 1047 (m), 1028 (m), 907 (m), 

802 (w), 769 (s), 753 (vs), 741 (vs), 719 (m), 697 (vs), 605 (m), 590 (m), 

540 (w). 

2H NMR (THF, 400 MHz) = –23.61 (s, 2H. Ni-D). 
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L2Ni2(μ-OH) (39) 

Water was added into a solution of 38 (30.5 mg, 0.04 mmol, 1 equiv) in THF 

(1 mL) at room temperature. The color changes from dark red to green immedi-

ately and intensity gas was observed. Suitable crystals for x-ray diffraction were 

obtained from THF at –30 °C as dark green block crystal.  

39-OD: In a Young tube, a solution of 39 in THF (0.5 mL) was freeze-thaw de-

gassed under vacuum three times. Then D2O (10 eq.) was then introduced to the 

head space of the flask at room temperature. 

Molecular Weight 876.34 g/mol (C51H46N6Ni2O) 

1H NMR (THF-d8, 400 MHz) = 8.17 (d, 8H, Ar), 7.38 (dd, 8H, Ar), 7.23 (dd, 4H, Ar), 

6.69-6.82 (m, 6H, Ar), 5.42 (s, 1H, Pz), 4.14 (s, 2H, CHCCH3), 3.83 (s, 4H, CH2Pz), 

1.64 (s, 6H, CH3), 0.99 (s, 6H, CH3), –6.06 (s, 1H, OH). 

13C NMR (THF-d8, 100 MHz) = 159.76, 156.71, 148.79, 143.91, 140.95, 138.00, 

130.21, 127.25, 126.11, 124.99, 97.01 (CHCCH3), 90.79 (4-Pz), 54.52 (CH2Pz), 

25.29 (CH3CCH), 22.08 (CH3CCH), 19.74 (CH3CCH). 

ATR-IR (ν/cm-1) = 3605 (OH) (m), 3056 (w), 3023 (w), 2957 (w), 2918 (w), 

2847 (w), 1599 (m), 1550 (m), 1521 (m), 1484 (m), 1451 (vs), 1429 (m), 

1395 (m), 1310 (m), 1270 (m), 1244 (m), 1211 (m), 1175 (m), 1063 (m), 

1030 (m), 948 (m), 912 (m), 810 (m), 751 (vs), 724 (w), 698 (vs), 606 (m), 

589 (m), 540 (w). 

ATR-IR (ν/cm-1) = 2681 (OD) (s). 

ESI-MS (THF) = 913.30 (M+K)+ (100), 875.33 (M+H)+ (70), 899.34 (M+Na)+ (30). 

2H NMR (400 MHz, THF) = -6.06 (s, 1H, OD) 

Anal. Calcd for [Ni2(C51H46N6O)]: C 68.11, H 5.16, N 9.34; found: C 68.22, H 5.27, 

N 9.18. 

 

L2Ni2(μ-CF3SO3) (40) 

38 (31.8 mg, 0.04 mmol, 1 equiv) and [H-Lut]OTf (6.45 mg, 0.04 mmol, 1 equiv) 
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were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at 

room temperature in a dinitrogen atmosphere. All volatiles were subsequently 

removed under vacuum, and the resulting solid was dried under vacuum. The 

crude powder was recrystallization by layering hexane on a solution of 40 in THF 

at –30°C yield block crystals of 40. The mother liquor was pumped down, dis-

solved in THF, and layered with hexane to afford a second crop. 

Molecular Weight 1008.40 g/mol (C52H45N6Ni2F3SO3) 

1H NMR (THF-d8, 400 MHz) = 8.17 (d, 8H, Ar), 7.45 (t, 16H, Ar), 7.05 (t, 2H, Ar), 

5.42 (4-Pz), 4.17 (s, 4H, CH2Pz), 4.14 (s, 2H, CHCCH3), 1.63 (s, 6H, CH3), 0.99 (s, 

6H, CH3). 

13C NMR (THF-d8, 100 MHz) = 19.73 (CH3), 22.07 (CH3), 25.39 (CH3), 

51.25 (CH2Pz), 93.16 (4-Pz), 99.76 (CHCCH3), 125.16, 126.33, 127.58, 128.94, 

130.19, 139.55, 141.52, 145.38, 155.86 (Ar), 156.56 (CF3SO3), 158.25 (Ar). 

19F NMR (THF-d8, 376 MHz) = –77.81. 

ATR-IR (ν/cm-1) = 3052, 2923, 1598, 1555, 1525, 1229, 1210, 1200, 1170, 1111, 

1053, 1031, 908, 868, 838, 809, 755, 696, 641, 586, 508. 
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Chapter 12 DFT Calculations 

Geometry optimization calculations were performed with the coordinates ob-

tained from the X-ray crystallographic structure determination. Unrestricted DFT 

calculations using the ORCA program (Ver. 3.0.1 or 3.0.2) were performed with 

BP86 respectively B3LYP functional, RI resp. RIJCOSX approximation, def2-tzvp 

and def2-tzvp/j basis sets [247] Solvent effects were considered by invoking the 

conductor like screening model (COSMO) with THF as the solvent. 80 excited 

states were calculated; the maximum dimension of the expansion space in the 

Davidson procedure (MaxDim) was 800.  
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DFT Table 1. Coordinates of the energy-optimized structure of Structure 2− 

Ni  -0.68869262397851     17.17489938464608     18.87906371064496 

Ni  -1.41515153487665     15.58251351289467     15.31148013058432 

C   -3.07622169902548     18.14173532358329     17.94770281610725 

C   -3.94304271614359     18.25647489085641     16.84067727920180 

H   -4.86772190584580     18.83984022776006     16.76488931990406 

C   -3.35080720902569     17.43754397715647     15.85677275187850 

C   -3.67739512974857     17.07152076947943     14.44054435125935 

H   -4.71098359717760     16.65059152296007     14.37432585128001 

H   -3.68909842325979     17.98809961167770     13.79939189908899 

C   -2.73849132582984     15.62383777402922     12.73760923711351 

C   -3.81587059031133     16.10971230838273     11.78769351314391 

H   -4.83149795862547     15.87906405407793     12.17836285254848 

H   -3.71799463139211     15.63885468980650     10.79167152333322 

H   -3.77665465561897     17.21318514889711     11.65633798674392 

C   -1.82150644204174     14.64813628168210     12.26685141308028 

H   -1.92851377453640     14.33567951866911     11.21816805568514 

C   -0.81730896767705     14.00070900244267     13.01936812009976 

C   0.00822151880901     12.92870589501205     12.33246652889802 

H   1.09420753101744     13.14419379634333     12.41693541532362 

H   -0.25979077652061     12.84895124424981     11.26197160775940 

H   -0.14014907575848     11.93618230893268     12.80845064994584 

C   0.36855032043898     13.45418846729255     15.02170029505425 

C   -0.08327804453132     12.23366214610976     15.59840982739276 

C   0.83546859373594     11.44542847881057     16.31595392826467 

H   0.49563208864464     10.50558405096132     16.77679996900063 

C   2.16996370525917     11.84986083039746     16.47107549887792 

H   2.87354807175732     11.22768498826797     17.04669363866645 

C   2.60142850358454     13.05413426431131     15.89693787500757 

H   3.64385672132672     13.37791195452812     16.03340292902591 

C   1.72334277152454     13.86260418664092     15.15177537591071 
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C   2.18101405920993     15.18289785463135     14.54662107810832 

H   1.49119310605907     15.40114285501371     13.70382371159733 

C   3.61194994407609     15.13011995153585     13.98963452421504 

H   3.85812086318007     16.08031541079022     13.47006958635354 

H   3.74747822571077     14.29534402153878     13.26933655840273 

H   4.36149647860772     15.00260662847689     14.79968642434145 

C   2.01986842100963     16.31659156897761     15.57514308517488 

H   2.68928559504155     16.16008127700690     16.44384748724223 

H   0.97782238294086     16.34398315778268     15.95676483765672 

H   2.25990007601768     17.30168807221096     15.12095122278643 

C   -1.55982710239245     11.86219677092824     15.51222255384843 

H   -1.94722076618540     12.28679248425679     14.56295887640418 

C   -2.33405034800809     12.55533014255028     16.65004518497818 

H   -3.43088211899136     12.43189569608174     16.52180072844345 

H   -2.09793660862373     13.64341052784149     16.66188459865092 

H   -2.04453956138690     12.13208178261658     17.63419573577094 

C   -1.82055441750071     10.35019652831423     15.48875023250856 

H   -1.24589369272462      9.84424630654391     14.68467821256029 

H   -2.89907950080263     10.14788162143063     15.32030640878386 

H   -1.54814965012280      9.86766165946034     16.45170247963250 

C   -3.05779490040488     18.68457717169119     19.34415738548359 

H   -3.08456069791490     19.80222544399173     19.33315594002270 

H   -3.98359129949226     18.37072390863426     19.88841792455357 

C   -1.61198851368140     18.50398229769750     21.28102950058035 

C   -2.61237681069007     19.34067584316209     22.05500701036519 

H   -2.76633684528070     20.33190255920444     21.57548679959450 

H   -2.27572121512278     19.51175925927960     23.09448082657306 

H   -3.61100724252307     18.85287562488563     22.08646085524496 

C   -0.43219968273219     18.08521044496898     21.94858073784644 

H   -0.33644772681809     18.36597979857020     23.00696369135609 

C   0.65809902086352     17.39102851405338     21.38068189466873 
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C   1.86473309173948     17.12421382227925     22.26145030275086 

H   2.12914620751691     16.04663235112809     22.26668685377978 

H   1.67488708403730     17.45168881460743     23.30114207047797 

H   2.76367275286344     17.65333982850802     21.88211884775500 

C   1.91555742790925     16.43977608991858     19.58746613912139 

C   2.13914472651998     15.03571795113204     19.58865610717690 

C   3.34559971625953     14.54814533797006     19.05246393868434 

H   3.52338960963985     13.46269843850025     19.02811450467004 

C   4.32461745641116     15.41893315743998     18.55269444688996 

H   5.26330701791618     15.01625934908133     18.13991827559109 

C   4.10068857227412     16.80340683077640     18.57628426384541 

H   4.86799653091512     17.48425765922187     18.17687592734893 

C   2.90284115485701     17.33532182109320     19.08865562804104 

C   2.60970286869486     18.83115462256799     19.04312236894757 

H   1.91184416608512     19.04868415360110     19.87867697625854 

C   1.85700876787603     19.17616731845802     17.74291729851628 

H   2.50281138744959     18.99832821245965     16.85752040995287 

H   1.53231381573758     20.23807107747166     17.73817443626115 

H   0.95589630037899     18.53066898614876     17.64729798553029 

C   3.85244417745640     19.71151239612673     19.22897571089185 

H   4.41723031568851     19.44089358025080     20.14683318881455 

H   3.56009491980109     20.77972830531325     19.30768971255267 

H   4.55061461403715     19.63080309748039     18.36801089704590 

C   1.06534188849978     14.09701452916372     20.12367146869819 

H   0.54503396992328     14.64644997118462     20.93724663545024 

C   0.01935305593232     13.80316903312258     19.03294085437712 

H   -0.36799640784771     14.75242362139995     18.60635069716799 

H   -0.83228189735578     13.22355275152239     19.44645138746302 

H   0.46893057224875     13.22075242416148     18.20515255271184 

C   1.62792455158097     12.79396007103616     20.71020800967596 

H   0.81350578384249     12.20703232205730     21.18459699468287 
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H   2.41308723933729     12.98299604528860     21.47272958248286 

H   2.06664211091545     12.15317500527309     19.91620211559389 

N   -2.04221831661604     17.31371845698623     17.62897714869674 

N   -2.21436676818090     16.87748032843916     16.35837907639020 

N   -2.67984591772314     16.10426031368385     13.98017498262885 

N   -0.56185185176709     14.27607613947191     14.31613251370108 

N   -1.84941718744102     18.19030573781354     20.00683569961318 

N   0.69181640563225     16.97238342415276     20.09685576026003 

H   0.11415847387532     16.51691574696168     17.85589916079963 

H   -0.58518660241204     15.24272508175843     16.45931862412747 

 

DFT Table 2. Coordinates of the energy-optimized structure of Structure 2. 

Ni  -0.84779151694222     16.88452507003262     19.12127948015371 

Ni  -1.21672547290550     15.76014818204264     15.18069752158587 

C   -3.07891539203923     18.00099686454774     18.01067761249681 

C   -3.78779419357733     18.32104159908885     16.84041773426616 

H   -4.67159353034677     18.95973413229359     16.73921170264163 

C   -3.10186708398172     17.62574868410968     15.83087747880241 

C   -3.29215081224702     17.50563420264949     14.35658602658692 

H   -4.36083616131333     17.28708360420774     14.12555287500612 

H   -3.06893411718607     18.48072088939323     13.85733252555605 

C   -2.50069809044707     16.06901045164647     12.59276023085709 

C   -3.46735979680113     16.76815996434964     11.65993713057898 

H   -4.51600701330930     16.66881096259622     12.01372350938207 

H   -3.40927908943668     16.35114973013410     10.63799935942154 

H   -3.25619213684530     17.85736088231600     11.60339738546906 

C   -1.74055955009941     14.99114803191362     12.07286299369202 

H   -1.92844169853088     14.71066082441520     11.02854728743760 

C   -0.82389885398668     14.20245396374938     12.78602788513798 

C   -0.24488316999615     12.98658446331456     12.08691541878480 
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H   0.86183722538781     13.02054715201397     12.01782724001644 

H   -0.65321611318891     12.89383301365211     11.06434085180387 

H   -0.48793337383671     12.05905939070663     12.64588907909697 

C   0.47915476074298     13.57508851804364     14.66459251412315 

C   0.03094547274253     12.50876730385107     15.49738895353747 

C   0.99309205791804     11.68346098849569     16.11489660484358 

H   0.65888300612790     10.86658175814411     16.77419615252186 

C   2.36753183291327     11.87501294562170     15.89155299767132 

H   3.10437293808316     11.21149832555998     16.36960600148887 

C   2.79715473507561     12.91086460122761     15.04158634857331 

H   3.87413853212729     13.04539427682979     14.85848659792718 

C   1.87122667740614     13.77277392473171     14.41787443217573 

C   2.32335416277047     14.95420948201568     13.56265103384341 

H   1.56404012971832     15.08905495239062     12.76600371866320 

C   3.68606550171359     14.75003316335105     12.89096625622861 

H   3.90690628800515     15.59116437266632     12.20261948882439 

H   3.71853249436255     13.80982552752694     12.30321594911329 

H   4.51381375170486     14.71256612553858     13.63210346250276 

C   2.29735796454139     16.24787669233148     14.40105719688286 

H   3.10003026369555     16.23428713746703     15.17350612592954 

H   1.30242719646933     16.37383035640391     14.88531311106078 

H   2.47115131638015     17.14225283121245     13.76958306638632 

C   -1.45734293966542     12.30678766784791     15.74853445921853 

H   -1.98905773865066     12.95956004477297     15.02735510147604 

C   -1.84369619390009     12.78763568405115     17.16028453322808 

H   -2.93712447478929     12.68810851393115     17.32094546715715 

H   -1.57767496160902     13.85654103423113     17.28988155985119 

H   -1.32701721383538     12.19218292233929     17.94078755612300 

C   -1.89716577963432     10.85423590280622     15.50079346861581 

H   -1.61489482645781     10.51034413900231     14.48471224732029 

H   -2.99857744266892     10.76172650227601     15.59977936213419 
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H   -1.44164472775547     10.15297291715846     16.23138963774722 

C   -3.23301518607002     18.38284636974739     19.44400867104889 

H   -3.37890337585171     19.48450974724700     19.53480905935164 

H   -4.15613802847455     17.92011479106678     19.87106202424109 

C   -1.90729181937550     18.25126360024646     21.45243665549721 

C   -3.01190782710121     19.00128064388854     22.16653021638568 

H   -3.19920194142292     19.99028812493301     21.69612204309191 

H   -2.76002301474874     19.17013105327687     23.22912378025291 

H   -3.97168953864497     18.44406385075659     22.11868535404972 

C   -0.73497681629463     17.93581676585024     22.18437743439449 

H   -0.69763896482533     18.27185686600733     23.22850575343916 

C   0.41424121999825     17.30867653629407     21.67744356354764 

C   1.64099251683975     17.25906828639543     22.56824977497130 

H   1.99902441679310     16.22255667659242     22.73375018399456 

H   1.42627586098573     17.71402809779797     23.55214690864146 

H   2.48809691331676     17.80893679539399     22.10770918214494 

C   1.75132594325080     16.29779735065488     20.00243403035860 

C   2.15466049375607     14.96905039646693     20.33373255112102 

C   3.42105382101833     14.51824274248306     19.90861995566377 

H   3.74652691366450     13.49884960962191     20.16303036340771 

C   4.27890331699237     15.35144797268881     19.16864883501928 

H   5.26914847603725     14.98729126531298     18.85585330157853 

C   3.86623968147195     16.65285333460262     18.83687624428707 

H   4.53726673009798     17.30311337398177     18.25393581034762 

C   2.61152735814253     17.14844755415814     19.24860445746827 

C   2.14040295775530     18.53338100637538     18.82447453332584 

H   1.26256267993355     18.77950274082392     19.45562696704752 

C   1.64004679615143     18.49201261703925     17.36620200616652 

H   2.45688437376022     18.20944246423109     16.66792976379102 

H   1.25467325230355     19.48303098586650     17.05135637203414 

H   0.80330307268780     17.76781085599053     17.26546803422907 
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C   3.20821425174608     19.61750791124397     19.03174773992266 

H   3.57040218549792     19.63807614349460     20.07970420671451 

H   2.79160251403578     20.61789533901396     18.79483465159931 

H   4.08914448645855     19.46859809579487     18.37193431781351 

C   1.17195468892324     14.04275535877115     21.03970886308478 

H   0.55998657648375     14.67442824404949     21.71460142865639 

C   0.20391309065252     13.46307582868736     19.99141097605111 

H   -0.26153530597038     14.28952470803815     19.41150274085595 

H   -0.61307571763185     12.88205714104884     20.46549406794549 

H   0.73893194431551     12.77797293786197     19.29568913975021 

C   1.83401005452325     12.94519952787514     21.87935188374842 

H   1.06561473365922     12.38666434481062     22.45147180646300 

H   2.56347327800165     13.36130204335577     22.60502995341959 

H   2.36920996792199     12.20326064270353     21.24983350492443 

N   -2.04136768809992     17.16867490151144     17.71305706795525 

N   -2.05524147082469     16.93561941787581     16.36764779605251 

N   -2.40845431371692     16.44782709409451     13.86721542760080 

N   -0.46978010544762     14.45163465278720     14.07054705819608 

N   -2.04018737956355     17.93692932143648     20.16460620336278 

N   0.48713830451615     16.78663616918247     20.42784185860717 

K   1.71626894280193     14.86644056918994     17.27441293070832 

H   -0.13167055209665     15.98737890482600     18.21852499015344 

H   -0.40760561023590     15.30867755555502     16.30709282157190 

 

DFT Table 3. Coordinates of the energy-optimized structure of Structure A. 

N   -2.20616598256472     16.87252637926337     16.38924594688450 

C   -3.36754862246396     17.39411479165334     15.90429975956918 

C   -3.98871940814366     18.16667855876951     16.90830439818616 

C   -3.11268769091747     18.06640745278095     18.00995924886945 

N   -2.04770324911161     17.28796522955709     17.66746765709536 
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C   -3.10900360266203     18.57263270170368     19.42096346278932 

N   -1.86279104997566     18.13784363515259     20.05605289844398 

C   -1.62434544651852     18.42944596702821     21.33522445009842 

C   -0.42563137744599     18.03488440353915     21.98299789868408 

C   0.67260733425413     17.36589441150970     21.39946507877728 

N   0.70020656160674     16.95374541142541     20.11427981257315 

C   1.92085797661534     16.43247206309376     19.58607051921230 

C   2.15692850168319     15.03053012633264     19.58363596848723 

C   3.35342699377497     14.55352462666329     19.01649488635621 

C   4.31163317332621     15.43240711070061     18.49127116688688 

C   4.07713299897746     16.81484290821768     18.52148964831666 

C   2.88790288971018     17.33652419566938     19.06375601590099 

C   -3.68258129287653     17.03969755499964     14.48232597744347 

N   -2.64686941056432     16.12153774348108     14.00351932440285 

C   -2.68805342627698     15.66268858043076     12.75221039837991 

C   -1.74072050770064     14.72384301474019     12.26640837318147 

C   -0.72661815937154     14.08569826261829     13.01387884605334 

N   -0.46451355852652     14.36628041909658     14.30828934517668 

C   0.42719557038281     13.51186642244843     15.02559287487140 

C   -0.08587876346356     12.31875371484836     15.60771767205731 

C   0.79073430913654     11.48913666689912     16.33114629608140 

C   2.14375294611891     11.82564766809048     16.48288393321270 

C   2.63664066275216     13.00315769302630     15.90145346369550 

C   1.80137184784643     13.85327005622143     15.15313794841389 

C   -1.57857938232309     12.01947146685699     15.52055897410025 

C   -1.90353576045166     10.52446101793153     15.39420535932461 

C   2.32530872023685     15.14081677100014     14.52822480442466 

C   2.06614571706722     16.33407002696355     15.46657098096738 

C   1.10698803645676     14.08129270273163     20.14698147936487 

C   1.69991029106309     12.77902567874974     20.70567729608469 

C   2.57851104031460     18.82913802935454     19.02085969824076 
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C   3.81512645163253     19.72242506797948     19.18419268757334 

Ni  -0.69090092208379     17.14752549671622     18.90937833083151 

Ni  -1.35053524212880     15.63651015354812     15.31890877190407 

C   -3.78191129064376     16.12707042269243     11.81050437284520 

C   0.08500004217703     13.00082676657385     12.33049050626419 

C   3.80309951145227     15.06427688196268     14.12019753353600 

C   -2.31082624557083     12.66339849583284     16.71439790804503 

C   -2.64768933206951     19.20925274848261     22.13743260293927 

C   1.89482766862106     17.11956109446681     22.26449809647461 

C   1.80059551315335     19.16231154260510     17.73244477270542 

C   0.02818024959012     13.78226657741703     19.09080915936184 

H   -4.93747802227685     18.71179624451463     16.84868828788622 

H   -4.69812489216329     16.57778420586784     14.41079230927097 

H   -3.73295043663874     17.96528265591049     13.85648133936440 

H   -4.78872160691365     15.85648679014646     12.19810623514599 

H   -3.66928656551208     15.67568600970718     10.80709940894494 

H   -3.77997605079569     17.23322305550869     11.69669952656062 

H   -1.84151200513610     14.41991845848579     11.21457986995029 

H   1.17505310881421     13.18053523766507     12.43919830483027 

H   -0.16431018884613     12.94052358968167     11.25407759651067 

H   -0.10600123015044     12.00816415653670     12.79113645613623 

H   0.40279626866077     10.57087476572020     16.79806311533789 

H   2.81547246452249     11.17122156979848     17.06089161112252 

H   3.69592986547504     13.26802599104865     16.03178298826080 

H   1.72306035436761     15.31396971151307     13.60952955051672 

H   4.09625300481512     15.97991640043393     13.56441963657266 

H   4.01220604838526     14.18463985096831     13.47480474854109 

H   4.46730537708681     15.00063532582199     15.00789160878029 

H   2.62483370451256     16.22207877109360     16.41564950546340 

H   0.98706795481056     16.38697422317589     15.72088673080529 

H   2.37405296261676     17.28803092486491     14.98763262028882 
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H   -1.95547006333382     12.52520883077711     14.60795446702353 

H   -3.41278427249392     12.59118605571171     16.59375065773088 

H   -2.03641115573696     13.73846725413685     16.79700161894669 

H   -2.02791194987658     12.16298383333782     17.66353132793092 

H   -1.35862609118595     10.05497266040759     14.54837837670513 

H   -2.99138804474095     10.38029477252660     15.22459220164201 

H   -1.64320825063447      9.96085349991266     16.31563750677750 

H   -3.20936686192791     19.68523010253641     19.44159505223742 

H   -4.00080013369678     18.17950104084189     19.96970894233538 

H   -2.85239854615127     20.20003985124019     21.67672036206293 

H   -2.30370173573841     19.37747464684165     23.17495207166433 

H   -3.62237728031862     18.67602483210061     22.17441390177079 

H   -0.32453444645232     18.30819351325955     23.04275650028594 

H   2.17688474006487     16.04651365938949     22.26618885606013 

H   1.71401107615894     17.44401428110204     23.30668009742790 

H   2.77956508934910     17.66340739657150     21.87261051567242 

H   3.53990683077124     13.46981414473102     18.98757364363383 

H   5.24250917808246     15.03762947221741     18.05410071289118 

H   4.82769811480669     17.50215666051033     18.10191935722246 

H   1.89290349975036     19.04145384980448     19.86778573342976 

H   2.43426933400540     18.99214516814655     16.83687981311236 

H   1.46154824473168     20.21968750684590     17.73101615211704 

H   0.90682806329062     18.50392256578461     17.65262774881607 

H   4.39666411808919     19.45963279989116     20.09374816423015 

H   3.51386076082005     20.78803445515546     19.26458151926592 

H   4.50030508612848     19.64617557332824     18.31254628684773 

H   0.60851401092822     14.61981303200323     20.98138557873861 

H   -0.41613930746813     14.72688734468612     18.71465670106454 

H   -0.78215368339607     13.15703706223244     19.51992614735813 

H   0.46485435882307     13.24875750012157     18.22513953313733 

H   0.91007301635135     12.18886262919326     21.21598726640143 
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H   2.51874264194700     12.96978437620702     21.43134000493975 

H   2.10409478033388     12.14071718279155     19.89145174023038 

H   0.10123058712029     16.48024606529773     17.88383603469795 

H   -0.48935443433855     15.33239226660577     16.45890861986126 

H   -2.65299442134881     15.57424675895429     19.84570765137464 

H   -3.16981748269442     15.10428313421941     20.18396179591873 

 

DFT Table 4: Coordinates of the energy-optimized structure of Structure C. 

N   -2.12459676246702     16.93918724508929     16.36449879996588 

C   -3.22194148909542     17.56112661224279     15.84629690390961 

C   -3.92926565447942     18.20994914206058     16.87679300071058 

C   -3.17709014748868     17.92897153457674     18.03412524386101 

N   -2.09857790715165     17.16286102129708     17.70417198343217 

C   -3.30509989831568     18.29093618835764     19.48014091657908 

N   -2.08543984816977     17.86238868185710     20.16272366905418 

C   -1.90753927065312     18.16170582258124     21.45003093264348 

C   -0.70432712194684     17.85075391704454     22.13111244134742 

C   0.44248495447896     17.24537925661630     21.57359400659974 

N   0.48681530541422     16.74091870073556     20.32187303650745 

C   1.74548104707088     16.28515032917013     19.82391913703691 

C   2.19323250456286     14.96730420807296     20.11291375733565 

C   3.44039438929225     14.55363937167163     19.60930573799912 

C   4.22634766471091     15.41155898941771     18.82511242200857 

C   3.76048607165040     16.70001048341669     18.52701904269486 

C   2.52706909281924     17.16110153507212     19.02404677776858 

C   -3.42275119314518     17.41210065093821     14.37149641408524 

N   -2.44641409065033     16.44298575201165     13.87809479881380 

C   -2.48861577236894     16.05483733483097     12.60292424886410 

C   -1.64171448177629     15.03447305232890     12.10279891285781 

C   -0.70484969823577     14.28396978783957     12.84533801434833 
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N   -0.37556388117931     14.55681260826547     14.12652573228096 

C   0.48726772056041     13.64033978784117     14.80179659702701 

C   -0.08694898259580     12.62872399325482     15.61692124033649 

C   0.76975717287984     11.73906731898638     16.29134912046724 

C   2.16171772030369     11.82473356920719     16.14736459091485 

C   2.71536745142949     12.82617467494519     15.33545559897849 

C   1.89751698614596     13.74924384009512     14.65864586358883 

C   -1.59865058255953     12.55087682156327     15.79499102670820 

C   -2.14770214651144     11.14321393919875     15.50752697963826 

C   2.48345510771162     14.91900654735719     13.87724883500299 

C   2.46861670268953     16.17466106001910     14.76872312388094 

C   1.26185971027327     14.00906939496211     20.84443832240555 

C   1.98117810346020     12.88586547141504     21.60083917278995 

C   1.99863985556387     18.54343346370630     18.66055888590131 

C   3.00887619815842     19.65935489135129     18.97365167465778 

Ni  -0.88268391166084     16.85138565072031     19.06896241495298 

Ni  -1.17787503818045     15.85916069751579     15.18863273344917 

C   -3.49146128705322     16.67831733965194     11.65170702296557 

C   -0.08791756409621     13.07151700635114     12.16938502586439 

C   3.88018333643005     14.64912773359862     13.30277042272761 

C   -2.01915181723753     13.05443479411172     17.18822116781082 

C   -2.99625747210415     18.88588203725956     22.21790933101334 

C   1.69967151751830     17.20895971711629     22.42460714181764 

C   1.53625389833365     18.58207376757695     17.19233020930106 

C   0.23369914597925     13.45622811127236     19.84080428389042 

H   -4.85418342318262     18.79220179403185     16.79740625101010 

H   -4.47092975394353     17.08788349591314     14.15836553351245 

H   -3.30968175703726     18.40148849485460     13.86031241311992 

H   -4.53664565510233     16.50054425698507     11.98811059078767 

H   -3.38589053019839     16.26663545312906     10.63027484480168 

H   -3.36548037005458     17.78177905264220     11.59711282805121 
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H   -1.78049374802118     14.74787614827327     11.05096624496052 

H   1.02086061059648     13.09718939420184     12.18393778793529 

H   -0.42867339720091     12.99345108850714     11.11980295957352 

H   -0.37570583823427     12.14024675509072     12.70178272447326 

H   0.33575330759719     10.96320325521826     16.94259749251796 

H   2.81813157401781     11.12015441873816     16.68210568913020 

H   3.80972819555803     12.90490555245846     15.24673402557966 

H   1.79975906895655     15.12089344085265     13.02565652438171 

H   4.20143933390339     15.49340223112280     12.65695782137911 

H   3.90603666263150     13.72015991093924     12.69464735235714 

H   4.64223025475001     14.54810409501628     14.10531598147178 

H   3.13745827204266     16.04217397616279     15.64341044559118 

H   1.44447697108652     16.34873578225722     15.15712667191142 

H   2.79204530108253     17.07401176330215     14.20199190678678 

H   -2.04218039366103     13.24744911669023     15.05494278016318 

H   -3.12587572241003     13.08454416896440     17.27562453830541 

H   -1.63683248338237     14.07952973332853     17.36452294626758 

H   -1.62510401087543     12.39417571692005     17.98809841345656 

H   -1.85000272499139     10.79075812038672     14.49774369105343 

H   -3.25751135921120     11.13813460523059     15.55993868911244 

H   -1.77941696385992     10.39628349830326     16.24369643918671 

H   -3.47506099222291     19.38999393251586     19.58636337939732 

H   -4.21030349839563     17.80487034600187     19.92395677893091 

H   -3.22242044448287     19.87613952935871     21.76557002313140 

H   -2.70366210344959     19.04980326422703     23.27190484904942 

H   -3.94890670589573     18.31299005105251     22.20457342673690 

H   -0.63251761312115     18.17062328253677     23.17983408918582 

H   2.08337530801202     16.17657282173286     22.55544743105442 

H   1.51016273249972     17.64575034175963     23.42316497915068 

H   2.51965284425765     17.77845697707432     21.93946771518699 

H   3.79554020045419     13.53287298628494     19.81481534893389 
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H   5.19491965613781     15.06756666824609     18.43050277274967 

H   4.36788241878735     17.36533973138950     17.89170134991520 

H   1.09738344274474     18.71134196358068     19.28440785300841 

H   2.39276088975539     18.44971876560061     16.49954962306266 

H   1.05440377095320     19.55601340152428     16.95995413411846 

H   0.79801460568407     17.77823574765032     16.99369442325030 

H   3.31156281820389     19.64529753824551     20.04107872877347 

H   2.56998580664805     20.65626693235563     18.75471183704415 

H   3.93201432374761     19.56748153166295     18.36214806314002 

H   0.69243996211981     14.60878553428822     21.58546289338714 

H   -0.25485926208742     14.29633727525848     19.30405499345349 

H   -0.54895982989120     12.85703239270347     20.35347152016404 

H   0.72942191071007     12.82443724074833     19.07560954533528 

H   1.25184593001850     12.29210030623845     22.19105033882576 

H   2.75121287020618     13.27798517425650     22.29906508136401 

H   2.48526067447751     12.17973742592121     20.90708136480124 

H   -0.12241543650828     16.01778844678617     18.14134995082590 

H   -0.23354049537882     15.58185975721553     16.27408182584009 

H   1.87910143284846     14.45133475938212      17.41694130407611 

H   1.23811372399650     14.84058570030820      17.22144607243340 

 

DFT Table 5: Coordinates of the energy-optimized structure of 5. 

Ni -2.03596 1.016084 -0.26903 

Ni 2.0355 1.016875 0.268723 

N 3.182989 2.507175 0.623602 

N 3.302997 -0.33313 0.432953 

N -0.66777 2.315355 -0.11969 

N -3.18407 2.505945 -0.62363 

N -3.30296 -0.33442 -0.43304 

N 0.666834 2.315614 0.119146 

C -1.09035 3.602394 -0.20579 

C -2.54403 3.814334 -0.50478 



Chapter 12. DFT CALCULATIONS 

281 

 

C -4.45342 2.39468 -0.99008 

C -4.57051 -0.13247 -0.82888 

C -2.8988 -1.59841 0.06274 

C 1.088859 3.602807 0.205594 

C -0.00094 4.463756 5.31E-05 

C -5.09878 1.139239 -1.11262 

C -5.2641 3.636912 -1.29386 

C -5.48226 -1.33109 -0.98461 

C -3.27562 -1.98775 1.376875 

C -2.08322 -2.44144 -0.73207 

C 2.542461 3.815311 0.504591 

C -2.84525 -3.22788 1.857893 

C -4.05411 -1.02043 2.256121 

C -1.67523 -3.67112 -0.20645 

C -1.63072 -1.97689 -2.10433 

C 4.452356 2.396402 0.990126 

C 4.570433 -0.1307 0.828868 

C 2.899337 -1.59733 -0.06272 

C -2.05512 -4.07215 1.074874 

C -3.09065 -0.03153 2.932779 

C -4.94869 -1.71337 3.289368 

C -0.33059 -1.16512 -1.98478 

C -1.45788 -3.1213 -3.10963 

C 5.098202 1.141211 1.112649 

C 5.262538 3.638943 1.293974 

C 5.482659 -1.32897 0.984538 

C 3.276279 -1.98656 -1.37684 

C 2.084231 -2.44071 0.732198 

C 2.846521 -3.22694 -1.85777 

C 4.054093 -1.01881 -2.2562 

C 1.676827 -3.67062 0.206666 

C 1.631526 -1.9763 2.104434 

C 2.056889 -4.07156 -1.07464 

C 3.089893 -0.03062 -2.93285 

C 4.949135 -1.71123 -3.28938 

C 0.331158 -1.16492 1.984732 
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C 1.4589 -3.12077 3.109707 

H -3.0207 4.414324 0.296884 

H -2.65692 4.403615 -1.43632 

H -0.00118 5.550569 0.000225 

H -6.13053 1.161599 -1.4618 

H -6.28785 3.37545 -1.58846 

H -4.80756 4.223409 -2.1085 

H -5.31586 4.301671 -0.41572 

H -6.435 -1.03492 -1.44063 

H -5.69782 -1.80561 -0.01412 

H -5.01279 -2.10542 -1.61046 

H 3.018933 4.415339 -0.29717 

H 2.655119 4.404784 1.436026 

H -3.11983 -3.53912 2.866889 

H -4.70578 -0.4251 1.599433 

H -1.0428 -4.32304 -0.80844 

H -2.40978 -1.29514 -2.48107 

H -1.72825 -5.0365 1.467701 

H -3.6454 0.712861 3.525296 

H -2.49597 0.509297 2.175337 

H -2.39786 -0.56634 3.600859 

H -5.5711 -0.96925 3.809313 

H -4.36036 -2.23763 4.058316 

H -5.61661 -2.4493 2.816009 

H -0.00479 -0.79969 -2.96897 

H 0.474233 -1.77435 -1.55417 

H -0.47575 -0.27784 -1.3396 

H -1.26015 -2.71217 -4.11175 

H -2.35817 -3.75279 -3.16677 

H -0.60346 -3.76327 -2.84731 

H 6.129942 1.163953 1.461848 

H 6.286366 3.377866 1.58862 

H 4.805735 4.225246 2.108605 

H 5.314087 4.303735 0.41585 

H 6.435211 -1.03248 1.440741 

H 5.698561 -1.80323 0.013986 
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H 5.013424 -2.10361 1.610185 

H 3.121189 -3.53807 -2.86677 

H 4.705337 -0.42296 -1.59956 

H 1.044771 -4.32283 0.808731 

H 2.410345 -1.29432 2.481244 

H 1.73048 -5.0361 -1.46737 

H 3.644031 0.713999 -3.52565 

H 2.495097 0.509966 -2.1753 

H 2.397172 -0.56591 -3.60061 

H 5.570914 -0.96673 -3.80951 

H 4.361202 -2.23616 -4.05816 

H 5.617671 -2.44652 -2.81588 

H 0.005027 -0.79973 2.968895 

H -0.47335 -1.7744 1.553871 

H 0.476135 -0.27752 1.339696 

H 1.261029 -2.7117 4.111825 

H 2.359327 -3.75206 3.166879 

H 0.60463 -3.76291 2.847318 

Ni -2.03596 1.016084 -0.26903 

Ni 2.0355 1.016875 0.268723 

 

DFT Table 6: Coordinates of the energy-optimized structure of 6 

Ni 1.93772 -1.06382 0.158769 

Ni -1.88799 -1.16272 -0.10303 

O 0.583732 0.153264 -0.3799 

O -0.59575 0.14627 0.364486 

N 0.71915 -2.49727 0.172922 

N 3.210943 -2.49508 0.551531 

N 3.255106 0.340947 0.144527 

N -0.60255 -2.53482 -0.03461 

N -3.09102 -2.67365 -0.41153 

N -3.27102 0.17668 -0.17044 

C 1.182481 -3.76185 0.28008 

C 2.652627 -3.8601 0.532702 

C 4.500691 -2.32694 0.825917 
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C 4.547161 0.174206 0.462458 

C 2.852441 1.628846 -0.33035 

C -1.0046 -3.82419 -0.07004 

C 0.109713 -4.65854 0.12944 

C 5.122984 -1.06135 0.814703 

C 5.367816 -3.52555 1.157871 

C 5.486604 1.365642 0.400935 

C 2.147819 2.499883 0.529849 

C 3.134594 1.993479 -1.66729 

C -2.46771 -4.00745 -0.31642 

C -4.3865 -2.58285 -0.69599 

C -4.55242 -0.06935 -0.4789 

C -2.92931 1.512912 0.209632 

C 1.812643 3.774039 0.057331 

C 1.778318 2.052609 1.934963 

C 2.794602 3.283949 -2.09271 

C 3.701239 0.96389 -2.63478 

C -5.06826 -1.34958 -0.75691 

C -5.19387 -3.83789 -0.96319 

C -5.54614 1.078463 -0.49363 

C -3.2313 1.962072 1.516028 

C -2.26799 2.350897 -0.71494 

C 2.153574 4.176692 -1.23417 

C 0.389743 2.532646 2.364299 

C 2.863541 2.463219 2.946399 

C 2.54142 0.197428 -3.30035 

C 4.647173 1.556799 -3.68713 

C -2.95209 3.295188 1.843995 

C -3.75963 0.983523 2.555814 

C -1.99409 3.671481 -0.33945 

C -1.87914 1.820134 -2.08479 

C -2.35337 4.151584 0.920048 

C -2.57408 0.282132 3.246513 

C -4.70043 1.620439 3.586615 

C -0.50811 2.320269 -2.54593 

C -2.97325 2.121192 -3.12505 
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H 0.13541 -5.74412 0.160532 

H 2.838351 -4.38117 1.491988 

H 3.141122 -4.46951 -0.25255 

H 6.179662 -1.04045 1.077986 

H 4.984693 -4.06549 2.039213 

H 6.399004 -3.2156 1.366188 

H 5.387367 -4.24816 0.325692 

H 5.750021 1.596863 -0.64277 

H 6.413392 1.154273 0.949616 

H 5.022931 2.271821 0.812193 

H 1.258037 4.453977 0.705628 

H 1.881144 5.173545 -1.58669 

H 3.005032 3.586712 -3.11967 

H 1.742182 0.952383 1.908187 

H 0.322637 3.629161 2.442819 

H 0.143636 2.115898 3.352632 

H -0.3673 2.183848 1.651267 

H 2.994011 3.557587 2.959205 

H 3.832146 2.004123 2.701237 

H 2.586893 2.13822 3.962309 

H 4.270489 0.229203 -2.04701 

H 1.881785 -0.24805 -2.5403 

H 2.92489 -0.605 -3.95102 

H 1.934097 0.88295 -3.91145 

H 4.112107 2.204626 -4.39909 

H 5.116674 0.750373 -4.27074 

H 5.446211 2.156248 -3.22412 

H -2.92876 -4.59552 0.501273 

H -2.62626 -4.58754 -1.24574 

H -6.12318 -1.39328 -1.02393 

H -4.77671 -4.40997 -1.80818 

H -6.23604 -3.5897 -1.19838 

H -5.18931 -4.51102 -0.09036 

H -5.8158 1.371387 0.532867 

H -6.46487 0.786833 -1.0188 

H -5.12675 1.974093 -0.97043 
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H -3.17817 3.662254 2.846093 

H -2.12897 5.183702 1.197195 

H -1.47452 4.327873 -1.03907 

H -4.32392 0.202278 2.025149 

H -1.92459 -0.20723 2.504658 

H -2.92977 -0.47792 3.960879 

H -1.96296 1.017015 3.792999 

H -4.16568 2.314789 4.253294 

H -5.14826 0.840785 4.221601 

H -5.51584 2.18037 3.103238 

H -1.80446 0.726301 -1.98152 

H -0.48938 3.407656 -2.72037 

H -0.23487 1.830821 -3.49243 

H 0.257673 2.067628 -1.80198 

H -3.92843 1.649391 -2.8529 

H -2.67995 1.735917 -4.1147 

H -3.13948 3.206916 -3.21578 

 

DFT Table 7: Coordinates of the energy-optimized structure of 9. 

Ni 1.930916 -1.07123 0.239879 

Ni -1.88281 -1.17543 -0.17473 

O 0.665497 0.219444 -0.06823 

O -0.68306 0.188539 0.076895 

N 0.714525 -2.46255 0.205565 

N 3.176065 -2.44818 0.622712 

N 3.238467 0.317266 0.195643 

N -0.60155 -2.50181 -0.05511 

N -3.0587 -2.63015 -0.48201 

N -3.2523 0.14995 -0.22492 

C 1.171358 -3.72703 0.321982 

C 2.626536 -3.81906 0.606687 

C 4.462798 -2.28907 0.941882 

C 4.525971 0.177141 0.52544 

C 2.83412 1.590297 -0.32965 

C -0.99611 -3.79143 -0.10233 
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C 0.108683 -4.62221 0.133427 

C 5.097783 -1.04172 0.926697 

C 5.295434 -3.49301 1.324723 

C 5.457449 1.365831 0.411893 

C 2.222445 2.532502 0.523894 

C 3.05756 1.8652 -1.69818 

C -2.4439 -3.97017 -0.38418 

C -4.34965 -2.55144 -0.81451 

C -4.52963 -0.06959 -0.55137 

C -2.90984 1.475348 0.206831 

C 1.899211 3.788766 -0.0029 

C 1.919568 2.19594 1.97521 

C 2.724093 3.136789 -2.17735 

C 3.587626 0.784567 -2.6298 

C -5.04232 -1.33633 -0.877 

C -5.1227 -3.81379 -1.12687 

C -5.51228 1.081603 -0.52168 

C -3.14903 1.837726 1.552702 

C -2.34867 2.383832 -0.7147 

C 2.162238 4.097332 -1.3359 

C 0.464796 2.518735 2.340866 

C 2.90477 2.890663 2.930648 

C 2.409104 0.01251 -3.25557 

C 4.531912 1.319488 -3.71486 

C -2.88189 3.15639 1.936893 

C -3.62871 0.802785 2.56049 

C -2.09211 3.690844 -0.28216 

C -2.02641 1.961074 -2.13893 

C -2.37117 4.081501 1.025806 

C -2.41695 0.126117 3.231257 

C -4.59029 1.370065 3.613332 

C -0.58239 2.313964 -2.51962 

C -3.0306 2.554969 -3.14197 

H 0.13495 -5.70633 0.163125 

H 2.794994 -4.3248 1.574402 

H 3.135124 -4.42786 -0.16271 
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H 6.14791 -1.021 1.20823 

H 4.881176 -4.00011 2.209913 

H 6.324029 -3.19301 1.551932 

H 5.326182 -4.23508 0.51181 

H 5.68189 1.568267 -0.64638 

H 6.401559 1.167399 0.932228 

H 5.005105 2.279722 0.81572 

H 1.424931 4.531436 0.640316 

H 1.904799 5.081858 -1.7301 

H 2.888782 3.37711 -3.22805 

H 2.052582 1.109315 2.084261 

H 0.270122 3.601207 2.340085 

H 0.239331 2.145566 3.351028 

H -0.23245 2.052333 1.63493 

H 2.846517 3.985793 2.827058 

H 3.942784 2.586002 2.732758 

H 2.672538 2.635718 3.976391 

H 4.153075 0.064926 -2.01928 

H 1.764042 -0.41854 -2.47597 

H 2.774832 -0.80337 -3.8976 

H 1.791463 0.686496 -3.86755 

H 4.000707 1.94552 -4.4475 

H 4.982548 0.482918 -4.2681 

H 5.344314 1.923347 -3.28385 

H -2.92717 -4.55776 0.417615 

H -2.58308 -4.53663 -1.32189 

H -6.08959 -1.38045 -1.16598 

H -4.67574 -4.3579 -1.97348 

H -6.16088 -3.57655 -1.38318 

H -5.13035 -4.50238 -0.2677 

H -5.73021 1.36392 0.51916 

H -6.45366 0.799901 -1.00755 

H -5.10584 1.977033 -1.00826 

H -3.0592 3.46372 2.967642 

H -2.16599 5.104185 1.346785 

H -1.65791 4.407898 -0.98023 
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H -4.16557 0.01955 2.004127 

H -1.75066 -0.32399 2.480704 

H -2.74567 -0.66192 3.925914 

H -1.83163 0.865547 3.798123 

H -4.07968 2.059073 4.302644 

H -5.00793 0.553776 4.220272 

H -5.42574 1.915666 3.150357 

H -2.12006 0.865401 -2.1785 

H -0.42655 3.401381 -2.57302 

H -0.34114 1.897905 -3.50908 

H 0.129369 1.909631 -1.79013 

H -4.05803 2.228028 -2.92597 

H -2.7853 2.237417 -4.16718 

H -3.01088 3.655609 -3.11284 

 

DFT Table 8: Coordinates of the energy-optimized structure of 16. 

Ni -1.75686 1.25239 0.152293 

Ni 1.813274 1.105961 -0.28475 

S -0.02822 -0.07466 -0.05837 

N -0.57921 2.623605 -0.03837 

N 0.731376 2.56592 -0.27974 

N -2.98943 2.706877 0.412159 

N -3.07615 -0.10641 0.240474 

N 3.163598 2.443413 -0.58562 

N 3.040209 -0.33611 -0.15452 

C -0.96686 3.913691 0.007777 

C -2.41875 4.06557 0.290037 

C -4.28285 2.599713 0.70962 

C -4.37272 0.102265 0.504814 

C -2.7077 -1.44619 -0.11671 

C 1.218321 3.817825 -0.39425 

C 0.159064 4.727044 -0.21805 

C -4.93108 1.360741 0.7774 

C -5.10846 3.838211 0.966102 

C -5.32951 -1.06875 0.478576 
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C -2.37357 -2.37528 0.890523 

C -2.72588 -1.80998 -1.48086 

C 2.684094 3.840817 -0.64201 

C 4.465482 2.225879 -0.76399 

C 4.365949 -0.23736 -0.31217 

C 2.53782 -1.6065 0.271423 

C -2.02656 -3.67477 0.502175 

C -2.41146 -1.99973 2.362445 

C -2.40122 -3.12874 -1.81658 

C -3.09297 -0.80413 -2.56052 

C 5.031553 0.950786 -0.6539 

C 5.391374 3.379169 -1.07191 

C 5.243742 -1.44784 -0.06758 

C 2.598851 -1.94132 1.641722 

C 2.009976 -2.49056 -0.69515 

C -2.04644 -4.05514 -0.83688 

C -0.99574 -1.93192 2.946401 

C -3.28695 -2.9616 3.182643 

C -1.85966 -0.39535 -3.38184 

C -4.21757 -1.31626 -3.47281 

C 2.126917 -3.20019 2.028362 

C 3.166744 -0.95847 2.657285 

C 1.543643 -3.73478 -0.25413 

C 1.965857 -2.09563 -2.16474 

C 1.605015 -4.09076 1.091464 

C 2.083461 -0.01341 3.202132 

C 3.916727 -1.64728 3.803431 

C 0.886173 -2.8434 -2.94697 

C 3.326556 -2.26535 -2.86577 

H -2.92425 4.624621 -0.5182 

H -2.57811 4.640902 1.219279 

H 0.200988 5.810675 -0.2476 

H -5.99108 1.378404 1.019102 

H -6.13929 3.567018 1.217603 

H -5.1302 4.495229 0.082903 

H -4.6934 4.429765 1.796947 
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H -6.34275 -0.7423 0.737402 

H -5.0195 -1.85707 1.176211 

H -5.34967 -1.52948 -0.5192 

H 3.200523 4.457308 0.115195 

H 2.911894 4.291202 -1.62513 

H -1.74436 -4.40084 1.26591 

H -2.84861 -0.99339 2.431556 

H -2.41979 -3.4341 -2.86423 

H -3.4597 0.100101 -2.05527 

H 6.107698 0.879274 -0.79784 

H 6.418683 3.021906 -1.20013 

H 5.384481 4.125375 -0.26226 

H 5.08955 3.901018 -1.9933 

H 6.221047 -1.30935 -0.544 

H 4.788495 -2.37295 -0.43693 

H 5.40853 -1.58207 1.012769 

H -1.78119 -5.07445 -1.12071 

H -1.02592 -1.61692 4.000583 

H -0.37894 -1.22503 2.379462 

H -0.50333 -2.91296 2.892913 

H -3.37203 -2.60669 4.220176 

H -2.84966 -3.97036 3.21119 

H -4.3018 -3.05159 2.769803 

H -2.12582 0.388925 -4.10622 

H -1.45889 -1.25361 -3.94001 

H -1.06289 -0.01315 -2.729 

H -4.5167 -0.53249 -4.18391 

H -5.10609 -1.60976 -2.89472 

H -3.89773 -2.18994 -4.06097 

H 2.166217 -3.48937 3.078988 

H 3.88992 -0.32514 2.124327 

H 1.11605 -4.43108 -0.97388 

H 1.714797 -1.02236 -2.18944 

H 1.236091 -5.06544 1.413886 

H 2.537116 0.759906 3.840804 

H 1.346998 -0.56568 3.801798 
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H 1.546347 0.484309 2.383187 

H 4.427216 -0.89663 4.424286 

H 4.671566 -2.35466 3.428466 

H 3.233658 -2.20414 4.462109 

H 0.772975 -2.40092 -3.94677 

H -0.08011 -2.78772 -2.43416 

H 1.143517 -3.90522 -3.08669 

H 3.22169 -2.04165 -3.93813 

H 3.688168 -3.30126 -2.77174 

H 4.090391 -1.59079 -2.46225 

 

DFT Table 9: Coordinates of the energy-optimized structure of 23. 

Ni 1.922597 -1.1546 -0.1624 

Ni -2.05485 -1.0384 -0.13024 

N 0.547142 -2.26638 -0.85391 

N -0.79862 -2.28448 -0.72457 

N 3.036831 -2.60423 -0.72543 

N 3.419759 -0.07436 0.359779 

N -3.25249 -2.49422 -0.31459 

N -3.44257 0.197284 0.336386 

N 0.491884 -0.21015 0.768519 

N -0.5774 0.160361 0.050452 

C 0.925052 -3.41436 -1.46125 

C 2.392489 -3.58267 -1.60897 

C 4.244748 -2.86472 -0.23983 

C 4.648114 -0.55817 0.591737 

C 3.352978 1.343029 0.143478 

C 0.229586 -0.8591 1.989692 

C -0.27573 1.029604 -1.0283 

C 2.938769 0.361478 -3.01697 

C 1.305883 -1.48116 2.658918 

C -1.27383 -3.43567 -1.24939 

C -0.20373 -4.1941 -1.74345 

C 4.985354 -1.91364 0.477871 

C 4.90356 -4.20325 -0.49134 
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C 5.79433 0.383796 0.892943 

C 3.010481 2.236692 1.187546 

C 3.758037 1.814515 -1.13005 

C -1.04554 -0.89132 2.589991 

C 0.253256 2.302089 -0.77515 

C 

C 

-0.55198 

4.16488 

0.643952 

0.840568 

-2.3479 

-2.22701 

C 1.103114 -2.12945 3.873155 

C -2.7464 -3.60895 -1.12516 

C 3.076363 3.609921 0.909415 

C 2.568696 1.754327 2.567433 

C 3.787114 3.19324 -1.35644 

C -4.4117 -2.60616 0.321263 

C -4.61137 -0.18285 0.866159 

C -3.26246 1.56421 -0.05609 

C -1.2362 -1.54451 3.805005 

C 0.480848 3.184072 -1.82696 

C -0.29133 1.522301 -3.39746 

C 5.232163 1.401195 -3.17446 

C -0.16951 -2.17242 4.454716 

C 3.455213 4.087826 -0.34354 

C 2.012432 2.876006 3.450959 

C 3.648987 1.008913 3.37318 

C -5.01135 -1.5221 0.981373 

C -5.15781 -3.92121 0.316787 

C -5.60263 0.857136 1.342097 

C -2.87272 2.551353 0.872846 

C -3.47551 1.892495 -1.42159 

C 0.212434 2.79998 -3.14314 

C -2.64898 3.855454 0.410226 

C -2.71345 2.262197 2.356373 

C -3.24386 3.208373 -1.83174 

C -3.97058 0.840432 -2.40472 

C -2.82179 4.183754 -0.92904 

C -1.25666 2.415546 2.803292 

C -3.61321 3.170719 3.212399 
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C -3.72561 1.195735 -3.87399 

C -5.47034 0.541158 -2.21541 

H -0.23746 -5.17281 -2.20888 

H 2.681828 -4.61515 -1.36198 

H 

H 

2.706954 

5.977297 

-3.4038 

-2.20688 

-2.65602 

0.812924 

H 5.887914 -4.2321 -0.01337 

H 5.037721 -4.39199 -1.56711 

H 4.29944 -5.02878 -0.0848 

H 6.577313 -0.14825 1.448033 

H 5.483087 1.268962 1.454523 

H 6.23635 0.738237 -0.05144 

H 2.830098 4.325873 1.691744 

H 3.494545 5.163287 -0.52707 

H 4.085318 3.572585 -2.33324 

H 1.753217 1.038912 2.387609 

H 1.570938 2.442424 4.358555 

H 1.23335 3.458873 2.944688 

H 2.80725 3.568832 3.768521 

H 3.229349 0.708289 4.343624 

H 4.513691 1.661367 3.567072 

H 3.998914 0.101829 2.871313 

H 4.598489 -0.04534 -1.74158 

H 3.222414 -0.41977 -3.7383 

H 2.482063 1.196264 -3.56605 

H 2.170299 -0.0544 -2.34748 

H 2.30074 -1.44653 2.214629 

H 5.582506 0.606615 -3.84871 

H 6.101918 1.791197 -2.6255 

H 4.83998 2.212126 -3.8063 

H -3.23312 -3.60461 -2.11924 

H -2.97447 -4.58475 -0.66622 

H -5.95678 -1.71122 1.484225 

H -6.08109 -3.83702 0.899473 

H -4.54824 -4.72859 0.751242 

H -5.42498 -4.22678 -0.70594 
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H -6.62034 0.450292 1.328505 

H -5.56891 1.762986 0.72565 

H -5.37202 1.156447 2.374617 

H 

H 

H 

-2.33046 

-2.62777 

-3.37969 

4.623308 

5.199679 

3.476542 

1.117345 

-1.27572 

-2.87867 

H -3.01975 1.221182 2.529007 

H -1.13373 2.118667 3.854753 

H -0.94237 3.46538 2.710724 

H -0.58073 1.80323 2.196064 

H -3.56689 2.867858 4.269174 

H -4.66155 3.135768 2.887269 

H -3.28341 4.218437 3.152875 

H -3.41593 -0.08712 -2.17339 

H -3.94142 0.323085 -4.50705 

H -2.68993 1.503266 -4.05391 

H -4.38836 2.009695 -4.20639 

H -5.80144 -0.2016 -2.95668 

H -6.06332 1.456512 -2.36411 

H -5.69993 0.13995 -1.22254 

H 1.950239 -2.60457 4.369483 

H -0.32405 -2.67993 5.407207 

H -2.23384 -1.55776 4.247321 

H -1.87755 -0.38752 2.104631 

H -0.95123 -0.35216 -2.53356 

H 0.450485 2.600994 0.250304 

H 0.869854 4.178216 -1.6114 

H 0.397592 3.491092 -3.96646 

H -0.47482 1.20154 -4.42406 

 

DFT Table 10: Coordinates of the energy-optimized structure of 24 

Ni -1.99681 1.042045 0.222707 

Ni 1.946864 1.152917 -0.16484 

N -0.56431 -0.12766 0.082405 

N 0.581821 -0.09477 -0.01574 
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N -0.73312 2.429969 0.151236 

N 0.611769 2.46874 -0.04033 

N -3.22989 2.46252 0.490402 

N -3.30637 -0.33344 0.194357 

N 3.101644 2.645222 -0.38995 

N 3.32514 -0.15347 -0.21781 

C -1.19046 3.69848 0.23197 

C -2.65739 3.81806 0.44923 

C -4.53058 2.32451 0.74399 

C -4.60745 -0.16354 0.445178 

C -2.86083 -1.62129 -0.24377 

C 1.000427 3.761779 -0.0837 

C -0.11806 4.590642 0.086747 

C -5.17936 1.08154 0.748519 

C -5.36794 3.549169 1.032229 

C -5.54102 -1.35158 0.367266 

C -2.21105 -2.48014 0.66753 

C -3.02863 -1.97685 -1.60165 

C 2.458104 3.966597 -0.29913 

C -1.76538 -3.72456 0.203873 

C -2.01008 -2.07403 2.117451 

C -2.58714 -3.23936 -2.01325 

C -3.61509 -0.98209 -2.59231 

C 4.406794 2.586138 -0.65261 

C 4.613024 0.093865 -0.47097 

C 2.946025 -1.48892 0.130855 

C -1.96372 -4.11009 -1.11946 

C -0.603 -2.40429 2.627846 

C -3.08202 -2.69935 3.025838 

C -2.5151 -0.04121 -3.11531 

C -4.36382 -1.64346 -3.75418 

C 5.119163 1.380021 -0.71359 

C 5.176974 3.864072 -0.89303 

C 5.604341 -1.04832 -0.46306 

C 3.141928 -1.93341 1.457369 

C 2.328706 -2.30851 -0.8377 
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C 2.758713 -3.24045 1.779443 

C 3.690628 -0.98805 2.516154 

C 1.944372 -3.60258 -0.46383 

C 2.096207 -1.80289 -2.25097 

C 2.168586 -4.07224 0.828026 

C 2.546717 -0.16227 3.129568 

C 4.503231 -1.69654 3.605522 

C 0.705653 -2.16672 -2.78107 

C 3.194955 -2.29737 -3.20711 

H -0.14684 5.675206 0.102599 

H -2.86106 4.361621 1.38991 

H -3.122 4.409893 -0.36112 

H -6.24267 1.08647 0.976965 

H -4.98718 4.095572 1.909157 

H -6.4075 3.265451 1.227647 

H -5.35441 4.252033 0.184827 

H -5.74944 -1.61007 -0.68191 

H -6.49415 -1.11972 0.856329 

H -5.1032 -2.24434 0.829967 

H -1.25149 -4.39865 0.889706 

H -1.61644 -5.08566 -1.46215 

H -2.71491 -3.54158 -3.05278 

H -2.13644 -0.98142 2.164658 

H -0.44815 -3.48841 2.727755 

H -0.44672 -1.95829 3.621029 

H 0.171398 -2.02097 1.953654 

H -3.04057 -3.79864 2.978598 

H -4.09291 -2.38401 2.733788 

H -2.92508 -2.39615 4.072328 

H -4.33348 -0.35392 -2.04609 

H -2.01928 0.483779 -2.28429 

H -2.94092 0.717659 -3.78913 

H -1.75002 -0.60635 -3.66672 

H -3.67941 -2.17932 -4.42869 

H -4.87799 -0.87842 -4.35359 

H -5.11575 -2.3629 -3.39779 
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H 2.629881 4.551671 -1.22056 

H 2.894173 4.553273 0.530795 

H 6.179659 1.44969 -0.94477 

H 4.764105 4.423302 -1.74708 

H 6.229508 3.645059 -1.1022 

H 5.129463 4.531426 -0.01867 

H 5.83391 -1.35033 0.569878 

H 6.540853 -0.74501 -0.94519 

H 5.205425 -1.93622 -0.96857 

H 2.905296 -3.60722 2.795305 

H 1.866848 -5.08419 1.101456 

H 1.45618 -4.24835 -1.1943 

H 4.360209 -0.27626 2.011549 

H 2.025113 0.422155 2.355945 

H 2.932017 0.540744 3.883489 

H 1.809879 -0.82099 3.61111 

H 3.870079 -2.32664 4.247739 

H 4.987829 -0.95387 4.255639 

H 5.287209 -2.33636 3.173945 

H 2.163522 -0.70471 -2.21122 

H 0.595613 -3.25004 -2.93478 

H 0.53111 -1.67872 -3.75107 

H -0.08541 -1.84985 -2.09128 

H 4.190408 -1.96055 -2.88743 

H 3.021744 -1.9145 -4.22422 

H 3.206189 -3.39712 -3.25316 

 

DFT Table 11: Coordinates of the energy-optimized structure of 33. 

Ni 2.072221 -1.01477 0.330816 

Ni -1.93204 -1.1715 -0.0289 

O 0.473968 0.272267 0.495744 

C -0.68225 0.048727 0.373351 

N 0.80256 -2.4024 0.230235 

N -0.54712 -2.45685 0.041999 

N 3.321998 -2.41145 0.442811 
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N 3.326317 0.381178 0.273639 

N -3.04575 -2.70326 -0.37514 

N -3.36529 0.095623 -0.18279 

C 1.28507 -3.66295 0.206827 

C 2.759778 -3.77159 0.382932 

C 4.631666 -2.25823 0.632858 

C 4.649497 0.234852 0.392423 

C 2.798843 1.637469 -0.1603 

C -0.90608 -3.75571 -0.09873 

C 0.232206 -4.56627 -8.4E-05 

C 5.262318 -1.0043 0.630789 

C 5.498283 -3.47797 0.842311 

C 5.550081 1.435527 0.209803 

C 2.210581 2.510378 0.781291 

C 2.812497 1.941471 -1.54143 

C -2.35522 -4.00093 -0.33129 

C -4.34685 -2.68243 -0.66147 

C -4.63346 -0.19379 -0.48577 

C -3.01717 1.456309 0.10476 

C 1.663308 3.71176 0.317869 

C 2.161303 2.143653 2.254806 

C 2.253248 3.155202 -1.95656 

C 3.374988 0.947001 -2.54575 

C -5.09567 -1.49662 -0.72361 

C -5.07447 -3.97861 -0.93429 

C -5.63765 0.933004 -0.56648 

C -3.08082 1.915339 1.437485 

C -2.52501 2.278301 -0.93119 

C 1.686225 4.037202 -1.03673 

C 0.848188 2.566922 2.92339 

C 3.369288 2.71142 3.019295 

C 2.284064 -0.0368 -3.00332 

C 4.045994 1.616228 -3.75086 

C -2.60128 3.199711 1.721018 

C -3.61837 1.03051 2.54978 

C -2.05153 3.553089 -0.59956 
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C -2.47681 1.783894 -2.36689 

C -2.08064 4.011706 0.715602 

C -2.47675 0.505412 3.433974 

C -4.68401 1.747183 3.391746 

C -1.06038 1.317467 -2.73752 

C -2.98597 2.835347 -3.36338 

H 0.285431 -5.64744 -0.07515 

H 2.995278 -4.33529 1.304545 

H 3.207671 -4.33662 -0.4551 

H 6.340142 -0.99769 0.779582 

H 5.17237 -4.05518 1.721955 

H 6.54235 -3.18285 0.992781 

H 5.452385 -4.15808 -0.02242 

H 5.688498 1.64738 -0.86191 

H 6.537108 1.242004 0.64592 

H 5.12536 2.34091 0.658636 

H 1.196126 4.395279 1.026666 

H 1.252343 4.977531 -1.37971 

H 2.255755 3.413119 -3.01635 

H 2.228955 1.045286 2.309072 

H 0.776798 3.659902 3.028641 

H 0.783889 2.13577 3.93283 

H -0.02189 2.229344 2.347083 

H 3.396623 3.809848 2.947212 

H 4.314652 2.31981 2.623018 

H 3.312441 2.439675 4.084256 

H 4.139912 0.351746 -2.02706 

H 1.822143 -0.54076 -2.13901 

H 2.710455 -0.81222 -3.65748 

H 1.493283 0.488171 -3.55836 

H 3.314447 2.129417 -4.39299 

H 4.548471 0.859236 -4.37033 

H 4.795203 2.357688 -3.43694 

H -2.49848 -4.5582 -1.27451 

H -2.77296 -4.63636 0.472347 

H -6.14951 -1.59834 -0.97296 
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H -4.63655 -4.50748 -1.79505 

H -6.13211 -3.79153 -1.14873 

H -5.01099 -4.66076 -0.07237 

H -5.73581 1.435537 0.406691 

H -6.62064 0.5546 -0.86865 

H -5.31343 1.700844 -1.2831 

H -2.62265 3.563895 2.749863 

H -1.69821 5.00388 0.958048 

H -1.64577 4.19426 -1.38289 

H -4.09204 0.158129 2.07794 

H -1.75754 -0.07519 2.839601 

H -2.8682 -0.14559 4.230154 

H -1.93206 1.3371 3.904125 

H -4.25624 2.59172 3.952146 

H -5.12565 1.055305 4.124303 

H -5.49405 2.142494 2.761885 

H -3.13805 0.907324 -2.43403 

H -0.31916 2.106163 -2.54249 

H -1.00925 1.041761 -3.80149 

H -0.76814 0.437815 -2.14812 

H -3.98029 3.209289 -3.08096 

H -3.0558 2.398739 -4.37022 

H -2.30716 3.698115 -3.42741 
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Chapter 13 Crystallography 

Crystal data and details of the data collections are given in Table 50–Table 59. 

x-ray data were collected on a STOE IPDS II diffractometer (graphite monochro-

mated Mo-Kα radiation, λ = 0.71073 Å) by use of scans at –140°C. The structures 

were solved by SHELXT [ 147 ] and refined on F2 using all reflections with 

SHELXL-2013/14/16. [148] Non-hydrogen atoms were refined anisotropically. 

Most hydrogen atoms were placed in calculated positions and assigned to an iso-

tropic displacement parameter of 1.2/1.5 Ueq(C). Face-indexed absorption cor-

rections were performed numerically with the program X-RED.[149] 

The nickel bound hydrogen atoms in 3 were refined freely. In case of 4 a fixed 

isotropic displacement parameter of 0.08 Å2 was applied. In case of the coordi-

nating solvents, THF and Et2O occupy the same coordination site of the potassi-

um atom.  
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Table 50: Crystal data and refinement details of 1, 3 and 4. 

Compound 
1 

pd 40 

3 

pd 127b 

4 

pd 184 

Empirical formula C31H37BrN6Ni2 C47H71N6NaNi2O2 C71H105.58KN6Ni2O9 

Formula weight 690.99 892.50 1343.70 

T [K] 133(2) 133(2) 133(2) 

Crystal size 0.39×0.29×0.12 0.50×0.45×0.32 0.49×0.36×0.21 

Crystal system Monoclinic Triclinic Monoclinic 

Space group P21/c P-1 C2/c 

a [Å] 14.0090(4) 11.1496(5) 26.6234(4) 

b [Å] 10.6603(4) 13.0401(7) 23.4343(3) 

c [Å] 20.2858(6) 17.3856(8) 23.2487(3) 

α [°] 90 110.631(4) 90 

β[°] 97.172(2) 94.584(4) 94.7290(10) 

γ[°] 90 98.545(4) 90 

V [Å3] 3005.78(17) 2315.3(2) 14455.5(3) 

Z 4 2 8 

ρ[g/cm3] 1.527 1.280 1.235 

F(000) 1424 956 5765 

μ[mm-1] 2.613 0.866 0.635 

Tmin/Tmax 0.4904 / 0.7882 0.6473 / 0.7971 0.8795 / 0.9837 

θ range [°] 1.465 - 26.774 1.699 - 26.830 1.159 - 25.688 

hkl-range 

±17 

±13 

±25 

–12 - 14 

±16 

±21 

±32 

±28 

±28 

Measured refl. 38800 30911 82295 

Unique refl. [Rint] 6375 [0.0695] 9822 [0.0350] 13658 [0.0331] 

Observed refl. (I > 2(I)) 5206 7866 11503 

Data / Res. / Param. 6375 / 0 / 369 9822 / 0 / 543 13658 / 283 / 938 

Goodness-of-fit (F2) 1.060 0.991 1.088 

R1, wR2 (I > 2 (I)) 0.0405, 0.0842 0.0355, 0.0854 0.0402, 0.0950 

R1, wR2 (all data) 0.0562, 0.0887 0.0491, 0.0896 0.0521, 0.1020 

Resid. el. dens. [e/Å3] –0.476 / 0.706 –0.277 / 0.582 –0.399 / 0.638 
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Table 51: Crystal data and refinement details of 6, 8 and 9. 

Compound 
6 

pd 170 

8 

pd 212c 

9 

pd 135b 

Empirical formula C78H107KN12Ni4O3 C79H117KN6Ni2O13 C41H57N6Ni2O2.5 

Formula weight 1534.69 1515.30 791.34 

T [K] 133(2) 133(2) 133 (2) 

Crystal size 0.42×0.18×0.06 0.50×0.22×0.20 0.48×0.22×0.21 

Crystal system Triclinic Orthorhombic Monoclinic 

Space group P-1 Pbcm P21/c 

a [Å] 11.1186(5) 11.2912(2) 17.3032(5) 

b [Å] 15.8136(8) 25.8683(4) 14.2469(4) 

c [Å] 23.5352(12) 27.1074(4) 17.1692(5) 

α [°] 73.085(4) 90 90 

β[°] 86.315(4) 90 113.291(2) 

γ[°] 69.691(4) 90 90 

V [Å3] 3709.8(3) 7917.6(2) 3887.6(2) 

Z 2 4 4 

ρ[g/cm3] 1.374 1.271 1.352 

F(000) 1628 3248 1684 

μ[mm-1] 1.112 0.592 1.013 

Tmin/Tmax 0.5509 / 0.7771 0.6134 / 0.8007 0.5050/0.8761 

θ range [°] 1.433 - 26.737 1.502 - 25.722 1.920 - 26.802 

hkl-range 

–14 – 13 

–19 – 20 

± 29 

± 13 

± 31 

–32 - 30 

±21 

±18 

±21 

Measured refl. 38831 65467 53345 

Unique refl. [Rint] 15680 [0.0948] 7668 [0.0468] 8239 [0.0475] 

Observed refl. (I > 2(I)) 8841 6102 6848 

Data / Res. / Param. 15680 / 29 / 940 7668 / 145 / 577 8239 / 7 / 508 

Goodness-of-fit (F2) 0.863 1.114 1.027 

R1, wR2 (I > 2 (I)) 0.0513, 0.0978 0.0418, 0.0994 0.0347, 0.0776 

R1, wR2 (all data) 0.1098, 0.1141 0.0600, 0.1144 0.0477, 0.0817 

Resid. el. dens. –0.683/0.467 –0.279/0.457 –0.521/0.894 
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Table 52: Crystal data and refinement details of 11, 12 and 13 

Compound 
11 

pd 175 

12 

pd 153d 

13 

pd 153b 

Empirical formula C41H58N6Ni2O1.5 C51H77KN6Ni2O3S2 C41H58N6Ni2O0.5S 

Formula weight 776.35 1042.82 792.41 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm3] 0.50×0.42×0.32 0.45×0.23×0.14 0.50×0.35×0.24 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/n P21/c 

a [Å] 18.3096(6) 17.3254(11) 17.2715(5) 

b [Å] 13.9053(5) 15.5369(6) 13.9903(4) 

c [Å] 16.6162(6) 20.4719(12) 17.3028(6) 

α [°] 90 90 90 

β[°] 113.902(2) 109.707(4) 112.467(2) 

γ[°] 90 90 90 

V [Å3] 3867.7(2) 5187.9(5) 3863.6(2) 

Z 4 4 4 

ρ[g/cm3] 1.333 1.335 1.362 

F(000) 1656 2224 1688 

μ[mm-1] 1.015 0.933 1.068 

Tmin/Tmax 0.4508/0.6844 0.5016 / 0.8051 0.6070 / 0.8085 

θ range [°] 1.904 - 26.819 1.336 - 25.839 1.934 - 26.764 

hkl-range 

–20 - 23 

± 17 

–21 - 20 

±21 

±18 

±24 

–19 - 21 

±17 

±21 

Measured refl. 40322 37636 33399 

Unique refl. [Rint] 8214 [0.0526] 9830 [0.1421] 8176 [0.0405] 

Observed refl. (I > 2(I)) 6476 5586 6789 

Data / Res. / Param. 8214 / 73 / 554 9830 / 185 / 684 8176/10/503 

Goodness-of-fit (F2) 0.986 1.074 1.010 

R1, wR2 (I > 2 (I)) 0.0425, 0.0995 0.0703, 0.1455 0.0300, 0.0664 

R1, wR2 (all data) 0.0595, 0.1057 0.1475, 0.1857 0.0423, 0.0698 

Resid. el. dens. [e/Å3] –0.376/0.658 –0.539/1.194 –0.256/0.371 
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Table 53: Crystal data and refinement details of 14, 15 and 16. 

Compound 
14 

pd 170b 

15 

pd 243 

16 

pd 222 

Empirical formula C51H77KN6Ni2O3S C44.8H66.4N6Ni2O0.6S C41H57N6Ni2O0.5S 

Formula weight 1010.76 848.12 791.40 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm3] 0.50×0.49×0.46 0.37×0.14×0.13 0.30×0.10×0.070 

Crystal system Triclinic Triclinic Monoclinic 

Space group P-1 P-1 P21/c 

a [Å] 12.9841(6) 12.1569(5) 17.2564(4) 

b [Å] 13.4180(6) 13.2965(5) 14.0118(2) 

c [Å] 18.0609(8) 14.2127(6) 17.2717(4) 

α [°] 75.444(4) 86.865(3) 90 

β[°] 74.712(4) 70.848(3) 112.378(2) 

γ[°] 62.255(3) 85.265(3) 90 

V [Å3] 2655.6(2) 2161.91(16) 3861.68(15) 

Z 2 2 4 

ρ[g/cm3] 1.264 1.303 1.361 

F(000) 1080 908 1684 

μ[mm-1] 0.871 0.959 1.068 

Tmin/Tmax 0.6731 / 0.7859 0.4983 / 0.7187 0.5630 / 0.8699 

θ range [°] 1.182 - 25.829 1.517 - 26.945 1.933 - 26.787 

hkl-range 

–13 - 15 

±16 

±21 

±15 

±16 

-18 - 17 

±21 

±17 

±21 

Measured refl. 31554 30771 46739 

Unique refl. [Rint] 10012 [0.0258] 9177 [0.0313] 8190 [0.0410] 

Observed refl. (I > 2(I)) 8477 7142 6505 

Data / Res. / Param. 10012/336/715 9177 / 90 / 586 8190 / 5 / 499 

Goodness-of-fit (F2) 1.060 1.019 1.122 

R1, wR2 (I > 2 (I)) 0.0386, 0.1115 0.0400, 0.1005 0.0380, 0.0861 

R1, wR2 (all data) 0.0484, 0.1201 0.0587, 0.1117 0.0589, 0.0983 

Resid. el. dens. [e/Å3] –0.479 / 0.874 –0.800 / 1.066 –0.381 / 1.211 
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Table 54: Crystal data and refinement details of 17, 18 and 19. 

Compound 
17 

pd 43 

18 

pd 68 

19 

pd 194b 

Empirical formula C51H72N8Ni2O1.50 C63H95KN8Ni2O4.50 C81H119KN8Ni2O10 

Formula weight 938.58 1192.98 1521.35 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm3] 0.48×0.15×0.12 0.50×0.48×0.38 0.30×0.15×0.14 

Crystal system Triclinic Triclinic Orthorhombic 

Space group P-1 P-1 Pbca 

a [Å] 11.7268(5) 14.7187(6) 22.9237(4) 

b [Å] 14.1109(6) 14.8852(6) 25.1977(6) 

c [Å] 16.1664(7) 17.8081(9) 27.7992(5) 

α [°] 105.000(3) 96.053(4) 90 

β[°] 93.729(4) 103.644(4) 90 

γ[°] 111.015(3) 118.674(3) 90 

V [Å3] 2374.87(18) 3215.3(3) 16057.5(6) 

Z 2 2 8 

ρ[g/cm3] 1.313 1.232 1.259 

F(000) 1004 1280 6528 

μ[mm-1] 0.840 0.701 0.582 

Tmin/Tmax 0.7430 / 0.9274 0.5473 / 0.8059 0.7437 / 0.8746 

θ range [°] 1.324 - 26.759 1.217 - 25.687 1.407 - 25.804 

hkl-range 

–13 - 14 

±17 

±20 

±17 

±18 

±21 

–26 - 28 

–30 - 28 

±33 

Measured refl. 34424 40089 97945 

Unique refl. [Rint] 10071 [0.0526] 12134 [0.0783] 15177 [0.0950] 

Observed refl. (I > 2(I)) 7112 8452 10105 

Data / Res. / Param. 10071 / 129 / 669 12134 / 661 / 981 15177 / 63 / 981 

Goodness-of-fit (F2) 0.964 0.969 1.090 

R1, wR2 (I > 2 (I)) 0.0493, 0.1108 0.0518, 0.1290 0.0552, 0.1049 

R1, wR2 (all data) 0.0810, 0.1213 0.0795, 0.1389 0.1040, 0.1271 

Resid. el. dens. [e/Å3] –0.506 / 0.667 –0.385 / 0.712 –0.296 / 0.472 
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Table 55: Crystal data and refinement details of 22, 23 and 24. 

Compound 
22 

pd 210 

23 

pd 198 

24 

pd 211 

Empirical formula  C57H77N8Ni2 C41H58N8Ni2O0.5 

Formula weight  991.68 788.37 

T [K] 133.(2) 133(2) 133(2) 

Crystal size [mm3]  0.24×0.20×0.14 0.27×0.22×0.20 

Crystal system Monoclinic Triclinic Monoclinic 

Space group P21/c P-1 P21/c 

a [Å] 14.990(3) 11.0702(5) 17.3031(7) 

b [Å] 23.095(5) 14.2193(7) 14.1567(7) 

c [Å] 25.016(5) 17.8105(8) 17.4780(8) 

α [°] 90 75.272(4) 90 

β[°] 92.60(3) 74.083(4) 112.838(3) 

γ[°] 90 74.102(4) 90 

V [Å3]  2543.9(2) 3945.7(3) 

Z  2 4 

ρ[g/cm3]  1.295 1.327 

F(000)  1062 1680 

μ[mm-1]  0.786 0.996 

Tmin/Tmax  0.8589 / 0.9370 0.7621 / 0.8822 

θ range [°]  1.518 - 26.866 1.915 - 26.874 

hkl-range  

–13 - 14 

±18 

±22 

–21 - 20 

±17 

±22 

Measured refl.  30736 35871 

Unique refl. [Rint]  10757 [0.0329] 8405 [0.0743] 

Observed refl. (I > 2(I))  8351 5608 

Data / Res. / Param.  10757 / 0 / 618 8405 / 162 / 542 

Goodness-of-fit (F2)  1.114 1.049 

R1, wR2 (I > 2 (I))  0.0467, 0.1003 0.0623, 0.1098 

R1, wR2 (all data)  0.0721, 0.1170 0.1080, 0.1230 

Resid. el. dens. [e/Å3]  –0.311 / 0.627 –0.377 / 0.474 
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Table 56: Crystal data and refinement details of 25, 26 and 27. 

Compound 
25 

pd 114 

26 

dm 266 

27 

pd 79b 

Empirical formula C41H58N8Ni2O0.50 C39H55N7Ni2 C41H60N8Ni2O0.50 

Formula weight 788.37 739.32 790.39 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm³] 0.27×0.22×0.20 0.25×0.14×0.12 0.50×0.50×0.32 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group P21/c C2/c P21/c 

a [Å] 17.3031(7) 18.4847(13) 17.2013(9) 

b [Å] 14.1567(7) 16.4274(9) 14.2468(7) 

c [Å] 17.4780(8) 13.6837(9) 17.4667(10) 

α [°] 90 90 90 

β [°] 112.838(3) 117.818(5) 112.975(4) 

γ [°] 90 90 90 

V [Å³] 3945.7(3) 3674.9(4) 3940.9(4) 

Z 4 4 4 

ρ[g/cm³] 1.327 1.336 1.332 

F(000) 1680 1576 1688 

µ [mm–1] 0.996 1.062 0.997 

Tmin / Tmax 0.7621 / 0.8822 0.7541 / 0.8962 0.5259 / 0.7449 

θ range [°] 1.915 - 26.874 1.757 - 26.859 1.910 - 26.810 

hkl-range 

–21 - 20, 

±17 

±22 

±23 

±20 

–17 - 14 

±21 

±18 

±22 

Measured refl. 35871 23469 54479 

Unique refl. [Rint] 8405 [0.0743] 3908 [0.0660] 8355 [0.0799] 

Obs. Refl. (I > 2 σ(I)) 5608 3142 6583 

Data / Res. / Param. 8405 / 162 / 542 3908 / 1 / 228 8355 / 77 / 511 

Goodness-of-Fit (F²) 1.049 1.134 0.958 

R1, wR2 (I > 2 σ(I)) 0.0623, 0.1098 0.0516, 0.0971 0.0397, 0.0929 

R1, wR2 (all data) 0.1080, 0.1230 0.0727, 0.1035 0.0564, 0.0982 

Resid. el. dens. [e/Å³] –0.377 / 0.474 –0.401 / 0.483 –0.442 / 0.715 
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Table 57: Crystal data and refinement details of 28, 31 and 33. 

Compound 
28 

pd 144d 

31 

pd 246 

33 

pd 193 

Empirical formula C47H73BF4N8Ni2O2 C57H91KN10Ni2O6 C42H57N6Ni2O1.50 

Formula weight 986.36 1168.91 787.35 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm³] 0.28×0.20×0.19 0.50×0.49×0.19 0.37×0.29×0.20 

Crystal system Monoclinic Orthorhombic Monoclinic 

Space group P21 Pbca P21/c 

a [Å] 15.0277(3) 20.3044(3) 17.1690(8) 

b [Å] 16.6068(7) 20.9868(3) 14.2075(5) 

c [Å] 19.4215(4) 27.9574(6) 17.4227(9) 

α [°] 90 90 90 

β [°] 95.325(2) 90 112.598(4) 

γ [°] 90 90 90 

V [Å³] 4826.0(2) 11913.3(4) 3923.6(3) 

Z 4 8 4 

ρ[g/cm³] 1.358 1.303 1.333 

F(000) 2096 5008 1676 

µ [mm–1] 0.842 0.758 1.002 

Tmin / Tmax 0.7243 / 0.8651 0.7237 / 0.9366 0.6735 / 0.8294 

θ range [°] 1.616 - 26.787 1.457 - 25.738 1.912 - 26.829 

hkl-range 

±18 

±20 

–23 - 24 

–23 - 24 

±25 

±34 

–21 - 19 

±17 

–22 - 21 

Measured refl. 51621 110797 34317 

Unique refl. [Rint] 20447 [0.0917] 11288 [0.0646] 8297 [0.0454] 

Obs. Refl. (I > 2 σ(I)) 15245 9156 6381 

Data / Res. / Param. 20447 / 223 / 1270 11288 / 2 / 703 8297 / 59 / 508 

Goodness-of-Fit (F²) 0.976 1.088 1.027 

R1, wR2 (I > 2 σ(I)) 0.0589, 0.1232 0.0441, 0.1057 0.0473, 0.1022 

R1, wR2 (all data) 0.0831, 0.1328 0.0610, 0.1175 0.0705, 0.1099 

Resid. el. dens. [e/Å³] –0.752 / 0.602 –0.538 / 0.777 –0.324 / 0.990 
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Table 58: Crystal data and refinement details of 35, 36 and 37 

Compound 
35 

pd 72 

36 

pd 82-2 

37 

pd 126b 

Empirical formula C55H53BrCl8N6Ni2 C51H45KN6Ni2 C59H61.25N6NaNi2O2 

Formula weight 1278.96 898.45 1026.80 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm3] 0.50×0.50×0.26 0.23×0.21×0.09 0.5×0.49×0.22 

Crystal system Monoclinic Monoclinic Triclinic 

Space group P21/c P21/n P-1 

a [Å] 13.2136(6) 16.8007(11) 14.2900(3) 

b [Å] 17.6293(5) 15.0508(7) 18.5010(4) 

c [Å] 24.0942(11) 17.0678(10) 19.5019(5) 

α [°] 90 90 80.688(2) 

β[°] 102.685(4) 106.969(5) 82.043(2) 

γ[°] 90 90 81.867(2) 

V [Å3] 5475.7(4) 4127.9(4) 5001.4(2) 

Z 4 4 4 

ρ[g/cm3] 1.551 1.446 1.364 

F(000) 2608 1872 2161 

μ[mm-1] 1.852 1.058 0.812 

Tmin/Tmax 0.3418 / 0.7380 0.6056 / 0.8593 0.5170 / 0.7360 

θ range [°] 1.444 - 25.718 1.496 - 26.819 1.432 - 26.959 

hkl-range 

±16 

–21 - 18 

–28 - 29 

–20 - 21 

–18 - 19 

±21 

±18 

±23 

±24 

Measured refl. 38697 53223 70438 

Unique refl. [Rint] 10327 [0.0567] 8792 [0.1400] 21215 [0.0203] 

Observed refl. (I > 2(I)) 8494 5294 17846 

Data / Res. / Param. 10327 / 0 / 681 8792 / 0 / 559 21215 / 57 / 1314 

Goodness-of-fit (F2) 1.050 1.009 1.036 

R1, wR2 (I > 2 (I)) 0.0393, 0.0863 0.0643, 0.1002 0.0327, 0.0809 

R1, wR2 (all data) 0.0539, 0.0913 0.1253, 0.1155 0.0432, 0.0873 

Resid. el. dens. [e/Å3] –0.492 / 0.668 –0.378 / 0.482 –0.512 / 0.620 
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Table 59: Crystal data and refinement details of 38, 39 and 40. 

Compound 
38 

pd 126 

39 

pd 82 

40 

pd 130c 

Empirical formula C67.25H80N6NaNi2O3.75 C55H54N6Ni2O2 C56H53F3N6Ni2O4S 

Formula weight 1172.78 948.46 1080.52 

T [K] 133(2) 133(2) 133(2) 

Crystal size [mm3] 0.44×0.21×0.19 0.50×0.41×0.32 0.50×0.45×0.34 

Crystal system Triclinic Monoclinic Triclinic 

Space group P-1 P21/c P-1 

a [Å] 12.7288(7) 14.8186(6) 13.3477(5) 

b [Å] 15.5000(7) 20.5006(5) 13.6456(5) 

c [Å] 17.7274(9) 15.9398(6) 16.3846(6) 

α [°] 112.663(4) 90 95.582(3) 

β[°] 92.988(4) 110.434(3) 105.945(3) 

γ[°] 99.314(4) 90 115.768(3) 

V [Å3] 3159.7(3) 4537.6(3) 2501.87(17) 

Z 2 4 2 

ρ[g/cm3] 1.233 1.388 1.434 

F(000) 1245 1992 1124 

μ[mm-1] 0.653 0.881 0.859 

Tmin/Tmax 0.7802 / 0.9144 0.6259 / 0.8043 0.6051 / 0.7239 

θ range [°] 1.452 - 26.874 1.466 - 26.846 1.335 - 26.923 

hkl-range 

±16 

±19 

±22 

±18 

–23 - 25 

±20 

±16 

–17 - 16, 

±20 

Measured refl. 41104 58690 34813 

Unique refl. [Rint] 13405 [0.0595] 9634 [0.0677] 10594 [0.0242] 

Observed refl. (I > 2(I)) 8722 7728 9326 

Data / Res. /Param. 13405 / 219 / 863 9634 / 75 / 640 10594 / 0 / 653 

Goodness-of-fit (F2) 0.957 1.133 1.038 

R1, wR2 (I > 2 (I)) 0.0490, 0.1066 0.0555, 0.1255 0.0291, 0.0710 

R1, wR2 (all data) 0.0903, 0.1192 0.0738, 0.1328 0.0361, 0.0763 

Resid. el. dens. [e/Å3] –0.401 / 0.557 –0.754 / 0.548 –0.478 / 0.880 
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Chapter 14 Appendix  

ESI-MS, NMR, IR, UV-Vis Spectra, SQUID and X-ray structures 

 

Figure A1: 1H NMR (300 MHz) spectrum of IV in CDCl3. 

 

Figure A2: 1H NMR (300 MHz) spectrum of VIII in CDCl3. 

 

 
Figure A3: 1H NMR (300 MHz) spectrum of H3L3 in CDCl3. 
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Figure A4: 1H NMR spectra of 2 (bottom), 2+NaBArF (middle), 3 (top) in THF-d8. 

The Ni-H resonance in the Na/K mixture appears as a rapid average of that in 

2and 3. 

 

Figure A5: χmT vs. T measurement in the temperature range of 2 – 295 K at 0.5 T 

for solid samples of 2. The solid red lines represent the best fit with PI = 5.4 % (S 

= 1) and TIP = 60*10–6 cm3·mol–1. 
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Figure A6: Variable temperature 1H NMR spectrum (400 MHz) of 4·in THF-d8. 

The broad peaks show a 1/T (Curie) behavior indicating a paramagnetic species. 

  

Figure A7: χmT vs. T measurement in the temperature range of 2–295 K at 0.5 T 

for solid samples of 4 for different sample preparation. 
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Figure A8: 13C NMR (100 MHz) spectra of 6 in THF-d8. 

 

Figure A9: 1H-1H COSY (400 MHz) spectra of 6 in THF-d8. 



CHAPTER 14. APPENDIX 

317 

 

 

Figure A10: 1H-1H NOSY (400 MHz) spectra of 6 in THF-d8. 

 

Figure A11: Variable temperatures 1H NMR (400 MHz) spectrum of 8 in THF-d8. 
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Figure A12: 13C {1H} NMR (100 MHz) spectrum of 8 in THF-d8 

 

Figure A13: 1H-13C HSQC spectrum of 8 in THF-d8. 
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Figure A14: 1H-1H COSY (400 MHz) spectrum of 8 in THF-d8. 

 

Figure A15: ESI mass spectrum of 9 in THF: 792.6 (100) [M+K]
+
, 776.4 (20) 

[M+Na]
+
, 754.3(7) [M+H]

+
. The inset shows the experimental (top) and simulated 

(bottom). Isotopic distribution pattern for [M+K]
+
. 
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Figure A16: ESI mass spectrum of 9-
18

O2 in THF: 792.6 (100) [M+K]
+
{

16
O2},796.6 

(100) [M+K]
+
{

18
O2}. The inset shows the experimental (top) and simulated (bottom). 

Isotopic distribution pattern for [M+K]
+
. 

 

Figure A17. 13C NMR (100 MHz) spectrum of 11 in THF-d8. 
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Figure A18: Comparison of the IR spectra of 11 and 11-OD in solid state.  

 

Figure A19: 13C NMR (100 MHz) spectrum of 12 in THF-d8. 
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Figure A20: 1H-1H NOSY (400 MHz) spectrum of 12 in THF-d8.  

 

Figure A21: 1H- 1H COSY (400 MHz) spectrum of 12 in THF-d8. The correlation 

resonances between the isopropyl CH and CH3 group are marked. 
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Figure A22: 1H-1H NOESY (300 MHz) spectrum of 13 in CDCl3 

 

Figure A23: 1H-1H COSY (300 MHz) spectrum of 13 in CDCl3 
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Figure A24: ATR-IR spectrum of 13 in crystalline material. 

 

Figure A25: ATR-IR spectrum of 13-SD in solide state. 
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Figure A26: Comparison of the FT-IR spectra of the complex 13 and 13-SD in 

the range 2600–1700 cm-1. 

 

Figure A27: 13C NMR (100 MHz) spectrum of 14 in THF-d8 (400 MHz). 
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Figure A28: 1H-1H COSY (400 MHz) spectrum of 14 in THF-d8. 

 

Figure A29: ATR-IR spectrum of 14 in crystalline material. 
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Figure A30: ATR-IR spectrum of 16 in crystalline material. 

 

Figure A31: 13C NMR (100 MHz) spectra of 17 in THF-d8. 
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Figure A32: 1H-1H COSY spectrum of spectra of 17 in THF-d8. 

 

Figure A33: 13C NMR (100 MHz) spectra of 18 in THF-d8. 
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Figure A34: 1H -1H COESY (400 MHz) spectra of 18 in THF-d8. 

 

Figure A35: 1H -1H NOESY (400 MHz) spectra of 18 in THF-d8. 
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Figure A36: VT 1H NMR (400 MHz) spectra of 18 in the range of 0-7.5 ppm in 

THF-d8. 

 

Figure A37:13C NMR (100 MHz) spectrum of 19 in THF-d8. 
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Figure A38: 1H-1H NOESY (400 MHz) spectrum of 19 in THF-d8. 

 

Figure A39: 1H-1H COSY (400 MHz) spectrum of 19 in THF-d8. 
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Figure A40: 1H-13C HSQC spectrum of 19 in THF-d8. 

 

Figure A41: ESI-MS (+) of 19: (inset) experiment (upper) and simulated (lower) 

isotopic distribution pattern for the peak pattern around m/z = 665.46 charac-

teristic for the [L1Ni+2H]+. 
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Table A1: GC-calibration plot data. 

VH2/ mL 
Intergration of 

H2 peak 

Intergration of 

CH4 peak 

Integration ratio of 

H2:CH4 

0.1 6588 10811 0.609 

0.2 16539 13161 1.257 

0.4 28232 12081 2.337 

0.8 46748 9613 4.863 

 

Table A2: Hydrogen detection data. 

2 / mmol H2 Detected (mL) Yield 

0.02  ~ 0.63 (0.674) 140.3 % 

 

 

Figure A42: Hydrogen detection data for synthesis of 24. 
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Figure A43: χmT vs. T measurement in the temperature range of 2–295 K at 0.5 T 

for solid samples of 24. 

 

Figure A44: VT 1H NMR (400 MHz) spectrum of 25 in THF-d8. 
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Figure A45: 1H-1H COSY (400 MHz) spectra of 30 in THF-d8. 

 
Figure A46: 1H-1H NOESY (400 MHz) spectrum of 30 in THF-d8. 
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Figure A47: 13C {1H} NMR (100 MHz) spectrum of 30 in THF-d8. 

 

Figure A48: 1H-13C HSQC spectrum of 30 in THF-d8. 
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Figure A49: 1H-13C HMBC spectrum of 30 in THF-d8. 

 

Figure A50: 13C {1H} NMR (100 MHz) spectra of 32 in THF-d8. 
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Figure A51: 13C {1H} HSQC spectra of 32 in THF-d8. 

 

Figure A52: 1H-1H NOESY (400 MHz) spectrum of 32 in THF-d8. 
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Figure A53: 1H-1H COSY (400 MHz) spectrum of 32 in THF-d8. 

 

Figure A54: ATR-IR spectra of complex 32. 
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Figure A55: rRaman spectrum of 33 and 33-13CO complex in crystalline materi-

al. 

 

Figure A56: IR spectrum of 34 in crude product. 
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Figure A57: ESI-MS (+) of 35 in THF. 

 

 

Figure A58: 13C NMR (100 MHz) spectrum of 36 in THF-d8.  



CHAPTER 14. APPENDIX 

342 

 

 

Figure A59: 1H-13C HSQC spectrum of 36 in THF-d8. 

 

Figure A60: 1H-1H NOESY (400 MHz) spectrum of 36 in THF-d8. 
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Figure A61: 1H-1H COSY (400 MHz) spectrum of 36 in THF-d8. 

 

Figure A62: 1H-1H COSY (400 MHz) spectrum of 38 in THF-d8. 
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Figure A63: 1H-1H NOESY (400 MHz) spectrum of 38 in THF-d8.  

 

Figure A64: 13C NMR (100 MHz) spectrum of 38 in THF-d8. 
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Figure A65: IR spectrum of complex 38 in crystalline material. 

 

 

Figure A66: 1H-1H NOESY (400 MHz) spectrum of 39 in THF-d8. 
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Figure A67: 13C NMR (100 MHz) spectrum of 39 in THF-d8. 
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