A Dinuclear Dihydride Complex for Bimetallic Reductive Activation and Transformation of A Range of Inert Substrates

> Dissertation
> For the award of the degree
> "Ph.D. Division of Mathematics and Natural Sciences" of the Georg-August-Universität Göttingen Within the doctoral program Chemistry of the Georg-August-Universität School of Science (GAUSS)
> Submitted by
> Peng-Cheng Duan
> From Hubei, P. R. China
> Göttingen 2017

Thesis Committee

Prof. Dr. Franc Meyer
Institute of Inorganic Chemistry, Georg-August University Göttingen
Prof. Dr. Sven Schneider
Institute of Inorganic Chemistry, Georg-August University Göttingen

Members of the Examination Board

Reviewer: Prof. Dr. Franc Meyer
Institute of Inorganic Chemistry, Georg-August University Göttingen
Second Reviewer: Prof. Dr. Sven Schneider
Institute of Inorganic Chemistry, Georg-August University Göttingen

Further members of the Examination Board

Prof. Dr. Dietmar Stalke
Institute of Inorganic Chemistry, Georg-August University Göttingen
Prof. Dr. Manuel Alcarazo
Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen

Prof. Inke Siewert
Institute of Inorganic Chemistry, Georg-August University Göttingen
Jun.-Prof. Dr. Selvan Demir
Institute of Inorganic Chemistry, Georg-August University Göttingen

Contents

Chapter 1 General Introduction 1
1.1 Nickel-based Enzyme System 1
1.2β-Diketiminato and pyrazole chemistry background 2
1.3 Preliminary work 5
Chapter 2 Objective 7
Chapter 3 Pairwise H_{2} / \mathbf{D}_{2} Exchange Mechanism Study 9
3.1 Introduction 10
3.2 Synthesis of sodium dinuclear nickel(II) dihydride complex 13
3.3 Dissociation hydride- K^{+}interaction in bimetallic dinickel(II) complex 28
3.4 Kinetics of $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange 36
3.5 Summary 40
Chapter 4 Dioxygen binding to a bimetallic dinickel(II) dihydride complex and redox interconversion of the $\mu-1,2$-peroxo and superoxo intermediates 42
4.1 Introduction 43
4.2 Synthesis of a $\mu-1,2$-peroxo bridged dinickel(II) complex 48
4.3 Dissociation the peroxo- K^{+}interaction in bimetallic dinickel(II) complex 57
4.4 Synthesis of an μ-1,2-superoxo bridged dinuclear nickel(II) complex. 63
4.5 Cleavage the oxygen-oxygen bond 72
4.6 Summary 76
Chapter 5 Disulfur binding to the dinuclear nickel(II) dihydride and stepwise transformation to the sulfide-ligand-radical 77
5.1 Introduction 78
5.2. Synthesis of a $\mu-1,2$-disulphide dinuclear nickel(II) complex 80
5.3 Synthesis of a hydrosulfide dinuclear nickel(II) complex 86
5.4 Synthesis of μ-1,1-sulfide nickel(II) complex 89
5.5 Synthesis of a μ-1,1-sulfide radical nickel(II) complex. 96
5.6 Summary 104
Chapter 6 Deprotonation and Isomerization of Phenylhydrazine in the dinuclear nickel(II) complex 106
6.1 Introduction 107
6.2 Synthesis of phenylhydrazido bridged complex 108
6.3 Deprotonation of phenylhydrazido bridge complex 113
6.4 Dissociation the phenylhydrazido- K^{+}interaction in bimetallic nickel(II) complex 119
6.5 Dehydrogenation and protonation of phenylhydrazine bridge complex1246.6 Summary127
Chapter 7 Azobenzene Activation 128
7.1 Introduction 129
7.2 Two electron reduction the azobenzene 130
7.2 One electron reduction of azobenzene 133
7.4 Summary 141
Chapter $8 \mathbf{N}_{2}$ to NH_{3} Conversion in the dinuclear nickel(II) cofactor 142
8.1 Introduction 143
8.2 Synthesis $\left[\mathrm{N}_{2}\right]^{-}$monoanionic radical 148
8.3 Hydrogen atom transfer to dinitrogen monoanionic radical 163
8.4 Cleavage of $\mathrm{N}-\mathrm{N}$ double bonds 170
8.5 Protonation of hydrazido bridge complex 174
8.6 Synthesis the diazenido complex 178
8.7 Synthesis of terminal ammonia nickel complex 182
8.8 X-ray emission spectroscopy 185
8.9 Summary 190
Chapter 9 CO activation 192
9.1 Introduction 193
9.2 Synthesis carbon monoxide radical 194
9.3 Summary 201
Chapter 10 Metal-ligand Cooperation in $\mathrm{C}-\mathrm{H}$ and H_{2} Activation and Interconversion between Mono- and Dihydride Dinickel(II) Complexes and Reactivity 202
10.1 Introduction 203
10.2 Synthesis of nickel bromide precursor 204
10.3 Synthesis of bimetallic dinickel(II) monohydride complex 206
10.4 Synthesis of bimetallic dinickel(II) dihydride complex 210
10.5 Reactivity towards water. 215
10.6 Reactivity towards lutidinium triflate 219
10.7 Summary 222
Chapter 11 Experimental Section 223
11.1 Material and Methods 223
11.2 Experiment 228
11.2.1 Synthesis of Ligand Precursors and Ligands 228
11.2.2 Complexes Syntheses 232
Chapter 12 DFT Calculations 266
Chapter 13 Crystallography 302
Chapter 14 Appendix 313
ESI-MS, NMR, IR, UV-Vis Spectra, SQUID and X-ray structures 313
Reference 347
List of Abbreviations 362
Formula Overview 364
Scientific Contribution 369
Acknowledgement 371
Curriculum Vitae 373

Chapter 1 General Introduction

1.1 Nickel-based Enzyme System

Seven out of the eight known nickel enzymes play important roles in the usage and/or production of gases $\left(\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2} / \mathrm{CO}, \mathrm{CH}_{4}\right.$ and $\left.\mathrm{NH}_{3}\right)$ (Figure 1) in the global biological C, N and O cycles. ${ }^{[1]}$ For examples, Hydrogenase generates/utilized hydrogen gas; Ni-SOD generates oxygen; CODH interconverts CO and CO_{2}; ACS utilizes CO; MCR generates methane; urease produces ammonia (Table 1). ${ }^{[1]}$ It has been found that the nickel sites in enzymes exhibit extreme plasticity in nickel coordination and redox chemistry.

Figure 1: Selected nickel-containing enzyme systems involved in the regulation of global gas cycles and energy conversion processes.

Table 1: Nickel-containing enzymes.

Enzyme	Reaction
Hydrogenase	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrows \mathrm{H}_{2}\left(\Delta E^{0}=-414 \mathrm{mV}\right)$
Ni-SOD	$2 \mathrm{H}^{+}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$
CODH	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}+\mathrm{CO}_{2} \leftrightarrows \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\left(\Delta E^{0}=-558 \mathrm{mV}\right)$
ACS	$\mathrm{CH}_{3}-\mathrm{CFeSP}+\mathrm{CoASH}+\mathrm{CO} \rightarrow \mathrm{CH}_{3}-\mathrm{CO}-\mathrm{SCoA}+\mathrm{CFeSP}$

Urease	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$
Glx I	Methylglyoxal \rightarrow Loctate $+\mathrm{H}_{2} \mathrm{O}$
ARD	1,2-Dihydroxy-3-oxo-5-(methylthio)pent-1-ene $+\mathrm{O}_{2}$
	$\rightarrow \mathrm{HCOOH}+$ Methylthiopropionate +CO
MCR	$\mathrm{CH} 3-\mathrm{COM}+\mathrm{CoBSH} \rightarrow \mathrm{CH}_{4}+$ CoM-SS-CoB

Although limited in number, Ni-containing enzymes exhibit a rich diversity of metallocenter structures and participate in a variety of important reactions. Several of the Ni-dependent enzymes require auxiliary proteins that participate in Ni delivery for metallocenter assembly or organometallic cofactor synthesis. Clearly, many exciting avenues of investigation exist for those interested in Ni! Therefore, understanding bio-related Ni chemistry is very useful.

1.2β-Diketiminato and pyrazole chemistry background

The β-diketiminato unit (often called "nacnac" because of its addition of two nitrogen atoms to the common acac ligand) has gained great attention as a supporting ligand because the properties and reactions of the metal complexes are highly dependent since its introduction in 1968. ${ }^{[2]}$ Backbone (β-C) or the N -aryl substituents influence the β-diketiminato sterics. The common substituents at the backbone are methyl, ${ }^{t} \mathrm{Bu}$ or CF_{3}. The N -aryl substitutes of β-diketiminato ligands often contain Dipp, Tipp, Dep and Mes and so on (Figure 2). ${ }^{[3]} \mathrm{N}$-Aryl β-diketiminato ligands have been most widely used, and they support a variety of metals in many oxidation states. Complexes of N -aryl β-diketiminto ligands have shown great reactivity and selectivity for a variety of methodologies, ${ }^{[4]}$ including polymerization and functionalization of alkenes and cross-coupling reactions. In addition, late transition metal β-diketiminato complexes, such as Fe, Co and Ni , have been used to build low coordinate metal centers, mimicking the active sites of metalloproteinase. ${ }^{[5]}$ Some late transition metal β-diketiminato complexes undergo monomer-dimer equilibrium that are highly sensitive toward the nature
of the aryl substituents in the β-diketiminato ligand. As the dinuclear active species, some bis(β-diketiminato) ligands (Figure 3, I, II and III) were designed in recent years. [6]

Dipp	2,6-diisopropylphenyl
2,4,6-triisopropylphenyl	
2,6-diethylphenyl	
Tipp	2,4,6-trimethylphenyl
1-anthracenyl	
3,5-bis(trifluoromethyl)phenyl	
2,4,6-tris[bis(trimethylsilyl)]phenyl	

Figure 2: Substituent patterns and abbreviations in β-diketiminato ligands.

II

III

Figure 3: Some new bis(β-diketiminato) ligands reported in literatures. ${ }^{[6]}$

Pyrazolate ligands have rich coordination chemistry that includes exo-bidentate bridging ($\mu-\eta^{1}: \eta^{1}$), terminal monodentate (η^{1}), endo-bidentate (η^{2}) and side-on, pentadentate $\left(\eta^{3}\right)$ coordination modes (Figure 4). ${ }^{[7]}$ In Meyer group, pyra-zole-based ligands with a variety of chelating side arms represent valuable bridging scaffolds for pre-organizing two metal centers in a fashion which allows for metal-metal cooperativity during substrate transformations. ${ }^{[8]}$ The metal \cdots metal distance can be controlled by varying the length of the chelating side arms, short lengths favoring large inter-metallic distances and vice versa. ${ }^{[8]} \mathrm{Sev}$ eral pyrazolate-bridged binuclear first-row transition metal complexes have recently appeared in literature. [8,9]

a

b

C

d

Figure 4: Typical coordination modes of pyrazolate ligands ($\mathrm{R}=\mathrm{H}$, alkyl, or aryl) towards metal ions (M, M^{\prime}). a) exo-bidentate; b) endobidentate; c) monodentate; d) pentadentate.

Figure 5: β-Diketiminato combine with pyrazole complexes in literature. [10]
The first bulky β-diketiminato combine with pyrazole complexes were reported in 2006 by Holland (Figure 5). ${ }^{[10]}$ In this work, both η^{1} and η^{2} coordination to iron(II) and nickel(II) can be observed in the pyrazolate by the diketiminato ancillary ligand used. Account of the pyrazolate and β-diketiminato work, a new dinucleating scaffold $\quad \mathbf{H}_{3} \mathbf{L}^{\mathbf{1}} \quad=$ $\left.\left[\left\{\mathrm{NC}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{Me}) \mathrm{NC}_{6} \mathrm{H}_{3}\left(\mathrm{iPr}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)\right\}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}\right)\right]^{3-}\right)$ (Scheme 1) that features a central pyrazolate bridging two-diketiminato compartments was introduced by Manz. ${ }^{[11]}$

Scheme 1: The scaffold was developed and employed as $\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}$ by Manz. ${ }^{[11]}$

1.3 Preliminary work

Scheme 2: Synthetic procedure for 2.

Manz was able to synthesize a new dinucleating ligand scoffold comprising two nacnac compartments spanned by a central pyrazolate-bridge ($\left.\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}\right)$. The bimetallic dinickel(II) dihydride complex 2 has been synthesized already from $\mathbf{1}$ with 2.5 equivalents KHBEt_{3} and characterized intensively. ${ }^{[11]}$ Complex 2 was determined by x-ray diffraction and showed pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange without H/D scrambling. Furthermore, it has been exploited for the reaction of $\mathbf{2}^{-}$or [2-D] ${ }^{-}$with phenylacetylene. Treating [2-D] ${ }^{-}$with phenylacetylene leads to D_{2} formation and two-fold reduction of the substrate, giving a product complex with unusual styrene-1,2-diyl bridging unit in the bimetallic pocket.[11] Large parts of the project have recently published in Journal of the American Chemical Society (JACS), together with results from the present work. Parts of chapter 3 of the present monograph have been adapted from this publication with permission from ACS and from Manz doctoral thesis. [11]

For the pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange, however, it is unknown whether the K^{+}cation plays an important role in the process or not. Extensive experiments have now been performed in order to understand the $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange mechanism. In additional, Manz produced complexes $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{~N}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right)\right]^{z-}$ that contain bridging units $\mathrm{N}_{2} \mathrm{H}_{3}(1-), \mathrm{N}_{2} \mathrm{H}_{2}(2-), \mathrm{N}_{2} \mathrm{H}(1-)$ and $\mathrm{NH}_{2}(1-)$ relevant to intermediates of the nitrogenase mechanism, which are derived from $\mathrm{N}_{2} \mathrm{H}_{4}$ with 1. ${ }^{[11 a]}$ A new way to these nitrogenase intermediates from the dinitrogen molecule will be discussed in this doctoral thesis.

Chapter 2 Objective

Molecules like $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NO}$ and $\mathrm{N}_{2} \mathrm{O}$ and so on are small but fascinating, universal and easily available. These molecules are involved in elementary reactions relevant to the efficient and reversible storage of energy. ${ }^{[12]}$ The activation of these small molecules has a significant impact in biology, medicine, industry catalysis and environment protection. Mastering the chemistry of those molecules represents a prime challenge in the 21st century.

Scheme 3: Goals of the work, using the dinuclear dinickel complexes; the numbers above the arrows corresponding to the chapters.

The bimetallic dinuclear nickel(II) dihydride complex showed pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange without H/D scrambling property. ${ }^{[11]}$ However, still some questions have left unanswered. This represented a starting point for this work. As depicted in

Scheme 3, the results of this project are described in chapter 3.

In addition, reactivity towards phenylacetylene from 2 was further exploited by Manz. [11] Treating [2-D] ${ }^{-}$with phenylacetylene leads to D_{2} formation and
two-fold reduction of the substrate, giving a product with unusual sty-rene-1,2-diyl bridging unit in the bimetallic pocket. Inspired by the $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange mechanism studies and phenylacetylene activation, reductive activation of O_{2} was our first goal (chapter 4).

Owing to their importance, respective peroxo as well as persulfido complex have attracted much attention, resulting in a vast number of complexes for structural reactivity studies. In chapter 5, the dinuclear disulfido complex and its reactivity will be elaborately discussed.

Studies on the reactivity of the dinuclear nickel(II) dihydride complex towards dinitrogen $\left(\mathrm{N}_{2}\right)$ are explained in chapter 8. When providing an extra proton, 2 showed reactivity to the inert N_{2} molecule and allows to isolate the exclusive [$\left.\mathrm{N}_{2}\right]^{-}$monoanionic radical complex which is characterized by x-ray diffraction and various spectroscopies. Moreover, N_{2} to NH_{3} conversion was studied in this doctoral thesis. Other nitrogenase intermediates $\left(\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{3}, \mathrm{~N}_{2} \mathrm{H}_{2}\right.$ and $\left.\mathrm{NH}_{2}\right)$ were isolated in the system. These works are presented in chapter 8 . The reactivity of [$\left.\mathrm{N}_{2}\right]^{-}$monoanionic radical complex towards carbon monoxide, as the isoelectronic species of N_{2}, has been also investigated and is described in chapter 9.

At last (chapter 10), a new scoffold ligand with bulky phenyl groups in the substituents was synthesized. The new system is similar to $\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}$, thus allowed us to compare between the two related dinuclear nickel(II) hydride complexes and their reactivity.

Chapter 3 Pairwise H_{2} / D_{2} Exchange Mechanism Stu

dy

Abstract

A new dinuclear nickel(II) dihydride complex $\mathrm{Na}\left[\mathrm{L}^{1} \mathrm{Ni}_{2}{ }^{\mathrm{II}}(\mathrm{H})_{2}\right]$ (3) was formed from nickel bromide precursor (1) with NaHBEt_{3} in THF solution. The dinuclear nickel(II) dihydride species shows pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange, just as with the complex $K\left[L^{1} \mathrm{Ni}_{2}{ }^{I I}(\mathrm{H})_{2}\right]$ (2). A mechanistic picture was provided by DFT calculations which suggested facile recombination of the two hydrides within the bimetallic cleft, with a moderate enthalpy barrier of $\sim 62 \mathrm{~kJ} / \mathrm{mol}$, to produce H_{2} and an antiferromagnetically coupled $\left[\mathrm{L}^{1} \mathrm{Ni}^{\mathrm{I}} 2\right]^{-}$species. Interaction with the Lewis acid cation $\left(\mathrm{Na}^{+}\right.$or $\left.\mathrm{K}^{+}\right)$significantly stabilizes the dihydride core. Treatment of 2 with dibenzo(18-crown-6) (DB18C6) led to the separated ion pair $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}{ }^{\mathrm{II}}(\mathrm{H})_{2}\right][\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]$ (4). The new $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}{ }^{\mathrm{II}}(\mathrm{H})_{2}\right][\mathrm{K}(\mathrm{DB18C6})]$ (4) species could easily remove H_{2} in the solid state, which was confirmed by SQUID and headspace GC experiments. Kinetic data for the $\mathrm{M}\left[\mathrm{L}^{1}(\mathrm{Ni}-\mathrm{H})_{2}\right] \rightarrow \mathrm{H}_{2}$ transition derived from 2D ${ }^{1} \mathrm{H}$ EXSY spectra confirmed first-order dependence of H_{2} release on 2 or $\mathbf{3}$ concentration and a strong effect of the alkali metal cation M^{+}. Complex $\left[\mathrm{L}^{1} \mathrm{Nil}_{2}(\mathrm{H})_{2}\right]^{-}$having two adjacent terminal hydrides thus represents a masked version of a highly reactive dinuclear nickel(I) core.

3.1 Introduction

Hydride complexes of transition metals play an important role in organometallic chemistry especially related to homogeneous catalysis. ${ }^{[13]}$ It often function as key intermediates for transferring proton $\left(\mathrm{H}^{+}\right)$, hydrogen atom $\left(\mathrm{H}^{\cdot}\right)$, or hydride $\left(\mathrm{H}^{-}\right)$between molecules. Hydride complexes are also implicated in biological inorganic chemistry, where hydrides are known or thought to be present in key intermediates in H_{2} utilization by hydrogenases ${ }^{[14]}$ and in N_{2} reduction by iron-molybdenum nitrogenases. [15]

IV
$\mathrm{M}=\mathrm{Fe}, \mathrm{Ni}$

V
$M=N i$

vi
$\mathrm{M}=\mathrm{Fe}$

Figure 6: Selected examples of iron(II) and nickel(I/II) hydride complexes supported by β-diketiminato ligands.[17-22]

The nitrogenase background provides a strong impetus for synthetic efforts targeting the use of transition metal hydrides as masked low-valent complexes capable of reductively activating small molecules. ${ }^{[16]} \beta$-Diketiminato ligands have proven extremely valuable in this content, and a particularly rich chemistry has evolved from the iron and nickel type IV complexes with $\mathrm{M}(\mu-\mathrm{H})_{2} \mathrm{M}$ core mainly developed by the groups of Holland and Limberg, respectively (Figure 6; including variants thereof with other aryl and backbone substituents). [5c, 17] These bimetallic hydrides were shown to readily eliminate H_{2} when treated with external donors or upon heating, leading to a variety of iron(I) and nickel(I) complexes. ${ }^{[18,19]}$ Several other metal hydride complexes bearing polydenate or polyhapto ligands have been prepared using the super hydride route. [20]
$\operatorname{Bis}(\beta$-diketiminato)pyridine-ligated dinuclear nickel(II) hydride complex (PYP) $-\mathrm{Ni}(\mu-\mathrm{H}) \mathrm{Ni}$ (Figure 6, V) has an unique $\mathrm{Ni}-\mathrm{H} \rightarrow \mathrm{Ni}$ core, which can be generated from (PYP) $-\mathrm{Ni}(\mu-\mathrm{Br}) \mathrm{NiBr}$ with KHBEt_{3}. ${ }^{[20 b]}$ Diiron dihydride complex (PYP) $-\mathrm{Fe}_{2}\left(\mu-\mathrm{H}_{2}\right)$ was obtained from the reaction of (PYP) $-\mathrm{Fe}_{2}\left(\mu-\mathrm{Br}_{2}\right)$ and KHBEt_{3} at room temperature using the same ligand system. ${ }^{[20 \mathrm{~d}]}$

A cyclophane type scaffold containing three β-diketiminato binding pockets, developed recently by Murray and coworkers, gave access to tris (μ-hydride) trimetallic clusters such as the tri-iron(II) complex VI (Figure 6).[21] The latter showed CO-induced reductive elimination of H_{2} to produce a low-valent $\mathrm{Fe}_{2} \mathrm{Fe}^{\mathrm{II}}$ species that reversibly regenerates the tri-hydride complex under H_{2} atmosphere. [22]

Infrared spectroscopy could be a very useful characterization tool for identifying metal-hydride complexes. Not many iron ${ }^{[23]}$ and cobalt ${ }^{[24]}$ complexes with a terminal hydride ligand have been reported. Nickel complexes with a terminal hydride ligand typically show a Ni-H stretching band at $1690-2000 \mathrm{~cm}^{-1}$, although sometimes the intensity of the band could be too weak for a definitive identification. ${ }^{[25]}$

Gade 2014

Figure 7: " T "-shaped Ni^{I} center complexes. ${ }^{[26-28]}$
A "T"-shaped nickel(I) species were generated from H_{2} elimination in corresponding nickel hydride complexes reported by the Gade group in 2014. ${ }^{[26]}$ In solution, this $\mathrm{Ni}(\mathrm{II})$ hydride complex (Figure 7, VII) was found to be in equilibrium with the planar T-shaped, three-coordinate Ni(I) species (Figure 7, VII). Except for this "T"-shaped Ni^{I} species, other analogous Ni^{1} species (Figure 7, IX and \mathbf{X}) were reported by the Caulton ${ }^{[27]}$ and Lee ${ }^{[28]}$ groups, respectively. The coordination of σ-donors is not seen because of the σ-antibonding character of the SOMO $d_{\mathrm{x} 2-\mathrm{y} 2}$ of a d^{9} center Ni^{I} metalloradical. The latter (Figure 7, \mathbf{X}) shows reactivity towards unsaturated molecules $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right.$ and $\left.\mathrm{CO}_{2}\right)$. Finally, hemolytic cleavage of challenging σ-bonds in substrates, such as $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$ and $\mathrm{H}_{3} \mathrm{C}-\mathrm{CN}$ highlights the power of utilizing the Ni^{I} metalloradical. [28]

3.2 Synthesis of sodium dinuclear nickel(II) dihydride complex

Scheme 4: Synthetic route for 3.

In order to study the influence of the K^{+}cation coordination at the hydride unit in $2{ }^{-}$, the K^{+}ion was successively replaced by Na^{+}ion, as the small ion radius of $\mathrm{Na}^{+}(0.97 \AA \AA)$ vs $\mathrm{K}^{+}\left(1.33 \AA \AA^{[29]}\right.$ could be expected to lead to significant geometric changes. Treatment of $\mathbf{1}$ with 2.5 equivalents of NaHBEt_{3} in THF gave a red solution in 20 mins and gas evolution was observed. The crude bimetallic compound 3 was obtained in 76\% yield (Scheme 4). 3 was characterized by x-ray diffraction, FT-IR, 1D and 2D NMR spectroscopies and elemental analysis (C, H and N).

Suitable crystals for x-ray diffraction were grown from pentane diffusion into a solution of $\mathbf{3}$ in THF or by layering hexane on a solution of $\mathbf{3}$ in THF at RT. Its structure is similar to the previously reported potassium analogue 2. ${ }^{[11]}$ In 2, the K^{+}ion is hosted between the two aryl rings of the DIPP substituents via cation $-\pi$ interactions and locates within the plane defined by the pyrazo-late-bridged dinuclear nickel dihydride core, presumably supported by attractive $\mathrm{K}^{+} \ldots$ hydride interactions. The distance between K^{+}and the centroid of the DIPP aryl rings is $2.84 \AA$, which lies in the typical range for cation $-\pi$ bonding of K^{+}to aromatic systems. However, the smaller Na^{+}ion is situated above the py-razolate-bridged dinickel dihydride core and outside of the DIPP cleft, with
close contacts to the two hydrides, the two pyrazolate-N atoms, and coordinated by two additional THF ligands. The molecular structure is shown in Figure 8 and selected bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ are listed in Table 2.

3 crystallizes in the triclinic space group P-1. As shown in Figure 8, each nickel center is held within a N, N-chelate of a β-diketiminato arm and hydride ligand. Moreover, the two nickel centers are coordinated in square-planar fashion, with the sum angle of 360.26° and 359.90°, respectively. The distance of the two nickel ions of 4.105(5) \AA is similar to 2 (4.158(7)/4.164(7) \AA), suggesting that the alkali metal cation does not exert any major influence on the dinickel dihydride core.

The ${ }^{1} \mathrm{H}$ NMR spectrum showed a single set of resonance for the pyrazolate ligand and the two hydride ligands, indicating $C_{2 v}$ symmetry in solution. There must be rapid motion that enables the sodium to change it position in solution. The hydride resonance is at -23.54 ppm in 3 (Figure 9), slightly low field shifted compared with 2 (-24.16 ppm) (Figure 10). The alkali metal cation in 2 and 3 obviously have only a minor effect on the electronic shielding of the hydrides.

c
d

Figure 8: Molecular structures (50\% probability thermal ellipsoids) of $\mathbf{2}^{[11]}$ (top; only one of two independent molecules shown) and $\mathbf{3}$ (bottom). Most hydrogen atoms except the Ni-bound hydride omitted for clarity.

Table 2: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 3.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N4	$1.869(2)$	O1-Na1-Ni2	$136.14(6)$
Ni1-N1	$1.872(2)$	O2-Na1-Ni2	$91.50(5)$
Ni1-N3	$1.905(2)$	N2-Na1-Ni2	$40.28(4)$
Ni1-H1	$1.37(2)$	N1-Na1-Ni2	$66.25(4)$
Ni2-N6	$1.866(2)$	O1-Na1-Ni1	$94.97(5)$
Ni2-N2	$1.882(2)$	O2-Na1-Ni1	$179.40(6)$
Ni2-N5	$1.921(2)$	N2-Na1-Ni1	$65.25(4)$
Ni2-H2	$1.40(2)$	N1-Na1-Ni1	$37.78(4)$
Na1-H1	$2.26(2)$	Ni2-Na1-Ni1	$88.98(2)$
Na1-H2	$2.50(2)$	Ni2-Na1-H1	$81.3(5)$
Na1-O1	$2.313(2)$	Ni1-Na1-H1	$25.3(5)$
Na1-O2	$2.336(2)$	Ni2-Na1-H2	$29.4(6)$
Na1‥Ni2	$2.847(8)$	Ni1-Na1-H2	$73.2(5)$
Na1‥Ni1	$3.008(8)$	N4-Ni1-N1	$176.93(7)$

Ni1 \cdots Ni2 $4.105(5)$	N4-Ni1-N3	$95.78(7)$
	N1-Ni1-N3	$84.39(7)$
	N4-Ni1-Na1	$119.59(5)$
	N1-Ni1-Na1	$62.28(5)$
	N3-Ni1-Na1	$127.82(5)$
	N4-Ni1-H1	$89.9(9)$
	N1-Ni1-H1	$90.2(9)$
	N3-Ni1-H1	$172.7(9)$
	Na1-Ni1-H1	$44.9(9)$
	N6-Ni2-N2	$178.19(7)$
	N6-Ni2-N5	$96.30(7)$
	N2-Ni2-N5	$83.93(7)$
	N6-Ni2-Na1	$116.50(5)$
	N2-Ni2-Na1	$61.83(5)$
	N5-Ni2-Na1	$112.97(5)$
	N6-Ni2-H2	$89.4(10)$
	N2-Ni2-H2	$90.2(10)$
	N5-Ni2-H2	$173.4(10)$

Figure 9: ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of $\mathbf{3}$ in $\mathrm{THF}-\mathrm{d}_{8}$. Residual solvents are marked with an asterisk (*).

Figure 10: ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2}$ and $\mathbf{3}(300 \mathrm{MHz}$) or in THF-d8. Residual solvents are marked with an asterisk (*).

VT ${ }^{1} \mathrm{H}$ NMR experiments were conducted to understand the Na^{+}cation motion in solution. With the temperatures changing (Figure 11), the CH_{3} group of the isopropyl substituents separate into two different doublets below 243 K , The " S " shape for the Ni-H peak at different temperature is possibly caused by the combined effects of the sodium cation motion and its dissociation equilibrium fashion. (Figure 12) Possible configurations of 3 are shown in Scheme 5.

Scheme 5: Possibility configurations of $\mathbf{3}$ at different temperatures in THF.

Figure 11: VT ${ }^{1} \mathrm{H}$ NMR spectra ($0-7.5 \mathrm{ppm}$) (400 MHz) of 3 under H_{2} atmosphere. Residual solvents are marked with an asterisk (*).

Figure 12: VT ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of the $\mathrm{Ni}-\mathrm{H}$ region of $\mathbf{3}$ in $\mathrm{THF}-\mathrm{d}_{8}$. The " S "-shape suggests a temperature depending binding of a Na^{+}or a structure rearrangement of 3 .

3

3-D

Scheme 6: One-step exchange of $\mathbf{3}$ with D_{2}.

Figure 13: ${ }^{2} \mathrm{H}$ NMR spectra (77 MHz) of H / D exchange of 3-D in THF. After loading of dried D_{2}. Ni-D has formed and excess free D_{2} exists in the solvent (Bottom). Pump-freeze-thaw procedure removes excess D_{2} (Middle). After loading of the dried H_{2}, the Ni-D signal has vanished and new free D_{2} forms immediately (Top). Residual solvent signals are marked with an asterisk (*).

Figure 14: ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of H / D exchange of 3-D in THF- d_{8}. After loading of dried D_{2}, no Ni-H signal is observed (Bottom). After loading of dried $\mathrm{H}_{2}, \mathbf{3}$ is formed (Top). Residual solvent signals are marked with an asterisk (*).

Upon addition of D_{2} (1 atm) to a degassed solution of $\mathbf{3}$ in THF- d_{8}, the nickel bound hydrogen atoms are rapidly exchanged to give the deuterated 3-D (Scheme 6). The reaction is reversed upon addition of H_{2} to solutions of the deuterated complex in THF. This is proven by ${ }^{2} \mathrm{H}$ NMR, which showed a resonance of 4.52 ppm for free D_{2} (Figure 13 and Figure 14).

As shown in Figure 15, the two bimetallic dihydride complexes show a $\mathrm{Ni}-\mathrm{H}$ stretching band at $1961 \mathrm{~cm}^{-1}$ (for 2) and $1846 \mathrm{~cm}^{-1}$ (for 3), which are corresponding to other $\mathrm{Ni}-\mathrm{H}$ stretching at $1690-2000 \mathrm{~cm}^{-1}$. ${ }^{[30]}$ The Ni-H absorption band shifted to $1367 \mathrm{~cm}^{-1}$ upon deuteration (for 2) [$v(\mathrm{Ni}-\mathrm{H}) / v(\mathrm{Ni}-\mathrm{D}) \approx 1.43$, calcd: 1.414] and $1337 \mathrm{~cm}^{-1}$ (for 3) [$v(\mathrm{Ni}-\mathrm{H}) / v(\mathrm{Ni}-\mathrm{D}) \approx 1.38$, calcd: 1.414]. In line with the NMR data, the observed trend for the Ni-H stretches suggests that the $\mathrm{Ni}-\mathrm{H}$ bond strength is affected in opposing directions by the alkali metal cation being located along the $\mathrm{Ni}-\mathrm{H}$ vector, or perpendicular to it above the $\mathrm{Ni}-\mathrm{H}$ bond.

Figure 15: (a) FT-IR spectrum of fresh crystalline material of 2; (b) Overlay of FT-IR spectra of 2 and 2-D in the range $2200-1000 \mathrm{~cm}^{-1}$; (c) FT-IR spectrum of in fresh crystalline material of 3; (d) Overlay of FT-IR spectra of $\mathbf{3}$ and 3-D in the range 1900-1000 cm^{-1}.

To directly monitor the exchange processes and to confirm the pairwise exchange of both hydrides of a single molecule of $\mathbf{2}^{-}$and 3^{-}, the following NMR experiment was designed: a solution of $\mathbf{2}$ was treated with a small amount of HD, not sufficient for full conversion to $\mathrm{K}\left[\mathrm{L}^{1} \mathrm{Ni}_{2}(\mathrm{H})(\mathrm{D})\right]$ (2-HD) but adjusted to provide roughly equal peak intensities for the two isotopologues. The reaction mixture then contained $\mathbf{2}, \mathbf{2}-\mathrm{HD}, \mathrm{H}_{2}$, and HD , all of which are detectable in the ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR (Figure 16) spectrum. The hydride resonances of 2 and $2-\mathrm{HD}$ differ slightly (-24.16 vs -24.18 ppm at rt; -24.03 vs -24.05 at 273 K) (Figure 17) because of a secondary isotope effect between the two hydrides. Importantly, the two-dimensional ${ }^{1} \mathrm{H}$ EXSY spectrum of the mixture (Figure 18) revealed correlations only between 2 and H_{2} as well as between 2-HD and HD, clearly evidencing a pairwise exchange of H_{2} and HD , respectively, without any scrambling. All possible exchange processes in this scenario are shown in the upper part of Figure 18. To provide mechanistic insight for the $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange process and to explain the effect of the alkali metal ions on the stability of (and H_{2} release from) the dihydride complex, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY of 2 with H_{2} experiments were performed.

Figure 16: ${ }^{2} \mathrm{H}$ NMR spectrum (77 MHz) of 2-HD under Ar atmosphere in THF at 298 K. Residual solvents are marked with an asterisk (*).

Figure 17: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of a 1:2 mixture of $\mathbf{2}$ and 2-HD under Ar atmosphere in THF-d d_{8} at 298 K . The two isotopologuous complexes cannot be distinguished by ${ }^{1} \mathrm{H}$ NMR except for their hydride resonances (-24.16 vs $24.18 \mathrm{ppm}, \mathrm{RT}$). Residual solvents are marked with an asterisk (*).

Figure 18: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY spectrum ($400 \mathrm{MHz}, 0.5 \mathrm{~s}$ mixing, 273 K) of a mixture of $\mathrm{K} \cdot \mathbf{2}, \mathrm{K} \cdot \mathbf{2}-\mathrm{HD}, \mathrm{H}_{2}$ and HD in THF- d_{8} (bottom) and the possible exchange processes (top).

DFT Calculations. In collaboration with the group of Ricardo Mata, possible pathways for $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange were probed through DFT calculations. A scheme of pairwise mechanisms considered is displayed in Figure 19. For ease of discussion, we consider 2^{-}without K^{+}cation as the reactant, D_{2} as the entering molecule and $2-\mathbf{D}^{-}+\mathrm{H}_{2}$ as the products. The K^{+}or Na^{+}cation were removed in this first set of calculations to allow for more flexibility in the exchange paths.

The first question is finding the preferred binding mode of D_{2} to the complex. Although the $\eta^{2}-\mathrm{H}_{2}$ coordination is often discussed (\mathbf{G} in Figure 19), we found no stable minimum for this structure. All attempts for a side-on coordination to the Ni centres resulted in an end-on weak coordination to the metal $(r(H-N i) \approx 2.6 \AA$ A \mathbf{A} in Figure 19). We carried out an extensive search of minima, placing the entering molecule close to the Ni centres in different orientations. The other minimum found was one whereby the entering D_{2} occupies the position of the K^{+}(\mathbf{C} in Figure 19). The latter is $11 \mathrm{~kJ} / \mathrm{mol}$ less stable than the other minimum.

Figure 19: Concerted reaction pathways for $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange considered in this study.

As shown in Figure 19, all concerted pathways for insertion of D_{2} starting from the aforementioned minima were particularly high in energy. The lowest connected path for insertion was through an early H_{2} recombination in the pocket. Due to the high energies involved, we only obtained one half of the reaction path, which provided a lower bound for the electronic energy barrier of $136 \mathrm{~kJ} / \mathrm{mol}$. This would be too high in energy, so we excluded the possibility of a concerted mechanism. Another reason for exclusion is that a symmetric pathway would necessarily go through a double end-on $\mathrm{H}_{2} / \mathrm{D}_{2}$ coordination to Ni (D in Figure 19), which would be too unstable.

An alternative to the substitution mechanism would be a non-concerted pathway, with H_{2} leaving the pocket and D_{2} coordinating afterwards at the empty Ni^{1} sites. This would also be consistent with the non-scrambling exchange of $\mathrm{H}_{2} / \mathrm{D}_{2}$. Two sets of constrained optimizations were performed, fixing the distance between the two hydrides in $\mathbf{2}$ and $\mathbf{2}^{-}$. The results are shown in Figure 20.

Figure 20: Potential energy surface plots for the recombination of the coordinated H atoms in $\mathbf{2}^{-}$and $\mathbf{2}$. Relaxed scans were computed along the $\mathrm{H}-\mathrm{H}$ distance at the BP86-D3/def2-SVP level. The dotted vertical line represents the bond distance in the H_{2} molecule at the same level of theory ($0.767 \AA$). The reference point is provided by the most stable geometry; in both cases a distance of $2.1 \AA$ is maintained.

In Figure 20 are shown the results at the level of theory used for the optimizations (BP86-D3/SVP), and also energies for the meta-GGA M06L functional with a larger basis, but using the same geometries. For each point in the curve the singlet, the triplet and the broken symmetry state (with the two lone electrons at the Ni centers) were computed. Up to $0.95 \AA$ the pure singlet state is the most stable. With shorter H-H distances, the broken symmetry state is found to be lowest, with the triplet still lying higher above in energy. The energy order of the states was further confirmed with the B3LYP and PBE0 functional at $r(H-H)=0.8 \AA$, providing the same qualitative picture. All results reported (including the optimized structures) correspond to the lowest electronic state found at each point.

Both BP86 and M06L agree in that H_{2} recombination is favored when the K^{+} cation is not present. We start by discussing the latter curves. Estimation to the barrier for removal of the H_{2} is provided at distances slightly above the optimal $\mathrm{H}-\mathrm{H}$ bond value. In the case of $\mathbf{2}^{-}$, both methods agree in a barrier of about 60 $\mathrm{kJ} /$ mol. Carrying out a linear interpolation of the M06-L/TZVP energy curve, the barrier can be approximated by the energy value at the H_{2} equilibrium bond distance, a value of $62.5 \mathrm{~kJ} / \mathrm{mol}$. The disagreement between the two functional is foremost in the shape of the curve. In the case of BP86, we found a shallow minimum, which we were able to fully optimize and characterize at $r(H-H)=1.16 \AA$. This feature is not visible in the M06L curve. The electronic structure of this minimum is similar to the hydride complex, still keeping the $\mathrm{Ni}-\mathrm{H}$ bonds. Due to the flatness of the potential in this region it was not possible to converge the transition state to the lower neighboring minimum. The impact of the zero-point vibrational energy correction on the energies cited above should be very small since the Ni-H harmonic vibrational frequency is roughly half of the $\mathrm{H}-\mathrm{H}$ stretch frequency in the hydrogen molecule.

In 2, the estimated activation barrier for removal of H_{2} would lie between $80-105 \mathrm{~kJ} / \mathrm{mol}(102.2 \mathrm{~kJ} / \mathrm{mol}$ in the case of M06-L/TZVP). Along the relaxed surface scan the K^{+}remained relatively fixed in its position, approximately in plane with the leaving H_{2} and thereby raising the energy. It is likely that the reported values correspond to an upper estimate. The cation could potentially change its position along the faces of the ligand rings, lowering the barrier.

The electronic structure calculations carried out quite clearly go against any concerted mechanism for substrate substitution. In a first step, the hydrides should recombine to H_{2}, leaving the pocket and two Ni^{1} centers with one vacant coordination each. The barrier for H_{2} formation is quite low in the absence of K^{+}
(about $60 \mathrm{~kJ} / \mathrm{mol}$), but could also be lowered if there is an exchange with the solvent or the cation is displaced.

Figure 21: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of $\mathbf{3}$ in THF- d_{8} with 1 equivalent $\mathrm{H}_{2} \mathrm{O}$ at different reacting times. Residual solvents are marked with an asterisk (*).

In Manz work, 2 reacts with one equivalent of $\mathrm{H}_{2} \mathrm{O}$ to generate an intermediate hydride-hydroxide species, $\mathrm{K}\left[\mathrm{L}^{1}(\mathrm{Ni}-\mathrm{H})(\mathrm{Ni}-\mathrm{OH})\right]$.[11a] The hydride and hydroxide resonance are formed at -26.00 ppm and -2.07 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, respectively. The new intermediate species showed a weak $0-\mathrm{H}$ stretching vibration at $3622 \mathrm{~cm}^{-1}$ in the IR spectrum. [11a] Whereas, no similar intermediate was observed by NMR spectroscopy in the reaction of $\mathbf{3}$ with water (Figure 21). The difference suggests that the alkali metals $\left(\mathrm{K}^{+}\right.$and $\left.\mathrm{Na}^{+}\right)$play an important role in the intermediate formation process.

3.3 Dissociation hydride- K^{+}interaction in bimetallic dinickel(II) complex

Scheme 7: Synthetic route for 4.

In complexes $\mathbf{2}$ and 3, the alkali metal (K^{+}or Na^{+}) is closely associated with the two hydride ligands. In addition, it exhibit different reactivity towards water. To further assess the effect of the alkali metal cation $\left(\mathrm{K}^{+}\right.$or $\left.\mathrm{Na}^{+}\right)$and to prepare a new dinuclear dinickel dihydride complex with a vacant cleft, 2 was treated with (18-crown-6), [2,2,2]cryptand or DB18C6 to separate the K^{+}cation from the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}(\mathrm{H})_{2}\right]^{-}$anion (Scheme 7). No obvious color change was associated with these reactions, but the ionic products become poorly soluble in THF; these differences in solubility suggest that the alkali metal cations remain closely associated with the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}(\mathrm{H})_{2}\right]^{-}$anion and that contact ion pairs are present in THF solutions of $\mathbf{2}$ and 3. Unfortunately, all crystallizing attempts for x-ray diffraction using [18-crown-6] or [2,2,2]cryptand failed. However, single crystals for x-ray diffraction using DB18C6 were obtained by layering hexane $/ \mathrm{Et}_{2} \mathrm{O}$ on a solution of 4 in THF at $-30^{\circ} \mathrm{C}$.

In 2 and 3, the hydride ligands were located in the density difference map and their positions were allowed to refine freely. In 4, a fixed isotropic displacement parameter of $0.08 \AA^{2}$ was applied to the hydride ligands. 4 crystallizes in the monoclinic space group $C_{2 / c}$. The asymmetric unit contains two crystallograph-
ically independent molecules with crystallographically imposed C_{2} symmetry (the idealized point group of the anion is $C_{2 v}$); one of the two molecules is shown in Figure 22, selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in Table 3.

Figure 22: Molecular structure (50% probability thermal ellipsoids) of the anion of 4 (a, only one of two independent molecules shown) and 4 (b). Most hydrogen atoms omitted for clarity, except for the nickel-bound hydrides. Symmetry transformations used to generate equivalent atoms: (') $-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$.

Table 3: Selected bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ for 4.

Atoms	Bond lengths	Atoms	Bond Angles
Ni1-N3	$1.873(2)$	N3-Ni1-N1	$177.25(8)$
Ni1-N1	$1.886(2)$	N3-Ni1-N2	$96.97(7)$
Ni1-N2	$1.920(2)$	N1-Ni1-N2	$83.99(7)$
Ni2-N13	$1.862(2)$	N13-Ni2-N11	$177.22(8)$
Ni2-N11	$1.879(2)$	N13-Ni2-N12	$96.76(9)$
Ni2-N12	$1.916(2)$	N11-Ni2-N12	$83.86(9)$
Ni1‥Ni1'	$4.115(7)$		
Ni1-H1	$1.46(3)$		

As shown in Figure 22, The core structure of the "naked" $\left[\mathbf{L}^{1} \mathbf{N i}_{2}(\mathbf{H})_{2}\right]^{-}$complex anion shows no significant differences compared to the neutral 2 and 3. In 4, the two nickel centers are coordinated in square-planar fashion, with the sum of angles being 359.95°. Each nickel center is held within an N, N-chelate of a β diketiminato arm and bears a hydride ligand. Two $\mathrm{Ni} \cdots \mathrm{Ni}$ distances in the two
crystallographically independent molecules are $4.115 \AA$ and $4.064 \AA$, respectively. The nickel-hydride ligands distances of $1.464 \AA$ and $1.444 \AA$ are longer than 2 and 3. Selected metrical parameters of the three dinuclear nickel(II) dihydride complexes are listed in Table 4. In fact, Ni-H bonds in the range 1.32(2)-1.40(2) Å determined for $\mathbf{2}$ and $\mathbf{3}$ are shorter than most terminal $\mathrm{Ni}-\mathrm{H}$ bonds reported in literature. However, all these data have to be considered with caution because of inherent ambiguities of H atom position derived from x-ray crystallography. In the absence of neutron diffraction data, NMR and IR signatures (vide infra) can be considered more reliable for assessing differences among the $\mathrm{Ni}-\mathrm{H}$ moieties in the three compounds.

Solid structure is a diamagnetic reflecting the low-spin d^{8} configuration of the nickel(II) ions. However, VT NMR spectrum of 4 in THF-d8 shows a $1 / \mathrm{T}$ (curie) behavior from the broad peaks indicating a paramagnetic species (Figure A6). It indicates that $\mathbf{4}$ is highly sensitive and decayed when crystals were dried under reduced pressure or kept at rt for some times. These findings will be discussed in more detail below.

Figure 23: (a) FT-IR spectrum of fresh crystalline material of 4; (b) Overlay of FT-IR spectra of 4 and 4-D in the range $2200-1100 \mathrm{~cm}^{-1}$;

As shown in Figure 23, after the K^{+}cation was dissociated by DB18C6, the Ni-H stretching band at $1913 \mathrm{~cm}^{-1}$ is similar to 2 and 3 . The Ni-H absorption band shifted to $1310 \mathrm{~cm}^{-1}$ upon deuteration (for $\left.\mathrm{KL}^{1} \mathrm{Ni}_{2}(\mu-\mathrm{H})_{2}\right)[v(\mathrm{Ni}-\mathrm{H}) / v(\mathrm{Ni}-\mathrm{D}) \approx$
1.413, calcd: 1.414]. The metrical parameters of the three nickel(II) dihydride compounds are shown in Table 4.

Table 4: Metrical parameters for 2,3 and 4.

Complex	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathrm{Ni} \cdots \mathrm{Ni}$	$4.158 / 4.164$	4.105	$4.115 / 4.064$
$\mathrm{Ni}-\mathrm{N}$	$1.878(2)-1.911(2)$	$1.866(2)-1.921(2)$	$1.862(2)-1.921(2)$
$\mathrm{Ni}-\mathrm{H}$	$1.32(2)-1.38(3)$	$1.37(2) / 1.40(2)$	$1.44(3) / 1.46(3)$
$\mathrm{K}-\mathrm{Cg}$	$3.098(2)-3.239(2)$	-	-
$\mathrm{M}-\mathrm{H}$	$2.45(3)-2.53(3)$	$2.26(2) / 2.50(3)$	-
$\mathrm{Na}-\mathrm{N}$	-	$2.567(2) / 2.705(2)$	-
$\mathrm{Ni} \cdots \mathrm{M}$	$3.781(5)-3.831(5)$	$2.847(8) /$	-
$\mathrm{N}-\mathrm{Ni}-\mathrm{N}$	$176.55(7)-$	$3.008(8)$	
$(\text { opposite })^{\mathrm{N}-\mathrm{Ni}-\mathrm{H}}$	$178.66(7)$	$172.5(12)-$	$178.19(7)$
$($ opposite $)$	$174.7(10)$	$172.7(9) /$	$177.22(8) /$
$v\left(\mathrm{~cm}^{-1}\right)$	$1961 / 1367$	$173.4(10)$	$171.0(13) / 8)$
$\left(\mathrm{H}_{2} / \mathrm{D}_{2}\right)^{\mathrm{a}}$		$1843 / 1337$	$172.4(13)$

a, Frequency of the $\mathrm{Ni}-\mathrm{H}$ vibration determined by IR spectroscopy on solid samples of 2, $\mathbf{3}$ and 4.
H_{2} loss from the "naked" dinuclear nickel(II) dihydride. Since the DFT calculation indicates that 4 easily release the H_{2} from the $\mathrm{Ni}-\mathrm{H}$, we carried out temperature dependent magnetometric measurements for 2 and 4, respectively, and monitoring the headspace of crystal of 4 by GC-MS experiment. The GC-MS experiment indeed shows the gradual formation of H_{2}.

Figure 24: (a) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{2}$. The solid red lines represent the best global fit with $P I=5.4 \%(S=1)$ and $T I P=60.10^{*} 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$; (b) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of 4 using crystalline material in a NMR tube with mother liquor.

Figure 25: (a) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{4}$ of crystalline material and dried in glove box for 1 hour. (b) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of complex 4 using crystalline material dried under vacuum for 15 hour.

Magnetic susceptibility data for crystalline material of 2 collected in the temperature range from 2-295 K, showed essentially diamagnetic behavior up to room temperature (Figure 24a). The solid red lines represent the best fit with $P I=5.4 \%(S=1)$ and $T I P=60.10 \times 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} .4$ was collected on freshly crystalline material that was sealed with a small amount of mother liquor in an

NMR tube to prevent the loss of the solvents and/or molecular hydrogen. The magnetic susceptibility of this sample showed diamagnetism (Figure 24b). When crystals of 4 were dried in a glovebox atmosphere for 1 h (mother liquor evaporated without applying vacuum), however, a paramagnetic contribution arises that amounts to $0.32 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}$ (corresponding to $1.6 \mu \mathrm{~B}$) at 295 K . SQUID data for a sample of crystalline 4 that has been thoroughly dried under vacuum for 15 h (resulting in a powder sample) shows a magnetic moment of $0.5 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}$ (corresponding to $2.0 \mu \mathrm{~B}$) at 295 K , not too far from the value expected for two $S=1 / 2$ ions ($2.45 \mu B$ for $g=2.0$). The decrease of $\mu \mathrm{B}$ upon lowering the temperature (shown as $\chi_{\mathrm{M}} \mathrm{T}$ vs T plot in Figure 25b) indicates significant antiferromagnetic coupling. These experiments provide experimental evidence for the idea that the dinickel(II) dihydride core 4^{-}, in the absence of any alkali metal ion within the dihydride cleft, is prone to facile loss of H_{2} and can be viewed as a masked dinickel(I) species. The presence of K^{+}(or Na^{+}) obviously stabilizes the dinickel(II) dihydride complex and prevents H_{2} loss, in line with the DFT results.

Scheme 8: Interconversion between square planar $\mathrm{Ni}^{\mathrm{II}}$ and " T "-shaped Ni^{1} metalloradical species.

Figure 26: X-band EPR spectra (black line) in THF at 146 K of 5. Frequency $=$ 9.413 GHz , power $=10 \mathrm{mV}$. Simulations (red trace) provide (species 1, 84\%) $g_{1}=2.128, \mathrm{~g}_{2}=2.061, \mathrm{~g}_{3}=2.0225$; (species $\left.2,16 \%\right) g_{1}=2.11, \mathrm{~g}_{2}=2.07, \mathrm{~g}_{3}=2.03$; (species 2)

Reductive elimination of H_{2} from $\mathbf{2}^{-}$or 4^{-}can be expected to yield a $\left\{\mathrm{L}^{1} \mathrm{Ni}^{\mathrm{I}}{ }^{2}\right\}$ species. Related to the "T"-shaped Ni^{1} species ${ }^{[26-28]}$, we presumed that the square planar geometry in d^{8} low spin $\mathrm{Ni}^{I I}$ changes to the " T "-shaped of $d_{\mathrm{x}}{ }^{2}-\mathrm{y}^{2}$ based radical in $d^{9} \mathrm{Ni}^{\mathrm{I}}$ system. Consistent with the SQUID and GC experiments, the electron paramagnetic resonance (EPR) spectrum (Figure 26) of 5 (84\%) shows three g values at frozen THF at 145 K or room temperature with ligand hyperfine structure resolved. It indicates that $\mathbf{5}$ is a double " T "-shaped $\mathrm{Ni}(\mathrm{I})$ species. The rhombic spectrum has principal g values of $2.128,2.061$ and 2.0225 and $g_{\mathrm{av}}=2.071$. And a second (16\%) unidentified species with g values of 2.11, 2.07 and 2.03 was observed in the EPR spectrum. In additional, the x-band EPR spectroscopic data for a known " T "-shaped Ni^{I} species is $g=1.99$, 2.22 and 2.33. ${ }^{[28]}$ A structure optimization of $\mathbf{5}$ at the B3LYP/def2-SVP level was carried out setting out from the structure of $\mathbf{5}$ without the terminal two hydride ligands (Figure 27).

Figure 27: Structure of 5 as optimized at the B3LYP/Def2-SVP level. Most hydrogen atoms are omitted for clarity. Selected bond lengths (A): Ni1-Ni2 4.107, Ni1-N1 1.893, Ni1-N3 1.914, Ni1-N4 1.859, Ni2-N2 1.893, Ni2-N5 1.914, Ni2-N6 1.859, Ni1-H 2.538, Ni1-H 2.292.

Keep a sample of $\mathbf{4}$ in a closed flask under vacuum for a week and dissolving the complex in THF under Ar atmosphere. Suitable crystals for x-ray diffraction were obtained by layering hexane/ $\mathrm{Et}_{2} \mathrm{O}$ on a solution of 5 in THF at RT. Complex 5 has better solubility than 4. As shown in Figure 28, owing the low resolution as well as disorder, the data of $\mathbf{5}$ only allowed us to depict a model of its structure. The distances of Ni-N3 and Ni-N5 of $1.951 \AA$ and $1.948 \AA$ are longer than 4 with $1.92 \AA$. In the crystal structure, it clearly indicates that the two Ni^{I} atoms adopt " T "-shaped configuration.

Figure 28: Molecular structure (30\% probability thermal ellipsoids) of the anion of 5 (a) and 5 (b). All hydrogen atoms omitted for clarity.

3.4 Kinetics of $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange

NOESY is useful for determining which signals arise from protons that are close to each other in space even if they are not bonded. A NOESY spectrum yields through space correlation via spin-lattice relaxation. NOESY also detects chemical and conformation exchange. It called EXSY when used for this purpose.

When 2 was keep under H_{2} atmosphere or 2-D under D_{2} in THF- d_{8} or THF solution, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} /{ }^{2} \mathrm{D}-{ }^{2} \mathrm{D}$ NOESY spectra indicated that the coupling resonance between the $\mathrm{Ni}-\mathrm{H}$ and H_{2} or Ni-D and D_{2} (Figure 29 and Figure 31).

Figure 29: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY spectrum ($400 \mathrm{MHz}, 0.5 \mathrm{~s}$ mixing) of 2 (0.4 M) under H_{2} atmosphere in THF- d_{8} at 253 K . Cross peaks between the H_{2} and hydride signals increase with increasing temperature and are therefore due to the exchange.

Table 5: Rate constants $k\left(\mathrm{~s}^{-1}\right)$ for the $(\mathrm{Ni}-\mathrm{H})_{2} \rightarrow \mathrm{H}_{2}$ exchange in $2(0.1,0.2,0.3$ and 0.4 M) as function of temperatures.

T / K	k / s^{-1}			
	0.1 M	0.2 M	0.3 M	0.4 M
278	0.264	0.222	0.221	0.16
273	0.154	0.13	0.131	0.112
268	0.081	0.07	0.074	0.068
263	0.045	0.035	0.039	0.038
258	0.02	0.018	0.018	0.02
253	0.012	0.008	0.009	0.008

Figure 30: Eyring plots (a) and Arrhenius plots (b) for the $(\mathrm{Ni}-\mathrm{H})_{2} \rightarrow \mathrm{H}_{2}$ exchange in 2 ($0.1,0.2,0.3$ and 0.4 M). Straight lines were separately fitted for the temperature regimes (average) at 283-308 K.
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY spectra of mixtures containing 2 and H_{2}, recorded in the temperature range from 253 to 278 K (in steps of 5 K), showed exchange between H_{2} and the Ni-bound hydrides. Rate constants for the exchange (Table 5), extracted from the EXSY spectra, were used to construct Eyring plots and Arrhenius plots (Figure 30) from which activation parameters could be derived. While a full EXSYCALC analysis was hampered by partial peak overlap that introduced large errors, it was possible to use two EXSY peaks to obtain pseudo-first order rate constants for the transition $\left[\mathrm{L}^{1}(\mathrm{Ni}-\mathrm{H})_{2}\right]^{-} \rightarrow \mathrm{H}_{2}$ in the initial build up regime ($k_{\text {ex }} \tau_{\text {mix }}<0.2$), which is in the temperature range from 253 to 278 K (spectra
recorded in steps of 5 K). Samples with different concentrations of 2 yielded essentially the same pseudo-first-order rate constants (Figure 30a), in agreement with the reaction being first order in $\left[\mathrm{L}^{1}(\mathrm{Ni}-\mathrm{H})_{2}\right]^{-}$. Arrhenius plotting (Figure 30b) gives an apparent activation energy $E_{\mathrm{a}}=(74.1 \pm 0.4) \mathrm{kJ} \mathrm{mol}^{-1}$ for 2, attributed to the rate determining loss of H_{2} from the dinickel(II) dihydride core (Eyring analysis gives $\Delta H^{\dagger}=(72.1 \pm 1.5) \mathrm{kJ} \mathrm{mol}^{-1}$). A similar hydride exchange between 2-D and D_{2} was observed in ${ }^{2} \mathrm{H}-{ }^{2} \mathrm{H}$ EXSY spctrum (Figure 31) but not quantitatively analyzed due to the much lower sensitivity of ${ }^{2} \mathrm{H}$.

Figure 31: ${ }^{2} \mathrm{H}-{ }^{2} \mathrm{H}$ EXSY spectrum ($77 \mathrm{MHz}, 0.1 \mathrm{~s}$ mixing) of 2-D under D_{2} atmosphere in THF at 298 K (diagonal peak is not properly phased). A weak exchange peaks appears in the upper left corner between the $D_{2}(4.5 \mathrm{ppm})$ and hydride (-24 ppm) signals. Residual solvents are marked with an asterisk (*).
${ }^{1} \mathrm{H}-1 \mathrm{H}$ EXSY spectra of mixtures containing 3 and H_{2}, recorded in the temperature range from 253 to 298 K (every 5 K recorded), showed exchange between H_{2} and the Ni-bound hydrides (Table 6).

Table 6: Rate constants $k\left(\mathrm{~s}^{-1}\right)$ for the $(\mathrm{Ni}-\mathrm{H})_{2} \rightarrow \mathrm{H}_{2}$ exchange in $\mathbf{3}$ as function of temperatures.

T / K	$\mathrm{k} / \mathrm{s}^{-1}$
278	0.617
273	0.465
268	0.368
263	0.271
258	0.167
253	0.079

Figure 32: Arrhenius plots (a) and Eyring plots (b) for the ($\mathrm{Ni}-\mathrm{H})_{2} \rightarrow \mathrm{H}_{2}$ exchange in 3 . Straight lines were separately fitted for the 253-278 K.

From the analysis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra of 3 under H_{2} atmosphere, first-order rate constants k were obtained for each temperature (278 K to 253 K) and used to derive the activation parameters $\Delta \mathrm{H}^{\ddagger}=(39 \pm 3) \mathrm{kJ} \cdot \mathrm{mol}^{-1}$ from an Eyring plot (Figure 32a, Table 6). Arrhenius plotting (Figure 32b) gives an apparent activation energy $E_{\mathrm{a}}=(39.2 \pm 0.6) \mathrm{kJ} \mathrm{mol}^{-1}$.

3.5 Summary

Scheme 9: Synthetic routes for the dinuclear nickel(II) hydride 2, 3, 4 and double " T "-shaped 5.

In summary, a new bimetallic dinuclear nickel(II) hydride $\mathbf{3}$ was synthesized from 1 with NaHBEt_{3}. The reversible H/D exchanges of $\mathbf{M}\left[\mathbf{L}^{\mathbf{1}} \mathbf{N i}_{2}(\boldsymbol{\mu}-\mathrm{H})_{2}\right](\mathrm{M}=\mathrm{K}$ and Na) with D_{2} are associated to one step substitution of both $\mathrm{Ni}-\mathrm{H}$ hydrogen atoms with the interacting substrate $\left(D_{2}\right)$. Based on density functional theory (DFT) calculations which confirm the experimental results, a mechanistic picture of the exchange process was established. During all experiments no signs of an incipient HD formation was detected, which is in accordance with the non-scrambling exchange process. Meanwhile, a new double " T "-shaped Ni^{I} species (5) was obtained from complex 4 of solid state loss H_{2} and characterized by x-ray diffraction. Therefore, the $\left[\mathrm{L}^{1} \mathrm{NiI}_{2}(\mathrm{H})_{2}\right]^{-}$complex (2-) can be viewed as a masked form of a reactive, antiferromagnetically coupled $\left[\mathrm{L}^{1} \mathrm{Ni}^{1}{ }_{2}\right]^{-}$species. The three bimetallic dinickel dihydride complexes increasingly recognized as a mean of avoiding unstable low-valent metal species or thermodynamically unfavorable one-electron reduced intermediates during the reductive activation of small molecules. The present bimetallic system based on the pyrazolate-bridged bis(nacnac) ligand appears particularly well suited for exploiting this concept. Next stage is studying the activation and transformation of a range of rather inert substrates using the new dinickel dihydride complex.

Chapter 4 Dioxygen binding to a bimetallic dinickel(II) dihydride complex and redox interconversion of the $\mu-1,2$-peroxo and superoxo intermediates

Abstract

Ni}-\mathrm{O}_{2}\) intermediates have gained significant attention in the last few years with the identification of some new structure types. Lewis acid $\mathrm{Ni}^{1 I}$ complexes have been proven to react with dioxygen to give a very unstable organoperoxo complex, as proposed for the quercetin 2,4-dioxygenase enzymatic system. We herein report a new μ-1,2-peroxo dinickel(II) motif (6) which was obtained from a reaction of $\mathbf{2}$ with dioxygen. Excess dioxygen reaction with peroxo complex (6) generated a new μ-1,2-superoxo dinickel(II) compound (9). The thermal stable peroxo and superoxo bimetallic dinickel(II) complexes exhibit a μ-1,2bonding geometry and have been investigated by UV/vis-, rRaman-, IR-, EPR spectroscopies, ESI mass spectrometry, SQUID measurement and DFT calculation. Eventually, interconversion of the μ-1,2-peroxo (6) and the μ-1,2-superoxo (9) via an excess of dioxygen or elemental potassium, respectively, has been accomplished.

4.1 Introduction

In principle, superoxo and peroxo nickel intermediates are not formed directly from the reaction of $\mathrm{NiII}^{\text {II }}$ complexes with O_{2}, but require prior reduction to $\mathrm{NiI}^{[31]}$ Even though, $\mathrm{Ni}^{\text {II }}$ species which show reactivity towards O_{2} are known in literature, the nature of the initial and final products are still very ambiguous. ${ }^{[32]} \mathrm{Re}-$ cently, two outstanding examples have published from $\mathrm{Ni}^{\mathrm{II}}$ species with oxygen directly and the final product was identified. [33,34]

Ad = Adamantyl
x

xIII

$\begin{aligned} R & =P h \\ & =\operatorname{Pr}\end{aligned}$

xiv

Figure 33: The reported superoxo ligand binding to the nickel metal. [35-38]
Few superoxo nickel compounds were synthesized from dioxygen and Ni^{1} precursors (Figure 33). $\mathrm{Ni}-\mathrm{O}_{2}$ adducts (Figure 33, XI and XII) reported by Riordan group, resulted from one-electron reduction of O_{2} by the respective Ni^{I} precursors at low temperature. These superoxo nickel complexes only exist at low temperature; they could only be characterized by DFT calculations and spectroscopies. ${ }^{[35]}$ The β-diketiminato superoxo nickel adduct (Figure 33, XIII) has been easily isolated by Yao and Driess et.al. in 2008, and its characterized by x-ray crystallography for the first time, and so far, the only crystallographically. The 00 bond length of 1.347 (2) Å suggests that superoxo character and 0-0 stretching in IR spectrum is $971 \mathrm{~cm}^{-1}$. [36] In 2005, Rettenmeier and Gade et.al. obtained a new superoxo species (Figure 33, XIV) by exposing a chiral pincer ligand nickel(I) precursor to dioxygen. Unfortunately, this compound is only stable at low tem-
perature again. ${ }^{[37]}$ Except for these superoxo compounds derived from oxygen and Ni^{I} precursor, some nickel superoxo complexes also can be obtained from a $\mathrm{NiII}^{I I}$ precursor targeted with $\mathrm{H}_{2} \mathrm{O}_{2}$. ${ }^{[38]}$

xv

XVI

XVII

XVIII

Figure 34: The reported peroxo ligand binding to the nickel. [39-42]
Furthermore, there are some other nickel peroxo complexes reported (Figure 34). The β-diketiminato superoxo nickel adduct (Figure 34, XVI) can be further converted into a peroxo ligand $\mathrm{O}_{2}{ }^{2-}$ by one electron reduction from elementary potassium at RT in THF solution by Yao and Driess et.al. in 2009. [39] The $0-0$ distance of $1.468(2) \AA$ is typically for metal peroxo compounds (1.4$1.5 \AA$). [40] The crystal structure showed uncommon $\left[\mathrm{Ni}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{O}_{2}\right) \mathrm{K}\right]$ core in which the K^{+}atom was weakly coordinated to the peroxo ligand (average $\mathrm{K}-0$ distance of 2.7 Å). In addition, Riordan et.al (Figure 34, XV) ${ }^{[41]}$ and Gade et.al (Figure 34, XVII) ${ }^{[37]}$ observed an interesting pattern in these superoxo and peroxo nickel(II) interconversion. The nickel(I) fragment reacts with oxygen most likely via a superoxo intermediate to give the only peroxo-bridged nickel complex characterized to data. In addition, a high valent $\mathrm{Ni}^{I I I}$ peroxo species (Figure 34, XVIII) was observed by Nam et.al. in 2009 using [$\left.\mathrm{Ni}^{\mathrm{II}}(12-\mathrm{TMC})\left(\mathrm{O}_{2}\right)\right]$ (12-TMC

1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) with five equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of trimethylamine in $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$, which was characterized by x-ray crystallography. [42]

Figure 35: The reported peroxo ligand binding to the nickel. [47]

Transition-metal hydroperoxo (Cu and Fe) complexes play an important role in the enzymatic activation and the transport of dioxygen ${ }^{[43]}$ as well as reactive intermediates in catalytic oxygenations. ${ }^{[44]}$ Although great efforts have been made to synthesize such metal complexes, only a limited of them have been structurally and spectroscopically characterized. ${ }^{[45]}$ For over a decade, nickel hydroperoxo species have been considered to be a deactivated form of [NiFe] hydrogenase generated by oxygen. ${ }^{[46]}$ Until now, only one example about nickel(II) hydroperoxo was reported by Gade in 2015 (Figure 35, XIX). ${ }^{[47]}$ Selected spectroscopic features of these superoxo, peroxo and hydroperoxo with nickel metal are listed in Table 7.

Table 7: Selected spectroscopic features of synthetic mononuclear superoxo, peroxo and hydroperoxo species.

	S	$\underset{[a]}{\mathrm{Ni}-\mathrm{O}(\AA)}$	$\begin{aligned} & \mathrm{r}(\mathrm{O}-\mathrm{O}) \\ & {\left[\AA \mathrm{A}^{[\mathrm{a}]}\right.} \end{aligned}$	$\begin{gathered} v(\mathrm{Ni}-\mathrm{O}) \\ {\left[\mathrm{cm}^{-1}\right]} \\ \left(\Delta\left[^{18} \mathrm{O}\right]\right. \\ {\left[\mathrm{cm}^{-1}\right]^{[\mathrm{cc]}}} \end{gathered}$	$\begin{gathered} v(\mathrm{O}-\mathrm{O}) \\ {\left[\mathrm{cm}^{-1}\right]} \\ \left(\Delta\left[^{18} \mathrm{O}\right]\right. \\ {\left[\mathrm{cm}^{-1}\right]^{[\mathrm{cc]}}} \end{gathered}$	$\begin{gathered} \lambda_{\text {max }}[\mathrm{nm}] \\ \left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)^{[\mathrm{d}]} \end{gathered}$	g values ${ }^{\text {[e] }}$	Ref
Superoxonickel								
[$\left.\mathrm{Nil}^{\text {II }}\left(\mathrm{O}_{2}\right)\left(\mathrm{PhTt}^{\text {Ad }}\right)\right]$	1/2	$1.85{ }^{\text {b }}$	-	-	-	$\begin{aligned} & 310(5900), \\ & 386(2900), \\ & 450(2500), \\ & 845(350) \end{aligned}$	2.24, 2.19, 2.01	35a
[$\left.\mathrm{iil}^{11}\left(\mathrm{O}_{2}\right)(14-\mathrm{tmc})\right]$	1/2	1.98	-	437(-21)	1131(-64)	$\begin{gathered} 345(5900), \\ 328(\mathrm{sh}), \end{gathered}$	2.29, 2.21, 2.09	35b
[$\left.\mathrm{Ni}^{1 \mathrm{I}}\left(\mathrm{O}_{2}\right)(13-\mathrm{tmc})\right]$	1/2	1.91	-	-	1130(-60)	$\begin{gathered} 339(800), \\ 845(130), \\ 684(60) \end{gathered}$	2.25, 2.21, 2.06	38b
[$\left.\mathrm{iil}^{\mathrm{H}}\left(\mathrm{O}_{2}\right)(\mathrm{Nacnac})\right]$	1/2	$\begin{aligned} & 1.817(2) \\ & 1.840(2) \end{aligned}$	1.347(2)	-	971(-52)	$\begin{gathered} 360(1500), \\ 845(170), \\ 980(430) \end{gathered}$	2.14, 2.12, 2.07	36
Peroxonickel								
$\left[\mathrm{Ni}^{\text {II }}\left(\mathrm{O}_{2}\right)\left({ }^{\text {t }} \mathrm{BuNC}\right)_{2}\right]$	0	$\begin{aligned} & 1.902(7) \\ & 1.808(8) \end{aligned}$	1.45(1)	-	$898(-50)$	380(316), 600(38)	-	48
$\left[(\right.$ Nacnac $) \mathrm{Ni}^{\text {II }}\left(\mathrm{O}_{2}\right) \mathrm{K}($ solv $\left.)\right]$	0	$\begin{aligned} & 1.820(2) \\ & 1.820(2) \end{aligned}$	1.468(2)	-	829 (-47)	-	-	39

$\left[\mathrm{Ni}^{\mathrm{III}}\left(\mathrm{O}_{2}\right)(12-\mathrm{tmc})\right]^{+}$	$1 / 2$	$1.884(3)$ $1.894(3)$	$1.386(4)$	-	$1002(-57)$	$350(300), 400(280)$ $650(100), 900(80)$	$2.2,2.17,2.06$	42
$\left.\left[\mathrm{Ni}^{\mathrm{III}} \mathrm{O}_{2}\right)(13-\mathrm{tmc})\right]^{+}$	$1 / 2$	$1.897(3)$	$1383(4)$	-	$1008(-58)$	$400(150), 700(80)$ $900(50)$	$2.19,2.07$	38 b
Hydroperoxonickel		$1.898(3)$						
$[\mathrm{Ni}(\mathrm{OOH})($ iso-pmbox $)]$	0	$1.846(2)$	$1.492(2)$	-	-	-	47	

[a] Unless otherwise stated, bond lengths are determined by x-ray diffraction. [b] Bond length determined by XAS. [c] Frequency of the Ni-O and O-O vibrations and the corresponding shifts upon labeling with ${ }^{18} \mathrm{O}$ determined by Raman or IR spectroscopy. [d] Uv-vis absorption features determined in solution. [e] g values determined by EPR spectroscopy.

4.2 Synthesis of a $\mu-1,2$-peroxo bridged dinickel(II) complex

Scheme 10: Synthetic route for 6

As mentioned in chapter $\mathbf{3}$, the $\left[\mathrm{L}^{1} \mathrm{Ni}^{\left[\mathrm{II}_{2}\left(\mathrm{H}_{2}\right)\right.}\right]^{-}$complex can be viewed as a masked form a reactive, antiferromagnetically coupled $\left[\mathrm{L}^{1} \mathrm{Ni}^{2}\right]^{-}$species. In this concept, it has been exploited for the reactivity of $\left[\mathrm{L}^{1} \mathrm{Ni}^{\mathrm{II}_{2}}\left(\mathrm{H}_{2}\right)\right]^{-}$toward dioxygen.

Treatment of a THF solution of $\mathbf{2}$ with one equivalent dioxygen (prior dried over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) (Scheme 10) results in a rapid color change from orange to dark red and formation of a new species identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 36). A new resonance corresponding with H_{2} is also observed in in situ NMR spectra of reaction mixtures, implying H_{2} upon reaction of 2 with dioxygen. When 2-D was treated with dioxygen and the reaction monitored by ${ }^{2} \mathrm{H}$ NMR spectroscopy, the formation of D_{2} was clearly detected (Figure 37).

Figure 36: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of 6 in THF-d8. Residual solvents are marked with an asterisk (*).

Figure 37: ${ }^{2} \mathrm{H}$ NMR (77 MHz) spectrum of excess O_{2} introduced into 2-D. Residual solvents are marked with an asterisk (*).

This formation of $\mathbf{6}$ is supported by x-ray diffraction and UV-Vis, FT-IR, Raman spectroscopies and ESI-MS spectrometry. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 6 in THF at $-30^{\circ} \mathrm{C} .6$ crystalizes in the triclinic space group $P-1$. There are two crystallographically distinct molecules per asymmetric unit: one of the two molecules is $\mathbf{6}$, the other one is hydroxide nickel complex (11). The molecular structure of 6 is shown in Figure 38 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 8. As shown in Figure 38, a six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{O}_{2}\right\}$ twisted ring was formed by the nickel atoms, the nitrogen atoms from pyrazolate ligand and the oxygen atom from peroxo ligand. The two nickel(II) ions are hosted in the two $\left\{\mathrm{N}_{3}\right\}$-tridentate
binding sites of the trianionic ligand scaffold, bridged by the pyrazolate and a peroxo ligand. The distance of 3.880 (1) \AA between the two nickel(II) ions of $\mathbf{6}$ is shorter than 2. The $\mathrm{Ni}-\mathrm{N}_{(\beta \text {-diketinato })}$ distances are in the range of $1.904(2)-$ $1.911(2) \AA$, which is longer than the distances of $\mathrm{Ni}-\mathrm{N}_{(\mathrm{Pz})}$ (1.835(2) and 1.854(2) Å), but similar to other mononuclear nickel peroxo complexes coordinating nacnac ligand (Figure 34, XVI). The Ni-O-O-Ni torsion angle around the $0-0$ axis is $81.41(28)^{\circ}$. The K^{+}ion interacts with two aryl rings of the DIPP substitutes via cation $-\pi(2.840(1)$ and $2.830(1) ~ \AA \AA$) and coordinates to both peroxo oxygen atom (O1 and O2) with $2.515(2) \AA$ and $2.545(2) \AA$, respectively. The 0-0 separation of $1.482(2) \AA$ is analogous to other metal peroxo complexes (1.41.5 Å). ${ }^{[40]}$

b

Figure 38: Molecular structure (50\% probability thermal ellipsoids) of 6 (only one of two molecules shown). All hydrogen atoms omitted for clarity.

Table 8: Selected bond lengths (\AA) and angle $\left(^{\circ}\right)$ for 6.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.854(3)$	N1-Ni1-O1	$91.04(13)$
Ni1-O1	$1.861(3)$	N1-Ni1-N3	$82.48(14)$
Ni1-N3	$1.909(3)$	O1-Ni1-N3	$170.45(13)$
Ni1-N4	$1.922(3)$	N1-Ni1-N4	$175.98(14)$
Ni2-N2	$1.835(3)$	O1-Ni1-N4	$92.93(13)$
Ni2-O2	$1.861(3)$	N3-Ni1-N4	$93.67(13)$
Ni2-N6	$1.904(3)$	N2-Ni2-O2	$90.45(13)$
Ni2-N5	$1.911(3)$	N2-Ni2-N6	$176.13(14)$
O1-O2	$1.482(2)$	O2-Ni2-N6	$92.99(13)$
K1-01	$2.545(2)$	N2-Ni2-N5	$82.89(14)$

K1-O2	$2.515(4)$	O2-Ni2-N5	$169.57(14)$
Ni1 $\cdots \mathrm{Ni} 2$	$3.880(8)$	N6-Ni2-N5	$93.45(14)$
K-Cg (1)	$2.840(1)$	O2-O1-Ni1	$118.2(2)$
K-Cg (2)	$2.830(1)$	O1-O2-Ni2	$118.0(2)$
		Ni1-O1-O2-Ni2	$81.41(28)$

$\mathrm{Cg}(1)=$ centroid of the ring carbon atoms C10, C11, C12, C13, C15, C15 (left side); $\mathrm{Cg}(2)=$ centroid of the ring carbon atoms C28, C29, C30, C31, C32, C33 (right side).

6 has been characterized by positive ion ESI-MS spectrometry in THF/MeCN mixture solution as well. The ESI-MS (+) of $\mathbf{6}$ exhibits a prominent signal at $m / z=$ 793.34, (Figure 40), whose mass and isotope distribution pattern corresponds to $[6+\mathrm{H}]^{+}$(calcd $\left.m / z=793.26\right)$. Two peaks for labelling peroxo compounds were observed which shifted to $\mathrm{m} / \mathrm{z}=819.24(6+\mathrm{Na})^{+}$and $835.19(6+\mathrm{K})^{+}$when $\mathbf{6}$ was prepared with isotopically enriched ${ }^{18} \mathrm{O}_{2}$ (Figure 40).

Figure 39: ESI-MS $\left(+\right.$) of 6 in THF/ $\mathrm{CH}_{3} \mathrm{CN}$. The inset shows the experimental (upper) and simulated (lower) isotopic distribution pattern for $[\mathbf{6 + H}]^{+}$.

Figure 40: Experimental $\left({ }^{16} \mathrm{O}_{2}\right.$ and $\left.{ }^{18} \mathrm{O}_{2}\right)$ (upper) and simulated $\left({ }^{16} \mathrm{O}_{2}\right)$ (lower) isotopic distribution pattern for $[6+\mathrm{H}]^{+}$(a) and $[6+\mathrm{Na}]^{+}(b)$.

Figure 41: (a) Comparison of the IR spectra of crystalline material of 6 prepared using ${ }^{16} \mathrm{O}_{2}$ (black) and ${ }^{18} \mathrm{O}_{2}$ (red) in the range of $450 \mathrm{~cm}^{-1}$ to $1000 \mathrm{~cm}^{-1}$; (b) Comparison of the rRaman spectra of crystalline material of 6: prepared using ${ }^{16} \mathrm{O}_{2}$ (black) and ${ }^{18} \mathrm{O}_{2}$ (red) in the range of $400 \mathrm{~cm}^{-1}$ to $1100 \mathrm{~cm}^{-1}$.

Resonance Raman data of crystalline material of $6-{ }^{-16} \mathrm{O}_{2}$ revealed a signal at $720 \mathrm{~cm}^{-1}$, which shift to $680 \mathrm{~cm}^{-1}$ upon ${ }^{18} \mathrm{O}_{2}$ labelled $\left(\Delta^{16} \mathrm{O}_{2}-{ }^{18} \mathrm{O}_{2}=40 \mathrm{~cm}^{-1}\right.$, Figure 41b). However, comparison of IR spectra of 6 prepared using ${ }^{16} \mathrm{O}_{2}$ and ${ }^{18} \mathrm{O}_{2}$ between 450 and $1000 \mathrm{~cm}^{-1}$, no obvious difference was observed. In view of the data from Raman and literature, I assigned the ${ }^{16} \mathrm{O}-{ }^{-16} \mathrm{O}$ stretching vibration mode in 6 of $757 \mathrm{~cm}^{-1}\left(v\left({ }^{18} \mathrm{O}^{-18} \mathrm{O}\right)=714 \mathrm{~cm}^{-1}\right)\left(\Delta^{16} \mathrm{O}_{2}-18 \mathrm{O}_{2}=43 \mathrm{~cm}^{-1}\right.$, Figure 41a).

Figure 42: $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{6}$. The solid red lines represent the best global fit with $P I=$ $2.8 \%(S=1)$ and $T I P=430^{*} 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.

Magnetic susceptibility data for 6 collected in the temperature range from 2295 K in crystalline material, show essentially diamagnetic behavior up to room temperature (Figure 42).

■ Reactivity of 6 towards Na^{+}and PPh_{3}

Cation Exchange. No color change was observed in the reaction of $\mathbf{6}$ with excess $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ in THF-d8 for few days (Scheme 11). However, the ${ }^{1} \mathrm{H}$ NMR spectrum showed the resonance for isopropyl and CH_{3} group in the DIPP substituents changed (Figure 43). It is assigned that a new species was formed. Nevertheless, suitable crystals for x-ray diffraction were obtained from hexane layer into THF $30^{\circ} \mathrm{C}$ in two days. Owing the low resolution as well as disorder, the data of 7 only allowed us to depict a model of its structure similar to 6. In the x-ray crystallography, the Na^{+}cation is fixed by the two DIPP substituents.

Scheme 11: Cation exchange between the K^{+}and Na^{+}.

Figure 43: Comparison the ${ }^{1} \mathrm{H}$ NMR spectra of 6 and 7 in THF-d 8 . Residual solvents are marked with an asterisk (*).

Reaction with $\mathbf{P P h}_{3}$. As expected, $\mathbf{6}$ is a gentle oxygenation reagent as shown by its reaction with PPh_{3} to afford $\mathrm{PPh}_{3}=0$ and an unidentified dinickel species (Scheme 12).

Time depending ${ }^{1} \mathrm{H}$ (Figure 44) and ${ }^{31} \mathrm{P}$ NMR (Figure 45) spectra demonstrate the slow process of conversion from 6 to a new nickel species. After keeping the sample in THF-d8 for two days, characteristic proton resonance of pyrazole of 6 decreased in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 44). Eventually, 6 was completely consumed after few days. In the ${ }^{31} \mathrm{P}$ NMR, a new peak at 23.51 ppm for $\mathrm{PPh}_{3}=\mathrm{O}{ }^{[49]}$ was observed in one hour and gradually increase in the next two days (Figure 45). Same ${ }^{1} \mathrm{H}$ NMR spectrum of the unidentified nickel species was observed from 2 with $\mathrm{NMe}_{3} \rightarrow 0$ also. Related to literature, ${ }^{[36]}$ I presumed that the unidentified new species is a dinickel μ-oxo complex. Recently, the unique
$\mathrm{Ni}^{1 I}(\mu-0) \mathrm{Ni}^{\text {II }}$ core characterized by x-ray diffraction was reported by Xue and co-worker. ${ }^{[50]}$ This research project in our group is still going on.

Scheme 12: Generate new dinuclear nickel(II) species from 2 or 6.

Figure 44: Slow transformation of $\mathbf{6}$ to $\mathbf{K L}^{\mathbf{1}} \mathbf{N i}_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{0})$ in the presence of PPh_{3} at room temperature in THF-d d_{8} demonstrated by stacked ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz). Residual solvents are marked with an asterisk (*).

Figure 45: Time depending consuming of PPh_{3} with 6 at the room temperature in THF-d8 to new species process by stacked ${ }^{31} \mathrm{P}$ NMR spectra (160 MHz).

4.3 Dissociation the peroxo- K^{+}interaction in bimetallic dinickel(II) complex

Scheme 13: Synthetic route for 8 .

In the solid state of $\mathbf{6}$, the K^{+}cation has interaction with the peroxo ligand. To further assess the electronic structure of peroxo without the effect of the alkali metal cations, 6 was treated with (18-crown-6), [2,2,2]cryptand or DB18C6 to separate the K^{+}cation from the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{O}_{2}\right)\right]^{-}$complex anion. No obvious color change was associated with these reactions, but the ionic products become poorly soluble in THF (Scheme 13); these differences in solubility suggest that the K^{+}cation remain closely associated with the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{O}_{2}\right)\right]^{-}$anion and that contact ion pairs are present in THF solutions of $\mathbf{8}$. Unfortunately, all crystallizing attempts for x-ray diffraction using (18-crown-6) and [2,2,2]cryptand failed. Suitable crystals for x-ray diffraction using DB18C6 were obtained by layering mixture solvent $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexane}$ on a solution of $\mathbf{8}$ in THF at $-30^{\circ} \mathrm{C}$.

It became obvious that, similar to the $\mathbf{6}$, the product is composed of the ligandnickel unit, binding a peroxo ligand entity. In $\mathbf{8}$, the potassium is situated in the DB18C6 ligand and coordinated by two more THF ligands. The core structure of the "naked" complex anion is showed in Figure 46 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 9. The distance of $\mathrm{Ni} \cdots \mathrm{Ni}$ and peroxo ligand of $3.880(7) \AA$ and $1.465(2) \AA$, respectively, are shorter than 6 . And the $\mathrm{Ni}-\mathrm{O}-\mathrm{O}-\mathrm{Ni}$
torsion angle around the $0-0$ axis is defined as $89.92(1)^{\circ}$, which is close to a right angle $\left(90^{\circ}\right)$.
a

b

Figure 46: Molecular structure (50\% probability thermal ellipsoids) of the anion of 8 (a) and 8 (b). Most hydrogen atoms omitted for clarity. Symmetry transformations used to generate equivalent atoms: (') $x, 3 / 2-y, 1-z$.

Table 9: Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 8.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-O1	$1.834(2)$	O1-Ni1-N1	$91.08(8)$
Ni1-N1	$1.843(2)$	O1-Ni1-N3	$90.90(8)$
Ni1-N3	$1.894(2)$	N1-Ni1-N3	$175.89(9)$
Ni1-N2	$1.906(2)$	O1-Ni1-N2	$172.80(8)$
O1-O1'	$1.465(2)$	N1-Ni1-N2	$82.16(8)$
Ni1...Ni1'	$3.791(7)$	N3-Ni1-N2	$95.69(8)$
		O1'-O1-Ni1	$113.81(12)$
		Ni1-01-O1'-Ni1'	$89.92(1)$

8 is a diamagnetic compound and should lead to a rise of sharp signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in the common chemical shift range at RT. However, at RT (Figure 47) or even at low temperature (Figure A11), the ligand system of $\mathbf{8}$ has broad peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum. The resonance associated to the isopropyl CH function was overlaid by the solvent (THF- d_{8}), but was distinguished by means of a ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY experiment. (Figure A14)

Figure 47: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in THF-d8 (400 MHz) at RT. Residual solvents are marked with an asterisk (*).

Figure 48: (a) UV-Vis spectra of 2, 6 and 8; (b) Variable temperatures (293 K-193 K) UV-Vis spectra in THF of 8.

A new absorption band in the UV-Vis spectrum (Figure 48a) at $512 \mathrm{~nm}(\varepsilon \approx 240$ $\left.\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ in 6 and $518 \mathrm{~nm}\left(\varepsilon \approx 320 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ in 8 grew up after insert the dioxygen into 2 or 4, which is attributed to the $\mathrm{O}_{2}^{2-} \rightarrow \mathrm{Ni}(\mathrm{II})$ charge transfer (CT) transitions. A similar band was reported in the complexes XVI and XVIII (Figure 34). The band at $380 \mathrm{~nm}\left(\varepsilon \approx 700 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and a shoulder around $410 \mathrm{~nm}(\varepsilon \approx 530$ $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$) in 8 were assigned to the ligand $\pi \rightarrow \pi^{*}$ transitions. With decreasing temperature (Figure 48b), the wavelength at 518 nm increased, which suggested the change in torsion angle ($\mathrm{Ni}-\mathrm{OO}-\mathrm{Ni}$) and molecule orbital overlap of nickel and oxygen.

Figure 49: (a) IR spectrum of $8-{ }^{-16} \mathrm{O}_{2}$; (b) IR spectrum of $8-{ }^{-18} \mathrm{O}_{2}$; (c) Comparison of the IR spectra of $\mathbf{8}$: Without (black) and after ${ }^{18} 0$ labelling (red) in the range of $1000 \mathrm{~cm}^{-1}$ to $600 \mathrm{~cm}^{-1}$. (d) Comparison of the rRaman spectra of 8 (Normalized): Without (black) and after ${ }^{18} 0$ labelling (red) in the range of $400 \mathrm{~cm}^{-1}$ to $1000 \mathrm{~cm}^{-1}$.

The resonance Raman vibration of $0-0$ stretching was observed at $755 \mathrm{~cm}^{-1}$ $\left(v\left({ }^{18} \mathrm{O}^{-18} \mathrm{O}\right)=715 \mathrm{~cm}^{-1}\right)\left(\Delta^{16} \mathrm{O}_{2}-16 \mathrm{O}_{2}=40 \mathrm{~cm}^{-1}\right.$, Figure 49d), which is blue-shifted compared to 6 with $0-0$ stretching vibration at $720 \mathrm{~cm}^{-1}$. The $0-0$ stretching vibration in 8 appears at $780 \mathrm{~cm}^{-1}$ in IR spectrum ($v\left({ }^{18} 0-180=728 \mathrm{~cm}^{-1}\right)$ $\left(\Delta^{16} \mathrm{O}_{2}-18 \mathrm{O}_{2}=52 \mathrm{~cm}^{-1}\right.$, Figure 49c). The differences of 6 and $\mathbf{8}$ in IR and Raman spectra indicate that the peroxo ligand acts as a weaker electron acceptor without potassium ion interaction. The stronger σ donor interaction of the bridging peroxo removes more electron density from the antibonding $\mathrm{O}_{2}{ }^{2-} \pi^{*}$ orbital, resulting in a stronger 0-0 bond. Interestingly, the observed 0-0 stretching frequency of $\mathbf{6}$ and $\mathbf{8}$ are significantly lower than that other reported "side-on" Ni-peroxo compounds (Table 7). ${ }^{[39,42]}$ Nevertheless, in comparison with the previously reported "end-on" bridging dinickel peroxo complexes XV ${ }^{[41]}$ and

XVII[${ }^{[4]]}$, the 0-0 resonance Raman vibrational bands for $\mathbf{6}$ and $\mathbf{8}$ were found at similar wave-numbers.

The electronic structure of $\mathbf{8}$ is supported by the results of DFT studies (Figure 50; B3LYP hybrid functional, def2-tzvp and def2tzvp/j basis sets). The large $\mathrm{Ni}-\mathrm{O}-\mathrm{O}-\mathrm{Ni}$ torsion angle and $\mathrm{O}-\mathrm{O}$ distance in 6 and 8 are 81.41° and 89.91°, $1.482 \AA$ and $1.468 \AA$, respectively. Whereas in the DFT calculation, the torsion angle of $\mathrm{Ni}-\mathrm{O}-\mathrm{O}-\mathrm{Ni}$ is 83.7° and $\mathrm{O}-\mathrm{O}$ bond distance is determined as $1.395 \AA$ (Table 10). A possible explanation for these differences is because of the K^{+}cation position in the complex. The calculations of IR spectrum for 0-0 stretching frequency in DFT are much longer than the experimental data of 6 and 8 (Table 11). The reason of the difference is stay ambiguous.

Figure 50: Calculated of molecular structure of the anion of 8.

Figure 51: Calculated IR spectrum of the anion of 8.
Table 10: Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ of the anion for 8.

	$d(\mathrm{O}-\mathrm{O}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\varphi(\mathrm{Ni}-\mathrm{O}-\mathrm{O}-\mathrm{Ni}) /{ }^{\circ}$
EXP (6)	1.482	3.880	81.41
EXP (8)	1.468	3.791	89.91
DFT	1.395	3.836	83.7

Table 11: $v(0 \cdots 0)$ (IR) of the anion for 8.

	$v\left({ }^{16} \mathrm{O}^{-16} 0\right) / \mathrm{cm}^{-1}$	$v\left({ }^{18} \mathrm{O}^{-18} 0\right) / \mathrm{cm}^{-1}$	$\Delta v / \mathrm{cm}$
EXP (6)	757	714	43
EXP (8)	780	728	52
DFT	857	810	48

4.4 Synthesis of an $\boldsymbol{\mu}$-1,2-superoxo bridged dinuclear nickel(II) complex

During the synthesis of 6, a paramagnetic shift was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum when 2 react with excess oxygen. To understand and identify the paramagnetic product, UV-Vis spectroscopy was employed to distinguish the new species.

Figure 52: (a): VT UV-Vis spectra changes upon cooling from 293 K to 183 K in THF solution. (b) Plots of absorption at different temperatures.

The electronic spectra of 9 displays features at $312\left(\varepsilon \approx 650 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and $364(\varepsilon$ $\approx 880 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1} \mathrm{~J}$ n, which are assigned ligand $\pi \rightarrow \pi^{*}$ transfer. However, three weak bands at $461\left(\varepsilon \approx 200 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and $560\left(\varepsilon \approx 130 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right) \mathrm{nm}$ as well as $720\left(\varepsilon \approx 20 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right) \mathrm{nm}$ are similar to that of complex XIII (Figure 33). The most likely explanation for the obtained UV-Vis spectrum is the formation of a superoxo dinickel complex while 2 reacts with excess dioxygen.

Scheme 14: Synthetic route for 9.
Suitable crystals for x -ray diffraction were obtained by layering hexane on a solution of 9 in THF at $-30^{\circ} \mathrm{C}$. The molecular structure of 9 is shown in Figure 53 and selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in Table 12. 9 crystallizes in the monoclinic space group $P 2_{1} /$ c. As shown in Figure 53, an almost planar six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{O}_{2}\right\}$ ring was formed by the two-nickel atoms, the nitrogen atoms from pyrazolate ligand and the oxygen atom from superoxo ligand. The two nickel(II) ions are hosted in the two $\left\{\mathrm{N}_{3}\right\}$-tridentate binding sites of the trianionic ligand scaffold, bridged by the pyrazolate and a peroxo ligand. The two nickel(II) ions distance of 3.810 (5) Å in $\mathbf{9}$ is similar to $\mathbf{8}$ of 3.791(5) \AA, which are all shorter than 6 of $3.880(8) \AA$. The Ni-O-O-Ni torsion angle around the $\mathrm{O}-\mathrm{O}$ axis is defined as $22.71(32)^{\circ}$. The remarkable short $0-0$ bond length of $1.326(2) \AA$, demonstrates superoxo character. In contrast, peroxo ligands have 0-0 ligands bond lengths longer than 1.40 Å.

The superoxo character of $\mathbf{9}$ was confirmed by spectroscopies measurements and DFT calculation. Resonance Raman data of crystalline material of complex 9-16 O_{2} revealed a signal at $1007 \mathrm{~cm}^{-1}$, which shift to $951 \mathrm{~cm}^{-1}$ upon ${ }^{18} \mathrm{O}_{2}$ labelled. $\left(\Delta^{16} \mathrm{O}_{2}{ }^{-18} \mathrm{O}_{2}=56 \mathrm{~cm}^{-1}\right.$, Figure 54b). The superoxo nature of 9 is also consistent with the ${ }^{16} 0-160$ stretching vibration mode of $982 \mathrm{~cm}-1\left(\nu\left({ }^{18} 0-180\right)=934 \mathrm{~cm}^{-1}\right)$.

b

Figure 53: Molecular structure (50\% probability thermal ellipsoids) of 9. All hydrogen atoms omitted for clarity.

Table 12: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 9.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.832(2)$	N1-Ni1-01	$94.65(7)$
Ni1-O1	$1.834(2)$	N1-Ni1-N3	$83.43(7)$
Ni1-N3	$1.881(2)$	O1-Ni1-N3	$175.16(8)$
Ni1-N4	$1.901(2)$	N1-Ni1-N4	$175.88(8)$
Ni2-O2	$1.828(2)$	O1-Ni1-N4	$87.95(8)$
Ni2-N2	$1.837(2)$	N3-Ni1-N4	$94.22(7)$
Ni2-N5	$1.884(2)$	O2-Ni2-N2	$94.99(7)$
Ni2-N6	$1.907(2)$	O2-Ni2-N5	$175.87(8)$
O1-O2	$1.326(2)$	N2-Ni2-N5	$82.92(7)$
Ni1 $\cdots \mathrm{Ni} 2$	$3.810(5)$	O2-Ni2-N6	$87.36(7)$
		N2-Ni2-N6	$177.57(7)$
		N5-Ni2-N6	$94.78(7)$
		O2-O1-Ni1	$132.78(14)$
		O1-O2-Ni2	$131.01(14)$
		Ni1-O1-O2-Ni2	$22.71(32)$

Figure 54: (a) Comparison of the IR spectra of crystalline material of 9 prepared using ${ }^{16} \mathrm{O}_{2}$ (black) and ${ }^{18} \mathrm{O}_{2}$ (red) in the range of $500 \mathrm{~cm}^{-1}$ to $1500 \mathrm{~cm}^{-1}$; (b) Comparison of the Raman spectra of crystalline material of 9: prepared using ${ }^{16} \mathrm{O}_{2}$ (black) and ${ }^{18} \mathrm{O}_{2}$ (red) in the range of $800 \mathrm{~cm}^{-1}$ to $1150 \mathrm{~cm}^{-1}$.

9 has been characterized by positive ion ESI-MS spectrometry in THF/ $/ \mathrm{CH}_{3} \mathrm{CN}$ solution as well. The ESI-MS (+) of 9 shows three dominating peaks for the ions, deriving from 9 together with different cation (Figure 55) ($\mathrm{m} / \mathrm{z}=792.4$ for $[9+\mathrm{K}]^{+}, 776.4$ for $[\mathbf{9 + N a}]^{+}$and 754.3 for $[\mathbf{9 + H}]^{+}$). When isotopically labelled $\mathbf{9}$ is prepared, the mass peak corresponding to 9 shifted to $\mathrm{m} / \mathrm{z}=796.4$ (Figure 56b).

Figure 55: ESI-MS (positive) of 9 in THF/ $\mathrm{CH}_{3} \mathrm{CN}$. The inset shows the experimental (upper) and simulated (lower) isotopic distribution pattern for $[9+\mathrm{K}]^{+}$.

Figure 56: Experimental $\left({ }^{16} \mathrm{O}_{2}\right.$ and $\left.{ }^{18} \mathrm{O}_{2}\right)$ (upper) and simulated $\left({ }^{16} \mathrm{O}_{2}\right)$ (lower) isotopic distribution pattern for and [9+Na] (\mathbf{a} and \mathbf{b}).

Figure 57: (a) X-band EPR spectra (black line) of 9 in THF at 145 K . Frequency = 9.41 GHz , power $=15 \mathrm{mV}$. Simulations (red trace) provide $g_{\mathrm{av}}=2.07$; (b) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of 2-295 K at 0.5 T for solid samples of superoxo. The solid red lines represent the best global fit for data sets with S $=1 / 2$ and $g=2.10$. The decrease of $\chi_{\mathrm{m}} T$ below 20 K is due to the combined effect of field saturation and weak intermolecular interaction according to a Weiss temperature of about $\Theta=-1.7 \mathrm{~K}$.

The X-band EPR measurement in a frozen THF at 154 K of $\mathbf{9}$ in crystalline material reveals a paramagnetic ground state with spin of $\mathrm{S}=1 / 2$ (Figure 57a). The rhombic spectrum has principal g values of 2.02, 2.06 and 2.12, and the average g $=2.07$. Meanwhile, the second species (6% amount) of paramagnetic substance was observed in the EPR spectrum and g value is at 2.07, which is similar to the $\mathrm{KO}_{2} g$ value at 160 K in literature. ${ }^{[51]}$ This first species average g value is in agreement with the effective magnetic moment observed for a solid sample in the temperature range $5-300 \mathrm{~K}\left(0.41 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}\right.$, corresponding to $\mu_{\mathrm{eff}}=1.81 \mu_{\mathrm{B}}$ with $g_{\mathrm{av}}=2.100$. Figure 57b). The anisotropic g values of the first species are quite closely to complex VIII with $\mathrm{g}=$ [2.138, 2.116 and 2.067]. Therefore, we assume that the unpaired electron is mostly located on the superoxo ligand.

Figure 58: Cyclic voltammogram of 9 in THF $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as an electrolyte at a scan rate of $50,100,200,400$ and $800 \mathrm{mV} \cdot \mathrm{s}^{-1} \mathrm{vs} . \mathrm{Fc}^{2} / \mathrm{Fc}^{+}$.

Cyclic voltammetry (CV) of $\mathbf{9}$ in a 0.1 M solution of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ in THF at RT showed a reversible redox wave of scan of $100 \mathrm{mV} / \mathrm{s}^{-1}$ at $E_{1 / 2}=-1.22 \mathrm{~V}\left(\mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, as well as an irreversible oxidation at higher potential (around +280 mV) (Figure 58). It indicates that 9 may be reduced by one electron to the peroxo dinickel complex. The similar behavior was observed in complex XIII. ${ }^{[39]}$ Reaction of 9 with elemental potassium results in a rapid color change from brown to red at room temperature. The final product 6 was identified by ${ }^{1} \mathrm{H}$ NMR spectrum after the work-up.

Figure 59: Spin density plot of 9. Mulliken Spin Population: Ni1 $=0.080426$, Ni2 $=0.079847,01=0.398559,02=0.399162 .{ }^{*}$ Contour value: 0.08 .

Figure 60: Calculated IR spectrum of 9.

Table 13: Selected distance (\AA) and angles $\left({ }^{\circ}\right)$ for 9.

	$d(\mathrm{O}-\mathrm{O}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\varphi(\mathrm{Ni}-\mathrm{O}-\mathrm{O}-\mathrm{Ni}) /{ }^{\circ}$
Exp	1.326	3.810	22.7
DFT *	1.357	3.838	34.3

Table 14: $v(0 \cdots 0)($ IR $)$ for 9.

	$\nu\left({ }^{16} \mathrm{O}-{ }^{-16} \mathrm{O}\right) / \mathrm{cm}^{-1}$	$\nu\left({ }^{18} \mathrm{O}-{ }^{-18} \mathrm{O}\right) / \mathrm{cm}^{-1}$	$\Delta \nu / \mathrm{cm}^{-1}$
Exp	982	934	48
DFT *	950	895	54

The electronic nature of $\mathbf{9}$ as suggested by its geometric structure and magnetic properties was also confirmed by DFT calculations (Figure 59). The energy-minimized DFT calculated structure of $\mathbf{9}$ is in good agreement with that obtained by x-ray diffraction. The calculations revealed that the HOMO of $\mathbf{9}$ is the π^{*} orbital located on the superoxo ligand. The unpaired electron can be estimated at the Ni center (15%), and in the superoxo ligand (around 80\%). As shown in Table 13, the bond lengths of the superoxo ligand and the distance between the two nickel atoms are $1.357 \AA$ and 3.838 \AA, respectively. They are longer than the experimentally determined values of 1.326 and $3.810 \AA$. For the ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ dioxygen stretching-vibration a value of $950 \mathrm{~cm}^{-1}$ was calculated compared to experimental data $\left(982 \mathrm{~cm}^{-1}\right)$ as it is red shifted. (Table 14 and Figure 60)

4.5 Cleavage the oxygen-oxygen bond

Scheme 15: Cleavage the 0-0 bond from 6 and 9 in THF.
It has been proven that the hydroperoxo metal complex (especially in copper) can be obtained from hydrogen atom abstraction from superoxo metal species or protonation from peroxo metal species. ${ }^{[52]}$ The copper-hydroperoxo species spur us to synthesized hydroperoxo nickel complex from 6 and 9 . And, until now, only one hydroperoxo nickel example in structural characterization was reported by Gade in 2015. [47]

Reaction of $\mathbf{6}$ with [H-Lut]OTf or treatment of 9 with TEMPO-H in THF at RT or even at $-78^{\circ} \mathrm{C}$ result in color change in 20 mins (Scheme 15). Dark green crystals were obtained from hexane layered into THF at $-30^{\circ} \mathrm{C}$ in two days. In the solid state, the green compound is dinuclear nickel(II) hydroxide complex (11). Monitoring the hydrogen atom transfer (HAT) or protonation reaction by UV-Vis spectra, no intermediate was observed in these procedures. However, treatment of
the $\mathbf{6}$ with [H -Lut]OTf in $\mathrm{CH}_{3} \mathrm{CN}$ at 243 K (Figure 61), the band at 512 assigned to the $\mathrm{O}_{2}{ }^{2-\rightarrow} \mathrm{Ni}$ charge transfer shifted to 460 nm , and a new band at 325 nm come out. Resonance Raman spectra of the hydroperoxo compound that were recorded using a 457 nm laser displayed only a weak band in the $\mathrm{CH}_{3} \mathrm{CN}$ solution, and neither the assignment of the $\mathrm{Ni}-\mathrm{O}$ nor of the $\mathrm{O}-\mathrm{O}$ vibrational modes was possible by labeling experiments using ${ }^{18} \mathrm{O}_{2}$.

Figure 61: Monitoring the $\mathbf{6}$ with [$\mathrm{H}-\mathrm{Lut}] \mathrm{OTf}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at 243 K .

Complex 11 crystallizes in the $C 2 / c$ space group. The distance of two nickel of $3.47 \AA$ is shorter than 6 and 9 (Figure 62). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the proton of the hydroxide occurs at -7.25 ppm in THF-d d_{8} (Figure 63).
a

b

Figure 62: Molecular structure (30\% probability thermal ellipsoids) of 11. Most hydrogen atoms omitted for clarity, except for the OH unit.
$\stackrel{\text { º }}{\substack{1}}$
©

Figure 63: ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathbf{1 1}$ in THF-d8. Residual solvents are marked (*).

Figure 64: IR spectra of $\mathbf{1 1}$ (a) and 11-OD (b) after exchange with $\mathrm{D}_{2} \mathrm{O}$.

Exchange with $\mathrm{D}_{2} \mathrm{O}$ was proven by means of ${ }^{1} \mathrm{H}$ NMR and IR spectroscopy. After the addition of five equivalents of $\mathrm{D}_{2} 0$ to a water free sample of $\mathbf{1 1}$ in THF- D_{8}, the associated signal ($3622 \mathrm{~cm}^{-1}$) has vanished immediately, Upon exchange with $\mathrm{D}_{2} \mathrm{O}$ the signal of hydroxide vanishes, while a new sharp band emerges at $2633 \mathrm{~cm}^{-1}(\nu(\mathrm{O}-\mathrm{H}) / v(\mathrm{O}-\mathrm{D}) \approx 1.38)$ which is attributed to the O-D stretching vibration (Figure 64b)

4.6 Summary

Scheme 16: Transformation between the complex 6, 7, 8, 9 and 11.
From last chapter, we can conclude that $\left[\mathrm{L}^{1} \mathrm{Nil}_{2}(\mathrm{H})_{2}\right]^{-}$complex in $\mathbf{2}$ can be viewed as a masked form of a reactive, antiferromagnetically coupled $\left.\left[\mathrm{L}^{1} \mathrm{Ni}^{\mathrm{I}}\right]^{2}\right]^{-}$. Thus, definitive elucidation of the peroxo binding mode in $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mu-\eta^{1}, \eta^{1}-\mathrm{O}_{2}\right)\right]$ was successfully prepared from 2 with dioxygen, revealing an "end-on" peroxo species 6 with a cis-geometry. In addition, $\mathbf{6}$ can further react with dioxygen resulting in a superoxo complex 9. The two thermal stable peroxo and superoxo dinickel(II) complexes exhibit a μ-1,2- bonding geometry and have been investigated by UV-vis-, resonance Raman-, infrared-, EPR spectroscopies, SQUID measurements and DFT calculation. From the $\mathbf{6 / 9}$ redox potential in combination with chemical reduction and oxidation agents with $\mathrm{K} / \mathrm{O}_{2}$, interconversion of the μ-1,2-peroxo and superoxo intermediates had been done successfully. Meanwhile, a "naked" peroxo complex 9 was obtained from 6 with DB18C6 in THF solution. Ongoing works focus on continuing to develop the peroxo and superoxo reactivity.

Chapter 5 Disulfur binding to the dinuclear nickel(II)

dihydride and stepwise transformation to the sul-

fide-ligand-radical

Abstract

A new $\mu-1,2$ - motif bimetallic dinuclear nickel(II) disulphide was isolated after reacting the $\mathrm{K}\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)\right]$ (2) with elemental sulfur with concomitant release of H_{2} and characterized by x-ray diffraction. $\mathrm{K}\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mu-\eta^{1}, \eta^{1}-\mathrm{S}_{2}\right)\right]$ (12) shows reactivity towards $\mathrm{H}_{2} \mathrm{O}, \mathrm{PPh}_{3}$ and O_{2} and result in the corresponding hydrosulfide (SH^{-}) (13), μ-sulfide (S^{2-}) (14), and μ-sulfide radical (S^{-}) (16) complexes in appropriate condition. The thiol (SMe-) (15) nickel(II) complex was gained from μ-sulfide (S^{2-}) nickel complex (16) with MeI. In addition, interconversions between $\mathrm{S}_{2}{ }^{2-}$, S^{2-} and S^{-}have been done successfully from chemical reduction or oxidation agents.

5.1 Introduction

Coordination chemistry of the transition metals bearing the ligands $\mathrm{SH}^{-}, \mathrm{S}^{2-}, \mathrm{S}^{2-}$, $\mathrm{S}_{2}{ }^{2-}$, or $\mathrm{S}_{2}{ }^{3-}$ found widespread interesting during the last two decade because they could serve as models for biological system. Understanding the nature of the metal-sulfur linkages at active sites can offer insight on ways to improve catalysis and provide a better understanding of cluster formation and cluster interconversion reactions in general. Therefore, many multinuclear and binuclear complexes coordinating sulfur have been described, in which the metal atoms are bridged by unsubstituted sulfur atoms. ${ }^{[53]}$ Nickel sulfides, in particular, are key components of natural hydrogenases. ${ }^{[54]}$

In these sulfur motifs, to the best of our knowledge, only one $\mu-1,2$ disulfide nickel complex (Figure 65, XXI) was reported in literature with crystal structure, and some other examples of "end-on" motif (Figure 65, XX) are in spectroscopies characteristic so far. [55,56]

Wolf ${ }^{2014}$

XXI
Driess ${ }^{2008}$

Figure 65: Selected examples of nickel(II) $\mathrm{S}_{2}{ }^{2-}$ or $\mathrm{S}_{2}{ }^{-}$complexes.

It is less known about the complexes containing the paramagnetic supersulfide $\mathrm{S}_{2}{ }^{-}$ligand, despite the fact the species can be key intermediates in met-al-mediated X-X bond activation. ${ }^{[57]}$ Interesting nickel supersulfide $\mathrm{S}_{2}{ }^{-}$complex (Figure 65, XXII) supported by β-diketiminato ligand has been reported by Driess et.al. in 2008 and exhibit sulfur-ligand-centered radical character. [53e] The compound featuring a four-member, rectangular-shaped S_{4} ring in the solid state (Figure 65, XXIII). Sulfur transfer from XXII to PPh_{3} furnishes $\mathrm{PPh}_{3}=\mathrm{S}$ and the corresponding disulfide nickel complex (Figure 65, XXIV) in quantitative yield.

Some terminal sulfide (S^{2-}) complexes are known with transition metals ${ }^{[58]}$ with different ligand systems. Nickel and iron linear sulfide complexes were reported by the group of Holland ${ }^{[59]}$ and Limberg ${ }^{[60]}$, respectively (Figure 66). The existence of the $[\mathrm{Ni}=\mathrm{S}]$ intermediate has been proven by Jones, and the sulfide-bridge-radical intermediate could react with substances containing nitrones. ${ }^{[61]}$ Driess and co-workers reported that the $[\mathrm{Ni}=\mathrm{S}]$ intermediate rapidly dimerizes to formed the disulfide bridged complex (Figure 65, XXIII) ${ }^{[53 e]}$. However, the only structural characterized $[\mathrm{Ni}=\mathrm{S}]$ intermediate was introduced by Hayton and coworker in 2015 (Figure 66, XXVI).[62] The short Ni-S distance of 2.064(6) Å-2.084(1) \AA are reflecting a partial multiple-bond character between the nickel and sulfur. The new nickel sulfide radical compound reacts with $\mathrm{N}_{2} \mathrm{O},{ }^{[62]} \mathrm{CS}_{2},{ }^{[63]} \mathrm{CO}{ }^{[64]}$ and $\mathrm{NO}{ }^{[64]}$, which led to the formation of novel nickel sulfide species complexes.

$\mathrm{M}=\mathrm{Fe}, \mathrm{Ni}$

L = 18C6, DB18C6 and Cryptand

Figure 66: Selected examples of $\mathrm{Ni}^{\mathrm{II}} \mathrm{S}^{2-}$ (XXV) or S^{-}(XXVI) complexes. ${ }^{[59,60]}$

Reduction or oxidation of the disulfide motif from S_{2} to $\mathrm{S}_{2}{ }^{2-}, \mathrm{S}^{2-}$ and S^{-}requires two, four or one electrons (Scheme 17). In literature, mostly they only talked about the sulfur substance from S_{8} to $\mathrm{S}_{2}{ }^{2-}, \mathrm{S}_{2}{ }^{2-}$ to S^{2-} or S^{2-} to S^{--}directly. ${ }^{[53-64]}$ Therefore, how to reduce the S_{2} to S^{-}step by step is an interesting work. Hence, we designed a new system, which can be used to study the "step-by-step" transformation with dinickel metals.

Scheme 17: Stepwise transformation of the dichalcogen S_{2} substance.

5.2. Synthesis of a $\boldsymbol{\mu}$-1,2-disulphide dinuclear nickel(II) complex

Scheme 18: Synthetic route for 12.

The structural novelty of the nickel oxygen site provide ample inspiration for synthetic sulfur model studies, particularly those aimed at understanding the reactivity of sulfur ligated.

Treatment of a THF solution of $\mathbf{2}$ with stoichiometry elemental sulfur results in a rapid color change from orange to blood red (Scheme 18) and formation of a new species identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 67). A new resonance corresponding with H_{2} is observed in ${ }^{1} \mathrm{H}$ NMR spectra of reaction mixtures, implying H_{2} evolution upon reaction of $\mathbf{2}^{-}$with sulfur. When 2-D was treated with
elemental sulfur and the reaction monitored by ${ }^{2} \mathrm{H}$ NMR spectroscopy, the formation of D_{2} was clearly detected. The new species is diamagnetic and gives rise to sharp signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in the typical chemical shift range at RT for L^{3-} ligands (Figure 67). The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound revealed a symmetric species as expected in solution state. The resonance associated to the isopropyl CH function was overlaid by residual solvent (THF-d ${ }^{2}$), but was distinguished by means of a ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY experiment (Figure A21).

Figure 67: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 12 in THF- d_{8} at room temperature. Residual solvents are marked with an asterisk (*). The inset shows ${ }^{2} \mathrm{H}$ NMR spectrum ($77 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{2}$ with elemental sulfur.

Red plate-like crystals suitable for x -ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 2}$ in THF at $-30^{\circ} \mathrm{C}$ in 80% yield. As expected, the new species is similar to 6 . As far as we are aware, 12 is the first μ-1,2-disulphide bimetallic nuclear nickel complex with K^{+}cation. $\mathbf{1 2}$ crystallized in the monoclinic space group $P 2_{1} / n$ with four molecules in the unit cell. The molecular structure of $\mathbf{1 2}$ is shown in Figure 68 and selected bond lengths (\AA) and bond angles (${ }^{\circ}$) are listed in Table 15. The nickel centers are coordinated in a slightly distorted square-planar fashion with the sum angles being 360.14° and 361.02°, respectively. Each nickel center is hosted within the nitrogen atom from the pyrazolate
ligand system and the disulfide ligand. The $\mathrm{Ni} \cdots \mathrm{Ni}$ distance of 4.290 (2) \AA is longer than the previously discussed $\mathbf{2}$ and $\mathbf{6}$, which is related to the large van der waals radius of sulfur as for hydrogen and oxygen. The S-S distance of 2.036(3) Å is similar to XXI (Figure 65) $(2.045(1) \AA)^{[56]}$, which implies a less activated S-S bond (compared with S_{8}) in the disulphide bridge, possibly due to a reduced back-donation from the nickel centers compared to those disulphide nickel complexes. The Ni-S distances of $2.167(2) \AA$ and $2.160(2) \AA$ in 12 are close to the Ni-S distance in XXI. ${ }^{[56]}$ The K^{+}is sandwiched between the two aryl groups of the DIPP in 12, which is similar to $\mathbf{2}$ and $\mathbf{6}$ also. The aryl(center)-alkali metal distances amount $3.357(2) \AA$ and 3.259 (2) \AA, which implies cation- π interaction. The potassium cation is also tightly coordinated to both disulfide atoms (S1, S2), with K1-S1 and K1-S2 separation of 3.103(2) Å and 3.157(2) Å, respectively. The Ni1-S1-S2-Ni2 torsion angle $81.20(2)^{\circ}$ is similar to the angle observed in 6 with 81.41(3) ${ }^{\circ}$.

b

Figure 68: Molecular structure (50\% probability thermal ellipsoids) of 12. All hydrogen atoms omitted for clarity.

Table 15: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 12.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N3	$1.915(5)$	N3-Ni1-N4	$92.4(2)$
Ni1-N4	$1.925(5)$	N3-Ni1-N1	$84.9(2)$
Ni1-N1	$1.928(6)$	N4-Ni1-N1	$177.1(2)$
Ni2-N5	$1.904(5)$	N3-Ni1-S1	$170.03(2)$
Ni2-N6	$1.914(6)$	N4-Ni1-S1	$92.41(2)$
Ni2-N2	$1.931(6)$	N1-Ni1-S1	$90.41(2)$

Ni1-S1	$2.167(2)$	N5-Ni2-N6	$93.8(2)$
Ni2-S2	$2.160(2)$	N5-Ni2-N2	$84.4(2)$
S1-S2	$2.036(3)$	N6-Ni2-N2	$174.1(2)$
K1-S1	$3.103(3)$	N5-Ni2-S2	$167.80(2)$
K1-S2	$3.157(3)$	N6-Ni2-S2	$92.51(2)$
Ni1 $\cdots \mathrm{Ni} 2$	$4.290(2)$	N2-Ni2-S2	$90.38(2)$
K1-Cg(1)	$3.357(3)$	Ni1-S1-S2	$108.48(1)$
K1-Cg(2)	$3.259(3)$	Ni2-S2-S1	$106.89(1)$
		S1-K1-S2	$37.95(7)$
		Ni1-S1-S2-Ni2	$81.20(2)$

$\mathrm{Cg}(1)=$ centroid of the ring carbon atoms C10, C11, C12, C13, C15, C15 (left side); $\mathrm{Cg}(2)=$ centroid of the ring carbon atoms C28, C29, C30, C31, C32, C33 (right side).

Figure 69: (a) UV-Vis spectra of the 12 at different temperatures ($293 \mathrm{~K}-203 \mathrm{~K}$) in THF; (b) Plots of the absorption bands at different temperatures.

Further analysis data have done by UV-Vis, IR and Raman spectroscopy for 12. The UV-Vis spectrum of $\mathbf{1 2}$ displays an intense band at $\lambda_{\max }=465 \mathrm{~nm}(\varepsilon \approx 130$ $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$) and a similar intense band at $\sim 520 \mathrm{~nm}\left(\varepsilon \approx 149 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ was observed (Figure 69a). It is tentatively assigned to the disulfide $\pi_{\sigma}^{*} \rightarrow \mathrm{Ni}^{\mathrm{II}}$ and $\pi_{v}^{*} \rightarrow \mathrm{Ni}^{\text {II }} \mathrm{d}_{x^{2}-y^{2}}{ }^{2}$ charge-transfer (CT) transitions, respectively, from comparison with the absorption spectra of analogous $\mathrm{Cu}_{2}\left(\mu-\eta^{1}, \eta^{1}-\mathrm{S}_{2}\right){ }^{[65]}$.

■ Reactivity. Exposure of 12 to air affords a gradual color change from blood red to brown in two hours. ${ }^{1} \mathrm{H}$ NMR spectroscopy indicates that the brown complex is a hydrosulfide-bridged complex. The result will be discussed in chapter

5.3.

Meanwhile, sulfur transfer from 12 to PPh_{3} furnishes $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}$ and the corresponding dinuclear nickel sulfide 14 in quantitative yield (Scheme 19). Time dependent ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra demonstrate the slow conversion from 12 to 14. During two days, the characteristic proton resonances for pyrazole of $\mathbf{1 2}$ gradually decrease (Figure 70). In the ${ }^{31} \mathrm{P}$ NMR, a new peak for $\mathrm{S}=\mathrm{PPh}_{3}$ at 42.16 ppm was observed in one hour and gradually increased in the next two days (Figure 71). Eventually, 12 was completely consumed after three days. The x-ray structure of 14 will be discussed in chapter 5.4.

Scheme 19: Reaction of 12 with PPh_{3} in THF-d ${ }_{8}$.

Figure 70: ${ }^{1} \mathrm{H}$ NMR illustrates slow conversion of $\mathbf{1 2}$ to $\mathbf{1 4}$ in the presence of PPh_{3} at RT in THF- d_{8} demonstrated. Residual solvents are marked with an asterisk (*).

Figure 71: ${ }^{31} \mathrm{P}$ NMR illustrates slow conversion of PPh_{3} to $\mathrm{PPh}_{3}=\mathrm{S}$ at RT in THF-d d_{8} of 12 to 14.

Figure 72: (a) Monitoring the band at 450 and 520 nm in UV-vis spectroscopy from 12 with PPh_{3}; (b) changing the absorbance of 12 with PPh_{3} at 450 and 520 nm upon the time consuming.

Monitoring the reactivity of $\mathbf{1 2}$ with PPh_{3} in UV-Vis spectroscopy, the absorption bands at 450 and 520 nm which are belong to the disulphide $\pi_{\sigma}{ }_{\sigma} \rightarrow \mathrm{Ni}^{\mathrm{II}}$ and $\pi^{*}{ }_{v} \rightarrow \mathrm{Ni}^{\text {II }} d_{\mathrm{x}}{ }^{2}-y^{2}$ are decreasing with time consuming. After few hours, the bands are stable. (Figure 72),

5.3 Synthesis of a hydrosulfide dinuclear nickel(II) complex

Scheme 20: Synthetic route for 13.

As we mentioned of the reactivity of 12 , the hydrosulfide bridged 13 was obtained from 12 to air. Besides this way, several other pathways were found for synthesizing of this complex. The procedures were described in the experimental section.

Dark green crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 3}$ in THF at RT in 73% yield. 13 crystallized in the monoclinic space group $P 2_{1} / c$ with four molecules in the unit cell. Both nickel centers are coordinated in a slightly distorted square-planar fashion. The molecular structure of $\mathbf{1 3}$ is shown in Figure 73 and selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ are listed in Table 16. The $\mathrm{Ni} \cdots \mathrm{Ni}$ distance of $3.707 \AA$ is shorter than 11. The Ni1-S1-Ni2 angle $111.7(4)^{\circ}$ is similar to $\mathbf{1 1}$ also. The Ni-SH bond lengths of 2.274 (5) Å and 2.265(5) Å are significantly shorter than other reported $\mathrm{Ni}^{\mathrm{II}}$-SH complexes. ${ }^{[66]}$ The SH protons could be unambiguously located in a fouri-er-difference map and defined by ${ }^{1} \mathrm{H}$ NMR spectrum.

b

Figure 73: Molecular structure (50\% probability thermal ellipsoids) of 13. Most hydrogen atoms omitted for clarity except for SH unit.

Table 16: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 13.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.826(2)$	N1-Ni1-N4	$173.91(7)$
Ni1-N4	$1.894(2)$	N1-Ni1-N3	$82.38(6)$
Ni1-N3	$1.896(1)$	N4-Ni1-N3	$94.49(6)$
Ni1-S1	$2.274(5)$	N1-Ni1-S1	$84.25(5)$
Ni2-N2	$1.829(1)$	N4-Ni1-S1	$99.64(5)$
Ni2-N6	$1.899(1)$	N3-Ni1-S1	$163.72(5)$
Ni2-N5	$1.901(2)$	N2-Ni2-N6	$176.86(6)$
Ni2-S1	$2.265(5)$	N2-Ni2-N5	$81.94(6)$
Ni1‥Ni2	$3.707(5)$	N6-Ni2-N5	$95.03(6)$
		N2-Ni2-S1	$84.52(5)$

Figure 74: ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of 13 in CDCl_{3}. Impurity is indicated(*).

13 is diamagnetic complex and gives rise to sharp signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in the typical chemical shift range for the pyrazolate and β-diketiminato ligands (Figure 74). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the bridged hydrosulfide protons resonate at $\delta=-3.49 \mathrm{ppm}$. The positive ion ESI-MS of a freshly prepared THF solution of $\mathbf{1 3}$ shows a nickel-containing fragment at $m / z=755.47(13+H)^{+}$. A weak vibration of the S-H was observed at $2557 \mathrm{~cm}^{-1}$ in the IR spectrum for 13 . The origin of the SH vibration could be verified by the FT-IR measurement of the deuterated 13-SD, which was synthesized by H/D exchange using deuter-on-methanol (MeOD). The S-D band lies at $v(S-D) 1817 \mathrm{~cm}^{-1}(v(\mathrm{~S}-\mathrm{H}) / v(\mathrm{~S}-\mathrm{D})=$ 1.41) (Figure A26), which is similar to literature. [67]

5.4 Synthesis of $\boldsymbol{\mu}$-1,1-sulfide nickel(II) complex

Scheme 21: Synthetic routes for 14.

In chapter 5.2, 14 was obtained from 12 by treating with PPh_{3}. Here, a new synthetic procedure was introduced (Scheme 21). No obvious color change was observed from 2 with $\mathrm{PPh}_{3}=\mathrm{S}$ in THF solution. The experimental process was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A weak and broad peak at 4.55 ppm was observed during the reaction of $\mathbf{2}$ with $\mathrm{PMe}_{3}=\mathrm{S}$ in the NMR tube, which is attributed to the H_{2} release (Figure 75). The 1D and 2D NMR spectra of 14 were shown in Figure 76 and appendix

Figure 75: Monitoring the reaction of $\mathrm{PMe}_{3}=\mathrm{S}$ with 2 in THF- d_{8} (400 MHz). Residual solvents are marked with an asterisk (*).

Figure 76: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of $\mathbf{1 4}$ in THF-d8. Residual solvents are marked with an asterisk (*).

No obvious color change was observed in $\mathbf{2}$ with $\mathrm{PMe}_{3}=\mathrm{S}$ at RT. Nevertheless, orange crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 4}$ in THF in two days. 14 crystallized in the triclinic space group P-1 with two molecules in the unit cell. The molecular structure of 14 in ORTEP diagram is shown in Figure 77 and selected bond lengths (\AA) and bond angles (${ }^{\circ}$) are listed in Table 17. A five-membered planar ring was formed by the nickel centers, nitrogen atom from pyrazolate and the μ-sulfide ligand. It became clear that the new μ-sulfide compound is similar to the hydrosulfide complex. The two nickel centers are coordinated by the S atom and the N atom in a square planar fashion (sum of bond angles 361.07° and 360.02°, respectively). The distance of two nickel centers with $3.652(5) \AA$ is slightly shorter than 13 with 3.707 (5) \AA. The Ni-S distances in 14 of 2.224(7) \AA and 2.240 (7) \AA are shorter than related 13 ($2.274 \AA$ and $2.265 \AA$). The Ni1-S-Ni2 angle $109.05(3)^{\circ}$ is also smaller than 13. The alkali-metal, K^{+}cation, is located outside the molecule anion and coordination with three THF molecules and pyrazole-N. The aryl-alkali metal distances amount $2.994(7) \AA$, which implies that the cation- π interaction between the potassium and five-member ring.

Figure 77: Molecular structure (30% probability thermal ellipsoids) of the anion of 14 (a) and 14 (b). All hydrogen atoms omitted for clarity.

Table 17: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 14.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.816(2)$		N1-Ni1-N4
Ni1-N4	$1.904(2)$	$176.47(9)$	
Ni1-N3	$1.925(2)$	N1-Ni1-N3	$82.01(10)$
Ni1-S1	$2.240(7)$	N4-Ni1-N3	$94.51(9)$
Ni1-K1	$3.198(7)$	N1-Ni1-S1	$86.10(7)$
Ni2-N2	$1.820(2)$	N4-Ni1-S1	$97.40(6)$
Ni2-N6	$1.914(2)$	N3-Ni1-S1	$168.02(7)$
Ni2-N5	$1.932(2)$	N1-Ni1-K1	$72.26(7)$
Ni2-S1	$2.244(7)$	N4-Ni1-K1	$109.43(6)$
Ni2-K1	$3.791(7)$	N3-Ni1-K1	$105.21(7)$
K1-N1	$3.160(2)$	S1-Ni1-K1	$69.47(2)$
K1-N2	$3.446(2)$	N2-Ni2-N6	$176.17(9)$
K1-S1	$3.197(1)$	N2-Ni2-N5	$82.12(9)$
Ni1‥Ni2	$3.652(5)$	N6-Ni2-N5	$94.41(9)$
		N2-Ni2-S1	$85.81(7)$
		N6-Ni2-S1	$97.73(6)$
		N5-Ni2-S1	$167.60(7)$
		N2-Ni2-K1	$65.09(6)$
		Ni1-S1-Ni2	$109.05(3)$.

Figure 78: (a) positive ion ESI-MS of 14; (Inset) experimental (upper) and simulated (middle and bottom) isotopic distribution pattern for the peaks pattern around $\mathrm{m} / \mathrm{z}=755.47$ and 792.29 characteristic for the $[\mathbf{1 4 + H}]^{+}$and [14]+; (b) ESI-MS (-) spectrum of 14; (Inset) experimental (upper) and Simulated (bottom) isotopic distribution pattern for the peaks pattern around $\mathrm{m} / \mathrm{z}=753.32$ characteristic for the $\mathbf{[1 4 - K]}{ }^{-}$.

14 has been characterized by positive and negative ion ESI-MS in MeCN/THF mixture solvent (Figure 78). Positive ion ESI-MS (Figure 78a) spectrometry shows two dominate peaks characteristic for 14 and 13 compounds. Main peak corresponds to the $[\mathbf{1 3 + H}]^{+}$, and the signal of 793.37 is attributed to the $[\mathbf{1 4 + H}]^{+}$. In the negative ion ESI-MS (Figure 78b), the dominate peak belongs to the [14-K]- signal.

Figure 79: (a) UV-Vis spectra of 14 at different temperatures (293 K-193 K) in THF; (b) Plots of the absorption bands at different temperatures.

The UV-Vis spectrum (Figure 79a) of 14 displays bands at 460, 376, 351 and 275 nm . The bands at $275\left(\varepsilon \approx 11100 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and $351 \mathrm{~nm}\left(\varepsilon \approx 4910 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$
are assigned to the ligand-metal charge-transfer transitions. The intense band at $460 \mathrm{~nm}\left(\varepsilon \approx 2000 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ is to the sulfide $\pi_{\sigma}^{*} \rightarrow \mathrm{Ni}^{\mathrm{II}}$ charge-transfer (CT) transitions corresponds to literature. [65]

Figure 80: CV of 14 in THF at RT, with $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ as supporting electrolyte (0.1 M) at different scan rates.

Cyclic voltammetry (CV) of $\mathbf{1 4}$ in a 0.1 M solution of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ in THF (Figure 80) at room temperature showed a reversible redox wave of scan of 100 mV at $E_{1 / 2}=$ $-1.25 \mathrm{~V}\left(\mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}\right)$. It indicates that $\mathbf{1 4}$ may be oxidized by one electron to the sulfur radical dinickel complex. The chemical oxidation experiment will be discussed in the next section.

■ Reactivity of 14.

Scheme 22: Reactivity of 14 towards MeI.
As shown in Scheme 22, 14 exhibits reactivity towards CH_{3} I. Treatment of 14 with $\mathrm{CH}_{3} \mathrm{I}$ at RT results in a rapid color change from red to green. Green crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of 15 in THF at $-30^{\circ} \mathrm{C} .15$ crystallized in the triclinic space group P-1 with two molecules in the unit cell. The molecular structure of 15 in ORTEP diagram is shown in Figure 81 and selected bond lengths (\AA) and bond angles (${ }^{\circ}$) are listed in Table 18. As expected, the sulfide was methylated from MeI in THF solution. The distance of C-S is $1.841(3) \AA$.

b

Figure 81: Molecular structure (30\% probability thermal ellipsoids) of 15. Most hydrogen atoms omitted for clarity.

Table 18: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 15.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.821(2)$	N1-Ni1-N3	$81.84(9)$
Ni1-N3	$1.899(2)$	N1-Ni1-N4	$176.16(9)$
Ni1-N4	$1.899(2)$	N3-Ni1-N4	$94.95(9)$
Ni1-S1	$2.281(8)$	N1-Ni1-S1	$86.00(7)$
Ni2-N2	$1.818(2)$	N3-Ni1-S1	$167.70(7)$
Ni2-N5	$1.895(2)$	N4-Ni1-S1	$97.13(7)$
Ni2-N6	$1.890(2)$	N2-Ni2-N5	$81.88(10)$
Ni2-S1	$2.264(8)$	N2-Ni2-N6	$173.28(9)$
C40-S1	$1.841(3)$	N5-Ni2-N6	$95.59(9)$
Ni1 \cdots Ni2	$3.649(8)$	N2-Ni2-S1	$86.11(7)$
		N5-Ni2-S1	$162.93(7)$
		N6-Ni2-S1	$97.61(7)$
		C40-S1-Ni1	$97.80(1)$
		C40-S1-Ni2	$92.74(1)$
		Ni1-S1-Ni2	$106.81(3)$

Figure 82: Stepwise protonation of 14 with [H-Lut]OTf at RT in THF, monitored by UV-vis absorption spectroscopy (1 cm path length). The asterisk marks the isosbestic point at 368 nm . Inset: decrease of the absorption at 343 nm depending on the number of equivalents of [H -Lut]OTf added.

As shown in Figure 82, when 14 reacts with [H-Lut]OTf, the characteristic charge transfer (CT) absorption band of 14 at 455 nm and 343 nm decrease, the band at 375 nm increase, with a clean isosbestic point (*) at 368 nm . Transformation was complete after 1 equivalent of acid was added, and 13 was stable in the presence of excess acid.

5.5 Synthesis of a μ-1,1-sulfide radical nickel(II) complex

Figure 83: CV of $\mathbf{1 2}$ in THF at RT, with $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ as supporting electrolyte (0.1 M) at different scan rates.

Cyclic voltammogram (Figure 83) of $\mathbf{1 2}$ in a 0.1 M solution of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ in THF at RT shows two quasi-reversible redox wave $E_{1 / 2}$ at -1.2 and -1.26 V implying that the disulphide nickel complex may be oxidized by one electron to supersulfide nickel species. In fact, the chemical oxidation of $\mathbf{1 2}$ dissolved in THF with $\left[\mathrm{FeCp}_{2}\right] \mathrm{BF}_{4}$ at $-30^{\circ} \mathrm{C}$ leads to an immediate color change of the solutions from
wine-red to brown-black (Scheme 23). UV-Vis spectrum of the species in THF displays bands at $270\left(\varepsilon \approx 2800 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right), 319\left(\varepsilon \approx 1280 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$, $373(\varepsilon \approx 820$ $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$) and $457 \mathrm{~nm}\left(\varepsilon \approx 200 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ in Figure 84a. It confirms that a new species was obtained from the chemical oxidation.

Scheme 23: Synthetic route for 16.

Figure 84: (a) UV-Vis spectra of 16 at different temperatures ($293 \mathrm{~K}-193 \mathrm{~K}$) in THF; (b) Plots of the absorption bands of $\mathbf{1 6}$ at different temperatures.

Green block shape crystals suitable for x-ray diffraction were obtained in 70\% yield by layering hexane on a solution of 16 in THF at $-30^{\circ} \mathrm{C} .16$ crystallized in the monoclinic space group $P 2_{1} / c$ with four molecules in the unit cell. The molecular structure of $\mathbf{1 6}$ is shown in Figure 85 and selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ are listed in Table 19.

b

Figure 85: Molecular structure (50\% probability thermal ellipsoids) of 16. All hydrogen atoms omitted for clarity.

Table 19: Selected bond lengths $(\AA \AA)$ and bond angles $\left({ }^{\circ}\right)$ for 16.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.825(2)$		N1-Ni1-N3
Ni1-N3	$1.896(2)$	$82.03(9)$	
Ni1-N4	$1.898(2)$		N1-Ni1-N4
Ni1-S1	$2.278(7)$	$177.01(9)$	
Ni2-N2	$1.827(2)$	N1-Ni1-N4	$95.00(9)$
Ni2-N5	$1.893(2)$	N3-Ni1-S1	$85.33(7)$
Ni2-N6	$1.893(2)$	N4-Ni1-S1	$97.54(7)$
Ni2-S1	$2.289(7)$	N2-Ni2-N5	$82.25(9)$
Ni1 \cdots Ni2	$3.705(5)$	N2-Ni2-N6	$174.11(10)$
		N5-Ni2-N6	$94.47(9)$
		N2-Ni2-S1	$85.15(7)$
		N5-Ni2-S1	$165.18(7)$
		N6-Ni2-S1	$98.72(7)$
		Ni1-S1-Ni2	$108.44(3)$

Selected metrical parameters of the three sulfide complexes are listed in
Table 20. 14 appears shorter Ni-S distance than 13 and 16. In the solid state, no proton close to the sulfide bridge ligand was observed. The Ni-S bond lengths in 16, however, are slightly longer than the additive covalent radii for nickel-sulfur single bonds (2.13 Å). [68] For comparison, [\{LtBuNi\}(μ-S)],[62] $\left[\left\{(\operatorname{IPr}) \mathrm{Ni}_{2}(\mu-\mathrm{S})_{2}\right]\left(\operatorname{IPr}=1,3\right.\right.$-bis(2,6-diiso- propylphenyl)imidazol-2-ylidene), ${ }^{[53 e]}$ and $\left[\left\{\mathrm{PhB}\left(\mathrm{CH}_{2} \mathrm{StBu}\right)_{3}\right\} \mathrm{Ni}\right]_{2}(\mu-\mathrm{S})^{[58 e]}$ display comparable $\mathrm{Ni}-\mathrm{S}$ bond lengths of
2.0651(7), 2.0972(6), 2.0714(4) and 2.084(6) \AA, respectively, despite each possessing a bridging S^{2-} or S^{-}ligand. Overall, this suggests similar magnitudes of π-bonding in both classes of materials.

Table 20: Selected metrical parameters of 13, 14 and 16.

Complex	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 6}$
$\mathrm{Ni} \cdots \mathrm{Ni}(\AA)$	3.707	3.652	3.705
$\mathrm{Ni}-\mathrm{S}(\AA) \mathrm{A})$	2.274	2.240	2.278
$\mathrm{Ni}-\mathrm{N}(\AA \AA)$	2.264	2.244	2.289
$\mathrm{Ni}-\mathrm{S}-\mathrm{Ni}\left({ }^{\circ}\right)$	$1.826-1.900$	$1.816-1.932$	$1.825-1.898$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 6}$ show a paramagnetically shifted resonance. However, the x -band electron paramagnetic resonance (EPR) measurement of a frozen THF at 10 K revealed that $\mathrm{Ni}^{\mathrm{III}}$ exists at low concentration of $\mathbf{1 6}$ (Figure 86a). And the x-band EPR spectrum of $\mathbf{1 6}$ in THF in 2 mM revealed no $\mathrm{Ni}^{I I I}$ exists in the solution anymore and the intensity of the spectra account for only ca. 20% of the expected spin concentration (numerical integration and comparison with a Cu ${ }^{\text {II }}$ standard) (Figure 86b). The difference of EPR spectra in different concertation remind the sulfur radical 16 may has two different valence transfer in the solution. One of them is the unpaired electron moves between the $\mathrm{Ni}-\mathrm{S}$ systems (Scheme 24a). The other possibility for the low concentration is a dimerization transfer from the sulfur radical complex (Scheme 24b).

Figure 86: (a) X-band EPR spectra of 16 at low concentration in frozen THF solution at 30 K . (b) X-band EPR spectra of $\mathbf{1 6}$ at 2 mM in frozen THF solution at 30 K.

Scheme 24: Possible formulation of the Ni-S species in the solution.

Figure 87: (a) $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{1 6}$. The solid red line represents the best fit $\mathrm{g}=2.0$ (54\%) with $D I=46 \%(S=0)$ and $T I P=507 \times 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.

Magnetic susceptibility data for $\mathbf{1 6}$ collected in the temperature range from 2295 K in crystalline material, shows essentially paramagnetic behavior of $\mathrm{S}=1 / 2$ spin system (54\%) (Figure 87). The solid red line represents the best fit and relatively high amount of diamagnetic impurity with $D I=46 \%(S=0)$ and $T I P=$ $507 \times 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. An explanation for the essential amount of diamagnetic impurity could be fast decomposition of 16 at RT.

Figure 88: Spin density plot of 16. Mulliken Spin Population: Ni1 $=0.151717$, $\mathrm{Ni} 2=0.133588, \mathrm{~S} 3=0.619900$.

Figure 89: Calculated IR spectrum of 16.

Table 21: Selected distance (\AA) and angles $\left({ }^{\circ}\right)$ for 16.

	$d(\mathrm{Ni}-\mathrm{S}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\varphi(\mathrm{Ni}-\mathrm{S}-\mathrm{Ni}) /{ }^{\circ}$
Exp	$2.278 / 2.290$	3.705	108.4
DFT *	$2.189 / 2.199$	3.600	110.2

The electronic nature of $\mathbf{1 6}$ as suggested by its geometric structure and magnetic properties was also confirmed by DFT calculations (Figure 88). The spin density can be estimated at the Ni center (28%), and at the sulfur ligand (around 62%). Therefore, the unpaired electron mostly located on sulfur atom. As shown in Table 21, the distances of Ni-S of 2.278/2.290 A are larger in the experimental data than the DFT calculations of 2.189/2.199 \AA. It can be assigned that the unpaired electron stays in the $\mathrm{Ni}-\mathrm{S}-\mathrm{Ni}$ system in the solid state.

5.6 Summary

Scheme 25: Activation and transformation of the substrates contains sulfur in the dinuclear nickel(II) complexes.

In this chapter, we could show that the reaction of elemental sulfur with $\mathbf{2}$ results in quite different reaction products depending on the exact reaction conditions (Scheme 25).

Firstly, elemental sulfur can react in similar way as dioxygen does with $\mathbf{2}$ and $\mathrm{S}_{2}{ }^{2-}$ can be formed. This the first "end-on" heteronuclear dinuclear nickel(II) disulphide complex.

Secondly, treatment of $\mathbf{1 2}$ with $\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right] \mathrm{BF}_{4}$ result into different
species with μ-sulfide, hydrosulfide and sulfur monoanionic radical.

Thirdly, interconversion between 13, 14 and 16 have successfully done by chemical agents.

At last, the dinuclear nickel μ-sulfide complex reactivity toward $\mathrm{CH}_{3} \mathrm{I}$ is verified.
In addition, further thermodynamics between 13, 14 and 16 are ongoing.

Chapter 6 Deprotonation and Isomeri-

 zation of Phenylhydrazine in the dinuclear nickel(II) complex
Abstract

A new dinuclear nickel(II) phenylhydrazido(1-) complex (17) was synthesized from dinickel bromide precursor (1) with phenylhydrazine in the presence of KC_{8}. Treatment of $\mathbf{1 7}$ with KH or in the presence of diben-zo(18-crown-6) leads two hetero-bimetallic trinuclear complexes (18 and 19). For these two complexes, two geometrical isomers are present in solution, and mechanistic insight into the isomerization process was obtained by VT ${ }^{1} \mathrm{H}$ NMR spectroscopy.

6.1 Introduction

In the last two decades, many chemists studied the reactivity of coordinated dinitrogen towards protons, other hydrogen sources and relevance to the mechanism of action nitrogenase. [69] A large number of transition metal complexes containing substituted or unsubstituted hydrazido, hydrazine or diazene ligands have been reported. ${ }^{[70]}$ However, only few examples were reported with nickel as the desired metal. ${ }^{[71,72]}$ As shown in Figure 90 (XXVI-XXIX), there has been some effort to obtain synthetic phenylhydrazido mode for the nickel or iron phenylhydrazine in the β-diketiminato ligand by Limberg ${ }^{[72]}$ and Holland ${ }^{[73]}$ groups.

XXVI

XXVII

XXVIII

XXIX

Figure 90: Selected examples of nickel(II) and iron(II/III) phenylhydrazine/phenylhydrazido/diazene complexes supported by β-diketiminato ligand. ${ }^{[72,73]}$

6.2 Synthesis of phenylhydrazido bridged complex

Scheme 26: Synthetic route for 17.

Previously, treatment of $\mathbf{1}$ with hydrazine dissolved in THF solution led to appropriate products, so that phenylhydrazine was employed instead of the parent $\mathrm{N}_{2} \mathrm{H}_{4}$. ${ }^{[11 a]}$ However, this reaction only works in the presence of stoichiometry KC_{8} or ${ }^{\text {tBuOK (}}$ (Scheme 26). During the reaction of 1 with phenylhydrazine in the presence of KC_{8} in THF solution, gas evolution $\left(\mathrm{H}_{2}\right)$ was found and a dark red solution was obtained immediately. However, same compound was obtained even though excess KC_{8} was employed in the reaction. This complex was fully characterized by x-ray diffraction, 1D and 2D NMR, FT-IR spectroscopy, ESI-MS spectrometry and CV measurement as well as elemental analysis.

Dark red crystals suitable for x-ray diffraction were obtained by slow diffusion of pentane into a solution of $\mathbf{1 7}$ in THF at room temperature. $\mathbf{1 7}$ crystallizes in the triclinic space group $P-1$, the molecular structure of 17 is shown in Figure 91 and selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in Table 22. 17 contains an anionic phenylhydrazido(1-) ligand binding in a $\mu-\eta^{1}: \eta^{1}$-mode, and thus the two Ni ions are surrounded by four N donor atoms in a distorted square planar way. The $\mathrm{Ni}-\mathrm{N}^{\mathrm{Ph}}-\mathrm{N}^{\mathrm{H}}-\mathrm{Ni}$ torsion angle around the $\mathrm{N}-\mathrm{N}$ axis is $78.66(3)^{\circ}$. The $\mathrm{N}-\mathrm{N}$ bond length of the phenylhydrazido(1-) ligand amounts to $1.441(4) \AA$ and therefore lies within the range that is typical for η^{1}-organohydrazido(1-) ligands citation. [74] The bond length of $\mathrm{Ni}-\mathrm{NH}_{2}$
(1.946(3) \AA) is slightly longer than that of Ni-NPh bond length (1.914(3) A). This is in contrast to the literature known complexes $\mathbf{X X V I}^{[72]}$ and $\left[\mathrm{Ru}\left(\eta^{2}-\mathrm{NH}_{2} \mathrm{NPh}\right)(\mathrm{dmpe})_{2}\right] \mathrm{BPh}_{4}{ }^{[75]}$, where the $\mathrm{Ni}-\mathrm{NPh}$ and $\mathrm{Ru}-\mathrm{NPh}$ bonds are significantly longer than the $\mathrm{Ni}-\mathrm{NH}_{2}$ and $\mathrm{Ru}-\mathrm{NH}_{2}$ bonds.

Figure 91: Molecular structure (50% probability thermal ellipsoids) of 17.
Most hydrogen atoms omitted for clarity, except for the NH_{2} group.
Table 22: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 17.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.852(3)$	N1-Ni1-N3	$83.62(11)$
Ni1-N3	$1.882(3)$	N1-Ni1-N4	$169.45(11)$
Ni1-N4	$1.897(3)$	N3-Ni1-N4	$95.08(11)$
Ni1-N7A	$1.914(3)$	N1-Ni1-N7A	$89.61(11)$
Ni2-N2	$1.862(3)$	N3-Ni1-N7A	$164.58(12)$
Ni2-N5	$1.881(3)$	N4-Ni1-N7A	$94.05(11)$
Ni2-N6	$1.903(3)$	N2-Ni2-N5	$83.40(11)$
Ni2-N8A	$1.946(3)$	N2-Ni2-N6	$174.99(11)$
N7A-N8A	$1.441(4)$	N5-Ni2-N6	$94.44(11)$
Ni1-N7A	$1.914(3)$	N2-Ni2-N8A	$90.14(11)$
Ni2-N8A	$1.946(3)$	N5-Ni2-N8A	$172.69(11)$
Ni1‥Ni2	$3.918(2)$	N6-Ni2-N8A	$92.27(11)$
		N8-N7-Ni1	$116.02(2)$
		N7-N8-Ni2	$120.74(2)$
		Ni1-N7A-N8A-Ni2	$78.66(3)$

Figure 92: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of $\mathbf{1 7}$ in THF-d8. Residual solvents are marked with an asterisk (*).

Figure 93: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC (52 MHz) spectrum of $\mathbf{1 7}$ in THF-d 8 .
The resulting phenylhydrazido(1-) ligand undoubtedly is bound as the $\mathrm{NH}_{2}-$ NPh-tautomer: The two protons were located in the fourier map and further support came from NMR experiments. For the NH protons of the $\mathrm{NH}_{2}-\mathrm{NPh}$ anionic unit, two doublet resonances with an integral of one were found at 1.60 ppm and 2.16 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, respectively (Figure 92). The assignment of the NH was also confirmed using a $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment (Figure 93). Two ${ }^{15} \mathrm{~N}$ correlations with these two protons (${ }^{2} J_{\mathrm{NH}}=67.74 \mathrm{~Hz}$) became evident, suggesting two NH protons, residing at the same N atom. In order to know the stereochemistry of the NH_{2} group of the bridging phenylhydrazido, a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY experiment was conducted. It reveals a weak NOE correlation of
one NH protons to the phenyl group of the bridging phenylhydrazido at room temperature (Figure 94).

Figure 94: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz) spectrum of 17. The protons belonging to the $\mathrm{NH}_{2} \mathrm{NPh}$ bridged show a NOE correlation to the CH proton of the phenyl groups. ${ }^{1} J_{\mathrm{NH}}$ correlation of $\mathbf{1 7}$ are marked.

Apart from the NH_{2} resonance, the ortho protons from phenylhydrazido resonance is at 9.36 ppm , low field shifted compared with XXVI (5.06 ppm) (Figure 90). ${ }^{[72]}$ This may be because the phenyl ring from phenylhydrazido unit current effect to the ligand. To investigate the two protons, a variable temperature ${ }^{1} \mathrm{H}$ NMR was conducted from 183 K to 323 K (Figure 95). From 263 K to 243 K , no signals were observed for the ortho protons of phenyl group. On cooling to 233 K, the ${ }^{1} \mathrm{H}$ NMR spectrum appears two separate broad doublets at 8.80 and 9.84 ppm, respectively. The two peaks could result from a hindered rotation of the phenyl group at low temperatures. No coupling resonance was found in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY between the isopropyl group and the ortho protons of the phenyl group, which implies that the phenyl group only shown rotation activity without vibration of the ligand planar.

Figure 95: The field from 8.4 to 10.0 ppm in variable temperature (183 K $323 \mathrm{~K}){ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{1 7}$ in THF-d8.

Figure 96: (a) FT-IR spectrum of 17 in crystalline material; (b): positive ion ESI-MS of $\mathbf{1 7}$ in THF; (Inset) experiment (upper) and simulated (lower) isotope distribution pattern for the peak pattern around $m / z=829.6$ characteristic for the $[\mathbf{1 7 + H}]^{+}$ion.

IR spectroscopy (Figure 96a) of 17 clearly shows two bands belonging to the stretching vibration of an NH moiety at 3294 and $3220 \mathrm{~cm}^{-1}$, thus further proving the presence of such a functionally. Additionally the positive ion ESI-MS
spectrum (Figure 96b) of 17 shows a major peak $m / z=829.6$ consistent with the simulated isotope pattern of the molecular ion peak $[\mathbf{1 7}+\mathrm{H}]^{+}$.

6.3 Deprotonation of phenylhydrazido bridge complex

Scheme 27: Synthetic route for 18.

In order to examine whether it is possible to further activate the $\mathrm{N}-\mathrm{N}$ bond of the phenylhydrazido(1-) ligand, 17 was treated with one equivalent KH , which led to a color change from red to green in two hours (Scheme 27). 18 was completely characterized by x-ray diffraction, 1D and 2D NMR, FT-IR spectroscopy and elemental analysis.

Black block crystals were obtained by layering hexane into THF solution at $30^{\circ} \mathrm{C}$ in two days, which was suitable for single-crystal x-ray diffraction and the yield of the compound was about $43 \% .18$ crystallizes in the triclinic space group $P-1$. The molecular structure of $\mathbf{1 8}$ was shown in Figure 97 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ were listed in Table 23. In the case of XXVI, the phenylhydrazido(1-) was singly deprotonated by KC_{8}, and the K^{+}cation was fixed by 18 -crown- 6 . Nevertheless, the new species is in a bad crystal quality so that no x-ray diffraction data is present for comparison with our data. To our best knowledge, 18 is the first Ni-K phenylhydrzido(2-) complex which has been structurally characterized.

The anion of 18 is obviously like 17. In the solid structure of 18 (Figure 97),
the K^{+}cation is coordinated by the pyrazole- N and three THF molecules, and locates between the pyrazole and phenyl rings. The distances between the K^{+} cation and the phenyl group, pyrazole moieties are 2.973(2) \AA and $3.129(2) \AA$, respectively. The distance of the two nickel atoms of 3.850 (7) \AA is slightly shorter than the parent phenylhydrazido 17. In 18, the distance of $\mathrm{N}-\mathrm{N}$ in NNHPh unit with $1.404(3) \AA$ is shorter than 17 with 1.441 (2) \AA. The dihedral angle of between the pyrazole and the phenylhydrazido ring is about $88.223(8)^{\circ}$. The $\mathrm{Ni}-\mathrm{N}^{\mathrm{Ph}}-\mathrm{N}^{\mathrm{Ph}}-\mathrm{Ni}$ torsion angle around the $\mathrm{N}-\mathrm{N}$ axis as defined is $73.55(1)^{\circ}$.

b

Figure 97: Molecular structure (50\% probability thermal ellipsoids) of 18. Most hydrogen atoms omitted for clarity, except for N7-H.

Table 23: Selected bond length (\AA) and angles (${ }^{\circ}$) for 18.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.872(3)$	N1-Ni1-N7	$93.48(11)$
Ni1-N7	$1.907(3)$	N1-Ni1-N4	$170.42(11)$
Ni1-N4	$1.913(3)$	N7-Ni1-N4	$91.64(11)$
Ni1-N3	$1.932(3)$	N1-Ni1-N3	$82.44(12)$
Ni2-N2	$1.843(3)$	N7-Ni1-N3	$169.82(12)$
Ni2-N8	$1.903(3)$	N4-Ni1-N3	$93.77(12)$
Ni2-N6	$1.904(3)$	N2-Ni2-N8	$87.19(11)$
Ni2-N5	$1.908(3)$	N2-Ni2-N6	$173.28(12)$
N7-N8	$1.404(3)$	N8-Ni2-N6	$95.09(11)$
Ni1‥Ni2	$3.850(7)$	N2-Ni2-N5	$82.95(12)$
K-Cg(1)	$3.129(2)$	N8-Ni2-N5	$165.79(11)$
K-Cg(2)	$2.973(2)$	N6-Ni2-N5	$95.86(12)$
		N8-N7-Ni1	$118.09(1)$
		N7-N8-Ni2	$121.83(2)$
		N8-N7-C40	$113.38(1)$
		Ni1-N7-N8-Ni2	$73.55(1)$
		Ni1-N1-K1A	$110.11(1)$
		Pz-K-Ar	$101.00(3)$

$\mathrm{Cg}(1)=$ centroid of the ring carbon atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{~N} 1, \mathrm{~N} 2$ (pyrazole ring); $\operatorname{Cg}(2)=$ centroid of the ring carbon atoms C40, C41, C42, C43, C44, C45 (phenyl ring).

Figure 98: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 18 in THF-d8. Inset: excerpt range $8.5-11.5 \mathrm{ppm}$. Residual solvents are marked with an asterisk (*).

To further confirm the identity, an NMR spectroscopic analysis was performed. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Figure 98 and Figure A33) showed that the complex is diamagnetic and asymmetric. The resulting phenylhydrazido(2-) ligand undoubtedly is bound as the $\mathrm{NH}-\mathrm{NPh}-$ tautomer: the proton was located in the fourier map and further support came from NMR experiments. The assignment of NH was also confirmed using a $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment. One ${ }^{15} \mathrm{~N}$ correlation with this one proton became evident, suggesting NH proton (Figure 99). Additionally, IR spectroscopy (Figure 100a) of 18 clearly showed the presence of a NH function through a band belonging to its stretching vibration at $3244 \mathrm{~cm}^{-1}$.

Figure 99: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ NMR (52 MHz) spectrum of 18.

Figure 100: (a) ATR-IR spectrum of 18 in crystalline material. (b) UV-vis spectrum of 18 in THF.

Two separate broad peaks around 9.17 and 10.57 ppm as well as a sharp peak at 9.35 ppm were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 98) of $\mathbf{1 8}$ at RT. It attributed that the K^{+}is dissociation equilibrium in solution at RT (Scheme 28).

In order to investigate the different configuration, VT NMR experiments were conducted (Figure 101). At higher temperature (above 273K), the two broad peaks disappeared and the sharp peak gains intensity. At temperatures between 273 K and 243 K , the sharp peak vanishes. When decreasing the temperature even more, four broad peaks (two new weak broad peaks) can be observed in the ${ }^{1} \mathrm{H}$ NMR spectra. It assumed that the K cation and the proton of NH group position influenced the ${ }^{1} \mathrm{H}$ NMR spectrum with temperatures changing (Scheme 28). A new experiment was conducted to prove the hypothesis. It will be discussed in the next section.

Figure 101: VT ${ }^{1} \mathrm{H}$ NMR spectrum of 18 in THF- d_{8}.

Scheme 28: K^{+}dissociation equilibrium and two possible configurations of $\mathbf{1 8}$ in solution state.

Scheme 29: Protonated of 18 with galvinoxy in THF.
Since the bimetallic dinickel phenylhydrazido(2-) complex was synthesized, H -atom-transfer agents were employed to remove the final H atom in 18. Unfortunately, all attempts to generate the phenylhydrazido radical complex failed. When the galvinoxyl free radical was used (Scheme 29), an EPR silent reaction mixture and some purple crystals were obtained in two days. The x-ray structure indicated that the purple compound is a potassium galvinoxyl complex
(Figure 102).

Figure 102: Molecular structure of byproduct using 50\% thermal ellipsoids.

6.4 Dissociation the phenylhydrazido- K^{+}interaction in bimetallic nickel(II) complex

Scheme 30: Synthetic route for 19.

From the ${ }^{1} \mathrm{H}$ NMR experiments (Figure 101) conducted for 18, it is assumed that the K^{+}cation and the hydrogen atom in the NH group have an influence on the chemical shift of the hydrogen atom of the phenyl group upon the temperature change. To remove this influence and separate the K^{+}cation from the anion, DB18C6 was employed. Treatment of a THF solution of 18 with DB18C6 resulted in a color change from deep green to blackish green in 20 mins (Scheme 30). The color change suggested that a new species was generated. The new 19 was completely characterized by x-ray diffraction, 1D and 2D NMR, UV-vis and FT-IR spectroscopy as well as elemental analysis.

Black crystals suitable for x-ray diffraction were obtained by slow diffusion of pentane $/ \mathrm{Et}_{2} \mathrm{O}$ into a solution of 19 in THF at room temperature. 19 crystallizes in the Pb ca space group. The molecular structure of 19 is shown in Figure 103 and selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 25.

It became obvious that, similar to the case of the 18, the product is composed of the ligand-nickel unit, binding a (PhNNH) ${ }^{2-}$ entity. The K^{+}is coordinated to the six oxygen atoms of the crown ether and two $\mathrm{Et}_{2} \mathrm{O}$ molecules. The distance of the $\mathrm{N}-\mathrm{N}$ bond in $\mathrm{PhNNH}(2-)$ ligand is $1.401 \AA$, which is same of $\mathbf{1 8}$. The distance
of the two nickel centers of $3.835(7) \AA$ is slightly shorter than in $\mathbf{1 8}$ (3.850(7) \AA). The dihedral angle between the ligand and the phenylhydra-zido(2-) ring of $84.087(14)^{\circ}$ is smaller than 18 of $86.478(80)^{\circ}$. Selected metrical parameters of the phenylhydrazido(1-/2-) complexes are listed in

Table 24.

Table 24: Selected metrical parameters of 17, 18 and 19.

Complex	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
Space group	Triclinic	Triclinic	Orthorhombic
$\mathrm{Ni} \cdots \mathrm{Ni}(\AA)$	3.943	3.850	3.835
$\mathrm{~N}-\mathrm{N}$ distance $(\AA ̊)$	1.460	1.403	1.400
$\mathrm{Ni}-\mathrm{NPh}$	1.911	1.903	1.901
$\mathrm{Ni}-\mathrm{NH}$	1.962	1.907	1.898
NH stretching	3294		
$\left(\mathrm{~cm}^{-1}\right)$	3220	3244	3244
$\left.\mathrm{~N}-\mathrm{N}-\mathrm{C}_{(\mathrm{Ph})} \mathrm{C}^{\circ}\right)$	112.12	113.38	112.24
$\mathrm{Ni}-\mathrm{N}-\mathrm{N}-\mathrm{Ni}\left(^{\circ}\right)$	78.54	73.55	71.90
$\delta(\mathrm{NH})(\mathrm{ppm})$	$1.60 / 2.10$	1.35	1.53

To further confirm the identity of the solution state of 19, an NMR spectroscopic analysis was performed. As expected, the complex was diamagnetic, and the ${ }^{1} \mathrm{H}$ (Figure 104) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Figure A37) data revealed that the potassium anion is encapsulated by the crown ether in the solution. The difference between the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 9}$ and $\mathbf{1 8}$ lies in the NH shift, which is at 1.53 ppm and 1.35 ppm , respectively. The position of the NH proton was confirmed by ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC (Figure 105). Additionally, the field of NH proton in 19 in ${ }^{1} \mathrm{H}$ NMR spectrum is similar to the spectrum of XXVII (Figure 90). [72]

Figure 103: Molecular structure (50\% probability thermal ellipsoids) of the anion of 19 (a) and 19 (b). Most hydrogen atoms omitted for clarity, except for N8-H.

Table 25: Selected bond lengths (\AA) and angle (${ }^{\circ}$) for 19.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.853(3)$	N1-Ni1-N7	$87.76(13)$
Ni1-N7	$1.901(3)$	N1-Ni1-N4	$171.03(12)$
Ni1-N4	$1.916(3)$	N7-Ni1-N4	$95.83(13)$
Ni1-N3	$1.916(3)$	N1-Ni1-N3	$82.62(13)$
Ni2-N2	$1.858(3)$	N7-Ni1-N3	$162.59(13)$
Ni2-N8	$1.898(3)$	N4-Ni1-N3	$95.85(13)$
Ni2-N6	$1.913(3)$	N2-Ni2-N8	$94.15(13)$
Ni2-N5	$1.934(3)$	N2-Ni2-N6	$170.40(13)$
N7-N8	$1.401(6)$	N8-Ni2-N6	$90.89(13)$
Ni1‥Ni2	$3.835(7)$	N2-Ni2-N5	$82.38(13)$
		N8-Ni2-N5	$168.80(14)$
		N6-Ni2-N5	$94.14(13)$
		N8-N7-Ni1	$121.6(2)$
		N7-N8-Ni2	$119.0(2)$
		Ni1-N7-N8-Ni2	$71.90(3)$

Figure 104: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 19 in THF- d_{8}. Residual solvents are marked $\wedge . *$ Dibenzo(18-crown-6); \# Pentane.

Figure 105: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC (52 MHz) spectrum of 19 in THF- d_{8}.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}$ at RT, a peak at 9.35 ppm for ortho protons of the phenyl group is observed, which is the same as 17 . With the temperature rising (above 293 K), 19 has same variation tendency for phenyl ring of phenylhydra-zido(2-) as 17. It indicates that the phenyl group of phenylhydrazido(2-) rotation free without K^{+}position influence. When decreasing the temperature, the signal of the ortho protons of phenyl group in the phenylhydrazido(2-) split gave four doublets with an integration of 1:2:1:2. The four peaks are at 8.64, 8.93, 9.84 and 10.61 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum. Taking the ${ }^{1} \mathrm{H}$ NMR experiments of $\mathbf{1 7}$ and 18 into consideration, it is assumed that the two isomers of 19 exist at low temperature in the solution state. The two-possible configurations are shown in Scheme 31. The hydrogen atom in the NH group of phenylhydra-zido(2-) is on the same/opposite side as the phenyl group of the phenylhydra-zido(2-).
(303K

Figure 106: The field of ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra in THF- d_{8} from 8.4 to 10.0 ppm in VT ($193 \mathrm{~K}-313 \mathrm{~K}$) of 19.

Scheme 31: Two possible configurations of 19 in solution.

The IR spectrum revealed band at $3244 \mathrm{~cm}^{-1}$ for the NH stretching vibration. The band is the same for 18, and similar to XXVII with $3309 \mathrm{~cm}^{-1} .{ }^{[72]}$

6.5 Dehydrogenation and protonation of phenylhydrazine bridge complex

Scheme 32: Synthetic route for 20.

The redox chemistry of $\mathbf{1 7}$ was further exploited since the deprotonation of the phenylhydrazido(1-) was successfully done. DIAD, TEMPO, TBP and galvinoxy radical were used for the oxidize of phenylhydrazido(1-) ligand, however, the desired result was not achieved. Nevertheless, dehydrogenation of the phenyl-hydrazido(1-) in $\mathbf{1 7}$ was achieved with $\mathrm{Pb}(\mathrm{OAc})_{4}$ under light exclusion giving 20 IR spectrum (Figure 107a) of 20 shows no NH stretching. Additionally, the positive ion ESI-MS (Figure 107b) of 20 shows a major peak at $m / z=827.6$ consistent with the simulated isotope pattern of $[\mathbf{2 0 +}+\mathrm{H}]^{+}$. Attempt for recrystallized the suitable single crystals for x-ray diffraction could not be obtained yet.

Figure 107: (a) FT-IR spectrum of 20 in crystalline material; (b) ESI-MS of $\mathbf{2 0}$ in THF; (Inset) experiment (upper) and simulated (lower) isotope distribution pattern for the peak pattern around $m / z=827.50$ characteristic for the [20+H] ${ }^{+}$ion.

Scheme 33: Synthetic route for 21.

Addition of the proton source [H -Lut] $\mathrm{X}\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{SO}_{3}, \mathrm{BF}_{4}\right)$ into the THF solution of $\mathbf{1 7}$ results in an immediate color change from red to green. A green precipitate is formed within 10 mins with $\mathrm{CF}_{3} \mathrm{SO}_{3}$ as the counter ion. When changing the counter ion from $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$to BF_{4}^{-}, green precipitate was formed at $-30^{\circ} \mathrm{C}$ in two hours. This newly precipitated species exhibit bad solubility in THF, toluene, pentane and hexane, among others.

Figure 108: ${ }^{11} \mathrm{~B}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectrum of 21 in $\mathrm{CD}_{3} \mathrm{CN}$.
${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of the green crude precipitate revealed one signal at -1.14 and -151.23 ppm , respectively, which clearly showed the $\mathrm{BF}_{4}{ }^{-}$counter ion in 21 (Figure 108). In comparison to the IR spectrum of 17, 21 shows three additional bands at 3354,3307 and $3285 \mathrm{~cm}^{-1}$, which are assigned to the $\left(\mathrm{NHNH}_{2} \mathrm{Ph}\right)$ bridge band vibrations. These vibrations for the $\mathrm{N}-\mathrm{H}$ stretch are very similar to the mononuclear iron complex with a "side on" bound phenylhydrazine complex at 3346,3271 and $3230 \mathrm{~cm}^{-1}$ [76]. A new band at $1023 \mathrm{~cm}^{-1}$ indicated the BF_{4} counter ion in the new complex. Additionally, the positive ion ESI-MS spectrum of 21 shows a major peak at $m / z=829.6$ consistent with the simulated isotope pattern of $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Until now, no suitable crystals for x -ray diffraction were obtained.

6.6 Summary

Scheme 34: General transformation between the 17, 18, 19, 20 and 21.
In summary, we present the oxidized, protonated and deprotonated phenyldrazine species in this chapter. The nickel bromide precursor (1) reacts with phenylhydrazine in the presence of KC_{8} yield a new phenylhydrazido(1-) bridge 17 by H_{2} evolution. Deprotonation of $\mathbf{1 7}$ with KH at RT led to H_{2} formation, and a new phenylhydrazido(2-) complex 18 is produced. In the phenylhydrazido(2-) complex 18, the potassium cation is fixed by the pyrazolate and phenylhydra-zido(2-) ligand system. When potassium chelating reagent DB18C6 used, the potassium can be removed away of the pyrazolate ligand system. On the other hand, the phenylhydrazido(1-) can be dehydrogenated by means of $\mathrm{Pb}(\mathrm{OAc})_{4}$, which result in a new μ-1,2-diazendo moiety.

Chapter 7 Azobenzene Activation

Abstract

In this work, we explore the $\mathrm{N}=\mathrm{N}$ bond reduction reaction using the [$\left.\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)\right]^{-}$species with or without K^{+}cation. Specifically, this "naked" dinuclear nickel(II) dihydride complex (4) reacts with azobenzene ($\mathrm{PhN}=\mathrm{NPh}$) to perform a two-electrons reduction, where two electrons come from H_{2} reductive elimination and the $\mathrm{N}-\mathrm{N}$ single bond formed. Whereas the alkali metal ions $\left(\mathrm{K}^{+}\right)$significantly stabilized the dihydride complex against H_{2} release, the azobenzene ($\mathrm{PhN}=\mathrm{NPh}$) demonstrate one-electron reduction from the dinuclear nickel(II) dihydride (2).

7.1 Introduction

Azobenzene, as the simplest example of an aryl azo compound, is linked by an $\mathrm{N}=\mathrm{N}$ double bond, which is investigated cleavage by transition and f-block metal complexes in the last three decades. ${ }^{[77]}$ The product from reduction of $\mathrm{RN}=\mathrm{NR}$ is typically an imido complex with a coordinated NR group. Some synthetic $2 \mathrm{Fe}-2 \mathrm{~S}$ clusters cleave azobenzene to form bridging imido groups in cub-ane-type products were reported also. [78] In past years, many early transi-tion-metal, ${ }^{[79]}$ lanthanide, ${ }^{[80]}$ and main-group metal complexes ${ }^{[81]}$ bearing reduced azobenzene ligands have been synthesized. However, the research efforts have been mainly focused on the $\mathrm{N}-\mathrm{N}$ bond activation of azobenzene. Mechanistic studies on the reaction of a β-diketiminato subunits bridged $\mathrm{Fe}(\mu-\mathrm{H}) \mathrm{Fe}$ complex with azobenzene, which leads to $\mathrm{N}=\mathrm{N}$ bond cleavage, indicated that substrate binding triggers reductive H_{2} release. [${ }^{[22,83] \text {. }}$

Treating $\left[\mathrm{L}^{1} \mathrm{Ni}^{\mathrm{II}} 2(\mathrm{H})_{2}\right]^{-}\left(2^{-}\right)$with phenylacetylene leads to H_{2} formation and twofold reduction of the substrate, giving a product complex with unusual sty-rene-1,2-diyl bridging unit in the bimetallic pocket. ${ }^{[11]}$ Alkali metal ions Na^{+} and K^{+}were found to be closely associated with the dinickel dihydride core in $\mathbf{2}^{-}$and also with the olefinic $\mathrm{C}=\mathrm{C}$ bond in the case of acetylene. ${ }^{[11]}$ In this mechanism, dihydride reductively eliminate H_{2} to generate a coordinately unsaturated species in which the $\mathrm{Ni}^{I I}$ have been reduced to Ni^{I} by a total of two electrons, and the resulting reduced species can thus be generated without any strong reducing agents. In this chapter, we focus on the one or two electron reduction of the $\mathrm{N}-\mathrm{N}$ double bond and the cleavage of the $\mathrm{N}-\mathrm{N}$ double bond of azobenzene.

7.2 Two electron reduction the azobenzene

Scheme 35: Synthetic routes for 22.

Treatment of a THF solution of 4 with azobenzene results in an immediate the color change from orange to black (Scheme 35). No intensity gas was observed during the reaction. Beside this way, anther pathways were found for synthesizing of $\mathbf{2 2}$. The procedures were described in the experimental section.

Crystals suitable for x-ray diffraction were obtained by layering a hexane/ $\mathrm{Et}_{2} \mathrm{O}$ mixture on a solution of $\mathbf{2 2}$ in THF at $-30^{\circ} \mathrm{C}$. 22 crystallized in the monoclinic space group $P-1$, and molecular structure was shown in Figure 109. To our the best knowledge, 22 is the first dinuclear nickel complex binding an azoben-zene(2-) ligand in a $\mu-1,2$ geometry. Taking the structure of $\mathbf{2 2}$ consideation, I presumed the two hydride ligands reductively eliminated H_{2} to generate a coordinating unsaturated species $\left[\mathrm{L}^{1} \mathrm{Ni}_{2} \mathrm{I}\right]$ - in which the metals have been reduced by a total of two electrons and the resulting reduced the azobenzene substrate even though no gas was observed. The distance of N-N bond of $1.401 \AA$ is longer than the $\mathrm{N}=\mathrm{N}$ bond of free azobenzene with $1.25 \AA$, and is closer to the $\mathrm{N}-\mathrm{N}$ bond of free hydrazine ($1.45 \AA \AA$). ${ }^{[84]}$ Surprisingly, the related 22 is not characterized by longer $\mathrm{N}-\mathrm{N}$ bonds, but rather the $\mathrm{N}-\mathrm{C}(\mathrm{Ph})$ bond diminishes to $1.408 \AA$ (cf. $1.443 \AA$ in trans azobenzene) ${ }^{[79 b]}$. The N-N-Ph bond angle $\left(109.145^{\circ}\right.$ and 109.78°) is also changed on reduction; it is unlike that in the parent azobenzene $\left(120^{\circ}\right)$ but is remarkably close to the values expected for a tetrahedral atom.

The azobenzene molecule is no longer coplanar; the plane of the arene ring is twisted by 64.977° from the C-N-N plane. [85]

b

Figure 109: Molecular structure (50\% probability thermal ellipsoids) of the anion of $\mathbf{2 2}$ (a) and $\mathbf{2 2}$ (b). All hydrogen atoms omitted for clarity.

Figure 110: (a) VT UV-vis spectrum of 22 in THF from 400 nm to 900 nm . (b) FT-IR spectrum of $\mathbf{2 2}$ in crystalline material.

The UV-vis spectrum (Figure 110a) has a distinct absorption at $473 \mathrm{~nm}(\varepsilon=$ $\left.470 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and a small broad band at $585 \mathrm{~nm}\left(\varepsilon=220 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ in THF solution. No N-N vibration can be distinguished from IR spectroscopy (Figure 110b). The ESI-MS(+) of THF/ $\mathrm{CH}_{3} \mathrm{CN}$ (Figure A41) mixture solutions of $\mathbf{2 2}$ shows a dominate peak characteristic of the [K(DB18C6)] ${ }^{+}$, and a small peak at $m / z=665.46$ is characteristic for the $\left[\mathrm{L}^{1} \mathrm{Ni}+2 \mathrm{H}\right]^{+}$.

Figure 111: Cyclic voltammogram curves of 22 in THF/0.1 $\mathrm{M} \mathrm{NBu}{ }_{4} \mathrm{PF}_{6}$ as an electrolyte at scan rates 100,500 and $1000 \mathrm{mV} / \mathrm{s}$ vs $\mathrm{Fc} / \mathrm{Fc}^{+}$in the $-2.5-1.5 \mathrm{~V}$ potential range.

The cyclic voltammogram of $\mathbf{2 2}$ in THF at room temperature exhibits a reversible redox wave of $100 \mathrm{Mv} / \mathrm{s}^{-1}$ at $E_{1 / 2}=-1.91 \mathrm{~V}\left(\mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}\right)$(Figure 111), as well as two irreversible oxidation at higher potential. It indicates that the azoben-zene(2-) may be oxidized by one electron to the azobenzene radical complex.

7.2 One electron reduction of azobenzene

Scheme 36: Synthetic routes for 23.
Without the alkali metal $\left(\mathrm{K}^{+}\right)$interaction of the dihydride complex, the azobenzene was reduced by two electrons to an azobenzene(2-) species. Related the previously work in chapter 3, the alkali metal ions (K^{+}) significantly is stabilized the dihydride complex against H_{2} release. Keep this in mind, treatment of complex 2 with azobenzene in THF solution results in an immediate a color change from red to black. Suitable crystals for x-ray diffraction were obtained from hexane layer into THF at $-30^{\circ} \mathrm{C}$ in two days with 10% yield (The yield increased to 70% when employing a new method that is discussed in experimental section). Surprisingly, 23 exhibits a monoanionic azobenzene(1-) radical bridge compound. The N-N distance in azobenzene(1-) of 1.353 (4) \AA is in between that of the $\mathrm{N}=\mathrm{N}$ double bond in azobenzene ($1.25 \AA$) and the $\mathrm{sp}^{3}-\mathrm{sp}^{3} \mathrm{~N}-\mathrm{N}$ single bond typical of hydrazine ($1.45 \AA$), [84a] thus showing that the azobenzene is reduced. 23 crystallizes in the triclinic space group $P-1$, and the molecular structures in ORTEP are shown in Figure 112 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 26. To the best of our knowledge, this is the first nickel complex with a bridging azobenzene radical.

Figure 112: Molecular structure (50\% probability thermal ellipsoids) of 23. All hydrogen atoms omitted for clarity. (a) top view; (b) side view; (c) azobenzene ligand, N atoms from pyrazolate ligand and nickel central.

Table 26: Selected bond lengths (A) and angles (${ }^{\circ}$) for 23.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.892(2)$	N1-Ni1-N3	$82.27(10)$
Ni1-N3	$1.899(2)$	N1-Ni1-N4	$171.37(10)$
Ni1-N4	$1.934(2)$	N3-Ni1-N4	$91.21(10)$
Ni1-N7	$1.959(2)$	N1-Ni1-N7	$86.47(10)$
Ni2-N2	$1.868(2)$	N3-Ni1-N7	$159.31(11)$
Ni2-N5	$1.889(2)$	N4-Ni1-N7	$101.41(10)$
Ni2-N6	$1.920(2)$	N2-Ni2-N5	$82.77(10)$
Ni2-N8	$1.921(2)$	N2-Ni2-N6	$173.42(10)$
N7-N8	$1.353(4)$	N5-Ni2-N6	$93.45(10)$
Ni1-Ni2	$3.993(7)$	N2-Ni2-N8	$86.04(10)$
		N5-Ni2-N8	$168.13(10)$
		N6-Ni2-N8	$98.05(10)$
		N8-N7-Ni1	$117.81(18)$
		N7-N8-Ni2	$120.51(19)$
		Ni1-N7-N8-Ni2	$121.10(19)$
		C40-N7-Ni1	$111.05(18)$
		C46-N8-Ni2	$121.10(19)$
		C40-N7-N8-C46	$163.62(25)$

E

Z

Scheme 37: Two possible conformations of the azobenzene radical.

Figure 113: Selected examples of binding modes of azobenzene motifs. [80a, e]
As shown in Scheme 37, the azobenzene radical adopts an E-conformation, the two phenyl rings are located in on the opposite sides of the ligand. A similar conformation was reported with the Sm metal. ${ }^{[80 a]}$ However, here the azobenzene was not reduced by the metal but coordinated with a $\mathrm{N}=\mathrm{N}$ double bond in the original state with the azobenzene (Figure 113) [80a]. The $\mathrm{Ph}-\mathrm{N}=\mathrm{N}-\mathrm{Ph}$ dihedral angle of $\mathbf{2 3}$ is 66.123°, which is larger than that found in the azobenzene radical complexes. ${ }^{[80 a]}$ The torsion angle of $\mathrm{C}_{(\mathrm{Ph})}-\mathrm{N}=\mathrm{N}-\mathrm{C}_{(\mathrm{Ph})}$ is 163.62°. A similar value of azobenzene radical was observed in the known complexes $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Sm}(\mathrm{PhNNPh})(\mathrm{THF})\left(1.32\right.$ and 1.39 Å), ${ }^{[80 a]}$
$\left[\eta^{5}-2,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2}-3,4-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{P}\right]_{2} \operatorname{Tm}(\mathrm{PhNNPh})\left(1.35 \AA\right.$ Å), ${ }^{[80 e]}$
$\left[\eta^{5}-2,5-\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2}-3,4-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{P}\right]_{2} \operatorname{Sm}(\mathrm{PhNNPh})\left(1.35 \AA \AA^{\text {}}\right.$), ${ }^{[80 e]}$
$\left.\left[\left({ }^{(} \mathrm{Pr}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right)\right]_{2} \mathrm{Sm}(\mathrm{PhNNPh})\left(1.357 \AA\right.$ Å), ${ }^{[80 \mathrm{i}]}$ and (nacnac) $\mathrm{Mg}(\mathrm{PhNNPh})\left(1.35 \AA{ }^{\text {A }}\right.$) ${ }^{[81 f]}$ in which the azobenzene ligands are unambiguously described as radical mono anion. Each nickel center hosts in the two \{N3\}-tridentate binding sites and ligated by an extra nitrogen atom from azobenzene ligand. Ni1 adopts a twisted tetracoordinated geometry with a sum angle of 361.37°. Additionally, the dis-
tance between the two nickel and the torsion angle of $\mathrm{Ni}-\mathrm{N}-\mathrm{N}-\mathrm{Ni}$ is $3.993(7) \AA$ and 86.91°, respectively.

The UV-Vis spectrum (Figure 114) of 23 has an obvious absorption at 465 nm ($\varepsilon=600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) and two broad feature at $579\left(\varepsilon=625 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $731(\varepsilon=$ $586 \mathrm{M}^{-1} \mathrm{~cm}^{-1} \mathrm{~nm}$ in THF, which can be ascribed to the presence of the electron in the lowest antibonding orbital. ${ }^{[86]}$ Similarly, the azobenzene radical compounds (nacnac) $\mathrm{Mg}(\mathrm{PhNNPh}){ }^{[81 f]}$ and $\mathrm{Na}(\mathrm{PhNNPh}){ }^{[86]}$ have bands at 404, 628 nm and 433, 628 nm , respectively.

Figure 114: (a) VT UV-vis spectrum of 23 in THF from 293 K to 193 K. (b) plots of the absorption band at different temperatures.

The x-band EPR spectrum of $\mathbf{2 3}$ in THF at room temperature, shows a narrow and almost isotropic spectrum with $g_{1}=g_{2}=g_{3}=2.043$ (Gaussian line shapes) with no discernable hyperfine interactions to the central metal ion or the nitrogen atoms (Figure 115a). Thus, shape and position of the signal support 23 to be a typical organic radical, with the allocation of the unpaired electron in 23 on the azobenzene-bridged ligand. Whereas the Mg-nacnac compounds with an azobenzene radical, the unpaired electron located on the two nitrogen nuclei (I $=1$). The ${ }^{14} \mathrm{~N}$ coupling constant is ~ 7.6 G.[81f]

Figure 115: Experiment and simulated at room temperature EPR spectra of 23 in THF. (a) 298 K ; (b) 153K.

23 can also be generated by a one reduction involving the monoanionic $\left[\mathrm{N}_{2}\right]^{-}$ nickel complex 24 (chapter 8.2), which is generated and isolated by the reaction of $\mathbf{2}$ with N_{2} in the presence of external $[\mathrm{H}]^{+}$. Freshly generated $\mathbf{2 4}$ mixing with 1 equivalent azobenzene in THF, gave a color change from brown to black. The UV-Vis changes correspond with those seen for the azobenzene radical complex obtained from 1a with azobenzene. Isolation of the solid product and redissolution into THF also gives the same EPR spectrum.

The electronic nature of 23 is suggested by its geometric structure (Figure 116). The energy-minimized DFT calculated structure of 23 is in good agreement with that obtained by x-ray diffraction. The unpaired electron is located on the azobenzene ligand with around 65%. The distance of dinitrogen atoms of the azobenzene ligand and the two nickel centers of $1.340 \AA$ and $3.979 \AA$ A from DFT calculation are slightly shorter than the experimental data of $1.353 \AA$ And $3.993 \AA$ A (Table 27). The calculated IR spectrum shows the dinitrogen stretch at $1234 \mathrm{~cm}^{-1}$ for the ${ }^{14} \mathrm{~N}$-azobenzenyl bridging ligand (Table 28).

Figure 116: Spin density plot of 23. Mulliken Spin Population: Ni1 = 0.094794, $\mathrm{Ni} 2=0.055976, \mathrm{~N} 9=0.249510, \mathrm{~N} 10=0.372491$.

Figure 117: Calculated IR spectrum of 23.

Table 27: Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ for 23.

	$d(\mathrm{~N}-\mathrm{N}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\Phi(\mathrm{Ni}-\mathrm{N}-\mathrm{N}-\mathrm{Ni}) /{ }^{\circ}$
Exp	1.353	3.993	86.9
DFT	1.340	3.979	89.2

Table 28: $v(\mathrm{~N} \cdots \mathrm{~N})(\mathrm{IR})$ for 23.

	$\nu\left({ }^{14} \mathrm{~N}^{-14} \mathrm{~N}\right) / \mathrm{cm}^{-1}$	$v\left({ }^{15} \mathrm{~N}-15 \mathrm{~N}\right) / \mathrm{cm}^{-1}$	$\Delta v / \mathrm{cm}^{-1}$
Exp	-	-	-
DFT	1234	1215	21

Figure 118: Cyclic voltammogram curves of $\mathbf{2 3}$ in THF/0.1 $\mathrm{M} \mathrm{NBu} \mathrm{NF}_{6}$ as an electrolyte at scan rates 100,500 and $1000 \mathrm{mV} / \mathrm{s}$ vs $\mathrm{Fc} / \mathrm{Fc}^{+}$in the $-3.0-0.5 \mathrm{~V}$ potential range. Impurity is marked (*).

The cyclic voltammogram of $\mathbf{2 3}$ in THF at room temperature exhibits a qua-si-reversible redox wave of $100 \mathrm{Mv} / \mathrm{s}^{-1}$ at $E_{1 / 2}=-1.91 \mathrm{~V}$ (vs $\mathrm{Fc} / \mathrm{Fc}^{+}$) (Figure 118). It indicates that the azobenzene(1-) may be reduced by one electron to the azobenzene(2-) complex. Reaction of $\mathbf{2 3}$ with elemental potassium results in a rapid color change from purple to brown in the presence of DB18C6 at room temperature. The final product 22 was identified by ${ }^{1} \mathrm{H}$ NMR spectrum after the work-up.

7.4 Summary

Scheme 38: Activation of azobenzene and reduce the azobenzene monoanionic radical.

In summary, the two different $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\right]^{-}$and $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)\right]^{-}$cores (with or without K^{+}cation stabilized) can be viewed as two different species for azobenzene activation. In case of the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\right]$ - core, the azobenzene has two electrons reduction and a $\mathrm{N}-\mathrm{N}$ single bond formation. Whereas in the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)\right]^{-}$core, the azobenzene substance is only reduced once to generate a new azobenzene(1-) monoanionic radical complex. Meanwhile, the new azobenzene monoanionic radical is allowed reduced by elemental potassium. This paradigm may be useful for understanding the role of the K^{+}cation in the dinickel dihydride system (Scheme 38). Ongoing works are focusing on cleaving the $\mathrm{N}-\mathrm{N}$ double bond and protonating the $\mathrm{N}-\mathrm{N}$ single bond.

Chapter $8 \mathbf{N}_{2}$ to $\mathbf{N H}_{3}$ Conversion in the dinuclear nickel(II) cofactor

Abstract

Treatment of $\mathbf{2}$ with N_{2} in the presence of stoichiometric H^{+}allowed isolation of $\left[\mathrm{N}_{2}\right]$ - mono-radical bimetallic dinickel(II) complex and it was characterized by x-ray diffraction first time. The anionic $\left[\mathrm{N}_{2}\right]^{-}$species can be functionalized by a hydrogen atom transfer to generate the $\mathrm{N}_{2} \mathrm{H}^{-}$bridging complex. Then the $\left[\mathrm{N}_{2} \mathrm{H}\right]^{-}$as an intermediate for the reduction of N_{2} to NH_{3} when supplied with reduction agent KH at room temperature. In addition, nitrogenous intermediates, including hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$, Hydrazido $\left(\mathrm{N}_{2} \mathrm{H}_{3}{ }^{-}\right.$or $\left.\mathrm{N}_{2} \mathrm{H}_{2}{ }^{2-}\right)$ were isolated and characterized by x-ray diffraction, and interconversion has successfully done by chemical regent.

8.1 Introduction

The conversion of dinitrogen to more valuable compounds is a challenge that has confirmed by chemists for over a century. In nature, the dinitrogen is reduced by nitrogenase enzymes, which contain large metalloproteins and promote a sequence of proton-coupled electron-transfer reactions to accomplish the reduction. ${ }^{[87]}$ Industrially, the Haber-Bosch ammonia synthesis hydrogenates N_{2} at high temperature ($>400^{\circ} \mathrm{C}$) and high pressure ($>200 \mathrm{~atm}$) over an iron-based catalyst surface. ${ }^{[88]}$ The energy issues inspiring the transition metal complexes with N_{2} as one of the ligands have allowed chemists to conduct fundamental studies into dinitrogen reduction.

e

f

g

h

Figure 119: Most common binding motifs with dinitrogen complexes.
It is now well known that N_{2} can coordinate to almost all transition metal, and a range of different binding modes have been observed (Figure 119). ${ }^{89]}$ When dinitrogen acting as a ligand, the commonly observed oxidation states are $0,2^{-}$ and 4^{-}, and a few examples for complexes with 3^{-}radical anion. ${ }^{[90]}$ Until now, the mono anionic 1- oxidation state of N_{2} was only detected in the $\mathrm{MO}(\mathrm{M}=\mathrm{Mg}$, Ca) surfaces at low temperatures. [91]

Though the transition metals with dinitrogen compound is well known. Surprisingly, over the past decades, only few isolable $\mathrm{Ni}\left(\mathrm{N}_{2}\right)$ compounds were reported in literature. ${ }^{[18, ~}{ }^{92]}$ And Ni complexes are generally considered to bind N_{2} without substantial bond weakening, ${ }^{[89]}$ and previous efforts toward N_{2} splitting in Ni metal were unsuccessful.

xxxill

xxxiv

Figure 120: Dinitrogen compounds with nickel in the β-diketiminato ligand. [92b,c]

The impressive dinitrogen nickel complexes work from Limberg et.al., ${ }^{[92 b, ~ c] ~ t h e y ~}$ are able to isolate a neutral complex and odd or evenly charged reduction products stemming from a precursor material (Figure 120, XXX-XXXIV). The remarkable example for XXXI from the series of the nickel dinitrogen complexes is an analogous regarding the linearity of the $\mathrm{MN}_{2} \mathrm{M}$ bridge. However, a typical spectrum for XXXI was observed from EPR measurement, and without any ${ }^{14} \mathrm{~N}_{2}$ coupling. It is attributes the electron couples very strongly antiferromagnetically to one of the original unpaired Ni^{1} electrons, and the question arises as to whether it has been added to a d orbital $\left(\rightarrow \mathrm{Ni}^{0}\right)$ or to an N -based orbital. On the other hand, the stretching frequencies for the $\mathrm{N}-\mathrm{N}$ bond in these compounds (XXX-XXXIV) are decrease while the bond distance of dinitrogen enlarges. (Table 29). ${ }^{[92 b, 93]}$ Some other $\mathrm{Ni}-\mathrm{N}_{2}$ adducts were reported since the remarkable nickel dinitrogen by Limberg and co-workers, but no any weakly activation were happened for these nickel dinitrogen compounds. Some "side-on" and "end-on" $\mathrm{Ni}-\mathrm{N}_{2}$ examples were shown in Figure 121. ${ }^{[92 e-i]}$

Table 29: Reported stretching frequencies $\left(\mathrm{cm}^{-1}\right)$ and bond length (\AA) for the $\mathrm{N}-\mathrm{N}$ bond of free N_{2} and activated forms.

	$\mathrm{N}_{2}{ }^{[94]}$	XXX	XXXI	XXXII	XXXIII	XXXIV
ν_{IR}	-	2164	-	-	-	-
$\nu_{\text {Raman }}$	2331	-	1825	1696	1689	1685
$d_{(\mathrm{NN})}$	1.098	1.120	1.143	1.185	1.195	1.192

Budzelaar 2011

XXXV

Peter ${ }^{2013}$

XXXVII

Heinekey 2012

Hazari ${ }^{2016}$

XXXVIII

Figure 121: Selected examples for the $\mathrm{Ni}-\mathrm{N}_{2}$ adducts were reported since 2010. ${ }^{92 \mathrm{~d}-\mathrm{f}, 92 \mathrm{k}]}$
N_{2} to NH_{3} conversions have been reported in many transition metals already, ${ }^{[95.96]}$ but not for the nickel center metal. The favorable thermodynamics associated with N_{2} hydrogenation to ammonia demonstrates that the challenge with nitrogen fixation is principally kinetic in origin. The pathways typically associated with both proton-coupled electron transfer (PCET) or Hydrogen atom transfer (HAT) often avoid high-energy intermediates and therefore may
facilitate smooth $\mathrm{N}-\mathrm{H}$ bond formation and ultimately release of free ammonia, offering a potential advantage over conventional dinitrogen reduction strategies. ${ }^{[97]}$ It is important to note that the homogeneous ammonia synthesis catalysts reported by Schrock and Nishibayashi could operate by PCET or HAT, ${ }^{[98]}$ as the combination of strong pyridinium acids and metallocene reductants can, in principle, lead to the in situ formation of pyridinyl radical species with exceedingly weak N - H bonds (BDFE $\mathrm{N}-\mathrm{H} \sim 35 \mathrm{kcal} / \mathrm{mol}$)

Figure 122: Delivery of a hydrogen atom equivalent to a bound dinitrogen fragment by a pyridinyl radical species.

Figure 123: The bridging hydrides of E_{4} (green) are positioned to share a Fe "vertex", as suggested by hydride protonation ($h p$) mechanism of H_{2} release upon N_{2} binding.

Biology is offering blueprints for the use of metal hydride species in the reductive binding and activation of inert substrates. In this case, reducing equivalents
are stored as hydrides, preferably at multi-metallic sites, which upon reductive elimination of H_{2} unmask the low-valent metal species. This strategy avoids strong reducing agents and may bypass highly unfavorable one-electron reduced substrate intermediates. The prominent metallobiosite exploiting this mechanism is the FeMo cofactor of nitrogenase, where binding of inert N_{2} is preceded by charging of the Fe / S active site with four electrons and four protons, and is accompanied by the obligatory release of one molecule of H_{2}. [99, 100] It has recently been shown that photolysis of the charged state, denoted $\mathrm{E}_{4}(4 \mathrm{H})$ according to the Low-Thorneley kinetic scheme for the nitrogenase mechanism, ${ }^{[100 a]}$ generates an intermediate $\mathrm{E}_{4}\left(\mathrm{H}_{2} ; 2 \mathrm{H}\right)$ described as an H_{2} complex of the doubly reduced Fe / S cluster. ${ }^{[101]}$ It has further been suggested that this H_{2} complex may be a thermally populated intermediate on the trajectory of reductive elimination of H_{2} from, and reaction of N_{2} with, the $\mathrm{E}_{4}(4 \mathrm{H})$ state (Figure 123).

Recently, Manz has prepared complexes including $\mu-\eta^{1}, \eta^{1}$-ligands like $\mathrm{N}_{2} \mathrm{H}_{4}$, $\mathrm{N}_{2} \mathrm{H}_{3}{ }^{-}, \mathrm{N}_{2} \mathrm{H}_{2}{ }^{-}, \mathrm{N}_{2} \mathrm{H}^{-}$from 1 with $\mathrm{N}_{2} \mathrm{H}_{4}$, which are supposed to represent important intermediates in the process of N_{2} fixation and activation. In his work, the compounds of $\mathrm{N}_{2} \mathrm{Hx}(\mathrm{x}=1,2,3$ or 4$)$ species were characterized by x -ray or spectroscopies. ${ }^{[11]}$ In an effort to access and rationalize the dinitrogen fixation in the dinickel system, we sought to (i) do dinitrogen activation in the masked [$\left.\mathrm{L}^{1} \mathrm{Ni}^{1}\right]^{-}$species; (ii) expand the interconversion between all the $\mathrm{N}_{X} \mathrm{H}_{Y}$ ($\mathrm{x}=1$ and $2, y=0,1,2,3$ or 4) species.

8.2 Synthesis $\left[\mathrm{N}_{2}\right]^{-}$monoanionic radical

Scheme 39: Synthetic route for 24.
H_{2} reductive elimination from metastable hydride complexes have been used previously as a route to dinitrogen complex, ${ }^{[102]}$ there are three literature examples of N_{2} binding directly from crystallographically verified hydride complexes. ${ }^{[92 c, 103]}$ This $\mathrm{H}_{2}-\mathrm{N}_{2}$ exchange is interest in the context of catalytic N_{2} reduction because the formation of N_{2} complexes in this way avoids the use of harsh reducing agents. Solution of $\mathbf{2}$ in aromatic and hydrocarbon solvents show no signs of decomposition or new species by ${ }^{1} \mathrm{H}$ NMR when heated to $60^{\circ} \mathrm{C}$ for several days under Ar or N_{2} atmosphere.

Inspired the work from FeMo-co hydride protonation (hp) and reductive elimination (re) mechanism study from Hoffmann, ${ }^{[100 a]}$ two new approaches were tried to do the dinitrogen activation (Scheme 39). (I) Treatment of 2 with absolutely dry [$\mathrm{H}-\mathrm{Lut}][\mathrm{OTf}]$ or [$\mathrm{H}-\mathrm{Lut}]\left[\mathrm{BF}_{4}\right]$ under N_{2} atmosphere results in a color change from orange to brown red immediately, and gas evolution was observed. The gas was verified and was quantified as 1.4 equivalents (vs 1 equivalent of 2) by analyzing the gas phase of the reaction mixture using gas chromatography (Table A1, Table A2 and Figure A42). After the reaction, colorless substance $\left(\mathrm{KCF}_{3} \mathrm{SO}_{3}\right)$ was obtained from parent solution. Filter the parent solution and the volatile removed under vacuum. The crude product can dissolve in many solvents, such as pentane, hexane, diethyl ether, THF and toluene. Nevertheless, suitable crystals for x-ray diffraction were obtained from hexane lay-
ered into saturation solution of 24 in THF at $-30^{\circ} \mathrm{C}$. (II) afterward, a new method was observed to produce the dinitrogen complex. Treatment of $\mathbf{2}$ with 2 equivalents strong Lewis acidic BCF (tri(pentafluorophenyl)borane) gives a color change from orange to brown-red in 20 mins and evolution of gas bubbles was observed slowly. No precipitate was observed from the reaction mixture even after a prolonged period. Suitable crystals for x-ray diffraction were obtained from THF slow evaporation at room temperature in a week.

Treatment of $\mathbf{2}$ with stoichiometry BCF in solution of THF- $\mathrm{d}_{8},{ }^{1} \mathrm{H}$ NMR spectrum indicates that still has unreacted 2. The peak at -2.91 ppm in the ${ }^{11} \mathrm{~B}$ NMR (Figure 124) and three peaks at $-136.07 \mathrm{ppm}\left(\mathrm{d}, 3^{3} \mathrm{~J}_{\mathrm{FF}}=23 \mathrm{~Hz}, 6 \mathrm{~F}\right),-168.1 \mathrm{ppm}$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{FF}}=20 \mathrm{~Hz}, 3 \mathrm{~F}\right)$ and $-171.0 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{~F})$ in the ${ }^{19} \mathrm{~F}$ NMR spectrum were observed (Figure 125), which are similar to the $\mathrm{K}[\mathrm{HBCF}]$ complex spectrum in the ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR. ${ }^{[104]} \mathrm{A}$ paramagnetic resonance was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 126) once two equivalents of BCF was added.

Figure 124: ${ }^{11} \mathrm{~B}$ NMR spectrum of 2 with 1 equiv BCF in two days.

Figure 125: ${ }^{19} \mathrm{~F}$ NMR spectrum of 2 with stoichiometry BCF in two days

Figure 126: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 with one equivalent BCF and two equivalent BCF.
 b

Figure 127: Molecular structure (50\% probability thermal ellipsoids) of 24. All hydrogen atoms omitted for clarity.

Table 30: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 24.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.865(1)$	N1-Ni1-N7	$87.07(5)$
Ni1-N7	$1.884(1)$	N1-Ni1-N3	$83.80(5)$
Ni1-N3	$1.886(1)$	N7-Ni1-N3	$169.39(5)$
Ni1-N4	$1.898(1)$	N1-Ni1-N4	$175.35(5)$
Ni2-N2	$1.874(1)$	N7-Ni1-N4	$94.54(5)$
Ni2-N8	$1.883(1)$	N3-Ni1-N4	$94.98(5)$
Ni2-N5	$1.899(1)$	N2-Ni2-N8	$87.37(5)$
Ni2-N6	$1.907(1)$	N2-Ni2-N5	$83.13(5)$
N7-N8	$1.132(4)$	N8-Ni2-N5	$170.35(5)$
Ni1-Ni2	$3.962(5)$	N2-Ni2-N6	$178.25(5)$
		N8-Ni2-N6	$94.01(5)$
		N5-Ni2-N6	$95.51(5)$
		N8-N7-Ni1	$139.5(2)$
		N7-N8-Ni2	$138.5(2)$
		Ni1-N7-N8-Ni2	$2.82(6)$

24 was characterized by x-ray diffraction, FT-IR-, Raman-, UV-Vis-, EPR-, XES-, spectroscopies, CV-, SQUID- measurements and DFT calculations as well as elemental analysis (C, H and N). 24 crystallizes in the monoclinic space group $P 2_{1}$ /c with four molecules in the unit cell. The molecular structure of 24 in ORTEP diagram is shown in Figure 127 and selected bond lengths (\AA) and an-
gles (${ }^{\circ}$) are listed in Table 30. An almost planar six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{~N}_{2}\right\}$ ring was formed by the two nickel center atoms, pyrazolate- N and dinitrogen ligand. In 24, two nickel(II) ion host in the two $\left\{\mathrm{N}_{3}\right\}$-tridentate binding sites of the trianionic ligand scaffold, bridged by the pyrazolate and nitrogen atom from dinitrogen ligand (Figure 127). Both nickel centers are coordinated in an expected square-planar fashion, with the sum angles being 360.3° and 360.03°, respectively. This is in agreement with the low-spin d^{8} configuration. The distance of the two nickel ions and torsion angle of $\mathrm{Ni}-\mathrm{N}-\mathrm{N}-\mathrm{Ni}$ are $3.962(5) \AA$ and $2.82(6)^{\circ}$, respectively. The $\mathrm{N}-\mathrm{N}$ bond distance of dinitrogen ligand of 1.132 is consistent with other reported $\mathrm{Ni}\left(\mathrm{N}_{2}\right)$ complexes (Table 35), ${ }^{[92]}$ and is slightly longer than the free dinitrogen molecule of $1.10 \AA$ Å. ${ }^{[94]}$ Compared with other transition metals dinitrogen compounds, ${ }^{[89]}$ the dinitrogen molecule is weakly activated. To our the best knowledge, complex 24 is the first [$\left.\mathrm{N}_{2}\right]^{-}$monoanionic radical complex characterized by x-ray diffraction.

From the solid state, $\mathbf{2 4}$ is not a neutral molecule if the dinitrogen is considered as a neutral molecule fashion. Then there is one proton missing in the solid structure. However, the ${ }^{1} \mathrm{H}$ NMR spectrum of 24 in THF-d8 shows a paramagnetically shifted resonance (contained some decayed hydroxide nickel complex 11). Then the question arises as the paramagnetically shifted resonances from the unpaired electron added to a d orbital $\left(\rightarrow \mathrm{Ni}^{1}\right)$ or to an N -based orbital. It is noteworthy that to the Ni^{I} compound, reduction results in a large decrease in the vibrational energy ($299 \mathrm{~cm}^{-1}$ for the dinickel ($\mathrm{I} / 0$) and $428 \mathrm{~cm}^{-1}$ for the dinickel (0) species), although N-N bond distance increase by $<0.1 \AA$ for the two electron reduction ${ }^{[105]}$. One electron reduction of [NiNNNi] core in XXXI by potassium has $\mathrm{N}-\mathrm{N}$ bond length at $1.143 \AA$ and rRaman frequencies at $1825 \mathrm{~cm}^{-1}$. [92b] In order to know whether the unpaired electron is located on the nickel center or on the dinitrogen ligand; firstly the IR and rRaman spectrum were employed. A sharp band separately observed at $1896 \mathrm{~cm}^{-1}$ in IR
spectra and at $1900 \mathrm{~cm}^{-1}$ in rRaman, which are attributed to the ${ }^{14} \mathrm{~N}_{2}$ stretching of dinitrogen ligand (Figure 128). The dinitrogen $v_{(\mathrm{N} 2)}$ band for 24 appear at lower frequencies than the value for free dinitrogen molecule $\left(2331 \mathrm{~cm}^{-1}\right)^{[106]}$ and XXX (2164 cm $\left.{ }^{-1}\right)^{[92 b]}$, XXXV (2156 cm $\left.{ }^{-1}\right)^{[92 e], ~ X X X V I I ~}\left(2223 \mathrm{~cm}^{-1}\right.$ and $2234 \mathrm{~cm}^{-1}$) ${ }^{[92 f]}$ and XXXVIII ($2145 \mathrm{~cm}^{-1}$) ${ }^{[92 i]}$, but the value is similar to XXXI (1825) ${ }^{[92 \mathrm{~b}]}$. The ${ }^{15} \mathrm{~N}_{2}$ stretching of 24 in IR and rRaman were observed at $1830 \mathrm{~cm}^{-1}$ and $1836 \mathrm{~cm}^{-1}$, respectively $\left({ }^{14} \mathrm{~N}^{15} \mathrm{~N}=63 \mathrm{~cm}^{-1}\right)\left(v\left({ }^{14} \mathrm{~N}_{2}\right) / v\left({ }^{15} \mathrm{~N}_{2}\right)=1.034\right.$; calcu $\left.v\left({ }^{14} \mathrm{~N}_{2}\right) / v\left({ }^{15} \mathrm{~N}_{2}\right)=1.035\right)\left(\right.$ Figure 128). Two bands (1900 and $\left.1836 \mathrm{~cm}^{-1}\right)$ for N_{2} stretching in labeling 24 were observed. We assumed that ${ }^{15} \mathrm{~N}_{2}$ ligand exchanged with ${ }^{14} \mathrm{~N}_{2}$ in solution.

In XXXI, DFT predicts a doublet ground state and a spin-density distribution corresponding to one spin-up electron at each nickel atom and one spin-down electron in an $\mathrm{N}-\mathrm{N} \pi^{*}$ orbital between the Ni atoms. And EPR spectrum is typical for Ni^{I} species. Therefore, I believed that the unpaied electron has been added to a d orbital of nickel instead of N -based orbital. [92b]

Figure 128: (a) IR spectra (3500-500 cm^{-1}) of 24 in crystalline material at room temperature; the ${ }^{14} \mathrm{~N}_{2}$ spectrum is in black and ${ }^{15} \mathrm{~N}_{2}$ spectrum is in red. (b) Resonance Raman spectra ($1600-2000 \mathrm{~cm}^{-1}$) of 24 in crystalline material at room temperature; the ${ }^{14} \mathrm{~N}_{2}$ spectrum is in black and ${ }^{15} \mathrm{~N}_{2}$ spectrum is in red.

24 was analyzed by UV-vis spectroscopy (Figure 129) which showed a new band at $320 \mathrm{~nm}\left(\varepsilon=1600 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ and a shoulder around $500 \mathrm{~nm}(\varepsilon=400$ $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$). These two bands are assigned to $\mathrm{N}_{2} \rightarrow \mathrm{Ni}^{\text {II }}$ charge transfer (CT) transitions.

Figure 129: (a) UV-vis spectra in THF of 2 and 24; (b) VT UV-vis spectra in THF from 293 K to 193 K of $\mathbf{2 4}$.

In collaboration with Eckhard Bill and Van Gastel Maurice from Max-Planck Institute for Chemical Energy Conversion, X-band EPR, cw Q-band EPR and Davies ENDOR on THF solutions of $\mathbf{2 4}$ were performed to confirm the identity of 24 has $S=1 / 2$ in solution. X-band EPR measurements of 24 in solid state at 10 K shows wide splitting (Figure 130a), whereas in THF solution at 30 K demonstrates a different and much more narrow peak (Figure 130b). No clearly information were obtained for 24 in solid or solution X-band EPR spectra. The cw-Q-band EPR was conducted for 24. Q-band EPR measurements of 24 in THF at 30 K exhibits two components in solution (Figure 131a). The spectrum can be simulated with two sub-spectra corresponding to the two components which the component 24-1 (green) with g values (2.13, 2.13 and 1.99) ($g_{\mathrm{av}}=2.08$) and the component 24- ${ }^{2}$ (blue) with g values (2.08, 2.08 and 2.06) ($g_{\mathrm{av}}=2.07$). The ratio of the two components is around 0.44:0.56.

Figure 130: (a) X-band EPR spectra of 24 in solid material at 30K, Frequency = 9.6 GHz , power $=2 \mathrm{mV}$. (b) First derivative (upper) and theoretical absorption (lower) x-band EPR spectra of 24 in THF at 30 K . Frequency $=9.6 \mathrm{GHz}$, power $=$ 0.05 mV .

Figure 131: (a) First derivative (upper) and theoretical absorption (lower) cw-Q-band EPR spectra of $\mathbf{2 4}$ in THF at 30 K ; (b) Simulated EPR spectra with two sub-spectra corresponding to 24-1 (green) and 24- ${ }^{\mathbf{2}}$ (blue).

Table 31: the g values of the components and component ratio.

	$\mathbf{2 4 - ~}^{\mathbf{1}}$ (green)	$\mathbf{2 4 - ~}^{\mathbf{}}$ (blue)
g_{x}	2.13	2.08
g_{y}	2.13	2.08
g_{z}	1.99	2.06
ratio $(\%)$	43.6	56.4

Figure 132: (a) Theoretical absorption pulse Q-band spectrum of 24 in THF at 10 K , Frequency $=34 \mathrm{GHz}$, power $=5 \mathrm{mV}$; (b) Simulated EPR spectrum, alternative fit with conditions for three component, the first two sub spectra (green and blue) suggest nickel-based spin; whereas the sub spectrum 24-3 (turquoise) is corresponds to the N_{2} based. (c) Simulated EPR spectrum, alternative fit with conditions for 24-3 (turquoise) taken (hyperfine interaction with two ${ }^{14-\mathrm{N}}$).

Table 32: the g values of the components and components ratio.

	$\mathbf{2 4 -}^{\mathbf{1}}$ (green)	$\mathbf{2 4 - ~}^{\mathbf{2}}$ (blue)	$\mathbf{2 4 - ~}^{\mathbf{3}}$ (turquoise)
g_{x}	2.34	2.14	2.08
g_{y}	2.18	2.15	2.07
g_{z}	1.98	1.99	2.05
ratio $(\%)$	8.0	76.2	15.8

However, the hyperfine Q-band spectrum clearly showed that three components in solution of $\mathbf{2 4}$. The sub-spectra of green part with g values are 2.34, 2.18 and 1.98 and blue part with g values are $2.14,2.15$ and 1.99 , respectively (Figure 132). The wide-split g values of the first two sub spectra suggest nick-el-based spin. Two simulations were done for the third component. The turquoise sub spectrum (Figure 132b) show that the ${ }^{14} \mathrm{~N}$ with g values of 2.08, 2.07 and 2.020 or hyperfine interaction (Figure 132c) in the two ${ }^{14} \mathrm{~N}$ with g values of 2.080, 2.07 and 2.05. I presumed that the three components are three configurations of 24 in solution (Figure 133).

Figure 133: Three possible configurations of 24 in solution.

EPR measurements show that 24 has three components in solution. The electronic nature of $\mathbf{2 4}$ suggested by its geometric structure was confirmed by DFT calculations (Figure 134). The energy-minimized DFT calculated structure of 24 is in good agreement with that obtained by X-ray diffraction. The unpaired electron can be estimated at the Ni center around 50% and at the N_{2} ligand around 45%. Therefore, the unpaired electron are delocalized on the [NiNNNi] system. The distance of $\mathrm{Ni} \cdots \mathrm{Ni}$ and N_{2} ligand of $1.151 \AA$ and $3.964 \AA$ from DFT
calculation are longer than the experimental data of $1.132 \AA$ and $3.962 \AA$ (Table 33). The N_{2} stretching of $1927 \mathrm{~cm}^{-1}$ for ${ }^{14} \mathrm{~N}_{2}$ in calculated IR spectrum is lower than experimental data of $1896 \mathrm{~cm}^{-1}$ (Figure 135 and Table 34).

Figure 134: Spin density plot of 24. Mulliken Spin Population: Ni1 = 0.251814 , $\mathrm{Ni} 2=0.251829, \mathrm{~N} 1=0.218855, \mathrm{~N} 2=0.222082$.

Figure 135: Calculated IR spectrum of 24.
Table 33: Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ for 24.

	$d(\mathrm{~N}-\mathrm{N}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\Phi(\mathrm{Ni}-\mathrm{N}-\mathrm{N}-\mathrm{Ni}) /{ }^{\circ}$
Exp	1.132	3.962	2.82
DFT	1.151	3.964	2.4

Table 34: $v(\mathrm{~N} \cdots \mathrm{~N})$ (IR) for 24.

	$\nu\left({ }^{14} \mathrm{~N}-14 \mathrm{~N}\right) / \mathrm{cm}^{-1}$	$\nu\left({ }^{15} \mathrm{~N}-15 \mathrm{~N}\right) / \mathrm{cm}^{-1}$	$\Delta v / \mathrm{cm}^{-1}$
Exp	1896	1836	60
DFT	1927	1863	64

Figure 136: Cyclic voltammograme of $\mathbf{2 4}$ in THF/0.1 M Bu ${ }_{4} \mathrm{NPF}_{6}$ at a scan rate of $50 \mathrm{mV} / \mathrm{s}$ vs $\mathrm{Fc} / \mathrm{Fc}^{+}$.

The electrochemical behavior of 24 was investigated by cyclic voltammetry in the presence of $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6}$ in THF solution at RT (Figure 136). The cyclic voltammetry shows a quasi-reversible redox wave of scan of $100 \mathrm{mV} / \mathrm{s}^{-1}$ at $E_{1 / 2}$ $=-1.28 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, indicates that the dinitrogen radical is possible reduce to diazendio.

Table 35: Comparison with bond lengths and $v\left(\mathrm{~N}_{2}\right)$ stretching vibration frequencies of formally monovalent iron, cobalt and nickel dinitrogen and compounds reported previously.

Complex	Coordination Nr.	M-N (Å)	$\mathrm{N}-\mathrm{N}(\AA)$	$\nu_{\text {NN }}\left(\mathrm{cm}^{-1}\right)$	Ref
Free N_{2}	-	-	1.098	2331	106
$\left[\mathrm{Fe}\left(\text { nacnac }^{\text {Me }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.745(3), 1.775(2)	1.186(7), 1.172(5)	$1810{ }^{\text {a }}$	108
$\mathrm{K}_{2}\left[\mathrm{Fe}\left(\text { nacnac }^{\text {Me }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.741(5); 1.761(7)	1.215(6)	1625, 1437	108
$\left[\mathrm{Fe}\left(\text { nacnac }^{\text {Me }}\right)\left({ }^{\text {tBupy }}\right)^{2}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	4	1.816(2)	1.151(3)	$1770{ }^{\text {a }}$	108
$\left[\mathrm{Fe}\left(\text { nacnac }^{\text {tBu }}\right)^{2}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.770(5), 1.779(5)	1.182(5)	$1778{ }^{\text {b }}$	5 c
$\mathrm{K}_{2}\left[\mathrm{Fe}\left(\text { nacnac }^{\text {ctBu}}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.763(6), 1.765(6)	1.241(6)	1589a/1123	5c
$\mathrm{Na}_{2}\left[\mathrm{Fe}\left(\text { nacnac }^{\text {ctBu }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.749(3), 1.746(3)	1.238(4)	1583 ${ }^{\text {a }} 11127$	5 c
$\left[\mathrm{Co}\left(\text { nacnac }^{\text {tBu }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.840(8)	1.139(2)	1742	107
$\mathrm{K}_{2}\left[\mathrm{Co}\left(\text { nacnac }^{\text {ctBu}}\right)_{2}\left(\mu-\mathrm{N}_{2}\right)\right.$	3	1.750 (1)	1.220(2)	1599	107
$\mathrm{Na}_{2}\left[\mathrm{Co}\left(\text { nacnac }^{\text {tBu }}\right)_{2}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.743(7), 1.735(6)	1.211(3)	1598	107
$\mathrm{Mg}\left[\mathrm{Co}\left(\text { nacnac }^{\text {ctBu }}\right)\right]_{2}$	-	-	-	1868	108
$\left[\mathrm{Ni}\left(\text { nacnac }^{\text {tBu }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.836(3), 1.830(3)	$1.120(4)$	$2164{ }^{\text {b }}$	92b
$\mathrm{K}\left[\mathrm{Ni}\left(\text { nacnac }^{\text {tBu }}\right)\right)_{2}{ }_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.770 (7)	1.143(8)	$1825{ }^{\text {a }}$	92b
$\mathrm{K}_{2}\left[\mathrm{Ni}\left(\text { nacnac }^{\text {tBu }}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$	3	1.931(5)	1.185(8)	$1696{ }^{\text {a }}$	92b
$\left[\mathrm{SiP}^{+1 \mathrm{Pr}_{3}}\right] \mathrm{Ni}\left(\mu-\mathrm{N}_{2}\right)$	5	1.905(2)	1.087(2)	$2223{ }^{\text {b }}$	92f

$\left[\mathrm{SiPPh}_{3}\right] \mathrm{Ni}\left(\mu-\mathrm{N}_{2}\right)$	5	1.891(2)	1.083(2)	$2234{ }^{\text {b }}$	92 f
[DIMPY](Ni) $\left(\mu-\mathrm{N}_{2}\right)$	4	1.099(1)	0.92	$2156{ }^{\text {b }}$	92 e
$\left[\mathrm{Cu}_{3}\left(\right.\right.$ nacnac $\left.\left.^{\text {MePh }}{ }_{2}\right)\right]\left(\mu-\mathrm{N}_{2}\right)$	3,4	2.209(2), 2.028(2)	1.096(1)	1952a	105
$\left[\left(\mathrm{SiPiPr}_{\text {ir }}^{3}\right.\right.$) $\left.\mathrm{Fe}\left(\mathrm{N}_{2}\right)\right] \mathrm{Na}(\mathrm{THF})_{3}$	5	1.763(3)	1.147(4)	$1891{ }^{\text {b }}$	76
$\left[\left(\mathrm{SiP}^{\text {ipr }} 33 \mathrm{Fe}\left(\mathrm{N}_{2}\right)\right] \mathrm{Na}(12\right.$-crown-4)2	5	1.795(3)	1.132(4)	$1920{ }^{\text {b }}$	76
[(TPB)Fe-NN]Na	5	1.776(2)	1.149(3)	1877 ${ }^{\text {b }}$	76
[(TPB) $\mathrm{Fe}-\mathrm{NN}] \mathrm{Na}(12-\mathrm{crown}-4)$	5	1.776(2)	1.144(3)	$1905{ }^{\text {b }}$	117
[\{(AltraPhos) $\mathrm{Fe}_{\left.\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right] \mathrm{K}(18-\text { crown }-6) ~}^{\text {c }}$	5	1.783(3)	1.135(4)	$1925{ }^{\text {b }}$	109
$\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mu-\mathrm{N}_{2}\right)$	4	1.884(3), 1.875(2)	1.132(4)	$\begin{gathered} 1893^{\mathrm{b}} / 1098^{\mathrm{b}} \\ 1900^{\mathrm{a}} \end{gathered}$	this work

a rRaman spectra; b IR spectra

8.3 Hydrogen atom transfer to dinitrogen monoanionic radical

Scheme 40: Synthetic routes for 25.

The first N - H bond-forming step in hypothetical dinitrogen reduction cycle generates a transition metal diazenido ligand, $\mathrm{M}-\mathrm{N}=\mathrm{NH}$. While a number of substituted diazenides, $\mathrm{M}-\mathrm{N}=\mathrm{N}-\mathrm{E}$ have been prepared with boryl ${ }^{[110]}$, silyl ${ }^{[111]}$, benzyl ${ }^{[112]}$ and alkyl ${ }^{[113]}$ substituents, the only structurally characterized "parent" $(\mathrm{E}=\mathrm{H})$ example by Schrock. [114].

Attempt to chemically reduce $\mu-\eta^{1}: \eta^{1-} \mathrm{N}_{2}$ to $\mu-\eta^{1}: \eta^{1}-\mathrm{N}_{2} \mathrm{H}$ with well-defined hy-drogen-atom-transfer agents (i.e., catechol, hydroquinone and 1,4 cyclohexadiene) did not yield the desired products. Only decay hydroxide 11 was obtained because the dinitrogen bridge compound is extremely sensitive to moisture. In order to prevent 11 formation from the reduce $\mu-\mathrm{N}_{2}$ reaction, dried TEMPO-H ($65.2 \mathrm{kcal} \mathrm{mol}^{-1}$ in benzene) ${ }^{[115]}$ was employed for the HAT reaction, leading to the isolation of the targeted compounds. As a consequence, the bond dissociation free energies (BDFE) in $\mathrm{N}-\mathrm{H}$ bond of $\mathbf{2 5}$ is more than BDFE of TEMPO-H (Eqs $\mathbf{1}$ and 2).

```
BDFEN-H}<<BDFE\mp@subsup{E}{R-H}{}\quad
[M]-N=NH+R}->[[M]-N\equivN + R-
BDFERR
[M]-N\equivN + R-H }->[M]-N=NH+R
```

25 from this reaction was identified from 1D and 2D NMR, IR-, Raman-, XESspectroscopies and x-ray diffraction. The molecular structure of 25 in ORTEP
diagram is shown in Figure 137 and selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in Table 36. 25 crystallizes in the monoclinic space group $P 2_{1} / c$ with two molecules in the unit cell. As shown in Figure 137, a six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{~N}_{2}\right\}$ ring was formed by the two nickel atoms, the nitrogen atoms from pyrazolate ligand and other two nitrogen atoms from diazenido(1-) ligand. The distance of $\mathrm{N}-\mathrm{N}$ of $1.275 \AA$ for the $\mathrm{N}_{2} \mathrm{H}^{-}$is in the range of complexes with diazenido ligand (1.20-1.29 \AA). ${ }^{[116]}$

b

Figure 137: Molecular structure (30\% probability thermal ellipsoids) of 25. Most hydrogen atoms omitted for clarity, except for the N8-H.

Table 36: Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 25.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.844(3)$	N1-Ni1-N7	$91.05(16)$
Ni1-N7	$1.869(4)$	N1-Ni1-N3	$83.43(14)$
Ni1-N3	$1.898(3)$	N7-Ni1-N3	$174.48(17)$
Ni1-N4	$1.922(4)$	N1-Ni1-N4	$176.40(13)$
Ni2-N2	$1.857(3)$	N7-Ni1-N4	$91.75(17)$
Ni2-N8	$1.858(4)$	N3-Ni1-N4	$93.77(14)$
Ni2-N5	$1.902(3)$	N2-Ni2-N8	$90.82(16)$
Ni2-N6	$1.925(3)$	N2-Ni2-N5	$83.02(14)$
N7-N8	$1.275(6)$	N8-Ni2-N5	$172.66(14)$
Ni1‥Ni2	$3.892(7)$	N2-Ni2-N6	$176.70(15)$
		N8-Ni2-N6	$91.99(16)$
		N5-Ni2-N6	$94.30(14)$
		N8-N7-Ni1	$131.0(3)$
		N7-N8-Ni2	$131.2(3)$
		C2-N1-Ni1	$119.5(3)$

In HAT experiment, no obvious color change found during the reaction. The labeling diazenido bridging compound was prepared by this way under Ar atmosphere. In the resonances Raman spectrum, the N_{2} unit in $\mathbf{2 5}$ has diazene character with the $v_{\mathrm{NN}}=1392 \mathrm{~cm}^{-1}$ and is shifted further to $1323 \mathrm{~cm}^{-1}$ upon ${ }^{15} \mathrm{~N}_{2}$ enrichment (Figure 138). In comparison to free diazene ($v_{\mathrm{NN}}=1529 \mathrm{~cm}^{-1}$) ${ }^{[117]}$, mononuclear complex with "end-on" coordinated $\mathrm{N}=\mathrm{NH}\left(v_{\mathrm{NN}}=1457 \mathrm{~cm}^{-1}\right){ }^{[114]}$ or dinuclear complex with end-on coordinate $\mathrm{NH}=\mathrm{NH}$ or $\mathrm{N}=\mathrm{N}\left(v_{\mathrm{NN}}=1365 \mathrm{~cm}^{-1}\right.$ or $1358 \mathrm{~cm}^{-1}{ }^{[118]}$, the $\mathrm{N}=\mathrm{N}$ stretching frequency for 25 is agreement with the range of these complexes. To our best knowledges, this is the first bimetallic complex with end-on $\mathrm{N}_{2} \mathrm{H}^{-}$ligand.

Figure 138: Comparison of the Raman spectra of 25: Without (black) and after ${ }^{15} \mathrm{~N}$ labelling of the "NiNNNi" subunit (red) in the range of $1000 \mathrm{~cm}^{-1}$ to $1600 \mathrm{~cm}^{-1}$.

In Manz work, the $\mu-\eta^{1}, \eta^{1}-\mathrm{N}_{2} \mathrm{H}$ bridging dinickel complex was obtained by oxidize the hydrazido complex (27) with 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). The solid state of 25 was clearly characterized by x-ray diffraction. [11a] However, investigations on complex $\mathbf{2 5}$ by NMR showed that temperature above
$0^{\circ} \mathrm{C}$ led to decomposition of $\mathbf{2 5}$ in solution. Whereas, treatment $\mathbf{2 7}$ with a milder oxidant (galvinoxyl free radical) results in a much clear reaction (Scheme 41). It could be shown that the clean 25 is stable in solution at RT.

Scheme 41: Synthetic route for25 from 27 and 29.
In the ${ }^{1} \mathrm{H}$ NMR spectrum, a shifted resonance that is attributed to the $\mathrm{N}=\mathrm{NH}$ proton at 9.46 ppm was observed (Figure 139). VT ${ }^{1} \mathrm{H}$ NMR spectra (Figure A44) show that an asymmetric structure $\mathbf{2 5}$ even at high temperature (above 293 K). It indicates that the proton in the $\mathrm{N}=\mathrm{NH}$ unit has fast dynamic rearrangement. The ${ }^{15} \mathrm{~N}$ shift of the NH was determined by means of ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC (52 MHz) to give a resonance at $3 \mathrm{ppm}\left(U_{\mathrm{NH}}=74 \mathrm{~Hz}\right)$ (Figure 140). The IR spectrum shows a band at $3025 \mathrm{~cm}^{-1}$ (Figure 141a), which was assigned to the NH stretching vibration of the bridging ligand. Compared to free diazene ($v=3128 \mathrm{~cm}^{-1}$) ${ }^{[117]}, \mu-\eta^{1}, \eta^{1}-\mathrm{N}_{2} \mathrm{H}(v$ $\left.=3242 \mathrm{~cm}^{-1}\right)$ and $\mu-\eta{ }^{1}, \eta^{1}-\mathrm{N}_{2} \operatorname{HAr}\left(v=3220 \mathrm{~cm}^{-1}\right){ }^{[119]}$ ligands, the NH vibration of the compound is significantly weak. The lower wavenumber may be attributed to the negative charge of the diazene ligand. The positive ion ESI-MS spectrometry of $\mathbf{2 5}$ shows a dominating peak characteristic of the $[\mathbf{2 5}+\mathrm{H}]^{+}$at 753.49 , and the isotope patterns matched this simulated. (Figure 141b)

Figure 139: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of 25 in THF- d_{8}. Residual solvents are marked (*).

Figure 140: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC (52 MHz) spectrum of 25 in THF- $\mathrm{d}_{8} .{ }^{1} J_{\mathrm{NH}}$ correlations of $\mathbf{2 5}$ are marked.

Figure 141: FT-IR spectrum of 25 in fresh crystalline material and ESI-MS in THF. The inset shows the experimental (top) and simulated (bottom) isotopic distribution pattern for $[\mathbf{2 5 + H}]^{+}$.

Figure 142: ${ }^{1} \mathrm{H}$ NMR spectra of the 25 with different amounts of glavinoxyl free radical. (a) 25; (b) with 1 eq. galvinoxyl radical; (c) with 2 eq. galvinoxyl radical. NH peaks are marked.

Following the clean compound was obtained from 27 with galvinoxyl free radical, a series of experiments to identify intermediate compound ($\mathrm{Ni}-\mathrm{NH}=\mathrm{NH}-\mathrm{Ni}$) were conducted. ${ }^{1} \mathrm{H}$ NMR spectra show the presence of the diazenido and hydrazido in 1:1 ratio of 1 equivalent galvinoxyl free radical reacts with $\mathbf{2 7}$ in THF at room temperature. It indicates that the $\mathrm{Ni}-\mathrm{NH}-\mathrm{NH}-\mathrm{Ni}$ bridging is not formed during this process. Pure diazenido complex can be obtained if only 2 equivalents Gal-
vinoxyl free radical reaction with hydrazido bridging compound. However, a paramagnetic substance was obtained once 3 equivalents galvinoxyl radical was employed. X-band EPR measurements of the crystals in frozen THF at 153 K revealed a paramagnetic ground state with spin of $S=1 / 2$ also (Figure 143). The rhombic spectrum of EPR measurements indicate an oxidation state of $+I$ at the nickel ions. The EPR spectrum could be simulated reasonably well by adopting a set of rhombic g values (2.32, 2.12 and 2.05) ($g_{\mathrm{av}}=2.16$). The g values are consistent with the reported Ni^{I} species $\left(\mathrm{LNi}^{\mathrm{I}}\left(\mathrm{CH}_{3} \mathrm{Ph}\right){ }^{[120]}(2.46,2.17\right.$ and 2.14$)$ and $\mathrm{LNi}^{\mathrm{I}}(2,4-$ Lutidine $){ }^{[121]}\left(2.44,2.13\right.$ and 2.07), $\left.\mathrm{L}=\{\operatorname{ArNC}(\mathrm{Me})\}_{2} \mathrm{CH}^{-}\right)$.

Figure 143: X-band EPR spectrum of 27 with 3 equivlents Galvinoxyl, in THF at 158 K (microwave frequency 9.450 GHz , power 8 mW , modulation $0.4 \mathrm{mT} / 100$ kHz). The red line is a powder simulation with g as indicated. \star Organic radical.

The EPR spectrum shows the paucity of Ni^{I} species, obtained from 27 reaction with excess galvinoxyl radical. However, the x-ray diffraction unequivocally demonstrates that the bridge is $\mathrm{N}=\mathrm{NH}$ unit. It indicates that the Ni^{I} species is in equilibrium with 25 in solution in presence of galvinoxyl radical.

Figure 144: $\mathbf{2 5}$ and $\mathbf{2 4 - 1}^{\mathbf{- 1}}$ are in equilibrium in the presence of galvinoxyl.
Besides of the HAT reaction and oxidize of hydrazido, complex $\mathbf{2 5}$ also can be obtained from 29 with TlOTf at room temperature. Treatment 29 with TlOTf in the young NMR tube, the color changed from green to brown immediately. The compound in this method was characterized by x-ray diffraction in low yield (~10\%).

8.4 Cleavage of $\mathrm{N}-\mathrm{N}$ double bonds

Scheme 42: Synthetic routes for 26.

Attempts to chemically reduce $\mu-\mathrm{N}_{2}$ to $\mu-\mathrm{NH}_{2}$ at RT or elevated temperature with reductant ($\mathrm{KH}, \mathrm{NaH}$ and NaBH_{4}) did not yield the desired product. However, after HAT reaction, a diazenido complex was obtained from dinitrogen radical compound. Dissolving 25 in presence of KH in THF in two hours, the color changed from red to yellow. After work-up of the reaction mixture, ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectra indicated that the new compound is amido compound. The two spectra were shown in the Figure 145 and Figure 146.

Figure 145: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of $\mathbf{2 6}$. Residual solvents are marked (*).

Figure 146: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC (52 MHz) spectrum of 26.

Scheme 43: Alternative proposed pathways for the formation of 26.

One possible conceivable mechanism for the formation of $\mathbf{2 6}$ might proceed as follows. The diazenido $(\mathrm{N}=\mathrm{NH})^{1-} 25$ was first converted to an intermediate nickel diazenido $(\mathrm{N}=\mathrm{N})^{2-}$ species by deprotonation with KH . Then the bimetallic dinickel complex is unstable and captured the hydrogen atom from solvent or KH, which results amido bridge 26 (Scheme 43).

Figure 147: Molecular structure (50\% probability thermal ellipsoids) of 26. Most hydrogen atoms omitted for clarity, except for NH_{2} group.

Table 37: Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 26.

Atoms	Bond lengths	Atoms	Bond lengths
Ni1-N1	$1.803(3)$		N1-Ni1-N3
Ni1-N3	$1.895(2)$		$173.22(10)$
Ni1-N2	$1.906(2)$	N1-Ni1-N2	$81.29(12)$
Ni1-N4	$2.003(2)$	N3-Ni1-N2	$95.03(11)$
N4-Ni1'	$2.003(2)$	N1-Ni1-N4	$83.62(11)$
		N3-Ni1-N4	$100.36(10)$
		N2-Ni1-N4	$164.44(11)$

Symmetry transformation used to generate equivalent atoms: (') 1-x,y,3/2-z.

Yellowish block crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{2 6}$ in THF at $-30^{\circ} \mathrm{C}$. The molecular structure of $\mathbf{2 6}$ is shown in Figure 147 and selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in

Table 37. 26 crystallizes in the monoclinic space group $P 2_{1}$ with two molecules in the unit cell. As shown in Figure 147, a six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{~N}_{2}\right\}$ ring was formed by the two nickel atoms, the nitrogen atoms from pyrazolate ligand and other two nitrogen atoms from hydrazine ligand. The two nickel atoms are planar tetracoordinated by three nitrogen atoms from pyrazolate ligand and another nitrogen atom from amido ligand.

Scheme 44: keep 26 under elevated temperature $\left(70^{\circ} \mathrm{C}\right)$ for $15-17$ weeks.
As presented in Manz work (Scheme 44) [11a], at elevated temperatures (60$70^{\circ} \mathrm{C}$), 27 was slowly transformed to the amido $\mathbf{2 6}$ in 15-17 weeks. Coordinated hydrazine is known to disproportionate and decompose to ammonia and dinitrogen [Equation 1], especially in the presence of transition metals. [122]

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow 4 \mathrm{NH}_{3}+\mathrm{N}_{2} \quad[\text { Equation 1] }
$$

Scheme 45: Synthetic route for 26 from complex 1

Beside the two methods for the amido complex from 25 and 27, a new approach is introduced to synthesize from $\mathbf{1}$. Treatment of a solution of $\mathbf{1}$ with $\mathrm{NH}_{3}(0.5 \mathrm{M}$ in THF) at $-78^{\circ} \mathrm{C}$ for 2 hours and warm to RT stirred for 10 hours, the color changed from brown to red (Scheme 45). Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 26 in THF at $-30^{\circ} \mathrm{C}$ in two days. The products were identified by ${ }^{1} \mathrm{H}$ NMR also (Figure 145 and Figure 146).

Indophenol Assay. To a frozen solution of $\mathbf{2 6}(10 \mathrm{mg}, 3.9 \mu \mathrm{~mol})$ was added HCl in diethyl ether, which resulted in an immediate color change from red to brown. The mixture was warmed to room temperature and stirred overnight, after which
all volatiles were removed under reduced pressure. The pale-yellow residue was dissolved in a phosphate buffer ($5 \mathrm{~mL}, 50 \mathrm{mM}, \mathrm{pH} 6.94$), filtered through a fine-fritted glass funnel packed with celite, the residue was washed with deionized water ($3 \times 1 \mathrm{~mL}$), and the filtrate was diluted to 10 mL with deionized water in a volumetric flask. Ammonia was quantified as 0.6 equivalents using the indophenol method as previously published. [123]

8.5 Protonation of hydrazido bridge complex

Scheme 46: Synthetic route for 28.

It has been already proven that the hydrazido bridge complex can be protonated by [H-Lut]OTf at room temperature. ${ }^{[11 a]}$ However, information regarding the structure of the complex in the solid state was not reported. Good quality crystals for x-ray diffraction could be obtained during the course of this work by changing the counter anion from triflate to tetrafluoroborate ion. Treatment of $\mathbf{2 7}$ with one equivalent [H-Lut] BF_{4} in THF results in a color change from red to green immediately (Scheme 46). 28 was able to characterize by 1D and 2D NMR, IR-, UV-visspectroscopies, X-ray diffraction, and elemental analysis.

Green block crystals for x-ray diffraction were grown by layering hexane on a solution of $\mathbf{2 8}$ in THF at $-30^{\circ} \mathrm{C}$ in two days. The asymmetric unit contains two crystallographically independent molecules; one of the two molecules is shown in Figure 148. 28 crystallizes in the monoclinic space group $P 2_{1}$ with two molecules in the unit cell. The molecular structure of 28 in ORTEP diagram is shown
in Figure 148 and selected bond lengths (\AA)) and angles $\left({ }^{\circ}\right)$ are listed in Table 38.
As shown in Figure 148, a six-member $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{~N}_{2}\right\}$ ring was formed by the two nickel atoms, the nitrogen atoms from pyrazolate ligand and other two nitrogen atoms from hydrazine ligand. The two nickel atoms are planar tetracoordinated by three nitrogen atoms from pyrazolate ligand and another nitrogen atom from hydrazine ligand.

The distances of nickel centers and N-N bond are $3.973(5) \AA$ and $1.470(3) \AA$, respectively, which are all longer than 27. The distance of $\mathrm{Ni}-\mathrm{N}$ (hydrazine) of $1.945 \AA$ and $1.950 \AA$ are also longer than 27. Even though the hydrazine ligand has longer distance than hydrazido ligand, the torsion angle \Varangle Ni1-N7-N8-Ni2 $=$ 89.10° is slightly smaller than 27 , which is attributed to the pyrazole with much more torsion resistance. Furthermore, hydrogen bonds were observed in the hydrazine ligand and solvent molecules and the distances of the hydrogen bonds are $1.952(6) \AA$ and $2.013(6) \AA$.

Figure 148: Molecular structure (50% probability thermal ellipsoids) of 28. Most hydrogen atoms omitted for clarity, except for the $\mathrm{N}_{2} \mathrm{H}_{4}$ unit.

Table 38: Selected bond length (\AA) and angles $\left({ }^{\circ}\right)$ for 28.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.870(6)$	N1-Ni1-N3	$83.7(3)$
Ni1-N3	$1.878(6)$	N1-Ni1-N4	$175.5(3)$
Ni1-N4	$1.900(6)$	N3-Ni1-N4	$94.5(3)$

Ni1-N7	$1.945(6)$	N1-Ni1-N7	$88.0(2)$
Ni2-N2	$1.858(6)$	N3-Ni1-N7	$171.7(3)$
Ni2-N5	$1.875(6)$	N4-Ni1-N7	$93.9(2)$
Ni2-N6	$1.889(6)$	N2-Ni2-N5	$83.3(3)$
Ni2-N8	$1.950(6)$	N2-Ni2-N6	$177.1(2)$
N7-N8	$1.470(3)$	N5-Ni2-N6	$93.9(3)$
Ni1‥Ni2	$3.973(1)$	N2-Ni2-N8	$87.1(2)$
		N5-Ni2-N8	$170.0(3)$
		N6-Ni2-N8	$95.6(2)$
		N8-N7-Ni1	$116.0(5)$
		N7-N8-Ni2	$113.6(5)$
			Ni1-N7-N8-Ni2

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}$ revealed a symmetric species as expected in solution. The resonance associated to the isopropyl CH function was overlaid by the residue solvent (THF- d_{8}), but was distinguished by means of a ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY experiment. A resonance at 3.74 ppm corresponds to a normalized integral of four, which is assigned to the neutral hydrazine ligand $\mathrm{N}_{2} \mathrm{H}_{4}$ (Figure 149). The found resonance concurs with other reported proton resonances of bridged $\mu-\eta^{1}, \eta^{1-}$ $\mathrm{N}_{2} \mathrm{H}_{4}$ in dimeric iron and tungsten complexes. A side on $\eta^{2}-\mathrm{N}_{2} \mathrm{H}_{4}$ coordinated mononuclear $\mathrm{Ni}^{\mathrm{II}}$ complex showed a ${ }^{1} \mathrm{H}$ NMR shift at 3.50 ppm . In ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum, the ${ }^{1} \int_{\mathrm{NH}}$ correlation occurred at $\left.-348 \mathrm{ppm}\left({ }^{1}\right]_{\mathrm{NH}}=71 \mathrm{~Hz}\right)$. [124]

Investigation by IR spectroscopy revealed bands at 3204, 3247, 3260 and $3382 \mathrm{~cm}^{-1}$, which lie in the typical range of NH stretching. In comparison, free hydrazine has $\mathrm{N}-\mathrm{H}$ absorption at $3329 \mathrm{~cm}^{-1}$ and $3398 \mathrm{~cm}^{-1},[125]$ and absorption at $3270-3114 \mathrm{~cm}^{-1}$ has been observed for some other $\mathrm{N}_{2} \mathrm{H}_{4}$ bridged ligand. [124] Moreover, IR clearly showed two bands at $1623 \mathrm{~cm}^{-1}$ and $1648 \mathrm{~cm}^{-1}$ that can be assigned to the NH_{2} deformation vibrations. Further experiments showed that it is possible to perform reaction with complex $\mathbf{2 8}$ with KH in Young NMR tube as alternative route to 27 .

Figure 149: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 28 in THF-d8 at RT. Residual solvents are marked (*).

Figure 150: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC (52 MHz) spectrum of $\mathbf{2 8}$ in THF- d_{8} at room temperature.

8.6 Synthesis the diazenido complex

Scheme 47: Synthetic route for 30

The $\mu-\eta^{1}: \eta^{1}-\mathrm{HN}-\mathrm{NH}$ species (29), which is incorporation of the potassium clamped by the two DIPP groups, was characterized by x-ray and spectroscopies very well. [11a] No further reactivity was observed in this complex for redox chemistry. Inspirations of 4, DB18C6 and cryptand then employed to rupture the metal- π interaction. Adding the DB18C6 into 29 results in the color changed gradually from deep green to brown in 30 mins.

No suitable crystals for x-ray diffraction were obtained because of the crystals are easily decomposed even in solution. But the ${ }^{1} \mathrm{H}$ NMR spectrum confirms that the K^{+}was dissociated by the DB18C6 (Figure 151). The singlet proton resonance of $\mathrm{N}_{2} \mathrm{H}_{2}{ }^{2-}$ in 29 is at 1.03 ppm , which is shifted to 1.63 ppm in $\mathbf{3 0}$ (Figure 151) in ${ }^{1} \mathrm{H}$ NMR. The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment illustrates the $\mathrm{N}_{2} \mathrm{H}_{2}{ }^{2-}$ ligand presence (Figure 152). The ${ }^{1}{ }^{1} \mathrm{NH}$ correlation with ${ }^{15} \mathrm{~N}$ chemical shift at $239 \mathrm{ppm}\left({ }^{1} J_{\mathrm{NH}}=14 \mathrm{~Hz}\right)$, which is similar to the $\mathrm{N}_{2} \mathrm{H}_{2}{ }^{2-}$ in 29

Figure 151: Comparison the ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of 29 and $\mathbf{3 0}$ in THF- d_{8}. Residual solvents (THF- d_{8}) are marked (${ }^{*}$).

Figure 152: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum (52 MHz) of 30. The $\mu-\eta^{1}: \eta^{1}-\mathrm{N}_{2} \mathrm{H}_{2}$ ligand shows a strong ${ }^{1}{ }^{\mathrm{NH}}$ correlation.

The NH stretching vibration of 29 is at $3190 \mathrm{~cm}^{-1}$ in the IR spectroscopic (Figure 153a). After dissociate the K^{+}cation from $\left[\mathrm{L} 1 \mathrm{Ni}\left(\mathrm{N}_{2} \mathrm{H}_{2}\right)\right]^{-}$by DB18C6 or [2,2,2]cryptand, the NH stretching vibration appears at 3263 and $3123 \mathrm{~cm}^{-1}$ for 30 and 31 (Figure 153b).

Figure 153: IR spectrum of 29 (a), 30 (b) and 31 (c).

However, black block crystals suitable for x-ray diffraction were obtained from THF or toluene slow evaporation at room temperature while the [2,2,2]cryptand instead of the DB18C6. The molecular structure of $\mathbf{3 1}$ is shown in Figure 155 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 39.
a

b

Figure 154: Molecular structure (50\% probability thermal ellipsoids) of 29. [11a] Most hydrogen atoms omitted for clarity, except for the $\mathrm{N}_{2} \mathrm{H}_{2}$ unit.

b

Figure 155: Molecular structure (50\% probability thermal ellipsoids) of the anion of 31. Most hydrogen atoms omitted for clarity, except for the $\mathrm{N}_{2} \mathrm{H}_{2}$ unit.

Table 39: selected bond length (\AA) and angles (${ }^{\circ}$) for 31.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.884(2)$	N1-Ni1-N7	$85.73(12)$
Ni1-N7	$1.885(3)$	N1-Ni1-N3	$83.09(10)$
Ni1-N3	$1.928(2)$	N7-Ni1-N3	$165.60(13)$

Ni1-N4	$1.892(2)$	N1-Ni1-N4	$175.74(11)$
Ni2-N2	$1.884(2)$	N7-Ni1-N4	$96.29(12)$
Ni2-N8	$1.892(3)$	N3-Ni1-N4	$95.48(10)$
Ni2-N5	$1.931(2)$	N2-Ni2-N8	$87.12(12)$
Ni2-N6	$1.899(2)$	N2-Ni2-N5	$82.79(10)$
N7-N8	$1.431(5)$	N8-Ni2-N5	$167.93(13)$
Ni1-Ni2	$3.939(6)$	N2-Ni2-N6	$176.62(11)$
		N8-Ni2-N6	$95.48(12)$
		N5-Ni2-N6	$94.88(10)$
		N8-N7-Ni1	$116.1(2)$
		N7-N8-Ni2	$115.3(2)$
		Ni1-N7-N8-Ni2	$92.91(7)$

31 crystallizes in the orthorhombic space group Pbca with eight molecules in the unit cell. As shown in Figure 155, an twist six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{~N}_{2}\right\}$ ring was formed by the two central nickel atoms, pyrazolate- N and hydrazido(2-) ligand. Both metal centers are coordinated in an expected square-planar fashion, with the sum angles of 360.3° and 360.03°, respectively. This is in agreement with the low-spin d_{8} configuration. The distance of the two nickel centers and the torsion angle of Ni-N-N-Ni are $3.939(5) \AA$ and $92.91(6)^{\circ}$, respectively. No 1D and 2D NMR spectrum provided because 31 has bad solubility in THF and toluene. The NH stretching vibration of 31 is at $3123 \mathrm{~cm}^{-1}$ in the IR spectroscopic (Figure 153c).

8.7 Synthesis of terminal ammonia nickel complex

Scheme 48: Synthetic route for 32.

Using the LiNH_{2} with $\mathbf{1}$ in THF solution resulted in a color change from brown to red in two days. Whereas, the ${ }^{1} \mathrm{H}$ NMR spectrum demonstrated two species (amido and ammonia bridging) existing. However, treatment of $\mathbf{1}$ with NaNH_{2} in THF solution resulted in a color change from brown to orange in two day (Scheme 48). The crude product was detective by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR after filtration indicated that the new compound features a terminal ammonia ligand.

In the ${ }^{1} \mathrm{H}$ NMR spectrum, a signal set for the protons of the pyrazole ligands in the regular shifted resonances from $0-10 \mathrm{ppm}$ was observed that was characteristic for an asymmetrical dinickel complex. Notable features in the ${ }^{1} \mathrm{H}$ NMR spectrum include a signal for terminal ammonia ligand. The $\mathrm{N}-\mathrm{H}$ peak of NH_{3} group was located at -3.28 ppm (Figure 156), and a diagnostic band was observed at $3023 \mathrm{~cm}^{-1}$ by IR spectroscopy (Figure A54). The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC is shown in Figure 157. ${ }^{1} J_{\mathrm{NH}}$ correlation for the NH_{3} occurred at $-400.1 \mathrm{ppm}\left({ }^{1} \int_{\mathrm{NH}}=57 \mathrm{~Hz}\right)$, which is close to the free NH_{3} molecule (${ }^{1} \mathrm{~J}_{\mathrm{NH}}=61.2 \mathrm{~Hz}$). ${ }^{[126]}$ The 2D NMR spectra of 32 are shown in Appendix. The proton of NH of the series $\mathrm{N}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$ species in ${ }^{1} \mathrm{H}$ NMR spectra is shown in Figure 158 and Figure 159.

The asymmetry of the compound is reflected by the ${ }^{1} \mathrm{H}$ NMR experiment, in particular by distinct resonances associated to the isopropyl and methylene group. The isopropyl group was separated to two multi-peaks at 3.21 ppm and 3.84 ppm .

However, the integration of the two isopropyl groups is two. It indicates that the intramolecular C-H amination was happened in the methylene group. Some small red crystals were obtained from hexane layered in to THF at $-30^{\circ} \mathrm{C}$. Unfortunately, the crystal of $\mathbf{3 2}$ is not suitable for x-ray diffraction.

Figure 156: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 32 in THF- $\mathrm{d}_{8}(400 \mathrm{MHz})$.

Figure 157: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC (52 MHz) of 32. A correlation of the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ resonance is observed for the NH_{3} bridging ligand.

Figure 158: left: the spots of the $d_{(N-N)}$ and $v_{(N-N)}$ in the series complexes; Right: the plots of the NH resonance of these complexes.

Figure 159: ${ }^{1} \mathrm{H}$ NMR spectra of the series of $\mathbf{N} x \mathbf{H} y$ complexes; (a) 28, (b) 27; (c) 29, (d) 25, (e) 26 and (f) 32.

8.8 X-ray emission spectroscopy

In collaboration with the group of Serena DeBeer, the complexes 24, 25 and 27 were further characterized by $\mathrm{K} \beta$ X-ray emission spectroscopy (XES). Additionally, the spectrum for the nickel(II) precursor 1 was recorded, which allowed to distinguish between $\mathrm{N}_{2} \mathrm{Hx}(\mathrm{x}=0,1$ and 2$)$ and ligand-related features.

X-ray Emission Spectroscopy (XES) has found many application in transition metal chemistry as it provides useful information about ligand identity, met-al-ligand bonding, and metal spin state. ${ }^{[127]}$ The experiment involves the detection of the emission of photons (electron decay) following the ionization of an $\mathrm{Ni}-1 \mathrm{~s}$ electron. There are three features of an XES spectrum that contain the most relevant chemical information: the $\mathrm{K} \beta^{\prime}$ and $\mathrm{K} \beta_{1,3}$ lines resulting from an electric dipole allowed 3 p to 1 s transition, ${ }^{[128]}$ and the $\mathrm{K} \beta_{2,5}$ and $\mathrm{K} \beta^{\prime \prime}$ lines (or valence to core region, V2C) arising from a valence electron (ligand np or ns) to metal 1 s transition. ${ }^{[129]}$ The $\mathrm{K} \beta_{1,3}$ (main line, $\sim 7030-7080 \mathrm{eV}$) region is dominated by 3p-3d exchange correlation with some contribution from 3p spin-orbit coupling, resulting in sensitivity toward spin state, but little sensitivity toward ligand identity. [128]

X-ray emission measurement for $24\left(\mathrm{~N}_{2}\right), \mathbf{2 5}\left(\mathrm{N}_{2} \mathrm{H}\right)$ and $27\left(\mathrm{~N}_{2} \mathrm{H}_{3}\right)$ were recorded in HERFD-XAS. An analysis of the synchrotron data suggests that it is consistent with the expected electronic structure. DFT calculations are in agreement with the intensity variations observed in the VTC XES data.

Figure 160a shows the Ni $K \beta$ mainline (3 p -> 1s transitions) for this series collected with Debeer's house experiment. While there is some difference in the spectra each of the Ni dimers reaches its maximum at 8265.1 eV compared with the maximum of $\mathrm{Ni}(\mathrm{acac})_{2}$ at 8265.8 eV .

Figure 160: (a) $K \beta$ main line emission and (b) valence to core XES spectra for 24, 25 and 27 highlighting the paramagnetic of $\mathrm{L}^{1} \mathrm{Ni}_{2}(\mu-\mathrm{Br})$ as compared to the diamagnetic of the other compounds.

Figure 161: (a) XAS spectra of complexes 24, 25 and 27 collected at CHESS synchrotron; (b) VTC XES spectra of complexes 24, 25 and 27 calculated with density functional theory.

As shown in Figure 161a, the $\mathrm{Ni}(\mathrm{acac})_{2}$ as measured is likely $\mathrm{Ni}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, whereas 24, 25 and 27 are more rigorously square planer. This change in symmetry manifests itself in the edge of the XAS spectrum which is dominated by 1 s -> 4 p transitions. In the case of the octahedral $\mathrm{Ni}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ complex all $1 \mathrm{~s}->4 \mathrm{p}$ transitions will be nearly degenerate. However, in the case of 24, 25 and 27 the $1 \mathrm{~s}->4 \mathrm{p}_{\mathrm{z}}$ transition is found at significantly lower energy than the $1 \mathrm{~s}->4 \mathrm{p}_{\mathrm{x} / \mathrm{y}}$ due
to the absence of an axial ligand. This $1 \mathrm{~s}->4 \mathrm{p}_{\mathrm{z}}$ transition gives rise to the feature at $\sim 8.342 \mathrm{keV}$ in all of $\mathbf{2 4}, 25$ and $\mathbf{2 7}$, and the $1 \mathrm{~s}->4 \mathrm{p}_{\mathrm{x} / \mathrm{y}}$ would be found at higher energy. DFT calculation results of $\mathbf{2 4 , 2 5}$ and 27 show in the Figure 161b.

Table 40: Parameters comparing optimized geometries and crystal structures for 24, 25 and 27

	$\mathbf{2 4}$	$\mathbf{2 4}(\exp)$	$\mathbf{2 5}$	$\mathbf{2 5}(\exp)$	$\mathbf{2 7}$	$\mathbf{2 7}(\exp)$
N-N	1.151	1.132	1.237	1.275	1.448	1.467
Ni-N	1.861	1.883	1.879	1.858	1.935	1.907
Ni-N	1.858	1.884	1.807	1.869	1.880	1.889

To gain more insights about 24, 25 and 27, we carried out a detailed analysis by mapping the electronic-structure in different transition.

b

Number	Energy	Intensity
a	8330.045	3.14
b	8326.876	1.87
c	8329.971	1.86
d	8330.668	1.59
e	8321.489	1.18
f	8332.886	1.04

Figure 162: Calculated V2C spectrum of 24 with the molecular orbitals that strongly contribute to the observed transitions.

Figure 163: Calculated V2C spectrum of 25 with the molecular orbitals that strongly contribute to the observed transitions.

Figure 164: Calculated V2C spectrum of 27 with the molecular orbitals that strongly contribute to the observed transitions.

Table 41: Parameters from Fits to experiments XES of Main Line and V2C using 6 peaks to model the V2C for 24, 25 and 27.

	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 7}$
Peak 1 (eV)	8321.5	8329.84	8329.53
Peak 1 int.	1.18	1.78	1.36
Peak 2 (eV)	8326.9	8329.89	8329.79
Peak 2 int.	1.87	1.99	1.24
Peak 3 (eV)	8329.9	8329.91	8329.99
Peak 3 int.	1.86	1.87	1.37
Peak 4 (eV)	8330.0	8330.07	8330.21
Peak 4 int.	3.14	8330.26	2.48
Peak 5 (eV)	8330.7	1.58	8330.64
Peak 5 int.	1.59	8334.18	1.14
Peak 6 (eV)	8332.9	1.51	-
Peak 6 int.	1.04		-

In summary, the individual transitions are plotted as sticks below the envelopes. For two reasons it is difficult to analyze the spectrum in terms of orbital populations. Firstly, it is clear that the valence to core region is comprised of many individual transitions, so the spectrum cannot be attributed to a single orbital. Moreover, looking at some of the most intense transitions reveals that the underlying orbitals are very delocalized. Consequently it is difficult to ascribe intensity to particular orbital types i.e. N p-orbitals, but the XAS spectra and the K_{β} mainline spectra are consistent with low spin $\mathrm{Ni}(\mathrm{II})$.

8.9 Summary

In summary, the monoaninoic $\left[\mathrm{N}_{2}\right]^{-}$radical complex was isolated from the dinitrogen insert into $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)\right]^{-}$species and characterized by x-ray diffraction and spectroscopy. In particular, the $\mathrm{N}_{2}{ }^{-}$anion does effectively facilitate the delivery of H -atoms to N_{2} generating the $\mathrm{N}_{2} \mathrm{H}^{-}$bridging. Eventually the $\mathrm{N}_{2} \mathrm{H}^{-}$nickel complex easily produce NH_{3} though chemical reduction. In addition, the demonstration that the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\right]^{-}$cleft can accommodate the nitrogenous intermediates including $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{3}{ }^{-}, \mathrm{N}_{2} \mathrm{H}_{2}{ }^{2-}$ ("naked" or within K^{+}diazene species) and that interconversion by chemical reduction or protonation. All the complexes and interconversion are shown in Scheme 49. The XAS spectra and the K_{β} mainline spectra for 24, 25 and $\mathbf{2 7}$ are consistent with low spin $\mathrm{Ni}^{\mathrm{II}}$ for all the complexes.

Scheme 49: Interconversion in a range of the $\mathrm{N}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$. (The gray part is still ongoing)

Chapter 9 CO activation

Abstract

A new nickel carbonyl has been realized using the $\left[\mathrm{N}_{2}\right]^{-}$monoanionic radical dinuclear nickel(II) complex (29) with carbon monoxide at RT. Interestingly, the carbon monoxide has some [CO] character and characterized by x-ray diffraction, IR-, EPR- spectroscopies and DFT calculation.

9.1 Introduction

Carbon monoxide is a key natural small molecule utilized in various organometallic reactions. In fact, nickel mono-carbonyl species are relatively uncommon and their reactivity is therefore still unexplored comprehensive. Ni^{1}-CO species have been proposed as potential active species in the so-called "paramagnetic mechanism". ${ }^{[130]}$ However, the chemical validity has not been evaluated in terms of the reactivity of the monovalent nickel mono-carbonyl adducts. Several nickel carbonyl complexes and their reactivity were reported by the Limberg [131,132] and Lee ${ }^{[133]}$, respectively (Scheme 50: XXXIX - XLII).

XXXIX

XLI

XL

XLII

Scheme 50: Selected examples of Ni-CO complexes and acetyl-coenzyme synthase (ACS) catalysis . [131-133]

Complex XXXIX was obtained from CO with mixed-valence nickel hydride complex in THF. The trigonal planar coordinated Ni centers hold by two potassium ions. The CO absorption is at far lower wave number (1772, $1754 \mathrm{~cm}^{-1}$). ${ }^{[131]}$ Considering the low coordination number and oxidation state of the nickel central, the new type Ni-CO unit seemed ideal for the CODH/ACS catalysis. A new
$\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ species (XLI) was obtained from the MeI with XXXIX at RT. The $\mathrm{C}(0) \mathrm{CH}_{3}$ resonance is at 243.8 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum, which is characteristic for η^{2}-acetyl ligands. And the CO and isotopic ${ }^{13} \mathrm{CO}$ absorption is at $1584 \mathrm{~cm}^{-1}$ and $1545 \mathrm{~cm}^{-1}$ in the infrared spectroscopy spectrum, respectively. [132] In 2014, Lee reported three different oxidation state of nickel carbonyl species (XL), ${ }^{[133]}$ formally $+2,+1$ and 0 . The reactivity of these three nickel carbonyl species with MeI was examined to compare and contrast the C-C bond formation (XLII).

9.2 Synthesis carbon monoxide radical

Scheme 51: Synthetic route for 33.

In order to establish a new nickel carbonyl species, an experiment was conducted from 2 with CO at $50^{\circ} \mathrm{C}$ directly. But ${ }^{1} \mathrm{H}$ NMR spectroscopy indicates that final product with more than three species. Unfortunately, the analysis data of the mixture are not allowed us to figure out exactly what they are. Since the $\left[\mathrm{N}_{2}\right]^{-}$ monoanionic radical compound isolated with impressive yield, it is an opportunity to do the carbon monoxide activation from $\left[\mathrm{N}_{2}\right]^{-}$species.

Treatment of a solution of $\left[\mathrm{N}_{2}\right]^{-}$monoanionic radical complex in THF with CO (priority dried under concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) at $-78^{\circ} \mathrm{C}$ results a color change from brown-red to wine-red in 1 hour. Its UV-Vis spectrum (Figure 165) displays a similar band to 33, attributing that the CO has similar electron structure of N_{2}.

Figure 165: (a) UV-vis spectra of 24 and 33 in THF solution; (b) Variable temperatures UV-vis spectra of complex 33 in THF solution.

IR spectroscopy was employed since the UV-Vis spectroscopy identified the new species unclearly. In the IR spectrum, three bands at 1958, 1879 and $1735 \mathrm{~cm}^{-1}$ (Figure 166a) were observed for the crude product, which are different from [$\left.\mathrm{N}_{2}\right]^{-}$species of $1896 \mathrm{~cm}^{-1}$. But only one band at $1735 \mathrm{~cm}^{-1}$ (Figure 166b) for 33 was observed in crystalline material in IR spectrum. To confirmed its assignment of $v(\mathrm{CO})$, the ${ }^{13} \mathrm{C}$ isotopologue CO was used to synthesize 33 . Two medium bands at 1912 and $1837 \mathrm{~cm}^{-1}\left(v\left({ }^{12} \mathrm{CO}\right)-v\left({ }^{13} \mathrm{CO}\right)=46 / 42 \mathrm{~cm}^{-1}\right)$ for crude products (Figure 167a) and $1691 \mathrm{~cm}^{-1}\left(v\left({ }^{12} \mathrm{CO}\right)-v\left({ }^{13} \mathrm{CO}\right)=44 \mathrm{~cm}^{-1}\right)$ (Figure 167a) band for microcrystalline material were observed. It indicates that the three bands are all belongs to different CO molecule. According the DFT calculated IR spectrum of 33, the [CO]- (Figure 168) monoanionic radical stretching located at $1760 \mathrm{~cm}^{-1}$, which is similar to the experimental data of $1735 \mathrm{~cm}^{-1}$ (Table 42). Therefore, I believed that at least two different species were generated in this reaction.

Figure 166: IR spectrum of 33 of ${ }^{12} \mathrm{CO}$ in crude and microcrystal materials.

Figure 167: IR spectrum of 33 of ${ }^{13} \mathrm{CO}$ in crude and microcrystal materials.

Figure 168: Calculated IR spectrum of 33.

Table 42: $v(\mathrm{C} \cdots 0)$ (IR) for 33.

	$v\left({ }^{12} \mathrm{C}-{ }^{16} 0\right) / \mathrm{cm}^{-1}$	$v\left({ }^{13} \mathrm{C}-{ }^{-16} 0\right) / \mathrm{cm}^{-1}$	$\Delta v / \mathrm{cm}^{-1}$
Exp	1735	1693	42
DFT	1760	1720	40

Nevertheless, orange single crystals suitable for x-ray diffraction were obtained by layering hexane or pentane on a solution of 33 in $\mathrm{THF}-30^{\circ} \mathrm{C}$. The molecular structure of 33 is shown in Figure 169 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 43. 33 crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with four molecules in the unit cell. As shown in Figure 169, an almost planar six-membered $\left\{\mathrm{N}_{2} \mathrm{Ni}_{2} \mathrm{CO}\right\}$ ring was formed by the nickel center, pyrazolate and carbon monoxide ligands. Both metal centers are coordinated in an expected square-planar fashion as was the case for the previously mentioned complexes containing nitrogen based bridging ligands. And the distance of the two nickel and torsion angle of $\mathrm{Ni}-\mathrm{C}-\mathrm{O}-\mathrm{Ni}$ are $3.914(5) \AA$ and $9.077(6)^{\circ}$, respectively. The bond distance of carbon monoxide of $1.200(4) \AA$ is only slightly shorter than the doubly bridging CO $1.22 \AA$ and longer than that in free CO molecule ($1.128 \AA$) [134]. Its longer than the dinitrogen ligand bridged of 24.

Figure 169: Molecular structure (50\% probability thermal ellipsoids) of 33. All hydrogen atoms omitted for clarity.

Table 43: Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 33.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.850(2)$	N1-Ni1-N3	$83.83(10)$
Ni1-N3	$1.881(2)$	N1-Ni1-O1	$89.96(10)$
Ni1-O1	$1.891(3)$	N3-Ni1-O1	$171.08(11)$
Ni1-N4	$1.900(2)$	N1-Ni1-N4	$175.97(10)$
Ni2-C40	$1.860(3)$	N3-Ni1-N4	$94.72(10)$
Ni2-N2	$1.866(2)$	O1-Ni1-N4	$91.89(10)$
Ni2-N5	$1.922(2)$	C40-Ni2-N2	$89.94(11)$
Ni2-N6	$1.923(2)$	C40-Ni2-N5	$172.06(11)$
C40-O1	$1.200(4)$	N2-Ni2-N5	$82.85(10)$
Ni1‥Ni2	$3.914(5)$	C40-Ni2-N6	$93.14(11)$
		N2-Ni2-N6	$176.65(10)$
		N5-Ni2-N6	$94.15(10)$
		C40-O1-Ni1	$136.2(2)$
		O1-C40-Ni2	$136.2(2)$
		Ni1-C-O-Ni2	$9.077(6)$

The two nickel atoms adopt d^{8} square planar configuration, it indicates that the unpaired electron stay in the CO ligand rather than nickel. To our best knowledge, this is the first [CO] ${ }^{-}$monoanionic radical complex and characterized by x-ray diffraction. The X-band EPR measurement in a frozen THF at 154 K of 33 in crystalline material reveals a paramagnetic ground state with spin of $S=1 / 2$. The elaborate discussion of EPR spectrum needs more professional understanding.

33 has been characterized by ESI-MS spectroscopy in a THF solution as well. The positive ion ESI-MS of 33 in THF solution shows three dominating peaks for the ions, deriving from $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\right]^{+}(m / z=723.52),\left[\mathrm{L}^{1} \mathrm{Ni}_{2}(\mathrm{COH})+\mathrm{H}\right]^{+}(m / z=751.46)$ and $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}(\mathrm{COH})+\mathrm{K}\right]^{+}(m / z=789.31)$. When complex 33 prepared with isotopically labelled ${ }^{13} \mathrm{CO}$, the mass peak corresponding to 33 shifted to $\mathrm{m} / \mathrm{z} 752.38$ $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left({ }^{13} \mathrm{COH}\right)+\mathrm{H}\right]^{+}$(Figure 170). This shift is one mass unit upon substitution of ${ }^{12} \mathrm{CO}$ with ${ }^{13} \mathrm{CO}$ indicates that complex contains a CO unit.

Figure 170: (a) ESI-MS ion spectrum of 33 and (b) 33- ${ }^{13}$ CO in THF; (Inset) Experiment (upper) and Simulated (lower) isotope distribution pattern for the peak pattern around $\mathrm{m} / \mathrm{z}=789.31$ for the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left({ }^{12} \mathrm{COH}\right)+\mathrm{K}\right]+$ and around $\mathrm{m} / \mathrm{z}=$ 752.38 characteristic for the $\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left({ }^{13} \mathrm{COH}\right)+\mathrm{H}\right]^{+}$.

The electronic nature of $\mathbf{3 3}$ as suggested by its geometric structure was confirmed by DFT calculations (Figure 171). The energy - minimized DFTcalculated structure of $\mathbf{3 3}$ is in good agreement with that obtained by x-ray diffraction. According the DFT calculation, the bond length of CO unit of $1.184 \AA$ is slightly shorter than the experiment data (Table 44). However, the distance of the two nickel(II) ions from DFT of $4.023 \AA$ is longer than the experiment data. The HOMO of 33 from DFT calculation reveal that unpaired electron principally located on the Ni-C system. The spin density of Ni1 and Ni2 are 0.138 and 0.422 , respectively. And the spin density of 0 and C are 0.010 and 0.338 , respectively.

Figure 171: Spin density plot of 33. Mulliken Spin Population: Ni1 $=0.137693$, $\mathrm{Ni} 2=0.421986, \mathrm{O}=0.009731, \mathrm{C}=0.337647$.

Table 44: Selected distances (\AA) and angles ($\left(^{\circ}\right.$) for 33.

	$d(\mathrm{C}-\mathrm{O}) / \AA$	$d(\mathrm{Ni} \cdots \mathrm{Ni}) / \AA$	$\varphi(\mathrm{Ni}-\mathrm{C}-\mathrm{O}-\mathrm{Ni}) /{ }^{\circ}$
Exp	1.200	3.914	9.1
DFT	1.184	4.023	9.1

- Reactivity

Scheme 52: Reactivity towards MeI.

Complex 33 does not show any reactivity toward iodomethane directly. However, in presence of K , complex 33 shows reactivity towards MeI. Treatment of $\mathbf{3 3}$ with MeI in the presence of K results in a color change from brown-red to orange (Scheme 52). The crude product has three bands at 1993, 1842 and $1626 \mathrm{~cm}^{-1}$ in IR spectrum (Figure A56). Unfortunately, all crystallizing attempts for x-ray diffraction failed.

9.3 Summary

Scheme 53: Activation of carbon monoxide and methylation of the [CO] - radical.

In summary, we have reported the synthesis and characterization by x-ray diffraction and IR, MS, EPR spectroscopies of the first monoanionic [CO]- radical complex. The reactivity of the remarkable [CO]- radical species with iodomethane was examined (Scheme 53). Ongoing works are focusing on methoxide and methylation of the [CO]- radical complex.

Chapter 10 Metal-ligand Cooperation in $\mathrm{C}-\mathrm{H}$ and H_{2} Activation and Interconversion between Mono- and Dihydride Dinickel(II) Complexes and Reactivity

Abstract

A new compartmental ligand scoffold $\mathbf{H}_{3} \mathbf{L}^{2} \quad\left(\mathrm{~L}^{2}=\right.$ $\left(\left\{\mathrm{NC}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{Me}) \mathrm{NC}_{6} \mathrm{H}_{3}(\mathrm{Ph})_{2}\left(\mathrm{CH}_{2}\right)\right\}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}\right)^{3-}\right)$ was synthesized and gave a series of $\mathrm{Ni}-\mathrm{H}$ complexes, which are isolated after reacting the precursor [$\mathrm{L}^{2} \mathrm{Ni}_{2}(\mu-\mathrm{Br})$] with $\mathrm{MHBEt}_{3}(\mathrm{M}=\mathrm{K}$ and Na$)$. Surprisingly, only monohydride dinickel complex (40) was obtained when the alkali metal is K^{+}. And mono- and di- hydride mixture complexes were observed in the ${ }^{1} \mathrm{H}$ NMR spectroscopy and were characterized by x-ray diffraction once the alkali is Na^{+}. Monohydride complex easily transfers to dihydride complex under H_{2} atmosphere. Reactivity of these $\mathrm{Ni}-\mathrm{H}$ species towards to $\mathrm{H}_{2} \mathrm{O}$ and Lewis acid were studied.

10.1 Introduction

2

3

Figure 172: Dinickel dihydride complexes with different alkali metal $\left(\mathrm{K}^{+}\right.$, Na^{+}). ${ }^{[11 \mathrm{~b}]}$

Figure 173: Ligand $\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}$ was employed in previous work, and new ligands system proposed for next stage.

We had previously shown that a serious of dinuclear nickel(II) dihydride complexes (Figure 172) $M\left[L^{1} \mathrm{Ni}_{2}{ }^{I I}\left(\mathrm{H}_{2}\right)\right](\mathrm{M}=\mathrm{Na}$ and K$)$, which are characterized by x -ray diffraction and exhibit pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ exchange property. ${ }^{[11]}$ In order to extend nickel chemistry, we chose to follow a different strategy in the next work, (i) elongation of the linkages between the central pyrazole; (ii) change bulky group in the backbone of β-diketiminato; (iii) introduced different group in the substitutes; (iv) linkage two different groups in the N -aryl substitutes. (Figure 173) In this chapter, a new phenyl substituent instead of isopropyl substituent has successfully done.

10.2 Synthesis of nickel bromide precursor

Scheme 54: Synthetic route for 35.

The multistep synthesis of the new ligand $\mathbf{H}_{3} \mathbf{L}^{2}$, starting from recently reported pyrazole building blocks, is described in the experimental section. ${ }^{[11 b]}$ As $\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}$ ligand, nickel bromide precursor was synthesized by the reaction of the $\mathrm{H}_{3} \mathrm{~L}^{2}\left(\mathrm{~L}^{2}=\left(\left\{\mathrm{NC}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{Me}) \mathrm{NC}_{6} \mathrm{H}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{2}\right)\right\}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}\right)^{3-}\right)\right.$ with [NiBr_{2} (dme)](dme =1,2-dimethoxyethane) in the presence ${ }^{n} \mathrm{BuLi}$ in THF solution at $50{ }^{\circ} \mathrm{C}$ in 56% yield. The yields of $\mathbf{3 5}$ dropped to 12% when the reaction was preformaed at RT. Suitable crystals for x-ray diffraction were obtained from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ slow evaporation.

The molecular structure of 35 is shown in Figure 174 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 45. Two nickel centers are in an almost square-planar coordination environment and the distance of 3.781 (7) \AA in the two nickel atoms is slightly shorter than in 1 of $3.807(5) \AA{ }^{\AA}$ [11a]. The Ni1-Br1-Ni2 angle of $105.82(2)^{\circ}$ is close to the valence angles for a tetrahedral coordination geometry $\left(109.47^{\circ}\right)$.

At room temperature, ${ }^{1} \mathrm{H}$ NMR spectrum of 35 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ displayed a series of ligand peaks without apparent coupling (Figure 175). The positive ion ESI-MS of 35 in THF shows a prominent peak characteristic of the $[35+\mathrm{H}]^{+}$at 937.2. And the isotope patterns matched this simulated (Figure A57).

Figure 174: Molecular structure (50\% probability thermal ellipsoids) of 35. All hydrogen atoms have been omitted for clarity.

Table 45: Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 35.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.841(2)$	N1-Ni1-N3	$82.82(10)$
Ni1-N3	$1.879(2)$	N1-Ni1-N4	$178.75(10)$
Ni1-N4	$1.892(2)$	N3-Ni1-N4	$95.93(10)$
Ni2-N2	$1.836(2)$	N1-Ni1-Br1	$85.70(7)$
Ni2-N5	$1.877(2)$	N3-Ni1-Br1	$168.33(7)$
Ni2-N6	$1.885(2)$	N4-Ni1-Br1	$95.55(7)$
Ni1-Br1	$2.365(4)$	N2-Ni2-N5	$83.03(10)$
Ni2-Br1	$2.376(4)$	N2-Ni2-N6	$177.90(10)$
Ni1 $\cdots \mathrm{Ni} 2$	$3.781(7)$	N5-Ni2-N6	$95.36(10)$
		N2-Ni2-Br1	$85.83(7)$
		N5-Ni2-Br1	$168.84(7)$
		N6-Ni2-Br1	$95.76(7)$
		Ni1-Br1-Ni2	$105.821(15)$

Figure 175: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 35 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Residual solvents are marked with an asterisk (*).

10.3 Synthesis of bimetallic dinickel(II) monohydride complex

Scheme 55: Synthetic route for 36.

35 represents a suitable precursor for the synthesis of the dinickel dihydride complex which is like the previous work from Manz. ${ }^{[11 a]}$ Treatment of $\mathbf{3 5}$ with 2 equivalents KHBEt_{3} in THF solution results in a color change from green to red in 30 mins (Scheme 55). And the new species has a resonance at -26.12 with integration of one where is typically hydride ligand of diamagnetic nickel hydride resonate (from -6 to -26 ppm) ${ }^{[25 f]}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 176). Except for the Ni-H resonance, the ${ }^{1} \mathrm{H}$ NMR spectrum indicates that the new species is an asymmetric complex, which the resonances shift signals at 4.43, 4.21, 4.06 and 4.00 ppm are corresponding to $\mathrm{CH}_{2} \mathrm{Pz}$ groups and the integration of these four
peaks is 1:1:1:1. The ${ }^{1} J_{C H}$ correlation of these peaks is 128.93 Hz .

Figure 176: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 36 in THF- d_{8}. Residual solvents are marked with an asterisk (*).

Suitable crystals for x -ray diffraction were obtained from pentane slow diffusion on a solution of $\mathbf{3 6}$ in THF at RT. The molecular structure of $\mathbf{3 6}$ is shown in Figure 177 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 46. The x-ray crystallography of 36 indeed confirms only one hydride ligand coordinate with Ni central, and the terminal hydride ligand stays in the Fourier map. One of the two nickel centers connected with hydride ligand is surrounded by its ligand in a distorted square-planar fashion. The Ni-H distance in 36 of 1.291(3) \AA is shorter than 2, $\mathbf{3}$ and 4 . Whereas the second one is located in twist tetrahedrally coordination environment. The distance between the two nickel atoms of 4.266(7) Å is much longer than the corresponding 35 (3.782 (7) Å). Meanwhile, the nearby phenyl groups of side arm are subject to C-H oxidative addition to generate NiPh-("NNN"). The structure of 36 is completed by one K^{+}cation located by the intramolecular phenyl group from substitute, pyrazolate linked and the intermolecular phenyl group. A consequence of these K -arene/N contacts (2.78-3.28 Å) involves a 1D chain formation. (Figure 177c).

Figure 177: Molecular structure (50% probability thermal ellipsoids) of the anion of $\mathbf{3 6}$ (a, only one of two independent molecules shown), 36 (b) and 1D chain of 36 (c). Most hydrogen atoms omitted for clarity, except for the nickel-bound hydrides.

Table 46: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 36.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N4	$1.879(3)$	N4-Ni1-N1	$177.22(15)$
Ni1-N1	$1.910(3)$	N4-Ni1-N3	$95.71(14)$
Ni1-N3	$1.915(3)$	N1-Ni1-N3	$85.02(13)$
Ni1-K1A	$3.074(4)$	N4-Ni1-K1A	$112.35(13)$
Ni2-N6	$1.877(4)$	N1-Ni1-K1A	$64.88(13)$
Ni2-C41	$1.902(4)$	N3-Ni1-K1A	$101.8(4)$
Ni2-N2	$1.933(3)$	N6-Ni2-C41	$89.12(17)$
Ni2-N5	$1.936(4)$	N6-Ni2-N2	$167.15(14)$
Ni2-K1A	$3.835(2)$	C41-Ni2-N2	$98.58(16)$
Ni1-H1	$1.291(3)$	N6-Ni2-N5	$92.88(15)$
Ni1‥Ni2	$4.266(8)$	C41-Ni2-N5	$158.55(17)$
		N2-Ni2-N5	$83.72(14)$
		N6-Ni2-K1A	$117.7(2)$
		C41-Ni2-K1A	$91.30(15)$

	N2-Ni2-K1A	$52.3(2)$
	N5-Ni2-K1A	$106.53(16)$

36

Scheme 56: Preparation of dinuclear nickel(II) dihydride complex from 36.

Treatment of 36 in THF-d 8 with 1 atm $\mathrm{H}_{2},{ }^{1} \mathrm{H}$ NMR spectrum did not show a new species generation. However, a dinuclear nickel(II) dihydride complex $\mathrm{KL}^{3} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)$ can be obtained in a J-Young tube containing the monohydride bridge compound 36 with high pressure H_{2} ($\geq 3 \mathrm{~atm}$) (Scheme 56). ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 178) of the new dihydride complex $\mathrm{KL}^{3} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)$ revealed a lower filed shifted from 26.12 ppm to -23.79 ppm , which is similar to complex 2. [11] And the new $\mathrm{KL}^{3} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)$ complex only exists under H_{2} atmosphere.

Figure 178: ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of $\mathbf{3 6}$ with $\mathrm{H}_{2}(3 \mathrm{~atm})$ in THF-d8. Residual solvents are marked with an asterisk (*).

10.4 Synthesis of bimetallic dinickel(II) dihydride complex

35

Scheme 57: Preparation of $\mathbf{3 7}$ and $\mathbf{3 8}$ in one pot from $\mathbf{3 5}$ with NaHBEt3.

The alkali metals ($\mathbf{N a}$ and \mathbf{K}) have led to great interest in investigations on the $\mathrm{Ni}-\mathrm{H}$ coordination compounds in the $\mathrm{H}_{3} \mathrm{~L}^{1}$ ligand. With this background in mind, we are interested in the fundamental hydride chemistry of the bulky ligand with different alkali metals. Upon addition of $\mathbf{2}$ equivalents NaHBEt_{3} to $\mathbf{3 5}$ processes two diamagnetic species (Scheme 57), $\mathbf{3 7}$ and 38, in different ratios (1:1 or 2:3) depending on the reaction times. Fortunately, the coexistence of $\mathbf{3 7}$ and $\mathbf{3 8}$ in this case are confirmed by x-ray crystallographic analysis. Single crystals of 37 and 38 suitable for x-ray diffraction were obtained from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ and hexane/THF double solvent recrystallization systems, respectively.

It became obvious that, similar to the 36, 37 is a monohydride nickel complex with Na cation. And, the x-ray crystallography shows that 38 is a bimetallic dinickel(II) dihydride complex as $\mathbf{3}$ with Na^{+}cation. $\mathbf{3 8}$ is highly soluble in nonpolar solvents such as THF, suggesting that in solution it maintains the structure
in which the sodium is surrounded by arenes. The molecular structures of 37 and 38 in ORTEP diagram is shown in Figure 179 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 47.38 crystallizes in the triclinic space group P-1. The two nickel central were coordinated in square-planar fashion, with the sum of 360.58° and 359.86°, respectively. The distance of the two nickel atoms of 4.057(6) Å is shorter than 2 and 3 . The sodium is coordinated by the two hydride ligands and two THF molecules.

C

d

Figure 179: Molecular structure (50\% probability thermal ellipsoids) $\mathbf{3 7}$ (a), $\mathbf{3 8}$ (c) and of the anion of $\mathbf{3 7}$ (b), $\mathbf{3 8}$ (d). Most hydrogen atoms omitted for clarity, except for the nickel-bound hydrides.

Table 47: Selected bond lengths (\AA) and angle $\left({ }^{\circ}\right)$ for 38.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N4	$1.859(3)$	N4-Ni1-N1	$178.19(11)$
Ni1-N1	$1.863(3)$	N4-Ni1-N3	$96.62(10)$
Ni1-N3	$1.914(2)$	N1-Ni1-N3	$84.57(10)$
Ni1-Na1	$2.958(1)$	N4-Ni1-Na1	$117.82(8)$
Ni2-N6	$1.873(2)$	N1-Ni1-Na1	$60.38(8)$
Ni2-N2	$1.873(2)$	N3-Ni1-Na1	$115.13(8)$
Ni2-N5	$1.903(3)$	N4-Ni1-H1	$91.5(15)$
Ni2-Na1	$3.006(1)$	N1-Ni1-H1	$87.2(15)$
Ni1 $\cdots \mathrm{Ni} 2$	$4.057(6)$	N3-Ni1-H1	$170.0(14)$
H1 $\cdots \mathrm{H} 2$	$2.040(5)$	Na1-Ni1-H1	$55.5(14)$
Ni1-H1	$1.40(3)$	N6-Ni2-N2	$175.91(11)$
Ni2-H2	$1.46(3)$	N6-Ni2-N5	$96.25(11)$
		N2-Ni2-N5	$84.06(10)$
		N6-Ni2-Na1	$123.42(9)$
		N2-Ni2-Na1	$59.51(8)$
		N5-Ni2-Na1	$118.86(8)$
		N6-Ni2-H2	$91.6(11)$
		N2-Ni2-H2	$88.6(11)$
		N5-Ni2-H2	$168.9(11)$
		Na1-Ni2-H2	$50.0(11)$
		H1-Na1-H2	$50.24(1)$
		N1-Na1-H1	$53.52(9)$
		N2-Na1-H2	$56.09(7)$.

${ }^{1} \mathrm{H}$ NMR spectrum (under H_{2} atmosphere) shows the pyrazolate ligand resonances and dihydride ligands, indicating $C_{2 \mathrm{v}}$ symmetry in solution. And the dihydride ligands resonances are at -23.61 ppm (Figure 180), slightly low shifted compared with complex $\mathrm{KL}^{3} \mathrm{Ni}_{2}\left(\mathrm{H}_{2}\right)(-23.79 \mathrm{ppm})$.

Figure 180: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of 38 in THF-d d_{8} under H_{2}. Residual solvents are marked with an asterisk (*).

Exposure of a solution of $\mathbf{3 8}$ in THF or THF-D D_{8} to a D_{2} atmosphere led the color change from deep red to orange (Figure 181a). Meanwhile, H-D exchange mediated formation of the corresponding 38. As shown in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 181a), the hydride resonance of the new sodium complex is at -23.61 ppm. After exchange with D_{2}, however, the ${ }^{2} \mathrm{H}$ NMR indicates that the hydride peak of -23.57 ppm is slightly different (-0.04 ppm) from the undeuteride 38 (Figure 181b). In addition, reaction of mixture with D_{2} under the conditions yield (Ni-D) $)_{2}$ complex with incorporation of deuterium atom into the benzylic "arm". It might be suggested that $\mathbf{3 7}$ is represent in solution in equilibrium with 38 and is responsible for the unusual reactivity with H_{2}.

And this reaction is reversed upon addition of H_{2} to solutions of the deuterated complexes in THF. to $\mathbf{3 8}^{-}$is most conveniently followed via ${ }^{2} \mathrm{H}$ NMR spectroscopy, which shows the disappearance of the signals for $\mathrm{Ni}-\mathrm{D}$ around -24 ppm (concomitant for the appearance of $\mathrm{Ni}-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum) and the rise of a signal at 4.57 ppm originating from D_{2} (Figure 181). Surprisingly, no HD formation is observed during the initial stages of the reaction.

Scheme 58: Possibility process route for the $\mathrm{H}_{2}-\mathrm{D}_{2}$ exchange of $\mathbf{3 8}$.

Figure 181: (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 38 under \mathbf{H}_{2} atmosphere. (b) ${ }^{2} \mathrm{H}$ NMR spectrum of $38-D_{2}$. (d) after the degassing sample was loaded with H_{2}, the deu-tero-hydrido signal at -23.57 ppm disappeared and a new signal occurred at $4.57 \mathrm{ppm}\left(\mathrm{D}_{2}\right)$.

10.5 Reactivity towards water

Scheme 59: Reactivity towards $\mathrm{H}_{2} \mathrm{O}$ of 37 and 38.

In order to understand the relationship between nickel hydride complexes (36, 37 and 38) and 39, $\mathrm{a}^{1} \mathrm{H}$ NMR experiment with $\mathbf{3 8}$ and one equivalent of water in THF-d 8 was performed to reveal the formation of the intermediate. After the addition of water, $\mathbf{3 8}$ is consumed, as can be observed by the decrease of the characteristic hydride and pyrazolate resonance. At the same time, the characteristic at 6.06 ppm emerged alongside other resonance in the low field at -0.86 ppm . In additional, a characteristic for pyrazolate resonance at 5.63 ppm was observed (Figure 183).

A similar result was reported by $M a n z{ }^{[11 a]}$ for the reaction of $\mathbf{2}$ with water. The chemical shifts for the hydride ligand $\left(\delta\left\{{ }^{1} \mathrm{H}\right\}=26.00 \mathrm{ppm}\right)$ and the hydroxo ligand $\left(\delta\left\{{ }^{1} \mathrm{H}\right\}=-2.07 \mathrm{ppm}\right)$ are comparable to the shifts observed for $\mathrm{Na}\left[\mathrm{L}^{3} \mathrm{Ni}_{2}(\mathrm{OH})(\mathrm{H})\right]$ despite the fact that the two compounds are quite similar.

However, addition of one equivalent of water into a solution of 37 in THF-d d_{8} at room temperature led to color change from red to green immediately, and intensity gas was observed. ${ }^{1} \mathrm{H}$ NMR spectrum indicates that the new species is 39 without any intermediate formation. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 39 in THF in two days. The molecular structure of 39 is shown in Figure 182 and selected bond lengths (\AA) and angles (${ }^{\circ}$) are listed in Table 47. 39 crystallizes in the monoclinic crystal space group $P 2_{1} /$ c with six molecules in the unit cell. Hydroxyl complex is a diamagnetic and gives to sharp signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in the common chemical shift range for the pyrazolate ligands. The bridging hydroxide protons resonate at $\delta=-6.06 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 184), and the $v(0-\mathrm{H})$ stretching modes appears in the IR spectra at $3605 \mathrm{~cm}^{-1}$ (Figure 185a). After the addition of an excess (5 equivalents) of $\mathrm{D}_{2} \mathrm{O}$ to the water free decayed 39 in THFd_{8}, the bridge hydroxide signal has vanished immediately and the $v(0-\mathrm{D})$ stretching is at $2681 \mathrm{~cm}^{-1}(v(0-\mathrm{H}) / v(0-\mathrm{D})=1.35)$.

b

Figure 182: Molecular structure (50% probability thermal ellipsoids) of 39. Most hydrogen atoms omitted for clarity, except for OH unit.

Table 48: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 39.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N1	$1.802(3)$	N1-Ni1-N4	$175.13(12)$
Ni1-N4	$1.884(2)$	N1-Ni1-N3	$81.41(12)$
Ni1-N3	$1.891(3)$	N4-Ni1-N3	$95.11(11)$
Ni1-O1	$1.973(2)$	N1-Ni1-01	$82.67(10)$
Ni2-N2	$1.797(3)$	N4-Ni1-O1	$100.73(10)$
Ni2-N6	$1.883(2)$	N3-Ni1-O1	$164.06(11)$
Ni2-N5	$1.894(3)$	N2-Ni2-N6	$176.55(12)$
Ni2-O1	$1.977(2)$	N2-Ni2-N5	$81.28(11)$
Ni1‥Ni2	$4.105(5)$	N6-Ni2-N5	$95.48(11)$
		N2-Ni2-O1	$82.66(10)$
		N6-Ni2-O1	$100.52(10)$
		N5-Ni2-O1	$163.74(10)$
		Ni1-O1-Ni2	$122.13(11)$

Figure 183: Reactivity toward $\mathrm{H}_{2} \mathrm{O}$ and monitoring this reaction by ${ }^{1} \mathrm{H}$ NMR.

Figure 184: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of $\mathbf{3 9}$ and $\mathbf{3 9 - 0 D}$ in THF- d_{8}. Residual solvents are marked with an asterisk (*).

Figure 185: (a) IR spectrum in crystalline material and (b) ESI-MS (+) (in THF) of 39 .

10.6 Reactivity towards lutidinium triflate

Scheme 60: Synthetic route for 40.

To better understand the influence of the substitute and the chemical properties of the dihydride and monohydride complex its reactivity toward the weak acid [H-Lut]OTf has been investigated also. Similar to the $\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}$ ligand, we thought the 38 with [H-Lut]OTf in the presence of N_{2} can generate dinitrogen bridge complex. However, upon addition of one equivalent of [H-Lut]OTf with dinickel monohydride and dihydride mixture in THF without any color change and no gas was observed during the reaction process (Scheme 60). In this reaction it is very easy to get hydroxide bridge complex. A similar reaction was happened in the Limberg and co-works which was using the diiron dihydride complex with [H-Lut]OTf. [20d]

Suitable crystals for X-ray diffusion were obtained from THF slow evaporation under hexane atmosphere. The triflate bridging compound was characterized by x-ray diffraction, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, FT-IR, ESI-MS spectroscopy and elemental analysis (C, H and N). The molecular structure of 40 is shown in Figure 186 and selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 49. As shown in Figure 186, the two nickel centers were coordinated in square-planar fashion, with the sum of 359.95° and 361.25°, respectively. In this structure of $\mathbf{4 0}$, each nickel center is held within an N, N-chelate of a β-diketiminato arm and oxygen from
triflate ligand. And the distance of the two nickel of $4.401 \AA$ is longer than $\mathbf{3 5}$.

To further confirm the identity, an NMR spectroscopic analysis has been performed. Form ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, the complex is diamagnetic and highly symmetric structure in the solution. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 187), a signal set for the protons of the ligand in the normal ranging filed were observed that was characteristic for $C_{2 \mathrm{~h}}$ symmetrical diamagnetic nickel(II) complex. ${ }^{19} \mathrm{~F}$ NMR spectrum (Figure 188) showed a signal at -77.81 ppm that is for the triflate ion. It indicates that the triflate is not coordinated to the nickel central in the solution state.

Figure 186: Molecular structure (50\% probability thermal ellipsoids) of 40. All hydrogen atoms omitted for clarity.

Table 49: Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 40.

Atoms	Bond lengths	Atoms	Bond angles
Ni1-N3	$1.850(1)$	N3-Ni1-N4	$92.54(6)$
Ni1-N4	$1.893(1)$	N3-Ni1-O1	$176.19(6)$
Ni1-01	$1.928(1)$	N4-Ni1-O1	$87.24(6)$
Ni1-N1	$1.938(1)$	N3-Ni1-N1	$84.97(6)$
Ni2-N5	$1.856(1)$	N4-Ni1-N1	$177.43(6)$
Ni2-N6	$1.891(1)$	O1-Ni1-N1	$95.21(5)$
Ni2-O2	$1.925(1)$	N5-Ni2-N6	$94.21(6)$
Ni2-N2	$1.931(1)$	N5-Ni2-O2	$169.15(6)$
		N6-Ni2-O2	$88.65(6)$
		N5-Ni2-N2	$85.49(6)$
		N6-Ni2-N2	$173.18(6)$

Figure 187: ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 40 (Some byproduct 39 was observed). Residual solvents are marked with an asterisk (*).

Figure 188: ${ }^{19} \mathrm{~F}$ NMR spectrum of 40.
The IR spectrum of 40 shows three additional strong bands at $1229 \mathrm{~cm}^{-1}$ and $696 \mathrm{~cm}^{-1}$, which can be assigned to the triflate vibrations. [135]

10.7 Summary

To conclude, a bunch of bimetallic dinickel(II) complexes based on an expand $\operatorname{bis}(\beta$-diketiminato) ligand system was prepared and their structures and behavior. Bimeatllic dinickel(II) monohydride complex was isolated after reacting the precursor complex $\mathrm{L}^{2} \mathrm{Ni}_{2}(\mu-\mathrm{Br})$ with KHBEt_{3} in THF. However, bimetallic dinickel(II) monohydride and dihydride complexes were obtained from the precursor complex with NaHBEt_{3}. VT ${ }^{1} \mathrm{H}$ NMR experiments suggest that 38 is present in solution in equilibrium with 37 and is responsible for the unsual reactivity with H_{2}. Furthermore, 36, 37 and $\mathbf{3 8}$ exhibit reactivity toward to $\mathrm{H}_{2} \mathrm{O}$ and Lewis acid.

Chapter 11 Experimental Section

11.1 Material and Methods

All manipulations were performed under an anaerobic and anhydrous atmosphere of dry argon by using standard Schlenk techniques or in a glove box $\left(\mathrm{O}_{2}<\right.$ $0.5 \mathrm{ppm}, \mathrm{H}_{2} \mathrm{O}<0.5 \mathrm{ppm}$). Chemicals used were either present in the working group or were purchased from commercial sources or their synthesis is described below. Glassware was dried at $120^{\circ} \mathrm{C}$. THF, Diethyl ether, Pentane and Hexane were dried over sodium in the presence of benzophenone; DCM and CHCl_{3} were dried over $\mathrm{P}_{4} \mathrm{O}_{10}$; $\mathrm{MeCN}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\mathrm{EtCN}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}$ (trimethylamine) were dried over $\mathrm{CaH}_{2} ; \mathrm{MeOH}$ and EtOH were dried over Mg . Toluene is used after drying over molecular sieve using a Mbraun PLC; all solvents were distilled prior to use. THF- d_{8} is also dried over sodium in the presence of benzophenone to use and keep in $3 \AA$ molecular sieve condition. Na and K were purchased as dispersions in mineral oil, they were washed repetitively with hexane and fried in vacuum prior to use. ${ }^{1} \mathrm{H}$ NMR, ${ }^{2} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on Bruker Avance 300 or 400 spectrometers at room temperature or low temperature. Chemical shifts are reported in parts per million relative to residual proton and carbon signals of the solvent $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=7.26\right.$, $\delta_{\mathrm{C}}=77.16 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta_{\mathrm{H}}=5.32, \delta_{\mathrm{C}}=53.84 \mathrm{ppm} ;$ DMSO-d6, $\delta_{\mathrm{H}}=2.50, \delta_{\mathrm{C}}=$ $39.52 \mathrm{ppm} ; \mathrm{THF}, \delta_{\mathrm{H}}=1.73$ and $3.59 \mathrm{ppm} ; \delta_{\mathrm{C}}=25.31$ and $67.21 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}, \delta_{\mathrm{H}}=$ $1.94, \delta_{\mathrm{C}}=1.32$ and 118.26 ppm$)$.

All gas $\left({ }^{15} \mathrm{~N}_{2},{ }^{16} \mathrm{O}_{2},{ }^{18} \mathrm{O}_{2},{ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}\right.$ and $\left.{ }^{12} \mathrm{CO}_{2}\right)$ was dried over sulfuric acid (95\%) for overnight. $\mathrm{H}_{3} \mathrm{~L}^{1}$ was prepared according the literature. ${ }^{[11]} \mathrm{S}=\mathrm{PMe}_{3}$ was synthesized using a modified published ${ }^{[136]}$ synthesis in which PMe_{3} was stirred with $1 / 8$ molar equivalents of S_{8} in toluene for 12 hours. [H-Lut]OTf was synthesized using a modified published ${ }^{[137]}$ and dried at $90-100^{\circ} \mathrm{C}$ for overnight. An-
hydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H)[138], [NiBr_{2} (dme)] (dme=1,2-dimethoxyethane) ${ }^{[139]}$, 2,4,6-tri-tert-butylphenol radical were synthesized from literature directly. [140] BCF (Tris(pentafluorophenyl)borane) was bought from abcr and dried at $110{ }^{\circ} \mathrm{C}$ for overnight and used subsequently.

UV-vis spectra were recorded on a Cary 50 Bio (Varian) or Cary 5000 (Varian) using quartz cuvettes ($\mathrm{d}=1 \mathrm{~cm}$ or 0.1 cm). Low temperature UV-vis spectra were measured with a Varian Cary 50 Bio instrument coupled to a quartz immersion probe (5 mm , Hellma Analytics). Temperature stability was qualitatively assessed using the quartz immersion probe. Spectra were analyzed by Cary win UV software. Solid state spectra were recorded using the cary 5000 Bio spectrophotometer but with a Praying Mantis ${ }^{\mathrm{TM}}$ diffuse reflection attachment equipped with a sample chamber with quartz window (Harrick Scientific Products).

Electron ionization (EI) mass spectra were recorded with a Finnigan MAT 8200. ESI-MS were recorded on Brucker HCT ultra spectrometer.

IR spectra of solid samples were measured with a Cary 630 FTIR spectrometer equipped with a DialPath and Diamond ATR accessory (Agilent) placed in a glovebox (MBRAUN UNIlab, argon atmosphere). IR bands were labeled according to their relative intensities with vs (very strong), s (strong), m (medium), w (weak), and very weak (vw).

Cyclic voltammetry (CV) experiments were performed using a Perkin-Elmer model 263A and a three electrodes setup consisting of a glassy carbon-working electrode, a platinum wire counter electrode and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Ferrocene was used as an internal standard with $E^{0}(\mathrm{Fc}+/ \mathrm{Fc})=0 \mathrm{~V}$. All studies were performed in deoxygenated THF containing $\mathrm{NBu}_{4} \mathrm{PF}_{6}(0.1 \mathrm{M})$ as supporting electrolyte.

X-band EPR spectra were measured with a Bruker E500 ELEXSYS spectrometer equipped with a standard cavity (ER4102ST, 9.45 GHz). Continuous-wave (cw) Q band EPR measurements were performed on a Bruker E500 Elexsys Q-band spectrometer equipped with an Oxford ESR910 flow cryostat and an ER4102ST rectangular cavity. Pulsed EPR spectra were recorded on a Bruker SuperQ FT EPR spectrometer and a Bruker E580 spectrometer. The sample temperature was maintained constant with an Oxford Instruments Helium flow cryostat (ESP910) and an Oxford temperature controller (ITC-4). The microwave frequency was measured with the built-in frequency counter and the magnetic field was calibrated using an NMR field probe (Bruker ER035M). EPR spectra were simulated using Easy Spin [141] or XSophe. [142]

Samples for XES experiments were prepared in an inert atmosphere nitrogen glovebox as finely ground dilutions in boron nitride pressed into 1 mm Al spacers and shipped to the experimental site in triple glass jars with fluoropolymer seals on the lids and sealed with Teflon and electrical tape. XES spectra were recorded with a crystal array spectrometer, which employs three spherically bent Ge(620) crystals (100 mm diameter, 1 m radius of curvature) aligned on intersecting Rowland circles. A silicon drift detector was used to detect the resultant fluorescence. Samples were positioned at 45 degrees with respect to the incident beam, and were maintained at a temperature of less than 100 K with an ARS helium diplex cryostat (CHESS) or 0xford CF1208 cryostat (SSRL). A helium-filled flight path was utilized between the cryostat and the spectrometer to minimize signal attenuation of the fluorescence. Spectra were normalized to the incident flux I_{0} measured in a He-filled ion chamber (SSRL) or N_{2}-filled (CHESS). The spectrometer energy resolution is estimated at $\sim 2.5 \mathrm{eV}$.

Temperature-dependent magnetic susceptibility measurements for peroxo and superoxo dinickel complexes were carried out with a Quantum-Design MPMS-XL-5 SQUID magnetometer equipped with a 5 Tesla magnet in the range
from 295 to 2.0 K at a magnetic field of 0.5 T . The powdered sample was contained in a Teflon bucket and fixed in a non-magnetic sample holder. Each raw data file for the measured magnetic moment was corrected for the diamagnetic contribution of the Teflon bucket according to $M^{\text {dia }}($ bucket $)=\chi_{\mathrm{g}} \cdot m \cdot H$, with an experimentally obtained gram susceptibility of the Teflon bucket. The molar susceptibility data were corrected for the diamagnetic contribution using the Pascal constants and the increment method according to Haberditzl. [143] Magnetic measurement for $\mathbf{4}$ was collected on freshly crystallized material that was sealed with a small amount of mother liquor in an NMR-tube to prevent the loss of solvents and/or molecular hydrogen. Additionally, complex 4 was isolated and dried in glove-box atmosphere for $1 \mathrm{~h}\left(\mathbf{4}^{*}\right)$ or dried in vacuum for $15 \mathrm{~h}\left(\mathbf{4}^{* *}\right)$. For 2, the powdered sample was contained in a Teflon bucket and fixed in a non-magnetic sample holder. Each raw data file for the measured magnetic moment was corrected for the diamagnetic contribution of the sample holder and the sample.

Experimental data were modelled with the julX program ${ }^{[144]}$ using a fitting procedure to the spin Hamiltonians:

$$
\hat{H}=-2 J \hat{S}_{1} \hat{S}_{2}+g \mu_{B} \hat{B}\left(\underset{S_{1}}{ }+\stackrel{\mu}{S_{2}}\right) \quad \text { (Eq. S1) } \quad \text { for } 4
$$

or
$\hat{H}=g \mu_{B} \hat{B} \cdot \hat{S}$
for complexes 2, 6, 9, 16 and 24

Temperature-independent paramagnetism (TIP) and paramagnetic impurities $(P I)$ were included according to $c_{\text {calc }}=(1-P I) \cdot c+P I \cdot c_{\text {mono }}+T I P$. Intermolecular interactions were considered in a mean field approach by using a Weiss temperature Θ. ${ }^{[145]}$ The Weiss temperature Θ (defined as $\Theta=z J_{\text {inter }} S(S+1) / 3 k$) relates to intermolecular interactions $z J_{\mathrm{inter}}$, where $J_{\text {inter }}$ is the interaction parameter between two nearest neighbor magnetic centers, k is the Boltzmann constant
($0.695 \mathrm{~cm}^{-1} \cdot \mathrm{~K}^{-1}$) and z is the number of nearest neighbors.
Raman spectra of compounds have been recorded using a HORIBA Scientific LabRAM HR 800 ($400-1100 \mathrm{~nm}$) spectrometer with open-electrode CCD detector and a confocal pinhole with user controlled variable aperture in combination with a free space optical microscope, and a He:Ne-laser (633 nm) or diode laser (457 nm). All spectra were recorded at room temperature. Raman measurements were performed under air at room temperature with the sample mounted on a glass slide. All samples are measured in the crystalline material.

Calibration plot of GC quantification of H_{2} : A 10 mL flask was charged with THF (2 mL) and a magnetic stir bar. In addition, 0.8 mL of CH_{4} was injected into the closed system as an internal standard. A sample of H_{2} was injected to the flask ($0.1,0.2,0.4$, 0.8 and 1.2 mL , at 1 atm). An aliquot of the headspace was then injected into GC-2014 gas chromatography with ShimAdzu, Shincarbon column $(4.0 \mathrm{~m} \times 2.00 \mathrm{~mm}$, oven temperature $100^{\circ} \mathrm{C}$, carrier gas $\mathrm{Ar}, 180 \mathrm{KPa}$). A calibration plot was obtained by plotting the ratio of the GC peak integrations $\mathrm{H}_{2} / \mathrm{CH}_{4}$ versus the amount of hydrogen added to the flask.

Elemental analyses were performed by the analytical laboratory of the Institute of Inorganic Chemistry at Georg-August-University using an Elementar Vario EL III instrument.

Column chromatographic purifications (63-200 $\mu \mathrm{m}$ particle size) were performed on silica. TLC was performed on silica gel (Macherey-Nagel, Polygram SIL G/UV254).

11.2 Experiment

11.2.1 Synthesis of Ligand Precursors and Ligands

Scheme 61: Syntheses route for the Ligands.
Ligand precursors I, II, III, $\mathbf{H}_{\mathbf{3}} \mathbf{L}^{\mathbf{1}}$ was prepared according the literature. ${ }^{[11]}$

Under anaerobic conditions a solution of $\mathrm{PhB}(\mathrm{OH})_{2}(2.19 \mathrm{~g}, 18.0 \mathrm{mmol})$ in ethanol (12 mL) was added to a solution of 2,6-dibromoaniline ($1.51 \mathrm{~g}, 6.00 \mathrm{mmol}$) in toluene (60 mL). Aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \mathrm{M}, 25 \mathrm{~mL}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.83 \mathrm{~g}$, 0.72 mmol) were added, and the mixture was refluxed for 20 h at $85^{\circ} \mathrm{C}$. The organic layer was separated, and the aqueous phase extracted with ether (3×50 $\mathrm{mL})$. The combined organic phases were dried over MgSO_{4} in air, and solvent was removed. The black residue was purified on a silica column eluted with ethyl acetate: hexane $=1: 9(\mathrm{v}: \mathrm{v})$. Solvent was removed from the eluate, and the residue was crystallized from hot hexanes to afford pure 2,6-diphenylaniline as a white
solid. [146]
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=3.74\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}), 7.14(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar})$, 7.37 (m, 2H, Ar), 7.52 (m, 8H, Ar).

L2. A mount of 2,6-diphenylaniline ($0.106 \mathrm{~mol}, 18.76 \mathrm{~g}$) was added to a solution of 2,4-pentanedione ($16.4 \mathrm{~mL}, 0.159 \mathrm{~mol}$) and p-toluenesulfonic acid in toluene $(100 \mathrm{~mL})$ in a round-bottom flask. The resulting mixture was heated to reflux for 8 hours, and water was removed as a toluene azeotrope using a Dean and Stark apparatus. The diethyl ether solution was washed one or two times by a little dilute hydrochloric acid to eliminate raw materials and the by-product diketiminate. The reaction mixture was then evaporated to dryness. The resulting solid was recrystallized from hot hexane to afford the product.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=1.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 7.11-7.30 (m, 13H, Ar), 12.08(br, 1H, NH).

$\mathbf{L}_{\mathbf{1}}$. A mixture of 2,6-diisopropylaniline ($0.106 \mathrm{~mol}, 18.79 \mathrm{~g}, 20 \mathrm{~mL}, 1$ equiv), 2,4-pentanedione ($0.116 \mathrm{~mol}, 11.66 \mathrm{~g}, 11.96 \mathrm{~mL}, 1.1$ equiv) and p-toluenesulfonic acid $(0.5 \mathrm{~g})$ in toluene (100 mL) was refluxed for 6 h , with azeotropic removal of water using a Dean-stark trap. After removing the solvent, the crude product was washed by 30 mL water and extracted by $120 \mathrm{mLEt}_{2} \mathrm{O}$ divided three times. The diethyl ether solution was washed one or two times by a little dilute hydrochloric acid to eliminate raw materials and the by-product diketiminate. The resulting
brown solid was recrystallized from hexane at $-30^{\circ} \mathrm{C}$ to afford the product.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=1.15\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.12\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 12.05(\mathrm{~s}, 1 \mathrm{H}$, NH).

$\mathbf{H}_{3} \mathbf{L}^{1[11]}$: Molecular Weight: $608.90 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{~N}_{6}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=1.06\left(\mathrm{~d}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{CHPh}\right), 1.15\left(\mathrm{~d}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{CHPh}\right)$, 1.64 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.95 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 2.84 (m, 4H, CHPh), 4.39 ($\mathrm{s}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Pz}$), 4.72 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 6.01 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 6.99-7.16 (m, 6H, Ar).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=19.17(\mathrm{CH} 3 \mathrm{CCH}), 21.62\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $22.77\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.76\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.08,40.06\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 94.52,101.20(4 \mathrm{C}-\mathrm{Pz})$, 122.80 (Ph), $123.57(\mathrm{Ph}), 138.10(\mathrm{Ph}), 146.28$ (3,5C-Pz), 155.58 (CH3CCH), $166.22\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$.

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=3190(\mathrm{br})(\mathrm{NH}), 3130(\mathrm{NH}), 3104(\mathrm{NH}), 3060(\mathrm{w}), 3020(\mathrm{w})$, 2960 (m), 2923 (w), 2867 (w), 1621 (vs), 1551 (vs), 1501 (w), 1454 (m), 1432 (m), 1377 (m), 1361 (m), 1292 (m), 1284 (m), 1268 (m), 1226 (m), 1179 (m), 1159 (m), 1090 (m), 1049 (m), 1020 (m), 1005 (w), 934 (w), 919 (w), 879 (w), 819 (w), 804 (w), 784 (s), 758 (s), 728 (s), $695(m), 664$ (w), 626 (w), 607 (w), 582 (w), 519 (w), 497 (w).

Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{~N}_{6} \cdot\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$: C 72.84 H 9.47 N 12.34; Found C 72.92 H 9.20 N 12.48 .

$\mathbf{H}_{3} \mathbf{L}^{\mathbf{2}}$: Under an argon atmosphere, a solution of [Et30]+[BF4]- (2.09 g, 11 mmol , 2.2 equiv) in CH2Cl2 (40 mL) was slowly added to a solution of 4-(2,6-diphenylphenyl)amino-3-penten-2-one ($3.6 \mathrm{~g}, 11 \mathrm{mmol}, 2.2$ equiv) in $\mathrm{CH} 2 \mathrm{Cl} 2(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the reaction solution was stirred overnight at ambient temperature. $\mathrm{Et}_{3} \mathrm{~N}\left(1.11 \mathrm{~g}, 11 \mathrm{mmol}, 1.54 \mathrm{~mL}, 2.2\right.$ equiv) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for another 0.5 h at room temperature. A solution of ethylene diamine ($1 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv) in $\mathrm{Et}_{3} \mathrm{~N}$ ($1.01 \mathrm{~g}, 10 \mathrm{mmol}, 1.4 \mathrm{~mL}, 2$ equiv) was added to the reaction solution and the stirring was continued overnight. The volatiles were removed in vacuo and the obtained residue was treated with 50 mL of toluene for 30 mins . $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}[\mathrm{BF} 4]^{-}$precipitated as an oily solid. After filtration, toluene was removed under reduced pressure to afford a yellow solid. After recrystallization from ethanol/pentane $=1: 3$ at room temperature, white powder were obtained.

Molecular Weight: $744.96 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{6}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=1.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.73$ ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 4.19$ (s , $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 4.28 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 5.55 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 7.09-7.34 (m, 26H, Ph), 10.61 (br, 1H, NH). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)=18.07,21.36,38.84,93.70,99.96,121.82,125.21$, 126.67, 127.27, 128.22, 132.66, 140.20, 145.46, 154.43, 165.21.

MS (ESI): $m / z(\%)=745.93(M+H)^{+}(100)$.
Elemental analysis (\%) calc. for $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{6}(744.39 \mathrm{~g} / \mathrm{mol}):=\mathrm{C} 82.25 \mathrm{H} 6.57 \mathrm{~N}$ 11.17; Found C 82.21 H 6.50 N 11.28.

11.2.2 Complexes Syntheses

$\mathbf{L}^{1} \mathrm{Ni}_{2}(\mu-\mathrm{Br})(1)$.

This complex was prepared according to the literature. [11]
Molecular Weight: $803.17 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{3} 9 \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{Br}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)=6.91-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.73-6.75\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, Ar),5.46 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Pz}$), 4.68 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 4.07 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 3.30-3.20 (m, 4H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.39\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.26(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CCH}\right), 0.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{1} \mathbf{H}$ NMR (THF-d $8,300 \mathrm{MHz}$): $=6.79-6.95(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Pz}), 4.77(\mathrm{~s}, 2 \mathrm{H}$, CHCCH_{3}), 4.15($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 3.33-3.40 (m, 4H, CH(CH3)2), 2.01 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), $1.47\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.02\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}, 12\right.$ $\left.\mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)=159.74\left(\mathrm{CHCCH}_{3}\right), 153.24(3(5)-\mathrm{Pz}), 147.66(\mathrm{Ar})$, 141.50 (Ar) $125.43(\mathrm{Ar}), 123.30(\mathrm{Ar}), 97.24\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 91.51(4 \mathrm{C}-\mathrm{Pz}), 54.44$ $\left(\mathrm{CHCCH}_{3}\right), 28.13\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 24.84\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 23.37\left(\mathrm{CH}_{3}\right), 21.53\left(\mathrm{CH}_{3}\right)$.
$\operatorname{ATR}-\operatorname{IR}\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=3058(\mathrm{w}), 2959(\mathrm{~m}), 2923$ (m), 2862 (m), 1555 (m), 1532 (vs), 1462 (vs), 1435 (s), 1399 (s), 1381 (s), 1369 (vs), 1313 (s), 1279 (s), 1252 (s), 1236 (m), 1186 (m), 1175 (s), 1093 (s), 1052 (s), 1032 (m), 1012 (m), 957 (m), 935 (m), 795 (vs), 759 (vs), 745 (vs), 542 (m).

Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{Br} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{1.5}(926.15 \mathrm{~g} / \mathrm{mol})=\mathrm{C}$ 52.48 H 6.10 N 9.07; Found C 52.77 H 6.45 N 9.33.

$\mathrm{NaL}^{1} \mathrm{Ni}_{2}(\boldsymbol{\mu}-\mathrm{H})_{2}(3)$

A solution of NaHBEt_{3} in THF (1.0 M) ($0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) was added dropwise to a stirred brown solution of $\mathbf{1}(200 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in THF $(2 \mathrm{~mL})$ at room temperature. After stirring the resulting red-brown solution for 2 hours, all volatiles were removed in vacuo. The red-brown residue was washed
twice with hexane (40 mL). After concentration in vacuo and get red powder ($130 \mathrm{mg}, 0.17 \mathrm{mmol}, 68 \%$). The crude powder was recrystallization from Pentane diffusion to a solution of $\mathbf{3}$ in THF at room temperature yield orange block crystals

3-D: In a Young tube, a solution of $\mathbf{3}$ in THF (0.5 mL) was freeze-thaw degassed under vacuum three times. Then dry $\mathrm{D}_{2}(c a .1 \mathrm{~atm})$ was then introduced to the headspace of the flask at room temperature.

Molecular Weight: $892.47 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{Na} \cdot 2 \mathrm{THF}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d, $\left.300 \mathrm{MHz}\right)=6.75-6.86(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 5.61(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz}), 4.58(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CHCCH}_{3}$), $4.27\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.41-3.49\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right), 1.86(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CCH}$), 1.23 ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.04\left(\mathrm{dd}, 24 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right),-23.54$ ($\mathrm{s}, 2 \mathrm{H} . \mathrm{Ni}-\mathrm{H}$).
${ }^{2} \mathbf{H}$ NMR (THF, 77 MHz) $=-23.54(\mathrm{~s}, 2 \mathrm{H} . \mathrm{Ni}-\mathrm{D})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=157.91\left(\mathrm{CHCCH}_{3}\right), 156.99\left(\mathrm{CHCCH}_{3}\right), 155.16$ (Ar), 139.26 (Ar), 123.15 (Ar), 122.21 (Ar), 95.95 ($\mathrm{CH}_{2} \mathrm{Pz}$), 91.91 (4-Pz), 51.35 $\left(\mathrm{CHCCH}_{3}\right), 27.25\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right), 21.53\left(\mathrm{CH}_{3}\right), 19.61\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3052 (w), 2953 (m), 2962 (m), 1846 (Ni-H) (m), 1554 (m), 1521 (s), 1511 (s), 1459 (vs), 1373 (vs), 1396 (s), 1313 (m), 1271 (m), 1251 (m), 1231 (m), 1189 (m), 1100 (m), 1049 (m), 933 (m), 891 (m), 796 (m), 756 (m), 725 (m), 716 (m), 644 (m), 575 (m), 544 (w).

Anal. Calcd. (\%) for $\left[\mathrm{NaNi}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{O}_{2}\right] \cdot\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$: C 59.07, H 6.74, N 10.60 ; found: C 59.32, H 6.82, N 10.37.

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=1337(\mathrm{Ni}-\mathrm{D})(\mathrm{w})$.

[$\left.\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mu-\mathrm{H}_{2}\right)\right]^{-}[\mathrm{K}(\text { Dibenzo(18-crown-6) })]^{+}$(4)

DB18C6 ($7.2 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added into a solution of $2(15.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ in THF (2 mL) at room temperature. After stirring the resulting red solution for 2 hours, all volatiles were removed in vacuo. The red residue was washed twice
with hexane (10 mL). Suitable crystals for x -ray diffraction were obtained by layering hexane on a solution of $\mathbf{4}$ in THF at $-30^{\circ} \mathrm{C}$. (Yield: 90\%)

4-D \mathbf{D}_{2} : In a Young tube, a solution of $\mathbf{4}$ in THF (0.5 mL) was freeze-thaw degassed under vacuum three times. Then dry D_{2} ($c a .1 \mathrm{~atm}$) was then introduced to the headspace of the flask at room temperature.

Molecular Weight: $1343.70\left(\mathrm{C}_{59} \mathrm{H}_{79} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Ni}_{2} \mathrm{~K}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(T H F-d_{8}, 400 \mathrm{MHz}\right)=-23.99(\mathrm{~s}, \mathrm{Ni}-\mathrm{H})$.
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) $=3052$ (w), 2982 (m), 2955 (m), 2924 (m), 2863 (m), 1907 (Ni-H) (m), 1595 (m), 1503 (vs), 1452 (s), 1436 (s), 1426 (s), 1396 (s), 1366 (s), 1356 (m), 1320 (s), 1298 (w), 1270 (w), 1246 (vs), 1211 (vs), 1191 (w), 1118 (vs), 1094 (m), 1055 (s), 1020 (w), 943 (s), 902 (m), 848 (w), 796 (m), 778 (m), 756 (s), 741 (vs), 726 (vs), 715 (vs), 646 (w), 629 (w), 600 (m), 560 (w), 522 (w).

ATR-IR $\left(v / \mathrm{cm}^{-1}\right)=1318(\mathrm{Ni}-\mathrm{D})(\mathrm{s})$.

$\left.\left.\left[\mathrm{L}^{1} \mathrm{Ni}^{1}{ }_{2}\right]^{-[K(D i b e n z o(18-c r o w n-6)}\right)\right]^{+}$(5)

Keep the complex 4 under the vacuo for three days to remove the dihydrogen molecule from Ni-bound hydrides. The residue was washed with hexane (5 mL). Suitable crystals for x -ray diffraction were obtained by layering pentane/Et $\mathrm{E}_{2} \mathrm{O}$ on a solution of 5 in THF at $-30^{\circ} \mathrm{C}$.

Magnetic susceptibility: $\mu_{\mathrm{eff}}=1.6 \mu_{\mathrm{B}}$ (dried 1 hour); $\mu_{\mathrm{eff}}=2.0 \mu_{\mathrm{B}}$ (dried 15 hour)
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3062 (w), 2950 (m), 2931 (m), 2864 (m), 1595 (m), 1519 (s), 1503 (s), 1452 (w), 1436 (w), 1427 (s), 1401 (s), 1357 (m), 1309 (s), 1239 (vs), 1209 (vs), 1193 (w), 1124 (vs), 1089 (m), 1058 (s), 1022 (w), 982 (s), 953 (m), 941 (w), 900 (w), 848 (w), 797 (m), 782 (m), 757 (s), 739 (vs), 718 (vs), 645 (w), 633 (w), 600 (m), 522 (w).

$\mathrm{KL}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}-\mathrm{O}_{2}}\right.$) (6)

(a) Dioxygen (prior dried over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) ($1.28 \mathrm{mg}, 890 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$, 1 equiv) was added into a solution of 2 ($30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changes from orange to red immediately. Suitable crystals for x-ray diffraction were obtained from THF at $-30^{\circ} \mathrm{C}$ as red block crystal. (Yield: > 95\%, from ${ }^{1} \mathrm{H}$ NMR)
(b) 9 ($33 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) and potassium ($0.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 2$ equiv) were suspended in THF (2 mL) at room temperature, and a color changes from brown to red occurred immediately. The mixture was stirred for 2 hours, and then the solid components were filtered off. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 6 in THF at $-30^{\circ} \mathrm{C}$. (Yield: 60\%)
$\mathbf{6 - 1 8}^{-18} \mathbf{O}_{2}$: The synthesis of $\mathbf{6 - 1 8} \mathbf{O}_{\mathbf{2}}$ was achieved by the same procedure as reported above for 6 but employing ${ }^{18} \mathrm{O}_{2}$.

Molecular Weight: $\mathbf{7 9 2 . 3} \mathrm{g} / \mathrm{mol}^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{KO}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 5.99(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz}), 4.53(\mathrm{~s}, 2 \mathrm{H}$, CHCCH_{3}), $3.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.69-3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.49$ (d, $\left.12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(\mathrm{~d}, 12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}).
${ }^{13} \mathbf{C}$ NMR $\left(\right.$ THF- $\left.\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=160.01\left(\mathrm{CHCCH}_{3}\right), 157.13\left(\mathrm{CHCCH}_{3}\right), 151.77$ (3,5-Pz), 150.72 (Ar), $144.74(\mathrm{Ar}), 123.46(\mathrm{Ar}), 122.18(\mathrm{Ar}), 96.53\left(\mathrm{CHCCH}_{3}\right)$, $90.43(4-\mathrm{Pz}), 50.15\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 27.77\left(\mathrm{CH}_{3}\right), 22.09\left(\mathrm{CH}_{3}\right), 20.93\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3055 (w), 2958 (m), 2924 (m), 2864 (m), 1555 (m), 1527(vs), 1460 (s), 1433 (vs), 1397 (vs), 1369 (m), 1315 (s), 1257 (vs), 1196 (w), 1055 (s), 1031 (vs), 1014 (vs), 859 (m), 799 (s), 774(m), 757 (s) (${ }^{16} \mathrm{O}^{-16} 0$), 732 (s), 683 (w), 623 (w), 589 (w), 548 (w).

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=714(\mathrm{~m})\left({ }^{18} \mathrm{C}^{-18} 0\right)$.
$\operatorname{Raman}\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=720\left({ }^{16} 0-{ }^{16} 0\right), 680\left({ }^{18} 0-180\right)$.

ESI-MS (THF): m/z (\%) = $793.3(100)(\mathrm{M}+\mathrm{H})^{+}\left(\mathbf{6 - 1 6}^{-16} \mathrm{O}_{2}\right), 819.2(100)(6+\mathrm{Na})^{+}$ $\left(6-18 \mathrm{O}_{2}\right)$.

UV-vis (THF): $\lambda_{\text {max }}=272,370,384,510 \mathrm{~nm}$.
Anal. Calcd. (\%) for [(C $\left.\left.\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{KNi}_{2} \mathrm{O}_{2}\right]$: C 59.07, H 6.74, N 10.60; found: C 59.32, H 6.82, N 10.37.

$\mathrm{NaL}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}-\mathbf{O}_{2}}\right.$)(7)

$\mathrm{NaBAr}^{\mathrm{F}} 4$ ($18 \mathrm{mg}, 0.02 \mathrm{mmol}$, 1 equiv) was added into a solution of $6(16 \mathrm{mg}, 0.02$ mmol, 1 equiv) at room temperature. The mixture was stirred for 2 hours, and then the solid components were filtered off. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 7 in THF at $-30^{\circ} \mathrm{C}$.

Molecular Weight: $778.25 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{NaO}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.95(\mathrm{br}, 6 \mathrm{H}, \mathrm{Ar}), 5.59(\mathrm{~s}, 1 \mathrm{H}, 4 \mathrm{H}-\mathrm{Pz}), 4.55(\mathrm{~s}, 2 \mathrm{H}$, CHCCH_{3}), $3.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 1.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\mathrm{CH}), 1.08\left(\mathrm{~d}+\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.

$\left[L^{\mathbf{1}} \mathrm{Ni}_{2}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}} \mathrm{O}_{2}\right)\right]-[\mathrm{K}(\text { Dibenzo(18-crown-6) })]^{+}(8)$

DB18C6 ($7.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) was added into a solution of $6(16 \mathrm{mg}, 0.02$ mmol, 1 equiv) in THF (2 mL) at room temperature resulting the color from wine-red to cherry red. After stirring the resulting red solution for 2 hours, all volatiles were removed in vacuo. The red residue was washed twice with hexane (10 mL). Suitable crystals for x-ray diffraction were obtained by layering hexane/ $\mathrm{Et}_{2} \mathrm{O}$ on a solution of $\mathbf{8}$ in THF at $-30^{\circ} \mathrm{C}$ (yield: 80%).
$\mathbf{8 - 1 8}^{-18} \mathrm{O}_{2}$: The synthesis of $\mathbf{8 - 1 8}^{-18} \mathrm{O}_{\mathbf{2}}$ was achieved by the same procedure as reported above for 8 but employing ${ }^{18} \mathrm{O}_{2}$.

Molecular Weight: $1154.76 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{59} \mathrm{H}_{77} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Ni}_{2} \mathrm{~K}\right)$
${ }^{1}$ H NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.83-6.94(\mathrm{~m}, \mathrm{Ar}+$ Dibenzo(18-crown-6) $), 5.57(\mathrm{~s}$, 1H, 4H-Pz), 4.49 (br, 2H, CHCCCH 3), 4.14 (Dibenzo(18-crown-6)), 4.08
(Dibenzo(18-crown-6)), 3.79 (br, 4H, CH2Pz), 1.40 (s, 12H, CH3), 1.05 (s, 12H, CH_{3}).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=149.39,144.47,135.22,126.21,123.94$, 121.94, 121.78, 113.45, 113.39, 113.15, 106.12, 97.71, 96.07, 92.59, 70.32, 69.17, 56.45, 56.07, 32.59, 28.99, 27.35, 26.43, 25.90, 23.98, 22.96, 21.18, 20.79, 14.48. ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3058 (w), 2952 (m), 2925 (m), 2860 (m), 1663 (w), $1594(\mathrm{~m})$, 1547 (m), 1522 (s), 1502 (s), 1438 (s), 1402 (vs), 1320 (m), 1308 (m), 1281 (w), 1247 (vs), 1209 (s), 1123 (vs), 1099 (w), 1083 (w), 1055 (vs), 987 (w), 953 (w), 940 (s), 912 (w), $900(\mathrm{w}), 807(\mathrm{w}), 796(\mathrm{~m}), 778(\mathrm{~m})\left({ }^{160}-160\right), 739(\mathrm{~s}), 715(\mathrm{~s})$, $600(\mathrm{~m}), 582(\mathrm{w})$.

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=728(\mathrm{~m})\left({ }^{18} \mathrm{Cl}^{18} 0\right)$.
$\operatorname{Raman}\left(v / \mathrm{cm}^{-1}\right)=755\left({ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}\right), 715\left({ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}\right)$.
UV-vis (THF): $\lambda_{\text {max }}=274,380,410,520 \mathrm{~nm}$.
ESI-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \mathrm{m} / \mathrm{z}(\%)=755.44(15)\left(\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mathrm{O}_{2}\right)+2 \mathrm{H}\right)^{+}\left(8-{ }^{-16} \mathrm{O}_{2}\right), 759.44$ (20) $\left(\mathrm{L}^{1} \mathrm{Ni}_{2}\left({ }^{18} \mathrm{O}_{2}\right)+2 \mathrm{H}\right)^{+}\left(8^{-18} \mathrm{O}_{2}\right)$.
Anal. Calcd. (\%) for $\left[\mathrm{K}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]+\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{O}_{2}\right]: \mathrm{C} 61.95, \mathrm{H} 7.22, \mathrm{~N}$ 6.47; found: C 62.12, H 7.33, N 6.18 .

$\mathbf{L}^{1} \mathrm{Ni}_{2}\left(\mu-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1-\mathbf{O}_{2}}\right.$)(9)

(a) A solution of $\mathbf{2}$ in THF (10 mL) was cooled to $-78^{\circ} \mathrm{C}$. The nitrogen atmosphere in the young flask was replaced with dry dioxygen. After stirring for 2 hours, the reaction mixture was allowed to warm to room temperature and was further stirred overnight. The color of the solution changed from orange to brown-red. Volatiles were concentrated to 2 mL . Suitable crystals for x -ray diffraction were obtained by layering hexane on a solution of 9 in THF at $-30^{\circ} \mathrm{C}$. (yield: 60\%)
(b) Dioxygen (prior dried over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) ($1.28 \mathrm{mg}, 890 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$, 1 equiv) was added into a solution of $6(31.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changed from red to brown in 20 minutes.

Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 9 in THF at $-30^{\circ} \mathrm{C}$. (yield: 70\%)
$\mathbf{9 - 1 8}^{\mathbf{1 8}} \mathbf{O}_{2}$: The synthesis of $\mathbf{9 - 1 8}_{\mathbf{1 8}}^{\mathbf{2}}$ was achieved by the same procedure as reported above for 9 but employing ${ }^{18} \mathrm{O}_{2}$. The setup was prepared using a method similar to that described for ${ }^{15} \mathrm{~N}_{2}$ starting from ${ }^{18} \mathrm{O}_{2}$.

Molecular Weight: $753.3 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{2}\right)$
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3058 (w), 2956 (m), 2924 (m), 2865 (m), 1553 (m), 1532 (s), 1461 (s), 1437 (s), 1394 (s), 1369 (s), 1313 (s), 1252 (s), 1234 (s), 1187 (s), 1176 (s), 1092 (m), 1032 (s), 982 (${ }^{160} \mathrm{O}^{-16} \mathrm{O}$) (s), 936 (m), 916 (m), 870 (w), 797 (s), 759 (s), 743 (s), 714 (m), 588 (m), 565(m).

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=936(\mathrm{~m})\left({ }^{18} \mathrm{O}^{-18} \mathrm{O}\right)$.
$\operatorname{Raman}\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=1007\left({ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}\right), 951\left({ }^{18} \mathrm{O}-{ }^{-18} \mathrm{O}\right)$.
ESI-MS (THF:CH3CN = 10:1): $\mathrm{m} / \mathrm{z}(\%)=792.4(100)(\mathrm{M}+\mathrm{K})^{+}\left(9-{ }^{-16} \mathrm{O}_{2}\right)$, 776.4 (20)
$(9+\mathrm{Na})+\left(\mathbf{9 - 1 6} \mathrm{O}_{2}\right), 754.3(5)(\mathbf{9}+\mathrm{H})+\left(\mathbf{9 - 1 6} \mathrm{O}_{2}\right) ; 796.4(100)(9+\mathrm{K})+\left(9-{ }^{18} \mathrm{O}_{2}\right)$.
UV-vis (THF): $\lambda_{\text {max }}=312,364,461,560,720 \mathrm{~nm}$.
Anal. Calcd. (\%) for [$\mathrm{Ni}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{O}_{2}$]: C 62.13, H 7.09, N 11.15; found: C 62.50, H 7.39, N 10.19.

$\mathrm{L}^{1} \mathrm{Ni}_{2}(\mu-\mathrm{OH})(11)$

(a) Treatment of $\mathbf{6}(31.77 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (2 mL) with [H-Lut]OTf ($10.28 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) resulted in a color change from red to orange immediately. The mixture was stirred for 1 hour. After filtration, suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 1}$ in THF at $-30^{\circ} \mathrm{C}$. (yield: 80%)
(b) Treatment of 9 ($15.10 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) in THF (1 mL) with TEMPO-H ($3.14 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) resulted color change from brown to brown red in 20 mins. The reaction mixture was allowed to react for 12 hours at $-30^{\circ} \mathrm{C}$. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution
of 11 in THF at $-30^{\circ} \mathrm{C}$. (yield: 80%)
(c) Treatment of $2\left(30.56 \mathrm{mg}, 0.04 \mathrm{mmol}, 1\right.$ equiv) in THF (2 mL) with $\mathrm{H}_{2} \mathrm{O}$ resulted in a color change from red to orange immediately and intensity gas was observed. The mixture was stirred for 1 hour. After filtration, suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 11 in THF at $30^{\circ} \mathrm{C}$. (Yield: 80\%)

Molecular Weight: $740.27 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 400 \mathrm{MHz}\right)=6.94-6.98(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ar}), 6.80-6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 5.48$ (s, 1H, Pz), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.01\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.32-3.37(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.61\left(\mathrm{~d}, 12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.08(\mathrm{~s}+\mathrm{d}$, $\left.18 \mathrm{H}, \mathrm{CH} 3 \mathrm{CCH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=21.36\left(\mathrm{CH}_{3}\right), 23.73\left(\mathrm{CH}_{3}\right), 25.89\left(\mathrm{CH}_{3}\right), 29.20\left(\mathrm{CH}_{3}\right)$, $55.14(\mathrm{CH} 2 \mathrm{Pz}), 91.62(4-\mathrm{Pz}), 98.25\left(\mathrm{CHCCH}_{3}\right), 125.33(\mathrm{Ar}), 126.14(\mathrm{Ar}), 142.56$ (Ar), $145.40(\mathrm{Ar}), 159.36\left(\mathrm{CHCCH}_{3}\right), 161.25\left(\mathrm{CHCCH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) $=3608(\mathrm{~m}, \mathrm{OH}), 3058(\mathrm{w}), 2955(\mathrm{~m}), 2864(\mathrm{~m}), 1553(\mathrm{~m})$, 1529 (vs), 1462 (s), 1436 (s), 1394 (vs), 1381 (vs), 1323 (m), 1314 (m), 1271 (m), 1251 (m), 1234 (m), 1196 (w), 1159 (w), 1104 (w), 1082 (w), 1060 (m), 1018 (m), 946 (m), 874 (m), 799 (s), 756 (vs), 732 (vs), 709 (w), 649 (m).

Anal. Calcd. (\%) for $\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{OH}\right]$: C 63.28, H 7.35, N 11.35; found: C 63.18, H 7.23, N 11.49.

$\mathrm{KL}^{\mathbf{1}}{ }^{\mathbf{N i}} \mathbf{i}_{\mathbf{2}}\left(\mu-\eta^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}-S_{2}}\right)(12)$

Elemental sulfur ($2.56 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of 2 ($30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changes from orange to blood red immediately and intensity gas was observed. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 2}$ in THF at $-30^{\circ} \mathrm{C}$ (Yield: $>95 \%$, from ${ }^{1} \mathrm{H}$ NMR)

Molecular Weight: $826.50 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~S}_{2} \mathrm{~K}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d, $\left.400 \mathrm{MHz}\right)=6.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 5.99(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz}), 4.53(\mathrm{~s}, 2 \mathrm{H}$, CHCCH_{3}), $3.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.69-3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.49$ $\left(\mathrm{d}, 12 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}).
 144.16 (Ar) 124.61 (Ar), 122.48 (Ar), $97.23\left(\mathrm{CHCCH}_{3}\right), 91.97(4 \mathrm{C}-\mathrm{Pz})$, 50.83 ($\left.\mathrm{CH}_{2} \mathrm{Pz}\right) 28.62\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 26.43\left(\mathrm{CH}_{3}{ }^{\mathrm{iPr}}\right), 24.30\left(\mathrm{CH}_{3}{ }^{\mathrm{iPr}}\right), 21.90\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3052 (w), 2954 (m), 2924 (m), 2862 (m), 1555 (m), 1528 (vs), 1462 (m), 1433 (vs), 1398 (vs), 1315 (m), 1276 (m), 1249 (m), 1232 (w), 1209 (w), 1188 (w), 1124 (w), 1097 (w), 1054 (m), 1030 (m), 954 (w), 934 (w), $900(\mathrm{w}), 856$ (w), 795 (m), 744 (s), 729 (m), 713 (m), 646 (w), 625 (w), 547 (w), 521 (w), 425 (m) (S-S).

UV-vis (THF): $\lambda_{\text {max }}=270,375,405,465,520 \mathrm{~nm}$.
Anal. Calcd. (\%) for [$\left.\mathrm{KNi}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{S}_{2}\right]\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$: C 61.89, H 7.37, N 10.07; found: C 61.53, H 7.11, N 11.17.

$\mathrm{L}^{1} \mathrm{Ni}_{2}(\mu-\mathrm{SH})(13)$

(a) Elemental sulfur ($2.56 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of $\mathbf{1}$ ($30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (2 mL) in the presence of KC_{8} at room temperature. Then the brown suspension solvent was stirred for two days at room temperature. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 3}$ in THF at $-30^{\circ} \mathrm{C}$. (Yield: 80\%)
(b) Treatment of $\mathbf{1 4}$ ($33 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (2 mL) with [H-Lut]OTf ($10.28 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) resulted in a color change from red to brown immediately. The mixture was stirred for 1 hour. After filtration, Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 3}$ in THF at $-30^{\circ} \mathrm{C}$. (yield: 80%)
(c) Treatment of $\mathbf{1 2}$ in THF (2 mL) under air resulted in a color change from red to brown in 2 hours. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 3}$ in THF at $-30^{\circ} \mathrm{C}$. (Yield: 80\%)

Molecular Weight: $756.34 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~S}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)=6.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}), 5.55(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz})$,
$4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.23\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.21-3.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.02(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $\left.=8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.95\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{Ar}\right), 6.85\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, Ar), 5.56 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 4.75 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 4.23 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 3.29 (m, 4H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.99\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.48\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{JH}_{\mathrm{H}}=4 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CCH}\right), 1.01\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right),-3.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH})$.
${ }^{13}$ C NMR (THF- ${ }_{8}, 100 \mathrm{MHz}$) $=160.02,158.71,152.91,148.40,140.62,125.30$, 123.57, $96.70\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 91.10(4-\mathrm{Pz}), 54.43(3(5) \mathrm{C}-\mathrm{Pz}), 27.80\left(\mathrm{CH}_{3}\right), 23.42\left(\mathrm{CH}_{3}\right)$, $22.75\left(\mathrm{CH}_{3}\right), 20.53\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3056 (m), 2951 (m), 2924 (m), 2864 (w), 2557 (s) (SH), 1556 (m), 1530 (vs), 1464 (vs), 1434 (vs), 1398 (vs), 1359 (m), 1313 (s), 1282 (w), 1250 (m), 1233 (w), 1191 (w), 1126 (w), 1108 (w), 1087 (w), 1075 (w), 1056 (w), 1032 (m), 1009 (w), 983 (w), 934 (w), 916 (w), 860 (w), 795 (s), 760 (vs), 741 (vs), 714 (w), 641 (w), 543 (w), 529 (w).

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=1817(\mathrm{SD})$
UV-vis (THF): $\lambda_{\text {max }}=299,380 \mathrm{~nm}$.
Anal. Calcd. (\%) for [$\left.\mathrm{Ni}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{SH}\right]$: C 61.93, H 7.20, N 11.11 ; found: C 62.18, H 7.43, N 10.61.

$K^{1}{ }^{1} \mathrm{Ni}_{2}(\mu-S)(14)$

(a) PPh_{3} ($2.26 \mathrm{mg}, 0.01 \mathrm{mmol}, 1$ equiv) was added into a solution of $\mathbf{1 2}$ in THF-d8 at room temperature. Completely conversion happened in around 40 hours. ${ }^{1} \mathrm{H}$
and ${ }^{31} \mathrm{P}$ NMR spectra were shown in the 5.2.
(b) $\mathrm{S}=\mathrm{PMe}_{3}$ ($4.3 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of $2(30.5 \mathrm{mg}$, $0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. No obvious color changing was observed. Suitable crystals for x-ray diffraction were obtained from hexane layering into THF at $-30^{\circ} \mathrm{C}$ as red block crystals in two weeks. (Yield: 95%, from ${ }^{1} \mathrm{H}$ NMR)
(c) $\mathbf{1 3}$ ($16.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) and excess potassium hydride were suspended in 2 mL of THF at room temperature. Intense gas $\left(\mathrm{H}_{2}\right)$ development was observed, and a color changes from brown to red occurred in 2 hours. The mixture was stirred for 4 hours continue, solid components were filtered off. Recrystallization of the crude product by layering hexane on a solution of 14 in THF at $-30^{\circ} \mathrm{C}$ yields red block crystal. (Yield: 60%)
(d) $\mathbf{1 6}$ ($33 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) and excess potassium were suspended in 2 mL of THF at room temperature, and a color changes from brown to red occurred immediately. The mixture was stirred for 2 hours continue, solid components were filtered off. The final product was identified by ${ }^{1} \mathrm{H}$ NMR.

Molecular Weight: $794.43 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~S}_{2} \mathrm{~K}\right)$
${ }^{1} \mathbf{H}$ NMR (THF- $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.77\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz}, \mathrm{Ar}\right), 6.67\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8\right.$ Hz, Ar) 5.46 (s, 1H, 4-Pz), 4.47 (s, 2H, CHCCH 3), 4.12 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH} 2 \mathrm{Pz}$), 3.42 (m, 4H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~d}, 12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.16(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.95\left(\mathrm{~d}, 12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$
${ }^{13}{ }^{3}$ CNR $\left(\right.$ THF- $\left.{ }_{8}, 100 \mathrm{MHz}\right)=159.18,158.75,153.91,149.77,141.46,124.27$, 123.28, $96.07\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 91.29(4-\mathrm{Pz}), 53.88(3(5) \mathrm{C}-\mathrm{Pz}), 28.66\left(\mathrm{CH}_{3}\right), 26.41\left(\mathrm{CH}_{3}\right)$, $25.37\left(\mathrm{CH}_{3}\right), 21.62\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3056 (w), 2954 (s), 2928 (s), 2861 (s), 1549 (s), 1520 (vs), 1458 (s), 1431 (s), 1400 (vs), 1377 (w), 1366 (w), 1321 (w), 1308 (vs), 1288 (w), 1252 (m), 1231 (m), 1190 (m), 1079 (m), 1055 (vs), 1027 (m), 1005 (w), 950 (w), 938 (w), 894 (m), 855 (w), 806 (w), 793 (s), 754 (vs), 726 (vs), 711 (vs),

659 (w), 640 (w), 542 (w), 523 (m).
ESI-MS (THF: $\left.\mathrm{CH}_{3} \mathrm{CN}=10: 1\right): \mathrm{m} / \mathrm{z}(\%)=754.49$ (100) $(\mathbf{1 4 - K + H})^{+}, 755.47$ (100)
$(\mathbf{1 6 + H}), 792.38(50)(\mathbf{1 4 - K}+\mathrm{H})^{+}, 793.25(17+\mathrm{H})^{+}, 753.32(\mathbf{1 4 - K})^{-}$
UV-vis (THF): $\lambda_{\text {max }}=275,351,376,460 \mathrm{~nm}$.
Anal. Calcd. (\%) for $\left[\mathrm{KNi}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right) \mathrm{S} \cdot(\mathrm{THF})_{2}\right]$: C $60.14, \mathrm{H} 7.41, \mathrm{~N} 8.95$; found: C 60.28, H 7.55, N 8.64

$\mathbf{L}^{1} \mathrm{Ni}_{2}\left(\mu-\mathrm{SCH}_{3}\right)(15)$

A solution of 14 ($16 \mathrm{mg}, 0.02 \mathrm{mmol}$, 1 equiv) in THF (2 mL) was treated with excess $\mathrm{CH}_{3} \mathrm{I}$ (2 M in Butyl Methyl) with stirring. The solution color changed from orange to green immediately. The reaction was stirred at room temperature for 30 mins. Suitable crystals in black block for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 5}$ in THF at $-30^{\circ} \mathrm{C}$.

Molecular Weight: $770.37 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{3} 9 \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{SCH}_{3}\right)$
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3052 (w), 2953 (m), 2922 (m), 2864 (m), 1550 (m), 1528 (vs), 1460 (w), 1435 (s), 1394 (vs), 1380 (vs), 1312 (vs), 1266 (w), 1251 (w), 1178 (m), 1084 (m), 1055 (m), 1033 (m), 940 (w), 799 (s), 763 (vs), 739 (vs), 595 (w), 546 (w), 527 (w), 463 (w), 437 (m), 404 (m).

ESI-MS (THF:CH3CN = 10:1): $\mathrm{m} / \mathrm{z}(\%)=791.30(15+\mathrm{H})^{+}$.

$\mathrm{L}^{1} \mathrm{Ni}_{2}(\boldsymbol{\mu}-\mathrm{S})(16)$

(a) $\mathrm{S}=\mathrm{PMe}_{3}$ ($4.3 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of $24(30 \mathrm{mg}$, $0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changes from brown-red to deep-brown in 10 mins. There is some orange piece formed in 20 mins also. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 6}$ in THF at $-30^{\circ} \mathrm{C}$ as red block crystals in two days.
(b) To a precooled and blood red solution of $\mathbf{1 2}$ ($16.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.00$ equiv) in THF (2 mL) was added [$\left.\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{BF}_{4}\right]$ ($8.1 \mathrm{mg}, 0.030 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was allowed to react for overnight at $-35^{\circ} \mathrm{C}$. To the resulting red
solution hexane (20 mL) was added, causing precipitation of a black powder. The solution was removed via a syringe and the solid was washed with hexane (20 mL) and then dried under reduced pressure to give the crude product. Black block crystals suitable for x -ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 6}$ in THF at $-30^{\circ} \mathrm{C}$.
(c) To a pre-cooled and brown solution of $\mathbf{1 3}$ ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) in THF (1 mL) was added TBP ($3.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 2$ equiv). The reaction mixture was allowed to react for 12 hours at $-30^{\circ} \mathrm{C}$. Green single crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{1 6}$ in THF at $-30^{\circ} \mathrm{C}$ in two days

Molecular Weight: $755.34 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~S}\right)$
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3231 (br, w) 3051 (w), 2956 (m), 2866 (m), 1550 (m), 1530 (m), 1462 (w), 1434 (m), 1390 (m), 1310 (w), 1276 (m), 1245 (s), 1150 (m), 1028 (vs), 982 (w), 954 (w), 916 (w), 865 (w), 800(w), 760 (m), 730 (m), 637 (vs), 572 (m), 517 (s).

UV-vis (THF): $\lambda_{\text {max }}=270,319,373,457 \mathrm{~nm}$.

$\mathbf{L}^{1} \mathrm{Ni}_{2}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1} \mathrm{NNH}_{2} \mathrm{Ph}\right)$ (17)

Phenylhydrazine ($5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1$ equiv) was added to a solution of $\mathbf{1}(40 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1$ equiv) and $\mathrm{KC}_{8}(7 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv) in 2 mL THF at room temperature. During the reaction, a color changes from brown to dark red occurred immediately and intense gas $\left(\mathrm{H}_{2}\right)$ is generated. The mixture was stirred for 16 h and fileted. After filtration, THF was removed in vacuo to yield dark red powder. Recrystallization of the crude product from Pentane diffusion into THF at room temperature yield red needle crystals of 17. ($18.35 \mathrm{mg}, 0.019 \mathrm{mmol}$, 37\%)

Molecular Weight: $830.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .\left(\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{Ni}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(\right.$ THF- $\left.{ }_{8}, 400 \mathrm{MHz}\right)=9.36\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathbf{P h} \mathbf{o - H}\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$
$=4 \mathrm{~Hz}, \mathbf{A r}), 7.04\left(\mathrm{t}, 2 \mathrm{H},{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathbf{P h} \mathbf{~ m}-\mathbf{H}\right), 6.93\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathbf{A r}\right), 6.80$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=16 \mathrm{~Hz}, \mathbf{A r}\right), 6.65\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathbf{A r}\right), 6.37\left(\mathrm{t}, 1 \mathrm{H}, 3^{3} \mathrm{H}_{\mathrm{H}}=8 \mathrm{~Hz}\right.$, Ph p-H), 5.43 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 4.81 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 4.63(s, 1H, CH3 CCH), 3.99 (q, $\left.4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{CH} 2 \mathrm{Pz}\right), 3.81\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.08\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8\right.$ $\left.\mathrm{Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.10(\mathrm{~d}, 3 \mathrm{H}$, $\left.J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.99\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.93\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12\right.$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CCH}$), $1.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.47\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.10(\mathrm{~m}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.85\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.71\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.31\left(\mathrm{~d}, 3 \mathrm{H}, 3^{3} \mathrm{H}-\mathrm{H}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=20.19\left(\mathbf{C H}_{3}\right), 20.37\left(\mathbf{C H}_{3}\right), 22.36\left(\mathbf{C H}_{3}\right)$, $22.63\left(\mathrm{CH}_{3}\right), 22.82\left(\mathrm{CH}_{3}\right), 23.53\left(\mathrm{CH}_{3}\right), 23.61\left(\mathrm{CH}_{3}\right), 25.07\left(\mathrm{CH}_{3}\right), 25.31\left(\mathrm{CH}_{3}\right)$, $25.39\left(\mathrm{CH}_{3}\right), 26.14\left(\mathrm{CH}_{3}\right), 26.98\left(\mathrm{CH}_{3}\right), 27.00\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.23\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.13\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.24\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.05\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 51.34\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 90.85(4 \mathrm{C}-\mathrm{Pz})$, $96.40\left(\mathrm{CHCCH}_{3}\right), 97.93\left(\mathrm{CHCCH}_{3}\right), 112.85(\mathrm{Ar}), 122.26$ (Ar), 122.63 (Ar), 124.42 (Ar), 124.60 (Ar), 124.97 (Ar), 126.05 (Ar), 127.25 (Ar), 141.30 (Ar), 142.14 (Ar), 142.91 (Ar), 143.30 (Ar), 144.03 (Ar), 146.55 (Ar), $153.29\left(\mathrm{CHCCH}_{3}\right)$, $153.32\left(\mathrm{CHCCH}_{3}\right), 158.94\left(\mathrm{CHCCH}_{3}\right), 158.98\left(\mathrm{CHCCH}_{3}\right), 159.30(\mathrm{Ar}), 159.55(\mathrm{Ar})$, 160.48 (Ar).

MS (ESI) $m / z(\%):=829.5(100)(17+H)^{+}, 721.4(5)\left(17-\mathrm{NH}_{2} \mathrm{NPh}\right)^{+}$.
AIR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=3296.09(\mathrm{w}, \mathrm{NH}), 3218.79(\mathrm{w}, \mathbf{N H}), 3048.20(\mathrm{w}), 3013.55(\mathrm{w})$, 2945.58 (m), 2920.28 (m), 2860.28 (m), 1596.85 (w), 1556.52 (m), 1526.58 (s), 1445.43 (s), 1424.14 (s), 1390.22 (vs), 1309.06 (s), 1271.14 (s), 1249.86 (s), 1181.34 (s), 1087.54 (m), 1023.68 (m), 981.11 (m), 929.88 (w), 848.73 (w), 797.51 (w), 763.58 (s), 746.95 (vs), 733.65 (vs), 729.66 (vs), 687.08 (vs), 644.51(w), 593.29 (m), 546.06 (w), 524.77 (w), 508.14 (w), 422.99 (s), 405.70 (s).

Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{H}_{2}\right)(828.36 \mathrm{~g} / \mathrm{mol}): \mathrm{C}$ 52.48 H 6.10 N 9.07; Found C 52.77 H 6.45 N 9.33.

$\mathrm{KL}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu} \boldsymbol{\mu} \boldsymbol{\eta} \boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}}\right.$-NNHPh) (18)

17 ($16.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) and potassium hydride ($0.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) were suspended in 2 mL of THF at room temperature. Intense gas $\left(\mathrm{H}_{2}\right)$ development was observed, and a color changes from dark-red to dark green occurred in 2 hours. The mixture was stirred for 4 hours continue, solid components were filtered off. Black rhombus block crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of 18 in THF at $-30^{\circ} \mathrm{C}$ with 60% yield.

Molecular Weight: $866.32 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 400 \mathrm{MHz}\right)=10.51$ (br, 1H, Ph o-H), 9.11 ((br, 1H, Ph o-H), 6.99 $(\mathrm{m}, 3 \mathrm{H}, \mathbf{P h} \mathbf{~ m}-\mathbf{H}$ and $\mathbf{p}-\mathbf{H}), 6.79\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathbf{A r}\right), 6.69\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz}\right.$, Ar), $6.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}\right.$ Ar), $6.60\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathbf{A r}\right), 5.47(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz})$, 4.51 (s, 1H, CHCCH 3), 4.45 (s. 1H, CHCCH 3), $4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.93(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Pz}$), $3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.02\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.80(\mathrm{~m}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}+\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$), 1.69 (s. 3H, $\mathrm{CH}_{3} \mathrm{CCH}$), 1.31 (s. $7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$ and NH), $1.07(\mathrm{t}$, $\left.6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=20.20\left(\mathrm{CH}_{3}\right), 20.38\left(\mathrm{CH}_{3}\right), 22.21\left(\mathrm{CH}_{3}\right), 22.63$ $\left(\mathrm{CH}_{3}\right), 23.28\left(\mathrm{CH}_{3}\right), 23.53\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right), 26.92\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.12\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.61\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.20\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.06\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 51.39\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 91.05(4 \mathrm{C}-\mathrm{Pz})$, $95.44\left(\mathrm{CHCCH}_{3}\right), 95.84\left(\mathrm{CHCCH}_{3}\right), 112.84,122.40,122.76,123.14,124.41,124.60$, 124.97, 126.05, 127.25, 127.91, 128.03, 141.11,1 41.31, 142.14, 143.30, 146.56, 152.19, $153.29\left(\mathrm{CHCCH}_{3}\right), 153.32\left(\mathrm{CHCCH}_{3}\right), 158.94\left(\mathrm{CHCCH}_{3}\right), 158.98\left(\mathrm{CHCCH}_{3}\right)$, 159.31, 159.55, 160.48 (Ar).

AIR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3244 (vw, NH), 3054 (w), 2952 (m), 2861 (m), 1584 (m), 1549 (s), 1523 (s), 1461 (s), 1433 (vs), 1400 (vs), 1316 (m), 1306 (m), 1282 (m), 1271 (m), 1250 (m), 1228 (m), 1184 (m), 1159 (m), 1109 (w), 1086 (w),

1053 (m), 1025 (m), 1017 (m), 973 (m), 894 (w), 844 (w), 793 (m), 756 (m), 744 (m), 730 (m), 697 (m).

UV-Vis (THF) = 243 (1016), 264 (998), 377 (391), 587 (505);
Elemental analysis (\%) calc. for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{~K}$: C 62.33 H 6.86 N 12.93 ; Found C 62.77 H 6.75 N 12.33.

$[\mathrm{K}(\text { dibenzo(18-crown-6) })]^{+}\left[\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\boldsymbol{\mu -} \boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1}\right.\right.$-NHNPh)] ${ }^{-}$(19)

A THF solution of $\mathbf{1 8}$ and DB18C6 were stirred for 2 hours, then solid components were filtered off. Suitable crystals for x-ray diffraction were obtained by layering hexane/ $\mathrm{Et}_{2} \mathrm{O}$ on a solution of 19 in THF at $-30^{\circ} \mathrm{C}$ in 70% yield.

Molecular Weight: $\mathbf{1 2 2 6 . 4 8} \mathrm{g} \cdot \mathrm{mol}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (THF-d $\left.8,400 \mathrm{MHz}\right)=9.36\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathbf{P h} \mathbf{0}-\mathbf{H}\right), 7.31(\mathrm{~s}, 1 \mathrm{H}, \mathbf{A r})$, $7.29\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.04\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 6.93(\mathrm{~m}, 9 \mathrm{H}$, diben-zo(18-crwon-ether)+Ar), 6.87 (m, 6H, dibenzo(18-crwon-ether)), 6.87 (dd, 1H, $\left.{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 6.65\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 6.38\left(\mathrm{tt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 5.43$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{Pz}), 4.81\left(\mathrm{~s}, 1 \mathrm{H} . \mathrm{CHCCH}_{3}\right), 4.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.07(\mathrm{~m}, 12 \mathrm{H}$, diben-zo(18-crwon-ether) $+\mathrm{CH}_{2} \mathrm{Pz}$), 3.98 ($\mathrm{m}, 16 \mathrm{H}$, dibenzo(18-crwon-ether)), 3.84 (d, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.39\left(\mathrm{t}, 4 \mathrm{H},{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, diben-zo(18-crwon-ether)), $3.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2,77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.98\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.93\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12\right.$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.53 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 1.57 ($\mathrm{d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.11 ($\mathrm{m}, 18 \mathrm{H}$, $\mathrm{m}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}+$ pentane $), 0.85\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.71\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $\left.=12 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.31\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 75.5 \mathrm{MHz}\right)=14.69,22.37\left(\mathrm{CH}_{3}\right), 22.63\left(\mathrm{CH}_{3}\right), 23.54\left(\mathrm{CH}_{3}\right)$, $23.61\left(\mathrm{CH}_{3}\right), 24.86\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right), 26.15\left(\mathrm{CH}_{3}\right), 26.99\left(\mathrm{CH}_{3}\right), 27.00$ $\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.24\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.13\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.24\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.06$ $\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 51.34\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 65.33$ (18-crown-6), 66.62 (18-crown-6), 67.22 (18-crown-6), 67.84 (18-crown-6), 69.17 (18-crown-6), 90.87(4C-Pz), 96.41 $\left(\mathrm{CHCCH}_{3}\right), 97.94\left(\mathrm{CHCCH}_{3}\right), 111.90(18$-crown-6), 112.85 (Ar), 120.81, 122.27
(Ar), 122.64 (Ar), 124.42 (Ar), 124.60 (Ar), 124.97 (Ar), 126.06 (Ar), 127.26 (Ar), 141.30 (Ar), 142.13 (Ar), 142.90 (Ar), 143.29 (Ar), 144.03 (Ar), 146.55 (Ar), 147.96 (18-crwon-6), $153.29\left(\mathrm{CHCCH}_{3}\right), 153.32\left(\mathrm{CHCCH}_{3}\right), 158.98\left(\mathrm{CHCCH}_{3}\right)$, 159.30 (Ar), 159.65 (Ar), 160.48 (Ar).

AIR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) =3244 (br, w, NH), 2953 (m), 2926 (m), 2860 (m), 1595 (w), 1572 (m), 1544 (m), 1530 (m), 1517 (s), 1504 (vs), 1471 (m), 1432 (s), 1402 (vs), 1380 (m), 1316 (w), 1303 (m), 1268 (w), 1246 (vs), 1209 (vs), 1184 (m), 1157 (m), 1123 (vs), 1056 (s), 1021 (m), 976 (m), 943 (vs), 902 (m), 855 (m), 845 (m), 793 (m), 779 (m), 733 (vs), 689 (s), 599 (m), 565 (s), 539 (s), 516 (s).

Elemental analysis (\%) calc. for $\mathrm{C}_{65} \mathrm{H}_{83} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{Ni}_{2}$: C 63.60 H 6.82 N 9.13 ; Found C 63.82 H 6.95 N 8.21 .

$\mathrm{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{\mathbf{1}} \mathbf{- N}=\mathrm{NPh}\right)(20)$

17 ($16.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) and excess $\mathrm{Pd}(\mathrm{OAc})_{4}$ were suspended in 2 mL of THF at room temperature. The mixture was stirred for a day in the dark environment. There is no obviously color changing after reaction. The solution was then filtered through celite. The red powder was analyzed by ESI-MS and IR spectroscopy.

Molecular Weight: $828.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.
MS (ESI) $m / z(\%):=827.5(100)(20+H)+$.
AIR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 2953 (m), 2926 (m), 2860 (m), 1595 (w), 1572 (m), 1544 (m), 1530 (m), 1517 (s), 1504 (vs), 1471 (m), 1432 (s), 1402 (vs), 1380 (m), 1316 (w), 1303 (m), 1268 (w), 1246 (vs), 1209 (vs), 1184 (m), 1157 (m), 1123 (vs), 1056 (s), 1021 (m), 976 (m), 943 (vs), 902 (m), 855 (m), 845 (m), 793 (m), 779 (m), 733 (vs), 689 (s), 599 (m), 565 (s), 539 (s), 516 (s).

$\mathbf{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu} \boldsymbol{-} \boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}} \mathrm{NNH}_{2} \mathbf{P h}\right)\left(\mathrm{BF}_{4}\right)(21)$

[H-Lut] BF_{4} ($5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) was added into the solution THF of $\mathbf{1 7}$ ($16.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) resulted the colore change from red to green immediately. The mixture was stiired for 4 hours and green precipitate was obtained. The green powder was analyzed by NMR and IR spectroscopy.

```
Molecular Weight: \(918.21 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .\left(\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{BF}_{4}\right)\)
```

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 376 \mathrm{MHz}\right)=-151.23 \mathrm{ppm}$.
${ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)=-1.14 \mathrm{ppm}$.
MS (ESI) $m / z(\%):=829.5$ (100)(21-BF4) ${ }^{+}$.
AIR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) $=3354(\mathrm{w}, \mathrm{br}, \mathrm{NH}$) $)$, $3307(\mathrm{w}, \mathrm{br}, \mathrm{NH}$), 3285 ($\mathrm{w}, \mathrm{br}, \mathrm{NH}$), 3054, 2961, 2927, 2868, 1664, 1644, 1588, 1555, 1527, 1483, 1459, 1434, 1398, 1313, $1280,1252,1183,1053,1026,934,864,797,758,746,693,625,594,554,519$.

(a) Azobenzene ($7.29 \mathrm{mg}, 0.04 \mathrm{mmol}$, 1 equiv) was added into a solution of 4 (42 $\mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changes from orange to blood red immediately. Suitable crystals for x-ray were obtained by layering hexane on a solution of 22 in THF at $-30^{\circ} \mathrm{C}$.
(b) 23 ($36.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) and potassium ($0.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 2$ equiv) were suspended in 2 mL of THF at room temperature, and a color change from black to dark red occurred in 20 mins. The mixture was stirred for 2 hours continue. Suitable crystals for x-ray were obtained by layering hexane on a solution of $\mathbf{2 2}$ in THF at $-30^{\circ} \mathrm{C}$.

Molecular Weight: $1304.99 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{71} \mathrm{H}_{87} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{Ni}_{2} \mathrm{~K}\right)$
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3048 (w), 2957 (m), 2924 (m), 2864 (m), 1595 (w), 1572 (m), 1554 (m), 1503 (vs), 1452 (vs), 1431 (vs), 1399 (vs), 1359 (w), 1317 (m), 1307 (m), 1247 (vs), 1211 (s), 1125 (vs), 1089 (m), 1054 (s), 1022 (m), 989 (w), 956 (w), 941 (s), 900 (m), 850 (w), 794 (w), 778 (w), 736 (vs), 690 (s), 600 (m), 532 (s), 510 (s).

UV-vis (THF): $\lambda_{\text {max }}=372,462,577,738 \mathrm{~nm}$.

$\mathbf{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}}\right.$-PhNNPh) (23)

(a) Azobenzene ($2.56 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of 2 ($30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (1 mL) at room temperature. The color changes from orange to blood red immediately and intensity gas was observed. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of 23 in THF at $-30^{\circ} \mathrm{C}$ in 10% yield.
(b) Azobenzene ($2.56 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) was added into a solution of $\mathbf{2 4}(30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (2 mL) at room temperature. The color changes from brown to black immediately. Suitable crystals for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{2 3}$ in THF at $-30^{\circ} \mathrm{C}$. Yield: 75%. Molecular Weight: $605.49 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{63} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{~K}\right)$

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3058(\mathrm{w}), 2954(\mathrm{~m}), 2926(\mathrm{~m}), 2869(\mathrm{~m}), 2843(\mathrm{~m}), 1623(\mathrm{~m})$, 1593 (m), 1553 (m), 1525 (m), 1504 (vs), 1453 (s), 1433 (m), 1399 (m), 1364 (m), 1321 (m), 1282 (s), 1246 (vs), 1228 (s), 1211 (s), 1157 (s), 1124 (vs), 1097 (m), 1088 (m), 1062 (m), 1048 (m), 1030 (vs), 959 (s), 940 (s), 898 (w), 856 (w), 775 (m), 751 (vs), 637 (vs), 600 (m), 573 (m), 516 (m).

UV-vis (THF): $\lambda_{\max }=372,462,577,738 \mathrm{~nm}$.
Anal. Calcd. (\%) for [$\left.\mathrm{Ni}_{2}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{6}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$: C 61.89, H 7.37, N 10.07; found: C 61.53, H 7.11, N 9.67.

$\mathbf{L}^{1} \mathrm{Ni}_{2}\left(\boldsymbol{\mu - \eta ^ { 1 } , \boldsymbol { \eta } ^ { 1 } - \mathrm { N } _ { 2 }) (2 4)}\right.$

(a) 2 ($318 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) and [H-Lut]OTf ($64.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at room temperature in a dinitrogen atmosphere. All volatiles were subsequently removed under vacuum, and the resulting solid was dried under vacuum. Suitable crystals for x-ray were obtained by layering hexane on a solution of $\mathbf{2 4}$ in THF
at $-30^{\circ} \mathrm{C}$. The mother liquor was pumped down, dissolved in THF, and layered with hexane to afford a second crop.
(b) 2 ($318 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) and tris(pentafluorophenyl)borane (204.8 mg , 0.4 mmol , 2 equiv) were dissolved in THF (5 mL), and the reaction mixture were stirred for 2 days at room temperature in a dinitrogen atmosphere. Suitable crystals for x-ray diffraction were obtained from THF slow evaporation in a week. $\mathbf{2 4 - 1 5} \mathrm{N}_{2}$: The solid 2 ($318 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) and [H-Lut]OTf ($64.5 \mathrm{mg}, 0.4$ mmol, 1 equiv) were loaded into a two-neck round-bottom flask and a T-adapter attached to a Yong-flask of ${ }^{15} \mathrm{~N}_{2}$ which was dried from $\mathrm{H}_{2} \mathrm{SO}_{4}$ (95\%) for 2 days and Vacuum. The hoses used were placed under vacuum for at least 12 hours before use. After 12 hour, 2 mL THF was added into the two-neck round-bottom flask and the solution was stirred for 4 hours. After 4 hours, the solution followed an analogous work-up procedure as a described for unlabeled 24. IR and Raman spectra are the same as for the unlabeled material expect the stretching of N_{2}.

Detection of evolved \mathbf{H}_{2} from 2 with [H -Lut]OTf: In the N_{2} box, the same flask used for the H_{2} calibration was charged with 2 ($15.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), [H-Lut]OTf ($5.1 \mathrm{mg}, 0.02 \mathrm{mmol}$) and stir bar. The flask was then closed. 2 mL of THF was then injected and the mixture was stirred at room temperature for 3 hours. The whole set-up was then taken out of the glove box, $0.8 \mathrm{mLCH}_{4}$ was added and the headspace was subjected to GC-2014 analysis as describe in the general methods. The integration ratio was compared to the calibration plot to quantify the amount of free hydrogen released from the reaction.

Molecular Weight: 751.27g $\cdot \mathrm{mol}^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{Ni}_{2}\right)$
ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=3056(\mathrm{w}), 2959(\mathrm{~m}), 2920(\mathrm{~m}), 2862(\mathrm{~m}), 1896\left({ }^{14} \mathrm{~N} \equiv{ }^{14} \mathrm{~N}\right)(\mathrm{m})$, 1618 (w), 1551 (s), 1528 (s), 1459 (s), 1433 (s), 1393 (s), 1312 (s), 1250 (vs), 1230 (vs), 1174 (s), 1092 (s), 1030 (vs), 945 (s), 915 (s), 866 (s), 795 (s), 755 (s), 732 (s), 641 (vs), 575 (s), 516 (vs), 480 (s), 435 (m), 399 (m).

ATR-IR $\left(v / \mathrm{cm}^{-1}\right)=1830\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right)(\mathrm{m})$.
$\operatorname{Raman}\left(v / \mathrm{cm}^{-1}\right)=1900\left({ }^{14} \mathrm{~N}={ }^{14} \mathrm{~N}\right) ; 1836\left({ }^{15} \mathrm{~N}={ }^{15} \mathrm{~N}\right)$.
UV-vis (THF): $\lambda_{\max }=276$ (12680), 320 (9090), 378 (5750).
Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: C 62.35 H 7.11 N 14.92 ; Found C 62. 73 H 7.47 N 14.37.

$\mathbf{L}^{1} \mathrm{Ni}_{2}\left(\mu-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1}-\mathrm{N}=\mathrm{NH}\right)(25)$

(a) To a pre-cooled and red solution of 27 ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) in THF (2 mL) was added TEMPO ($3.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 2$ equiv). The reaction mixture was allowed to react for 12 hours at $-35^{\circ} \mathrm{C}$. Green single crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of 25 in THF at $-35^{\circ} \mathrm{C}$. Attention: The compound is unstable at room temperature under this condition.
(b) To a pre-cooled and red solution of 27 ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) in THF (2 mL) was added galvinoxyl radical ($16.82 \mathrm{mg}, 0.04 \mathrm{mmol}, 2$ equiv). The reaction mixture was allowed to react for 12 hours at $-30^{\circ} \mathrm{C}$. Brown single crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of 25 in THF at $-30^{\circ} \mathrm{C}$ Yield: 10 mg .
(c) To a pre-cooled and brown solution of $24(15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) in THF (1 mL) was added TEMPO-H ($3.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 2$ equiv). The reaction mixture was allowed to react for 12 hours at $-30^{\circ} \mathrm{C}$. Green single crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{2 5}$ in THF at $-35^{\circ} \mathrm{C}$ in two days.
(d) 29 ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) and TlOTf ($7.07 \mathrm{mg}, 0.02 \mathrm{mmol}, 1$ equiv) were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at room temperature in a dinitrogen atmosphere. All volatiles were subsequently removed under vacuum, and the resulting solid was dried under vacuum. The crude powder was recrystallization by layering hexane on a solution of $\mathbf{2 5} \mathrm{THF}$ at $-30^{\circ} \mathrm{C}$.
$\mathbf{2 5 - 1 5} \mathbf{N}_{2}$: Firstly have to synthesize $\mathbf{2 4 - 1 5} \mathbf{N}_{2}$ under Ar atmosphere in case of the ${ }^{14} \mathrm{~N}_{2}$ exchange with ${ }^{15} \mathrm{~N}_{2}$ ligand. The solution of $\mathbf{2 4 - 1 5} \mathbf{N}_{\mathbf{2}}$ followed an analogous work-up procedure as a described for unlabeled 24 of method C. rRaman spectra are the same as for the unlabeled material expect the stretching of $\mathrm{N}_{2} \mathrm{H}$.

Molecular Weight: 752.32 g.mol ${ }^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Ni}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(T H F-d_{8}, 400 \mathrm{MHz}\right)=9.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.15\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 6.97$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 6.89\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right), 7.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ar}\right)$, $5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Pz}), 4.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CHCCH}_{3}\right), 4.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, $\left.\mathrm{CHCCH}_{3}\right), 4.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.20(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.02\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~d}$, $\left.6 \mathrm{H},{ }^{3} \mathrm{~J} \mathrm{H}-\mathrm{H}=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{dd}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, CH_{3}).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=162.61\left(\mathrm{CHCCH}_{3}\right), 161.74\left(\mathrm{CHCCH}_{3}\right), 161.26$ $\left(\mathrm{CHCCH}_{3}\right), 160.68\left(\mathrm{CHCCH}_{3}\right), 160.27(3(5)-\mathrm{Pz}), 159.46(3(5)-\mathrm{Pz}), 147.31(\mathrm{Ar})$, 144.89 (Ar), 143.31 (Ar), 143.12 (Ar), 125.35 (Ar), 125.01 (Ar), 124.93 (Ar), 122.60 (Ar), $99.18\left(\mathrm{CHCCH}_{3}\right), 98.89\left(\mathrm{CHCCH}_{3}\right), 92.87(4-\mathrm{Pz}), 54.31\left(\mathrm{CH}_{2} \mathrm{Pz}\right)$, $53.93\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 29.22\left(\mathrm{CHCH}_{3}\right), 28.87\left(\mathrm{CH}_{3}\right), 28.53\left(\mathrm{CH}_{3}\right), 25.31\left(\mathrm{CH}_{3}\right), 24.04\left(\mathrm{CH}_{3}\right)$, $21.38\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) $=3054(\mathrm{w}), 3022(\mathrm{~m}), 3958(\mathrm{~m}), 2923(\mathrm{~m}), 2862(\mathrm{~m}), 1558(\mathrm{~s})$, 1524 (w), 1456 (w), 1434 (w), 1396 (w), 1369 ($\mathrm{N}=\mathrm{N}, \mathrm{w}$), 1308 (w), 1282 (w), 1247 (w), 1232 (w), 1186 (w), 1175 (w), 1104 (w), 1089 (w), 1074 (w), 1055 (w), 1030 (w), 1015 (w), 956 (w), 936 (w), 914 (w), 865 (w), 855 (w), $800(w)$, 793 (w), 759 (w), 741 (w), 713 (w), 672 (w), 652 (w), 641 (w), 623 (w), 568 (w), 547 (w), 525 (w), 439 (w), 411 (w), 403 (w).

Raman $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=1392\left({ }^{14} \mathrm{~N}={ }^{14} \mathrm{~N}\right), 1323\left({ }^{15} \mathrm{~N}={ }^{15} \mathrm{~N}\right)$.
UV-vis (THF): $\lambda_{\max }=270(1174), 315$ (shoulder) (319), 384 (428).
Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: C 60.70 H 7.61 N 13.06 ; found C 60.33 H 7.47 N 13.39.

$\mathbf{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}{ }^{1}, \boldsymbol{\eta}^{\mathbf{1}} \mathrm{NH}_{2}\right)(26)$

(1) A solution of 27 ($100 \mathrm{mg}, 0.169 \mathrm{mmol}$) in THF (20 mL) was rapidly stirred at $70^{\circ} \mathrm{C}$ for 13 weeks. After concentration of the solution to 2 mL and cooling to room temperature, brown-red crystals suitable for x-ray diffraction were grown by layering hexane on a solution of $\mathbf{2 6}$ in THF.
(2) A solution of $\mathbf{2 5}$ ($14.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) with KH in THF (20 mL) was rapidly stirred for 1 hour, the color changes from brown to orange in 10 mins. Brown-red crystals suitable for x-ray diffraction were grown by layering hexane on a solution of $\mathbf{2 6}$ in THF in 2 days.
(3) $\mathbf{1}$ ($100 \mathrm{mg}, 0.125 \mathrm{mmol}, 1$ equiv) and $\mathrm{NH}_{3}(0.5 \mathrm{M}$ in THF) (10 mL) were suspended in THF at $-78^{\circ} \mathrm{C}$ for 2 hours. Then the solution was allowed to room temperature and stirred for overnight. The color changed from brown to yel-low-red. Brown-red crystals suitable for x-ray diffraction were grown by layering hexane on a solution of $\mathbf{2 6}$ in THF.

Molecular Weight: 739.29 g.mol ${ }^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{Ni}_{2}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (THF-d $\left.{ }^{2}, 400 \mathrm{MHz}\right)=6.99(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 6.87(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}), 5.54(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz})$, $4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.16\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 3.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.53\left(\mathrm{~d}, 12 \mathrm{~h},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, 12 \mathrm{~h},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right),-3.87(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$)
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(T H F-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=20.48\left(\mathrm{CH}_{3}\right), 22.79\left(\mathrm{CH}_{3}\right), 23.06\left(\mathrm{CH}_{3}\right)$, $24.85\left(\mathrm{CH}_{3}\right), 27.89\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 54.56\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 90.61(4-\mathrm{Pz}), 96.54\left(\mathrm{CHCCH}_{3}\right)$, 124.37 (Ar), 124.93 (Ar), 140.24 (Ar), 146.93 (Ar), 149.84 (3,5-Pz), $158.49\left(\mathrm{CH}_{3} \mathrm{CCH}\right), 160.28\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3348(\mathrm{w}), 3333(\mathrm{w}), 3311$ (vw), 3059 (w), 2960 (vs), 2927 (s), 2867 (s), 2235 (w), 2082 (w), 1680 (m), 1629 (m), 1557 (s), 1531 (vs), 1463 (s), 1439 (vs), 1404 (vs), 1322 (m), 1260 (m), 1195 (w), 1098 (m), 1048 (m), $956(\mathrm{w}), 936(\mathrm{w}), 802(\mathrm{~m}), 764(\mathrm{~m}), 735(\mathrm{~m})$.

$\mathbf{L}^{1} \mathbf{N i}_{2}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1}-\mathrm{N}_{\mathbf{2}} \mathrm{H}_{3}\right)(27)$

(a) Hydrazine in THF (1.0 M) ($0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) was added to a solution of 1 ($200 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in 3 mL of THF at room temperature. During the reaction, a color change from brown to dark red occurred immediately. The mixture was stirred for 20 hours and filter. Suitable crystals for x-ray were obtained from pentane slow diffusion on a solution of $\mathbf{2 7}$ in THF at $-30^{\circ} \mathrm{C} .(75 \mathrm{mg}$, 37\%)
(b) Hydrazine in THF (1.0 M) ($40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$, 2 equiv) was added to a solution of $\mathbf{2 (1 5 ~ m g , ~} 0.02 \mathrm{mmol}, 1$ equiv) in 1 mL of THF at room temperature. The mixture was stirred for 10 mins and filter. Suitable crystals for x -ray were obtained from pentane slow diffusion on a solution of $\mathbf{2 7}$ in THF at $-30^{\circ} \mathrm{C}$. The compound was identified from ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Molecular Weight: $754.31 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{Ni}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d ${ }_{8}, 400 \mathrm{MHz}$): $=6.83-7.11$ (m, 6H, Ph), 5.69 (s, 1H, 4-Pz), 4.76(s, $1 \mathrm{H}, \mathrm{CH}$), 4.58(s, 1H, CH), 4.0 (d, $4 \mathrm{H},{ }^{3} \mathrm{~J} \mathrm{H}-\mathrm{H}=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}$), 3.42-3.47 (m, 4H, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right), 2.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=9 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right), 1.04\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.9 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right),-0.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, 100 MHz$):=20.59\left(\mathrm{CH}_{3}\right), 20.79\left(\mathrm{CH}_{3}\right), 23.09\left(\mathrm{CH}_{3}\right)$, $23.18\left(\mathrm{CH}_{3}\right), 23.62\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right), 27.48\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 27.61\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $50.34\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 51.13\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 91.28(4-\mathrm{Pz}), 95.84\left(\mathrm{CHCCH}_{3}\right), 96.75\left(\mathrm{CHCCH}_{3}\right)$, 122.35 (Ar), 123.69 (Ar), 124.13 (Ar), 125.83 (Ar), 142.43 (Ar), 144.32 (Ar), 145.51 (Ar), $153.51(3,5-\mathrm{Pz}), 155.04(3,5-\mathrm{Pz}), 157.86\left(\mathrm{CHCCH}_{3}\right), 158.31\left(\mathrm{CHCCH}_{3}\right)$, $159.25\left(\mathrm{CHCCH}_{3}\right), 160.58\left(\mathrm{CHCCH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3301 (w), 3271 (w), 3254 (w), 3160 (w), 3054 (w), 2961 (m), 2923 (m), 2862 (m), 1558 (s), 1529 (vs), 1460 (vs), 1437 (vs), 1399 (vs), 1367 (s), 1312 (s), 1278 (s), 1261 (s), 1252 (s), 1232 (s), 1190 (s), 1172 (s), 1093 (s), 1072 (s), 1054 (s), 1031 (s), 1017 (s), 956 (w), 933 (s), 912 (m),

867 (m), 798 (s), 760 (vs), 736 (vs), 707 (s), 647 (m), 623 (s), 519 (s), 484 (s), 458 (s , 445 (s), 423 (s), 408 (s).

UV-vis (THF): $\lambda_{\text {max }}=262$ (12680), 360 (5780).
Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: C 60.70 H 7.61 N 13.06 ; found C 60.33 H 7.47 N 13.39.

$\mathbf{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}} \mathbf{N}_{\mathbf{2}} \mathrm{H}_{\mathbf{4}}\right)\left(\mathrm{BF}_{4}\right)$ (28)

Treatment of $\mathbf{2 7}$ ($30 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF (2 mL) with [H-Lut]BF 4 (8 $\mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) results in a color change from red to green immediately. The mixture was stirred for 1 hour. After filtration, green crystals suitable for x-ray diffraction were obtained by layering hexane on a solution of $\mathbf{2 8}$ in THF at $-30^{\circ} \mathrm{C}$.

Molecular Weight: $842.12 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{BF}_{4}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.8,400 \mathrm{MHz}\right)=7.35\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{Ar}\right), 7.18\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8\right.$ Hz, Ar), 6.00 ($\mathrm{s}, 1 \mathrm{H}, 4 \mathrm{H}-\mathrm{Pz}$), 4.99 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 4.25 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 3.72 ($\mathrm{s}, 4 \mathrm{H}$, NH_{2}), 2.10 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.50 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.17 (d, $12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.09\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}-\mathrm{H}=4 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 100 \mathrm{MHz}\right)=20.84\left(\mathrm{CH}_{3}\right), 22.85\left(\mathrm{CH}_{3}\right), 23.19\left(\mathrm{CH}_{3}\right), 24.02\left(\mathrm{CH}_{3}\right)$, $27.73\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.39\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 93.09(4-\mathrm{Pz}), 98.09\left(\mathrm{CHCCH}_{3}\right), 124.88(\mathrm{Ar})$, 127.41 (Ar), $143.33(\mathrm{Ar}), 155.94(3,5-\mathrm{Pz}), 158.98\left(\mathrm{CHCCH}_{3}\right), 161.74\left(\mathrm{CHCCH}_{3}\right)$. ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3300(\mathrm{w}), 3284(\mathrm{w}), 3265(\mathrm{w}), 3201(\mathrm{w}), 2963(\mathrm{~m}), 2940(\mathrm{~m})$, 2861 (m), 1650 (s), 1626 (w), 1563 (s), 1531 (s), 1463 (s), 1434 (s), 1393 (s), 1320 (s), 1285 (vs), 1241 (vs), 1222 (vs), 1178 (s), 1152 (vs), 1093 (m), 1053 (w), 1027 (vs), 932 (w), 885 (w), 807 (s), 768 (s), 754 (m), 714 (m), 635 (vs), 572 (s), 559 (m), 517 (vs), 559 (m), 517 (s), 448 (m), 416 (m).

UV-vis (THF): $\lambda_{\max }=264$ (10620), 364 (5580).
Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: C 60.70 H 7.61 N 13.06 ; Found C 60.33 H 7.47 N 13.39.

$[\mathrm{K}(\mathrm{DB18C6})]\left[\mathrm{L}^{\mathbf{1}} \mathrm{Ni}_{2}\left(\mu-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{1}-\mathrm{N}_{2} \mathrm{H}_{2}\right)\right](30)$

27 ($40 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv) and excess potassium hydride were suspended in 2 mL of THF at room temperature. Intense gas $\left(\mathrm{H}_{2}\right)$ development was observed, and a color changes from dark-red to dark green occurred in 2 hours. The mixture was stirred for 4 hours continue, solid components were filtered off. Then DB18C6 was added to the green solution and the mixture stirred for next 30 mins. The color changes from deep green to brown-green in 30 mins. Black rhombus block crystals suitable for x -ray diffraction were obtained by layering hexane on a solution of $\mathbf{3 0}$ in THF at $-30^{\circ} \mathrm{C}$.(Yield: 80\%)

Molecular Weight: $1152.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\left(\mathrm{C}_{59} \mathrm{H}_{89} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{6} \mathrm{~K}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (THF-d $8,400 \mathrm{MHz}$) $=7.41$ (br, 4H, DB18C6), 6.83 (br, 4H, DB18C6), 6.81 (d, 2H, Ar), 6.75 (d), 4H, Ar), 5.52 (s, 1H, 4-Pz), 4.79 (s, 2H, CHCCH 3), 3.73(s+m, $\left.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}+\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 1.66$ ($\mathrm{s}, 2 \mathrm{H} . \mathrm{NH}$), $1.27(\mathrm{~s}, 6 \mathrm{H}$, CHCCH_{3}), $1.10\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.97\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$.
${ }^{13}$ C NMR (THF-d ${ }_{8}, 100 \mathrm{MHz}$) $=14.41,15.73,21.51,22.69,23.25,25.90,26.43$, 28.27, 28.93, 35.12, 47.80, 55.59, 92.53, 95.82, 97.58, 111.13, 121.89, 123.22, 123.59, 125.41, 125.98, 141.27, 142.59, 148.01, 148.42, 150.88, 152.33, 156.95, 157.69, 159.52, 161.33.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3263 ($\mathrm{NH}, \mathrm{br}, \mathrm{w}$), 3065 (w), 2951 (m), 2924 (m), 2861 (m), 1594 (m), 1545 (m), 1517 (s), 1502 (s), 1452 (s), 1434 (s), 1402 (vs), 1380 (w), 1358 (w), 1319 (m), 1303 (w), 1246 (vs), 1208 (s), 1122 (vs), 1079 (w), 1055 (s), 1025 (w), 941 (m), 900 (w), 844 (w), 796 (w), 761 (m), 737 (vs), 726 (s), $668(w), 656(w), 631(w), 600(m)$.

[K(cryptand)][$\left.\mathrm{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{1}}, \boldsymbol{\eta}^{\mathbf{1}}-\mathbf{N}_{2} \mathbf{H}_{\mathbf{2}}\right)\right]$ (31)

29 ($40 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv) and cryptand were mixed in THF at room temperature for 3 hours. The color changes from deep green to brown. Recrystalliza-
tion of the crude product from THF or Toluene slow evaporation yielded black rhombus block crystals. (Yield: 80\%)

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3118(\mathrm{w}), 3051(\mathrm{w}), 3013(\mathrm{w}), 295 \mathrm{w}(\mathrm{m}), 2865(\mathrm{~m}), 2804(\mathrm{~m})$ 1550 (m), 1515 (vs), 1499 (m), 1477 (s), 1460 (s), 1428 (s), 1404 (s), 1353 (s), 1306 (m), 1294 (w), 1229 (w), 1190 (w), 1126 (vs), 1103 (m), 1075 (s), 981 (w), 947 (s), 932 (m), 878 (w), 862 (w), 827 (w), 795 (w), $750(\mathrm{~m}), 723$ (s), 646 (w), 582 (w), 565 (w), 521 (w).

$\mathrm{L}^{1} \mathrm{Ni}_{2}\left(\mu-\mathrm{NH}_{3}\right)(32)$

A suspension of excess NaNH_{2} in THF (2 mL) was added dropwise to a stirred solution of $\mathbf{1}$ ($100 \mathrm{mg}, 0.025 \mathrm{mmol}$) in THF (8 mL). After 2 days, the mixture was dried under vacuum. The residue was extracted with THF (8 mL) and filtered through Celite. The resulting dark red yellow solution was cooled to $-30^{\circ} \mathrm{C}$ overnight to yield a yellow crystalline solid (21 mg). The mother liquor was concentrated to 5 mL and returned to the freezer for additional product crystallization.

Molecular Weight: 739.29 g.mol ${ }^{-1}\left(\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{Ni}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=6.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 6.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar})$, 5.67 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), $4.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 4.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCH}_{3}\right)$, 3.96 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), $3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.83(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.79 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.41\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08(\mathrm{~d}$, $6 \mathrm{H}, \mathrm{CH}_{3}$), 0.97 (s, 6H, CH3 $),-3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right)$.
${ }^{13}$ C NMR $\left(\right.$ THF-d $\left.{ }_{8}, 100 \mathrm{MHz}\right)=20.82\left(\mathrm{CH}_{3}\right), 23.11\left(\mathrm{CH}_{3}\right), 23.72\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right)$, $26.88\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.44\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 49.59\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 50.89\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 89.23(4-\mathrm{Pz})$, $94.13\left(\mathrm{CHCCH}_{3}\right), 95.92\left(\mathrm{CHCCH}_{3}\right), 121.92(\mathrm{Ar}), 122.55(\mathrm{Ar}), 123.94(\mathrm{Ar}), 139.94$ (Ar), 140.24 (Ar), $142.59(\mathrm{Ar}), 147.91$ (Ar), 151.83 (3,5-Pz), $157.40\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$, $158.72\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3054(\mathrm{w}), 3023(\mathrm{w})\left(\mathrm{NH}_{3}\right), 2956(\mathrm{~m}), 2924(\mathrm{~m}), 2865(\mathrm{~m})$, 1552 (m), 1530 (s), 1460 (s), 1426 (s), 1404 (vs), 1358 (s), 1311 (s), 1274 (m),

1252 (m), 1224 (w), 1190 (w), 1178 (w), 1102 (w), 1088 (w), 1044 (m), 1032 (m), 1010 (m), 933(w), 900 (w), 799 (w), 787 (s), 759 (vs), 732 (s), 719 (w), 646 (w), 621 (w), 597 (w), 561 (w), 534 (w).

Elemental analysis (\%) calc. for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: C 60.70 H 7.61 N 13.06 ; found C 60.33 H 7.47 N 13.39.

$\mathbf{L}^{\mathbf{1}} \mathrm{Ni}_{\mathbf{2}}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{\mathbf{1}} \mathbf{- C O}\right)(33)$

In a Schlenk-tube (50 mL), a solution of $\mathbf{2 4}$ ($42 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv) in THF (2 mL) was freeze-thaw degassed under vacuum three times. High purity and dried CO (ca. 1 atm) was then introduced to the flask at $-78^{\circ} \mathrm{C}$. The reaction solution was stirred at room temperature for overnight during which time the color of the solution became red-brown. The volatiles were filtered and orange crystals were obtained by layering hexane or pentane on a solution of 33 in THF at $-30^{\circ} \mathrm{C}$ in 2 days.

33-13 $\mathbf{C O}$: The solution of $\mathbf{3 3 - 1 3}^{\mathbf{1 3}} \mathbf{C O}$ followed an analogous work-up procedure as described for unlabeled 33. IR and rRaman spectra are the same as for the unlabeled material expect the stretching of CO triple bond.

Molecular Weight: $751.28 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\left(\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}\right)$
ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3058 (w), 2957 (m), 2925 (m), 2865 (m), 1735(CO~) (m), 1556 (m), 1525 (m), 1450 (m), 1436 (m), 1397 (m), 1369 (m), 1314 (m), 1277 (m), 1251 (m), 1234 (m), 1188 (m), 1073 (m), 1055 (w), 1033 (m), 935 (m), 917 (m), 868 (m), 796 (m), 760 (m), 744 (m), 714 (m), 644 (m), 620 (m), 578 (m), 549 (m), 522 (m).

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3058(\mathrm{w}), 2957(\mathrm{~m}), 2925(\mathrm{~m}), 2865(\mathrm{~m}), 1691\left({ }^{13} \mathrm{CO}{ }^{-}\right)(\mathrm{m})$, 1556 (m), 1525 (m), 1450 (m), 1436 (m), 1397 (m), 1369 (m), 1314 (m), 1277 (m), 1251 (m), 1234 (m), 1188 (m), 1073 (m), 1055 (m), 1033 (m), 935 (m), 917 (m), 868 (m), 796 (m), 760 (m), 744 (m), 714 (m), 644 (m), $620(\mathrm{~m}), 578(\mathrm{~m}), 549(\mathrm{~m}), 522(\mathrm{~m})$.

ESI-MS (THF): m/z (\%) = 789.3 ((33+H)+K)+(60).
Elemental analysis (\%) calc. for $\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}$: C 63.95 H 7.11 N 11.19 ; found C 64.12 H 7.15 N 10.96 .

$\mathrm{L}^{\mathbf{1}} \mathrm{Ni}_{2}\left(\mu-\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{\mathbf{1}} \mathrm{CH}_{3} \mathrm{CO}\right)(34)$

In a Schlenk-tube (50 mL), a solution of $\mathbf{3 3}$ with excess elemental potassium in THF (3 mL) was stirred at $-78^{\circ} \mathrm{C}$ and then warmed up to room temperature for overnight. MeI was added using a micro-syringe at $-30^{\circ} \mathrm{C}$, resulting in an immediate color change from red to orange. The reaction mixture was stirred for 1 hour at room temperature and volatiles were removed under vacuum. The resulting product 34 was isolated as orange solid after drying under vacuum.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = $3058(\mathrm{w}), 2958(\mathrm{~m}), 2925(\mathrm{~m}), 2866(\mathrm{~m}), 1993(\mathrm{~m}), 1842(\mathrm{~m})$, 1626 ($\mathrm{CH}_{3} \mathrm{C}=0$) (m), 1548 (m), 1532 (s), 1464 (w), 1435 (s), 1399 (m), 1371 (m), 1315 (m), 1280 (m), 1251 (vs), 1175 (w), 1158 (w), 1093 (w), 1030 (vs), 959 (w), 935 (w), 916 (w), 865 (w), 799 (s), 762 (s), 747 (s), 637 (vs), 579 (m), 546 (m), 518 (m).
$\mathbf{L}^{2} \mathbf{N i}_{2}(\boldsymbol{\mu}-\mathrm{Br})$ (35). This complex was prepared in a similar way to the method for complex 2 using $\mathrm{H}_{3} \mathrm{~L}^{2}$ instead of $\mathrm{H}_{3} \mathrm{~L}^{1}$ and at $50^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}$): $=7.90(\mathrm{~d}, 8 \mathrm{H}, \mathrm{Ar}), 7.34-7.46(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 7.07(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{Ar}), 5.45$ ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 4.48 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 3.92 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 1.82 ($\mathrm{s}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CCH}$), 1.35 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$).
${ }^{13}$ C NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}$): = 160.83, 159.32, 154.02, 148.60, 141.76, 137.94, 131.04, 130.52, 128.17, 127.17, 126.99, $97.52\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 92.43$ (4C-Pz), 55.01 $\left(\mathrm{CHCCH}_{3}\right), 24.22\left(\mathrm{CH}_{3}\right), 21.67\left(\mathrm{CH}_{3}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3025 (w), 2922 (m), 1597 (w), 1549 (m), 1529 (s), 1496 (w), 1456 (w), 1428 (w), 1392 (s), 1314 (w), 1280 (w), 1261 (w), 1206 (w), 1179 (w), 1085 (w), 1072 (w), 1029 (m), 1016 (m), 957 (w), 946 (w), 912 (w), 872 (w),

802 (m), 752 (s), 732 (m), 695 (vs), 611 (m), 589 (m), 539 (w), 504 (w).
ESI-MS (THF): m/z (\%) = 939.3 (100)(M+H)+.
Elemental analysis (\%) calc. for $\mathrm{C}_{51} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{Br} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{4}$: C 51.65 H 4.18 N 6.57 ; Found C 51.89 H 4.20 N 6.61 .

$\mathrm{KL}^{2} \mathrm{Ni}_{2}(\mu-\mathrm{H})$ (36)

A solution of KHBEt_{3} in THF (1.0 M) ($0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) was added to a stirred brown solution of $\mathbf{3 5}$ ($250 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in THF (4 mL) at room temperature. After stirring the resulting red solution for 40 minutes all volatiles were removed in vacuo. The red residue was washed twice with hexane $(20 \mathrm{~mL})$. After concentration in vacuo and get red powder ($134 \mathrm{mg}, 0.15 \mathrm{mmol}$, $60 \%)$. The crude powder was recrystallization from pentane diffusion into THF at room temperature yield red block crystals of 36.

Molecular Weight: $896.20 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~K}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=8.54\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 7.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, $\mathrm{Ph}), 7.66\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 7.47\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 6.85(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ph})$, $6.37\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 6.28\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 5.69(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz}), 4.49(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.21(\mathrm{~d}, 1 \mathrm{H}$, $J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}$), $4.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}\right.$), $3.97\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{Pz}$), 1.91 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.04 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 0.88 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), -26.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ni}-\mathrm{H}$).
$\left.{ }^{13} \mathbf{C} \quad{ }^{1} \mathrm{H}\right\} \mathrm{NMR} \quad\left(\mathrm{THF-d}{ }_{8}, \quad 100 \mathrm{MHz}\right)=19.04\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 19.81\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$,
$22.02\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 22.31\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 51.06(3(5) \mathrm{C}-\mathrm{Pz}), \quad 51.48(3(5) \mathrm{C}-\mathrm{Pz})$,
$91.81(4 \mathrm{C}-\mathrm{Pz}), \quad 96.58\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 102.64\left(\mathrm{CHCCH}_{3}\right), 119.72(\mathrm{Ph}), \quad 121.86(\mathrm{Ph})$,
$122.30(\mathrm{Ph}), 123.16(\mathrm{Ph}), 124.21(\mathrm{Ph}), 124.54(\mathrm{Ph}), 125.12(\mathrm{Ph}), 125.27(\mathrm{Ph})$,
$125.57(\mathrm{Ph}), 125.68(\mathrm{Ph}), 126.62(\mathrm{Ph}), 127.09(\mathrm{Ph}), 127.72(\mathrm{Ph}), 127.42(\mathrm{Ph})$,
$127.64(\mathrm{Ph}), 128.72(\mathrm{Ph}), 128.93(\mathrm{Ph}), 129.88(\mathrm{Ph}), 130.02(\mathrm{Ph}), 131.12(\mathrm{Ph})$,
$131.30(\mathrm{Ph}), 134.71(\mathrm{Ph}), 135.69(\mathrm{Ph}), 136.15(\mathrm{Ph}), 138.92(\mathrm{Ph}), 140.99(\mathrm{Ph})$,
$141.04(\mathrm{Ph}), 141.81(\mathrm{Ph}), 142.05(\mathrm{Ph}), 142.10(\mathrm{Ph}), 153.52,155.30,155.88$, 155.99, 157.75, 158.18, 158.42, 159.56.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3136 (w), 3023 (w), 2911 (w), 2851 (w), 2815 (w), 1599 (w), 1565 (w), 1531 (w), 1510 (s), 1491 (m), 1457 (s), 1421 (s), 1387 (vs), 1303 (m), 1266 (m), 1248 (m), 1203 (m), 1154 (m), 1067 (m), 1015 (m), 997 (m), 853 (m), 796 (m), 770 (m), 748 (vs), 691 (vs), 630 (m), 604 (m), 539 (m).

$\mathrm{NaL}^{2} \mathrm{Ni}_{2}(\mu-\mathrm{H})$ (37)

A solution of NaHBEt_{3} in THF (1.0 M) ($0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) was added to a stirred brown solution of 35 ($250 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in THF (4 mL) at room temperature. After stirring the resulting red solution for 40 minutes all volatiles were removed in vacuo. The red residue was washed twice with hexane (20 mL). After concentration in vacuo and get red powder ($130 \mathrm{mg}, 0.15 \mathrm{mmol}$, $60 \%)$.The crude powder was recrystallization by layering $\mathrm{Et}_{2} \mathrm{O}$ on a solution of 37 in THF at room temperature.

Molecular Weight: $882.32 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{Na}\right)$
${ }^{1} \mathrm{H}$ NMR (THF- $\left.\mathrm{d}_{8}, 400 \mathrm{MHz}\right)=8.54\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 7.75\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, $\mathrm{Ph}), 7.66\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 7.47\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 6.85(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ph})$, $6.37\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 6.28\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, \mathrm{Ph}\right), 5.69(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{Pz}), 4.49(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.43\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 4.21(\mathrm{~d}, 1 \mathrm{H}$, $J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}$), $4.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pz}\right.$), $3.97\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=20 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{Pz}$), 1.91 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.04 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 0.88 (t, 2H, CH3 $\mathbf{3} \mathrm{CCH}$). -25.67 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ni}-\mathrm{H}$).
${ }^{13} \mathbf{C} \quad\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\quad\left(\mathrm{THF}-\mathrm{d}_{8}, \quad 100 \mathrm{MHz}\right)=19.04\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 19.81\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$, $22.02\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 22.31\left(\mathrm{CH}_{3} \mathrm{CCH}\right), \quad 51.06(3(5) \mathrm{C}-\mathrm{Pz}), \quad 51.48(3(5) \mathrm{C}-\mathrm{Pz})$, $91.81(4 \mathrm{C}-\mathrm{Pz}), \quad 96.58\left(\mathrm{CH}_{2} \mathrm{Pz}\right), \quad 102.64\left(\mathrm{CHCCH}_{3}\right), \quad 119.72(\mathrm{Ph}), \quad 121.86(\mathrm{Ph})$, $122.30(\mathrm{Ph}), 123.16(\mathrm{Ph}), 124.21(\mathrm{Ph}), 124.54(\mathrm{Ph}), 125.12(\mathrm{Ph}), 125.27(\mathrm{Ph})$, $125.57(\mathrm{Ph}), 125.68(\mathrm{Ph}), 126.62(\mathrm{Ph}), 127.09(\mathrm{Ph}), 127.72(\mathrm{Ph}), 127.42(\mathrm{Ph})$,
$127.64(\mathrm{Ph}), 128.72(\mathrm{Ph}), 128.93(\mathrm{Ph}), 129.88(\mathrm{Ph}), 130.02(\mathrm{Ph}), 131.12(\mathrm{Ph})$, 131.30 (Ph), 134.71 (Ph), 135.69 (Ph), 136.15 (Ph), 138.92 (Ph), 140.99 (Ph), 141.04 (Ph), $141.81(\mathrm{Ph}), 142.05(\mathrm{Ph}), 142.10(\mathrm{Ph}), 153.52,155.30,155.88$, 155.99, 157.75, 158.18, 158.42, 159.56.

$\mathrm{NaL}^{2} \mathrm{Ni}_{2}\left(\mu-\mathrm{H}_{2}\right)(38)$

A solution of NaHBEt_{3} in THF (1.0 M) ($0.50 \mathrm{~mL}, 0.50 \mathrm{mmol}, 2.5$ equiv) was added dropwise to a stirred brown solution of $\mathbf{3 5}$ ($250 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in THF $(2 \mathrm{~mL})$ at room temperature. After stirring the resulting red-brown solution for 40 mins, all volatiles were removed in vacuo. The red-brown residue was washed twice with hexane (40 mL). After concentration in vacuo and get red powder ($129 \mathrm{mg}, 0.15 \mathrm{mmol}, 60 \%$). The crude powder was recrystallization from pentane diffusion into THF at room temperature yield red block crystals of $\mathbf{3 8}$.

38-D, In a Young tube, a solution of 38 in THF (0.5 mL) was freeze-thaw degassed under vacuum three times. Then dry $D_{2}(c a .1 \mathrm{~atm})$ was then introduced to the head space of the flask at room temperature.

Molecular Weight $861.35 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{Ni}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=7.71-7.69(\mathrm{~d}, 8 \mathrm{H}, \mathrm{Ar}), 7.23-7.19(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar})$, 7.13-7.10 (m, 4H, Ar), 5.46 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{Pz}$), 4.29 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 4.06 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), 1.68 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), 1.34 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}$), -23.61 ($\mathrm{s}, 2 \mathrm{H} . \mathrm{Ni}-\mathrm{H}$).
${ }^{13}$ C NMR (THF-d $\left.{ }_{8}, 75 \mathrm{MHz}\right)=158.13,156.23,156.16,156.06,142.54,130.26$, 129.88, 127.03, 125.49, 123.21, 96.90, 91.87, 52.34, 25.40, 22.23, 19.51, 13.40.

ATR-IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right)=3052(\mathrm{~m}), 3024(\mathrm{~m}), 2973(\mathrm{~m}), 2950(\mathrm{~m}), 2920(\mathrm{~m}), 2853(\mathrm{~m})$, 1896 (Ni-H) (m), 1595 (w), 1559 (m), 1519 (m), 1451 (m), 1427 (m), 1377 (vs), 1313 (m), 1269 (s), 1210 (m), 1179 (w), 1068 (m), 1047 (m), 1028 (m), 907 (m), 802 (w), 769 (s), 753 (vs), 741 (vs), 719 (m), 697 (vs), 605 (m), 590 (m), 540 (w).
${ }^{2} \mathbf{H}$ NMR (THF, 400 MHz$)=-23.61(\mathrm{~s}, 2 \mathrm{H} . \mathrm{Ni}-\mathrm{D})$.

$\mathrm{L}^{2} \mathrm{Ni}_{2}(\mu-\mathrm{OH})(39)$

Water was added into a solution of 38 ($30.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) in THF $(1 \mathrm{~mL})$ at room temperature. The color changes from dark red to green immediately and intensity gas was observed. Suitable crystals for x -ray diffraction were obtained from THF at $-30^{\circ} \mathrm{C}$ as dark green block crystal.

39-OD: In a Young tube, a solution of 39 in THF (0.5 mL) was freeze-thaw degassed under vacuum three times. Then $\mathrm{D}_{2} \mathrm{O}$ (10 eq.) was then introduced to the head space of the flask at room temperature.

Molecular Weight $876.34 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{51} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.{ }_{8}, 400 \mathrm{MHz}\right)=8.17$ (d, 8H, Ar), 7.38 (dd, 8H, Ar), 7.23 (dd, 4H, Ar), 6.69-6.82 (m, 6H, Ar), 5.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Pz}$), 4.14 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}$), 3.83 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}$), $1.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right),-6.06(\mathrm{~s}, 1 \mathrm{H}, \mathbf{0 H})$.
${ }^{13}$ C NMR (THF-d ${ }_{8}, 100 \mathrm{MHz}$) $=159.76,156.71,148.79,143.91,140.95,138.00$, 130.21, 127.25, 126.11, 124.99, $97.01\left(\mathrm{CHCCH}_{3}\right), 90.79(4-\mathrm{Pz}), 54.52\left(\mathrm{CH}_{2} \mathrm{Pz}\right)$, $25.29\left(\mathrm{CH}_{3} \mathrm{CCH}\right), 22.08\left(\mathrm{CH}_{3} \mathrm{CCH}\right), 19.74\left(\mathrm{CH}_{3} \mathrm{CCH}\right)$.

ATR-IR ($\mathrm{v} / \mathrm{cm}^{-1}$) = 3605 (OH) (m), 3056 (w), 3023 (w), 2957 (w), 2918 (w), 2847 (w), 1599 (m), 1550 (m), 1521 (m), 1484 (m), 1451 (vs), 1429 (m), 1395 (m), 1310 (m), 1270 (m), 1244 (m), 1211 (m), 1175 (m), 1063 (m), 1030 (m), 948 (m), 912 (m), 810 (m), 751 (vs), 724 (w), 698 (vs), 606 (m), 589 (m), 540 (w).

ATR-IR $\left(v / \mathrm{cm}^{-1}\right)=2681$ (OD) (s).
ESI-MS (THF) = $913.30(\mathrm{M}+\mathrm{K})^{+}(100), 875.33(\mathrm{M}+\mathrm{H})^{+}(70), 899.34(\mathrm{M}+\mathrm{Na})^{+}(30)$.
${ }^{2} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{THF})=-6.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OD})$
Anal. Calcd for $\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{51} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}\right)\right]$: C 68.11, H 5.16, N 9.34; found: C 68.22, H 5.27, N 9.18.

$\mathrm{L}^{2} \mathrm{Ni}_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(40)$

38 ($31.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv) and [H-Lut]OTf ($6.45 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ equiv)
were dissolved in THF (2 mL), and the reaction mixture were stirred for 2 h at room temperature in a dinitrogen atmosphere. All volatiles were subsequently removed under vacuum, and the resulting solid was dried under vacuum. The crude powder was recrystallization by layering hexane on a solution of $\mathbf{4 0}$ in THF at $-30^{\circ} \mathrm{C}$ yield block crystals of $\mathbf{4 0}$. The mother liquor was pumped down, dissolved in THF, and layered with hexane to afford a second crop.

Molecular Weight $1008.40 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{52} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{~F}_{3} \mathrm{SO}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (THF-d $\left.8,400 \mathrm{MHz}\right)=8.17(\mathrm{~d}, 8 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, 16 \mathrm{H}, \mathrm{Ar}), 7.05(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar})$, $5.42(4-\mathrm{Pz}), 4.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pz}\right), 4.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{3}\right), 1.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}$ NMR (THF-d $\left.{ }_{8}, 100 \mathrm{MHz}\right)=19.73\left(\mathrm{CH}_{3}\right), 22.07\left(\mathrm{CH}_{3}\right), 25.39\left(\mathrm{CH}_{3}\right)$, $51.25\left(\mathrm{CH}_{2} \mathrm{Pz}\right), 93.16(4-\mathrm{Pz}), 99.76\left(\mathrm{CHCCH}_{3}\right), 125.16,126.33,127.58,128.94$, $130.19,139.55,141.52,145.38,155.86$ (Ar), $156.56\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right), 158.25$ (Ar).
${ }^{19} \mathbf{F}$ NMR (THF-d $\left.{ }_{8}, 376 \mathrm{MHz}\right)=-77.81$.
ATR-IR $\left(v / \mathrm{cm}^{-1}\right)=3052,2923,1598,1555,1525,1229,1210,1200,1170,1111$, $1053,1031,908,868,838,809,755,696,641,586,508$.

Chapter 12 DFT Calculations

Geometry optimization calculations were performed with the coordinates obtained from the X-ray crystallographic structure determination. Unrestricted DFT calculations using the ORCA program (Ver. 3.0.1 or 3.0.2) were performed with BP86 respectively B3LYP functional, RI resp. RIJCOSX approximation, def2-tzvp and def2-tzvp/j basis sets ${ }^{[247]}$ Solvent effects were considered by invoking the conductor like screening model (COSMO) with THF as the solvent. 80 excited states were calculated; the maximum dimension of the expansion space in the Davidson procedure (MaxDim) was 800.

DFT Table 1. Coordinates of the energy-optimized structure of Structure 2-

Ni	-0.68869262397851	17.17489938464608	18.87906371064496
Ni	-1.41515153487665	15.58251351289467	15.31148013058432
C	-3.07622169902548	18.14173532358329	17.94770281610725
C	-3.94304271614359	18.25647489085641	16.84067727920180
H	-4.86772190584580	18.83984022776006	16.76488931990406
C	-3.35080720902569	17.43754397715647	15.85677275187850
C	-3.67739512974857	17.07152076947943	14.44054435125935
H	-4.71098359717760	16.65059152296007	14.37432585128001
H	-3.68909842325979	17.98809961167770	13.79939189908899
C	-2.73849132582984	15.62383777402922	12.73760923711351
C	-3.81587059031133	16.10971230838273	11.78769351314391
H	-4.83149795862547	15.87906405407793	12.17836285254848
H	-3.71799463139211	15.63885468980650	10.79167152333322
H	-3.77665465561897	17.21318514889711	11.65633798674392
C	-1.82150644204174	14.64813628168210	12.26685141308028
H	-1.92851377453640	14.33567951866911	11.21816805568514
C	-0.81730896767705	14.00070900244267	13.01936812009976
C	0.00822151880901	12.92870589501205	12.33246652889802
H	1.09420753101744	13.14419379634333	12.41693541532362
H	-0.25979077652061	12.84895124424981	11.26197160775940
H	-0.14014907575848	11.93618230893268	12.80845064994584
C	0.36855032043898	13.45418846729255	15.02170029505425
C	-0.08327804453132	12.23366214610976	15.59840982739276
C	0.83546859373594	11.44542847881057	16.31595392826467
H	0.49563208864464	10.50558405096132	16.77679996900063
C	2.16996370525917	11.84986083039746	16.47107549887792
H	2.87354807175732	11.22768498826797	17.04669363866645
C	2.60142850358454	13.05413426431131	15.89693787500757
	3.64385672132672	13.37791195452812	16.03340292902591

C	2.18101405920993	15.18289785463135	14.54662107810832
H	1.49119310605907	15.40114285501371	13.70382371159733
C	3.61194994407609	15.13011995153585	13.98963452421504
H	3.85812086318007	16.08031541079022	13.47006958635354
H	3.74747822571077	14.29534402153878	13.26933655840273
H	4.36149647860772	15.00260662847689	14.79968642434145
C	2.01986842100963	16.31659156897761	15.57514308517488
H	2.68928559504155	16.16008127700690	16.44384748724223
H	0.97782238294086	16.34398315778268	15.95676483765672
H	2.25990007601768	17.30168807221096	15.12095122278643
C	-1.55982710239245	11.86219677092824	15.51222255384843
H	-1.94722076618540	12.28679248425679	14.56295887640418
C	-2.33405034800809	12.55533014255028	16.65004518497818
H	-3.43088211899136	12.43189569608174	16.52180072844345
H	-2.09793660862373	13.64341052784149	16.66188459865092
H	-2.04453956138690	12.13208178261658	17.63419573577094
C	-1.82055441750071	10.35019652831423	15.48875023250856
H	-1.24589369272462	9.84424630654391	14.68467821256029
H	-2.89907950080263	10.14788162143063	15.32030640878386
H	-1.54814965012280	9.86766165946034	16.45170247963250
C	-3.05779490040488	18.68457717169119	19.34415738548359
H	-3.08456069791490	19.80222544399173	19.33315594002270
H	-3.98359129949226	18.37072390863426	19.88841792455357
C	-1.61198851368140	18.50398229769750	21.28102950058035
C	-2.61237681069007	19.34067584316209	22.05500701036519
H	-2.76633684528070	20.33190255920444	21.57548679959450
H	-2.27572121512278	19.51175925927960	23.09448082657306
H	-3.61100724252307	18.85287562488563	22.08646085524496
	-0.43219968273219	18.08521044496898	21.94858073784644
H	-0.33644772681809	18.36597979857020	23.00696369135609

C	1.86473309173948	17.12421382227925	22.26145030275086
H	2.12914620751691	16.04663235112809	22.26668685377978
H	1.67488708403730	17.45168881460743	23.30114207047797
H	2.76367275286344	17.65333982850802	21.88211884775500
C	1.91555742790925	16.43977608991858	19.58746613912139
C	2.13914472651998	15.03571795113204	19.58865610717690
C	3.34559971625953	14.54814533797006	19.05246393868434
H	3.52338960963985	13.46269843850025	19.02811450467004
C	4.32461745641116	15.41893315743998	18.55269444688996
H	5.26330701791618	15.01625934908133	18.13991827559109
C	4.10068857227412	16.80340683077640	18.57628426384541
H	4.86799653091512	17.48425765922187	18.17687592734893
C	2.90284115485701	17.33532182109320	19.08865562804104
C	2.60970286869486	18.83115462256799	19.04312236894757
H	1.91184416608512	19.04868415360110	19.87867697625854
C	1.85700876787603	19.17616731845802	17.74291729851628
H	2.50281138744959	18.99832821245965	16.85752040995287
H	1.53231381573758	20.23807107747166	17.73817443626115
H	0.95589630037899	18.53066898614876	17.64729798553029
C	3.85244417745640	19.71151239612673	19.22897571089185
H	4.41723031568851	19.44089358025080	20.14683318881455
H	3.56009491980109	20.77972830531325	19.30768971255267
H	4.55061461403715	19.63080309748039	18.36801089704590
C	1.06534188849978	14.09701452916372	20.12367146869819
H	0.54503396992328	14.64644997118462	20.93724663545024
C	0.01935305593232	13.80316903312258	19.03294085437712
H	-0.36799640784771	14.75242362139995	18.60635069716799
H	-0.83228189735578	13.22355275152239	19.44645138746302
	0.46893057224875	13.22075242416148	18.20515255271184
	1.62792455158097	12.79396007103616	20.71020800967596

H	2.41308723933729	12.98299604528860	21.47272958248286
H	2.06664211091545	12.15317500527309	19.91620211559389
N	-2.04221831661604	17.31371845698623	17.62897714869674
N	-2.21436676818090	16.87748032843916	16.35837907639020
N	-2.67984591772314	16.10426031368385	13.98017498262885
N	-0.56185185176709	14.27607613947191	14.31613251370108
N	-1.84941718744102	18.19030573781354	20.00683569961318
N	0.69181640563225	16.97238342415276	20.09685576026003
H	0.11415847387532	16.51691574696168	17.85589916079963
H	-0.58518660241204	15.24272508175843	16.45931862412747

DFT Table 2. Coordinates of the energy-optimized structure of Structure 2.

Ni	-0.84779151694222	16.88452507003262	19.12127948015371
Ni	-1.21672547290550	15.76014818204264	15.18069752158587
C	-3.07891539203923	18.00099686454774	18.01067761249681
C	-3.78779419357733	18.32104159908885	16.84041773426616
H	-4.67159353034677	18.95973413229359	16.73921170264163
C	-3.10186708398172	17.62574868410968	15.83087747880241
C	-3.29215081224702	17.50563420264949	14.35658602658692
H	-4.36083616131333	17.28708360420774	14.12555287500612
H	-3.06893411718607	18.48072088939323	13.85733252555605
C	-2.50069809044707	16.06901045164647	12.59276023085709
C	-3.46735979680113	16.76815996434964	11.65993713057898
H	-4.51600701330930	16.66881096259622	12.01372350938207
H	-3.40927908943668	16.35114973013410	10.63799935942154
H	-3.25619213684530	17.85736088231600	11.60339738546906
C	-1.74055955009941	14.99114803191362	12.07286299369202
H	-1.92844169853088	14.71066082441520	11.02854728743760
C	-0.82389885398668	14.20245396374938	12.78602788513798
C	-0.24488316999615	12.98658446331456	12.08691541878480

H	0.86183722538781	13.02054715201397	12.01782724001644
H	-0.65321611318891	12.89383301365211	11.06434085180387
H	-0.48793337383671	12.05905939070663	12.64588907909697
C	0.47915476074298	13.57508851804364	14.66459251412315
C	0.03094547274253	12.50876730385107	15.49738895353747
C	0.99309205791804	11.68346098849569	16.11489660484358
H	0.65888300612790	10.86658175814411	16.77419615252186
C	2.36753183291327	11.87501294562170	15.89155299767132
H	3.10437293808316	11.21149832555998	16.36960600148887
C	2.79715473507561	12.91086460122761	15.04158634857331
H	3.87413853212729	13.04539427682979	14.85848659792718
C	1.87122667740614	13.77277392473171	14.41787443217573
C	2.32335416277047	14.95420948201568	13.56265103384341
H	1.56404012971832	15.08905495239062	12.76600371866320
C	3.68606550171359	14.75003316335105	12.89096625622861
H	3.90690628800515	15.59116437266632	12.20261948882439
H	3.71853249436255	13.80982552752694	12.30321594911329
H	4.51381375170486	14.71256612553858	13.63210346250276
C	2.29735796454139	16.24787669233148	14.40105719688286
H	3.10003026369555	16.23428713746703	15.17350612592954
H	1.30242719646933	16.37383035640391	14.88531311106078
H	2.47115131638015	17.14225283121245	13.76958306638632
C	-1.45734293966542	12.30678766784791	15.74853445921853
H	-1.98905773865066	12.95956004477297	15.02735510147604
C	-1.84369619390009	12.78763568405115	17.16028453322808
H	-2.93712447478929	12.68810851393115	17.32094546715715
H	-1.57767496160902	13.85654103423113	17.28988155985119
H	-1.32701721383538	12.19218292233929	17.94078755612300
	-1.89716577963432	10.85423590280622	15.50079346861581
H	-1489482645781	10.51034413900231	14.48471224732029

H	-1.44164472775547	10.15297291715846	16.23138963774722
C	-3.23301518607002	18.38284636974739	19.44400867104889
H	-3.37890337585171	19.48450974724700	19.53480905935164
H	-4.15613802847455	17.92011479106678	19.87106202424109
C	-1.90729181937550	18.25126360024646	21.45243665549721
C	-3.01190782710121	19.00128064388854	22.16653021638568
H	-3.19920194142292	19.99028812493301	21.69612204309191
H	-2.76002301474874	19.17013105327687	23.22912378025291
H	-3.97168953864497	18.44406385075659	22.11868535404972
C	-0.73497681629463	17.93581676585024	22.18437743439449
H	-0.69763896482533	18.27185686600733	23.22850575343916
C	0.41424121999825	17.30867653629407	21.67744356354764
C	1.64099251683975	17.25906828639543	22.56824977497130
H	1.99902441679310	16.22255667659242	22.73375018399456
H	1.42627586098573	17.71402809779797	23.55214690864146
H	2.48809691331676	17.80893679539399	22.10770918214494
C	1.75132594325080	16.29779735065488	20.00243403035860
C	2.15466049375607	14.96905039646693	20.33373255112102
C	3.42105382101833	14.51824274248306	19.90861995566377
H	3.74652691366450	13.49884960962191	20.16303036340771
C	4.27890331699237	15.35144797268881	19.16864883501928
H	5.26914847603725	14.98729126531298	18.85585330157853
C	3.86623968147195	16.65285333460262	18.83687624428707
H	4.53726673009798	17.30311337398177	18.25393581034762
C	2.61152735814253	17.14844755415814	19.24860445746827
C	2.14040295775530	18.53338100637538	18.82447453332584
H	1.26256267993355	18.77950274082392	19.45562696704752
C	1.64004679615143	18.49201261703925	17.36620200616652
	2.45688437376022	18.20944246423109	16.66792976379102

C	3.20821425174608	19.61750791124397	19.03174773992266
H	3.57040218549792	19.63807614349460	20.07970420671451
H	2.79160251403578	20.61789533901396	18.79483465159931
H	4.08914448645855	19.46859809579487	18.37193431781351
C	1.17195468892324	14.04275535877115	21.03970886308478
H	0.55998657648375	14.67442824404949	21.71460142865639
C	0.20391309065252	13.46307582868736	19.99141097605111
H	-0.26153530597038	14.28952470803815	19.41150274085595
H	-0.61307571763185	12.88205714104884	20.46549406794549
H	0.73893194431551	12.77797293786197	19.29568913975021
C	1.83401005452325	12.94519952787514	21.87935188374842
H	1.06561473365922	12.38666434481062	22.45147180646300
H	2.56347327800165	13.36130204335577	22.60502995341959
H	2.36920996792199	12.20326064270353	21.24983350492443
N	-2.04136768809992	17.16867490151144	17.71305706795525
N	-2.05524147082469	16.93561941787581	16.36764779605251
N	-2.40845431371692	16.44782709409451	13.86721542760080
N	-0.46978010544762	14.45163465278720	14.07054705819608
N	-2.04018737956355	17.93692932143648	20.16460620336278
N	0.48713830451615	16.78663616918247	20.42784185860717
K	1.71626894280193	14.86644056918994	17.27441293070832
H	-0.13167055209665	15.98737890482600	18.21852499015344
H	-0.40760561023590	15.30867755555502	16.30709282157190

DFT Table 3. Coordinates of the energy-optimized structure of Structure A.

N	-2.20616598256472	16.87252637926337	16.38924594688450
C	-3.36754862246396	17.39411479165334	15.90429975956918
C	-3.98871940814366	18.16667855876951	16.90830439818616
C	-3.11268769091747	18.06640745278095	18.00995924886945
N	-2.04770324911161	17.28796522955709	17.66746765709536

C	-3.10900360266203	18.57263270170368	19.42096346278932
N	-1.86279104997566	18.13784363515259	20.05605289844398
C	-1.62434544651852	18.42944596702821	21.33522445009842
C	-0.42563137744599	18.03488440353915	21.98299789868408
C	0.67260733425413	17.36589441150970	21.39946507877728
N	0.70020656160674	16.95374541142541	20.11427981257315
C	1.92085797661534	16.43247206309376	19.58607051921230
C	2.15692850168319	15.03053012633264	19.58363596848723
C	3.35342699377497	14.55352462666329	19.01649488635621
C	4.31163317332621	15.43240711070061	18.49127116688688
C	4.07713299897746	16.81484290821768	18.52148964831666
C	2.88790288971018	17.33652419566938	19.06375601590099
C	-3.68258129287653	17.03969755499964	14.48232597744347
N	-2.64686941056432	16.12153774348108	14.00351932440285
C	-2.68805342627698	15.66268858043076	12.75221039837991
C	-1.74072050770064	14.72384301474019	12.26640837318147
C	-0.72661815937154	14.08569826261829	13.01387884605334
N	-0.46451355852652	14.36628041909658	14.30828934517668
C	0.42719557038281	13.51186642244843	15.02559287487140
C	-0.08587876346356	12.31875371484836	15.60771767205731
C	0.79073430913654	11.48913666689912	16.33114629608140
C	2.14375294611891	11.82564766809048	16.48288393321270
C	2.63664066275216	13.00315769302630	15.90145346369550
C	1.80137184784643	13.85327005622143	15.15313794841389
C	-1.57857938232309	12.01947146685699	15.52055897410025
C	-1.90353576045166	10.52446101793153	15.39420535932461
C	2.32530872023685	15.14081677100014	14.52822480442466
C	2.06614571706722	16.33407002696355	15.46657098096738
	1.10698803645676	14.08129270273163	20.14698147936487
C	1.69991029106309	12.77902567874974	20.70567729608469

C	3.81512645163253	19.72242506797948	19.18419268757334
Ni	-0.69090092208379	17.14752549671622	18.90937833083151
Ni	-1.35053524212880	15.63651015354812	15.31890877190407
C	-3.78191129064376	16.12707042269243	11.81050437284520
C	0.08500004217703	13.00082676657385	12.33049050626419
C	3.80309951145227	15.06427688196268	14.12019753353600
C	-2.31082624557083	12.66339849583284	16.71439790804503
C	-2.64768933206951	19.20925274848261	22.13743260293927
C	1.89482766862106	17.11956109446681	22.26449809647461
C	1.80059551315335	19.16231154260510	17.73244477270542
C	0.02818024959012	13.78226657741703	19.09080915936184
H	-4.93747802227685	18.71179624451463	16.84868828788622
H	-4.69812489216329	16.57778420586784	14.41079230927097
H	-3.73295043663874	17.96528265591049	13.85648133936440
H	-4.78872160691365	15.85648679014646	12.19810623514599
H	-3.66928656551208	15.67568600970718	10.80709940894494
H	-3.77997605079569	17.23322305550869	11.69669952656062
H	-1.84151200513610	14.41991845848579	11.21457986995029
H	1.17505310881421	13.18053523766507	12.43919830483027
H	-0.16431018884613	12.94052358968167	11.25407759651067
H	-0.10600123015044	12.00816415653670	12.79113645613623
H	0.40279626866077	10.57087476572020	16.79806311533789
H	2.81547246452249	11.17122156979848	17.06089161112252
H	3.69592986547504	13.26802599104865	16.03178298826080
H	1.72306035436761	15.31396971151307	13.60952955051672
H	4.09625300481512	15.97991640043393	13.56441963657266
H	4.01220604838526	14.18463985096831	13.47480474854109
H	4.46730537708681	15.00063532582199	15.00789160878029
	2.62483370451256	16.22207877109360	16.41564950546340
H	0.98706795481056	16.38697422317589	15.72088673080529

H	-1.95547006333382	12.52520883077711	14.60795446702353
H	-3.41278427249392	12.59118605571171	16.59375065773088
H	-2.03641115573696	13.73846725413685	16.79700161894669
H	-2.02791194987658	12.16298383333782	17.66353132793092
H	-1.35862609118595	10.05497266040759	14.54837837670513
H	-2.99138804474095	10.38029477252660	15.22459220164201
H	-1.64320825063447	9.96085349991266	16.31563750677750
H	-3.20936686192791	19.68523010253641	19.44159505223742
H	-4.00080013369678	18.17950104084189	19.96970894233538
H	-2.85239854615127	20.20003985124019	21.67672036206293
H	-2.30370173573841	19.37747464684165	23.17495207166433
H	-3.62237728031862	18.67602483210061	22.17441390177079
H	-0.32453444645232	18.30819351325955	23.04275650028594
H	2.17688474006487	16.04651365938949	22.26618885606013
H	1.71401107615894	17.44401428110204	23.30668009742790
H	2.77956508934910	17.66340739657150	21.87261051567242
H	3.53990683077124	13.46981414473102	18.98757364363383
H	5.24250917808246	15.03762947221741	18.05410071289118
H	4.82769811480669	17.50215666051033	18.10191935722246
H	1.89290349975036	19.04145384980448	19.86778573342976
H	2.43426933400540	18.99214516814655	16.83687981311236
H	1.46154824473168	20.21968750684590	17.73101615211704
H	0.90682806329062	18.50392256578461	17.65262774881607
H	4.3966641808919	19.45963279989116	20.09374816423015
H	3.51386076082005	20.78803445515546	19.26458151926592
H	4.50030508612848	19.64617557332824	18.31254628684773
H	0.60851401092822	14.61981303200323	20.98138557873861
H	-0.41613930746813	14.72688734468612	18.71465670106454
	-0.78215368339607	13.15703706223244	19.51992614735813
H	0.46485435882307	13.24875750012157	18.22513953313733

H	2.51874264194700	12.96978437620702	21.43134000493975
H	2.10409478033388	12.14071718279155	19.89145174023038
H	0.10123058712029	16.48024606529773	17.88383603469795
H	-0.48935443433855	15.33239226660577	16.45890861986126
H	-2.65299442134881	15.57424675895429	19.84570765137464
H	-3.16981748269442	15.10428313421941	20.18396179591873

DFT Table 4: Coordinates of the energy-optimized structure of Structure C.

N	-2.12459676246702	16.93918724508929	16.36449879996588
C	-3.22194148909542	17.56112661224279	15.84629690390961
C	-3.92926565447942	18.20994914206058	16.87679300071058
C	-3.17709014748868	17.92897153457674	18.03412524386101
N	-2.09857790715165	17.16286102129708	17.70417198343217
C	-3.30509989831568	18.29093618835764	19.48014091657908
N	-2.08543984816977	17.86238868185710	20.16272366905418
C	-1.90753927065312	18.16170582258124	21.45003093264348
C	-0.70432712194684	17.85075391704454	22.13111244134742
C	0.44248495447896	17.24537925661630	21.57359400659974
N	0.48681530541422	16.74091870073556	20.32187303650745
C	1.74548104707088	16.28515032917013	19.82391913703691
C	2.19323250456286	14.96730420807296	20.11291375733565
C	3.44039438929225	14.55363937167163	19.60930573799912
C	4.22634766471091	15.41155898941771	18.82511242200857
C	3.76048607165040	16.70001048341669	18.52701904269486
C	2.52706909281924	17.16110153507212	19.02404677776858
C	-3.42275119314518	17.41210065093821	14.37149641408524
N	-2.44641409065033	16.44298575201165	13.87809479881380
C	-2.48861577236894	16.05483733483097	12.60292424886410
C	-1.64171448177629	15.03447305232890	12.10279891285781
C	-0.70484969823577	14.28396978783957	12.84533801434833

N	-0.37556388117931	14.55681260826547	14.12652573228096
C	0.48726772056041	13.64033978784117	14.80179659702701
C	-0.08694898259580	12.62872399325482	15.61692124033649
C	0.76975717287984	11.73906731898638	16.29134912046724
C	2.16171772030369	11.82473356920719	16.14736459091485
C	2.71536745142949	12.82617467494519	15.33545559897849
C	1.89751698614596	13.74924384009512	14.65864586358883
C	-1.59865058255953	12.55087682156327	15.79499102670820
C	-2.14770214651144	11.14321393919875	15.50752697963826
C	2.48345510771162	14.91900654735719	13.87724883500299
C	2.46861670268953	16.17466106001910	14.76872312388094
C	1.26185971027327	14.00906939496211	20.84443832240555
C	1.98117810346020	12.88586547141504	21.60083917278995
C	1.9986398556387	18.54343346370630	18.66055888590131
C	3.00887619815842	19.65935489135129	18.97365167465778
Ni	-0.88268391166084	16.85138565072031	19.06896241495298
Ni	-1.17787503818045	15.85916069751579	15.18863273344917
C	-3.49146128705322	16.67831733965194	11.65170702296557
C	-0.08791756409621	13.07151700635114	12.16938502586439
C	3.8801833643005	14.64912773359862	13.30277042272761
C	-2.01915181723753	13.05443479411172	17.18822116781082
C	-2.99625747210415	18.88588203725956	22.21790933101334
C	1.69967151751830	17.20895971711629	22.42460714181764
H	1.53625389833365	18.58207376757695	17.19233020930106
H	-3.36548037005458	17.78177905264220	11.59711282805121
H	-23369914597925	13.45622811127236	19.84080428389042
H	-4.47092975394353	17.08788349591314	14.15836553351245
	-3.30968175703726	18.40148849485460	13.86031241311992

H	-1.78049374802118	14.74787614827327	11.05096624496052
H	1.02086061059648	13.09718939420184	12.18393778793529
H	-0.42867339720091	12.99345108850714	11.11980295957352
H	-0.37570583823427	12.14024675509072	12.70178272447326
H	0.33575330759719	10.96320325521826	16.94259749251796
H	2.81813157401781	11.12015441873816	16.68210568913020
H	3.80972819555803	12.90490555245846	15.24673402557966
H	1.79975906895655	15.12089344085265	13.02565652438171
H	4.20143933390339	15.49340223112280	12.65695782137911
H	3.90603666263150	13.72015991093924	12.69464735235714
H	4.64223025475001	14.54810409501628	14.10531598147178
H	3.13745827204266	16.04217397616279	15.64341044559118
H	1.44447697108652	16.34873578225722	15.15712667191142
H	2.79204530108253	17.07401176330215	14.20199190678678
H	-2.04218039366103	13.24744911669023	15.05494278016318
H	-3.12587572241003	13.08454416896440	17.27562453830541
H	-1.63683248338237	14.07952973332853	17.36452294626758
H	-1.62510401087543	12.39417571692005	17.98809841345656
H	-1.85000272499139	10.79075812038672	14.49774369105343
H	-3.25751135921120	11.13813460523059	15.55993868911244
H	-1.77941696385992	10.39628349830326	16.24369643918671
H	-3.47506099222291	19.38999393251586	19.58636337939732
H	-4.21030349839563	17.80487034600187	19.92395677893091
H	-3.22242044448287	19.87613952935871	21.76557002313140
H	-2.70366210344959	19.04980326422703	23.27190484904942
H	-3.94890670589573	18.31299005105251	22.20457342673690
H	-0.63251761312115	18.17062328253677	23.17983408918582
H	2.08337530801202	16.17657282173286	22.55544743105442
H	1.51016273249972	17.64575034175963	23.42316497915068
H	2.51965284425765	17.77845697707432	21.93946771518699

H	5.19491965613781	15.06756666824609	18.43050277274967
H	4.36788241878735	17.36533973138950	17.89170134991520
H	1.09738344274474	18.71134196358068	19.28440785300841
H	2.39276088975539	18.44971876560061	16.49954962306266
H	1.05440377095320	19.55601340152428	16.95995413411846
H	0.79801460568407	17.77823574765032	16.99369442325030
H	3.31156281820389	19.64529753824551	20.04107872877347
H	2.56998580664805	20.65626693235563	18.75471183704415
H	3.93201432374761	19.56748153166295	18.36214806314002
H	0.69243996211981	14.60878553428822	21.58546289338714
H	-0.25485926208742	14.29633727525848	19.30405499345349
H	-0.54895982989120	12.85703239270347	20.35347152016404
H	0.72942191071007	12.82443724074833	19.07560954533528
H	1.25184593001850	12.29210030623845	22.19105033882576
H	2.75121287020618	13.27798517425650	22.29906508136401
H	2.48526067447751	12.17973742592121	20.90708136480124
H	-0.12241543650828	16.01778844678617	18.14134995082590
H	-0.23354049537882	15.58185975721553	16.27408182584009
H	1.87910143284846	14.45133475938212	17.41694130407611
H	1.23811372399650	14.84058570030820	17.22144607243340

DFT Table 5: Coordinates of the energy-optimized structure of 5.

Ni	-2.03596	1.016084	-0.26903
Ni	2.0355	1.016875	0.268723
N	3.182989	2.507175	0.623602
N	3.302997	-0.33313	0.432953
N	-0.66777	2.315355	-0.11969
N	-3.18407	2.505945	-0.62363
N	-3.30296	-0.33442	-0.43304
N	0.666834	2.315614	0.119146
C	-1.09035	3.602394	-0.20579
C	-2.54403	3.814334	-0.50478

C	-4.45342	2.39468	-0.99008
C	-4.57051	-0.13247	-0.82888
C	-2.8988	-1.59841	0.06274
C	1.088859	3.602807	0.205594
C	-0.00094	4.463756	5.31E-05
C	-5.09878	1.139239	-1.11262
C	-5.2641	3.636912	-1.29386
C	-5.48226	-1.33109	-0.98461
C	-3.27562	-1.98775	1.376875
C	-2.08322	-2.44144	-0.73207
C	2.542461	3.815311	0.504591
C	-2.84525	-3.22788	1.857893
C	-4.05411	-1.02043	2.256121
C	-1.67523	-3.67112	-0.20645
C	-1.63072	-1.97689	-2.10433
C	4.452356	2.396402	0.990126
C	4.570433	-0.1307	0.828868
C	2.899337	-1.59733	-0.06272
C	-2.05512	-4.07215	1.074874
C	-3.09065	-0.03153	2.932779
C	-4.94869	-1.71337	3.289368
C	-0.33059	-1.16512	-1.98478
C	-1.45788	-3.1213	-3.10963
C	5.098202	1.141211	1.112649
C	5.262538	3.638943	1.293974
C	5.482659	-1.32897	0.984538
C	3.276279	-1.98656	-1.37684
C	2.084231	-2.44071	0.732198
C	2.846521	-3.22694	-1.85777
C	4.054093	-1.01881	-2.2562
C	1.676827	-3.67062	0.206666
C	1.631526	-1.9763	2.104434
C	2.056889	-4.07156	-1.07464
C	3.089893	-0.03062	-2.93285
C	4.949135	-1.71123	-3.28938
C	0.331158	-1.16492	1.984732

C	1.4589	-3.12077	3.109707
H	-3.0207	4.414324	0.296884
H	-2.65692	4.403615	-1.43632
H	-0.00118	1.550569	-1.000225
H	-6.13053	3.37545	-1.58846
H	-6.28785	4.223409	-2.1085
H	-4.80756	4.301671	-0.41572
H	-5.31586	-1.03492	-1.44063
H	-6.435	-1.80561	-0.01412
H	-5.69782	-2.10542	-1.61046
H	-5.01279	4.415339	-0.29717
H	3.018933	4.404784	1.436026
H	2.655119	-3.53912	2.866889
H	-3.11983	-0.4251	1.599433
H	-4.70578	-4.32304	-0.80844
H	-1.0428	-1.29514	-2.48107
H	-2.40978	-5.0365	1.467701
H	-1.72825	0.712861	3.525296
H	-3.6454	0.509297	2.175337
H	-2.49597	-0.56634	3.600859
H	-2.39786	-0.96925	3.809313
H	-5.5711	-2.23763	4.058316
H	-4.36036	-2.4493	2.816009
H	-5.61661	-0.79969	-2.96897
H	-0.00479	-1.77435	-1.55417
H	0.474233	-0.27784	-1.3396
H	-1.26015	-2.71217	-4.11175
H	-2.35817	-3.75279	-3.16677
	-0.60346	-3.76327	-2.84731
H	6.129942	1.163953	1.461848
6.286366	3.377866	1.58862	
H	4.805735	225246	

Chapter 12. DFT CALCULATIONS

H	5.013424	-2.10361	1.610185
H	3.121189	-3.53807	-2.86677
H	4.705337	-0.42296	-1.59956
H	1.044771	-4.32283	0.808731
H	2.410345	-1.29432	2.481244
H	1.73048	-5.0361	-1.46737
H	3.644031	0.713999	-3.52565
H	2.495097	0.509966	-2.1753
H	2.397172	-0.56591	-3.60061
H	5.570914	-0.96673	-3.80951
H	4.361202	-2.23616	-4.05816
H	5.617671	-2.44652	-2.81588
H	0.005027	-0.79973	2.968895
H	-0.47335	-1.7744	1.553871
H	0.476135	-0.27752	1.339696
H	1.261029	-2.7117	4.111825
H	2.359327	-3.75206	3.166879
H	0.60463	-3.76291	2.847318
Ni	-2.03596	1.016084	-0.26903
Ni	2.0355	1.016875	0.268723

DFT Table 6: Coordinates of the energy-optimized structure of 6

Ni	1.93772	-1.06382	0.158769
Ni	-1.88799	-1.16272	-0.10303
O	0.583732	0.153264	-0.3799
O	-0.59575	0.14627	0.364486
N	0.71915	-2.49727	0.172922
N	3.210943	-2.49508	0.551531
N	3.255106	0.340947	0.144527
N	-0.60255	-2.53482	-0.03461
N	-3.09102	-2.67365	-0.41153
N	-3.27102	0.17668	-0.17044
C	1.182481	-3.76185	0.28008
C	2.652627	-3.8601	0.532702
C	4.500691	-2.32694	0.825917

C	4.547161	0.174206	0.462458
C	2.852441	1.628846	-0.33035
C	-1.0046	-3.82419	-0.07004
C	0.109713	-4.65854	0.12944
C	5.122984	-1.06135	0.814703
C	5.367816	-3.52555	1.157871
C	5.486604	1.365642	0.400935
C	2.147819	2.499883	0.529849
C	3.134594	1.993479	-1.66729
C	-2.46771	-4.00745	-0.31642
C	-4.3865	-2.58285	-0.69599
C	-4.55242	-0.06935	-0.4789
C	-2.92931	1.512912	0.209632
C	1.812643	3.774039	0.057331
C	1.778318	2.052609	1.934963
C	2.794602	3.283949	-2.09271
C	3.701239	0.96389	-2.63478
C	-5.06826	-1.34958	-0.75691
C	-5.19387	-3.83789	-0.96319
C	-5.54614	1.078463	-0.49363
C	-3.2313	1.962072	1.516028
C	-2.26799	2.350897	-0.71494
C	2.153574	4.176692	-1.23417
C	0.389743	2.532646	2.364299
C	2.863541	2.463219	2.946399
C	2.54142	0.197428	-3.30035
C	4.647173	1.556799	-3.68713
C	-2.95209	3.295188	1.843995
C	-3.75963	0.983523	2.555814
C	-1.99409	3.671481	-0.33945
C	-1.87914	1.820134	-2.08479
C	-2.35337	4.151584	0.920048
C	-2.57408	0.282132	3.246513
C	-4.70043	1.620439	3.586615
C	-0.50811	2.320269	-2.54593
C	-2.97325	2.121192	-3.12505

H	0.13541	-5.74412	0.160532
H	2.838351	-4.38117	1.491988
H	3.141122	-4.46951	-0.25255
H	6.179662	-1.04045	1.077986
H	4.984693	-4.06549	2.039213
H	6.399004	-3.2156	1.366188
H	5.387367	-4.24816	0.325692
H	5.750021	1.596863	-0.64277
H	6.413392	1.154273	0.949616
H	5.022931	2.271821	0.812193
H	1.258037	4.453977	0.705628
H	1.881144	5.173545	-1.58669
H	3.005032	3.586712	-3.11967
H	1.742182	0.952383	1.908187
H	0.322637	3.629161	2.442819
H	0.143636	2.115898	3.352632
H	-0.3673	2.183848	1.651267
H	2.994011	3.557587	2.959205
H	3.832146	2.004123	2.701237
H	2.586893	2.13822	3.962309
H	4.270489	0.229203	-2.04701
H	1.881785	-0.24805	-2.5403
H	2.92489	-0.605	-3.95102
H	1.934097	0.88295	-3.91145
H	4.112107	2.204626	-4.39909
H	5.116674	0.750373	-4.27074
H	5.446211	2.156248	-3.22412
H	-2.92876	-4.59552	0.501273
H	-2.62626	-4.58754	-1.24574
H	-6.12318	-1.39328	-1.02393
H	-4.77671	-4.40997	-1.80818
H	-6.23604	-3.5897	-1.19838
H	-5.18931	-4.51102	-0.09036
H	-5.8158	1.371387	0.532867
H	-6.46487	0.786833	-1.0188
H	-5.12675	1.974093	-0.97043

H	-3.17817	3.662254	2.846093
H	-2.12897	5.183702	1.197195
H	-1.47452	4.327873	-1.03907
H	-4.32392	0.202278	2.025149
H	-1.92459	-0.20723	2.504658
H	-2.92977	-0.47792	3.960879
H	-1.96296	1.017015	3.792999
H	-4.16568	2.314789	4.253294
H	-5.14826	0.840785	4.221601
H	-5.51584	2.18037	3.103238
H	-1.80446	0.726301	-1.98152
H	-0.48938	3.407656	-2.72037
H	-0.23487	1.830821	-3.49243
H	0.257673	2.067628	-1.80198
H	-3.92843	1.649391	-2.8529
H	-2.67995	1.735917	-4.1147

DFT Table 7: Coordinates of the energy-optimized structure of 9.

Ni	1.930916	-1.07123	0.239879
Ni	-1.88281	-1.17543	-0.17473
O	0.665497	0.219444	-0.06823
O	-0.68306	0.188539	0.076895
N	0.714525	-2.46255	0.205565
N	3.176065	-2.44818	0.622712
N	3.238467	0.317266	0.195643
N	-0.60155	-2.50181	-0.05511
N	-3.0587	-2.63015	-0.48201
N	-3.2523	0.14995	-0.22492
C	1.171358	-3.72703	0.321982
C	2.626536	-3.81906	0.606687
C	4.462798	-2.28907	0.941882
C	4.525971	0.177141	0.52544
C	2.83412	1.590297	-0.32965
C	-0.99611	-3.79143	-0.10233

C	0.108683	-4.62221	0.133427
C	5.097783	-1.04172	0.926697
C	5.295434	-3.49301	1.324723
C	5.457449	1.365831	0.411893
C	2.222445	2.532502	0.523894
C	3.05756	1.8652	-1.69818
C	-2.4439	-3.97017	-0.38418
C	-4.34965	-2.55144	-0.81451
C	-4.52963	-0.06959	-0.55137
C	-2.90984	1.475348	0.206831
C	1.899211	3.788766	-0.0029
C	1.919568	2.19594	1.97521
C	2.724093	3.136789	-2.17735
C	3.587626	0.784567	-2.6298
C	-5.04232	-1.33633	-0.877
C	-5.1227	-3.81379	-1.12687
C	-5.51228	1.081603	-0.52168
C	-3.14903	1.837726	1.552702
C	-2.34867	2.383832	-0.7147
C	2.162238	4.097332	-1.3359
C	0.464796	2.518735	2.340866
C	2.90477	2.890663	2.930648
C	2.409104	0.01251	-3.25557
C	4.531912	1.319488	-3.71486
C	-2.88189	3.15639	1.936893
C	-3.62871	0.802785	2.56049
C	-2.09211	3.690844	-0.28216
C	-2.02641	1.961074	-2.13893
C	-2.37117	4.081501	1.025806
C	-2.41695	0.126117	3.231257
C	-4.59029	1.370065	3.613332
C	-0.58239	2.313964	-2.51962
C	-3.0306	2.554969	-3.14197
H	0.13495	-5.70633	0.163125
H	2.794994	-4.3248	1.574402
H	3.135124	-4.42786	-0.16271

H	6.14791	-1.021	1.20823
H	4.881176	-4.00011	2.209913
H	6.324029	-3.19301	1.551932
H	5.326182	-4.23508	0.51181
H	5.68189	1.568267	-0.64638
H	6.401559	1.167399	0.932228
H	5.005105	2.279722	0.81572
H	1.424931	4.531436	0.640316
H	1.904799	5.081858	-1.7301
H	2.888782	3.37711	-3.22805
H	2.052582	1.109315	2.084261
H	0.270122	3.601207	2.340085
H	0.239331	2.145566	3.351028
H	-0.23245	2.052333	1.63493
H	2.846517	3.985793	2.827058
H	3.942784	2.586002	2.732758
H	2.672538	2.635718	3.976391
H	4.153075	0.064926	-2.01928
H	1.764042	-0.41854	-2.47597
H	2.774832	-0.80337	-3.8976
H	1.791463	0.686496	-3.86755
H	4.000707	1.94552	-4.4475
H	4.982548	0.482918	-4.2681
H	5.344314	1.923347	-3.28385
H	-2.92717	-4.55776	0.417615
H	-2.58308	-4.53663	-1.32189
H	-6.08959	-1.38045	-1.16598
H	-4.67574	-4.3579	-1.97348
H	-6.16088	-3.57655	-1.38318
H	-5.13035	-4.50238	-0.2677
H	-5.73021	1.36392	0.51916
H	-6.45366	0.799901	-1.00755
H	-5.10584	1.977033	-1.00826
H	-3.0592	3.46372	2.967642
H	-2.16599	5.104185	1.346785
H	-1.65791	4.407898	-0.98023

H	-4.16557	0.01955	2.004127
H	-1.75066	-0.32399	2.480704
H	-2.74567	-0.66192	3.925914
H	-1.83163	0.865547	3.798123
H	-4.07968	2.059073	4.302644
H	-5.00793	0.553776	4.220272
H	-5.42574	1.915666	3.150357
H	-2.12006	0.865401	-2.1785
H	-0.42655	3.401381	-2.57302
H	-0.34114	1.897905	-3.50908
H	0.129369	1.909631	-1.79013
H	-4.05803	2.228028	-2.92597
H	-2.7853	2.237417	-4.16718

DFT Table 8: Coordinates of the energy-optimized structure of 16.

Ni	-1.75686	1.25239	0.152293
Ni	1.813274	1.105961	-0.28475
S	-0.02822	-0.07466	-0.05837
N	-0.57921	2.623605	-0.03837
N	0.731376	2.56592	-0.27974
N	-2.98943	2.706877	0.412159
N	-3.07615	-0.10641	0.240474
N	3.163598	2.443413	-0.58562
N	3.040209	-0.33611	-0.15452
C	-0.96686	3.913691	0.007777
C	-2.41875	4.06557	0.290037
C	-4.28285	2.599713	0.70962
C	-4.37272	0.102265	0.504814
C	-2.7077	-1.44619	-0.11671
C	1.218321	3.817825	-0.39425
C	0.159064	4.727044	-0.21805
C	-4.93108	1.360741	0.7774
C	-5.10846	3.838211	0.966102
C	-5.32951	-1.06875	0.478576

C	-2.37357	-2.37528	0.890523
C	-2.72588	-1.80998	-1.48086
C	2.684094	3.840817	-0.64201
C	4.465482	2.225879	-0.76399
C	4.365949	-0.23736	-0.31217
C	2.53782	-1.6065	0.271423
C	-2.02656	-3.67477	0.502175
C	-2.41146	-1.99973	2.362445
C	-2.40122	-3.12874	-1.81658
C	-3.09297	-0.80413	-2.56052
C	5.031553	0.950786	-0.6539
C	5.391374	3.379169	-1.07191
C	5.243742	-1.44784	-0.06758
C	2.598851	-1.94132	1.641722
C	2.009976	-2.49056	-0.69515
C	-2.04644	-4.05514	-0.83688
C	-0.99574	-1.93192	2.946401
C	-3.28695	-2.9616	3.182643
C	-1.85966	-0.39535	-3.38184
C	-4.21757	-1.31626	-3.47281
C	2.126917	-3.20019	2.028362
C	3.166744	-0.95847	2.657285
C	1.543643	-3.73478	-0.25413
C	1.965857	-2.09563	-2.16474
C	1.605015	-4.09076	1.091464
C	2.083461	-0.01341	3.202132
C	3.916727	-1.64728	3.803431
C	0.886173	-2.8434	-2.94697
C	3.326556	-2.26535	-2.86577
H	-2.92425	4.624621	-0.5182
H	-2.57811	4.640902	1.219279
H	0.200988	5.810675	-0.2476
H	-5.99108	1.378404	1.019102
H	-6.13929	3.567018	1.217603
H	-5.1302	4.495229	0.082903
H	-4.6934	4.429765	1.796947

H	-6.34275	-0.7423	0.737402
H	-5.0195	-1.85707	1.176211
H	-5.34967	-1.52948	-0.5192
H	3.200523	4.457308	0.115195
H	2.911894	4.291202	-1.62513
H	-1.74436	-4.40084	1.26591
H	-2.84861	-0.99339	2.431556
H	-2.41979	-3.4341	-2.86423
H	-3.4597	0.100101	-2.05527
H	6.107698	0.879274	-0.79784
H	6.418683	3.021906	-1.20013
H	5.384481	4.125375	-0.26226
H	5.08955	3.901018	-1.9933
H	6.221047	-1.30935	-0.544
H	4.788495	-2.37295	-0.43693
H	5.40853	-1.58207	1.012769
H	-1.78119	-5.07445	-1.12071
H	-1.02592	-1.61692	4.000583
H	-0.37894	-1.22503	2.379462
H	-0.50333	-2.91296	2.892913
H	-3.37203	-2.60669	4.220176
H	-2.84966	-3.97036	3.21119
H	-4.3018	-3.05159	2.769803
H	-2.12582	0.388925	-4.10622
H	-1.45889	-1.25361	-3.94001
H	-1.06289	-0.01315	-2.729
H	-4.5167	-0.53249	-4.18391
H	-5.10609	-1.60976	-2.89472
H	-3.89773	-2.18994	-4.06097
H	2.166217	-3.48937	3.078988
H	3.88992	-0.32514	2.124327
H	1.11605	-4.43108	-0.97388
H	1.714797	-1.02236	-2.18944
H	1.236091	-5.06544	1.413886
H	2.537116	0.759906	3.840804
H	1.346998	-0.56568	3.801798

H	1.546347	0.484309	2.383187
H	4.427216	-0.89663	4.424286
H	4.671566	-2.35466	3.428466
H	3.233658	-2.20414	4.462109
H	0.772975	-2.40092	-3.94677
H	-0.08011	-2.78772	-2.43416
H	1.143517	-3.90522	-3.08669
H	3.22169	-2.04165	-3.93813
H	3.688168	-3.30126	-2.77174

DFT Table 9: Coordinates of the energy-optimized structure of $\mathbf{2 3 .}$

Ni	1.922597	-1.1546	-0.1624
Ni	-2.05485	-1.0384	-0.13024
N	0.547142	-2.26638	-0.85391
N	-0.79862	-2.60423	-0.72457
N	3.036831	-0.07436	-0.72543
N	3.419759	-2.49422	-0.359779
N	-3.25249	0.197284	0.336386
N	-3.44257	-0.21015	0.768519
N	0.491884	0.160361	0.050452
N	-0.5774	-3.41436	-1.46125
C	0.925052	-3.58267	-1.60897
C	2.392489	-2.86472	-0.23983
C	4.244748	-0.55817	0.591737
C	4.648114	1.343029	0.143478
C	3.352978	-0.8591	1.989692
C	0.229586	1.029604	-1.0283
C	-0.27573	0.361478	-3.01697
C	2.938769	-1.48116	2.658918
C	1.305883	-3.43567	-1.24939
C	-1.27383	-4.1941	-1.74345
C	-0.20373	-1.91364	0.477871
C	4.985354	-4.20325	-0.49134

C	5.79433	0.383796	0.892943
C	3.010481	2.236692	1.187546
C	3.758037	1.814515	-1.13005
C	-1.04554	-0.89132	2.589991
C	0.253256	2.302089	-0.77515
C	-0.55198	0.643952	-2.3479
C	4.16488	0.840568	-2.22701
C	1.103114	-2.12945	3.873155
C	-2.7464	-3.60895	-1.12516
C	3.076363	3.609921	0.909415
C	2.568696	1.754327	2.567433
C	3.787114	3.19324	-1.35644
C	-4.4117	-2.60616	0.321263
C	-4.61137	-0.18285	0.866159
C	-3.26246	1.56421	-0.05609
C	-1.2362	-1.54451	3.805005
C	0.480848	3.184072	-1.82696
C	-0.29133	1.522301	-3.39746
C	5.232163	1.401195	-3.17446
C	-0.16951	-2.17242	4.454716
C	3.455213	4.087826	-0.34354
C	2.012432	2.876006	3.450959
C	3.648987	1.008913	3.37318
C	-5.01135	-1.5221	0.981373
C	-5.15781	-3.92121	0.316787
C	-5.60263	0.857136	1.342097
C	-2.87272	2.551353	0.872846
C	-3.47551	1.892495	-1.42159
C	0.212434	2.79998	-3.14314
C	-2.64898	3.855454	0.410226
C	-2.71345	2.262197	2.356373
C	-3.24386	3.208373	-1.83174
C	-3.97058	0.840432	-2.40472
C	-2.82179	4.183754	-0.92904
C	-1.25666	2.415546	2.803292
C	-3.61321	3.170719	3.212399

C	-3.72561	1.195735	-3.87399
C	-5.47034	0.541158	-2.21541
H	-0.23746	-5.17281	-2.20888
H	2.681828	-4.61515	-1.36198
H	2.706954	-3.4038	-2.65602
H	5.977297	-2.20688	0.812924
H	5.887914	-4.2321	-0.01337
H	5.037721	-4.39199	-1.56711
H	4.29944	-5.02878	-0.0848
H	6.577313	-0.14825	1.448033
H	5.483087	1.268962	1.454523
H	6.23635	0.738237	-0.05144
H	2.830098	4.325873	1.691744
H	3.494545	5.163287	-0.52707
H	4.085318	3.572585	-2.33324
H	1.753217	1.038912	2.387609
H	1.570938	2.442424	4.358555
H	1.23335	3.458873	2.944688
H	2.80725	3.568832	3.768521
H	3.229349	0.708289	4.343624
H	4.513691	1.661367	3.567072
H	3.998914	0.101829	2.871313
H	4.598489	-0.04534	-1.74158
H	3.222414	-0.41977	-3.7383
H	2.482063	1.196264	-3.56605
H	2.170299	-0.0544	-2.34748
H	2.30074	-1.44653	2.214629
H	5.582506	0.606615	-3.84871
H	6.101918	1.791197	-2.6255
H	4.83998	2.212126	-3.8063
H	-3.23312	-3.60461	-2.11924
H	-2.97447	-4.58475	-0.66622
H	-5.95678	-1.71122	1.484225
H	-6.08109	-3.83702	0.899473
H	-4.54824	-4.72859	0.751242
H	-5.42498	-4.22678	-0.70594

H	-6.62034	0.450292	1.328505
H	-5.56891	1.762986	0.72565
H	-5.37202	1.156447	2.374617
H	-2.33046	4.623308	1.117345
H	-2.62777	5.199679	-1.27572
H	-3.37969	3.476542	-2.87867
H	-3.01975	1.221182	2.529007
H	-1.13373	2.118667	3.854753
H	-0.94237	3.46538	2.710724
H	-0.58073	1.80323	2.196064
H	-3.56689	2.867858	4.269174
H	-4.66155	3.135768	2.887269
H	-3.28341	4.218437	3.152875
H	-3.41593	-0.08712	-2.17339
H	-3.94142	0.323085	-4.50705
H	-2.68993	1.503266	-4.05391
H	-4.38836	2.009695	-4.20639
H	-5.80144	-0.2016	-2.95668
H	-6.06332	1.456512	-2.36411
H	-5.69993	0.13995	-1.22254
H	1.950239	-2.60457	4.369483
H	-0.32405	-2.67993	5.407207
H	-2.23384	-1.55776	4.247321
H	-1.87755	-0.38752	2.104631
H	-0.95123	-0.35216	-2.53356
H	0.450485	2.600994	0.250304
H	0.869854	4.178216	-1.6114
H	0.397592	3.491092	-3.96646
H	-0.47482	1.20154	-4.42406

DFT Table 10: Coordinates of the energy-optimized structure of 24

Ni	-1.99681	1.042045	0.222707
Ni	1.946864	1.152917	-0.16484
N	-0.56431	-0.12766	0.082405
N	0.581821	-0.09477	-0.01574

N	-0.73312	2.429969	0.151236
N	0.611769	2.46874	-0.04033
N	-3.22989	2.46252	0.490402
N	-3.30637	-0.33344	0.194357
N	3.101644	2.645222	-0.38995
N	3.32514	-0.15347	-0.21781
C	-1.19046	3.69848	0.23197
C	-2.65739	3.81806	0.44923
C	-4.53058	2.32451	0.74399
C	-4.60745	-0.16354	0.445178
C	-2.86083	-1.62129	-0.24377
C	1.000427	3.761779	-0.0837
C	-0.11806	4.590642	0.086747
C	-5.17936	1.08154	0.748519
C	-5.36794	3.549169	1.032229
C	-5.54102	-1.35158	0.367266
C	-2.21105	-2.48014	0.66753
C	-3.02863	-1.97685	-1.60165
C	2.458104	3.966597	-0.29913
C	-1.76538	-3.72456	0.203873
C	-2.01008	-2.07403	2.117451
C	-2.58714	-3.23936	-2.01325
C	-3.61509	-0.98209	-2.59231
C	4.406794	2.586138	-0.65261
C	4.613024	0.093865	-0.47097
C	2.946025	-1.48892	0.130855
C	-1.96372	-4.11009	-1.11946
C	-0.603	-2.40429	2.627846
C	-3.08202	-2.69935	3.025838
C	-2.5151	-0.04121	-3.11531
C	-4.36382	-1.64346	-3.75418
C	5.119163	1.380021	-0.71359
C	5.176974	3.864072	-0.89303
C	5.604341	-1.04832	-0.46306
C	3.141928	-1.93341	1.457369
C	2.328706	-2.30851	-0.8377

Chapter 12. DFT CALCULATIONS

C	2.758713	-3.24045	1.779443
C	3.690628	-0.98805	2.516154
C	1.944372	-3.60258	-0.46383
C	2.096207	-1.80289	-2.25097
C	2.168586	-4.07224	0.828026
C	2.546717	-0.16227	3.129568
C	4.503231	-1.69654	3.605522
C	0.705653	-2.16672	-2.78107
C	3.194955	-2.29737	-3.20711
H	-0.14684	5.675206	0.102599
H	-2.86106	4.361621	1.38991
H	-3.122	4.409893	-0.36112
H	-6.24267	1.08647	0.976965
H	-4.98718	4.095572	1.909157
H	-6.4075	3.265451	1.227647
H	-5.35441	4.252033	0.184827
H	-5.74944	-1.61007	-0.68191
H	-6.49415	-1.11972	0.856329
H	-5.1032	-2.24434	0.829967
H	-1.25149	-4.39865	0.889706
H	-1.61644	-5.08566	-1.46215
H	-2.71491	-3.54158	-3.05278
H	-2.13644	-0.98142	2.164658
H	-0.44815	-3.48841	2.727755
H	-0.44672	-1.95829	3.621029
H	0.171398	-2.02097	1.953654
H	-3.04057	-3.79864	2.978598
H	-4.09291	-2.38401	2.733788
H	-2.92508	-2.39615	4.072328
H	-4.33348	-0.35392	-2.04609
H	-2.01928	0.483779	-2.28429
H	-2.94092	0.717659	-3.78913
H	-1.75002	-0.60635	-3.66672
H	-3.67941	-2.17932	-4.42869
H	-4.87799	-0.87842	-4.35359
H	-5.11575	-2.3629	-3.39779

Chapter 12. DFT CALCULATIONS

H	2.629881	4.551671	-1.22056
H	2.894173	4.553273	0.530795
H	6.179659	1.44969	-0.94477
H	4.764105	4.423302	-1.74708
H	6.229508	3.645059	-1.1022
H	5.129463	4.531426	-0.01867
H	5.83391	-1.35033	-0.94519
H	6.540853	-0.74501	-0.96857
H	5.205425	-1.93622	2.795305
H	2.905296	-3.60722	1.101456
H	1.866848	-5.08419	-1.1943
H	1.45618	-4.24835	2.011549
H	4.360209	-0.27626	2.355945
H	2.025113	0.422155	3.883489
H	2.932017	0.540744	3.61111
H	1.809879	-0.82099	4.247739
H	3.870079	-2.32664	4.255639
H	4.987829	-0.95387	3.173945
H	5.287209	-2.33636	-2.21122
H	2.163522	-0.70471	-2.93478
H	0.595613	-3.25004	-3.75107
H	0.53111	-1.67872	-2.09128
H	-0.08541	-1.84985	-2.88743
H	4.190408	-1.96055	-4.22422
	3.021744	-1.9145	-3.25316

DFT Table 11: Coordinates of the energy-optimized structure of 33.

Ni	2.072221	-1.01477	0.330816
Ni	-1.93204	-1.1715	-0.0289
O	0.473968	0.272267	0.495744
C	-0.68225	0.048727	0.373351
N	0.80256	-2.4024	0.230235
N	-0.54712	-2.45685	0.041999
N	3.321998	-2.41145	0.442811

Chapter 12. DFT CALCULATIONS

N	3.326317	0.381178	0.273639
N	-3.04575	-2.70326	-0.37514
N	-3.36529	0.095623	-0.18279
C	1.28507	-3.66295	0.206827
C	2.759778	-3.77159	0.382932
C	4.631666	-2.25823	0.632858
C	4.649497	0.234852	0.392423
C	2.798843	1.637469	-0.1603
C	-0.90608	-3.75571	-0.09873
C	0.232206	-4.56627	-8.4E-05
C	5.262318	-1.0043	0.630789
C	5.498283	-3.47797	0.842311
C	5.550081	1.435527	0.209803
C	2.210581	2.510378	0.781291
C	2.812497	1.941471	-1.54143
C	-2.35522	-4.00093	-0.33129
C	-4.34685	-2.68243	-0.66147
C	-4.63346	-0.19379	-0.48577
C	-3.01717	1.456309	0.10476
C	1.663308	3.71176	0.317869
C	2.161303	2.143653	2.254806
C	2.253248	3.155202	-1.95656
C	3.374988	0.947001	-2.54575
C	-5.09567	-1.49662	-0.72361
C	-5.07447	-3.97861	-0.93429
C	-5.63765	0.933004	-0.56648
C	-3.08082	1.915339	1.437485
C	-2.52501	2.278301	-0.93119
C	1.686225	4.037202	-1.03673
C	0.848188	2.566922	2.92339
C	3.369288	2.71142	3.019295
C	2.284064	-0.0368	-3.00332
C	4.045994	1.616228	-3.75086
C	-2.60128	3.199711	1.721018
C	-3.61837	1.03051	2.54978
C	-2.05153	3.553089	-0.59956

Chapter 12. DFT CALCULATIONS

C	-2.47681	1.783894	-2.36689
C	-2.08064	4.011706	0.715602
C	-2.47675	0.505412	3.433974
C	-4.68401	1.747183	3.391746
C	-1.06038	1.317467	-2.73752
C	-2.98597	2.835347	-3.36338
H	0.285431	-5.64744	-0.07515
H	2.995278	-4.33529	1.304545
H	3.207671	-4.33662	-0.4551
H	6.340142	-0.99769	0.779582
H	5.17237	-4.05518	1.721955
H	6.54235	-3.18285	0.992781
H	5.452385	-4.15808	-0.02242
H	5.688498	1.64738	-0.86191
H	6.537108	1.242004	0.64592
H	5.12536	2.34091	0.658636
H	1.196126	4.395279	1.026666
H	1.252343	4.977531	-1.37971
H	2.255755	3.413119	-3.01635
H	2.228955	1.045286	2.309072
H	0.776798	3.659902	3.028641
H	0.783889	2.13577	3.93283
H	-0.02189	2.229344	2.347083
H	3.396623	3.809848	2.947212
H	4.314652	2.31981	2.623018
H	3.312441	2.439675	4.084256
H	4.139912	0.351746	-2.02706
H	1.822143	-0.54076	-2.13901
H	2.710455	-0.81222	-3.65748
H	1.493283	0.488171	-3.55836
H	3.314447	2.129417	-4.39299
H	4.548471	0.859236	-4.37033
H	4.795203	2.357688	-3.43694
H	-2.49848	-4.5582	-1.27451
H	-2.77296	-4.63636	0.472347
H	-6.14951	-1.59834	-0.97296

Chapter 12. DFT CALCULATIONS

H	-4.63655	-4.50748	-1.79505
H	-6.13211	-3.79153	-1.14873
H	-5.01099	-4.66076	-0.07237
H	-5.73581	1.435537	0.406691
H	-6.62064	0.5546	-0.86865
H	-5.31343	1.700844	-1.2831
H	-2.62265	3.563895	2.749863
H	-1.69821	5.00388	0.958048
H	-1.64577	4.19426	-1.38289
H	-4.09204	0.158129	2.07794
H	-1.75754	-0.07519	2.839601
H	-2.8682	-0.14559	4.230154
H	-1.93206	1.3371	3.904125
H	-4.25624	2.59172	3.952146
H	-5.12565	1.055305	4.124303
H	-5.49405	2.142494	2.761885
H	-3.13805	0.907324	-2.43403
H	-0.31916	2.106163	-2.54249
H	-1.00925	1.041761	-3.80149
H	-0.76814	0.437815	-2.14812
H	-3.98029	3.209289	-3.08096
H	-3.0558	2.398739	-4.37022
H	-2.30716	3.698115	-3.42741

Chapter 13 Crystallography

Crystal data and details of the data collections are given in Table 50-Table 59. x-ray data were collected on a STOE IPDS II diffractometer (graphite monochromated Mo-K α radiation, $\lambda=0.71073 \AA$ A) by use of scans at $-140^{\circ} \mathrm{C}$. The structures were solved by SHELXT [147] and refined on F^{2} using all reflections with SHELXL-2013/14/16. ${ }^{[148]}$ Non-hydrogen atoms were refined anisotropically. Most hydrogen atoms were placed in calculated positions and assigned to an isotropic displacement parameter of $1.2 / 1.5 U_{\text {eq }}(\mathrm{C})$. Face-indexed absorption corrections were performed numerically with the program X-RED.[149]

The nickel bound hydrogen atoms in $\mathbf{3}$ were refined freely. In case of $\mathbf{4}$ a fixed isotropic displacement parameter of $0.08 \AA^{2}$ was applied. In case of the coordinating solvents, THF and $\mathrm{Et}_{2} \mathrm{O}$ occupy the same coordination site of the potassium atom.

Table 50: Crystal data and refinement details of $\mathbf{1 , 3}$ and 4.

Compound	$\begin{gathered} \mathbf{1} \\ \operatorname{pd} 40 \end{gathered}$	3 pd 127 b	$\begin{gathered} 4 \\ \text { pd } 184 \end{gathered}$
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{BrN}_{6} \mathrm{Ni}_{2}$	$\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{6} \mathrm{NaNi}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{71} \mathrm{H}_{105.58} \mathrm{KN}_{6} \mathrm{Ni}_{2} \mathrm{O}_{9}$
Formula weight	690.99	892.50	1343.70
T [K]	133(2)	133(2)	133(2)
Crystal size	$0.39 \times 0.29 \times 0.12$	$0.50 \times 0.45 \times 0.32$	$0.49 \times 0.36 \times 0.21$
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	P-1	C2/c
$a[\AA ̊]$	14.0090(4)	11.1496(5)	26.6234(4)
$b[\AA]$	10.6603(4)	13.0401(7)	23.4343(3)
$c[\AA]$	20.2858(6)	17.3856(8)	23.2487(3)
$\alpha\left[{ }^{\circ}\right]$	90	110.631(4)	90
$\beta\left[^{\circ}\right]$	97.172(2)	94.584(4)	94.7290(10)
$\gamma\left[{ }^{\circ}\right]$	90	98.545(4)	90
$V\left[\AA^{3}\right]$	3005.78(17)	2315.3(2)	14455.5(3)
Z	4	2	8
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.527	1.280	1.235
$F(000)$	1424	956	5765
$\mu\left[\mathrm{mm}^{-1}\right]$	2.613	0.866	0.635
$T_{\text {min }} / T_{\text {max }}$	0.4904 / 0.7882	0.6473 / 0.7971	0.8795 / 0.9837
θ range [${ }^{\circ}$]	1.465-26.774	1.699-26.830	1.159-25.688
hkl-range	$\begin{aligned} & \pm 17 \\ & \pm 13 \\ & \pm 25 \end{aligned}$	$\begin{gathered} -12-14 \\ \pm 16 \\ \pm 21 \end{gathered}$	$\begin{aligned} & \pm 32 \\ & \pm 28 \\ & \pm 28 \end{aligned}$
Measured refl.	38800	30911	82295
Unique refl. [$\left.R_{\text {int }}\right]$	6375 [0.0695]	9822 [0.0350]	13658 [0.0331]
Observed refl. (I > 2(I)	5206	7866	11503
Data / Res. / Param.	6375 / 0 / 369	9822 / 0 / 543	13658 / 283 / 938
Goodness-of-fit (F^{2})	1.060	0.991	1.088
$R_{1}, w R_{2}(I>2(I)$	0.0405, 0.0842	0.0355, 0.0854	0.0402, 0.0950
$R_{1}, w R_{2}$ (all data)	0.0562, 0.0887	0.0491, 0.0896	0.0521, 0.1020
Resid. el. dens. [e/ \AA^{3}]	-0.476 / 0.706	-0.277 / 0.582	-0.399 / 0.638

Table 51: Crystal data and refinement details of 6, 8 and 9.

Compound			$\begin{gathered} 9 \\ \text { pd } 135 \mathrm{~b} \end{gathered}$
Empirical formula	$\mathrm{C}_{78} \mathrm{H}_{107} \mathrm{KN}_{12} \mathrm{Ni}_{4} \mathrm{O}_{3}$	$\mathrm{C}_{79} \mathrm{H}_{117} \mathrm{KN}_{6} \mathrm{Ni}_{2} \mathrm{O}_{13}$	$\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{2.5}$
Formula weight	1534.69	1515.30	791.34
T [K]	133(2)	133(2)	133 (2)
Crystal size	$0.42 \times 0.18 \times 0.06$	$0.50 \times 0.22 \times 0.20$	$0.48 \times 0.22 \times 0.21$
Crystal system	Triclinic	Orthorhombic	Monoclinic
Space group	P-1	Pbcm	$P 2_{1} / \mathrm{c}$
$a[\AA]$	11.1186(5)	11.2912(2)	17.3032(5)
$b[\AA]$	15.8136(8)	25.8683(4)	14.2469(4)
$c[A ̊]$	23.5352(12)	27.1074(4)	17.1692(5)
$\alpha\left[{ }^{\circ}\right]$	73.085(4)	90	90
$\beta\left[^{\circ}\right]$	86.315(4)	90	113.291(2)
$\gamma\left[{ }^{\circ}\right]$	69.691(4)	90	90
$V\left[\AA^{3}\right]$	3709.8(3)	7917.6(2)	3887.6(2)
Z	2	4	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.374	1.271	1.352
$F(000)$	1628	3248	1684
$\mu\left[\mathrm{mm}^{-1}\right]$	1.112	0.592	1.013
$T_{\text {min }} / T_{\text {max }}$	0.5509 / 0.7771	0.6134 / 0.8007	0.5050/0.8761
θ range [${ }^{\circ}$]	1.433-26.737	1.502-25.722	1.920-26.802
hkl-range	$\begin{gathered} -14-13 \\ -19-20 \\ \pm 29 \end{gathered}$	$\begin{gathered} \pm 13 \\ \pm 31 \\ -32-30 \end{gathered}$	$\begin{aligned} & \pm 21 \\ & \pm 18 \\ & \pm 21 \end{aligned}$
Measured refl.	38831	65467	53345
Unique refl. [$\left.R_{\text {int }}\right]$	15680 [0.0948]	7668 [0.0468]	8239 [0.0475]
Observed refl. ($I>2(I)$)	8841	6102	6848
Data / Res. / Param.	15680 / 29 / 940	7668 / 145 / 577	8239 / 7 / 508
Goodness-of-fit (F^{2})	0.863	1.114	1.027
$R_{1}, w R_{2}(I>2(I))$	0.0513, 0.0978	0.0418, 0.0994	0.0347, 0.0776
$R_{1}, w R_{2}$ (all data)	0.1098, 0.1141	0.0600, 0.1144	0.0477, 0.0817
Resid. el. dens.	-0.683/0.467	-0.279/0.457	-0.521/0.894

Table 52: Crystal data and refinement details of 11, 12 and 13

Compound	$\begin{gathered} 11 \\ \mathrm{pd} 175 \end{gathered}$	$\begin{gathered} 12 \\ \text { pd } 153 \mathrm{~d} \end{gathered}$	13 $p d 153 b$
Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{1.5}$	$\mathrm{C}_{51} \mathrm{H}_{77} \mathrm{KN}_{6} \mathrm{Ni}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{0.5} \mathrm{~S}$
Formula weight	776.35	1042.82	792.41
$T[\mathrm{~K}]$	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.50 \times 0.42 \times 0.32$	$0.45 \times 0.23 \times 0.14$	$0.50 \times 0.35 \times 0.24$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$
$a[\AA]$	18.3096(6)	17.3254(11)	17.2715(5)
$b[\AA]$	13.9053(5)	15.5369(6)	13.9903(4)
$c[\AA]$	16.6162(6)	20.4719(12)	17.3028(6)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[^{\circ}\right]$	113.902(2)	109.707(4)	112.467(2)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	3867.7(2)	5187.9(5)	3863.6(2)
Z	4	4	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.333	1.335	1.362
$F(000)$	1656	2224	1688
$\mu\left[\mathrm{mm}^{-1}\right]$	1.015	0.933	1.068
$T_{\text {min }} / T_{\text {max }}$	0.4508/0.6844	0.5016 / 0.8051	0.6070 / 0.8085
θ range [${ }^{\circ}$]	1.904-26.819	1.336-25.839	1.934-26.764
$h k l-r a n g e$	$\begin{gathered} \hline-20-23 \\ \pm 17 \\ -21-20 \end{gathered}$	$\begin{aligned} & \pm 21 \\ & \pm 18 \\ & \pm 24 \end{aligned}$	$\begin{gathered} -19-21 \\ \pm 17 \\ \pm 21 \end{gathered}$
Measured refl.	40322	37636	33399
Unique refl. [$R_{\text {int }}$]	8214 [0.0526]	9830 [0.1421]	8176 [0.0405]
Observed refl. (I > 2(I))	6476	5586	6789
Data / Res. / Param.	8214 / 73 / 554	9830 / 185 / 684	8176/10/503
Goodness-of-fit (F^{2})	0.986	1.074	1.010
$R_{1}, w R_{2}(I>2(I))$	0.0425, 0.0995	0.0703, 0.1455	0.0300, 0.0664
$R_{1}, w R_{2}$ (all data)	0.0595, 0.1057	$0.1475,0.1857$	0.0423, 0.0698
Resid. el. dens. [e/A ${ }^{3}$]	-0.376/0.658	-0.539/1.194	-0.256/0.371

Table 53: Crystal data and refinement details of $\mathbf{1 4 , 1 5}$ and 16.

Compound	$\begin{gathered} 14 \\ \text { pd } 170 \mathrm{~b} \end{gathered}$	$\begin{gathered} 15 \\ \text { pd } 243 \end{gathered}$	$\begin{gathered} 16 \\ \text { pd } 222 \end{gathered}$
Empirical formula	$\mathrm{C}_{51} \mathrm{H}_{77} \mathrm{KN}_{6} \mathrm{Ni}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{44.8} \mathrm{H}_{66.4} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{0.6} \mathrm{~S}$	$\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{0.5} \mathrm{~S}$
Formula weight	1010.76	848.12	791.40
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.50 \times 0.49 \times 0.46$	$0.37 \times 0.14 \times 0.13$	$0.30 \times 0.10 \times 0.070$
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	P-1	$P-1$	$P 2_{1} / \mathrm{c}$
$a[\AA]$	12.9841(6)	12.1569(5)	17.2564(4)
$b[\AA]$	13.4180(6)	13.2965(5)	14.0118(2)
$c[\AA]$	18.0609(8)	14.2127(6)	17.2717(4)
$\alpha\left[{ }^{\circ}\right]$	75.444(4)	86.865(3)	90
$\beta\left[^{\circ}\right]$	74.712(4)	70.848(3)	112.378(2)
$\gamma\left[{ }^{\circ}\right]$	62.255(3)	85.265(3)	90
$V\left[\AA^{3}\right]$	2655.6(2)	2161.91(16)	3861.68(15)
Z	2	2	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.264	1.303	1.361
$F(000)$	1080	908	1684
$\mu\left[\mathrm{mm}^{-1}\right]$	0.871	0.959	1.068
$T_{\text {min }} / T_{\text {max }}$	$0.6731 / 0.7859$	0.4983 / 0.7187	0.5630 / 0.8699
θ range [${ }^{\circ}$]	1.182-25.829	1.517-26.945	1.933-26.787
hkl-range	$\begin{gathered} -13-15 \\ \pm 16 \\ \pm 21 \end{gathered}$	$\begin{gathered} \pm 15 \\ \pm 16 \\ -18-17 \end{gathered}$	$\begin{aligned} & \pm 21 \\ & \pm 17 \\ & \pm 21 \end{aligned}$
Measured refl.	31554	30771	46739
Unique refl. [$\left.R_{\text {int }}\right]$	10012 [0.0258]	9177 [0.0313]	8190 [0.0410]
Observed refl. (I > 2(I)	8477	7142	6505
Data / Res. / Param.	10012/336/715	9177 / 90 / 586	8190 / 5 / 499
Goodness-of-fit (F^{2})	1.060	1.019	1.122
$R_{1}, w R_{2}(I>2(I))$	0.0386, 0.1115	0.0400, 0.1005	0.0380, 0.0861
$R_{1}, w R_{2}$ (all data)	0.0484, 0.1201	0.0587, 0.1117	0.0589, 0.0983
Resid. el. dens. [e/ $\left./ \AA^{3}\right]$	-0.479 / 0.874	-0.800 / 1.066	-0.381 / 1.211

Table 54: Crystal data and refinement details of 17,18 and 19.

Compound	$\begin{gathered} \mathbf{1 7} \\ \text { pd } 43 \end{gathered}$	$\begin{gathered} \mathbf{1 8} \\ \text { pd } 68 \end{gathered}$	$\begin{gathered} 19 \\ \text { pd } 194 \mathrm{~b} \end{gathered}$
Empirical formula	$\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{1.50}$	$\mathrm{C}_{63} \mathrm{H}_{95} \mathrm{KN}_{8} \mathrm{Ni}_{2} \mathrm{O}_{4.50}$	$\mathrm{C}_{81} \mathrm{H}_{119} \mathrm{KN}_{8} \mathrm{Ni}_{2} \mathrm{O}_{10}$
Formula weight	938.58	1192.98	1521.35
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.48 \times 0.15 \times 0.12$	$0.50 \times 0.48 \times 0.38$	$0.30 \times 0.15 \times 0.14$
Crystal system	Triclinic	Triclinic	Orthorhombic
Space group	P-1	P-1	Pbca
$a[\AA]$	11.7268(5)	14.7187(6)	22.9237(4)
$b[\AA]$	14.1109(6)	14.8852(6)	25.1977(6)
$c[A ̊]$	16.1664(7)	17.8081(9)	27.7992(5)
$\alpha\left[{ }^{\circ}\right]$	105.000(3)	96.053(4)	90
$\beta\left[^{\circ}\right]$	93.729(4)	103.644(4)	90
$\gamma\left[{ }^{\circ}\right]$	111.015(3)	118.674(3)	90
$V\left[\AA^{3}\right]$	2374.87(18)	3215.3(3)	16057.5(6)
Z	2	2	8
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.313	1.232	1.259
$F(000)$	1004	1280	6528
$\mu\left[\mathrm{mm}^{-1}\right]$	0.840	0.701	0.582
$T_{\text {min }} / T_{\text {max }}$	0.7430 / 0.9274	0.5473 / 0.8059	0.7437 / 0.8746
θ range [${ }^{\circ}$]	1.324-26.759	1.217-25.687	1.407-25.804
hkl-range	$\begin{gathered} -13-14 \\ \pm 17 \\ \pm 20 \end{gathered}$	$\begin{aligned} & \pm 17 \\ & \pm 18 \\ & \pm 21 \end{aligned}$	$\begin{gathered} -26-28 \\ -30-28 \\ \pm 33 \end{gathered}$
Measured refl.	34424	40089	97945
Unique refl. [$\left.R_{\text {int }}\right]$	10071 [0.0526]	12134 [0.0783]	15177 [0.0950]
Observed refl. (I > 2(I)	7112	8452	10105
Data / Res. / Param.	10071 / 129 / 669	12134 / 661 / 981	15177 / 63 / 981
Goodness-of-fit (F^{2})	0.964	0.969	1.090
$R_{1}, w R_{2}(I>2(I))$	0.0493, 0.1108	0.0518, 0.1290	0.0552, 0.1049
$R_{1}, w R_{2}$ (all data)	0.0810, 0.1213	0.0795, 0.1389	0.1040, 0.1271
Resid. el. dens. [e/ \AA^{3}]	-0.506 / 0.667	-0.385 / 0.712	-0.296 / 0.472

Table 55: Crystal data and refinement details of 22, 23 and 24.

Compound	$\begin{gathered} 22 \\ \mathrm{pd} 210 \end{gathered}$	$\begin{gathered} 23 \\ \text { pd } 198 \end{gathered}$	
Empirical formula		$\mathrm{C}_{57} \mathrm{H}_{77} \mathrm{~N}_{8} \mathrm{Ni}_{2}$	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{0.5}$
Formula weight		991.68	788.37
T [K]	133.(2)	133(2)	133(2)
Crystal size [mm^{3}]		$0.24 \times 0.20 \times 0.14$	$0.27 \times 0.22 \times 0.20$
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	P-1	$P 2_{1} / \mathrm{c}$
$a[\AA]$	14.990(3)	11.0702(5)	17.3031(7)
$b[\AA]$	23.095(5)	14.2193(7)	14.1567(7)
$c[\AA ̊]$	25.016(5)	17.8105(8)	17.4780(8)
$\alpha\left[{ }^{\circ}\right]$	90	75.272(4)	90
$\beta\left[^{\circ}\right]$	92.60(3)	74.083(4)	112.838(3)
$\gamma\left[{ }^{\circ}\right]$	90	74.102(4)	90
$V\left[\AA^{3}\right]$		2543.9(2)	3945.7(3)
Z		2	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$		1.295	1.327
$F(000)$		1062	1680
$\mu\left[\mathrm{mm}^{-1}\right]$		0.786	0.996
$T_{\text {min }} / T_{\text {max }}$		0.8589 / 0.9370	$0.7621 / 0.8822$
θ range [${ }^{\circ}$]		1.518-26.866	1.915-26.874
hkl-range		$\begin{gathered} -13-14 \\ \pm 18 \\ \pm 22 \end{gathered}$	$\begin{gathered} -21-20 \\ \pm 17 \\ \pm 22 \\ \hline \end{gathered}$
Measured refl.		30736	35871
Unique refl. [$\left.R_{\text {int }}\right]$		10757 [0.0329]	8405 [0.0743]
Observed refl. ($I>2(I)$)		8351	5608
Data / Res. / Param.		10757 / 0 / 618	8405 / 162 / 542
Goodness-of-fit (F^{2})		1.114	1.049
$R_{1}, w R_{2}(I>2(I))$		0.0467, 0.1003	0.0623, 0.1098
$R_{1}, w R_{2}$ (all data)		0.0721, 0.1170	0.1080, 0.1230
Resid. el. dens. [e/ \AA^{3}]		-0.311/0.627	-0.377 / 0.474

Table 56: Crystal data and refinement details of 25, 26 and 27.

Compound	$\begin{gathered} 25 \\ \operatorname{pd} 114 \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{dm} 266 \end{gathered}$	$\begin{gathered} 27 \\ \text { pd 79b } \end{gathered}$
Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{0.50}$	$\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{Ni}_{2}$	$\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{0.50}$
Formula weight	788.37	739.32	790.39
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.27 \times 0.22 \times 0.20$	$0.25 \times 0.14 \times 0.12$	$0.50 \times 0.50 \times 0.32$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	C2/c	$P 2_{1} / \mathrm{c}$
$a[\AA]$	17.3031(7)	18.4847(13)	17.2013(9)
b [\AA]	14.1567(7)	16.4274(9)	14.2468(7)
$c[\AA]$	17.4780(8)	13.6837(9)	17.4667(10)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[^{\circ}\right.$]	112.838(3)	117.818(5)	112.975(4)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	3945.7(3)	3674.9(4)	3940.9(4)
Z	4	4	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.327	1.336	1.332
$F(000)$	1680	1576	1688
$\mu\left[\mathrm{mm}^{-1}\right]$	0.996	1.062	0.997
$T_{\text {min }} / T_{\text {max }}$	0.7621 / 0.8822	0.7541 / 0.8962	0.5259 / 0.7449
θ range [${ }^{\circ}$]	1.915-26.874	1.757-26.859	1.910-26.810
$h k l-r a n g e$	$\begin{gathered} \hline-21-20, \\ \pm 17 \\ \pm 22 \end{gathered}$	$\begin{gathered} \pm 23 \\ \pm 20 \\ -17-14 \end{gathered}$	$\begin{aligned} & \pm 21 \\ & \pm 18 \\ & \pm 22 \end{aligned}$
Measured refl.	35871	23469	54479
Unique refl. [$R_{\text {int }}$]	8405 [0.0743]	3908 [0.0660]	8355 [0.0799]
Obs. Refl. ($I>2 \sigma(I)$)	5608	3142	6583
Data / Res. / Param.	8405 / 162 / 542	3908 / 1/228	8355 / 77 / 511
Goodness-of-Fit (F^{2})	1.049	1.134	0.958
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0623, 0.1098	$0.0516,0.0971$	0.0397, 0.0929
$R_{1}, w R_{2}$ (all data)	0.1080, 0.1230	0.0727, 0.1035	0.0564, 0.0982
Resid. el. dens. [e/ $\left.{ }^{3}{ }^{3}\right]$	-0.377 / 0.474	-0.401 / 0.483	-0.442 / 0.715

Table 57: Crystal data and refinement details of 28, 31 and 33.

Compound	$\begin{gathered} 28 \\ \text { pd } 144 \mathrm{~d} \end{gathered}$	$\begin{gathered} 31 \\ \text { pd } 246 \end{gathered}$	$\begin{gathered} 33 \\ \text { pd } 193 \end{gathered}$
Empirical formula	$\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{BF}_{4} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{57} \mathrm{H}_{91} \mathrm{KN}_{10} \mathrm{Ni}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{1.50}$
Formula weight	986.36	1168.91	787.35
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.28 \times 0.20 \times 0.19$	$0.50 \times 0.49 \times 0.19$	$0.37 \times 0.29 \times 0.20$
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1}$	Pbca	$P 2_{1} / \mathrm{c}$
$a[\AA ̊]$	15.0277(3)	20.3044(3)	17.1690(8)
$b[\AA]^{\prime}$	16.6068(7)	20.9868(3)	14.2075(5)
$c[\AA]$	19.4215(4)	27.9574(6)	17.4227(9)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	95.325(2)	90	112.598(4)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	4826.0(2)	11913.3(4)	3923.6(3)
Z	4	8	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.358	1.303	1.333
$F(000)$	2096	5008	1676
$\mu\left[\mathrm{mm}^{-1}\right]$	0.842	0.758	1.002
$T_{\text {min }} / T_{\text {max }}$	0.7243 / 0.8651	0.7237 / 0.9366	0.6735 / 0.8294
θ range [${ }^{\circ}$]	1.616-26.787	1.457-25.738	1.912-26.829
$h k l-$ range	$\begin{gathered} \pm 18 \\ \pm 20 \\ -23-24 \end{gathered}$	$\begin{gathered} -23-24 \\ \pm 25 \\ \pm 34 \end{gathered}$	$\begin{gathered} -21-19 \\ \pm 17 \\ -22-21 \end{gathered}$
Measured refl.	51621	110797	34317
Unique refl. [$\left.R_{\text {int }}\right]$	20447 [0.0917]	11288 [0.0646]	8297 [0.0454]
Obs. Refl. (I > $2 \sigma(I)$)	15245	9156	6381
Data / Res. / Param.	20447 / 223 / 1270	11288 / 2 / 703	8297 / 59 / 508
Goodness-of-Fit (F^{2})	0.976	1.088	1.027
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0589, 0.1232	0.0441, 0.1057	0.0473, 0.1022
$R_{1}, w R_{2}$ (all data)	0.0831, 0.1328	0.0610, 0.1175	0.0705, 0.1099
Resid. el. dens. [e/ \AA^{3}]	-0.752 / 0.602	-0.538 / 0.777	-0.324 / 0.990

Table 58: Crystal data and refinement details of 35, 36 and 37

Compound	$\begin{gathered} 35 \\ \text { pd } 72 \end{gathered}$	$\begin{gathered} 36 \\ \text { pd } 82-2 \end{gathered}$	$\begin{gathered} 37 \\ \text { pd } 126 \mathrm{~b} \end{gathered}$
Empirical formula	$\mathrm{C}_{55} \mathrm{H}_{53} \mathrm{BrCl}_{8} \mathrm{~N}_{6} \mathrm{Ni}_{2}$	$\mathrm{C}_{51} \mathrm{H}_{45} \mathrm{KN}_{6} \mathrm{Ni}_{2}$	$\mathrm{C}_{59} \mathrm{H}_{61.25} \mathrm{~N}_{6} \mathrm{NaNi}_{2} \mathrm{O}_{2}$
Formula weight	1278.96	898.45	1026.80
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.50 \times 0.50 \times 0.26$	$0.23 \times 0.21 \times 0.09$	$0.5 \times 0.49 \times 0.22$
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1 / n}$	$P-1$
$a[\AA ̊]$	13.2136(6)	16.8007(11)	14.2900(3)
$b[\AA]$	17.6293(5)	15.0508(7)	18.5010(4)
$c[\AA]$	24.0942(11)	17.0678(10)	19.5019(5)
$\alpha\left[{ }^{\circ}\right]$	90	90	80.688(2)
$\beta\left[^{\circ}\right]$	102.685(4)	106.969(5)	82.043(2)
$\gamma\left[{ }^{\circ}\right]$	90	90	81.867(2)
$V\left[\AA^{3}\right]$	5475.7(4)	4127.9(4)	5001.4(2)
Z	4	4	4
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.551	1.446	1.364
$F(000)$	2608	1872	2161
$\mu\left[\mathrm{mm}^{-1}\right]$	1.852	1.058	0.812
$T_{\text {min }} / T_{\text {max }}$	$0.3418 / 0.7380$	0.6056 / 0.8593	0.5170 / 0.7360
θ range [${ }^{\circ}$]	1.444-25.718	1.496-26.819	1.432-26.959
hkl-range	$\begin{gathered} \pm 16 \\ -21-18 \\ -28-29 \end{gathered}$	$\begin{gathered} -20-21 \\ -18-19 \\ \pm 21 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 18 \\ & \pm 23 \\ & \pm 24 \end{aligned}$
Measured refl.	38697	53223	70438
Unique refl. [$\left.R_{\text {int }}\right]$	10327 [0.0567]	8792 [0.1400]	21215 [0.0203]
Observed refl. ($I>2(I)$)	8494	5294	17846
Data / Res. / Param.	10327 / 0 / 681	8792 / 0 / 559	21215 / $57 / 1314$
Goodness-of-fit (F^{2})	1.050	1.009	1.036
$R_{1}, w R_{2}(I>2(I))$	0.0393, 0.0863	0.0643, 0.1002	0.0327, 0.0809
$R_{1}, w R_{2}$ (all data)	0.0539, 0.0913	0.1253, 0.1155	0.0432, 0.0873
Resid. el. dens. [e/ \AA^{3}]	-0.492 / 0.668	-0.378 / 0.482	-0.512 / 0.620

Table 59: Crystal data and refinement details of 38, 39 and 40.

Compound	$\begin{gathered} 38 \\ \text { pd } 126 \end{gathered}$	$\begin{gathered} 39 \\ \text { pd } 82 \end{gathered}$	$\begin{gathered} \mathbf{4 0} \\ \text { pd } 130 \mathrm{c} \end{gathered}$
Empirical formula	$\mathrm{C}_{67.25} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{NaNi}_{2} \mathrm{O}_{3.75}$	$\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{53} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{Ni}_{2} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	1172.78	948.46	1080.52
T [K]	133(2)	133(2)	133(2)
Crystal size [mm^{3}]	$0.44 \times 0.21 \times 0.19$	$0.50 \times 0.41 \times 0.32$	$0.50 \times 0.45 \times 0.34$
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	$P 2_{1} / \mathrm{c}$	P-1
$a[\AA ̊]$	12.7288(7)	14.8186(6)	13.3477(5)
$b[\AA ̊]$	15.5000(7)	20.5006(5)	13.6456(5)
$c[A ̊]$	17.7274(9)	15.9398(6)	16.3846(6)
$\left.\alpha{ }^{\circ}{ }^{\circ}\right]$	112.663(4)	90	95.582(3)
$\beta\left[^{\circ}\right]$	92.988(4)	110.434(3)	105.945(3)
$\gamma\left[{ }^{\circ}\right]$	99.314(4)	90	115.768(3)
$V\left[\AA^{3}\right]$	3159.7(3)	4537.6(3)	2501.87(17)
Z	2	4	2
$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.233	1.388	1.434
$F(000)$	1245	1992	1124
$\mu\left[\mathrm{mm}^{-1}\right]$	0.653	0.881	0.859
$T_{\text {min }} / T_{\text {max }}$	0.7802 / 0.9144	0.6259 / 0.8043	$0.6051 / 0.7239$
θ range [${ }^{\circ}$]	1.452-26.874	1.466-26.846	1.335-26.923
hkl-range	$\begin{aligned} & \pm 16 \\ & \pm 19 \\ & \pm 22 \end{aligned}$	$\begin{gathered} \pm 18 \\ -23-25 \\ \pm 20 \end{gathered}$	$\begin{gathered} \pm 16 \\ -17-16, \\ \pm 20 \end{gathered}$
Measured refl.	41104	58690	34813
Unique refl. [$\left.R_{\text {int }}\right]$	13405 [0.0595]	9634 [0.0677]	10594 [0.0242]
Observed refl. (I > 2(I)	8722	7728	9326
Data / Res. /Param.	13405 / 219 / 863	9634/75/640	10594 / 0 / 653
Goodness-of-fit (F^{2})	0.957	1.133	1.038
$R_{1}, w R_{2}(I>2(I))$	0.0490, 0.1066	0.0555, 0.1255	0.0291, 0.0710
$R_{1}, w R_{2}$ (all data)	0.0903, 0.1192	$0.0738,0.1328$	0.0361, 0.0763
Resid. el. dens. [e/ \AA^{3}]	-0.401 / 0.557	-0.754 / 0.548	-0.478 / 0.880

Chapter 14 Appendix

ESI-MS, NMR, IR, UV-Vis Spectra, SQUID and X-ray structures

Figure A1: ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectrum of IV in CDCl_{3}.

Figure A2: ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectrum of VIII in CDCl_{3}.

Figure A3: ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectrum of $\mathbf{H}_{3} \mathbf{L}^{\mathbf{3}}$ in CDCl_{3}.

Figure A4: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ (bottom), $\mathbf{2}+\mathrm{NaBArF}$ (middle), $\mathbf{3}$ (top) in THF- d_{8}. The Ni-H resonance in the Na / K mixture appears as a rapid average of that in 2 and 3.

Figure A5: $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{2}$. The solid red lines represent the best fit with $P I=5.4 \%$ (S $=1$) and $T I P=60^{*} 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.

Figure A6: Variable temperature ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of $4 \cdot \mathrm{in}$ THF- d_{8}. The broad peaks show a $1 / \mathrm{T}$ (Curie) behavior indicating a paramagnetic species.

Figure A7: $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{4}$ for different sample preparation.

Figure A8: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of 6 in $\mathrm{THF}-\mathrm{d}_{8}$.

Figure A9: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}(400 \mathrm{MHz})$ spectra of 6 in THF- d_{8}.

Figure A10: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOSY (400 MHz) spectra of $\mathbf{6}$ in THF- d_{8}.

Figure A11: Variable temperatures ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of 8 in THF-d 8 .

$\begin{array}{lll} \\ i 5 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15\end{array}$
Figure A12: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz) spectrum of $\mathbf{8}$ in THF-d d_{8}

Figure A13: ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HSQC spectrum of 8 in THF-d 8 .

Figure A14: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}(400 \mathrm{MHz})$ spectrum of $\mathbf{8}$ in THF- d_{8}.

Figure A15: ESI mass spectrum of 9 in THF: 792.6 (100) $[\mathrm{M}+\mathrm{K}]^{+}, 776.4$ (20) $[\mathrm{M}+\mathrm{Na}]^{+}, 754.3(7)[\mathrm{M}+\mathrm{H}]^{+}$. The inset shows the experimental (top) and simulated (bottom). Isotopic distribution pattern for $[\mathrm{M}+\mathrm{K}]^{+}$.

Figure A16: ESI mass spectrum of $\mathbf{9}-{ }^{18} \mathbf{O}_{\mathbf{2}}$ in THF: 792.6 (100) $[\mathrm{M}+\mathrm{K}]^{+}\left\{{ }^{16} \mathrm{O}_{2}\right\}, 796.6$ (100) $[\mathrm{M}+\mathrm{K}]^{+}\left\{{ }^{18} \mathrm{O}_{2}\right\}$. The inset shows the experimental (top) and simulated (bottom). Isotopic distribution pattern for $[\mathrm{M}+\mathrm{K}]^{+}$.

Figure A17. ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of 11 in THF-d 8 .

Figure A18: Comparison of the IR spectra of $\mathbf{1 1}$ and 11-0D in solid state.

Figure A19: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of $\mathbf{1 2}$ in THF-d ${ }_{8}$.

Figure A20: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOSY (400 MHz) spectrum of $\mathbf{1 2}$ in THF- d_{8}.

Figure A21: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}(400 \mathrm{MHz})$ spectrum of $\mathbf{1 2}$ in THF- d_{8}. The correlation resonances between the isopropyl CH and CH_{3} group are marked.

Figure A22: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY $(300 \mathrm{MHz})$ spectrum of 13 in CDCl_{3}

Figure A23: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}(300 \mathrm{MHz})$ spectrum of 13 in CDCl_{3}

Figure A24: ATR-IR spectrum of 13 in crystalline material.

Figure A25: ATR-IR spectrum of 13-SD in solide state.

Figure A26: Comparison of the FT-IR spectra of the complex 13 and 13-SD in the range 2600-1700 cm^{-1}.

Figure A27: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of 14 in THF- $\mathrm{d}_{8}(400 \mathrm{MHz})$.

Figure A28: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (400 MHz) spectrum of 14 in THF- d_{8}.

Figure A29: ATR-IR spectrum of 14 in crystalline material.

Figure A30: ATR-IR spectrum of 16 in crystalline material.

Figure A31: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 7}$ in THF- d_{8}.

Figure A32: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY spectrum of spectra of $\mathbf{1 7}$ in THF- d_{8}.

Figure A33: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of 18 in THF- d_{8}.

Figure A34: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COESY (400 MHz) spectra of $\mathbf{1 8}$ in THF-d d_{8}.

Figure A35: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY (400 MHz) spectra of $\mathbf{1 8}$ in THF- d_{8}.

Figure A36: VT ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{1 8}$ in the range of $0-7.5 \mathrm{ppm}$ in THF-d ${ }_{8}$.

Figure A37: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of 19 in THF-d8.

Figure A38: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ NOESY (400 MHz) spectrum of 19 in THF-d ${ }_{8}$.

Figure A39: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}(400 \mathrm{MHz})$ spectrum of 19 in THF- d_{8}.

Figure A40: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of 19 in THF- d_{8}.

Figure A41: ESI-MS (+) of 19: (inset) experiment (upper) and simulated (lower) isotopic distribution pattern for the peak pattern around $\mathrm{m} / \mathrm{z}=665.46$ characteristic for the $\left[\mathrm{L}^{1} \mathrm{Ni}+2 \mathrm{H}\right]^{+}$.

Table A1: GC-calibration plot data.

$\mathrm{V}_{\mathrm{H} 2} / \mathrm{mL}$	Intergration of H_{2} peak	Intergration of CH_{4} peak	Integration ratio of $\mathrm{H}_{2}: \mathrm{CH}_{4}$
0.1	6588	10811	0.609
0.2	16539	13161	1.257
0.4	28232	12081	2.337
0.8	46748	9613	4.863

Table A2: Hydrogen detection data.

$\mathbf{2} / \mathrm{mmol}$	H_{2} Detected (mL)	Yield
0.02	$\sim 0.63(0.674)$	140.3%

Figure A42: Hydrogen detection data for synthesis of 24.

Figure A43: $\chi_{\mathrm{m}} T$ vs. T measurement in the temperature range of $2-295 \mathrm{~K}$ at 0.5 T for solid samples of $\mathbf{2 4}$.

Figure A44: VT ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of $\mathbf{2 5}$ in THF-d d_{8}.

Figure A45: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (400 MHz) spectra of 30 in THF- d_{8}.

Figure A46: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ NOESY (400 MHz) spectrum of $\mathbf{3 0}$ in THF- d_{8}.

Figure A47: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz) spectrum of $\mathbf{3 0}$ in THF-d 8 .

Figure A48: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of 30 in THF- d_{8}.

Figure A49: ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HMBC spectrum of $\mathbf{3 0}$ in THF- d_{8}.

Figure A50: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz) spectra of $\mathbf{3 2}$ in THF- d_{8}.

Figure A51: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC spectra of $\mathbf{3 2}$ in THF-d 8 .

Figure A52: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ NOESY (400 MHz) spectrum of 32 in THF- d_{8}.

Figure A53: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (400 MHz) spectrum of 32 in THF-d ${ }_{8}$.

Figure A54: ATR-IR spectra of complex 32.

Figure A55: rRaman spectrum of 33 and $33-{ }^{13} \mathrm{CO}$ complex in crystalline material.

Figure A56: IR spectrum of $\mathbf{3 4}$ in crude product.

Figure A57: ESI-MS (+) of 35 in THF.

Figure A58: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of $\mathbf{3 6}$ in THF- d_{8}.

Figure A59: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{3 6}$ in $\mathrm{THF}-\mathrm{d}_{8}$.

Figure A60: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz) spectrum of 36 in THF-d 8 .

Figure A61: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY (400 MHz) spectrum of 36 in THF- d_{8}.

Figure A62: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}(400 \mathrm{MHz})$ spectrum of 38 in THF-d ${ }_{8}$.

Figure A63: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz) spectrum of 38 in THF-d 8 .

Figure A64: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of $\mathbf{3 8}$ in THF- d_{8}.

Figure A65: IR spectrum of complex 38 in crystalline material.

Figure A66: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz) spectrum of 39 in THF-d 8 .

Figure A67: ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of 39 in THF- d_{8}.

Reference

[1] S. W. Ragsdale, J. Inorg. Biochem. 2007, 101, 1657-1666.
[2] (a) S. G. McGeachin, Can. J. Chem. 1968, 46, 1903 - 1912; (b) R. Bonnett, D. C. Bradley, K. J. Fisher, Chem. Commun. 1968, 886 - 887; (c) J. E. Parks, R. H. Holm, Inorg. Chem. 1968, 7, 1408-1416.
[3] C. Chen, S. M. Bellows, and P. L. Holland, Dalton Trans. 2015, 44, 16654 16670
[4] (a) L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev. 2002, 102, 3031 3066; (b) Y. Tsai, Coord. Chem. Rev., 2012, 256, 722 - 758.
[5].(a) P. L. Holland, W. B. Tolman, J. Am. Chem. Soc. 1999, 121, 7270 - 7271; (b) D. W. Randall, S. D. George, P. L. Holland, B. Hedman, K. O. Hodgson, W. B. Tolman, E. I. Solomon, J. Am. Chem. Soc. 2000, 122, 11632 - 11648; (c) J. M. Smith, R. J. Lachicotte, K. A. Pittard, T. R. Cundari, G. Lukat-Rodgers, K. R. Rodgers, P. L. Holland, J. Am. Chem. Soc. 2001, 123, 9222 - 9223; (d) D. J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland, W. B. Tolman, J. Am. Chem. Soc. 2002, 124, 2108 2109; (e) N. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2002, 124, 10660 - 10661; (f) J. Vela, S. Stoian, C. J. Flaschenriem, E. Münck, P. L. Holland, J. Am. Chem. Soc. 2004, 126, 4522 - 4523; (g) E. C. Brown, J. T. York, W. E. Antholine, E. Ruiz, S. Alvarez, W. B. Tolman, J. Am. Chem. Soc. 2005, 127, 13752 - 13753; (h) N. W. Aboelella, B. F. Gherman, L. M. R. Hill, J. T. York, N. Holm, V. G. Young, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2006, 128, 3445 - 3458; (i) Z. J. Tonzetich, L. H. Do, S. J. Lippard, J. Am. Chem. Soc. 2009, 131, 7964-7965.
[6] (a) D. V. Vitanova, F. Hampel, K. C. Hultzsch, Dalton Trans. 2005, 1565-1566;
(b) D. F. J. Piesik, S. Range, S. Harder, Organometallics. 2008, 27, 6178 - 6187; (c)
S. Harder, J. Spielmannb, J. Intemanna, Dalton Trans. 2014, 43, 14284-14290.
[7] (a) A. P. Sadimenko, S. S. Basson, Coord. Chem. Rev. 1996, 147, 247 - 297; (b) J. Klingele, S. Dechert, F. Meyer, Coord. Chem. Rev. 2009, 253, 2698 - 2741; (c) J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem. Rev. 2012, 112, 1001-1033.
[8] K. E. Dalle, F. Meyer, Eur. J. Inorg. Chem. 2015, 3391 - 3405.
[9] (a) F. Meyer, P. Rutsch, Chem. Commun. 1998, 1037 - 1038; (b) F. Meyer, E. Kaifer, P. Kircher, K. Heinze, H. Pritzkow, Chem. Eur. J. 1999, 5, 1617-1630; (c) K. E. Dalle, T. Gruene, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2014, 136, 7428-7434; (d) N. Kindermann, E. Bill, S. Dechert, S. Demeshko, E. J. Reijerse, F. Meyer, Angew. Chem. Int. Ed. 2015, 54, 1738 - 1743; (e) N. Kindermann, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2015, 137, 8002 - 8005.
[10] J. Vela, S. Vaddadi, S. Kingsley, C. J. Flaschenriem, R. J. Lachicotte, T. R. Cundari, P. L. Holland, Angew. Chem. Int. Ed. 2006, 45, 1607 - 1611.
[11] (a) D. H. Manz. Doctoral Thesis, Preorganized Bimetallic Nickel Complexes of Pyrazolate-Bridged Ligands for Cooperative Substrate Transformation, University of Göttingen, 2016; (b) D. H. Manz, P. C. Duan, S. Dechert, S. Demeshko, M. John, R. Oswald, R. Mata, F. Meyer, J. Am. Chem. Soc. 2017, DoI: 10.1021/jacs.7b08629. [12] F. Meyer, W. B. Tolman, Inorg. Chem. 2015, 54, 5039.
[13] (a) H. D. Kaesz, R. B. Saillant, Chem. Rev. 1972, 72, 231 - 281; (b) G. J. Leigh, N. Winterton, Modern Coordination Chemistry: The Legacy of Joseph Chatt, Royal Society of Chemistry, London, 2002.
[14] (a) J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273 - 4303; (b) J. A. Wright, P. J. Turrell, C. J. Pickett, Organometallics. 2010, 29, 6146-6156.
[15] (a) R. N. F. Thorneley, R. R. Eady, D. J. Lowe, Nature. 1978, 272, 557 - 558; (b) G. J. Leigh, C. N. McMahon, J. Organomet. Chem. 1995, 500, 219 - 231.
[16] J. Ballmann, R. F. Munhá, M. D. Fryzuk, Chem. Commun. 2010, 46, 1013 1025.
[17] S. Pfirrmann, C. Limberg, B. Ziemer, Dalton Trans. 2008, 6689-6691.
[18] S. Pfirrmann, S. Yao, B. Ziemer, R. Stösser, M. Driess, C. Limberg,

Organometallics. 2009, 28, 6855-6860.
[19] Y. Yu, A. R. Sadique, J. M. Smith, T. R. Dugan, R. E. Cowley, W. W. Brennessel, C. J. Flaschenriem, E. Bill, T. R. Cundari, P. L. Holland, J. Am. Chem. Soc. 2008, 130, 6624-6638.
[20] (a) L. P. Bheeter, M. Henrion, L.Brelot, C. Darcel, M. J. Chetcuti, J. B. Sortais, V. Ritleng, Adv. Synth. Catal. 2012, 354, 2619 - 2624; (b) H. Gehring, R. Metzinger, C. Herwig, J. Intemann, S. Harder, C. Limberg, Chem. Eur. J. 2013, 19, 1629 - 1636; (c) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014 - 7016; (d) H. Gehring, R. Metzinger, B. Braun, C. Herwig, S. Harder, K. Ray, C. Limberg, Dalton Trans. 2016, 45, 2989-2996.
[21] (a) Y. Lee, K. J. Anderton, F. T. Sloane, K. A. Abboud, R. Garcia-Serres, L. J. Murray, J. Am. Chem. Soc. 2015, 137, 10610-10617. (b) D. M. Ermert, L. J. Murray, Dalton Trans. 2016, 45, 14499-14507.
[22] K. J. Anderton, B. J. Knight, A. L. Rheingold, K. A. Abboud, R. Garcia-Serres, L.J. Murray, Chem. Sci. 2017, 8, 4123-4129.
[23] (a) M. Aresta, P. Giannoccaro, M. Rossi, A. Sacco, Inorg. Chim. Acta. 1971, 5, 115-118; (b) M. Gargano, P. Giannoccaro, M. Rossi, G. Vasapollo, A. Sacco, J. Chem. Soc. Dalton Trans. 1975, 9-12.
[24] (a) A. Misono, Y. Uchida, T. Saito, K. M. Song, Chem. Commun. 1967, 419 - 420; (b) A. Yamamoto, L. S. Pu, S. Kitazume, S. Ikeda, J. Am. Chem. Soc. 1967, 89, 3071 3073; (c) A. Misono, Y. Uchida and T. Saito, Bull. Chem. Soc. Jpn. 1967, 40, 700; (d) S. C. Srivastava, M. Bigorgne, J. Organomet. Chem. 1969, 19, 241.
[25] (a) I. Bach, R. Goddard, C. Kopiske, K. Seevogel, K.R. Pörschke, Organometallics. 1999, 18, 10 - 20; (b) C. D. Abernethy, R. J. Baker, M. L. Cole, A. J. Davies, C. Jones, Trans. Met. Chem. 2003, 28, 296 - 299; (c) W. Chen, S. Shimada, M. Tanaka, Y. Kobayashi, K. Saigo, J. Am. Chem. Soc. 2004, 126, 8072 - 8073; (d) R. Beck, M. Shoshani, S. A. Johnson, Angew. Chem., Int. Ed. 2012, 51, 11753 - 11756; (e) D. Schmidt, T. Zell, T. Schaub, U. Radius, Dalton Trans. 2014, 43, 10816 10827; (f) N. A. Eberhardt, H. R. Guan, Chem. Rev. 2016, 116, 8373 - 8426.
[26] C. Rettenmeier, H. Wadepohl, L. H. Gade, Chem-Eur. J. 2014, 20, 9657 - 9665.
[27] M. J. Ingleson, B. C. Fullmer, D. T. Buschhorn, H. Fan, M. Pink, J C. Huffman, K. G. Caulton, Inorg. Chem. 2008, 47, 407-409.
[28] C. Yoo, Y. Lee, Angew. Chem. Int. Ed. 2017, 56, 9502 - 9506.
[29] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie, de Gruyter, Berlin, 1995.
[30] (a) H. Imoto, H. Moriyama, T. Saito, Y. Sasaki, J. Organomet. Chem. 1976, 120, 453 - 460; (b) M. J. Tenorio, M. C. Puerta, P. Valerga, J. Chem. Soc., Dalton Trans. 1996, 1305 - 1308; (c) I. Bach, R. Goddard, C. Kopiske, K. Seevogel, K. R. Pörschke, Organometallics. 1999, 18, 10 - 20; (d) W. H. Harman, T. P. Lin, J. C. Peters, Angew. Chem. Int. Ed. 2014, 53, 1081 - 1086; (e) B. A. Connor, J. Rittle, D. VanderVelde, J. C. Peters, Organometallics. 2016, 35, 686 - 690; (b) S. Ramakrishnan, S. Chakraborty, W. W. Brennessel, C. E. D. Chidsey, W. D. Jones, Chem. Sci. 2016, 7, 117-127.
[31] S. Yao, M. Driess, Acc. Chem. Res. 2012, 45, 276 - 287.
[32] (a) R. B. Lansing, K. I. Goldberg, R. A. Kemp, Dalton Trans. 2011, 40, 8950 8958; (b) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329 2363; (c) C. C. Cheng, S. E. Rokita, C. J. Burrows, Angew. Chem. Int. Ed. Engl. 1993, 32, 277 - 278; Angew. Chem. 1993, 105, 290 - 292; (d) D. Chen, R. J. Motekaitis, A. E. Martell, Inorg. Chem. 1991, 30, 1396 - 1402; (e) A. Berkessel, J. W. Bats, C. Schwarz, Angew. Chem. Int. Ed. Engl. 1990, 29, 106 - 108; Angew. Chem. 1990, 102, 81 - 84. (f) E. Kimura, R. Machida, M. Kodama, J. Am. Chem. Soc. 1984, 106, 5497-5505.
[33] J. H. Jeoung, D. Nianios, S. Fetzner, H. Dobbek, Angew. Chem. Int. Ed. 2016, 55, 3281-3284; Angew. Chem. 2016, 128, 3339 - 3343.
[34] P. Holze, T. Corona, N. Frank, B. Braun-Cula, C. Herwig, A. Company, C. Limberg, Angew. Chem. Int. Ed. 2017, 56, 2307 - 2311; Angew. Chem. 2017, 129, 2347 - 2351.
[35] (a) K. Fujita, R. Schenker, W. Gu, T. C. Brunold, S. P. Cramer, C. G. Riordan, Inorg. Chem. 2004, 43, 3324 - 3326. (b) M. T. Kieber-Emmons, J. Annaraj, M. S. Seo,
K. M. W. V. Heuvelen, T. Tosha, T. Kitagawa, T. C. Brunold, W. Nam, C. G. Riordan, J. Am. Chem. Soc. 2006, 128, 14230 - 14231.
[36] S. Yao, E. Bill, C. Milsmann, K. Wieghardt, M. Driess, Angew. Chem. Int. Ed. 2008, 47, 7110-7113.
[37] C. A. Rettenmeier, H. Wadepohl, L. H. Gade; Angew. Chem. Int. Ed. 2015. 54. 4880-4884.
[38] (a) K. Shiren, S. Ogo, S. Fujinami, H. Hayashi, M. Suzuki, A. Uehara, Y. Watanabe, Y. Morooka, J. Am. Chem. Soc. 2000, 122, 254 - 262; (b) J. Cho, H. Y. Kang, L. V. Liu, R. Sarangi, E. I. Edward, W. Nam, Chem. Sci. 2013, 4, 1502-1508.
[39] S. Yao, Y. Xiong, M. Vogt, H. Grîtzmacher, C. Herwig, C. Limberg, M. Driess, Angew. Chem. Int. Ed. 2009, 48, 8107 - 8110.
[40] (a) M. H. Gubelmann, A. F. Williams, Struct. Bonding (Berlin), 1983, 55, 1; (b) M. Suzuki, T. Ishiguro, M. Kozuka, K. Nakamoto, Inorg. Chem. 1981, 20, 1993 1996.
[41] M. T. Kieber-Emmons, R. Schenker, G. P. A. Yap, T. C. Brunold, C. G. Riordan, Angew. Chem. 2004, 116, 6884-6886.
[42] J. Cho, R. Sarang, J. Annaraj, S. Y. Kim, M. Kubo, T. Ogura, E. I. Solomon, W. Nam, Nat. Chem. 2009, 1, 568-572.
[43] (a) L. Que, Y. Dong, Acc. Chem. Res. 1996, 29, 190 - 196; (b) E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S. K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y. S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235 - 350.
[44] (a) K. Chen, L. Que, J. Am. Chem. Soc. 2001, 123, 6327 - 6337; (b) M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Chem. Rev. 2004, 104, 939 - 986; (c) R. Mas-Ballestf, L. Que, J. Am. Chem. Soc. 2007, 129, 15964 - 15972; (d) J. L. Fillol, Z. Codol, I. Garcia-Bosch, L. Gýmez, J. J. Pla, M. Costas, Nat. Chem. 2011, 3, 807 - 813; (e) W. N. Oloo, A. J. Fielding, L. Que, J. Am. Chem. Soc. 2013, 135, 6438-6441; (f) K. Ray, F. F. Pfaff, B. Wang, W. Nam, J. Am. Chem. Soc. 2014, 136, 13942 - 13958.
[45] (a) D. Carmona, M. P. Lamata, J. Ferrer, J. Modrego, M. Perales, F. J. Lahoz, R. Atencio, L. A. Oro, J. Chem. Soc. Chem. Commun. 1994, 575 - 576; (b) A. Wada, M. Harata, K. Hasegawa, K. Jitsukawa, H. Masuda, M. Mukai, T. Kitagawa, H. Einaga,

Angew. Chem. Int. Ed. 1998, 37, 798 - 799; (c) Y. Takahashi, M. Hashimoto, S. Hikichi, M. Akita, Y. Morooka, Angew. Chem. Int. Ed. 1999, 38, 3074 - 3077; (d) D. D. Wick, K. I. Goldberg, J. Am. Chem. Soc. 1999, 121, 11900 - 11901; (e) I. A. Guzei, A. Bakac, Inorg. Chem. 2001, 40, 2390 - 2393; (f) M. Ahijado, T. Braun, D. Noveski, N. Kocher, B. Neumann, D. Stalke, H.-G. Stammler, Angew. Chem. Int. Ed. 2005, 44, 6947 - 6951; (g) M. C. Denney, N. A. Smythe, K. L. Cetto, R. A. Kemp, K. I. Goldberg, J. Am. Chem. Soc. 2006, 128, 2508 - 2509; (h) G. Katona, P. Carpentier, V. NiviÀre, P. Amara, V. Adam, J. Ohana, N. Tsanov, D. Bourgeois, Science. 2007, 316, 449 - 453; (i) D. Barats, G. Leitus, R. Popovitz-Biro, L. J. W. Shimon, R. Neumann, Angew. Chem. Int. Ed. 2008, 47, 9908 - 9912; (j) R. Dragos,-Adrian, A. W. Joseph, L. H. David, B. Manfred, Nat. Commun. 2013, 4, 2167.
[46] (a) A. Abou Hamdan, B. Burlat, O. Gutifrrez-Sanz, P. P. Liebgott, C. Baffert, A. L. De Lacey, M. Rousset, B. Guigliarelli, C. Lfger, S. Dementin, Nat. Chem. Biol. 2013, 9, 15-17; (b) W. Lubitz, H. Ogata, O. Rîdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081 - 4148.
[47] C. A. Rettenmeier, H. Wadepohl, L. H. Gade. Angew. Chem. Int. Ed. 2015, 54, 4880-4884.
[48] (a) S. Otsuka, A. Nakamura, Y. Tatsuno, J. Am. Chem. Soc. 1969, 91, 6994 6999; (b) A. Nakamura, Y. Tatsuno, M. Yamamoto, S. Otsuka, J. Am. Chem. Soc. 1971, 93, 6052-6058; (c) M. Matsumoto, K. Nakatsu, Acta Crystallogr. B. 1975, 31, 2711-2713.
[49] K. T. Neumann, S. Klimczyk, M. N. Burhardt, B. Bang-Andersen, T. Skrydstrup, A. T. Lindhardt, ACS Catal. 2016, 6, 4710-4714.
[50] T. Lu, C.-F. Yang, L.-Y. Zhang, F. Fei, X.-T. Chen, Z.-L. Xue, Inorg. Chem. 2017, 56, 11917-11928
[51] R. M. Kadam, M. D. Sastry, Phase Transition. 1997, 60, 79 - 87.
[52] N. Kindermann, C. J. Günes, S. Dechert, F. Meyer, J. Am. Chem. Soc. 2017, 139, 9831-9834
[53] (a) D. A. Vicic, W. D. Jones, J. Am. Chem. Soc. 1999, 121, 4070 - 4071; (b) W. Zhu, A. C.Marr, Q. Wang, F. Neese, D. J. E. Spencer, A. J. Blake, P. A. Cooke, C. Wilson,
M. Schröder, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18280 - 18285; (c) A. G. Tennyson, S. Dhar, S. J. Lippard, J. Am. Chem. Soc. 2008, 130, 15087 - 15098; (d) S. Yao, C. Milsmann, E. Bill, K. Wieghardt, M. Driess, J. Am. Chem. Soc. 2008, 130, 13536-13537; (e) M. T. Kieber-Emmons, K. M. Van Heuvelen, T. C. Brunold, G. R. Charles, J. Am. Chem. Soc. 2009, 131, 440 - 441; (f) S. Yao, P. Hrobárik, F. Meier, R. Rudolph, E. Bill, E. Irran, M. Kaupp, M Driess, Chem. Eur. J. 2013, 19, 1246 - 1253; (g) F. Olechnowicz, G. L. Hillhouse, R. F. Jordan, Inorg. Chem. 2015, 54, 2705 2712.
[54] (a) J. C. Fontecilla-Camps, Struct. Bonding. 1998, 1, 91,. (b) S. P. Albracht, J. Biochim. Biophys. Acta 1994, 167, 1188.
[55] M. T. Kieber-Emmons, K. M. Van Heuvelen, T. C. Brunold, C. G. Riordan, J. Am. Chem. Soc. 2009, 131, 440-441.
[56] F. Pelties, D. Herrmann, B. Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014-7016.
[57] (a) R. C. Elder, M. Trkula, Inorg. Chem. 1977, 16, 1048 - 1051. (b) M. M. Taqui Khan, M. R. H. Siddiqui, Inorg. Chem. 1991, 30, 1157 - 1159.
[58] Linear $[\mathrm{M}(\mathrm{m}-\mathrm{S}) \mathrm{M}]^{\mathrm{n}+}$ arrangements have been observed for only a few Fe, V, $\mathrm{Mo}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{U}$, and Pb compounds: (a) O. P. Lam, F. W. Heinemann, K. Meyer, Chem. Sci, 2011, 2, 1538 - 1547; (b) J. E. McDonough, A. Mendiratta, J. J. Curley, G. C. Fortman, S. Fantasia, C. C. Cummins, E. V. Rybak-Akimova, S. P. Nolan, C. D. Hoff, Inorg. Chem. 2008, 47, 2133 - 2141; (c) J. Cho, K. M. Van Heuvelen, G. P. A. Yap, T. C. Brunold, C. G. Riordan, Inorg. Chem. 2008, 47, 3931 - 3933; (d) S. Delgado, P. J. S. Miguel, J. L. Priego, R. Jiménez-Aparicio, C. J. Gémez-Garcéa, F. Zamora, Inorg. Chem. 2008, 47, 9128 - 9130; (e) S. C. Davies, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc. Dalton Trans. 2000, 719-725.
[59] M. M. Rodriguez, B. D. Stubbert, C. C. Scarborough, W. W. Brennessel, E. Bill, P. L. Holland, Angew. Chem. Int. Ed. 2012, 51, 8247 - 8250.
[60] P. Holze, B. Horn, C. Limberg, C. Matlachowski, S. Mebs, Angew. Chem. Int. Ed. 2014, 53, 2750-2753.
[61] D. A. Vicic and, W. D. Jones, J. Am. Chem. Soc. 1999, 121, 4070-4071.
[62] N. J. Hartmann, G. Wu, T. W. Hayton, Angew. Chem. Int. Ed. 2015, 54, 14956 14959.
[63] N. J. Hartmann, G. Wu, T. W. Hayton, Dalton Trans. 2016, 45, 14508 - 14510.
[64] N. J. Hartmann, G. Wu, T. W. Hayton J. Am. Chem. Soc. 2016, 138, 12352-12355.
[65] P. Chen, K. Fujisawa, M. E. Helton, K. D. Karlin, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 6394.
[66] (a) N. Baidya; M. Olmstead, P. K. Mascharak, Inorg. Chem. 1991, 30, 929 937; (b) Y. Journaux, T. Glaser, G. Steinfeld, V. Lozan, B. Kersting, Dalton Trans., 2006, 1738-1748; (c) V. Lozan, B. Kersting, Inorg. Chem. 2008, 47, 5386-5393
[67] R. J. Pleus, H. Waden, W. Saak, D. Haase, S. Pohl, J. Chem. Soc., Dalton Trans. 1999, 2601 - 2610.
[68] (a) V. M. Iluc, A. J. M. Miller, J. S. Anderson, M. J. Monreal, M. P. Mehn, G. L. Hillhouse, J. Am. Chem. Soc. 2011, 133, 13055 - 13063; (b) V. M. Iluc, G. L. Hillhouse, J. Am. Chem. Soc. 2014, 136, 6479-6488; (c) P. Pyykkç, J. Phys. Chem. A., 2015, 119, 2326-2337.
[69] (a) Dilworth, J. R. Coord. Chem. Rev. 2017, 330, 53-94. (b) MacKay, B.; Fryzuk, M. Chem. Rev. 2004, 104, 385-401.
[70] J. R. Dilworth, Coord. Chem. Rev. 2017, 330, 53 - 94.
[71] (a) A. Nakamura, T. Yoshida, M. Cowie, S. Otsuka, J. Ibers, J. Am. Chem. Soc. 1977. 99. 2108-2117. (b) D. Mindiola, G. Hillhouse, J. Am. Chem. Soc. 2002.124. 9976-9977.
[72] C. Köthe, R. Metzinger, C. Herwig, C. Limberg; Inorg. Chem. 2012, 51, 9740 9747.
[73] (a) J. Vela, S. Stoian, C. J. Flaschenriem, E. Münck, P. L. Holland, J. Am. Chem. Soc. 2004, 126, 4522 - 4523. (b) N. S. Lees, R. L. McNaughton, W. Vargas Gregory, P. L. Holland, B. M. Hoffman. J. Am. Chem. Soc. 2008, 130, 546-555.
[74] B. T. Heaton, C. Jacob, P. Page, Coord. Chem. Rev. 1996, 154, 193-218.
[75] L. D. Field, H. L. Lim, S. J. Dalgarno, R. D. McIntosh, Inorg. Chem. 2012, 51, 3733-3742.
[76] Y. Lee, N. P. Mankad, J. C. Peters, Nat. Chem. 2010, 2, 558-565.
[77] Sletected examples: (a) P. L. Diaconescu, P. L. Arnold, T. A. Baker, D. J. Mindiola, C. C. Cummins, J. Am. Chem. Soc. 2000, 122, 6108-6109; (b) E. D. Brady, D. L. Clark, W. Keogh, B. L. Scott, J. G. Watkin, J. Am. Chem. Soc. 2002, 124, 7007-7015; (c) W. J. Evans, S. A. Kozimor, J. W. Ziller, Chem. Commun. 2005, 4681-4683; (d) U. J. Kilgore, X. Yang, J. Tomaszewski, J. C. Huffman, D. J. Mindiola, Inorg. Chem. 2006, 45, 10712 - 10721; (e) W. H. Monillas, G. P. A. Yap, L. A. MacAdams, K. H. Theopold, J. Am. Chem. Soc. 2007, 129, 8090 - 8091; (f) Y. C. Tsai, P. Y. Wang, S. A. Chen, J. M. Chen, J. Am. Chem. Soc. 2007, 129, 8066-8067; (g) Y. C. Tsai, P. Y. Wang, K. M. Lin, S. A. Chen, J. M. Chen, Chem. Commun. 2008, 205 - 207; (h) K. Kaleta, P. Arndt, T. Beweries, A. Spannenberg, O. Theilmann, Organometallics. 2010, 29, 2604 2609; (i) C. Milsmann, Z. R. Turner, S. P. Semproni, P. J. Chirik, Angew. Chem. Int. Ed. 2012, 51, 5386 - 5390.
[78] (a) A. K. Verma, S. C. Lee, J. Am. Chem. Soc. 1999, 121, 10838 - 10839; (b) J. S. Duncan, M. J. Zdilla, S. C. Lee, Inorg. Chem. 2007, 46, 1071 - 1080; (c) M. J. Zdilla, A. K. Verma, S. C. Lee, Inorg. Chem. 2011, 50, 1551 - 1562.
[79] For selected papers on reduction of azobenzene by early transition-metal complexes: (a) F. A. Cotton, S. A. Duraj, W. J. Roth, J. Am. Chem. Soc. 1984, 106, 4749 - 4751; (b) P. L. Diaconescu, P. L. Arnold, T. A. Baker, D. J. Mindiola, C. C. Cummins, J. Am. Chem. Soc. 2000, 122, 6108-6109; (c) W. H. Monillas, G. P. A. Yap, L. A. MacAdams, K. H. Theopold, J. Am. Chem. Soc. 2007, 129, 8090 - 8091; (d) W. J. Evans, K. A. Miller, J. W. Ziller, Angew. Chem. Int. Ed. 2008, 47, 589 - 592; (e) Y. C. Tsai, P. Y. Wang, K. M. Lin, S. A. Chen, J. M. Chen, Chem. Commun. 2008, 205 - 207; (f) W. J. Evans, C. A. Traina, J. W. Ziller, J. Am. Chem. Soc. 2009, 131, 17473-17481; (g) K. Kaleta, P. Arndt, T. Beweries, A. Spannenberg, O. Theilmann, U. Rosenthal, Organometallics. 2010, 29, 2604-2609.
[80] For selected papers on reduction of azobenzene by lanthanide complexes: (a) W. J. Evans, D. K. Drummond, L. R. Chamberlain, R. J. Doedens, S. G. Bott, H. Zhang, J. L. Atwood, J. Am. Chem. Soc. 1988, 110, 4983 - 4994; (b) A. A. Trifonov, M. N. Bochkarev, H. Schumann, J. Loebel, Angew. Chem. Int. Ed. Engl. 1991, 30, 1149 1151; (c) Z. Hou, T. Koizumi, M. Nishiura, Y. Wakatsuki, Organometallics. 2001, 20,

3323 - 3328; (d) A. Kornienko, D. Freedman, T. J. Emge, J. G. Brennan, Inorg. Chem. 2001, 40, 140 - 145; (e) D. Turcitu, F. Nief, L. Ricard, Chem. - Eur. J. 2003, 9, 4916 - 4923; (g) W. J. Evans, T. M. Champagne, J. W. Ziller, Organometallics. 2007, 26, 1204 - 1211; (h) M. MacDonald, J. W. Ziller, W. J. Evans, Inorg. Chem. 2011, 50, 4092 - 4106; (i) C. A. P. Goodwin, N. F. Chilton, G. F. Vettese, E. M. Pineda, I. F. Crowe, J. W. Ziller, R. E. P. Winpenny, W. J. Evans, D. P. Mills, Inorg. Chem. 2016, 55, 10057-10067.
[81] For selected papers on reduction of azobenzene by main-group metal: (a) C. Cui, M. M. Olmstead, J. C. Fettinger, G. H. Spikes, P. P. Power, J. Am. Chem. Soc. 2005, 127, 17530 - 17541; (b) R. J. Wright, M. Brynda, J. C. Fettinger, A. R. Betzer, P. P. Power, J. Am. Chem. Soc. 2006, 128, 12498 - 12509; (c) S. J. Bonyhady, S. P. Green, C. Jones, S. Nembenna, A. A. Stasch, Angew. Chem. Int. Ed. 2009, 48, 2973 - 2977; (d) S. S. Sen, D. Kratzert, D. Stern, H. W. Roesky, D. Stalke, Inorg. Chem. 2010, 49, 5786 - 5788; (e) K. Takeuchi, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2011, 133, 12478 - 12481; (f) W. S. Ren, D. F. Gu, Inorg. Chem. 2016, 55, 11962 - 11970. [82] S. M. Bellows, N. A. Arnet, P. M. Gurubasavaraj, W. W. Brennessel, E. Bill, T. R. Cundari, P. L. Holland, J. Am. Chem. Soc. 2016, 138, 12112 - 12123.
[83] A. R. Sadique, E. A. Gregory, W. W. Brennessel, P. L. Holland, J. Am. Chem. Soc. 2007, 129, 8112 - 8121.
[84] (a) R. Allmann, The Chemistry of the Hydrazo, Azo and Azoxy Groups; Wiley: New York, 1975; Chapter 2; (b) C. J. Brown, Acta Crystallogr. 1966, 21, 146 - 152. [85] E. D. Brady, D. L. Clark, D. W. Keogh, B. L. Scott, J. G. Watkin, J. Am. Chem. Soc. 2002,124, 7007-7015.
[86] V. Kalyanaraman, S. S. Dua, C. N. R. Rao, M. V. George. Tetrahedron Lett. 1968, 9, 235-238.
[87] P. J. Chirik, Nat. Chem. 2009, 1, 520 - 522.
[88] M. Appl. "Ammonia" in Ullmann's Encyclopedia of Industrial Chemistry 2006 Wiley-VCH, Weinheim.
[89] (a) P. L. Holland, Dalton Trans. 2010, 39, 5415 - 5425; (b) I. Klopsch, E.Y. Yuzik-Klimova, S .Schneider, Top. Organomet. Chem. 2017, 1-42.
[90] W. J. Evans, M. Fang, G. L. Zucchi, F. Furche, J. W. Ziller, R. M. Hoekstra, J. I. Zink. J. Am. Chem. Soc. 2009, 131, 11195-11202.
[91] M. Chiesa, E. Giamello, D. M. Murphy, G. Pacchioni, M. C. Paganini, R. Soave, Z. Sojka. J Phys Chem B. 2001, 105, 497 - 505.
[92] (a) R. Waterman, G. L. Hillhouse, Can. J. Chem. 2005, 83, 328 - 331; (b) S. Pfirrmann, C. Limberg, C. Herwig, R. Stößer, B. Ziemer, Angew. Chem. Int. Ed. 2009, 48, 3357 - 3361; (c) B. Horn, S. Pfirrmann, C. Limberg, C. Herwig, B. Braun, S. Mebs, R. Metzinger, Z. Anorg. Allg. Chem. 2011, 637, 1169 - 1174; (d) D. Zhu, I. Thapa, I. Korobkov, S. Gambarotta,; P. H. M. Budzelaar, Inorg. Chem. 2011, 50, 9879 - 9887; (e) C. Tsay, J. C. Peters, Chem. Sci. 2012, 3, 1313 - 1318; (f) S. J. Connelly, A. C. Zimmerman, W. Kaminsky, D. M. Heinekey, Chem. Eur. J. 2012, 18, 15932 - 15934; (g) R. Beck, M. Shoshani, J. Krasinkiewicz, J. A. Hatnean, S. A. Johnson, Dalton Trans. 2013, 42, 1461 - 1475; (h) W. H. Harman, T. P. Lin, J. C. Peters, Angew. Chem. Int. Ed. 2014, 53, 1081 - 1086; (i) Y. E. Kim, J. Kim, Y. Lee, Chem. Commun., 2014, 50, 11458 - 11461; (j) Y. E. Kim, S. Oh, S. Kim, O. Kim, J. Kim,; S. W. Han,; Y. Lee, J. Am. Chem. Soc. 2015, 137, 4280 - 4283; (k) D. J. Charboneau, D. Balcells, N. Hazari, H. M. C. Lant, J. M. Mayer, P. R. Melvin, B. Q. Mercado, W. D. Morris, M. Repisky, H. W. Suh, Organometallics. 2016, 35, 3154-3162.
[93] D. J. Mindiola, Angew. Chem. Int. Ed. 2009, 48, 6198 - 6200.
[94] B. P. Stoicheff, Can. J. Phys. 1954, 32, 630 - 634.
[95] (a) R. R. Schrock, Acc. Chem. Res. 2005, 38, 955 - 962; (b) Y. Nishibayashi, Inorg. Chem. 2015, 54, 9234 - 9247.
[96] (a) J. S. Anderson, G. E. Cutsail, J. Rittle, B. A. Connor, W. A. Gunderson, L. Zhang, B. M. Hoffman, J. C. Peters, J. Am. Chem. Soc. 2015, 137, 7803-7809. (b) B. M. Hoffman, D. Lukoyanov, D. R. Dean, L. C. Seefeldt, Acc. Chem. Res. 2013, 46, 587 - 595.
[97] M. J. Bezdek, I. Pappas, P. J. Chirik, Top. Organomet. Chem. 2016, 60, 1 - 21.
[98] (a) T. Munisamy, R. R Schrock, Dalton Trans. 2012, 41, 130 - 137; (b) Y. Nishibayashi, Inorg. Chem. 2015, 54, 9234-9247.
[99] R. N. F. Thorneley, D. J. Lowe, Metal Ions in Biology. 1985, 7, 221-284.
[100] (a) B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev. 2014, 114, 4041-4062. (b) D. Lukoyanov, N. Khadka, Z. Y. Yang, D. R. Dean, L. C. Seefeldt, B. M. Hoffman, J. Am. Chem. Soc. 2016, 138, 10674-10683.
[101] D. Lukoyanov, N. Khadka, D. R. Dean, S. Raugei, L. C. Seefeldt, B. M. Hoffman, Inorg. Chem. 2017, 56, 2233-2240.
[102] Selected examples: (a) D. V. Yandulov, R. R. Schrock, Inorg. Chem. 2005, 44, 1103-1117 ; (b) J. D. Gilbertson, N. K. Szymczak, D. R. Tyler, J. Am. Chem. Soc. 2005, 127, 10184 - 10185; (c) P. Avenier, M. Taoufik, A. Lesage, X. Solans-Monfort,; A. Baudouin, A. de Mallmann, L. Veyre, J. M. Basset, O. Eisenstein, L. Emsley, E. A. Quadrelli, Science. 2007, 317, 1056 - 1060.
[103] (a) F. Akagi, T. Matsuo, H. Kawaguchi, Angew. Chem. Int. Ed. 2007, 46, 8778 - 8781; (b) K. Ding, W. W. Brennessel, P. L. Holland, J. Am. Chem. Soc. 2009, 131, 10184-10185.
[104] W. E. Piers, A. J. V. Marwitz, L. G. Mercier, Inorg. Chem. 2011, 50, 12252 12262.
[105] L. J. Murray, W. W. Weare, J. Shearer, A. D. Mitchell, K. A. Abboud, J. Am. Chem. Soc. 2014, 136, 13502-13505.
[106] A. J. L, Pombeiro Rev. Port. Quim. 1984, 26, $30-60$.
[107] K. Ding, A. W. Pierpont, W. W. Brennessel, G. Lukat-Rodgers, K. R. Rodgers, T. R. Cundari, E. Bill, P. L. Holland, J. Am. Chem. Soc. 2009, 131, 9471 - 9472.
[108] T. R. Dugan, K. C. MacLeod, W. W. Brennessel, P. L. Holland, Eur. J. Inorg. Chem. 2013, 3891 - 3897.
[109] P. A. Rudd, N. Planas, E. Bill, L. Gagliardi, C. C. Lu, Eur. J. Inorg. Chem. 2013, 3898-3906.
[110] T. Takahashi, Y. Mizobe, M. Sato, Y. Uchida, M. Hidai, J. Am. Chem. Soc. 1980, 102, 7461 - 7467.
[111] M. B. O'Donoghue, W. M Davis, R, R, Schrock, Inorg Chem. 1998, 37, 5149 5158.
[112] K. C. Chew, W. Clegg, M. P. Coles, M. R. J. Elsegood, V. C. Gibson, A. J. P. White, D. J. Williams, J. Chem. Soc. Dalton Trans. 1999, 2633 - 2640.
[113] G. E. Bossard, D.C. Busby, M. Chang, T. A. George, S. D.A. Jr. Iske, J Am Chem Soc. 1980, 102, 1001 - 1008.
[114] N. Lehnert, F. Tuczek, Inorg. Chem. 1999, 38, 1671 - 1682.
[115] J. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961-7001.
[116] P. Schollhammer, B. Didier, N. Le Grand, F. Y. Pétillon, J. Talarmin, K. W. Muir, S. J. Teat, Eur. J. Inorg. Chem. 2002, 658-663.
[117] J. Demasion, F. Hegelund, H. Bürger, J. Mol. Struct. 1997, 413-414, 447 456.
[118] (a) N. Lehnert, B. E. Wiesler, F. Tuczek, A H ennige, D. Sellmann, J. Am. Chem. Soc. 1997, 119, 8869 - 8878. (b) K. Fujisawa, N. Lehnert, Y. Ishikawa, K. Okamoto, Angew. Chem. 2004, 116, 5052 - 5055.
[119] Y. Li, Y. Li, B. M. Wang, Y. Luo, D. W. Yang, P. Tong, J. F. Zhao, L. Luo, Y. H. Zhou, S. Chen, F. Cheng, J. P. Qu, Nat. Chem. 2013, 5, 320 - 326.
[120] G. C. Bai, P. R. Wei, Douglas W. Stephan, Organometallics. 2005, 24, 5901 5908.
[121] E. Kogut, H. L. Wiencko, L. Zhang, D. E. Cordeau, T. H. Warren, J. Am. Chem. Soc. 2005, 127, 11248 - 11249.
[122] (a) D. Sellmann, A. Hille, A. Rösler, F. W. Heinemann, M. Moll, G. Brehm, S. Schneider, M. Reiher, B. A. Hess, W. Bauer, Chem. Eur. J. 2004, 10, 819 - 830; (b) C. T. Saouma, C. E. Moore, A. L. Rheingold, J. C. Peters, Inorg. Chem. 2011, 50, 11285 - 11287; (c) J. L. Crossland, C. G. Balesdent, D. R. Tyler, Inorg. Chem. 2012, 51, 439 - 445; (d) C. T. Saouma, C. C. Lu, J. C. Peters, Inorg. Chem. 2012, 51, 10043 - 54; (e) J. S. Anderson, M.-E. Moret, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 534 - 537.
[123] A. L. Chaney, E. P. Marbach, Clin. Chem. 1962, 8, 130-132.
[124] C. Köthe, B. Braun, C. Herwig, C. Limberg, Eur. J. Inorg. Chem. 2014, 5296 5303.
[125] M. Fang, D. S. Lee, J. W. Ziller, R. J. Doedens, J. E. Bates, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2011, 133, 3784 - 3787.
[126] R. A. Bernheim, H. Batiz-Hernandez, J. Chem. Phys. 1964, 40, 3446 - 3447.
[127] (a) N. Lee, T. Petrenko, U. Bergmann, F. Neese, S. DeBeer, J. Am. Chem. Soc. 2010, 132, 9715 - 9727. (b) K. M. Lancaster, K. D. Finkelstein, S. DeBeer, Inorg. Chem. 2011, 50, 6767 - 6774. (c) M. A. Beckwith, M. Roemelt, M. Collomb, C. DuBoc, T. Weng, U. Bergmann, P. Glatzel, F. Neese, S. DeBeer, Inorg. Chem. 2011, 50, 8397-8409.
[128] P. Glatzel, U. Bergmann, Coord. Chem. Rev. 2005, 249, 65-95.
[129] (a) U. Bergmann, C. R. Horne, T. J. Collins, J. M. Workman, S. P. Cramer, Chem. Phys. Lett. 1999, 302, 119 - 207. (b) U. Bergmann, J. Bendix, P. Glatzel, H. B. Gray, S. P. Cramer, J. Chem. Phys. 2002, 116, 2011 - 2015.
[130] G. Bender, E. Pierce, J. A. Hill, J. E. Darty and S. W. Ragsdale, Metallomics. 2011, 3 , 797 - 815; (b) G. Bender, T. A. Stich, L. Yan, R. D. Britt, S. P. Cramer, S. W. Ragsdale, Biochemistry. 2010, 49, 7516-7523.
[131] S. Pfirrmann, C. Limberg, C. Herwig, C. Knispel, B. Braun, E. Bill, R. Stösser. J. Am. Chem. Soc. 2010, 132, 13684-13691.
[132] B. Horn, C. Limberg, C. Herwig, S. Mebs, Angew. Chem. Int. Ed. 2011, 50, 12621-12625.
[133] C. Yoo, S. Oh, J. Kim, Y. Lee, Chem. Sci. 2014, 5, 3853 - 3858.
[134] National Institute of Standards and Technology. http://webbook.nist-.gov/chemistry/.
[135] G. A. Lawrance, Chem. Rev. 1986, 86, 17 - 33.
[136] W. D. Jones; A. D. Selmeczy, Organometallics. 1992, 11, 889 - 893.
[137] A. M. Thomas, B. L. Lin, E. C. Wasinger, T. D. P. Stack. J. Am. Chem. Soc. 2013, 135, 18912-18919.
[138] N. A. Giffin, M. Makramalla, A. D. Hendsbee, K. N. Robertson, C. Sherren, C. C. Pye, J. D. Masuda, J. A. C. Clyburne, Org. Biomol. Chem. 2011, 9, 3672-3680.
[139] A. Kermagoret, P. Braunstein. Organometallics. 2008, 27, 88 - 99.
[140] V. W. Manner, T. F. Markle, J. H. Freudenthal, J. P. Roth J. M. Mayer, Chem. Commun. 2008, 256-258.
[141] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42 - 55.
[142] G. R. Hanson, K. E. Gates, C. J. Noble, M. Griffin, A. Mitchell, S. Benson, J.

Inorg. Biochem. 2004, 98, 903-916.
[143] (a) W. Haberditzel, Angew. Chem. Int. Ed. Engl., 1966, 5, 288; b) G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.
[144] E. Bill, julX, Program for Simulation of Molecular Magnetic Data, Max-Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, 2008.
[145] 0. Kahn, Molecular Magnetism, VCH Publishers Inc., New York, 1993.
[146] D. G. Huang, O. V. Makhlynets, L.L. Tan, S. C. Lee, E. V. Rybak-Akimova, R. H. Holm, Inorg. Chem. 2011, 50, 10070-10081.
[147] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
[148] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[149] X-RED; STOE \& CIE GmbH, Darmstadt, Germany, 2002.

List of Abbreviations

2D	Two dimensions
Å	Angstrom (s) $10^{-10} \mathrm{~m}$
Abs	Absorber (XAS)
Ac	Acetyl
cat	catalyst
COSY	Correlation spectroscopy
d	Doublet (NMR)
DB18C6	Dibenzo(18-crown-6)
DCM	Dichloromethane
DFT	density functional theory
DIAD	1,2-diisopropyl azodicarboxylate
DI	Diamagnetic impurity
DME	1,2-Dimethoxyethane
DMSO	Dimethyl Sulfoxide
EA	Elemental analysis
EI	Electron ionization
EPR	Electron Paramagnetic Resonance
eq.	equivalent(s)
ESI	Electrospray Ionization
Et	Ethyl
g	landé g - factor
galvinoxy radical	2,6-Di-tert-butyl- α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1 -ylidene)-p-tolyloxy
HMBC	Heteronuclear Multiple Bond Correlation
HSQC	Heteronuclear Single Quantum Coherence
${ }^{\text {ipr }}$	iso-propyl
J	coupling constant
LAH	lithium aluminum hydride
[Lut-H] ${ }^{\text {+ OTf }}$	[2,6-Lutidine]trifluoromethanesulfonate
[Lut-H] ${ }^{\text {BF }}{ }_{4}$	[2,6-Lutidine]tetrafluoroboric
m	medium (IR)
M	Molar, Lmol^{-1}
m/z	mass per charge (MS)

Me	Methyl
MeOTf	Methyl trifluoromethansulfonate
Min	minutes
MS	Mass Spectrometry
NaBArF	Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
NMR	Nuclear Magnetic resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
OAc	Acetate
OTf	Trifluoromethanesulfonate
PI	Paramagnetic impurity
pH	Proton concentration in aqueous solution
Ph	Phenyl group
ppm	parts per million
Pz	pyrazole
RT	Room temperature $\left(25^{\circ} \mathrm{C}\right)$
s	singlet (NMR), Strong (IR)
SWV	square wave voltammetry
t	time
${ }^{t} \mathrm{Bu}$	Tert-buthyl
${ }^{t} \mathrm{BuOK}$	Potassium tert-butoxide
TEMPO	2,2,6,6-tetramethyl-piperidine-1-oxyl
TEMPO-H	1-hydroxyl-2,2,6,6-tetramethyl-piperidine
TBP	2,4,6-tert-butylphenoxy radical
THF	Tetrahydrofuran
TIP	Temperature independent paramagnetic
UV-vis	Ultraviolet-visible spectroscopy
V	volume
VT	Variable temperature
V2C	Valance to Core
w	weak(IR)

Formula Overview

Ligand Precursors

II

III

IV

V

VI

Ligands

Complexes

1

3

$[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]^{+}$
4

${ }_{[K(D B 18 C 6)]+}{ }^{+}$
5

6

9

7

10

$[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]^{+}$
8

11

12

13

$\left[\mathrm{K}(\mathrm{THF})_{3}\right]^{+}$

15

16

17

18

21

23

24

27

25

26

28

29

30

${ }^{[K}$ (Cryptand) $]^{+}$
31

32

33

34

37

35

38

36

39

Scientific Contribution

Posters

- Dioxygen Binding to a Dinickel(II) Dihydride Complex and Redox Interconversion of the $\boldsymbol{\mu}$-1,2-Peroxido and Superoxo Dinickel Intermediates "EICC $4^{\text {th }}$ EucheMS Inorganic chemistry conference" Copenhagen, Denmark, 2 - 5th July 2017; Peng-Cheng Duan, et.al., Franc Meyer*
- Dioxygen Binding to a Dinickel(II) Dihydride Complex and Redox Interconversion of the $\boldsymbol{\mu}$-1,2-Peroxido and Superoxo Dinickel Intermediates $9^{\text {th }}$ "Göttinger Chemie-Forum 2017" Göttingen, Germany; Peng-Cheng Duan, et.al., Franc Meyer*

Publication

Ph.D study period

1. Pairwise $\mathrm{H}_{2} / \mathrm{D}_{2}$ Exchange and H_{2} substitution at a Bimetallic Dinickel(II) complex Featuring Two terminal Hydrides

Dennis H. Manz ${ }^{\ddagger}$, Peng-Cheng Duan ${ }^{\ddagger}$, Sebastian Dechert, Serhiy Demeshko, Rainer Oswald, Michael John, Ricardo Mata* and Franc Meyer*
J. Am. Chem. Soc. 2017, 139, 16720 - 16731.

2 Reductive O_{2} Binding at a Dihydride Complex Leading to Redox Interconvertible μ-1,2-Peroxo and μ-1,2-Superoxo Dinickel(II) Intermediates

Peng-Cheng Duan, Dennis H. Manz, Sebastian Dechert, Serhiy Demeshko, and Franc Meyer*
J. Am. Chem. Soc. 2018, Revised

3 Dichalcogen Binding to the Dinickel Dihydrido and stepwise transformation to the Sulfide-Ligand-Radical.

Peng-Cheng Duan, Sebastian Dechert, Serhiy Demeshko and Franc Meyer* Manuscript

$4 \mathrm{~N}_{2}$ to NH_{3} Conversion in the Dinickel Cofactor

Peng-Cheng Duan, Dennis H. Manz, Van Kuiken Benjamin, Sebastian Dechert, Serhiy Demeshko, Van Gastel Maurice, Eckhard Bill, Serena DeBeer and Franc Meyer*

Manuscript

5 Syntheses, characterization and interconversion of Dinuclear Nickel Phenylhydrazine Complexes.
Peng-Cheng Duan, Sebastian Dechert and Franc Meyer*
Manuscript
6 Interconversion in the Mono- and Dihydride Dinickel Complexes and Reactivity
Peng-Cheng Duan, Sebastian Dechert, and Franc Meyer* Manuscript

Master study period

1. Group 11 metal pyrazolato trigonal prismatic nanocages showing a preferential encapsulation of sulfur over hydrocarbons

Peng-Cheng Duan, Zhao-Yang Wang, Guang Yang* and Raphael G. Raptis* Dalton Transactions, 2013, 42, 14951-14954.
2. Relaying Isomerism from Ligands to Metal Complexes: Synthesis and Structures of Four Isomeric Binary Silver(I) 3,5-Dibutyl-1,2,4-triazolates Guang Yang*, Peng-Cheng Duan, Kai-Ge Shi and Raphael G. Raptis Crystal growth \& design, 2011, 12, 1882-1889.
3. Synthesis and crystal structures of copper(II) and silver(I) complexes of a bi-phenyl-bridged bipyrazolyl ligand
Peng-Cheng Duan, Zhan-Dong Huang, Fang-Fang Zhang and Guang Yang* Transition Met Chem, 2012, 37, 595-600.

Acknowledgement

It is hard to believe that I have finished four years in Göttingen already. During these times, happiness, excitement, depression and anger passed by. But time moves on, so do I. It is time to thank the many helpful hands that have played an important part, directly or indirectly, in the successful completion of my thesis. It fills me with immense pleasure to be able to express my gratitude. Yet, it is difficult to express my gratitude completely and I make a humble attempt while fighting with many different emotions.

First, I would like to thank my supervisor Prof. Dr. Franc Meyer offering the chance to work in his wonderful working group. I appreciated his motivating guidance and the great scientific freedom. Thank you for creating a good working atmosphere and providing excellent lab equipment. He gave me courage and confidence in my full time of my Ph.D study. I also would like to say thank to my second supervisor Prof. Dr. Sven Schneider.

The other members of my thesis committee and examination board are gratefully acknowledged for spending their precious time with my thesis.

From our group, I am thankful for their help of Dr. Sebastian Dechert, Dr. Anne Schöber and Anna Kölpin, for their assistance in collecting X-ray diffraction data, solving the structures and analyzing the results. Especially Dr. Sebstian Dechert has taken so much time to check my stupid small and bad quality crystals. Furthermore, he spent times for collecting and analyzing the rRaman datas and DFT calculating. I would like to thank Dr. Alexander Gers-Barlag for the maintenance of ESI-MS; to Dr. Alexander Gers-Barlag and Eleonora Ferreti for their assistance of taking care of the glove box; to Marie Bergner, Dr. Claudia Stückl, Dr. Van Gastel Maurice and Dr. Eckhard Bill for their help in EPR-related concerns; to Van Kuiken Benjamin for his help in XES/XAS-related concerns; to Dr. Michel John and Ralf

Schöne for his help in NMR-related concerns; to Dr. Serhiy Demeshko for magnetization measurements and detailed explanations; to Jörg Teichgräber, Jiapei Du and Marcus Thater for cyclic voltammetry measurement and to Andreas Schwarz for assistance in lab-related questions; to Britta Müller, Peter Unger and Dr. Claudia Stückl for handling of administrative issues. I would also like to acknowledge all people from the NMR and MS facilities, the electrical, mechanical glass workshops.

I would like to say thanks to all the past and present members in Prof. Dr. Franc Meyer's working group, especially to my laboratory mates Dr. Tongxun Guo, Dr. Jin Tong, Dr. Dennis. H Manz, Dr. Claudia Kupper, Pierre Goursot, Stefan Resch, Andreas Schwarz and Ming Li for their daily help. For corrections, suggestions and linguistic improvements of this work, I would like to thank Eleonora Ferrettic, Joanne Wong, Munmun Ghosh, Jana Lücken, Pierre Goursot, Stefan Resch, Roland Alexander Schulz and Keno Hennecke.

I am particularly grateful for the financial support from the Chinese Scholarship Council. Finally, I am very gratefully for my family and friends for their love. Thanks for their support and encouragement during the preparation of this work.

Curriculum Vitae

Personal Data

Name

Date of Birth

Place of Birth
Nationality

Education

10/2013-Present

09/2010-06/2013

09/2006-06/2010

Peng-Cheng Duan
21 ${ }^{\text {st }}$ January 1988

Huangshi, Hubei
Chinese

PhD candidate, Institute of Inorganic Chemistry, University of Göttingen, Germany

Supervisor: Prof. Dr. Franc Meyer
Thesis: A Dinuclear Dihydride complex for Bimetallic Reductive Activation and Transf ormation of a Range of Inert Substrates

Master in Applied Chemistry, College of Chemistry and Molecular Engineering, Zhengzhou University, China

Supervisor: Prof. Dr. Guang Yang Thesis: Syntheses, Structure and Host-Guest Chemistry Property Research of Complexes Based on Coinage-metals and bipyrazolyl ligands (Note:Excellent)

Bachelor in Science and Engineering of Materials, Henan University of Technology, Zheng-

Zhou, China
Supervisor: Prof. Dr. Shi-Kai Liu
Thesis: Syntheses $\mathrm{Cu}_{2} \mathrm{O}$ nanoparticles by hydrothermal method
(Note:Excellent)

Work and training experiences

04/2015-05/2015 Teaching assistant for biochemistry practical experiments in Institute of Inorganic Chemistry, University of Göttingen, Germany

08/2015-10/2015 Cooperation with MPI-CEC Max Planck institute for Chemical Energy Conversion in Mülheim (Ruhr)

Instruments Skill

ESI-MS, NMR, IR, UV-vis, Luminescence and Electrochemistry measurement and data analysis. Taking care of and using glove box as well as Schlenk technology. Shelxl and Wingx date analysis

Selected Awards and Honors

10/2013-9/2017
Financial Support from China Scholarship Council

2013

National Postgraduate Scholarship, Ministry of Education, P. R. China
Outstanding Graduate School of Zhengzhou University
Outstanding Diploma thesis
2012
Scholarship for Outstanding Student of Zhengzhou University
Excellent Student Union Leader Award of Zhengzhou University
Excellent Student Leader Award of Zhengzhou University
Top 100 Research Award of Zhengzhou University

2011

Excellent Student Leader Award of Zhengzhou University

