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CHAPTER 1

Introduction and overview of the dissertation

Let X ↪ Pn be a d-dimensional projective variety. A Newton-Okounkov body
∆(L) ⊆ Rd is a convex compact real set associated to a line bundle π∶L → X.
Its main feature is the property that the volume of the body volRd(∆(L)) equals
the volume of the line bundle L multiplied by d!. Recall that the volume of the line
bundle L is defined as

vol(L) ∶= lim
k→∞

h0(X,L⊗k)
kd/d!

.

Let us now consider the Serre-Twisting sheaf OX(1) (which is the dual of the tau-
tological line bundle) corresponding to the given embedding of X. The volume
vol(OX(1)) is equal to the classical notion of the degree of a projective variety.
Hence, we have given the degree of a variety X ↪ Pn a convex geometric interpre-
tation as the volume of a convex real body ∆(OX(1)). This is the starting point
for the far reaching bridge between algebraic geometry and convex geometry via
the theory of Newton-Okounkov bodies.

1. Historical background

The idea that one can associate polytopes ∆ to a variety X which carries informa-
tion about X goes back to the Russian school in the mid 70’s (Bernstein, Khovanskii
and Kushnirenko). In particular, they considered Newton polytopes of multivari-
ate polynomials. Let f = ∑m∈Mf

amx
m be a polynomial in n variables. Then the

Newton polytope of f is given by

∆(f) = conv({m ∣ m ∈Mf}).

The famous theorems by Bernstein and Kushnirenko answer the following question.
First fix n distinct finite subsets Mi ⊆ Nn and define Li as the vector spaces of
polynomials which are generated by the monomials xm for m ∈Mi.

Question. How many solutions in (C∗)n has the system of equations

P1 = ⋅ ⋅ ⋅ = Pn = 0

where the Pi ∈ Li are generic?

They gave the following answer.

Theorem 1.1 ([B75],[K76]). The number of solutions of the above system of equa-
tions is equal to the mixed volume V (∆1, . . . ,∆n), multiplied by n!. In particular
if ∆1 = ⋅ ⋅ ⋅ = ∆n =∶ ∆, then the number of solutions is equal to vol(∆), multiplied by
n!.
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4 1. INTRODUCTION AND OVERVIEW OF THE DISSERTATION

Khovanskii studied similar correspondences in [Kh77] and [Kh78]. For example,
he considered curvesX ⊂ (C∗)2 defined by a generic polynomial P and its associated
Newton polytope ∆(P ). The general flavour of its studies is that one can interpret
many discrete invariants of X as invariants of the polytope ∆(P ). One example
of such an interpretation is that the genus of X is equal to the number of integral
points in the interior of ∆(P ).
The above mentioned work lay the foundation for the correspondence of toric vari-
eties, introduced by Demazure in 1970, and polytopes. A normal variety X is toric
if it contains T = (C∗)n as an open subset and the action of T on itself extends
to X. These varieties are completely described by a fan Σ and the polytopes P
admitting Σ as its normal fan correspond to the embeddings X ↪ Pn into projective
space. This leads to a complete dictionary of algebraic properties of toric varieties
and combinatorial/convex geometric properties of fans/polytopes. Its translations
gave rise to new results on both sides and has been an active area of research ever
since.
However, all the above correspondences between algebraic geometry and convex
geometry work only for particular classes of projective varieties. There was no
correspondence for an arbitrary projective variety X. It was Okounkov who in
his papers [O96] and [O00] gave a construction of a convex body associated to
an embedded variety, carrying its degree as the volume. It took ten years after
Okounkov’s first paper on this construction before two independent foundational
manuscripts ([KK12] and [LM09]) were published in which his ideas were devel-
oped into a systematic theory.
In the following we want to present the state of the art in the theory of Newton-
Okounkov bodies from the starting point of [KK12] resp. [LM09] and explain our
contributions to the field.

2. Construction and first properties of Newton-Okounkov bodies

In this section we want to give a very brief overview of the construction of Newton-
Okounkov bodies and state some elementary facts about them. We will mainly
follow the lines of [LM09]

2.1. Construction. Let X be a projective variety of dimension d over an
algebraically closed field k of characteristic 0. Let D be a (Cartier) divisor on X
and consider the corresponding line bundle L = OX(D). We choose a flag

Y●∶X = Y0 ⊃ Y1 ⊃ ⋅ ⋅ ⋅ ⊃ Y0 = {pt}
where Yi ⊂ X is a closed subvariety of X of codimension i which is smooth at the
point {pt}. Next, we construct a map

νY● ∶H0(X,L⊗k) ∖ {0} → Zd s↦ (ν1(s), . . . , νd(s))

for k ∈ N as follows. Let s ∈ H0(X,L⊗k) = H0(X,OX(kD)) be a global section.
We choose an open set U around {pt} on which s defines a regular function f = s∣U
and Y1 is given by the zero set of a regular function g. Then we define

ν1(s) = ordY1(s)

which is defined as the maximal integral k such that f is divisible by gk in the ring
of regular functions. We can then define a section s̃1 ∈ H0(X,OX(kD − ν1(s)Y1))
which does not vanish at Y1 and is given on U by f/gν1(s). We denote by s1 the
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restriction of this section to Y1. Now, by choosing an open set U1 on Y1, we can in
the same manner define the number

ν2(s) = ordY2(s1).
Iterating this procedure d-times defines the map νY● .
The two essential properties of νY● are:

● ordering Zd lexicographically, we have

νY●(s1 + s2) ≥ min{νY●(s1), νY●(s2)}

for any s1, s2 ∈H0(X,L⊗k) ∖ {0}
● given two non zero sections s ∈H0(X,L⊗k)∖{0} and t ∈H0(X,L⊗l)∖{0}

then

νY●(s⊗ t) = νY●(s) + νY●(t).
We call a map ν which satisfies the above properties a valuation-like function.
Now we can define the following semigroup associated to a divisor D

ΓY●(D) ∶= {(νY●(s), k) ∶ s ∈H0(X,OX(kD)) ∖ {0}, k ∈ N} ⊆ Nd+1.

Then the Newton-Okounkov body of D corresponding to the flag Y● is given by

∆Y●(D) ∶= Cone (ΓY●(D)) ∩ (Rd × {1}) .

2.2. First properties. By far the most interesting property about the Newton-
Okounkov body ∆Y●(D) is the following.

Theorem 2.1 ([LM09]). Let X be a projective variety, Y● an admissible flag and
D a big divisor. Then

volRd(∆Y●(D)) = 1

d!
⋅ vol(D)

where

vol(D) ∶= lim
k→∞

dimH0(X,OX(kD))
kd/d!

.

We make several remarks.

Remark 2.2. ● The construction and the shape of ∆Y●(D) depend on the
choice of the flag Y●. However, the above theorem shows that the volume
of ∆Y●(D) is independent of the choice.

● The Newton-Okounkov body ∆Y●(D) is a convex compact set in Rd. How-
ever, it is not necessarily a polytope. It might nevertheless happen that for
some flags it is a polytope, while for others it is not.

● If X is a toric variety, D a T -invariant divisor and Y● is a T -invariant
flag. Then, up to translation, the Newton-Okounkov body ∆Y●(D) recovers
the usual correspondence for divisors and polytopes in toric geometry.

In general, Newton-Okounkov bodies are hard to compute. However, one major
tool for doing so is to consider restricted linear series. For this purpose consider a
closed subvariety X ⊂ Y and a divisor D on Y . Then the restriction morphism of
global sections

rest∶H0(Y,OY (D)) →H0(X,OX(D))
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is not necessarily surjective. We define the vector space H0(Y,OY (D))∣X as the
image of the above restriction map.
Then the restricted Newton-Okounkov body is defined by

∆Y ∣X(D) = Cone({(νY●(s), k) ∶ s ∈H0(Y,OY (kD))∣X ∖ {0}, k ∈ N}) ∩ (Rd × {1}).

The idea is now that we can interpret the slices ∆Y●(D)ν1=t ∶= ∆Y●(D) ∩ ({t}×Rd)
as restricted Newton-Okounkov bodies of dimension d−1. More concretely, we have
the following theorem.

Theorem 2.3 ([LM09]). Let X be a projective variety, Y● an admissible flag such
that Y1 is a divisor and D a big divisor. Assume furthermore that Y1 /⊆ B+(D). Let
µ ∈ R be the maximal number such that D − µY1 is effective. Then for all 0 ≤ t < µ,
we have

∆Y●(D)ν1=t = ∆X ∣Y1
(D − tY1).

Here, B+(D) is the augmented base locus defined by B+(D) = B(D − A) for any
small enough ample Q-divisor A. Note that the rather technical condition Y1 /⊆
B+(D) makes sure that the slice ∆Y●(D)ν1=t is a d − 1 dimensional body.

2.3. Global Newton-Okounkov body. Having defined the Newton-Okounkov
body ∆Y●(D), we are interested in the question how ∆Y●(D) changes when varying
the divisor D. For this purpose we work in the Néron-Severi space N1(X) which is
the group of divisors Div(X) modulo numerical equivalence. This means that two
divisors D1 and D2 are identified with each other if for all curves C the intersection
products (D1 ⋅C) = (D2 ⋅C) coincide. This group has the advantage of being finitely
generated and consequently the associated vector space N1(X)R = N1(X) ⊗Z R
is finite dimensional. It turns out that ∆Y●(D) only depends on the numerical
class of D, so that it makes sense to talk of the Newton-Okounkov body of a class
ξ ∈ N1(X). The answer to the question how the ∆Y●(ξ) vary as we vary ξ ∈ N1(X)R
can be answered by the following theorem.

Theorem 2.4 ([LM09]). There exists a closed convex cone ∆Y●(X) ⊂ Rd×N1(X)R
such that for each ξ ∈ N1(X) which is big we have

pr−1
2 (ξ) ∩∆Y●(X) = ∆Y●(ξ).

We call ∆Y●(X) the global Newton-Okounkov body of X corresponding to Y●.

The above theorem shows that there is a universal convex object which carries
information about all the Newton-Okounkov bodies corresponding to the flag Y●.

2.4. Generic Newton-Okounkov body. Similarly as in the previous sec-
tion, we can ask the following question. How does ∆Y●(D) change when varying
the flag Y●? One major difference between this question and the one posed in the
last section is that the geometry of the parameter space, i.e. the moduli space
of admissible flags of X, is a lot more complex. However, suppose we have the
following situation. Let T be a parameter space and π∶XT → T a flat family such
that for each t ∈ T the fiber π−1(t) = Xt is an irreducible subvariety of dimension
d. Suppose furthermore we have a partial flag

Y●∶XT ⊃ Y1 ⊃ ⋅ ⋅ ⋅ ⊃ Yd
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such that the fiber over t defines an admissible flag Yt,● for each t ∈ T . Let D be
a divisor on XT . Then we can for each t ∈ T define the Newton-Okounkov body
∆Yt,●(Dt) on Xt. In this situation the following holds.

Theorem 2.5. Let π∶XT → T , Y● and D be as described above. Then for a very
general choice of t ∈ T , the Newton-Okounkov bodies ∆Yt,●(Dt) all coincide.

This theorem allows to define a generic Newton-Okounkov body on X for a divisor
D without the choice of a flag Y●. It shows that the following construction gives
rise to a canonical Newton-Okounkov body. Let x ∈ X be a very general point.
Consider the blow-up π∶Blx(X) → X of X in x. Let Ex ≅ P(TxX) ≅ Pn−1 be the
exceptional divisor and let

TxX ⊃ V1 ⊃ V2 ⊃ ⋅ ⋅ ⋅ ⊃ Vd−1 ⊃ {0}
be a very general flag of subspaces. Taking the projectivization of the above flag,
induces an admissible flag Y● on Blx(X) and the above theorem shows that the
Newton-Okounkov body ∆Y●(π∗D) is canonically defined.
Although we have a canonically defined Newton-Okounkov body, the above theorem
gives us no tool for constructing it. In general, it is almost never possible to compute
such a canonically defined Newton-Okounkov body.

3. Positivity and Newton-Okounkov bodies

Positivity is a central concept in algebraic geometry.
Given a line bundle L = OX(D) on a projective variety X one can associate a
rational map

hD ∶X ⇢ Pn−1

which is locally just given as follows. Let s1, . . . , sn ∈ H0(X,L) be a basis of
the global sections. For each x ∈ X such that (s1(x), . . . , sn(x)) ≠ 0 we define
hD(x) = (s1(x) ∶ ⋅ ⋅ ⋅ ∶ sn(x)) ∈ Pn−1.
The positivity of a line bundle is a measure of ‘how many global sections’ the line
bundle L admits. Another way of interpreting positivity is that the corresponding
rational map hD should, in some sense, be well behaved, e.g. a regular map,
birational map, closed immersion etc.. In the following we summarize the most
important positivity properties:

● A line bundle L = OX(D) is called effective if it admits a non-zero global
section 0 ≠ s ∈H0(X,L).

● A line bundle L = OX(D) is called big if vol(L) = limk→∞
h0(X,L⊗k)
kd/d!

> 0,

where d is the dimension of X. Equivalently, this means that the rational
map hD ∶X ⇢ Pn−1 defined by OX(kD) for some k ≫ 0 is birational onto
its image.

● A line bundle L = OX(D) is called base point-free if the map hD is regular.
This means that for each x ∈X, there is a section s ∈H0(X,L) which does
not vanish at x.

● A line bundle L = OX(D) is called very ample if the map hD defines a
closed immersion.

It turns out that a lot of positivity properties such as bigness and ampleness are
actually numerical properties, i.e. if D1 ≡num D2 then D1 has property P if and
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only if D2 has property P . Hence, we will define the following cones in the finite
dimensional vector space N1(X)R = N1(X) ⊗Z R.

● Big(X) = Cone({[D] ∈ N1(X) ∣ OX(D) is a big line bundle}), which we
call the big cone .

● Amp(X) = Cone({[D] ∈ N1(X) ∣ OX(D) is a very ample line bundle}),
which we call the ample cone.

Note that the big and the ample cone are open. We call its closure the pseudo-
effective, resp. the nef cone and denote it by Eff(X), resp. Nef(X).

3.1. Previous work on Newton-Okounkov bodies and positivity. The
connection between positivity and Newton-Okounkov bodies stems from the follow-
ing observation by S.-Y. Jow.

Theorem 3.1 ([J10]). Let X be a normal projective variety. Two big divisors
D1,D2 are numerical equivalent if for all admissible flags Y● we have

∆Y●(D1) = ∆Y●(D2).

Note that the reverse direction was already proven in [LM09]. Philosophically,
the above theorem tells us that we can read off all numerical properties of a big
divisor D from the set of Newton-Okounkov bodies ∆Y●(D). Thus, we should be
able to translate algebro geometric properties into properties of real convex bodies.
This is in particular possible for positivity properties. In [KL14] and [KL17]
Küronya and Lozovanu translate the properties of being nef/ample into conditions
on Newton-Okounkov bodies. More concretely, they prove the following.

Theorem 3.2 ([KL17]). Let L be a line bundle on a projective variety X.

● L = OX(D) is nef if and only if for all admissible flags Y● the corresponding
Newton-Okounkov body ∆Y●(D) contains the origin O.

● L = OX(D) is ample if and only if for all admissible flags Y● the cor-
responding Newton-Okounkov body ∆Y●(D) contains a standard simplex

∆ε ∶= {(x1, . . . , xd) ∈ Rd≥0 ∣∑di=1 xi ≤ ε} for some ε > 0.

In fact, they prove a more refined version of this by considering the numerical base
loci B+(D) and B−(D). We refer to [ELMNP09] for an introduction on these
loci. What they actually prove is the following.

● x /∈ B−(D) if and only if for all admissible flags Y● such that Yd = {x} the
origin is contained in ∆Y●(D)

● x /∈ B+(D) if and only if for all admissible flags Y● such that Yd = {x},
there is an ε > 0 such that ∆ε ⊂ ∆Y●(D).

Theorem 3.2 now follows from the above together with the fact that B−(D) = ∅ ↔
D is nef and B+(D) = ∅ ↔D is ample
From the above described analysis and Jow’s theorem on numerical equivalence the
following question seems to be natural.

Question. Let x ∈ X. Suppose D1 and D2 are two divisors such that for all
admissible flags Y● for which Yd = {x} we have ∆Y●(D1) = ∆Y●(D2). How are D1

and D2 related?

For surfaces X the above question was answered by Roé in terms of the Zariski
decomposition of a divisor. If D is a divisor on a surface X, then the Zariski
decomposition of D is given by D = P (D) +N(D) where P (D) is nef and N(D)
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has only negative curves in its support. Building upon the Zariski decomposition,
Roé defines a refinement of this decomposition. For each point x ∈X we decompose
the negative part N(D) = Nx(D) +N c

x(D) into components which go through the
point x and those which do not. Having defined this refinement, he proves the
following.

Theorem 3.3 ([Roe16]). Let X be a smooth projective surface and x ∈ X. Then
∆Y●(D1) = ∆Y●(D2) for all admissible flags Y● centered at x if and only if P (D1) ≡num
P (D2) and Nx(D1) = Nx(D2).

He ends his paper with raising the following question.

Question. Can the above theorem be generalized to projective varieties of higher
dimension?

3.2. Our contribution: generalizing Roé’s theorem. In our article [BM18]
we answer the question above, posed by Roé. Note that Zariski decompositions
do not necessarily exist in higher dimension. However, we consider a similar de-
composition, namely, the Nakayama σ-decomposition introduced in [N04]. We
write D = Pσ(D) + Nσ(D) for this decomposition. The main difference between
the Nakayama σ-decomposition and the Zariski decomposition is the fact that
Pσ(D) does not have to be nef, but rather has the property that the base lo-
cus B−(D) is small, i.e. of codimension at least two. We can analogously as
in the Zariski case consider a refinement of the σ-decomposition by decomposing
Nσ(D) = Nσ,x(D) +N c

σ,x(D). Then we are able to prove a natural generalization
of Theorem 3.3, which answers the above question.

Theorem 3.4. Let X be a smooth projective variety. Let x ∈ X. Then ∆Y●(D1) =
∆Y●(D2) for all admissible flag Y● centered over x if and only if Pσ(D1) ≡num
P (D2) and Nσ,x(D1) = Nσ,x(D2).

Note that the ‘←’ direction is the easier direction and can be proved rather directly.
The more complicated and technical direction is ‘→’. For this direction Roé’s ideas
cannot be used since they are too surface-specific. The way we proceed instead is
to analyze the proof of Jow’s theorem step by step and make sure that his proof
still works by considering just flags where Yd is fixed.
As a byproduct of this analysis we obtain a new criterion for a big divisor to be nef
via restricted volumes. More concretely, we prove the following.

Theorem 3.5. Let D be a big divisor on X. Then the following conditions are
equivalent.

● D is nef.
● For all Y /⊆ B+(D) we have

volX ∣Y (D) = volY (D∣Y ).

The restricted volume volX ∣Y (D) is defined as follows. Let D be a divisor on the
projective variety X. Let furthermore Y ⊆ X be a closed subvariety of dimension
d. Then we define

volX ∣Y (D) = lim
k→∞

dim(H0(X,OX(D))∣Y )
kd/d!
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where H0(X,OX(D))∣Y denotes the image of the restriction morphism

rest∶H0(X,OX(D)) →H0(Y,OY (D)).
This volume is equal to the volume of the restricted Newton-Okounkov body
∆X ∣Y (D) multiplied by d!.

4. Rational polyhedrality of N.-O. bodies and toric degenerations

In the construction of Newton-Okounkov bodies ∆Y●(D) the choice of a flag Y●
is crucial. It seems to be desirable to find those flags Y● such that the shape
of ∆Y●(D) is not too complicated. One of the fundamental objects of study in
combinatorial convex geometry is the notion of a lattice polytope. A slightly more
general notion is a rational polytope, i.e a polytope with rational extreme points.
If we could find a flag Y● such that ∆Y●(D) is a rational polytope we would have a
convex combinatorial description of the divisor D on X. Thus, we ask the following
question.

Question. Given a divisor D on X. Does there exist a flag Y● such that ∆Y●(D)
is rational polyhedral?

Note that there are divisors D such that its volume vol(D) is an irrational number.
Hence, the answer to the above question cannot always be yes. However, if we
assume that the algebra of sections R(X,D) = ⊕k∈NH0(X,OX(kD)) is finitely
generated, the volume is indeed rational. We call D finitely generated in this case.
Note that in particular all free divisors are finitely generated. For finitely generated
divisors, Anderson, Küronya and Lozovanu gave an affirmative answer to the above
question.

Theorem 4.1 ([AKL12]). Let X be a projective normal variety and D a big divisor
on X which is finitely generated. Then there exists a flag Y● such that ∆Y●(D) is
a rational simplex.

Although this theorem answers the above question, the resulting Newton-Okounkov
bodies are all simplices of length one except for the first coordinate. This implies
that apart from the volume of the divisor they do not contain any particular in-
formation about the divisor in question. An explanation for this circumstance is
that ∆Y●(D) is in some sense not universal enough since the choice of Y● heavily
depends on the divisor D. Thus, it seems to be more interesting to ask if there is
a universal flag Y● such that ∆Y●(D) is rational polyhedral for all divisors on X.
In general, the divisors on X will not all be finitely generated. However, the finite
generation of divisors is a natural property for Mori dream spaces, introduced in
[HuKe00]. Hence, the following question posed in [LM09] seems natural.

Question. Let X be a Mori dream space. Does there always exist a flag Y● such
that the global Newton-Okounkov body ∆Y●(X) is rational polyhedral?

In the surface case, it was proven in [KLM12] that for all choices of flags Y● the
Newton-Okounkov body ∆Y●(D) is a finite rational polygon.
Moreover, an affirmative answer to the above question was given by Schmitz and
Seppänen. In fact, they give a proof of the following more general statement.

Theorem 4.2 ([SS16]). Let X be a surface which admits a rational polyhedral
pseudo-effective cone, then for a general flag Y● the global Newton-Okounkov body
is rational polyhedral.
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Apart from proving the above theorem, they also provide a concrete set of genera-
tors. Other classes of varieties for which the above question could be answered affir-
matively are complexity one varieties ([P11]) and Bott-Samelson varieties ([SS17]).
Closely related to the rational polyhedrality of ∆Y●(D) is the finite generation of
the semigroup ΓY●(D), which is a stronger property. The importance of the finite
generation of ΓY●(D) is due to the following observation by Anderson.

Theorem 4.3 ([A13]). Let X be a projective variety and A be an ample divisor on
X. Let Y● be an admissible flag such that ΓY●(A) is finitely generated. Then there
exists a toric degeneration of X to the toric variety X0 = Proj(k[ΓY●(A)]) whose
normalization is the normal toric variety corresponding to the polytope ∆Y●(A) via
the usual correspondence.

The above theorem states that, under the assumption that ΓY●(A) is finitely gen-
erated, there is a deep connection between X and the toric variety X0. Indeed,
they share the same Hilbert polynomial, which means that their dimension, degree,
genus, etc. coincide.

4.1. Our contributions on normal toric degenerations. In this section
we present our results from the article [M18].
Anderson’s Theorem gives a connection between X and the toric variety whose
normalization corresponds to ∆Y●(A). However, this connection is rather implicit
since it involves taking the normalization of X0 = Proj(k[ΓY●(A)]). We can omit
this problem if we can make sure that X0 is already normal. But this is connected
to the normality of the semigroup ΓY●(A), which means that

Cone(ΓY●(A)) ∩Zd = ΓY●(A).
So in [M18], we deal with the answer of the following question.

Question. Given a divisor D, when is the semigroup ΓY●(D) normal finitely gen-
erated for a flag Y●?

The answer to this question involves the notion of the Ehrhart polynomial. For a
lattice polytope ∆ ⊆ Rd the corresponding Ehrhart polynomial P∆ is given by

P∆(k) = ∣k ⋅∆ ∩Zd∣.
The Hilbert function of D is given by hD(k) = h0(X,OX(kD)).
The following is a first quite general answer.

Theorem 4.4. Let X be a projective variety, Y● an admissible flag and D a very
ample divisor such that ∆Y●(D) is a rational polytope. Then ΓY●(D) is normal
and finitely generated if and only if the Hilbert function and the Ehrhart polynomial
define the same function.

We always have hD ≤ P∆Y●
(D). If D is very ample and ∆Y●(D) is a lattice polytope,

then hD resp. P∆Y●(D) are both polynomials of degree dimX with its first coefficient
equal to vol(D)/d! resp. vol(∆Y●(D)). But from the theory of Newton-Okounkov
bodies we know that these numbers are equal. However, also the second coefficient
of the Ehrhart polynomial has a geometric meaning. It is half the sum of the
induced surface area of the facets of ∆Y●(D). We call this number the normalized
surface area S(D,νY●) Hence, a necessary condition for ΓY●(D) to be normal is
that this number is minimal. This enables us to view the problem of finding a flag
Y● for a fixed divisor D as a minimization problem.
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From now on we will focus on surfaces. In this situation the condition that S(D,νY●)
is minimal means that the number of lattice points on the boundary of ∆Y●(D) is
minimal.
We prove that under some mild condition on X, which we call (∗), this minimum
does indeed exist.

Theorem 4.5. Let X be a smooth surface satisfying condition (∗). Let D be a
big divisor on X. Then there exists an admissible flag Y● such that the normalized
surface area S(D,νY●) is minimal.

If we additionally assume that the positive and negative parts of the Zariski decom-
position of an integral divisor are integral, we present a concrete algorithm how to
find flags on which the minimum is attained. We will apply this algorithm in the
case of del Pezzo surfaces and find for several divisors flags which admit normal
toric degenerations.
In the second part of the article we give a more concrete answer to the above ques-
tion about normal toric degenerations for smooth (weak) del Pezzo surfaces. These
are surfaces such that their anticanonical bundle −KX is ample (nef). Smooth del
Pezzo surfaces are up to isomorphy equal to the blow-up of P2 in up to eight points
in general position. Weak del Pezzo surfaces are, roughly speaking, characterized
by blow-ups of P2 of up to eight points in almost general position, i.e. there are
more constellation allowed than for del Pezzo surfaces. We prove the following.

Theorem 4.6. Suppose one of the following situations.

● X = Xr is the blow-up of 1 ≤ r ≤ 6 points in P2 general position and Y● is
an admissible flag such that Y1 is negative.

● X = L3 is the blow-up of four points, where three of them are on a line
or X = S6 is the blow-up of six points on a conic in P2. Let Y● be an
admissible flag such that Y1 is the unique (−2)-curve on X.

Then for each big divisor D the semigroup ΓY●(D) is finitely generated normal.

Note that in the first case the variety X is a del Pezzo surface and in the second
case it is a weak del Pezzo surface.
Finally, we consider global Newton-Okounkov bodies on (weak) del Pezzo surfaces
and their corresponding semigroups ΓY●(X). We generalize Theorem 4.2 to arbi-
trary flags Y● and compute some examples of global Newton-Okounkov bodies.
In the construction of the global Newton-Okounkov body one has to take the closed
convex cone of the following semigroup

ΓY●(X) ∶= {(ν(s), [D]) ∣ s ∈H0(X,OX(D)), D ∈ Pic(X)}.
It is now a natural question whether ΓY●(X) is normal and finitely generated. By
analyzing the semigroups ΓY●(D) for effective (i.e. not necessarily big) divisors, we
are able to prove the following.

Theorem 4.7. Suppose one of the following situations.

● X = Xr is the blow-up of 1 ≤ r ≤ 6 points in general position and Y● is an
admissible flag such that Y1 is negative.

● X = L3 is the blow-up of four points, where three of them are on a line or
X = S6 is the blow-up of six points on a conic. Let Y● be an admissible
flag such that Y1 is the unique (−2)-curve on X.

Then the global semigroup ΓY●(X) is finitely generated normal.
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4.2. Our contributions to Mori chambers and Newton-Okounkov bod-
ies of Bott-Samelson varieties. In our article [MSS17] we investigate in the
study of Mori chambers and Newton-Okounkov bodies on Bott-Samelson varieties.
These are desingularization of Schubert/ flag varieties. For an introduction to Bott-
Samelson varieties we refer to [LT04]. We will try to omit as many technicalities as
possible and just summarize the most important properties of Bott-Samelson vari-
eties which we will need for our purposes. In the following let X be an n-dimensional
Bott-Samelson variety. Then we have Pic(X) ≅ Zn ≅ N1(X) and there are effective
prime divisors E1, . . . ,En which generate Pic(X) as a group. Moreover, the classes
of the Ei are the generators of the pseudo-effective cone. We call E1, . . . ,En the
effective basis of X. There are furthermore divisors D1, . . . ,Dn which also generate
Pic(X) and its classes generate the nef cone. We call this basis the O(1) basis. It
was proven in [SS17] that Bott-Samelson varieties are Mori dream spaces, which
means that the Cox ring

Cox(X) = ⊕
L∈Pic(X)

H0(X,L)

is finitely generated as an algebra. We start our article by proving the fundamental
result that Bott-Samelson varieties admit Zariski decompositions, like in the surface
case. More concretely, we prove the following.

Theorem 4.8. Let X =Xw be a Bott-Samelson variety corresponding to a reduced
sequence w. Then every movable divisor on X is base point-free and hence

Mov(X) = Nef(X).

The above theorem shows that the earlier mentioned Nakayama σ-decomposition,
which is a decomposition of a divisor into movable and fixed part, is indeed a Zariski
decomposition, i.e. Pσ(D) is nef. This means the we can decompose each divisor
D = P +N into a nef part P and a fixed part N , such that all global section of a high
enough multiple of OX(kD) come from global sections of the nef bundle OX(kP ).
Having proved this, we can decompose the effective cone into, so called, Zariski
chambers inside which the positive part P and the negative part N varies linearly
if we vary the divisor linearly. This decomposition is a generalization of the one
introduced in [BKS04] in the surface case. We explicitely describe these chambers
with the help of the effective- and the O(1)-basis. Furthermore we compare these
Zariski chambers of X with the Mori chambers of X defined in [HuKe00]. We
derive the following.

Theorem 4.9. Let X =Xw be a Bott-Samelson variety for a reduced word w. Then
each Zariski chamber defines a Mori chamber and vice versa.

We also illustrate these results with explicit three and four dimensional examples.

In the second part of our article, we investigate Newton-Okounkov bodies on Bott-
Samelson varieties. Note that the study of Newton-Okounkov bodies on Bott-
Samelson varieties has recently become an active field of research. In [A13] a
particular Bott-Samelson variety is considered as an example. A more thorough
analysis of Newton-Okounkov bodies for Bott-Samelson varieties was initiated by
Kaveh in [Ka15]. In [HaY15] the authors describe Newton-Okounkov bodies of
Bott-Samelson varieties for divisors D satisfying a certain condition. In contrast to
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Kaveh’s work, they use a flag to define the valuation, which we will call the ‘hori-
zontal’ flag. In particular, they prove the finite generation of the value semigroup in
this context. In [SS17] the rational polyhedrality of the global Newton-Okounkov
with respect to the, so scalled, ‘vertical’ flag was proven. In our work we want to
combine the properties derived in [SS17] and [HaY15]. More concretely, we will
use the ‘vertical flag’ as a tool for proving the existence of Zariski decompositions
on Bott-Samelson varieties. The existence will then help us to prove the finite gen-
eration of the value semigroup for all divisors on the ‘horizontal flag’. Thus, we
generalize the results in [HaY15]. Moreover, we also prove the rational polyhedral-
ity of the global Newton-Okounkov body for the ‘horizontal flag’. On top of that
we prove the finite generation of the global semigroup ΓY●(X), which was already
considered in the previous section.

Theorem 4.10. Let X =Xw be a Bott-Samelson variety for a reduced word w and
let Y● be the horizontal flag. Then, the semigroup

ΓY●(Xw) ∶= {(ν(s), [D]) ∣ D ∈ Pic(Xw), s ∈H0(X,OX(D)) ∖ {0}}
is finitely generated.

Like in the previous section, we are concerned with the normality of ΓY●(X). We
do not expect this to hold in general, however we give a criterion in terms of the
corresponding Zariski decomposition on X. Namely, the additional property that
the Zariski decomposition is an integral decomposition, i.e. for an integral divisor
D = P + N the positive part P as well as the negative part N should also be
integral. We finish the article by computing the global Newton-Okounkov body
for a three-dimensional example and prove that in this case the integrality of the
Zariski decompositions holds.

5. Newton-Okounkov bodies for graded linear series

In the above introduction to Newton-Okounkov bodies we associated a convex body
to a given divisor D on a projective variety X. However, the construction given in
[LM09] is actually more general. In their article they associate a Newton-Okounkov
body to a graded linear series corresponding to a divisor D. Let us explain what
we mean by this. The set S● = {Sk}k∈N0 is called a graded linear series if for each
k > 0

Sk ⊆H0(X,OX(kD))
is a finite dimensional subspace, S0 = k and the following inclusion

Sk ⋅ Sl ⊆ Sk+l
is satisfied. Here, the product on the left is the image of Sk ⊗ Sl under the multi-
plication map

H0(X,OX(kD)) ⊗H0(X,OX(lD)) →H0(X,OX((k + l)D)).
Then we can define the associated graded linear algebra R(S●) = ⊕k∈N0

Sk ⊆
R(X,D).
The construction of the corresponding Newton-Okounkov body is as follows. We
define the semigroup

ΓY●(S●) ∶= {(νY●(s), k) ∣ k ∈ N, s ∈ Sk ∖ {0}}
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and the Newton-Okounkov body as

∆Y●(S●) = Cone(ΓY●(S●)) ∩ (Rd × {1}).
One of the most interesting examples of graded linear series is the restricted linear
series. Let D be a divisor on Y and X ⊆ Y a closed subvariety. Then the restricted
linear series S● of D to X is given via Sk =H0(Y,OY (kD))∣X .
The following is now a natural question.

Question. Which properties of Newton-Okounkov bodies of divisors do still hold
for more general graded linear series or rather which assumption do we need to
make on S● such that these properties still hold?

The first property that comes to mind is the volume formula of Theorem 2.1. So
the question is whether the following equality still holds

volRd(∆Y●(S●)) =
1

d!
⋅ lim
k→∞

dimSk
kd/d!

=∶ 1

d!
⋅ vol(S●) ?

For arbitrary graded linear series this is not true. However, if we assume that the
group generated by ΓY●(S●) is equal to Zd this formula holds. Furthermore, in
[LM09] two conditions are stated such that this holds. The first one, is that S● is
a birational graded linear series. This means that for k ≫ 0 the rational map

hSk
∶X ⇢ PN

defined by the linear series ∣Sk ∣ is birational onto its image. Then the above volume
formula holds for all flags Y● such that the point Yd lies in the open set of points
where φk defines an isomorphism. A stronger condition which makes sure that the
volume formula holds for all admissible flags is that S● contains an ample series.
This means the following. Let S● be a graded linear series corresponding to D. It
contains the ample series A if we can decompose D = A+E into ample plus effective
such that

H0(X,OX(kA)) ⊆ Sk ⊆H0(X,OX(kD))
for all k divisible enough. Note that the left inclusion is given via the multiplication
map with a defining section of E. In particular, for the restricted linear series this
condition holds whenever X ⊆ Y is not contained in the locus of hD where it is not
an isomorphism, i.e. the exceptional locus of hD.

5.1. Our work on Newton-Okounkov bodies of graded linear series.
Apart from the volume formula, which was considered in [LM09] for graded lin-
ear series S●, there are many interesting properties of Newton-Okounkov bod-
ies which were only considered for the case of a complete graded linear series
R(S●) = R(X,D). The main features which were left open are generalizations
of slicing theorems such as in Theorem 2.3 and generalizations of the existence of
generic Newton-Okounkov bodies such as in Theorem 2.5. In our article [M18.2]
we derive e generalizations of both theorems for certain graded linear series.
If we choose the graded linear series to be arbitrary, there is little hope that prop-
erties concerning the geometry of X can hold in general. This is why it makes sense
to pose conditions on S● which contain at least some information about the geome-
try of X. The conditions we have in mind were already introduced in the previous
section, namely either that S● contains an ample series or the weaker property that
S● is birational. Certainly, the additional property of the finite generation of the
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algebra R(S●) seems convenient. It turns out that a key point for the theory of
graded linear series is to understand the connection between the volume of S● and
its stable base locus B(S●), i.e. the subspace of X where all sections of S● vanish.
We derive the following characterization.

Theorem 5.1. Let S● ⊆ T● be two finitely generated graded linear series correspond-
ing to a big divisor D. Then the following two conditions are equivalent

(a) vol(S●) = vol(T●).
(b) ● The rational map hS● ∶X ⇢ Proj(S●) is birational and

● B(S●) = ∅ on Proj(R(T●)).

With the help of the above theorem we are able to derive the following slice formula.

Theorem 5.2. Let S● be a graded linear series containing the ample series D −E.
Let Y● be an admissible flag such that the divisorial component Y1 is not contained
in E and Yd /∈ B(S●). Then we have

∆Y●(S●)ν1=0 = ∆X ∣Y1
(S●).

This can be seen as a generalization of Theorem 2.3, with the additional restriction
for the point of the flag Y●.
For the question of the existence of generic Newton-Okounkov bodies it turns out
that a sufficient condition for the graded linear series S● is that it is birational. For
such graded linear series we prove the following.

Theorem 5.3. Let XT , T and Y● be as described in Section 2.4. Let S● be a
birational graded linear series on XT . Then for a very general choice of t ∈ T all
the Newton-Okounkov bodies ∆Yt,●(S●) coincide.

Analogously as described in Section 2.4, this will enable us to define canonical
Newton-Okounkov bodies ∆(S●) for a birational graded linear series S●.
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CHAPTER 2

Dissertation Articles

We will now present the articles which constitute this dissertation.

● Local Positivity and Newton-Okounkov Bodies in higher Dimension by
Harold Blum and Georg Merz.

Abstract. We extend a result of Roé concerning Newton-Okounkov
bodies and local positivity on surfaces to all dimensions. Specifically, we
show that the set of all Newton-Okounkov bodies of a big divisor with
respect to flags centered at a fixed point determines and is determined
by the numerical class of the divisor up to negative components in the
σ-decomposition that do not pass through the fixed point.

● Newton-Okounkov Bodies and normal toric Degenerations by Georg Merz.

Abstract. Anderson proved that the finite generation of the value
semigroup ΓY●(D) in the construction of the Newton-Okounkov body
∆Y●(D) induces a toric degeneration of the corresponding variety X to
some toric variety X0. In this case the normalization of X0 is the normal
toric variety corresponding to the rational polytope ∆Y●(D). Since X0 is
not normal in general this correspondence is rather implicit. In this article
we investigate in conditions to assure that X0 is normal, by comparing the
Hilbert polynomial with the Ehrhart polynomial. In the case of del Pezzo
surfaces this will result in an algorithm which outputs for a given divisor
D a flag Y● such that the value semigroup in question is indeed normal.
Furthermore, we will find flags on del Pezzo surfaces and on some partic-
ular weak del Pezzo surfaces which induce normal toric degenerations for
all possible divisors at once. We will prove that in this case the global
value semigroup ΓY●(X) is finitely generated and normal.

● On the Mori Theory and Newton-Okounkov Bodies on Bott-Samelson Va-
rieties by Georg Merz, David Schmitz and Henrik Seppänen.

Abstract. We prove that on a Bott-Samelson variety X every mov-
able divisor is nef. This enables us to consider Zariski decompositions of
effective divisors, which in turn yields a description of the Mori chamber
decomposition of the effective cone. This amounts to information on all
possible birational morphisms from X. Applying this result, we prove the
rational polyhedrality of the global Newton-Okounkov body of a Bott-
Samelson variety with respect to the so called ‘horizontal’ flag. In fact, we
prove the stronger property of the finite generation of the corresponding
global value semigroup.
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● On Newton-Okounkov Bodies of graded linear Series by Georg Merz.

Abstract. We generalize the theory of Newton-Okounkov bodies of
big divisors to the case of graded linear series. One of the results is the gen-
eralization of slice formulas and the existence of generic Newton-Okounkov
bodies for birational graded linear series. We also give a characterization
of graded linear series which have full volume in terms of their base locus.



LOCAL POSITIVITY AND NEWTON-OKOUNKOV BODIES IN HIGHER
DIMENSION

HAROLD BLUM AND GEORG MERZ

Abstract. We extend a result of Roé concerning Newton-Okounkov bodies and local pos-
itivity on surfaces to all dimensions. Specifically, we show that the set of all Newton-
Okounkov bodies of a big divisor with respect to flags centered at a fixed point determines
and is determined by the numerical class of the divisor up to negative components in the
σ-decomposition that do not pass through the fixed point.

1. Introduction

Let D be a big divisor on a smooth projective variety X of dimension d. The Newton-
Okounkov body of D serves as a tool for studying positivity properties of D. The construction
of the Newton-Okounkov body was first introduced in the work of Okounkov [Oko96] and
independently developed in the work of Lazarsfeld and Mustaţǎ [LM09] and Kaveh and
Khovanskii [KK12]. The construction is dependent on a flag

Y• = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {p}}
such that each Yi is smooth at p. The Newton-Okounkov body of D along Y• is a convex set
∆Y•(D) ⊂ Rd and encodes information on sections of H0(OX(mD)) that vanish along Y•.

Theorem 1.1. [LM09] [Jow10] Let D1 and D2 be big divisors on a smooth projective variety
X. The following are equivalent.

(1) For all admissible flags Y• on X, we have ∆Y•(D1) = ∆Y•(D2).
(2) The divisors D1 and D2 are numerically equivalent.

Philosophically, Theorem 1.1 implies that all numerical properties of a divisor D are
encoded in the convex geometry of Newton-Okounkov bodies of D. For example, the volume
of a divisor D is d! times the euclidean volume of ∆Y•(D) ⊂ Rd.

In [KL14], [KL15] and [KL17] it was shown that local positivity at some point O ∈ X is
related to the Newton-Okounkov bodies of D with respect to admissible flags centered at
the point O. Motivated by these ideas, Roé asks the following.

Question 1.2. Let D1 and D2 be big divisors on X such that ∆Y•(D1) = ∆Y•(D2) for all
admissible flags Y• centered at O. How are D1 and D2 related?

When X is a surface, Roé gives an elegant answer to this question [Roe16]. First, he
introduces the following definition.

Key words and phrases. Local positivity, Newton-Okounkov bodies.
The first author was partially supported by NSF grant DMS-0943832.
The second author was supported by DFG Research Training Group 1493 Mathematical Structures in

Modern Quantum Physics.
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2 HAROLD BLUM AND GEORG MERZ

Definition 1.3. Let D be a big divisor on a normal surface X and write D = P (D)+N(D)
for the Zariski Decomposition of D into positive and negative components. Next, fix a point
O ∈ X and write N(D) = NO(D) +N c

O(D) for the decomposition of N(D) into components
containing O and disjoint from O.

We say that two big divisor D1 and D2 are locally numerically equivalent at O if

P (D1) ≡ P (D2) and NO(D1) = NO(D2).

Note that local numerical equivalence at all points of X implies numerical equivalence.

Roughly speaking, two divisors are locally numerically equivalent at a point O if the
divisors are numerically equivalent modulo fixed components of D that do not pass through
O. With this definition, Roé proves the following.

Theorem 1.4. [Roe16] Let D1 and D2 be big divisors on a normal surface X and O ∈ X a
closed point. The following are equivalent:

(1) The divisors D1 and D2 are locally numerically equivalent at O.
(2) For all admissible flags Y• centered over O, we have ∆Y•(D1) = ∆Y•(D2).

Roé leaves the generalization of Theorem 1.4 to higher dimensions open. A key obstacle
in extending the theorem to higher dimensions is that Zariski decompositions of big divi-
sors do not always exist in dimensions three and higher. However, Nakayama introduced
a weaker analogue of the Zariski decomposition called the σ-decomposition [N04]. Such
decompositions always exist for big divisors.

We extend Roé’s definition of local numerical equivalence to higher dimensions by replacing
the Zariski decomposition in the definition with the σ-decomposition (see Section 2.3). With
this definition, we prove the following generalization of Theorem 1.4 to higher dimensions.

Theorem 1.5. Let D1, and D2 be two big divisors on a smooth projective variety X and
O ∈ X a closed point. The following are equivalent.

(1) The divisors D1 and D2 are locally numerically equivalent at O.
(2) For all admissible flags Y• centered over O, we have ∆Y•(D1) = ∆Y•(D2).

While working on this article we learnt that another group consisting of Sung Rak Choi,
Jinhyung Park and Joonyeong Won were working independently on similar generalization
results of Roé’s work.
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2. Preliminaries

2.1. Conventions. For the purposes of this paper, all varieties are defined over C.

2.2. Asymptotic base loci. Let X be a smooth projective variety and D a divisor on X.
Recall that the base locus of D is the subscheme Bs(D) ⊆ X defined by the image of the
evaluation map

H0(X,OX(D))⊗C OX(−D)→ OX .
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The stable base locus of D is

B(D) :=
⋂

m≥1

Bs(mD)red.

Since B(D) = B(pD) for p ≥ 1, the stable base locus can naturally be defined for Q-divisors.
If D is a Q-divisor, we set B(D) := B(kD) where k is a positive integer such that kD is
integral.

Since the stable base locus satisfies various pathologies (e.g. it is not a numerical invariant),
it is natural to consider the following notions. The augmented base locus and restricted base
locus of a Q-divisor D are given by

B+(D) :=
⋂

A

B(D − A) and B−(D) :=
⋃

A

B(D + A) (1)

where the union and intersection are taken over all ample Q-divisors A. We refer to
[ELMNP06] and [ELMNP08] for basic properties of the augmented and restricted base loci.

2.3. The divisorial Zariski decomposition. We recall Nakayama’s divisorial Zariski de-
composition.

Definition 2.1. Let X be a smooth projective variety and D a big R-divisor. For a prime
divisor Γ on X, we define

σΓ(D) := lim
m→∞

ordΓ|bmDc|
m

,

where ordΓ |F | denotes the coefficient of Γ in a general element of the complete linear system
|F |. We set

Nσ(D) :=
∑

Γ

σΓ(D) · Γ and Pσ(D) := D −Nσ(D).

The decomposition D = Pσ(D) +Nσ(D) is the divisiorial Zariski decomposition of D. Note
that even when D is a Z-divisor, Pσ(D) and Nσ(D) are R-divisors and may not be Q-divisors.

The following proposition records basic properties of the divisorial Zariski decomposition.

Proposition 2.2. Let X be a smooth variety and D,D1, D2 be big R-divisors. The following
hold.

(1) The natural map

H0(X,OX(bmPσ(D)c)) −→ H0(X,OX(bmDc))
is an isomorphism.

(2) If D1 ≡ D2, then Nσ(D1) = Nσ(D2) and Pσ(D1) ≡ Pσ(D2).
(3) The support of Nσ(D) equals the divisorial part of B−(D).

Next, we introduce the notion of local numerical equivalence. Roughly speaking, two big
divisors are locally numerically equivalent at a fixed point O ∈ X if their positive parts are
numerically equivalent and their negatives parts agree up to components passing through P .

Definition 2.3. Let D be a big divisor on a smooth projective variety X and O ∈ X a
closed point. We write

Nσ(D) = Nσ,O(D) +N c
σ,O(D)
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for the decomposition of Nσ(D) into components containing O ∈ X and the components
that do not contain O ∈ X . Let D1 and D2 be two big divisors on X. We say that D1 and
D2 are locally numerically equivalent at O if

Pσ(D1) ≡ Pσ(D2) and Nσ,O(D1) = Nσ,O(D2).

If X is a surface, the above definition agrees with Roé’s definition [Roe16]. This follows
from the fact that on a surface the divisorial Zariski decomposition is the same as the Zariski
decomposition. [N04, Remark III.1.17].

2.4. Restricted volumes and augmented base loci. Let D be a divisor D on a smooth
projective variety X. The restricted volume of D along a subvariety Y ⊆ X measures how
many global sections of OX(D)|Y come from sections on X. More precisely,

volX|Y (D) := lim sup
m→∞

dim (Im (H0(X,OX(mD))→ H0(Y,OY (mD))))

md/d!
, (2)

where d is the dimension of Y . The augmented base locus is related to restricted volumes
in the following way.

Theorem 2.4. [ELMNP08] If D is a divisor on X, then B+(D) is the union of all positive
dimensional subvarieties Y such that volX|Y (D) = 0.

In particular this implies that if Y 6⊆ B+(D), then volX|Y (D) > 0.

3. Newton-Okounkov bodies

We now proceed to recall the construction and some relevant properties of Newton-
Okounkov bodies. Let X be a projective variety of dimension d. We call Y• an admissible
flag on X if Y• is a flag on X, where

Y• = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {p}}
such that each Yi is an irreducible subvariety of codimension i and is smooth at the point
p. We now proceed to define the Newton-Okounkov body associated to a big divisor D on X
and an admissible flag Y• on X. Given a divisor F on X, there is a valuation map

νY• = ν : H0(X,OX(F )) \ {0} −→ Zd≥0

that measures order of vanishing of sections along Y• (see [LM09] for the definition of νY•).
The Newton-Okounkov body of D along Y• is the convex body

∆Y•(D) := closed convex hull

(⋃

m≥1

1

m
νY•(mD)

)
.

It will also be useful for us to consider flags that do not live on X. We say that Y• is an
admissible flag over X if there exists a proper birational morphism π : X̃ → X and Y• is an
admissible flag on X̃. Given a closed point p ∈ X we say that Y• is an admissible flag over
p if Y• is an admissible flag over X and the image of Yd on X is p. Given a big divisor D on
X and Y• an admissible flag over X as above, we set

∆Y•(D) := ∆Y•(π∗D).

In this paper, it will be necessary to consider the Newton-Okounkov body of a big R-
divisor D. See [KL15] for its definition.

The following statement is (1) =⇒ (2) of our main theorem.
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Proposition 3.1. Let D1 and D2 be two big divisors on a smooth projective variety X and
O ∈ X a closed point. If D1 and D2 are locally numerically equivalent at O, then

∆Y•(D1) = ∆Y•(D2).

for all flags Y• centered over O.

Proof. Let π : X̃ → X be a proper birational morphism and Y• an admissible flag on X̃
centered at the point P ∈ π−1(O).

We claim that
∆Y•(π∗Di) = ∆Y• (Pσ(π∗Di) +Nσ,P (π∗Di)) . (3)

Indeed, [KL15, Theorem 4.2 (3)] implies

∆Y•(π∗Di) = ∆Y•(Pσ(π∗Di)) + νY•
(
Nσ,P (π∗Di) +N c

σ,P (π∗Di)
)
.

Since νY•
(
Nσ,P (π∗Di) +N c

σ,P (π∗Di)
)

= νY•(Nσ,P (π∗Di)) the claim is complete.
Since D1 and D2 are locally numerically equivalent at O and π(P ) = O, it follows that

Pσ(π∗D1) ≡ Pσ(π∗D2) and Nσ,P (π∗D1) = Nσ,P (π∗(D2)). Combining the previous statement
with (3) completes the proof. �

In order to prove the reverse direction of the main theorem, it is necessary to read off
numerical data from the Newton-Okounkov body. One step in this direction is the following
lemma. While the statement is well known (see [Jow10, Roe16]), we include it for sake of
completeness.

Proposition 3.2. Let D1 and D2 be big R-divisors on X and E ⊆ X a prime divisor on
X. If there exists a point O ∈ E such that E is a smooth at O and ∆Y•(D1) = ∆Y•(D2) for
all admissible flags Y• centered at O, then

σE(D1) = σE(D2).

Proof. By our assumption on O, we may choose an admissible flag Y• on X such that Y1 = E.
We claim that σY1(Di) can be read off from ∆Y1(Di). Indeed, σY1(Di) is the minimum value
of the projection of ∆Y1(Di) onto its first coordinate. Since ∆Y•(D1) = ∆Y•(D2), we conclude
σY1(D1) = σY1(D2). �

4. Very general flags

In this section we extend some results of [Jow10, Section 3] to flags passing through a
fixed point. In order to prove such results, we must assume that the base locus of our big
divisor is “well behaved” at x (see Condition 4.1).

4.1. Construction of flags. Let X be a smooth projective variety of dimension d, P ∈ X a
closed point, and D a big divisor on X. Additionally, we fix very ample divisors L1, . . . , Ld−1

on X.
Next, we construct a flag on X centered at P . Let Ai be an element of |Li − P |, where
|Li − P | denotes the linear series of divisors in |Li| passing through P . For each r ∈
{1, . . . , d− 1}, we set

Yr := A1 ∩ · · · ∩ Ar.
By a Bertini Type Theorem [Zha09, Theorem 2.5], if each Ai is a general element of |Li−P |,
then each Yi is smooth. Therefore,

Y• := {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {P}}
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is an admissible flag on X with center P .
Our goal will be to relate the intersection number Yd−1 ·Pσ(D) to the convex body ∆Y•(D).

To prove such a relationship, we impose restrictions on the intersection of Bs(mD) and our
flag Y• for m divisible enough.

Condition 4.1. We say that a big divisor D on X satisfies Condition 4.1 at P ∈ X if for
all m divisible enough Bs(mD) is purely codimension 1 and smooth at P .

The above criterion can be stated as follows. For each m divisible enough, there exists
an open set Um ⊆ X containing P and an effective divisor Fm on Um such that the scheme
Bs(mD) ∩ Um is defined by the ideal OUm(−Fm) and Supp(Fm) is smooth.

Denote by C•(X,D) the complete linear series associated to D and by C•(X,D)|Y the
restricted linear series for a subvariety Y ⊆ X.

Proposition 4.2. Let P ∈ X, Y•, and D be as above. Assume that D satisfies Condition
4.1 at P . Let E1, . . . , En be the (d− 1)-dimensional components of B(D).

(1) If the Ai’s are general, then

B(C•(X,D)|Yd−1
) = Yd−1 ∩B(D) =

n⋃

i=1

(Yd−1 ∩ Ei).

(2) If the Ai’s are very general, then for all m divisible enough

ordp(Cm(X,D)|Yd−1
) = ordEi

(|mD|)
for every p ∈ Yd−1 ∩ Ei with i ∈ {1, . . . , n}.

Proof. We first prove (1). If the Ai’s are general, then Yd−1 6⊆ Bs(mD)red for all m divisible
enough. Therefore, B(C•(X,D)|Yd−1

) = Yd−1 ∩B(D). For the next equality, we choose our
Ai’s such that Yi intersects Yi−1 ∩ B(D) very properly in Yi−1 for all i ∈ {1, . . . , d − 1}
in the sense of [Jow10, Definition 3.1]. This assumption on the intersections implies that
Yd−1∩B(D) =

⋃n
i=1(Yd−1∩Ei). (Note that it is impossible for Yd = P to intersect Yd−1∩B(D)

very properly if P ∈ B(D). While Jow assumes this to prove (1), he is only using that Yi
intersects Yi−1 ∩B(D) very properly in Yi−1 for i ∈ {1, . . . , d− 1}.)

We move on to (2). We claim that if the Ai’s are very general, then the curve Yd−1 intersects
each of the Ei’s and none of these intersection points lies in an embedded component of
Bs(mD). The claim relies on the fact that D satisfies Condition 4.1 at D. Now, if Yd−1

satisfies the above property, it follows that ordp(Cm(X,D)|Yd−1
) = ordEi

(|mD|) for all p ∈
Yd−1 ∩ Ei.

�
Corollary 4.3. If the very ample divisors A1, . . . , Ad−1 are very general so that conclusion
of Proposition 4.2 hold, then

volX|Yd−1
(D) = Yd−1 ·D −

n∑

i=1

∑

p∈Yd−1∩Ei

σEi
(D) = Yd−1 · Pσ(D).

Proof. The proof is identical to [Jow10, Corollary 3.3]. �
For the next theorem we define

∆Y•(D)|0d−1 = ∆Y•(D) ∩ ({0} × · · · × {0}︸ ︷︷ ︸
d−1 times

×R).
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Theorem 4.4. If the very ample divisors A1, . . . , Ad−1 are very general so that conclusion
of Proposition 4.2 holds, then

volR1(∆Y•(D)|0d−1) = volX|Yd−1
(D).

Proof. The proof is identical to that of [Jow10, Theorem 3.4.b]. �
4.2. Relation to numerical equivalence. In this section, we prove an analogue of [Jow10,
Theorem A]. We follow Jow’s technique, but use results from the previous section.

Proposition 4.5. Let X be a smooth projective variety, P ∈ X a closed point, and D1, D2

big divisors on X satisfying Condition 4.1 at P . If ∆Y•(D1) = ∆Y•(D2), for all admissible
flags Y• on X with center equal to P , then Pσ(D1) ≡ Pσ(D2).

Before proving the statement, we recall the following result of Jow.

Lemma 4.6. [Jow10, Lemma 3.5] Let X be a smooth projective variety of dimension d and
Y ⊆ X be a transversal complete intersection of (d − 2) very ample divisors. If D1, . . . , Dρ

are ample divisors on X whose numerical classes form a basis of N1(X)Q, then the curve
classes

{Cj := Y ·Dj|j = 1, . . . , ρ}
form a basis of N1(X)Q.

Proof of Proposition 4.5. We can use Lemma 4.6 to construct ρ admissible flags Y
(j)
• for

j = 1, . . . , ρ centered at P which are sufficiently general so that the conclusion of Proposition

4.2 is satisfied with respect to both D1 and D2, and the curves Y
(1)
d−1, . . . , Y

(ρ)
d−1 form a basis

of N1(X)Q.
Applying Corollary 4.3 and Theorem 4.4, we see

volR1(∆
Y

(j)
•

(Di)|0d−1) = Pσ(Di) · Y (j)
d−1

for i ∈ {1, 2} and j ∈ {1, . . . , d − 2}. Since each Y
(j)
• is a flag with center equal to P , our

assumption on D1, D2 implies ∆
Y

(j)
•

(D1) = ∆
Y

(j)
•

(D2). Note that Lemma 4.6 implies the

curve classes Y
(1)
d−1, . . . , Y

(ρ)
d−1 form a basis of N1(X)Q. Thus, Pσ(D1) ≡ Pσ(D2). �

5. Proof of Theorem 1.5

In this section we prove Theorem 1.5. Before proving the theorem, we note the following
elementary lemma.

Lemma 5.1. Let X be a smooth projective variety, P ∈ X a closed point, and D a big
divisor on X. Let π : Y → X denote the blowup of X at P with exceptional divisor E. If P̃
is a very general closed point of E, then π∗(D) satisfies Condition 4.1 at P̃ .

Remark 5.2. Note that if P is not in Bs(|mD|) for m divisible enough, then it is trivially
true that D satisfies Condition 4.1 at P . Additionally, the condition is satisfied for π∗(D)
at all points P̃ ∈ E.

Proof. For each m ∈ Z such that h0(mD) 6= 0, we set

Um := Y \Bs(π∗(mD)− dmE),

where dm := ordE(|π∗(mD)|). Note that E ∩ Um is nonempty, since E is not contained in
the base locus of |π∗(mD) − dmE|. Additionally, the subscheme Bs(π∗(mD) − dmE|)) of
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X is defined by the ideal OY (−dmE) in the set Um. Thus, D satisfies Condition 4.1 for all
points in ⋂

m|h0(mD)6=0

(Um ∩ E).

�

Proof of Theorem 1.5. The implication (1) implies (2) is precisely Theorem 3.1. We now
prove that (2) implies (1). Let D1 and D2 be two big divisors on X such that ∆Y•(D1) =
∆Y•(D2) for all admissible flags over Y• over X with center P . Let π : X̃ → X denote the
blowup of X at P with exceptional divisors E. By the previous lemma, we may choose a
very general point P̃ ∈ E so that π∗(D1) and π∗(D2) both satisfy Condition 4.1 at P̃ .

By Lemma 3.2 , it follows that σE(π∗D1) = σE(π∗D2) and Nσ,P (D1) = Nσ,P (D2). It is left
to show that Pσ(D1) ≡ Pσ(D2). By Proposition 4.5, we have that

Pσ(π∗(D1)) ≡ Pσ(π∗(D2)).

Since

Pσ(π∗Di) = π∗Pσ(Di)− σE(π∗Di)E,

it follow that π∗Pσ(D1) ≡ π∗Pσ(D2). Thus, Pσ(D1) ≡ Pσ(D2).
�

6. Characterization of big and nef divisors via restricted volumes

In this section, we want to apply the above discussion in order to derive a characterization
for a big divisor D to be nef in terms of restricted volumes. More concretely, we have the
following.

Theorem 6.1. Let D be a big divisor on X. Then the following two assertions are equivalent.

• D is nef.
• For all Y 6⊆ B+(D) we have

volX|Y (D) = volY (D|Y ).

Proof. “⇒′′ This follows from [ELMNP08, Corollary 2.17].
“ ⇐′′ Suppose that D is not nef. Then B−(D) 6= ∅. Choose a point O ∈ B−(D) and

consider the blow up π : X̃ → X of X in O. Then a very general point P in E := π−1(O)
satisfies Condition 4.1. By Lemma 5.1, we can find very general Ai which go through P
for i = 1, . . . , d − 1 such that Yd−1 satisfies Corollary 4.3. Let us additionally assume that
Yd−1 does not lie in B+(D) as well as not in E. By construction, σE(π∗D) > 0, and we can
deduce from Corollary 4.3 that

volX̃|Yd−1
(π∗D) < (π∗D · Yd−1) = volYd−1

(π∗D|Yd−1
).

Consider now the image C := π(Yd−1), which defines a an irreducible curve in X. [ELMNP08,
Lemma 2.4] implies that volX̃|Yd−1

(π∗D) = volX|C(D). On the other hand, π|Yd−1
: Yd−1 → C

is birational so that we have vol(π∗D|Yd−1
) = vol(D|C). This implies

volX|C(D) < volC(D|C),

which is a contradiction to the second assumption. �
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NEWTON-OKOUNKOV BODIES AND NORMAL TORIC

DEGENERATIONS

GEORG MERZ

Abstract. Anderson proved that the finite generation of the value
semigroup ΓY•(D) in the construction of the Newton-Okounkov body
∆Y•(D) induces a toric degeneration of the corresponding variety X to
some toric variety X0. In this case the normalization of X0 is the nor-
mal toric variety corresponding to the rational polytope ∆Y•(D). Since
X0 is not normal in general this correspondence is rather implicit. In
this article we investigate in conditions to assure that X0 is normal, by
comparing the Hilbert polynomial with the Ehrhart polynomial. In the
case of del Pezzo surfaces this will result in an algorithm which outputs
for a given divisor D a flag Y• such that the value semigroup in question
is indeed normal. Furthermore, we will find flags on del Pezzo surfaces
and on some particular weak del Pezzo surfaces which induce normal
toric degenerations for all possible divisors at once. We will prove that
in this case the global value semigroup ΓY•(X) is finitely generated and
normal.

1. Introduction

Newton-Okounkov bodies are convex bodies associated to linear series on
a projective variety. They were introduced by Okounkov [O96] and further
systematically studied by Lazarsfeld-Mustaţă [LM09] and Kaveh-Khovanskii
[KK12]. Newton-Okounkov bodies of a linear series |V | are not unique but
depend upon the choice of a valuation on the graded algebra of sections
R(|V |). In the special case of X being toric and D a torus invariant divisor,
one can define a valuation such that the associated Newton-Okounkov body
is, up to translation, the polytope ∆(D) corresponding to D in the sense of
the usual toric correspondence (see [LM09, Proposition 6.1]). In general, for
an arbitrary projective variety X and a valuation ν the Newton-Okounkov
body does not need to be rational polyhedral. However, if ∆ν(D) is rational
polyhedral, one can ask the following question.

Question. Assume ∆ν(D) is rational polyhedral. What is the connection
between X and the toric variety corresponding to ∆ν(D)?

The answer to this question was given by D. Anderson. He showed the
following.

Date: March 25, 2018.
Key words and phrases. Newton-Okounkov body, toric degeneration, normal semi-

groups, del Pezzo surface.
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Theorem ([A13]). Let X be a projective variety, D a very ample (Cartier)
divisor, and ν a valuation-like function. Assume that the semigroup Γ =
Γν(D) = {(ν(s), k) | s ∈ H0(X,OX(kD)), k ∈ N} is finitely generated.
Then there exists a toric degeneration of X w.r.t. D to the toric variety
X0 := Proj(K[Γ]). Moreover, the normalization of X0 is the normal toric
variety corresponding to the polytope ∆ν(D).

Anderson’s Theorem can bee seen as a generalization of the theory of
SAGBI bases (see [S96, Chapter 11] for an introduction). In the SAGBI case,
one of the prerequisites is that the coordinate ring K[X] of the corresponding
variety X needs to be contained in a polynomial ring K[T1, . . . , Tn]. But this
is quite a strong constraint, which we can omit by considering the valuation
ν.

However, the connection between the variety X and the normal toric
variety corresponding to the polytope ∆ν(D) is rather implicit, since we
need to normalize the variety we degenerate to. Hence, we can raise the
following question.

Question. Under which circumstances, does there exist a degeneration of
X to the normal toric variety corresponding to ∆ν(D)?

In order to answer this question, we need to determine when the variety
Proj(K[Γ]) is normal. This is the case if and only if there is a k ∈ N such
that the semigroup k · Γ is normal, i.e. Cone(k · Γ) ∩ Zd+1 = k · Γ (see also
Section 2.1 for more details).

We will see that the property of inducing a normal toric degeneration can
indeed be checked by considering the shape of ∆Y•(D), or more concretely
the Ehrhart polynomial of ∆Y•(D). We will define the difference between
the Ehrhart polynomial of the Newton-Okounkov body and the hilbert poly-
nomial of D as the normal defect. It is then not difficult to prove that this
difference is zero if and only if ∆Y•(D) induces a normal toric degeneration.
This gives the following answer.

Answer. ∆ := ∆ν(D) induces a normal toric degeneration if the Ehrhart
polynomial corresponding to ∆ is equal to the Hilbert polynomial correspond-
ing to D.

This observation enables us to view the problem of finding a flag for a
given divisor which induces a normal toric degeneration as an optimization
problem. We will evolve this idea further in the case where X is a surface. It
turns out that one can formulate this optimization problem in the following
form:

Given a divisor D, find a flag Y• such that the number of integral points
on the boundary of ∆Y•(D) is minimal.

We will indeed prove that under some condition (e.g. if X is a Mori dream
surface) such a flag always exists (see Theorem 4.9). If we additionally
assume that the Zariski decomposition of X is integral (e.g. for del Pezzo
surfaces), we will give a concrete algorithm in order to find such flags.
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Finally, we focus on (weak) del Pezzo surfaces. It will turn out that in
this situation, negative curves are good candidates for flags inducing normal
toric degeneration. More concretely, we prove the following statement.

Theorem. Suppose one of the following situations.

• X = Xr is the blow-up of 1 ≤ r ≤ 6 points in P2 in general position
and Y• is an admissible flag such that Y1 is negative.
• X = L3 is the blow-up of four points, where three of them are on a

line or X = S6 is the blow-up of six points on a conic in P2. Let Y•
be an admissible flag such that Y1 is the unique (−2)-curve on X.

Then the global semigroup

ΓY•(X) = {(νY•(s), D) | D ∈ Pic(X) = N1(X), s ∈ H0(X,O(D))}
is finitely generated normal.

In order to prove such a statement, one first needs to prove the finite
generation and normality of the value semigroup ΓY•(D) for all big divisors
D. One main ingredient of such a proof is the fact that the divisors which
occur in the construction of Newton-Okounkov bodies with respect to the
above flags, admit integral Zariski decompositions. Another one is the fact
that −KX +Y1 is big and nef, which shows that the restriction morphism of
every nef divisor on X to the curve Y1 is surjective. After one has established
such a fact, it is necessary to consider what happens when D moves to the
boundary of the effective cone. We will prove that the numerical and the
valuative Newton-Okounkov body in this case coincide. Then the above
statement will follow from Gordan’s lemma.

We end the article with two examples which illustrate our results.
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2. Preliminaries

In this section we briefly describe normal affine semigroups, the construc-
tion of Newton-Okounkov bodies, its connection to toric degenerations and
introduce the notion of Ehrhart polynomials. Note that all varieties men-
tioned in this article will be defined over an algebraically closed field K of
characteristic 0. Moreover, a divisor will always mean a Cartier divisor.

2.1. Normal affine semigroups. In this article we will only consider graded
semigroups contained in Nd × N where the grading is induced from the
last factor. So whenever we talk about about a semigroup, we mean a set
Γ ⊂ Nd+1 which is closed under addition and induces a grading from the
last N factor. We define Γm := {(a1, . . . , ad+1) ∈ Γ | ad+1 = m} as well as
the semigroup mΓ =

⋃
k∈N Γmk which is N graded by considering the ismor-

phism of semigroups N ∼= mN. An affine semigroup is a semigroup which
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is finitely generated. We denote the group generated by a semigroup Γ by
G(Γ). We call the semigroup Γ a normal semigroup if for all g ∈ G(Γ) and
n ∈ N such that n · g ∈ Γ, it follows that g ∈ Γ. Equivalently this means
that Cone(Γ) ∩G(Γ) = Γ. For more details on normal semigroups we refer
to [BG09, 2.B].

When D is a big divisor on a d-dimensional variety, and Y• is an admissible
flag onX, we know thatG(ΓY•(D)) = Zd+1 (see [LM09, Lemma 2.2]). In this
case, ΓY•(D) is normal if all integral points of Cone(ΓY•(D)) are valuation
points.

The connection to algebraic geometry comes with the fact that an affine
semigroup Γ is normal if and only if the algebra K[Γ] is normal (see [BG09,
Lemma 4.39]). Furthermore, the projective variety X = Proj(K[Γ]) is pro-
jectively normal if K[Γ], and thus Γ, is normal. However, X is normal if and

only if there is an m ∈ N such that the K[Γ](m) :=
⊕

k∈NK[Γ]mk is normal.

But one can easily see that K[Γ](m) = K[mΓ]. Thus Proj(K[Γ]) is normal if
and only if there is an integer m such that mΓ is normal.

Again, if Γ = ΓY•(D), the variety Proj(K(Γ)) is normal if and only if after
passing to an m-th multiple of D, all the integral points of Cone(ΓY•(mD))
are valuation points.

2.2. Newton-Okounkov bodies. Let X be a d-dimensional projective va-
riety and D a big divisor. We consider Zd as an ordered group by choosing
the lexicographical order. Let

ν :
⊔

D∈Pic(X)

H0(X,O(D)) \ {0} → Zd

be a valuation-like function. This is a function having the following proper-
ties:

• ν(f + g) ≥ min{ν(f), ν(g)} for f, g ∈ H0(X,OX(kD))
• ν(f⊗g) = ν(f)+ν(g) for f ∈ H0(X,OX(m1D)) and g ∈ H0(X,OX(m2D).

Additionally, we also pose the following conditions on ν.

• ν has one dimensional leaves (see [KK12, Section 2] for more details)
• The group generated by {(ν(f), k) | k ∈ N, f ∈ H0(X,OX(kD))} is

equal to Zd+1.

Then we define the semigroup

Γν(D) := {(ν(f), k) | k ∈ N, f ∈ H0(X,OX(kD))} ⊆ Zd × N.

The Newton-Okounkov body of D with respect to ν is given by

∆ν(D) = Cone(Γν(D)) ∩
(
Rd × {1}

)
.

In this article, we are mainly interested in valuation-like functions induced
by flags Y•, which we denote by νY• . For details on their construction we
refer to [LM09].
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2.3. Toric degenerations. The connection between toric degenerations
and Newton-Okounkov bodies was first established in [A13]. Before phras-
ing the main result of interest let us make explicit what we mean by a toric
degeneration.

Definition 2.1. Let X be projective variety. Let D be a very ample divisor
on X. We say that X admits a toric degeneration with respect to D if there
is a flat projective family p : X → A1 such that the zero fiber X0 := p−1(0)
is a toric variety and X \X0 is isomorphic to X × (A1 \ {0}). Furthermore,
there is a divisor D on X such that it restricts on fibers Xt

∼= X for t 6= 0
to the divisor D and on X0 to an ample divisor D0. We call it a normal
toric degeneration if X0 is normal. We call it a projectively normal toric
degeneration if D0 is very ample and X0 is projectively normal with respect
to the embedding given by D0.

The main result in [A13] can be summarized in the following theorem.

Theorem 2.2 ([A13]). Let X be a projective variety, D a very ample divisor,
and ν a valuation-like function. Assume that the semigroup Γ = Γν(D) =
{(ν(s), k) | s ∈ H0(X,OX(kD)), k ∈ N} is finitely generated. Then there
exists a toric degeneration of X with respect to D to the toric variety X0 :=
Proj(K[Γ]). Moreover, the normalization of X0 is the normal toric variety
corresponding to the polytope ∆ν(D).

For the sake of clarity we want to make it precise what it means that a
Newton-Okounkov body induces a normal toric degeneration.

Definition 2.3. Let X be projective variety. Let D be a big divisor on
X and ν a valuation-like function. We say that ∆ν(D) induces a toric
degeneration if Γν(D) is finitely generated. We say it induces a normal toric
degeneration if in addition Proj(K[Γν ]) is normal.

2.4. Ehrhart theory. Let ∆ ⊆ Rd be a convex body with non empty
interior. We define the Ehrhart function h∆ : N→ N by setting

h∆(k) := |
(
k∆ ∩ Zd

)
|.

Now, let ∆ ⊆ Rd be a lattice polytope, i.e. a polytope with integral extreme

points. Then there is a polynomial P∆ =
∑d

i=0 ait
i ∈ C[t] such that P∆(k) =

h∆(k) for all k ∈ N. We call P∆ the Ehrhart polynomial corresponding to
∆. Some basic facts are the following:

• The degree of P∆ is d.
• ad is equal to vol(∆).
• We have a0 = 1.
• Let F be a facet of ∆, and let LF be the induced lattice on that

facet. Let furthermore vol(F ) be the volume of F with respect to
the lattice LF . Then ad−1 is equal to half the sum of vol(F ) over all
facets F of ∆.
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3. Newton-Okounkov bodies and normal toric degenerations

In this section we want to establish the connection between the Ehrhart
polynomial of ∆Y•(D) and normal toric degenerations induced by ∆Y•(D).

3.1. Normal defect. As we have already mentioned, the toric variety X0 =
Proj(K[Γ]) is not necessarily normal. In order to measure the failure of
normality, we introduce the following.

Definition 3.1. Let X be a projective variety, D a big divisor on X and
ν a valuation-like function. Let hD : N → N be the Hilbert function of D,
i.e. hD(k) = dim

(
H0(X,OX(kD))

)
for k > 0. Let ∆ν(D) be the Newton-

Okounkov body, and h∆ν(D) : N → N the corresponding Ehrhart function,

i.e. h∆ν(D)(k) = |k∆ν(D) ∩ Zd|. We call the function

Defν,D := (h∆ν(D) − hD) : N→ N.

the normal defect.

The next theorem justifies the name normal defect.

Theorem 3.2. Let X be a projective variety, D a very ample divisor on
X and ν a valuation-like function. Then a rational polyhedral Newton-
Okounkov body ∆ν(D) induces a normal toric degeneration if and only if
Defν,kD = 0 for k � 0 divisible enough.

Proof. Suppose first that ∆ν(D) induces a normal toric degeneration. This
means in particular that the semigroup Γ := Γν(D) is finitely generated.
Suppose Γ is generated in degree k. Hence, we can compute ∆ν(kD) by
taking the convex hull of Γk. By increasing k even more, we might assume
that kΓ = Γν(kD) is a normal affine semigroup. This means that all in-
tegral points in C := Cone(kΓ) are indeed valuation points, i.e. lie in kΓ.
Consider all the integral points of C at level m. They can be identified
with integral points in m∆ν(kD). There exists h∆ν(kD)(m) many of them.
However, the number of different valuation points in kΓ of level m is equal
to dim(H0(X,OX(mkD)) = hkD(m). By the assumption that kΓ is normal,
they both agree. This proves the vanishing of the normal defect.

Now let k ∈ N such that the normal defect Defν,kD is zero. As in the
previous case it follows that for each m ∈ N, there are h∆ν(kD)(m) =

dimH0(X,OX(kmD)) integral points in the m-th level of kΓ. This proves
that all these integral points are valuative, i.e. Cone(kΓ) ∩

(
Zd × {m}

)
=

(kΓ)m. Hence, by Gordan’s lemma, kΓ is a normal affine semigroup. This
proves the claim. �

Let us now denote by PD the Hilbert polynomial corresponding to the
ample divisor D. This means that PD is the polynomial such that PD(k) =
hD(k) for k � 0.



7

Corollary 3.3. Let X, be a projective variety, D a very ample divisor on
X and ν a valuation-like function. Then an integral polyhedral Newton-
Okounkov body ∆ν(D) induces a normal toric degeneration if and only if
P∆ν(D) = PD.

Proof. This follows from the above Theorem and the fact that hD(k) =
PD(k) and h∆ν(D)(k) = P∆ν(D)(k) for k � 0. �

The next two corollaries demonstrate that the condition that ∆ν(D) in-
duces a normal toric degeneration is completely determined by the class of
D and the shape of ∆ν(D).

Corollary 3.4. Let X be a projective variety, Y• an admissible flag, and
D and D′ be two numerically equivalent ample line bundles on X. Then
∆ν(D) induces a normal toric degeneration if and only if ∆ν(D′) does.

Proof. First of all, the Newton-Okounkov body of a divisor depends only on
its class [LM09, Proposition 4.1]. Moreover, it follows from the Hirzebruch-
Riemann-Roch that the Hilbert polynomial of an ample divisor also depends
only on the numerical class. Hence, the normal defect of kD, does only
depend on the numerical class for k � 0. �
Corollary 3.5. Let X be a projective variety, ν and ν ′ be valuation-like
functions, and D an ample divisor on X. Suppose ∆ν(D) = ∆ν′(D). Then
∆ν(D) induces a normal toric degeneration if and only if ∆ν′(D) does.

Proof. This also follows from the equality of defects Defν,kD = Defν′,kD for
each k ∈ N. �
Remark 3.6. The above corollary a posteriori legitimates to say that ∆ν(D)
induces a normal toric degeneration, instead of Γν(D).

3.2. Normalized surface area. Despite the characterization of normal
toric degenerations in terms of the normal defect, it is not quite practical,
since it involves knowing the Hilbert polynomial of a line bundle, as well as
the Ehrhart polynomial. In this section we want to omit both problems, but
still find a necessary condition to induce normal toric degenerations.

Let us fix an ample divisor D on X. Our aim is to find a valuation-like
function ν which induces a normal toric degeneration. The idea is to regard
this problem as an optimization problem of the shape of ∆ν(D).

For this purpose consider the following definitions. Let P be a lattice
polytope in Zd. Then denote by A(P ) the surface area of P i.e. the sum of
the volume of each facet F with respect to the induced sublattice on F .

Definition 3.7. Let X be a projective variety of dimension d, D a very
ample divisor on X and ν a valuation-like function. Let furthermore ∆ν(D)
be rational polyhedral. Let k ∈ N be an integer such that k∆ν(D) is an
integral polyhedron. Then we call

S(D, ν) :=
A(∆ν(kD))

kd−1
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the normalized surface area of ∆ν(D). If ∆ν(D) is not rational polyhedral,
we define S(D, ν) =∞.

It is not a priori clear that the above definition is well defined. So let
k, k′ be two integers such that k∆ν(D) and k′∆ν(D) are integral polyhedra.

Consider both Ehrhart polynomials Pk∆ν(D) =
∑d

i=0 ait
i and Pk′∆ν(D) =∑d

i=0 a
′
it
i. From our discussion of Ehrhart theory it follows that

A(∆ν(kD)) = 2 · ad−1 A(∆ν(k′D)) = 2 · a′d−1

Trivially, Pk∆ν(D)(k
′) = Pk′∆ν(D)(k). Let us consider the Ehrhart polyno-

mial Pk·k′∆ν(D) =
∑d

i=0 bit
i.

Comparing coefficients, we deduce that bd−1 = a′d−1 ·kd−1 = ad−1 ·(k′)d−1.
This proves that

A(∆ν(kD))

kd−1
=
A(∆ν(k′D))

(k′)d−1
.

Theorem 3.8. Suppose that ∆ν(D) induces a normal toric degeneration.
Then the normalized surface area S(D, ν) is minimal, i.e. for all valuation-
like functions ν ′ we have

S(D, ν ′) ≥ S(D, ν).

Proof. Suppose ∆ν(D) induces a normal toric degeneration. Let ν ′ be an-
other valuation-like function. By Theorem 3.2, there is a k ∈ N such that
the normal defect Def(kD, ν) = 0. We can assume that ∆ν′(D) is ratio-
nal polyhedral, since otherwise S(D, ν) =∞. Assume furthermore without
loss of generality that ∆ν(kD) and ∆ν′(kD) are integral polyhedra. Since
Def(kD, ν ′) ≥ 0 we can follow that

d∑

i=0

ait
i = P∆ν′ (kD) ≥ P∆ν(kD) =

d∑

i=0

bit
i

The first coefficients ad and bd of the above polynomials are both equal to
vol(∆ν(kD)) = vol(∆ν′(kD)) = d! · kd vol(D). Thus, we have ad−1 ≥ bd−1,
which in turn implies S(D, ν ′) ≥ S(D, ν).

�

4. Normal toric degenerations on surfaces

In this section we want to apply the above discussions to the case where
X is a surface. We will also restrict our attention to valuations coming
from flags. One reason why the surface case in a lot of situations works
particularly well is that we have a Zariski decomposition of divisors. In our
case this leads to a nice characterization of Newton-Okounkov bodies, which
makes things more explicit to handle.

Before we dive into normal toric degenerations, we give an overview of
the main facts about Zariski decomposition and Newton-Okounkov bodies
on surfaces in the first two paragraphs. After that we will prove that for
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surfaces satisfying condition (∗) (see Definition 4.4) there exists a flag Y•
such that its normalized surface area is minimal with respect to all admissible
flags. If we make some more assumptions on the surface X, we will establish
an algorithm that computes for a given divisor D a flag Y• which induces a
Newton-Okounkov body with minimal normalized surface area with respect
to all valuations coming from flags. Hence, if there exist flags which induce
normal toric degenerations, this algorithm will indeed find them.

In the following let X always denote a smooth surface.

4.1. Zariski decomposition. LetX be a smooth surface. Then the Zariski
decomposition of a pseudo-effective Q-divisor is given by D = P +N where
P and N are Q-divisors such that

(a) P is nef

(b) the support of N =
∑N

i=1 aiCi consists of negative curves such that
P · Ci = 0 for all i = 1, . . . , N and

(c) the intersection matrix (Ci · Cj)i,j=1,...,N is negative-definite.

A decomposition with the above prescribed property is unique and we call
P the positive and N the negative part of D. One consequence of the above
properties is that for k ∈ N divisible enough such that kD as well as kP are
integral divisors the natural morphism

H0(X,OX(kP ))→ H0(X,OX(kD))

is an isomorphism. That means that, after passing to a multiple, all sections
of kD are induced by sections of a nef divisor. Zariski’s original proof relied
on the construction of the negative part, which was rather complicated. An
easier approach was introduced by Bauer [B09], whose idea was to construct
the positive part of an effective divisor D as the maximal nef subdivisor of
D. This reduces the problem of finding the Zariski decomposition of a given
divisor to solving a linear program. More concretely, if we write D =

∑
aiCi

as a positive combination of prime divisors, one finds P =
∑
biCi, where

the bi are chosen such that
∑
bi is maximal under the constraints that

0 ≤ bi ≤ ai, and
∑
biCi is nef.

Remark 4.1. Note that even if D is an integral divisor the Zariski decom-
position D = P +N is still a decomposition of Q-divisors, i.e. P and N are
not necessarily integral.

However, in [BPS15] the authors give an upper bound for the size of the
denominators occurring in terms of the negativity of N . In the proof of
Theorem 2.2 they show the following:

Theorem 4.2 ([BPS15]). Let X be a smooth projective surface with Picard
number ρ(X), let D be a divisor and N =

∑
ai ·Ci be its negative part, with

ai > 0 and Ci prime divisors. Let furthermore d be the denominator of N ,
i.e. the smallest natural number d such that d · N is integral, and b be the
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maximum of the negative numbers (Ci)
2. Then we have

d ≤ bρ(X)−1.

Another very important feature about the Zariski decomposition, is that
it induces a decomposition of the big cone into chambers Ci; the so called
Zariski chambers. This chamber decomposition was introduced in [BKS04].
We summarize some facts about this decomposition:

• The support of the negative parts of D ∈ Ci for a fixed i is constant.
• The Ci are locally polyhedral and form a locally finite decomposition

of the big cone
• Inside the closure of each Zariski chamber Ci the Zariski decomposi-

tion varies linearly.

4.2. Newton-Okounkov bodies on surfaces. Newton-Okounkov bodies
are in general difficult to compute. However, on a surface with a valuation-
like function coming from a flag, we can give a rather explicit description.
Let Y• = (X ⊇ C ⊇ {P}) be an admissible flag, i.e. P is a point and C is an
irreducible curve which is smooth at P . Then we can define a valuation-like
function νY• , by setting for a section s ∈ H0(X,OX(D))

ν1(s) = ordC(s) ν2(s) = ord{P}(s̃)

where s̃ is the restriction of the section s/(sC)ν1(s) to the curve C and sC is
a defining section of C.

In order to describe the Newton-Okounkov body of a big divisor D with
respect to a flag C ⊃ {P} we fix the following notation:

• ν := ordC(N)
• µ := sup{t ∈ R≥0 | D − tC is effective}
• For t ∈ [0, µ] we define Dt := D − tC = Pt + Nt where the latter is

its Zariski decomposition.
• We define the functions α, β : [ν, µ]→ R≥0 by setting

α(t) := ordP (Nt|C) β(t) := α(t) + (Pt · C).

Moreover, we write αD, βD if we want to stress that we consider the
divisor D.

Finally, we present the description of Newton-Okounkov bodies in the fol-
lowing theorem, which is based on the discussions in [LM09, Section 6.2]
and [KLM12, Section 2].

Theorem 4.3. The Newton-Okounkov body of a big divisor D with respect
to an admissible flag Y• on a surface X is given by

∆Y•(D) = {(t, y) ∈ R2 | t ∈ [ν, µ], y ∈ [α(t), β(t)]}.
Moreover, ∆Y•(D) is a finite polygon, with all extremal points rational except
for possibly (µ, α(µ)) and (µ, β(µ)).
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The proof of the above theorem uses the fact that the Zariski decompo-
sition varies linearly inside the Zariski chambers. The fact that it is a finite
polygon follows by showing that the set of divisors Dt for t ∈ [ν, µ] only
meets finitely many chambers. Additionally, it follows from the proof that
the extreme points of ∆Y•(D) are all of the following form:

• (ν, α(ν)), (ν, β(ν))
• (µ, α(µ)), (µ, β(µ))
• (t, α(t)), (t, β(t)) for t ∈ (ν, µ) such that Dt lies on the boundary of

a Zariski chamber.

4.3. Existence of Newton-Okounkov bodies with minimal normal-
ized surface area. In this paragraph we will prove that for a given divisor
D there exists a flag Y• such that the normalized surface area of ∆Y•(D) is
minimal with respect to all admissible flags.

We will now consider surfaces with the following constraints.

Definition 4.4. We say that a smooth projective surface X satisfies condi-
tion (∗) if it satisfies the following conditions:

(a) Every pseudo-effective divisor D is semi-effective, i.e. a multiple of
D is effective.

(b) X contains only finitely many negative curves.

Remark 4.5. A large class of examples which satisfy condition (∗) are Mori
dream surfaces.

One necessary condition on the curve of the flag to induce a normal toric
degeneration is the following.

Lemma 4.6. Let Y• = (C ⊇ {P}) be an admissible flag such that ∆Y•(D)
induces a normal toric degeneration. Then the genus of C is zero, i.e.
C ∼= P1.

Proof. Choose a rational t ∈ Q such that the slice {t}×R meets the interior
of ∆Y•(D). Let then k ∈ N be such that kDt = kPt+kNt is a decomposition
of integral divisors and kt is integral. It follows from Theorem 4.3 that the
slice ∆Y•(kD)ν1=kt contains k(Pt · C) + 1 integral points. The valuation
points having kt as first coefficient are given by the image of

ordP : H0(X,O(kDt))|C → Z
and the number of valuation points is given by

h0(X,O(kDt))|C = h0(X,O(kPt))|C ≤ h0(C,OC(kPt)).

However, it follows from Riemann-Roch on curves that for k � 0 we can
compute

h0(C,OC(kPt)) = k(Pt · C) + 1− g
where g is the genus of C. But since all integral points of ∆Y•(kD) are

valuative for k � 0 it follows that g = 0 and thus C ∼= P1. �
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We continue by proving two helpful lemmata.

Lemma 4.7. Let D be a big divisor on X and [C] ∈ N1(X) be the numerical
class of an irreducible curve C. Then the set of Newton-Okounkov bodies
∆Y•(D), where Y• is a flag such that [Y1] = [C], is finite.

Proof. Consider the negative part Nµ of the pseudo-effective divisor Dµ =
D − µC. Let C1, . . . , Cl be the irreducible curves in the support of Nµ. It
follows from [KLM12, Proposition 2.1] that the irreducible components of Nt

for t ∈ [ν, µ] is a subset of {C1, . . . , Cl}, and that C is not equal to Ci for all
i = 1, . . . l. Let ν ≤ t1 ≤ · · · ≤ tr ≤ µ be all rational numbers in [ν, µ] such
that Dti lies on the boundary of some Zariski chamber. By the discussion
in section 4.2, these are indeed finitely many. Consider the negative parts
Nν , Nt1 , . . . , Ntr , Nµ. By replacing D with kD for k � 0, we may assume
without loss of generality that all these negative parts are integral divisors
and the numbers t1, . . . , tr are integral. For each P ∈ C we have

α(µ) = ordP Nµ|C ≤
∑

x∈C∩Nµ
ordx(Nµ|C) = (Nµ · C).

By [KLM12, Theorem B], the function α is increasing, and piecewise linear
with possible breaking points at t1, . . . , tr. This shows that for a fixed class
[C] the function α is bounded by some constant independent from the point
P . By construction, α takes integer values at the points ν, t1, . . . , tr, µ.
Varying the point P , there are only finitely many possibilities for α since it
is uniquely defined by its values on ν, t1, . . . , tr and µ. But, by definition,
the same holds for β. However, we have seen in Theorem 4.3 that ∆Y•(D)
is determined by α and β. This shows the claim. �

Lemma 4.8. Let X be a smooth surface that satisfies condition (∗). Let D
be a big and nef divisor on X. Then the set

Hk := {[D′] ∈ N1(X)R : D′ is nef and (D′ ·D) = k}
is compact for all k ∈ N.

Proof. Suppose that Hk is not compact. It is easy to check that Hk is closed.
This means Hk is not bounded. But since it is also convex, there exists for
every point in Hk a half line through the given point which is completely
contained in Hk. For this purpose fix any ample class [A] ∈ N1(X) and
consider the Q-divisor A′ = k

(D·A)A which lies in Hk. Since Hk is not

bounded there is a divisor class [F ] ∈ N1(X)R such that for all λ > 0, the
class [A′ + λF ] lies in Hk. We claim that F is nef. Indeed, suppose that F
is not nef. Then for λ � 0 the divisor A′ + λF is not nef as well and thus
does not lie in Hk.

For a given λ > 0, we have

(A′ + λF )2 = (A′)2 + 2λ(A′ · F ) + (F )2 ≥ (A′)2 + 2λ(A′ · F ).
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But A′ is ample and F nef, hence semi-effective by condition (∗). This
implies that A′ · F > 0 and enables us to find a λ > 0 such that

√
(A′ + λF )2 > k/

√
(D)2.

Here, we used the fact that D is big and nef and thus (D2) > 0. As D
and A+ λF are both nef, we can use the Hodge index theorem to deduce

(D · (A′ + λF )) ≥
√

(D)2 · (A′ + λF )2 > k.

This shows that A′+λF does not lie in Hk, which is a contradiction. Hence,
Hk is compact.

�
Theorem 4.9. Let X be a smooth surface satisfying condition (∗). Let D
be a big divisor on X. Then there exists an admissible flag Y• = (C ⊃ {x})
such that its normalized surface area S(D, νY•) is minimal, i.e. for any
admissible flag Y ′• we have S(D, νY•) ≤ S(D, νY ′•).

Proof. By scaling and considering the positive part in the Zariski decom-
position of D, we can without loss of generality assume that D is big and
nef. The idea of the proof is to show that only a finite number of classes of
curves C have to be tested. Together with Lemma 4.7 we can then prove
the claim.

First of all if C is an irreducible curve, then its class [C] is either nef or it is
a negative curve depending on whether C2 ≥ 0 or C2 < 0. Since X satisfies
condition (∗), we have to test only finitely many negative curves. Hence, we
can restrict our attention to the case that C is nef. Let Y• be any admissible
flag such that Y1 is nef, and set M := S(D, νY•). Then for all C ′, and any
point P ′ ∈ C ′ such that (D · C ′) > M , we know that there are already
more than M + 1 integral points on the boundary of ∆C′⊃{P ′}(D), namely
(0, α(0)), (0, α(0) + 1), . . . , (0, β(0)). However, this implies S(D, νY•) > M .
Hence, we have limited the candidates to nef irreducible curves C ′ such that
(D · C ′) ≤M . But Lemma 4.8 implies there are only finitely many integral
nef classes of curves which satisfy this condition. Moreover, each class of
a curve [C] we have to test, has finitely many different Newton-Okounkov
bodies, when varying the point P by Lemma 4.7. This proves the claim. �
4.4. Algorithm for finding a flag with minimal normalized surface
area. In this paragraph we want to introduce and discuss an algorithm,
which outputs for a given big divisor D on a surface X a flag Y• such that
∆Y•(D) induces a normal toric degeneration if such a flag exists. In Theorem
4.9, we have limited the possible candidates for flags which induce normal
toric degenerations to finitely many classes of curves [Y1]. However, it is a
rather difficult task to describe what possible points P ∈ C can occur and
how the function α from Section 4.2 varies. The idea of this section is to
show that it is possible to reduce to a general point on the chosen curve.
Then α = 0 and β(t) = (Pt · C). It follows that the corresponding Newton-
Okounkov body only depends on the numerical class of the curve C and in
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this situation Theorem 4.9 gives rise to a rather explicit algorithmic way of
finding a class of a curve which is the best candidate for defining a flag Y•
such that ∆Y•(D) induces a normal toric degeneration.

The price we pay for being able to choose a general point is the following
constraint.

Definition 4.10. We say that a smooth projective surface X satisfies con-
dition (∗∗) if it satisfies condition (∗) and the Zariski decomposition is a
decomposition of integral divisors, i.e. for each integral divisor D its posi-
tive part P (D) as well as its negative part N(D) is integral.

Remark 4.11. It follows from Theorem 4.2 that a surface having only nega-
tive curves with self intersection −1 induces integral Zariski decompositions
for all divisors. An example for this situation would be smooth del Pezzo
surfaces (more details follow in the next section).

The following lemma is the key for reducing to the case of a general point
P on C.

Lemma 4.12. Let X be a smooth surfaces satisfying condition (∗∗). Sup-
pose D is a big divisor and Y• = (C ⊃ {P}) is an admissible flag such that
∆Y•(D) induces a normal toric degeneration. Then for each point P ′ ∈ C
consider the flag Y ′• = (C ⊃ {P ′}). Then ∆Y ′•(D) induces a normal toric
degeneration as well.

Proof. We will do this by proving that the Ehrhart polynomial P∆Y• (kD) is

independent of the point P for k � 0. Let k � 0 such that ∆Y•(kD) is an
integral polytope. Define for integral m, t the divisor Dm,t := mD − tC =:
Pm,t +Nm,t.

Since X satisfies condition (∗∗), the function αkD(t) = ordP (Nk,t|C) and
βkD(t) = αkD(t) + (Pk,t · C) admit integral values for each integral t. From
this we can deduce

|k∆Y•(D) ∩ Z2| =
kµ∑

t=kν

((Pk,t · C) + 1) .

But the right hand side does not depend on the choice of the point P ∈ C.
Hence, the result follows from Theorem 3.2. �

Remark 4.13. The condition that X admits integral Zariski decompositions
is indeed necessary for the above lemma.
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Figure 1. Newton-Okounkov body of toric variety

For a counterexample consider the blue (dark) polytope in Figure 1. Then,
by the discussion in [LM09, Section 6.1], there is a toric variety X and
a divisor D such that with respect to a certain flag Y•, the corresponding
Newton-Okounkov body ∆Y•(D) is equal to the above blue (dark) polytope.
It also follows from this discussion that ∆Y•(D) induces a normal toric de-
generation. If we change the point Y2 of the flag and pick a general one
instead, the resulting Newton-Okounkov body equals the red (light) polytope
in Figure 1. However, the number of integral boundary points on the red
polytope (8) is bigger than the boundary points on the blue polytope (4).
This proves that for a general point, the corresponding Newton-Okounkov
body does not induce a normal toric degeneration even though this holds for
a special point.

As we have seen above, the Ehrhart polynomial of ∆Y•(D) only depends
on the numerical class [Y1] if X satisfies condition (∗∗). Hence, also the
normalized surface area S(D, νY•) only depends on the numerical class [Y1].
Therefore, we will just write S(D, [Y1]) instead of S(D, νY•).

We are now able to describe an algorithm which will give us for a given
divisor D an optimal class of a curve [C].

Theorem 4.14. Let X be a projective surface satisfying condition (∗∗). Let
D be a very ample divisor. Let us assume that there is a flag Y• such that
∆Y•(D) induces a normal toric degeneration. Then the output of Algorithm
1 gives a list of all classes of curves Ci which give rise to flags such that the
corresponding Newton-Okounkov bodies induce normal toric degenerations.

Proof. This follows from Theorem 3.8, the proof of Theorem 4.9 and Lemma
4.12. �



16

Algorithm 1: Algorithm for finding normal toric degenerations

Input: a big divisor D
Result: optimal class of a curve C
D=P+N // compute Zariski decomposition

D:=P // replace the divisor D by its positive part

for negative classes of curves Ni do
compute S(D, [Ni])

optimum := minNi S(D, [Ni])

optimalcurve := argminNi S(D, [Ni])

for all ξ ∈ N1(X) s.t. (D · ξ) < optimum+ 1 do
if ξ == [C] for some irreducible curve C then

if optimum ≤ S(D, ξ) then
optimum = S(D, ξ)

optimalcurve := ξ

else if optimum == S(D, ξ) then
optimalcurve.append(ξ)

Output: optimalcurve

5. Normal toric degenerations of (weak) del Pezzo surfaces

In this paragraph we will use our previous findings and additional ideas
to construct normal toric degenerations of (weak) del Pezzo surfaces.

5.1. Normal toric degeneration of smooth del Pezzo surfaces. Let
us first present some basic facts about smooth del Pezzo surfaces.

Definition 5.1. We call X a del Pezzo surface if it is a surface and its
anticanonical divisor −KX is ample.

Before we give the characterization of smooth del Pezzo surfaces, let us
define what we mean by points in general position.

Definition 5.2. We say that 1 ≤ r ≤ 8 distinct points p1, . . . , p8 in P2 are
in general position if:

• No three of them lie on a line.
• No six of them lie on a conic.
• No eight of them lie on a cubic with a singularity at some of the pi.

We can now state the well known characterization of smooth del Pezzo
surfaces.

Theorem 5.3. Up to isomorphy the smooth del Pezzo surfaces are given by
P1 × P1 or the blow-up of P2 in 0 ≤ r ≤ 8 points in general position.
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Let Xr be the smooth del Pezzo surface obtained by blowing up r points
in general position. In the following we collect some more facts, we want to
use:

(a) We have

Pic(X) ∼= N1(X) ∼= Zr+1 ∼= Z[H]⊕
r⊕

i=1

Z[Ei]

where H is the total transform of a line in P2 and Ei are the excep-
tional divisors.

(b) The intersection form on N1(X) is determined by the identities
(H)2 = 1, (H · Ei) = 0, (Ei · Ej) = −δij .

(c) The anticanonical divisor is given by

−KXr = 3H − E1 − · · · − Er.

(d) Every irreducible curve with negative self intersection number is a
(−1)-curve, and it is, up to permutation of indices, linear equivalent
to one of the following divisors:

E1

H − E1 − E2

2H − E1 − . . . E5

3H − 2E1 − E2 − · · · − E7

4H − 2E1 − 2E2 − 2E3 − E4 − · · · − E8

5H − 2E1 − · · · − 2E6 − E7 − E8

6H − 3E1 − 2E2 − · · · − 2E8.

(e) Let N = {C1, . . . , CN} be the set of (−1)-curves. The effective cone
Eff(X) is generated by the negative curves Ci in N . The nef cone is
determined by the supporting hyperplanes

C⊥i := {[D] ∈ N1(X)R | D · Ci = 0}.

(f) The Zariski chambers of Xr are also determined by the chamber
decomposition of Eff(X) induced from the hyperplanes C⊥i .

(g) Suppose r = 1, . . . , 6. A divisor class D ∈ Pic(Xr) contains an
irreducible curve C ∈ |D| if and only if D is either (a) one of the
(−1)-curves in N or (b) D is big and nef or (c) D is a conic (i.e.
D · (−KXr) = 2) and D2 = 0.

(h) Let C ⊂ Xr be an irreducible smooth curve such that C ≡lin aH −
b1E1 − · · · − brEr. Then the genus of C is given by

g(C) = 1/2(a− 1)(a− 2)− 1/2
r∑

i=1

bi(bi − 1).
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As a reference, we refer to [H77, V.4] for (a), (b), (c), (g), to [ADH14, Chapter
5] for properties (d), (e). Property (f) is derived in [BKS04, Proposition 3.4].
Furthermore, (h) is an easy calculation using Rieman-Roch.

Let us now apply Algorithm for a specific del Pezzo surface.

Example 5.4. Let X5 be the blow-up of P2 in five general points. That
means that no three of them lie on a line. In this case, the negative curves
are of the form

E1, . . . , E5, and H − Ei − Ej for i, j = 1, . . . , 5, i 6= j.

For a given divisor D and a curve C, we have all the necessary informa-
tion to compute the Newton-Okounkov body ∆C⊃{P}(D) for a very general
point P ∈ C. With the help of a computer we can thus use our algorithm
to compute the set of optimal curves, and the optimal normalized surface
area for a given divisor D. We can use [SX10, Example 1.3] to efficiently
compute the Hilbert polynomial of a given divisor D as the Ehrhart poly-
nomial of some polytope. Hence, we can compare the second coefficient of
the Hilbert polynomial with the normalized surface area. If they agree the
given Newton-Okounkov body with respect to the curves found by the algo-
rithm induce normal toric degenerations. Running the algorithm for some
randomly chosen divisors gives the following result. Note that all the divisor
classes are represented by the basis H,E1, . . . , E5.
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D optimal curves
min.

S(D, [C])

2nd coef.

of hD(t)

(6,−1,−1,−2,−3,−4)

nef curves negative curves

(4,−2, 0,−2,−2,−2),

(4,−2, 0,−2,−2,−2),

(3,−1,−1,−1,−1,−2),
(2,−1,−1,−1, 0,−1),

(2,−1,−1, 0,−1,−1),

(2,−1, 0,−1,−1,−1),
(4, 0,−2,−2,−2,−2),

(2, 0,−1,−1,−1,−1),

(2, 0, 0,−1,−1,−1),
(1, 0, 0,−1, 0, 0),

(1, 0, 0, 0,−1, 0),
(1, 0, 0, 0, 0,−1)

(0, 1, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1),
(1,−1,−1, 0, 0, 0),

(1, 0,−1,−1, 0, 0),

(1, 0, 0,−1,−1, 0),
(1,−1, 0,−1, 0, 0),

(1,−1, 0, 0,−1, 0),

(1, 0,−1, 0,−1, 0),
(1, 0, 0, 0,−1,−1),

(1, 0, 0,−1, 0,−1),
(1, 0,−1, 0, 0,−1),

(1,−1, 0, 0, 0,−1),

(2,−1,−1,−1,−1,−1)

6 6

(6,−1,−3,−1,−2,−3)

nef curves negative curves

(2,−1,−1,−1, 0,−1),

(2,−1,−1,−1, 0,−1),
(2,−1,−1, 0,−1,−1),

(2, 0,−1,−1,−1,−1),

(1, 0,−1, 0, 0, 0),
(1, 0, 0, 0, 0,−1)

(0, 1, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1),
(1,−1,−1, 0, 0, 0),

(1, 0,−1,−1, 0, 0),

(1, 0, 0,−1,−1, 0),
(1,−1, 0,−1, 0, 0),

(1,−1, 0, 0,−1, 0),
(1, 0,−1, 0,−1, 0),

(1, 0, 0, 0,−1,−1),

(1, 0, 0,−1, 0,−1),
(1, 0,−1, 0, 0,−1),

(1,−1, 0, 0, 0,−1),

(2,−1,−1,−1,−1,−1)

8 8
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D optimal curves
min.

S(D, [C])

2nd coef.

of hD(t)

(8,−3,−2,−2,−2,−3)

nef curves negative curves

∅

(0, 1, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1),
(1,−1,−1, 0, 0, 0),

(1, 0,−1,−1, 0, 0),

(1, 0, 0,−1,−1, 0),
(1,−1, 0,−1, 0, 0),

(1,−1, 0, 0,−1, 0),

(1, 0,−1, 0,−1, 0),
(1, 0, 0, 0,−1,−1),

(1, 0, 0,−1, 0,−1),
(1, 0,−1, 0, 0,−1),

(1,−1, 0, 0, 0,−1),

(2,−1,−1,−1,−1,−1)

12 12

(4,−1,−1,−1, 0,−1)

nef curves negative curves

(2,−1,−1,−1, 0,−1),

(2,−1,−1,−1, 0,−1),
(1,−1, 0, 0, 0, 0),

(1, 0,−1, 0, 0, 0),

(1, 0, 0,−1, 0, 0),
(1, 0, 0, 0, 0,−1)

(0, 1, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1),
(1,−1,−1, 0, 0, 0),

(1, 0,−1,−1, 0, 0),

(1, 0, 0,−1,−1, 0),
(1,−1, 0,−1, 0, 0),

(1,−1, 0, 0,−1, 0),
(1, 0,−1, 0,−1, 0),

(1, 0, 0, 0,−1,−1),

(1, 0, 0,−1, 0,−1),
(1, 0,−1, 0, 0,−1),

(1,−1, 0, 0, 0,−1),

(2,−1,−1,−1,−1,−1)

8 8

(7,−4, 0,−2,−3,−3)

nef curves negative curves

(3,−2,−1,−1,−1,−1),

(3,−2,−1,−1,−1,−1),

(2,−1,−1,−1,−1, 0),
(2,−1,−1,−1, 0,−1),

(2,−1,−1, 0,−1,−1),
(4,−2, 0,−2,−2,−2),

(3,−2, 0,−1,−1,−1),

(2,−1, 0,−1,−1,−1),
(2,−1, 0,−1,−1, 0),

(2,−1, 0,−1, 0,−1),

(2,−1, 0, 0,−1,−1),
(1,−1, 0, 0, 0, 0),

(1, 0, 0,−1, 0, 0),

(1, 0, 0, 0,−1, 0),
(1, 0, 0, 0, 0,−1)]

(0, 1, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 1),

(1,−1,−1, 0, 0, 0),

(1, 0,−1,−1, 0, 0),
(1, 0, 0,−1,−1, 0),

(1,−1, 0,−1, 0, 0),

(1,−1, 0, 0,−1, 0),
(1, 0,−1, 0,−1, 0),

(1, 0, 0, 0,−1,−1),

(1, 0, 0,−1, 0,−1),
(1, 0,−1, 0, 0,−1),

(1,−1, 0, 0, 0,−1),

(2,−1,−1,−1,−1,−1)

9 9



21

We can make several conjectures from this example. First of all in each
example the optimal normalized surface area is equal to the second coeffi-
cient of the Hilbert polynomial of D. Thus, in each example we do indeed
get normal toric degenerations. Moreover, in each example all negative
curves are optimal. We will see later that this is true for all varieties Xr for
r = 1, . . . , 6.

The next theorem describes some conditions on X and on the flag Y•
which make sure that ∆Y•(D) induces a normal toric degeneration.

Theorem 5.5. Let X be a smooth surface, admitting integral Zariski de-
compositions. Let Y• = (C ⊇ {P}) be an admissible flag such that C ∼= P1

and −KX − C defines a big and nef class. Let D be a big divisor on X.
Then ∆Y•(D) induces a normal toric degeneration if and only if ∆Y•(D) is
rational polyhedral.

Proof. Let us first make some observations. If D is a nef divisor, then by
assumption D−C−KX is big and nef. We can therefore use the Kawamata-
Viehweg vanishing theorem to deduce that H1(X,OX(D − C)) = 0. This
implies that the restriction morphism H0(X,OX(D)) → H0(C,OC(D)) is
surjective for every nef divisor D. Our aim is to show that we have an
equality

Γk(D) = k ·∆Y•(D) ∩ Z2.

Then the statement follows by using Gordan’s lemma. We will do this by
considering the vertical t-slices of k∆Y•(D), i.e. points such that the first co-
ordinate is equal to a fixed integer t ∈ [kν, kµ]. The second coordinate of the
valuation points Γk(D) in the t-slice are given by the valuation points of the
restricted linear series H0(X,OX(kD− tC))|C of the valuation ordP . Define
Dk,t := kD−tC, Pk,t := P (Dk,t) and Nk,t := N(Dk,t). By Theorem 4.12, we
can without loss of generality assume that the point P is not contained in
the support of the negative part Nk,t. Since X admits an integral Zariski de-
composition, we can replace the restricted linear series H0(X,OX(Dk,t))|C
with the linear series H0(X,OX(Pk,t))|C = H0(C,OC(Pk,t)). As C ∼= P1,
we can apply Riemann-Roch to deduce that

dimH0(C,OC(Pt,k|C)) = (Pt,k · C) + 1.

Hence, the valuation points in the t-slice are exactly all the points (t, s)
where s ∈ {0, . . . (Pk,t ·C)}. These are all the integer points in the t-slice of
k∆Y•(D). �

We can use the above theorem to prove the following.

Theorem 5.6. Let Xr be the blow-up of r general points in P2 for r =
1, . . . , 6. Let D be a big divisor on Xr, C ⊂ Xr a negative curve and P ∈ C
an arbitrary point. Then ∆C⊃{P}(D) induces a normal toric degeneration.
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Proof. SinceXr has a rational polyhedral effective cone, the Newton-Okounkov
body ∆Y•(D) is rational polyhedral for all big divisors and admissible flags
Y•. It follows from Theorem 4.2 and the fact that the only negative curves
in Xr are (−1)-curves, that Xr admits integral Zariski decompositions. The
negative curves of Xr are either exceptional divisors Ei, lines H−Ei−Ej or
conics 2H −Ei1 −· · ·−Ei4 . All of them are rational. In addition, a calcula-
tion shows that the divisor −KX −C is big and nef for all possible negative
curves C. Now, we can use Theorem 5.5, which proves the claim. �
Remark 5.7. Note that for Xr, where r = 7, 8 the assumptions of Theorem
5.5 are not fulfilled for all negative curves. Consider for example the negative
curve C = 3H − 2E1 − E2 − . . . E7 on X7. Then −KX7 − C = E1 which is
clearly not big and nef.

5.2. Normal toric degeneration on weak del Pezzo surfaces. In this
paragraph we want to discuss examples of weak del Pezzo surfaces which
induce normal toric degenerations.

Definition 5.8. We call X a weak del Pezzo surface if it is a surface and
its anticanonical divisor −KX is nef and big.

The characterization of smooth weak del Pezzo surfaces is a bit more
complex. Roughly speaking, more constellation of points to blow-up are
allowed. One of the main differences to del Pezzo surfaces is that no longer
only (−1)-curves occur as negative curves but also (−2)-curves.

We will focus on two examples. First, the blow-up of six points on a conic
the and second, the blow-up of four points where three of them lie on a line.

5.2.1. Blow-up of six points on a conic. Consider the variety S6 which is
given as the blow-up of six points in P2 such that no three of them are
collinear but all six lie on a single conic. The negative curves are:

(a) E1, . . . , E6 the exceptional divisors
(b) H − Ei − Ej for i 6= j, i, j ∈ {1, . . . , 6} the strict transforms of the

lines through two points.
(c) 2H −E1 − · · · −E6 the strict transform of the conic through all the

six points.

The first two types of curves are (−1)-curves and the last one is a (−2)-curve.

Theorem 5.9. Let D be a big divisor on S6. Let furthermore C be the strict
transform of the conic going through the six chosen points, and P ∈ C an
arbitrary point. Then ∆C⊃{P}(D) induces a normal toric degeneration.

Proof. The proof works similarly as before with the only difference that there
are also (−2)-curves occurring. This means that it is not clear whether S6

admits integral Zariski decompositions.
However, a computation shows that −KX − C is big and nef. We know

that C is not contained in the support of Nt for ν ≤ t ≤ µ (see proof of
Proposition 2.1 in [KLM12]).
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Since C is the only (−2)-curve in S6, the support of the divisors of Nt

only consists of (−1)-curves. We can thus use Theorem 4.2 to deduce that if
Dt is integral then also Pt and Nt are integral. Then the proof works exactly
as in Theorem 5.5. �

In order to be able to compute Newton-Okounkov bodies, we need to
know the Zariski chambers of the effective cone of S6. Note that unlike in
the case of del Pezzo surfaces, the decomposition of Zariski chambers is not
necessarily given by the decomposition induced from the hyperplanes C⊥

where C is in the set of negative curves. This is a consequence of the fact
that there exists a (−2)-curve.

In general it is quite difficult to describe this decomposition. However, in
order to compute Newton-Okounkov bodies of a divisor D with respect to
the curve C given by the conic going through the six points, we just need to
compute the wall crossings of the segment D − tC for t ∈ [ν, µ]. The next
lemma describes these crossing points.

Lemma 5.10. Let D be a big divisor on S6. Then the intersections of the
divisors D − tC for t ∈ (ν, µ) with the boundary of the Zariski chambers all
lie in the set

⋃
C⊥i where the union is taken over all (−1)-curves.

Proof. The proof is very similar to Proposition 3.4 in [BKS04]. It is shown in
the mentioned proof that if N is a negative divisor whose support contains
only (−1)-curves, then all the irreducible components of N are orthogonal.
Let us now suppose Dt := D − tC for t ∈ (ν, µ) lies on the boundary of a
Zariski chamber. If we define for a divisor D the sets

Null(D) = {C | irreducible with (C ·D) = 0}
Neg(D) = {C | irreducible component of N(D)},

then according to [BKS04, Proposition 1.5], this means that

Null(Pt) \Neg(Dt) 6= ∅.
Let C ′ be a curve which lies in Null(Pt) but not in Neg(Dt). Then C ′ is

a negative curve and NDt + C ′ is a negative divisor according to [BKS04,
Lemma 4.3]. We want to show that C ′ 6= C. Suppose that they are equal.
Then (Pt·C) = 0. We know from the choice of t that the slice ∆C⊂{P}(D)ν1=t

has length bigger than 0 for t ∈ (ν, µ). However, this is a contradiction to
(Pt ·C) = 0. Hence, C ′ 6= C and thus C ′ is a (−1)-curve. It follows that the
support of Nt + C ′ consists of (−1)-curves and we conclude (C ′ · Nt) = 0
which implies that (Dt · C) = 0. This shows that Dt ∈ C⊥. �

We are now able to present an example of a Newton-Okounkov body on
S6 which induces a normal toric degeneration.

Example 5.11. Let us consider the divisor D = 4H −E1 − . . . E6. This is
an ample divisor. The corresponding Newton-Okounkov body with respect
to the curve C = 2H −E1 − · · · −E6 and a general point P is illustrated in
Figure 2.
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Figure 2. N.-O. body of D = 4H − E1 − . . . , E6 on S6

The Hilbert polynomial, which is equal to the Ehrhart polynomial of
∆Y•(D), is given by

PD(t) = 5t2 + 3t+ 1.

5.3. Blow-up of four points three of them on a line. Let L3 be the
blow-up of P2 of four points where three points lie on a line. This is again
a weak del Pezzo surface. The negative curves are:

(a) E1, E2, E3, E4 the exceptional divisors.
(b) H −E4 −E2, H −E4 −E3,H −E4 −E1 the strict transforms of the

lines through two points.
(c) H −E1 −E2 −E3 the strict transform of the line through the three

collinear points.

The first two types of curves are (−1)- and the last one is a (−2)-curve.
Analogously as in the previous section, we get the following result.

Theorem 5.12. Let D be a big divisor on L3. Let furthermore C = H −
E1 − E2 − E3 be the line through the three chosen points, and P ∈ C an
arbitrary point. Then ∆C⊃{P}(D) induces a normal toric degeneration.

�
Since H −E1 −E2 −E3 is the only (−2)-curves, we can use an analog of

Lemma 5.10 in order to compute Newton-Okounkov bodies.

Example 5.13. Let us consider the divisor D = 4H −E1 −E2 −E3 −E4.
This is an ample divisor. We want to compute the Newton-Okounkov body
with respect to the curve C = H − E1 − E2 − E3 and a very general point
P on C.
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Figure 3. N.-O. body of D = 4H − E1 − · · · − E4 on L3

The Hilbert polynomial of D is given by:

PD(t) = 6t2 + 4t+ 1.

6. Global Newton-Okounkov bodies on surfaces

In this section we want to use our previous findings in order to compute
global Newton-Okounkov bodies on (weak) del Pezzo surfaces. We will see
that under good conditions the global semigroup ΓY•(X) is finitely gener-
ated. Moreover, we will see how the generators of this semigroup give rise
to generators of the Cox ring. We will illustrate our results for the varieties
X5 and L3.

6.1. Generators of the global Newton-Okounkov body on surfaces.
In this section we want to generalize results from [SS16] to arbitrary admis-
sible flags.

Let us start by defining what we mean by a global Newton-Okounkov
body.

Definition 6.1. Let X be a projective variety. Let Y• be an admissible flag
on X. Then we define the global Newton-Okounkov body of X with respect
to Y• as the closure of

Cone({(νY•(s), [D]) | s ∈ H0(X,OX(D), D ∈ Pic(X))}
in Rd ×N1(X)R. We denote it by ∆Y•(X).

Note that for any big divisor D, we have the following identity

∆Y•(D) = ∆Y•(X) ∩ (Rd × {[D]}).
We will now focus on the case where X is a smooth surface. Moreover, let

us assume that X admits a rational polyhedral pseudo-effective cone, e.g. if
X is a Mori dream surface. Let C be a curve on X and P ∈ C a smooth
point on C. Let

D1 = P1 +N1, . . . , Dr = Pr +Nr
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be the set of generators of the Zariski chambers with the property that C is
not contained in the support of the negative parts N1, . . . , Nr. The following
is a generalization of [SS16, Theorem 3.2] to arbitrary flags. Note that the
proof works quite similarly as the mentioned one.

Theorem 6.2. Consider the notation introduced above. The generators of
the global Newton-Okounkov body ∆C⊃{P}(X) are given by

• (1, 0, [C])
• (0, ordP (Ni|C), [Di]) for i = 1, . . . , r
• (0, ordP (Ni|C) + (Pi · C), [Di]) for i = 1, . . . , r.

Proof. It is not hard to see that all the above points are contained in
∆C⊃{P}(X).

Let us now show that all points in ∆C⊃{P}(X) are positive linear combi-
nations of the above points. It is enough to show that all valuation points
are of this kind. Let D be a big divisor and s ∈ H0(X,O(D)) an arbitrary
section. Define a := ordC(s), consider D′ := D − aC and set ξ := s/saC
where sC is a defining section of C. We have

(ν(s), [D]) = a · (1, 0, [C]) + (ν(ξ), [D′]).

Therefore, it is enough to show that (ν(ξ), [D′]) is a positive linear combi-
nation of the above points. Let Di1 , . . . , Dis be the generators of the unique
Zariski chamber which contains the divisor D′. Then we can write

D′ =
s∑

k=1

tk ·Dik .

Furthermore, for the negative part N ′ := N(D′) =
∑
tkNik and P ′ :=

P (D′) =
∑
tkPik . By definition of D′, we get that C is not contained in the

support of the negative part N(D′). This also shows that C is not contained
in the negative parts of the Dik .

Let us now choose m ∈ Z such that mN ′ and mP ′ are both integral. We
can decompose ξm = ζσ for ζ ∈ H0(X,OX(mP ′)) and σ ∈ H0(X,OX(mN ′)).
Then

m · (ν(ξ), [D′]) = (ν(ζ) + ν(σ), [mP ′ +mN ′]) = (ν(ζ), [mP ′]) + (ν(σ), [mN ′]).

Furthermore,

ν(σ) = (0, ordP (σ|C)) = m ·
s∑

k=1

tk · (0, ordP (Nik|C).

On the other hand, we have

ν(ζ) = (0, bm) where b ∈ [0, P ′ · C]

Thus there is a c ∈ [0, 1] such that

ν(ζ) = cm ·
s∑

k=1

tk · (0, 0) + (1− c)m
s∑

k=1

tk · (0, Pk · C).
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Putting everything together we get

m · (ν(ξ), [D]) =

(
mc ·

s∑

k=1

tk(0, ordP (Nik|C)) +m(1− c)
( s∑

k=1

tk(0, ordP (Nik|C)

+Pk · C
)
,

[
s∑

k=1

tk ·Dik

])
=

=mc ·
s∑

k=1

tk
(
0, ordP (Nik|C), [Dik ]

)
+

+m(1− c) ·
s∑

k=1

tk
(
0, ordP (Nik|C

)
+ (Pik · C)), [Dik ]).

This proves the claim. �

The next proposition gives a more concrete characterization of the above
mentioned divisors Di.

Proposition 6.3. Let D be a divisor which spans an extremal ray of the
closure of a Zariski chamber ΣP . Then D spans an extremal ray of either
the pseudo-effective cone or the nef cone of X.

Proof. Let P be a big and nef divisor. Then we define

Face(P ) :=
⋂

C∈Null(P )

C⊥ ∩Nef(X)

V ≥0(Null(P )) := Cone(Null(P )).

Then by [BKS04, Proposition 1.8], we have

Big(X) ∩ ΣP = Big(X) ∩ Face(P ) + V ≥0(Null(P )).

Hence, the extremal rays of ΣP are either extremal rays of Face(P ) or of
V ≥0(Null(P )). However, since Face(P ) is a face of the Nef cone, the first
set of extremal rays lies inside the set of extremal rays of the Nef cone. The
extremal rays of V ≥0(Null(P )) are all negative, and thus extremal rays of
the pseudo-effective cone.

�

Remark 6.4. Proposition 6.3 combined with Theorem 6.2 is in some sense
surprising. It shows that in order to calculate the global Newton-Okounkov
body on a surface X, it is not necessary to know the exact structure of the
Zariski chambers. It is not even necessary to compute any Zariski decompo-
sition at all. However, in order to derive the structure of the generators of
the global Newton-Okounkov body we heavily relied on the fact that Zariski
decomposition as well as the Zariski chamber decomposition does exist.
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6.2. Finite generation of the global semigroup. We have seen above,
that a smooth surface X with a rational polyhedral pseudo-effective cone
admits rational polyhedral global Newton-Okounkov bodies with respect to
all admissible flags. In this section we want to prove a stronger property,
namely finite generation of the global semigroup appearing in the construc-
tion of global Newton-Okounkov bodies. We will prove this property for
the examples we have dealt with so far. In order to prove such a state-
ment, we need to consider Newton-Okounkov bodies of effective but not big
divisors. There are two different ways of defining these Newton-Okounkov
bodies which both coincide for big divisors. One way is to define it via tak-
ing a fiber of the global Newton-Okounkov body. The corresponding body
is called the numerical Newton-Okounkov body. More concretely, we have

∆num
Y• (D) := ∆Y•(X) ∩

(
Rd × {[D]}

)
.

Another way to associate a convex body to an effective divisor is to just
use the same definition as for big divisors. The resulting body is called the
valuative Newton-Okounkov body. More, concretely we define

∆val
Y• (D) := Cone(ΓY•(D)) ∩

(
Rd × {1}

)

where

ΓY•(D) := {(νY•(s), k) | k ∈ N, s ∈ H0(X,O(kD)) \ {0}}.
In general, we have ∆val

Y• (D) 6= ∆num
Y• (D). However, if D is big the mentioned

equality holds.

Lemma 6.5. Let X be a smooth Mori dream surface, D an effective divisor
on X and Y• an admissible flag such that −KX − Y1 is big and nef. Then
∆Y•(D)num = ∆Y•(D)val.

Proof. Without loss of generality we may assume that D is nef. Following
[CPW17], there are two different cases for ∆num

Y• (D). The first case is that
µ := sup{t : D − tY1 is effective } is equal to 0. Then from [CPW17], we
get

∆num
Y• (D) = {(0, x) | x ∈ [0, D · Y1]}.

Since µ = 0, we can deduce that

∆val
Y• (D) = {0} ×∆val

X|Y1(D) = {0} ×∆val
Y1 (D).

Note that for the last identity we have used the fact that H1(X,OX(D −
Y1)) = 0, which means that the restriction morphism H0(X,OX(D)) →
H0(Y1,OY1(D)) is surjective. However, it easily follows that ∆val

Y1
(D|Y1) =

[0, D · Y1]. This proves ∆val
Y• (D) = ∆num

Y• (D) in the case µ = 0.
Suppose now that µ > 0. Then ∆num

Y• (D) is given by a line segment

Conv{(0, 0), (µ,Q)} for some number Q ∈ R≥0. Since ∆val
Y• (D) ⊆ ∆num

Y• (D)

it is enough to prove that there are sections s1, s2 ∈ H0(X,O(kD) such that
νY•(s1) = (0, 0), and νY•(s2) = k(µ,Q). However, since D is nef and thus
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semi ample, the first assertion is clear. Moreover, since X is a Mori dream
space D − µC is semi-effective. This proves the second assertion. �
Lemma 6.6. Let X be a smooth del Pezzo surface. Let Y• be an admissible
flag such that −KX−Y1 is big and nef, and let Y1 be rational, i.e. of genus 0.
Then for all effective divisors D, the semigroup ΓY•(D) is finitely generated
normal.

Proof. This proof works similarly as the proof of Theorem 5.5. �
Remark 6.7. The above lemma is also valid for the varieties L3 and S6, if
we take as Y1 the single (−2)-curve.

Theorem 6.8. Suppose one of the following situations.

• X = Xr is the blow-up of 1 ≤ r ≤ 6 points in P2 in general position
and Y• is an admissible flag such that Y1 is negative.
• X = L3 or X = S6 and Y• is an admissible flag such that Y1 is the

corresponding single (−2)-curve.

Then the global semigroup

ΓY•(X) = {(νY•(s), D) | D ∈ N1(X) = Pic(X), s ∈ H0(X,O(D))}
is finitely generated normal.

Proof. We know, by Theorem 6.2, that ∆Y•(X) = Cone(ΓY•(X)) is ratio-

nal polyhedral. We want to prove that Cone(ΓY•(X)) ∩ (Z2 × N1(X)) =
ΓY•(X). Then the result follows from Gordan’s lemma. Consider (a,D) ∈
Cone(ΓY•(X)) for a ∈ Z2 and D an integral effective divisor in N1(X). This
means that

a ∈ ∆num
Y• (D) = ∆val

Y• (D) = Cone(ΓY•(D)) ∩
(
R2 × {1}

)
.

But by Lemma 6.6 and Remark 6.7, ΓY•(D) is normal. Thus, there is a
section s ∈ H0(X,O(D)) such that νY•(s) = a. This proves that (a,D) ∈
ΓY•(X).

�
The finite generation of the global semigroup ΓY•(X) has the following

consequences for the Cox ring Cox(X).

Theorem 6.9. Let X be a Q-factorial variety with N1(X) = Pic(X). Let
Y• be an admissible flag. Suppose ΓY•(X) is finitely generated by

(νY•(s1), D1), . . . (νY•(sN ), Dn).

Then the Cox ring Cox(X) is generated by the sections s1, . . . , sN .

Proof. Let R be the C-algebra which is generated by the sections s1, . . . , sN .
LetD be any effective divisor inX. Let k = h0(X,OX(D)) = |νY•(H0(X,OX(D))\
{0})|. Since the (νY•(s1), D1), . . . (νY•(sN ), Dn) generate ΓY•(X), it follows
that there are f1, . . . , fk ∈ R ∩ H0(X,OX(D)) \ {0} which all have a dif-
ferent valuation. But then it follows from [KK12, Proposition 2.3] that
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f1, . . . , fk are linearly independent. This proves that they form a basis of
H0(X,OX(D)) and that every section s ∈ H0(X,O(D)) lies in the algebra
R. This show that R ∼= Cox(D). �

6.3. Examples of global Newton-Okounkov bodies and global semi-
groups. In this last paragraph we want to consider two concrete examples
and compute their global Newton-Okounkov bodies. In the second example
we also present generators of the global semigroup and use them to find
generators of the Cox ring.

Example 6.10. First of all we consider the del Pezzo surface X5, which is
the blow-up of five points in general position in P2. As a flag, we take the
negative curve C := H − E1 − E2, and a general point on it. According to
Theorem 6.2, we need to compute all ray generators of Zariski chambers,
whose support of the negative part does not contain the negative curve C.
Using Proposition 6.3, these are given by all the negative curves except the
curve C and the generators of the extremal rays of the nef cone.

With the help of a computer calculation, we compute the global Newton
Okounkov body and present the resulting hyperplane representation in R2×
N1(X5)R ∼= R8. Choosing H,E1, . . . , E5 as a basis for N1(X5)R we get the
following representation for ∆Y•(X5):




1 0 0 0 0 0 0 0
1 −1 1 1 1 0 0 0
0 −1 2 1 1 0 1 1
−1 −1 3 1 1 1 1 2
0 −1 2 1 1 1 0 1
−1 −1 2 0 1 1 1 0
0 −1 1 0 1 0 0 0
−1 −1 3 1 1 2 1 1
−1 −1 3 1 1 1 2 1
0 −1 2 1 1 1 1 0
−1 −1 2 0 1 0 1 1
−1 −1 2 0 1 1 0 1
0 −1 1 1 0 0 0 0
−1 −1 2 1 0 1 1 0
−1 −1 2 1 0 1 0 1
−2 −1 2 0 0 1 0 1
−2 −1 2 0 0 1 1 0
−1 −1 1 0 0 0 0 0
−1 −1 2 1 0 0 1 1
−2 −1 2 0 0 0 1 1
−2 −1 3 1 0 1 1 2
−2 −1 3 1 0 1 2 1
−2 −1 3 1 0 2 1 1
−2 −1 3 0 1 1 1 2
−2 −1 3 0 1 1 2 1
−2 −1 3 0 1 2 1 1
−2 −1 4 1 1 2 2 2
−1 0 2 1 0 1 1 1
0 1 0 0 0 0 0 0
−1 0 1 0 0 1 0 0
−1 0 1 0 0 0 0 1
−1 0 1 0 0 0 1 0
−1 0 2 0 1 1 1 1
−3 −1 4 0 1 2 2 2
−3 −1 4 1 0 2 2 2
−4 −1 4 0 0 2 2 2
−3 −1 3 0 0 2 1 1
−3 −1 3 0 0 1 1 2
−3 −1 3 0 0 1 2 1




· (x1, . . . , x8)T ≤ 0.
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It is a convex cone in R8 which is defined by a minimal number of 39 in-
equalities or a minimal number of 22 rays. Note that the above equations
give an Ehrhart type formula for the Hilbert polynomial of a given divisor
D = (x3, . . . , x8) similar to the one derived in [SX10, Example 1.3].

Example 6.11. Consider now L3, which is the blow-up of four points such
that three of them lie on a line. Let us suppose that P1, . . . , P3 lie on a line.
We choose H,E1, . . . , E4 as our basis for N1(L3)R. Then the global Newton-
Okounkov body of L3 with respect to the curve C = H −E1−E2−E3 and
a general point on it is given by the following linear inequalities:




1 0 0 0 0 0 0
2 −1 1 1 1 1 0
1 −1 1 0 1 1 0
1 −1 1 1 0 1 0
1 −1 1 1 1 0 0
−1 −1 1 0 0 0 0
0 −1 1 0 0 1 0
0 −1 1 0 1 0 0
0 −1 1 1 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 1




· (x1, . . . , x7)T ≥ 0.

The ray generators of the global Newton-Okounkov body are

(0, 0, E4), (0, 0, E3), (0, 0, E2), (0, 0, E1), (0, 0, H − E1 − E4),

(0, 0, H − E2 − E4), (0, 0, H − E3 − E4), (0, 1, H − E4),

(1, 0, H − E1 − E2 − E3).

A calculation shows that these generators, form a Hilbert basis, so that
they are a generating set of the global semigroup ΓY•(L3). It follows from
Theorem 6.9, that Cox(L3) is generated by the following sections:

• the negative curves
• the strict transform of a general line going through P4.
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ON THE MORI THEORY AND NEWTON-OKOUNKOV

BODIES OF BOTT-SAMELSON VARIETIES

GEORG MERZ, DAVID SCHMITZ, HENRIK SEPPÄNEN

Abstract. We prove that on a Bott-Samelson variety X every movable
divisor is nef. This enables us to consider Zariski decompositions of
effective divisors, which in turn yields a description of the Mori chamber
decomposition of the effective cone. This amounts to information on all
possible birational morphisms from X. Applying this result, we prove
the rational polyhedrality of the global Newton-Okounkov body of a
Bott-Samelson variety with respect to the so called ‘horizontal’ flag.
In fact, we prove the stronger property of the finite generation of the
corresponding global value semigroup.

1. Introduction

Bott-Samelson varieties arise naturally from the study of flag varieties
as resolutions of singularities of Schubert varieties (see e.g. [D74]). Their
line bundles have been studied by Lauritzen and Thomsen ([LT04]), and by
Anderson ([A15]). If Xw is a Bott Samelson variety corresponding to a re-
duced word w, an explicit finite set of generators for the cone of effective/nef
divisors is described by the first two authors.

In addition to the rational polyhedrality of the effective/nef cone, An-
derson ([A15]) and the last two authors of this article ([SS17]) showed in-
dependently that a Bott-Samelson variety X = Xw is log-Fano. In par-
ticular, X is a Mori dream space in the sense of [HuKe00]. Consequently,
the Cox ring Cox(X) =

⊕
D∈Div(X)H

0(X,OX(D)) is a finitely generated C-

algebra. Moreover, there are only finitely many contracting birational maps
from X. These contractions correspond to a decomposition of the effective
cone into finitely many subcones, the so called Mori chambers. More con-
cretely, in [HuKe00] two big divisors D1 and D2 are called Mori-equivalent, if
their induced maps X 99K Proj(

⊕
mH

0(X,OX(mDi))) agree. This can be
rephrased by saying that their respective Minimal Model Programs (MMP)
coincide. The closures in the Néron-Severi vector space N1(X)R of the
equivalence classes are the aforementioned Mori chambers. Despite their
straightforward definition, these chambers are very hard to determine in al-
most all concrete cases. Especially the existence of small contractions still
poses a plethora of challenges one of which the two last authors faced when
studying global Newton-Okounkov bodies of Mori dream spaces in [SS17].

Key words and phrases. Effective cone, Bott-Samelson variety, Mori dream space,
Newton-Okounkov body.

The first author was supported by DFG Research Training Group 1493 “Mathematical
Structures in Modern Quantum Physics”.
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In their work the main complication consisted in the fact that restricted vol-
umes of divisors with small base loci, i.e. of codimension higher than one,
behave unpredictably compared to those of nef divisors. Another conse-
quence of the appearance of small base loci is the fact that in order to define
Zariski decompositions of effective divisors, one has to consider higher bira-
tional models on which these base loci are resolved. In practice, it is usually
very difficult to control these resolutions.

In this article, we apply results about Newton-Okounkov bodies from
[KüL15] and [SS17] to show that in the case of Bott-Samelson varieties such
problems need not concern us. Concretely, we prove the following.

Theorem A. Let X = Xw be a Bott-Samelson variety corresponding to a
reduced sequence w. Then every movable divisor on X is base-point-free,
and hence

Mov(X) = Nef(X).

At a first glance it may seem that, by realizing this fact, the struggle in
[SS17] to deal with small modifications on Bott-Samelson varieties was in
vain. Note however that in order to prove the above theorem we rely on a
result from [SS17] for which the existence of small contractions could not be
ruled out from the outset.

Once Theorem A is established, we have access to Zariski decomposi-
tions, which then just consist of the decomposition of a big divisor into its
(Q–)movable and (Q–)fixed parts. This enables us to describe the pseudo-
effective cone of a Bott-Samelson variety in detail and in particular to give
criteria for divisor classes to span a common Mori chamber. It will turn out
that Mori chambers are uniquely determined by stable base loci occurring
in their interior. More concretely, we prove the following.

Theorem B. Let X = Xw be a Bott-Samelson variety for a reduced word
w. Then each Zariski chamber defines a Mori chamber and vice versa.

As an application of Theorem A, we turn to Newton-Okounkov bodies on
Bott-Samelson varieties and the question of finite generation of the semi-
groups of valuation vectors coming up in the construction.

The question of finite generation of this semigroup has been intensely
studied in the last years since D. Anderson’s observation in [A13] that the
finite generation of the value semigroup of an ample divisor implies the
existence of a toric degeneration and the construction of a related integrable
system in this situation in [HaKa15].

Also the study of Newton-Okounkov bodies on Bott-Samelson varieties
has recently become an active field of research. In [A13] a particular Bott-
Samelson variety is considered as an example. A more thorough analysis
of Newton-Okounkov bodies for Bott-Samelson varieties was initiated by
Kaveh in [Ka15], where he showed that Littelmann’s string polytopes (cf.
[Li98]) can be realized as Newton-Okounkov bodies for divisors with respect
to a certain valuation. This valuation is however not defined by a flag of
subvarieties in terms of order of vanishing. In [HaY15], the authors de-
scribe Newton-Okounkov bodies of Bott-Samelson varieties for divisors D
satisfying a certain condition. In contrast to Kaveh’s work, they use a flag
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to define the valuation, which we will call the ‘horizontal’ flag. In particu-
lar they prove the finite generation of the value semigroup in this context.
In [SS17], the rational polyhedrality of the global Newton-Okounkov with
respect to the so-called ‘vertical’ flag was proven.

Although both the ‘vertical’- and the ‘horizontal’ flag consists of Bott-
Samelson varieties, their embeddings into X are very different: whereas the
divisor Y1 in the ‘vertical’ flag is a fibre of a bundle X −→ P1, and thus
moves in a natural family, the divisor in the horizontal flag is fixed, i.e., it
is the only element in its linear system.

In this article, we consider the ‘horizontal’ flag and generalize the results
of [HaY15] to all effective divisors D. We prove the rational polyhedrality
of the global Newton-Okounkov body, similarly as in [SS17]. Note, however,
that our proof will be substantially less technical since we can make use
of Theorem A and the fact, derived in [LT04] (see Lemma 6.2), that the
restriction morphism of global sections of nef divisors to Y1 is surjective.
This property is significantly stronger than the corresponding identity of
restricted volumes volX|Y1(D) = volY1(D|Y1) which holds for the ‘vertical’
flag. Indeed, it will give us the following result.

Theorem C. Let X = Xw be a Bott-Samelson variety for a reduced word
w, and let Y• be the horizontal flag. Then, the semigroup

ΓY•(Xw) := {(ν(s), D) | D ∈ Pic(Xw), s ∈ H0(X,OX(D)) \ {0}}

is finitely generated.

To our best knowledge, apart from the toric case, no known examples of
varieties admitting a finitely generated global semigroup ΓY•(X) have been
studied in the literature so far. It also remains unclear to us whether the
above theorem also holds with the ‘vertical’ flag.

Note also that our result goes in line with the recent work of Postinghel
and Urbinati ([PU16]). Apart from also showing that for each Mori dream
space X there is a flag on a birational model of X such that the correspond-
ing global Newton-Okounkov body is rational polyhedral, they prove the
finite generation of the value semigroup Γ(D) of any big divisor D. How-
ever, their work does not imply that the global semigroup Γ(X) is finitely
generated.

It is a well-known fact that the finite generation of the value semigroup,
does not induce a toric degeneration to a normal toric variety. This is
directly related to the fact that the value semigroup itself need not be normal
despite being finitely generated. Hence, it would be desirable to find a
criterion for normality of value semigroups. We prove a sufficient criterion
in the case of Bott-Samelson varieties. Namely, if the Zariski decomposition
of any integral effective divisor on X is integral, then the normality of the
global value semigroup ΓY•(X) with respect to the ‘horizontal’ flag follows.
Thus, in this case any ample divisor yields a degeneration to a normal toric
variety.

We can generalize the picture described so far to the setting of flag vari-
eties and Schubert varieties contained therein. Given a parabolic subgroup
P ⊂ G containing B, and a reduced expression w = (s1, . . . , sn) such that
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we have a birational resolution p : Xw −→ Zw of the Schubert variety corre-
sponding to w, the ‘horizontal’ flag on Xw induces a Zn-valued valuation-like
function ν on Zw. Then, the following is a consequence of Theorem C.

Theorem D. Let Zw ⊆ G/P be the Schubert variety for the reduced word
w, then the global semigroup Γν(Zw) is finitely generated. In particular,
∆ν(Zw) is rational polyhedral.

Consequently, for any partial flag varietyG/P the global semigroup Γν(G/P )
is finitely generated.

In order to illustrate the results of this paper, we apply them to two
concrete Bott-Samelson varieties given as incidence varieties. Their Mori
chamber structure is described in Sections 5, whereas the generators of their
global value semigroups and their global Newton-Okounkov bodies are de-
termined in Section 7.
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2. Preliminaries and notation

2.1. Bott-Samelson varieties. Let G be a connected and simply con-
nected reductive complex linear group, let B ⊆ G be a Borel subgroup, and
let W be the Weyl group of G. Then for a sequence w = (s1, . . . , sn) in
W , we can associate the Bott-Samelson variety Xw as follows. Let Pi be
the minimal parabolic subgroup containing B corresponding to the simple
reflection si. Let Pw := P1 × · · · × Pn be the product of the corresponding
parabolic subgroups, and consider the right action of Bn on Pw given by

(p1, . . . , pn)(b1, . . . , bn) := (p1b1, b
−1
1 p2b2, b

−1
2 p3b3, . . . , b

−1
n−1pnbn).

The Bott-Samelson variety Xw is the quotient

Xw := Pw/B
n = P1 ×B (P2 ×B × · · · ×B Pn).

We can represent points in Xw by tuples [(p1, . . . , pn)] for pi ∈ Pi and the
square brackets denote taking the class in the quotient. For more details on
this construction we refer to [LT04] or [SS17].

Originally, Damazure constructed these varieties for a sequence w which
is reduced [D74]. In this case, he proved that Xw is a desingularization of
the Schubert variety Zw. In this article, whenever we talk about a Bott-
Samelson variety Xw, the sequence w will be assumed to be reduced.

Let now X = Xw be a Bott-Samelson variety of dimension n. Then
Pic(X) ∼= Zn. There are two important bases of Pic(X). The first one is
called the effective basis. It consists of prime divisors E1, . . . , En, which can
be defined inductively. Justifying its name, the cone spanned by this basis
in N1(X)R is the cone of effective divisor classes. The second basis, which
we call the O(1)-basis, will be denoted by D1, . . . , Dn. These divisors also
generate Pic(X) as a group, whereas the cone they span coincides with the
nef cone Nef(X). Note that since Pic(X) = N1(X), we will not explicitly
distinguish between the divisor D and its class [D].
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2.2. Newton-Okounkov bodies. For the theory of Newton-Okounkov bod-
ies we follow the notation and conventions of [LM09]. In particular, a flag
of irreducible subvarieties Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {pt} is
called admissible if Yn is a smooth point on each Yi. Each admissible flag
Y• gives rise to a valuation-like function

νY• :
⊔

D∈Pic(X)

H0(X,OX(D)) \ {0} −→ Zd.

Then for a big divisor D, we can define the value semigroup

ΓY•(D) = {(νY•(s), k) | k ∈ N, s ∈ H0(X,O(kD)) \ {0}}.
The Newton-Okounkov body of D with respect to the flag Y• as

∆Y•(D) = Cone(ΓY•(D)) ∩ (Rd × {1}).
It is proven in [LM09] that ∆Y•(D) only depends on the numerical class of
D in N1(X).

Similarly, if Y is a closed subvariety, then ∆X|Y (D) denotes the Newton-
Okounkov body of the graded linear system W• with

Wk = Im(H0(X,OX(kD)) −→ H0(Y,OY (kD)))

with respect to a fixed flag on Y .
Furthermore, there exists a closed convex cone

∆Y•(X) ⊂ Rn ×N1(X)R

such that for each big divisor D the fibre of the second projection over [D]
is exactly ∆Y•(D). We call ∆Y•(X) the global Newton-Okounkov body.

In case we have Pic(X) = N1(X), e.g. if X is a Bott-Samelson variety,
we can define the global Newton-Okounkov body using the global semigroup

ΓY•(X) := {(ν(s), D) | D ∈ Pic(X) = N1(X), s ∈ H0(X,OX(D)) \ {0}}

Then, the global Newton-Okounkov is given by ∆Y•(X) = Cone(ΓY•(X)).
Now we consider Newton-Okounkov bodies of effective but not necessarily

big divisors. There are two different ways to define Newton-Okounkov bodies
in this situation. One way is to just define them via the valuation-like
function νY• . More concretely, for an effective Q-divisor D on X, we define
the valuative Newton-Okounkov body as

∆val
Y• (D) :=

1

k
· Cone(ΓY•(kD)) ∩ (Rn × {1})

where k ∈ Z is chosen such that kD is integral. Note that ∆val
Y• (D) is in

general not well-defined for numerical classes and does indeed depend on the
linear equivalence class. On the other hand, we can also define a Newton-
Okounkov body by considering the global Newton-Okounkov body and then
taking a fibre over a divisor. So, we define the numerical Newton-Okounkov
body as

∆num
Y• (D) := ∆Y•(X) ∩ (Rn × {D}) .

Note that, in general ∆num
Y• (D) 6= ∆val

Y• (D). However, if D is big, both
definitions coincide and we just write ∆Y•(D).
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3. The movable cone

Before we are able to prove Theorem A, we need the following.

Lemma 3.1. Let D be a big divisor on a Mori dream space X. Let fur-
thermore ι : Y ↪→ X be a closed subvariety of X which is itself a Mori
dream space and assume that ι∗D is big and nef. Let us denote by W•
the restricted graded linear series of D to Y . If the identity of volumes
volX|Y (D) = volY (ι∗D) holds, then the stable base loci also agree, i.e.

B(W•) = B(ι∗D) = ∅.
Proof. Since Y is a Mori dream space, ι∗D is semiample, i.e. B(ι∗D) = ∅.
Let us assume that B(W•) is not empty and choose P ∈ B(W•). Let Y•
be an admissible flag on Y which is centered at the point P . By [KüL15,
Theorem A], it follows that the origin is contained in the Newton-Okounkov
body ∆Y•(ι∗D). Clearly, ∆Y•(W•) is contained in ∆Y•(ι∗D). Since we have
an equality of volumes, volX|Y (D) = volY (ι∗D), this inclusion is in fact an
equality, i.e.,

∆Y•(ι∗D) = ∆Y•(W•) = ∆X|Y (D).

As W• is the restricted graded linear series of the finitely generated divisor
D, it is finitely generated. We can assume without loss of generality that
it is generated in degree 1. Seeing that 0 lies in ∆X|Y (D), it follows from
the construction that there is sequence (mk)k∈N of natural numbers, with
limk−→∞mk = ∞, and a sequence of sections (sk)k∈N such that sk ∈ Wmk

and

1/mk · ν(sk) = 1/mk · (ν1(sk), . . . , νn(sk)) −→ 0, as k −→∞.
This implies that 1/mk

∑n
i=1 νi(sk) −→ 0. However, by [KüL15, Lemma

2.4],

1/mk · ordP (sk) ≤ 1/mk ·
n∑

i=1

νi(sk).

Since W• is generated in degree one, all sections s ∈Wmk
vanish at the point

P to order at least mk. As a consequence, the left hand side is bounded
from below by 1. This, however, contradicts the fact that the right hand
side tends to 0. Hence, P cannot lie in B(W•). �
Theorem 3.2. Let X = Xw be a Bott-Samelson variety. Then every mov-
able divisor on X is base-point-free, and hence

Mov(X) = Nef(X).

Proof. We prove the claim by induction on n = dimX. If n = 1, then
X = P1 and the claim obviously holds.

Assume now that it holds for n − 1, and write X as the fibre bundle
X = P ×B Y with projection

π : X −→ P/B = P1, π([p, y]) := pB,

where Y = π−1(pB) is a Bott-Samelson variety of dimension n − 1. The
group P acts on X by

(p, [p′, y]) := [pp′, y],
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and the projection π is clearly P -equivariant.
Let D be a movable divisor on X. Since P acts naturally on the line bun-

dle OX(D), and hence on the section space H0(X,OX(D)) and the section
ring R(X,OX(D)) (cf. [SS17]), the stable base locus B(D) is P -invariant.
We therefore have

B(D) = P (B(D) ∩ Y ),(1)

and

codim(B(D), X) = codim(B(D) ∩ Y, Y ).

In particular, the restriction D|Y is a movable divisor on Y , and hence D|Y
is base point-free by induction, i.e.,

B(D|Y ) = ∅.

We now assume that D is both movable and big. By [SS17, Proposition
3.1] we then have the identity of volumes

volY (D|Y ) = volX|Y (D),

where the right hand side denotes the volume of the restricted linear series.
From this, we deduce by Lemma 3.1 that

B(D) ∩ Y = B(D|Y ) = ∅.

The identity (1) now shows that D is base-point-free, wich implies that D
is nef.

Finally, if D is merely movable, an approximation by big and movable
divisors yields that D is nef. �

4. Mori chamber decomposition of Bott-Samelson varieties

In this section we give an explicit description of the Mori chamber de-
composition of a Bott-Samelson variety.

4.1. Zariski decomposition. We have seen in the previous section that
for a Bott-Samelson variety Xw the nef cone and the movable cone coincide.
One consequence of this fact is that Nakayama’s σ-decomposition of pseudo-
effective divisors D as D = Pσ(D) + Nσ(D) into movable and fixed part
(c.f. [N04]) indeed gives a Zariski decomposition, i.e., the positive part
Pσ(D) is automatically nef. In this situation, we say that X admits Zariski
decompositions and we write D = P (D)+N(D) for the positive and negative
part, respectively.

Remark 4.1. The negative part of the σ-decomposition is characterized by
being the minimal subdivisor N(D) of D such that D − N(D) is movable
[N04, Proposition 1.14 (2)]. If X admits Zariski decompositions, this means
that the negative part is the minimal subdivisor N(D) of D such that D −
N(D) is nef. Or differently stated, the positive part P (D) of D is the
maximal subdivisor of D such that P (D) is nef.
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4.2. Zariski chambers. In this section we define and describe Zariski cham-
bers on a Bott-Samelson variety. The definition of Zariski chambers is anal-
ogous to the surface case introduced in [BKS04]. Note, however, that in
order to prevent complications on the boundary, we pass to the closure of
equivalence classes. This choice is not essential in the remainder, as in order
to identify Zariski chambers with Mori chambers we will have to consider
closures in any case.

Definition 4.2. Suppose X admits Zariski decompositions. We say that
two effective divisors D and D′ on X are Zariski equivalent, if

supp(N(D)) = supp(N(D′)).

We denote the closure of the equivalence class of D by ΣD. In case that ΣD

contains an open set, we call it a Zariski chamber.

Remark 4.3. Note that most of the pleasant characteristics of Zariski
chambers discovered in [BKS04] in the surface case carry over to general
X admitting Zariski decompositions. In particular, on the interior of each
chamber the augmented base locus B+(D) of a divisor D equals the support
of the negative part N(D) and thus these loci are constant on the interior
of a chamber. Furthermore, just as in the surface case, the volume of a big
divisor is given by the top self-intersection of its positive part and therefore
the volume varies polynomially on the interior of each Zariski chamber.

On the other hand, we do not claim that in general Zariski chambers
should be locally polyhedral on the big cone, or even convex. In fact there are
examples of varieties that admit Zariski decompositions but have a Zariski
chamber which is not convex. As an example consider the blowup of P3 in
two intersecting lines `1, `2 and blow up further along the strict transform of
the line in E1 corresponding to `2. Then every movable divisor is nef and the
exceptional divisor E3 is the exceptional locus of two different contractions
(corresponding to the different rulings). Its Zariski chamber is the non-
convex cone over the classes E3, H,H − E1, H − E2, 2H − E1 − E2 + E3.

In order to describe the Zariski chambers on Bott-Samelson varieties,
we need the following sequence of lemmata. For these, we first recall that a
divisor D is called fixed if all sufficiently divisible multiples of D are effective
and constitute their complete linear series, i.e., H0(X,OX(mD)) = C · smD,
or |mD| = mD.

Lemma 4.4. Let X be a Mori dream space. For each face F of the effective
cone Eff(X) either all divisors of F are fixed, or all divisors of relint(F ) are
not fixed.

Proof. Let D ∈ relint(F ) be a divisor which is not fixed. Let M be an
arbitrary divisor in relint(F ). Then there are positive integers k and ` such
that L := k ·M − `D still lies in F . We can write k ·M = L + `D and
assume that L is effective (otherwise a positive multiple is). As the sum of a
non fixed effective divisor with any effective divisor is clearly not fixed, this
proves the claim. �

In the next lemma we use the following common convex-geometric termi-
nology.
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Definition 4.5. Let C ⊆ Rd be a closed convex cone, and let P ∈ Rd be
a point. Let H be a supporting hyperplane of C, and H+ be the closed
half-space defined by H which contains C. We say that H separates C
from P if P is not contained in H+.

Lemma 4.6. Let X = Xw be a Bott-Samelson variety. Let E be a fixed
extremal divisor of the effective cone, and let H be a supporting hyperplane
of the nef cone which separates the nef cone from E. Let P be a nef divisor
on H. Then Dk` := kP + `E is a Zariski decomposition for all k, ` ≥ 0, i.e.
P (Dk`) = kP and N(Dk`) = `E.

Proof. Since kP is a nef subdivisor of Dk`, it follows from Remark 4.1 that
kP ≤ P (Dk`). Since P (Dk`) is the maximal subdivisor of Dk` it is of the
form kP + mE for some 0 ≤ m ≤ n. Let now H+ be the closed half space
corresponding to H which contains the nef cone, and H−<0:= Rn \ H+ its
complementary open half space. Since H separates the nef cone from E, we
have E ∈ H− as well as, by assumption, P ∈ H. It follows that kP + mE
lies in H−, which means that it is not nef, unless m = 0. Therefore, the
maximal nef subdivisor of Dk` is P (Dk`). �

The next lemma says that all but the first extremal rays of the effective
cone are indeed fixed. We use the notation from [LT04] (see Section 2).

Lemma 4.7. Let Xw be a Bott-Samelson variety and let {E1, . . . , En} be
the associated effective basis. Then, E1 is nef, and E2, . . . , En are fixed.

Proof. Since OX(E1) is the pullback of OP1(1) by the morphism π : Xw −→
P1, E1 is nef.

We prove the fixedness of E2, . . . , En by induction on the dimension of
Xw. For this, let the given reduced w be w = (si1 , . . . , sin), where the sij
are simple reflections, associated to the simple roots αij . Then, sij 6= sij+1

for j = 1, . . . , n − 1, since w is reduced. Let w[1] := (si1 , . . . , sin−1), and
consider the (n− 1)-dimensional Bott-Samelson variety Xw[1] and the fibre
bundle π1 : Xw −→ Xw[1], as well as the embedding ι : Xw[1] ↪→ Xw with

image En. For any divisor D on Xw[1] we have H0(Xw, π
∗
1OXw[1]

(D)) ∼=
H0(Xw[1],Ow[1](D)). From this, we can conclude by induction that the
divisors E2, . . . , En−1 are fixed.

Now, being an extremal generator of Eff(X), if En were not fixed, it would
be nef. Hence, its restriction to Xw[1]

∼= En would also be nef. However,
[HaY15, Lemma 3.6.] shows that the restriction of OXw(En) to En has a
negative Dn−1-coefficient with respect to the nef basis for Pic(En). This
finishes the induction step, and hence the proof. �

The next lemma is the key to the explicit description of the Zariski cham-
bers. It gives a correspondence between the extremal fixed divisors and the
facets of the nef cone.

Lemma 4.8. Let X = Xw be a Bott-Samelson variety. For each fixed
extremal ray Ei, i = 2, . . . , n, of the effective cone of X there is a unique
facet Fi of the nef cone such that its supporting hyperplane Hi separates the
extremal ray from the nef cone.
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Proof. Let n = dimX. Then there are n − 1 fixed extremal rays of the
effective cone and n facets of the nef cone. We first claim that there is
one facet, say F1, such that its supporting hyperplane coincides with a sup-
porting hyperplane of a facet of the effective cone. This can be seen as
follows. Let us suppose that X = Xw for a reduced expression w. Then,
E1, . . . , En−1, resp. D1, . . . Dn−1, define the effective cone, resp. the nef cone
of Xw[1]. This proves that D1, . . . , Dn−1 lie in the linear space defined by
E1, . . . , En−1. Hence, choosing E1, . . . , En as a basis for PicR ∼= Rn, the facet
defined by E1, . . . , En−1 and D1, . . . , Dn−1 have the supporting hyperplane
H1 = {xn = 0}.

This facet, F1, does not separate any extremal fixed divisor Ei from the
nef cone. However, it is clear that for any fixed extremal divisor Ei there
is at least on facet Fj of the nef cone such that its supporting hyperplane
does separate the nef cone and Ei. Furthermore, we claim that there are
no supporting hyperplanes of the facets Fi such that two distinct extremal
rays E` and Ek are separated from the nef cone simultaneously. Suppose
there is, then the interior of the cones Fi + Cone(E`) and Fi + Cone(Ek) do
intersect. But this contradicts the uniqueness of the Zariski decomposition
and Lemma 4.6. Altogether, we have n− 1 extremal fixed divisors to which
we can individually associate at least one facet. But, as we have seen, one
facet cannot correspond to more than one extremal divisor. Since there exist
only n facets, from which one facet does not correspond to any extremal ray,
the claim is proven. �

We now use the above lemma to introduce the following notation. For a
Bott-Samelson variety Xw of dimension n, we define Fi, i = 2, . . . , n, as the
facets of the nef cone which correspond to the fixed divisors Ei, i = 2, . . . n,
according to the above lemma. Furthermore, we call F1 the remaining facet,
which is just the facet spanned by the divisors D1, . . . , Dn−1. Let H1, . . . ,Hn

be the supporting hyperplanes corresponding to the facets Fi and denote by
H+
i the closed half spaces corresponding to Hi which contain the nef cone.

Having the notation fixed, we are now in a position to explicitly describe
the Zariski chambers of Bott-Samelson varieties.

Theorem 4.9. Let E be a fixed divisor with support Ei1 ∪ · · · ∪ Ei`. Then
ΣE is given by

ΣE = ΠE := (Fi1 ∩ · · · ∩ Fi`) + Cone({Ei1 , . . . Ei`}).
Moreover, ΣE defines a Zariski chamber which is an n-dimensional simplex.

Proof. Let us first prove that ΠE ⊆ ΣE . Choose D in the relative interior

of ΠE . So we can write D = P +
∑`

k=1 λkEik for P ∈ Fi1 ∩ · · · ∩ Fi` , and
λk ≥ 0 . We want to prove that this is already the Zariski decomposition,
i.e., P (D) = P . Since P lies in

⋂
k=1,...,` Fik it follows that P + εEik for

ε > 0 and k = 1, . . . ` is not nef. This proves the maximality of P and shows

P (D) = P as well as N(D) =
∑`

k=1 λkEik . Hence, D ∈ ΣE and by the
closedness of ΣE the inclusion follows.

We now prove the reverse inclusion ΣE ⊆ ΠE . Let D be any effective

divisor such that its Zariski decomposition is given by D = P +
∑`

k=1 λkEik
for λk > 0. Then in order to prove that D lies in ΠE we need to show that
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P ∈ Fi1 ∩ · · · ∩ Fi` . Suppose P does not lie in Fik for some k = 1, . . . , `.
That means P lies in the open half space (H+

ik
)>0 := H+

ik
\ Hik . Then for

ε > 0 small enough, we have P + εEik still lies in H+
ik

. By Lemma 4.8,

Eik does lie in H+
j for j 6= k. This proves that P + εEik lies in H+

j for all
j = 1, . . . , n− 1. Hence, P + εEik is nef, contradicting the maximality of P .
We have thus shown that P ∈ Fik . Again taking the closedness of ΠE into
account, we obtain the reverse inclusion.

Let us now show that ΣE defines an n-dimensional simplex. Let F :=
Fi1 ∩ · · · ∩ Fir and denote the generators of F by Dj1 , . . . , Djn−r . If ΣE is
of dimension n we are done. Suppose that it is of dimension less than n.
That means the points Ei1 , . . . , Eir , Dj1 , . . . , Djn−r are linearly dependent.
Hence, there are λi, µi ≥ 0 for i = 1, . . . , n with λi 6= µi for all i = 1, . . . , n
such that

n−r∑

k=1

λr+kDjk +

r∑

k=1

λkEik =

n−r∑

k=1

µr+kDjk +

r∑

k=1

µkEik .

However, we have seen in the first part of the proof that the above decom-
position is actually a Zariski decomposition. Since this decomposition is
unique we get

n−r∑

k=1

λr+kDjk =
n−r∑

k=1

µr+kDjk

and
r∑

k=1

λkEik =

r∑

k=1

µkEik .

But both the Di’s and the Ei’s are part of a basis of N1
R(Xw). Hence,

it follows that λi = µi for all i = 1, . . . , n. This contradicts the linear
dependence of Ei1 , . . . , Eir , Dj1 , . . . , Djn−r .

�

4.3. Mori chambers. In this subsection we prove that the previously de-
fined Zariski chambers coincide with the Mori chambers defined in [HuKe00].
Let us first recall what we mean by a Mori chamber. First of all, we call
two divisors D1 and D2 on a Mori dream space Mori equivalent if there is
an isomorphism Proj(R(X,D1)) ∼= Proj(R(X,D2)) such that the obvious
diagram

X //

&&

Proj(R(X,D1))

∼=
��

Proj(R(X,D2))

commutes. Then, Mori chambers are the closure of Mori equivalence classes
which have non-empty interior.

Theorem 4.10. Let X be a Bott-Samelson variety. Then each Zariski
chamber defines a Mori chamber and vice versa.
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Proof. For the Mori chamber C = Nef(X) this is clear. Let us assume that
two divisors D1 and D2 lie in the interior of a Mori chamber C 6= Nef. Then
by [O16], D1 and D2 are strongly Mori equivalent and in particular, their
stable base loci coincide. But this just means supp(N(D1)) = supp(N(D2)),
which in turn shows that D1 and D2 lie in the same Zariski chamber.

Let us assume they lie in ΣE = F+Cone(Ei1 , . . . , Ei`). By the description
in [HuKe00, Proposition 1.11], we know that each Mori chamber is the
Minkowski sum of some g∗i Nef(Yi), for a birational contraction gi : X 99K Yi,
and the cone generated by some extremal fixed prime divisor. However,
since Mov(X) = Nef(X), gi is actually a regular birational contraction.
Thus, g∗i Nef(Yi) ⊂ Nef(X), and since two Mori chambers intersect along a
common face it follows that g∗i Nef(Yi) actually is a face of Nef(X). However,
since C lies in ΣE , the only way to generate a chamber with non-empty
interior is to take F as the face of the nef cone and Ei1 , . . . , Ei` as our
extremal fixed divisors. This proves that C = ΣE . �

5. Examples of Mori chamber decomposition

In this section we give two examples where we compute the Mori chamber
decomposition of the effective cone. Note that all necessary computations
were done on a computer, using Sage.

5.1. A 3-dimensional incidence variety. We start with the three-dimensional
incidence variety Y which is described in [SS17, Example 2]. It consists of
tuples of linear subspaces (V1, V2, V

′
2) of C3 such that V1 is one-dimensional

and V2, V
′
2 are two-dimensional. Furthermore the following incidences hold:

C ⊆ V2, V1 ⊆ V2, V1 ⊆ V ′2 .
These incidences can be illustrated in the following diagram:

C3

C2 V2 V ′2

C V1

In [SS17] the relations between the divisors E1, E2, E3 and D1, D2, D3 were
computed and are given by

D1 = E1

D2 = E2 + E1

D3 = E3 + E2.

Cutting the effective/nef cone with a generic hyperplane, we get the following
picture:

We can see from the picture that there are exactly three Mori chambers,
which are given by the nef cone, Nef(X) = Cone(E1, D2, D3), and the two
cones Cone(E2, D2, D3) and Cone(E3, D1, D3).
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Figure 1. The Mori decomposition of Y

5.2. A 4-dimensional incidence variety. Let us now consider a four-
dimensional incidence variety X which consists of tuples of linear subspaces
(V1, V2, V

′
2 , V3) such that V1 is one-dimensional, V2, V

′
2 are two-dimensional,

and V3 is three-dimensional. Furthermore, the incidences are described in
the following diagram:

C4

C3 V3

C2 V2 V ′2

C V1 .

We define a map q : X −→ Y by (V1, V2, V
′
2 , V3) 7→ (V1, V2, V

′
2). This makes

X a Bott-Samelson variety, given as a P1 bundle over Y .
We proceed by describing the new occurring divisors E4 and D4. The

divisor E4 is the image of the embedding of Y into X by mapping

(V1, V2, V
′
2) 7→ (V1, V2, V

′
2 ,C3).

Denote by V1,V2,V ′2,V3 the tautological vector bundles with fibres V1, V2, V
′
2 , V3

over the point (V1, V2, V
′
2 , V3) ∈ X. Then D4 is equal to det(V3)∗.

We can describe the divisor E4 as the zero set of the section

sE4 ∈H0(X,Hom(C3/V ′2,C4/V3)) = H0(X, (C3/V2′ ⊗
(
C4/V3

)∗
)

sE4(V1, V2, V
′
2 , V3) : (v + V ′2) 7→ v + V3.
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Furthermore we have the following identifications, which can be readily
checked:

C4/V ′2 ∼= (detV ′2)∗

C4/V3 ∼= (detV3)∗

From this we can conclude E4 = D4 −D3, which leads to

D4 = E4 + E3 + E2.

Let us now determine all the fixed faces of the effective cone. We already
know from the above picture that Cone(E2, E3) is not fixed. This implies
that the face Cone(E2, E3, E4) is not fixed either. The only left faces which
are not known to be fixed are Cone(E3, E4) and Cone(E2, E4). Let us prove
that E2 + E4 is fixed. Indeed, if it were not fixed, then there would exist a
subdivisor P = λE2 + µE4, for 0 ≤ λ, µ ≤ 1, which is nef. But

λE2 + µE4 = λ(D2 −D1) + µ(D4 −D3)

which is never nef as long as max(λ, µ) > 0. But max(λ, µ) = 0 implies
P = 0. Thus E2 +E4 is fixed, and therefore all the divisors in Cone(E2, E4)
are. Similarly, we can prove that Cone(E3, E4) is fixed. This shows that
Eff(X) decomposes into six Mori chambers, corresponding to the fixed divi-
sors E2, E3, E4, E2 + E4, E3 + E4, and the nef cone.

The following table displays which facets of the nef cone correspond to
which extremal rays. Here, we fix the basis (E1, . . . , En).

Facet generators(Nef Cone) Supp. Half-space Opposite extr. ray

D1, D2, D3 x4 ≥ 0 does not separate

D1, D2, D4 x3 − x4 ≥ 0 E4

D1, D3, D4 x2 − x3 ≥ 0 E3

D2, D3, D4 x1 − x2 + x3 ≥ 0 E2

Figure 2. Correspondence facets-extremal rays of X

This leads to the following notation for the facets:

F1 = Cone(D1, D2, D3)

F2 = Cone(D2, D3, D4)

F3 = Cone(D1, D3, D4)

F4 = Cone(D1, D2, D4).

Now, we have all the necessary information to explicitly describe the Mori
chambers of X:
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Negative Support Mori chamber Color

∅ Cone(D1, D2, D3, D4)

E2 Cone(E2) + F2 = Cone(E2, D2, D3, D4)

E3 Cone(E3) + F3 = Cone(E3, D1, D3, D4)

E4 Cone(E4) + F4 = Cone(E4, D1, D2, D4)

E2 ∪ E4 Cone(E2, E4) + F2 ∩ F4 = Cone(E2, E4, D2, D4)

E3 ∪ E4 Cone(E3, E4) + F3 ∩ F4 = Cone(E3, E4, D1, D4)

Figure 3. Mori chambers of X

Finally, let us illustrate the Mori decomposition of X by plotting a slice of
the chamber decomposition with a generic hyperplane. For a better overview
we display the decomposition from two different perspectives.

Figure 4. Mori chamber decomposition of X

6. Global Newton-Okounkov bodies on Bott-Samelson
varieties and the global value semigroup

In this section, we consider (global) Newton-Okounkov bodies with re-
spect to the so-called ‘horizontal’ flag. Furthermore, we show that the global
semigroup ΓY•(X) is finitely generated.

6.1. The horizontal flag. We start with a description of the horizontal
flag. Let w = (s1, . . . , sn) be a reduced word and denote by Xw the corre-
sponding Bott-Samelson variety. Let furthermore E1, . . . , En be the effective
basis, satisfying Ei ∼= Xw(i) for w(i) = (s1, . . . , ŝi, . . . , sn). Moreover, let us
define, for i = 1, . . . , n, the truncated sequence w[i] = (s1, . . . , sn−i). Then,
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if w is a reduced sequence, the sequence w[i] is still reduced and Xw[i] ⊆ Xw

is a closed subvariety of codimension i which is again a Bott-Samelson vari-
ety. We can also wr ite Xw[i] = En ∩ · · · ∩ En−i+1 and represent Xw[i] as a
closed subvariety of Xw as follows

Xw[i] = {[(p1, . . . , pn)] ∈ Xw | pn = · · · = pn−i+1 = e}.
We define the horizontal flag Y• as follows. For i = 1, . . . , n, we set

Yi := Xw[i].

We write Yk• = (Yk ⊇ Yk+1 ⊇ · · · ⊇ Yn) for the induced flag on Yk. Note
that the effective basis of Yi is given by (E1)|Yi , . . . (En−i)|Yn−i

, and the O(1)-
basis of Yi is given by (D1)|Yi , . . . (Dn−i)|Yn−i

. For the sake of simplifying
the notation, we shall omit the restrictions and simply write E1, . . . , En−i
and D1, . . . , Dn−i for divisors on Yi whenever no confusion should arise.

Remark 6.1. Note that Newton-Okounkov bodies with respect to the hor-
izontal flag were already studied in [HaY15]. In the mentioned article they
show the finite generation of the semigroup Γ(Xw, D) under a condition
which they called condition (P). In the following, we shall generalize this
result to all divisors D on Xw. It is also worth to note that the techniques
used in the above mentioned article substantially differ from ours. While
their approach relied on representation theory and combinatorics, we mainly
use our earlier established Mori-theoretic properties of Bott-Samelson vari-
eties and results from [LT04].

6.2. Rational polyhedrality of global Newton-Okounkov bodies.
The key to proving the finite generation of the semigroup, as well as the
rational polyhedrality of the global Newton-Okounkov body, is the follow-
ing lemma.

Lemma 6.2. Let D be a nef divisor on Xw. Then the restriction map

H0(X,OX(D)) −→ H0(En,OEn(D))

is surjective.

Proof. In [LT04, Thm 7.4] it was proved in particular that for a nef divisor
D, the first cohomology group H1(X,O(D−En)) vanishes. This shows that
the restriction morphism:

H0(X,OX(D)) −→ H0(En,OEn(D))

is surjective if D is nef. �
Theorem 6.3. Let X = Xw be a Bott-Samelson variety and Y• be the
horizontal flag. Then the global Newton-Okounkov body ∆Y•(Xw) is rational
polyhedral.

Proof. The proof is based on results already established in [SS17]. Re-
call that the divisors D1, . . . , Dn form the O(1)-basis on Xw. Denote by
Γ(D1, . . . , Dn) the semigroup generated by D1, . . . , Dn in N1(X). We de-
fine the semigroup

S(D1, . . . , Dn) := {(νY•(s), D) ∈ Nn × Γ(D1, . . . , Dn) |
s ∈ H0(Xw,O(D)), ν1(s) = 0}.
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It follows from [SS17, Theorem 3.3] that ∆Y•(Xw) is rational polyhedral if
Cone(S(D1, . . . , Dn)) is rational polyhedral. Consider now the semigroup

S1(D1, . . . , Dn) := {(νY1(s), D) ∈ Nn−1 × Γ(D1|Y1 , . . . , Dn|Y1)|
s ∈ H0(Y1,OY1(D))}.

We define a natural map

q0 : S(D1, . . . , Dn)→ S1(D1, . . . , Dn)

(ν(s), D) 7→ ((ν2(s), . . . , νn(s)), D · Y1),
which extends to the linear map

q : Rn ⊕N1(Xw)R −→ Rn−1 ⊕N1(Y1)R,(2)

((x1, . . . , xn), D) 7→ ((x2, . . . , xn), D · Y1).
We now use the following fact which we shall prove in the below lemma:

Cone(S(D1, . . . , Dn)) =

q−1(Cone(S1(D1, . . . , Dn))) ∩ ({0} × Rn−1≥0 × Cone(D1, . . . , Dn)).

This identity shows that Cone(S(D1, . . . , Dn)) is rational polyhedral if

Cone(S1(D1, . . . , Dn)) is rational polyhedral.
Now, we proceed by induction on the dimension n of Xw. If n = 1, then

Xw
∼= P1. It can be easily checked that the global Newton-Okounkov body

of P1 with respect to any admissible flag is rational polyhedral.
Assume now that the assertion is true for n−1. Then, ∆Y1•(Y1) is rational

polyhedral, and we have

Cone(S1(D1, . . . , Dn)) = pr−12

(
Cone(D1|Y1 , . . . , Dn|Y1)

)
∩∆Y1•(Y1).

But this implies that Cone(S1(D1, . . . , Dn)) and Cone(S(D1, . . . , Dn)) are
rational polyhedral. Finally, this proves that ∆Y•(Xw) is rational polyhedral.

�
Lemma 6.4. With the notation introduced above, we have

Cone(S(D1, . . . , Dn)) =

q−1(Cone(S1(D1, . . . , Dn))) ∩ ({0} × Rn−1≥0 × Cone(D1, . . . , Dn)).

Proof. In order to show the inclusion ‘⊆’, it is enough to show this inclusion
for the semigroup S(D1, . . . , Dn) since both sides are closed convex cones.
So, let (0, a2, . . . , an, D) ∈ S(D1, . . . , Dn). Then this is clearly a preimage
of (a2, . . . , an, D · Y1) under q and lies in ({0} ×Rn−1≥0 ×Cone(D1, . . . , Dn)).
This shows the first inclusion.

For the second inclusion ‘⊇’, note that both sides are closed sets. Hence, it
is enough to show that the inclusion holds for rational points in the interior,
and–since both sides are also cones–it is enough to show the inclusion for
integral points in the interior. Let therefore

(0, a,D) ∈ q−1(Cone(S1(D1, . . . , Dn))) ∩ ({0} × Rn−1≥0 × Cone(D1, . . . , Dn))

be an integral point in the interior. By definition,

(a,D|Y1) ∈ Cone(S1(D1, . . . , Dn)).
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After scaling appropriately, we can assume (ka, kD · Y1) ∈ S1(D1, . . . , Dn).
This means that there is a section s ∈ H0(Y1,OY1(kD)) such that νY1•(s) =
ka. By Lemma 6.2, we can lift the section s to a section s̃ ∈ H0(X,OX(kD))
such that s̃|Y1 = s. Then, we clearly have νY•(s̃) = (0, ka). This proves that

(0, ka, kD) ∈ S(D1, . . . , Dn)), which implies (0, a,D) ∈ Cone(S(D1, . . . , Dn)).
�

6.3. Value semigroups. We need the following notation: for a fixed flag
Y• on X and an effective divisor D 6= 0, we define the following semigroup

ΓY•(D) =
⊔

k∈N
ΓY•(D)k := {(νY•(s), k) | k ∈ N, s ∈ H0(X,OX(kD)) \ {0}}

as well as

ΓY•(D)ν1=a =
⊔

k∈N
(ΓY•(D)ν1=a)k = {(ν1(s), . . . , νn(s), k) | k ∈ N

s ∈ H0(X,OX(kD)), ν1(s) = ak}.
If D is a Q-divisor such that kD is integral for a given k ∈ N, we define

ΓY•(D)k = {(ν(s), k) | s ∈ H0(X,OX(kD)).

Furthermore, for a > 0 we abbreviate

Da := D − aY1,
as well as

Pa := P (Da) and Na := N(Da)(3)

Proposition 6.5. Let X = Xw be an n-dimensional Bott-Samelson variety.
Let Y• be an admissible flag with Y1 = Xw[1] = En. Let D be an effective
divisor. Then, the identity

(ΓY•(D)ν1=a)k = {ak} × (ΓY1•(Pa|Y1)k + k · νY1•(Na|Y1))

holds for all a ∈ Q such that ΓY•(D)ν1=a 6= ∅, and k > 0 such that kPa and
kNa are integral.

Proof. We claim that Na does not contain Y1 in its support. Suppose it
does, then

D = Pa + (Na + tY1)

is the Zariski decomposition of D, i.e. N(D) = Na + tY1. However, this
proves ν1(s) > ak for each s ∈ H0(X,OX(kD)), which contradicts the fact
that ΓY•(D)ν1=a 6= ∅.

For each a ∈ Q, we choose k ∈ N such that kPa and kNa are integral.
Let us now show the inclusion ‘⊆’. Let s ∈ H0(X,OX(kD)) \ {0} such
that ν1(s) = ak. Then consider s̃ := s/skaY1 . We can decompose this section
s̃ = sP ⊗ sN . By construction,

νY•(s) = (ak, νY1•(s̃|Y1)) = (ak, νY1•(sP |Y1) + k · νY1•(Na|Y1)).(4)

This proves the desired inclusion.
Now, in order to prove the reverse inclusion ‘⊇’, consider an arbitrary

section s̃P ∈ H0(Y1,OY1(kPa)). By Lemma 6.2, there is a section sP ∈
H0(X,OX(kPa)) which coincides with s̃P on Y1. Define s̃ := sP ⊗sN , where
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sN is a section of O(kNa), and finally, set s := s̃ ⊗ sakY1 ∈ H0(X,OX(kD)).
Then the reverse inclusion follows from equation (4).

�

Corollary 6.6. Let D be a big divisor on Xw, and Y• be the horizontal flag.
Then for every a ∈ Q such that D − aY1 is big and (D − aY1)|Y1 is big, we
have

∆Y•(D)ν1=a = ∆Y1•(Pa|Y1) + νY1•(Na|Y1).

Proof. If a > 0 then it follows from the fact that D − aY1 is big that {a} ×
Rn−1 meets the interior of ∆Y•(D). But then we have

Cone(ΓY•(D)ν1=a) = Cone(ΓY•(D))ν1=a

which was established in [LM09, (4.8)] and proves the proposition for a > 0.
For a = 0, replace D by D + εA, for an ample class A, and let ε −→ 0. �

6.4. Numerical and valuative Newton-Okounkov bodies. In this sub-
section we consider Newton-Okounkov bodies of effective (not necessarily
big) divisors.

Lemma 6.7. Let Xw be an n-dimensional Bott-Samelson variety. Let Y•
be the horizontal flag. Let D be an effective divisor. Then, the inclusion

∆val
Y• (D)ν1=a ⊇ {a} ×

(
∆val
Y1•(Pa|Y1) + νY1•(Na|Y1)

)

holds for all a ∈ Q such that ∆val
Y• (D)ν1=a 6= ∅.

Proof. The above inclusion follows from Proposition 6.5 and the fact that
Cone(ΓY•(D)ν1=a) ⊆ Cone(ΓY•(D))ν1=a for all rational a ≥ 0.

�

Lemma 6.8. Let D be an effective divisor on Xw. Let Y• be the horizontal
flag. Then,

∆num
Y• (D)ν1=a ⊆ {a} ×

(
∆num
Y1• (Pa|Y1) + νY1•(Na|Y1)

)

for all a ∈ Q such that ∆num
Y• (D)ν1=a 6= ∅.

Proof. We now fix an ample divisor A. Note that it follows from the as-
sumption on a that D− aY1 is effective, and that Y1 is not contained in the
support of the negative part of D. Therefore, the divisor D− aY1 + 1/k ·A,
as well as its restriction to Y1, is big.

Now, we can use Corollary 6.6 to deduce that

∆num
Y• (D)ν1=a =

(⋂

k∈N
∆Y•(D + 1/k ·A)

)
∩
(
{a} × Rn−1

)

=
⋂

k∈N

(
(∆Y•(D + 1/k ·A) ∩ ({a} × Rn−1))

)

= {a} ×
(⋂

k∈N
(∆Y1•(Pa,1/k|Y1) + νY1•(Na,1/k|Y1))

)
.

where Pa,b := P (D + bA− aY1) and Na,b := N(D + bA− aY1).
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Let us now show that νY•(Na,1/k) −→ νY•(Na) as k −→∞. Indeed, there
is an integer K > 0 such that K · Da + A and D lie in the same Zariski
chamber. Then, for each k > K, we have

N(kDa +A) = N((k −K)Da + (KDa +A)) = (k −K)N(Da) +N(KDa +A).

Dividing by k and applying the valuation νY• yields the result.
The fact that ⋂

k∈N

(
∆Y1•(Pa,1/k|Y1)

)
⊆ ∆num

Y1• (Pa|Y1).

follows by observing that Pa,1/k|Y1 converges to Pa|Y1 as k −→ ∞. Hence,
the result follows. �
Theorem 6.9. Let D be an effective divisor on a Bott-Samelson variety
X = Xw, and Y• the horizontal flag. Then

∆num
Y• (D) = ∆val

Y• (D).

Moreover, we have

∆Y•(D)ν1=a = {a} × (∆Y1•(Pa|Y1) + νY1•(Na|Y1))

for all a ∈ Q such that ∆Y•(D)ν1=a 6= ∅.
Proof. We prove this by induction over the dimension n of Xw. For n = 1
this is trivial since on the curve Xw

∼= P1, the only effective non-big divisor
is the zero divisor.

Let us now suppose that equality holds for Bott-Samelson varieties of
dimension n− 1. Let D be an effective divisor on Xw and A and arbitrary
ample class. Let a ∈ Q be such that ΓX(D)ν1=a 6= ∅. Then we have

∆num
Y• (D)ν1=a ⊆ {a} ×

(
∆num
Y1• (Pa|Y1) + νY1•(Na|Y1)

)

= {a} ×
(

∆val
Y1•(Pa|Y1) + νY1•(Na|Y1)

)

⊆ ∆val
Y• (D)ν1=a.

This proves ∆num
Y• (D) ⊆ ∆val

Y• (D). Since the reverse inclusion is always true,
this proves the claim. �
Corollary 6.10. Let D be an effective divisor on Xw. Let Y• be the hori-
zontal flag and b = (b1, . . . , bn) ∈ ∆Y•(D) be a rational point. Then there is
an integer k ∈ N such that k · b ∈ ΓY•(D)k.

Proof. We prove this by induction on the dimension n of Xw. If n = 1, this
means that Xw = P1, the statement is easy to check.

Let now Xw be of dimension n and suppose (b1, . . . , bn) ∈ ∆Y•(D). Hence,

(b1, b2, . . . , bn) ∈ ∆Y•(D)ν1=b1 = {b1} ×
(

∆
num/val
Y1•

(Pb1 |Y1) + νY1•(Nb1 |Y1)
)
.

Now, we can use the induction hypothesis to deduce that

k · (b1, . . . , bn) ∈ {b1k} ×
(
(ΓY1•(Pb1 |Y1))k + k · νY1•((Nb1 |Y1)

)
.

But by Proposition 6.5, we have

k · (b1, . . . , bn) ∈ (ΓY•(D)ν1=b1)k ⊆ ΓY•(D).

This proves the claim. �
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Theorem 6.11. Let X = Xw be a Bott-Samelson variety, Y• the horizontal
flag. Then the global semigroup

ΓY•(Xw) := {(νY•(s), D) | D ∈ Pic(Xw), s ∈ H0(Xw,OXw(D))}
is finitely generated.

Proof. It was proved in Theorem 6.3 that ∆Y•(Xw) = Cone(ΓY•(Xw)) is
rational polyhedral. First note that Cone(ΓY•(Xw)) is already closed: let
(a,D) ∈ ∆Y•(Xw) be a rational point. This means that a ∈ ∆num

Y• (D).
Then, by Corollary 6.10 we can deduce that ka ∈ ΓY•(D)k. But this clearly
proves that (ka, kD) ∈ ΓY•(Xw), and therefore (a,D) ∈ Cone(ΓY•(Xw)).

It follows then from [BG09, Corollary 2.10] that ΓY•(X) is finitely gener-
ated.

�
We end this section with a sufficient condition for the global semigroup

ΓY•(X) to be normal, namely with the existence of an integral Zariski de-
composition.

Definition 6.12. We say that X admits integral Zariski decompositions if
it admits a Zariski decomposition, and both the divisors N(D) and P (D)
of an integral divisor D are integral.

Proposition 6.13. Let Xw be a Bott-Samelson variety that admits integral
Zariski decompositions. Let Y• be the horizontal flag. Then ΓY•(Xw) is a
normal semigroup.

Proof. First of all, we prove that for an effective divisor D the semigroup
ΓY•(D) is normal. We proceed by induction on the dimension.

Let dimXw = 1. Then Xw
∼= P1, and it is not difficult to see that ΓP (D)

is a normal semigroup for every point P ∈ Xw. Now let us suppose the claim
holds in dimension n−1. In order to use the induction hypothesis we need to
prove that Y1 admits integral Zariski decompositions. Let D be an effective
divisor on Y1. Let ι : Y1 −→ Xw be the closed embedding of Y1 into Xw, and
let π : Xw −→ Y1 = Xw[1] be the projection to the first n− 1 coordinates. It
then follows that id = π ◦ ι. We claim that D = ι∗P (π∗D) + ι∗N(π∗D) is
the Zariski decomposition of D. This proves that Y1 admits integral Zariski
decompositions.

Since ι∗P (π∗D) is nef and ι∗N(π∗D) is effective, we have P (D) ≥ ι∗P (π∗D).
Consider now π∗D = π∗P (D) + π∗N(D). Again, since π∗P (D) is nef and
π∗N(D) is effective, we conclude π∗P (D) ≤ P (π∗D). Applying ι∗ on both
sides, we get P (D) ≤ ι∗P (π∗D). This proves the claim

Now suppose that ((ma1, . . . ,man),mk) ∈ (ΓX(D))mk for a tuple of non-
negative integers (a1, . . . , an, k) ∈ Nn+1. The divisor mkDa1/k is integral.
Since Xw admits integral Zariski decompositions, the divisors mkPa1/k and
mkNa1/k are integral as well. We can thus use Proposition 6.5 to deduce
that

((ma2, . . . ,man),mk) ∈ ΓY1•(Pa1/k|Y1)mk +mk · νY1•(Na1/k|Y1).

Put (b2, . . . , bn) := k · νY1•(Na1/k|Y1) ∈ Zn−1. Then,

m · (a2 − b2, . . . , an − bn, k) ∈ ΓY1(Pa1/k|Y1)mk.
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Hence, we can use the induction hypothesis for Y1 and kPa1/k|Y1 to conclude
that

(a2 − b2, . . . , an − bn, k) ∈ ΓY1(Pa1/k|Y1)k.

We again use the fact that Xw induces integral Zariski decompositions to
deduce that kPa1/k and kNa1/k are integral. Hence, we can use Proposition
6.5 to deduce that (a1, . . . , an, k) ∈ ΓY•(D)k. This proves that ΓY•(D) is a
normal semigroup. But then it follows easily that ΓY•(Xw) is normal. �

6.5. Connection between the global semigroup and the Cox ring.
The finite generation of the global semigroup is connected to the finite gen-
eration of the Cox ring. More precisely we have the following theorem.

Theorem 6.14. Let X be a Q-factorial variety with N1(X) = Pic(X). Let
Y• be an admissible flag. Suppose ΓY•(X) is finitely generated by

(νY•(s1), D1), . . . , (νY•(sN ), Dn).

Then X is a Mori dream space, and the Cox ring Cox(X) is generated by
the sections s1, . . . , sN .

Proof. Let R be the C-algebra which is generated by the sections s1, . . . , sN .
Let D be any effective divisor in X. Let

k := h0(X,OX(D)) = |νY•(H0(X,OX(D)) \ {0})|.
Since the (νY•(s1), D1), . . . (νY•(sN ), Dn) generate ΓY•(X), it follows that
there are sections f1, . . . , fk ∈ R∩H0(X,OX(D)) \ {0} with distinct values,
and it then follows from [KaKo12, Proposition 2.3] that f1, . . . , fk are lin-
early independent. This proves that they yield a basis form H0(X,OX(D))
and that every section s ∈ H0(X,OX(D)) belongs to the algebra R. This
proves that R ∼= Cox(D). �

In particular, the above theorem shows that ΓY•(X) cannot be finitely
generated unless X is a Mori dream space.

6.6. Newton-Okounkov bodies of Schubert varieties. We can now
use our results on Bott-Samelson varieties to deduce some consequences for
Schubert varieties.

Let P ⊆ G be any parabolic subgroup containingB, and let w = (s1, . . . , sn)
be a reduced expression for which there is a birational morphism

p : Xw −→ Zw

with Zw denoting the Schubert variety corresponding to w := s1 · · · sn in
the partial flag variety G/P . In particular, one special case is Zw = G/P .

As Zw is normal, for every effective divisor D on Zw we have

H0(Zw,OZw(D)) ∼= H0(Xw, p
∗OZw(D)).

Hence, we can use the horizontal flag on Xw to define a valuation

νY• :
⊔

D∈Pic(Zw)

H0(Zw,OZw(D)) \ {0} −→ Nn

and a corresponding (global) Newton-Okounkov body ∆Y•(D) (resp. ∆Y•(Zw)).
We can now use our previous findings to deduce the following.
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Theorem 6.15. Let Zw ⊆ G/P be the Schubert variety for the reduced word
w. Let νY• be the above described valuation-like function on Zw. Then the
global semigroup ΓY•(Zw) is finitely generated. Hence, ∆Y•(Zw) is rational
polyhedral.
In particular, the global semigroup ΓY•(G/P ) for any partial flag variety
G/P is finitely generated.

Proof. Let D1, . . . , Dk be the generators of the effective cone Eff(Zw). Then
∆Y•(Zw) = ∆Y•(Xw)∩(Rn×Cone(p∗D1, . . . , p

∗Dn)) is clearly rational poly-
hedral. Furthermore, we have

ΓY•(Zw) = {(νY•(s), [D]) | D ∈ Γ(p∗D1, . . . , p
∗Dk), s ∈ H0(Xw,OXw(D))}.

It follows then, completely analogously to the proof of Theorem 6.11, that
ΓY•(Zw) is finitely generated. �
Remark 6.16. In [FeFoL17], Feigin, Fourier, and Littelmann show that
partial flag varieties G/P for the groups SLn, Spn, and G2 admit rational
polyhedral local Okounkov bodies with respect to a valuation defined in local
coordinates. The global description of their valuation seems to us to amount
to considering the blow-up Blx(Xw) at a point x ∈ Xw of a Bott-Samelson
resolution Xw of G/P and choosing a suitable linear flag in the projective
space P(Tx(Xw)).

7. Example of a global Newton-Okounkov body

Let us consider the 3-dimensional incidence variety Y from Section 5.1
again. In this section we compute the global Newton-Okounkov body of Y
with respect to the horizontal flag as well as the global semigroup ΓY•(Y ).
The necessary computations were facilitated by the use of Sagemath.

7.1. Integrality of the Zariski decomposition. First of all, we note that
Y admits an integral Zariski decomposition. This can be deduced as follows.
It can be checked by hand that the three different triples of generators of the
Mori chambers (D3, D2, E2), (D1, D2, D3) and (D3, E3, E1) each form a Z-
basis of PicZ(Xw). Hence every integral effective divisor D can be written as
a N-linear combination of the generators of its corresponding Mori chamber.
But this induces the Zariski decomposition of D, which proves that it is
integral.

7.2. Global Newton-Okounkov body of the surface E3. By Propo-
sition 6.13, we have ΓY•(Y ) = Cone(ΓY•(Y )) ∩ Z6. It suffices therefore to
compute ∆Y•(Y ) = Cone(ΓY•(Y )) in order to determine ΓY•(Y ). We start
with computing the global Newton-Okounkov body of the surface E3, with
respect to the induced horizontal flag. The divisor E3 is isomorphic to the
Blowup X of P2 in one point. Since E2 is an extremal ray of the effective
cone which is not nef, it is the exceptional divisor. Since D1 = E1 is a nef
divisor which is an extremal divisor of the effective cone, it is linear equiv-
alent to the strict transform of a line going through the blown up point.
Furthermore, it follows that D2 is linear equivalent to the pullback of a line
of P2 to X. Hence, we get

(E1)
2 = 0 (E1 ·D2) = 1 (E2 ·D2) = 0 (E1 · E2) = 1.
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Now, it follows with the help of [SS16] that ∆Y1•(Y1) is generated by the
following vectors

(1, 0, E2), (0, 0, D1), (0, 0, D2), (0, 1, D1).

7.3. Global Newton-Okounkov body of Y . In order to compute C(S1) :=
Cone(S1(D1, . . . , D3)), we need to intersect ∆Y1•(Y1) with R2×Cone({D1, D2)}.
A computation yields to the following generators of C(S1)

(0, 0, D1), (0, 0, D2), (0, 1, D1), (1, 0, D2), (1, 1, D2).

Choosing the basis E1, E2, E3 for N1(Y ), the following are the defining in-
equalities of C(S1)

−x1 + x4 ≥ 0, x1 ≥ 0, x3 − x4 ≥ 0,

x2 ≥ 0, x1 − x2 + x3 − x4 ≥ 0.

Now we consider the restriction morphism q : Cone(S(D1, D2, D3)) −→ C(S1)
which induces a linear morphism on the corresponding linear spaces. By re-
alizing that E3|E3

= E1 − E2, the morphism q can be written as

q : R6 −→ R4 (a1, . . . , a6) 7→ (a2, a3, a4 + a6, a5 − a6).

Hence, the defining inequalities of q−1(C(S1)) are given by

−x2 + x5 − x6 ≥ 0, x2 ≥ 0, x4 − x5 + 2 · x6 ≥ 0,

x3 ≥ 0, x2 − x3 + x4 − x5 + 2x6 ≥ 0.

The set Cone(S(D1, D2, D3) is given by q−1(C(S1))∩({0} × Cone(D1, D2, D3)).
The ray generators are then computed as

(0, 0, 0, D3), (0, 0, 0, D1), (0, 0, 0, D2), (0, 0, 1, D3),

(0, 0, 1, D1), (0, 1, 0, D2), (0, 1, 1, D2).

In order to obtain the generators of ∆Y•(Y ) we simply need to add the
ray (1, 0, 0, E3) as well as (0, 1, 0, E2). This yields to the following minimal
set of generators of ∆Y•(Y ):

(0, 0, 0, D3), (0, 0, 0, D1), (0, 0, 0, D2), (0, 0, 1, D3),

(0, 0, 1, D1), (0, 1, 0, E2), (1, 0, 0, E3).

7.4. Generators of the global semigroup/Cox ring. In fact, the above
generators of ∆Y•(Y ) are actually a Hilbert basis and consequently they
generate the global semigroup ΓY•(Y ). Furthermore, we can use the above
generator and Theorem 6.14 to deduce that the following sections generate
the Cox ring Cox(Y )

• a general section of Di for i = 1, 2, 3
• the generating section of Ei for i = 2, 3
• a section of Di for i = 1, 3 which vanishes exactly once at the chosen

point of the horizontal flag and not on E3 ∩ E2.
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7.5. Connections to the flag variety Fl(C3). The birational morphism
p : Xw −→ Yw in our example is the following:

p : Y −→ Fl(C3) (V1, V2, V
′
2) 7→ (V1, V

′
2).

The divisors D2 = det(V1)∗ and D3 = det(V ′2)∗ generate the effective cone
of Fl(C3). Hence, we can compute the global Newton-Okounkov body as

∆Y•(Fl(C3)) = ∆Y•(Y ) ∩
(
R3 × Cone(D2, D3)

)
.

A computation shows that the following points are generators of the global
Newton-Okounkov body ∆Y•(Fl(C3):

(0, 0, 0, D2), (0, 0, 0, D3), (0, 1, 1, D2), (0, 0, 1, D3),

(1, 1, 0, D3), (0, 1, 0, D2).

As in the previous case for Y it turns out that the above generators are
indeed a Hilbert basis for the global semigroup ΓY•(Yw). Moreover, with the
help of Theorem 6.14, we can deduce that the following sections generate
the Cox ring Cox(Fl(C3)):

• A general section si of Di for i = 2, 3.
• A section s′3 of D3 which vanishes exactly once at a fixed point and

not on C = E2 ∩ E3.
• The section of sE2 ⊗ sE3 in D3 where sEi is a defining section of Ei

for i = 2, 3.
• A section of the form sE2 ⊗ s′1 where s′1 is a section in D1 which

vanishes exactly once at a fixed point and not on C = E2 ∩ E3.

7.6. Computation of an example for a (local) Newton-Okounkov
body. We can now use the description of the global Newton-Okounkov body
to compute Newton-Okounkov bodies corresponding to special divisors. Let
us, for example, fix the divisor D = D1+D2+D3. Then ∆Y•(D) = ∆Y•(Y )∩(
R3 × {D}

)
. A computation shows that the above Newton-Okounkov body

is the convex hull of the vertices

(1, 0, 0), (1, 2, 0), (1, 2, 2), (0, 1, 3),

(0, 1, 0), (0, 0, 2), (0, 0, 0).

This Newton-Okounkov body has been computed in [HaY15, Example 4.1]
by different methods. Since ΓY•(D) is normal, we can compute the Hilbert
polynomial of D as the Ehrhart polynomial of this polytope. Note that
the Ehrhart polynomial P of a lattice polytope ∆ ⊂ Rd is the polynomial
function given on integers k ∈ N by:

P (k) = #
(
k∆ ∩ Zd

)
.

It is given by

PD(t) = 5/2t3 + 11/2t2 + 4t+ 1.

8. Open problems and conjectures

We end this article with some open questions and conjectures.
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Figure 5. Newton-Okounkov body of D = D1 +D2 +D3

8.1. Equality of moving cone and nef cone. One of the main reasons
which lead us to nice characterizations of the Mori chambers and Newton-
Okounkov bodies was the fact that we have a Zariski decomposition on Bott
Samelson varieties Xw. This is a consequence of the fact that Mov(X) =
Nef(X). Besides for surfaces there are not many varieties known which have
this property. Therefore, we raise the following question.

Question 8.1. For which varieties X do the cones Mov(X) and Nef(X)
agree?

8.2. Finite generation of the global semigroup. We have seen that the
finite generation of the global semigroup ΓY•(X) was quite restrictive, i.e. we
really needed a lot of nice properties (like existence of Zariski decomposition,
vanishing of cohomology) in order to establish this result. However, it was
proven in in [PU16], that for a Mori dream space X, there always exist
a flag Y• such that ∆Y•(X) is rational polyhedral. It was also proven in
this article that for an ample divisor A, the semigroup ΓY•(A) is finitely
generated. We can now pose the following problem.

Question 8.2. Let X be a Mori dream space. Does there always exist a
flag Y• such that the corresponding semigroup ΓY•(X) is finitely generated?

8.3. Toric degenerations. As the finite generation of the global semigroup
ΓY•(X) is an interesting question per se, we believe that, in analogy to
the fact that the finite generation of the semigroups ΓY•(D) induce toric
degenerations of X to ∆Y•(D) ([A13]), the following holds.

Conjecture 8.3. Let X be a Mori dream space. Then the finite generation
of ΓY•(X) induces a degeneration of Spec(Cox(X)), which is compatible
with the toric degenerations of ΓY•(D), considered in [A13].
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8.4. Normality of the semigroup. We have seen in Proposition 6.13 that
the normality of the semigroup ΓY•(Xw) is connected to the existence of
integral Zariski decompositions. We have also seen in the last section that
for our example the variety Y induces integral Zariski decompositions. It is
also not difficult to prove that the four dimensional example X from Section
5.2, induces integral Zariski decompositions. It is now natural to ask the
following question.

Question 8.4. Under which circumstances does the Bott-Samelson variety
Xw induce integral Zariski decompositions?
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ON NEWTON-OKOUNKOV BODIES OF GRADED LINEAR

SERIES

GEORG MERZ

Abstract. We generalize the theory of Newton-Okounkov bodies of
big divisors to the case of graded linear series. One of the results is
the generalization of slice formulas and the existence of generic Newton-
Okounkov bodies for birational graded linear series. We also give a
characterization of graded linear series which have full volume in terms
of their base locus.

1. Introduction

The beautiful paper [O96] by Andrei Okounkov began the theory of
Newton-Okounkov bodies. Originally, he was interested in asymptotic mul-
tiplicities of group representations on line bundles. To study this, he con-
structed a compact convex set ∆ and noticed that the volume of this body
can be interpreted as the asymptotic multiplicity of the given representation.
Inspired by that work, Kaveh and Khovanskii in [KK12] and independently
Lazarsfeld and Mustaţă in [LM09] realized that Okounkov’s construction
gave rise to a completely new approach for studying the asymptotics of lin-
ear series on a projective variety. They used Okounkov’s construction to
associate a convex body ∆(S•) to a graded linear series S• on a projective
variety X. The construction of this body does not only depend on S•, but
also on the choice of a flag Y• consisting of closed irreducible subvarieties.
However, the main feature of the convex body ∆Y•(S•) is that, under “mild”
conditions, its euclidean volume gives a geometric interpretation of the clas-
sical notion of the volume of a graded linear series S• [LM09, Theorem A].
Indeed, for a graded linear series S• on a variety X of dimension d one has

vol(∆Y•(S•)) = lim
k→∞

dimSk
kn

= d! · vol(S•).

A posteriori, one concludes that the volume of ∆Y•(S•) is independent of
the choice of the flag Y•.

For a complete graded linear series S• equal to the full section algebra

R•(X,D) :=
⊕

k∈N
H0(X,OX(kD))

Date: January 14, 2018.
Key words and phrases. Newton-Okounkov body, volume, graded linear series, base

locus.
1
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associated to a big divisor D, we get a very nice correspondence between
algebraic geometry and convex geometry. Although, a priori, the Newton-
Okounkov body of a divisor D is well-defined up to linear equivalence of
D, Lazarsfeld and Mustaţă [LM09, Proposition 4.1] showed that the con-
struction of the Newton-Okounkov body does only depend on the numerical
equivalence class. Conversely, Jow showed in [J10] that two divisors D and
D′ are numerical equivalent if the Newton-Okounkov bodies ∆Y•(D) and
∆Y•(D

′) coincide for all flags Y•. Philosophically, this means that we can
interpret a numerical equivalence class of a divisor D as a collection of real
convex bodies parametrized by the set of all flags. Therefore, in principle,
it should be possible to translate all numerical properties of a divisor into
properties of convex geometry and vice versa. An outline of this approach
is given in recent works of Küronya and Lozovanu (see [KL14],[KL15] and
[KL17]).

Even though Lazarsfeld and Mustaţă tried to build up their theory of
Newton-Okounkov bodies in a general setting based on graded linear series,
many statements are only formulated for complete graded linear series cor-
responding to a big divisor D, i.e. for R(S•) = R•(X,D). The reason why
this case is significantly easier to understand is due to the following facts
which are not shared by arbitrary graded linear series.

• The algebra R•(X,D) is induced by the locally free sheaves OX(kD).
• The body ∆Y•(D) is well defined for a numerical equivalence class of
D which can be interpreted as a point in a finite dimensional vector
space over R, the Néron-Severi space.
• There exists a global Newton-Okounkov body which characterizes all

Newton-Okounkov bodies ∆Y•(D) at once [LM09, Theorem B].

The two main features of Newton-Okounkov bodies which were proved in
the case S• = R•(X,D) but were left open for arbitrary graded linear series
are the following .

(a) Slice formulas for Newton-Okounkov bodies: Let t ≥ 0 be a rational
number. Let Y• be a flag such that Y1 is a Cartier divisor. Suppose
D is a big Cartier divisor such that Y1 6⊆ B+(D) and D − t · Y1 is
big. Then the t-slice

∆Y•(D)ν1=t := ∆Y•(D) ∩
(
{t} × Rd−1

)

is equal to the Newton-Okounkov body of the restricted linear series
[LM09, Theorem 4.24]

R•(X,D − tY1)|Y1 .

(b) Existence of a generic Newton-Okounkov body : If we have a family of
Newton-Okounkov bodies ∆Yt,•(Xt, Dt) where all the relevant data
move in flat families over T , then for a very general choice of t ∈ T
the Newton-Okounkov bodies all coincide [LM09, Theorem 5.1].



3

Question. Is there a natural generalization of the above properties for more
general graded linear series S•?

We will prove that property (a) for rational t > 0 does hold for a completely
arbitrary graded linear series S• corresponding to a big divisor.

Theorem A. Let S• be a graded linear series. Let Y• be an admissible flag
and t = a/b > 0 for (a, b) = 1 a rational number such that {t}×Rd−1 meets
the interior of ∆Y•(S•). Then

∆Y•(S•)ν1=t = 1/b ·∆X|Y1(S
(b)
• − aY1)

via the identification of {t} × Rd−1 ∼= Rd−1.

However, for t = 0 we need some more constraints on S•. It turns out that
a natural assumption in order to treat S• “like” a divisor D is to assume
that their volumes are equal, i.e. vol(S•) = vol(D). Another assumption
which is necessary to prevent S• from being too wild is that it should be
finitely generated as an algebra. We will prove the following characterization
of such graded linear series.

Theorem B. Let S• ⊆ R(X,D) be finitely generated graded linear series
corresponding to a big divisor D. Then the following two conditions are
equivalent

(a) vol(S•) = vol(D).
(b) • The rational map hS• : X 99K Proj(S•) is birational and

• B(S•) = ∅ on Proj(R(X,D)).

The above result enables us to derive a slice formula for t = 0 for such
graded linear series (see Theorem 4.18). However, we are even able to de-
rive the following slice theorem for graded linear series containing an ample
series.

Theorem C. Let S• be a graded linear series containing the ample series
D − E. Let Y• be an admissible flag such that the divisorial component Y1
is not contained in E and Yd 6∈ B(S•). Then we have

∆Y•(S•)ν1=0 = ∆X|Y1(S•).

The existence of a generic Newton-Okounkov body, according to Part (b),
can be generalized to the case of birational graded linear series S•. More
precisely, we derive the following theorem.

Theorem D. Let X,T and Y• be as in Section 5.1. Let S• be a birational
graded linear series. Then for a very general choice of t ∈ T all the Newton-
Okounkov bodies ∆Yt,•(S•) coincide.

Note that we do not need any flatness hypothesis for the above theorem.
The idea of the proof is that we replace the graded linear series S• by a
possibly larger one which is induced by coherent sheaves and then use the
generic flatness theorem to make sure all the involved data is flat. In addition



4

to proving the existence of generic Newton-Okounkov bodies, we give several
examples of how to construct such families.
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2. Preliminaries

2.1. Notation. We work over the field C. Whenever not otherwise stated,
X denotes a projective variety over C of dimension d and D a big Cartier
divisor over X. Moreover, when we talk of a divisor, we will always refer
to an integral Cartier divisor. By an admissible flag Y• of X we mean an
ordered set of irreducible subvarieties:

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yd−1 ⊇ Yd = {pt}
where d is the dimension of X such that codimX(Yi) = i and each Yi is
non-singular at the point Yd.

2.2. Graded linear series. LetD be a divisor onX and let V ⊆ H0(X,OX(D))
be a non-zero vector subspace. Then the projective space of one dimensional
vector subspaces of V , which we denote by |V | := P(V ), is called a linear
series. In case V = H0(X,OX(D)) we call it the complete linear series and
write |D|. Often we are interested in the asymptotic behaviour of |mD| as
m → ∞. In order to generalize this for non complete linear series we need
the following definition.

Definition 2.1. A graded linear series on X corresponding to a divisor D
consists of a collection

S• = {Sk}k≥0
of finite dimensional vector subspaces Sm ⊆ H0(X,OX(mD)) and S0 = C.
These subspaces are required to satisfy the property

Sk · Sl ⊆ Sk+l for all k, l ≥ 0

where Sk · Sl denotes the image of Sk ⊗ Sl under the homomorphism

H0(X,OX(kD))⊗H0(X,OX(lD))→ H0(X,OX((k + l)D)).

We call S• a complete linear series if Sk = H0(X,OX(kD)) for all k ≥ 0.

Given a graded linear series S• we can define the graded algebra

R(S•) :=

∞⊕

k=0

Sk.
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If S• is a complete graded linear series corresponding toD, we writeR•(X,D)
for the graded algebra of sections. We say that S• is finitely generated if
R(S•) is finitely generated as a C-algebra.

A linear series |V | corresponds to a rational morphism

h|V | : X 99K PN .
Definition 2.2. We say that a graded linear series S• is birational if the
rational map corresponding to the linear series |Sk|

h|Sk| : X 99K P
N

is birational onto its image for k � 0.

If S• is finitely generated, then S• is birational if and only if the induced
rational map

hS• : X 99K Proj(S•) := Proj(R(S•))

is birational.
If S• and T• are two graded linear series, we write S• ⊆ T• if Sk ⊆ Tk for

all k ≥ 0.
Finally, note that many notions as the volume or the stable base locus

can be defined for graded linear series completely analogously as in the case
of complete graded linear series (see [L04, 2.4] for more details).

2.3. Construction of Newton-Okounkov bodies. In this section we
want to give a very brief overview of the construction of Netwon-Okounkov
bodies and state some elementary facts about them. For a detailed overview
see e.g. [LM09].

First of all we fix an admissible flag Y• and a graded linear series S• of
X. Now by an iterative procedure, taking the order of vanishing along the
given Yi into account, we construct for each k ∈ N a valuation map

νY• : Sk \ {0} → Zd.
The two essential properties of νY• are:

• ordering Zd lexicographically, we have

νY•(s1 + s2) ≥ min{νY•(s1), νY•(s2)}
for any s1, s2 ∈ Sk \ {0}
• given two non zero sections s ∈ Sk and t ∈ Sl then

νY•(s⊗ t) = νY•(s) + νY•(t).

The valuation function gives rise to the semigroup

Γ(S•) := {(νY•(s), k) : s ∈ Sk \ {0}, k ∈ N} ⊆ Nd+1.

Then the Newton-Okounkov body of S• corresponding to the flag Y• is given
by

∆Y•(S•) := Cone(Γ(S•)) ∩
(
Rd × {1}

)
.
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In [LM09] it was shown that for a graded linear series S• corresponding to
a big divisor D which has the additional property that the semigroup Γ(S•)
generates Zd+1 as a group, we have

volRd(∆Y•(S•)) =
1

d!
· vol(S•)

where

vol(S•) := lim
k→∞

dimSk
kd/d!

.

However, the more general case was treated in [KK12]. They showed that
for an arbitrary graded linear series S•, we have

vol(∆Y•(S•))
ind(S•)

=
vol(S•)
d!

(1)

where ind(S•) is the index of the group generated by Γ(S•) in Zd.
So for arbitrary graded linear series the volume of the Newton-Okounkov

body does indeed depend on the choice of the flag.

3. Volume and base Locus of graded linear series

In this section we want to analyze the correspondence between the volume
of a graded linear series and its base locus. We first focus on the case where
the graded linear series S• corresponding to D has full volume, i.e.

vol(S•) = vol(D).

In this case we have a characterization of finitely generated graded linear
series S• given by Theorem 3.8. This characterization will help us to make
sense of the sheafication of a graded linear series, which will be necessary
for Section 5, as well as for deriving slice formulas in the following section.

3.1. Stable base locus and volume of finitely generated graded lin-
ear series. The aim of this paragraph is to to show that two finitely gen-
erated graded linear series which have the same volume also have the same
stable base locus.

The following proposition will be helpful.

Proposition 3.1. Let S• be a graded linear series and x ∈ X. Consider
the induced graded linear series W• defined by

Wk := {s ∈ Sk : ordx(s) ≥ dkre}
for some fixed r > 0. Then for all admissible flags Y• centered at x, the
origin 0 does not lie in the Newton-Okounkov body ∆Y•(W•).

Proof. Let us assume that 0 lies in the Newton-Okounkov body. Then it
must be an extreme point. Thus there exists a series of sections sk ∈ Wk
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such that 1/k · ν(sk) = 1/k · (ν1(sk), . . . νd(sk)) converges to 0 as k tends to
infinity. By [KL15, Lemma 2.4], we have

ordx(sk) ≤
d∑

i=1

νi(s
k).

Dividing by k leads to

1/k · ordx(sk) ≤ 1/k ·
d∑

i=1

νi(s
k).

As k tends to infinity the right hand side goes to 0, but the left hand side
is lower bounded by r > 0, which gives a contradiction. Thus 0 does not lie
in the Newton-Okounkov body ∆Y•(W•). �

The next theorem is an analog of [KL15] Theorem A for finitely generated
graded linear series.

Theorem 3.2. Let X be smooth and let S• be a finitely generated graded
linear series. Then the following conditions are equivalent:

(a) x 6∈ B(S•)
(b) 0 ∈ ∆Y•(S•) for each admissible flag Y• centered at {x}
(c) There exists an admissible flag Y• centered at x such that 0 ∈ ∆Y•(S•).

Proof. (a) → (b) is trivial, since νY•(s) = 0 for all sections s ∈ Sk that do
not vanish at x. (b)→ (c) is also trivial.

Let us prove (c)→ (a). Let 0 lie in the Newton-Okounkov body ∆Y•(S•)
and let us assume that x ∈ B(S•). Let s1, . . . , sn be homogeneous generators
of R(S•) and denote by N the maximum of the degrees of these generators.
By assumption, all these generators vanish at x to order at least one. Thus,
we have an inclusion S• ⊆W• of graded linear series, where

Wk := {s ∈ H0(X,OX(kD)) : ordx(s) ≥ dk/Ne}.
But by the previous proposition, 0 6∈ ∆(Wk). This contradicts the fact that
0 ∈ ∆Y•(S•) ⊆ ∆Y•(W•). Thus x 6∈ B(S•). �
Lemma 3.3. Let S• ⊆ T• be two graded linear series. Then vol(S•) =
vol(T•) 6= 0 implies that ∆Y•(S) = ∆Y•(T•) for all admissible flags Y•.

Proof. First of all, we show that for all admissible flags the volume of the
Newton-Okounkov bodies coincide. We will do this by showing that the
indices of the semigroups Γ(S•) and Γ(T•) are equal. Clearly, Γ(S•) ⊆ Γ(T•)
and hence ind(S•) ≥ ind(T•). On the other hand, the volume formula for
Newton-Okounkov bodies yields the equality

d! · vol(S•) =
vol(∆Y•(S•))

ind(S•)
=

vol(∆Y•(T•))
ind(T•)

= d! · vol(T•).

From this equality and the fact that vol(∆Y•(S•)) ≤ vol(∆Y•(T•)) we get
that ind(S•) ≤ ind(T•), which implies ind(S•) = ind(T•). Again from
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the volume formula, we deduce that the volume of the Newton-Okounkov
bodies are equal. Let us now assume that there is a flag Y• such that
∆Y•(S•) ( ∆Y•(T•). Then there is a point P in ∆Y•(T•) which does not
lie in ∆Y•(S•). Since ∆Y•(S•) is closed and convex, the point P has a
positive distance to ∆Y•(S•). Hence, there is a d-dimensional ball B(0, ε)
around the origin which does not intersect ∆Y•(S•). The intersection of
B(0, ε) with ∆Y•(T•) has positive volume. This shows that we cannot have
vol(∆Y•(S•)) = vol(∆Y•(T•)). �

For the next lemma we will need the definition of a pulled back linear
series. Let π : X → Y be a morphism of projective varieties and S• a graded
linear series on Y . Then we can define π∗S• by π∗Sk := {π∗s : s ∈ Sk}.
Lemma 3.4. Let π : X → Y be a surjective morphism of projective varieties.
Let S• be a graded linear series on Y . Then we have

π(B(π∗S•) = B(S•)

Proof. Let x ∈ B(π∗S•) this is equivalent to

π∗s(x) = s(π(x)) = 0

for all k ≥ 0 and s ∈ Sk. But this is equivalent to π(x) ∈ B(S•). Hence, we
have the desired result.

�
Theorem 3.5. Let S• ⊆ T• be two graded linear series and let S• be finitely
generated. Then vol(S•) = vol(T•) implies that B(S•) = B(T•).

Proof. Let us first assume that X is smooth. It is obvious that B(T•) ⊆
B(S•). Let us show the other inclusion. Let therefore x ∈ B(S•) and assume
that x does not lie in B(T•). Then for all admissible flags Y• centered
at {x} we have that 0 ∈ ∆Y•(T•). By Theorem 3.2, we know that 0 6∈
∆Y•(S•). Using Lemma 3.3 implies that ∆Y•(S•) = ∆Y•(T•), which gives a
contradiction. Thus x does lie in B(T•).

Now consider the case where X is not necessarily smooth and π : X̃ → X
is a resolution of singularities. Since we have bijection of sections π∗Sk ∼= Sk
and π∗Tk ∼= Tk we conclude vol(π∗T•) = vol(π∗S•). Since X̃ is smooth we
can deduce that B(π∗S•) = B(π∗T•) and from the above lemma the desired
result follows. �

The next example illustrates that the assumption for S• to be finitely
generated is indeed necessary.

Example 3.6. Let S• be an arbitrary graded linear series such that vol(S•) >
0. Then choose any point x ∈ X\B(S•) and consider the graded linear series
Sx• defined by

Sxk := {s ∈ Sk : s(x) = 0}.
Clearly, we have B(S•) 6= B(Sx• ) since x is not contained in the first set
but is contained in the latter by construction. We will nevertheless show
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that vol(S•) = vol(Sx• ), and can therefore conclude that Sx• is never finitely
generated, even though S• might be.

In order to prove the equality of volumes, we first show equality of Newton-
Okounkov bodies. Let Y• be any admissible flag. We surely have an inclusion
∆Y•(S

x
• ) ⊆ ∆Y•(S•). Let now P be a point in ∆Y•(S•). Using the fact that

the valuation points in the Newton-Okounkov body are dense (see Theorem
4.5), there is a series of sections (ξmi)i∈N such that ξmi ∈ Smi and

νY•(ξ
mi)

mi
→ P as mi →∞.

Now let s ∈ Sk be any section such that s(x) = 0. The existence of such
a section follows from the fact that vol(S•) > 0. Suppose otherwise that no
section s ∈ Sk vanishes at x ∈ X, then ∆Y•(S•) = {0} is the origin for all
flags Y• centered at {x}.

Consider the series (s⊗ ξmi)i∈N for which we have:

νY•(s⊗ ξmi)

k +mi
=

νY•(s)

k +mi
+
νY•(ξ

mi)

k +mi
→ P as mi →∞.

But since s⊗ξmi ∈ Sxmi+k
we conclude the equality of the Newton-Okounkov

bodies ∆Y•(S
x
• ) = ∆Y•(S•). In order to derive the equality of volumes,

we will show that for both graded linear series the group generated by
the semigroup of valuation points coincide. We trivially have an inclusion
G(Γ(Sx• )) ⊆ G(Γ(S•)). Now let a ∈ G(Γ(S•)) be an arbitrary element. We
can write it as

a = (νY•(ξ
1), k1)− (νY•(ξ

2), k2)

for some ξi ∈ Ski , i = 1, 2. Choose again a section s ∈ Sk such that s(x) = 0
and note that s⊗ ξi ∈ Sxki+k for i = 1, 2. Then we can write

a′ : = (νY•(s⊗ ξ1), k + k1)− (νY•(s⊗ ξ2), k + k2)

= (νY•(s), k) + (νY•(ξ
1), k1)− ((νY•(s), k) + (νY•(ξ

2), k2))

= a.

But a′ ∈ G(Γ(Sx• )) which implies the equality of both groups and in partic-
ular the equality of both indices ind(Sx• ) = ind(S•). Applying the volume
formula (1), we get the desired equality of volumes.

3.2. Characterization of finitely generated graded linear series with
full volume. In this paragraph we want to classify all finitely generated
graded linear series S• corresponding to a big divisor D such that vol(S•) =
vol(D).

We will need the following lemma.

Lemma 3.7. Let f : X → Y be a dominant finite morphism of varieties.
Then f is of degree one if and only if f is birational.
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Proof. If f is birational, then there are open subsets U = SpecB ⊆ X and
V = SpecA ⊆ Y such that f|U : U → V is an isomorphism. This means
that A ∼= B and thus C(X) = Quot(B) ∼= Quot(A) = C(Y ). Hence, f is of
degree one.

Now let f be finite of degree one. Consider an open affine subscheme
V = SpecA ⊆ Y such that f−1(V ) = U = SpecB. Then f|U : SpecB →
SpecA corresponds to an injective morphism of rings φ : A → B. Since f
has degree one, φ induces an isomorphism

Quot(φ) : Quot(A)→ Quot(B).

Suppose b1, · · · , bn ∈ B is a set of generators of B as an A-module. Let
a′1, . . . , a

′
n ∈ A be the set of denominators of the preimages of the bi under

the isomorphism Quot(φ). Let a′ = a′1 · · · · · a′n be the product of the
denominators and Aa′ be the corresponding localization. Next, we consider
the morphism Quot(φ) restricted to the A-module Aa

Quot(φ)|Aa′ : Aa′ → Quot(B).

By construction, this restriction gives an isomorphism of Aa′ to its image
which is exactly Ba′ . Applying the Spec functor again gives an isomorphism
of schemes

f|U ′ : U
′ = SpecBa′ → V ′ = Spec(Aa′) = D(a′).

Hence, f is a birational morphism. �
Theorem 3.8. Let S• ⊆ T• be finitely generated graded linear series corre-
sponding to D. Let T• be birational. Then the following two conditions are
equivalent

(a) vol(S•) = vol(T•).
(b) • The rational map hS• : X 99K Proj(S•) is birational and

• B(S•) = ∅ on Proj(T•).

Proof. Consider the rational morphism corresponding to the section ring
R(T•)

hT• : X 99K Proj(T•) =: Y.

This is a rational contraction and we have h∗T•(OY (1)) = D as well as
R(T•) ∼= R•(Y,OY (1)). Via this bijection, way we may regard S• as a finitely
generated graded linear subseries of R•(Y,OY (1)) on Y . Since vol(T•) =
vol(OY (1)), we can deduce from Theorem 3.5, that vol(S•) = vol(T•) implies
that S• is base point free on Y . Therefore, we just need to show that (a)
is equivalent to the first part of (b) under the assumption that vol(S•) =
vol(T•). So let us assume that S• is base point free on Y . We want to show
that the inclusion φ : R(S•)→ R(T•) induces a morphism Y → Proj(S•) =:
Z. Due to [GW, Remark 13.7], the previous inclusion gives us a morphism
G(φ)→ Proj(S•) where

G(φ) :=
⋃

s∈Sk,k>0

D+(s) ⊆ Y.
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But by the base point freeness of S• on Y we have G(φ) = Y . Hence, we
get a globally defined morphism

j : Y → Proj(S•) = Z,

which fits into the following commutative diagram

X
hT• //

hS•   

Y

j
��
Z.

Since hT• is birational, the above diagram implies that j is birational if
and only if hS• is birational. The morphism j is by construction affine and
projective and thus finite. By Lemma 3.7 and taking the above equivalence
into account, we get that hS• is birational if and only if j is finite of degree
one. But this is equivalent to

vol(T•) = vol(j∗OZ(1)) = vol(OZ(1)) = vol(S•).

�

Corollary 3.9. Let D be a semi ample big divisor on X and S• be a finitely
generated graded linear series corresponding to D. Then the following two
conditions are equivalent

(a) vol(S•) = vol(D)
(b) • B(S•) = B(D) = ∅

• hS• : X → Proj(S•) is birational.

Proof. The only thing which we need to prove in order to use the above
Theorem is that b) implies that B(S•) = ∅ on Proj(R•(X,D)) but this
follows from Lemma 3.4.

�

3.3. Volume and base ideal. In this paragraph we want to take the
scheme structure of the base locus into account. Hence, we will be interested
in the connection between the volume and the base ideal of a graded linear
series. The main motivation for this is [J10, Theorem C], which states that
we can compute the volume of a birational graded linear series by passing to
the base point free linear series on the blow-up along the base ideal. We will
give a short introduction into base ideals and then derive some variations of
Jow’s statement.

Let |V | be a linear series corresponding to a divisorD onX. Let s1, . . . , sN ∈
V be global sections which induce a basis on |V |. Then we define F as the
coherent sheaf generated by the si. More explicitly, F is the image sheaf of
the following morphism:

ONX → OX(D)
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which is given on open sets U ⊆ X by

(λ1, . . . , λN ) 7→
N∑

j=1

λj · sj|U .

Consider an open cover X =
⋃
i∈I Ui and trivializations ψi : OX(D)|Ui

∼=
OUi . Then ψi(F|Ui

) is an ideal of OUi , which does not depend on the choice
of ψi. Gluing these ideals together induces a well defined ideal sheaf I such
that F = I ⊗OX

OX(D). Clearly, the support of I is Bs(|V |) and we call it
the base ideal of |V |. This gives the set Bs(|V |) the structure of a scheme.
For a graded linear series S•, we denote the base ideal of |Sk| by bSk

.

Theorem 3.10. Let S• and T• be birational graded linear series correspond-
ing to a divisor D. Suppose bSk

= bTk for all k � 0. Then

vol(S•) = vol(T•).

Proof. An alternate formulation of [J10, Theorem C] is given in [H13, Propo-
sition 3.7]. The volume of S• can be calculated in the following way. Let
πk : Xk → X be the blow-up of X along bSk

. Let Mk := π∗kD − Ek, where
Ek is the exceptional divisor of the blow-up. Then

vol(S•) = lim
k→∞

(Mk)
d

kd
.

Hence, the volume of S• just depends on the base ideals bSk
for k � 0 and

the divisor D. Therefore we get the same volume for T• as for S•. �

3.4. Rationality properties of finitely generated graded linear se-
ries. The volume of a graded linear series can in general behave very wildly
(see for example [KLM13]). Without any restrictions, it certainly can be
irrational. Indeed, it is an easy consequence of [L04, Ex. 2.4.14] that actu-
ally all non-negative real numbers occur as the volume of some graded linear
series. However, for a finitely generated divisor D it is shown in [AKL12]
that there exists a flag Y• such that the corresponding Newton-Okounkov
body ∆Y•(D) is a rational simplex. We will generalize this result to the case
of finitely generated birational graded linear series. For finitely generated
graded linear series which are not necessarily birational, we recover the well
known fact that its volume is rational

Theorem 3.11. Let S• be a birational graded linear series generated in
degree one. Let π : X̃ → X be the blow-up of X along the base ideal bS1 and

E be the exceptional divisor. Let Ỹ• be an admissible flag of X̃ centered at
{x̃} = π−1(x) where x ∈ X \B(S•). Let Y• be the admissible flag centered

at {x} given as the image of Ỹ• under π. Then

∆Y•(S•) = ∆Ỹ•(π
∗D − E).

Proof. First of all we show that the volume of both graded linear series are
equal. Consider the graded linear series π∗S• − E generated by π∗S1 −
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E := {s/skE : s ∈ S1} corresponding to the divisor π∗D − E. By
construction,π∗S• − E is base point free and birational. Hence, due to
Theorem 3.10, we have

vol(S•) = vol(π∗S• − E) = vol(π∗D − E).

The valuation νY• respectively νỸ• are both defined locally arround x

respectively x̃ = π−1(x). Since π defines an isomorphism arround {x}, we
get νY•(s) = νỸ•(π

∗s) for all s ∈ Sk. As E lies away from x, we also have

νỸ•(π
∗s/skE) = νỸ•(s) for all s ∈ Sk and sE a defining section of E. This

shows that

∆Y•(S•) = ∆Ỹ•(π
∗S• − E) ⊆ ∆Ỹ•(π

∗D − E).

Combining this with the above equality of volumes, we get the desired result.
�

Corollary 3.12. Let S• be a finitely generated birational graded linear se-
ries. Then there is an admissible flag Y• such that ∆Y•(S•) is a rational
simplex.

Proof. Using the notation of Theorem 3.11, the only thing we need to prove
is that there exists an admissible flag Ỹ• centered at some point x̃ 6∈ E such
that corresponding Newton Okounkov body of the globally generated divisor
π∗D −E is a rational simplex. But the existence of such a flag is proven in
[AKL12, Proposition 7]. Note, that we used the fact that π∗D−E is finitely
generated since it is by construction free. �

If S• is not birational but still finitely generated, we are not able to prove
any rational polyhedrality property of the corresponding Newton- Okounkov
body yet. However, the next theorem shows that the volume will neverthe-
less be rational.

Theorem 3.13. Let S• be a finitely generated graded linear series. Then
the volume of S• is a rational number.

Proof. We may without loss of generality assume that S• is generated in
degree one. The volume of S• is equal to the volume of the free graded
linear series π∗S• − E where π is the blow-up of X along the base ideal of
S1. Hence, it suffices to show that the volume of a free graded linear series is
rational. So let us assume without loss of generality that S• is a free finitely
generated graded linear series generated in degree one on X corresponding
to a base point free divisor D which is also generated in degree one. If S•
is free on X, then by Lemma 3.4, S• is also free on Proj(R•(X,D)). As in
the proof of Theorem 3.8, we conclude that the inclusion R(S•) ⊆ R•(X,D)
induces a finite morphism:

j : Y := Proj(R•(X,D))→ Proj(S•) =: Z.

Let k be the degree of j. Then we have

vol(D) = vol(OY (1)) = vol(j∗OZ(1)) = k · vol(OZ(1)) = k · vol(S•).
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So the rationality of vol(S•) follows from the rationality of the volume of
the free divisor D. �

Note, that the fact that the volume of a finitely generated graded linear
series, can also be established by realizing that its Hilbert polynomial has
indeed rational coefficients.

3.5. Sheafification of graded linear series. The aim of this section is to
replace a birational graded linear series S• by a possible larger one coming
from global sections of coherent subsheaves of OX(kD). This sheafification
process has the desirable feature that it does not change the volume of the
graded linear series and hence not the Newton-Okounkov body.

Let S• be a birational graded linear series. Denote by bSk
the base ideal

of the linear series |Sk|.
Definition 3.14. The sheafification of S• is given by the sheaf S• = (Sk)k≥0
where

Sk = bSk
⊗OX

OX(kD).

The sheafified linear series S̃• is defined by

S̃k = H0(X,Sk).
Remark 3.15. The sheaf Sk is equal to F considered in Section 3.3 for
V = Sk.

Theorem 3.16. Let S• be a birational graded linear series. Then the volume
of S• and the volume of the sheafified linear series S̃• are equal i.e.

vol(S•) = vol(S̃•).

Proof. This is a consequence of Theorem 3.10. The sheaf Sk = bSk
⊗OX

OX(D) is by construction globally generated and therefore the base ideal of

S̃k is equal to bSk
. Thus, the base ideal of S̃k and of Sk are both equal for

every k > 0, from which the equality of volumes follows. �
Corollary 3.17. Let S• be a birational graded linear series. Then for all
admissible flags Y• we have:

∆Y•(S•) = ∆Y•(S̃•)

�
Example 3.18. Consider

X = P2 = ProjC[X1, X2, X3]

and L = O(2). We can identify

H0(X,L) ∼= C[X1, X2, X3]2.

Now let S• be the graded linear series which is generated by all monomials
of degree two except X2X3, i.e. generated by

S1 := spanC(X2
1 , X

2
2 , X

2
3 , X1X2, X1X3)
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Clearly S• is base point free and ∆Y•(D) = ∆Y•(S•), for the standard flag
Y• such that

Y1 := V(X1), Y2 := V(X1) ∩V(X2) and Y3 := {[0 : 0 : 1]}.
Next, we want to show that the semigroup Γ(S•) generates Z3 as a group.
We have

v1 := (1, 1, 1) = (ν(X1X2), 1) ∈ Γ(S•),

v2 := (1, 0, 1) = (ν(X1X3), 1) ∈ Γ(S•),

and

v3 := (0, 2, 1) = (ν(X2), 1) ∈ Γ(S•).

This shows that e2 := v1 − v2 ∈ G(Γ(S•)), e3 = v3 − 2e2 ∈ G(Γ(S•)) and
e1 = v1 − e2 − e3 ∈ G(Γ(S•)). Hence, G(Γ(S•)) = Z3. From this fact and
the equality of Newton-Okounkov bodies, we deduce that vol(S•) = vol(D).
Applying Theorem 3.10 gives us that S• is birational and that bS1 = OX .
Hence, from the above theorem we expect the following equality for the
sheafified linear series.

R(S̃•) = R•(X,L).

Indeed, we will show by hand how the missing global section X2X3 ∈
H0(X,L) can be glued locally from sections in S1.

In

Ui := SpecC[X1/Xi, X2/Xi, X3/Xi] ⊆ P2

we have si = (X2X3)|Ui
= X2X3

X2
i
∈ H0(Ui,OX).

Since H0(Ui,S1) is a H0(Ui,OX)-module, we have

si = λi · (ti)|Ui
∈ H0(Ui,S1)

for λi = si and ti = X2
i .

4. Slice formula for graded linear Series

Slice formulas are one of the most important tools to analyze the shape
of Newton–Okounkov bodies. They are the main ingredient for the charac-
terization of Newton-Okounkov bodies on surfaces [LM09, Theorem 6.4], for
Jow’s Theorem [J10] and for most of the rational polyhedrality properties
(see e.g. [AKL12], or [SS17]).

By a slice formula we mean the following: Let S• be a graded linear series
and Y• be a flag. A slice of the Newton-Okounkov body ∆Y•(S•) is given by
intersecting it with some affine hypersurface {t}×Rd−1 ⊆ Rd for t ≥ 0. We
denote this slice by ∆Y•(S•)ν1=t. Suppose there is a graded linear series W•
on Y1 such that

∆Y•(S•)ν1=t = ∆Y ′•(W•)

where Y ′• is the restriction of the flag Y• on Y1. Then the above equality will
be called a slice formula.
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Slice formulas are very useful since the set of all slices ∆Y•(S•)ν1=t deter-
mines ∆Y•(S•) and thus we are able to reduce the calculation of ∆Y•(S•) to
the calculation of Newton-Okounkov bodies of dimension one less. This will
give us in some cases the possibility to argue inductively on the dimension
of X.

In all cases we will consider, the graded linear series W• will be a certain
restricted linear series. Let us quickly recall basic notions of restricted linear
series. Let S• be a graded linear series on X corresponding to D and let
Y ⊆ X be an irreducible subvariety. Let

restk : H0(X,OX(kD))→ H0(Y,OY (kD))

be the restriction of global sections of kD to Y . Then we define the restricted
graded linear series S|Y,• on Y , by

S|Y,k := restk(Sk).

If R(S•) = R•(X,D), we write R•(X,D)|Y for the graded algebra of sections
of the restricted linear series of S•. We will write volX|Y (S•) := volY (S|Y,•)
for the volume of the restricted linear series, as well as volX|Y (D) if R(S•) =
R•(X,D). Let Y• be a flag on X. We write

∆X|Y1(S•) := ∆Y ′•(S|Y1,•)

for Y ′• defined as above. In a lot of situations we want to assume that Y1 is
a Cartier divisor. Therefore, we make the following definition.

Definition 4.1. Let X be a projective variety and Y• an admissible flag.
We call Y• very admissible if Y1 defines a Cartier divisor.

Note that if X is smooth then every admissible flag is very admissible.
The existence of slice formulas is directly connected to the distribution

of valuative points in ∆Y•(S•). Therefore, before deriving slice formulas, we
will analyze this distribution.

4.1. Valuation points. A different construction of the Newton-Okounkov
body than the one we mentioned is the following. First on constructs the set
of normalized valuations Σ :=

⋃
m>0 1/m · Γm(S•) and then one takes the

closed convex hull of this set. This is completely equivalent to the earlier
mentioned definition of Newton-Okounkov bodies. A priori, it might happen
that taking the convex hull destroys a lot of information about Σ. In this
paragraph we will see that this is not the case and indeed it is not even
necessary to take the convex hull in the first place.

Definition 4.2. Let S• be a graded linear series. Let Y• be an admissible
flag. Then a point P ∈ ∆Y•(D) is called a valuation point or valuative if
there is a section s ∈ Sk such that νY•(s)/k = P for some k ∈ N.

Lemma 4.3. Let S• be a graded linear series on X. Let Y• be an admissible
flag. Let P and Q be two valuative points of ∆Y•(S•). Then all rational
points in the line segment PQ are also valuative.
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Proof. Let s ∈ Sk and t ∈ Sm be sections such that P = νY•(s)/k and
Q = νY•(t)/m. Let A := (a/b) · P + (1− a/b) ·Q for integers a, b such that
0 ≤ a < b be an arbitrary rational point in the line segment PQ. Define the
section

sma ⊗ tk(b−a) ∈ Skbm.

Then we have

νY•(s
ma ⊗ tk(b−a))
kbm

= ma · νY•(s)
kbm

+ k(b− a) · νY•(t)
kbm

= a/b · P + (1− a/b) ·Q
= A.

This shows that every rational point in the seqment PQ is valuative.
�

Lemma 4.4. Let S• be a graded linear series on X. Let Y• be an admissible
flag. Let P1, . . . , Pn be valuative points of ∆Y•(S•). Then all rational points
in the relative interior of the convex hull of P1, . . . , Pn are also valuative.

Proof. We will prove this by induction on the number of points n. The
case n = 2 was done in the previous lemma. Let us prove the claim for n,
assuming that it holds for integers ≤ n − 1. Let P be a rational point in
the interior of the convex hull. The induction hypothesis tells us that all
rational points on the facets of the convex hull are valuative. Now, consider
the line going through P1 and P . This line intersects the boundary of the
convex hull in P1 and in one more point, which we will call Q. Clearly the
point Q is rational and hence, by the induction hypothesis, valuative. Now,
by construction, P is in the convex hull of the two valuative points P1 and
Q. Again, using the induction hypothesis, the point P is valuative. �

Theorem 4.5. Let S• be a graded linear series on X. Let Y• be an admis-
sible flag. Then all rational points in the relative interior of the Newton-
Okounkov body ∆Y•(S•) are valuative.

Proof. Let P be a rational point in the interior of ∆Y•(S•). By construction
of ∆Y•(S•) this means that

P ∈ conv

(⋃

m>0

1/m · νY•(Sm \ {0})
)
.

So there are finitely many sections si ∈ Smi and coefficients λi ≥ 0 for

i = 1, . . . , N such that
∑N

i=1 λi = 1 and

P =
N∑

i=1

λi · νY•(si)/mi.
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Define K :=
∏N
i=1mi. Then s

K/mi

i ∈ SK and we can write

P =
N∑

i=1

λi · νY•(sK/mi

i )/K.

This implies that

P ∈ conv (1/K · νY•(SK \ {0})) ,
and due to the previous lemma it follows that P is valuative.

�
Remark 4.6. The fact that the valuative points are dense in the Newton-
Okounkov body was already proven in [KL14] for the divisorial case S• =
R•(X,D) and in the general case of graded linear series in [KMS12, Lemma
2.6].

Corollary 4.7. Let D be a big divisor on X and let Y• be a very admissible
flag such that Y1 6⊆ B+(D). Then all the rational points in the relative
interior of ∆Y•(D)ν1=0 are valuative.

Proof. By construction of the Newton-Okounkov body, the valuative points
of the slice ∆Y•(D)ν1=0 are of the form (0, P ) where P is a valuative point
of the Newton-Okounkov body of the restricted linear series R•(X,D)|Y1 ,
which we denote by ∆X|Y1(D). But due to the slice formula in [LM09,
Theorem 4.24 b] we have an equality

∆X|Y1(D) = ∆Y•(D)ν1=0.

Combining this with the above theorem yields the desired result.
�

The fact that some points on the boundary of the Newton-Okounkov body
are valuative and some may just be limits of valuative points corresponds
to the fact that the semigroup Γ(S•) may be not finitely generated. Finite
generation of the semigroup is a very pleasant property. It was shown in
[A13] that if Γ(S•) is finitely generated then there exists a corresponding
flat degeneration of X to the toric variety whose normalization corresponds
to the polytope ∆Y•(S•)

The connection to the existence of valuative points is given by the follow-
ing theorem.

Theorem 4.8. Let S• be a graded linear series, Y• be an admissible flag of
X and Γ(S•) be finitely generated. Then all rational points of ∆Y•(S•) are
valuative. If ∆Y•(S•) is rational polyhedral, then Γ(S•) is finitely generated
if and only if all rational points of ∆Y•(S•) are valuative.

Proof. Let Γ(S•) be finitely generated and (νY•(s1), k1), . . . , (νY•(sN ), kN )
be the generators. Then ∆Y•(S•) is equal to the convex hull of the points
P1 = 1/k1 · νY•(s1), . . . , PN = 1/kN · νY•(sN ). Due to Lemma 4.4, all points
in ∆Y•(S•) are valuative.
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Let now ∆Y•(S•) be rational polyhedral. It remains to prove that Γ(S•)
is finitely generated if all rational points are valuative. However, this follows
from [BG09, Corollary 2.10]. �
Remark 4.9. Note that in the second part of the above theorem the condi-
tion that ∆Y•(S•) is rational polyhedral is necessary. For a counterexample
consider [LM09, Proposition 1.17] for any K which is not rational polyhe-
dral. In this case it is clear from the construction that all rational points
are valuative. However, the corresponding semigroup can never be finitely
generated unless its Newton-Okounkov body is rational polyhedral.

The next theorem says that for a surface X the semigroup Γ(D) is almost
never finitely generated.

Theorem 4.10. Let X be a smooth surface. Let S• be a graded linear series
corresponding to a big divisor D such that vol(S•) = vol(D). Let C ⊆ X
be a curve of genus g > 0. Then for a general point x ∈ C the semigroup
ΓC⊇{x}(S•) is not finitely generated.

Proof. Without loss of generality, we may replace D by kD and can therefore
assume that there is a non-negative integer t ∈ N such that volX|C(D−tC) >
0. Consider the Zariski decomposition of D − tC:

Dt := D − tC = Pt +Nt,

and choose x ∈ C very general such that the semigroup {(k, ordx(s)) | s ∈
H0(C,OC(Pt))} is not finitely generated [LM09, Example 1.7]. If we set
∆{x}(Pt|C) = [0, c], then the failure of finite generation just means that c is
not a valuative point of ∆{x}(Pt|C). But since volX|C(Dt) = volX|C(Pt) > 0,
we deduce that C 6⊆ B+(Pt) and we have volX|C(Pt) = vol(Pt|C) [ELMNP09,
Corollary 2.17]. Thus c is not a valuative point of the restricted Newton-
Okounkov body ∆X|C(Pt). The valuative points of ∆X|C(Pt) correspond
to the valuative points of the restricted Newton-Okounkov body ∆X|C(Dt)
up to a translation of ordx(Nt|C). But each valuative point Q of ∆X|C(Dt)
corresponds one to one to the valuative point (t, Q) of ∆C⊇{x}(D)ν1=t. This
shows that (t, c + ordx(Nt|C)) ∈ ∆C⊇{x}(D) is not a valuative point and
thus surely it is not a valuative point of ∆C⊇{x}(S•). Applying Theorem 4.8
gives then the desired failure of finite generation.

�
Example 4.11. Let X be a smooth Mori dream surface, let D be a big
divisor on X and Y• : X ⊃ C ⊃ {x} be an admissible flag on X consisting
of a curve C on X which is not contained in B+(D). We use [KLM12,
Theorem B] for describing the Newton-Okounkov body of a big divisor on
a surface: There are piecewise linear functions with rational slopes and
rational breaking points α, β : [ν, µ]→ R+ such that the Newton-Okounkov-
body is given by:

∆Y•(D) = {(t, y) ∈ R2 : ν ≤ t ≤ µ, and α(t) ≤ y ≤ β(t)}
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Moreover, the number ν is rational and µ is given by

µ := sup{s > 0 : D − sC is big}.
Since in our case X is a Mori dream space and thus the Big cone is rational
polyhedral, the number µ is rational as well. In this situation we have a
quite good understanding of the valuative points of the Newton-Okounkov
body. The following points are valuative:

(a) the rational points in the interior of ∆Y•(D)
(b) points of the form (ν, y) for rational y ∈ [α(ν), β(ν))
(c) points of the form (t, α(t)) for all rational t ∈ [ν, µ) .

Let us prove that all the above listed points are indeed valuative.
Part (a) follows from Theorem 4.5. Part (b) follows by using the slice

formula [LM09, Theorem 4.24 b)] which states that ∆Y•(D)ν1=t = ∆X|C(D−
tC) for all t ∈ [ν, µ). Indeed, for such rational t the valuative points of
the latter Newton-Okounkov body correspond to the valuative points of
∆Y•(D) with first coordinate equal to t. Hence, again by Theorem 4.5, all
the rational points of the form (ν, t1) and for t1 ∈ (α(ν), β(ν)) are valuative.
Part (c) follows from the following fact: Let S• be a finitely generated
graded linear series on a curve C and let P be a smooth point on C. Let
∆(S•) = [b, c]. Then b is a valuative point. To prove this we can without loss
of generality assume that S• is generated in degree one. Let s1, . . . , sl ∈ S1
be the generators of S•. Now suppose b is not a valuative point. Then
ν(si) ≥ b + 1 for all i = 1, . . . , l. Consider s ∈ Sk which can be written as
s =

∑
α∈Nl cαs

α where s = (s1, . . . , sl). Then

ν(s) = ν(
∑

α∈Nl

cαs
α)

≥ min(ν(sα)

≥ k(b+ 1)

which implies that b does not lie in ∆(S•) inducing a contradiction. Using
this fact for the restricted graded linear series of D−tC to C which is indeed
finitely generated since X is a Mori dream space, gives us the valuativity of
the remaining listed points.

If C is a curve of genus g > 0 and x is a very general point in C, then
we can say even more. The points of the form (t, β(t)) for t ∈ [ν, µ) are not
valuative if β(ν) > α(ν). If α(ν) = β(ν), then this holds for t ∈ (ν, µ). In
order to prove this, we make use of the proof of Theorem 4.10. There we
showed that for rational t ∈ [µ, ν) such that vol(∆X|C(D − tC)) > 0 for a
general choice of x ∈ C the point (t, β(t)) is not valuative. Since t varies
in a countable set, we conclude that for a very general choice of x ∈ C this
holds for all considered rational t at once.

In this situation the only points where we do not know whether they are
valuative or not are the rational points of the form (µ, y) for y ∈ [α(µ), β(µ)].
The situation is summarized in Figure 1.
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e1
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ν µ

Figure 1. Valuation points of NO-body on a surface

4.2. Slice Formula. In this paragraph we generalize the slice formula given
in [LM09, Theorem 4.2.4] to graded linear series S•. Let us first state the
content of the theorem: Let D be a big divisor, Y• be an admissible flag
such that Y1 is an effective Cartier divisor for which Y1 6⊆ B+(D) and
µ := sup{t ∈ R+|(D − tY1) is big}. Then we have for all 0 ≤ t < µ

∆Y•(D)ν1=t = ∆X|Y1(D − tY1).
The following definition will be useful for the generalization.

Definition 4.12. Let S• be a graded linear series on X. Let Y ⊆ X be an
irreducible subvariety of codimension 1 which defines a Cartier divisor and ε
be a non-negative rational number. Then we define the graded linear series
S• − εY by setting

(S• − εY )k = {s/sdε·keY : s ∈ Sk ordY (s) ≥ dε · ke} ⊆ H0(X,OX(kD − dε · keY ))).

Using the above definition, we are able to formulate our first slice formula
for slices which meet the interior of the corresponding Newton-Okounkov
body.

Theorem 4.13. Let S• be a graded linear series. Let Y• be a very admissible
flag and ε a positive rational number such that {ε}×Rd−1 meets the interior
of ∆Y•(S•).Then

∆Y•(S•)ν1=ε = ∆X|Y1(S• − εY1)
via the identification of {ε} × Rd−1 ∼= Rd−1.

Proof. By considering the k-th Veronese S
(k)
• of the graded linear series S•

for a high enough multiple, i.e. S
(k)
• defined by S

(k)
l = Sl·k, we can without

loss of generality assume that ε is an integer. We will now show that the
rational points in the interior of both Newton-Okounkov bodies are indeed
equal, from which the statement will follow by Theorem 4.5.
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Consider first the rational points in the interior of ∆X|Y1(S• − εY1). By
construction these are given in degree k by

1/k · Γk((S• − εY1)|Y1) = {1/k · (ν2(s), . . . , νd(s)) | s ∈ Sk s. t. ν1(s) = ε · k}
∼= {1/k · (ε · k, ν2(s), . . . , νd(s)) | s ∈ Sk s.t. ν1(s) = ε · k}
= (1/k · Γk(S•)) ∩ ({ε} × Rd−1).

But the last set are just the valuative points of ∆Y•(S•)ν1=ε in degree k.
This finishes the proof.

�
Corollary 4.14. Let S• be a graded linear series. Let Y• be a very admissible
flag and ε a positive rational number such that {ε}×Rd−1 meets the interior
of ∆Y•(S•).Then

∆Y•(S•)ν1≥ε := ∆Y•(S•) ∩ [ε,∞)× Rd−1 = ∆Y•(S• − εY1) + (ε, 0, . . . , 0).

Proof. This follows by realizing that the slices of both sides agree for all
rational vertical slices. Indeed, we have for all δ > 0 such that {δ+ε}×Rd−1
meets the interior of ∆Y•(S•).

∆Y•(S• − εY1)ν1=δ = ∆X|Y1(S• − (ε+ δ)Y1)

= ∆Y•(S•)ε+δ.

�
The above theorem shows that for t > 0 the slice formula of [LM09,

Theorem 4.2.4] completely generalizes to the case of arbitrary graded linear
series without any restrictions. However, the reduction to the case t = 0
does not work as in [LM09]. The idea of the proof was to replace the divisor
D by some small perturbation D + εY1 and thus reduce the question to
the case t > 0. However, for a graded linear series it is not clear how to
generalize this construction. Therefore, we need some additional properties
for the graded linear series S• in order to recover more of the geometry of
X and the corresponding divisor D. We would like to assume that S• as
well as the restricted series S|Y,• are birational. In order to make sure that
the restricted series has this property, we pose a stronger condition on S•,
namely, that it contains an ample series. (This corresponds to condition (C)
in [LM09], see Definition 4.16).

In addition, we will start with the case that S• is also finitely generated
and vol(S•) = vol(D). After that we will reduce the general case to the
special case by using Fujita approximation.

Lemma 4.15. Let S• ⊆ T• be two birational finitely generated graded linear
series such that the map of projective spectra Proj(T•) → Proj(S•) defined
by the inclusion of graded linear algebras R(S•) ⊆ R(T•) is globally defined.
Then for each closed subvariety Y ⊆ X, the induced map Proj(T|Y,•) →
Proj(S|Y,•) is also globally defined.
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Proof. Consider the following diagram of morphisms of graded algebras

R(S•)
rS // //

� _

ι

��

R(S|Y,•)� _
ιY

��
R(T•)

rT // // R(T|Y,•)

where the horizontal mappings are just the restriction of sections and the
vertical maps are given by inclusion. For a graded algebra U =

⊕
k∈N Uk,

define U+ :=
⊕

k>0 Uk. We want to show that the inclusion ιY defines a
global morphism of corresponding projective spectra. Therefore, we need to
check if the preimage under ιY of each relevant homogeneous prime ideal
p ⊂ R(T|Y,•)+ is still relevant. So suppose that the preimage is not relevant,

i.e. R(S|Y,•)+ ⊆ ι−1Y (p). Then by definition of the restriction morphism, we
get:

R(S•)+ = r−1S (R(S|Y,•)
+) ⊆ r−1S (ι−1Y (p)).

This means that the ideal on the right hand side is not relevant. Due to
the commutativity of the above diagram, the right hand side is equal to
ι−1(r−1T (p)). However, the ideal r−1T (p) is relevant since rT is surjective and

therefore the ideal ι−1(r−1T (p)) is relevant as well since, by assumption, ι
induces a global morphism of projective spectra. Hence, we get a contradic-
tion, which shows the claim �

Let us now define what it means to contain an ample series.

Definition 4.16. Let S• be a graded linear series on X corresponding to
D. We say that S• contains the ample series A = D − E if

(a) Sk 6= 0 for k � 0 and
(b) there is a decomposition of Q-divisors D = A+E where A is ample

and E is effective such that

H0(X,O(kA)) ⊆ Sk ⊆ H0(X,O(kD)

for all k divisible enough. Note that the inclusion of the outer groups
is given by the multiplication of a defining section of kE.

As it was already pointed out in [J10], it is not difficult to show that a
graded linear series containing an ample series is birational. This follows
from the birationality of the ample series.

Lemma 4.17. Let S• be a graded linear series corresponding to D which
contains the ample series D−E. Let Y ⊆ X be a closed irreducible subvariety
such that Y 6⊆ Supp(E). Then the restricted linear series S|Y,• contains an
ample series corresponding to the decomposition D|Y = A|Y + E|Y .

Proof. The restriction of an ample divisor to a closed subvariety is ample.
Since Y 6⊂ E we conclude that E|Y is effective. Hence D|Y = A|Y +E|Y is a
decomposition into ample and effective. Furthermore, the stable base locus
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of S• is contained in E, by the assumption that S• contains the ample series
D−E. Hence, there is a k � 0 such that S|Y,k 6= 0. For k divisible enough,

we conclude, by Serre vanishing, that H0(Y,OY (kA)) = H0(X,OX(kA))|Y .
From this identity we deduce the desired inclusion

H0(Y,OY (kA)) ⊆ S|Y,• ⊆ H0(Y,OY (kD)).

�

Since B+(D) =
⋂
D=A+E Supp(E), we recover the fact deduced in [LM09],

that for a big divisor D on X and Y 6⊆ B+(D), the restricted linear series
contains an ample series (satisfies condition (C)).

Now, we are able to prove our first slice formula for t = 0 under the con-
dition that S• has full volume. It will follow as a corollary of the following.

Theorem 4.18. Let S• ⊆ T• be two finitely generated graded linear series
such that vol(S•) = vol(T•) > 0. Suppose furthermore that S• contains the
ample series D−E. Then for all closed irreducible subvarieties Y 6⊆ Supp(E)
we have

volX|Y (S•) = volX|Y (T•).

Proof. From the equality of volumes and the birationality of the maps hS•
and hT• we can conclude, as in Theorem 3.8, that the inclusion R(S•) ⊆
R(T•) gives rise to a globally defined regular map:

Proj(T•)→ Proj(S•).

Due to Lemma 4.15, we arrive at the following commutative diagram:

Y
hT|Y,• //

hS|Y,• ((

Proj(T|Y,•)

j

��
Proj(S|Y,•).

By Lemma 4.17, the restricted series S|Y,• and T|Y,• contain an ample series.
Hence, the maps hT|Y,• and hS|Y,• are both birational. Then we can conclude,

as in Theorem 3.8, that volX|Y (S•) = volX|Y (T•). �

Corollary 4.19. Let X be a normal projective variety. Let S• be a finitely
generated graded linear series corresponding to a finitely generated divisor
D such that vol(S•) = vol(D). Suppose furthermore that S• contains the
ample series D−E. Then for all very admissible flags Y• such that Y1 does
not contain the support of E we have:

∆Y•(S•)ν1=0 = ∆X|Y1(S•).

Proof. From the above theorem we conclude that volX|Y1(D) = volX|Y1(S•),
which implies an equality ∆X|Y1(D) = ∆X|Y1(S•). We have B+(D) ⊆ E
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and therefore Y1 6⊆ B+(D). Hence, we can use the slice formula [LM09,
Theorem 4.2.4] to conclude

∆Y•(S•)ν1=0 = ∆Y•(D)ν1=0 = ∆X|Y1(D) = ∆X|Y1(S•).

�

Now, we want to get rid of the assumption that S• has to be finitely
generated with full volume. However, the price we pay for this reduction is
the additional constraint that the point Yd of the flag be not contained in
the stable base locus B(S•).

Theorem 4.20. Let X be a normal projective variety. Let S• be a graded
linear series containing the ample series D−F . Let Y• be a very admissible
flag such that Y1 is not contained in the support of F and Yd 6∈ B(S•). Then
we have

∆Y•(S•)ν1=0 = ∆X|Y1(S•).

Proof. Let us first treat the case where S• is a finitely generated graded linear
series generated by S1. Let π : X ′ → X be the blow-up of the base ideal bS1 ,
E the exceptional divisor and let S′• := π∗S•−E, as well as DE := π∗D−E.
Consider the decomposition D = A+F into ample plus effective. There is a
k � 0 such that π∗A− kE is very ample, we get an induced decomposition
π∗D = (π∗A − 1/k · E) + (1/k · E + π∗F ). Then it is easy to see that S′•
contains the ample series π∗A− 1/k ·E = π∗D− (1/k ·E + π∗F ). Let Ỹi be

the strict transform of Yi and Ỹ• be the corresponding flag on X̃. Clearly,
the strict transform Ỹ1 is not contained in the support of 1/k ·E+π∗F since
Y1 6⊂ Supp(F ) and B(S•) ⊂ Supp(F ). Now we have

∆Y•(S•)ν1=0 = ∆Ỹ•(S
′
•)ν1=0 = ∆X̃|Ỹ1(S′•)

where the second equality follows from Corollary 4.19. To finish the first
part of the proof we need to show that ∆X̃|Ỹ1(S′•) = ∆X|Y1(S•). We have

∆X|Y1(S•) ⊆ ∆Y•(S•)ν1=0 = ∆X̃|Ỹ1(S′•).

The other inclusion follows from the fact that

volX̃|Ỹ1(S′•) = volX̃|Ỹ1(π∗S•) = volX|Y1(S•)

where the first equality follows from the bijection S′1|Y1
∼= π∗S1 given by

multiplication with the restriction of a defining section sE of E to Y ′1 and
the last equality follows from the property that (π∗s)|Ỹ1 = (π|Ỹ1)∗(s|Y1). This

proves the theorem for S• being finitely generated.
Finally, we want to treat the case when S• is not necessary finitely gener-

ated. We will use Fujita approximation to reduce the statement to finitely
generated graded linear series. Define the graded linear series V•,p by

Vk,p := Im(Symk(Sp)→ Skp).
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From [LM09, Theorem 3.5], we deduce that for each ε > 0, we can find p0
such that for all p ≥ p0

vol(1/p ·∆Y•(V•,p)) ≥ vol(∆Y•(S•))− ε.
Combining this with the easy fact that 1/p ·∆Y•(V•,p) ⊆ 1/p′ ·∆Y•(V•,p′) for
p ≤ p′ we have

∆Y•(S•) =
⋃

p≥0
1/p ·∆Y•(V•,p).

Analogously, we get

∆X|Y1(S•) =
⋃

p≥0
1/p ·∆X|Y1(V•,p).

Combining these two properties leads to

∆Y•(S•)ν1=0 =
⋃

p≥0
(1/p ·∆Y•(V•,p) ∩ ({0} × Rd−1)) =

=
⋃

p≥0
(1/p ·∆Y•(V•,p) ∩ ({0} × Rd−1)) =

=
⋃

p≥0

(
∆X|Y1(V•,p)

)
=

= ∆X|Y1(S•).

Note that in the second equality we used the slice formula for finitely gen-
erated graded linear series. This finishes the proof. �

We can apply the above theorem to the case of a restricted graded linear
series. This enables us to get a generalization of [J10, Theorem B], which
states that for a divisor D and a curve C which is constructed from intersect-
ing d−1 very general very ample effective divisors Ai on X. We have that the
restricted volume of volX|C(D) is equal to the length of ∆Y•(D)ν1=0,...,νd−1=0

where Yi := A1 ∩ · · · ∩Ai.
Corollary 4.21. Let D be a divisor on X and Y• an admissible flag centered
at {x} 6∈ B(D), such that Yi defines a Cartier divisor in Yi+1. Then for
Yi 6⊆ B+(D) we have

∆X|Yi(D) = ∆Y•(D)ν1=0,...,νi=0.

�
The last slice formula does not make any assumptions on the centered

point {x} of the flag, but has more constraints on the divisorial component
Y1 of the chosen flag Y•.

Theorem 4.22. Let S• be a graded linear series that contains the ample
series A = D − E. Let Y• be a very admissible flag such that Y1 is not
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contained in the support of E and is not fixed, i.e. there is a natural number
k ∈ N such that h0(X,OX(k · Y1)) > 1. Then we have

∆Y•(S•)ν1=0 = ∆X|Y1(S•).

Proof. Let S• be the sheafification of S•. Consider the graded linear series T•
corresponding to the divisor D+Y1 defined by the sheaves Sk⊗OX

OX(k ·Y1),
i.e. defined by Tk := H0(X,Sk⊗OX

OX(k ·Y1)). We want to show first that
the restricted linear series T|Y1,• is not equal to zero. This follows from

the fact that there is a non zero section s ∈ H0(X,OX(k · Y1)) which does
not vanish at Y1. Indeed, such a section exists. Let s be a section in
H0(X,OX(k · Y1)) which is not equal to a power of sY1 up to a constant.
Let a be the order of vanishing of s along Y1. By definition of sY1 , we have
a < k and s/s⊗aY1 ∈ H

0(X,OX((k − a) · Y1)) does not vanish at Y1.
Since Y1 is not contained in the support of E, it is in particular not

contained in the stable base locus of S•. Thus, we can pick a non-zero section
s′ ∈ Sk which does not vanish at Y1. Hence, the section s′′ := s⊗k ⊗ s′ ∈
Tk, does not vanish at Y1. This implies that ν1(s

′′) = 0. Moreover, we
can choose a section s ∈ Sk such that ν1(s) > 0. Then for the section

s̃ := s⊗kE ⊗ s ∈ Tk we have ν1(s̃) > 1. It follows from the above results on

e1

e2

∆Y•(S•)

∆Y•(T•)

1

Figure 2. Newton-Okounkov body ∆Y•(T•)

valuation vectors that the slice {1}×Rd−1 meets the interior of the Newton-
Okounkov body ∆Y•(T•). By construction of T•, we have an isomorphism

of sections (T• − Y1)k ∼= S̃k where S̃• is the sheafified graded linear series of
S•. With the help of Theorem 4.13, Corollary 4.14 and Corollary 3.17 we
deduce:

∆Y•(S•)ν1=0 =∆Y•(S̃•)ν1=0 = ∆Y•(T•)ν1=1

=∆X|Y1(S̃•) = ∆X|Y1(S•).

Note that the last equality is due to Theorem 4.18. �
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5. Generic Newton-Okounkov bodies

In this section we want to generalize the discussion in Chapter 5 of [LM09]
to the case of birational graded linear series S•. In order to define Newton-
Okounkov bodies, we have to fix the variety X, the flag Y• and a graded
linear series S•, respectively a big divisor D. It was established in [LM09,
Theorem 5.1] that if we vary all the different data X,Y• and D in a flat
family, the resulting bodies all coincide for a very general choice of these
parameters. This allows to define generic Newton-Okounkov bodies, called
the infinitesimal Newton-Okounkov bodies, which do no longer depend on
the choice of a flag Y•. The proof, which is presented in [LM09], relies
heavily on the fact that D induces a locally free sheaf OX(D). Hence, in
order to generalize their results, we need to make use of the sheafification
process considered in Section 3.5. However, the resulting coherent sheaves
Sk are not locally free, which also leads to technical difficulties to take into
account. Finally, we will also get rid of the flatness hypothesis by using the
theorem of generic flatness [GW, Corollary 10.84].

5.1. Family of Newton-Okounkov bodies. Let us start by fixing the
notation. Let T be a (not necessarily projective) irreducible variety. This
will be our parameter space. Let

πT : XT → T

be a family, such that for all t ∈ T the fibers

Xt := XT ×T k(t)

are projective varieties of dimension d. Let ST,• be a graded linear series
corresponding to a divisor DT on XT which is induced by a graded series
of coherent sheaves ST,k ⊆ OXT

(k · DT ). Furthermore, denote by St,• the
graded linear series which is defined by taking the global sections of the
pulled back sheaves ST,k|Xt

. Additionally, we want to assume that St,• is a
graded linear series corresponding to the divisor Dt := DT |Xt

as well as St,k
are subsheaves of OXt(k ·Dt).

Let Y• be a partial flag of subvarieties

XT = Y0 ⊇ Y1 ⊇ · · · ⊇ Yd
with the following additional properties. Denote the fibers of the flag Y•
over t ∈ T by

Yi,t := Yi ∩Xt.

The additional properties are:

(a) Each Y•,t is an admissible flag on Xt.
(b) The variety Yi+1 is a Cartier divisor in Yi.
To summarize the above discussion, we give the following definition.
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Definition 5.1. Let πT : XT → T , ST,• and Y• be given such that all the
above prescribed assumptions are fulfilled. Then we call (XT , ST,•,Y•) an
admissible family of Newton-Okounkov bodies over T .

Suppose we are given an admissible family of Newton-Okounkov bodies
over T . Then for each t ∈ T , the following Newton-Okounkov body on Xt

is well defined:

∆Yt,•(St,•).

The next lemma will be of help in the last section where we want to construct
examples of admissible families of Newton-Okounkov bodies.

Lemma 5.2. Let p : X → Y be a morphism of varieties. Let S• be a graded
linear series corresponding to a divisor D on Y such that S1 6= {0}. Suppose
that S• is given by taking global sections of a graded series of coherent sheaves
Sk ⊆ OY (k · D). Then the pullback of the graded series of sheaves p∗Sk
are coherent subsheaves of OX(k · p∗D). Furthermore, by taking its global
sections, it defines a graded linear series on X (which we also denote by
p∗S•) if one of the following conditions are fulfilled:

• p : X → Y is flat, or
• p : X → Y is birational with Y normal such that the image of the

exceptional locus is away from Bs(S1).

Moreover, if p is a morphism of projective varieties and satisfies the second
condition, then vol(p∗S•) = vol(S•)

Proof. Let us first suppose that p : X → Y is flat. By the flatness of p,
the sheaf p∗Sk is a coherent OX -module which is contained in p∗OX(kD).
Furthermore, for each non-negative pair of integers k, l the injection Sk ⊗
Sl → Sk+l pulls back to an injection

p∗Sk ⊗ p∗Sl → p∗Sk+l.
Therefore it is easy to see that p∗S• defines a graded linear series.

Now, let p : X → Y be birational, Y normal and suppose there is an open
subset V ⊆ Y such that Bs(Sk) ⊆ Bs(S1) ⊆ V which induces an isomor-
phism p|p−1(V ) : p−1(V ) → V . Now we claim that the induced canonical
morphism

κ : p∗p∗Sk → Sk
is an isomorphism. We will prove this by showing that for each y ∈ Y we
find an open subset Uy such that the induced morphism of sections κ(Uy)
is an isomorphism. For y ∈ V choose Uy ⊆ V . Then the induced morphism
of sections is an isomorphism since p|p−1(Uy) is an isomorphism. If y 6∈ V we

can find an open neighborhood Uy such that Uy ⊆ Y \ Bs(Sk). But on Uy
the coherent sheaf Sk|Uy

is invertible. Hence, we have an isomorphism

Sk|Uy
∼= OY (kD)|Uy

.
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However, for the locally free sheafOY (kD) the canonical morphism p∗p∗OX(kD) ∼=
OX(kD) is an isomorphism. This follows by using Zariski’s Main theorem
and the projection formula. Hence, the canonical morphism κ(Uy) is an iso-
morphism which completes the proof of the fact that κ is an isomorphism.
We have the following commutative diagram of coherent sheaves on Y

p∗p∗Sk
∼= //

� _

��

Sk� _

��
p∗p∗OX(kD)

∼= // OX(kD).

Taking global sections of the left vertical map induces an injection

H0(X, p∗Sk)→ H0(X, p∗OX(kD)).

It remains to prove that the global sections define a graded algebra. We
can proof exactly as before that we have an isomorphism of OY -modules
p∗p∗(Sk⊗Sl) ∼= Sk⊗Sl. Again, we have a commutative diagram of coherent
sheaves on Y given by

p∗p∗(Sl ⊗ Sk)
∼= //

� _

��

Sl ⊗ Sk� _

��
p∗p∗Sl+k

∼= // Sl+k.

Taking global sections of this diagram gives us an injection

H0(X, p∗Sl ⊗ p∗Sk)→ H0(X, p∗Sl+k).
This implies that p∗S• defines a graded linear series. Now we want to

prove that p∗Sk ⊆ OX(p∗D). This can again be checked by case distinction
of open sets. Let U be open such that p|U induces an isomorphism, then
clearly

H0(U, p∗Sk) ∼= H0(p(U),Sk) ⊆ H0(p(U),OX(k ·D)) ∼= H0(U,OY (k · p∗D)).

If U ⊆ X \ p−1(Bs(Sk)), consider the induced morphism p : U → Y \
Bs(Sk) := W . Let bSk

be the ideal sheaf of Sk, then Sk|W = (OX(kD) ⊗
bSk

)|W = OX(kD)|W . But this shows thatH0(U, p∗Sk) = H0(U, p∗OY (kD)).
The equality of volumes follows by taking global sections of the canonical

isomorphism κ which gives an isomorphism

H0(X, p∗Sk) ∼= H0(Y,Sk).
�

Corollary 5.3. Let p : X → Y be a morphism of projective varieties sat-
isfying the properties of the second statement in the above lemma. Let Y•
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be an admissible flag on X and S• be birational graded linear series on Y
which is induced by the graded linear series of sheaves S•. Then

∆Y•(p
∗S•) = ∆Y•(p

∗S•).

Proof. By Theorem 3.16, we can without loss of generality assume that S•
is induced by the graded series of sheaves S•. Since vol(p∗S•) = vol(S•) =
vol(p∗S•) it is enough to show one inclusion. But by construction p∗Sk
contains all the elements p∗s for s ∈ Sk. This shows that ∆Y•(p

∗S•) ⊆
∆Y•(p

∗S•) and proves the claim. �

Remark 5.4. Note that by p∗S• we denote the graded linear series, defined
by considering the pullback of sections of Sk. However, by p∗S• we denote
the graded linear series, given by taking the global sections of the pullback of
coherent sheaves of p∗Sk.

5.2. Partial sheafification of a graded linear series. Let X be a (not
necessarily projective) variety, D a divisor and S a coherent subsheaf of
OX(D). In this paragraph we want to generalize the discussion in [LM09,
Rem 1.4/1.5] to the sheaf S. Let Y• be a partial flag of X of length r
such that Yi+1 is a Cartier divisor in Yi. Analogously as in the definition of
Newton-Okounkov bodies, this partial flag defines a valuation map

νY• : H0(X,S) \ {0} → Zr.

If we fix a tuple σ = (σ1, . . . , σr) ∈ Zr, we can define a subsheaf of S by
setting for each open U ⊂ X such that the induced flag Y•|U is of length
r′ ≤ r

H0(U,S≥(σ)) := {s ∈ H0(U,S) | νY•|U (s) ≥ (σ1, . . . , σr′)}.(2)

Here, the map νY•|U is the valuation map corresponding to the restricted
flag given by Yi|U := Yi ∩ U on U .

For the next theorem it is practical to make the following two abbrevia-
tions:

S(σ1, . . . , σr) :=S|Yr ⊗Yr OX(−σ1Y1)|Yr ⊗Yr · · · ⊗Yr OYr−1(−σrYr)|Yr
S(σ1, . . . , σr+1)|Yr :=S(σ1, . . . , σr)⊗Yr OYr(−σr+1Yr+1).

Note that these sheaves are both defined over Yr. However, by a slight abuse
of notation we will also consider them as sheaves over X without writing
them as pushforwards of the inclusion map Yr ↪→ X.

Theorem 5.5. Let S be a coherent subsheaf of OX(D). Then for each
partial flag Y• of X of length r and σ ∈ Zr there exists a coherent sheaf
S≥(σ) such that (2) holds and it induces a surjective morphism

qr : S≥(σ1,...,σr) → S(σ1 . . . , σr).

Proof. We will prove this using induction on r. Let r = 1. Then sections
of S≥(σ1) are those sections of S which vanish locally along Y1 at least σ1
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times. These are given by the image of the following injection of coherent
sheaves

S ⊗OX
OX(−σ1Y1)→ S.

On an open set U ⊆ X the above map of sections is defined by multi-
plication with a defining section sY1|U of Y1 to the power of σ1. Since
S ⊗OX

OX(−σ1Y1) is a coherent sheaf, this proves the claim for r = 1.

Now let us suppose we have already defined S≥(σ1,...,σr) as a coherent sheaf.
Then we need to construct the sheaf S≥(σ1,...,σr,σr+1). From the construction
of the valuation νY• we get a morphism of coherent sheaves

qr : S≥(σ1,...,σr) → S(σ1 . . . , σr).

We claim that this morphism is surjective. We will prove this using the
same induction on r. For r = 1, this map is just the restriction map to the
closed subvariety Y1

q1 : S≥(σ1) ∼= S ⊗X OX(−σ1Y1)→ S|Y1 ⊗Y1 OX(−σ1Y1)|Y1
and hence surjective. Now, let us additionally assume that qr is surjective.
We have the following natural inclusion

ιr : S(σ1, . . . , σr+1)|Yr ↪→ S(σ1, . . . , σr)

given by multiplication with a defining section of Yr+1 in Yr. Now we define
S≥(σ1,...,σr+1) as the preimage of S(σ1, . . . , σr+1)|Yr under the morphism qr,
yielding the following diagram:

S≥(σ1,...,σr+1)
pr // //� _

��

S(σ1, . . . , σr+1)|Yr� _

ιr

��
S≥(σ1,...,σr) qr // // S(σ1, . . . , σr).

(3)

By the construction of the valuation, the sections of the coherent sheaf
S≥(σ1,...,σr+1) are exactly the ones which satisfy equation (2). It remains to
show that the morphism

qr+1 : S≥(σ1,...,σr+1) → S(σ1, . . . , σr+1)

is surjective. But qr+1 is just the composition of the surjection pr with the
surjective restriction morphism. Hence, the surjectivity follows. �
5.3. Generic Newton-Okounkov Body. Let (XT , ST•,Y•) be an admis-
sible family of Newton-Okounkov bodies over T . In this paragraph we want
to prove that for a very general choice of t ∈ T the Newton-Okounkov bodies
∆Y•,t(Xt,St,•) all coincide. The idea of the proof is to show that for a very
general choice t ∈ T the dimension of the space of global sections

H0(Xt, (Sk,t)≥(σ))
is independent from t. The main issue of the proof is to show that we

have an equality of coherent sheaves (S≥(σ)T,k )t = (St,k)≥(σ). Once we have



33

established this equality, we can use the theorem of generic flatness to deduce
the constancy of the dimension.

We first need some helpful lemmata.

Lemma 5.6. The commutative diagram constructed in (3) gives rise to the
following commutative diagram, where the rows are exact:

0 // S≥(σ1,...,σr+1) //

∼=
��

S≥(σ1,...,σr+1)
pr //� _

��

S(σ1, . . . , σr+1)|Yr� _

ιr

��

// 0

0 // S≥(σ1,...,σr+1) // S≥(σ1,...,σr) qr // S(σ1, . . . , σr) // 0.

(4)

Proof. The only thing left to prove is the identity of the kernels of the
horizontal maps qr and pr. We want to show that the induced map of
sections on the lower row is exact. Let us first assume that U ⊆ X is an
open subset such that the induced flag Y•|U is of length r′ < r. Then

H0(U,S≥(σ1,...,σr+1)) = H0(U,S≥(σ1,...,σr′ )) = H0(U,S≥(σ1,...,σr)).
Furthermore, H0(U,S(σ1, . . . , σr)) = {0}, since it is supported on Yr. This
proves the exactness of sections on such U . Now let U be chosen such
that Y•|U is of maximal length r. We calculate the kernel of qr(U). Let

s ∈ H0(U,S≥(σ1,...,σr+1)). By definition of the valuation and the construction
of the map qr, the section s will be sent to zero. However, if νY•|U (s) =

(σ1, . . . , σr), then it is also clear that the image of s 6= 0 under qr does not

vanish. This shows that ker(qr|U ) = S≥(σ1,...,σr+1). The kernel of pr can be
calculated using diagram (3) as

ker pr = ker qr ∩ S≥(σ1,...,σr,σr+1) = S≥(σ1,...,σr+1).

�

The next lemma seems to be common folklore knowledge. However, as a
matter of a missing reference, we will prove this anyway.

Lemma 5.7. Let S be a noetherian scheme and i : Z → X be a closed
immersion of noetherian S-schemes such that Z is flat over S. Let T be
another S-scheme and iT : Z×S T → X ×S T be the closed immersion given
by the following fiber diagram

Z ×S T
pZ //

iT
��

Z

i
��

X ×S T
pX // X.

(5)

Then for each coherent OZ-module E we have a functorial isomorphism

iT∗p∗ZE ∼= p∗Xi∗E.
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Proof. This question is local on X, T and S. So let us set, without loss of
generality, X = SpecA, T = SpecB and S = SpecR. Then there is an ideal
I ⊆ A such that Z = Spec(A/I). Consider the short exact sequence

0→ I → A→ A/I → 0.

Since A/I is flat over R, we may tensor this sequence by ⊗RB and get

0→ I ⊗R B → A⊗R B → A/I ⊗R B → 0.

Hence, diagram (5) gives rise to the following commutative diagram of
rings

A/I // (A⊗R B)/(I ⊗R B)

A

OO

// A⊗R B.

OO

Let M be the A/I-module such that M̃ = E. Then we have

p∗Xi∗E = (AM ⊗R A⊗R B)∼ = (AM ⊗A B)∼.

Clearly, I ·AM = 0 and from this we deduce (I ⊗A B)(AM ⊗A B) = 0. But
this means that p∗Xi∗E can be viewed as a sheaf over (A ⊗R B)/(I ⊗R B).
So there is a coherent OZ⊗ST -module L such that iT∗L ∼= p∗Xi∗E. Taking
i∗T of this isomorphism, gives us an isomorphism on X ⊗S T

i∗T iT∗L ∼= i∗T p
∗
Xi∗E = p∗Y i

∗i∗E.

Since the canonical morphisms i∗T iT∗L
∼= L and i∗i∗E ∼= E are isomorphisms,

we conclude that L ∼= p∗YE. Taking iT∗ of this isomorphism then gives the
desired result.

�

Lemma 5.8. Let (XT , ST,•,Y•) be an admissible family of Newton-Okounkov
bodies and (σ1, . . . , σr) ∈ Nr. Let furthermore Yi be flat over T for all
i = 1, . . . , d. Consider the natural map

ι : ST,k(σ1, . . . , σr+1)|Yr ↪→ ST,k(σ1, . . . , σr).
Viewing this as a map of coherent sheaves on XT , for t ∈ T the map ι pulls
back via the closed immersion it : Xt ↪→ XT to the natural map

i∗t ι : St,k(σ1, . . . , σr+1)|Yt,r ↪→ St,k(σ1, . . . , σr)
viewed as a morphism of coherent sheaves on Xt.

Proof. We consider the following fiber diagram

Yr,t = Yr ×T k(t) //

��

Yr

��
Xt = XT ×T k(t) // XT
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By the previous Lemma 5.7, the restriction of the coherent sheaf ST,•(σ1, . . . , σr)
on XT to Xt is the same as the restriction of ST,•(σ1, . . . , σr) (viewed as a
sheaf on Yr) to Yr,t and then viewing it as a sheaf on Xt. This means that

ST,•(σ1, . . . , σr)|Xt
= ST,•(σ1, . . . , σr)|Yr,t .

For i ≤ r + 1 we have

(OXT
(−σiYi)|Yr)|Yr,t = (OXT

(−σiYi)|Xt
))|Yr,t = OXt(−σiYi,t)|Yr,t .

Since also (ST,k)|Yr,t = St,k|Yr,t we can follow that

(ST,k(σ1, . . . , σr))|Xt
∼= St,k(σ1, . . . , σr).

Similarly, we have

((ST,k(σ1, . . . , σr+1))|Yr)|Xt
∼= St,k(σ1, . . . , σr+1)|Yt,r

Finally, the restricted morphism i∗t ι is given by multiplication with a defining
section of Yr to the power of σr+1 and hence is injective. �

Lemma 5.9. Let (XT , ST,•,Y•) be an admissible family of Newton-Okounkov
bodies over T . For a very general point t ∈ T we have for every k ∈ N and
σ ∈ Zr

(S≥(σ)T,k )t = (St,k)≥(σ).

Proof. First let us fix the number k and abbreviate S := Sk. We will
prove the lemma using induction on r. Let r = 1. Then we can identify

S≥(σ1)T
∼= ST ⊗XT

OXt(−σ1Y1). Pulling this back to the fiber Xt leads to

(ST ⊗XT
OXT

(−σ1Y1))|Xt
= (ST )|Xt

⊗Xt OXt(−σ1Y1)|Xt
=

= St ⊗Xt OXt(−σ1Y1,t) ∼= S≥(σ1)t .

This proves the lemma for r = 1.
Now we prove the lemma for r+1 assuming that it holds for r. Using the

theorem of generic flatness [GW, Corollary 10.85] we can find open subsets
Vσ,k ⊂ T such that all coherent sheaves occurring in diagram (4) as well as
the cokernels of the vertical morphisms are flat over T . Furthermore, we can
also assume that all the Yi for i = 1, . . . , r + 1 are flat over Vσ,k. Then we
let t be in

⋂
σ∈Zr+1,k∈N Vσ,k. Due to the flatness, the induction hypothesis

and Lemma 5.8, we can pull back the right hand square of diagram (4) and
obtain the following square:

(S≥(σ1,...,σr+1)
T )t // //

� _

��

St(σ1, . . . , σr+1)|Yr,t� _

ιr

��
S≥(σ1,...,σr)t

qr // // St(σ1, . . . , σr).
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The above diagram implies that we get an injection from (S≥(σ1,...,σr+1)
T )t to

the inverse image of St(σ1, . . . , σr+1)|Yr,t under the map qr, which is by con-

struction equal to S≥(σ1,...,σr+1)
t . We also have an isomorphism St(σ1, . . . , σr+1) ∼=

(ST (σ1, . . . , σr+1))t and therefore we get the following commutative diagram

0 // (ST )
≥(σ1,...,σr+1+1)
t

//
� _

ιt
��

(ST )
≥(σ1,...,σr+1)
t

//
� _

ιt
��

(ST (σ1, . . . , σr+1))t

∼=
��

// 0

0 // (St)≥(σ1,...,σr+1+1) // (St)≥(σ1,...,σr+1) // St(σ1, . . . , σr+1) // 0.

We will use a second induction argument on σr+1. Let σ1, . . . , σr as well

as t ∈ T be fixed. Let σr+1 = 0. Then we have S≥(σ1,...,σr,0)t = S≥(σ1,...,σr)t

as well as S≥(σ1,...,σr,0)T = S≥(σ1,...,σr)T . Hence, for σr+1 = 0 the desired
identity follows from the induction hypothesis on r. Now let us assume,
we know that the desired identity of sheaves is true for σr+1. Then we
want to prove it is true for σr+1 + 1. However, this follows by using the
above commutative diagram and the Five lemma. Indeed, by our induction
hypothesis, the middle vertical morphism is an isomorphism. Hence, the
left vertical morphism must be an isomorphism as well. This proves the
claim. �
Theorem 5.10. Let (XT , ST,•,Y•) be an admissible family of Newton-Okounkov
bodies over T . Then for a very general t ∈ T the Newton-Okounkov bodies

∆Yt,•(St,•)

all coincide.

Proof. For a fixed k ∈ N and σ ∈ Nd, there is an open subset Uσ,k such that

S≥(σ)k is flat over Uσ,k due to the theorem of generic flatness. Furthermore,
by the the semicontinuity theorem, we can shrink Uσ,k even more and have
for all t ∈ Uσ,k that the dimension of

h0(X, (S≥(σ)T,k )t)

is independent from t. For a very general t ∈ ⋂k,σ Uσ,k the constancy
of the above dimension holds for every k and σ. Furthermore for t ∈⋂
σ,k Uσ,k ∩

⋂
σ,k Vσ,k, we have that h0(X, (S≥(σ)T,k )t) = h0(X,S≥(σ)t,k ) are in-

depent from t. But for a fixed t ∈ T the dimensions of all the H0(X,S≥(σ)t,k )

completely determine the valuation points of ∆Yt,•(St,•) and thus also the
body ∆Yt,•(St,•) From this observation it follows that for a very general t
all Newton-Okounkov bodies coincide. �

5.4. Examples of generic Newton-Okounkov bodies. In this para-
graph we want to construct some admissible families of Newton-Okounkov
bodies over T , in order to illustrate how to make use of Theorem 5.10 to
get generic Newton-Okounkov bodies. We will give three construction how
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to realize this. The first two examples are families where we just vary the
flag Y•. In the third construction we will also vary the varieties Xt and the
graded linear series St,• in a family. For the sake of simplicity, we assume
in this paragraph that alle the varieties X occuring are smooth.

5.4.1. Variation of the flag. Let S• be a birational graded linear series in
X corresponding to a divisor D and let T be an irreducible (not necessarily
projective) variety. Since S• is birational, we can consider the sheafification

S• of S•. By Corollary 3.17, we may replace S• by S̃• and may therefore
assume that S• is induced by the family of sheaves S•. Consider the variety
XT := X ×C T and the projection

πX : XT → X.

We define the family of sheaves ST,• as the pullback of S• under the pro-
jection πX . Since πX is flat, we can use Lemma 5.2 to see that the family
of sheaves ST,• defines a graded linear series on XT and that the sheaves
ST,k are subsheaves of OXT

(kπ∗XD). In order to get a family of Newton-
Okounkov bodies, it remains to choose an admissible flag Y• of XT . So let
us suppose we have fixed such a flag Y•. For a point t ∈ T , the fiber over
t of XT induces an isomorphism Xt

∼= X. It is not hard to see that the
following composition of morphism is an isomorphism

X ∼= Xt ↪→ X ×C T
πX−−→ X

where the first map is the natural inclusion of the fiber. This shows that
St,• ∼= S• and hence (XT ,ST,•,Y•) defines an admissible family of Newton-
Okounkov bodies.

Example 5.11 (Variation of the point Yd). Let us suppose we have a bira-
tional graded linear series S• on a smooth projective variety X and a partial
admissible flag of smooth subvarieties

Y1 ⊇ · · · ⊇ Yd−1
fixed. Then set T := Yd−1 and consider the variety XT := X ×C T and
the partial flag Y• defined by Yi := Yi ×C Yd−1 for i = 1, . . . , d − 1 and
Yd := Yd−1 which is embedded in Yd−1 = Yd−1 ×C Yd−1 via the diagonal
embedding. Then for each x ∈ T = Yd−1, the flag Yx,• is just the partial flag
Y1, . . . , Yd−1 with the additional component Yx,d = {x}. Hence, Theorem
5.10 implies that for a very general point x in Yd−1 the Newton-Okounkov
bodies ∆{Y1⊇···⊇{x}}(S•) all coincide.

We will now show that for the special case of a surface X and a finitely
generated birational graded linear series this result can be established in a
more direct way and also holds for a general choice of points of the flag. Let
X be a smooth surface, D a big divisor on X and C a smooth curve. Then
for each x ∈ C we obtain an admissible flag X ⊇ C ⊇ {x}. We have the
following description of the Newton-Okounkov body on surfaces (see also
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4.11):

∆C⊃{x}(D) = {(t, y) ∈ R2 : a ≤ t ≤ µ, and α(t) ≤ y ≤ β(t)}.
Without loss of generality we may replace D by D − aC and assume that
C is not contained in the support of the negative part of D. Then α(t) =
ordx(Nt|C) and β(t) = ordx(Nt|C)+(C ·Pt), where Dt := D− tC = Pt+Nt

is the Zariski decomposition. However, it is an easy consequence of [KLM12,
Proposition 2.1] that, the support of all Nt is contained in a finite union of
closed subvarieties. Hence, we can choose a general point x ∈ C, such that
x 6∈ supp(Nt) for each t ∈ [0, µ]. Then ordx(Nt|C) = 0 and α(t) as well as
β(t) do not depend on the general point x ∈ C. This shows that for a general
choice of x ∈ C, the Newton-Okounkov body ∆{C⊇{x}}(D) is independent
from x.

Now let S• be a finitely generated birational graded linear series on X.
Without loss of generality we may assume that it is finitely generated in
S1. Let π : X ′ → X be the blow-up of X along bS1 and let C̃ be the strict

transform of C. Without loss of generality, we may assume that X ′ and C̃
are smooth. If this does not hold we can pass to a resolution of singularities,
without changing the Newton-Okounkov body. By Theorem 3.11, we have
for all x ∈ C̃ \B(π∗S•):

∆{C̃⊇{x}}(π
∗D − E) = ∆{C⊇{x}}(S•).

But the above discussion shows that the left hand side does not depend on
x̃ for a general choice. Hence, also the right hand side does not.

Example 5.12 (Flags of complete intersection of very ample divisors). In
this example we want to consider flags which are defined by complete inter-
sections corresponding to global sections of a fixed very ample divisor. We
will see that the family of such flags induces an admissible flag. Thus we
can define a generic Newton-Okounkov body corresponding to a birational
graded linear series S• on X, which just depends on the choice of a very
ample divisor A.

Consider the variety S′ := P(H0(X,OX(A)))d−1. By Bertini’s Theorem,
there is an open subvariety S ⊂ S′ such that for all ([s1], . . . , [sd−1]) ∈ S′,
the variety cut out by the s1, . . . , si

Yi = {x ∈ X | s1(x) = · · · = si(x) = 0}
for i = 1, . . . , d− 1 are smooth of codimension i in X. Consider the variety

T := {(x, s1, . . . , sd−1) ∈ X ×C S | s1(x) = · · · = sd−1(x) = 0}.
as our parameter space, as well as XT = X ×C T as our total space. Note
that T is irreducible since, it surjects into S which is irreducible and the
fibers Ts are irreducible curves for each s ∈ S.

Then we can define the partial flag Y• by setting

Yi := {(x, y, [s1], . . . , [sd−1]) ∈ XT ⊆ X ×C X ×C S | s1(x) = · · · = si(x) = 0}.
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From the construction it follows that for each t = (y, [s1], . . . , [sd−1]) ∈ T ,
the induced flag Yt,• consists of the smooth varieties Yt,i defined above for
i = 1, . . . d−1 and Yt,d = {y}. Now, we want to show that the Yi are Cartier
divisors in Yi−1. We may without loss of generality replace the variety T by
an open subset U ⊆ T . Then we can assume that T is smooth and all the
Yi are flat over T . Since all the fiber Yi,t for t ∈ T are smooth, we can use
[GW, Proposition 14.57] to deduce that Yi is smooth as well. Hence, all the
Yi can be considered as Cartier divisors in Yi−1.

We have shown that (XT , ST,•,Y•) is an admissible family of Newton-
Okounkov bodies and can therefore use Theorem 5.10 to get a generic
Newton-Okounkov body ∆A(S•) corresponding to the very ample line bun-
dle A and the birational graded linear series S•.

5.4.2. Infinitesimal Newton-Okounkov body. Finally we do not just want to
vary the flag Y• but also the variety X by considering blow-ups at various
points on a variety. So let us fix a birational graded linear series S• on a
smooth variety X. Then if we choose a point x ∈ X, we denote by Xx

the blow-up of X at x. Let E = P(TxX) be the exceptional divisor and
π : Xx → X the corresponding blow-up morphism. Then for each choice of
flags of vector spaces

TxX = V0 ⊇ V1,⊇ · · · ⊇ Vd−1 ⊇ {0}
we get an induced linear flag P(V•) defined by

P(TxX) = E = P(V0) ⊇ P(V1),⊇ · · · ⊇ P(Vd−1) ⊇ {pt}
on Xx starting with E. Hence, we can define

∆F (x,V•) := ∆V•(π
∗S•),

which we call an infinitesimal Newton-Okounkov body (see also [LM09, Sec-
tion 5.2] ). We want to see that this construction varies in an admissible
family of Newton-Okounkov bodies. The following lemma is a first step.

Lemma 5.13. Let X be a smooth projective variety. There is a smooth
projective variety B and a projection p : B → X such that for each x ∈ X
the fiber Bx is isomorphic to Xx which is the blow-up of X at the point x.

Proof. Consider the diagonal closed embedding X ↪→ X ×CX. Let π : B :=
BlX(X ×C X) → X ×C X be the blow-up of the closed variety X inside
X ×C X with respect to the above embedding. We consider B as a family
over X by

B
π−→ X ×C X

p2−→ X

where p2 is the projection on the second factor. Let x ∈ X be a closed point.
Then we make the following abbreviations:

{x} := Spec k(x) X ×C {x} := X ×C X ×X Spec k(x).
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Now we have the following commutative diagram:

B
π // X ×C X

p2 // X

B ×X×X (X ×C {x})
q′

ww

?�

p1

OO

p2 // X ×C {x}
?�

OO

p2 // {x}
?�

OO

Bl(x,x)(X ×C {x})
q

44

. �

77

33

.

Note that the two rightmost boxes are Cartesian and the map q is given
by the universal property of fiber products. We want to prove that the
morphism q is an isomorphism. We will do this by constructing the inverse
map, using the universal property of the blow-up map

Bl(x,x)(X ×C {x})→ X ×C {x}.
This is constructed by showing that the inverse image of (x, x) ∈ X ×C {x}
under the map

p2 : B ×X×X (X ×C {x})→ X ×C {x}
is an effective Cartier divisor. But this inverse image is the same as the
the inverse image of the exceptional divisor π−1(X) ⊂ B under the map p1.
However, one can easily see that that the image of p1 is not contained in the
exceptional divisor π−1(X) and hence, we can pull back the Cartier divisor
by just pulling back the local equation. Consequently, we have defined a map
q′ which fits into the above commutative diagram. Now, by the universal
property of the blow-up and the universal property of the fiber product in
the middle box, we deduce that q′ is an inverse map of q.

Thus, the fiber Bx which is just B ×X×X (X ×C {x}) is isomorphic to
Bl(x,x)(X ×C {x}) which can be interpreted as the blow-up Blx(X) of X in
the point {x}.

�

Let us denote by N := NX/X×X the normal bundle of the diagonal em-
bedding, viewed as a vector bundle over X. The projectivization P(N) is
the exceptional divisor of the blow-up B. Its fibers P(N)x are isomorphic to

the exceptional divisors Ex of Xx. Let T := Fl(N)
p−→ X be the flag bundle

of N over X. By the splitting principle, there exists a filtration of vector
bundles of p∗N = N ×X T :

p∗N = N ×X T ⊃ V1 ⊃ · · · ⊃ Vd−2 ⊃ {0}.
We can also consider the projectivized filtration:

P(N)×X T ⊃ P(V1) ⊃ · · · ⊃ P(Vd−2).
Now we define XT := B×X T , as well as Y1 := P(N)×X T which is a subset

of codimension one in XT since T
p−→ X is flat. Furthermore, we define
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Yi := P(Vi+1). The so defined flag Y• is admissible and has the desired
properties on the fibers over t ∈ T since P(N)×X k(t) is isomorphic to the
exceptional divisor of the blow-up of X in p(t).

In order to define a graded linear series induced by a graded series of
sheaves, we need to shrink T a bit more. Let S• be a graded linear series on
X. Let Z := B(S•) be the corresponding base locus and define U = X \ Z.

Then we consider the base change T ′ := T ×X U
p′−→ U which is an open

subset of T and define XT ′ := XT ×X T ′ = B ×X T ×X U . Now consider
the following composition of morphisms of varieties

XT ′,t′ ↪→ XT ′ → (B ×X U)→ (X ×X)×X U
p1−→ X.

Let S• be the sheafification of S•. We can now use Lemma 5.2 to deduce
that the pullback of S• to XT ′ , which we define as ST ′,•, defines a graded
linear series since it factors as the pullback of a flat morphism composed
with a birational morphism which has the prescribed property of Lemma
5.2, again composed with a flat morphism. Furthermore, the composed
map XT ′,t′ → X is just the blow-up morphism of X in p′(t) ∈ U . Again we
can use Lemma 5.2 to deduce that St,• defines a graded linear series on XT ′,t′

and St,k ⊆ OXx(D|Xx
). Corollary 5.3, then says that the Newton-Okounkov

body of St,• is the same as for the graded linear series π∗S• which is given
by pulling back the global sections. We can also replace the flag Y• with the
flat base change Y ′• := (Y ×X U)•. Then it follows from our discussion that
(XT ′ ,Y ′•,ST ′,•) is an admissible family of Newton-Okounkov bodies over T ′.
Let us summarize what we have shown.

Theorem 5.14. Let X be a smooth variety and S• be a birational graded
linear series. Then for a very general choice of points p ∈ X and a linear
flag V• starting with Ex := P(Tx(X)) ∼= Pd−1, the corresponding Newton-
Okounkov bodies ∆F (x,V•)(S•) all coincide.

�
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[KLM12] Küronya, A., Lozovanu, V.,Maclean, C., Convex bodies appearing as Okounkov
bodies of divisors Advances in Mathematics 229 (2012), 2622-2639
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