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1 GENERAL INTRODUCTION 

 

1.1 RESEARCH APPROACH 

PREVIOUS WORK  

Preliminary work leading to the set-up of this project began in 1996 with the selection of three distinct old 

lentil cultivars (landraces), the multiplication of these cultivars in Göttingen and subsequent cultivation at 

three diverse farms during 1997-2001 to study site-specific adaptation in an on-farm management by 

natural and conscious selection (Horneburg and Becker 1998; Horneburg 2003b; Horneburg and Becker 

2008). Additionally, the outcrossing rate of the three cultivars depending on environmental conditions of 

the year and the location was studied (Horneburg 2006). During 2006-2010, cultivation under natural 

selection continued for five more years at the same three farms. Moreover, selection on extreme seed 

sizes was done in 2000 and repeated after regeneration at one location for six generations.  

For the current project, the initial material, an intermediate generation after five years of site-specific 

natural selection, populations after ten generations of natural selection, and selections for large and small 

seeds from each of the three cultivars are available (FIGURE 1.1).  
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FIGURE 1.1 Natural selection on farm at Reinshof (R), Schönhagen (S), and Tangsehl (T) 
and calibration for large and small seeds at Reinshof in three cultivars. The initial 
material (0), and material in generation 5, 6, and 10 is the source for this study. 
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AIM OF THE STUDY  

The following four main questions are subject of this research and will be examined and discussed by the 

experiments described in the following four chapters (CHAPTER 2, 3, 4, 5) and finally will be addressed in the 

closing chapter of the general discussion and conclusions (CHAPTER 6): 

1. Did natural selection lead to site-specific adaptation? (CHAPTER 2) 

a) How does the phenotypic performance differ between populations selected at three 

farms?  

b) What is the effect of selection when comparing generation zero (the initial population), 

five, and ten in terms of phenotypic performance and site-specific adaptation?  

 

2. Did natural selection alter phenotypic and genotypic variability? (CHAPTER 3) 

a) Did natural selection affect phenotypic diversity differently depending on the site of 

selection?  

b) Did natural selection alter genotypic diversity?  

 

3. What is the importance of seed weight for site-specific adaptation? (CHAPTER 4) 

a) How do specific selections for extreme seed size (large versus small seeds) influence 

yield and other traits compared to the initial population and populations under natural 

selection? 

b) Did the selection for extreme seed size alter genotypic diversity? 

 

4. Was drought stress a significant factor for site-specific population development? (CHAPTER 5) 

Did site-specific natural selection lead to increased drought tolerance? 
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1.2 BIOLOGICAL CHARACTERISTICS, DOMESTICATION AND CULTIVATION OF LENTIL 

Lentil (Lens culinaris Medikus) belongs to the botanical family of Fabaceae, the genus Lens Miller, and the 

tribe Fabeae (syn. Vicieae). Beside the species L. culinaris, the Lens-genus comprises three more sympatric 

diploid (2n = 2x = 14) species: L. lamottei, which was classified to the secondary gene pool, L. ervoides, and 

L. nigricans, which form the most distant (tertiary) gene pool (Wong et al. 2015). After numerous changes 

in the taxonomy within the Lens-genus, there are three subspecies within the species L. culinaris: ssp. 

orientalis, the putative wild progenitor of ssp. culinaris (Ladizinsky 1993; Sarker and Erskine 2006) and ssp. 

odemensis, which form the primary gene pool for L. culinaris ssp. culinaris, the cultivated lentil. According 

to Wong et al. (2015), from classification and characterization within the genus Lens using genotyping-by-

sequencing, L. nigricans was observed most distant from the cultivated lentil in a ‘quaternary’ group, and 

ssp. odemensis was observed to be a sister clade to L. lamottei and thus suggested to be classified to the 

secondary gene pool. The Lentil Genome v1.2 is available in a pre-release form and its predicted haploid 

genome size is 4032 Mb (Lentil Genome Pre-Release; Foyer et al. 2016; Munoz et al. 2017). 

Lentil is an annual south-east-Mediterranean cool-season food legume crop. It shares the history of 

domestication with the ancient cereals einkorn and emmer as well as with barley and peas originating 

from the Fertile Crescent of the Near East, where it has been domesticated more than 2000 years BC (Reda 

2015; Harlan 1992). Oldest archeological remains of lentils where found in Greece and Syria which were 

dated back from 7,500 to 11,000 BC (Sonnante et al. 2009). 

Lentil is autogamous with a variable degree of outcrossing, as observed by Horneburg (2006) using the 

dominant ‘orange cotyledons’ as a marker, with the range of 0.06% to 5.12% depending on cultivar, year, 

and location. Outcrossing rates for Turkish and Greek landraces and Chilean populations were calculated 

with 2.2%, 2.9%, and 6.6%, respectively, from the segregation of progenies from heterozygote plants for 

co-dominant isozyme loci (Erskine and Muehlbauer 1991). 

The economic importance of lentil cultivation in Central Europe decreased during the last century, 

although it was grown traditionally on marginal agricultural land mainly for self-supply until the 1950s 

(Horneburg 2003a). Small to medium scale production of lentil in Europe can still be found in the 

Mediterranean regions of France, Spain, Italy and Greece (Piergiovanni 2000; FAOSTAT 2014). At the global 

scale, total production increased during the last years and reached 4.8 million metric tons in 2014 

(FAOSTAT 2014). Main production worldwide takes place in Canada with nearly two million tons followed 

by India and Turkey with 1.1 and 0.3 million tons, respectively (FAOSTAT 2014). 

Lentil production in Germany did not vanish due to reduced consumption, rather due to its unstable yield 

and limited outlet marked and thus became less attractive for modern farming. Due to rainy summers, 

lentils in Central or Northern Europe are grown in intercropping systems with cereals to obtain satisfying 

seed quality, which may not be attractive for large-scale, industrialized growing systems, but is certainly 

applied in organic farming, where the product often is locally commercialized (Wang et al. 2012; Gruber 

et al. 2011). A new approach for a pure leguminous intercropping system with pea and lentil is currently 

under investigation for its practicability (University of Hohenheim 2016). 

Lentil is generally adapted to warm and relatively dry climates. It can be grown in dryer areas than other 

pulse crops like faba bean or chickpea, with an annual rainfall as little as 250 mm (Materne and Siddique 

2009). Materne and Siddique (2009) summarized three major climatic regions of the world, where lentil is 
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grown: (1) West Asia, North Africa, Australia, and the Mediterranean, where it is grown as a winter crop, 

growing slowly after sowing and as temperatures rise in spring to early summer, the crop rapidly develops 

and ripens before temperatures are too high; (2) the sub-tropical regions of India and neighboring 

countries, where it is sown in winter after the monsoon rains, but temperatures are higher; and (3) at high 

altitude and/or latitude (central Turkey, USA, Europe, Canada), where it is sown in spring on stored 

moisture from snow melt or rainfalls in winter or early spring and grows when temperatures are warm 

and days are long.  

Historically, traditional growing areas for lentil in Germany were on dry, limestone residual marginal soils 

as found in the low mountain range of central and southern Germany (Becker-Dillingen 1929). In the 

Swabian Alb, one of these typical regions in the south-west of Germany, an old landrace (Späths Alblinse) 

underwent its revival in 2001, when an association of organic farmers developed a production system with 

a centralized cleaning, packing, and marketing unit, and in this way became the most significant lentil 

producers until today in Germany (John 2015). 

1.3 ON-FARM MANAGEMENT OF PLANT GENETIC RESOURCES 

Plant genetic resources (PGR) are defined as the entire genetic material available in a species for plant 

breeding (Becker 2011). Three genepools are usually distinguished in this context. The primary genepool 

is defined as the species itself and closely related subspecies under the precondition of sexual compatibility 

to perform crossings without specific biotechnological methods. The secondary genepool includes 

genetically more distant species or subspecies, where gene transfer by conventional crossing is difficult 

and is challenged by weak performance of the offspring, low fertility, and/or low seed set. Species that 

can be used in plant breeding only with the help of technical procedures, e.g. embryo rescue and tissue 

culture, form the tertiary genepool of a crop species. 

Within the primary genepool, exotic material, such as wild relatives, exotic breeding material, e.g. breeding 

lines from different countries and climate zones, and adapted breeding material can be differentiated. The 

adapted material is the most frequently used source for the development of new cultivars by breeders 

and include modern breeding lines and old obsolete cultivars, often referred to as ‘landraces’. Zeven 

(1998) reviewed various definitions for ‘landrace’ and suggested the following: “an autochthonous 

landrace is a variety with a high capacity to tolerate biotic and abiotic stress, resulting in a high yield 

stability and an intermediate yield level under a low input agricultural system”. Another more precise 

definition is given with “a landrace is a dynamic population(s) of a cultivated plant that has historical origin, 

distinct identity and lacks formal crop improvement, as well as often being genetically diverse, locally 

adapted and associated with traditional farming systems” by Camacho Villa et al. (2005). Taking the 

suggestions and discussions of multiple authors into account, including the aforementioned, the following 

definition was suggested at the second meeting of the On-farm Conservation and Management Taskforce 

of the European Cooperative Group on Genetic Resources (http://www.ecpgr.cgiar.org/working-

groups/on-farm-conservation/): “A landrace of a seed-propagated crop is a variable population, which is 

identifiable and usually has a local name. It lacks ‘formal’ crop improvement, is characterized by a specific 

adaption to the environmental conditions of the area of cultivation (tolerant to the biotic and abiotic 

stresses of that area) and is closely associated with the uses, knowledge, habits, dialects, and celebrations 

of the people who developed and continue to grow it.” (cited in Veteläinen et al. 2009). 
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With the development of scientific plant breeding and the industrialization of agriculture, modern cultivars 

were developed and released by public or private institutions or companies and professional growers do 

rarely maintain their own genetic resources and varieties anymore. The ‘modern high yielding’ cultivars 

were distributed and planted covering a large area and consequently triggered the discussion on genetic 

diversity in agriculture (Schnell 1980; Becker 2000). Since then, concepts for safeguarding PGR are widely 

discussed (Berthaud 1997). A special interest for locally adapted, ‘traditional’ varieties (landrace, farm-

race, German: Landsorte, Hofsorte) can be found in the organic community, where these varieties or 

populations are often maintained and used as ‘open-access’ genetic resources that can be further 

improved on-farm by breeding as ‘true-to-seed’ varieties. In organic agriculture, low-input farming, and 

small scale (self-sufficient) farming or horticulture diversity is appreciated and often trumps properties of 

modern commercial (hybrid, sterile) cultivars, e.g. uniformity and higher yields. 

POPULATION DEVELOPMENT AND SITE-SPECIFIC ADAPTATION 

In situ (‘dynamic’) maintenance of PGR allows for evolutionary adaptation to site-specific conditions, as 

the material is constantly kept under cultivation, in contrast to ex situ (‘static’) conservation, e.g. in gene 

banks, with infrequent multiplication of the accessions during long-term storage. There are different 

approaches for such a dynamic conservation of PGR (Bretting and Duvick 1997; Hammer 2004; Goldringer 

et al. 2001a).  

On-farm conservation refers to in situ conservation of PGR by using them in current agricultural production 

systems and in this way enables evolutionary development and adaptation to the environment and 

contributes to the improvement of agro-biodiversity and cultural diversity, the availability of old obsolete 

cultivars, landraces, or neglected species, and the maintenance of traditional knowledge (Becker et al. 

2002). One of the latest definitions of on-farm conservation was formulated by Veteläinen et al. (2009) as 

‘the management of genetic diversity of locally developed crop varieties (landraces) by farmers within 

their own agricultural, horticultural or agri-silvicultural systems’. Combining the maintenance of PGR on-

farm and the use of evolutionary, site-specific adaptation effects, one could think about including multiple 

farms covering a large range of environmental conditions. In the sum of all farms, genetic diversity may 

not be only maintained, but the material may also be improved by adaptation or even further diversified 

compared to the initial material (Jana and Khangura 1986; Horneburg and Becker 2008).  

Studies on site-specific adaptation by natural selection are available using a similar approach with a 

different kind of material. Composite cross populations (CCP, German: Evolutionsramsche) from a complex 

crossing scheme were generated to combine diverse parental components, which could be landraces, 

breeding lines, cultivars, or a mixture of all, to a population of segregating, heterozygous, and 

heterogeneous individuals. Such a population is then given to diverse farms to develop locally adapted 

‘modern landraces’ (or farm-races) by ‘evolutionary plant breeding’. This approach was suggested by 

Suneson (1956) working with barley populations and continued by Allard et al. (1972). From these studies 

Allard (1990) concluded that evolutionary processes can be effective to increase the frequency of 

genotypes with multiple resistance loci against pathogens in a variable population. The concept was 

further adopted in the area of organic plant breeding research and dynamic management of wheat 

populations (Goldringer et al. 1998; Goldringer et al. 2001a; Goldringer et al. 2001b), studying genetic drift 

and selection (Enjalbert et al. 1999), the evolution of resistances (Paillard et al. 2000), and the genetic 

differentiation in response to different climatic conditions (Goldringer et al. 2006; Rhone et al. 2008). From 
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the studies in a barley composite cross population in England, Ibrahim and Barrett (2001) describe 

significant variation and evolutionary changes and suggest the creation of CCPs from various landraces as 

“dynamic reservoirs of genetic variation” and a good basis for the establishment of national breeding 

programs e.g. in developing countries. For low input systems and organic agriculture in Europe, 

evolutionary plant breeding from composite cross wheat populations was studied in England (Phillips and 

Wolfe 2005; Wolfe et al. 2006; Wolfe et al. 2008) and in Germany by Finckh (2007), Finckh et al. (2009), 

(Brumlop and Finckh 2013), and (Weedon et al. 2015). They found a positive development in yield and 

grain quality, diversity in resistances to brown rust, and a good frost survival ability.  

GENETIC DIVERSITY: THE PREREQUISITE FOR DEVELOPMENT 

Genetic diversity is the basis for the development of new cultivars adapted to changing environmental 

conditions and changing requirements in crop production, in the food industry, and for the consumers. 

Thus, maintenance of various PGR and their inherent genetic diversity are an essential resource for long-

term food security.  

Autogamous species are restricted in their intra-population genetic diversity and are, on the one hand, 

prone to become genetically impoverished by selection and/or gene drift. On the other hand, if selection 

is positive, it is more efficient and faster compared to selection in allogamous species. Despite the 

relatively low outcrossing rate in lentil, highly adapted genetic material is present in various regions and 

was collected and used for research and breeding programs at the International Center for Agricultural 

Research in Dry Areas (ICARDA) in Syria (Erskine et al. 1989; Erskine 1997). Research in lentil advanced 

profoundly with the work of William Erskine, formerly working as a lentil breeder, leader of the Germplasm 

Improvement Program, and Assistant Director General (Research) at the ICARDA, and currently holding 

the position of the director of the Centre for Plant Genetics and Breeding at the University of Western 

Australia, contributing numerous publications on genotypic variation in PGR of lentil from the 1980s until 

today (Erskine 1983; Erskine et al. 1985; Erskine et al. 1989; Erskine and Muehlbauer 1991; Erskine 1997; 

Erskine et al. 1998; Erskine et al. 2011a; Sarker et al. 2005; Erskine et al. 2011a; Erskine et al. 2011b).  

In the past, landraces of lentil supported farmers in some harsh climatic regions, e.g. in Morocco, Ethiopia, 

or Bangladesh, therefore the understanding of “the adaptation […] is basic to its effective improvement 

by breeding” and many released cultivars were selected directly from landraces in the ICARDA germplasm 

collection (Erskine 1997). Obviously, genetic diversity varies strongly depending on the origin and type of 

the material and its respective intensity of cultivation and selection by farmers and/or breeders. Very high 

levels of genetic diversity in landraces from Mediterranean regions of Greece and Turkey and three major 

genetically different groups based on their geographical origin among commercial cultivars from Australia, 

Canada, USA, and breeding lines from the ICARDA were identified (Lombardi et al. 2014). Genetic diversity 

and resources of lentil can still be found on farms, e.g. in central Italy, where Negri (2003) documented 33 

lentil landraces, most of them still of economic importance for the farmers and sold in the neighboring 

town or in the wider markets.  

IMPORTANCE OF SEED SIZE FOR NATURAL SELECTION 

General biological considerations on the effect of natural selection on seed weight and seed size would 

suggest a reduction in the long term, as it could be of advantage for the plants reproduction, especially 

under stress, to develop smaller and lighter seeds most efficiently. The number of seeds may stay the same 
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or increase under favorable conditions for such populations under long-term natural selection. On the 

other hand, large seeds may ensure the survival and regeneration of species, as more resources of a larger 

embryo imply faster seedling development, better competitive ability and better access to resources 

(Sadras 2007). In ecology, seed size effects are widely discussed in terms of adaptation by stabilizing 

selection and the size-versus-number trade-off (Silvertown 1989; Haig 1989; Sadras 2007). For populations 

of wild plant species, Silvertown (1989) claims, due to low heritability and large plasticity (genotype x 

environment interaction) found for many species, “constancy of mean seed size may be due to 

developmental canalization to a size set by previous selection rather than a continuing process of 

stabilizing selection”. Whereas Haig (1989) dissents in his letter to the aforementioned article and argues 

that “characters closely related to fitness are expected to have low heritabilities because of the rapid 

elimination of maladaptive variation” and thus, “the absence of significant genetic variation in wild 

populations is strong evidence for the continuing action of natural selection”. However, both scientists 

state a different situation observed for crop plants, where “plants (are) grown under controlled conditions 

where phenotypic plasticity is limited” (Silvertown 1989) and “high heritabilities in some crop species 

prove that genetic variation for seed size is possible” (Haig 1989).  

Studies in lentil  have shown effects of seed size e.g. on water uptake, germination, and seedling growth 

(Al-Karaki 1998; Hojjat 2011), yield and yield components (Bicer 2009), and adaptation to temperature and 

rainfall (Erskine 1996). Erskine et al. (1985) studied 24 genotypes ranging in seed weight from 26.1 to 69.4 

mg and calculated a broadsense heritability for seed weight of h² = 0.98 and found positive genetic 

correlations of seed weight with seed yield (0.468) and cooking time (0.919) and a negative correlation 

with protein content (-0.621). Because seed size parameters are important parameters for the end uses 

and the processing industry, Fedoruk et al. (2013) and Fedoruk (2013) studied the heritability of seed size 

parameters, which was relatively high 0.92, 0.94, and 0.60 for seed diameter, plumpness and thickness, 

respectively, and mapped quantitative trait loci (QTL) for these traits to be used in lentil breeding.   

ADAPTATION TO DROUGHT STRESS CONDITIONS BY NATURAL SELECTION 

On-farm management of plant genetic resources allows for local adaptation e.g. to pedoclimatic 

conditions by making use of genotype by environment interaction during conscious and/or natural 

selection (Simmonds 1991; Horneburg and Becker 2008). Genetic adaptation may have various causes, 

e.g. differences in the tolerance to biotic and/or abiotic stresses, which may differ between the selection 

sites. Temporal limitations in water availability can occur due to a low water holding capacity of the soil 

e.g. on sandy soils. Drought stress on lentil has different severity on biomass and grain yield depending on 

the growth stage, causing reduced vegetative growth and limiting ramification in early stages and 

significant grain yield reduction when occurring during flowering, grain filling, or maturity (Idrissi et al. 

2015). Given a certain initial diversity, drought tolerance may be improved for populations developed by 

natural selection under conditions with frequent water scarcity. In this way, in the long term, on-farm 

management of plant genetic resources may be a ‘pre-breeding’ approach for crop adaptation to changing 

climatic conditions. Studying rice varieties under static and dynamic management, Tin et al. (2001) 

observed later flowering and maturity for those under dynamic conservation and reduced drought stress 

tolerance compared to ex situ populations due to lower drought stress pressure in the modern agronomic 

management compared to the conditions when these varieties were developed.  
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2 PERFORMANCE OF POPULATIONS UNDER SITE-SPECIFIC NATURAL SELECTION 

 

2.1 INTRODUCTION 

Today there is general agreement on the importance of plant genetic resources to safeguard future 

productivity (Hammer 2004). In situ conservation strategies may allow for evolutionary adaptation to site-

specific conditions and thus increase the future value of genetic resources, rather than preserving the 

status quo ex situ e.g. in gene banks. With the intensification and industrialization of agriculture, the seed 

market also became a professional industry providing modern professional farmers and gardeners of the 

so called industrialized western countries with modern high yielding cultivars. The collection of samples 

from landraces before they are replaced by commercial cultivars to preserve in gene banks is essential. 

Nevertheless, genetic erosion in ex situ collections was demonstrated for barley landraces by Parzies et al. 

(2000) and for cabbage (Brassica oleracea) by van Hintum et al. (2007). Rates of genetic erosion in Italy 

were calculated by Hammer and Laghetti (2005) and were shown to be higher for cereals than for pulses. 

Consequently, different concepts of a dynamic conservation of plant genetic resources are discussed and 

reviewed for its potential for site-specific adaptation and suitability for practical application in agriculture 

and horticulture (Bretting and Duvick 1997; Goldringer et al. 2001a; Hammer 2003; Hammer 2004). In situ 

management strategies of plant genetic resources should be regarded as valuable complementary 

methods to ex situ conservation. It depends on the species and their utilization, which of the strategies for 

conservation may be preferred (Berthaud 1997). 

On-farm management of plant genetic resources is the ‘in situ conservation practice’ for crop plants and 

is widely applied in organic farming, on small scale farms, in home gardens, and on traditional farms of the 

developing world, where landraces are still grown. The main goals of on-farm management are the 

enhancement of crop biodiversity and the reduction of genetic erosion by improving the availability of 

neglected species and old cultivars and maintaining the cultural diversity and heritage of cultivated plant 

species in agriculture and horticulture (Negri et al. 2000; Becker et al. 2002). Wood and Lenné (1997) 

reviewed the evidence for the assumptions responsible for numerous publications promoting on-farm 

management of plant genetic resources, in response to the ‘Convention on Biological Diversity’ in 1992, 

partly based on misconceptions or undifferentiated alarmism. They proposed as an agenda for future 

research to include varietal (population) characterization and evaluation, selection and natural selection, 

the assessment of the genetic base and the entitative existence of local adaptation. 

In the case of autogamous species, the effect of site-specific natural selection and random genetic drift in 

a diverse population would be expected to have a larger effect compared to a population of an allogamous 

species due to the limited recombination rate. Thus, possible adaptive selection to a specific environment 

would be achieved relatively faster given that diverse genotypes are present in the population. For wild 

populations of oats with an outcrossing rate of 1-12%, Imam and Allard (1965) found geographical 

differentiation between and significant variability within populations and postulated that “The genetic 

system of wild oats thus appears to combine much of the flexibility of outbreeders with some of the ability 

of inbreeders to maintain specific highly adapted genotypes” leading “to the success […] in occupying 

complex habitats”. Harlan and Martini (1938) studied mixtures of barley varieties at several locations 

during a maximum of twelve years and found “a rapid elimination of the less adapted sorts”. Studies on 
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evolutionary changes in composite cross populations of barley were done in England (Ibrahim and Barrett 

2001). In wheat populations under dynamic management in France, temporal evolution, selection, genetic 

drift, and differentiation in response to local conditions were studied (Enjalbert et al. 1999; Goldringer et 

al. 2001a; Goldringer et al. 2001b; Goldringer et al. 2006). 

Another aspect of on-farm maintenance of diverse populations (e.g. composite cross populations) is the 

conservation of disease resistance genes and the use of co-evolutionary adaptation effects in the host-

pathogen-relationship (de Smet et al. 1985; Allard 1990; Paillard et al. 2000; Finckh et al. 2000; Finckh 

2007; Finckh 2008; Finckh et al. 2009). Furthermore, for low-input and organic farming, on-farm 

management and selection, e.g. in participatory plant breeding programs, can help to meet the needs of 

growers in special, marginal environments, that are often overlooked by conventional breeders (Murphy 

et al. 2005; Wolfe et al. 2008; Lammerts van Bueren et al. 2011; Rivière et al. 2013). 

Ongoing research on population development and adaption of a diverse composite cross population of 

wheat grown at several locations across Europe is done at the University of Kassel in Witzenhausen (Finckh 

et al. 2009; Brumlop and Finckh 2013; Weedon et al. 2015). Another project with barley is carried out at 

the Julius-Kühn-Institut in Quedlinburg, Germany, in a barley population developed by multi-parent 

advanced generation intercross (MAGIC, as suggested by Cavanagh et al. (2008)) to be grown subsequently 

for at least eight years at twelve contrasting locations (Léon et al. 2008; Frese et al. 2012; Frese and 

Germeier 2016).  

On-farm projects to explore the effect of local adaptation involving lentil are not known to us. Studies on 

phenotypic and genetic variation and environmental effects on lentil are known from the Mediterranean 

area (e.g. Erskine and El Ashkar 1993, Siddique et al. 1998, Sarker et al. 2007, Sarker et al. 2010). The 

response to conventional and organic farming practice on various lentil varieties has been studied by 

Vlachostergios and Roupakias (2008) and observed interaction of grain yield and the farming practice 

suggesting breeders to test their material under both conditions. Lentil is a neglected leguminous crop in 

Germany, although its seed is still a popular and traditional food. 

In this chapter, we examine the effect of natural selection for site-specific adaption. We compare the 

performance of the three populations per cultivar at the three sites of selection to answer the question, 

whether differentiation in agronomical, phenological, and morphological traits can be observed for 

populations selected at three contrasting farms for ten generations. Additionally, we compare the initial 

population with populations after five and after ten generations of natural selection to study their 

temporal development.  
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2.2 MATERIALS AND METHODS 
 
PLANT GENETIC MATERIALS  

Three old lentil cultivars were selected and multiplied in Göttingen in 1996 after a screening of multiple 

accessions of central European origin maintained at the gene bank of the Institute of Plant Genetics and 

Crop Plant Research (IPK) in Gaterleben, Germany (Horneburg and Becker 1998; Horneburg and Becker 

2008). During maintenance for 38 to 47 years, irregular regeneration was done 8 to 17 times (Horneburg 

2003b). The origin, location and frequency of regeneration for the three cultivars are documented by 

Horneburg (2003b). Cultivar ‘Pisarecka Perla’, kept under accession coding LENS 122, has a mean seed 

weight of approximately 60 mg with visible variation in seed size and color ranging from large beige seeds 

to smaller partially black spotted or striped seeds. It has relatively large, white flowers and a half erect 

growth and relatively strong, stiff, lignified branches. Cultivar ‘Schwarze Linse’ (LENS 106) has a mean seed 

weight of approximately 25 mg and small, black, round seeds, erect growth with less strong branches, and 

small violet flowers. Cultivar ‘Gestreifte Linse’ (LENS 103) has an average seed weight of approximately 37 

mg, green-black-patterned seeds, overhanging growth due to particularly long side-shoots, and white 

flowers.  

Based on the passport data is was not possible to differentiate between landraces or cultivars. Thus, when 

referring in general to one of the three cultivars, we will use the term ‘cultivar’ and the abbreviations PP, 

SL, and GL for the cultivar names. Whereas, within a specific cultivar, when comparing the initial material 

and material after several years under natural selection, it will be referred to as ‘population’. The 

generations under natural selection will be assigned with 0, 5, and 10.  

Seeds from the multiplication of the initial populations in Göttingen 1996 were given to three farms and 

repeatedly grown from ‘farm-saved-seeds’ for five years (1997-2001). The number of sown seeds at the 

farms varied. In 1997, 100 seeds (25 plants m-²) were sown, in 1998 it was 400 seeds (66 plants m-²), and 

approximately 300 seeds (100 plants m-²) in 1999 and 2000. In 2001, larger plots of 5 m² with 140-150 

seeds m-² were sown in three replications for the first phenotypic evaluation in the fifth generation of 

natural selection (Horneburg 2003b; Horneburg and Becker 2008). Cultivation at the three farms 

continued from farm-saved-seeds in 2006 until 2010 for another five generations under natural selection 

with 500 seeds each year on 5 m² plots. 

From the seeds harvested in 2010 (10th generation) at the selection sites, the seeds from 2001 (5th 

generation), and seeds stored at the IPK Gatersleben from the last regeneration of the initial material in 

1996 in Göttingen, multiplication plots were conducted in 2014 at Reinshof in low planting density under 

a rainout shelter to reduce the effect of natural selection to a minimum and to ensure optimal seed quality 

by protecting the plants from rain during ripening. In this way, we were able to obtain enough seed 

material of good and equal quality for all populations to establish the experiments in 2015 and 2016. 

Planting of the multiplication plots was done with 80 seeds m-² on a 6 m² plot per population (minimum 

480 seeds) in four rows with 35 cm spacing between rows and approximately 5 cm plant to plant distance 

within rows. To account for the lower average seed yield per plant in Pisarecka Perla compared to the 

other cultivars, the ‘initial population’ of Pisarecka Perla was multiplied in two replications (two plots with 

a total of minimum 960 seeds) to guarantee for enough seeds from the multiplication. The rainout shelter 
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was covered on 15th of July, one month before the harvest of the complete plots when completely ripe on 

18th of August. 

LOCATIONS AND CLIMATIC CONDITIONS 

The farms Reinshof, Schönhagen, Tangsehl, and Darzau are situated in central and northern Germany and 

differ in their pedoclimatic conditions (TABLE 2.1). The three sites of selection from 1997 until 2010 were 

Reinshof, Schönhagen, and Tangsehl. For our field tests in 2015 and 2016, we switched 4km north of 

Tangsehl to the farm Darzau. Reinshof is the experimental station of the Georg-August-University at the 

southern periphery of Göttingen. It is characterized by a very fertile, deep loess soil in the valley of the 

river Leine. In Schönhagen, 30 km south Göttingen, lentil were grown until 1958, and it has poor, shallow, 

and stony calcareous clay soil (Horneburg 2003a; Horneburg and Becker 2008). Tangsehl and Darzau are 

situated approximately 200 km north of Göttingen near the river Elbe and have slightly acid and very sandy 

soils with flint stones. Locations in Schönhagen, Tangsehl, and Darzau are managed by organic (bio-

dynamic) standards, the experimental field plots at Reinshof were conducted on fields under conventional 

agricultural management without application of fungicides and mineral fertilizer. 

In the following, for the sake of convenience, we will refer to ‘Tangsehl’ as both the ‘selection site’ and the 

‘testing site’. The locations will be abbreviated with R, S, and T. 

Climatic conditions measured by the long-term mean temperature and the annual precipitation differ 

slightly between the locations, presumably mostly influenced by their altitude and latitude (TABLE 2.1). 

Compared to 2015, there was considerably higher temperature and higher precipitation during May and 

June at all locations in 2016 (TABLE 2.2). Season length differs between locations with about three weeks 

between Tangsehl and Schönhagen (TABLE 2.3). 

TABLE 2.1 The selection and test sites (updated from Horneburg (2003b)) 

 Reinshof Schönhagen Tangsehl Darzau 

Geograph. coordinates 51°29’50”N / 
9°55’53”E 

51°21’2”N / 
10°0’44”E 

53°10’31”N / 
10°52’50”E 

53°12'9"N / 
10°52'40"E 

Altitude 150 m 330-360 m 40 m 30 m 

Annual precipitation 651 mm a) 773 mm b) 617 mm c)  713 mm d) 

Long-term mean temp. 9.2 °C a) 8.1 °C e) 8.6 °C f) 9.2 °C d) 

Farming strategy conventional bio-dynamic bio-dynamic bio-dynamic 

Preceding crop  wheat, sugarbeet oat, grass - grass, rye 

Soil type Loess 
deep loam 

Leptosol 
shallow clay on 

limestone 

Podsol 
glacial sand with 

flint stones 

Cambisol 
glacial sand with 

flint stones 

Soil value (Ackerzahl) 82-90 23-30 33-36 - 

Humus content [%] 2.0 4.2 1.8 1.1 
pH-value (CaCl)  7.0 7.5 5.0 4.9 
P2O5 [mg 100g-1 soil]  5.2 1.2 3.8 9 
K2O [mg 100g-1 soil]  20 17 14 3 
a) Long-term mean (1981-2010) of the meteorological station Göttingen, Deutscher Wetterdienst. 
b) Long-term mean (1981-2010) of the meteorological station Bad Sooden, Allendorf, Deutscher Wetterdienst 
c) Long-term mean (1989-1999) at the farm station Tangsehl 
d) Long-term mean (1981-2010) of the meteorological station Wendisch-Evern, Deutscher Wetterdienst 
e) Long-term mean (1981-2010) of the meteorological station Leinefelde, Deutscher Wetterdienst 
f) Long-term mean (1961-1990) of the meteorological station Lüchow, Wendland, Deutscher Wetterdienst 
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TABLE 2.2 Temperature and precipitation at the test sites from April – August 2015 and 2016 
 Year Apr May Jun Jul Aug Mean [°C] / Sum [mm] 

Reinshof         

Temperature [°C] a) 2015 8.4 12.2 15.4 18.7 19.6 14.8 

 2016 8.1 13.8 17.2 18.6 17.9 15.1 

Precipitation [mm] a) 2015 46.5 30 23.1 91 113.7 304.3 

 2016 28.4 41.4 113 43 40.5 266.3 

Schönhagen         

Temperature [°C] b) 2015 7.9 11.5 14.7 18.4 19.6 14.4 

 2016 7.3 13.0 16.5 18.2 17.6 14.5 

Precipitation [mm] c) 2015 45.2 24.5 22.9 66.3 120.8 279.7 

 2016 34.9 36.3 118.6 43.3 16.6 249.7 
Tangsehl        

Temperature [°C] d) 2015 8.5 12.0 16.0 18.9 19.8 15.0 

 2016 8.3 15.5 18.4 19.3 17.8 15.8 

Precipitation [mm] e) 2015 26.2 25.8 26.0 99.9 94.0 271.9 

 2016 50.9 41.1 76.8 50.1 34.3 253.2 
a) Data source: Meteorological station Göttingen, Deutscher Wetterdienst (www.dwd.de/WESTE) 
b) Data source: Meteorological station Leinefeld, Deutscher Wetterdienst (www.dwd.de/WESTE) 
c) Data source: Meteorological station Bad Sooden-Allendorf, Deutscher Wetterdienst (www.dwd.de/WESTE)  
d) Data source: Meteorological station Lenzen (Elbe), Deutscher Wetterdienst (www.dwd.de/WESTE)  
e) Data source: Meteorological station Bleckede-Walmsburg, Deutscher Wetterdienst (www.dwd.de/WESTE)  

 

PHENOTYPING 

Field plots including the initial population and the populations after five and ten generations from the 

three locations (1×3 + 3×3 + 3×3 = 21; and additional two selections per cultivar for extreme seed size 

evaluated separately in Chapter 4) were sown in a split plot design (main plot = cultivar) with four 

replications. Plots were sown between 12-20 April 2015 and 2016 at all three locations with 100 seeds     

m-², six rows with a row to row distance of 24 cm and a plot size of 5 m² (1.5 × 3.35 m).  

Within the central part of the 5 m² field plots, the inner four of the six rows were pitched with sticks for a 

length of one meter and the number of plants in these rows within that length were counted for field 

emergence two to three weeks after sowing. At harvest, plants carrying pods were recounted within the 

same area of the plots to get a measure for the number of plants contributing to yield and to calculate a 

subsequent survival rate. 

As morphological marker, hypocotyl color, as it is visible after field emergence of the seedling, was 

recorded. For specific populations which showed segregation for this trait, the number of red colored 

seedlings was counted. 

Leaf size was measured shortly before or at the beginning of flowering. Leaves were taken from the field 

plots and stored cool between wet papers and measured within the next 48 hours. The leaf to be taken 

for measurement was defined to be the third leaf from the top characterized by a darker green compared 

to most upper leaves and thus being full-grown, no rolled or curved surface of the leaflets, and for most 

genotypes without a tendril at the leaf apex. The measuring was done using the Leaf Area Meter (LI-3100, 

LI-COR®) with an area resolution of 1 mm². 
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Flowering was scored on a scale from 0 – 4 (0 %, > 0 ≤ 1 %, >1 ≤ 10 %, up to 50 %, and > 50 % of the plants 

flowering) starting when first flowers were observed continuously every second day until full flowering 

was reached. Scores of in total five dates were summed to a ‘flowering time score sum’ (FTsum). 

Lodging was scored if possible e.g. after heavy rainfalls and/or winds it was done on a 1 – 9 scale (not 

lodging until fully lodging). 

Ripening was measured by scoring from 1 – 9 for the amount of ripe pods on the plants. A value of 1 

represents no ripe pods and the following values 2 – 9 correspond to approximately 1≤10, >10≤30, >30≤40, 

>40≤50, >50≤70, >70≤90, >90 with still partly fresh plants, and >90 % ripe pods with completely dead 

straw, respectively. 

The whole plot was harvested by hand and weeds were removed. The complete aboveground biomass of 

lentil was put into sacks and dried at the farm on a hot air dryer at 25-30°C. Seed and straw weight was 

taken when threshing dried plants. Threshing was done by a non-mobile thresher (Pelz K35, Wachtberg-

Villip, Germany). Seed and straw yield was then calculated in [g m-²] and corrected for 86% dry matter 

content. The total harvest weight of either straw or seeds are multiplied by the actual total dry matter 

content and then divided by 86% dry matter content. Total dry matter content was obtained from one test 

entry per cultivar, replication, and location by drying seed and straw samples at 105°C for 12h. Since the 

material was dried after harvest and the material from a location was subsequently threshed in a short 

time frame, little variation was expected between entries within a cultivar from the same location and 

replication. Thus, this procedure was solely to monitor for any unexpected variation and for this the same 

population (10th generation from Reinshof) was chosen for each cultivar as the ‘check entry’.  

Thousand kernel weight was calculated after threshing and bagging the seeds from four times 100 seeds.  

TABLE 2.3 Dates of sowing and harvest and the season length for the performance trials. 

Year Location Date of sowing Harvest date Season length [days] 

2015 Reinshof 14. April 13. August 121 
Schönhagen 14.-15. April 24. August 131 
Tangsehl 20. April 6. August 108 

2016 Reinshof 12. April 10.-11. August 121 
Schönhagen 20. April 22. August 124 
Tangsehl 14. April 29. July 106 
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STATISTICAL ANALYSIS 

Data was evaluated by the analysis of variance (ANOVA) in PLABSTAT (Version 3Bwin, Utz 2011) and mean 

values were calculated in the same software. The following general model was applied: 

xijklm = µ + yi + rm + yrim + lj + ylrijm + ck + ylcrijkm + pl + ylcprijklm + ylij + ycik + lcjk + ypil + lpjl + cpkl + ylcijk + ylpijl 

where xijklm is the observed value, µ is the general mean of the experiment, and yi, lj, ck, pl, and rm are the 

effects of year, location, cultivar, population, and replication, respectively. The replication is a random 

factor within year, location, and cultivar. Possible interactions are considered up to the three-way level 

(ylij, ycik, lcjk, ypil, lpjl, cpkl, ylcijk, ylpijl) and the residual error is denoted by ylcprijklm.  

The model is reduced by the factors ‘location’ and ‘cultivar’ or the factor ‘cultivar’ only, to analyze subsets 

of the populations separately per cultivar and location to reveal the site-specific or temporal effects of 

populations in generation ten or populations in generation 0, 5, and 10, respectively. 

Post-hoc mean comparisons were done by Tukey’s HSD (honestly significant difference) test. The HSD 

values were calculated ‘by hand’ in Microsoft Excel (Version 2010) using the mean squares and degrees of 

freedoms (or alternatively the standard errors) given in the ANOVA table by PLABSTAT and the respective 

q-value from the ‘Studentized Q table’ for a level of significance of 5% (P=0.05); in few cases for 10% 

(P=0.1).  
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2.3 RESULTS 

The two experimental years differ significantly for yield traits, flowering time, and ripening. The effect of 

the location was larger compared to the year effect for all traits except for flowering, as shown by the 

respective variance components in TABLE 2.4, and was highly significant for location for all traits. The 

factors cultivar and population had a significant effect in the ANOVA for all traits, as well as the interactions 

between them. The effect of the cultivar and interactions of cultivar with location and with year was 

significant for all traits. Heritability values calculated for the population effect across years, locations, and 

cultivars range between 97.47 and 99.85 in straw yield and flowering, respectively. The second highest 

heritability was observed for seed weight with 99.79 in the same analysis on the whole data set. 

TABLE 2.4 Variance components from ANOVA calculated for year (Y), location (L), cultivar (C), population 
(P), and replication (R) and all interactions with their significance in the F-testa), the degrees of freedom 
(DF) for each source of variation, and the heritability calculated for P for each trait: kernel yield (KY), 
seed yield (SY), total yield (TY), harvest index (HI), seed weight (SW), sum of flowering scores (FTsum), 
and ripening (RP). 

Source  DF KY SY TY HI SW FTsum RP 

Y 1 2352** 4963** 14159** 0.392+ 0b) 21.25** 0.204** 

L 2 9048** 32078** 75183** 12.96** 1.47** 7.354** 1.427** 

LY 2 595.4** 1257** 3585** 2.865** 1.29** 5.453** 0.253** 

R:LY 18 81.11* 393.7** 903.8** 0.210 0.50** 0.612** 0.063** 

C 2 1737** 1062** 5525** 42.05** 165.77** 15.12** 0.606** 

CL 4 320.3** 567.2** 1614** 2.820** 1.49** 0.249** 0.104** 

CY 2 54.78* 251.0** 553.2** 2.203** 0.15* 5.968** 0.008 

CLY 4 256.0** 597.9** 1494** 2.635* 1.39** 1.204** 0.387** 

RC:LY 36 198.9** 42.27 327.1** 2.202** 0.25** 0.448** 0.087** 

P 6 332.1** 1055** 2582** 21.79* 54.63** 10.64** 0.559** 

PC 11 797.6** 2620** 6261** 74.64** 178.76** 33.31** 1.781** 

PL 12 4.415 0.406 0 0.205 0 0.070** 0.001 

PY 6 8.449 22.66 77.76+ 0 0 0.102** 0.001 

PLY 12 0 71.22 116.9 0 0 0 0 

RPC:LY  361 404.2 1974 2735 10.09 1.36 1.148 0.224 

Heritability (P) 98.34 97.47 98.55 99.36 99.79 99.85 99.45 
a) Significance levels are denoted with **, *, + for P-values = 0.01, 0.05, 0.1, respectively. 
b) Negative estimates 

 

Seed and straw yield mean values differ significantly between cultivars and locations in 2015 and 2016 

(TABLE 2.5). In 2016 yield was lower by approximately 40% with the highest yield reduction compared to 

the previous year in Schönhagen and for Schwarze Linse. In both years, the location Reinshof yields highest 

and the cultivar Gestreifte Linse yields highest in both years in seed and straw at all locations. 

Interactions of cultivar and year can be observed e.g. in straw yield at Reinshof, where PP yields lowest in 

2015, but in the following year the same cultivar yields significantly more compared to SL (TABLE 2.5). Seed 

weight was highest in both years in Tangsehl. 
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TABLE 2.5 Mean values per year, cultivar, and test location in 2015 and 2016 for all traits. 

   Test location  

Trait Year Cultivar Reinshof Schönhagen Tangsehl Mean 

Seed yield 2015 PP 237.7 a ca) 127.5 a b 54.0 a a 139.7 a 

[gm-2]  SL 279.8 b c 150.5 b b  76.3 b a 168.9 b 

  GL 320.2 c c 231.4 c b 108.8 c a 220.1 c 

  Mean 279.2 c 169.8 b 79.7 a 176.2 

 2016 PP 170.0 a b 45.5 b a 35.6 a a 83.7 a 

  SL 185.0 b b 33.7 a a 40.1 a a 86.3 a 

  GL 299.3 c c 119.3 c b 65.3 b a 161.3 b 

  Mean 218.1 c 66.2 b 47.0 a 110.4 

Straw yield 2015 PP 435.8 a c 220.1 a b 84.8 a a 246.9 a 

[gm-2]  SL 479.1 b c 215.5 a b 113.6 b a 269.4 b 

  GL 477.2 b c 300.3 b b 119.7 b a 299.1 c 

  Mean 464.0 c 245.3 b 106.0 a 271.8 

 2016 PP 370.5 b b 58.1 a a 42.1 a a 156.9 a  

  SL 331.4 a b 54.6 a a 60.8 a a 148.9 a 

  GL 455.6 c b 161.9 b b 57.1 a a 224.9 b 

  Mean 385.8 c 91.5 b 53.4 a 176.9 

Total yield 2015 PP 673.5 a c 347.6 a b 138.8 a a 386.6 a 

[gm-2]  SL 758.8 b c 365.9 a b 189.9 b a 438.2 b 

  GL 797.4 c c 531.7 b b 228.5 c a 519.2 c 

  Mean 743.2 c 415.1 b 185.7 a 448.0 

 2016 PP 540.5 b b 103.5 a a 77.7 a a 240.6 a 

  SL 516.4 a b 88.3 a a 100.9 b a 235.2 a 

  GL 754.9 c c 281.2 b b 122.4 b a 386.2 b 

  Mean 603.9 c 157.7 b 100.4 a 287.3 

Harvest  2015 PP 30.15 a a 31.2 a ab 33.08 a b 31.5 a 

index  SL 36.76 b a 41.07 b b 40.29 b b 39.4 b 

  GL 40.09 c a 43.42 c b 47.63 c c 43.7 c 

  Mean 35.7 a 38.6 ab 40.3 b 38.2 

 2016 PP 26.09 a a 35.21 a b 37.09 a c 32.8 a 

  SL 35.7 b a 38.09 b b 39.86 b c 37.9 b 

  GL 39.61 c a 46.57 c b 53.46 c c 46.5 c 

  Mean 33.8 a 40.0 b 43.5 c 39.1 
a) Mean values followed by the same letter are not significantly different in Tukey’s-HSD test at P=0.05;  

small letters for column-wise and small italic letters for row-wise comparisons of three mean values. 

Table continues on the following page. 
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Table 2.5 continued. 

   Test location  

Trait Year Cultivar Reinshof Schönhagen Tangsehl Mean 

Seed 2015 PP 45.78 c a 51.95 c b 51.17 c b 49.63 c 

weight  SL 24.06 a a 24.17 a a 23.89 a a 24.04 a 

[mg]  GL 34.37 b a 36.94 b b 36.41 b b 35.91 b 

  Mean 34.74 a 37.69 b 37.16 b 36.53 

 2016 PP 47.23 c a 49.33 c b 50.92 c c 49.16 c 

  SL 22.20 a a 23.07 a a 24.53 a b 23.27 a 

  GL 36.72 b b 33.89 b a 38.24 b c 36.28 b 

  Mean 35.38 a 35.43 a 37.90 b 36.24 

Flowering  PP 17.78 b a 17.14 b a 24.15 b b 19.69 b 

score sum  SL 22.70 c b 20.30 c a 29.30 c c 24.10 c 

  GL 12.64 a a 10.86 a a 16.68 a b 13.39 a 

  Mean 17.71 a 16.10 a 23.38 b 19.06 

 2016 PP 21.30 b a 24.11 a b 25.09 a c 23.50 

  SL 26.71 c a 28.98 c b 30.23 c c 28.64 

  GL 19.79 a a 25.61 b b 26.39 b b 23.93 

  Mean 22.60 a 26.23 b 27.24 c 25.36 

Ripening 2015 PP 5.82 a b 4.26 a a 5.76 a b 5.28 a 

score   SL 6.41 b b 5.86 c a 8.23 c c 6.83 b 

  GL 6.73 b b 5.36 b a 7.84 b c 6.64 b 

  Mean 6.32 b 5.16 a 7.28 c 6.25 

 2016 PP 5.91 a b 2.97 a a 5.48 a b 4.79 a 

  SL 7.39 c b 3.79 b a 6.71 b b 5.96 b 

  GL 6.32 b ab 5.18 c a 6.82 b b 6.11 b 

  Mean 6.54  b 3.98 a 6.34 b 5.62 
a) Mean values followed by the same letter are not significantly different in Tukey’s-HSD test at P=0.05;  

small letters for column-wise and small italic letters for row-wise comparisons of three mean values. 

 

Calculating variance components and significance of the experimental factors for each of the three 

cultivars separately once more reveals larger values for the locations compared to years in all cultivars, 

except for flowering in all cultivars and seed weight for the cultivars SL and GL (TABLE 2.6). The effect of the 

population within cultivar (generations 0, and 5 and 10 from the provenances R, S, and T) is significant 

across all traits for PP, but not for SL and GL. Populations within SL show significant effects for straw and 

total yield and for flowering. Populations within GL did not show significant variation, except in ripening. 

Heritability values for populations are highest within PP, except in ripening, compared to the other 

cultivars, and range between 51.1 and 99.4 in ripening and seed weight, respectively. Within SL and GL, 

the highest heritability values were calculated for flowering in SL with 85.1 and for ripening in GL with 

76.2.  

Mean values across both years of all populations of Pisarecka Perla and all traits are shown in TABLE 2.7 for 

each test location. Significant differences between populations were identified for seed and straw yield at 

Schönhagen. For the harvest index and ripening score significant variation between populations are 

observed at Reinshof and Tangsehl and for seed weight and flowering time at all test locations. 
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TABLE 2.6  Variance components from ANOVA for the main effects year, location, and population, the 
replication (error variance for year and location), and the residual variance (error variance for selection) 
with their significance in the F-testa) for each cultivar (PP, SL, GL) separately, and the heritability values 
(h²) calculated for selection within cultivar for each trait. 

Pisarecka Perla 
Source DF b) KY SY TY HI SW FTsum RP 

Y 1 2119** 5453** 14378** 0.966* 0.015 9.801** 0.156** 
L 2 6851** 31658** 67950** 12.18** 6.046** 6.806** 1.500** 
LY 2 490.7** 1665** 3559** 9.632** 1.659* 4.234** 0.246** 
R:LY 18 166.1** 649.2** 1468** 1.406** 1.133** 0.735** 0.083** 

P 5 25.14** 72.65** 97.18** 1.606** 20.47** 2.507** 0.010+ 
PL 10 21.82 23.22 36.94 0 c) 0.051 0.571** 0.016 
PY 5 32.10+ 22.74 102.2+ 0.253 0.122 0.752** 0.005 
PLY 10 31.27 96.35 316.0* 0 0.176 0 0 
RPC:LY 90 302.4 395.4 962.1 6.902 3.063 0.988 0.235 

Heritability (P) 66.6 81.5 70.8 84.81 99.38 98.38 51.12 

Schwarze Linse 
Source DF KY SY TY HI SW FTsum RP 

Y 1 3380** 7213** 20493** 0.774+ 0.235* 10.23** 0.359** 
L 2 8479** 29347** 69396** 3.864** 0.199+ 8.523** 1.920** 
LY 2 774.4** 1622** 4689** 0 0.628* 7.357** 1.268** 
R:LY 18 301.1** 396.1** 1153** 3.044** 0.661** 0.875** 0.18** 

P 6 7.185 26.13* 68.08* 0 0.022 0.232** 0 
PL 12 0 39.35+ 0 0 0 0.305** 0 
PY 6 0 0 0 0 0.017 0 0 
PLY 12 0 0 0 0 0 0 0 
RPC:LY 108 443.7 470.1 1380 6.793 0.67 0.972 0.293 

Heritability (P) 27.99 57.15 54.21 0 44.45 85.12 0 

Gestreifte Linse 

Source DF KY SY TY HI SW FTsum RP 

Y 1 1692** 2673** 8692** 3.595** 0.035 55.35** 0.127** 
L 2 12016* 35552* 88979* 26.12+ 0 3.474 1.034* 
LY 2 1020** 1511** 5207** 3.751* 4.327** 7.047** 0.043 
R:LY 18 363.0** 261.8 1036** 2.608* 0.363** 1.628** 0.178** 

P 6 9.177 0 0 0.534 0.029 0.008 0.012+ 
PL 12 81.65** 0 0 0.94 0 0.063 0 
PY 6 0 0 18.91 0 0.019 0 0 
PLY 12 0 0 0 0 0.077+ 0 0.003 
RPC:LY 108 484 4997 5949 16.69 0.428 0.909 0.172 

Heritability (P) 40.26 0 0 60.55 51.56 19.84 76.19 
a) Significance levels are denoted with **, *, + for P-values = 0.01, 0.05, 0.1, respectively. 
b) Degrees of freedom (DF) differ in PP compared to SL and GL for population and the residual due to 6 instead of 7 populations available. 
b) Negative estimates. 
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TABLE 2.7 Mean values of populations of Pisarecka Perla in generation 0, 5, and 10 under natural 
selection at three locations (R, S, T) identical to the test locations. 

  Test location  

Trait Population Reinshof Schönhagen Tangsehl Mean 

Seed yield PP_0 229.7 94.8 aa) 60.7 128.4 ab 
[gm-2] PP_R_5 219.0 103.3 ab 63.7 128.7 ab 
 PP_S_5b) - - - - 

 PP_T_5 228.8 98.5 a 61.8 129.7 ab 
 PP_R_10 203.6 102.4 ab 58.9 121.6 a 
 PP_S_10 228.8 106.7 ab 65.1 133.5 ab 
 PP_T_10 227.7 125.8 b 66.8 140.1 b 

Straw yield PP_0 417.1 162.3 ab 95.0 224.8ab 
[gm-2] PP_R_5 438.0 175.7 abc 103.7 239.1 ab 
 PP_S_5 - - - - 

 PP_T_5 426.6 156.2 a 86.8 223.2 a 
 PP_R_10 451.1 176.3 abc 97.9 241.8 b 
 PP_S_10 453.4 183.6 bc 102.7 246.6 b 
 PP_T_10 431.6 191.1 c 90.8 237.8 ab 

Total yield PP_0 646.8 257.0 a 155.7 353.2 ab 
[gm-2] PP_R_5 656.9 279.0 ab 167.4 367.8 ab 
 PP_S_5 - - - - 

 PP_T_5 655.4 254.7 a 148.6 352.9 a 
 PP_R_10 654.6 278.7 ab 156.8 363.4 ab 
 PP_S_10 682.1 290.3 ab 167.8 380.1 b 
 PP_T_10 659.3 316.9 b 157.6 377.9 ab 

Harvest  PP_0 35.27 b 37.85 40.75 ab 37.96 abc 
index PP_R_5 33.21 ab 38.03 39.21 ab 36.82 ab 
 PP_S_5 - - - - 

 PP_T_5 34.64 ab 39.60 41.96 ab 38.73 bc 
 PP_R_10 30.77 a 37.66 38.56 a 35.66 a 
 PP_S_10 33.37 ab 37.05 39.24 ab 36.55 ab 
 PP_T_10 34.13 ab 40.77 42.79 b 39.23 c 

Seed PP_0 54.73 b 60.82 c 59.25 bc 58.27 c 
weight PP_R_5 57.81 bc 61.44 c 61.82 c 60.36 d 
[mg] PP_S_5 - - - - 

 PP_T_5 53.15  b 56.90 b 57.75 b 55.93 b 
 PP_R_10 59.96 c 62.97 c 64.78 d 62.57 e 
 PP_S_10 56.01 b 60.66 c 60.76 c 59.14 cd 
 PP_T_10 46.87 a 50.39 a 51.34 a 49.53 a 
a) Mean values followed column-wise by the same letter are not significantly different in Tukey’s-HSD test at P=0.05.  
b) Population in generation 5 from Schönhagen is not available. 

Table continues on the following page. 
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Table 2.7 continued. 

Flowering PP_0 24.44 c 24.94 b 28.19ab 25.86 c 
score sum PP_R_5 21.44 ab 22.81 a 27.75 a 24.00 ab 
 PP_S_5 - - - - 

 PP_T_5 25.56 c 27.06 c 29.56 c 27.39 d 
 PP_R_10 20.00 a 22.31 a 27.38 a 23.23 a 
 PP_S_10 22.44 b 23.00 a 27.50 a 24.31 b 
 PP_T_10 25.13 c 25.38 bc 28.63 b 26.38 c 

Ripening PP_0 6.88 b 4.44 6.44 ab 5.92 ab 
score  PP_R_5 7.06  b 4.50 6.31 ab 5.96 ab 
 PP_S_5 - - - - 

 PP_T_5 6.63 ab 4.75 6.75 b 6.04 b 
 PP_R_10 6.25 a 4.44 6.25 a 5.65 a 
 PP_S_10 6.69 ab 4.38 6.25 a 5.77 ab 
 PP_T_10 6.75 ab 4.25 6.69 ab 5.90 ab 
a) Mean values followed column-wise by the same letter are not significantly different in Tukey’s-HSD test at P=0.05.  
b) Population in generation 5 from Schönhagen is not available. 

 

To reveal site specific population effects, analysis of variance and mean comparisons were done with the 

populations in the 10th generation of natural selection at three farms to compare their performance at the 

three same farms during two years (TABLE 2.8, TABLE 2.9).  

In cultivar SL, significant variation between populations was found for seed weight, leaf size and ripening 

at Reinshof (TABLE 2.8). At Reinshof the population selected at Tangsehl (SL_T_10) expressed a significantly 

higher seed weight with 23.85 mg compared to 22.87 to 23.02 mg in the other cultivars (TABLE 2.9). In the 

F-test in the ANOVA leaf size was significantly influenced by the population at P=0.1. Leaf size means for 

the Reinshof population (SL_R_10) was lower with 9.18 cm² compared the other two populations SL_S_10 

and SL_T_10 with 9.82 and 9.81 cm², respectively. Means of leaf size were not significantly different at 

P=0.1. Ripening at Reinshof was earliest for SL_S_10, followed by SL_T_10 and SL_R_10, however mean 

comparisons were not significant. At Schönhagen, straw yield was significantly higher for SL_S_10 with 

145.36 gm-² compared to SL_T_10 with 125.09 gm-²; SL_R_10 yielded 135. None of the other traits 

revealed significant variation at Schönhagen and none of the traits assessed in Tangsehl showed significant 

variation in the analysis. 

Populations of cultivar GL varied significantly for total yield between populations tested at Reinshof. Total 

yield of GL_R_10 was significantly higher compared to GL_S_10. None of the traits assessed at the two 

other locations Schönhagen and Tangsehl gave significant results in this analysis. 

Populations of cultivar PP showed significant variation for all traits in at least one of the three locations 

(TABLE 2.8, TABLE 2.9). Significant variation for seed and total yield could be observed in Schönhagen (at 

P=0.05) and for either seed or straw yield at Reinshof and Tangsehl (at P=0.1), respectively (TABLE 2.8). 

Harvest index, seed weight and flowering varied significantly at all locations between populations. Means 

for ripening varied significantly (at P=0.1) between populations at Reinshof and Tangsehl. Additionally, 

hypocotyl color and leaf size was assessed at Reinshof and Tangsehl or Reinshof only and reveals significant 

variation between populations. 
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TABLE 2.8 Variance components from ANOVA for the cultivar Pisarecka Perla of the main effects year, 
population, year-population interaction (YxP), replication (error variance for year), and the residual 
variance (error variance for population) and their significance levels in the F-testa), calculated separately 
for each test location from a data-set including the three populations in generation 10 under natural 
selection from the three locations. 

Trait Test location 
Year 

(DF=1) 
Population 

(DF=2) 
YxP 

(DF=2) 
Replication 

(DF=6) 
Residual 
(DF=12) h² 

Seed  Reinshof 3762** 144.2+ 93.47 0 b) 468.2 71.14 

yield Schönhagen 5251** 130.9* 0 442.6** 196.9 84.19 

 Tangsehl 282.4+ 6.993 0 367.8** 83.66 40.07 

Straw Reinshof 3963** 1.970 270.9 149.62 1126 1.38 

yield Schönhagen 18094** 29.31 0 1069** 202.2 53.70 

 Tangsehl 1240+ 25.61+ 13.25 1065** 85.58 70.54 

Total Reinshof 15508** 0 916.4 360.2 2123 0 

yield Schönhagen 42856** 305.6* 0 2900** 623.55 79.68 

 Tangsehl 2720+ 6.164 0 1394** 253.6 16.28 

Harvest  Reinshof 9.173* 2.269* 0 0 5.912 76.22 

index Schönhagen 5.791** 3.231* 0.209 0 6.022 81.10 

 Tangsehl 4.763* 4.502** 0 0.983 5.243 87.29 

Seed  Reinshof 0.984* 44.95** 1.532* 0.085 1.319 99.63 

weight Schönhagen 1.617 44.69** 0.992* 2.634** 1.251 99.65 

 Tangsehl 0 47.26** 0.123 2.415* 2.463 99.35 

Flowering Reinshof 9.737** 6.469** 0.298 0.531+ 0.819 98.44 

score sum Schönhagen 31.59** 2.364** 0.348 0 1.743 91.56 

 Tangsehl 1.34+ 0.420** 0.34* 1.236** 0.431 88.64 

Ripening Reinshof 0 0.050+ 0 0 0.191 67.84 

score Schönhagen 0.875* 0 0 0.125 0.469 0 

 Tangsehl 0.013 0.045+ 0.090+ 0.069+ 0.149 70.75 

Hypocotyl Reinshof 0 639.9** 0 0 14.51 99.72 

color Tangsehl 20.62+ 382.4** 0 7.829 26.82 99.13 

Leaf size Reinshof 11.59** 0.663* 0 0.185 1.027 83.76 
a) Significance levels are denoted with **, *, + for P-values = 0.01, 0.05, 0.1, respectively. 
b) Negative estimates. 

 

Across test locations, significantly higher seed yield was observed for PP_T_10 compared to PP_R_10, as 

well as at location Schönhagen (TABLE 2.9). Straw yield and total yield was as well highest for PP_T_10 in 

Schönhagen, but not for the other locations. The harvest index is highest and significantly different from 

PP_R_10 for PP_T_10 at all locations. All seed weight mean comparisons are significant at all locations. 

Flowering score sums are significantly higher for PP_T_10 and at Reinshof and Tangsehl ripening scores 

are higher compared to PP_R_10, meaning earlier flowering and ripening.  
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TABLE 2.9 Mean values for populations of Pisarecka Perla across two years at the three location for the 
population in generation 0 (PP_0) and in generation 10 under natural selection at the locations (R_10, 
S_10, T_10). 

  Test location  

Trait Population Reinshof Schönhagen Tangsehl Mean 

Seed  R_10 203.57 aa) 102.36 a 58.85 121.59 a 

yield [gm-2] S_10 228.77 b 106.72 a 65.05 133.51 ab 

 T_10 227.66 b 125.81 b 66.8 140.09 b 

Straw R_10 451.06 176.29 97.91 ab 241.75 

yield [gm-2] S_10 453.38 183.57 102.72 b 246.56 

 T_10 431.63 191.06 90.75 a 237.81 

Total R_10 654.64 278.67 a 156.77 363.36 

yield [gm-2] S_10 682.13 290.33 ab 167.8 380.09 

 T_10 659.30 316.89 b 157.55 377.91 

Harvest R_10 30.77 a 37.66 ab 38.56 a 35.66 a 

index S_10 33.37 ab 37.05 a 39.24 ab 36.55 ab 

 T_10 34.13 b 40.77 b 42.79 b 39.23 b 

Seed R_10 59.96 c 62.97 c 64.78 c 62.57 c 

weight [mg] S_10 56.01 b 60.66 b 60.76 b 59.14 b 

 T_10 46.87 a 50.39 a 51.34 a 49.53 a 

Flowering R_10 20.00 a 22.31 a 27.38 a 23.23 a 

score sum S_10 22.44 b 23.00 ab 27.50 ab 24.31 b 

 T_10 25.13 c 25.38 b 28.63 b 26.38 c 

Ripening R_10 6.25 a 4.44 6.25 a 5.65 

scores S_10 6.69 ab 4.38 6.25 a 5.77 

 T_10 6.75 b 4.25 6.69 b 5.90 
a) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test;  

small italic letters denote comparisons at P=0.1, non-italic letters denote comparisons at P=0.05. 

 

Generations of Schwarze Linse showed significant variation across provenances for flowering with 

significantly earlier flowering of populations in generation 10 compared to generation 0 (data not shown). 

For provenance Reinshof and Tangsehl, generation 5 is already significantly earlier flowering compared to 

generation 0, whereas generation 5 from Schönhagen does not differ significantly from generation 0 (data 

not shown). Seed, straw and total yield is significantly higher for SL_S_10 compared to SL_S_5, but both 

populations do not yield significantly different compared to SL_0. The same situation was observed on the 

lower significance level at P=0.1 and exclusively for straw yield in the population SL_R_10, being 

significantly higher compared to SL_R_5, but not significantly different compared to SL_0. None of the 

traits showed significant variation when comparing generations from Tangsehl (data not shown). 

Comparisons of generations within provenances for populations of the cultivar Gestreifte Linse were not 

significant (data not shown). 

To see the effect of time under natural selection, populations in generation 0, 5, and 10 were compared 

separately for each selection site across all test locations (TABELLE 2.10-2.11). For cultivar Pisarecka Perla, 

populations in different generations under natural selection varied for most traits significantly (TABLE 2.10). 

The mean comparisons are shown in TABLE 2.11. Overall, a trend for increasing yield from generation 0 to 
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5 and 10 was observed together with a decreasing harvest index and later ripening. Seed weight is 

significantly increasing at Reinshof together with a delayed flowering, whereas the selection at Tangsehl 

reduced seed weight significantly from generation 0 to 5 and again to generation 10. Flowering of 

generation 10 from Tangsehl did not differ significantly from generation 0. 

TABLE 2.10 Variance components from ANOVA for Pisarecka Perla for the main effects of year, location, 
generation, replication (error variance for year and location), and residual (error variance for generation) 
with their significance in the F-testa), calculated separately for the provenances (R, S, T) comparing 
generations 0, 5, and 10. 

Trait 
Prov-
enance 

Year 
(DF=1) 

Location 
(DF=2) 

Generation 
(DF=1;2)b) 

Replication 
(DF=18) 

Residual 
(DF=18;36)b) h² 

Seed  PP_R 1673.47** 6586.02** 0 c) 117.33+ 414.28 0 

yield PP_S 1787.52** 7558.07** 5.11 248.61** 193.12 38.8 

 PP_T 2181.86** 7346.66** 27.19+ 119.66* 335.74 66.0 

Straw  PP_R 5369.98** 31279.67** 66.51* 510.78** 408.92 79.6 

yield PP_S 4858.85** 31131.64** 226.63** 733.05** 257.26 95.5 

 PP_T 5099.05** 30426.77** 42.47+ 586.36** 521.79 66.1 

Total  PP_R 13056.51** 66579.80** 4.37 1091.34** 1240.82 7.8 

yield PP_S 12582.20** 69424.06** 334.23** 1481.08** 667.20 92.3 

 PP_T 13967.72** 67690.78** 161.85* 1291.91** 1066.27 78.5 

Harvest  PP_R 2.63* 10.41** 0.92* 2.56+ 9.39 70.3 

index PP_S 0.62 7.19** 0.78* 4.78* 4.73 79.9 

 PP_T 0.91* 12.85** 0.08 0.49 7.3 19.9 

Seed  PP_R 0.42+ 6.01** 4.44** 0.81 4.63 95.8 

weight PP_S 0 8.00** 0.16 1.13 5.26 42.7 

 PP_T 0.07 6.45** 20.28** 0.79 4.21 99.1 

Flowering PP_R 13.67** 9.04** 1.78** 1.04** 0.97 97.8 

score sum PP_S 9.64** 5.62** 1.13** 0.69+ 1.32 95.4 

 PP_T 5.83** 3.78** 0.57** 0.87** 1.05 92.9 

Ripening PP_R 0.09* 1.45** 0.03* 0.11** 0.18 73.7 

scores PP_S 0.08* 1.58** 0 0 0.45 0 

 PP_T 0.25** 1.60** 0 0.14** 0.20 0 
a) Significance levels are denoted with **, *, + for P-values = 0.01, 0.05, 0.1, respectively. 
b) Degrees of freedom (DF) differ for generation and the residual due to the missing population PP_S_5. 
c) Negative estimates. 
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TABLE 2.11 Mean values of populations from Pisarecka Perla in generation 0, 5, and 10 under natural 
selection at three different locations (R, S, T).  

  Selection site  

Trait Generation R S T Mean a) 

Seed  Gen. 0 128.39 128.39 128.39 a b) 128.39 

yield [gm-2] Gen. 5 128.66 - c) 129.68 ab 129.17 
 Gen. 10 121.60 133.52 140.09 b 131.74 

Straw  Gen. 0 224.77 a 224.77 a 224.77 ab 224.77 

yield [gm-2] Gen. 5 239.12 b - 223.23 a 231.18 
 Gen. 10 241.75 b 246.56 b 237.81 b 242.04 

Total  Gen. 0 353.17 353.17 a 353.17 a 353.17 

yield [gm-2] Gen. 5 367.77 - 352.90 a 360.34 
 Gen. 10 363.36 380.08 b 377.91 b 373.78 

Harvest Gen. 0 37.96 b 37.96 b 37.96 37.96 

Index Gen. 5 36.81  ab - 38.73 37.77 
 Gen. 10 35.66 a 36.56 a 39.23 37.15 

Seed Gen. 0 58.27 a 58.27 58.27 c 58.27 

weight [mg] Gen. 5 60.35 b - 55.93 b 58.14 
 Gen. 10 62.57 c 59.14 49.53 a 57.08 

Ftsum Gen. 0 25.85 c 25.85 b 25.85 a 25.85 
 Gen. 5 24.00 b - 27.40 b 25.70 
 Gen. 10 23.23 a 24.31 a 26.38 a 24.64 

Ripening Gen. 0 5.92 ab 5.92 5.92 5.92 

scores Gen. 5 5.96 b - 6.04 6.00 
 Gen. 10 5.65 a 5.77 5.90 5.77 
a) Post-hoc mean comparisons were not done. 

b) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test;  

small italic letters denote comparisons at P=0.1, non-italic letters denote comparisons at P=0.05. 
c) Population in generation 5 from Schönhagen is not available. 

 
 
TABLE 2.12 Proportion [%] of seedlings with red pigmentation on the hypocotyl in populations of 
Pisarecka Perla in generation 0, 5, and 10 from the three farms (R,S,T) observed and counted during field 
testing at the same three locations. 

Population Reinshof Schönhagen Tangsehl Mean 

PP_0 10.4 3.4 6.6 6.8 
PP_R_5 0.4 0.5 10.6 3.8 
PP_T_5 22.6 20.3 19.7 20.8 
PP_R_10 0.6 0.3 3.5 1.5 
PP_S_10 3.3 2.6 4.8 3.6 
PP_T_10 45.8 34.2 38.1 39.4 
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Different proportions of seedlings with red pigmentation on the hypocotyl were observed in populations 

of Pisarecka Perla (TABLE 2.12). These proportions differ between test locations. The highest proportion of 

red seedlings were observed in generation 10 under selection in Tangsehl followed by generation 5 from 

the same selection site. Very low proportions were found in populations under selection at Reinshof. 

Populations from Schönhagen carried relatively low proportions of red pigmented seedlings, depending 

on the test location with similar or lower proportions compared to the initial population (PP_0). 

For most traits, no effect of site-specific selection or differences between generations of selection was 

observed on a statistically significant level in Schwarze Linse and Gestreifte Linse (data not shown). On a 

low significance level (P=10%), flowering was earlier in generation 5 and 10 under natural selection in 

Tangsehl compared to the initial population at Reinshof in Gestreifte Linse (data not shown). This effect 

was statistically highly significant in Schwarze Linse for generation 5 and 10 from Tansehl and for 

generation 10 from Schönhagen compared to the initial population in Schönhagen (data not shown). 
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2.4 DISCUSSION 

A strong and highly significant variation between years is striking in TABLE 2.4 and TABLE 2.6 especially for 

yield, but also for the harvest index of Pisarecka Perla and Gestreifte Linse and for seed weight of Schwarze 

Linse. The season of 2015 was characterized by a relatively dry spring and a warm and not too wet early 

summer (TABLE 2.2), which was positive for lentil. Especially during grain filling in June and ripening in July, 

the even distribution of precipitation and absence of heavy rains (FIGURES 8.1-8.3) helped for a good seed 

development and low virus or fungal disease infestation. The summer in 2016 was less optimal with more 

precipitation and a high disease pressure, especially at Reinshof and Schönhagen with various virus 

diseases observed infesting predominantly Schwarze Linse, but also found in Pisarecka Perla and Gestreifte 

Linse. Consequently, yield was significantly reduced in 2016 compared to 2015 for all cultivars and led to 

a different ranking of the cultivars (TABLE 2.5). Additionally at Schönhagen, machine sowing was suboptimal 

in 2016, compared to the highly laborious but successful hand sowing in 2015, with an uneven distribution 

of seeds and a poor coverage and weed competition ability. This resulted in huge difficulties in the weed 

management, a poor crop development, and in the end in a significantly reduced yield of about 70 % in 

Schönhagen in 2016 compared to the previous year. Also in Tangsehl, a lower plant density was realized 

in 2016, with on average approximately 66 plants m-2 counted after field emergence, due to difficult soil 

conditions for the sowing machine. 

Comparing the yield potential of the three locations across cultivars, ranking of the locations Reinshof > 

Schönhagen > Tangsehl is significant in both years. This underlines the significant differences in 

environmental conditions, presumably primarily for nutrient and water availability, between these 

consciously selected farms. For Pisarecka Perla and Schwarze Linse in 2016, seed and straw yield are not 

significantly different between Schönhagen and Tangsehl. In contrast to Pisarecka Perla, where a highly 

significant variation between populations was found (except for ripening), populations of Schwarze Linse 

showed significant variation only in straw and total yield and in flowering. For populations of Gestreifte 

Linse a highly significant population × location interaction was observed. Thus, effects of the provenance 

and the temporal development were analyzed separately for Pisarecka Perla from the other two cultivars.  

The three populations of Pisarecka Perla in generation ten expressed significant variation for the harvest 

index at all test sites and for seed and total yield exclusively in Schönhagen (TABLE 2.8). Seed weight and 

hypocotyl color were affected highly significantly by the provenance of the populations as well as the 

flowering score sum. The higher mean seed weight of the population selected at Reinshof correlated with 

a significantly lower seed yield, a lower harvest index, flowering score sum, and ripening score, meaning 

later flowering and ripening compared to the Tangsehl population (TABLE 2.9). Hence, the population 

developed at the most ‘stress-prone’ site (Tangsehl) gave a better seed yield across all locations compared 

to the population selected at Reinshof. Additionally, at Reinshof the Schönhagen population gave 

significantly higher seed yield and at Tangsehl significantly higher straw yield compared to the Reinshof 

population. 

Studying the relationship of seed and straw yield, Erskine (1983) calculated positive and significant 

phenotypic correlations between seed and straw for small seeded (r = 526) and large seeded genotypes (r 

= 339) and observed delayed flowering by eleven days for the highest yielding genotypes compared to the 

overall mean. Comparing the populations of Pisarecka Perla in the 10th generation, the small seeded 

population (selected at Tangsehl) flowers significantly earlier and still gives a better seed yield in all 
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locations. However, at the most stress-prone location Tangsehl, straw yield is better with the larger seeded 

populations (selected at Reinshof). It can be argued, due to the challenging conditions and a shorter season 

length at Tangsehl (TABLE 2.3), natural selection favored small seeded genotypes, because large seeded 

genotypes produced less seeds due to a lower nutrient and water availability and might have had an 

additional disadvantage with later flowering. Despite a presumably strong selection pressure at Tangsehl, 

genetic variability in hypocotyl and seed color is visible. Under more convenient conditions for lentil at 

Schönhagen, seed weight did not change significantly, thus the full range of genotypes from the initial 

populations might have been maintained. And at Reinshof, conditions could have been ‘too rich’ for lentil, 

favoring large seeded and later flowering genotypes. Consequently, the population selected at 

Schönhagen did perform relatively well on average across locations due to its genotypic diversity buffering 

for contrasting conditions. The population selected at Reinshof performed relatively well for straw yield 

at Tangsehl due to its later flowering at the expense of seed yield. The population selected at Tangsehl 

performed well when tested at Reinshof in seed yield due to early flowering at the expense of straw yield. 

Variation in straw yield between the initial population and generations five and ten of Pisarecka Perla was 

significant, whereas seed yield was less affected and only significant for Tangsehl populations (TABLE 2.10). 

The effect of natural selection in populations of Pisarecka Perla is characterized by a significant increase 

of the seed yield potential in the populations developed at Tangsehl, whereas the selection at Reinshof 

and Schönhagen led to a significantly higher straw yield and a lower harvest index for generation ten 

compared to the initial population (TABLE 2.11). Seed weight developed inversely over time at Reinhof 

(increasing) and Tangsehl (decreasing) and increased not significantly at Schönhagen. Flowering became 

later at Reinshof and Schönhagen, but earlier for populations developed in Tangsehl. However, the earlier 

flowering of the Tangsehl populations did not affect ripening significantly. Within the Reinshof 

populations, the latest generation was later ripening. 

In contrast to Pisarecka Perla, Schwarze Linse and Gestreifte Linse were described as less variable already 

in their description at the genebank and went through bottlenecks during ex situ maintenance (Horneburg 

2003b). Consequently, low genetic variability is assumed. Significant effects of site-specific selection could 

not be observed. However, populations of Schwarze Linse under natural selection in generation 5 and 10 

tend to flower earlier compared to the initial population, which was significantly at the test-site 

Schönhagen across both years for the selection-sites Schönhagen and Tangsehl (Bockelmann 2017, 

unpublished). Gestreifte Linse tend to flower slightly later in the later generations, which was observed on 

a low statistical significance level (P=10%) at Reinshof for the selection-site Tangsehl. Such a general non-

significant effect of natural selection was already observed after one year field testing (Becher 2016, 

unpublished). Studying the “spatio-temporal evolution of earliness” in wheat populations, Goldringer et 

al. (2006) observed genetic differentiation according to the north-south latitude and concluded that 

climatic differences between locations led to site-specific evolution of populations after ten generations 

of natural selection. After twelve generation, they observed for a major gene involved in vernalization 

response that a high level of genetic diversity was maintained due to population differentiation for each 

location and new alleles emerged in two out of three site-specific populations and in this way “within-

population diversity despite local genetic drift and natural selection” was maintained (Rhone et al. 2008). 

The seed weight of wheat populations was observed to decrease marginally (non-significantly at P=0.70) 

for an average of -0.05 g per year during ten generations of natural selection (Goldringer et al. 2001b). For 

two of our lentil cultivars, we observe a stable or slightly increasing seed weight (Schwarze Linse and 
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Gestreifte Linse) and significantly increasing seed weight at one location for Pisarecka Perla. Two 

explanations are possible: i) there is no effect on seed weight by natural selection, or ii) there was no 

genetic variation within Schwarze Linse and Gestreifte Linse. The second explanation seems more likely, 

since significant and continuous site-specific development of seed weight was observed in Pisarecka Perla 

in both directions. 

With the homogenous multiplication of all populations at one location, we focus on genetic differences 

between populations and exclude possible ‘seed source’ effects, which may have influenced the results 

obtained by Horneburg and Becker (2008). Stelling et al. (1994) observed large variation in the seed yield 

within faba bean varieties from different seed sources with a superior yield from those seed lots, where a 

higher degree of cross-fertilization was observed. In the same study, varieties of dry peas did not reveal 

significant seed source effects. 

In conclusion, site-specific natural selection did not lead to a site-specific adaptation in terms of yield. 

However, significant changes of Pisarecka Perla under ‘stress-prone’ conditions at Tangsehl in seed weight 

and flowering time led to an overall advantage in seed yield in more favorable environments (Reinshof, 

Schönhagen). For the reason that lentil has an indeterminate growth, earlier flowering extends the season 

length under low-stress conditions and results in a higher seed yield. 
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3 PHENOTYPIC AND GENOTYPIC VARIATION WITHIN POPULATIONS 

 

3.1 INTRODUCTION 

Genetic diversity is the prerequisite for response to selection and subsequent adaptation of populations 

to biotic and abiotic factors. The intra-specific variation in gene diversity depends on the mating system of 

the species and was observed to be higher for predominantly autogamous species as well as their variation 

in the effective population size, compared to allogamous species (Schoen and Brown 1991).  

From the assessment of phenotypic variation across environments between single plants or their 

progenies for agronomical, phenological, and morphological traits, genetic diversity can be concluded. As 

an autogamous species, lentil varieties are developed by ‘line breeding’ using random or visual selection 

(Becker 2011). In a previous study with the same material, two selection methods, i) single plant selection 

with subsequent progeny testing and selection, and ii) bulked selection of single plants (mass selection) 

were compared against natural selection at three farms by Horneburg (2003) and Horneburg and Becker 

(2008). All methods of selection affected population structure and in their conclusion, natural selection 

was recommended for the on-farm management with lentil, as “generally the easiest method to use” 

(Horneburg and Becker 2008). Visual selection may be difficult in the lentil crop stand when “tendrils […] 

cause inter-plant entanglement” (Erskine et al. 1990), nevertheless, “the plant density of the selection 

environment did not affect the efficiency of the selection” and “random plant sampling for seed yield in 

the F5 was as effective as visual plant selection and counting the seeds after harvest”. However, for the 

assessment of other traits than yield with a higher heritability, trait assessment should be done at a plant 

density < 200 seeds m-2 to avoid plant entanglement, according to Erskine et al. (1990).  

With the developments in biochemistry, molecular marker techniques became available to be employed 

for direct genotypic variability assessment of plant material independently from its phenotypic 

performance or appearance. An early study in a composite cross populations of barley using esterase 

allozyme polymorphisms revealed differences in allelic frequencies for the geographical provenance and 

allelic variation within local populations (Allard et al. 1972). Monitored over 25 generations, Allard et al. 

(1972) concluded from their results, that the observed “highly significant changes in allelic frequencies […] 

were due to directional selection favoring particular alleles and not to mutation or genetic drift” and 

“natural selection plays the predominant role in determining the observed patterns of allelic variation”. 

Genetic diversity of local cultivars of garden pea (Pisum sativum L.) conserved on farm or in historical 

collections (Hagenblad et al. 2014) revealed less genetic diversity between and within accessions 

compared to field pea landraces (Leino et al. 2013), according to twelve highly polymorphic single 

sequence repeats (SSR) markers, due to their propagation in much smaller population sizes and originating 

from a cultivar rather than a landrace. In a bean landrace (Phaseolus vulgaris L.) in Italy, Tiranti and Negri 

(2007) observed a large phenotypic and genotypic (SSRs) variability between samples obtained from 

different locations and farmers and significant structuring to subpopulations by on-farm conservation. 

Studying genetic variation in composite cross populations of wheat under dynamic management during 

ten generations, Enjalbert et al. (1999) observed highly significant differentiation based on RFLPs 

(restriction fragment length polymorphisms) diversity between sub-populations derived from site-specific 

natural selection. Lentil landraces from Southeast Turkey could be characterized by SSRs and AFLPs 
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(amplified fragment-length polymorphisms) revealed “sharp differences among landraces over short 

geographic distances” (Toklu et al. 2009). More recently, single nucleotide polymorphisms (SNPs) were 

developed by next generation sequencing technology and a first comprehensive genetic map of the L. 

culinaris genome was established (Sharpe et al. 2013). Subsequent linkage and association mapping was 

done and a linkage map of 563 SNPs was constructed (Fedoruk 2013; Fedoruk et al. 2013). Within a global 

collection, Lombardi et al. (2014) genotyped 505 cultivars and landraces with 266 genome-wide 

distributed SNPs, which gave successful amplifications and showed polymorphisms to study gene diversity 

and genetic structure.  

For our genotyping project, we used the SNPs developed from Sharpe et al. (2013) available as 

‘Kompetitive Allele Specific PCR’ (KASPar™, see e.g. Semagn et al. 2014) assays from KBioscience at LGC 

Genomics (http://www.lgcgenomics.com).  

The objectives are to estimate the within-population phenotypic and genotypic variability and to assess 

the differences between populations after ten generations of natural selection at three different locations 

compared to the initial material. Additionally, genotyping of the intermediate populations in the fifth 

generation of selection will allow us to get an insight into the temporal effect of natural selection. 

  



PHENOTYPIC AND GENOTYPIC VARIATION WITHIN POPULATIONS 

MATERIALS AND METHODS 

 PAGE 41 

3.2 MATERIALS AND METHODS 

PLANT GENETIC MATERIALS 

For phenotypic analysis, single plant progenies were produced from the initial material and the 

populations after ten generations of natural selection at three location (see CHAPTER 1.1, 2.2). For the 

genotypic analysis, an additional 100 seeds per population in fifth generation were taken from the 

multiplication plot in 2014. 

For the production of 100 single-plant progenies per population seeds were taken from the multiplication 

plots in 2014 and planted with one seed per pot in the greenhouse during winter 2014/15. Single plants in 

pots were blocked according to population affiliation and harvested separately by hand. Plants had to yield 

at least 20 seeds to be tested in single-row plots in 2015. Due to difficulties in obtaining enough seeds per 

plant, for some populations the aim for 100 progenies could not be reached (TABLE 3.1). For the repeated 

field test in 2016, 50 progenies per population were selected. Selection was done by sorting progenies 

within each population according to the mean single seed weight calculated after harvest in 2015 and 

selecting at least every second progeny, including those with the highest and the lowest seed weight. In 

this way, we aimed to keep the original range in seed weight present at 2015 for each population within 

the selected progenies for testing in 2016.  

TABLE 3.1 Number of progenies per population phenotyped in 2015 and 2016. 

Cultivar Population No. of progenies 2015 No. of progenies 2016 

Pisarecka Perla PP_0 97 50 
PP_R_10 100 50 
PP_S_10 100 50 
PP_T_10 95 50 

Schwarze Linse SL_0 93 50 
SL_R_10 100 50 
SL_S_10 99 50 
SL_T_10 98 50 

Gestreifte Linse GL_0 59 50 

GL_R_10 82 50 

GL_S_10 52 50 

GL_T_10 77 50 

 

LOCATIONS AND CLIMATIC CONDITIONS 

Progeny testing plots were conducted at Reinshof in 2015 and 2016. Soil and climatic conditions are 

described in CHAPTER 2.2. 
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PHENOTYPING 

Single plant progenies were tested in single-row plots of approx. 0.45m² with 20 seeds sown in April 2015 

(row length = 1.2m; distance between rows = 0.3m) and in double-row plots of approx. 1m² with 50 seeds 

sown in April 2016 (plot length = 1.3m; distance between rows = 0.3m; distance between double-row plots 

= 0.4). Field plots were arranged in a partially replicated block design. In 2015, within the three main blocks 

of three cultivars, 100 progenies of each population were blocked in sub-blocks. Within sub-blocks, 20 

progenies were planted in two replications. Field design in 2016 was similar, but included an additional 

pseudo-replication of the main blocks by splitting the total of 50 progenies per population into 2×25 

progenies. Within sub-blocks of 25 progenies, 5 progenies were replicated twice, thus in total 10 progenies 

of each population was grown in two replications.  

The whole plants were harvested by hand when ripe, packed in permeable linen or woven plastic bags and 

air dried for at least one week hanging in rainout shelters. In case of humid weather at harvest or when 

straw for some populations or selections was still greenish, bags were dried at 25-30°C on a hot air dryer 

indoor at the farm.  

Seed and straw weight was taken after threshing dried plants. Seed weight was measured from 100-400 

seeds by taking the weight of two or four replications (2 x 50 or 4 x 100 seeds), depending on the availability 

of seeds.  

Leaf size was measured from two detached leaves taken in the field shortly before or at early flowering of 

the plants. The leaf to be taken for measurement from two different plants were defined to be the third 

upper fully mature leaf. For most genotypes, this leaf has no tendril at the leaf apex, whereas the upper, 

not fully mature leafs show a lighter green color and have rolled or curved leaflets, typically with a tendril. 

Leafs were stored between wet paper tissue until they were scanned with the LI-3100 C area meter (LI-

COR Biosciences) with an area resolution of 1mm². 

Field emergence and survival rate was evaluated in single row plots (2015) from counting of all plants at 

about three weeks past sowing and recounting at harvest. In double row plots (2016), field emergence 

was estimated indirectly by rating ground coverage after flowering when plants stopped growing more or 

less and started filling the pods.  

Hypocotyl color, as it is visible after field emergence of the seedling, was recorded. For specific populations 

which showed segregation for this trait, the number of progeny-genotypes with red colored hypocotyl was 

counted. In very few cases, single plants of different color within a progeny were removed from the plot. 

Additionally, hypocotyl color served as a morphological marker for the early identification of possible 

sowing errors in the field. 

Flowering was scored on a scale from 0 – 4 as described in chapter 2.3 and according to Horneburg (2003), 

starting when first flowers were observed continuously every second day until full flowering was reached. 

Lodging could not be scored in 2015, but in 2016 after a heavy rainfall with strong winds it was scored on 

a 1-9 scale (not lodging until fully lodging). 

Ripening was scored on a scale from 1-9 as described in CHAPTER 2.2. 
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GENOTYPING 

Pretest of all available SNP KASPar essays on selected material 

To test whether all 512 available SNP assays at LGC Genomics developed by Sharpe et al. (2013) are 

polymorphic in our material, 32 seeds of each cultivar, in total 96 seeds, were analyzed. For the pretest, 

single seeds of 16 different single plant progenies from each of the six selections for extreme seed size 

(large, small; see CHAPTER 4) of the three cultivars were chosen. DNA extraction was done from the single 

seed by a protocol developed at the LGC laboratory in Berlin, Germany.  The extracted DNA was then sent 

for analysis to LGC in Hoddesdon, UK. 

From the 512 available SNPs, 488 gave valid data. The genotypic data of 488 SNPs were analyzed in the 

M.Sc. thesis of Zhong (2017, unpublished) and 147 polymorphic SNPs were selected. 

Genotyping with preselected SNPs of single-plant progenies  

For each population, single seeds of all available single-plant progenies were taken for DNA extraction and 

subsequently genotyped as described before. In case of less than 100 progenies available for certain 

populations, randomly chosen single seeds from the multiplication plots in 2014 were taken to reach 100 

samples per population. 

Of the 159 SNPs selected for analysis, 148 have successfully generated data. One additional SNP 

(LcC00148p533) was excluded from further analysis, due to missing data of more than 50% across the 

three cultivars. Thus, the following results are obtained from the analysis with 147 SNPs. In cultivar SL, SNP 

Contig14652 gave a heterozygous result (TG) for more than 99% of the individuals across populations, 

whereas individuals from cultivar GL are homozygous with TT; PP is polymorphic for this marker with TG 

and TT for 11 and 89 individuals respectively in population PP_0; in the populations T_5 and T_10, 

additionally few homozygous individuals with GG were found. 
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STATISTICAL ANALYSIS 

The field data was evaluated by the analysis of variance (ANOVA) in PLABSTAT (Version 3Bwin, Utz 2011). 

The un-replicated data was analyzed separately for each cultivar and year by the following model:  

 xij = µ + pi + sij  

where xij is the observed value, µ is the general mean of the experiment, pi is the effect of the population, 

and sij is the effect of progenies within the population and includes the residual error.  

To obtain the ‘true’ experimental error from the replicated progenies, in a second step the variance 

components were calculated separately for each cultivar and year only from replicated entries (20 and 10 

replicated entries in 2015 and 2016, respectively) with the following model:  

 xijk = µ + pi + sij + rik + eijk  

with the replication rik effect and the residual experimental error eijk.  

For the 50 entries replicated during two years, the following model was applied: 

 xijk = µ + yi + pj + sijk + ypij + eijk 

with the year effect yi and the interaction effect of year and population ypij.  

Post-hoc mean comparisons were done by Tukey’s HSD (honestly significant difference) test. The HSD 

values were calculated ‘by hand’ in Microsoft Excel (Version 2010) using the mean squares and degrees of 

freedoms (or alternatively the standard errors) given in the ANOVA table by PLABSTAT and the respective 

q-value from the ‘Studentized Q table’ for a level of significance of 5% (P=0.05); in few cases for 10% 

(P=0.1). 

Principle component analysis (PCA) was done on the statistical platform ‘R Studio’ (Version 1.0.136; 

RStudio Team 2015) using the function ‘prcomp()’ and subsequent hierarchical clustering was done with 

the function ‘hcpc()’ (Hierarchical Clustering on Principle Components) from the package ‘FactoMineR’ 

(Husson et al. 2009).  

Genotypic data were analyzed by classical multidimensional scaling (MDS) and hierarchical clustering using 

the non-parametric population structure software ‘AWclust’ written for R with a GUI interface (Gao and 

Starmer 2008). It uses the ‘allele sharing distance’ (ASD) and then applies ‘Ward’s-minimum-variance’ 

criterion (Ward 1963; Ward and Hook 1963) directly to the similarity matrix. The number of cluster 

referring to the estimated number of populations is calculated by the gap statistic of Tibshirani et al. 

(2001). The developer of AWclust state as an advantages of their non-parametric method, that 

assumptions about the population models are not required. The software enables to infer the optimal 

number of populations in the sample. SNPs alleles were coded 0 for the most frequent one, 1 for the 

heterozygous, 2 for the second allele variant, and missing data points are coded as -1. The ASD matrix 

calculated from AWclust was exported and used for the cluster analysis within populations with the 

‘Unweighted Pair Group Method with Arithmetic mean’ (UPGMA; Sokal and Michener 1958) in R Studio 

using the functions ‘hclust()’ and ‘plot(as.dendrogram())’ from the package ‘Dendextend’ by Galili (2015).  
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3.3 RESULTS 
 
PHENOTYPIC RESULTS 

Single plant progeny testing for the initial population and populations in the 10th generation of site-specific 

natural selection exposed significant variation between these four populations for most traits in Pisarecka 

Perla, for yield in 2015 and yield, seed weight and flowering across both years in Schwarze Linse, and for 

yield and flowering across both years in Gestreifte Linse (TABLE 3.2). Highly significant variation within these 

populations was observed in Pisarecka Perla and Schwarze Linse for seed weight and flowering, whereas 

in Gestreifte Linse none of the traits revealed significant variation within populations when analyzed across 

both test years. 

The year of testing had a significant effect on the yield, especially for Schwarze Linse. Due to a large 

infection of virus diseases on the plants in 2016, as scored with the highest infection of 24 – 32 % infected 

plants in all populations of Schwarze Linse and in the populations in generation 10 of Pisarecka Perla, seed 

yield was lower in 2016 with up to 70% compared to 2015 for the latter populations (TABLE 3.3). In Schwarze 

Linse, seed yield was lower by 35-51%. Straw was less affected compared to seed yield in Pisarecka Perla 

and Schwarze Linse. For Gestreifte Linse higher seed and straw yield means were observed in the second 

year, except for populations under natural selection at Reinshof and Tangsehl with a reduced seed yield 

of 30-35% and a higher disease score mean with 14-19%, compared to the other populations (GL_0, 

GL_S_10).  

 



PHENOTYPIC AND GENOTYPIC VARIATION WITHIN POPULATIONS 

RESULTS 

 PAGE 46 

TABLE 3.2 Variance components with their significance levels from the F-test a) and heritability values (h²) for kernel yield (KY), straw yield (SY), total 

yield (TY), seed weight (SW), sum of flowering scores (FTsum), leaf size scan (LScan), and scores for ripening, disease, and plant density; calculated 

from 20 and 10 replicated progenies in the years 2015 and 2016, respectively, and across both years from 50 progenies. 

 Pisarecka Perla Schwarze Linse Gestreifte Linse 

Year Trait Population Progeny Replicationb) Residual h² Population Progeny Replication Residual h² Population Progeny Replication Residual h² 

2015                

KY 32.44+ 90.45 5.51 827.5 18 36.48* 0 0 677.6 0 268.5** 88.73 0 821.7 18 

SY 799.4** 779.7** 0 c) 2049 43 219.0** 0 0 2222 0 21.84 75.35 0 1867 7 

TY 572.8** 867.7+ 29.11 3803 31 347.7** 0 0 4245 0 260.5* 277.3 0 4048 12 

SW 15.82** 45.37** 0 16.45 85 0.007 0.027 0 4.387 1 0 0.636+ 0 2.893 31 

FTsum 2.184** 11.84 0 2.737 90 0.049 0.453* 0 1.756 34 0.221** 0.325* 0 1.277 34 

Ripening 0 0.104+ 0.009 0.555 27 0 0.016 0 0.502 6 0 0 0 0.138 0 

2016                

KY 114.1** 203.1** 17.17+ 348.8 54 0 0 0.271 295.6 0 93.08 864.21* 0 2046 46 

SY 578.5** 979.7 6.631 1169 63 35.01 0 0 1296 0 19.24 478.97 0 2348 29 

TY 1229** 1930** 65.05 2304 63 4.692 0 0 2312 0 146.45 2589.20+ 0 7464 41 

SW 14.18** 27.70** 1.092 34.07 62 0 0.318 0 3.343 16 0 0.63 0 8.426 13 

FTsum 2.846** 5.137** 0.007 0.589 95 0.062** 0.727** 0 0.109 93 0.08* 0.06 0 0.880 12 

Ripening 0.033 0.066 0 0.595 18 0 0.74* 0.22* 1.641 47 0.01 0 0 0.640 0 

LScan 2.574** 2.912* 0 5.198 53 0 0 0 3.017 0 0 0 0 3.281 0 

Disease 10.09 0 1.795 173.2 0 2.577 13.55 0 103.04 21 6.49 0 0 129.0 0 

Density 36.55** 36.21* 21.03** 70.22 51 0 54.86** 1.667 58.33 65 0 103.74* 9.42 228.1 48 

2015/16                

KY 68.09** 24.41 1970** 624.5 7 14.89** 82.74** 263.8** 379.2 30 30.98* 149.4 77.11** 1481 17 

SY 119.2** 115.5 1211** 2734 8 144.3** 91.97 172.6** 1438 11 256.8** 0 1493** 2154 0 

TY 264.3** 0 6288** 5117 0 212.6** 418.4* 853.3** 2665 24 478.4** 242.0 844.2** 6026 7 

SW 21.89** 41.23** 42.19** 26.15 76 0.074* 1.829** 9.025** 2.710 57 0.020 0.554 0.740** 7.556 13 

FTsum 1.612** 6.786** 1.233** 2.146 86 0.048** 0.536** 0.160** 1.096 49 0.037** 0.084 2.791** 0.889 16 

Ripening 0.023** 0.043 0.827** 0.657 12 0 0.101 7.242 1.044 16 0.004+ 0.006 0.101** 0.311 4 
a) Significance levels from the F-test in ANOVA is denoted by **, *, and + for P-values = 0.01, 0.05, and 0.1, respectively. 
b) Replication is identical to Year for ANOVA of two-year data (2015/16) 
c) Negative estimates. 

  



PHENOTYPIC AND GENOTYPIC VARIATION WITHIN POPULATIONS 

RESULTS 

 PAGE 47 

TABLE 3.3 Mean yield per population in 2015, 2016, and across years, absolute and relative differences for comparison between years, and disease 

scoring in 2016.  

  Pisarecka Perla  Schwarze Linse  Gestreifte Linse 

Trait  PP_0 R_10 S_10 T_10  SL_0 R_10 S_10 T_10  GL_0 R_10 S_10 T_10 

Seed yield [g] 2015 98.5ab a) 107.2b 89.6a 98.8ab  46.2a 62.5b 54.0ab 54.9ab  128.3a 151.1b 125.3a 155.1b 

 2016 55.9b 33.8a 23.8a 31.2a  28.0a 30.5a 28.7a 35.8a  151.9b 97.5a 147.8b 109.6a 

 2015/16 78.7b 66.7a 58.2a 64.0a  35.6a 44.7b 41.6ab 44.9b  141.2b 124.9a 134.8ab 131.8ab 

 Difference 42.6 73.4 65.8 67.5  18.2 32.0 25.3 19.1  -23.6 53.6 -22.5 45.5 

 rel. Diff. [%] 56.8 31.5 26.6 31.6  60.6 48.8 53.2 65.3  118.4 64.5 117.9 70.6 

Straw yield [g] 2015 215.3a 249.2b 262.8b 232.3ab  168.3a 179.4a 176.3a 197.9b  222.1a 207.5a 206.5a 222.6a 

 2016 229.0b 189.9a 166.4a 164.1a  154.3a 151.8a 162.4ab 177.5b  305.4b 249.1a 282.3b 244.0a 

 2015/16 222.1b 213.7b 215.2ab 193.9a  160.7a 163.6a 169.6a 188.7b  264.3b 226.7a 245.0b 232.2ab 

 Difference -13.7 59.3 96.4 68.2  14.0 27.6 13.8 20.4  -83.3 -41.6 -75.8 -21.5 

 rel. Diff. [%] 106.3 76.2 63.3 70.6  91.7 84.6 92.1 89.7  137.5 120.0 136.7 109.6 

Total yield [g] 2015 313.7a 356.4b 352.5b 331.1ab  214.2a 242.0bc 230.6ab 252.7c  350.3a 358.6ab 331.7a 377.7a 

 2016 284.9b 223.7a 190.2a 195.3a  182.3a 182.4a 191.1ab 213.3b  457.2b 346.6a 430.1b 353.6a 

 2015/16 300.8b 280.4ab 273.4a 258.0a  196.6a 208.4a 210.7a 233.6b  405.5b 351.7a 379.7ab 364.1ab 

 Difference 28.8 132.7 162.3 135.8  31.9 59.6 39.4 39.4  -106.9 12.0 -98.4 24.1 

 rel. Diff. [%] 90.8 62.8 54.0 59.0  85.1 75.4 82.9 84.4  130.5 96.7 129.7 93.6 

Disease [%] 2016 17.4a 24.6b 28.6b 31.9b  27.8a 27.96a 24.3a 23.8a  9.4a 19.3b 11.22a 13.9a 
a) Mean values followed by the same letter row-wise within cultivar are not significantly different in Tukey’s-HSD test at P=0.05  
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Seed, straw, and total yield mean values differ between populations of the same cultivar with the highest 

yield observed for the initial populations in Pisarecka Perla and Gestreifte Linse (TABLE 3.4‒3.6). In 

Schwarze Linse, the populations SL_R_10 and SL_T_10 yield significantly higher compared to SL_0 in seeds 

and in straw for the latter population. Significant variation between progenies was not observed within all 

populations, but larger coefficient of variation for PP_T_10 compared to the other populations in Pisarecka 

Perla is noticeable. In Schwarze Linse, significant variance was found within SL_0 for seed yield and larger 

coefficients of variation compared to the other populations is visible in straw and total yield for the same 

population. In Gestreifte Linse, population GL_T_10 shows significant variation for yield. 

 
TABLE 3.4 Seed yield [g] mean, standard error (SE), range, variance, and coefficient of variation (CV) per 

population from two-year field test (2015/16) 

Population Meana) SE Min. Max. Range Varianceb) CV N 

PP_0 78.7 b 2.87 37.8 126.1 88.3 410.6 ns 25.76 50 
PP_R_10 66.6 a 2.57 13.7 107.1 93.4 329.3 ns 27.23 50 
PP_S_10 58.2 a 1.92 23.5 103.6 80.1 184.3 ns 23.34 50 
PP_T_10 64.0 a 2.91 19.0 132.7 113.8 422.4 ns 32.11 50 

SL_0 35.6 a 2.07 - 96.0 - 214.5 * 41.09 50 
SL_R_10 44.7 b 2.15 16.6 92.1 75.6 231.7 + 34.04 50 
SL_S_10 41.6 ab 2.37 18.2 104.7 86.5 281.2 ns 40.29 50 
SL_T_10 44.9 b 2.69 20.9 125.3 104.4 362.0 ns 42.38 50 

GL_0 141.2 b 3.89 77.9 203.9 126.0 756.5 ns 19.48 50 

GL_R_10 124.9 a 4.27 45.1 193.5 148.5 909.7 ns 24.15 50 
GL_S_10 134.7 ab 4.58 38.7 219.9 181.2 1027.8 ns 23.81 49 
GL_T_10 131.8 ab 4.16 43.7 175.5 131.8 866.6 + 22.34 50 

a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s-HSD test with P=0.05. 
b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

 **, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 
 
 

TABLE 3.5 Straw yield [g] mean, standard error (SE), range, variance, and coefficient of variation (CV) per 

population from two-year field test (2015/16) 

Population Meana) SE Min. Max. Range Varianceb) CV N 

PP_0 222.1 b 4.84 161.4 278.2 116.8 1169.1 ns 15.39 50 
PP_R_10 213.7 b 4.70 130.5 269.5 139.0 1102.3 ns 15.53 50 
PP_S_10 215.2 b 5.20 121.7 294.8 173.1 1349.9 ns 17.08 50 
PP_T_10 193.9 a 6.79 86.8 310.0 223.2 2308.1 + 24.77 50 

SL_0 160.7 a 4.35 75.4 269.4 194.0 947.8 ns 19.16 50 
SL_R_10 163.6 a 3.43 113.0 236.7 123.7 588.7 + 14.83 50 
SL_S_10 169.6 a 3.92 104.5 227.3 122.8 767.5 ns 16.34 50 
SL_T_10 188.7 b 4.33 144.0 258.6 114.6 939.1 ns 16.24 50 

GL_0 264.3 c 4.90 184.9 399.7 214.8 1201.0 ns 13.11 50 

GL_R_10 226.7 a 4.75 132.0 289.1 157.1 1129.1 ns 14.82 50 
GL_S_10 244.6 b 4.47 157.1 302.6 145.5 978.5 ns 12.79 49 
GL_T_10 232.2 ab 4.41 131.1 286.8 155.8 972.4 * 13.43 50 

a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s-HSD test with P=0.05. 
b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

 **, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 
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TABLE 3.6 Total yield [g] mean, standard error (SE), range, variance, and coefficient of variation (CV) per 

population from two-year field test (2015/16) 

Population Meana) SE Min. Max. Range Varianceb) CV N 

PP_0 300.8 c 6.72 214.9 369.5 154.6 2257.0 ns 15.79 50 
PP_R_10 280.4 bc 6.47 164.5 360.9 196.4 2095.6 ns 16.33 50 
PP_S_10 273.4 ab 6.23 174.0 361.5 187.6 1939.9 ns 16.11 50 
PP_T_10 258.0 a 8.76 105.3 386.3 281.0 3837.1 + 24.01 50 

SL_0 196.6 a 6.29 70.6 365.6 295.0 1980.1 * 22.64 50 
SL_R_10 208.4 a 5.10 133.2 328.8 195.6 1299.0 + 17.30 50 
SL_S_10 210.7 a 5.79 132.5 326.7 194.2 1674.1 ns 19.42 50 
SL_T_10 233.6 b 6.40 170.1 376.4 206.4 2050.0 ns 19.39 50 

GL_0 405.5 b 7.28 268.5 542.1 273.5 2646.3 ns 12.69 50 
GL_R_10 351.7 a 8.47 177.0 469.2 292.2 3590.1 ns 17.04 50 
GL_S_10 379.2 ab 8.51 208.6 522.9 314.4 3549.5 ns 15.71 49 
GL_T_10 364.1 a 8.03 174.8 462.3 287.5 3227.6 + 15.61 50 

a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s-HSD test with P=0.05. 
b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

 **, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 
 
 

TABLE 3.7 Seed weight [mg] mean, standard error (SE), range, variance, and coefficient of variation (CV) 

per population from two-year field test (2015/16) 

a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s- 
HSD test with P=0.05. 

b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

**, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 

Seed weight means differ significantly between all populations of Pisarecka Perla and highly significant 

variances within populations were found with the highest coefficient of variation in PP_T_10 (TABLE 3.7). 

Seed weight of the population from Reinshof (SL_R_10) of Schwarze Linse has a significantly higher mean 

value compared to SL_0 and significant variances are present in all populations, except for SL_T_10. 

Populations of Gestreifte Linse do not differ significantly for seed yield and variances within populations 

are not significant, except for GL_0 at P=0.1.  

Population Meana) SE Min. Max. Range Varianceb) CV N 

PP_0 52.5 c 1.01 40.8 65.1 24.4 51.5 ** 13.68 50 
PP_R_10 55.2 d 0.79 37.1 65.5 28.4 31.3 ** 10.14 50 
PP_S_10 48.7 b 1.14 27.1 60.9 33.9 64.8 ** 16.52 50 
PP_T_10 44.4 a 1.18 24.9 60.1 35.2 69.6 ** 18.81 50 

SL_0 20.9 a 0.24 13.5 23.5 10.0 2.9 * 8.10 50 
SL_R_10 21.6 b 0.28 18.2 32.4 14.2 3.9 ** 9.11 50 
SL_S_10 21.3 ab 0.30 15.7 29.8 14.1 4.4 ** 9.83 50 
SL_T_10 21.5 ab 0.18 18.5 25.2 6.7 1.6 ns 5.92 50 

GL_0 32.8 a 0.27 24.3 35.6 11.3 3.6 + 5.77 50 

GL_R_10 32.3 a 0.27 26.6 35.4 8.8 3.6 ns 5.84 50 
GL_S_10 32.9 a 0.39 17.4 36.0 18.6 7.6 ns 8.40 49 
GL_T_10 32.9 a 0.23 28.4 35.8 7.4 2.6 ns 4.91 50 
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Seed weight distributions are plotted for Pisarecka Perla from all available progenies tested in 2015 in 

FIGURE 3.1. Hereby two distinct groups in PP_0 become visible, one group of progenies with seeds of 40-

52 mg weight and a second croup with a larger range of seed weights from 56-73 mg. In PP_R_10, the 

large majority of progenies range between 54-70 mg, in PP_S_10 the majority of progenies ranges 

between 38-64 mg. In PP_T_10 again two groups are visible, one group ranges around ±45 mg and the 

second smaller group around ±58 mg. 

 
FIGURE 3.1 Seed weight frequency histogram of progenies in the populations of Pisarecka Perla PP_0 (A), 

PP_R_10 (B), PP_S_10 (C), and PP_T_10 (D) tested in 2015. 
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FIGURE 3.2 Seed weight frequency histogram of progenies in the populations of Schwarze Linse SL_0 (A), 

SL_R_10 (B), SL_S_10 (C), and SL_T_10 (D) tested in 2015. 

Seed weight of progenies within populations of Schwarze Linse follow approximately a normal distribution 

with more than 50% of progenies ranging from 23-25 mg (FIGURE 3.2). 
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FIGURE 3.3 Seed weight frequency histogram of progenies in the populations of Gestreifte Linse GL_0 (A), 

GL_R_10 (B), GL_S_10 (C), and GL_T_10 (D) tested in 2015. 

Distributions of seed weight within populations of Gestreifte Linse differ between populations (FIGURE 3.3). 
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Flowering scores are plotted in relative frequencies for each date of scoring (FIGURE 3.5‒3.7). In PP_0 and 

PP_T_10 approximately 10-18% of the progenies were flowering (score ≥1) on the first date of scoring (10. 

June 2015) and three days later, on the second date of scoring, approximately 44-55% were flowering, 

whereas in PP_R_10 and PP_S_10 less than 1% on the first date, and approximately 10-25% at the second 

date of scoring were observed flowering (FIGURE 3.5). In PP_R_10 larger proportions of progenies still 

received flowering scores of < 4 during later dates compared the other three populations, indicating a 

larger timespan until full flowering for this population.  

FIGURE 3.5 Frequency of flowering scores of Pisaracka Perla progenies in population PP_0 (A), PP_R_10 (B), 

PP_S_10 (C), and PP_T_10 (D) at five time points in 2015. 
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Early flowering was scored on 10th of June 2015 in SL_T_10, whereas in the other populations of Schwarze 

Linse on approximately 55-70% of the progenies no open flowers were observed at the same date (FIGURE 

3.6). During later dates of scoring no clear differences between frequencies of flowering scores for 

populations of Schwarze Linse are visible. 

  

FIGURE 3.6 Frequency of flowering scores of Schwarze Linse progenies in population SL_0 (A), SL_R_10 (B), 
SL_S_10 (C), and SL_T_10 (D) at three time points in 2015. 
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The first date when first open flowers were observed was seven days later in Gestreifte Linse, compared 

to the other two cultivars, on 17th June 2015. Within the populations GL_0, GL_R_10, and GL_T_10 

approximately 60% were scored with ≤ 1 at the first date of scoring, while GL_S_10 received scores of ≥ 2 

for about 70% of its single plant progenies (FIGURE 3.7). 

 

 

  

FIGURE 3.7 Frequency of flowering scores of Gestreife Linse progenies in population GL_0 (A), GL_R_10 (B), 

GL_S_10 (C), and GL_T_10 (D) at two time points in 2015. 
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In 2016, a significantly larger leaf size mean was observed for PP_R_10 compared to PP_0 and PP_T_10; 

mean comparisons of populations within Schwarze Linse and Gestreifte Linse did not reveal significant 

differences (TABLE 3.8). Highly significant variation was observed within PP_0, but in none of the other 

populations. 

 
TABLE 3.8 Leaf size scan [cm²] mean, standard error (SE), range, variance, and coefficient of variation (CV) 

per population from one-year field test (2016).  

Population Meana) SE Min. Max. Range Varianceb) CV N 

PP_0 11.8 a 0.37 6.8 17.1 10.3 6.8 ** 22.13 50 
PP_R_10 14.4 b  0.40 8.0 19.9 11.9 8.0 ns 19.68 50 
PP_S_10 13.4 ab 0.43 5.7 18.8 13.1 9.3 ns 22.66 50 
PP_T_10 12.1 a 0.42 6.2 17.4 11.2 8.9 ns 24.60 50 

SL_0 8.1 a 0.17 5.8 10.5 4.7 1.4 ns 14.64 50 
SL_R_10 7.9 a 0.21 5.4 11.4 6.0 2.2 ns 18.59 49 
SL_S_10 8.0 a  0.21 5.6 11.7 6.2 2.1 ns 18.20 50 

SL_T_10 7.8 a 0.18 4.6 11.0 6.4 1.7 ns 16.68 50 

GL_0 9.4 a 0.19 6.4 12.1 5.7 1.8 ns 14.09 50 
GL_R_10 8.5 a 0.28 4.8 12.6 7.8 3.8 ns 23.06 50 
GL_S_10 9.0 a 0.25 5.3 13.3 8.0 3.0 ns 19.10 49 
GL_T_10 8.5 a 0.25 4.3 13.1 8.9 3.0 ns 20.49 50 

a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s-HSD test with P=0.05  

 (calculated from 10 progenies in two replications). 
b) Significance levels of the effect of progenies from the F-test in ANOVA, calculated from 10 replicated progenies per population,  

 is given with: **, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 

 

In the analysis of principle components, nine phenotypic traits were used to check for phenotypic grouping 

according to these traits within progenies of the same cultivar (FIGURE 3.8‒3.9). The traits involved in the 

principle component are: Seed (KY), straw (SY), and total yield TY, seed weight (SW), leaf area (LScan), the 

sum of flowering scoring (FTsum), and scorings of ripening, disease, and density. Within Pisarecka Perla, 

according to the first and second principle component, flowering and seed weight are differentiating two 

main groups, which still contain large variation due to yield traits and density versus ripening and disease 

scoring, all having different directions of interactions. Additionally, the third principle component still 

explains a proportion of 11.6% of the variation (FIGURE 3.8). Within cultivar Schwarze Linse and Gestreifte 

Linse, no clear grouping according to the phenotypic traits assessed became visible by the analysis of 

principle components (FIGURE 3.9). 
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FIGURE 3.8 Principal component biplots of the 1st versus 2nd (left) and the 2nd versus the 3rd principal 
component calculated from two-year phenotypic data including 9 different traits measured on single 
plant progenies of the cultivar Pisarecka Perla across four populations (0, R, S, T) with 50 progenies 
each. 

FIGURE 3.9 Principal component biplots of Schwarze Linse (left) and Gestreifte Linse (right) from two-
year phenotypic data including 9 different traits measured on single plant progenies across four 
populations (0, R, S, T) per cultivar with 50 progenies each. 
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To reveal phenotypic grouping within populations of Pisarecka Perla, analysis of principle components was 

applied separately for each population (FIGURE 3.10). Large interactions to opposite directions were 

observed for flowering (FTsum) and ripening versus leaf size (LScan) and disease scoring. Flowering is 

closely correlated with ripening in PP_0 and PP_T, yield with plant density scorings and seed weight (SW) 

with leaf size in all populations, as can be seen from the similar directions of interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE 3.10 Principal component biplots of Pisarecka Perla populations PP_0 (upper left), PP_R_10 

(upper right), PP_S_10 (lower left), and PP_T_10 (lower right) from two-year phenotypic data 

including 9 different traits measured on 50 single plant progenies within each population. 
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In the next step, hierarchical clustering of principle components was done across the four populations of 

Pisarecka Perla to find phenotypic clusters and to compare the contribution of each population to the 

observed clusters (FIGURE 3.11, TABLE 3.9). Four main clusters could be differentiated (FIGURE 3.11), with 

the first cluster strongly occupied by progenies of PP_T_10 with 21 progenies, 6 progenies of PP_S_10, 

one of PP_R_10, and none of PP_0 (TABLE 3.9). The second cluster is largely taken by progenies of PP_R_10 

and PP_S_10; the third cluster included mainly progenies of PP_0, and in the fourth cluster all populations 

are involved, PP_R_10 contributes the largest number of progenies to this cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 3.9 Number of progenies within each cluster from hierarchical clustering of principle components 
of 9 phenotypic traits. 

 Cluster  

Population 1 2 3 4 Sum 

PP_0 0 5 29 16 50 

PP_R_10 1 22 4 23 50 

PP_S_10 6 23 9 12 50 

PP_T_10 21 10 10 9 50 

Sum 28 60 52 60 200 

 

  

cluster 1 cluster 3 cluster 2 cluster 4 

FIGURE 3.11 Hierarchical clustering on principle components of nine phenotypic traits for Pisarecka Perla: 
Biplot (left), minimum-variance-dendrogram (right), and barplot of the intra-cluster inertia (upper right).  

cluster 1 
 

cluster 2 
 

cluster 3 
 

cluster 4 
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Seed weight and flowering were observed to contribute significantly to phenotypic variation with a 

relatively high heritability and opposite directions of interactions within Pisarecka Perla and its populations 

(TABLE 3.2, 3.7; FIGURE 3.8, 3.10). Thus, principle component analysis (PCA) and subsequent hierarchical 

clustering of principle components was performed for these two traits (FIGURE 3.12). Since PCA is done 

with only two traits, a similar picture would be obtained when plotting seed weight over flowering score 

sums, as it is done in FIGURE 3.17 separately for each population of Pisarecka Perla. Five main clusters could 

be differentiated. The three largest clusters are relatively close to each other. They have overlapping areas 

and contain 118 (cluster 1), 52 (cluster 3), and 18 (cluster 2) progenies (TABLE 3.10). Two additional small 

clusters containing seven progenies of PP_0 (cluster 4) and five progenies (four of PP_T_10 and one of 

PP_S_10 in cluster 5) are at a larger distance from the three main clusters. 

 

 

TABLE 3.10 Number of progenies within each cluster from hierarchical clustering of principle components 
of seed weight and flowering. 

 Cluster  

Population 1 2 3 4 5 Sum 

PP_0 21 0 22 7 0 50 

PP_R_10 46 1 3 0 0 50 

PP_S_10 33 5 11 0 1 50 

PP_T_10 18 12 16 0 4 50 

Sum 118 18 52 7 5 200 

  

cluster 5 

cluster 3 

cluster 4 

cluster 1 

cluster 1 
 

cluster 2 
 

cluster 3 
 

cluster 4 
 

cluster 5 cluster 2 

FIGURE 3.12 Hierarchical clustering of principle components for seed weight and flowering in 
Pisarecka Perla: Biplot (left), minimum-variance-dendrogram (right), and barplot of the intra-cluster 
inertia (upper right). 
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GENOTYPIC RESULTS 

The largest amount of polymorphic markers was observed in the cultivar PP (TABLE 3.11). In cultivar SL few 

samples show polymorphic results. In population SL_R_5, one individual was identified belonging to 

cultivar GL and excluded. One of the five individuals in SL_R_10 showing polymorphic results additionally 

had 21 heterozygous loci. The five individuals in SL_S_5 with polymorphic loci were also heterozygous for 

8-56 loci. In population SL_S_10, four individuals are polymorphic and one additional individual has 36 

heterozygous loci, but no polymorphisms at any of the non-heterozygous loci. The one individual in 

population SL_T_5 with 19 polymorphic loci is at the same time heterozygous for 50 other loci. The three 

individuals differing at 35 loci from the rest of population SL_T_10 are identical for 33 of these 35 SNPs. In 

cultivar GL, polymorphic or heterozygous samples are even less abundant compared to cultivar SL. In 

population GL_R_10, one of the two heterozygous samples with 10 loci is at the same time polymorphic 

homozygous for 16 SNPs. Two of the three samples with polymorphisms in population GL_S_5 are also 

heterozygous at 8 and 19 loci, respectively. The single individual differing from the other samples in 

population GL_T_5 at 19 SNPs is at the same time heterozygous in 38 other SNPs. 

TABLE 3.11 Results from genotyping with 147 SNP marker. 

 
 
 
Population 

Number of 
polymorphic 

homozygous loci 
(number of samples)a) 

 
Number of 

heterozygous 
loci  

Number of heterozygous 
samples with H>5% 
(Number or range of 

heterozygous loci) 

 
 

Number of 
samples 

PP_0 120 101 1 (83) 100 
PP_R_5 48 82 2 (63; 35) 100 

PP_R_10 75 78 2 (59; 8) 100 

PP_S_10 111 112 8 (9-50) 99 

PP_T_5 96 114 12 (9-71) 100 

PP_T_10 124 101 10 (8-41) 100 

SL_0 0 2 0 99 
SL_R_5  30 (1) 4 0 99 

SL_R_10 70 (5) 23 1 (21) 100 
SL_S_5 51 (5) 103 5 (8-56) 100 

SL_S_10 69 (4) 37 1 (36) 100 

SL_T_5 19 (1) 103 3 (50-84) 100 

SL_T_10 35 (3) 1 0 100 

GL_0 75 (1) 0 0 104 
GL_R_5 0 1 0 100 

GL_R_10 16 (1) 59 2 (10; 55) 99 

GL_S_5 34 (3) 24 2 (8; 19) 100 

GL_S_10 0 0 0 100 
GL_T_5 19 (1) 39 1 (38) 99 

GL_T_10 0 2 0 100 
a) If only few individuals are contributing to polymorphisms, the number of individuals is given in brackets.  
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According to the cluster analysis from pairwise shared allele-distances with the minimum-variance 

method, three main clusters were identified for genotyped individuals of Pisarecka Perla (FIGURE 3.13). The 

largest highly homogenous cluster was named cluster A and contains approximately 60% of all genotyped 

individuals. The remaining individuals form two additional clusters (cluster B and C+); one of which is highly 

homogenous, the other one is heterogeneous to a large degree. 

 

TABLE 3.12 Number of individuals per population of Pisarecka Perla assigned to the three identified 
genotypic clusters by the minimum-variance-method.  

 Cluster  

Population A B C+ Sum 

PP_0 44 42 14 100 

PP_R_5 68 30 2 100 

PP_T_5 38 32 28 98 

PP_R_10 90 6 4 100 

PP_S_10 66 15 18 99 

PP_T_10 31 4 65 100 

Sum 337 129 131 597 

 
Subsequent within-population clustering identified three major homogenous genotypes (A, B, C) present 

in population PP_0 (FIGURE 3.14). Genotypes A, B, and C, correspond to the clusters A, B, and C+ described 

before. In populations under natural selection after five and ten generations, proportions of the genotypes 

A and B vary between selection sites and generations, while genotype C is represented by very few samples 

or not abundant at all in later generations (FIGURE 3.15‒3.16).    

 

Cluster A (N=337) Cluster B (N=129) Cluster C+ (N=131) 

FIGURE 3.13 Minimum-variance-dendrogram (Ward) of all genotyped individuals of Pisarecka Perla. 
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Population PP_0 consists of three main genotypes A, B, and C 

(FIGURE 3.14). Genotype A has 44 homogenous individuals; with 

one exception for individual PP_0_46 with one heterozygous 

loci at LcC00019p234 with CT, where all other individuals of the 

cultivar PP have TT. Genotype B was identified with 42 

completely homogenous individuals. Genotype C consists of 11 

individuals with one individual (PP_0_79) with an additional 

locus in heterozygous status with TC at LcC10111p524, where 

genotype A and B are in homozygous status with TT and CC. 

Furthermore, locus Contig14652 is in heterozygous status in 

genotype C with TG, where all other genotypes of population 

PP_0 have TT. Individuals PP_0_31, PP_0_90, and PP_0_101 

could not be assigned to genotype A, B, or C. PP_0_90 is in a 

different homozygous status for 45 loci compared to PP_0_101 

and heterozygous in 5 additional loci, whereas individual 

PP_0_101 is homozygous in all loci. PP_0_31 is in heterozygous 

status for 83 loci. Of these 83 loci, 43 loci are polymorphic 

between genotype A, B, and C, 24 loci are polymorphic when 

including PP_0_90 and PP_0_101 as additional genotypes, 8 loci 

are polymorphic across all individuals genotyped in cultivar PP, 

and 8 heterozygous loci could neither be found in any individual 

of cultivar PP nor in cultivar GL, but in cultivar SL the respective 

allele in homozygous status was found for these 8 SNPs. 

 

 

 

 

 

  

 

B 
N=42 

C 
N=11 

A 
N=44 

FIGURE 3.14 Dendrogram of 100 individuals of 
population PP_0, analyzed by 147 SNPs and 

clustered (UPGMA) by their pairwise allele 
sharing distance (Gao & Starmer 2007). 
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Population PP_R_5 has 68 individuals of genotype A and 30 individuals of genotype B (FIGURE 3.15). Within 

genotype A, one individual (PP_R_5_96) differs in SNP LcRBContig13114 (TT instead of CC) from all the 

other individuals. Two individuals, PP_R_5_52 and PP_R_5_95, are heterozygous in 63 and 34 

heterozygous loci, respectively. Genotype C is not present in this population.  

In population PP_T_5, 38 individuals are assigned to genotype A (FIGURE 3.15). Within genotype A there 

are three sub-groups: 1. 14 individuals are identical to the original genotype A; 2. 22 individuals are in a 

different homozygous status for SNP LcRBContig13114 (TT instead of CC), and two individuals (PP_T_5_01, 

PP_T_5_34) are heterozygous (TC) at the same locus. Genotype B is present with 32 individuals, which 

show again sub-grouping for locus LcRBContig13114, with 17 individuals identical to genotype B, 2 

individuals in heterozygous status, and 13 individuals in a different homozygous status (CC instead TT). 

Genotype C is represented in this population with only one individual identical to the original genotype, 

except for SNP LcRBContig13114 (PP_T_5_21).  

In the 10th generation of population PP_R, genotype A is dominating with 90 individuals, of which 79 are 

identical for the 147 SNPs, 10 individuals have the other homozygous allele at locus LcRBContig13114, and 

one individual (PP_R_10_26) is heterozygous at the same locus (FIGURE 3.16). Genotype B is present with 

6 individuals. Genotype C is not represented. One individuals is heterozygous at 58 SNP loci (PP_R_10_38). 

In population PP_S_10 (FIGURE 3.16), 66 individuals were assigned to genotype A with 44 individuals 

identical to genotype A and 22 more individuals are closely related with 20 individuals having the opposite 

homozygous base-pair at locus LcRBContig13114 (TT instead of CC), one heterozygous individual 

(PP_S_10_85) for the same locus, and one heterozygous individual for 18 additional loci (PP_S_10_74). 

Genotype B is represented by 12 homogenous individuals plus three closely related individuals. Genotype 

C is not represented. 

The 100 individuals genotyped from population PP_T_10 contain 30 individuals identical or closely related 

to genotype A (FIGURE 3.16). In fact, 16 individuals are identical, 14 individuals differ at locus 

LcRBContig13114. Genotype B is represented by four nearly identical individuals. The individual 

PP_T_10_4 is identical to genotype C. 

  



PHENOTYPIC AND GENOTYPIC VARIATION WITHIN POPULATIONS 

RESULTS 

 PAGE 65 

  

FIGURE 3.15 Hierarchical cluster of 100 individuals of population PP_R_5 (left) and 98 individuals 
of population PP_T_5 (right) including genotype A, B, and C as a standard. Cluster analysis was 
done using the pairwise allele sharing distance (Gao & Starmer 2007) calculated from 147 SNPs. 
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FIGURE 3.16 Hierarchical cluster of 100 individuals of population PP_R_10 (left), 99 individuals of 
population PP_S_10 (center), and 100 individuals of population PP_T_10 (right) including 
genotype A, B, and C as a standard. Cluster analysis was done using the pairwise allele sharing 
distance (Gao & Starmer 2007) calculated from 147 SNPs. 
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COMPARISON OF PHENOTYPIC AND GENOTYPIC RESULTS 

According to seed weight and flowering behavior, three morphological groups were observed in the initial 

population of Pisarecka Perla (FIGURE 3.14). These three phenotypic groups correspond to the three 

genotypes (A, B, C) observed from genotyping (FIGURE 3.17). Genotype C could not be observed anymore 

in the populations after ten generations of natural selection. In PP_R_10, genotype A became the most 

abundant with about 90% of the progenies and 10 progenies are classified to genotype B. Those 10 

progenies include the 6 identical genotypes B, except genotype R_08, instead R_81 phenotypically 

clustered close to B as well as the four genotypes with no clear genotypic affiliation (R_01, R_34, R_38, 

R_44).   
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FIGURE 3.17 Scatterplot of flowering score sum over seed weight for individuals of Pisarecka Perla in 
populations PP_0 (upper left), PP_R_10 (upper right), PP_S_10 (lower left), and PP_T_10 (lower right) 
phenotyped in 2015. Large letters A, B, and C denote approximately the phenotypic mean values of the 
three genotypes observed in population PP_0.  
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One progeny (R_21) is somewhat outlying from the majority of the genotypes A according to its flowering 

behavior and slightly closer to the C group mean. In PP_S_10, progenies close to the phenotypic mean of 

genotype B show a larger variation towards smaller seed size (< 40 mg) and one progeny (S_53) is 

significantly outlying with a very low flowering score sum. In PP_T_10, additional to a large number of 

progenies with seed weight < 40 mg, flowering behavior varies largely for progenies with a seed weight of 

30-50 mg. 

After genotyping progenies of different populations developed from the cultivar Pisarecka Perla, progenies 

assigned to genotype A, B, and the heterogeneous group C separately for population PP_0, PP_R_10, 

PP_S_10, and PP_T_10 are plotted in boxplots according to their seed weight and flowering score sum 

(FIGURE 3.18). Genotype A and B differ significantly and consistently across populations with a few outliers 

in PP_R_10 and PP_S_10. Group C in PP_0 has the largest mean seed weight with to outlying progenies, 

whereas in PP_R_10 no significant difference between group B and C according to seed size and flowering 

behavior is present. In PP_S_10 and PP_T_10, group C is largely variable in seed size and flowering. Mean 

flowering score sum of progenies in PP_0 differs significantly between genotypic groups.  

 

  

FIGURE 3.18 Boxplots of seed weight (upper) and flowering score sum for progenies of Pisarecka Perla 
in population PP_0, PP_R_10, PP_S_10, and PP_T_10 (from left to right) separately according to their 
assignment to genotype A, B, or the genotypic heterogeneous group C. 
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3.4 DISCUSSION 
 
The results from field experiments may suffer from the experimental problem of a partially-replicated 

design and from a severe disease pressure in the second year. Consequently, comparisons between 

populations in 2015 include possible block effects, e.g. in yield, since spatial environmental variability was 

not accounted for by the field design. In 2016, the replication of main blocks may have improved the 

situation. However, various virus diseases had infected the plants severely and thus, despite double rows 

and more than double the number of seeds sown compared to the first year, seed yield was significantly 

lower especially in Pisarecka Perla and Schwarze Linse. Straw yield was less affected by the diseases, but 

also lower for most populations, except populations of Gestreifte Linse. Differences in susceptibility could 

also be observed between populations within a cultivar. 

For seed, straw, and total yield and for seed weight, we observed the largest range, coefficient of variation, 

and variance within PP_T_10 compared to the other populations of Pisarecka Perla. A certain variability is 

also visible in flowering, where in PP_0 and PP_T_10 about 15% and 10% of the progenies were flowering 

earlier than any of the progenies in the other populations. At the following scoring dates, a more 

continuous beginning of flowering is apparent from the frequency plots, with additional 30-40% more 

progenies scored flowering with the second and third date of scoring, respectively. Whereas, in PP_R_10 

and PP_S_10, a proportion of about 65% and 50% of the progenies were scored flowering at the third date 

in addition to the early flowering progenies scored at the second date.  

For Pisarecka Perla a more or less clear grouping in two main groups is visible according to the second 

principle component mostly influenced by flowering (FTsum) and leaf size (LScan). Because seed weight 

was found to be significantly correlated with leaf size (r = 0.52) and variation between progenies for seed 

weight within populations of Pisarecka Perla was significant, too, seed weight and flowering turned out to 

describe the groups best and give the most clear differentiation.  

Already from the phenotypic data, a low genotypic diversity could be projected. For Pisarecka Perla, 

genotypic results correspond clearly to the phenotypic grouping and thus, the SNP markers describe the 

material accurately. In the case of Schwarze Linse and Gestreifte Linse, outcrossing events possibly have 

led to the polymorphisms detected in the pre-test and will be further examined and discussed in the 

following chapter. On the other hand, the very low amount of heterozygous samples confirm a rather low 

outcrossing rate in these cultivars.  

The three groups (or rather genotypes) observed in Pisarecka Perla, correspond with the morphological 

groups described by Horneburg (2003): Genotype A corresponds to the group of “large seeded, late 

flowering, with green hypocotyl”, genotype B corresponds to the group of “small seeded, earlier flowering, 

with green hypocotyl”, and genotype C corresponds to the group of “large seeded, very early flowering, 

with red hypocotyl”. As discussed in CHAPTER 2.4, environmental conditions at Tangsehl may have favored 

the small seeded and early flowering genotypes. But additional recombination obviously happened, since 

genotype B makes up only for 4% and a large proportion of individuals with red pigmented hypocotyl was 

observed (34.2 - 45.8%, TABLE 2.12). According to seed color and size and the genotypic results, we expect 

a higher probability that such recombination events occurred within Pisarecka Perla, e.g. with genotype C 

as the donor of the red hypocotyl. In an earlier study, outcrossing rates for Pisarecka Perla have been 

shown to reach in extreme individual plants up to 22.2% and was observed more frequently at Reinshof 
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compared to Schönhagen (Horneburg 2006). Outcrossing rates were not estimated for Tangsehl, however, 

significant influence of environmental conditions of year and location was observed in the same study. 

The number of samples with more than 5% heterozygous loci within populations under natural selection 

in Tangsehl (TABLE 3.11) suggest that recombination occurs on a regular basis, but with a low frequency. 

Thus, we find samples with 8-71 heterozygous loci (5-48%), but out of the 12% heterozygous samples 

(H>5%) in generation five, only six samples are highly heterozygous with 22-48% heterozygous loci.  

A clear site-specific development is visible for Pisarecka Perla. Whereas one genotype is dominating the 

population developed at Reinshof, probably within-population recombination by outcrossing resulted in a 

relatively diverse small seeded population at Tangsehl despite the expected high selection pressure due 

to more ‘stress-prone’ conditions. 

Temporal development may be caused by a combination of natural selection, drift, and rare events of 

outcrossing and recombination. During the long-term experiment, drift may have played a role as 

discussed by Horneburg and Becker (2008) during the early stage, when only 30-100 seeds per location 

and cultivar were sown. Significant bottlenecks also occurred already during ex situ maintenance as 

Horneburg (2003) documented. During 2001-2006 when seeds were stored, a significantly reduction in 

germination capacity was observed in a germination test with 200 seeds in four replication for Pisarecka 

Perla populations selected at Schönhagen and Reinshof with only about 14 % germination, which was 

significantly lower compared to the ‘Tangsehl selection’ with 59 %. Germination of Schwarze Linse and 

Gestreifte Linse was still relatively high with 73.5 - 99 %. Thus, if the loss in germination capacity was 

genotype dependent, the reduction in genotypic variation within the Reinshof and Schönhagen 

populations may have been also influenced by ‘selection’ on seed longevity. On the other hand, for seed 

weight and flowering, we observed a continuous development at Reinshof and Tangsehl comparing the 

fifth and the tenth generation with the initial material, suggesting directional site-specific natural 

selection.  

In conclusion, we observe a significant site-specific development for populations from one cultivar. For the 

maintenance of plant genetic resources, on-farm management leads to a dynamic development and 

diverse locations are necessary to maintain diversity.  
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4 PERFORMANCE AND WITHIN-POPULATION VARIATION OF SELECTIONS FOR 

EXTREME SEED SIZE  
 

4.1 INTRODUCTION 

The importance of seed size is widely discussed in terms of its correlation to yield (Erskine 1996) and fitness 

related traits (Al-Karaki 1998; Eriksson 1999; Hojjat 2011) and concerning its significance for adaptation by 

natural selection (Silvertown 1989; Haig 1989; Coomes and Grubb 2003; Sadras 2007). During on-farm 

management of plant genetic resources, seed size may be a trait that could be relatively easily selected 

for during cleaning of seed lots. Beside seed color, seed size is also an important quality trait that may be 

important in the cultural background and traditional use of a landrace or cultivar and is important for 

industrial processing and the end uses, as cooking time is strongly correlated with seed size and weight 

(Erskine et al. 1985; Hamdi et al. 1991).  

During long-term experiments, seed weight was observed to be altered by natural selection, depending 

on environmental conditions and is not necessarily changing towards lower seed weight (Goldringer et al. 

2001; Horneburg 2003; Horneburg and Becker 2008).   

In preparation of this study, selection in both directions for large and small seeds was conducted in three 

old cultivars (see CHAPTER 1.1) during six generations. Separation by sieving of larger seeds from smaller 

seeds was started from the seed lot harvested in 1999 and the largest and smallest fractions of the seeds 

were subsequently tested in field plots in 2000 by Horneburg (2003). In the large seeded cultivar Pisarecka 

Perla, seeds could be separated resulting in statistically significantly different fractions of seed weight and 

during the field test significant variation between selections for begin of flowering, straw yield, and harvest 

index was observed. Beginning of flowering was also observed earlier in the large seeded fraction of 

Schwarze Linse, but seed size fractions were not significantly different in seed weight for Schwarze Linse 

and for Gestreifte Linse. 

Results from a B. Sc. thesis by Halekotte (2015, unpublished) in our material from potted plants in the 

greenhouse suggest a strong interaction of the effect of seed size on germination and young plant 

development with the cultivar. Comparing seedling development from small and large seeds, faster 

development from larger seeds was observed during earlier stages in Schwarze Linse, whereas the large 

seeds of Pisarecka Perla showed faster development in later stages compared to the small seeded 

selections of the respective cultivar. This may be due to the cultivar specific growth type (erect growth 

with a lower number and less strong side-branches versus considerably strong branches and a half erect 

growth) and an associated cultivar specific competition strategy. Gestreifte Linse, with a medium seed size 

and significant branching and an overhanging growth, was observed to have the lowest seedling height 

compared to the other cultivars, but it had the highest number of side branches, followed by Pisarecka 

Perla and Schwarze Linse with the lowest number of side branches. Differences between selections of 

Gestreifte Linse were not observed from these data during a single greenhouse-season experiment. 

Genetic linkage and association mapping of seed size parameters in lentil were done by Fedoruk (2013) 

and Fedoruk et al. (2013) using SNP assays developed by Sharpe et al. (2013). In our project during a pre-

test in the M.Sc. thesis of Zhong (2017, unpublished), we used the same SNP assays and selected 145 SNPs 
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that have been polymorphic for our material. Zhong identified 18 SNPs which were more or less specifically 

differentiating between large and small seed fractions within cultivars. However, alleles of many of these 

polymorphic markers were observed to be cultivar-specific, thus, not always explicitly identifying ‘large 

seed’ across cultivars. 

In this chapter, we evaluate the field performance of the specific selections for extreme seed size at the 

three farms in comparison with the initial material and populations developed by site-specific natural 

selection. Additionally, we examine phenotypic and genetic variability within the selections by single-plant 

progeny testing and genotyping. Three main aspects are pursued in this chapter: i) What is the impact of 

selection for seed size compared to the initial material? ii) What is the importance of seed weight for site-

specific adaptation? and iii) How did selection for seed size influence the genetic variability?  
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4.2 MATERIALS AND METHODS 

PLANT GENETIC MATERIALS 

The plant genetic material tested in field plots was developed and selected during six generations by 

sieving to select the largest and smallest seeded fraction after each regeneration (see CHAPTER 1.1). For the 

first time, sieving was done from the seed lot harvested in 1999 and subsequent regeneration took place 

at Reinshof in 2000. Selection by sieving and regeneration was repeated during 2006-2010 at Reinshof. To 

obtain good seed quality for the experiments in this study, selections were multiplied in a rainout shelter 

in 2014 (see CHAPTER 2.2). 

Seeds from single plants were produced in the green house during winter 2014/15 to conduct single-plant-

progeny test trials with 100 progenies tested in 2015 and repeated for 50 progenies in 2016, as described 

in CHAPTER 3.2.  

LOCATIONS AND CLIMATIC CONDITIONS 

Selections were tested in field plots at Reinshof, Schönhagen, and Tangsehl. Single-plant-progeny testing 

took place at Reinshof. All experiments were conducted during 2015 and 2016. For soil and climatic 

conditions at the locations see CHAPTER 2.2.  

PHENOTYPING 

Agronomic, morphological, and phenological traits were assessed from the field plots at three locations as 

described in CHAPTER 2.2. Phenotyping of single-plant-progenies was done as described in CHAPTER 3.2.  

GENOTYPING 

As a pre-test of all available SNP marker assays at LGC Genomics, 16 progenies of each selection, 

representing the smallest or largest seed weight according to the results from the greenhouse 

regeneration, were selected and genotyped from DNA of one single seed (see also description in CHAPTER 

3.2). The results were evaluated in the M. Sc. Thesis by Zhong (2017, unpublished) and from her results, 

145 selected SNPs were used for genotyping of 24 more progenies in 2016 from DNA extracted from a 

single seed per progeny from the field plots in 2015. 
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STATISTICAL ANALYSIS 

Multi-location field data was evaluated by the analysis of variance (ANOVA) in PLABSTAT (Version 3Bwin, 

Utz 2011) and mean values were calculated in the same software. The following general model was 

applied: 

xijklm = µ + yi + rm + lj + ylrijm + ck + ylcrijkm + sl + ylcsrijklm + ylij + ycik + lcjk + ypil + lpjl + cpkl + ylcijk + ylpijl 

where xijklm is the observed value, µ is the general mean of the experiment, and yi, lj, ck, pl, and rm are the 

effects of year, location, cultivar, selection, and replication, respectively. The replication is a random factor 

within year, location, and cultivar. Possible interactions are considered up to the three-way level (ylij, ycik, 

lcjk, ypil, lpjl, cpkl, ylcijk, ylpijl) and the residual error is denoted by ylcsrijklm.  

The model is reduced by the factors ‘location’ and ‘cultivar’ for the site-specific analysis and comparison 

between selections and populations in generation 0 and 10 (see CHAPTER 2) separately per cultivar and 

location. 

Post-hoc mean comparisons were done by Tukey’s HSD (honestly significant difference) test. The HSD 

values were calculated ‘by hand’ in Microsoft Excel (Version 2010) using the mean squares and degrees of 

freedoms (or alternatively the standard errors) given in the ANOVA table by PLABSTAT and the respective 

q-value from the ‘Studentized Q table’ for a level of significance of 5% (P=0.05); in few cases for 10% 

(P=0.1). 

Phenotypic data from the progeny testing trials at Reinshof were analysis as described in CHAPTER 3.2.  

Genotypic data were analyzed (as described in CHAPTER 3.2) with the software ‘AWclust’ written for R with 

a GUI interface (Gao and Starmer 2008). It uses the ‘allele sharing distance’ (ASD) and then applies ‘Ward’s-

minimum-variance’ criterion (Ward 1963; Ward and Hook 1963) directly to the similarity matrix. And for 

the analysis within cultivars to compare individuals of the two selections, the ASD matrix calculated from 

AWclust was exported and used for the cluster analysis by the ‘Unweighted Pair Group Method with 

Arithmetic mean’ (UPGMA; Sokal and Michener 1958) in RStudio using the functions ‘hclust()’ and 

‘plot(as.dendrogram())’ from the package ‘Dendextend’ by Galili (2015).  
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4.3 RESULTS 
 
PHENOTYPIC RESULTS 

PERFORMANCE TRIALS 

From the performance trials during 2015 and 2016 at three locations, selections for small and large seeds 

and the population in generation 0 are compared across years and test locations and significant variation 

in all traits for cultivar SL was observed; within cultivars PP and GL significant variation was found in seed 

weight, flowering, and either straw yield or seed yield within one of the cultivars, respectively (TABLE 4.1).  

Comparisons of mean values between the three test entries “large”, “small”, and generation 0 are shown 

in TABLE 4.2. Significant differences between means across year and test locations are found for straw yield 

between PP_small and PP_large with the highest yield for the large seeded selection compared to the two 

other test entries. Seed weight comparisons within PP are significant between all three test entries with a 

seed weight mean for generation 0 laying in between the selections with about 4 mg (Tukey’s-HSD value 

= 1.744 mg for P=0.05) more than the mean of both selections. Flowering within PP was observed 

significantly earlier in the large selection and in generation 0 compared to the small selection. The large 

seeded selection of cultivar SL yielded significantly more and had a larger harvest index and seed weight 

compared to the small seeded selection and generation 0. Scores for ripening and the sum of scores for 

flowering are significantly lower in SL_large compared to SL_small, meaning later flowering and ripening. 

Selections of Gestreifte Linse show significant variation in seed yield, seed weight, and flowering. Seed 

yield and seed weight was significantly higher in GL_large compared to GL_small, but not significantly 

different from GL_0. Flowering was scored significantly later in GL_large compared to GL_small. 

  



PERFORMANCE AND WITHIN-POPULATION VARIATION OF SELECTIONS FOR EXTREME SEED SIZE 

RESULTS 

 PAGE 78 

TABLE 4.1 Variance components from ANOVA for the main effects year, location, selection, replication 
(error variance for year and location), and residual (error variance for selection) with their significance in 
the F-testa), and heritability values (h²) for selections within cultivars including generation 0 and 
selections for large and small seeds.  

 
Trait 

 
Cultivar 

Year 
(DF=1) 

Location 
(DF=2) 

Selection 
(DF=2) 

Replication 
(DF=3) 

Residual 
(DF=48) h² 

Seed yield PP 994 4512** 0 b) 342 4979 0 
 SL 3094** 8192** 297** 254** 408 94.6 
 GL 1605** 14299** 139** 0 679 83.1 

Straw yield PP 4807** 31311** 270** 393** 695 90.3 
 SL 6739** 30478** 706** 229** 601 96.6 
 GL 1645+ 33990** 0 0 13592 0 

Total yield PP 10489* 59782** 337 1449* 6748 54.5 
 SL 19005** 70206** 1941** 908** 1522 96.8 
 GL 6834* 92767** 67.9 0 14726 10.0 

Harvest index PP 1.68 25.8** 0.71 0 45.5 27.1 
 SL 0 8.06** 1.20** 1.81* 6.33 82.0 
 GL 3.66 13.4* 1.43 1.77 80.8 29.8 

Seed weight PP 0.95* 6.56** 115** 0 6.25 99.8 
 SL 0 0.64** 29.2** 0.23+ 1.25 99.8 
 GL 0.03 0.99** 41.9** 0 0.94 99.9 

Flowering PP 9.05** 4.58** 1.54** 0.21 1.83 95.3 
score sum  SL 12.4** 6.97** 0.19* 0.64** 1.65 73.5 
 GL 36.2** 5.70** 0.11* 0.18* 0.83 76.9 

Ripening PP 0.39** 1.20** 0.04+ 0 0.46 67.1 
score SL 0.34* 1.71** 0.04* 0.03 0.43 69.6 
 GL 0.08 1.26** 0 0.20 0.22 0 
a) Significance levels are denoted with **, *, + for P-values = 0.01, 0.05, 0.1, respectively. 
a) Negative estimates. 

 

TABLE 4.2 Mean values for seed yield (KY), straw yield (SY), total yield (TY), harvest index (HI), seed weight 
(SW), ripening scores (RP), and flowering scores sum (FTsum) across years and locations for selections for 
large and small seeds and the initial population (0) of the three cultivars (PP, SL, GL). 

Selection KY [gm-2] SY [gm-2] TY [gm-2] HI SW [mg] RP FTsum 

PP_large 143.6 256.0 ba) 399.5 36.1 64.5 c 5.6 14.0 b 
PP_small 133.4 227.3 a 360.7 39.3 43.6 a 6.0 11.8 a 
PP_0 128.4 224.8 a 353.2 38.0 58.3 b 5.9 13.9 b 

Mean 135.1 236.0 371.1 37.8 55.5 5.8 13.2 

SL_large 158.1 b 254.1 b 412.2 b 40.8 b 32.8 b 6.0 a 13.5 a 
SL_small 125.2 a 204.7 a 329.8 a 38.7 a 23.2 a 6.5 b 14.4 b 
SL_0 130.3 a 210.3 a 340.5 a 38.7 a 23.7 a 6.3 ab 13.6 ab 

Mean 137.8 223.0 360.8 39.4 26.5 6.3 13.8 

GL_large 198.9 b 262.8 461.7 47.4 36.6 b 6.3 7.2 a 
GL_small 173.3 a 252.6 425.9 43.3 25.2 a 6.4 7.9 b 
GL_0 189.2 ab 287.6 476.7 43.9 36.1 b 6.4 7.6 ab 

Mean 187.1 267.7 454.8 44.9 32.6 6.4 7.6 
a) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test at P=0.05. 
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In TABLE 4.3, TABLE 4.4, and TABLE 4.5, the performance at each individual test location is compared between 

the large and the small seeded selections, the initial population, and the respective site-specific population 

in the 10th generation under natural selection from the same location.  

In Pisarecka Perla at Reinshof the large seeded selection differs significantly for straw yield and harvest 

index from the initial population, but not from any of the other selections/populations. The seed weight 

of PP_large at Reinshof is similar to that of PP_R_10 and significantly different in all other comparisons. 

Flowering time is earliest in PP_large and latest in PP_R_10 and differs significantly for all comparisons. 

Leaf size is significantly smaller in PP_small compared to all other selections/populations. In Schönhagen, 

both small and large seeded selections differ significantly for seed size from PP_S_10. Flowering is again 

earlier for PP_large, but not significantly different compared to PP_S_10. In Tangsehl yield traits did not 

differ significantly between populations or selections. All comparisons were significant for seed weight. 

Flowering was earliest for PP_T_10. 

The large seeded selection of Schwarze Linse at Reinshof had the highest yield, which was significant 

compared to SL_small and SL_0 for seed and total yield. Seed weight and leaf size is significantly higher for 

SL_large, compared to the other selections/populations. Flowering is earliest in SL_R_10 and significantly 

different from SL_0 and SL_large. In Schönhagen, yield and seed weight are significantly higher for SL_large 

compared to all other selections/populations. Eeliest flowering was observed for SL_S_10, which was 

significant in comparison with SL_0. In Tangsehl, again SL_large is the highest yielding selection. 

Additionally, the harvest index was significantly higher for the same selection, as well as the seed weight. 

Flowering was significantly later for SL_large compared to all other selections/populations.   

Comparisons within Gestreifte Linse at Reinshof reveal significant differences for straw and total yield 

between GL_large and GL_small, with the lowest yield for the latter and the highest for GL_large. Seed 

weight and leaf size are significantly lower for the small seeded selection. In Schönhagen, significant 

comparisons were found for seed weight and flowering only, with the lowest seed weight and the earliest 

flowering for the small seeded selection. In Tangsehl, seed yield for the small seeded selection was 

significantly lower, whereas straw yield was highest (non-significant) for the same selection.  
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TABLE 4.3 Mean values at Reinshof for seed yield (KY), straw yield (SY), total yield (TY), harvest index (HI), 
seed weight (SW), ripening scores (RP), flowering scores sum (FTsum), and leaf size (LS) across years for 
selections for large and small seeds, the initial population (0), and the population under natural selection 
in the 10th generation from Reinshof for each cultivar (PP, SL, GL). 

Selection KY [gm-2] SY [gm-2] TY [gm-2] HI SW [mg] RP FTsum LS [cm²] 

PP_large 207.2 465.8 ba) 673.0 30.6 a 62.6 c 6.4 13.6 d 14.7 b 

PP_small 205.9 422.8 ab 628.7 32.1 ab 40.0 a 6.7 9.2 b 11.9 a 

PP_0 229.7 417.1 a 646.8 35.3 b 54.7 b 6.9 12.4 c 13.9 b 

PP_R_10 203.6 451.1 ab 654.6 30.8 a 60.0 c 6.3 7.6 a 15.2 b 

Mean 211.6 439.2 650.8 32.2 54.3 6.6 10.7 13.9 

SL_large 250.1 469.8 b 719.9 b 34.5 31.6 b 6.3 a 12.3 a 12.4 b 

SL_small 228.4 392.7 a 621.1 a 36.7 22.6 a 7.2 b 12.8 ab 9.3 a 

SL_0 237.7 400.4 a 638.1 a 37.0 23.0 a 6.8 ab 11.9 a 9.1 a 

SL_ R_10 232.1 432.0 ab 664.1 ab 35.1 22.9 a 6.8 ab 14.1 b 9.2 a 

Mean 237.1 423.7 660.8 35.8 25.0 6.8 12.8 10.0 

GL_large 323.7 489.9 b 813.6 b 39.7 36.2 b 6.8 16.4 11.5 b 

GL_small 302.2 444.1 a 746.3 a 40.5 24.3 a 6.8 16.8 8.9 a 

GL_0 324.2 468.7 ab 793.0 ab 40.9 35.4 b 6.6 17.0 11.3 b 

GL_ R_10 321.7 476.9 b 798.6 ab 40.3 35.6 b 6.8 16.2 11.1 b 

Mean 318.0 469.9 787.9 40.3 32.9 6.7 16.6 10.7 

Mean 255.5 444.3 699.8 36.1 37.4 6.7 13.4 11.5 
a) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test at P=0.05. 

 

TABLE 4.4 Mean values at Schönhagen for seed yield (KY), straw yield (SY), total yield (TY), harvest index 
(HI), seed weight (SW), ripening scores (RP), and flowering scores sum (FTsum) across years for 
selections for large and small seeds, the initial population (0), and the population under natural selection 
in the 10th generation from Schönhagen for each cultivar (PP, SL, GL). 

Selection KY [gm-2] SY [gm-2] TY [gm-2] HI SW [mg] RP FTsum 

PP_large 101.1 196.3 ba) 297.4 35.9 65.4 c 4.3 12.9 bc 

PP_small 104.1 170.1 ab 274.1 38.9 44.2 a 5.1 10.9 a 

PP_0 94.8 162.3 a 257.0 37.9 60.8 b 4.4 13.1 c 

PP_S_10 106.7 183.6 ab 290.3 37.1 60.7 b 4.4 11.4 ab 

Mean 101.7 178.0 279.7 37.4 57.8 4.5 12.1 

SL_large 150.1 b 196.3 b 346.5 b 43.5 b 32.9 b 4.7 12.7 ab 

SL_small 90.6 a 135.9 a 226.5 a 39.3 a 23.1 a 5.0 12.8 ab 

SL_0 93.4 a 140.0 a 233.5 a 39.3 a 23.5 a 4.6 11.4 a 

SL_ S_10 101.7 a 145.4 a 247.0 a 40.6 ab 23.5 a 5.0 13.7 b 

Mean 108.9 154.4 263.3 40.7 25.7 4.8 12.7 

GL_large 183.2 205.4 388.6 52.0 36.2 b 4.9 18.0 ab 

GL_small 152.5 192.8 345.3 45.2 24.7 a 5.3 19.9 c 

GL_0 156.1 307.8 463.9 40.2 35.3 b 5.3 17.9 a 

GL_ S_10 185.2 213.5 398.6 47.5 35.0 b 5.2 18.9 abc 

Mean 169.2 229.9 399.1 46.2 32.8 5.1 18.7 

Mean 126.6 187.4 314.1 41.4 38.8 4.8 14.5 
a) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test at P=0.05. 
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TABLE 4.5 Mean values at Tangsehl for seed yield (KY), straw yield (SY), total yield (TY), harvest index (HI), 
seed weight (SW), ripening scores (RP), and flowering scores sum (FTsum) across years for selections for 
large and small seeds, the initial population (0), and the population under natural selection in the 10th 
generation from Tangsehl for each cultivar (PP, SL, GL). 

Selection KY [gm-2] SY [gm-2] TY [gm-2] HI SW [mg] RP FTsum 

PP_large 122.4 105.8 228.2 41.8 65.5 da) 6.0 a 15.7 ab 
PP_small 90.1 89.2 179.3 47.0 46.6 a 6.3 ab 15.3 a 
PP_0 60.7 95.0 155.7 40.8 59.3 c 6.4 ab 16.2 ab 
PP_T_10 66.8 90.8 157.6 42.8 51.3 b 6.7 b 16.6 b 

Mean 85.0 95.2 180.2 43.1 55.7 6.4 15.9 

SL_large 74.1 b 96.1 170.2 44.3 b 33.8 b 7.1 15.5 a 
SL_small 56.5 a 85.4 141.9 40.1 a 23.9 a 7.3 17.7 b 
SL_0 59.7 ab 90.4 150.0 39.8 a 24.5 a 7.5 17.5 b 
SL_ T_10 59.2 ab 91.3 150.6 39.8 a 24.4 a 7.3 17.7 b 

Mean 62.4 90.8 153.2 41.0 26.6 7.3 17.1 

GL_large 89.8 b 93.0 182.9 50.4 37.5  b 7.3 21.3 
GL_small 65.1 a 121.0 186.1 44.1 26.4 a 7.3 22.0 
GL_0 87.2 b 86.1 173.3 50.8 37.4 b 7.3 21.8 
GL_ T_10 85.0 b 89.2 174.2 49.9 37.5 b 7.3 21.6 

Mean 81.8 97.3 179.1 48.8 34.7 7.3 21.6 
Mean 76.4 94.4 170.8 44.3 39.0 7.0 18.2 

a) Mean values followed by the same letter column-wise are not significantly different in Tukey’s-HSD test at P=0.05. 
 

Different proportions of seedlings with red pigmentation on the hypocotyl were found between selections 

and populations of Pisarecka Perla, as shown in TABLE 4.6. Selection for small seeds significantly increased 

the proportion of red seedling. Natural selection at Tangsehl reducing seed weight also increase the 

proportion of red seedlings, whereas populations form Reinshof and Schönhagen exhibit a rather low 

proportion with <5 % and within the selection for large seeds 10-15 % of red seedlings were found. 

TABLE 4.6 Proportion [%] of seedlings with red pigmentation on the hypocotyl in selections for large and 
small seeds of Pisarecka Perla, the initial population (0), and the populations in 10th generation under 
natural selection at the three farms (R,S,T) observed and counted during field testing at the same three 
locations.  

Selection Reinshof Schönhagen Tangsehl Mean 

PP_large 15.3 10.9 12.8 13.0 
PP_small 74.0 70.7 66.6 70.5 
PP_0 10.4 3.4 6.6 6.8 
PP_R_10 0.6 0.3 3.5 1.5 
PP_S_10 3.3 2.6 4.8 3.6 
PP_T_10 45.8 34.2 38.1 39.4 
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PROGENY TESTING TRIALS 

Variance components of selections per cultivar were calculated and are summarized for 50 single plant 

progenies tested during two years at Reinshof in TABLE 4.7. Significant variation was observed for most of 

the traits within between progenies of selections within Pisarecka Perla. Seed weight and flowering score 

sums show the highest heritability and significant variation for progenies within all cultivars.  

TABLE 4.7 Variance components with their significance levelsa) and heritability values of phenotypic traits 
assessed on 50 single plant progenies per selection during 2015 and 2016. 

Pisarecka Perla 

Trait 
Year 

(DF=1) 

Selection 
(DF=1) 

YxS 
(DF=1) 

Progeny 
(DF=98) 

Residual 
(DF=95) h² 

Seed yield 1219** 0 b) 537.5** 605.6** 621.9 66.07 
Straw yield 252.5** 10.05 581.9** 720.4** 2098 40.72 
Total yield 2495** 0 2447** 2515** 3564 58.53 
Harvest index 0.009** 0.0001* 0.002** 0.002** 0.003 62.45 
Seed weight 32.99** 173.1** 19.35** 15.61** 11.85 72.49 
Leaf size score 0.556** 0.556** 0.280** 0 0.564 0 
Leaf size scan 0 6.483** 1.384** 1.303* 4.569 36.32 
Flowering score sum 0.416** 0 0.180+ 9.471** 3.514 84.35 
Ripening 0.328** 0 0.656** 0.016 0.814 3.72 

Schwarze Linse 

Seed yield 0 601.9** 350.5** 0 670.7 0 
Straw yield 99.51** 3336** 1835** 32.88 1651 3.83 
Total yield 79.23+ 6784** 3813** 0 3362 0 
Harvest index 0.0003** 0.0009** 0.0007** 0.0003 0.004 12.84 
Seed weight 4.063** 36.61** 0.92** 1.415** 2.749 50.74 
Leaf size score 0.475** 2.415** 0.837** 0 0.497 0 
Leaf size scan 0 4.033** 0.357** 0 2.773 0 
Flowering score sum 14.59** 6.371** 0 3.569** 1.914 78.86 
Ripening 0.255** 0.542** 0.09** 0.061 0.39 23.71 

Gestreifte Linse 

Seed yield 0 1085 14.93** 92.00 1363 11.90 
Straw yield 3.483 557.0** 1509** 602.9* 2476 32.75 
Total yield 0 3221** 971.9** 1175* 5796 28.85 
Harvest index 0 0.002** 0.002** 0 0.004 0 
Seed weight 1.823** 58.59** 0 2.549** 3.766 57.52 
Leaf size score 0.001 1.580** 0.284** 0.066+ 0.377 25.86 
Leaf size scan 0.305** 3.389** 0.009 0 2.733 0 
Flowering score sum 7.773** 0.019+ 2.688** 1.448** 0.897 76.35 
Ripening 0.106** 0.018* 0 0 0.412 0 
a) Significance levels from the F-test in ANOVA is denoted by **, *, and + for P-values = 0.01, 0.05, and 0.1, respectively. 
b) Negative estimates. 
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TABLE 4.8 Means, standard error of means (SE), minimum, maximum and range, variance and the 
coefficient of variation (CV) of all traits for selections on small and large seeds from three cultivars (PP, 
SL, GL). 

Trait Population Meana) SE Min. Max. Range Varianceb) CV 

Pisarecka Perla (PP) 

Seed  PP_large 59.26 2.53 17.33 118.23 100.9 319ns 30.14 
yield [g] PP_small 62.63 5.50 17.73 180.43 162.7 1514** 62.14 

Straw  PP_large 221.9 5.94 133.2 317.7 184.5 1763+ 18.92 
yield [g] PP_small 214.0 5.96 149.9 312.6 162.7 1775* 19.69 

Total  PP_large 281.2 7.18 178.9 359.1 180.2 2578ns 18.06 
yield [g] PP_small 278.4 10.97 170.5 476.1 305.7 6016** 27.86 

Harvest PP_large 0.187 a 0.006 0.080 0.330 0.250 0.002* 24.51 
index  PP_small 0.203 b 0.010 0.090 0.380 0.290 0.005** 35.74 

Seed  PP_large 56.20 b 0.51 47.95 67.19 19.24 12.81* 6.37 

weight [mg]  PP_small 37.58 a 0.78 21.19 51.70 30.51 30.28** 14.64 

Leaf size PP_large 6.70 b 0.06 5.00 7.00 2.00 0.16+ 6.03 
score  PP_small 5.64 a 0.09 4.00 6.50 2.50 0.37ns 10.75 

Leaf size PP_large 14.85 b 0.28 10.80 19.12 8.32 3.92ns 13.33 
scan [cm²] PP_small 11.24 a 0.26 7.23 16.24 9.01 3.25* 16.05 

Flowering PP_large 9.15 0.52 3.50 19.50 16.00 13.43** 40.08 
score sum PP_small 9.06 0.42 2.00 15.00 13.00 9.02** 33.17 

Ripening PP_large 6.46 0.08 5.00 8.00 3.00 0.36ns 9.23 
score  PP_small 6.50 0.10 5.00 8.00 3.00 0.49ns 10.77 

Schwarze Linse (SL) 

Seed  SL_large 73.46 b 3.24 18.73 112.41 93.68 526ns 31.23 
yield [g] SL_small 38.56 a 1.54 14.18 61.57 47.39 118ns 28.16 

Straw  SL_large 255.9 b 4.55 162.9 336.4 173.5 1034ns 12.57 
yield [g] SL_small 174.0 a 3.70 113.0 255.4 142.4 683ns 15.02 

Total  SL_large 329.3 b 6.21 181.7 408.2 226.5 1929ns 13.34 
yield [g] SL_small 212.6 a 4.85 127.2 313.7 186.5 1175ns 16.13 

Harvest SL_large 0.216 b 0.008 0.070 0.350 0.280 0.003ns 25.46 
index  SL_small 0.175 a 0.005 0.110 0.240 0.130 0.001ns 18.63 

Seed  SL_large 29.47 b 0.29 23.07 34.64 11.57 4.16** 6.92 
weight [mg]  SL_small 20.91 a 0.17 18.15 24.72 6.57 1.42ns 5.70 

Leaf size SL_large 5.17 b 0.09 3.50 6.00 2.50 0.42ns 12.60 
score  SL_small 2.97 a 0.02 2.50 3.50 1.00 0.02ns 5.28 

Leaf size SL_large 10.39 b 0.17 7.99 13.11 5.12 1.51ns 11.81 
scan [cm²] SL_small 7.54 a 0.13 5.79 10.14 4.35 0.86ns 12.33 

Flowering SL_large 7.90 a 0.41 4.00 17.75 13.75 8.43** 36.74 
score sum SL_small 11.48 b 0.11 9.25 13.50 4.25 0.63ns 6.89 

Ripening SL_large 6.68 a 0.07 5.20 7.50 2.30 0.27ns 7.78 
score  SL_small 7.84 b 0.07 6.52 9.00 2.48 0.24ns 6.26 
a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s- 

HSD test with P=0.05. 
b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

**, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 
Table continues on the next page. 
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Statistically highly significant variation within selections was observed in PP_small for seed yield, harvest 

index, seed weight, and flowering (TABLE 4.8). The on average significantly earlier flowering PP_large also 

holds a highly significant within-population variance and a larger coefficient of variation for the same trait, 

while for all other traits, PP_small holds the higher CV compared to PP_large.  

Mean comparisons between SL_large and SL_small are significant for all traits (TABLE 4.8). Significant 

variation was observed within SL_large for seed weight and flowering. Additionally, a higher coefficient of 

variation was found for seed yield, harvest index, leaf size score, and ripening score in SL_large compared 

to SL_small. 

The comparison of means between the two selections of GL are significant in all cases, except for flowering 

(TABLE 4.8). Highly significant within-population variation was identified for seed yield and flowering in 

both selections. Additionally, GL_large holds a significant variance for seed yield and total yield, but 

coefficients of variation are smaller compared to GL_small in these traits as well as for all other traits. 

  

Table 4.8 continued. 

Gestreifte Linse (GL) 

Trait Population Meana) SE Min. Max. Range Varianceb) CV 

Seed  GL_large 130.70 b 4.12 61.04 189.11 128.07 848* 22.28 
yield [g] GL_small 83.83 a 3.74 32.23 149.75 117.52 699ns 31.53 

Straw  GL_large 267.1 b 5.64 165.0 342.0 177.1 1591+ 14.93 
yield [g] GL_small 233.0 a 6.47 154.9 341.9 187.0 2091+ 19.62 

Total  GL_large 397.9 b 8.89 226.0 506.0 280.0 3948* 15.79 
yield [g] GL_small 316.9 a 9.16 193.5 482.2 288.7 4198ns 20.45 

Harvest GL_large 0.325 b 0.005 0.230 0.390 0.160 0.001ns 11.69 
index  GL_small 0.256 a 0.007 0.140 0.360 0.220 0.003ns 19.91 

Seed  GL_large 34.54 b 0.28 26.43 39.97 13.54 3.90** 5.72 

weight [mg]  GL_small 23.71 a 0.31 20.35 33.60 13.25 4.96** 9.39 

Leaf size GL_large 5.22 b 0.07 4.50 6.00 1.50 0.23ns 9.11 
score  GL_small 3.44 a 0.08 3.00 6.00 3.00 0.28** 15.44 

Leaf size GL_large 9.72 b 0.15 6.93 12.67 5.74 1.18ns 11.19 
scan [cm²] GL_small 7.10 a 0.11 5.75 9.55 3.80 0.65+ 11.33 

Flowering GL_large 6.58 0.18 4.50 11.50 7.00 1.62** 19.33 
score sum GL_small 6.34 0.21 3.00 9.00 6.00 2.18** 23.28 

Ripening GL_large 7.56 b 0.05 7.00 8.50 1.50 0.12ns 4.56 
score  GL_small 7.35 a 0.06 6.50 8.00 1.50 0.21ns 6.18 
a) Mean values followed by the same letter within the same cultivar are not significantly different after Tukey’s- 

HSD test with P=0.05. 
b) Significance levels of the effect of progenies within population from the F-test in ANOVA is given with:  

**, *, +, ns for P-values = 0.01, 0.05, 0.1, non-significant, respectively. 
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GENOTYPIC RESULTS 

In total 40-41 individuals per selection were genotyped successfully with 145 SNP marker (TABLE 4.9). Ten 

additional individuals differing in seed color from Schwarze Linse observed in the large selection 

(SL_largeX) were genotyped to check their genetic origin. 

TABLE 4.9 Results from genotyping with 145 SNP marker. 

 
 
 
Population 

Number of 
polymorphic 

homozygous loci 
(number of samples)a) 

 
Number of 

heterozygous 
loci  

Number of heterozygous 
samples with H>5% 
(Number or range of 

heterozygous loci) 

 
 

Number of 
samples 

PP_large 53 31 1 (31) 40 
PP_small 139 62 4 (8-28) 40 

SL_large 82 30 1 (14) 40 

SL_small 4 (1) 2 0 40 

GL_large 84 7 0 41 

GL_small 80 29 1 (18) 40 

SL_largeX 107 25 1 (18) 10 
a) If only few individuals are contributing to polymorphisms, the number of individuals is given in brackets. 

 

Within selection PP_large, 30 individuals were identified to be completely homogeneous for all markers 

applied (FIGURE 4.1-4.2). The other ten individuals differ in sum for 53 loci in homozygous status from the 

homogeneous majority of individuals and include one heterozygous individual in 31 loci; 12 of these 

heterozygous loci were not polymorphic within PP_large, but in PP_small.  

The small seeded selection PP_small consists of a major and more or less homogeneous group of 25 

individuals. The 15 other individuals are highly heterogeneous and partly heterozygous and cluster with 

other heterogeneous and partly heterozygous individuals of SL_large, SL_largeX, GL_large and PP_large.  

Individuals of the large seeded selection of SL are clustered in one main cluster with a certain variability 

within the cluster with in total 39 samples, one sample (SL_large_96) in larger distance from the others 

close to the SL_small genotype. The individuals of SL_largeX are clustering relatively closely to either 

SL_large or SL_small with eight and two individuals, respectively, together with other heterogeneous and 

partly heterozygous individuals of PP_small. 

SL_small consists of 40 highly homogeneous genotypes, with one individual (SL_small_10) differing in four 

loci from the other samples and one sample having one additional loci in heterozygous status. Loci 

Contig14652 is heterozygous throughout all samples of SL_small, whereas the same loci is either 

homozygous TT (24 samples) or heterozygous TG (14 samples) in SL_large, except for SL_large_96 which 

is homozygous GG.  
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In population GL_large, 39 individuals are completely identical 

and homozygous except for sample GL_large_09 with one loci in 

heterozygous status. Two samples GL_large_84 and 96 differing 

in 33 and 27 loci from the other 39 samples, respectively, plus 

seven additional heterozygous loci for the latter, are clustering 

together with the heterogeneous and partly heterozygous 

individuals of PP_small and SL_largeX.All 40 individuals of 

GL_small are clustering together, however they are divided into 

two main clusters consisting of 17 and 23 samples each. The 

larger group of samples is more heterogeneous and includes 

one sample in heterozygous status at 18 loci. 

  

PP_large 
N=40 

PP_small 
N=25 

 

SL_large 
N=39 

 
 

SL_small 
N=40 

 
 

GL_large 
N=39 

 
 

GL_small 
N=40 

 
 

PP_small (N=9) 
SL_largeX (N=5) 
GL_large (N=2) 

 
 

PP_small (N=3) 
SL_largeX (N=2) 
SL_large (N=1) 

 
 

FIGURE 4.1 Minimum-variance-dendrogram of all genotyped 
individuals from selections of three cultivars (PP, SL, GL) for 

small and large seed size.  
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FIGURE 4.2 UPGMA dendrograms for individuals from cultivar Pisarecka Perla (PP), Schwarze 
Linse (SL), and Gestreifte Linse (GL), from left to right, resulting from selection on seed size 
(large, small). Ten extra samples (SL_largeX) are phenotypically deviating for seed color from 
the original cultivar. 
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4.4 DISCUSSION 

Across year and location, the selection for extreme seed size had a significant effect on seed yield in 

Schwarze Linse and Gestreifte Linse, on straw yield in Schwarze Linse and Pisarecka Perla, and on total 

yield and harvest index in Schwarze Linse. Seed weight and flowering time was altered significantly by the 

selection in all three cultivars. In Pisarecka Perla, seed, straw, and total yield seem to be improved with 

the selection on seed size, regardless of the direction for small or large seeds. However, the large seeded 

selection seems to have a minor advantage over the small seeded. On the other hand, the harvest index 

decreased by the selection on large seeds to 36.1 from 38.0 in the initial population, compared to 39.3 in 

the small seeded selection, and ripening slightly delayed. Selection for large seed size in Schwarze Linse 

and Gestreifte Linse improved seed yield significantly and led to an increased harvest index, whereas the 

small seeded selections do not differ significantly from the initial populations, except for Gestreifte Linse 

in seed weight, and yield was slightly lower compared to the initial populations. 

For the site-specific comparisons, the large seeded selection in Pisarecka Perla revealed the highest straw 

yield in all locations and the highest seed yield in Tangsehl. At Reinshof, the initial population gave the 

highest seed yield and in Schönhagen it was the ‘Schönhagen population’ under natural selection with the 

best yield. However, all mean comparisons for seed yield are statistically not significant. For Reinshof, 

across the two years, which differed strongly in the precipitation distribution and disease pressure, both 

selection methods (sieving and natural selection) for larger seeds increased the straw yield potential, but 

not the seed yield, thus the harvest index decreased. Furthermore ripening is slightly delayed. Flowering 

was observed significantly later in the ‘Reinshof selection’, compared to the small and large seeded 

selections. The initial population and the large seeded selection were flowering earliest. Thus, seed weight 

and flowering are not correlated here and the season length from flowering until ripening is shorter in the 

‘Reinshof selection’, which might explain the lower straw yield compared to the large seeded selection. At 

Schönhagen, the ‘Schönhagen population’ yields highest in seed and second highest in straw yield. Seed 

weight is similar compared to the initial population as well as ripening, but the harvest index is slightly 

reduced and flowering time significantly delayed. The large seeded selection performs relatively well and 

might have a small advantage over the small seeded selection from earlier flowering and later ripening at 

this location. At Tangsehl, the large seeded selection seems to have the same advantage with relatively 

early flowering and slightly later ripening, whereas the ‘Tangsehl population’ is ripening significantly 

earlier. The small seeded selection and the population under natural selection at Tangsehl, also with a 

significantly lower seed weight compared to the initial population, both do not show a yield advantage for 

this location. 

Site-specific comparisons of selections and populations in Schwarze Linse reveal a similar pattern within 

each location. The large seeded selection gave the best yield, which was significant for seed and straw 

yield at Schönhagen, whereas the small seeded selection gave the lowest yield in all locations. Yield, 

harvest index, seed weight, ripening, and leaf size did not vary significantly between the small seeded 

selection and the populations in generation 0 and 10. Flowering in the ‘Reinshof population’ and the 

‘Schönhagen population’ was significantly earlier compared to the initial population. For Gestreifte Linse, 

the large seeded selection does not differ significantly from the populations in generation 0 and 10 in all 

traits at each location. However, in Schönhagen, the large seeded selection and the ‘Schönhagen 

population’ provided the highest seed yield and the initial population gave the highest straw yield. Beside 
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the lower seed weight across locations, the small seeded selection differed significantly with a smaller leaf 

size and lower yield at Reinshof and a lower seed yield at Tangsehl compared to the large seeded selection 

and the site-specific populations from natural selection. The flowering score sum is highest for the small 

seeded selection at each location and significantly different from the initial population at Schönhagen, 

indicating a genetic correlation of a lower seed weight with earlier flowering for this selection.  

To sum up, Pisarecka Perla showed significant response to selection for large seeds in straw yield. The 

larger seeded populations (PP_R_10, PP_S_10) or selection (PP_large) expressed a general yield advantage 

in all locations. However, at Tangsehl, the small seeded selection had the second highest seed yield and 

the highest harvest index at Tangsehl and Schönhagen. Site-specific natural selection and the selection for 

small seeds in Schwarze Linse did not alter the mean performance significantly compared to the initial 

population, whereas selection on large seeds led to significant changes in agronomical, phenological, and 

morphological traits. For Gestreifte Linse, it is the selection for small seeds, which altered many traits 

significantly, compared to the initial population. Since natural selection did not change seed weight 

significantly and separation of small and large seeds by sieving resulted in either significantly larger or 

smaller seeds compared to the initial population in Schwarze Linse and Gestreifte Linse, respectively, it 

can be assumed that recombination occurred at some point during the six generations of selection and 

altered seed size. Since the first separation in 2000 for seed size did not result in significantly different 

fractions in seed weight in Schwarze Linse and Gestreifte Linse (Horneburg 2003), such a recombination, 

e.g. from outcrossing, must have occurred in later generations during 2006-2010. 

Results from progeny testing revealed significant variation between progenies of the small seeded 

selection of Pisarecka Perla for most traits. In the large seeded selection, seed weight and flowering 

showed significant variation. In Schwarze Linse, no significant variability was observed, except for the large 

seeded selection for seed weight and flowering. In Gestreifte Linse, significant variation was observed for 

seed weight and flowering in both selections. These results indicate genetic variability especially in the 

small seeded selections of Pisarecka Perla and the large seeded selection of Schwarze Linse. 

Genotyping by SNP marker gave a clear grouping according to selections. The visualization via the cluster 

dendrogram according to the minimum-variance method (Ward 1963; Ward and Hook 1963) does not 

allow for comparisons by genetic distances, thus clusters of selections within the same cultivar have a 

larger branch height and no clear clustering according to cultivar affiliation is visible. However, outliers 

from potential outcrossing or wrongly classified samples can be identified from this figure. Two samples 

of PP_large were clustered within the group of GL_large, suggesting wrong phenotypic classification. 

Several samples of PP_small are clustering closely with SL_large or SL_small samples, suggesting possible 

outcrossing between these two cultivars. 

By the ‘Unweighted Pair Group Method with Arithmetic mean’ (UPGMA; Sokal and Michener 1958), 

individuals phenotypically selected and classified to either large or small seeded selections within the same 

cultivar could be distinctly clustered, accordingly. In Pisarecka Perla, variability in the small seeded 

selection is large compared to the large seeded selection, where 30 individuals are homogenous and 10 

individuals are heterogeneous. The 30 homogenous individuals correspond to genotype A, identified in 

CHAPTER 3.3, and three samples (PP_large_03, PP_large_06, PP_large_09) correspond to genotype C, 

identified in the initial population (FIGURE 3.15). The majority with 25 small seeded progenies correspond 

to genotype B, but recombination probably by outcrossing resulted in genetic variability. Outcrossing with 
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one of the other cultivars cannot be excluded and should be further analyzed by looking on seed color of 

those progenies closely clustered to another cultivar. Additionally, genetic distances may be calculated. 

The small seeded selection of Schwarze Linse is highly homogenous, whereas the large seeded individuals 

are highly variable, which corresponds to the phenotypic results on variability between progenies. In 

Gestreifte Linse, the small seeded selection is highly variable, compared to 39 highly homogeneous large 

seeded individuals. Two large seeded individuals (GL_large_84 and GL_large_96) are outlying from the 

other 39 samples and clustered near SL_large, thus may be wrongly classified samples rather than 

outcrossing products due to lacking heterozygosity (7 loci are heterozygous in GL_large_96, but none of 

the 145 SNPs in GL_large_84). 

In conclusion, genetic diversity observed within Pisarecka Perla could be maintained by selection for 

extreme seed sizes and yield performance was improved. Genotypic variability despite a strong selection 

is still present, especially within the small seeded selection, suggesting additional recombination. The risk 

is high to select outlying genotypes from outcrossing and the initial material may be unintentionally 

changed. 
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5 RESPONSE TO DROUGHT STRESS IN POPULATIONS FROM NATURAL SELECTION  

 

5.1 INTRODUCTION 
 
Lentil is an autogamous species with limited outcrossing (Horneburg 2006; Erskine and Muehlbauer 1991). 

Thus, genetic adaptation to abiotic conditions such as drought stress by natural selection may apply under 

the presupposition of genetic variability available within the initial material. As Imam and Allard (1965) 

discussed for wild populations of oats, that the combination of “the flexibility of outbreeders with some 

of the ability of inbreeders to maintain specific highly adapted genotypes” leads “to the success […] in 

occupying complex habitats” for this species, may apply as well to the example of lentil under long-term 

on-farm management.  

Lentil is generally relatively well adapted to dry conditions (e.g. Materne and Siddique 2009). Nevertheless, 

the lentil crop often experiences terminal as well as intermittent droughts throughout the growing season, 

which limits yield in Mediterranean-type climatic regions (Silim et al. 1993). Significant genotypic variability 

in root and shoot traits was observed in lentil genotypes from the Near East, Asia, and East Africa by Sarker 

et al. (2005). They observed significant variation for accessions from the Near East only in lateral root 

number and yield per plant, whereas accessions from Asia and East Africa varied significantly in taproot 

length and lateral root number. In conclusion, they assumed that this originates from adaptation during 

domestication to two different climatic environments with drought occurring during different time points 

in the season. South Asian genotypes revealed no significant relationship of root traits with seed yield 

under rain-fed conditions, but early flowering, early maturity, the biological yield, and the harvest index 

were identified as key traits for a higher seed yield in lentil under drought (Kumar et al. 2012). Idrissi et al. 

(2015) suggested selection in water-limited environments for a high root-shoot biomass ratio to improve 

drought tolerance and identified a Quantitative Trait Loci (QTL) explaining the highest phenotypic variance 

for this ratio (Idrissi et al. 2016). 

Initially for this study, multiple old cultivars and landraces were screened and three of them finally selected 

according to distinct phenotype (growing type, seed size, seed color, flower color, etc.) between the 

cultivars (see CHAPTER 1.1, and 2.1-2.2). Subsequently, the three lentil cultivars were exposed to ten 

generations of natural selection at three sites on-farm under rain-fed conditions in Central and Northern 

Germany (FIGURE 1.1). Significant site-specific changes in seed weight for one cultivar and a shifted 

beginning of flowering in two cultivars had occurred already after four years of natural selection 

(Horneburg and Becker 2008). Water availability might have been one of the main factors distinguishing 

the selection sites, mostly due to the different soil types ( 

TABLE 5.1) exhibiting dissimilar physical soil structures and water holding capacities, accordingly. Soil profile 

descriptions were made in more detail in the M.Sc. Thesis of Bockelmann (2017, unpublished). Two of the 

selection sites are on ‘poor or marginal soils’. At Schönhagen, it is a shallow clay on limestone on a slope, 

where fast desiccation after few days without precipitation could be observed. And in Tangsehl, it is a very 

sandy soil with an expected frequent shortage in available water for the crop. Thus, drought stress was 

potentially distinguishing strength and direction of natural selection between locations. In consequence, 

populations after ten generations of natural selection might have developed differential degrees of 

adaptation, response, or tolerance to drought stress conditions.  

 



RESPONSE TO DROUGHT STRESS IN POPULATIONS FROM NATURAL SELECTION 

INTRODUCTION 

 PAGE 94 

TABLE 5.1 The three sites of selection. 

 Reinshof Schönhagen Tangsehl 

Geographical coordinates 51°29’50”N / 
9°55’53”E 

51°21’2”N / 
10°0’44”E 

53°10’31”N / 
10°52’50”E 

Altitude (above sea level) 150 m 330-360 m 40 m 
Annual precipitation 651 mm a) 773 mm b) 617 mm c) 

Long-term mean temperature 9.2 °C a) 8.1 °C d) 8.6 °C e) 

Management conventional bio-dynamic bio-dynamic 
Soil type Loess 

deep loam 
Leptosol 

shallow clay on 
limestone 

Podsol 
glacial sand with 

flint stones 
Soil value (Ackerzahl) 82-90 23-30 33-36 
Humus content [%] 2.0 4.2 1.8 
pH-value (CaCl)  7.0 7.5 5.0 
P2O5 [mg 100g-1 soil]  5.2 1.2 3.8 
K2O [mg 100g-1 soil] 20 17 14 
a) Long-term mean (1981-2010) of the meteorological station Göttingen, Deutscher Wetterdienst. 
b) Long-term mean (1981-2010) of the meteorological station Bad Sooden, Allendorf, Deutscher Wetterdienst 
c) Long-term mean (1989-1999) at the farm station Tangsehl 
d) Long-term mean (1981-2010) of the meteorological station Leinefelde, Deutscher Wetterdienst 
e) Long-term mean (1961-1990) of the meteorological station Lüchow, Wendland, Deutscher Wetterdienst  

Adapted from TABLE 2.1; modified and updated from Horneburg (2003) 

 
To study adaptation to drought stress, phenological and morphological traits, such as flowering and leaf 

size, were assessed additional to the agronomical traits, as seed and straw yield and harvest index, which 

may give a hint on the physiological mechanisms behind different yield responses between cultivars and 

between populations within cultivars. Furthermore, since site-specific changes in seed weight and 

flowering time were observed, phenotypical assessments may reveal if these changes are an adaptation 

to drought stress or if rather other factors were responsible for these shifts in phenological and 

morphological traits. 

Mainly two indirect methods, complementary to phenotypical assessments on the plant in the field, are 

suggested in the literature, which are widely used in drought stress research with plants. Canopy 

temperature measured by thermal infrared imaging as a quick, cheap, and easy remote sensing technique 

(Mason and Singh 2014). Carbon isotope discrimination of the naturally abundant isotopes 13C and 12C, as 

a second method, is more sophisticated to measure and requires expensive technical lab equipment and 

thoroughly prepared samples for the analysis. 

Leaf-canopy temperature is related to plant water stress. This was shown in a large number of studies in 

different crops (e.g. Wiegand and Namken 1966; Ehrler and van Bavel 1967; Aston and van Bavel 1972). 

Significant negative correlations of canopy temperature with soil moisture (Patel et al. 2001), 

evapotranspiration (Saha et al. 1986), and leaf water potential (Blum et al. 1982) were observed in 

pigeonpea, chickpea, and wheat, respectively. Patel et al. (2001) showed negative correlations of canopy 

temperature based indices with pods per plant and seed yield throughout the phenological stages from 

flowering to grain filling and maturity. Under greenhouse conditions in an experiment with beans and 

lupins, Grant et al. (2006) were able to detect differences between water-deficit and well-watered 

conditions by canopy thermal imaging at about the same time as with other conventional, more direct 

methods. Consequently, the conclusions given in the aforementioned studies are in favor of thermal 
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remote sensing as a valuable method to monitor canopy temperature for the estimation of crop water 

relations. Nevertheless, employing thermal infrared imaging on crop canopies as a remote diagnosis in the 

field is sensitive to non-homogeneous conditions during the measurement, as canopy temperature is 

influenced by many environmental factors, such as air temperature, wind, humidity etc., as well as by the 

canopy structure of the crop stand itself (Jones et al. 2009). 

Drought stress is a complex trait which comprises many physiological processes. Thus, the approach of 

measuring the useful surrogate variables of natural abundant carbon as δ 13C by mass spectrometry may 

be one solution to quantify and understand the general response of plants to stress factors (Robinson 

2000). From the δ 13C value, Farquhar and Richards (1984) calculated Δ 13C by taking the 13C/12C ratio of 

atmospheric CO2 into account, which correlated with water-use efficiency of wheat genotypes. They 

suggested the carbon-isotope analysis as “a useful tool in selection for improved water-use efficiency”. 

Under drought stress, a reduced transpiration rate leads to reduced isotope discrimination and 

subsequently higher values of Δ 13C compared to well-watered conditions. 

To study the response to drought under field conditions, we induced drought stress by covering the field 

plots after sowing with rainout shelters. Comparing between frequently irrigated and desiccated field 

plots, we aim to answer the question, if drought stress played a significant role during site-specific 

population development by natural selection and led to a site-specific drought tolerance.  
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5.2 MATERIALS AND METHODS 

PLANT MATERIAL  

Three old lentil cultivars were exposed to ten generations of natural selection at three farms under rain-

fed conditions in Central and Northern Germany. For this study, the nine populations (three cultivars × 

three selection sites) after ten generations of natural selection were tested in field plots in rainout shelters 

under irrigated and dry conditions. Seeds harvested in 2010 at the sites of selection were used to establish 

the experiment in 2014. In 2015 and 2016, seeds obtained from homogeneous multiplication in 2014 (see 

CHAPTER 2.2) was used. 

FIELD EXPERIMENT – CONDITIONS AND MANAGEMENT 

The experiment was repeated during three seasons in 2014, 2015, and 2016 at Reinshof, Göttingen (TABLE 

5.2, FIGURE 5.1). After the preceding crop (winter wheat) the field was plowed before winter; fertilizers 

were not applied. At the day of sowing, the seed-bed preparation was done with a rotary harrow. In 2016, 

one herbicide application (Bandur®) was conducted two days after sowing. 

Seeds were sown approximately 4 cm deep in soil with a plot seeder with 100 seeds m-² and row width of 

0.24 m in mid of April in six-row plots of 5 m² (1.5 x 3.3 m). Plots were arranged in a split-split-plot design 

with four replications. In this design, treatments (irrigation regime) were taken as the main blocks, cultivars 

were sub-blocks randomized within each treatment, and selections were randomized as sub-sub-plots 

within cultivars. In this way, selections within each cultivar are grown next to each other. 

After field emergence, around three weeks past sowing, field plots were covered by two 360 m² (10m x 

36m) rainout shelters (TABLE 5.4). Both shelters were installed next to each other and were divided into 

two treatments hosting two replications each. In total, the two shelters had the capacity of 96 field plots: 

36 experimental plots per shelter testing nine test entries (three cultivars x three selections), in two 

treatments. Two border plots on each head end of the shelters and two border plots in the middle of the 

shelters were installed to separate the treatments from each other and to minimize border effects. 

Irrigation was done on a weekly basis with about 13-15mm per week during 7-9 weeks (TABLE 5.4) starting 

before flowering until the end of grain filling stage by drip irrigation tubes. Dry plots were rain-fed before 

covered and never irrigated afterwards, except one block in one of the shelters in 2014, which was 

irrigated once in the beginning of June to homogenize the treatment after surface water entered 

selectively during heavy rainfalls on 12th of June (FIGURE 5.1). 

Soil water content was measured gravimetrically from soil samples taken on a weekly basis before 

irrigating. Soil samples were taken using the three-part hand drilling system (“Göttinger Bohrstöcke”, 

Bodenprobetechnik Nietfeld GmbH, Quakenbrück), which allows to obtain three separate samples of 30 

cm depth each, down to 90 cm below surface. Sampling was done in the center of each replication, adding 

up to four sampling points per treatment and shelter. Soil samples were dried at 105°C for at least 12h. 

Climatic conditions, especially the distribution of precipitation, differs between the years (FIGURE 5.1, TABLE 

5.3). The total amount of precipitation in April 2014 is significantly lower compared to April 2015 (TABLE 

5.3). However, the distribution of rainfall is superior in April 2014, compared to April 2015, where after a 

long period of no or very limited rainfall, first rainfalls occurred about one week after sowing (FIGURE 5.1), 

thus delaying germination. Temperature and sunshine duration are expected to be the main climatic 

parameters triggering plant growth in the sheltered plots. For May until July, monthly mean temperatures 
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are similar in 2014 and 2015, in 2016 May and June they are on average 1.6 and 1.8 °C higher (TABLE 5.3). 

Sunshine duration over the whole growing season is highest in 2015 and lowest in 2014. 

TABLE 5.2 Soil conditions before sowing in March at the experimental location Reinshof. 

 Year 
 2014 2015 2016 

Soil value (Ackerzahl) 93 72-79 72-79 
pH (CaCl)  7.2 7.1 6.7 
P2O5 [mg 100g-1 soil]  6.1 7.1 4.5 
K2O [mg 100g-1 soil]  10.5 14.3 12.8 
Mg [mg 100g-1 soil]  8.0 8.5 8.0 
Nmin [kg N ha-1]  
in depth 0-30, 30-60, 60-90 cm (top down) 

16 17 7 
18 14 14 
19 19 19 

 

TABLE 5.3 Climatic conditions in the three subsequent years during the season of trials at Reinshof. 

 
Year Apr May Jun Jul Aug 

Mean [°C] / Sum 
[mm],[h] 

Mean temperature 
[°C] 2014 11.4 12.7 15.2 19.1 15.9 

14.9 

 2015 8.4 12.2 15.4 18.7 19.6 14.8 
 2016 8.1 13.8 17.2 18.6 17.9 15.1 

Precipitation [mm] 2014 22.9 103.6 73.8 105.5 98.4 404 
 2015 46.5 30 23.1 91 113.7 304 
 2016 28.4 41.4 113 43 40.5 266 

Sunshine duration 
[h] 2014 140.5 191.6 192.3 220.8 149.2 

894 

 2015 212.2 190.3 184.8 217 234.2 1039 

 2016 153.1 211 192.4 169.5 220.6 947 
Data source: Meteorological station Göttingen, Deutscher Wetterdienst (www.dwd.de/WESTE) 

 

TABLE 5.4 Drought stress experiment management dates. 

Year Sowing 
date 

 
Harvest date 

Season length (days 
planting to harvest) 

Sheltered 
since 

Irrigation 
(weeks;  
total mm) dry irrigated dry irrigated 

2014 15. April 24. 
July 

12. / 18. Aug. 100 119 / 125 6. / 15. May 7; 100 

2015 13. April 22. 
July 

8. August 100 117 11. May 8; 119 

2016 12. April 25. 
July 

3. August 104 113 4. / 6. May 9; 117 

 

  



RESPONSE TO DROUGHT STRESS IN POPULATIONS FROM NATURAL SELECTION 

MATERIALS AND METHODS 

 PAGE 98 

 

 

 

 

FIGURE 5.1 Climatic conditions in 2014, 2015, and 2016 from April to August at Reinshof. 

Data source: Meteorological station Göttingen, Deutscher Wetterdienst (www.dwd.de/WESTE)  
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PHENOTYPING 

Field emergence and the number of survived, seed-bearing plants were counted in the inner 1 m² of each 

plot two weeks after sowing and at harvest, respectively, and subsequently the survival rate in percentage 

was calculated. The whole plot was harvested by hand and whole plants were put into sacks and dried at 

the farm on a hot air dryer at 25-30°C. Seed and straw weight was taken when threshing dried plants. 

Threshing was done by a non-mobile thresher (Pelz K35, Wachtberg-Villip, Germany). Seed and straw yield 

was then calculated and corrected to 86% dry matter content. The total harvest weight of either straw or 

seeds are multiplied by the actual total dry matter content (TDMC) and then divided by 86% dry matter 

content: 

yield (seed or straw) =  
𝑡𝑜𝑡𝑎𝑙 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ×  𝑇𝐷𝑀𝐶 (=  100 −  𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

86
 

TDMC of seed and straw was obtained from samples by drying them at 105°C for 12h. Samples were taken 

from one same genotype in each replication and treatment as a standard. Seed weight was obtained by 

counting 4 x 100 seeds from each plot.  

Seed yield per plant was calculated by dividing the obtained seed yield [gm-²] by the number of plants at 

harvest in the inner 1 m² of each plot. Number of seeds per plant was calculated by dividing the seed yield 

per plant by the seed weight. 

Leaf area was measured on five (2014) or ten (2015 and 2016) leafs per plot with the ‘LI-3100 C’ area meter 

(LI-COR Biosciences) after flowering at the beginning of July. 

Flowering was scored, according to Horneburg (2003), on a scale from 0 – 4 (0 %, > 0 ≤ 1 %, >1 ≤ 10 %, up 

to 50 %, and > 50 % of the plants flowering) starting when first flowers were observed continuously every 

second day until full flowering was reached. 

Lodging and ripening was scored once during the season, when the respective trait was well pronounced, 

e.g. after a strong wind event or at visible differential ripening of genotypes, on a scale from 1–9, from 

lowest to complete peculiarity of the trait.  

Thermal infrared imaging (Thermacam FLIR T640, FLIR Systems, Inc., Wilsonville, OR, USA) was done at 

individual dates from June until beginning of July, during full flowering and subsequent grain filling stage, 

at conditions of clear sky and sunshine between 11 a.m. and 2 p.m. standard time. 

Seed samples for isotopic analysis on carbon were taken after threshing in 2014. In 2015 additionally to 

seeds, also straw samples were taken when threshing and a midterm plant harvest of five random 

branches was done during grain filling stage on 6th of July.  Samples were dried at 60°C and milled to a fine 

powder by a ball mill (Retsch MM 400) for 25-45 sec, depending on the sample type. 1.8 mg (± 10%) of 

each of the dried and milled samples were placed in tin capsules (IVA Analysentechnik, Meerbusch, 

Germany) for combustion and δ13C values of samples were analyzed for isotopic composition with a 

Finnigan MAT Delta C mass spectrometer (ThermoFinnigan, Bremen, Germany) coupled to an elemental 

analyzer 1108 (Carlo-Erba, Milan, Italy), as described in Senbayram et al. (2015) and Brueck and Senbayram 

(2009). Subsequently, Δ 13C is calculated according to Farquhar and Richards (1984):  

 Δ 13C = [(Ra/Rp)-1]*1000, 

with Ra being the 13C/12C ratio of the atmospheric CO2 and Rp being the 13C/12C ratio of biomass carbon.  
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STATISTICAL ANALYSIS  

Analysis of variance (ANOVA) was done with the software PLABSTAT (Version 3Bwin, Utz 2011). Analysis 

of ‘Additive Main effects and Multiplicative Interaction’ (AMMI) was done on the statistical platform ‘R 

Studio’ (Version 1.0.136; RStudio Team 2015) using the function ‘AMMI()’ from the package ‘agricolae’ 

developed by Mendiburu (2016).  

The following models for ANOVA were applied according to the split-plot field design:  

For the analysis of the effects of year, treatment across year, cultivar across treatment and year, and 

selection across cultivar, treatment and year:  

 xijklm = µ + yi + rm + yrim + tj + ytrijm + ck + ytcrijkm + sl + ytcsrijklm  

+ ytij + ycik + ysil + tcjk + tsjl + cskl + ytcijk + ytsijl + ycsikl + tcsjkl + ytcsijkl 

where xijklm is the observed value, µ is the general mean of the experiment, and yi, tj, ck, sl and rm are the 

effects of year, treatment, cultivar, selection, and the replication, respectively, and ytcsrijklm is the residual 

error, followed by all possible interactions. Replication and year, when involved, were taken as random 

factors in the model. 

For the analysis of the effect of treatment within years, cultivar across treatment, and selection across 

cultivar and treatment, with tcsrjklm being the residual error:  

 xjklm = µ + tj + rm + trjm + ck + tcrjkm + sl + tcsrjklm + tcjk + tsjl + cskl + tcsjkl  

For the analysis of the effect of treatment within cultivar across year and selection across treatment and 

year, with ytsrijlm being the residual error: 

 xijlm = µ + yi + rm + yrim + tj + ytrijm + sl + ytsrijlm + ytij + ysil + tsjl + ytsijl 

For the analysis of the effect of cultivar within treatment across year and the effect of selection across 

cultivar and year, with ycsriklm being the residual error: 

 xiklm = µ + yi + rm + yrim + ck + ycrikm + sl + ycsriklm + ycik + ysikl + cskl + ycsikl 

For the analysis of effects of cultivar within treatment and single year, and the effect of selection across 

year and cultivar, e.g. for traits taken only in one individual year, with csrklm being the residual error: 

 xklm = µ + ck + rm + crkm + sl + csrklm + cskl 

For the analysis of the effect of selection within cultivar and treatment across years, with ysrilm being the 

residual error: 

 xilm = µ + yi + rm + yrim + sl + ysrilm + ysil 

For the analysis of single year data for the effect of selection within treatment and cultivar: 

 xlm = µ + sl + rm + srlm 
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5.3 RESULTS 

SOIL WATER CONTENT 

Reduction in soil water content over time in non-irrigated plots was similar during the first two seasons 

(2014, 2015) in the upper soil layer (0-30 cm), while in 2016 a higher soil water content was measured 

throughout the season in the first layer (0-30 cm) (data not shown). Absolute differences (irr. – dry) were 

still smaller in the mid and end of June 2016 compared to 2014 and 2015 (TABLE 5.5). Nevertheless, in the 

deeper soil (30-60 cm) in the dry treatment a lower soil water content could still be observed compared 

to irrigated treatment with some fluctuation between dates. Further down to 90 cm depth, fluctuations 

were even stronger, however soil water content was still lower in dry plots for most dates. 

TABLE 5.5 Absolute differences in soil water content [%] between dry and irrigated plots measured during 
three seasons at three depths. 

 
Depth [cm] 

Datea) 
Year 

28. May - 2. June 
 

12. - 15. June 
 

27. - 30. June 
 

4. - 7. July 
 

0 - 30 2014 0.5 1.8 2.0 2.7 
 2015 1.3 1.8 2.4 1.7 
 2016 1.6 1.3 1.8 2.6 
 Mean 1.2 1.6 2.1 2.4 

30 - 60 2014 -0.1 4.0 2.2 1.5 
 2015 1.3 1.6 1.2 0.8 
 2016 2.8 2.1 2.1 3.3 
 Mean 1.4 2.6 1.8 1.8 

60 - 90 2014 -0.1 2.9 0.8 1.8 
 2015 -0.2 0.9 -0.4 0.0 
 2016 1.1 0.2 0.6 1.6 

 Mean 0.3 1.3 0.3 1.1 
a) Exact dates differ between years within the given period   
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AGRONOMIC TRAITS 

The overall mean for seed yield was highest in 2014 with 284 gm-² and 198 gm-² in irrigated and dry 

treatment, respectively, and lowest in 2015 with 233 gm-² and 155 gm-². Relative seed yields are 70, 67, 

and 75% from the dry plots compared to the irrigated plots during the three subsequent years 2014, 2015, 

and 2016. Total yield (seed + straw yield) across treatments was highest in 2016 (571 gm-²) and lowest in 

2014 (515 gm-²). Comparing the three cultivars, highest yield depression for seeds was observed in 

Schwarze Linse, the cultivar with the lowest yield potential in both treatments (TABLE 5.6). The highest 

general yield potential was observed for Gestreifte Linse. For Pisarecka Perla, yields are intermediate and 

exhibit a lower yield depression in seed, straw, and total yield compared to the other cultivars. Higher yield 

depression for straw compared to seed yield can be observed in Pisarecka Perla and Gestreifte Linse, 

whereas in Schwarze Linse we found the opposite situation. Consequently, the harvest index increased in 

these two cultivars for 8% and 5%, respectively, while it decreased in Schwarze Linse with 5% by the dry 

treatment. F-values for the treatment effects are higher for straw and total yield compared to seed yield 

in all cultivars, but significant with P=0.05 for the three traits. Non-significant treatment effects or effects 

with a low significance level (P=0.1 or P=0.2) are found for harvest index, seed weight, seed yield per plant, 

and seeds per plant; exceptions are present in Gestreifte Linse (seed weight) and Schwarze Linse (seed 

yield per plant, seeds per plant), where treatment effects are significant with P=0.05. On a low (P=0.1 for 

straw and total yield) to very low (P=0.2 for seed yield, seed weight, seed yield per plant, and seeds per 

plant) significance level, relative values for yield related traits differ between cultivars. 

TABLE 5.6 Mean values (2014-2016) of agronomic traits of three cultivars in irrigated and dry treatment. 

Cultivar Pisarecka Perla Schwarze Linse Gestreifte Linse  Mean 
Treatment 

Traita) 
irr. 

 
dry 

 rel.%b) Fc) 

irr. 
 

dry 
 rel.% Fc) 

irr. 
 

dry 
 rel.% Fc) 

 
Fd) 

irr. dry 

KY [gm-²] 230 183 80 28.9* 224 141 63 62.0* 309 213 69 22.3* 2.74x 254 179 

SY [gm-²] 396 272 69 46.6* 347 232 67 538** 436 267 61 113** 4.37+ 393 257 

TY [gm-²] 626 455 73 57.9* 569 372 66 254** 745 480 64 277** 5.48+ 647 436 

HI 0.37 0.40 108 4.0x 0.39 0.37 95 8.34x 0.42 0.44 105 1.34 1.94 0.39 0.40 

SW [mg] 53.4 51.1 96 6.1x 23.9 23.2 97 0.44 35.2 32.2 91 22* 3.57x 37.5 35.5 

KY plant-1 [g] 2.7 2.2 82 8.2+ 2.7 1.7 63 832** 3.8 2.6 70 15.8+ 2.59x 3.1 2.2 

Seeds plant-1 51 44 86 3.4 111 72 64 71.8* 106 81 76 12.6+ 3.12x 89 66 
a) Seed yield = KY; straw yield = SY; total yield = TY; harvest index = HI; seed weight = SW 
b) Relative yield [%] for dry treatment compared to irrigated 
c) F-values with significance levels for treatment in ANOVA in the F-test (DF-nom.=1, DF-denom.=2):  
  **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
d) F-values with significance levels for the effect of the cultivar on relative values [%] (F-test in ANOVA with DF-nom.=2, DF-denom.=4): 
  **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 

 
  



RESPONSE TO DROUGHT STRESS IN POPULATIONS FROM NATURAL SELECTION 

RESULTS 

 PAGE 103 

Populations selected at Reinshof from the cultivars Pisarecka Perla and Gestreifte Linse had highest mean 

values for seed, straw, and total yield in the dry treatment with significant differentiation between the 

selections at P=0.01 found in Pisarecka Perla for straw yield and in Gestreifte Linse for seed yield (TABLE 

5.7). Other traits did not show significant differences between selection sites, except seed weight, which 

was highest for the provenance Reinshof and lowest for Tangsehl in Pisarecka Perla. Highest relative total 

yield and relative seed yield per plant was observed in Schwarze Linse, whereas other yield related traits 

did not show significant differences between selection provenances in the same cultivar in either 

treatment. A general tendency to lower relative seed yield and relative total yield for Tangsehl and/or 

Schönhagen can be observed across cultivars (TABLE 5.7). 

TABLE 5.7 Mean and relative values of agronomic traits of the selection provenances Reinshof (R), 
Schönhagen (S), Tangsehl (T). 

Cultivar Pisarecka Perla Schwarze Linse  Gestreifte Linse   Mean 
Selection 

Traita)              
R S T  

Fb) 

R S T  
Fb) 

R S T  
Fb) F c) 

R S T 

Dry treatment 

KY [gm-²] 189 184 176 0.47 145 138 140 1.23 218 216 206 104** 1.59 184 179 173 

SY [gm-²] 282 267 268 48** 227 229 239 1.37 271 265 264 0.45 2.11 260 254 257 

TY [gm-²] 471 451 444 2.28 372 367 379 0.63 489 481 470 2.99x 4.45+ 444 433 431 

HI 0.40 0.41 0.39 0.24 0.38 0.38 0.37 0.46 0.44 0.45 0.44 0.83 0.93 0.41 0.41 0.40 

SW [mg] 56 54 44 54** 24 23 23 0.17 32 32 32 1.43 15.5* 37 36 33 

KY plant-1 [g] 2.3 2.3 2.1 0.74 1.7 1.6 1.7 1.81 2.8 2.6 2.5 0.98 1.89 2.3 2.2 2.1 

Seeds plant-1 41 42 48 3.51x 70 70 75 4.46+ 85 80 77 0.94 3.17x 65 64 67 

Irrigated treatment 

KY [gm-²] 231 223 237 0.21 219 230 222 0.16 305 309 314 0.11 0.36 252 254 258 

SY [gm-²] 399 401 387 0.82 340 349 352 0.95 452 420 436 1.08 2.05 397 401 392 

TY [gm-²] 630 624 624 0.07 553 579 574 0.59 756 729 750 4.77+ 0.93 646 644 649 

HI 0.37 0.36 0.38 0.41 0.38 0.4 0.39 1.25 0.41 0.42 0.42 0.29 1.52 0.39 0.39 0.40 

SW [mg] 60 56 48 165** 24 23 24 0.29 36 35 35 9.78* 50** 40 38 36 

KY plant-1 [g] 2.8 2.6 2.7 0.4 2.5 2.7 2.9 2.02 3.8 3.8 3.7 0.02 0.21 3.0 3.0 3.1 

Seeds plant-1 48 47 57 6.76+ 101 113 119 16.9* 106 108 105 0.02 2.48x 85 89 94 

Relative values [%]d) 

KY [gm-²] 80 85 79 0.18 71 61 65 2.87x 74 71 67 1.0 12.8* 75 72 70 

SY [gm-²] 70 67 70 0.91 69 66 68 0.85 60 63 61 4.17x 0.58 66 65 66 

TY [gm-²] 73 72 73 0.16 70 64 66 15.4* 64 66 63 5.01+ 5.23+ 69 67 67 

HI 109 116 109 0.32 101 95 96 0.84 113 107 106 0.9 28** 108 106 104 

SW [mg] 93 96 91 2.55x 99 98 97 0.21 91 92 91 0.29 1.51 94 95 93 

KY plant-1 [g] 82 88 88 0.27 73 61 63 6.97* 77 71 68 0.41 1.57 77 73 73 

Seeds plant-1 89 91 96 0.26 71 63 65 2.74x 85 78 74 0.44 0.68 82 77 78 
a) Seed yield = KY; straw yield = SY; total yield = TY; harvest index = HI; seed weight = SW 
b) F-values with significance levels for selection within cultivar in ANOVA in the F-test (DF-nom.=2, DF-denom.=4):  

   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
c) F-values with significance levels for selection across cultivars in ANOVA in the F-test (DF-nom.=2, DF-denom.=4): 

   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
d) Relative values in the dry treatment compared to irrigated 

 

In the ANOVA table for seed yield, results for each treatment and for relative seed yield are summarized 

(TABLE 5.8). Significant effects by year, cultivar, and cultivar x year interaction was found in both 

treatments. For the relative seed yield, year is not a significant factor, but a significant effect of the 

selection provenance was observed. Heritability values for cultivar are highest in the irrigated treatment 

with the lowest standard error value compared to the analysis of the dry treatment and the relative seed 

yield data. 
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TABLE 5.8 ANOVA results for seed yield in dry and irrigated treatment and for relative yield. 

Dry treatment 

Sourcea) DF SS MS Var.cp s(V.cp) Fb) s.e. LSD5 

Y 2 35946 17973 452 354 10.57** 6.87 21.98 

R:Y 9 15300 1700 68 89 1.57 10.98 32.63 

C 2 96241 48121 970 969 3.64x 19.16 75.23 

CY 4 52859 13215 1011 636 12.18** 9.51 28.25 

RC:Y 18 19534 1085 199 119 2.23* 12.75 36.21 

S 2 1847 923 10 20 1.59 4.01 15.76 

SY 4 2320 580 8 29 1.19 6.37 18.11 

SC 4 496 124 -18 14 0.37 5.3 17.28 

SCY 8 2696 337 -38 45 0.69 11.04 31.36 

RSC:Y 50 24381 488 488 96 
   

   
Heritability for C = 72.5 (s.e. 25.07) 

Irrigated treatment 

Sourcea) DF SS MS Var.cp s(V.cp) Fb) s.e. LSD5 

Y 2 55330 27665 682 545 8.90** 9.29 29.73 

R:Y 9 27990 3110 143 161 1.7 14.24 42.31 

C 2 162790 81395 2058 1603 11.13* 14.26 55.98 

CY 4 29264 7316 458 355 4.01* 12.33 36.64 

RC:Y 18 32844 1825 114 215 1.23 22.24 63.11 

S 2 616 308 -15 15 0.36 4.87 19.12 

SY 4 3413 853 -53 47 0.58 11.12 31.56 

SC 4 1785 446 -232 122 0.14 16.4 53.47 

SCY 8 25807 3226 436 368 2.17* 19.26 54.66 

RSC:Y 52 77156 1484 1484 286    

   Heritability for C = 91.0 (s.e. 8.21) 

Relative values 
Sourcea) DF SS MS Var.cp s(V.cp) Fb) s.e. LSD5 

Y 2 1340 670 -3 16 0.84 4.7 15.03 

R:Y 9 7155 795 49 40 2.25+ 6.27 18.62 

C 2 4829 2415 43 49 2.74x 4.95 19.42 

CY 4 3522 881 44 43 2.49+ 5.43 16.13 

RC:Y 18 6363 353 50 40 1.74+ 8.23 23.38 

S 2 432 216 6 4 12.81* 0.68 2.69 

SY 4 68 17 -16 3 0.08 4.12 11.69 

SC 4 708 177 -20 18 0.43 5.88 19.19 

SCY 8 3325 416 53 48 2.04+ 7.13 20.25 

RSC:Y 50 10161 203 203 40    

   Heritability for C = 63.5 (s.e. 33.29) 

a) Source of variation: Y=Year, R=Replication, C=Cultivar, S=Selection provenance 
b) F-values with significance levels: **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 

 

The analysis of additive main effects and multiplicative interaction (AMMI) shows strong variation for 

agronomic traits between years (FIGURE 5.2). In the dry treatment, season 2014 and 2015 are clustered 

separately from season 2016 according to the first principal component (PC1). In the irrigated treatment, 

season 2015 clusters separately from 2014 and 2016 for seed and total yield. Interaction of cultivars are 

going in opposite directions in all four traits for SL and GL, whereas PP shows smaller interactions. 
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Significant differences between sub-populations within a cultivar could not be observed. Ranking of the 

sub-populations are not consistent across traits, but SL_R can always be found at the highest positive PC1 

value (except for the harvest index), as well as PP_R compared to both other selections. 

 

FIGURE 5.2 AMMI1 biplots for agronomic traits for six environments (three years × two treatments) for 
nine populations selected from three cultivars (PP, SL, GL) at three locations (R, S, T). 
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PHENOLOGICAL AND MORPHOLOGICAL TRAITS 

Phenological traits were less affected by the treatments compared to yield and yield related traits. TABLE 

5.9 shows mean values of the treatments for each cultivar and the relative values in the dry compared to 

the irrigated treatment for selected phenological traits; the F-values and significance levels are given for 

the treatment effect within cultivar and for the effect of cultivar on relative values. Leaf size was about 1-

2 cm² larger when irrigated and flowering time and ripening was earlier (higher scoring values) when dry. 

Survival rate shows only minor variation between treatments and was found slightly lower in the dry 

treatment for Pisarecka Perla. 

TABLE 5.9 Mean and relative values of phenological traits of three cultivars (3 years). 

Cultivar Pisarecka Perla Schwarze Linse Gestreifte Linse  Mean 
Treatment 

Traita)  
irr. 

 
dry 

 
rel.%

b) Fc) 

irr. 
 

dry 
 rel.% Fc) 

irr. 
 

dry 
 rel.% Fc) 

 
Fd) 

irr. dry 

LS [cm²] 13.9 11.7 85.57 3.47x 8.28 7.39 92.26 2.74 10.7 8.97 85.19 10.4+ 1.07 10.96 9.35 

FTe) 1.04 1.58 na 2.33 1.72 2.43 na 5.28x 0.33 1.30 na 3.80x na 1.03 1.77 

Ripening 4.38 7.40 168.5 na 5.15 8.38 162 na 3.75 7.82 259.8 na 1.20 4.43 7.87 

SR [%] 97.4 96.3 98.88 5.08x 96.8 96.5 99.90 0.83 95.4 95.9 101.2 0.69 2.30 96.5 96.2 
a) Leaf size = LS; flowering time = FT; survival rate = SR 

b) Relative yield [%] for dry treatment compared to irrigated 
c) F-values with significance levels for treatment in ANOVA in the F-test (DF-nom.=1, DF-denom.=2):  

   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
d) F-values with significance levels for the effect of the cultivar on relative values [%] (F-test in ANOVA with DF-nom.=2, DF-denom.=4): 

   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
e) Dates differ between cultivars: 2nd date of scoring for PP and SL and 3rd date for GL  
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Significant differentiation for selection provenances could be observed in flowering time for Pisarecka 

Perla and Gestreifte Linse (TABLE 5.10), whereas for Schwarze Linse leaf size is significantly influenced by 

the selection. Ripening was earlier for Tangsehl compared selections from Reinshof and Schönhagen in the 

cultivar Pisarecka Perla. Survival rates ranged between 93.1 and 99.1% with minor and indifferent variation 

between selection provenances. 

TABLE 5.10 Mean and relative values of phenological traits of the selections provenances Reinshof (R), 
Schönhagen (S), Tangsehl (T). 

Cultivar Pisarecka Perla Schwarze Linse Gestreifte Linse  Mean 
Selection 

Traita)  
R S T  

Fb) 

R S T  
Fb) 

R S T  
Fb) 

 
Fc) 

R S T 

Dry treatment 

LS [cm²] 12.6 11.9 10.3 2.62x 7.8 6.9 7.4 30** 8.9 9.4 8.7 0.83 1.96 9.8 9.4 8.8 

FTd) 1 1.5 2.3 46** 2.5 2.5 2.3 0.40 3 3.1 2.7 32** 3.98x 2.2 2.4 2.4 

Ripening 7.3 7.3 7.7 1.68 8.2 8.6 8.3 0.48 7.6 8 7.8 4.75+ 1.43 7.7 8.0 7.9 

SR [%] 97.1 95.9 95.6 0.55 96.7 96.6 96.2 0.17 97.3 96.3 94.2 0.79 1.20 97.0 96.3 95.3 

Irrigated treatment 

LS [cm²] 14.3 14.0 13.4 0.89 8.8 8.2 7.9 4.21x 10.6 10.3 11.2 2.38 1.11 11.2 10.8 10.8 

FTd) 0.3 0.9 1.9 118** 2 1.8 1.4 0.84 1.9 2 1.6 5.20+ 3.84x 1.4 1.6 1.6 

Ripening 5.1 5.2 5.9 14.1* 6.2 6.5 6.4 0.65 4.9 5 5 0.75 na 5.4 5.6 5.8 

SR [%] 96.7 96.7 99.1 2.52x 96.3 98.1 96 0.46 97.1 93.1 96 0.92 0.27 96.7 96.0 97.0 

Relative values [%]e) 

LS 88 86 83 0.34 89 85 94 1.67 84 91 78 2.02 0.07 87 87 85 

Ripening 180 166 159 0.85 132 132 130 1.18 155 160 156 0.83 0.91 156 153 148 

SR 101 99 97 6.07+ 100 99 100 0.22 100 103 98 6.01+ 3.30x 100 100 98 
a) Leaf size = LS; flowering time = FT; survival rate = SR 

b) F-values with significance levels for selection within cultivar in ANOVA in the F-test (DF-nom.=2, DF-denom.=4):  

  **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 

c) F-values with significance levels for selection across cultivars in ANOVA in the F-test (DF-nom.=2, DF-denom.=4):  

  **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively; na = non-available data 

d) Dates differ between cultivars: 2nd date of scoring in both treatments for PP and SL; 3rd and 4th date for GL, respectively, in dry and irrigated;  

   for F-statistics on selection across cultivars 3rd date of scoring was selected in both treatments   
e) Relative values in the dry treatment compared to irrigated; flowering time not calculated due to its strongly non-linear characteristic 
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Analysis of variance on flowering time scoring is summarized in TABLE 5.11 and shows highly significant 
effects of the year and cultivar and their interaction for both treatments. In the irrigated treatment, the 
effect of cultivar is more pronounced compared to the dry treatment and the heritability considerably 
high. 

TABLE 5.11 ANOVA results for flowering time in dry and irrigated treatment. 

Dry treatment 

Sourcea) DF SS MS Var.cp s(V.cp) Fb) s.e. LSD5 

Y 2 57.98 28.99 0.79 0.57 45.70*
* 

0.13 0.42 

R:Y 9 5.71 0.63 0.05 0.03 2.86* 0.16 0.47 

C 2 98.79 49.39 1.31 0.97 23.20*
* 

0.24 0.95 

CY 4 8.52 2.13 0.16 0.10 9.61** 0.14 0.4 
RC:Y 18 3.99 0.22 0.05 0.02 3.19** 0.15 0.43 

S 2 1.60 0.80 0.02 0.02 3.98x 0.07 0.29 
SY 4 0.81 0.20 0.01 0.01 2.90* 0.08 0.22 
SC 4 1.85 0.46 0.03 0.02 3.01+ 0.11 0.37 
SCY 8 1.23 0.15 0.02 0.02 2.22* 0.13 0.37 
RSC:Y 52 3.54 0.07 0.07 0.01 

 
0.13 0.42    

Heritability for C = 95.7 (s.e. 3.93) 

Irrigated treatment 

Sourcea) DF SS MS Var.cp s(V.cp) Fb) s.e. LSD5 

Y 2 12.18 6.09 0.15 0.12 9.98** 0.13 0.42 
R:Y 9 5.49 0.61 0.05 0.03 4.50** 0.12 0.36 

C 2 146.54 73.27 2.00 1.44 52.63*
* 

0.2 0.77 

CY 4 5.57 1.39 0.10 0.07 10.25*
* 

0.11 0.32 

RC:Y 18 2.44 0.14 0.01 0.02 1.13 0.2 0.57 

S 2 1.39 0.69 0.01 0.01 3.84x 0.07 0.28 
SY 4 0.72 0.18 0.01 0.01 1.5 0.1 0.28 
SC 4 4.90 1.23 0.09 0.06 13.33*

* 
0.09 0.29 

SCY 8 0.74 0.09 -0.01 0.01 0.76 0.17 0.49 

RSC:Y 51 6.25 0.12 0.12 0.02    

   Heritability for C = 98.1 (s.e. 1.73) 

a) Source of variances: Y=Year, R=Replication, C=Cultivar, S=Selection  
b) F-values with significance levels: **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
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Flowering was earlier in the dry treatment for all cultivars (FIGURE 5.3). Due to the strongly non-linear 

scoring scale, slopes cannot be compared in FIGURE 5.3. Nevertheless, we see the largest differences 

between treatments in Gestreifte Linse compared to Schwarze Linse and Pisarecka Perla. Furthermore, 

populations in Pisarecka Perls show more variation between each other than populations in Schwarze 

Linse and Gestreifte Linse. In Pisarecka Perla, the selection from Tangsehl was earlier flowering than the 

other selections, regardless of which treatment, while Tangsehl selections in Schwarze Linse and Gestreifte 

Linse were flowering later compared to the other selections and were showing a higher response to the 

dry treatment compared Pisarecka Perla. 

 

   
FIGURE 5.3 Flowering time under irrigated and dry conditions of Pisarecka Perla (PP), Schwarze Linse (SL), 
and Gestreifte Linse (GL) populations selected at Reinshof (R), Schönhagen (S), and Tangsehl (T). 
Dates of scoring differ between cultivars: 2nd date for PP and SL, 4th date for GL (higher values = earlier 
flowering) 
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CANOPY TEMPERATURE AND ISOTOPE DATA 

TABLE 5.12 shows canopy temperature mean values for each cultivar and treatment and relative values at 

every individual date of measurement, the significance of treatment and cultivar effects and of the relative 

differences. Significant treatment effects were present in early June in 2015 at relatively high temperature. 

In 2014 for the first date on the 10th of June significant treatment effects were not yet measured. For all 

remaining dates a strong influence of the treatment could be observed. Overall, relative canopy 

temperature increase was higher by 2% for Gestreifte Linse compared to Schwarze Linse and Pisarecka 

Perla. Most significantly, this was true for the 28th of June 2016, when Gestreifte Linse reached 28.4°C 

under drought stress compared to 24°C in the irrigated treatment and in this way experienced a relative 

temperature increase which is about 6% higher compared to Pisarecka Perla. In 2015, significant effects 

by cultivar were not observed. 

TABLE 5.12 Mean and relative values of canopy temperature of the cultivars. 

Year 

 Treatment    

 irrigated dry Mean relative %a) F-valueb) 

Date PP SL GL PP SL GL irr. dry PP SL GL Treatm. Cult. C.r.% 

2014 10th June 26.6 26.4 25.6 27.8 27.2 27.0 26.2 27.3 105 103 105 1.62 4.11* 0.63 

 27th June 20.2 20.1 19.6 21.7 21.6 21.6 20.0 21.6 107 108 110 55.28** 1.25 0.05 

 4th July 27.7 27.3 26.9 32.9 31.8 31.5 27.3 31.1 119 117 118 117.36** 3.26+ 0.10 

 11th July 29.1 28.6 29.3 32.8 31.1 32.9 29.0 32.2 113 109 113 183.26** 3.21+ 0.65 

Annual mean 25.9 25.6 25.4 28.8 27.9 28.3 25.6 28.3 111 109 112    

2015 5th June 27.3 27.4 26.5 30.7 30.0 30.3 27.1 30.3 113 109 114 37.17** 1.44 1.30 

 12th June 27.0 27.1 27.7 31.0 31.0 30.8 27.3 30.9 115 114 111 60.67** 0.14 0.30 

 2nd July 33.6 33.4 33.8 38.0 38.3 38.3 33.6 38.2 113 115 113 32.56** 0.39 0.34 

Annual mean 29.3 29.3 29.3 33.2 33.1 33.1 29.3 33.1 114 113 113    

2016 23rd June 29.4 29.2 28.9 33.3 33.4 33.2 29.2 33.3 113 114 115 470.92** 3.74+ 1.32 

 28th June 24.8 25.0 24.0 27.8 29.3 28.4 24.6 28.5 112 117 118 188.50** 6.09* 4.19+ 

 7th July 23.7 24.0 22.9 29.3 29.1 29.4 23.5 29.3 124 121 128 60.54** 0.84 1.96 

Annual mean 26.0 26.1 25.3 30.1 30.6 30.3 25.8 30.3 116 117 120   

Mean of 3 years 26.9 26.9 26.5 30.5 30.3 30.3 26.8 30.4 113 113 115   
a) Relative values [%] for cultivars in dry treatment compared to irrigated 
b) F-values with significance levels of treatment, cultivar, and cultivar in relative data in ANOVA in the F-test  

   (treatment DF-nom.=1, DF-denom.=3; cultivar DF-nom.=2, DF-denom.=12; cultivar rel.% DF-nom.=2, DF-denom.=6):  
   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 

 
Significant effects of the selection provenances were observed on 4th of July 2014 in all cultivars with larger 

relative values for selections from Schönhagen and Tangsehl in Pisarecka Perla and Gestreifte Linse, while 

in Schwarze Linse selection from Tangsehl had the lowest value (TABLE 5.13). The same trend towards 

higher relative temperature for selection from Tangsehl can be observed at most remaining dates and the 

overall mean in Pisarecka Perla. In cultivar Schwarze Linse and Gestreifte Linse, dates of measurement are 

indifferent resulting in overall means slightly higher for Schönhagen and Tangsehl in Schwarze Linse. 

Selections in Gestreifte Linse are not differing for the overall mean. 
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TABLE 5.13 Mean and relative values of canopy temperature of the selection provenances (R, S, T). 

Year 

 Cultivar     

 Pisarecka Perla Schwarze Linse Gestreifte Linse  Mean 
Selection 
Date              

R S T  
Fa) 

R S T  
Fa) 

R S T  
Fa) 

 
Fb) 

R S T 

Dry treatment 

2014 10th June 26.8 26.9 26.8 0.14 27.2 27.2 27.3 0.06 27.0 26.7 27.4 4.63+ 1.55 27.0 26.9 27.2 

 27th June 21.9 21.6 21.9 1.28 21.8 21.5 21.4 0.9 21.3 21.6 21.8 2.26x 0.67 21.7 21.6 21.7 

 4th July 32.2 32.5 32.0 0.39 31.9 32.0 31.4 1.61 31.3 31.7 31.6 1.37 1.51 31.8 32.1 31.7 

 11th July 31.7 32.1 31.6 0.26 30.9 31.1 31.4 0.37 33.1 33.0 32.7 1.6 0.23 31.9 32.1 31.9 

Annual mean 28.1 28.3 28.1  28.0 27.9 27.9  28.2 28.3 28.4   28.1 28.2 28.1 

2015 5th June 30.9 30.7 30.5 1.74 30.2 29.8 30.1 0.83 30.2 30.5 30.1 0.59 0.40 30.4 30.3 30.2 

 12th June 30.7 30.9 31.4 1.47 30.9 31.0 31.1 0.48 30.8 31.1 30.5 0.41 0.53 30.8 31.0 31.0 

 2nd July 38.1 37.8 38.1 0.72 38.4 38.2 38.3 0.28 38.1 38.6 38.3 10.27* 0.02 38.3 38.2 38.2 

Annual mean 33.2 33.1 33.3  33.2 33.0 33.2  33.0 33.4 33.0   33.1 33.2 33.2 

2016 23rd June 33.4 33.3 33.3 0.37 33.5 33.4 33.5 0.04 33.3 33.2 33.2 0.05 0.14 33.4 33.3 33.3 

 28th June 28.1 27.7 27.7 0.48 28.9 29.3 29.7 0.83 28.2 27.8 27.3 0.3 0.41 28.4 28.3 28.2 

 7th July 29.5 29.0 29.5 0.44 29.1 29.0 29.2 0.05 29.1 29.5 29.6 0.52 0.36 29.2 29.2 29.4 

Annual mean 30.3 30.0 30.2  30.5 30.6 30.8  30.2 30.2 30.0   30.3 30.3 30.3 

Mean of 3 years 30.3 30.2 30.3  30.3 30.2 30.3  30.2 30.4 30.2   30.3 30.3 30.3 

Irrigated treatment 

2014 10th June 26.6 26.4 26.6 0.60 26.3 26.5 26.3 0.42 25.5 25.7 25.7 0.39 0.15 26.1 26.2 26.2 

 27th June 20.1 20.1 20.3 0.31 20.1 20.3 19.8 1.53 19.7 19.5 19.7 1.99 0.02 20.0 20.0 19.9 

 4th July 27.9 27.5 27.7 0.99 27.3 27.1 27.4 0.71 27.2 26.7 26.8 3.51+ 2.77+ 27.5 27.1 27.3 

 11th July 28.8 29.2 29.1 14.4** 28.9 28.6 28.4 1.97 28.7 29.7 29.5 0.81 0.66 28.8 29.2 29.2 

Annual mean 25.9 25.8 25.9  25.7 25.6 25.5  25.3 25.4 25.4   25.6 25.6 25.6 

2015 5th June 27.4 27.4 26.9 1.10 27.6 27.3 27.4 0.45 26.7 26.5 26.4 0.49 1.64 27.2 27.1 26.9 

 12th June 27.0 26.9 27.1 0.33 27.5 27.5 26.4 2.43 27.6 27.8 27.8 0.29 0.90 27.4 27.4 27.1 

 2nd July 33.8 33.5 33.5 1.10 33.2 33.5 33.6 4.0+ 33.9 33.7 33.7 0.61 0.29 33.6 33.6 33.6 

Annual mean 29.4 29.3 29.2  29.4 29.4 29.1  29.4 29.3 29.3   29.4 29.3 29.2 

2016 23rd June 29.3 29.7 29.1 4.32+ 29.4 29.0 29.4 1.02 28.8 28.9 28.9 1.00 0.43 29.2 29.2 29.1 

 28th June 25.0 25.0 24.6 0.35 25.1 24.8 25.1 0.27 24.0 24.4 23.7 6.08* 0.76 24.7 24.7 24.5 

 7th July 23.6 23.7 23.8 0.10 24.2 24.1 23.9 0.58 23.0 23.2 22.6 1.97 1.04 23.6 23.7 23.4 

Annual mean 26.0 26.1 25.8  26.2 26.0 26.1  25.2 25.5 25.1   25.8 25.9 25.7 

Mean of 3 years 27.0 26.9 26.9  26.9 26.9 26.8  26.5 26.6 26.5   26.8 26.8 26.7 

Relative values [%]c) 

2014 10th June 102 102 107 2.32x 103 103 104 0.97 106 104 106 0.94 14.3** 104 103 106 

 27th June 109 107 104 2.00 108 106 108 0.80 108 111 111 1.84 0.05 108 108 108 

 4th July 114 118 123 24** 117 118 114 5.14+ 115 119 118 14** 19.3** 115 118 118 

 11th July 111 110 117 7.5* 107 109 110 1.63 116 112 111 1.87 4.19* 111 110 113 

Annual mean 109 109 113  109 109 109  111 112 112   110 110 111 

2015 5th June 113 112 113 0.32 110 109 110 0.10 113 115 114 0.35 0.18 112 112 112 

 12th June 114 115 116 0.46 113 113 118 2.95x 113 112 110 1.46 0.79 113 113 115 

 2nd July 113 113 114 0.18 116 114 114 2.70x 113 115 114 4.15+ 0.14 114 114 114 

Annual mean 113 113 114  113 112 114  113 114 113   113 113 114 

2016 23rd June 114 112 114 4.43+ 114 115 114 0.38 116 115 115 0.86 0.43 115 114 114 

 28th June 113 112 113 0.14 115 118 118 0.93 119 115 121 1.97 0.90 116 115 117 

 7th July 125 122 124 0.41 120 121 122 0.25 126 127 131 2.02 1.25 124 123 126 

Annual mean 117 115 117  116 118 118  120 119 122   118 117 119 

Mean of 3 years 113 112 115  112 113 113  115 115 115   113 113 114 
a) F-values with significance levels for selection within cultivar in ANOVA in the F-test (DF-nom.=2, DF-denom.=6):  
    **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively; na = non-available data  

b) F-values with significance levels for selection across cultivars in ANOVA in the F-test (DF-nom.=2, DF-denom.=6): 
    **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively; na = non-available data 

c) Relative values in the dry treatment compared to irrigated 
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Isotopic Δ 13C values are lower in the irrigated compared to the dry treatment for all cultivars for all types 

of samples. For seeds in 2015 differences between treatments are below the significance threshold (TABLE 

5.14). Additionally, significant effects of the cultivar were observed in seeds in 2014 with lower values for 

Pisarecka Perla and Gestreifte Linse compared to Schwarze Linse and for straw in 2015 with Schwarze Linse 

and Gestreifte Linse exhibiting lower values compared to Pisarecka Perla in both treatments. Negative 

values result in relative values of <100, meaning an actual increase for the dry treatment (less negative 

values). For relative values, significant differences between cultivars at P=0.05 could not be found. 

TABLE 5.14 Mean and relative values of Δ 13C for the cultivars Pisarecka Perla (PP), Schwarze Linse (SL), 

Gestreifte Linse (GL). 
 Treatment   

 irrigated dry Mean rel.%a) F-valueb) 

Cultivar PP 
 

SL 
 

GL 
 

PP 
 

SL 
 

GL 
 

  PP SL 
 

GL 
 Trtm. Cult. 

Cult. 
rel.% Year Sample irr. dry 

2014 Seed -28.1 -27.9 -28.2 -25.6 -25.1 -25.2 -28.1 -25.3 91 90 89 417.7** 5.06* 2.49x 

2015 Seed -27.3 -27.1 -27.3 -25.5 -25.5 -25.6 -27.2 -25.5 95 91 95 3.79 0.19 0.51 

 Straw -29.5 -29.9 -29.9 -27.4 -27.6 -27.6 -29.8 -27.5 93 92 92 363.4** 18.1** 0.94 

 Plant -29.0 -29.2 -28.9 -26.2 -26.2 -26.3 -29.0 -26.2 90 90 91 549.1** 0.47 2.46x 

 Mean -28.5 -28.5 -28.6 -26.2 -26.1 -26.2 -28.5 -26.2 92 91 92    
a) Relative values [%] for cultivars in dry treatment compared to irrigated 
b) F-values with significance levels of treatment, cultivar, and cultivar in relative data in ANOVA in the F-test  

   (treatment DF-nom.=1, DF-denom.=3; cultivar DF-nom.=2, DF-denom.=12; cultivar rel.% DF-nom.=2, DF-denom.=6):  
   **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively 
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Looking on specific selections within cultivars separately, isotopic data show small variation and in most 

cases no significant selection effects (TABLE 5.15). 

TABLE 5.15 Mean and relative values of Δ 13C for the selection provenances Reinshof (R), Schönhagen (S), 
Tangsehl (T). 

Year 

 Cultivar    

 Pisarecka Perla Schwarze Linse Gestreifte Linse  Mean 
Selection 
Sample              

R S T  
Fa) 

R S T  
Fa) 

R S T  
Fa) 

 
Fb) 

R S T 

Dry treatment 
2014 Seed -25.6 -25.6 -25.7 0.31 -25.2 -25.1 -25.0 0.18 -25.2 -25.1 -25.2 0.44 0.34 -25.3 -25.3 -25.3 

2015 Seed -25.8 -25.8 -25.7 3.96+ -25.1 -25.0 -25.2 1.75 -25.5 -25.7 -25.6 1.1 0.23 -25.5 -25.5 -25.5 
 Straw -27.3 -27.6 -27.3 3.34x -27.6 -27.6 -27.6 0.06 -27.5 -27.6 -27.6 0.42 2.65+ -27.5 -27.6 -27.5 
 Plant -26.2 -26.3 -26.1 0.62 -26.1 -26.3 -26.2 0.38 -26.1 -26.3 -26.3 0.42 0.91 -26.1 -26.3 26.2 

 Mean -26.2 -26.3 -26.2  -26.0 -26.0 -26.0  -26.1 -26.2 -26.2   -26.1 -26.2 -26.1 

Irrigated treatment 
2014 Seed -28.1 -28.2 -28.0 1.54 -27.9 -27.9 -27.9 0.05 -28.1 -28.3 -28.3 2.53x 1.22 -28.1 -28.1 -28.1 

2015 Seed -27.4 -27.3 -27.0 2.34x -27.6 -27.4 -27.4 2.79x -26.9 -27.2 -26.9 9.7* 5.24* -27.3 -27.3 -27.1 
 Straw -29.5 -29.6 -29.5 0.33 -30.0 -29.8 -29.9 0.64 -29.9 -30.0 -29.9 2.29x 0.77 -29.8 -29.8 -29.8 
 Plant -28.8 -29.3 -29.0 2.07 -29.3 -29.1 -29.2 0.23 -28.8 -29.0 -28.9 1.27 1.13 -29.0 -29.1 -29.0 

 Mean -28.4 -28.6 -28.4  -28.7 -28.5 -28.6  -28.4 -28.6 -28.5   -28.5 -28.6 -28.5 

Relative [%]c) 
2014 Seed 91 91 91 0.62 90 90 90 0.86 90 89 89 2.93x 2.59x 90 90 90 

2015 Seed 95 95 96 1.19 91 91 92 2.53x 95 95 95 1.30 3.93* 94 94 94 
 Straw 92 93 92 na 92 93 93 0.63 92 92 92 0.12 1.70 92 93 92 
 Plant 91 90 90 1.54 89 90 90 0.38 91 91 91 0.20 0.03 90 90 90 

 Mean 92.3 92.3 92.3  90.5 91.0 91.3  92.0 91.8 91.8   91.6 91.7 91.8 
a) F-values with significance levels for selection in ANOVA in the F-test (DF-nom.=2, DF-denom.=6): 

    **, *, +, x for P-values = to 0.01, 0.05, 0.1, 0.2, respectively; na for not available results data 
b) F-values with significance levels for selection across cultivars in ANOVA in the F-test (DF-nom.=2, DF-denom.=6): 

    **, *, +, x for P-values = 0.01, 0.05, 0.1, 0.2, respectively; na = non-available data 
c) Relative values in the dry treatment compared to irrigated 
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5.4 DISCUSSION 

The experiment could technically only be realized at Reinshof, where the soil is fertile and loamy with a 

good water holding capacity. Since field plots were sown by machine, rainout shelters could only be 

installed after sowing and the soil received precipitation until it was covered latest around three weeks 

after sowing; for one shelter in 2014 weather conditions and technical issues delayed covering until four 

weeks after sowing (TABLE 5.4). Consequently, dry conditions for the plants developed gradually after field 

plots were sheltered. During germination and field emergence, contrasting conditions between the 

treatments were not yet established, thus, significant differences for field emergence and survival could 

not be observed. Under the given circumstances, the initial goal of the drought stress experiment, to 

realize strong yield depression of 50% or more compared to the irrigated treatment, could not be achieved. 

However, a significant yield depression of 27-36 %, depending on the cultivar, in the average of the three 

seasons was reached. 

Yield potential differs between cultivars and beside the significant interaction of cultivar and year (TABLE 

5.8), a smaller cultivar x treatment interaction was also observed for straw and total yield (data not 

shown). The highest yielding cultivar Gestreifte Linse suffered from strongest yield depression for straw 

and total yield, medium yielding Pisarecka Perla experienced the least depression in yield (TABLE 5.6). It 

can be assumed according to the strong differences in morphological traits (e.g. growth type) between the 

cultivars, that root traits may also differ between our cultivars. In general, the root system of lentil is 

described by Saxena (2009) as “a slender taproot system with a mass of fibrous lateral roots”. Variation 

between genotypes for multiple root traits were reported by Sarker et al. (2005), including the length of 

the taproot and the number of lateral roots, and they linked drought tolerance of a breeding line mainly 

to the number of lateral roots and fast root growth. In another study, high association between root and 

shoot traits was found in well-watered and dry treatments (Idrissi et al. 2015).  

Visible differences between treatments were present earliest at the stage of full flowering mid of June, 

approximately five weeks after field plots were covered by the rainout shelters, by a lighter green color of 

the irrigated plots compared to a darker green color in dry plots (FIGURE 5.4). However, flowering could be 

observed slightly earlier in the dry plots for all cultivars, indicating that desiccation was influencing the 

plants already before flowering. Leaf samples for the leaf size scan were taken after flowering during grain 

filling stage. Leaf size was larger under irrigated conditions, which was significant in Pisarecka Perla and 

Gestreifte Linse with P=0.2 and P=0.1, respectively. This correlates with the results for seed weight, being 

higher as well in all cultivars when irrigated and significantly different for Pisarecka Perla and Gestreifte 

Linse with P=0.2 and P=0.05, respectively. 

Significant differences between treatments in canopy temperature could be measured earliest in early 

June 2015. In 2014, differences between treatments were observed at the end of June, which may be due 

to later covering and the heavy rainfall event on 12th of June 2014. Cultivar specific differences in canopy 

temperature were observed end of June until beginning of July in 2014 and 2016, but for none of the 

measurement dates in 2015. Thermal infrared measurements are strongly dependent on air temperature, 

air humidity, solar altitude, and shading. As Jones et al. (2009) documented, also the canopy structure 

affects the observed temperature and may explain the differences observed  between our three cultivars, 

where a higher temperature with up to 1°C was measured in the more erect growing cultivars Pisarecka 

Perla and Schwarze Linse, compared to Gestreifte Linse, under irrigated conditions. Under dry conditions, 

this effect was less pronounced and could only be observed during two dates in 2014, which may be 

explained with a less copious, overhanging growth of Gestreifte Linse and consequently a less distinct 
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canopy structure between the cultivars in the dry plots. Thus, Gestreifte Linse had the highest overall mean 

in the relative temperature.  

 

FIGURE 5.4 Lentil drought stress experiment under the rainout shelter on 17th of June 2015 

Isotopic carbon fractioning gave inconsistent results, showing significant differences between treatments 

and cultivars in 2014 for seed samples, whereas in 2015 treatments could be significantly distinguished for 

straw and midterm plant samples, but not for seed samples due to a highly significant replication × 

treatment interaction. However, the absolute mean values are consistently higher in the dry treatment for 

all cultivars and all types of samples, supporting the general hypothesis of a reduced transpiration rate 

leading to reduced isotope discrimination and a higher Δ13C value under drought conditions. Cultivar 

Schwarze Linse had the highest absolute value from seed samples in 2014 in both treatments, suggesting 

a lower transpiration rate in this cultivar, which would correspond to its smallest leaf size and lowest yield 

potential, compared to the other cultivars.  

The effect of the selection provenance on the performance under drought stress was significant in 

Pisarecka Perla for seed and in Gestreifte Linse for straw yield with the highest yield under drought stress 

for the selection from Reinshof. Across cultivars, seed yield and total yield were highest for Reinshof 

selections, which was significant at P=0.1 for the latter trait. Phenological and morphological traits 

exhibited a larger and significant within-cultivar variation in the dry treatment, e.g. leaf size in Schwarze 

Linse, flowering and ripening in Gestreifte Linse. Kumar et al. (2012) identified among others traits, early 

flowering and maturity, biological yield, and the harvest index as key traits for the selection under dry 

conditions for drought tolerance in an environment where terminal drought is limiting yield. 

Canopy temperature can be a useful tool, also under field conditions, for selection under drought and heat 

stress, according to Mason and Singh (2014). In our experiment, it was an easy method to observe border 

effects and to monitor the irrigated as well as the dry field plots. However, potential small differences 

between genotypes may not be detected under field conditions due to many environmental factors 

influencing the measurement (Jones et al. 2009). Isotopic carbon fractioning could serve as well, as a 

valuable tool, especially when the interest lays in the examination of the physiological responses behind 

differences in drought tolerance (e.g. Chaves et al. 2003). To examine differences between stress 



  RESPONSE TO DROUGHT STRESS IN POPULATIONS FROM NATURAL SELECTION 

DISCUSSION 

 PAGE 116 

conditions of the three locations, I recommend to analyze seeds harvested at each location from several 

years and in this way proof if drought stress was a significant factor differentiating Tangsehl from the two 

other locations. However, for large breeding trials this method might be rather expensive and laborious 

and certainly could not differentiate the expected small differences between our lentil populations. 

In conclusion, natural selection on-farm for ten generations did not lead to a significant differentiation in 

drought tolerance. The ‘richest’ location (Reinshof) seemed to have returned the best drought tolerant 

populations according to seed yield. Environmental (pedoclimatic) conditions at Tangsehl were expected 

to trigger natural selection towards adaptation to drought stress conditions. However, this could not be 

observed in our experiment. Possible explanations could be i) drought stress was not a significant factor 

differentiating the selection sites, ii) genetic diversity in the initial material was not sufficient, iii) drought 

conditions induced at Reinshof were not large enough, iv) other parameters, e.g. seed size in Pisarecka 

Perla and Schwarze Linse, were of advantage for seed yield under induced drought stress at Reinshof, v) 

drought stress at Reinshof differed from drought stress in Tangsehl and Schönhagen, e.g. induced too late. 
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6 GENERAL DISCUSSION AND CONCLUSIONS 

 
Populations developed by natural selection on-farm did not show significant site-specific adaptation for 

yield (CHAPTER 2). Nevertheless, significant changes in seed weight and flowering time were observed for 

the cultivar Pisarecka Perla, caused by directional selection, as development of seed weight was 

continuous and may have led to adaptation to the most stress-prone environment. But this specific 

population (Pisarecka Perla selected at Tangsehl) benefited also in the other test locations from lower seed 

weight and earlier flowering under the environmental conditions during the test years. Different 

approaches for an explanation are possible: Effects of site-specific adaptation by natural selection in terms 

of yield i) may have been too small to detect in a two-year field performance test, and/or ii) ten 

generations may have been too short to result in significant yield advantages; or iii) the three selection 

sites have not been as distinctly different as expected and the effect of year during natural selection 

counteracted a continuous directional selection towards adaptation to site-specific conditions. The 

general tendency towards better yield across locations and cultivars in the tenth generation compared to 

generation five and the initial material may suggest for a combination of the first and second explanation. 

Since Pisarecka Perla shows significant site-specific development, the three selection sites are expected to 

have influenced natural selection differently, but a lower initial genetic variation within the other two 

cultivars may have hampered significant changes in this material for a limited number of generations. 

From the assessment of phenotypic and genotypic variation within the initial material and within site-

specific populations from natural selection (CHAPTER 3), it became apparent that the cultivar Pisarecka Perla 

experienced significant changes by site-specific natural selection corresponding to genotypic variation 

especially in seed weight and flowering time within the initial population. The initial populations of 

Gestreifte Linse and Schwarze Linse did not show significant genotypic variability. Genetic variability and 

recombination observed within Pisarecka Perla enabled a dynamic development. The development differs 

significantly between selection sites proving on-farm management a dynamic approach for the 

maintenance of genetic resources. It was observed that the seed size was significantly altered by natural 

selection in both directions depending on the selection site, whereas for one population of Pisarecka Perla 

and all populations of the other cultivars it was constant or slightly increased. 

Selection for seed size can help to improve yield and harvest index (CHAPTER 4). For Pisarecka Perla, the 

initial genetic variability was maintained by the selection on extreme seed size and additional variability 

was observed within the small seeded selection suggesting within-cultivar recombination. Strong selection 

for extreme seed size resulted unintentionally in a change of the original material by spontaneous 

outcrossing and/or recombination, as observed in the large seeded selection of Schwarze Linse and the 

small seeded selection of Gestreifte Linse. 

A significantly smaller seed weight and earlier flowering for the population of Pisarecka Perla selected at 

the most ‘stress-prone’ location did not determine significant adaptation to drought stress when 

compared to the other populations in terms of yield (CHAPTER 5). Thus, drought stress may not have been 

the most important driving factor for natural selection at this location. In the populations of the other two 

cultivars, absence of variation for drought stress tolerance corresponds to a very low genetic variability 

among them. 
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To study site-specific adaptation by natural selection and the underlying factors involved in a 

predominantly autogamous crop, I recommend using genetically broad populations, e.g. composite 

crosses or diverse lines, which should be phenotypically and genotypically characterized in advance. After 

several generations of natural selection at diverse locations, genotypic markers should be employed to 

study population structure and compare populations in different generations between the locations. 

Phenotypic assessments from field plots may help to identify specific sets of traits involved in adaptation 

to specific conditions. 

On-farm management as a tool for the dynamic maintenance of plant genetic resources in autogamous 

crops may be considered for both, genetically diverse populations, but also genetically narrow cultivars or 

landraces. At least two diverse locations distinctly different in climatic and/or pedoclimatic and/or biotic 

and abiotic stress conditions are necessary to maintain diversity in accessions in on-farm management. 

Homogenous accessions could be maintained at one farm, but a backup stored at regular intervals to 

maintain the accessions in case of crop loss or seed-borne diseases is essential. I recommend using 

molecular markers to characterize the material of interest for its genetic diversity and subsequently decide 

on the maintenance strategy accordingly. Selection for seed size or for other traits, which are considered 

to be negative for the agronomic performance (e.g. plant height in cereals) or which are characteristic for 

the material, should be done regularly, depending on the outcrossing rate of the crop. For maintenance, 

on the other hand, selection bears the risk of selecting ‘off-types’ from spontaneous outcrossing and thus, 

the original population may be unintentionally changed. ‘Phenotypic markers’ like cotyledon color, 

hypocotyl color of seedlings or seed color should be monitored thoroughly to identify genetic 

recombination and outcrossing. I do not recommend managing different material at one farm, if the main 

purpose is the maintenance e.g. of a landrace, but a strict isolation, because the risk of outcrossing or 

admixture is high. Regular monitoring by molecular markers may allow the identification of unwanted 

genetic changes at an early stage and in such a case, backup samples are essential and the strategy or local 

system of the on-farm management should be reconsidered and revised.  

From the perspective of farmers, for dynamic management using site-specific adaptation effects resulting 

in a locally adapted farm-race, I recommend using mixtures of accessions, e.g. of a genetically diverse 

landrace, from different locations within the distribution area to benefit from a larger gain of selection 

due to a higher genetic diversity within the starting material. 
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SUMMARY 

 

In the context of conservation and use of plant genetic resources, both storage in gene banks (ex situ) and 

safeguard on-farm (in situ) are important concepts. Increasingly attention focuses on the on-farm 

management of plant genetic resources as a dynamic maintenance strategy. To date, little is known about 

the potential of ‘evolutionary’ adaptation to site-specific conditions and the mechanisms involved. Lentil 

is an autogamous food legume crop with limited recombination. In long-term experiment three old lentil 

cultivars were exposed to ten generations of natural selection at three farms in Central and Northern 

Germany under rain-fed conditions. Two of the selection sites were on soils with low fertility and expected 

frequent shortages in water supply during the growing season. The following four main questions were 

investigated: i) Did natural selection during ten generations lead to site-specific adaptation in terms of 

yield? ii) Did natural selection alter phenotypic and genotypic variability? iii) What is the importance of 

seed weight for natural selection and adaptation? iv) Was drought a significant factor for site-specific 

development? 

The three lentil cultivars are distinctly different in their morphological and phenological traits. Populations 

in the fifth and tenth generation under site-specific natural selection within each cultivar and the 

corresponding initial material were compared in a two-year field trial at the three selection sites. Single-

plant progeny testing during two years at one location and SNP genotyping using KASPar™ assays was 

done to assess phenotypic and genotypic within-population variability. Selections for extreme seed size 

for six generations from each cultivar were phenotyped in the field and genotyped by SNP markers. 

Additionally, populations in the tenth generation of natural selection were tested in induced drought in 

rainout shelters for their variation in drought stress tolerance during three years at one location. 

Significant continuous site-specific changes in seed weight and flowering time in both directions were 

observed for one cultivar. Natural selection at the more stress-prone location led to a lower seed weight 

and earlier flowering, whereas in the most fertile location selection favored larger seeded genotypes and 

later flowering. However, these changes did not lead to a significant site-specific adaptation in terms of 

yield. But a general yield advantage across locations for the population with a lower seed weight and 

earlier flowering was observed. A general tendency towards better yield for the latest generations across 

cultivars and locations suggests that natural selection was positive in terms of the general performance.   

Phenotypic and genotypic variation within the initial material of one cultivar goes back to three main 

genotypes, which differ significantly in seed weight and flowering time. The observed phenotypic changes 

and site-specific differences in the genetic variability are supposedly caused by different selection pressure 

at the three locations. However, at the most stress-prone location, within-population variability is 

relatively high due to recombination, whereas the population selected at the most fertile location is highly 

dominated by one genotype. Across all locations, the genetic variation within this cultivar was maintained. 

The other two cultivars exhibited a very low genetic variability and were maintained at all three farms 

without changing their characteristic seed weight significantly.  

A general yield improvement by selection for larger seeds was observed in all cultivars. The full genetic 

variation within one cultivar was maintained by the selection for both extremes in seed size. Selection 

within two cultivars with very low genetic variability resulted in an unintended genetic modification from 
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the initial material by selecting ‘off-types’, probably resulting from spontaneous outcrossing, with smaller 

seeds in one case and with larger seeds in the other.  

Significant site-specific variation in drought tolerance was not found. Thus, the effect of year may have 

counteracted a continuous site-specific adaptation or selection sites are not as distinctly different as 

expected in water regimes. Consequently, the main factors involved in the continuous site-specific changes 

in one cultivar remain unidentified. It was observed that cultivars reacted differently to drought 

conditions. 

On-farm management with lentil can lead to a site-specific development and site-specific adaptation may 

occur in the long-term. Given a substantial genetic variability, seed yield, straw yield, harvest index, seed 

weight, and flowering time were altered significantly by natural selection. 

Our results prove the maintenance and management on-farm of plant genetic resources in an autogamous 

species a dynamic management strategy. For the maintenance of material with substantial genetic 

diversity, at least two farms with significantly different environmental conditions are necessary. 

Homogeneous accessions, when combined with ex situ maintenance, could be managed at one location. I 

recommend the characterization of the material in advance for its genetic diversity and outcrossing 

potential to establish a well-grounded management strategy accordingly. Different material of the same 

crop should not be maintained at one farm. Selection for traits considered negative for agronomic 

performance and monitoring of characteristic traits may be considered to preserve the integrity of the 

material and/or to improve its agronomic performance. To study the main factors involved in site-specific 

adaptation by natural selection for autogamous crops, I suggest using genetically broad populations, which 

should be well characterized in advance, phenotypically as well as by molecular markers, to monitor their 

spatial and temporal development in diverse environments.  
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FIGURE A1 Temperature and precipitation at Reinshof, April – August 2015 (upper) and 2016 (lower). 

Data source: Meteorological station Göttingen (long-term mean temperature 1981-2010), Deutscher 

Wetterdienst (www.dwd.de/WESTE) 
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FIGURE A2 Temperature and precipitation at Schönhagen, April – August 2015 (upper) and 2016 (lower). 

Data source: Meteorological stations Leinefelde (temperature), Bad Sooden-Allendorf (precipitation), 

and Eschwege (long-term temperature mean 1981-2010), Deutscher Wetterdienst 

(www.dwd.de/WESTE) 
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FIGURE A3 Temperature and precipitation at Darzau, April – August 2015 (upper) and 2016 (lower). 

Data source: Meteorological stations Lenzen/Elbe (temperature), Bleckede-Walmsburg (precipitation), 

and Wendisch-Evern (long-term temperature mean 1981-2010), Deutscher Wetterdienst 

(www.dwd.de/WESTE) 

  



  DANKSAGUNG (ACKNOWLEDGEMENTS) 

 

 PAGE 126 

DANKSAGUNG (ACKNOWLEDGEMENTS) 
Einen herzlichen Dank möchte ich Heiko C. Becker aussprechen für die Überlassung des Themas, die Betreuung und 

insbesondere die ermunternden, schlichtenden, beruhigenden und motivierenden Worte zur richtigen Zeit sowie die 

hilfreichen Diskussionen.  

Bernd Horneburg danke ich für die intensive praktische Betreuung innerhalb seiner Fachgruppe und die Vermittlung 

seiner langjährigen Erfahrungen mit den Linsen.  

Gunter Backes danke ich für die Übernahme des Koreferats. Klaus Dittert sei gedankt für die Einwilligung als drittes 

Mitglied im Prüfungskomitee bei der Disputation aufzutreten. Außerdem danke ich ihm für die Hilfe bei der 

Diskussion der Trockenstress-Ergebnisse. Mehmet Senbayram danke ich für die Beratung zum Trockenstressversuch 

sowie die regelmäßige Überlassung der Thermobild-Kamera. Wolfgang Link sei gedankt für Beratungen zum 

Felddesign und zur statistischen Auswertung. 

Der DFG und der Software AG Stiftung danke ich für die Finanzierung des Projektes bzw. der Fachgruppe insgesamt. 

Einige StudentInnen waren als Hilfskräfte ausgesprochen wichtig und haben den teilweise sehr aufwendigen und 

arbeitsintensiven Versuchen mit zum Erfolg verholfen. Stellvertretend für alle diese helfenden Hände nenne ich 

diejenigen namentlich, die auch eine Abschlussarbeit in diesem Projekt verfasst haben und somit auch inhaltlich 

wesentlich zum Thema meiner Arbeit beigetragen haben. In der chronologischen Reihenfolge nach Abgabe ihrer 

schriftlichen Arbeiten sind dies: Salim Trouchaud (B.Sc.), Moritz Halekotte (B.Sc.), Thorben Becher (M.Sc.), Male 

Bockelmann (M.Sc.) und Yingying Zhong (M.Sc). 

Auch die technischen Arbeitskräfte waren in diesem Projekt stark gefordert. Somit danke ich sehr, sehr herzlich 

Barbara Wedemeyer-Kremer, die als technische Assistentin organisatorisch und praktisch im Feld viel geleistet hat 

und damit dieses Projekt ermöglichte. Zusätzlich war sie in manchen schwierigen Situationen eine mentale Stütze. 

Auch Ulrike Hill hat sich zeitweise sehr intensiv mit den Linsen im Feld und Gewächshaus sowie zur 

Aussaatvorbereitung und zur Nachernteaufbereitung beschäftigt. Vielen Dank dafür. Für die Koordination aller 

technischen Kräfte im Feld danke ich Dirk Hunold. Frank Gemmeke danke ich für die intensive Auseinandersetzung 

mit allen Problemen des Trockenhäuserauf- und Abbaus sowie für die verantwortungsvolle Übernahme der Auf- und 

Abbauleitung dieser ‚mobilen‘ Häuser. 

Für die zur Verfügung gestellten Flächen und die Nutzung mancher Infrastruktur an den Außenstandorten danke ich 

Karin Weng in Schönhagen sowie Ernst-Heinrich Schmidt vom Hof Darzau und Karl-Josef Müller von der 

Getreidezüchtung Darzau. Für die Betreuung und Pflege des Versuches in Darzau danke ich Lothar Ulrich (Sommer 

2015) und Mark Fellechner (Sommer 2016) sehr herzlich. 

Meinen MitdoktorandInnen und KollegInnen danke ich für die schöne Zeit und Unterstützung, für die schönen 

gemeinsamen Mensa-Mittagspausen, die tollen Exkursionen und manche abendlichen Amüsements. Danke Antje für 

die Durchhalte-Leckerlies während der Schreibphase und danke Mareile, dass ich nicht immer alleine meine 

Kopflüftungs-Gänge um das Klinikum machen musste. 

Gitanjali More danke ich für Verbesserungen meiner Englischgrammatik und Ausdrucksweise. 

Meiner Familie und meinen Freunden danke ich für Geduld und Rücksicht. Meiner geliebten K1-WG danke ich für das 

angenehme Wohn- und Lebensumfeld und das Aushalten einigen Geredes über Linsen. 

Meiner Freundin Sari danke ich für ihre besonders große Geduld, die unvergesslichen Urlaube und für manche nötige 

und hilfreiche Ablenkung. 

 



  CURRICULUM VITAE 

 

 PAGE 127 

Curriculum Vitae 

Name:   Ruland  

Surname:  Michael  

Birth:   01. Sept. 1986, in Filderstadt 

Nationality: German 

Contact: Email michael.ruland@gmx.net   

Address:  Georg-August-Universität, DNPW, Von-Siebold-Str. 8, 37083 Göttingen, Germany 
 

Education 

Mar 2014 – May 2017  PhD student in plant breeding 

   Georg-August-Universität Göttingen, Germany 

   Department of Crop Science, Division of Plant Breeding 

Oct 2011 – Nov 2013  Master of Crop Sciences 

   Universität Hohenheim, Germany 

   Major: Plant Breeding and Seed Science   

Oct 2007 – Jan 2011  Bachelor of Environmental Sciences 

   Carl-von-Ossietzky-Universität Oldenburg, Germany 

   Major: Landscape Ecology and Landscape Planning  

Jun 2006  Abitur (High School Diploma) 
 

Work experience 

Jan 2018 – present Breeder / 

Jun – Dec 2017  Selector at Rijk Zwaan in Marne, Germany, for cabbage (Brassica oleracea) 

Mar 2014 – May 2017  Scientific staff at Georg-August-Universität Göttingen, Germany 

 

Internships and part-time jobs 

Feb – Aug 2013 and Student assistant in the worldwide breeding program of Jatropha curcas  

Oct 2011 – Jun 2012 at JatroSelect GmbH in Stuttgart, Germany 

Jul – Aug 2012  Internship in plant breeding for organic farming at Research and Breeding,   

   Dottenfelder Hof, Bad Vilbel, Germany 

Feb – Aug 2011  Internship in Jatropha curcas breeding at JatroSelect GmbH in Cameroon, Africa 

   Assistant of the breeding manager for three locations  

May – Sep 2010  Student assistant in the Jadebay-Project at University of Oldenburg,   

   Institute for Chemistry and Biology of the Marine Environment (ICBM) 

Oct 2009 – Feb 2010 Student teaching assistant at University of Oldenburg, Institute for Biology and  

   Environmental Sciences (IBU)  

Jul – Oct 2009  Internship in landscape conservation planning at LUP Kohl (Agency for   

   Landscape Architecture and Environmental Planning) in Göttingen, Germany 

Sep 2006 – Sep 2007 Gap year taken to do voluntary work in the environmental sector (FÖJ) in  

   environmental education at Regional Centre for Environmental Education   

   (RUZ) Huntlosen-Hosüne, Germany 

 
 
 

Hereby, I affirm that the information I have given is correct. 
Supporting documents are available upon request. 

mailto:michael.ruland@gmx.net

