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Abstract 

Alongside several well-known modifications in DNA and proteins, more than 100 different 

types of chemical modification are also found in cellular RNAs. RNA modifications can 

influence the secondary structure and interactions of the RNAs that carry them and they 

can therefore play important roles in regulating the functions of the RNAs. For many RNA 

modifications, the enzymes that introduce them are known but the modification targets of 

several predicted modification enzymes remain to be identified. Interestingly, a particular 

modification, N6-methyladenosine (m6A), was recently found to be reversible and a group 

of proteins, termed “readers” that can recognise the modification often via a specialised 

RNA binding domain (YTH domain), have been identified. Such “reader” proteins have 

been shown to regulate the fate of RNAs according to their modification status, 

suggesting that this so called “epitranscriptome” is an additional layer of regulation of 

gene expression.  

In this study, cross-linking and analysis of cDNA (CRAC) was used to identify the RNA-

interactome of the five human YTH domain-containing proteins, YTHDF1, YTHDF2, 

YTHDF3, YTHDC1, YTHDC2. To facilitate the mapping of the deep sequencing data 

obtained from CRAC experiments performed in human cells, a bioinformatic pipeline was 

adapted and further developed. Analysis of the CRAC data showed that YTHDF1, 

YTHDF2, YTHDF3 and YTHDC1 predominantly cross-link to mRNAs, which is in line 

with recently published reports describing functions for these proteins in mRNA 

degradation, alternative pre-mRNA splicing and enhancing mRNA translation. 

Interestingly, the CRAC analysis of YTHDC2 revealed a specific cross-linking site on the 

18S ribosomal RNA and the association of this protein with ribosomal complexes was 

confirmed by independent experimental approaches. CRAC analysis using truncated 

versions of YTHDC2 suggested that the R3H RNA binding domain is required for stable 

association of this protein with the ribosome and in vitro anisotropy experiments 

demonstrated that the YTH domain of YTHDC2 has a higher affinity for m6A 

modifications present in the sequence context found in the ribosomal RNAs than the 

classical m6A consensus motif found in many mRNAs. Interestingly, immunoprecipitation 

experiments followed by mass spectrometry identified the cytoplasmic 5’-3’ exonuclease 

XRN1 as an interaction partner of YTHDC2. These data could suggest a model in which 

recognition of the m6A modification(s) on the ribosomal RNA by the YTH domain of 

YTHDC2 promotes RNA degradation by XRN1. Taken together, this study contributes to 

the understanding of the diverse functions that modification “reader” proteins can play in 

regulating RNA metabolism. 
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1 Introduction 

1.1 RNA modifications 

Since the 1970s it has been known that RNA can be modified and the knowledge of RNA 

modifications has continually increased since (Rottman et al., 1974; Schibler et al., 1977; 

Wei et al., 1975, 1976; Wei and Moss, 1977). So far, about 150 different RNA 

modifications are known in all kingdoms of life, spanning all major classes of RNA in the 

cell (Machnicka et al., 2013). The most modified RNAs in the cell are transfer (t)RNAs, 

followed by the extensively modified ribosomal (r)RNAs. RNA modifications are known to 

affect the structural stability and folding of RNA, leading to the degradation of misfolded 

or aberrant RNA if important modifications are missing. In addition, translation can be 

fine tuned by modifications on tRNAs that influence the decoding of cognate messenger 

(m)RNA codons, and rRNA modifications that can influence the translation efficiency and 

fidelity of the ribosome. Modifications in mRNA can influence the stability of mRNAs and 

thereby also affect translation efficiency. Among the myriad of RNA modifications, the 

most common modifications are the addition of a methyl-group to various positions of the 

base and on the ribose, and pseudouridination of uridines. Less common modifications 

are, for example, acetylations, geranylations, wybutosine or carbamylation, which can be 

found in tRNAs (and rRNAs in the case of acetylation). RNA modifications have 

essential, but highly variable functions in the cell, forming an additional layer of regulation 

in gene expression termed the epitranscriptome.  

1.2 tRNA modifications 

1.2.1 tRNA biogenesis and function 

During translation of the mRNA by the ribosome, tRNAs serve as adapter molecules that 

translate the mRNA sequence into the amino acid sequence of the protein. Extensive 

and highly regulated RNA-RNA interactions between the tRNA, the codon triplet of the 

mRNA and the ribosome ensure the correct selection of the tRNA and incorporation of 

the correct amino acid into the nascent polypeptide chain by the ribosome (Demeshkina 

et al., 2010). 

However, the delivery of aminoacyl-residues to the ribosome during translation is not the 

only function of amino-acyl tRNAs and additional roles in the cell have been described. 

For example, tRNAs are required for the addition of destabilizing amino acids to the  

N-terminus of proteins to facilitate their turnover in the N-end rule pathway. Targeted 
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endonucleolytic cleavage at the codon loop divides the tRNA in half, forming stable 

fragments, which are proposed to have regulatory and signalling functions or are 

involved in the response to HIV-infection (Banerjee et al., 2010; Nawrot et al., 2011; 

Yeung et al., 2009). 

In Saccharomyces cerevisiae, a total of 275 tRNA genes are transcribed by RNA 

polymerase (RNAP) III (Chan and Lowe, 2009). The nascent transcript includes a  

5’ leader sequence, a 3’ trailer sequence and can contain an intronic sequence, which 

needs to be removed during biogenesis. Removal of the leader sequence by RNase P 

precedes the removal of the trailer sequence by RNase Z after nucleotide 73. The 3’ end 

is further processed by the addition of a CCA sequence by the nucleotidyltransferase 

Cca1 (TRNT1 in human cells) (Aebi et al., 1990). tRNAs are exported by Los1 (XPO-T in 

human cells), which also serves as a quality control step by sensing correct tertiary 

structure and end processing of the tRNA (Arts et al., 1998; Lipowsky et al., 1999; Lund 

and Dahlberg, 1998; Sarkar and Hopper, 1998). 61 tRNA genes contain introns, which 

are removed (often referred to as tRNA splicing) by the conserved family of Sen proteins 

either after export at the surface of mitochondria in yeast, or prior to export in the 

nucleoplasm in vertebrates (Lund and Dahlberg, 1998; Melton et al., 1980; Yoshihisa et 

al., 2003). tRNAs can undergo retrograde import into the nucleus, either for temporary 

storage or for further maturation. Finally, aminoacylation of tRNAs by 

aminoacylsynthetases takes place either in the nucleus after retrograde import or directly 

in the cytoplasm after maturation (Grosshans et al., 2000; Lund and Dahlberg, 1998; 

Steiner-Mosonyi and Mangroo, 2004). An overview of the pathway is shown in Figure 1A. 

The extensive modification of tRNAs is achieved by the addition of modifications 

throughout the whole maturation pathway (Figure 1B). The first modifications are directly 

added to the nascent transcript and further modifications are added in the nucleus and 

the cytoplasm (Hopper, 2013). The timing of some tRNA modifications is determined by 

the localisation of the enzymes that introduce them while other tRNA modification 

enzymes recognise specific features of the tRNA, e.g. introns or the 3’-CAA and can only 

modify the tRNA at a particular stage during its maturation (Grosjean et al., 1997). 

Modifications are necessary for the correct folding of tRNAs into the canonical clover leaf 

secondary structure with the acceptor stem and the D-loop, the TΨC-loop, the anticodon-

loop and the variable loop resembling the four parts of the leaf. The tertiary structure of 

tRNAs is an inverted L-shaped structure with the anticodon-loop at the bottom and the 

CCA-acceptor stem at the top (Shi and Moore, 2000). In addition, tRNA modifications are 

involved in codon recognition as well as tRNA stability, as described in the next chapter.  
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Figure 1: tRNA biogenesis and modifications. A Schematic overview of transfer (t)RNA biogenesis in 

yeast. tRNA biogenesis starts with the transcription of pre-tRNAs in the nucleus by RNAP III, followed by end 

processing and modification of the RNA. After export, introns are removed on the surface of mitochondria 

and further modifications are installed. The tRNAs either undergo aminoacylation and are primed for 

translation or they undergo retrograde import. Modifications are indicated as coloured circles: 

Early modifications are shown in pink, “pre-splicing” modifications are displayed in green and “post-splcing” 

modifications are shown in red. Abbreviations: Cyt, cytoplasm; Nuc. nucleus; NPC, nuclear-pore-complex. 

Modified from Sloan et al. (2016). B Overview of chemical modifications found in cytoplasmic tRNAs in yeast. 

A tRNA structure is shown in the cloverleaf representation. Residues that are unmodified in all tRNAs are 

shown in green, residues that are modified in some or all tRNAs are shown in pink, and white residues 

represent additional residues that are present in some tRNA species, which can also carry modifications. 

The anticodon loop is coloured in red and is also sometimes modified. The CCA end is shown in light blue. 

From Phizicky and Hopper (2010). 

1.2.2 Different types of tRNA modifications and their function 

Numerous different modifications are found in tRNAs. Together, over 100 chemically 

unique modifications are found in tRNAs in all three domains of life, of which 18 are 

universally present (Jackman and Alfonzo, 2013). However, many of these chemical 

modifications are also found in other types of RNA in the cell, although the enzymes that 

install them are often different (Phizicky and Hopper, 2010). tRNAs are also the most 

extensively modified RNA in the cell. Approximately, 17 % of the residues are modified, 

which is ten times more than in rRNA (Jackman and Alfonzo, 2013).  

In general, tRNA modifications can be sorted into two categories based on their position 

within the tRNA. Modifications in the anti-codon loop often affect codon recognition and 

therefore synthesis of proteins, whereas modifications in the main body are frequently 

connected to tRNA stability.  

Modifications in the anti-codon loop are often found at position 34, which is called the 

“wobble position”. The genetic code is degenerate meaning that multiple codons code for 

the same amino acid, because the number of codons exceeds the number of amino 
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acids. This results in the fact that for the decoding of many codons, the nucleotide at the 

third position is flexible and the corresponding tRNA is required to recognise multiple 

different nucleotides at this position. This flexibility can be achieved by modifications at 

the wobble position of the tRNA. A well-studied example of a wobble position 

modification that affects translation is the deamination of adenine to inosine by the RNA-

dependent adenosine deaminases Tad2 and Tad3 (Gerber and Keller, 1999). The 

conversion to inosine leads to an increased base-pairing capability with cytidine and 

adenine in addition to the conventional base-pairing with uracil. The lack of these 

modification leads to decoding errors during translation. Many other modifications, such 

as 5-methylcytosine (m5C) and 5-methoxycarbonylmethyl-2-thiouridine, are also found at 

position 34 of tRNA and similarly function to influence the decoding capacity of the 

tRNAs that carry them (reviwed in Ranjan and Rodnina, 2016).  

Modifications in the body of the tRNA are commonly connected to structural stability by 

defining either more loose or rigid parts of the tRNA. Several studies showed that loss of 

certain modifications can lead to increased instability of mature tRNAs and the 

generation of tRNA fragments, for example during heat stress (Alexandrov et al., 2006; 

Dewe et al., 2012; Kotelawala et al., 2008). However, also the initial folding of tRNAs can 

be affected by modifications and single modifications can promote the correct folding of 

tRNAs (reviewed in Motorin and Helm, 2010).  

Loss of tRNA modifications or mutations in tRNA modifying enzymes have been 

connected to a variety of human diseases, including neurological and metabolic diseases 

and cancer (reviewed in Torres et al., 2014). It has been suggested that the molecular 

connection between these diseases and tRNA modifications can be based on perturbed 

protein synthesis due to the inefficient reading of certain codons, however, the molecular 

basis of many diseases is not known. However, it could be shown that the lack of 

ms2t6A37 in the tRNALys leads to the production of aberrant proinsulin, thus impeding the 

processing to insulin and causing type II diabetes.  
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1.3 Ribosomal RNA modifications 

1.3.1 Biogenesis and function of ribosomes 

The ribosome is the protein synthesis machine of the cell and contains four ribosomal 

(r)RNAs and approximately 80 ribosomal proteins (Anger et al., 2013; Ben-Shem et al., 

2011). These are asymmetrically organised in a large and a small ribosomal subunit 

(SSU and LSU). The 18S rRNA is part of the SSU, whereas the 25S (yeast)/28S 

(humans), 5.8S and 5S rRNAs form the core of the LSU. Interestingly, the proteins solely 

function as a scaffold for stabilising the rRNA and do not have an enzymatic activity 

(Simonovic and Steitz, 2009). Thus, the ribosome is a large ribozyme because the rRNA 

is responsible for providing the catalytic enzymatic activity. The ribosome has two major 

functions, firstly providing a framework for the translation and secondly, enabling 

formation of the peptide bond. The mRNA decoding centre is located in the SSU 

providing a scaffold for high fidelity decoding (Demeshkina et al., 2012). The LSU on the 

other hand contains the peptidyl transferase centre (PTC), which is responsible for the 

introduction of peptide bonds connecting single amino acids to form nascent peptides 

(Ben-Shem et al., 2011; Simonovic and Steitz, 2009). Notably, these two functionally 

important sites are conserved in all kingdoms of life, while other regions of the ribosome 

are more variable (Armache et al., 2013; Ban et al., 2014; Melnikov et al., 2012; Wilson 

and Doudna Cate, 2012). These include so called eukaryotic extensions, which are 

stretches of rRNA specifically found in eukaryotic ribosomes, which are thought to enable 

the translation of more complex mRNAs in higher eukaryotes and might also have 

regulatory functions. 

Ribosome biogenesis is one of the major energy consuming pathways in the cell 

(reviewed in Henras et al., 2015; Woolford and Baserga, 2013). In a rapidly dividing 

yeast cell 2,000 ribosomes are produced per minute leading to the synthesis of 200,000 

ribosomes per generation (Warner, 1999). The rRNA represents approximately 80 % of 

the total cellular RNA and 60 % of mRNA transcripts are related to ribosome biogenesis. 

All three RNA-Polymerases (RNAP) are involved in this process. It starts with the 

transcription of a precursor (pre-)rRNA (47S in humans and 35S in yeast) by RNAPI from 

the rDNA repeats. In human cells, the repeats are localised at the short arms of the five 

acrocentric chromosomes HSA-13, 14, 15, 21 and 22 (Worton et al., 1988). The 47S pre-

rRNA contains the sequences of the 18S, 5.8S and 28S rRNAs, separated by internal 

transcribed spacers (ITS1 and ITS2) and external transcribed spacers (5’ ETS and 

3’ ETS). Ribosome biogenesis factors bind co-transcriptionally to the 47S rRNA 
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Figure 2: Ribosome biogenesis and rRNA modifications. A Schematic overview of ribosome biogenesis 

in human cells. Maturation of the ribosomal subunits is shown from left to right, starting with the transcription 

of the 47S pre-ribosomal (r)RNA from the rDNA repeat by RNAP I and assembly of the 90S pre-ribosomal 

complexes. The 5S rRNA is transcribed independently by RNAP III and joins the pre-60S (large ribosomal 

subunit) complex (blue) in the nucleolus as part of the 5S RNP. After a central cleavage step, pre-60S 

subunit and pre-40S (small ribosomal) subunit (green) maturation continues separately. During this process, 

numerous ribosome biogenesis factors, indicated by coloured shapes, transiently interact with the pre-

ribosomal subunits. The pre-ribosomal subunits are exported and final maturation steps occur in the 

cytoplasm. Cellular compartments are indicated at the top. Abbreviations: RNAP I, RNA polymerase I; RNAP 

III, RNA polymerase III; RNP, ribonucleoprotein particle. Adapted from Gerhardy et al. (2014). B 3D structure 

of the human ribosome (PDB 4V6X, Anger et al., 2013). The ribosomal RNA is depicted in grey cartoon 

model representation and ribosomal proteins are shown as light blue in the background. The positions of the 

base modifications are shown by red spheres, and the type of modification and the modified residue are 

indicated. Pseudouridinations and 2’-O-methylations are marked on the rRNA in magenta and green, 

respectively. The positions of functionally important regions of the ribosome such as the peptidyl transferase 

centre (PTC) and decoding site (DCS) are indicated. 
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forming the 90S pre-ribosome in the nucleolus (reviewed in Kornprobst et al., 2016; 

Tschochner and Hurt, 2003). The 5S rRNA is transcribed separately by RNAPIII and is 

incorporated into the pre-ribosome in complex with the ribosomal proteins RPL5 (uL18) 

and RPL11 (uL5) (reviewed in Ciganda and Williams, 2011). After a central pre-rRNA 

cleavage step, the 90S pre-ribosome is separated into the 60S pre-ribosomal complex 

(pre-LSU) and the 40S pre-ribosomal complex (pre-SSU) (Figure 2A, Henras et al., 2015; 

Sloan et al., 2013; Thomson et al., 2013; Woolford and Baserga, 2013). These mature 

independently while transported through the nucleoplasm constantly swapping ribosome 

biogenesis factors (reviewed in Gerhardy et al., 2014). Final maturation steps occur in 

the cytoplasm after the pre-SSU and pre-LSU particles are separately exported to the 

cytoplasm (Lebaron et al., 2012; Sloan et al., 2016). More than 200 co-factors are 

involved in processing and modifying of the rRNA and assembly of the ribosomal 

subunits (Gasse et al., 2015; Sharma and Lafontaine, 2015; Sloan et al., 2015;  

Sloan et al., 2013; Watkins and Bohnsack, 2012; Woolford and Baserga, 2013). Endo- 

and exo-nucleases are involved in the removal of the spacer fragments, whereas 

methyltransferases and pseudouridine synthases introduce the majority of the rRNA 

modifications. RNA helicases are involved in remodelling of RNA-RNA and RNA-protein 

interactions in concert with ATPases and GTPases, which introduce conformational 

changes to the pre-ribosome.  

1.3.2 snoRNA-guided modifications 

The rRNA modifications can be classified into snoRNA-guided modifications and base-

modifications based on their location on the nucleotide. Backbone modifications are the 

most abundant modifications on the rRNA and can be further sub-divided into  

2’-O-methylations and pseudouridinations. 55 2’-O-methylations and 45 pseudouridines 

are found in yeast rRNA, whereas approximately 100 2’-O-methylations and 100 

pseudouridines are found in human rRNA (Birkedal et al., 2015; Krogh et al., 2016; 

Lestrade and Weber, 2006; Piekna-Przybylska et al., 2008a; Taoka et al., 2016). These 

modifications are mostly introduced by small nucleolar ribonucleoprotein complexes 

(snoRNPs), which consist of a small nucleolar (sno)RNA and four core proteins 

(reviewed in Watkins and Bohnsack, 2012). The snoRNA guides the complex to the site 

of modification by forming base-paring interactions with the pre-rRNA. The proteins of the 

complex also establish further pre-rRNA interactions and provide the enzymatic activity 

of the complex. 2’-O-methylations or pseudouridines are introduced either by Box C/D 

snoRNPs, which contain the methyltransferase Fibrillarin (yeast Nop1) or H/ACA 

snoRNPs that contain the pseudouridine synthase Dyskerin (yeast Cbf5). Interestingly, in 

bacteria 2’-O-methylation and pseudouridine modifications are not introduced by 
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snoRNPs but by standalone methyltransferases or pseudouridine synthases, meaning a 

separate enzyme is required for each of the 14 backbone modifications (Popova and 

Williamson, 2014). The switch to a modular system with constant protein components 

and a flexible guide-snoRNA makes the system much more efficient for 100-200 different 

modifications in eukaryotes.  

1.3.3 Base modifications 

Interestingly, from bacteria to lower eukaryotes and further on to humans the ratio of 

modifications shifts from primarily base modifications to mainly backbone modifications. 

In bacterial rRNA, the majority are base modifications, whereas in yeast rRNA the 

amount drops to approximately 10 % (12 of 112 in total), which further decreases to 5 % 

(11 of >200 in total) in human rRNA. This reduction is mainly due to an increase in  

2’-O-methylations and pseudouridinations suggesting that most base modifications are 

important and therefore conserved (Piekna-Przybylska et al., 2008a; Popova and 

Williamson, 2014; Sharma and Lafontaine, 2015). 

Seven different types of base modifications are found in yeast rRNA. Half of the 12 base 

modifications are found in the SSU and half in the LSU in yeast. All six SSU 

modifications are conserved in humans, while only three of the six LSU base 

modifications are conserved (Figure 2B, Sharma and Lafontaine, 2015). Notably, except 

for one, the individual modifications are not essential for cell growth in yeast, however, 

several of the modifying enzymes are essential or lead to impaired growth, meaning that 

only the presence of the enzymes is important for ribosome biogenesis (Sharma and 

Lafontaine, 2015). In yeast, the enzymes responsible for the modifications are all known: 

nine stand-alone methyltransferases and one aminocarboxypropyl (acp) transferase. 

The 18S rRNA of the SSU contains a hypermodified uridine, m1acp3Ψ, at position 1191. 

The first step in this modification pathway is a pseudouridylation guided by the snoRNA 

snR35, which was shown to be not essential but deletion strains show a growth defect 

(Liang et al., 2009). In the second step, the SPOUT class methyltransferase Emg1/Nep1 

introduces the N1-methylation to the base of the pseudouridine (Leulliot et al., 2008; 

Wurm et al., 2010). SPOUT class methyltransferases use S-adenosyl-methionine (SAM) 

as the source of the methyl group that is transferred (Tkaczuk et al., 2007). The last step 

takes place in the cytoplasm and is catalysed by the acp-transferase Tsr3, which 

interestingly also resembles a SPOUT class methyltransferases. However, instead of the 

methyl group of SAM, the acp-group is transferred to the substrate (Meyer et al., 2016). 

This m1acp3Ψ hypermodification is conserved in human rRNA and the human orthologue 

of Emg1 was shown to complement the function in yeast and knockdown of human Tsr3 
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was shown to reduce the modification in vivo (Eschrich et al., 2002; Liu and Thiele, 2001; 

Meyer et al., 2016). The eukaryotic specific acetylations of 18S-ac4C1280 and 18S-ac4C1773 

are both introduced by the ATP and acetyl-CoA dependent acetylases Kre33 in yeast 

and NAT10 (ac4C1337, ac4C1842) in human cells (Ito et al., 2014a; Ito et al., 2014b; Sharma 

et al., 2015). The yeast modification 18S-m7G1575 is installed by Bud23 together with 

Trm112, and is conserved in humans, where WBSCR22 together with TRMT112 are 

responsible for this modification (Haag et al., 2015a; White et al., 2008). Despite the fact 

that the methyltransferase activity of Bud23/WBSCR22 is not essential, the proteins are 

required for ribosome biogenesis and for the efficient export of the 40S subunits in yeast 

and humans (Haag et al., 2015a; White et al., 2008; Zorbas et al., 2015). The only  

di-methylations in rRNA are the two 18S-m2
6A1781, 18S-m2

6A1782 modifications, which are 

conserved from bacteria to eukaryotes. In yeast, the modifying di-methyltransferase is 

Dim1 that joins the pre-ribosome in the nucleus, but installs the modification in the 

cytoplasm, whereas in human cells DIMT1L stays in the nucleus where also the 

modification takes place (Lafontaine et al., 1995; Zorbas et al., 2015).  

In the LSU, six mono-methylations are reported in yeast. All modifications are introduced 

by Rossmann-fold methyltransferases that use SAM as the methyl group donor  

(Sharma and Lafontaine, 2015). The m1A645 is conserved in higher eukaryotes and 

mediated by the ribosome biogenesis factor Rrp8 in yeast (Peifer et al., 2013).  

The second m1A2142 modification is introduced by Bmt2, as could be shown by mutation 

analysis (Sharma et al., 2013a). Unlike m1A645, m1A2142 is not conserved in human cells. 

Two m5C modifications can be found in yeast at position 2278 and 2870 of the 25S 

rRNA. They are installed by Rcm1 and Nop2, respectively (Sharma et al., 2013b).  

Both modifications are not essential, however, loss of m1A2142 leads to slow growth and 

Nop2, in contrast to Rcm1, is essential. The modifications are conserved in human and it 

was shown that human NSUN1 (p120) could complement a nop2Δ yeast strain and 

restore the m5C2870 modification, suggesting that it is the methyltransferase for m5C4447 in 

human rRNA (Bourgeois et al., 2015). It is suggested that the human homologue of 

Rcm1, NSUN5, is responsible for the corresponding human m5C3782 modification, but 

although this has not been directly proven, evidence from fruit flies and worms, as well as 

homology studies strongly supports this (Schosserer et al., 2015; Sharma et al., 2013b). 

Finally, the methyltransferases responsible for m3U2634 and m3U2843 were identified as 

Bmt5 and Bmt6 in yeast (Sharma et al., 2014). Also, one m3U4500 in 28S rRNA of human 

cells is reported, however, the methyltransferase responsible for this modification 

remains elusive (Piekna-Przybylska et al., 2008a). Compared to yeast, human rRNA has 

an additional type of modification; one modified N6-methyladenosine (m6A) residue at 
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position 1832 in the 18S rRNA and one at position 4220 in the 28S rRNA (Linder et al., 

2015; Piekna-Przybylska et al., 2008a). The modifying methyltransferases still need to be 

discovered. 

1.3.4 Functions of rRNA modifications 

In general, RNA modifications expand the chemical properties of nucleotides and thereby 

influence the functions of the RNAs that carry them. 2’-O-methylations of the ribose 

increase hydrophobicity and lead to enhanced hydrophobic interactions. This causes 

increased rigidity of the RNA by additional base stacking capabilities (Prusiner et al., 

1974). Pseudouridine is an isomerisation of the uracil ring resulting in additional 

hydrogen bond formation capabilities compared to uridine. This increases the thermal 

stability of the RNA by forming additional RNA-RNA interaction (Hayrapetyan, 2009).  

On the other hand, base modifications can have several effects, depending on their 

location on the base. They can increase base stacking as well as introduce a charge to 

the aromatic ring system, abrogate Watson-Crick base paring or introduce non canonical 

hydrogen bonding (Hayrapetyan, 2009). Introduction of a charge may also extend RNA-

protein interaction possibilities (Agris et al., 1986). 

In the ribosome, rRNA modifications cluster at functionally important regions, such as the 

PTC in the LSU, the decoding centre in the SSU and at the inter-subunit contact sites. 

These modifications are suggested to regulate the stability of the RNA and thereby 

enhance efficient and accurate translation by the ribosome. To achieve a high fidelity of 

the ribosome the single modifications work in concert, meaning that deletion of single 

modifications often does not affect translation, however, if several modifications are 

deleted, effects in translational fidelity can be detected (Gigova et al., 2014; King et al., 

2003). For example frame shifting and stop codon read-through is increased and tRNA 

incorporation is decreased when snoRNAs guiding clusters of modifications are deleted 

(Baudin-Baillieu et al., 2009; King et al., 2003; Liang et al., 2007, 2009). For example, an 

important modification cluster is located on a structure in the LSU called the A-site finger 

(helix 38) (Piekna-Przybylska et al., 2008b). This helix makes important contacts with the 

5S rRNA, tRNAs and also the SSU and is thought to function as an attenuator while 

moving the tRNA from the A- to the P-site during translation. Six pseudouridines are 

clustered there and three of them are conserved in eukaryotes. Depletion of two of the 

three modifications showed no significant effect, however, if all three were depleted, the 

cells displayed slower growth rates, lower LSU abundance and decreased translation. 

As mentioned above, lack of individual base modifications often does not have a 

significant effect on ribosome biogenesis, but lack of these modifications can have an 



Introduction 

 11 

effect on translation fidelity. For example, expression of a catalytically inactive version of 

the RNA methyltransferase Dim1 leads to translation defects in vitro (Lafontaine 1998). 

Another example of a base modification that affects translation is m5C2278, introduced by 

Rcm1 (Schosserer et al., 2015). Loss of this modification leads to reduced translational 

fidelity and increased STOP codon read-through due to structural changes in the vicinity 

of the modification. 

Interestingly, modification sites on the rRNA are not all fully modified under normal 

growth conditions. Recent 2’-O-methylation profiling of the rRNA revealed that one third 

of the positions are only partially modified in human cells and studies in yeast similarly 

identified sites of partial modification (Birkedal et al., 2015; Buchhaupt et al., 2014;  

Krogh et al., 2016; Taoka et al., 2016). The extent of modification at specific positions 

may vary in different cells, supporting the concept of ribosome heterogeneity. Specialised 

ribosomes could translate a subset of mRNAs or are concentrated at different locations 

in the cytoplasm. Partial modifications might also have a regulatory function under 

different stress conditions and could also play a role in pathological settings, as several 

rRNA modifications and modifying enzymes are linked to human diseases. 

A variety of human disorders have been linked to defects in rRNA modifications or 

enzymes that install them. Altered snoRNA levels were found in haematological 

disorders like leukaemia and dyskeratosis congenital as well as in lung and prostate 

cancer (McMahon et al., 2015). For example, the Bowen-Conradi syndrome is caused by 

a mutation in the methyltransferase gene EMG1 and the genes encoding for the m7G 

and m5C methyltransferases WBSCR22 and NSUN5 are deleted in Williams-Beuren 

syndrome (Armistead et al., 2009; Doll and Grzeschik, 2001). 
1.4 Messenger RNA modifications 

The first publications of modifications in messenger (m)RNAs were published in the 

1970s with the identification of m6A and m5C (Dubin and Taylor, 1975; Schibler et al., 

1977). Due to methodical and technical limitations, the extent of modifications could not 

be detected at that time. With the emergence of new sequencing techniques further 

modifications could be identified, leading to the term “epitranscriptome” and based on the 

term epigenome (reviewed in Hoernes and Erlacher, 2016; Soshnev et al., 2016). So far, 

four modifications have been found in mRNAs; m6A, m5C, pseudouridine and  

N1-methyladenine (m1A). Since the m6A modification is discussed in detail in section 1.5, 

this section will focus on the other modifications found in mRNAs. In addition to these 

methylations and pseudouridylations, mRNA can undergo RNA editing, involving 

insertion or deletion of nucleotides, or alteration of cytosine to uridine or adenine to 
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inosine. Such RNA editing can change protein sequences by altering nucleotides of 

codons and potentially introducing additional STOP codons as well as influencing the 

differential expression of miRNAs (Chawla and Sokol, 2014; Powell et al., 1987). 

Beside its occurrence in tRNAs, rRNA and the well characterized function in transcription 

regulation on DNA, m5C is also present in mRNA in humans and archaea (Edelheit et al., 

2013; Squires et al., 2012). Next-generation sequencing together with bisulfide 

sequencing has allowed the transcriptome-wide mapping of m5C and its oxidation 

products 5-hydroxymethylcytidine (hm5C) and 5-formylcytidine (f5C) (Booth et al., 2013; 

Edelheit et al., 2013; Lee and Kim, 2016). In HeLa cells over 10,000 m5C modification 

sites were discovered in non-coding (nc)RNAs and mRNAs. Analysis of the distribution 

on mRNAs showed signals along the mRNA with an enrichment in 5’ and 3’ UTRs, 

suggesting a function in regulating protein translation (Squires et al., 2012). This is 

supported by experiments in fruit flies, which showed impaired brain development upon 

reduction of the hm5C modification and a positive correlation of m5C to hm5C conversion 

and translation was exhibited in vitro (Delatte et al., 2016). In human cells, the m5C 

content can also be regulated by oxidation to hm5C and f5C, implying that a similar 

mechanism may exist in mammals (Huber et al., 2015).  

Very recently m1A was discovered in mRNAs by making use of specific chemical 

properties of this modified nucleotide. Two parallel studies demonstrated the presence of   

m1A in mRNAs by using an antibody-based approach to pull down m1A containing 

sequences, followed by next-generation sequencing to map the modified nucleotides 

(Dominissini et al., 2016; Tserovski et al., 2016). During reverse transcription, m1A 

modifications introduce transcription stops represented by accumulation of 3’ ends that 

correlate with the modification sites. The presence of m1A in mRNAs and ncRNAs is 

conserved in eukaryotes from yeast to human and it is suggested that the modifications 

are often embedded in a GC rich sequence (Dominissini et al., 2016). The number of 

m1A-containing mRNAs is reported to range from over 800 (Li et al., 2016) to over 4,000 

(Dominissini et al., 2016) and the average methylation level of a single m1A-containing 

mRNA is approximately 20 % (Dominissini et al., 2016). The distribution of the m1A 

modification on mRNAs is still open to debate as one report suggests a bias towards the 

5’ end of mRNAs with an elevated abundance in 5’ UTRs, especially if they contain 

strong secondary structures, and an increase of m1A near the first splice site and the 

start codon (Dominissini et al., 2016), whereas the other report suggests an over 

representation of m1A modification in both the 5’ and 3’ UTRs (Li et al., 2016).  

However, both reports suggest a role for the modification in translation regulation as the 

methylation pattern was found to be altered in response to different physiological 
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conditions and external stresses (Dominissini et al., 2016; Li et al., 2016). In line with 

such a dynamic function, the modification was also found to be reversible by the alpha-

ketoglutarate-dependent dioxygenase ALKBH3 (Li et al., 2016). 

Next-generation sequencing has also enabled the transcriptome-wide mapping of 

pseudouridine. Similar to m1A, pseudouridine introduces a reverse transcription stop 

after treatment with the molecule CMC (Bakin and Ofengand, 1993; Zaringhalam and 

Papavasiliou, 2016). Pseudouridine was reported to be present in yeast and human 

mRNAs and ncRNAs (Carlile et al., 2014; Li et al., 2015a; Lovejoy et al., 2014). By mass 

spectrometry analysis, a high pseudouridine to uridine ratio of 0.2-0.6 % was found in 

human mRNA and depletion/deletion experiments showed that these modifications are 

installed by the conserved pseudouridine synthetases of the Pus family (Carlile et al., 

2014; Lovejoy et al., 2014; Schwartz et al., 2014a). Pseudouridylation has a high 

regulation potential because of its high abundance in mRNAs and indeed, it was shown 

that pseudouridylation is altered upon starvation induced stress in yeast and human cells 

(Carlile et al., 2014; Li et al., 2015a; Schwartz et al., 2014a). Different effects of the 

modification have also been observed on translation. In vitro assays using rabbit 

reticulocyte lysate and in vivo assays in mice and human cells show an increased 

translation rate and stability for pseudouridnated mRNAs (Kariko et al., 2008). The effect 

is the opposite in plant wheat germ extract and translation is completely abolished for 

multiple pseudouridinated mRNAs in E. coli lysate (Kariko et al., 2008). A second 

property of pseudouridine is the alteration of nonsense stop codons. Pseudouridination of 

UAA, UAG or UGA stop codons prevents the ribosome from recognising the stop codon 

and alternative amino acids are incorporated instead depending on the codon  

(Hoernes et al., 2016; Karijolich and Yu, 2011). 

Recent improvements in modification detection techniques have enabled the detection of 

modifications in mRNAs but still, of the myriad of possible RNA modifications only four 

could be identified in the mRNAs so far. Further improvements to detection methods will 

likely lead to the discovery of even more types of modifications in mRNAs.  
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1.5 N6-methyladenosine 

1.5.1 m6A in mRNA 

A series of reports in the 1970 for the first time reported N6-methyladenosine (m6A) in 

RNA (Rottman et al., 1974; Schibler et al., 1977). The invention of new techniques, 

especially the development of next-generation sequencing, allowed a more sensitive 

analysis and revealed the extent of this modification in the transcriptome. Antibodies 

were developed that specifically detect the m6A modification and this allowed, in 

combination with deep sequencing, the detection of m6A in cellular mRNA (Chen et al., 

2015; Dominissini et al., 2012). However, due to the approach used, the modifications 

could not be mapped to individual nucleotides, but only enabled the m6A modifications to 

be assigned to a 50-100 nucleotide region of specific mRNAs. Recently, the resolution 

was improved to single nucleotide level using specific mutational patterns of the m6A 

binding site introduced by the cross-linking method (Linder et al., 2015).  

Alternative mapping methods have since been developed to detect m6A modification 
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sites independent of antibodies. Microarray based methods exploit altered base pairing 

properties of m6A compared to unmodified adenosine to detect the modification, however 

this approach is only suitable for highly enriched m6A sites (Li et al., 2015b).  

Similarly, site-specific cleavage and radioactive-labelling followed by ligation-assisted 

extraction and thin-layer chromatography (SCARLET) can be used to detect m6As at 

single nucleotide resolution, however, it is not suitable for high throughput approaches, 

as it can only be used to confirm known m6A sites in RNAs (Liu et al., 2013). 

Studies using these methods have revealed over 12,000 m6A sites in mRNAs and 

ncRNAs of over 7,000 human transcripts. Global positional analysis of m6A-containing 

mRNAs revealed an increase in m6A modifications around stop-codons, long internal 

exons and in the 3’ UTRs of mRNAs (Chen et al., 2015; Dominissini et al., 2012; Meyer 

et al., 2012). Furthermore, the GGACU motif was highly enriched in the data, resembling 

the formerly established consensus motif RRACH, which was already proposed in the 

1970’s by chromatographically isolation and paper sequencing of m6A-containing mRNA 

oligonucleotides (Chen et al., 2015; Dominissini et al., 2012; Meyer et al., 2012; Schibler 

et al., 1977). Former studies also found m6A in introns of mRNAs (Carroll et al., 1990). 

Notably, the m6A modification is universally present in mRNA of lower and higher 

eukaryotes like human, mouse, fruit fly and yeast (Dominissini et al., 2012; Hongay and 

Orr-Weaver, 2011; Schwartz et al., 2013). However, in yeast the m6A modification is 

limited to over 1,000 mRNAs, restricted to meiosis and suggested to be highly regulated 

(Schwartz et al., 2013). Also, it is reported to influence the translation of certain mRNA 

transcripts during meiosis (Bodi et al., 2015).  

The m6A modification can work as a molecular switch by changing the secondary 

structure of the RNA that can lead to the presentation of RNA binding motifs or structures 

for certain RNA binding proteins (Liu et al., 2016). The methyl group at position  

N6 of the adenine can accommodate either the syn or anti conformation (Figure 3B, 

Roost et al., 2015). The syn conformation has a lower energy and is the preferred 

position, because it avoids steric clashes with the purine ring of the base. However, 

during Watson-Crick base pairing, the syn conformation is not possible because it 

interferes with the hydrogen bonding network, thus pushing the methyl group in the less 

favoured anti conformation (Roost et al., 2015). This conformation has a higher energy 

and can destabilise duplexes in short double stranded regions. However, m6A also has 

increased base stacking capabilities leading to more stable single stranded structures, 

especially next to helices. Based on these findings a so-called ‘spring loaded 

mechanism’ is proposed, switching form double stranded to single stranded upon 

methylation.  
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On a cellular level the m6A modification has implications in stress response and is part of 

the circadian rhythm of cells (Fustin et al., 2013; reviewed in Hastings, 2013; Meyer et 

al., 2015). In mouse, the m6A modification was shown to affect the regulation of 

embryonic stem cells by keeping the omnipotence of the cells and might be involved in 

the cell cycle regulation in human cells (Dominissini et al., 2012; Wang et al., 2014b).  

1.5.2 m6A methyltransferases 

The m6A modification can be installed by a methylation complex comprised of the 

methyltransferase METTL3, the putative methyltransferase METTL14, and the regulatory 

proteins WTAP and KIAA1429 (Figure 3A, Liu et al., 2014; Ping et al., 2014; Schwartz et 

al., 2014b). Notably, other m6A methyltransferases might also be involved in introducing 

such modifications, because knockdown of individual components of the 

METTL3/METTL14 complex does not abolish m6A modification completely and the 

binding sites of the complex on cellular RNAs only partially overlap with the portion of the 

known m6A modification sites (Chen et al., 2015; Liu et al., 2014; Schwartz et al., 2014b). 

The regulatory protein WTAP seems to have an influence on the position of the 

methylation within the mRNA, because WTAP-independent modification sites are mainly 

found at the 5’ cap structure of mRNAs, whereas the installation of internal m6A sites 

requires WTAP (Schwartz et al., 2014b). Recent studies identified METTL3 as the main 

subunit responsible for the modification (Wang et al., 2016b; Wang et al., 2016c). 

Structural and biochemical analyses showed that METTL3 and METTL14 form a 

heterodimer by forming a large hydrogen bond interaction network, resulting in a 

positively charged groove for RNA-binding. Mutational analysis of the SAM binding 

pocket of both methyltransferases revealed that METTL3 is the active, catalytic subunit. 

This is supported by a crystal structure of the heterodimer, which showed that only the 

binding pocket of METTL3 contained SAM and was highly conserved among 

methyltransferases while the binding pocket of METTL14 only showed low conservation 

(Wang et al., 2016b; Wang et al., 2016c). It is proposed that METTL14 supports the 

methylation activity of METTL3 by stabilising the conformation of METTL3, leading to a 

higher activity (Wang et al., 2016b). Identification of the binding sites of METLL3 and 

METTL14 on cellular RNAs by CLIP and motif analysis has revealed a GGAC motif, 

which is identical to the m6A motif (Dominissini et al., 2012; Liu et al., 2014; Ping et al., 

2014). The proteins are conserved in human, mouse, zebrafish and drosophila, 

suggesting that this mechanism of m6A modification is conserved (Bokar et al., 1997;  

Liu et al., 2014; Ping et al., 2014; Schwartz et al., 2014b). 
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1.5.3 Oxidative demethylation 

Interestingly, m6A has been found to be a reversible modification (reviewed in Fu et al., 

2014). It is either removed directly or by oxidative demethylation via N6-

hydroxymethyladenosine (hm6A) or N6-formyladenosine (f6A) (Figure 3A). However, 

hm6A and f6A have a low stability under physiological conditions, displaying a half-life of 

only 3 h, which is very short compared to the half life of the m5C oxidation products f5C 

and hm5C, thus the physiological relevance of hm6A and f6A has to be confirmed  

(Fu et al., 2013). The enzymes implicated in demethylation are the human AlkB homolog 

5 (ALKBH5) and the fat mass and obesity-associated protein (FTO) (Jia et al., 2011; 

Zheng et al., 2013). Both proteins belong to the family of non-heme Fe(II)- and  

α-ketoglutarate-dependent dioxygenases. ALKBH5 directly demethylates m6A, whereas 

FTO uses the oxidative demethylation pathway (Figure 3A, Fu et al., 2013; Zheng et al., 

2013). In line with this, overexpression of FTO or ALKBH5 decreases the level of m6A in 

mRNAs, whereas depletion has the opposite effect (Jia et al., 2011; Zheng et al., 2013). 

Both proteins posses structural features that enable them to specifically target single 

stranded nucleic acids and to regulate substrate specificity, which is important to avoid 

demethylating DNA as they are both localised in the nucleus (Aik et al., 2014; Feng et al., 

2014; Han et al., 2010; Jia et al., 2011; Zheng et al., 2013; Zou et al., 2016).  

FTO is mainly expressed in neuronal tissue in mice and is associated with several 

diseases. Overexpression of FTO leads to increased food intake causing obesity in mice, 

mainly by increasing the body fat mass (Church et al., 2010). Studies with patients 

affected by a loss of function mutation on the fto gene showed severe growth retardation 

and multiple malformations of the body and defects in several organs, including the 

central nervous system. Isolated fibroblasts showed a higher senescence, reduced 

proliferation rates and altered cell morphology, consistent with the death of the patients 

before the age of three (Boissel et al., 2009). This morphological effect might be the 

result of a splicing defect, because it was shown that FTO affects splicing of the 

adipogenic regulatory factor RUNXT1 by specifically targeting m6As around 3’ and 

5’ splice sites. An increase of m6A modifications at these positions upon depletion of FTO 

leads to an elevated level of the splicing regulator SRS2, promoting inclusion of target 

exons (Zhao et al., 2014). 

In contrast to FTO, ALKBH5 is mainly expressed in testes and is connected to 

spermatogenesis in mice (Zheng et al., 2013). Knockdown of ALKBH5 in mice leads to 

abnormal expression of spermatogenesis genes and cell apoptosis in testes. This might 

be due to aberrant mRNA processing because ALKBH5 was shown to localise to nuclear 

speckles and co-localise with RNA processing factors, i.e. phosphorylated SC35.  
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Upon depletion of ALKBH5, SC35 phosphorylation is lost in human cell lines and mRNA 

export is facilitated (Zheng et al., 2013). Beside the function in testes, ALKBH5 was 

shown to be a target of hypoxia induced transcription factor Hif1-α and plays a role in 

regulating pluripotency factors in breast cancer stem cells upon exposure to hypoxia 

(Thalhammer et al., 2011; Zhang et al., 2016). 

 

1.6 Recognition of RNA modifications 

1.6.1 The YTH domain and m6A recognising proteins 

In addition to the identification of METTL3/METTL14 as an m6A methyltransferases 

complex (also termed m6A ‘writers’) and ALKBH5/FTO as m6A ‘erasers’, an exciting 

discovery was the identification of proteins that specifically recognise the m6A 

modification in cellular RNA and thereby can influence the fate of the RNA. These 

proteins are called m6A ‘readers’ (reviewed in Wang and He, 2014). The first proteins 

that were identified as such reader proteins all share a common feature, which is a 

specific protein domain called the YT521-B homology (YTH) domain (Zhang et al., 2010), 

however, more recently, non-YTH domain-containing readers have also been identified 

(see section 1.6.3). 

The YTH domain was first described in the human splicing factor YT521-B and shortly 

after, was defined as a new class of RNA-binding domain that is exclusively present in 

eukaryotes (Hartmann et al., 1999; Imai et al., 1998; Stoilov et al., 2002; Zhang et al., 

2010). In humans, five YTH domain-containing proteins are known (YTHDF1, YTHDF2, 

YTHDF3, YTHDC1, YTHDC2) and for some of these proteins, different functions in RNA 

metabolism have been described (Theler et al., 2014; Wang et al., 2014a; Wang et al., 

2015; Xiao et al., 2016; Xu et al., 2015). A crystal structure of the YTH domain of 

YTHDF2 revealed the recognition mechanism by which the m6A is identified  

(Zhu et al., 2014). The YTH domain of YTHDF2 consists of three α-helices and eight  

β-strands (Figure 4). The six central β-strands (β8- β1- β3- β4- β5- β2) are arranged in an 

open β-barrel-type fold surrounded by the three α-helices, which together constitute the 

hydrophobic core (Li et al., 2014). Residues of the α1 α-helix, β2 β-strand and β4-β5 loop 

form a hydrophobic pocket for m6A binding. The interactions are established by three 

highly conserved tryptophan residues, which build an aromatic cage around the m6A. 

The adenine moiety is sandwiched between two parallel oriented tryptophans, while the 

methyl group is pointed towards the third one. Additional hydrogen interactions select for 

an adenine residue, locking the m6A into place (Li et al., 2014). The area around the 



Introduction 

 19 

m6A-binding pocket is positively charged, resembling an RNA interaction surface  

(Li et al., 2014; Xu et al., 2015). The crystal structures of YTHDC1 and MRB1, which is a 

homologue of the yeast YTH domain-containing protein Pho92 in Zygosaccharomyces 

rouxii, showed similar structural properties (Luo and Tong, 2014; Xu et al., 2014).  

The presence of a YTH domain is, however, not necessarily synonymous with m6A 

recognition. Despite sequence and structural similarities, including a potential 

hydrophobic pocket for accommodating the m6A residue, the yeast protein Mmi1 does 

not bind to the m6A consensus motif (Wang et al., 2016a). It was shown to bind to the 

DSR motif instead, which is specific for meiotic transcripts in yeast. Mmi1 recognizes the 

motif via a long positively charged groove opposite of the potential m6A binding pocket. 
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Figure 4: Crystal structure of the YTH domain. A Crystal structure of the YTH domain of YTHDF2  

(PDB 4RDN, Li et al., 2014) represented in cartoon mode. α-helical secondary structures are coloured in 

green, β-strands are depicted in blue and flexible regions are shown in orange. α-helices are numbered from 

α1 to α5 starting at the N-terminus. The m6A is represented in stick mode and is coloured in red. B Detailed 

view of the hydrophobic m6A-binding pocket of the YTH domain. Important tryptophan residues (orange) 

defining the hydrophobic pocket and the m6A modification (red) are represented as stick models and labelled 

accordingly. Nitrogen atoms of the stick models are coloured in blue. 
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The area surrounding the potential m6A binding pocket is, in contrast to the other YTH 

domains, negatively charged, thus repulsing potential m6A-containing RNAs. 

1.6.2 Functions of YTH domain proteins 

YTHDF2 was the first protein of this family that was shown to bind to the m6A 

modification in vivo using PAR-CLIP, a protein-RNA cross-linking based 

immunoprecipitation followed by deep sequencing of the co-purified RNA  

(Wang et al., 2014a). These data show that YTHDF2 binds to a subset of m6A-containing 

mRNAs, while 59 % of the YTHDF2 binding sites overlap with m6A sites identified by 

m6A-Seq in the same cell line. In accordance with the m6A pattern in mRNAs, YTHDF2 

binds primarily around stop codons and within long exons. Ribosome profiling of 

YTHDF2 target mRNAs upon knockdown of YTHDF2 revealed reduced translation 

efficiency suggesting an increased pool of non-translatable mRNAs and a role for 

YTHDF2 in degradation of aberrant mRNAs. This is in line with the prolonged lifetime of 

YTHDF2 target mRNAs and an increase in m6A/A ratio in total mRNAs and in the 

translatable pool after YTHDF2 depletion (Wang et al., 2014a). The SON mRNA was 

identified as a specific target of YTHDF2 where the C-terminal YTH domain of the protein 

specifically recognises m6A modification in the mRNA, while the N-terminal part of the 

protein is responsible for the localisation of this complex to processing (p)-bodies for 

degradation of the mRNA (Wang et al., 2014a). A second function of YTHDF2 was 

reported under heat stress conditions (Zhou et al., 2016). YTHDF2, which is cytoplasmic 

under normal conditions, re-localises to the nucleus, where it is suggested to interact with 

m6As in the 5’ UTR of specific mRNAs, preventing FTO from demethylation of these 

sites. The increased methylation in the 5’ UTRs is proposed to facilitate cap-independent 

translation of heat shock response genes (Meyer et al., 2015). 

YTHDF1 was the second m6A binding protein that was found to have a regulatory 

function on the mRNA level (Wang et al., 2015). However, in contrast to YTHDF2, 

YTHDF1 is involved in regulating translation efficiency of particular mRNAs.  

Knockdown of YTHDF1 does not alter the overall m6A/A ratio in cells implying that it is 

not involved in RNA turnover. In contrast, knockdown of YTHDF1 leads to reduced 

ribosome occupancy of YTHDF1 target mRNAs and a reduced quantity of these mRNAs 

in the translated pool, suggesting a direct involvement in translation. Consistent with this, 

co-immunoprecipitation experiments also confirmed the interaction of YTHDF1 with 

translation initiation factors (Wang et al., 2015). Furthermore, tethering assays displayed 

a translation promoting effect of the N-terminal domain of YTHDF1, revealing an overall 

protein structure similar to YTHDF2, with an N-terminal protein-interaction domain and a 
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C-terminal YTH domain that mediates interactions with m6A-containing mRNAs  

(Wang et al., 2014a; Wang et al., 2015). The finding that YTHDF1 seems to recognise 

m6As near STOP codons and affects translation initiation by a direct interaction with the 

initiation factor eIF3 that primarily binds to the 5’ end of mRNAs, led to the proposal that 

YTHDF1 takes advantage of the loop structure formed by eIF4G binding to the poly-A-

binding-protein PABP and the initiation factor eIF4E (Wang et al., 2015). Also, YTHDF1 

is suggested to keep the translation initiation complex primed during stress that is 

reducing translation, which then leads to a shorter recovery time after stress  

(Wang et al., 2015). Together, YTHDF2 and YTHDF1 form a tight regulation network for 

m6A modified mRNAs, resulting in short-lived mRNAs with high translation rates, 

enabling rapid adaptation of gene expression in response to changing environmental 

conditions.  

YTHDF3 is the least studied member of the three YTHDF proteins. Along with YTHDF1 

and YTHDF2, it was shown that it binds to viral m6A-containing RNAs of HIV-1  

(Tirumuru et al., 2016). By binding to the viral RNA, the proteins block reverse 

transcription after HIV-1 cell infection. Overexpression of the three YTHDF proteins in 

different HIV-1 infected cells leads to decreased HIV-Gag protein expression, while 

knockdown has the opposite effect. Therefore, the three YTHDF proteins can have an 

influence on HIV-1 at the time of infection of the cell and at the time of virus production 

after integration of the viral RNA into the genome. Since this function of YTHDF3 is 

redundant with YTHDF1 and YTHDF2, it is likely that the main function of the protein in 

the cell remains to be identified.  

For several years YTHDC1, formerly called YT521-B, was known to be involved in pre-

mRNA splicing, however, the mode of regulation remained elusive and direct evidence 

was missing (Hartmann et al., 1999; Imai et al., 1998). Recently, it was shown that 

YTHDC1 functions in alternative splicing by interacting with splicing enhancer-binding SR 

proteins, specifically SRSF3 and SRSF10 that function to promote inclusion and skipping 

of their targeted exons, respectively (Xiao et al., 2016). In vitro experiments confirmed 

interactions between the N-terminal domain of YTHDC1 and the C-terminal domains of 

SRSF3 and SRSF10. However, in vivo YTHDC1 seems to interact mainly with SRSF3 

and knockdown of YTHDC1 abolishes SRSF3 localisation to nuclear speckles and 

decreases its RNA binding. Depletion of YTHDC1 has the opposite effect on SRSF10, 

increasing its RNA-binding ability and promoting its localisation to nuclear speckles.  

The same is true when reducing the global m6A level by knocking down METTL3, 

showing that the m6A binding ability of YTHDC1 is important. Together, this suggest a 

model in which m6A modifications can mark an exon for inclusion by recruiting the 
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YTHDC1-SRSF3 complex, while if the site is not modified, SRSF10 binds instead, 

promoting exon skipping.  

Little is known about the close homologue of YTHDC1, YTHDC2. Reports connect it to 

pancreatic cancer and facilitated hepatitis C virus replication (Fanale et al., 2014; 

Morohashi et al., 2011). Lately, reports suggest that it is involved in cancer metastasis by 

enhancing the translation of hypoxia-inducible-factor-1alpha (HIF-1α) (Tanabe et al., 

2016). Colon-tumour cells injected in mice showed a reduced metastasis rate compared 

to WT cells if YTHDC2 was knocked down and in vitro studies showed less cell mobility. 

This is supposed to be influenced by the increased translation level of HIF-1α. On a 

molecular level, YTHDC2 may be involved by unwinding secondary structures in the 

5’ UTR of HIF-1α, thus enhancing translation initiation (Tanabe et al., 2016).  

1.6.3 Other m6A modification readers 

In addition to YTH domain-containing proteins, several other cellular proteins have 

recently been found to recognise m6A. However, more evidence is needed in some 

cases to prove a direct interaction with the modification. The RNA stabilizing protein HUR 

was detected in RNA affinity assays using short RNA oligonucleotides containing the 

m6A modification as a bait (Dominissini et al., 2012). HUR is known to bind to uridine-

stretches in the 3’ UTR of RNAs, thus its enrichment in m6A pull downs was unexpected 

(Kishore and Stamm, 2006; Lebedeva et al., 2011). Further experiments lead to the 

conclusion that HUR is not recognising the modification itself, but instead is binding in 

close proximity to it. Depending on the presence of the modification, different secondary 

structures could change the accessibility of the HUR binding motif and extend the lifetime 

of the mRNA (reviewed in Wang and He, 2014).  

Stress was shown to increase m6A abundance in 5’ UTRs, which facilitates  

cap-independent translation of particular mRNAs by increasing binding of translation 

initiation factors, without the help of YTH domain reader proteins (Meyer et al., 2015).  

In vitro and in vivo assays showed enhanced interaction of the eukaryotic initiation factor 

eIF3 with such mRNAs, dependent on the presence of modification. It has been 

suggested that this mode of translation initiation could be used during heat shock when 

the levels of m6As in 5’ UTRs are elevated, resulting in increased Hsp70 translation 

(Meyer et al., 2015; Zhou et al., 2015). 

The nuclear protein HNRNPA2B1 is involved in micro (mi)RNA processing and 

alternative splicing. CLIP experiments showed that the binding sites of HNRNPA2B1 on 

cellular RNAs overlap known m6A modification sites and m6A-containing RNA could be 

detected in HNRNPA2B1 immunoprecipitations. 52 out of 53 miRNAs that contain m6A 



Introduction 

 23 

residues are reduced upon HNRNPA2B1 knockdown. These results, combined with the 

interaction of HNRNPA2B1 with the microprocessor protein DGCR8, led to the proposal 

that HNRNPA2B1 functions as a reader of the m6A modification in miRNAs thereby 

effecting miRNA processing (Alarcon et al., 2015). 

Surprisingly, a new study suggests that the m6A writer METTL3 can also act as a  

non-conventional m6A reader (Lin et al., 2016). METTL3 partially relocates to the 

cytoplasm in human cancer cells and seems to be involved in the translation of certain 

oncoproteins for increased cell proliferation, survival and invasion. The other components 

of the methylation complex WTAP and METTL14 are not relocated to the cytoplasm and 

the C-terminal methylation domain of METTL3 is dispensable for translation 

enhancement making it a unique feature of METTL3. The N-terminal domain METTL3 

directly interacts with the initiation factor eIF3 recruiting it to the initiation complex in an 

YTHDF1-independent manner. Overall, translation regulation via the m6A modification is 

a complicated process and it seems that several translation regulation mechanisms act in 

parallel on different mRNA transcripts. 
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1.7 Aims  

RNA modifications are present in many cellular RNAs and can influence the properties 

and functions of the RNAs that carry them in a variety of different ways. However, the 

substrates of many modification enzymes are unknown and often the roles of specific 

modifications remain elusive. Recent findings highlight the N6-methyladenosine (m6A) 

modification as an important regulator of RNA metabolism as it was found to be present 

in mRNAs and was revealed to be reversible. Furthermore, proteins were identified that 

can specifically bind to this modification via a special recognition domain termed the YTH 

domain. A family of five YTH domain-containing proteins have been identified in human 

cells and YTHDF2 was shown to regulate the levels of specific m6A-containing mRNAs 

by targeting them for degradation. At the outset of the project, however, RNA substrates 

of the other YTH domain-containing proteins and their cellular functions were not known. 

The objectives of this study were the further development of computational tools to aid in 

the identification of RNA substrates of proteins involved in introducing or recognising 

RNA modifications and the genome-wide identification RNA interaction sites of the YTH 

domain-containing proteins. 

Therefore, this work aimed to: 

• Adapt a bioinformatic pipeline for the genome-wide mapping of next-generation 

sequencing data derived from cross-linking and analysis of cDNA (CRAC) 

experiments in human cells 

• Identify the RNA targets of YTH domain-containing proteins using the CRAC 

approach 

•  Analyse recognition of the m6A modification by the YTH domains of the different 

proteins 

• Provide insight into the functions and interactions of YTHDC2
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and enzymes 

Chemicals were obtained from Applichem, Roth and Sigma-Aldrich at molecular biology 

quality or above. Enzymes were generally supplied by ThermoFisher scientific or NEB if 

not stated otherwise. Antibodies were purchased from Jackson ImmunoResearch, Bethyl 

or Sigma-Aldrich. Small interfering (si)RNA was ordered from Qiagen or were 

synthesised at MWG if sequence were available.  

2.1.2 Oligonucleotides 
Table 1 Oligonucleotides used in this study. Restriction sites are underlined; mutated nucleotides are 

lowercase. 

Name Sequence (5’-3’) Application 

TUBG1_Fw CGGCTGAATGACAGGTATCCTA qPCR 

TUBG1_Rv CACCACATCGCTCATCTCGT qPCR 

GAPDH_Fw CAGCCTCAAGATCATCAGCAATG qPCR 

GAPDH_Rv GTCTTCTGGGTGGCAGTGATG qPCR 

YTHDC2_Fw GCCAGAGGCAGCTAGTTTATTG qPCR 

YTHDC2_RV GAGACCAAGGTTTAGATGGAGC qPCR 

YTHDC1_Fw ACCAGGAAGTGGACAGACGA qPCR 

YTHDC1_Rv TTCCTGGGTAAGGGGGCATT qPCR 

YTHDF2_Fw TGTTAAAAAGGAACGTCAAGGTCG qPCR 

YTHDF2_Rv GCAAGTCTGCAATCGTCTCTG qPCR 

YTHDC2seq1_Fw ATTCAAAGATTTCCTGTCACCAA sequencing  

YTHDC2seq2_Fw GCTTCGTACATTGATGGCAGGAGA sequencing 

YTHDC2seq3_Fw AATGGATGCTTGCCTTTCTGATA sequencing 

YTHDC2seq4_Fw CGGTTTGCTGACAGTACACATAGA sequencing 

YTHDC2seq5_Fw AGATCTGACTGAACTTGGGTAT sequencing 

YTHDC2seq6_Fw AAACTCTGAGAATTGGGCTGTCGT sequencing 

YTHDC2_BamHI_Fw ATATGGATCCACCATGTCCAGGCCGAGCAG cloning 

YTHDC2_Nhe_Rv ATATAGCTAGCATCAGTTGTGTTTTTTTCTCCCAAGG cloning 
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DC2_192_BamHI_Fw ATATGGATCCCCAATGTCTTTACCAGTGTTTGAGAAACAGG cloning 

DC2_1287_NheI_Rv ATATAGCTAGCAGGCATGTTTGGTCTTGGCG cloning 

YTHDF1_BamHI_Fw AAAAGGATCCGCCACCATGTCGGCCACCAGCGTGG cloning 

YTHDF1_NheI_Rv AAAAGCTAGCTTGTTTGTTTCGACTCTGCCGTTCC cloning 

YTHDF2_KpnI_Fw AAAAGGTACCGCCACCATGTCGGCCAGCAGCCTCTTG cloning 

YTHDF2_BamHI_Rv AAAAGGATCCTTTCCCACGACCTTGACGTTCC cloning 

YTHDF3_BamHI_Fw AAAAGGATCCGCCACCATGTCAGCCACTAGCGTGGATCAG  cloning 

YTHDF3_NheI_Rv AAAAGCTAGCTTGTTTGTTTCTATTTCTCTCCCTACGC cloning 

YTHDC1_KpnI_Fw AAAAGGTACCGCCACCATGGCGGCTGACAGTCGGG  cloning 

YTHDC1_NheI_Rv AAAAGCTAGCTCTTCTATATCGACCTCTCTCCCC cloning 

DF2_380_BahmHI_Fw ATATGGATCCTCTACTCCTTCAGAACCCCACC cloning 

DF2_579_XmaI_Rv ATATCCCCGGGTTATTTCCCACGACCTTGACG cloning 

DC2_1277_BamHI_Fw ATATGGATCCTCAAAATCTCCTTCGCCAAGACC cloning 

DC2_1430_XmaI_Rv ATATCCCCGGGTCAATCAGTTGTGTTTTTTTCTC cloning 

DC1_344_BamHI_Fw ATATATGGATCCACCAGTAAACTCAAATATGTGCTTC cloning 

DC1_509_XmaI_Rv  ATATATTCCCGGGCTAGTGACGCATTTTATGAATGACCTG cloning 

DC2_W1310A_Fw CTCAACAGAAGGGTATcgcGTCTACAACTCCTAGTAATG 
site directed 
mutagenesis 

DC2_W1310A_Rv CATTACTAGGAGTTGTAGACgcgATACCCTTCTGTTGAG 
site directed 
mutagenesis 

DC2_W1360A_Fw GAAGGGAAAAGAGTCAGGAcgcGGGCTCTGCTGGACTAGGAG 
site directed 
mutagenesis 

DC2_W1360A_Rv CTCCTAGTCCAGCAGAGCCCgcgTCCTGACTCTTTTCCCTTC 
site directed 
mutagenesis 

oligo(dT) TTTTTTTTTTTTTTTTTTTTTTTTVN reverse 
transcription 
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2.1.3 Plasmids used in this study 
Table 2 Plasmids used in this study. 

ID Name Reference 

pMB-044 A21-H10zzTevpQE80N(3) Markus 
Bohnsack 

pMB-187 pcDNA5/FRT/TO/FLAG Invitrogen 

pMB-1048 pcDNA5-FRT-TO-YTHDF1-cHisPrcFlag This study 

pMB-1049 pcDNA5-FRT-TO-YTHDF2-cHisPrcFlag This study 

pMB-1050 pcDNA5-FRT-TO-YTHDF3-cHisPrcFlag This study 

pMB-1047 pcDNA5-FRT-TO-YTHDC1-cHisPrcFlag This study 

pMB-1089 pcDNA5-FRT-TO-YTHDC2-cHisPrcFlag This study 

pMB-1098 pcDNA5-FRT-TO-YTHDC2_192-1430-cHisPrcFlag This study 

pMB-1100 pcDNA5-FRT-TO-YTHDC2_1-1287-cHisPrcFlag This study 

pMB-1099 pcDNA5-FRT-TO-YTHDC2_192-1287-cHisPrcFlag This study 

pMB-1222 A21-YTHDF2_380-579 This study 

pMB-1246 A21-YTHDC1_344-509 This study 

pMB-1221 A21-YTHDC2_1277-1430 This study 

pMB-1241 A21-YTHDC2_1277-1430_W1310A This study 

pMB-1242 A21-YTHDC2_1277-1430_W160A This study 

 

2.1.4 siRNAs used in this study 
Table 3 siRNAs used in this study. 

Name Sequence (5’-3’) Company 

siYTHDC2_1 CGAAAUUGUUGGACUGAGA(dTdT) eurofins MWG 

siYTHDC2_2 GAAUUGGGCUGUCGUUAAA(dTdT) eurofins MWG 

siYTHDC2_3 CAUGAAAGGGAUCGAUUUA(dTdT) eurofins MWG 

siNT (control) UCGUAAGUAAGCGCAACCC(dTdT) Ambion 

 



Materials and Methods 

 28 

2.1.5 Antibodies used in this study 
Table 4 Antibodies used in this study. WB, dilution used in western blotting. IF, dilution used in 
immunofluorescence  

Name Product number Company Fold dilution 

Flag F3165 Sigma-Aldrich 1:10,000 for WB; 1:500 for IF 

Tubulin T6199 Sigma-Aldrich 1:5,000 for WB 

YTHDC2 A303-026A Bethyl  1:10,000 for WB 

XRN1 A300-443A-3 Bethyl 1:10,000 for WB 

Goat-anti-mouse-HRP 115-035-003 Jackson ImmunoResearch 1:10,000 

Goat-anti-rabbit-HRP 111-035-003 Jackson ImmunoResearch 1:10,000 

Goat-anti-mouse-Alexa488 115-545-003 Jackson ImmunoResearch 1:1,000 

 

2.2 Methods 

2.2.1 Molecular cloning 

The plasmids used in this study (see 2.1.3) were created using standard cloning 

techniques. In brief, cDNA was prepared from human cell culture cells (see 2.2.11) and 

the sequence of interest was amplified using sequence specific primers (see 2.1.2) and 

Phusion Polymerase (ThermoFisher scientific) according to manufacturer’s instructions. 

10 % of the reaction was analysed on a 1-2 % DNA agarose gel in 1x TAE (40 mM Tris 

pH 7.6, 20 mM acetate, 1 mM EDTA) to verify the correct size of the product. The rest of 

the reaction was purified using the PCR clean up Kit (Macherey-Nagel). To generate 

compatible ends 1-2 µg of vector or purified PCR product were incubated at 37°C for 2 h 

in a 15 µl reaction volume using restriction enzymes according to the manufacturer’s 

instructions (ThermoFisher scientific). To increase the ligation efficiency and prevent  

re-circularisation, the vector was dephosphorylated for 20 min with 1 U Fast-alkaline 

phosphatase (ThermoFisher scientific). The DNA was separated on a 1-2 % agarose gel 

and gel purified using the Gel purification Kit (Macherey-Nagel). 50 ng of vector and a  

5-fold molar excess of insert were used in a 20 µl ligation reaction using T4 DNA ligase 

(ThermoFisher scientific). The reaction was incubated for 2 h at 22°C or overnight at 

16°C. Chemically competent Top10 cells were transformed with the ligation reaction and 

plated on LB-agar plates containing 100 µg/ml. After incubation at 37°C overnight, 

individual colonies were picked and 4 ml overnight cultures in LB-medium were 

inoculated. The next day plasmid DNA was isolated from the overnight cultures using a 

Mini-Prep plasmid isolation kit (Macherey-Nagel) according to the manufacturer’s 
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instructions. The identity of the clones was verified by restriction digest and Sanger 

sequencing at GATC Biotech. 

2.2.2 Site-directed mutagenesis  

Site directed mutagenesis was used to introduce specific sequence mutations into 

plasmids. Mutagenic PCR primers were designed in such a way that the forward and 

reverse primer were fully complementary with the mutation placed in the middle of both 

primers with at least 15 flanking bases on each side ending with a guanine or cytidine. 

Three 50 µl reactions were set up with 5 ng, 20 ng or 50 ng of template plasmid. In 

addition, the reactions contain 125 ng of each primer, 0.2 mM of dNTP mix, PfuT buffer 

(10 mM Tris pH 8.85, 25 mM KCl, 5 mM (NH4)2SO4, 2 mM MgSO4) and 2 U of 

homemade PfuT polymerase. The thermal cycling program was as follows: denaturation 

at 95°C for 30 sec, then 12-18 cycles of 95°C, 30 sec; 55°C, 1 min; 68°C, 120 sec/kb 

plasmid length. 12 cycles were used for a point mutation, 16 cycles for a triplet change 

and 18 cycles for multiple triplet insertions or deletions. After the PCR, the samples were 

briefly chilled on ice, 1 µl of DpnI was added and the reactions were incubated at 37°C 

for 2 h to fragment the methylated template DNA. Afterwards the three reactions were 

pooled and the DNA was precipitated by adding 0.1 volume of 3 M sodium acetate  

pH 5.2 and 3 volumes of 100 % ethanol, followed by incubation at -20°C for at least 1 h. 

After centrifugation at 20,000 rcf for 20 min at 4°C, the pellet was washed once with 

70 % ethanol and resuspended in 10 µl ddH2O. E. coli Top10 cells were transformed and 

selected on appropriate agar plates. Plasmid DNA was isolated from single colonies as 

described above (2.2.1) and the presence of the mutation was confirmed by sequencing 

at GATC Biotech.  

2.2.3 SDS-PAGE and western blotting 

SDS-polyacrylamide gel electrophorese was performed according to Laemmli (Laemmli, 

1970). Protein samples were pre-incubated with 1x SDS loading dye (60 mM Tris pH 6.8, 

2 % SDS, 10 % glycerol, 0.01 % bromphenol blue, 1.25 % β-mercaptoethanol) and 

heated to 95°C for 5 min. The gels were run on a Biorad system according to the 

manufacturer’s instructions. Subsequently, the gels were either stained using Coomassie 

brilliant blue (0.1% Coomassie brilliant blue G-250, 0.1 % Coomassie brilliant blue R-250, 

10 % acetic acid, 40 % methanol) and destained (10 % acetic acid, 30 % methanol) or 

subjected to western blotting. 

For western blotting, the proteins were transferred onto PVDF or nitrocellulose 

membrane at 100 V for 60 min in blotting buffer (250 mM Tris, 1.92 M glycine, 20 % 

methanol (v/v) using a wet blot system (BioRad). The membrane was then blocked using 
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TBS (50 mM Tris pH 7.6, 150 mM NaCl) supplemented with 5 % milk powder. Incubation 

with the primary antibody was done in 5 % milk in TBS for 3 h at room temperature (RT) 

or overnight at 4°C. After three times 10 min washing with TBS supplemented with 0.1 % 

Triton X-100 (TBS-T) the blots were incubated with the secondary antibody coupled to 

horseradish peroxidase for 1 h at RT. Three additional washing steps with TBS-T were 

performed, the blot was developed using Immobilon™ ECL solution (Millipore) and 

signals were detected by exposure of an x-ray film. 

2.2.4 Cell culture 

HeLa CCL2 or HEK Flp-In™ T-REx™ 293 (Invitrogen) cell lines were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10 % foetal calf serum 

(FCS) and 100 U/ml Penicillin-Streptomycin mix (Gibco). The cells were cultivated at 

37°C, 5 % CO2 in a dark and humid environment. To maintain viability, after washing with 

Phosphate buffered saline (PBS) (Gibco) the cells were detached using Trypsin-EDTA 

(0.25 %) (Gibco) and were seeded onto a new plate every three days in a 1:10 dilution. 

 

2.2.5 Generation of HEK293 stable cell lines 

The Invitrogen Flp-In™ system was used to generate stable cell lines. The gene of 

interest is cloned into the expression vector pcDNA5 vector generating a fusion protein 

with  a C-terminal His6PrecFlag2-tag. Following transfection the construct is integrated at 

a specific location in the genome by a single recombination event utilising the  

Flp recombinase. Expression of the gene of interest is controlled by the CMV promoter 

and is inducible by tetracycline or doxycycline. The introduced hygromycin resistance 

gene is utilised for the selection of positive clones. 

300,000 HEK Flp-In™ T-REx™ 293 cells were seeded into a well of a 6-well plate to be 

50% confluent on the day of transfection. The next day, 0.6 µg pcDNA5 plasmid 

conteining the sequence of the ORF to be expressed was mixed with 1.8 µg pOG44 

plasmid, which enables expression of the Flp recombinase. In a second tube 9 µl  

X-treme Gene HP DNA transfection reagent was mixed with 91 µl Opti-MEM reduced 

serum medium (ThermoFisher scientific) and incubated at RT for 5 min. The two 

reactions were mixed and incubated at RT for additional 15 min. Fresh DMEM media 

without penicillin-streptomycin was applied to the cells, the transfection mixture added in 

a drop wise manner cells were cultivated for two days. The cells were then trypsinised 

and transferred to a 10 cm dish and selection for positive transformats was started by 

addition of 100 µg/ml hygromycin B (Applichem) and 10 µg/ml blasticidin S (Applichem). 
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The cells were washed with PBS and fresh medium with antibiotics was supplied every 

two to three days until single colonies were visible under the light microscope. At this 

stage the cells were trypsinised and resuspended to acquire a mixed population. At 80 % 

density the cells were split onto a new plate and hygromycin B selection was maintained 

during the cultivation of the cells and blasticidin S was added every third split. 

To verify expression of the tagged protein 125,000 cells were seeded into a well of a  

24-well plate and induced with 1 µg\ml doxycycline for 24 h. The medium was removed 

and the cells were washed once with PBS before adding 100 µl of 1x SDS-loading dye. 

10 % of the sample was analysed by SDS-PAGE and Western blotting using specific 

antibodies against the tagged protein. 

2.2.6 Immunofluorescence 

Sterile poly-L-lysine coated coverslips were placed into 24-well plates and cells were 

seeded to be 50 % confluent at the time of fixation. The cells were washed three times 

with PBS before fixation with 4 % paraformaldehyde in PBS at RT for 20 min.  

The coverslips were washed again three times with PBS and the cells were 

permeabilised using 0.1 % Triton X-100 diluted in PBS for 15 min at RT. To stop the 

permeabilisation reaction, four additional PBS washes were performed. Reduction of 

background signal was accomplished by 1 h incubation in blocking solution (10 % FCS, 

0.1 Triton X-100, PBS) at RT. The primary antibody, diluted in blocking solution, was 

then applied to the coverslips for 1-2 h at RT. Excess primary antibody was removed by 

three quick washes with PBS followed by three 10 min washes in PBS. The fluorescently 

labelled secondary antibody was applied to the coverslips in the same way as the 

primary antibody and after incubation for 1-2 h at RT, the same washing steps were 

performed. Finally, the coverslips were dipped in ddH2O and ethanol then dried before 

mounting onto glass slides using 4 µl of Vectrashield mounting medium (Vector 

laboratories). Confocal microscopy was performed on a LSM 510 META (Zeiss). 

2.2.7 Immunoprecipitation 

Immunoprecipitation experiments were conducted using HEK293 cell lines expressing a 

stably integrated His-Prc-2xFlag tagged version of the gene of interest (2.2.5) and αFlag 

M2 magnetic beads (Sigma Aldrich) for precipitation. Tagged protein expression was 

induced at the endogenous protein level with doxycycline. Approximately 1.4∙107 cells 

were harvested using gentle PBS washing to detach the cells from the plate. The cells 

were harvested by centrifugation at 200 rcf for 3 min. The supernatant was aspirated and 

the pellet was snap-frozen in liquid nitrogen and stored at -80°C or kept on ice for 

immediate use. The pellet was resupended in 1 ml lysis buffer (150 mM KCl, 20 mM 
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Hepes pH 8.0. 0.1 mM DTT) and sonicated on ice (20 % amplitude, 0.3 sec pulse, 

0.7 sec off, 3x 16 pulses, 20 sec intervals). After the sonication step, the lysate was 

supplemented with 0.2 % Trition X-100, 10 % glycerol and 1.5 mM MgCl2. Cell debris 

was pelleted by centrifugation at 20,000 rcf, for 10 min, at 4°C. 50 µl of αFlag M2 

magnetic beads were equilibrated by washing three times in ice cold IP buffer (150 mM 

KCl, 20 mM Hepes pH 8.0. 0.1 mM DTT, 0.2 % Trition X-100, 10 % glycerol, 1.5 mM 

MgCl2). After centrifugation the cleared lysate was directly added to the equilibrated 

beads or was subjected to RNA digest. For the RNA digest a 1:1,000 dilution of RNase A 

(4.5 U/µl stock solution) and RNase T1 (1 U/µl stock solution) was added and samples 

were incubated for 15 min at RT before adding to the equilibrated beads. After incubation 

for 2 h at 4°C on a rotating wheel none-specifically bound proteins were removed by 

washing the beads four times with 1 ml ice cold IP buffer. During the last wash the beads 

were transferred to a new tube. The Flag-tagged proteins and any co-precipitated 

proteins were then eluted by adding 50 µl of Flag-peptide solution (250 µg/ml Flag-

peptide, 20 mM HEPES pH 8.0, 150 mM KCl and 1.5 mM MgCl2, 0.05% Triton X-100) 

and incubating the suspension shaking for 30 min at 12°C. The elution step was 

repeated and the two elution fractions were pooled. Precipitation of the proteins was 

facilitated by trichloroacetic acid (TCA) to a final concentration of 20 % and incubation on 

ice for 20 min. Finally, the samples were centrifuged at 20,000 rcf for 20 min at 4°C.  

The supernatants were discarded and the pellets were washed once with ice-cold 

acetone, briefly centrifuged at 20,000 rcf for 10 min at 4°C and air dried for 5 min.  

The pellets were resuspended in 4x NuPage loading dye (Invitrogen) supplemented with 

50 mM DTT and separated on a 4-12 % NuPage Bis-Tris gel system (Invitrogen) with 

MES running buffer (50 mM MES, 50 mM Tris, 1 mM EDTA, 0.1 % SDS) if the samples 

were to be analysed by mas spectrometry. Alternatively, samples were resuspended in 

1x SDS-loading dye and analysed by SDS-PAGE and subsequent western blotting. 

 

2.2.8 Pre-ribosome and sucrose density gradients and polysome profiling 

Sucrose density gradients were performed to separate ribosomal particles according to 

their sedimentation coefficient. 107 cells were harvested using trypsin digestion and 

pelleted. After shock frosting in liquid nitrogen the pellet was stored either at -80°C for 

later use or directly thawed on ice for imminent use. After resuspension of the pellet in 

500 µl lysis buffer (50mM Tris pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT) the cells 

were lysed by sonication (20 % amplitude, 0.3 sec on, 0.7 sec off, 3x 20 pulses, 20 sec 

intervals). Prior to loading on the sucrose gradient the lysate was cleared by 
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centrifugation at 20,000 rcf for 15 min at 4°C. To prepare 10-45 % sucrose gradients, 

10 % sucrose solution (w/v) and 45 % sucrose solution (w/v), both prepared in lysis 

buffer, were layered and mixed using the GradientMaster (Biocomp) “short sucrose  

10-45 %” program with the following settings: 82.0° angle, 19 speed, rotation time 1 min 

25 sec. The prepared gradients were stored at 4°C for 1 h before use. 400 µl of sucrose 

solution was removed from the top of the gradient and was replaced by 400 µl of cleared 

lysate. The gradients were centrifuged at 23,500 rpm, 16 h, 4°C in a Beckman Coulter 

SW40-Ti swinging bucket 6x 14 ml rotor. After centrifugation, 530 µl fractions were taken 

by hand from the top. The RNA content of the fractions was recorded at 254 nm using 

the NanoDrop ND-2000c (ThermoFisher). Proteins in each fraction were precipitated 

using TCA (2.2.7) and analysed by SDS-PAGE and subsequent western blotting (2.2.3). 

2.2.9 RNA interference 

RNA(i) interference was carried out using small interfering (si)RNAs (Table 3) to 

transiently knockdown specific genes. Cells were seeded one day before transfection to 

reach 20-30 % confluence at the time of transfection. For one well of a 6-well plate, 4 µl 

(HeLa) or 5 µl (HEK Flp-In™ T-REx™ 293) of RNAiMax transfection reagent (Invitrogen) 

and 500 µl Opti-MEM reduced serum medium (ThermoFisher scientific) were premixed 

before adding the mixture to 30 nM siRNA (final concentration) and further incubation for 

15 min at RT. The medium on the cells was changed for fresh DMEM without 

penicillin/streptomycin and the transfection mix was added to the cells in a drop-wise 

manner. The next day the medium was exchanged and 72 h or 96 h after siRNA 

transfection the cells were harvested. For a transfection in a 10 cm dish the volumes 

were tripled. 

2.2.10 RNA extraction 

Total RNA from human cells was extracted using TriReagent (Sigma-Aldrich) according 

to manufacturer’s instructions. In brief, the cells were washed once with PBS and for one 

well of a 6-well plate 1 ml of TriReagent was added and incubated at RT for 1 min.  

The lysate was transferred into a tube and 200 µl chloroform were added. After thorough 

mixing, the samples were incubated at RT for 2 min and then centrifuged at 12,000 rcf, 

for 15 min, at 4°C for phase separation. The upper aqueous phase was carefully 

transferred to a fresh tube, 500 µl isopropanol was added to the upper phase and 

samples were incubated for 5 min at RT to precipitate the RNA. After centrifugation at 

20,000 rcf, for 15 min, at 4°C the supernatant was discarded and the RNA pellet was 

washed once with 70 % ethanol. After centrifugation at 20,000 rcf, for 5 min, at 4°C the 
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supernatant was removed and the pellet was air-dried for 5 min then resuspended in 

20 µl diethylpyrocarbonate (DEPC) treated ddH2O.  

2.2.11 Quantitative real time PCR 

Total RNA was reverse transcribed using the Superscript III reverse transcriptase 

(Invitrogen) according to the manufacturer’s instructions to produce cDNA. 2 µg to 5 µg 

total RNA were mixed with 50 µM oligo(dT)	primer (Table 1) or 186 ng random hexamers 

and 1 µl 10 nM dNTPs. ddH2O was added to 13 µl total volume and the sample was 

incubated at 65°C for 5 min. Afterwards the sample was shortly chilled on ice before 

adding 1 µl 100 mM DTT, 4 µl 5x Superscript III reaction buffer and 1 µl Superscript III. 

Reverse transcription was carried out at 55°C for 1 h. Gene specific primers were 

designed using NCBI Primer-BLAST to achieve high specificity. If applicable, exon-exon 

spanning primers were designed to avoid the amplification of DNA contaminations.  

The primers were designed to have a melting temperature between 57°C and 63°C and 

the product length had to be between 80 nt and 150 nt. To test the primers a serial 

dilution of human cDNA was prepared from 1:5 to 1:625 with a dilution factor of 5. 

Samples were analysed using absolute quantification and 2nd derivative max method.  

CT values were plotted against the dilution factor and only primers with an amplification 

efficiency greater than 90 % were used for qPCR (Table 1).	 Quantitative real time 

(q)PCR was carried out using a Light cycler 480 system (Roche) with the supplied Light 

cycler 480 SYBR Green I Master mix (Roche). For a single well 2.5 µl diluted cDNA, 

0.3 µl 10 mM primer mix, 3.3 µl SYBR Green Master mix and 3.9 µl ddH2O were used. 

The following qPCR program was used: 1x (95°C, 5 min); 50x (95°C, 30 sec; 58°C, 

30 sec, 72°C, 30 sec) Each reaction was pipetted in triplicates to account for pipetting 

errors. Two of the triplicates had to be within 0.5 threshold cycles (CT) otherwise the 

reaction was repeated. The experiments were analysed using the Roche Lightcycler 480 

software version 1.5.1.62. CT values were calculated using the 2nd derivative max method 

of the software and relative quantification was conducted using the ΔΔCT method 

(Schmittgen and Livak, 2008). The results were normalised to GAPDH (NG_007073.2), 

COPS6 (NG_046973.1) or TUBG1 (NG_033886.1) to consider different cDNA amounts.	

2.2.12 Agarose-glyoxal gel electrophoresis and northern blotting 

5 µg of total RNA was mixed with glyoxal loading dye (61 % DMSO (v/v), 20 % glyoxal 

(v/v), 5 % glycerol (v/v), 1x BPTE) and incubated at 55°C for 1 h. A 1.2 % agarose gel 

was prepared using ultra pure agarose (Invitrogen). After loading the samples the gel 

was run at 60 V for 16 h in 1x BPTE (10 mM Pipes, 30 mM Bis-Tris, 1 mM EDTA). 

Afterwards the following washing steps were applied to denature the RNA and enable 
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subsequent transfer; 100 mM sodium hydroxide for 20 min, 0.5 M Tris/1.5 M NaCl for 

15 min twice and 6x SSC (900 mM NaCl, 100 mM sodium citrate) for 15 min. The RNA 

was then vacuum blotted onto Hybond N membrane (GE Healthcare) at approximately -

300 psi for 2 h. After blotting the RNA was cross-linked to the membrane with two times 

180 mJ per cm2 256 nm UV light. To check for efficient transfer and visualise abundant 

RNAs, the membrane was stained with methylene blue (0.3 M sodium actetate pH 5.2, 

0.1 % methylene blue (w/v)) The membrane was then incubated in pre-hybridisation 

buffer (SES1; 0.25 M sodium phosphate pH 7.0, 7 % SDS (w/v), 1 mM EDTA) for 30 min 

at 37°C, rotating. Antisense DNA probes were radioactively labelled in a 20 µl reaction 

using 1 µl 10 U/µl T4 Polynucleotide kinase (ThermoFisher scientific), 2 µl 32P-γ-ATP 

(2 µCi, Perkin Elmer), 2 µl 10 mM oligonuclotide, 2 µl 10x PNK buffer, 12.5 µl ddH2O. 

After labelling, the probe was diluted in SES1 and incubate with the membrane overnight 

at 37°C, rotating. The membrane was then washed with 6x SSC for 30 min at 37°C and 

for 30 min with 2x SSC supplemented with 0.1% SDS at 37°C before drying the 

membrane. Radioactive signals were visualised by exposing the membrane to a 

phosphorimager screen (GE Healthcare) and detection using a Typhoon FLA 9500 laser 

scanner (GE Healthcare). If re-probing was necessary, the membrane was stripped by 

incubation with 0.1x SSC supplemented with 0.1 % SDS (w/v) at 70°C for 1 h with 

shaking before blocking and probing as described above. 

2.2.13 Pulse-chase labelling of RNA 

Cells were transfected with siRNAs in 6-well plates as described in section 2.2.9.  

After 72 h the media was replaced by phosphate-free DMEM and cells were grown for a 

further 1 h. 32P-orthophosphate was added to a final concentration of 15 µCi/ml to fresh 

phosphate-free DMEM and the cells were grown in this media for an additional 1 h.  

The labelled media was then removed and the cells were washed with PBS. Normal 

media was added to the cells and they were grown for a further 3 h. Then the medium 

was removed and the cells were washed with PBS. RNA was extracted using TriReagent 

(Sigma-Aldrich) and separated on an agarose-glyoxal gel (2.2.12) at 185 V for 3 h.  

The RNA was capillary blotted onto Hybond N membrane and radioactive signals were 

visualised using a Typhoon FLA 9500 (GE Healthcare).  

2.2.14 Cross-linking and analysis of cDNA (CRAC) 

108 cells of stably transfected HEK293 cell lines for expression of His6-PreScission 

protease site-Flag2 tagged proteins were used per CRAC experiment. Protein expression 

was induced either with 1 µg/µl doxycycline or the optimal concentration to mimic 

endogenous expression for 36 h. 100 µM 4-thiouridine was added to each plate 6 h 



Materials and Methods 

 36 

before cross-linking if photoactivatable-ribonucleoside-enhanced (PAR)-CRAC was 

done. Before cross-linking the media was removed and cells were washed once with 

30 ml of PBS and 8 ml of PBS was added. The cells were irradiated with 3 x 800 mJ/cm2 

at 254 nm (UV-CRAC), or 2 x 180 mJ/cm2 at 365 nm (PAR-CRAC) using a Stratalinker at 

RT. Subsequently, the PBS was removed and 200 µl of TMN150 (50 mM Tris pH 7.8, 

150 mM NaCl, 1.5 mM MgCl2, 0.1 % NP-40 (v/v), 5 mM beta-mercaptoethanol) 

supplemented with complete mini protease inhibitor EDTA free (Roche) was added 

before harvesting of the cells by scraping. The cells were then lysed by sonication  

(40 % amplitude, 0.5 sec pulse, 0.5 sec off, 3 x 15 pulses, 20 sec intervals). The lysate 

was cleared by centrifugation at 20,000 rcf for 15 min at 4°C. The cleared lysate was 

added to 50 µl anti-Flag-magnetic beads (Sigma-Aldrich) that had been pre-equilibrated 

in lysis buffer and the samples were incubated for 3 h rotating at 4°C. The beads were 

then washed twice with 500µl TNM1000 (50 mM Tris pH 7.8, 1 M NaCl, 1.5 mM MgCl2, 

0.1 % NP-40 (v/v), 5 mM beta-mercaptoethanol) and three times with TMN150. The resin 

was transferred to a new tube during the last washing step. The bound protein was 

eluted by adding 200 µl of TMN150 supplemented with 0.2 µg/µl Flag peptide (Sigma-

Aldrich) and incubation overnight rotating at 4°C. The eluate was transferred to a fresh 

tube, the volume was adjusted to 600 µl with TMN150 and the sample was subjected to 

RNase treatment. 0.1 U RNace-IT was added and the samples were incubated for 

30 sec at 37°C. The reaction was stopped by transferring the sample to a 1.5 ml reaction 

tube containing 0.4 g guanidine hydrochloride, 45 µl 3 M NaCl and 3 µl 2.5 M imidazole 

pH 8. For the denaturing binding step, the samples were incubated with 50 µl of Ni-NTA 

resin (Qiagen) for 2 h rotating at 4°C that had been pre-equilibrated in wash buffer I 

(50 mM Tris pH 7.8, 300 mM NaCl, 10 mM imidazole pH 8, 6 M Guanidine hydrochloride, 

0.1 % NP-40 (v/v), 5 mM beta-mercaptoethanol). The beads were washed twice with 

750 µl wash buffer I and three times with PNK buffer (50 mM Tris pH. 7.8, 10 mM MgCl2, 

0.5 % NP-40 (v/v), 5 mM beta-mercaptoethanol). With the last wash the beads were 

transferred to Mobicol spin columns (Bio-Rad) and incubated with 8 U TSAP (Promega), 

60 U of RNasin (Promega) in PNK buffer for 30 min at 37°C to dephosphorylate the RNA. 

The beads were washed once with wash buffer I to stop the reaction and three times with 

PNK buffer before ligation of the Illumina RA3 3’ adapter to the 3’ end of the RNA.  

The reaction was carried out in PNK buffer with 1 µM  RA3 3’ adapter, 800 U T4 RNA 

ligase 2 deletion mutant (Epicentre), 60 U RNasin (Promega), 10 % PEG8000 (Sigma-

Aldrich) overnight at 16°C. The beads were washed once with wash buffer I to stop the 

reaction and three times with PNK buffer before radioactive labelling of the 5’ end of the 

RNA. A mix of 80 U T4 PNK (NEB), 60 U of RNasin (Promega) in PNK buffer was added 

first before the addition of 32P-γ-ATP and incubation for 40 min at 37°C. 1.25 µM Li-ATP 
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(Roche) was added and the samples were incubated for an additional 20 min.  

The samples were washed once with wash buffer I to stop the reaction and three times 

with PNK buffer before ligation of the RA5 (N5) 5’ adapter to the 5’ end of the RNA.  

The reaction was carried out in PNK buffer with 40 U T4 single-strand RNA ligase I 

(NEB), 1.25 µM RA5 (N5) 5’ adapter, 1 mM ATP (Roche) overnight at 16°C. After the 

ligation reaction the samples were washed three times with 400 µl of wash buffer I and 

seven times with wash buffer II (50 mM Tris pH 7.8, 50 mM NaCl, 10 mM Imidazol pH 8, 

0.1 % NP-40 (v/v), 5 mM beta-mercaptoethanol). The RNA-protein complexes were 

eluted twice with 200 µl Elution buffer (50 mM Tris pH 7.8, 50 mM NaCl, 150 mM 

imidazole, 0.1 % NP-40 (v/v), 5 mM beta-mercaptoethanol). The samples were subjected 

to TCA precipitation before separation in a 4-12 % NuPAGE gel as described in section 

2.2.7. The proteins were transferred onto Hybond C membrane (Amersham) in transfer 

buffer (25 mM Bicine, 25 mM Bis-Tris, 1 mM EDTA, 20 % methanol) and radioactive 

signals were detected by exposure of the membrane to an x-ray film for 1-16 h. 

Membrane segments corresponding to the radioactive signals were excised and the RNA 

was eluted from the membrane by protein digestion with 100 µg Proteinase K, PCR 

grade (Roche) in 400 µl wash buffer II supplemented with 1 % SDS and 5 mM EDTA 

overnight shaking at 55°C. 50 µl 3 M sodium acetic acid pH 5.2 and 500 µl 

phenol:chloroform:isoamylalcohol (25:24:1) were added and centrifuged at 20,000 rcf for 

5 min at RT. The upper phase was transferred to a new tube, 20 µg glycogen was added 

and the RNA was precipitated with 3 vol. of 100 % ethanol overnight at -20°C. The RNA 

is precipitated at 20,000 rcf for 30 min at 4°C and the pellet was washed with 70°C 

ethanol once. The RNA pellet was directly resuspended in the following mix: 10 µL 

ddH2O, 1 µl RTP Primer (10 µM), 2 µl dNTP mix (5 mM, Roche). Reverse transcription 

was carried out using the Superscript III kit (Invitrogen). After inactivation if the reverse 

transcriptase by incubation at 65°C for 15 min, 1 µl of the 20 µl reaction was used for the 

following PCR reaction: 1x LA Tag buffer+MgCl2, 0.2 µM RPI (Illumina forward index 

primer), 0.2 µl RP1 (Illumina general reverse primer), 0.125 mM dNTPs, 2.5 U  

La TakaRa Taq (Clontech). (1x 95°C, 2 min; (40x 98°C, 30 sec.; 60°C, 40 sec; 68°C, 

40 sec); 72°C, 5 min). The PCR products were extracted using 

phenol:chloroform:isoamylalcohol as described above and were precipitated by the 

addition of sodium acetate to a final concentration of 0.3 M and 3 volumes of 100 % 

ethanol then incubation at -20°C overnight. After centrifugation at 20,000 rcf for 20 min at 

4°C, the pellet was washed with 70 % ethanol, dried and resuspended in 2x gel loading 

dye (Qiagen). The PCR product was separated on a 3 % Metaphore agarose gel (Lonza) 

in TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA) and gel purified using the Qiagen 

MINI elute Kit and RNA-binding columns (Qiagen). Afterwards, the DNA concentration 
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was quantified using the Qubit quantification system (Invitrogen) and the library was sent 

for Illumina deep sequencing.  

2.2.15 Genome-wide mapping of deep sequencing data 

The data received from Illumina deep sequencing were mapped onto the human genome 

version GRCh 37.75 from ensembl (grch73.ensembl.org). In addition one human 

ribosome repeating unit (NCBI accession number U13369.1) and one 5S rRNA 

sequence were added as additional chromosomes. The sequences of the mature rRNAs 

are based on the rRNA sequences shown in the structure of the human 80S ribosome 

(PDB 4V6X; (Anger et al., 2013). Existing 5S sequences similar to the introduced 

sequence were masked with ”N” to get a specific mapping onto the introduced 5S 

sequence. A modified version of the ensembl GTF annotation file was used. Wrongly 

categorised genes were corrected by hand and the tRNA annotation based on 

tRNAscan-SE from Ensembl and the annotation of the introduced rDNA sequences were 

added.  

The sequences obtained from Illumina were 50 bp single read sequences comprised of 

an introduced random barcode NNNNNAGC at the 5’ end to distinguish PCR artefacts 

from the accumulation of independent sequences, the actual sequence and the 3’ linker 

in the case of short reads. Thus, several quality-processing steps have to be made 

before the read can be mapped onto the genome. Firstly, the introduced barcode is 

removed using pyBarcodeFilter from the pyCRAC utility (Webb, 2014). Afterwards the 

read is quality based trimmed, a potential 3’ linker sequence is removed and reads 

shorter than 21 nucleotides are discarded using Flexbar 2.7 with the following settings:  

-q TAIL –qf i1.8 -qt 13 –as TGGAATTCTCGGGTGCCAAGG -ao 2 -u 0 -m 21 -ae RIGHT. 

Duplicated sequences are removed using “pyFastqDuplicateRemover” script from the 

pyCRAC utility and the remaining sequences are mapped onto the genome. If PAR-

CRAC was applied the sequences are mapped with Bowtie 1.1.2 with one mismatch 

allowed and only the best alignments with one T to C conversion are filtered by self-

written python 2.7 scripts and are considered for further analysis. If UV-CRAC was 

applied the sequences are mapped with Bowtie2 2.2.6 using the following settings:  

-D 20 -R 3 -N 1 -L 20 -i S,1,0.50 --rdg 0,11 --mp 10,6 --ignore-quals. Further analysis and 

normalization of the data were done making use of self-written python 2.7 scripts and 

scripts from the pyCRAC utility including “pyReadCounters”, “pyPileup” and 

“pyReadAligner” scripts.  

 



Materials and Methods 

 39 

For visualization the data were imported into MochiView 1.46 

(www.johnsonlab.ucsf.edu/mochi/) and hits on the rRNA were mapped onto the 2D 

(Petrov et al., 2014) and 3D structure (PDB 4V6X, Anger et al., 2013) of the mature 

human ribosome using self-written python 2.7 scripts and in addition the 3D protein 

viewer pymol (www.pymol.org) for the 3D structure.  

2.2.16 Recombinant expression of proteins in E. coli 

For recombinant expression of proteins in E. coli BL21 codon plus cells (Agilent) the pQE 

derived A21 vector was used, which introduces a N-terminal His10-ZZ-TEV-tag to the 

protein. The main culture was inoculated from an overnight culture and grown to an 

OD600 of 0.5 at 37°C before switching to 16°C and induction with 0.3 mM of IPTG 

overnight. The cells were harvested by centrifugation at 6,000 rcf for 15 min at 4°C.  

They were washed once with PBS before the pellet was snap-frozen in liquid nitrogen 

and stored at -20°C. 

2.2.17 Purification of His-tagged proteins 

A pellet equivalent to a 1 L culture was resuspended in 20 ml lysis buffer (30 mM Tris pH 

7.4, 150 mM NaCl, 1 mM MgCl2, 1 mM PMSF, 10 % glycerol) and the cells were lysed 

using sonication (45 % amplitude, 0.7 sec on, 0.3 sec off, 4x 30 pulses with 30 sec pause 

in between). The lysate was cleared by centrifugation at 25,000 rcf for 30 min at 4°C. 

1 ml of cOmplete His-Tag purification resin (Roche) was pre-equilibrated with 10 ml of 

lysis buffer and the lysate was added three times for binding using the gravity flow 

technique. The resin was then washed two times with 10 ml wash buffer (30 mM Tris pH 

7.4, 300mM NaCl, 15 mM Imidazole pH 8, 1 mM MgCl2, 10 % glycerol) and finally the 

bound protein was eluted with 8 ml elution buffer (30 mM Tris pH 7.4, 150mM NaCl, 

500 mM Imidazole pH 8, 1mM MgCl2, 10% glycerol) and collected in 1 ml fractions. 1µl of 

each fraction was spotted onto a nitrocellulose membrane (Amersham), which was then 

stained with 0.1 % amidoblack in 50 % ethanol. Fractions containing protein were pooled 

and dialysed against 1 L dialysis buffer (30 mM Tris pH 7, 120 mM NaCl, 2 mM MgCl2, 

20 % glycerol) at 4°C overnight using Spectrum dialysis tubing that had been briefly 

boiled in 5 mM EDTA before use. After dialysis, the protein concentration was measured 

using the Pierce Coomassie plus Bradford assay kit (ThermoFisher scientific) and the 

protein was aliquoted, snap-frozen in liquid nitrogen and stored at -80°C.  

 



Materials and Methods 

 40 

2.2.18 Anisotropy 

For anisotropy measurements, proteins were first dialysed against anisotropy buffer 

(30 mM Tris pH 7.5, 120 mM NaCl) overnight. Increasing concentrations of protein were 

incubated with 20 nM of fluorescein labelled RNA (Table 1) in anisotropy buffer for 5 min 

at RT. The samples were then transferred to a Quartz SUPRASIL® 10x2 mm High 

Precision Cell cuvette (Hellma Analytics) for measurement. Anisotropy measurements 

were performed on a FluoroMax-4 spectrofluorometer (Horriba Scientific) with the 

FluorEssenceV3.5 software at 25°C. The excitation and emission wavelengths were set 

to 470 nm 517 nm, respectively. Excitation slit width was set to 5 nm and emission slit 

width was set to 10 nm. The integration time was 1 sec, the maximal trials per sample 

were set to 6 and the target standard error was 2 %. The data were fitted with formula 1 

and dissociation constants were calculated using the Origin 8.2 software. 
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r0, anisotropy of unbound RNA; rmax, amplitude; [protein]tot, total protein concentration;  

[RNA]tot, total RNA concentration 
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3 Results 

3.1 Bioinformatic analysis of high throughput next-generation 
sequencing data 

RNA binding proteins are a major part of the proteasome of the cell. For characterisation 

of these proteins, it is essential to identify their RNA interaction partners. Therefore, 

cross-linking methods have been established that allow the purification of RNA-protein 

complexes with subsequent next-generation sequencing of the RNA. The first method 

that was established was called CLIP for cross-linking and immunoprecipitation  

(Darnell, 2012). Therein, UV light is used to establish covalent bonds between proteins 

and the RNAs they contact, and the resulting RNA-protein complex is purified via an 

antibody targeting the endogenous protein. However, this relies on the availability of 

highly specific antibodies for purification and the one step purification might lead to 

contaminating RNA that is not cross-linked to the protein of interest. To overcome these 

caveats, new CLIP-based methods were developed such as the cross-linking and 

analysis of cDNA (CRAC) method, which was first established in yeast (Bohnsack et al., 

2009; Granneman et al., 2009). Briefly, CRAC uses a bi-partite terminal-tag, which allows 

a two-step purification of RNA-protein complexes with a specific first elution step utilising 

a protease cleavage site in between the tags (Figure 5A). After the first elution the RNA 

is trimmed to generate a footprint of the protein interaction site on the RNA.  

The remaining His-tag is then used for a second purification under denaturing conditions 

to remove all non-covalently cross-linked RNAs and non-specifically bound proteins. 

During this step, the RNA is radioactively-labelled and sequencing adapters are ligated to 

the 3’ and 5’ ends. Finally, the RNA-protein complexes are eluted, separated by PAGE 

and transferred to a membrane. The radioactively-labelled RNA-protein complex is 

detected by autoradiography, excised from the membrane and the RNA is eluted by 

digestion of the protein. The cDNA library is generated by reverse transcription of the 

RNA and amplification by PCR and is then sent for Illumina next-generation sequencing.  

Two alternative cross-linking approaches can be employed resulting in two different 

protocols called UV-CRAC and photoactivatable-ribonucleoside-enhanced (PAR)-CRAC. 

The first one developed was RNA cross-linking with high energy UV light at 254 nm, 

which can also result in unspecific protein-DNA cross-links. To address this issue, PAR-

CRAC uses the uridine analogue 4-Thiouridine. This is supplemented to the growth 

medium several hours before cross-linking to allow incorporation into nascent RNA. 

Afterwards, lower energy UV light at 365 nm is used, which specifically introduces
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Figure 5: Cross-linking and analysis of cDNA (CRAC). A Schematic overview of the CRAC protocol. Cells 

expressing the protein of interest fused to a FLAG (His6-PreScission protease site-FLAG2)-tag are grown in 

the presence of 4-thiouridine (4thioU) and then cross-linked using light at 365 nm (PAR-CRAC) or are 

directly cross-linked using UV light at 254 nm (UV-CRAC). After a first native purification step of the cross-

linked RNA-protein complexes using αFlag antibodies attached to magnetic beads, the complex is eluted 

and the RNA is trimmed to the binding site of the protein. A second denaturing purification is then carried out 

and “on-bead” linker ligation for library preparation is performed. The protein is digested and purified RNA is 

reverse transcribed, amplified by PCR and sequenced by Illumina next-generation sequencing. 

Abbreviations: 4thioU, 4-thiouridine; F, Flag2-tag; H, His6-tag; PAR, photoactivatable-ribonucleoside-

enhanced. Modified from Haag et al., accepted manuscript. B Schematic overview of the bioinformatic 

pipeline used for CRAC data analysis. The sequence reads from Illumina next-generation sequencing are 

first processed, ensuring that only high quality reads are mapped. Barcodes used for the detection of PCR 

artefacts over representing certain sequences are removed and the sequences are collapsed afterwards. 

The reads are aligned to a modified version of the human genome and, in the case of PAR-CRAC, only 

reads with specific T to C mutations are further analysed. Sense-aligned reads for each gene are summed 

and the numbers are normalised to the total number of sense-aligned reads. The final analysis includes an 

overview of the hit distribution on different types of RNA and prepares the data for visualisation in common 

genome viewers using self-written python scripts. 
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covalent bonds between the thio-group and amino acid side-chains, thereby reducing 

background compared to the UV254 cross-linking approach (Hafner et al., 2011).  

Analysis of the sequencing data can only be achieved using bioinformatical methods, 

because it consists of millions of reads that need to be quality controlled and processed. 

Therefore, an in-house pipeline was developed for the analysis of human UV-CRAC and 

PAR-CRAC data, based on the pyCRAC suite developed for yeast (Webb et al., 2014). 

In general, the pipeline is divided into three major parts: read preparation for the 

alignment, genome-wide read alignment and analysis of the alignment (Figure 5B).  

First, artificial sequences that were added during cDNA library preparation need to be 

removed. The library preparation includes a PCR step, for which sequences 

complementary to the 5’ and 3’ primers are ligated to the RNA. If short RNA sequences 

are amplified, this can lead to sequencing of the 3’ adapter, which then needs to be 

removed before mapping to the genome. Also, a random barcode is added to detect 

overrepresented sequences that were artificially amplified during the PCR step and this 

also needs to be removed. Second, the quality of the sequence read needs to be 

checked before mapping. Illumina sequencing is based on monitoring the incorporation 

of fluorescently labelled nucleotides during DNA synthesis and although this process has 

high accuracy, sometimes bases cannot be identified. Therefore, it is necessary for all 

reads to undergo quality control before they can be mapped. The program Flexbar was 

chosen for this step in the pipeline because it is fast and versatile, and it can remove 

trailing adapter sequences and low quality reads in one step (Dodt et al., 2012). 

Furthermore, Flexbar was set to discard sequence reads that are shorter than 21 nt, 

because short reads increase the possibility of false mapping (i.e. short reads can be 

mapped to multiple places in the genome meaning that their origin cannot be 

unambiguously determined). In the same part of the pipeline, the random barcode is 

removed and reads containing the identical barcodes together with identical sequences 

are consolidated by the “pyBarcodeRemover” and the “pyFastDuplicateRemover” scripts 

from the pyCRAC suite (Webb et al., 2014), so that only unique reads are left.  

The remaining reads can then be aligned to the human genome. For this, an altered 

version of the human genome GRCh 37.75 was generated as a template for the 

alignment. The human ribosomal DNA complete repeating unit (NCBI accession number 

U13369.1) and the 5S rDNA sequence were added as additional chromosomes 

containing the rDNA sequences of the mature rRNAs published in the 3D structure of the 

ribosome (PDB 4V6X; Anger, 2013). Additional copies of the 5S rDNA sequence were 

also masked by ‘N’ in the genome to avoid mapping of sequence reads to multiple 

locations within the genome. Also, a modified version of the ensembl annotation of the 
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genome was generated as the published version contains several incorrectly categorised 

genes (e.g. long non-coding RNAs as mRNAs and snoRNAs as snRNAs). Such genes 

were manually assigned to the correct category and the genome annotation was 

simplified by disregarding the 5’ and 3’ UTR annotation of protein coding genes. 

Various alignment programs can be used for the alignment of the reads to the genome, 

e.g. Bowtie, Bowtie2, novoalign, etc. and different programmes were used depending on 

the cross-linking method. UV-CRAC often induces mutations and microdeletions during 

reverse transcription at the nucleotides that have been cross-linked to amino acids, so 

Bowtie2 was used because it allows mutations as well as gaps in the read alignments 

(Langmead and Salzberg, 2012). Bowtie2 is a versatile program, since penalties can be 

individually set for mutations, the number of gaps in the alignment and the length of the 

gaps. The threshold score, which determines whether an alignment is considered valid or 

not, can also be adjusted as a function of the read length. The standard pipeline settings 

were chosen to allow one mismatch or one gap for short reads below 32 nucleotides, 

however, only the best alignment is reported in the output file. In contrast to UV-CRAC, 

due to the incorporation of 4-thiouridine into cellular RNAs, PAR-CRAC introduces 

specific T to C mutations at the cross-linking site, but no deletions. In this case, the 

Bowtie alignment programme was used, because it has more stringed mapping criteria, 

independent of the read length (Langmead et al., 2009). It is an ultrafast short read 

aligner, which can only detect full alignments containing mutations but no gaps. The 

maximal number of allowed mutations was set to one, allowing only the mutation 

introduced by the cross-link. Bowtie, as Bowtie2, only reports the single best alignment 

and cannot distinguish between different mutations, thus, python scripts were written to 

select for alignments containing T to C mutations for further analysis. The next step in the 

pipeline is to check whether alignments overlap with annotated regions of the genome. 

For this task, the “pyReadCounters” script of the pyCRAC suite was integrated into the 

pipeline. It counts the number of alignments for each annotated genomic feature, which 

are summarised in eleven different RNA categories (tRNA, mRNA, rRNA, micro (mi)RNA 

precursors, mitochondrial (mito)RNA, long non-coding (lnc)RNA, small nucleolar 

(sno)RNA, small nuclear (sn)RNA, pseudogenes and miscellaneous (misc)RNA). The 

data mapped to tRNA genes are then further processed by self-made python scripts so 

that reads aligned with genes encoding for the same type of tRNA, are summed up for 

simplification. Finally, results are reordered and formatted as excel tables using self-

written scripts and the data are normalised to the total number of mapped sense-reads to 

enable comparison of different samples and sequencing runs. 
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3.1.1 Verification of the pipeline  

The pipeline was initially tested with data from UV cross-linking of the helicase DDX21 

that had previously been studied (Sloan et al., 2015). The pipeline was then applied to 

NSUN6 and NSUN3 CRAC data generated by Dr. Sara Haag. When cross-linking these 

RNA methyltransferases to generate data for these analyses, HEK293 cell lines 

expressing genomically integrated version of NSUN6 or NSUN3 with a His6-PreScission 

protease site-Flag2 (FLAG)-tag from a tetracycline promoter had been subjected to UV-

CRAC. Mapping of the obtained Illumina sequencing data using the developed 

bioinformatic pipeline showed an over-representation of tRNAs for the NSUN6 sample 

compared to cells only expressing the FLAG-tag (FLAG, Figure 6A). Closer analysis of 

the reads aligning to tRNA genes showed that tRNAs for threonine, cysteine and arginine 

codons were highly enriched compared to the FLAG control (Figure 6B). Having 

identified tRNAThr and tRNACys as putative RNA substrates of NSUN6, the results of the 

bioinformatic analysis of the CRAC data were then confirmed by analysing RNAs cross-

linked to NSUN6 using Northern blotting (performed by Dr. Haag) and this confirmed that 

tRNAThr and tRNACys are indeed bound by NSUN6 in vivo, thereby verifying the output of 

the new pipeline (Haag et al., 2015b). 

In contrast, analysis of the NSUN3 CRAC data revealed an over-representation of reads 

aligning to the mitochondrial genome, especially mitochondrial tRNAs (Figure 6C), which 

is consistent with the mitochondrial localisation of the protein (Haag et al., 2016). Closer 

analysis of the data showed that among the mitochondrial tRNAs, the mitochondrial 

tRNAMet (mt-TM, Figure 6D) was highly enriched, suggesting mt-tRNAMet as a target of 

NSUN3. As for NSUN6, further in vitro and in vivo experiments (performed by Dr. Haag) 

confirmed the interaction of NSUN3 with mt-tRNAMet and in this case, showed that 

NSUN3 specifically methylates C34 at the wobble position (Haag et al., 2016).  

The finding that the RNA substrates of two proteins that were identified using the human 

CRAC analysis pipeline could be confirmed by biochemical experiments in vivo and in 

vitro shows that the different modules of the pipeline are working correctly together and 

the parameters for alignment and quality control are chosen properly. This therefore 

validates the pipeline as a tool for the mapping of next generation sequencing data 

obtained during CRAC experiments onto the human genome to identify RNA substrates 

of proteins of interest. 
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Figure 6: Genome-wide mapping of NSUN3 and NSUN6 CRAC data. A HEK293 cells expressing 

NSUN6-FLAG or the FLAG-tag alone were UV cross-linked. The RNA-protein complexes were affinity 

purified and the RNA was trimmed, radioactively labelled and ligated to linkers. RNA-protein complexes were 

separated by NuPAGE, transferred to a nitrocellulose membrane and the RNA was isolated from the bound 

RNA-protein complexes by protelytic digest with Proteinase K. The RNA was converted to cDNA for 

sequencing library production and Illumina next-generation sequencing. The pie charts represent different 

(legend continued on next page) 
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RNA classes and the relative distribution of sequencing reads that was obtained after mapping of the reads 

to the human genome. Abbreviations: mRNA, messenger RNA; tRNA, transfer RNA; snRNA, small nuclear 

RNA; snoRNA, small nucleolar RNA; rRNA, ribosomal RNA; mitoRNA, mitochondrial-encoded RNA; 

miscRNA, miscellaneous RNA; miRNA, microRNA; lncRNA, long non-coding RNA. B Relative distribution of 

tRNA sequences obtained from NSUN6-FLAG or FLAG CRAC experiments described in A. Only tRNA 

genes above 3 % are labelled. C HEK293 cells expressing NSUN3-FLAG or FLAG-tag alone were treated 

and analysed as described in A. The bar graphs below the pie charts represent the read distribution of 

mitochondrial (mt)-tRNA, mt-rRNA and mt-mRNA sequence reads among reads mapped to the mitochondrial 

genome. D Relative distribution of mt-tRNA sequences from NSUN3-FLAG or FLAG CRAC experiments 

described in C. Only mt-tRNA genes above 3 % are labelled. The experiments were performed by Dr. Sara 

Haag (Haag et al., 2016; Haag et al., 2015b). 

 

3.2 Identification of RNA interactions of the YTH domain-containing 
proteins 

Having established a bioinformatic pipeline for the mapping of CRAC data onto the 

human genome and verified that this could be used to identify RNA substrates of RNA 

modifying enzymes, we next applied this approach to identify the RNA interaction 

partners of other RNA-binding domain-containing proteins. A family of proteins that has 

raised great interest recently are the YTH domain-containing proteins. The YTH domain 

was suggested to be an RNA binding domain that can specifically recognise the N6-

methyladenosine (m6A) modification. Five YTH domain-containing proteins (YTHDF1, 

YTHDF2, YTHDF3, YTHDC1, YTHDC2) have been identified in humans so far. 

Interestingly, PAR-CLIP analysis of YTHDF2 enabled detection of YTHDF2-associated 

mRNAs leading to the identification of a role for this protein in regulating the decay of 

specific m6A-containing mRNAs (Wang et al., 2014a). This shows that the identification 

of interaction targets is crucial and therefore, CRAC was applied to identify RNA 

interaction partners, which can provide insights into the function of the other YTH 

domain-containing proteins. To perform the CRAC analysis, HEK293 stable cell lines 

where the individual YTH domain-containing proteins could be inducibly expressed with a 

C-terminal FLAG-tag first had to be generated and protein expression verified.  

For this, the coding sequences of the YTH domain-containing proteins, YTHDF1, 

YTHDF2, YTHDF3, YTHDC1 and YTHDC2 were cloned into a pcDNA5 vector encoding 

a C-terminal FLAG-tag. HEK293 T-Rex Flp-In cells were transfected with the constructs 

to generate stable cell lines. The cloned coding sequence is genomically integrated at a 

defined locus in the genome to ensure that no random alterations of the genome can 

occur and transfected cells are selected using antibiotics. To check proper integration of 

the coding sequence of interest, the generated stable cell lines were grown in the 
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presence (induced) or absence (non-induced) of doxycycline for 24 h. Whole cell lysates 

were prepared and separated by SDS-PAGE followed by western blotting (Figure 7). 

FLAG-tagged proteins were detected using an αFlag antibody. For each of the proteins, 

a signal at the expected size was detected for all samples grown in the presence of 

doxycycline, confirming expression of tagged forms of the correct proteins. No signal 

could be detected for non-induced cells, showing that the expression was inducible. 

Tubulin was used as a loading control to display equal loading of the associated 

samples. 

After confirming correct expression of the YTH domain-containing proteins, the cell lines 

were further analysed by immunofluorescence microscopy (IF) to ensure correct 

localisation of the proteins, if known, as well as normal appearance of the cells (Figure 

8). Protein expression was induced for 24 h before fixation of the cells for IF. An αFlag 

antibody was used for the detection of the FLAG-tagged version of the protein and 

nuclear material was visualised by DAPI staining. This shows an exclusively cytoplasmic 

localisation for YTHDF2-FLAG and nuclear localisation for YTHDC1-FLAG, which is in 

line with the localisations reported for the endogenous proteins and with their proposed 

function in mRNA decay and pre-mRNA splicing respectively (Hartmann et al., 1999; 

Wang et al., 2014a). In keeping with their close homology to YTHDF2, YTHDF1-FLAG 

and YTHDF3-FLAG display cytoplasmic localisation similar to YTHDF2-FLAG. 

Interestingly, YTHDC2-FLAG shows localisation to two compartments, a dominant 

cytoplasmic signal and minor nuclear signal.  

Figure 7: Generation of stable HEK293 cell lines expressing YTH 

domain-containing proteins. Whole cell lysate from HEK293 cell lines 

expressing FLAG-tag versions of the indicated proteins was prepared, 

separated by SDS-PAGE and subjected to western blotting. The cells were 

induced (+) for 24 h with doxycycline (Dox) or untreated (-). The FLAG-

tagged proteins were detected using an αFlag antibody. Tubulin was used 

as a loading control and detected with an αTubulin antibody. 
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Figure 8: Localisation of YTH domain-containing proteins. Stable cell lines expressing FLAG-tagged 

versions of the indicated proteins were subjected to immunofluorescence microscopy after 24 h of induction 

of protein expression. An αFlag antibody was used to detect the FLAG-tagged proteins. DAPI staining 

indicates the position of the cell nucleus. The scale bar represents 10 µm. 

 

Having established inducible stable cell lines for the expression of FLAG-tagged versions 

of all five YTH domain-containing proteins, CRAC experiments were performed with 

these cell lines to obtain an unbiased, genome-wide overview of RNA interaction 

partners of the YTH domain-containing proteins. For the PAR-CRAC experiments, 

YTHDF1-FLAG, YTHDF2-FLAG, YTHDF3-FLAG, YTHDC2-FLAG and YTHDC2-FLAG 

cell lines were induced for 36 h to express the FLAG-tagged version of the protein. Cells 

expressing the FLAG-tag alone were used as a negative control. After purification of 

protein-RNA complexes they were then separated by SDS-PAGE, transferred to a 

membrane and radioactive signals of the RNA were detected by autoradiography (Figure 

9). The autoradiogram revealed signals of radioactively-labelled RNA at the expected 

size of the RNA-protein complex in all YTH domain-containing protein samples, 

confirming efficient cross-linking of the tagged proteins to cellular RNAs. As expected, no 

signal was detected in the negative control representing cells only expressing the FLAG-

tag (Figure 9). After excision of the regions of the membrane containing the radioactive 

signals and cDNA library preparation, the library was send for Illumina next-generation 

sequencing. The resulting data were then processed with the established in-house 

human CRAC pipeline.  
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The overall distribution of the alignments to the different RNA categories was analysed 

first (Figure 10). Compared to the FLAG control, YTHDF1, YTHDF2, YTHDF3 and 

YTHDC1 show an increased number of mRNA alignments (Figure 10A-D, F).  

For YTHDF1, the proportion of the total reads that aligned to mRNA genes increased 

from 50 % to 70 % (Figure 10A, F). Similarly, the fraction of alignments to mRNA genes 

in the YTHDF2 and YTHDF3 samples rose to 75 % and 73 % respectively (Figure 10B, 

C). Furthermore, YTHDC1 also showed an 11 % increase to 61 % in mRNA alignments 

compared to the FLAG control (Figure 10D). An increase in the number of reads 

mapping to tRNA genes was seen for YTHDF1 (14 %), YTHDF2 (8 %), YTHDF3 (10 %) 

and YTHDC2 (38 %), compared to the FLAG control (6 %) (Figure 10A-F). However, an 

increase in the proportion of reads mapping to tRNAs has also previously been seen in 

other PAR-CRAC samples of RNA-binding proteins (data not shown), suggesting that it 

can be non-specific. Since this is particular significant for YTHDC2, the distribution of the 

reads among the tRNA genes was analysed and compared to the control. The 

distribution did not show any substantial changes, further supporting that the increase is 

unspecific. Interestingly, YTHDC2 was the only sample that showed an increase in the 

proportion of reads corresponding to rRNA sequences compared to the FLAG control 

(Figure 10E-F). To determine whether this subtle enrichment of rRNA sequences in the 

YTHDC2 PAR-CRAC sample was reproducible, a second CRAC experiment was 

conducted with the YTHDC2-FLAG cell lines using an alternative cross-linking method 

(UV-CRAC). Mapping and analysis of the data obtained from this experiment 

demonstrated an even more prominent enrichment of rRNA sequences in the YTHDC2-

FLAG sample compared to the FLAG control (Figure 10G-H). Indeed, reads mapping to 

the rDNA represented 36 % of total reads compared to only 13 % in the corresponding 

FLAG control.  

Figure 9: YTH domain-containing proteins cross-link to 

cellular RNAs. HEK293 cells expressing FLAG-tagged YTH 

domain-containing proteins were grown in media containing  

4-thiouridine and RNAs were cross-linked using light at 

365 nm. After affinity purification and trimming, the 5’ ends of 

the co-purified RNAs were radioactively labelled. RNA-protein 

complexes were separated by NuPAGE, transferred to a nylon 

membrane and visualised by autoradiography. 
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Figure 10: Genome-wide mapping of YTH domain-containing protein CRAC data. 

(legend on next page) 
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A-F HEK293 cells expressing YTHDF1-FLAG (A), YTHDF2-FLAG (B), YTHDF3-FLAG (C), YTHDC1-FLAG 

(D), YTHDC2-FLAG (E) or the FLAG-tag alone (F) were grown in media containing 4-thiouridine and RNAs 

were cross-linked using light at 365 nm (see also Figure 9). The RNA-protein complexes were affinity 

purified, the co-purified RNA was trimmed, the 5’ ends of were radioactively labelled and adapters were 

ligated to both ends of the RNA. RNA-protein complexes were separated by NuPAGE, transferred to a nylon 

membrane and visualised by autoradiography. The RNA was eluted from the RNA-protein complexes on the 

nylon membrane and transcribed into cDNA for sequencing library preparation and Illumina next-generation 

sequencing. The pie charts represent different RNA classes and the relative distribution of sequencing reads 

that was obtained after mapping of the reads to the human genome. Abbreviations: mRNA, messenger RNA; 

tRNA, transfer RNA; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; rRNA, ribosomal RNA; 

mitoRNA, mitochondrial-encoded RNA; miscRNA, miscellaneous RNA; miRNA, microRNA; lncRNA, long 

non-coding RNA. G-H HEK293 cells expressing YTHDC2-FLAG (G) or the FLAG-tag alone (H) were UV 

cross-linked at 254 nm and treated otherwise as in A-F. 

Taken together, the CRAC data show an overrepresentation of reads mapping to protein-

coding genes (mRNAs) for YTHDF1, YTHDF2, YTHDF3 and YTHDC1, which is in line 

with the earlier publications of YTHDF2 and YTHDC1 (Hartmann et al., 1999; Wang et 

al., 2014a). During this study, two additional reports were published using the CLIP 

method to identify genome-wide RNA substrates of YTHDF1 and YTHDC1 (Wang et al., 

2015; Xiao et al., 2016). There, YTHDF1 was identified as an mRNA binding translation 

enhancer and it was confirmed that YTHDC1 is involved in pre-mRNA splicing, 

consequently supporting the elevated mRNA levels found in the PAR-CRAC experiments 

seen in Figure 10. Similar to YTHDF1 and YTHDF2, YTHDF3 is also likely to recognise 

m6As in mRNAs due to the increased proportion of reads mapping to mRNAs and the 

cytoplasmic localisation of the protein. This fact makes the rRNA increase of YTHDC2 

even more interesting because it is the only YTH domain-containing protein with an 

elevated level of reads mapping to rRNA, suggesting a specific interaction with ribosomal 

RNA. 

Since YTHDC2 showed an increase in the proportion of reads mapping to the rDNA, the 

next step was to check for the accumulation of reads at specific sites on the rDNA.  

A multiple sequence alignment of the FLAG and YTHDC2-FLAG PAR-CRAC data on the 

human ribosomal DNA complete repeating unit was done and the accumulation of reads 

was mapped at single nucleotide level within the region of the cDNA repeat from which 

the 47S pre-rRNA is described (Figure 11). High accumulation of reads (peaks) 

corresponds to potential protein cross-linking sites on the RNA. YTHDC2 showed distinct 

and specific peaks in regions coding for the mature rRNAs on the repeat, but not in the 

spacer regions (Figure 11A). The main cross-linking site of YTHDC2 is located at the 

3’ end in the mature 18S rRNA (Figure 11B). In accordance, an increased mutation rate 
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Figure 11: Profile of YTHDC2 PAR-CRAC hits on pre-rRNA. A Sequence read distribution of YTHDC2-

FLAG (YTHDC2, black plot) or FLAG-tag (FLAG, grey plot) PAR-CRAC samples mapped to the rDNA gene 

encoding the 47S pre-rRNA. The accumulation of sequence reads on the y-axis is normalised to the total 

number of mapped sense-reads (see also Figures 9 and 10E-F). The asterisks mark background peaks also 

present in samples derived from cells expressing the FLAG-tag only. A representation of the 47S pre-rRNA is 

shown below indicating the positions of the mature rRNAs as rectangles and externally and internally 

transcribed spacers as lines on the x-axis. Abbreviations. ETS, external transcribed spacer; ITS, internal 

transcribed spacer; nt, nucleotides. B Magnified view of the 18S rDNA sequence depicted in A. The x-axis 

represents the nucleotide numbering of 18S rDNA. The y-axis of the upper diagram is the same as in A.  

The lower diagram indicates the position of T to C mismatches between sequence reads and the genomic 

sequence for YTHDC2-FLAG (YTHDC2, black plot) or FLAG-tag alone (FLAG, grey plot). 
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of distinct thymine residues was detected within the cross-linking site, confirming the 

specificity of the peak (Figure 11B lower panel). Interestingly, the YTHDC2 cross-linking 

site is localised close to the 3’-end of the 18S rRNA similar to the location of the m6A 

modification. Cross-linking of YTHDC2 close or at this modification site would be in line 

with the putative function of the YTH domain recognising the m6A modification, however, 

the cross-linking site of YTHDC2 and the m6A modification are separated by about 150 nt 

in the rRNA sequence. To analyse whether the modification is close to the cross-linking 

site in 2D or 3D, the YTHDC2-FLAG CRAC data were mapped onto the 2D structure of 

the 18S rRNA (Petrov et al., 2014) and the 3D structure of the SSU of the human 

ribosome (PDB 4V6X, Anger et al., 2013). The number of sequence reads mapped per 

nucleotide is represented by a colour gradient from orange to red, red representing the 

highest accumulation of sequence reads normalised to 100 % (Figure 12 and 13). 

Analysis of the 2D mapping revealed that the YTHDC2 cross-linking site covers the stem 

loop structure of helix 43, which is in the vicinity of the m6A1832 at the 3’ end of 18S 

(Figure 12). Additionally, mapping on the 3D structure confirmed this observation and 

showed that the cross-linking site is in close proximity to helices 41 and 42, and helices 

28 and 29 (Figure 13). Therefore, YTHDC2 cross-links to the “head” region of the SSU 

and the YTH domain of YTHDC2 could very well recognise the m6A modification at the 

end of the 18S rRNA. 

 

Figure 12: Mapping of YTHDC2 PAR-CRAC data onto the human 18S rRNA secondary structure. The 

sequence read distribution of YTHDC2-FLAG PAR-CRAC data (see Figure 11) were mapped on the 

secondary structure of the human 18S rRNA (Petrov et al., 2014). Cross-linking sites are coloured from 

orange (30 %) to red (100 %) and normalised to the highest peak on the 18S rDNA, the highest peak being 

100 %. Residues containing more than 10 % T to C mismatches are coloured in blue. The m6A-modified 

residue is coloured in green. 
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Figure 13: Mapping of YTHDC2 PAR-CRAC data on the 3D structure of the human 18S rRNA. The read 

distribution of YTHDC2-FLAG (see Figure 11) was mapped on the 3D structure of the human 18S rRNA 

(PDB 4V6X, Anger et al., 2013). Cross-linking sites are coloured from orange (30 %) to red (100 %) and 

normalised to the highest peak on the 18S rRNA, the highest peak being 100 %. The A1832 residue, which 

carries an m6A modification, is highlighted in green. 

3.3 YTHDC2 associates with ribosomal complexes 

The next step was to verify the association of YTHDC2 with the ribosome suggested by 

the CRAC analysis with different methods. The large size of ribosomal and pre-ribosomal 

complexes enables the separation of these complexes from free proteins and small 

complexes by sucrose gradient density centrifugation. The small (SSU; 40S) and large 

(LSU; 60S) ribosomal subunits as well as assembled 80S ribosomes have distinct 

migration patterns within the gradient allowing the differentiation of proteins associating 

with the different subunits. Furthermore, the availability of an antibody against YTHDC2 

made it possible to investigate the association of the endogenous protein with ribosomal 

complexes in wild type (WT) cells. 

Thus, sucrose gradient density centrifugation was performed using HEK293 WT cells 

and YTHDF2-FLAG cells, in which fusion protein expression had been induced for 36 h 

before cell harvesting, were used as a control. Whole cell lysates of HEK293 WT and 

YTHDF2-FLAG cells were prepared and loaded on a 10-45 % sucrose gradient followed 



Results 

 56 

by overnight ultracentrifugation to separate ribosomal and non-ribosomal fractions. After 

fractionation of the gradient into 23 fractions, the A260 of each fraction was measured. 

This estimate of the RNA content was used to generate a profile and determine which 

fractions contained the 40S and 60S subunits and 80S monosomes (Figure 14 upper 

panel). Afterwards, the protein content of each fraction was analysed by SDS-PAGE 

followed by western blotting (Figure 14 lower panels). The αFlag antibody, which 

detected the YTHDF2-FLAG, showed a signal exclusively in fractions containing non-

ribosomal complexes (Figure 14 bottom western blot). This is in line with the 

overrepresentation of mRNA alignments seen in the YTHDF2 CRAC, data because 

mRNPs are enriched in these fractions (see Figure 10B, F). In contrast, the αYTHDC2 

antibody shows an extensive signal for YTHDC2 in the fractions containing ribosomal 

complexes with distinct peaks in fractions 11-13 and fraction 17 (Figure 14 top western 

blot). Interestingly, these fractions contain the 40S subunit (fractions 11-13) and the 80S 

ribosome (fraction 17) meaning that all of these fractions contain SSU particles, which is 

in line with the identification of a cross-linking site for YTHDC2 at the 3’ end of 18S rRNA 

sequence (see Figure 10E-H).  

 

Figure 14: YTHDC2 is associated with ribosomal complexes. Whole cell lysates from wild type HEK293 

cells or cells expressing YTHDF2-FLAG were separated by sucrose gradient density centrifugation. Fractions 

were taken manually and A260 measurements of the fractions were used to generate an RNA profile from 

which the fractions containing different ribosomal complexes could be determined (indicated below the 

profile). Proteins in the different fractions were TCA precipitated, separated by SDS-PAGE and subjected to 

western blotting (bottom). Endogenous YTHDC2 was detected using an αYTHDC2 antibody. YTHDF2-FLAG 

was detected using an αFlag antibody. 
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Having confirmed the association of YTHDC2 with the ribosome, the next step was to 

identify the region of the protein that is responsible for this interaction. YTHDC2 is a large 

protein with a calculated mass of 160 kDa and has a multi-domain structure. In silico 

sequence homology analysis identified three domains, a N-terminal R3H domain, a 

putative RNA helicase domain and a C-terminal YTH domain (Figure 15A, UniProt, 

2015). The R3H domain is a general nucleic acid binding domain, with a preference for 

binding guanine residues (Jaudzems et al., 2012). RNA helicase domains are generally 

involved in altering RNA-RNA and RNA-protein interactions (reviewed in Bleichert and 

Baserga, 2007) and in other proteins, the YTH domain has been shown to recognise m6A 

modifications in RNAs (Xu et al., 2015). To investigate if either of the two terminal RNA-

binding domains is responsible for the interaction of YTHDC2 with the ribosome, 

constructs for the expression of truncated versions of YTHDC2 were generated.  

The DNA sequences coding for amino acids 192-1430 (∆R3H) or amino acids 1-1287 

(∆YTH) of YTHDC2 (Figure 15A) were cloned into the pcDNA5 vector adding the 

sequence of a C-terminal FLAG-tag to the CDS. The CDSs were genomically integrated 

into the genome of HEK293 Flp-In T-Rex cells to generate stable cell lines as previously 

described. To test expression of the truncated proteins, the cell lines were grown in the 

presence or absence of doxycycline for 24 h, whole cell lysates were prepared and 

separated by SDS-PAGE and tagged proteins were detected by western blotting using 

an αFlag antibody. A signal could be detected at the correct size in cells grown in the 

presence of doxycycline confirming the correct expression of the inserted sequence 

(Figure 15B). CRAC experiments were therefore conducted with these cell lines after 

inducing ∆R3H-FLAG or ∆YTH-FLAG expression for 36 h similar to the PAR-CRAC 

experiments of the YTH domain-containing proteins before and analysed similarly (Figure 

15C and D). The stable cell line expressing full-length YTHDC2-FLAG was included as a 

positive control. Analysis of the distribution of the sequence reads obtained for YTHDC2-

FLAG between the different RNA classes showed that the portion of reads mapping to 

rDNA sequences was similar to the first YTHDC2-FLAG PAR-CRAC experiment. 

Interestingly, the rRNA portion is reduced to 3.5 % in the ΔR3H sample (Figure 15E). 

Mapping of this data onto the 18S rRNA sequence of the rDNA repeat confirmed this as, 

compared to YTHDC2-FLAG sample (black plot), the ∆R3H-FLAG sample (red plot) 

showed a reduced peak at the end of 18S rRNA (Figure 15C). This suggests that the 

R3H domain is involved in the interaction of YTHDC2 with the ribosome. In contrast, the 

∆YTH-FLAG sample showed a similar fraction of reads mapped to rDNA (8 %) as full-

length YTHDC2 (Figure 15E). Also, the profile along the 18S rRNA sequence of 



Results 

 58 

 

Figure 15: The R3H domain of YTHDC2 contributes to the association with the ribosome. A Schematic 

representation of the domain structure of YTHDC2. The putative R3H domain (red), the RNA helicase core 

domain (green) and the YTH domain (blue) are indicated. The bars below represent the boundaries of the 

truncation constructs. ∆R3H, truncation of the R3H domain (YTHDC2192-1430); ∆YTH, truncation of the YTH 

domain (YTHDC21-1287). B Whole cell lysate from HEK293 cell lines expressing ΔR3H-FLAG (ΔR3H) or 

ΔYTH-FLAG (ΔYTH) was prepared, separated by SDS-PAGE and subjected to western blotting. The cells 

were induced (+) for 24 h with doxycycline (Dox) or untreated (-). The FLAG-tagged proteins were detected 

using an αFlag antibody. Tubulin was used as a loading control and detected with an αTubulin antibody. 

(legend continued on the next page) 
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D-C HEK293 cells expressing ΔR3H-FLAG (ΔR3H, red plot, C), ΔYTH-FLAG (ΔYTH, blue plot, D) or full 

length YTHDC2-FLAG (YTHDC2, black plot, C and D) were grown in media containing 4-thiouridine and 

RNAs were cross-linked using light at 365 nm. After trimming, the 5’ ends of the co-purified RNAs were 

radioactively labelled and adapters were ligated to both ends. RNA-protein complexes were separated by 

NuPAGE, transferred to a nylon membrane and visualised by autoradiography. The RNA was eluted from 

the RNA-protein complexes on the nylon membrane and transcribed into cDNA for sequencing library 

preparation and Illumina next-generation sequencing. The plot represents the sequence read distribution on 

the human 18S rDNA normalised to the total number of mapped sense-reads. The lower diagram indicates 

the position of T to C changes in sequence reads compared to the genomic sequence for ΔR3H-FLAG 

(ΔR3H, red plot, C) or ΔYTH-FLAG (ΔYTH, blue plot, D). Abbreviation: nt, nucleotides. E Relative abundance 

of sequence reads mapped to rDNA for full-length YTHDC2-FLAG (YTHDC2, black), ΔR3H-FLAG (ΔR3H, 

red) and ΔYTH-FLAG (ΔYTH, blue) PAR-CRAC data shown in C and D. The data is normalised to the total 

number of mapped sense-reads. 

the ∆YTH sample (blue plot, Figure 15D) is similar to that of the YTHDC2 sample (black 

plot, Figure 15D) including the peak at the 3’ end of the 18S rRNA sequence. The CRAC 

analyses of the truncated versions of YTHDC2 therefore suggest that the R3H RNA-

binding domain facilitates the contact between YTHDC2 and the 18S rRNA, whereas 

deletion of the YTH domain has no effect on the interaction seen in the CRAC analysis. 

 

3.4 The YTH domain of YTHDC2 recognises the 18S m6A in vitro 

The interaction of YTHDC2 with the ribosome could be verified in vivo by two 

independent methods, namely CRAC experiments and sucrose density gradients. 

However, CRAC of the ∆R3H-FLAG and ∆YTH-FLAG cell lines suggests that the R3H 

domain is primarily responsible for ribosome interaction of YTHDC2 and that the YTH 

domain does not significantly contribute to the association of this protein with the 

ribosome. Given that in other proteins, the YTH domain has been shown to specifically 

bind m6A modifications and that the cross-linking site of YTHDC2 is in close proximity to 

the 3’ end of the 18S rRNA where such a modification has been reported, this raises the 

possibility that the YTH domain of YTHDC2 “reads” the m6A modification in the 18S 

rRNA.  

To test this possibility, in vitro anisotropy experiments were carried out to first test the 

affinities of the YTH domain of YTHDC2 for N6-methyadenosine-containing RNA. 

Therefore, the YTH domain of YTHDC2 (amino acids 1277-1430) was cloned into a 

pQE80-vector derivative (A21) for expression of this protein domain with an N-terminal 

His10-Zz-TEV protease site (HZZT)-tag. Also, the YTH domains of YTHDF2 (amino acids 

380-579) and YTHDC1 (amino acids 344-509) were cloned into the same vector, 

because they could serve as a positive control, since they have previously been shown 
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to specifically bind m6A-containing RNA (Li et al., 2014; Xu et al., 2014). The boundaries 

were chosen according to the published crystal structures of YTHDC1 and YTHDF2  

(Xu et al., 2015; Xu et al., 2014) or homology sequence alignments in the case of 

YTHDC2. The proteins were expressed in Escherichia coli and purification was 

established (Figure 16).  

The majority of the m6A modifications are found in the sequence context GG(m6A)CU 

(Dominissini et al., 2012), which can be recognised by the YTH domains of YTHDF2 and 

YTHDC1 (Xu et al., 2015). Anisotropy measurements were carried out to measure 

binding of the YTH domains to 9 nucleotide long single stranded RNA oligonucleotide 

labelled at the 5’ end with fluorescein containing this sequence motif either with or 

without m6A modification (Figure 17). Strong binding could be detected for HZZT-

YTHDF2380-579 (Kd 0.019 ± 0.003 µM) and HZZT-YTHDC1344-509 (Kd 0.043 ± 0.004 µM) to 

the modified GG(m6A)CU. No binding could be detected for HZZT-YTHDF2380-579 to the 

unmodified sequence and only very low binding of HZZT-YTHDC1344-509 (Kd 33 ± 8) 

(Figure 17A, B, D), confirming that the YTH domains of YTHDC1 and YTHDF2 

specifically recognise the m6A modification and establishing conditions with which the 

affinity of the YTH domain of YTHDC2 for the modified and unmodified sequence could 

be monitored. The Kd of YTHDC2 to the modified sequence was found to be 

3.19 ± 0.27 µM while the affinity of the YTH domain of YTHDC2 for the unmodified 

sequence was so low that a Kd value could not be determined (Figure 17C, D).  

This demonstrates that similar to the YTH domains of YTHDF2 and YTHDC1, the YTH 

domain of YTHDC2 also specifically recognises this modification. Notably however, in 

these experiments, the YTH domain of YTHDC2 displayed a significantly lower binding 

affinity for the m6A-modified oligonucleotide than the YTH domains of YTHDC1 of 

YTHDF2.  

Figure 16: Recombinant expression of YTH 

domains. Recombinantly expressed, HZZT-tagged 

fragments of the indicated proteins corresponding 

to the YTH domains were purified, separated by 

SDS-PAGE and visualised with Coomassie 

staining. W1310A and W1360A are versions of 

YTHDC21277-1430 with tryptophan to alanine 

substitutions of the amino acids corresponding to 

positions 1310 or 1360 of the full-length protein. 
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Figure 17: The YTH domain of YTHDC2 recognises the m6A modification. A-C A fluorescine-labelled 

single stranded 9 nucleotide RNA containing the GGACU mRNA sequence in which the “A” was either 

unmodified (red circles) or carried an m6A modification (black squares) was incubated with HZZT-

YTHDF2380-579 (A), HZZT-YTHDC1344-509 (B) or HZZT-YTHDC21277-1430 (C) at the indicated concentrations 

and fluorescence anisotropy was measured. D The dissociation constants (Kd) of the experiments shown in 

A-C are given. In cases of negligible protein binding to the RNA Kd values could not be determined (n.d.). 

The finding that YTHDC2 is associated with the ribosome and cross-links to the 3’ end of 

the 18S rRNA in close proximity to the m6A modification present there, suggests that this 

modification could be recognised by the YTH domain of YTHDC2. Interestingly, the m6A 

modification in the 18S rRNA is present in a different sequence motif UA(m6A)CA than 

the majority of other m6A modifications. Therefore, anisotropy measurements were 

performed to test the relative affinities of the different YTH domains for the m6A 

modification in these two alternative sequence contexts (Figure 18). This showed that, 

compared to the GG(m6A)CU motif, the Kd of HZZT-YTHDF2380-579 for the UA(m6A)CA 

motif increased significantly to 0.058 ± 0.003 µM (p<0.0001; Students t test) (Figure 18A, 

B). Similarly, for the UA(m6A)CA motif, the Kd of HZZT-YTHDC1344-509 increased to 

0.256 ± 0.009 µM (p<0.0001, Students t test) (Figure 18B, D), demonstrating a clear 
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reduction in binding affinity of these YTH domains to the m6A modification in the 18S 

rRNA sequence context, as compared to the classical GG(m6A)CU motif identified for 

most m6A modifications in mRNAs. In contrast, the Kd of HZZT-YTHDC21277-1430 

significantly decreased to 2.57 ± 0.18 µM (p=0.0297; Students t test) showing opposite 

effects when interacting with the modified 18S rRNA sequence (Figure 18C, D). This 

means that the YTH domain of YTHDC2 is the only protein that shows an increased 

binding to the m6A modification in the 18S rRNA sequence context, further supporting a 

model in which YTHDC2 associates with the ribosome and would recognise this 

modification. Furthermore, the YTH domain of YTHDC1 strongly selects against this 

sequence context for m6A binding suggesting that it is highly specialised for recognition 

of the m6A modification in the mRNA/GG(m6A)CU context. 

 

Figure 18: The YTH domain of YTHDC2 recognise the m6A in the 18S rRNA sequence context with 
higher affinity than the m6A in the consensus motif. A-C A fluorescine-labelled single stranded 9 

nucleotide RNA containing the modified UA(m6A)CA 18S rRNA sequence (green triangles) was incubated 

with HZZT-YTHDF2380-579 (A), HZZT-YTHDC1344-509 (B) or HZZT- YTHDC21277-1430 (C) at the indicated 

concentrations and fluorescence anisotropy was measured. For comparison the data of the proteins binding 

to the modified GG(m6A)CU mRNA sequence are shown again (see Figure 17, black squares) D The 

dissociation constants (Kd) of the experiments shown in A-C are given. 
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To identify key residues in the YTH domain of YTHDC2 that contribute to m6A 

recognition, the amino acid sequences of these three YTH domains were aligned and 

analysed with the multiple sequence aligner MUSCLE (Figure 19, Edgar, 2004). This 

revealed that the YTH domains of YTHDC2 and YTHDC1 are 49.25 % identical, whereas 

the YTH domain of YTHDF2 shares only 32.84 % sequence identity. Interestingly, the 

tryptophan residues W432, W486 and W499 in YTHDF2 and W377, W428 and W447 in 

YTHDC1, which were shown to form the aromatic cage and mediate the m6A interaction 

(Xu et al., 2014; Zhu et al., 2014) are also conserved in YTHDC2 (W1310, W1360 and W1373; 

arrows, Figure 19). To test whether these residues also contribute to the binding of the 

YTH domain of YTHDC2 to the m6A in the 18S rRNA sequence context, two of the 

tryptophan residues, W1310 and W1360, were mutated to alanine (Figure 19, red arrows). 

Proteins containing the mutations were expressed and purified (Figure 16) and additional 

anisotropy experiments were performed to monitor association with the RNA 

oligonucleotide containing the m6A modification in the 18S rRNA sequence motif. 

Interestingly, both mutations abolished the binding to the m6A modification implying that 

the YTH domain of YTHDC2 interacts with the m6A modification in a similar manner as 

the other YTH domain-containing proteins (Figure 20). 

 

Figure 19: Sequence alignment of the YTH domains found in human proteins. Sequence alignment of 

the YTH domains of YTHDC2, YTHDC1 and YTHDF2 by the multi sequence aligner MUSCLE visualised with 

ESPript 3.0. The secondary structural features of the YTH domain of YTHDC2 (PDB 2YU6) are shown above 

the corresponding amino acids. Amino acids that are conserved in all three protein domains are shown with 

a red background and the red arrows indicate tryptophan 1310 and 1360 of YTHDC2. The black arrow 

indicates tryptophan 1373 of YTHDC2. 
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Figure 20: W1310 and W1360 of the YTH domain of YTHDC2 are required for binding to m6A. A A 

fluorescine-labelled single stranded 9 nucleotide RNA containing the modified UA(m6A)CA 18S rRNA 

sequence was incubated with HZZT-YTHDC21277-1430 containing either the W1310A substitution (green) or 

W1360A substitution (blue). Incubation with the wilde type protein (WT, black squares) is shown as a 

comparison (see Figure 18). B The dissociation constant (Kd) of the WT YTHDC2 experiment shown in A is 

given. 

Together these results confirm that the YTH domain of YHTDC2 can specifically bind 

m6A modified RNAs and that it has a significantly higher affinity to the modification in the 

sequence context of the 18S rRNA, implying that it may function as a reader of this 

modification in the cell. Mutational analysis showed that YTHDC2 has probably a similar 

binding mechanism for m6A modified RNA as the other YTH domain-containing proteins. 

 

3.5 Analysis of the cellular function of YTHDC2 

The data show that YTHDC2 associates with ribosomal complexes, likely via its R3H 

domain and the YTH domain can specifically recognise the m6A modification, with an 

increased affinity for modified nucleotide in the sequence context of the rRNA.  

This raises the question of what the function of such interactions might be in the cell.  

The immunofluorescence experiments showed that YTHDC2 predominantly localises to 

the cytoplasm but a fraction of the protein is also present in the nucleus (Figure 8). 

Together with the partially enclosed localisation of the m6A modification of the 18S rRNA 

in the mature ribosome, this lead to the hypothesis that it might be involved in ribosome 

biogenesis and may be recognising the 18S rRNA m6A modification in a pre-ribosomal 

complex. Sucrose density gradients could not answer the question whether YTHDC2 

interacts with pre-ribosomal complexes or the mature ribosome, because both particles 

are located in similar fractions. Therefore, to determine if YTHDC2 is required for 

ribosome biogenesis, YTHDC2 was depleted from human cells by RNAi and effects on 
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the levels of precursor rRNAs and newly synthesised rRNAs were monitored by northern 

blotting and pulse-chase labelling experiments, respectively.  

First, the knockdown efficiency of three independent siRNAs targeted against YTHDC2 

mRNA (siYTHDC2_1, siYTHDC2_2, siYTHDC2_3) was tested. HeLa cells were 

transfected with 30 nM siRNA and after 96 h, total cellular RNA was isolated. Analysis by 

RT-qPCR showed that the level of the YTHDC2 mRNA in cells that had been transfected 

with siRNAs against YTHDC2 were reduced to 15-25 % of the level in wild-type cells or 

of cells that had been treated with the control siRNA. GAPDH and Tubulin mRNAs were 

used for normalisation of different cDNA concentrations (Figure 21A). In parallel, siRNA-

treated cells were used to prepare whole cell extracts that were separated by SDS-PAGE 

and analysed by western blotting using antibodies against YTHDC2 and Tubulin as a 

loading control. In extracts from cells that had been transfected with siRNAs against 

YTHDC2, no signal could be detected for endogenous YTHDC2 using the αYTHDC2 

antibody, showing that the knockdown leads to efficient protein depletion (Figure 21B). 

Having established suitable knockdown conditions, northern blots were prepared to 

visualise accumulation or depletion of rRNA precursors. Therefore, human cells were 

treated with the three different siRNAs against YTHDC2 and a control siRNA. Total 

cellular RNA was extracted, separated on an agarose-glyoxal gel and transferred to a 

membrane. Two DNA probes complementary to sequences either in ITS1 or ITS2 

(depicted as red asterisks in Figure 22A) were used for monitoring SSU or LSU pre-rRNA 

processing. A probe recognising the actin mRNA was used as a loading control as well 

Figure 21: Establishment of RNAi against YTHDC2. A HEK293 cells were transfected with 30 nM of the 

indicated siRNA and after 96 h, RNA was isolated and used to generate cDNA. The levels of the YTHDC2 

mRNA were determined by RT-qPCR and the levels of the GAPDH and Tubulin mRNAs were used for 

normalisation. B HEK293 WT cells were transfected with 30 nM of the indicated siRNA and after 96 h cells 

were harvested. Whole cell extract was prepared, separated by SDS-PAGE and analysed by western 

blotting using an αYTHDC2 antibody, or an αTubulin antibody as a loading control. 
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as methylene blue staining of mature 18S and 28S rRNA (Figure 22B). No changes in 

the levels of any pre-rRNA species could be detected while comparing knockdown 

samples (siYTHDC1_1, siYTHDC2_2, siYTHDC2_3) and control (siControl) or wild-type 

(WT) sample (Figure 22B), suggesting that ribosome biogenesis is not altered upon 

knockdown of YTHDC2. However, northern blots represent a steady state level of pre-

cursor RNAs in which aberrant pre-rRNAs might have already been degraded by the 

RNA surveillance machinery, therefore, the next step was to investigate pre-RNA 

processing via pulse-chase experiments. 

Pulse-chase experiments have a higher sensitivity, because only nascent rRNA 

transcripts are detected and this method can enable visualisation of subtle processing 

defects that effect mature rRNA abundance or the ratio of SSU to LSU maturation. 

Therefore, human cells were treated with siRNAs as described for the northern blotting. 

Then, cells were grown in the absence of phosphate to deplete the cells of  

non-radioactive phosphate. The medium was removed and the cells were grown in the 

presence of radioactively labelled phosphate (pulse) followed by cultivation in normal cell 

culture growth medium (chase). During the pulse, nascent RNA chains are labelled 

radioactively by the incorporation of radioactive phosphate. Then cellular RNA was 

extracted, separated on an agarose-glyoxal gel, transferred to a membrane and 

abundant, labelled RNAs were visualised using a phosphorimager (Figure 22C). The top 

panel of Figure 22C shows the signals of radioactively labelled 47S and 32S pre-rRNAs, 

and the mature 18S and 28S rRNAs. The ratio between the mature 18S and 28S rRNAs 

in the samples derived from cells treated with siRNAs against YTHDC2 was not changed 

compared to the control and WT cells, thus indicating that depletion of YTHDC2 does not 

specifically effect the maturation of one of the ribosomal subunits. Also, a general defect 

of rRNA maturation was not detected, because the total amount of radioactively labelled 

mature rRNAs was not altered by the siRNA treatment considering the UV loading 

control representing total amounts of 18S and 28S rRNA.  

These results show that knockdown of YTHDC2 has no significant effect on pre-rRNA 

processing implying that this protein is not required for ribosome biogenesis and 

therefore likely predominantly interacts with mature ribosomes. However, mature 

ribosomes are present in large quantities in the cell and exceed the amount of YTHDC2. 

Therefore, it is very likely that YTHDC2 only interacts with a sub-population of 

cytoplasmic ribosomes. To identify this sub-population and gain more information about 

the function of YTHDC2, the next aim was to identify additional protein interaction 

partners. 
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Figure 22: Depletion of YTHDC2 does not affect pre-rRNA processing. A Simplified scheme of pre-rRNA 

processing in human cells. The mature rRNAs are shown as rectangles and the internal and external 

transcribed spacers (ITS and ETS, respectively) are shown as lines. The binding sites of the probes used for 

northern blotting are indicated with red asterisks. B HEK293 cells were treated with 30 nM of the indicated 

siRNAs for 96 h. Total cellular RNA was isolated and subjected to northern blot analysis using the probes 

indicated to the right of the panel with the binding sites shown in A. Northern blotting using a probe against 

the actin mRNA was used as a loading control and mature rRNAs were visualised by methylene blue staining 

(MB). C HEK293 cells were treated with 30 nM of the indicated siRNAs for 96 h. Then the cells were pulse-

labelled with 32P-orthophosphate for 1 h and then grown in unlabelled media for 3 h before isolation of 

cellular RNA. The upper panel shows the newly synthesised radioactively labelled RNA (pulse-chase), the 

lower panels show the total amount of mature rRNA visualised by UV light (UV). 

 

To get an overview of the protein-interactome of YTHDC2 immunoprecipitation (IP) of 

YTHDC2-containing complexes was performed, followed by the identification of the co-

precipitated proteins using mass spectrometry. For this stable cell lines expressing 

YTHDC2-FLAG or the FLAG-tag alone were induced for 36 h, whole cell lysate was 

prepared and the complexes were purified using immobilised αFlag antibodies. Eluates 

were then separated by NuPAGE and analysed by mass spectrometry in collaboration 

with the group of Prof. Dr. Henning Urlaub. Analysis of the data showed that the 

cytoplasmic 5’-3’ exonuclease XRN1 was the most enriched protein co-

immunoprecipitating with YTHDC2-FLAG compared to the FLAG control, suggesting a 

stable interaction between YTHDC2 and XRN1. To confirm this interaction, 

immunoprecipitation assays of YTHDC2-FLAG were repeated and analysed by western 
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blotting using an αXRN1-specific antibody (Figure 23). Cell lines expressing FLAG-

tagged version of other YTH domain-containing proteins (YTHDC1-FLAG, YTHDF1-

FLAG, YTHDF2-FLAG and YTHDF3-FLAG) were included as additional controls to 

determine if the putative interaction with XRN1 is specific for YTHDC2-FLAG. 

Immunoprecipitation assays were performed as described above. In addition, a mix of 

RNase A and T1 was added to half of the sample to abolish RNA-mediated interactions 

by the digestion of cellular RNAs. The input, and the eluate from samples with and 

without RNase treatment, were then separated by SDS-PAGE and analysed by western 

blotting. Only the YTHDC2-FLAG IP shows a specific signal for XRN1 confirming the 

interaction detected by mass spectrometry and demonstrating the specificity of this 

interaction (Figure 23A). Also, addition of RNase during the purification did not disrupt 

the interaction, indicating that it is an RNA-independent protein-protein interaction.  

 

Figure 23: YTHDC2 associates with the cytoplasmic 5’-3’ exonuclease XRN1. A Extracts from stable cell 

lines expressing the FLAG-tag alone (FLAG) or FLAG-tagged version of the indicated proteins were used for 

immunoprecipitation experiments. Protein-complexes were purified using an immobilised αFlag antibody. 

Inputs (1%) and elutions (IP) were analysed by western blotting using an αXRN1 antibody. Cell lysates were 

either treated with RNase (+) or left untreated (-) prior to immunoprecipitation. B Immunoprecipitation 

experiments were performed and analysed as in A, without RNase treatment, using extracts prepared from 

cells expressing the FLAG-tag alone (FLAG), full-length YTHDC2 (YTHDC2) or truncated version of 

YTHDC2 lacking the R3H-domain (ΔR3H) or the YTH domain (ΔYTH) (see Figure 15). 
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To gain more information about the YTHDC2 domain that forms contacts with XRN1, 

additional immunoprecipitation experiments were performed as described above using 

cell lines expressing the truncated FLAG-tagged versions of YTHDC2, i.e. ∆R3H-FLAG 

and ∆YTH-FLAG. Input and eluates were separated by SDS-PAGE and analysed by 

western blotting using an antibody against endogenous XRN1. In addition to the full-

length protein, XRN1 was co-precipitated with ∆R3H-FLAG and ∆YTH-FLAG, indicating 

that XRN1 interacts with the central domain of the protein (Figure 23B). This is in line 

with the fact that the R3H and YTH domains are RNA-interaction domains, which have 

so far not been suggested to be involved in forming protein-protein interactions 

(Jaudzems et al., 2012; Xu et al., 2015). The interaction of YTHDC2 with the ribosome in 

combination with the exonuclease XRN1 suggest that the function of YTHDC2 and the 

recognition of the m6A could be in rRNA degradation and quality control. 

 



Discussion 

 70 

4 Discussion 

4.1 Development of computational tools for the transcriptome-wide 
analysis of the RNA targets of RNA-modifying enzymes  

In addition to the long known “epigenetic” methylations in DNA and various post-

translational modifications of proteins (e.g. phosphorylation, ubiquitination, acetylation, 

etc.), chemical modifications are also found in most cellular RNAs. A wide variety of such 

RNA modifications exist in nature and in general, they serve to expand the chemical 

properties of the four basic nucleotides, meaning that they can regulate the functions of 

the RNAs that carry them. Many enzymes that mediate RNA modifications contain 

conserved protein domains that harbour their catalytic activity. Although the enzymes 

that are responsible for introducing some RNA modifications are known, the specific 

substrate RNAs and target nucleotides of many other putative RNA modifying enzymes 

remain to be determined.  

The human genome encodes seven 5-methylcytosine (m5C) RNA methyltransferases 

that belong to the Nol1/Nop2/SUN (NSUN) family (reviewed in Motorin et al., 2010).  

So far, proteins of this family have been linked to modifications at specific sites in 

cytoplasmic tRNAs (NSUN2; Brzezicha et al., 2006), mitochondrial and cytoplasmic 

rRNAs (NSUN4, NSUN1 and NSUN5; Camara et al., 2011; Schosserer et al., 2015; 

Sharma et al., 2013b) and enhancer RNAs (NSUN7; Aguilo et al., 2016), but the targets 

of the NSUN6 and NSUN3 m5C RNA methyltransferases remained elusive. A strategy 

that can be used for the identification of the RNAs associated with RNA binding proteins 

is in vivo cross-linking followed by isolation of RNA-protein complexes, isolation of RNA 

and deep sequencing of a corresponding cDNA library (Bohnsack et al., 2012).  

This approach (CRAC) was employed in the Bohnsack lab to identify RNA-interaction 

partners of NSUN6 and NSUN3 (Haag et al., 2016; Haag et al., 2015b). However, the 

identification of the cellular RNAs bound by the proteins in this method requires that the 

obtained sequence reads are quality controlled and mapped to a well annotated version 

of the human genome. Therefore, bioinformatic algorithms and mapping tools were 

employed and further developed to generate a systematic pipeline, specifically adapted 

for the mapping and analysis of CRAC data derived from human cells.  

 Many newly developed techniques for the transcriptome-wide mapping of RNA 

modifications, determining the RNA-interactome of RNA-binding proteins and the 

analysis of gene expression, are based on the analysis of next generation sequencing 
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data (Bohnsack et al., 2012; Darnell, 2012; Hafner et al., 2010; Ingolia et al., 2009; Krogh 

et al., 2016; Nagalakshmi et al., 2008). For example, RNA-Seq, in which total cellular 

RNA (depleted of ribosomal RNA) is isolated, fragmented and sequenced, is used to 

investigate the transcriptome of a cell population at a given time under certain conditions 

(Nagalakshmi et al., 2008), as the relative number of unique sequence reads mapping to 

individual genes allows a quantitative statement about the expression level of the 

corresponding mRNAs. Similarly, ribosome profiling (Ingolia et al., 2009) can provide a 

snapshot of the mRNAs that are being translated in a given cell population by enabling 

sequencing and identification of ribosome-associated mRNAs. The analysis of CRAC 

data relies on similar principles as the sub-population of cellular RNA that is attached to 

the protein of interest is isolated, sequenced and mapped to the genome. The 

accumulation of multiple sequence reads mapping to a specific region of the genome 

then indicates binding of the protein to the corresponding RNA transcript. As RNA 

modifications can occur in the majority of transcripts and are highly abundant in non-

coding RNAs, in contrast to approaches for analysis of RNA-Seq and ribosome profiling 

data, a bioinformatic pipeline for the mapping of CRAC data generated for RNA 

modification enzymes, requires a well-annotated and complete reference genome or 

transcriptome. Another difference between the analysis of CRAC data and the analysis of 

gene expression by RNA-Seq is that in CRAC, the cross-linked RNA-protein complexes 

are purified on matrices and the non-specific binding of RNAs to such beads could lead 

to background. Alternatives to the standard UV254 cross-linking, such as cross-linking 

with light at 365 nm after treatment of the cells with 4-thiouridine (PAR-CRAC), can be 

used to increase the specificity of cross-linking and furthermore, modules were 

developed within the bioinformatic pipeline to enable sorting and mapping of reads 

containing only specific mutations that are introduced by the direct cross-linking of the 

RNA and protein, thereby significantly reducing the non-specific background in the final 

data output of the analysis pipeline.  

Also in contrast to RNA-Seq, in which only the number of reads mapping to the genes 

coding for individual transcripts is considered, one of the aims of CRAC is to identify the 

specific binding site of the protein on the RNA transcript. In the case of the RNA 

methyltransferases NSUN6 and NSUN3, analysis of the read distribution between 

different classes of RNA transcript and between different tRNA genes suggested that the 

cytoplasmic tRNAs tRNACys and tRNAThr are bound by NSUN6 and the mitochondrial 

tRNAMet is associated with NSUN3. These putative target RNAs were confirmed by 

additional in vivo experiments, but close analysis of the distribution of mapped sequence 

reads on the tRNA sequences also provided the basis for the identification of the 
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modification target nucleotides of these enzymes. These could subsequently be 

determined by mutational analysis combined with in vitro methylation assays (Haag et 

al., 2015; Haag et al., 2016). The identification of the specific binding sites of proteins on 

their target RNAs is especially relevant for characterisation of proteins that contact the 

(pre-) ribosomal RNAs and for such proteins, additional scripts were added to the basic 

CRAC pipeline to enable mapping of the obtained sequence reads onto the available  

2D structures of the mature rRNAs and the 3D structure of the human 80S ribosome. 

Such modelling significantly helps the interpretation of the obtained CRAC data, as it 

allows it to be determined if multiple cross-linking sites that may be distant on the linear 

sequence of a particular rRNA come in close proximity to each other on the folded RNA. 

It also enables the identification of other features in close proximity of the protein cross-

linking sites, such as RNA modifications and the binding sites of other proteins that need 

to be considered in the context of the assembled RNP. 

In the case of proteins that cross-link to mRNAs, one of the limitations of the current 

pipeline is the simplification of the annotation of the protein coding genes in the genome 

version to which sequences are mapped. This means that reads mapping to 5’ and 

3’ UTRs cannot be distinguished from reads that map to the coding sequences. Similarly, 

the present pipeline is not able to map exon-exon spanning reads and such information 

can be highly valuable for understanding the functions of proteins involved in mRNA 

processing/mRNP biogenesis and can also be relevant for the analysis of proteins 

involved in RNA modification as an asymmetric distribution of RNA modifications is often 

observed, e.g. m6A modifications are enriched around stop codons, long internal exons 

and in 3’ UTRs (Chen et al., 2015; Dominissini et al., 2012; Linder et al., 2015) and m1A 

modifications are typically clustered in 5’ and 3’ UTRs (Dominissini et al., 2016; Li et al., 

2016). The analysis of such features can be done by using alignment tools, such as 

HISAT2 (Hierarchical Indexing for Spliced Alignment of Transcripts; Kim et al., 2015) or 

STAR (Spliced Transcripts Alignment to a Reference; Dobin et al., 2013) instead of the 

currently used Bowtie sequence alignment tool, as these algorithms are specially 

designed for the alignment of spliced reads spanning exon-exon junctions in mRNA.  

An alternative strategy for the mRNA analysis could be to use a dedicated mapping 

collection, such as HOMER (Hypergeometric Optimization of Motif EnRichment; Heinz et 

al., 2010) that was originally designed to identify binding motifs within deep sequencing 

data but which can also be used for genome-wide analysis of next generation 

sequencing data. Lastly, the recent availability of transcriptome-wide maps of sites of 

specific RNA modifications, such as m6A, m1A, pseudouridine and m5C, means that it 

would also be interesting to also extend the CRAC pipeline to enable the overlap 
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between the cross-linking sites of a particular protein and the known sites of RNA 

modification to be automatically determined.  

 

4.2 The YTH domain-containing proteins associate with different 
RNA substrates and perform diverse cellular functions 

RNA modifications often influence RNA secondary structure and thereby can exert a 

stabilising or destabilising effect on the modified RNAs. Alternatively, RNA modifications 

can contribute to the function of the RNA, for example, RNA modifications in the 

anticodon of tRNAs can increase the decoding capacity of the tRNAs. Excitingly, as well 

as these direct influences of modifications on the functions of RNAs, it has recently 

emerged that RNA modifications can be recognised by specific proteins, termed 

“readers”, and that binding of such proteins to modified RNAs can affect the cellular fate 

of such RNAs. This concept now extends beyond recognition of the m7G cap at the 

5’ end of mRNAs by the cap binding complex of CBC20/CBC80 in the nucleus, which is 

essential for mRNA stability and export or recognition of this modification by eIF4E in the 

cytoplasm, which is required for mRNA translation (reviewed in Liu and Jia, 2014; 

Ramanathan et al., 2016). It was discovered that m6A modifications in cellular RNAs can 

be recognised and bound by the YTH protein domain, however, the binding of two other 

non-YTH domain-containing proteins to RNA substrates has also been found to be 

dependent on m6A modifications in the RNAs. HNRNPA2B1 recognises m6A modification 

in microRNA precursors and its binding regulates processing events (Alarcon et al., 

2015), while eIF3 promotes cap-independent translation and shows altered binding to its 

RNA substrates depending on the m6A modification (Meyer et al., 2015). 

The YTH domain protein family contains five members in humans and can be further 

divided into two subfamilies based on protein sequence similarity: YTHDF1, YTHDF2, 

YTHDF3, and YTHDC1 and YTHDC2. The CRAC approach, followed by bioinformatic 

analysis of obtain sequence reads, was applied to identify the RNA targets of all these 

YTH domain-containing proteins. This comparative analysis implied that YTHDF1, 

YTHDF2 and YTHDC1 predominantly associate with mRNA, which is in line with recently 

published data from the He, Pan and Yang labs (Wang et al., 2014a; Wang et al., 2015; 

Xiao et al., 2016), and similarly, YTHDF3 also seems to bind to mRNAs. The exclusively 

cytoplasmic localisation of all three YTHDF proteins (YTHDF1, YTHDF2 and YTHDF3) 

suggested that they associate with mature, rather than pre-mRNAs and indeed, YTHDF1 

was shown to be involved in enhancing the translation of specific mRNAs (Wang et al., 

2015) whereas YTHDF2 facilitates the localisation of certain mRNAs to p-bodies, thus 
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promoting their degradation (Wang et al., 2014a). The exact function of YTHDF3 is 

unknown so far, but sequence similarity to YTHDF1 suggests that it might perform a 

similar function on different mRNA substrates. Notably, YTHDF1 and YTHDF2 both bind 

to m6A modifications that are located near mRNA stop codons and interestingly, these 

proteins share approximately 50 % of their target RNAs (Wang et al., 2015). They are 

proposed to bind to these mRNAs at different time points to enable tightly regulated 

translation of these transcripts. It is suggested that first, YTHDF1 binds the m6A-modified 

mRNAs in order to promote their translation and then, YTHDF2 is recruited to efficiently 

deplete of these mRNAs resulting in an abrupt decrease in protein production.  

In contrast, YTHDC1 is a nuclear protein that was recently shown to act during mRNP 

biogenesis, by promoting alternative splicing of m6A containing pre-mRNAs in the 

nucleus via the interaction with several splicing factors (Xiao et al., 2016). 

Interestingly, in addition to interactions with m6A-modified substrate mRNAs, protein 

interaction partners have also been identified for YTHDF1, YTHDF2 and YTHDC1. 

Consistent with its function in promoting mRNA translation, YTHDF1 was shown to 

interact with the eukaryotic translation initiation factor eIF3 (Wang et al., 2015) and 

similarly, in line with its role in mRNA degradation, YTHDF2 interacts with components of 

the CCR4-NOT deadenylation complex (Du et al., 2016; Wang et al., 2015). Likewise, 

the splicing factors SRSF3 and SRSF10 were found to be protein interaction partners of 

YTHDC1 (Xiao et al., 2016). YTHDF1, YTHDF2, YTHDF3 and YTHDC1 are all relatively 

small proteins and sequence analyses suggest that in all cases, the only defined domain 

they contain is the YTH domain, which mediates interactions with the m6A modification in 

mRNAs. This suggests that the specific protein-protein interactions formed by these 

proteins are mediated by the divergent non-YTH domain regions of these proteins.  

In contrast to these proteins, YTHDC2 is a much larger protein that in addition to the YTH 

domain, also contains an R3H RNA-binding domain and a helicase core domain that 

contains two predicted ANK repeats (UniProt, 2015), a motif that is implicated in 

mediating protein-protein interactions (reviewed in Sedgwick and Smerdon, 1999).  

This implies that the RNA/RNP substrate(s), protein-protein interactions and mode of 

recruitment of YTHDC2 may differ considerably form the other members of the YTH 

domain protein family. 
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4.3 YTHDC2 associates with ribosomal complexes via an RNA 
binding motif 

In contrast to YTHDF1, YTHDF2, YTHDF3 and YTHDC1 that predominately associate 

with mRNAs, ribosomal RNA sequences were found to be enriched in the CRAC data of 

YTHDC2 compared to the control sample and sucrose density gradient centrifugation 

followed by western blotting confirmed that YTHDC2 co-migrates with ribosomal 

complexes. More specifically, a cross-linking site of YTHDC2 was found in the 18S rRNA 

sequence and notably, similar to the 18S rRNA m6A modification, this site is close to the 

3’ end of the rRNA. Further CRAC analysis using truncated forms of YTHDC2 suggested 

that this cross-linking is formed with the R3H domain of YTHDC2 and that this interaction 

is important for recruitment of YTHDC2 to the ribosome as lack of this domain reduced 

the fraction of rRNA sequences present in the CRAC data and decreased the height of 

the cross-linking peak at this position. However, no alteration in the CRAC profile 

compared to the full-length protein was observed when the YTH domain was lacking, 

implying that either this region of the protein cannot be efficiently cross-linked to bound 

RNAs or that this domain does not significantly contribute to the stable association of 

YTHDC2 with ribosomal complexes. Although the in vitro anisotropy data demonstrate 

that the YTH domain of YTHDC2 preferentially binds to m6A modified RNAs, the 18S 

m6A modification is likely not accessible on the surface of the mature ribosomal subunit 

(see Figure 13). This could suggest a model in which YTHDC2 is recruited to ribosomal 

complexes via its R3H domain and only once this stable association is formed, is the 

YTH domain positioned to probe for the presence of the m6A modification. The position 

of the 18S m6A modification within the ribosomal complex is likely in contrast to the 

majority of m6A modifications present in mRNAs and this alternative substrate may 

explain why an additional RNA binding domain is specifically required in YTHDC2, but 

not other YTH domain-containing proteins. Alternatively, it is possible that the association 

of YTHDC2 with ribosomes via its R3H domain also positions the YTH domain of 

YTHDC2 for recognition of m6A modification in other ribosome-associated RNAs, such 

as mRNAs. However, no specific mRNA targets of YTHDC2 could be identified within the 

CRAC data and the binding of the YTH domain of YTHDC2 to m6A modifications in the 

GG(m6A)CU sequence context, present in most mRNAs, is relatively weak (see also 

below). 
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4.4 The sequence context of m6A can affect recognition by the YTH 
domains 

Mapping of the m6A modifications in mRNAs and identification of an RNA binding motif 

for the known m6A methyltransferase complex comprised of METTL3, METTL14 and 

WTAP demonstrated that the majority of m6A modifications in mRNAs lie within a 

GG(m6A)CU sequence motif. Notably, in contrast to this, the m6A modifications present 

in both the 18S and 28S rRNAs are found in a different sequence context, UA(m6A)CA/G 

(Dominissini et al., 2012; Linder et al., 2015; Piekna-Przybylska et al., 2008a; Wei and 

Moss, 1977). The changes of G to U at -2 position, G to A at -1 and U to A or G at +2 

considerably alters the hydrogen bond capabilities of the nucleotides in the vicinity of the 

m6A modification and the charge of the local environment that, based on the available 

crystal structures of YTH domains together with m6A nucleosides, could be expected to 

have a significant effect on the binding of a YTH domain to the modified residue. Analysis 

of the affinities of the YTH domain of YTHDC2 for unmodified and m6A-modified RNAs 

confirmed that this domain preferentially binds to m6A-modified RNAs, however, 

compared to the YTH domains of YTHDF2 and YTHDC1, the affinity of the YTH domain 

of YTHDC2 for the RNAs containing the m6A modification in the GG(m6A)CU/mRNA 

motif was lower. This might be due to the fact that YTHDC2 possess an additional RNA 

binding domain (R3H) that stabilises interactions with its substrate RNA in vivo, meaning 

that unlike the other YTH domain-containing proteins, a high affinity for the modified 

residue is not required for the YTH domain-containing protein to exert its effect on the 

RNA. This idea is supported by comparison of the amino acid sequences of the human 

YTH domains (see Figure 19) and the available crystal structures of these domains.  

The RNA-interaction surface of the YTH domains of YTHDF2 (PDB 4RDN) and YTHDC1 

(PDB 4R3I) are more positively charged compared to the YTH domain of YTHDC2  

(PDB 2YU6), suggesting that the YTH domains of YTHDF2 and YTHDC1 may interact 

more strongly with the RNA backbone than that of YTHDC2. This may in turn facilitate 

the initial binding of the YTH domains to RNA and subsequently tighter binding to the  

N6-methylated residue once the modification is correctly positioned in the hydrophobic 

pocket of the YTH domain.  

However, the anisotropy data suggest that the sequence context of the m6A modification 

also influences the affinity of the different YTH domains. Although the YTH domain of 

YTHDC2 had a lower affinity for RNAs containing the GG(m6A)CU sequence than the 

YTH domains of YTHDF2 and YTHDC1, it bound more strongly to the UA(m6A)CA 

sequence found in the 18S rRNA. The higher affinity of the YTH domain of YTHDC2 for 

the m6A modification in the rRNA context supports the model in which YTHDC2 is 
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recruited to the ribosome to enable recognition of the m6A present on the rRNA. 

Interestingly, the YTH domains of YTHDF2 and YTHDC1 show the opposite effect with a 

lower affinity for the UA(m6A)CA/rRNA sequence than the GG(m6A)CU/mRNA sequence. 

This is especially notable for the YTH domain of YTHDC1, which shows a 10-fold 

increased affinity towards the m6A modification in the mRNA sequence compared to the 

modified rRNA sequence. An explanation for this differential binding may lie in the 

different localisations of the YTHDF2 and YTHDC1 proteins. On the one hand, YTHDF2 

is localised in the cytoplasm, where it will predominantly encounter mature ribosomes 

where the m6A modification is not readily accessible, meaning that discrimination 

between mRNA and rRNA is not necessary. On the other hand, YTHDC1 is localised in 

the nucleus, where it could interact with pre-ribosomal subunits that have a more open 

conformation and where the rRNA m6A modification may be exposed, making it 

advantageous to select against recognition of these modifications by having low affinity 

for the rRNA sequence context. Interestingly, the crystal structure of the YTH domain of 

YTHDC1 provides an explanation as to how this sequence discrimination is achieved  

(Xu et al., 2014). Analysis of the binding interface shows that the carboxyl oxygen of the 

guanine at the -1 position of the mRNA consensus motif can form hydrogen bonds with 

the secondary amine of the peptide backbone, stabilising RNA-protein interactions. 

Substituting this guanine with any other nucleotide would disrupt this hydrogen bonding 

and thereby decrease the binding to the RNA substrate. In particular, substitution to an 

adenine, which is present at the -1 position in the rRNA sequence context, would 

introduce steric clashes with the peptide backbone of YTHDC1, making substrates 

containing this sequence particularly unfavourable. 

 

4.5 YTHDC2 associates with the cytoplasmic 5’-3’ exonuclease XRN1 

Ribosomal RNA modifications are found in all kingdoms of life and in general are 

proposed to help stabilise the tertiary structure of the ribosome, enabling efficient and 

accurate translation. Consistent with this, rRNA modifications cluster at functionally 

important sites on the ribosome, such as the peptidyl transferase centre and the 

decoding site (reviewed in Sharma and Lafontaine, 2015). In yeast, no m6A modifications 

are present in the rRNAs, while in humans these modifications are present at positions 

1832 of the 18S rRNA and 4220 of the 28S rRNA (nucleotide numbering according to the 

human 80S ribosome structure, PDB 4V6X; Linder et al., 2015). It is not yet known what 

the specific functions of these modifications are, however, quantitative analysis of the 

extent of these modifications suggests that these sites are 98% modified in HeLa cells 

(Liu et al., 2013). This also suggests that the rRNA m6A modifications are not targeted by 
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the demethylases ALKBH5 and FTO that have been shown to reverse m6A modification 

in mRNAs (reviewed in Liu and Jia, 2014).  

To gain insight into the role of YTHDC2 on the ribosome and a possible function in 

recognition of the m6A modification in the 18S rRNA, immunoprecipitation experiments 

followed by mass spectrometry were performed to identify protein interaction partners, as 

in the case of the other YTH domain-containing proteins YTHDF1, YTHDF2 and 

YTHDC1 such analysis provided functional information. This revealed that YTHDC2 

interacts with the cytoplasmic 5’-3’ exonuclease XRN1 (see also Figure 24). Further 

immunoprecipitation experiments suggested that XRN1 interacts with the central region 

of YTHDC2, as neither the R3H domain nor the YTH domain were required for this 

interaction. The central region of YTHDC2 contains two predicted ANK repeats, which 

are protein interaction motifs that may allow YTHDC2 to form protein-protein interactions 

with XRN1. Interestingly, XRN1 has an extended C-terminus, which is not conserved in 

the related, nuclear 5’-3’ exonuclease XRN2 and which is suggested to serve as a 

protein-protein interaction domain in yeast (Chang et al., 2011). It is therefore possible 

that this region of XRN1 is involved in the interaction with YTHDC2 and that XRN1 is 

recruited to its numerous RNA substrates in the cytoplasm by various adaptor proteins, 

including YTHDC2. 

Since XRN1 is the major exonuclease component of the cytoplasmic RNA degradation 

machinery, this suggests that recruitment of YTHDC2 to the ribosome or to m6A-

containing RNAs may be linked to RNA surveillance or RNA turnover. In the context of 

the ribosome, in yeast, Xrn1 is linked to two related RNA decay pathways: no-go decay 

(NGD) in which aberrant mRNAs that are stalled on the ribosome during translation 

elongation are degraded and non-functional ribosome decay (NRD) where defective 

ribosomes are removed (reviewed in Graille and Seraphin, 2012; Lafontaine, 2010).  

It is possible that YTHDC2 contributes to either of these pathways by recruiting XRN1 to 

either aberrant ribosomes or to ribosomes that are blocked in translation. In support of a 

hypothesis that YTHDC2 recruits to aberrant ribosomes for NRD is that the misfolded 

ribosomes in which the rRNA m6A modification(s) are readily accessible may be detected 

by the YTH domain of YTHDC2 and thereby targeted for degradation by XRN1. 
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The pathway of NRD is poorly characterised in human cells but in yeast, both NRD and 

NGD are known to involve the protein Dom34 and Hbs1, which are also conserved in 

humans (Passos et al., 2009; Shoemaker et al., 2010). Since neither of these proteins 

was identified in the mass spectrometry analysis of YTHDC2-containing complexes, this 

could suggest that the YTHDC2-XRN1 complex functions independently in such 

pathways. In yeast, the pathway of NRD has mostly been studied using rRNA reporters 

that carry mutations in functional regions of the rRNA and which are expressed from an 

RNA polymerase II driven promoter (Cole et al., 2009; LaRiviere et al., 2006). However, 

expression of rRNAs in such a way has additional effects on ribosome assembly and due 

to the increased complexity of pre-rRNA transcription in human cells, such a system is 

currently not available to study the NRD pathway in human cells.  

Alternatively, YTHDC2 may also function in NRD by monitoring the presence of the m6A 

modification on the rRNA and directing ribosomes lacking this modification for 

degradation since the absence of this modification may have negative effects on 

translation fidelity or efficiency. Notably, another specific feature of the YTHDC2 domain 

architecture is the presence of an RNA helicase domain. RNA helicases are a 

ubiquitously expressed family of proteins that can unwind RNA duplexes in an ATP-

dependent manner. Most RNA helicases can be classified as either DEAD- or DEAH-box 

proteins based on the presence of a conserved sequence motif. DEAD- and DEAH-box 

helicases are distinct in their RNA unwinding mechanism (reviewed in Jarmoskaite and 

Russell, 2014). DEAD box helicases perform local strand unwinding whereas DEAH box 

helicases are processive and can move along an RNA strand while unwinding other base 

paired RNA strands. YTHDC2 is predicted to belong to the family of DEAH box RNA 

helicases and an earlier study reported an RNA dependent ATPase activity of the  

C-terminal part of the protein consisting of the amino acids 761-1430 (Morohashi et al., 
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Figure 24 Model of YTHDC2 ribosome 

association. YTHDC2 in complex with the 5’-3’ 

exonuclease XRN1 interacts with the ribosome via 

the R3H domain and the YTH domain is probing 

for the 18S rRNA m6A modification in the SSU. 

The R3H domain, helicase core domain and YTH 

domain of YHTDC2 are coloured in red, green and 

blue, respectively. Abbreviations: LSU, large 

ribosomal subunit, SSU; small ribosomal subunit 
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2011), implying that YTHDC2 is an active RNA helicase although further experiments 

using the full-length protein or complete helicase core domain would be required to 

confirm this. It is possible, therefore, that the helicase activity contributes to rRNA 

remodelling in the vicinity of the rRNA m6A modification(s) to enable the YTH domain of 

YTHDC2 to detect the presence of these modifications in vivo. The helicase domain of 

YTHDC2 may also be required for efficient RNA degradation by XRN1 as this 

exonuclease is not very active on highly structured substrates (e.g. ribosomal RNAs) 

(Poole and Stevens, 1997). A complex containing XRN1 and the helicase DDX6 is used 

in 5’-3’ mRNA degradation, where the helicase might unwind secondary structures prior 

to degradation by XRN1 (Ozgur et al., 2010) as it is the case in 3’-5’ RNA degradation by 

the exosome. RNA helicases unwind mRNA secondary structures ahead of the exosome 

and channel the RNA into the exosome for degradation (reviewed in Schneider and 

Tollervey, 2013). 

 

5 Conclusion 

RNA modifications play diverse and important roles in regulating the functions of the 

RNAs that carry them. Furthermore, RNA modifications in cellular RNAs can be 

specifically recognised by proteins termed “readers” that bind to the modified nucleotides 

and regulate the fate of the modified RNA. In humans, the five YTH domain proteins bind 

to RNAs containing m6A modifications and mediate diverse functions. In line with recently 

published data, CRAC analysis showed that YTHDF1, YTHDF2, YTHDF3 and YTHDC1 

were found to predominantly associate with mRNAs, which in contrast YTHDC2 was 

found to be associated with ribosomal complexes and to cross-linking to the 18S rRNA in 

proximity to an m6A modification. In vitro anisotropy experiments demonstrated that, 

unlike the YTH domains of YTHDF2 and YTHDC1, the YTH domain of YTHDC2 has a 

higher affinity for m6A modifications in the sequence context present in the rRNA rather 

than the classical m6A consensus motif found in many mRNAs implying that it may 

recognise the 18S rRNA m6A modification. Furthermore, YTHDC2 was found to interact 

with the 5’-3’ exonuclease XRN1 suggesting that YTHDC2 may serve as an adaptor 

protein to target m6A-containing RNAs for degradation. 
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