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Kurzbeschreibung

Polymere sind Materialien, die in der Industrie eine breite Anwendung finden.
Die Vorteile, in der Verwendung von Polymeren, liegen in ihrer vergleichsweise
einfachen Möglichkeit der Verarbeitung, z. B. in Spritzgussverfahren oder modern-
sten 3D-Druck-Techniken. Polymere sind Makro-Molekül-Ketten und aus einzelnen
Molekülen - Repetiereinheiten - zusammengesetzt. Im einfachsten Fall können Po-
lymere durch lineare harmonische Ketten modelliert werden. Mit einer gewissen
Abstraktionsebene besitzen Polymere ein universelles Verhalten, das durch wenige
Eigenschaften beschrieben werden kann. Diese Eigenschaften sind (i) eine Längens-
kala, definiert durch einen mittleren End-zu-End-Abstand, Re, eines Polymers, (ii)
eine isotherme Kompressibilität, κN , welche die Stärke der ungebundenen Wech-
selwirkungen kontrolliert und (iii) ein invarianter Polymerisierungsgrad, N̄ . In den
vergangenen Jahren haben Polymere einen hohen Beitrag für Hochtechnologiesek-
toren, wie die Halbleiter/Chipindustrie oder die Batterieforschung, geleistet. In
diesem Zusammenhang ergeben sich besonders interessannte Fragestellungen, z. B.:
Wie können Mechanismen in Polymeren genutzt werden, um Energietransport bzw.
thermische Transporteigenschaften kostengünstig und effizient zu nutzen. Ein viel-
versprechender Mechanismus ist die Selbst-Assemblierung in Mikrophasenstrukturen.
Diese Mikrophasenstrukturen bilden viele Grenzflächen aus. Die Grenzflächen bilden
einen thermischen Widerstand, so dass thermische Transportprozesse im Material
eine Richtungspräferenz bekommen.

Diese Arbeit legt den Fokus auf thermische Transporteigenschaften dieser selbst-
assemblierten Mikrophasenstrukturen. Ein wesentlicher Unterschied gegenüber bis-
herigen theoretischen Ansätzen ist ein neues Energie-Monte-Carlo-Schema eMC.
Dieses Monte-Carlo-Schema erlaubt, Polymersysteme auf großen Zeit- und Längens-
kalen zu untersuchen. Bisherige Methoden setzen wegen numerischer Instabilitäten
eine sehr kleine Wahl des Zeitinkrements voraus, so dass eine Untersuchung thermi-
scher Transportprozesse auf gleichen Skalen wie eMC einen zu großen Einsatz von
Rechenzeit benötigen würde. Mit eMC können Skalen betrachtet werden, die bis
dato Kontinuumsmodellen vorbehalten waren. Ein fundamentaler Unterschied der
eMC-Methode gegenüber Kontinuumsmodellen ist jedoch, dass lokale Eigenschaften
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der zugrundeliegenden molekularen Struktur, z. B. die spezifische Wärmekapazität,
Polymerkettenkonfirmationen und Dichteunterschiede, ohne erheblichen Mehrauf-
wand aufgelöst werde können.

In der vorliegenden Arbeit werden, ausgehend von Homopolymerschmelzen,
Diblockkopolymeren, Sternpolymeren und weichen kubischen Kristallen, thermische
Eigenschaften eines komplexen Polymersystems im Rahmen der Möglichkeiten des
eMC-Schemas untersucht und qualitativ mit experimentellen Beobachtungen in
Bezug gesetzt. Insbesondere wird dargestellt, dass die eMC-Methode einen einfa-
chen Zugang bietet, um Effekte der thermischen Leitfähigkeit bezüglich gebildeter
Grenzflächen, Dichteunterschiede und molekularer Architektur zu studieren. Ins-
besondere ist hervorzuheben, dass die Änderung des Löslichkeitsparameters eines
Sternpolymers in einer Homopolymermischung als ein Schaltvorgang betrachtet wer-
den kann, der eine Kontrolle der thermischen Relaxierung des Sternpolymers zulässt.
Ein weiterer Bestandteil dieser Arbeit ist die Bestimmung einer Zustandsdichte
(Density of States) einer mikrokanonisch betrachteten weichen Polymerschmelze,
ohne interne Freiheitsgrade, mit dem Ziel, Aussagen über Propagation von Pho-
nonen zu treffen. Polymerschmelzen eine Zustandsdichte zuzuschreiben ist äußerst
schwierig, da sich herausgestellt hat, dass das Verhalten von Polymerschmelzen
primär von inkohärenter diffusiver Natur ist, was dem Gedanken einer stehenden
kohärenten Phononen-Mode im System widerspricht. Der letzte Abschnitt beschäf-
tigt sich mit einem möglichen Kontrollmechanismus für Energietransport auf einer
höheren Abstraktionsebene. Ausgehend von den gefundenen Ergebnissen, dass die
thermische Leitfähigkeit durch Grenzflächen und Polymerlängen kontrolliert werden
kann, können Photoschalter eingesetzt werden, um die Selbst-Assemblierung in
mikrophasen-separierte Polymerschmelzen sowie die Art der Ausbildung komplexer
Grenzflächenstrukturen zu kontrollieren.

Stichwörter: Akkzeptanzkriterium, Energietransport, Energie Monte-Carlo, Diblock-
copolymer, Homopolymer, interner Freiheitsgrad, Kapitza-Widerstand, reversible
Nicht-Gleichgewichts-Molekulardynamiksimulation, Sternpolymer, vergröberte Mo-
lekulardynamiksimulation, weicher kubischer Kristall, Zustandsdichte
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Abstract

Polymers are materials that are widely used in industry. The advantages of polymers
are their comparatively simple possibility of processing, e.g, injection moulding
processes, 3D printers, and self-assembly. Polymers are macromolecule chains and
are composed of (simple) molecular repeating units. From a certain abstraction
level, polymers have a universal behaviour that can be described by a few properties
only. The most important features, which are required are (i) a length scale given
by the mean end-to-end distance of a polymer, Re, (ii) an isothermal compressibility
that controls the strength of the non-bonded interactions, κN , and (iii) an invariant
degree of polymerisation, N̄ . In recent years, polymers also had a high impact on
high-tech sectors, such as the semiconductor industry or battery research. In this
context, particularly interesting issues arise, e.g., which mechanisms in polymers
can be used in order to be able to use energy transport or thermal transport
properties inexpensively and efficiently. A promising mechanism is the self-assembly
in microphase structures. These microphase structures have many interfaces. These
interface structures create a thermal resistance for an energy flow that propagates
through the material, so interfaces are a possibility to control thermal transport
processes by assigning directional preferences.
This work focuses on the thermal transport properties of these self-assembled

microphase structures. A major difference from previous theoretical approaches
is a new energy Monte-Carlo scheme eMC. This eMC scheme allows polymer
systems to be studied on large time and length scales. Existing methods, e.g., energy
conserving dissipative particle dynamics eDPD, need a very small time increment
due to numerical instabilities, so that a study of thermal transport processes on the
same scale as eMC would require too much computing time. For the first time,
eMC enables to address scales, which until now have been reserved for continuum
models. However, a fundamental difference of the eMC method to continuum
models is that local properties of the underlying molecular structure, e.g., specific
heat capacity, polymer chain confirmations and density differences can be resolved
without significant additional effort.

In the present thesis the properties of homopolymer melts, diblock copolymers,
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star polymers and soft cubic crystals, are examined and qualitatively related to
experimental observations. In particular, it is shown that the eMC method provides
easy access to effects on thermal conductivity with respect to formed interfaces,
density differences, and molecular architecture. However, it shall be emphasised
that the change in the solubility parameter of a star polymer in a homopolymer
mixture, is a switching process that allows controlling the thermal relaxation of the
star polymer. A further part of this thesis is the determination of a phonon density
of states (DoS) of a microcanonically regarded soft polymer melt. Determining
the DoS of polymer melts is extremely difficult, since it has been found that the
behaviour of polymer melts is primarily diffuse. In the last section, a possible
control mechanism for energy transport at a higher abstraction level is discussed.
Starting from the observation that the thermal conductivity can be controlled by
interfaces and polymer lengths, photoswitches are used to control the self-assembly
of microphase-separated polymer melts.

Keywords: acceptance criterion, coarse-grained molecular dynamic simulations,
energy transport, energy Monte-Carlo, density of states, diblocks, homopolymer,
internal degree of freedom, Kapitza resistance, reverse non-equilibrium molecular
dynamic simulation, star polymer, soft cubic crystal.
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1 Introduction

The power of control tactics that polymers can provide emerges by a combination
of phase transitions, macromolecular architecture, and directed self-assembly, and
can be further enhanced by blending in composite materials. Different types of
polymers can be used to form complex structures. The formation of different
phases depends on parameters such as pressure, temperature, or the materials’
incompatibility . These newly formed structures surpass the material properties
of the starting materials many times over. We are primarily concerned with the
questions of how interfaces can change the transport properties of a material and
what mechanisms at the microscopic level as well as at the coarse-grained level
influence transport properties across interfaces, such as the thermal conductivity.
Assuming a low level of coarse-graining without taking internal degrees of freedom
into account, the vibration spectra of a soft system are studied. The density of
states is related to the transport properties of the system based on mechanical
vibrations. On a coarse-grained level, the new energy Monte-Carlo (eMC) scheme
permits including molecular mechanisms like the influence of chain length, or other
binding distributions, qualitatively as well as quantitatively.

Thermal properties of polymers can be used in a wide range of applications. Most
of the research approaches focus on a basic understanding of heat transport to
develop control tactics and provide promising ideas for future applications. First
applications of polymers in electronic circuits were already patented by Gerald
Pearson at Bell Labs in 1939 [1]. He invented a resettable polymeric fuse. This fuse
protects electronic circuits against over current faults. If the current is too high,
the device heats up. In consequence, the polymer changes from a crystalline into
an amorphous state. The conductive parts are broken and the electronic circuit
is physically cut. If the temperature is reduced, the polymer performs a phase
transition back to crystalline phase and becomes conductive again [1]. In the last
decades, this has become a standard electronic component in low-voltage main
supply circuits, especially to protect USB ports and devices. Recently, a Swedish
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Figure 1.1 „Evaporated metal pattern produced on the face of a PMMA sample. The
four pads are the connections for current leads I+, I and voltage leads, V+, V . The
narrow metal line that serves as the heater and thermometer for the measurement
of the thermal conductivity is at the centre of the face of the sample. Pattern made
by photo-lithography (line widths 5 or 35 µm) or by evaporation through a mask
(line width 90 µm)“, Reprinted with permission, Phys. Rev. B 35, 4068 (1987) [5],
Copyright (1987) American Physical Society.

group invented an ionic thermo-electric gating organic transistor [2]. They made use
of the Seebeck effect (also known as Peltier effect or Thomson effect), which allows
the use of a thermal input at the gate of the transistor to convert a modulation in
temperature to a modulation in the drain current, I [2].

Beside applications, basic research focuses on testing composite materials. These
composite materials form interfaces. These interfaces cause a thermal resistance
that is known as Kapitza resistance [3]. Also, elastomers with elongated liquid metal
micro-droplets inclusions have been constructed. These materials are electrically
insulating composites, which are highly elastic, and undergo extreme deformations
(>600% strain), achieve a ∼ 25x increase in thermal conductivity (compared to
bulk conductivity of polymethylmethacrylate (PMMA) and in a strained condition
∼ 50x [4].
Hence, theoretical investigation of thermal properties of polymers are a highly

topical issue. Experimentally, investigation of thermal properties of polymers is
very challenging. The polymers have a low glass temperature, evaporate in high
vacuum, and thermal conductivity of bulk material is only one order of magnitude
over vacuum. In consequence, every thermal measurement on polymers is connected
with very high technical effort. This thesis is a theoretical work and does not focus
on technical details of measurement. However, an introduction to some experimental
setups, which allow a measurement of thermal properties, is given. This sensitizes
readers to the complexity experimentalists have to handle by confirming results that
have been obtained by theoretical modelling of energy transport via eMC.
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CHAPTER 1. INTRODUCTION

3ω method The 3ω method is a strategy to measure the thermal conductivity.
First measurements on polymers (PMMA), have been done by Cahill and Pohl in
1987 [5]. The experimental setup is sketched in fig. 1.1. The material, which is
examined, is covered by a metal pattern consisting of four pads. The main idea of
this method is to use the coupling between the voltage signal U3ω and the change of
the temperature amplitude of the heater ∆T , which allows to determine the thermal
conductivity of the material, because the amplitude ∆T and phase ϕ depend on
the thermal conductivity of the material and frequency ω. Practically, a current
with frequency ω is injected to the metal structure, fig. 1.1. This corresponds to an
injected thermal power with an electrical resistance R. The temperature of material
and the electrical resistance have a frequency that is twice the base frequency [5].
The product of the 2ω oscillating resistance and ω oscillating current is U3ω, which
is proportional to the temperature amplitude. In consultation with experimentalist,
this method is mainly limited in the preparation by applying the metal pattern to
the material - especially thin films.

Thermal reflection method The polymeric material is covered with a copper layer
first. Technically, this can be done, e.g., by pulsed laser deposition. For the reflection
layer, the copper is used, because it has a very good thermal conductivity. The
measurement itself tracks the time-resolved reflectivity of the copper layer. Figure
1.2 represents the experimental setup and a time-resolved reflectivity of the copper
layer. The red line indicates a measurement without polymers. The blue curve is
a measurement of PMMA. In the evaluation of the measurement, the relaxation
constant of this decay is related to the material’s thermal conductivity. This method
has been applied successfully to PMMA by reproducing the literature value of
thermal conductivity 0.19 W/mK [6]. Beside the measurements of the bulk properties
of PMMA, they also demonstrated that a layered tungsten/polycarbonate structure
has a reduced thermal conductivity in contrast to the materials’ bulk thermal
properties [6]. They conclude that this can be explained by a resistance, which is
induced by the formed interfaces.

Scanning thermal microscopy (SThM) The SthM is a technique to perform
scanning thermal microscopy measurements. Therefore, a normal AFM probe is
replaced by a probe with an integrated Palladium resistance thermometer. This
thermometer will change the resistance as a function of temperature. The typical
sensitivity is about 1Ω per Kelvin. These probes are commercially available, e.g.,

3
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Figure 1.2 Homopolymers (PMMA) have been measured by thermal reflection method.
Energy is placed in the copper interface and its reflection is measured. The underlying
material properties control the decay of the measured signal. The relaxation constant
of this decay can be related with material’s thermal conductivity. Thanks to the group
of Henning Ulrichs for this preliminary result.

KNT-SThM-01a by Kelvin Nanotechnology Ltd. In the last years, experimentalists
made efforts to combine SThM with the standard 3ω method and developed 3ω
SThM [7]. They performed measurements on nanowires of semiconducting polymers
embedded in a matrix of aluminium and showed that there is a correlation between
the orientational order and thermal conductivity. A group from the Department of
Mechanical Engineering, Massachusetts Institute of Technology, was able to measure
the thermal conductivity of a single nanowire. In their setup they fixed a polyethylene
nano fibre between a needle and an AFM tip. They applied a temperature to the
needle and measured the temperature at the AFM tip, which provided information
about the thermal gradient, i.e., thermal conductivity. Surprisingly, they found out
that the thermal conductivity of a single polyethylene nano fibre is about ≈ 104W
m−1 K−1, i.e., orders of magnitudes higher than the bulk properties of polyethylene
0.19 W m−1 K−1 [8].
Figure 1.3 gives an overview of some materials’ thermal conductivity. One can

conclude that polymers are not the best candidates to be used to improve thermal
conductivities, even if single chains have been measured to have a high thermal
conductivity. But the knowledge about influence of interfaces gained by the energy
Monte-Carlo (eMC) scheme may allow to create more compact thermal polymeric
insulators and gives rise to nice control tactics of energy transport in general. The

1Selected values of thermal conductivity under standard conditions https://en.wikipedia.org
/wiki/List_of_thermal_conductivities, April 12, 2018
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CHAPTER 1. INTRODUCTION

Figure 1.3 Thermal conductivity of selected materials, sorted in descending order, and
plotted in a logarithmic scale. Thermal conductivity of polymers is of the order of the
blue dashed line. The values are for atmospheric pressure at around 293 Kelvin 1.

experimental results suggest that thermal conductivity is influenced by orientational
order, molecular architecture, and interfaces. Hence, a theoretical model is needed
that captures all relevant influences. In the last decades, theoretical methods in form
of efficient simulation techniques have been developed. These simulation techniques
base on models, which address specific effects or physical mechanisms respectively
according to a specific time and length scale. Time and length scales are one way to
group these different methods. First-principle calculations using density functional
theory (DFT) give rise to energies of atomic configurations, lattice configurations,
vibration spectra, and force fields. Moleculardynamic simulations (MD-simulations)
address the physical movements of atoms and molecules by solving classic equations
of motion. Interactions of molecules, and atoms are defined by force fields or
potentials respectively, which may depend on positions, charge, angle etc. This
method provides access to thermodynamic properties that are not available through
direct experiments. Studying these systems emphasizes that structure formation and
equilibrium can be described by a minimal set of parameters: connectivity along the
molecule, near-incompressibility, and repulsion. This is typical for the mesoscopic
scale and specifies coarse-grained (CG) models. These CG models fluently pass over
to continuum model descriptions. CG models are a good approach to investigate
thermal properties on long time and length scales. An established technique therefore
is energy conserving dissipative particle dynamics (eDPD) [9, 10]. But this method
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has problems in numerical stability of the first-order integration scheme of stochastic
differential equations of motions, which motivated us to develop a new Monte-Carlo
Scheme (eMC) to model energy transport properties of polymers with high accuracy
[11].

Outline This thesis is structured into three main parts. In the first part the
theoretical principles of transport phenomena, which will end up in the thermal
diffusion equation, are introduced. We give a brief introduction into the concept
of phonons and density of states in general and at interfaces, respectively. The
second part treats simulation techniques, viz., a detailed description of the new
eMC scheme and how to rank eMC obverse other methods, i.e., eDPD. In the
third part, the focus is on results of coarse-grained simulations performed with and
without the eMC scheme. A rescaling of parameters will yield invariant thermal
properties of the polymer melt. Stepwise, the complexity of the polymers’ structure
is increased, and the complexity of thermal transport that emerges is studied.
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2 Theoretical Concepts

In this chapter, the fundamental concepts of transport phenomena are introduced.
From this general transport phenomena, we identify the heat flux in first-order
approximation and deduce an explicit form of Fourier’s law. Furthermore, the
thermal diffusion equation is deduced from these concepts. Finally, basic concepts
of phonons and approaches to express their characteristics in analytical models are
presented.

2.1 Transport phenomena

In general, transport properties are distinguished between mass, momentum, and
energy transfer. Their physical mechanisms can be described in a first approximation
by linear dependencies of fluxes on forces: mass diffusion (Fick’s law), viscous flow
(Newton’s friction), and energy diffusion (Fourier’s law). Assuming irreversible
processes, these mechanisms follow general reciprocal relations, which have been
derived by Onsager [12]. In the next section, hydrodynamic equations of a viscous
fluid are derived.

2.1.1 Boltzmann equation

The Boltzmann equation is a differential equation describing the temporal evolution
of a probability density function f(~r, ~p, t). This function depends on momentum ~p,
spatial position ~r, and time t. Indeed, the idea is not to describe each individual
particle but their probability densities. Thus, even if the underlying system is
comprised of millions of particles, these particles are grouped to their chance to
be encountered at a specific state defined by position and momentum. Hence,
f(~r, ~p, t)d~pd~r describes the probability at time t for a particle of the underlying
system, which is at position ~r, to have a momentum in range d~p around ~p, in volume

7
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element d3r.

df
dt = ∂f

∂t
+ ~v · ∇rf + ~F · ∇pf =

(
∂f

∂t

)
coll

(2.1)

This equation describes the interplay between the total time derivative of f and the
collision integral (∂f/∂t)coll. Hence, the total differential of f , df = ∂f

∂t
dt+∇rfd~r+

∇pfd~p, has been rewritten by expression d~r = ~pdt/m and d~p = ~Fdt. ~F denotes the
applied forces a priori independent of the velocities ~v = ~p

m
. The most challenging

part in the Boltzmann equation is the construction of the collision term. In the
following considerations, the collision is based on binary collisions of two particles,
which is known as „Stosszahlansatz“, at a specific position ~r. Hence, a collision
is characterised by two old momenta, ~p1 old, ~p2 old, and two new momenta, ~p1 new,
~p2 new. A collision is elastic, thus momentum and energy are conserved [13]. These
momenta have a probability density, f(~r, ~p1 old, t), which is written into a short form
f(~p1 old), f(~p2 old), f(~p1 new) and f(~p2 new). The difference of old and new probability
densities (the gain and loss term) is weighted by the differential cross-section of the
collision W (|~p1 old − ~p2 old|, ϑ) with scattering angle, ϑ, and the magnitude of the
momentum |~p1 old − ~p2 old|. The complete expression

(
∂f

∂t

)
coll

=
∫ ∫ ∫

|~p1 old − ~p2 old| ·W (|~p1 old − ~p2 old|, ϑ)×

[f(~p1 old)f(~p2 old)− f(~p1 new)f(~p2 new)] d~p1 newd~p2 newdϑ (2.2)

is integrated over the new momenta ~p1 new, ~p2 new and the solid angle dϑ. It can
be shown that the collision term weighted by any collision invariant1, χ(r, p, t),
integrated by a momentum ~p, is zero, because the magnitude of the momentum,
|~p1 old − ~p2 old|, is conserved in a collision

∫
χ(~r, ~p, t)

(
∂f

∂t

)
coll

d~p = 0. (2.3)

Collision invariants, χ(~r, ~p, t), are mass, kinetic momentum, and kinetic energy
[14]. In eq. (2.3), the right-hand side of the Boltzmann equation, i.e., total time
derivative, eq. (2.1), is inserted. This expression can be used to formulate a general

1Collision invariants are mass, energy, and momentum. They are conserved in an elastic binary
collision
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balance theorem for any collision invariant χ(~r, ~p, t)

∫ [
χ(~r, ~p, t)

(
∂f

∂t
+ ~v · ∇rf + ~F · ∇pf

)]
d~p = 0. (2.4)

We define that the average, 〈M〉, of any function M is expressed by 〈M〉 =
∫
Mfd~p∫
fd~p .

This allows us to rewrite eq. (2.4) into

∂

∂t
〈n(~r, t)χ〉 − n(~r, t)

〈
∂χ

∂t

〉
+∇r 〈n(~r, t)χ~v〉 − n(~r, t)

(
〈~v∇rχ〉+

〈
~F∇pχ

〉)
= 0.

(2.5)

Here, n(~r, t) =
∫
f(~r, ~p, t)d~p represents the local density close to an equilibrium

stage and is independent of the velocities or momenta, respectively. Next, the
general balance theorem is used to derive the hydrodynamic equations, using the
collision invariant’s mass, momentum, and kinetic energy. Hence, a local balance
equation for mass is formulated by inserting χ = m into eq.(2.5), which results in
the continuity equation. The change of this probability distribution is characterised
by

∂(mn(~r, t))
∂t

+∇r · ((mn(~r, t))~u) = ∂ρ

∂t
+∇r · (ρ~u) = 0. (2.6)

ρ = ρ(~r, t) = mn(~r, t)) is the local mass density and ~u = ~u(~r, t) = 1
n(~r,t))

∫
~vf(~r, ~p, t)d~p

is the local mean velocity averaged over all velocities that occur at position ~r. Natu-
rally, a local mean velocity ~u is only valid if velocities are distributed around a mean
value, otherwise it is not meaningful to calculate ~u. The product ρ~u represents
a convective flux of mass. By inserting χ = m~v in the general balance equation,
eq. (2.5), one obtains the local balance equation for the kinetic momentum.
P represents the pressure tensor, which includes the viscous stress tensor and the
hydrostatic pressure with components Pij = ρ〈(vi − ui)(vj − uj)〉. This yields the
local balance equation

∂(ρ~u)
∂t

+∇r · (ρ~u 2 + P) = ρ

m
~F . (2.7)

In this notation, the gradient of the pressure tensor is defined as ∇rP = ∑
j ∂jPij. In

case of a perfect fluid, this equation is also known as the Euler equation. A perfect
fluid does not have heat conduction, shear stress, or a viscosity. The external force
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2.1. TRANSPORT PHENOMENA

ρ
m
~F is a source term and inhibits the conservation of momenta.
Finally, the local balance equation for the energy is derived by inserting

the expression for energy, χ = m/2|~v − ~u(~r, t)|2, into eq. (2.5). Hence, the mean of
the change of the energy by time is zero, 〈∂t(m/2|~v − ~u(~r, t)|2)〉 = 0. The internal
energy, eint, per unit mass is defined in terms of velocities: eint = 〈|~v − ~u(r, t)|2〉.
The temporal change of the local density of energy per unit mass depends on the
change of the flux ~JQ and convective flux ρe~u, or gradient, respectively. The balance
equation for the energy is

∂ρeint

∂t
+∇r( ~JQ + ρeint~u) = −P · ∇r~u. (2.8)

The expression on the right handside represents a source term. The convective flux
is defined by ~JQ = ρ(~r, t)〈(~v− ~u(r, t)) · eint〉 = ρ(~r,t)

2 〈(~v− ~u(r, t)) · |~v− ~u(r, t)|2〉. The
energy is not conserved, because of the source term −P ·∇r~u. The balance equations
for mass, kinetic momentum, and internal energy lead to the hydrodynamic equations
that constitute the idea of dissipative particle dynamics. However, the calculation
of the heat flux and the pressure tensor needs a solution of the Boltzmann equation,
because flux ~JQ and pressure tensor P are defined by averages over functions of
momenta ~p. Thus, a solution for the Boltzmann equation, i.e., calculating an explicit
form for the probability density distribution, f(~r, ~p, t), is needed. The explicit form
of f(~r, ~p, t) allows for a quantitative calculation, e.g., the flux ~JQ. A common strategy
to get solutions of the Boltzmann equation is the Chapman-Enskog expansion, for
an introduction cf. [15, 16]. The main idea is to expand the probability density
distribution f around a probability distribution function f 0, which is in equilibrium,
by an expansion parameter ξ. The probability density distribution, f , is written in
the form

f = 1
ξ

(f (0) + ξf (1) + ξ2f (2) + ξ3f (3) + . . . ). (2.9)

This expansion will be valid if one claims that the influence of higher-order terms is
decreasing, f (0) � f (1) � f (2). The expansion to zeroth-order f (0) covers a perfect
fluid without heat conduction, shear stress and viscosity2. Hence, in a perfect
fluid dissipative mechanisms are neglected. An expansion up to first-order results

2 The expansion parameter is the dimensionless ratio between the mean free path and the
characteristic length of the system. For a fluid, the mean free path is much smaller than
the characteristic length of the system. Hence, if ξ is small the equilibrium distribution f0 is
weighted at most.
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in hydrodynamic equations of a viscous fluid. This viscous fluid has dissipative
transport coefficients, thermal conductivity, and a viscosity coefficient, respectively.
The zeroth-order expansion of the Boltzmann equation is solved by the Boltzmann
distribution,

f (0)(~r, ~p, t) = n(~r, t)
(2πmkBT (~r, t))3/2 exp

(
−m|~p− ~u(~r, t)|2

2kBT (~r, t)

)

= n(~r, t)
(2πmkBT (~r, t))3/2 exp

(
− mU2

2kBT (~r, t)

)
, (2.10)

which covers the equilibrium state. n(~r, t) is the local density at spatial position r
and time t close to equilibrium. T (~r, t) is the temperature at spatial position ~r and
time t 3. For later calculations, the relative velocity, ~U = ~p

m
−~u(r, t), is defined. The

Chapman-Enskog expansion, eq. (2.9), is used to expand the Boltzmann equation
up to the first-order in a relaxation time approximation. Relaxation time τ in this
context means that the collision term’s deviations from the distribution function f
from its equilibrium state f0 are small,

(
∂f
∂t

)
coll
≈ f−f (0)

τ(~v) . Hence, τ characterises the
time the system needs to relax back to an equilibration state; in general, this can
depend on velocities, too. The Boltzmann equation in relaxation time approximation
reads

∂f

∂t
+ ~v · ∇rf + ~F · ∇pf = −f − f

(0)

τ(~v) . (2.11)

This expression is also known as Bhatnagar-Gross-Krook (BKG) equation [17].
Inserting the expansion, eq. (2.9), up to first-order, into the relaxation time approx-
imation, gives the formal assumption for

f (1) ≈ −τ(~v)
(
∂

∂t
+ ~v · ∇r + ~F∇p

)
f (0). (2.12)

Inserting4 the Boltzmann distribution, f (0), eq. (2.10), into the formal assumption

3The local temperature T (~r, t)k = m
3n(~r,~p,t)

∫
|~v−~u(~r, t)|2f(~r, ~p, t), is a defined by an integral over

the averaged velocity ~u, velocity ~v, and mass m.
4The Boltzmann equation is characterised by density ρ ∼ n(~r, t), temperature, T (~r, t), and
velocity ~u(~r, t). Hence, calculation of the gradients ∇r and ∇p is non-trivial. The partial
derivatives of f (0) are: with respect to density ∂f(0)

∂ρ = f(0)

ρ , with respect to temperature
∂f(0)
∂T = 1

T

(
m
kBT

~U2 − 3
2

)
f (0), and with respect to velocity ∂f(0)

∂ui
= −mui

kBT
f (0). The total

derivative with respect to density is zero, eq. (2.6). For the velocity ui one uses the local
balance equation of kinetic momentum, eq. (2.7) , and for temperature the local balance

11
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for f (1), eq. (2.12), finally results in

f (1) = −τ(~v) · f (0)
[ 1
T

(~U · ∇rT )
(

m

2kBT
~U2 − 5

2

)
+ 1
kBT

Λij

(
~Ui~Uj −

1
3δij~U

2
)]
.

Here, Λij is a symmetric tensor m
2

(
∂uj
∂xi
− ∂ui

∂xj

)
. This result yields the flux

~J
(1)
Q = −τm

4

2

∫
~U · U2

(
m

2kBT
U2 − 5

2

) ~U∇T
T

f (0)d~U (2.13)

= −λ̄T∇rT = −
(

5 · n(~r, t) · kBTτ
2m

)
δij∇rT (2.14)

in the first-order approximation. In eq. (2.14), Fourier’s law is identified: thermal
flux is proportional to the temperature gradient and a local thermal conductivity.
The thermal conductivity is a tensor λ̄T, which is proportional to the unit matrix,
λ̄T = λ1. This expression allows us to get an impression to properties that influence
the thermal conductivity, i.e., density, and allows us perform simulations that focus
on these different parameters, sec. 4.

2.1.2 Thermal diffusion equation (TDE)

In the previous section, the local balance equations for mass, momenta, and energy
have been derived, and the flux has been calculated in first-order approximation,
which allowed to identify Fourier’s law, eq. (2.14). Hence, the explicit form of the
thermal flux ~JQ can be inserted into the local balance equation for the energy eint,
eq. (2.8), and the energy density is related to a local temperature by 2eintm

3kB
= T .

The fluid is incompressible, and the divergence is ∇~u = 0. Hence, there are no
sources or sinks. Additionally, it is assumed that the mean velocity of the fluid is
much smaller than the velocity ~v, and this velocity is much smaller than the speed
of sound, so that the symmetric tensor Λ vanishes [14]. Finally, the simplified form
of local balance equation of energy reads

ρcp
∂T

∂t
−∇r · (λ∇rT ) = 0. (2.15)

Here, cp is the specific heat capacity at constant pressure per unit mass. In this
equation, it is a specific heat at constant pressure, because local density and local
temperature are not decoupled. If the thermal conductivity is macroscopic and

equation of energy, eq. (2.8), or temperature, respectively.
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independent of spatial position, it becomes independent from the gradient. Hence,
the gradients, eq. (2.15), are merged to a Laplacian,

∂T

∂t
= λ

ρcp
4T. (2.16)

The ratio λ
ρcp

= DT represents the thermal diffusion constant. The energy Monte-
Carlo method will be used to investigate thermal properties of a polymer melt. Later
on, computational methods are presented. These methods enable us to simulate
thermal transport properties in polymer melts, sec. 3.3. At this point, it is important
to emphasise that the measurements of thermal conductivities rely on a temperature
profile in steady-state. In the stationary state, the time derivative vanishes and the
linear dependence follows from Fourier’s law. Calculating solutions of a thermal
diffusion equation is labourious, especially if complicated boundary conditions are
introduced [18].

TDE as an initial value problem A common strategy to solve an initial-value
problem of the heat equation is to use a fundamental solution. This fundamental
solution is calculated by inserting a δ-distribution to the thermal diffusion equation.
The fundamental solution is also called heat kernel and takes the form

H(~x, t) = 1
(4πDT t)n/2

exp
(

(~r − ~r′)2

4DT t

)
. (2.17)

Small n in this context is the dimension of ~r. Given a temperature configuration
T (~r, t = 0) at time t = 0, all homogeneous initial value problems can be solved by a
convolution of the heat kernel

T (~r, t) = 1
(4πDT t)

n
2

∫
Rn
T (~r, t = 0) exp

(
(~r − ~r′)2

4DT t

)
dnr′. (2.18)

Here, T (~r, t = 0) is the initial condition of the thermal diffusion equation TDE.
n sets the dimension that is considered. If a δ-function at position ~r is used as
an initial condition, the integral is solved, and it remains the heat kernel. This
result enables us to measure the thermal diffusion constant DT of a polymer melt in
simulations: the system can be initialised with a localised peak in the temperature
profile whose decay can be tracked [11].
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2.2 Analytical models of the density of states

In simulations, a density of phonon states (DoS) is calculated. Hence, an overview
of analytical approaches to a DoS are presented. Phonons describe vibrations
in a material. Hence, a phonon corresponds to an elastic wave and designates a
normal mode of vibration. The modes can be divided in an acoustic and an optical
branch. Acoustic phonons are transversal or longitudinal and exist in every basis.
A three-dimensional system, which is uniformly composed by a mono-atomic basis,
typically has two transversal and one longitudinal acoustic mode. These modes
describe a collective movement that affects all particles, i.e., a longitudinal mode
can be interpreted as a pressure wave that propagates through the system. Optical
phonons are observed in systems that have at least a basis composed of two different
particles. Hence, optical modes describe the opposed movement of these particles,
i.e., their local movement is in a contrary phase. Therefore, the optical branch has
higher frequencies than the acoustic branch [19]. Phonons are often described by
coherent or incoherent characteristics. In this context, coherent acoustic phonons
could be pressure or shear waves propagating ballistically in solids. Ballistic motion
of particles is characterised by a mean free path, which is the time between two
collisions wherein momenta are unaltered. Coherent optical phonons are modes of
in-phase atomic vibrations that are extended to a specific range. Knowing all modes
of a system allows us to define a phonon density of states, which, i.e., dictates the
heat capacity of a material and thereby the thermal properties. Especially analytical
models, i.e., the Debye model, are used to calculate the thermal boundary resistance
by an acoustic mismatch model (AMM) or a diffusive mismatch model (DMM)
approach. In general, all analytical models for a DoS, follow the same strategy:
calculate the DoS, D(ω), by the integral

D(ω)dω =
(
L

2π

)3 ∫
shell

d3k. (2.19)

The integration over the volume of the shell in k space counts all the states in the
frequency interval [ω : ω + dω], for a given dispersion relation ω(~k).

2.2.1 Einstein model of the density of states

The Einstein model was proposed by Einstein in 1907 [20, 21]. It is one of the first
quantum-mechanical approaches to predict the specific heat capacity of a solid. The
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model relies on several assumptions: all atoms vibrate harmonically, isotropically,
and uncorrelated with the same frequency ωE around their equilibrium positions.
ωE is the Einstein frequency and fulfils the relation ωE~ = kBθE. θE is the Einstein
temperature. The density of states results in a delta function centred around ωE

D(ω) = 3Nδ(ω − ωE). (2.20)

Here, 3N is the number of oscillators. This expression can be used to calculate the
energy

E =
∫ ∞

0
3Nδ(ω − ωE)

(1
2 + n(ω)

)
~ωE dω = 3NkBθE

(
1
2 + 1

exp(θE/T )− 1

)
(2.21)

of the system. n(ω) is the occupation probability and follows the Bose-Einstein
statistics. From basic thermodynamic relations the specific heat capacity is cal-
culated by the derivative from eq. (2.21) with respect to the temperature. This
results in the specific heat capacity of a solid described by the Einstein model.

cV =
(
∂E

∂T

)
V

= 3NkB

(
θE

T

)2 ( exp(θE/T )
(exp(θE/T )− 1)2

)
(2.22)

For high temperatures, this value becomes 3NkB, which is known as the Dulong-
Petit value. At low temperatures, this model is not a good assumption, because it
decreases with exp(θE/T ) but it is experimentally known that it decreases with T 3,
cf. eq. (2.27), [19].

2.2.2 Debye model of the density of states

The Debye model is a direct consequence of the Einstein model, because it assumes
a phonon-dispersion relation that is not constant but linear: ω = v · k. ω represents
the frequency and k represents a phonon-wave vector, which scales linearly with a
phase velocity, v. The DoS will account for the number of modes per unit frequency.
The system consists of a three-dimensional periodic cubic lattice with edge length
L = Lx = Ly = Lz and the volume V = L3. In consequence, the phonon-wave
vector has to fulfil the condition

exp(i(kxx+ kyy + kzz)) = exp(i(kx(x+ L) + ky(y + L) + kz(z + L))), (2.23)
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and can take values from ki = ±2nπ
L

with n ∈ [0, 1, 2 . . . , N ], and i = x, y, z. Each
volume of

(
2π
L

)3
is allowed to have one value of a ~k vector. The total number is(

L
2π

)3
times the volume of the unit sphere with radius kD (maximum allowed vector),

N = 4π
3

(
kD·L
2π

)3
[19]. Finally, a density of states in three dimensions is determined:

D(ω) = dN
dω = K2

2π2
dK
dω = V

2π2v3ω
2. (2.24)

In the last step, the phonon-dispersion relation ω = v ·k of the Debye approximation
is inserted. The form of D(ω) implies a first qualitative scaling of the DoS -
D(ω) ∝ ω2. The maximum frequency

ωD =
(

6π2v3N

V

) 1
3

(2.25)

(Debye frequency) is determined by the maximum number of total modes N . The lim-
iting phonon-wave vector is taken from the dispersion relation kD = ωD

v
. Integration

over all possible frequencies from 0 up to ωD yields the energy

E = 3V ~
2π2v3

∫ ωD

0

ω3

exp
(

~ω
kBT

)
− 1

dω (2.26)

of the system, cf. (2.21). The multiplication by 3N already includes the assumption
that the velocity of the phonons is independent from its polarisation. The energy, E,
gives rise to the model’s specific heat capacity, cV , via the derivative of E with respect
to temperature at constant volume. In the low temperature limit, the integral,∫∞

0
x3

ex−1dx, for x → ∞ is solved by π4

15 . This solution gives an expression for the
energy in the limit of small temperatures, E T→0= 3π2NkBT 4

5θ3
D

. Here, θD = ~kB
v

(
6π2N
V

)1/3

indicates the Debye temperature in terms of ωD. Under these conditions, the specific
heat capacity at low temperatures yields

cV
T→0= 12π2NkB

5

(
T

θD

)3
, (2.27)

which is known as the Debye T 3 law [19]. At higher temperatures, this law fails
because of anharmonic crystal interactions.
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Figure 2.1 Dispersion relation ω(k) and the DoS of a 1D harmonic chain, eq.(2.30).
ωmax is the maximum frequency of the system. The dispersion relation has just one
acoustic branch, because segments have equal mass. For a qualitative comparison, the
Einstein frequency ωE and Debye frequency ωD are added.

2.2.3 1D harmonic chain

The one-dimensional harmonic chain with N segments is a classic example to
determine an analytical form of the DoF. Single mass centres m and positions xn

are connected by a harmonic potential with spring constant K. The equation of
motion of one xn is described by a coupled second-order differential equation,

mẍn +K (2xn − xn−1 + xn+1) = 0. (2.28)

The ends of the chains are connected so that xN+1 = x0 (Born-von-Karman boundary
condition). Inserting the ansatz xn(t) = A · exp (ikan− ωt) gives rise to the
dispersion relation

ω(k) = 2K
m

∣∣∣∣∣sin ka2
∣∣∣∣∣ . (2.29)

The maximum frequency along the chain is given by ω2
max = 2K

m
. The dispersion

relation can be used to calculate the density of states for a one-dimensional harmonic
chain

D(ω) = 2Na
π

1√
ω2

max − ω2
. (2.30)

This DoS can be observed in a system comprised of polymers without non-bonded
interactions, cf. appx. 6.2.
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2.3 Identifying the density of states of a system

The density of states (DoS) counts the number of states for a given interval of
frequency, or energy, respectively. Calculating the DoS will specify transport
coefficients at the lowest state. We determine a fully classic DoS based on the
harmonic potentials given by Gaussian harmonic bonds and soft repulsive non-
bonded interactions. There are two strategies that can be used to determine the
DoS of a polymeric system.

The first strategy uses a cosine transformation of the velocity auto correlation
function (VAC) of a soft MD fluid, which was first proposed by Rahman [22] and
extended by Grest [23–25]. Their approach follows the idea of a pendulum. They
instantaneously set the kinetic energy to zero and observe the different vibrational
modes of kinetic temperature via a one-sided cosine transformation of relaxing
temperature fluctuations.

This strategy has been expanded by performing a one-sided cosine transformation
of the VAC and has been adopted successfully to Lennard-Jones fluids as well
[26–29]. The second strategy to determine the DoS uses the Hessian matrix. The
Hessian matrix is a harmonic approximation of the potential around a force-free
state or mechanical equilibrium, respectively. This implies coefficients of this matrix
can be understood as the force of particle i in direction α = {x, y, z}, which acts on
a particle j in direction β = {x, y, z}, which was deflected by δr. All other particles
remain unaltered. The matrix has translational symmetry and is symmetric. The
dimensions of the matrix, i.e., the number of eigenvalues is given by the number of
particles times the dimensions. The square root of the eigenvalues of the matrix
corresponds to the vibrational frequencies of the system. Their distribution function
(normalised histogram) provides the DoS [21]. Negative eigenvalues or imaginary
modes, respectively, correspond to instabilities and indicate that the analysed
system has not been driven to its minimum potential. Hence, these modes are a
consequence that a stable local equilibrium for all particles has not been reached.
Before calculating the matrix coefficients via the analytical derivatives of the known
potentials of the soft MD-simulations, one needs to minimise the potential energy
such that the local mechanical equilibrium is found. This minimisation is done via
the steepest descent method. A similar strategy has been successfully applied to
super-lattices of Lennard-Jones potentials [30], [31].
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2.3.1 DoS obtained by the velocity autocorrelation function

The velocity auto correlation function (VAC) can be connected with the DoS
[23, 24], [26], [31]. This connection between the VAC and DoS will be verified in
the following calculation. The idea of this calculation is to express all particles’
explicit positions ~R, i.e., velocities, in a sum of complex modes Ci, real modes Ai,
respectively. The Hamiltonian of this system is decomposed in eigenvectors ~Ei and
eigenvalues ωi. The eigenvectors of the system are orthogonal, ~Ei ~Ei = δij. Hence,
the complete system is described by the vector, ~R(t) = ∑3N

i=1 Ci ~Eie
iωit, which has

3N dimensions. The derivative of this vector, ~̇R(t), defines the system’s velocity
vector. The product of the velocity vector ~v(t) and ~v(0) yields

~v(t)~v(0) =
∑

ij

~Ei ~Ej (Ai cos(ωit) +Biωit sin(ωit)) (−Ajωj). (2.31)

Here, the amplitudes Ai and Bi represent the real and imaginary part. Due to the
orthogonality of ~Ei ~Ej the sum reduces to

~v(t)~v(0) =
3N∑
i=1

(
−A2

i ω
2
i cos(ωit) + AiBiω

2
i t sin(ωit)

)
. (2.32)

Additionally, we define the VAC function C(t) of a single particle’s velocity, ~vn, to

NC(t) = N〈~vn(t)~vn(0)〉 =
N∑

n=1
~vn(t)~vn(0) =

3N∑
i=1

vi(t)vi(0). (2.33)

Index i represents all 3N velocities of the system. The index n represents the
particles. Using eq. (2.32), the single VAC function reads

C(t) = 1
N

3N∑
i=1

(
−A2

i ω
2
i cos(ωit) + AiBiω

2
i t sin(ωit)

)
(2.34)

From this relation we calculate the Fourier transformation

∫
C(t) cos(ωt)dt = 1

N

∫ ( 3N∑
i=1

(
−A2

i ω
2
i cos(ωit) + AiBiω

2
i t sin(ωit)

)
cos(ωt)dt.

The first term in this expression, cos(ωit) cos(ωt) is rewritten into a delta function
δ(ω − ωi). The mixed term cos(ωit) sin(ωt) is zero, because of symmetry. Hence,

19
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the Fourier transformation of VAC yields

∫
C(t) cos(ωt)dt = 1

N

3N∑
i=1

A2
i ω

2
i

2 δ(ω − ωi) (2.35)

With the equipartition theorem we assume that the sum of all amplitudes and modes
covers systems kinetic energy and equals the systems temperature ∑3N

i=1A
2
i ω

2
i =

3
2NkBT . The DoS is observed in the expression of the sum of delta functions.
Hence, eq. (2.35) results into

D(ω) = 1
3NkBT

∫
C(t) cos(ωt)dt (2.36)

that relates the VAC with the density of states of a system. This calculation
assumed that the system is expressed in a 3N dimensional vector containing all
spatial positions ~R(t) and velocities ~̇R(t). This vector was rewritten into harmonics
that are related to the systems DoS. To validate this solution, the Fourier power
spectrum of the VAC of free harmonic chains has been calculated and compared to
the analytical solution of the one-dimensional harmonic chain, cf. appx. 6.2.

2.3.2 Harmonic approximation

The system consists of N particles at spatial position ~r indexed by i, and j, re-
spectively. All these particles are described by a potential U({~r}). The potential
depends only on the particle’s distance rij = |~ri − ~rj|, and the potential is expanded
around a specific minimum

U({rij}) ' U({0}) +
N∑

j=1

∂U

∂rij

∣∣∣∣∣
0
rij + 1

2

N∑
l=1

N∑
k=1

∂2U

∂rij l∂rij k

∣∣∣∣∣
0
rijlrijk. (2.37)

Particles interact pairwise according to the relative distance rij = |~ri − ~rj|. The first
term is constant and can be neglected. The second term is the force between the
particles and is minimised by an instantaneous quench, which will be explained in
the subsection 4.8.1. The third term is used as a harmonic approximation of the
system. Therefore, it is assumed that the second derivatives for a fixed k and l are
constant, Ckl = ∂2U

∂rij l∂rij k
. Thus, the force acting on a particle distance rij becomes

20



CHAPTER 2. THEORETICAL CONCEPTS

linear depending on Ckl.

∂U(rij, k, l)
∂rl

ij
= −F (rij, k, l) = −Cklr

k
ij (2.38)

This linear coefficients can be calculated by the system’s Hamiltonian. In the
simplest case the system’s Hamiltonian takes the form

H({~r}) =
∑

bonds

k

2(~ri − ~rj)2. (2.39)

{~r} represents all spatial positions of the particles in the system. ~ri and ~rj represent
the spatial position of particles i and j. The sum iterates over all bonds with a
harmonic constant k. This Hamiltonian is considered in one-, two-, and three-
dimensional case. The systems mainly have been considered to test the eigenvalue
solver routines.

One-dimensional harmonic system The simplest case is a one-dimensional system
that contains N particles. Every particle in the system has two neighbours i − 1
and i + 1. The first and last particle are connected to a ring such that the two
particles with id i = 1 and i = N are connected. In one dimension, the matrix has
size N ×N . Matrix Mn,m entries can be distinguished between

• same particle, M [n = i; m = i] = ∑2
neigh=1(−1) · k = −2 · k

• different particle, but bonded M [n = i; m = j] = 1 · k

• different particle, not bonded M [n = i; m = j] = 0.

The eigenvalues, λi = √ωi, give a spectrum that yields the DoS, D(ω) = 1
N

∑
δ(ω−

ωi), of this system. The solution that is observed by this procedure agrees with the
solution for the one-dimensional harmonic chain, eq.(2.30). The DoS also can be
calculated for higher dimensions.

Two-dimensional harmonic system In the two-dimensional system, every particle
has four neighbours. Thus, particles form a squared grid and the number of particles
in each direction calculates to

√
N = Nx = Nx. Periodic boundaries are applied to

each direction. The size of the matrix is 2N . Its entries M [n(id, idim),m(jd, jdim)]
are characterised by n and m, which are functions of the applied direction idim and
a particle’s id. The functions m and n are equal but for consistency of the matrix
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indices they are distinguished and named differently. The entries of the harmonic
matrix are distinguished between

• same particle, M [n(i, idim);m(i, idim)] = ∑4
neigh=1(−1) · k = −4 · k

• different particle, but bonded M [n(i, idim);m(j, idim)] = 1 · k

• different particle, not bonded M [n(i, idim);m(j, idim)] = 0

• all cross terms between different direction, idim ! = jdim are zero.

Three-dimensional harmonic system Periodic boundaries are applied to x, y,
and z direction. The number of particles is N , and they are apportioned in each
direction to 3

√
N = Nx = Ny = Nz segments. The size of the Hessian matrix is

dimension times number of particles, 3N , and its entries M [n(id, idim),m(jd, jdim)]
are characterised by n and m are functions of the applied direction idim and a
particle’s id. The matrix entries are distinguished between

• same particle, M [n(i, idim);m(i, idim)] = ∑6
neigh=1(−1) · k = −6 · k

• different particle, but bonded M [n(i, idim);m(j, idim)] = 1 · k

• different particle, not bonded M [n(i, idim);m(j, idim)] = 0

• all cross terms between different direction, idim ! = jdim are zero.

Each atom/interaction centre has six nearest neighbours connected by a harmonic
spring k = 1. Figure 2.2 shows the resulting frequency spectra in the case of one,
two and three dimensions. The DoS of the systems consider: 6144 particles in
the one-dimensional, 78x78 particle in the two-dimensional, and 18x18x18 in the
three-dimensional case. The size of the matrix is always (dimension)×Nparticles. In
contrast to a harmonic matrix approximation analytic/numeric calculations, e.g.,
for a dispersion relation, have also been conducted [21, 32]. There, the equilibrium
position is determined by ~xijk = i · a · êi + j · a · êj + k · a · êk. The indices i, j,
k determine the three-dimensional localisation within the lattice. The distance
between two bonded particles is equally set to a. The maximum number of atoms
to each direction êi, êj, êk is 3

√
N so that the total number of particles is N . For a

given direction of the wave vector k, one can calculate a dispersion relation, which
gives rise to a band structure. In the case of a simple cube one can distinguish
between points with a high symmetry: Γ is related to the centre of the Brillouin

22



CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.2 DoS for (i) linear one-
dimensional harmonic chain (ii)
two-dimensional lattice with 4 harmonic
bonded nearest neighbours (iii) three-
dimensional lattice with 6 harmonic
bonded nearest neighbours. Frequencies
of the DoS are calculated by the square
root of eigenvalues ω =

√
λi of the

harmonic matrix Mn×m. DoS is a
histogram of all these frequencies. The
one dimensional solution fits to the
calculated one of the harmonic chain,
cf. fig.2.1.
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zone, M represents the centre of an edge, R represents the corner, and X represents
the centre of a face. The band structure enables us to calculate a DoS, too.

Three-dimensional random harmonic fluid For solids, there are approaches to
relate the vibrational spectra to a random sparse matrix [33]. For polymers, the
approach they presented could be adopted. Harmonic potentials have the advantage
that their second derivatives can be related to a constant that is structurally
independent of the underlying coordinates. Hence, an approach to relate a fluid
with a random sparse matrix without quenching procedure might be possible. The
sum of each row is zero and the main diagonal entry takes the number of harmonic
interactions. The number of interactions could be derived systematically, e.g., by a
pair correlation function. This number of interactions defines the occupation density
of the matrix entries.

2.4 Phonons at interfaces and the density of states
We have introduced some analytical models for the DoS and calculated, i.e., the
specific heat capacity of a material and thereby its thermal properties. Assuming
that the transport properties and specific heat capacity of a material are given
by phonon properties, especially the influence of interfaces emerged as a specific
interest. In general phonons can be found coherent or incoherent. This behaviour
can be motivated by the decay rate of a propagating wave. If the decay rate is fast,
there is a high damping in the system and the phonon propagation has a diffusive
character. Vice versa, if the decay is slow, propagating modes can be observed in
the spirit of acoustic waves. For each of these limits, there exists a main model: the
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T1
T2

q Figure 2.3 In the presence of an
energy current, q̇, an interfa-
cial resistance, Rinterface = ∆T

q̇ ,
gives rise to a temperature jump,
∆T = T1 − T2.

acoustic mismatch model (AMM) [34] and the diffuse mismatch model (DMM) [35].
These two models behave fundamentally different, especially at interfaces. On the
one hand, there is a reflection of phonons, which is similar to optics, at the interface
(AMM). On the other hand, there is an elastic diffusive scattering at the interface
[36] (DMM). These two models analytically predict the transport characteristic
across an interface or a thermal boundary resistance

Rinterface = ∆T
q̇
. (2.40)

Thermal resistance is defined by a sudden temperature change, T1−T2 = ∆T , across
the interface. q̇ is the thermal current (per unit area) across the interface. The
influence of interfaces on thermal transport properties was found by Kapitza, who
performed experiments with liquid helium in 1941 [3]. In the next section the main
steps of the derivation of the AMM and DMM model are presented in order to
connect these models with resistances at interfaces observed by simulations. Figure
2.4 summarises the main assumption

2.4.1 Acoustic mismatch model (AMM)

The acoustic mismatch model was introduced by Khalatnikov in 1952 [34]. The
model predicts a transmission coefficient α, which is the ratio of transmitted and
incident energy 5. Historically, this model has been developed to be applied for
low temperature systems [37], because, for these systems, the interface appears
smooth, and perfect that modes can vibrate longitudinally, parallel-transversally and
perpendicular- transversally. The AMM is an analogue to the Fresnel equations,
the transmission and reflection of light that occurs moving from one medium into
another medium. These transmission coefficients αi can be influenced by phonon
mode, wave vector, frequency, and temperature. These influences are limited in
the AMM model, because the materials are isotropic, the transmission coefficient

5here, α follows the common notation and will be a transmission probability of phonons
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Figure 2.4 (a) an incident wave is reflected
or transmitted at the interface, acoustic
impedance of material controls the out-
going angle, i.e., similar to optics (b) an
incident wave is scattered diffusive, i.e.,
loses memory.

is independent of the temperature, and non-harmonic interactions are neglected
[35, 36, 38]. Incident waves are travelling at the same speed in all directions [36].
The speed of the phonons, c1, in material 1 is

c1 = 1√∑
j c
−2
j
. (2.41)

Here, j represents the summation over transversal (T) and longitudinal (L) waves,
i.e., cj takes two values for speed of sound cT and cL. In principle, one can add an
additional index according to the material property, which dictates the characteristics
of incident phonons. The transmission probability coefficient between two materials,
1 and 2, calculates to [36, 37],

α1→2 =
4ρ2c2
ρ1c1

cos(θ2)
cos(θ1)(

ρ2c2
ρ1c1

+ cos(θ2)
cos(θ1)

) . (2.42)

ρ1 is the material one’s density, θ1 is the incident angle to the normal of the interface,
fig. 2.4. The product of the density and speed of sound is the characteristic specific
acoustic impedance z. The model will give the total heat q transferred from first
to second material across unit interface. Therefore, the angle dependence ϑ of the
transmission probability α is integrated out, which yields the integrated transmission
coefficient

Γ1→2 =
∫ θc

0
α1→2 sin θ cos θdθ. (2.43)
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θc is the critical angle given by Snell’s law, θc = arcsin(c1/c2). Here, Γ1→2 typically
is a numerical value that depends on the system, which is considered [35]. Finally,
the flux across the interface q, eq. (2.40), is formulated. This flux is given by the
difference of the total heat Q transferred from 1→ 2 and 2→ 1 per unit area. q
results in [35, 36]

qAMM = k4
Bπ

2

60~3

(
(T 4

1 − T 4
2 )Γ1→2

c2
1

)
. (2.44)

Here, c1 is the speed of the phonons in material 1, eq. (2.41). The flux qAMM across
the interface has been calculated by a forward flux, Q1→2, and a backward one ,
Q1→2

6. In the calculation for Q1→2, an isotropic Debye fluid has been assumed.
Therefore, the Bose-Einstein statistics and the density of states of the Debye model,
sec. 2.2.2, have been used [35]. Finally, inserting eq. (2.44) into eq. (2.40), the
thermal resistance of AMM results into

RAMM
interface = ∆T

qAMM
=
(
Q1→2 −Q2→1

A

)−1
∆T

= (T1 − T2)(
k4

Bπ
2(T 4

1−T
4
2 )

60~3c2
1
· Γ1→2

) =
(
k4

Bπ
2(T 2

1 + T 2
2 )(T1 + T2)

15~3c2
1

· Γ1→2

)−1

. (2.45)

The flux was divided by surface area A, because the flux qAMM is expressed per unit
area. The resistance RAMM

interface, eq. (2.45), still depends on the temperature difference
of the two media. Therefore, we consider the limit that the difference, ∆T , goes to
zero eq. (2.45) that yields

lim
∆T→0

RAMM
interface =

(
T 3

2
k4

Bπ
2

15~3c2
1
· Γ1→2

)−1

. (2.46)

For a given non-analytical form of a DoS, one performs a numerical integration of
Q1→2 and Q2→1 [39, 40].

6The complete integration has been expressed by Q1→2 = 1
2
∑

j Γ1→2
∫ ωD

0

(
dDDebye

1→2 (ω,T )
dT ~ω

)
dω.

Here, ωD is the Debye frequency on the incident side 1 and dDDebye
1→2 (ω, T ) =

ω2dw
2πc1→2·(exp(~ω/kBT )−1) represents the Debye-DoFs with Bose Einstein statistics [35, 36].
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2.4.2 Diffusive mismatch model (DMM)
The diffusive mismatch model (DMM) was first introduced by Swartz and Pohl in
1989, and it is a high-temperature model. The main difference between the AMM
and DMM is the calculation of the transmission probability: (i) it fulfils detailed
balance (ii) the interface causes a diffusive scattering [35]. Hence, a phonon looses
the memory of where it came from, what mode it had and all correlations between
incoming and outgoing phonons are ignored [35]. With this approximation, the
transmission coefficient is

αi→3−i(ω) =
∑

j c
−2
3−i,j∑

j c
−2
i,j

.

i is the kind of material respectively or side of the incident phonon, i.e., for (i =
1) → (3− (i = 1)) ⇒ 1 → 2 and (i = 2) → (3− (i = 2)) ⇒ 2 → 1. The notation
i− 3 results from the detailed balance and denotes the side opposite to side i. The
summation over j represents the transverse (T) or longitudinal (L) parts, i.e., speed-
of-sound transverse, cT , and speed-of -sound longitudinal, cL. Again, the phonon
velocities and phonon densities were assumed by the Debye-model, for a detailed
derivation of eq. (2.47) cf. [35]. In a diffusive approach, angle dependency does not
exist and the calculation of the flux, Γ, eq. (2.43), can be done straightforward.
This can be used to calculate the complete flux across the interface:

qDMM = k4
Bπ

2

~3120

T 4
1
∑

j
c−2

1,jα1→2 − T 4
2
∑

j
c−2

2,jα2→1

 . (2.47)

This equation can be used to calculate the thermal boundary resistance, RDMM
interface.

In the limit that the difference of temperatures goes to zero the resistance at the
interface is given by

lim
∆T→0

RDMM
interface =

k4
Bπ

2

~330

∑
j
c−2

1,j

α1→2T
3
2

−1

. (2.48)

In principle, AMM is a low-temperature model and DMM a high-temperature
model. Beyond the two described models, there are approaches that use a real
density of states (DoS) instead of the Debye model’s DoS. Hence, they include
a real DoS (or exact phonon-dispersion, specific heat etc.), which improves the
accuracy of thermal resistance’s theoretical prediction [36, 39, 40].
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3 Simulation techniques

In this chapter, existing and new techniques to perform simulations on the mesoscale
are presented. On this level of coarsening, effects between the atomistic and
macroscopic scale are in the focus. To better delineate the scales, a rough distinction
regarding the magnitude of length and time scale, as well as the number of particles,
is given. On the atomistic or rather quantum mechanical level, the typical length
scale is l ≈ 0.5 nm, the time scale is ∆t = 10−17s, and problems that can be exactly
solved, are limited by a countable number, e.g., H,H+

2 , He. Density functional
theory numerically gives access to a system containing 103 particles. The dynamics
of the system is given by the Schrödinger equation and corresponding Hamiltonian
mechanics. The macroscopic level has a typical length scale of l & 10 µm. The
time scale is on the order of seconds. If these systems are described by continuum
model descriptions, e.g., Navier-Stokes equations, these continuum models capture
the collective behaviour of 1023 particles and more. Hence, even if the underlying
fluid is quite complex one can define new dimensionless characteristics such as
the Reynolds number, which is the ratio between inertia and viscous forces, that
describe the macroscopic properties. The mesoscopic scale enters inbetween these
two scales. Hence, the particle number is much larger than one and the dynamics
of the system can be captured by the thermal diffusion equation. The challenge
on the mesoscale consists of including the relevant interactions in a minimal set
of interactions to describe macroscopic observables. This can be implemented by
a top-down or bottom-up approach. In this thesis, a coarse-grained model that
captures the relevant interactions required to bring about the universal aspects of
soft matter phenomena including energy transport is developed. This accounts for
an investigating of thermal effects on a universal coarse-grained scale also allows us
to mimic systems on large time scales.

In this chapter, the new energy-conserving Monte-Carlo scheme (eMC) is intro-
duced. This scheme generates the microcanonical ensemble of particle coordinates,
momenta, and internal energies. Moreover, the system conserves energy and mo-
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menta locally according to the microcanonical ensemble. This method can be
understood as an improvement of the existing energy-conserving dissipation particle
dynamics eDPD, because using a Monte-Carlo scheme prevents the problem of
discretisation errors of a first-order integration scheme. Hence, to create a numer-
ically stable integration scheme of eDPD, one has to put significant effort into
the stochastic part of the Wiener Process. A Wiener process is a continuous-time
stochastic process, which has normal distributed independent increments. The
derivation of eMC also clarifies the connection to microcanonical partition function:
It is distinguished between model characteristics that are necessary to represent the
microcanonical ensemble and model properties that are chosen in order to mimic a
physically realistic dynamics.
A logical consequence, which increases the stability of eDPD, is to reduce the

integration step, hence typical integration time-steps of eDPD are in the order
of δt = 0.00002 [41],[42]. This fact makes it computationally difficult to reach the
large length and time scales of collective phenomena in soft matter by eDPD. Also,
it is difficult to adapt the given equations of motion to more complex structures,
i.e., how does friction and noise depends on different particle types. Nevertheless,
eDPD has been established as a standard tool to investigate thermal transport
properties. To clarify the scope of eMC some typical topics eDPD is used for are
mentioned. Early work in the late nineties are shaped by work of Avalos, Mackie,
and Ripoll who worked out the practical benefits and give basic assumptions and
calculations to perform and verify eDPD simulations. At this time their focus
was on heat-flow and specific heat capacities [43–45]. As soon as eDPD became
popular, simulation studies have addressed: shock-waves, e.g., propagating shock and
detonation waves [46], shock-wave induced damage in lipid bilayers [47], shock-to-
detonation transition in a reactive eDPD liquid [48], thermo-mechanical processes
[49], modelling mesoscopic solidification using dissipative particle dynamics [50],
and convection in liquids [41]. However, all of these applications would directly
benefit from eMC cf. sec. 3.3.
To account the eMC scheme to a broad ground, the key aspects of dissipative

particle dynamics (DPD) are revised, energy-conserving particle dynamics eDPD,
respectively. The new eMC scheme bases on a general decomposition of micro-
canonical partition function, and uses the underlying physical process, e.g., thermal
relaxation of internal DoFs to propose a new configuration, which is accepted by the
Metropolis rate [51]. The Monte-Carlo scheme can be understood as an integration
scheme of infinite-order, which always guarantees that the equilibrium distribution
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corresponds to the microcanonical ensemble.

3.1 Dissipative particle dynamics with energy
conversion

The method of dissipative particle dynamics DPD was first developed by Hooger-
brugge et al. [52]. They claimed that a classic MD simulation takes too many
details into account, which in principle are not necessary to observe the physically
correct hydrodynamic behaviour of a fluid. Therefore, they introduced a fluid
particle, representing molecules, which had been lumped together to an effective
particle. Based on these particles they constructed a model to describe the universal
characteristics of a fluid by a coarse-grained model with a minimal set of parameters.
This model relies on two main requirements: (i) local momentum conservation to
obtain hydrodynamic behaviour and (ii) a repulsive interaction, which limits density
fluctuations. All other characteristics of the fluid are captured by friction and noise.
Hence, a coarse-grained ”fluid particle” is affected by three forces (i) a conservative
force, which is freedom of choice but in common soft repulsive, (ii) a dissipative
force, which reduces particle’s kinetic energy proportional to the velocity, (iii) a
random force, which drives Brownian dynamics via fluctuations. Hence, the force
that acts on a particle i is the sum of pairwise interactions of particle i and j

~Fi =
∑
i 6=j

(
~FC

ij + ~FD
ij + ~FR

ij

)
, (3.1)

which consist of the conservative (C), dissipative (D), and random part (R). The
dissipative and random forces take the form

~FD = −γωD(~rij)(~eij~vij)~eij, (3.2)
~FR = σωR(~rij)~eijξij. (3.3)

~rij = ~ri−~rj denotes the distance vector between particles i and j. Hence, ~eij represents
the unit vector from the i-th to th j-th particle [53]. ~vij = ~vi−~vj is the velocity vector
between particles i and j. This expression uses the modified form of Espanol, who
substantiated Hogerbrugge’s idea to a theoretical framework of stochastic differential
equations SDE. They showed that the form of the dissipative and random forces has
to be chosen such that they recover the Gibbs distribution recovered as the stationary
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solution to the Fokker-Planck equation [53]. The random force is controlled by ξi,
which mimics Gaussian white noise. The mean value of ξi is equal to zero and two
time-steps t1 and t2 are independent without any history. The variance of the two
random variables ξ controlling the random force between particle i and j at time
t1 and t2 is linear in the time increment dt. Hence, two sequenced time-steps t1
and t2 can be described by 〈ξi1j1(t1)ξi2j2(t2)〉 = (δi1i2δj1j2 + δi1j2δj1i2)δ(t1− t2) [53]. To
control the range of dissipative and random force weighting functions ωD and ωR are
introduced 1. Espanol demonstrated that the steady-state solution of the Fokker-
Planck equations yields the Gibbs distribution by selecting of ω2

R(r) = ωD(r) and
σ2 = 2γkBT . For ωR, one uses the function 2(1− r/rc), which is also consistent with
Hoogerbrugge [52]. In summary, the stochastic equations of motion of dissipative
particle dynamics are

d~ri = ~pi
mi

dt, (3.4)

d~pi =
∑

i 6=j

~FC
ij (rij)−

∑
i 6=j
γωD(rij) (~eij · ~vij)~eij

 dt

+
∑
i 6=j

√
2kBTγωD(rij)~eijdWij. (3.5)

Here, the random variable ξij, which controls the random force between two particles,
is replaced by an increment, dWij = dWji, of the Wiener process. In this process the
mean value of increments is zero and their variance is linear in the time increment
dt. The increments themselves are uncorrelated, i.e., a new increment is totally
independent and does not know anything about the increment before.

The DPD method cannot recover a system’s real specific heat capacity, because
most of the vibrational modes, which store specific heat, have been integrated out.
Sequentially, Avalos and Espanol expanded DPD and introduced an additional
degree of freedom (DoF) to each particle, internal energy e [9, 10]. This DoF is
described by an internal entropy s(e). Therefore, they expanded the stochastic
equations of motion (3.4) and (3.5) formulated an equation of motion for the
additional DoF - the internal energy e. This additional equation for the internal
energy considers two parts: (i) a thermal relaxation to address viscous heating,
(ii) a mechanical energy part. The mechanical energy part which is added to the
internal DoF, e, is the reversed part of energy which is dissipated in the velocities.

1Here, the weighting function ωD has nothing to do with Debye frequency, which was introduced
in the previous chapter.
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Hence, the total sum of mechanical energy that is potential and kinetic energy, and
internal energy is conserved in eDPD. Thus, the eDPD equations take the form

d~ri = ~pi
mi

dt, (3.6)

d~pi =
∑

i 6=j

~FC
ij (rij)−

∑
i6=j
γωD(rij) (~eij · ~vij)~eij

 dt+

+
∑
i 6=j

√
2kBTlocγωD(rij)~eijdW ν

ij , (3.7)

dei =m2

∑
j

(
ωD(rij)γij(~vij~eij)2 − 2kBTlocγijω

2
R(rij)

)
dt−

−
∑
j

√
2kBTlocγijωR(rij)(~vij~eij)dW ν

ij

+

+
∑
j
κij

(
1
Ti
− 1
Tj

)
ωeD(rij) +

∑
j
αijω

e
R(rij)dW e

ij . (3.8)

Here, κij is the intrinsic thermal heat conductivity between two particles. The
inverse temperatures 1/Ti, 1/Tj, are related to the derivative of internal entropy
with respect to internal energy. Instead of a thermodynamic temperature T , a
local temperature Tloc is used, which is obtained by the local internal temperature
of a particle. The relation (ω(r)eR(r))2 = ω(r)eD(r) provides the range of forces as
ωD = ω2

R. The first term of eq. (3.8) quantifies the mechanical energy, which is
dissipated by velocity, i.e., momentum, eq. (3.7) to conserve total energy. The second
part is related to the thermal relaxation. With the expression dW e

ij , they introduced
an additional Wiener Process that is symmetric, such that the random energy that
is added to particle i’s energy, is subtracted from particles j’s one. Espanol and
Mackie postulated that there is no correlation between the time differentials dW e

ij

and dW ν
ij [9, 10]. To solve these equations of motion (3.6), (3.7), and (3.8), one has

to perform a first-order integration scheme. This is accompanied by a discretisation,
which leads to serious discretisation errors. Even if eDPD was successfully applied
to various problems and research fields, problems would remain inaccessible, because
of an inefficient numerically unstable implementation, which is influenced by the two
stochastic parts of energy fluctuation in the internal degrees of freedom controlled
by dW e

ij and dissipative part in velocities controlled by dW ν
ij . Therefore, it remains

the question of how to solve the stochastic equations exactly [54]. Eventually, this
question can be solved by the energy-conserving Monte-Carlo scheme eMC, which
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can be understood in terms of a thermostat coupling internal and external degrees
of freedom via parallel momenta. Next, two common thermostats are introduced to
ease the understanding of how eMC acts.

3.2 Excursion: thermostats
A thermostat couples particles in a NVE ensemble to a heat bath, which results
in the ensemble NVT. In this section two thermostats are introduced, because
the eMC scheme facilitates the understanding in terms of a thermostat. The two
thermostats are the Lowe-Andersen and the Peters thermostat.

3.2.1 Lowe-Andersen thermostat
DPD can be conceived as a thermostat that locally conserves momentum. An
alternative approach to dissipative particle dynamics is a thermostat, e.g., Lowe-
Andersen thermostat [55]. This thermostat solves the time-step problem of DPD
because one can apply an integration scheme to microcanonical DoFs, and apply a
thermostat that does a thermalisation that does not involve a time-step. The update
procedure of the thermostat acts on particle pairs, which interact via non-bounded
forces. The update of two interacting particles is controlled by a collision rate Γ ·∆t.
If a uniform random number ξc between [0,1] is smaller than the collision rate, the
relative velocity in the parallel direction of the particle pair is updated. The update
of momenta is

~pnew i = ~pold i + µij

(
ξr
√
kBT/µij − (~vi − ~vj)~eij

)
~eij, (3.9)

~pnew j = ~pold j − µij

(
ξr
√
kBT/µij − (~vi − ~vj)~eij

)
~eij. (3.10)

µij represents the reduced mass mimi
mi+mj

. The unit vector ~eij corresponds to the
direction of the connection of particles i and j such that ~eij = (~ri−~rj)

|(~ri−~rj)| . ξr is a random
number drawn from a Gaussian distribution with unit variance. This thermostat
is similar to the eMC method, because it decouples pairs of particles into two
statistically independent parts: the velocity of the centre of mass and a relative
velocity. The Lowe-Andersen thermostat allows controlling the friction and noise by
the collision rate Γ. A collision goes along with a change of the velocity. Calculating
a velocity autocorrelation function will show that vibrational modes are destroyed
by this.
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3.2.2 Peters thermostat

Drawing completely new, uncorrelated relative momenta according to eq. (3.10)
significantly perturbs the trajectories (in comparison to the microcanonical scheme,
Newton’s equation of motion) [56]. Therefore, Peters came up with an improved
generalised scheme of the Lowe-Andersen thermostat. The main idea is to perform
a partial re-equilibration of the relative velocity. This partial re-equilibration of the
momenta,

~pnew i = ~pold i + µij
(
−α(~vij · ~eij) +

√
2α− α2~vEQij

)
~eij, (3.11)

~pnew j = ~pold j − µij
(
−α(~vij · ~eij) +

√
2α− α2~vEQij

)
~eij, (3.12)

can be controlled by the parameter 0 < α < 1. For α = 1, the scheme falls back
to update scheme of Lowe-Andersen, eq. (3.10). The velocity vEQij is drawn from a
normal distribution with variance kBT/µij. The only difference between the Peters
and Lowe-Andersen thermostat is given by the partial re-equilibration of the relative
velocity

vnew ij = (1− α)vij +
√

2α− α2 · vEQij . (3.13)

The old and new relative velocities vij new satisfy a Maxwell-Boltzmann distribution,
because sum of independent Gaussian variables will also satisfy a Gaussian distri-
bution [56]. One advantage of the Peters thermostat is that optical and acoustic
phonon vibrations can propagate through the system and are not disturbed by the
thermostat. Peters thermostat allows to control the correlations in a more gentle
way by introducing the re-equilibration constant α. Especially, identification of
the DoFs of system through a Fourier transformation of the velocity autocorrela-
tion function is an advantage. Even if the partial change of the velocities keeps
correlations, when the DoSs are calculated, the thermostats are switched off.

3.3 Energy Monte-Carlo scheme

In the previous section, eDPD has been introduced. We conclude that the first-order
integration scheme for the stochastic differential equations of motion (SDE) inhibits
an implementation that is fast and numerically stable. Even if there are thermostats
for DPD models, e.g., Peters thermostat there is not any known strategy to expand
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these approach to the additional DoF used in eDPD. eMC strategy overcomes this
limitation of SDE and previous methods by combining microcanonical molecular-
dynamics (MD) simulations, soft repulsive non-bonded potential and Gaussian
bonds, with a force biased Monte-Carlo scheme that couples the internal DoSs to
the outer ones and acts similar to the strategy of a thermostat, e.g., Lowe-Andersen
(cf. sec. 3.2.1) or Peters (cf. sec. 3.2.2) [54–57]. Our eMC scheme guarantees that
the equilibrium distribution corresponds to the microcanonical ensemble by infinite
order.

In the next section, the new eMC scheme is deduced. We explain the microcanon-
ical partition function and systematically derive the acceptance criterion, which
samples this microcanonical partition function, and give an explanation how to
address the internal DoFs. The eMC scheme (i) generates the microcanonical
ensemble of particle coordinates and momenta, and internal energies, and (ii) mimics
a realistic dynamics [11].

3.3.1 Microcanonical partition function

The eMC scheme utilizes a coarse-grained description on a microcanonical level.
In order to map thermal properties, e.g., specific heat capacity, DoFs, which have
been integrated out, have to be taken into account. These DoFs are specified by
translation, rotation, vibration, etc., but time and length scale of these DoFs are
independent of the scale eMC addresses, i.e., vibrational frequencies are located
in the tera-hertz regime and their contribution to the universal energy transport
phenomena is limited. Hence, several atoms along the molecular backbone are
lumped into an effective, coarse-grained interaction centre and an additional internal
DoF e, which represents all the DoFs {q}, which have been integrated out, fig. 3.1.
Hence, the eMC scheme will distinguish external and internal DoFs. The internal
DoF - internal energy, e, - is related to an internal entropy

s(ei) = kB ln
(∫

d{qi}δ[ei({qi})− e]
)
. (3.14)

This entropy quantifies the number of states a coarse-grained interaction centre has
at a specific energy e. Here, i represents a coarse-grained particle’s index. The eMC
scheme samples a microcanonical partition function, which relies on the assumption
that there is no coupling between the internal DoFs {q} and the external DoFs
(coarse-grained particles’ momenta and spatial positions). Hence, the system’s total
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r,p,{q}

r,p,e

Figure 3.1 Several atoms along the molecular backbone are lumped into an effective,
coarse-grained interaction centre. DoFs {q}, which have been integrated out, are
captured by one collective DoF, which is the internal energy, e.

sum of the energy is given by two independent parts (i) the Hamiltonian of all
external DoFs, H({r}, {p}) = ∑

i
~p2

i
2mi

+∑
i<j V (~ri − ~rj), (ii) the sum of all particles’

internal energy ei({qi}). The partition function reads

Zmc =
∫ ∏

i

d~rid~pi

(2π~)3nNn!d{qi}×

× δ

∑
i

~p2
i

2mi
+
∑
i<j
V (~ri − ~rj) + ei({qi})− Etotal

 . (3.15)

Here, i represents a summation over all particles. n is the number of polymers, N is
the number of segments. ~pi corresponds to the momenta and V (~ri − ~ri) denotes a
pair potential, which depends on the distance vector between two particles. DoFs
{qi} are integrated out via the entropy relation, eq. (3.14). The microcanonical
partition function is integrated over d{q} for each coarse-grained particle i. Each
particle sustains an internal energy, which defines the particles’ number of states
via the entropy s(e), fig. 3.1. The microcanonical partition function now reads

Zmc =
∫ ∏

i

d~rid~pidei

(2π~)3nNn! exp
(∑

i

si(ei)
kB

)
︸ ︷︷ ︸
integrated out DoFs

×

× δ

∑
i

~p2
i

2mi
+
∑
i<j
V (~ri − ~rj) +

∑
i
ei − Etotal

 . (3.16)

ei are the internal energies of the particles, and si relates to the internal entropy,
which quantifies the number of states of particle i at given internal energy. This
microcanonical partition function will be sampled by the eMC scheme. Like a
thermostat eMC updates particles’ internal energies and parallel momenta, which
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microcanonical integration scheme

energy Monte-Carlo "thermostat"

Velocity-Verlet scheme
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Figure 3.2 Flow chart illustrates the implementation of the eMC scheme. It is separated
between external and internal DoFs by (i) a microcanonical integration scheme (ii)
eMC lottery with a criterion, which accepts or rejects the new proposed state, modified
version from [11].

are accepted according to a Metropolis rate. The external DoFs are captured by
microcanonical molecular-dynamic, which uses a time-reversible and symplectic
Velocity-Verlet integration scheme. The full scheme is illustrated by figure 3.2. New
internal energies and parallel momentum are proposed

[p||, ei, ej]old → [p||, ei, ej]new,

where the proposed state is accepted with a specific probability by an acceptance
criterion (green box fig. 3.2). In the next subsection the microcanonical partition
function is rewritten to derive an acceptance criterion for an update procedure of
pairs of particles.

3.3.2 eMC: acceptance criterion

eMC acts pairwise on particles i and j at spatial position ~ri,~rj with distance
|~ri− ~rj| < σ. σ is chosen equivalent to the range of the soft interaction. In principle,
also other choices are possible, e.g., bonded particles interact independent from
interaction range. eMC couples kinetic energy from external DoF to the internal
DoFs and vice versa. Despite insertion of kinetic energy to external DoFs, the
local momentum stays unaltered. Hence, the relative momentum is decomposed
into a parallel and perpendicular one. According to the Lowe-Andersen thermostat,
sec. 3.2.1, this is a free choice, i.e., also an update of the perpendicular momentum
is possible. To conserve the centre of mass momentum ~P , a relative momentum
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∆~p is added to particle j’s momentum ~pi and subtracted to particle i’s momentum
~pj. Particles have a mass mi, mj, and a reduced mass µ = mimj

mi+mj
. The centre of

mass momentum is ~P = ~pi + ~pj and the relative momentum is ∆~p = µ
mj
~pi − µ

mi
~pj.

Inverting these linear relations for centre of mass and relative momenta, one obtains

~pi = µ

mj
~P −∆~p, (3.17)

~pj = µ

mi
~P + ∆~p. (3.18)

The decomposition is sketched in fig. 3.3 [11]. The relative momentum is decomposed
to ∆~p = p||~eij + ~p⊥. ~eij is the unit vector (~ri− ~rj)/|~ri− ~rj|. The parallel momenta p||
are drawn according to the Maxwell-Boltzmann distribution,

PT loc
old

(∆p||new) = 1√
2πµkBT̄ loc

old

· exp
(
−

∆p2
‖new

2µkBT̄ loc
old

)
. (3.19)

T loc
old is the local internal temperature of particle i and j, T loc

old = (Ti + Tj)/2. This
is a choice, which is not necessary that the choice T loc

old does not have any physical
consequence. The temperatures are defined by the derivative of entropy with respect
to energy, T =

(
∂s
∂e

)−1
. The parallel component connects implicit and explicit DoFs.

Hence, the internal DoFs also act like a local heat bath similar to Lowe-Andersen’s
thermostat because an update takes out or puts in energy into the particle pair i

and j, via the expression δT =

(
∆p2
||new

−∆p2
||old

)
2µ .

The decomposition of momenta allows to rewrite the microcanonical partition
function, eq. (3.16), into a microcanonical ensemble,

Ωmc = 1
(2π~)3nNn!

∫ ∏
i
d~ri

∏
i>2

d~pidei exp
(∑

i>2

s(ei)
kB

)

×
[∫

d~Pd2∆p⊥d∆p‖de1de2 exp
(
s(e1) + s(e2)

kB

)]

× δ

∆p2
⊥ + ∆p2

‖

2µ +
~P 2

2M +
∑
i<j

V (~ri − ~rj) + ei({qi})
 . (3.20)

which represents all states of the system that are accessible at a fixed total energy.
Thus, this sets the base for the eMC scheme. The numbers 1 and 2 represent an
explicit pair of particles that the product ∏ over the entropies s(ei) starts at i = 3.
The explicit pair of particles is presented in the form of decomposed momenta.
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Figure 3.3 Two particles interact for a time ∆t. The momenta are decomposed to
conserve local momentum, eq. (3.18), (3.17). The energy will be changed by a thermal
relaxation with a thermal conductivity κint between particles a random heat flux δq
and a random contribution of kinetic energy δT [11].

V (~ri − ~rj) denotes a potential acting between pairs of particles. With the condition
that eMC’s update of parallel momentum and internal energies conserves the total
energy of the system, the statistical weight of the two-particle problem is identified
by

d∆p‖deidej exp
(
s(ei) + s(ej)

kB

)
= const. (3.21)

The relevant statistical weight of a particle pair remains fully flexible due to the
choice of s(e). Hence, particles’ entropies s(e) fully cover local equilibrium material
properties like specific heat capacity cV . A Monte-Carlo scheme always relies on
detailed balance. The detailed-balance condition is

W (S ′|S)P (S) = W (S|S ′)P (S ′). (3.22)

The probability P (S) to be in state S multiplied by a transition probability W to
evolve from state S to S ′ is equal to probability P (S ′) in state S ′ multiplied by
a transition probability W to come from state S ′ to S. In our case, the state S ′

respectively S is characterised by three new/old proposed variables: (i) the parallel
momentum, which results from the decomposition of the momenta ~p1 and ~p2 of two
pairwise interacting particles, (ii) internal energy of the first particle, (iii) internal
energy of the second particle. We insert the statistical weight of the two-particle
problem into eq. (3.22) and split the probabilities. pprop is the proposal probability
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and pacc the acceptance probability,

p(+)
acc · p(+)

prop(∆p|| old, ei old, ej old) · exp
(
si(ei old) + sj(ej old)

kB

)
= (3.23)

p(−)
acc · p(−)

prop(∆p|| new, ei new, ej new) · exp
(
si(ei new) + sj(ej new)

kB

)
. (3.24)

The (+) denotes the forward step and the (−) denotes the backward step. The eMC
update scheme acts on internal energies ei, ej, and parallel momentum p||, but
the proposal probability of parallel momentum and new internal energies can be
decoupled. The proposal probability is factorised and the probability distribution
of parallel momenta is inserted

p(+)
acc

p
(−)
acc

= P (∆p|| old)
P (∆p|| new) ·

P (ei old, ej old)
P (ei new, ej new) ·

exp
(
si(ei new)+sj(ej new)

kB

)
exp

(
si(ei old)+sj(ej old)

kB

) . (3.25)

This expression specifies the acceptance criterion p(+)
acc /p

(−)
acc to sample the micro-

canonical partition function independent of the underlying model properties that are
chosen in order to mimic physically realistic dynamics. Of coarse, the probabilities
P (ei new, ej new) and P (ei new, ej new) have to be constructed so that total energy of
the system is conserved. Hence, a reasonable form for the proposal probability of
new internal energies is deduced and the choice of updating the internal energies is
expounded. Here, the focus is on physically realistic dynamics. Realistic dynamics
dictates the update of two internal energies that correspond to a pair of particle
– without an explicit formulation of the distribution factor of energy to internal
DoFs,

ei new = ei old + δqold + κint

(
∂si

∂ei old
− ∂sj

∂ej old

)
∆t− δT · (distr. factor), (3.26)

ej new = ej old − δqold︸ ︷︷ ︸
noise

−κint

(
∂si

∂ei old
− ∂sj

∂ej old

)
∆t︸ ︷︷ ︸

thermal relaxation

− δT · (distr. factor)︸ ︷︷ ︸
exchange of δT

. (3.27)

The update of energies is influenced by a random noise, a deterministic thermal
relaxation controlled by the inverse internal temperatures, which are calculated
by derivative of entropy with respect to energy, and a distribution factor, which
controls the split of kinetic energy δT to the particles’ internal energy. The form of
the equation guarantees that the newly proposed state leaves the total energy of the
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system unaltered, ∆p2
‖

2µ + ei + ej = const. 2. The random noise is drawn according to
a Gaussian distribution

δqold ⇐P (δqold) = 1
√2πσq

exp
(
−δq

2
old

2σq

)
. (3.28)

The distribution is normalised according to the σq = 2κint∆t. κint denotes the
thermal relaxation constant between particles i and j. Also, other probability
distributions are possible, but in the limit that the number of DoFs, which have
been integrated out, is large, a Gaussian distribution is a good choice to describe
additional thermal fluctuations, i.e., distribution follows central limit theorem. In
the update of internal energies, the main idea introducing this random part is that
the deterministic energy exchange is accompanied by a random one δq.

The deterministic thermal relaxation part is controlled by its thermal relaxation
constant κint and the difference of the inverse temperatures. Finally, the split of

kinetic energy difference δT =

(
∆p2
|| new−∆p2

|| old

)
2µ to the internal energies, ei and ej, is

specified. Hence, the goal is to formulate an expression, which splits the exchange
of δT . Energy change is chosen such that the sum of the internal entropies si and
sj of particles i and j is maximal. δei is the change of internal energy of particle i,

MAX (si(ei old + δei old) + sj(ej old + δT − δei old)) . (3.29)

The maximum value is deduced by expanding this equation for small δei and δT to
first-order and differentiate

∂si

∂ei
− ∂sj

∂ej︸ ︷︷ ︸
Zero for equilibrium

+∂
2si

∂e2
i
δei + ∂2sj

∂s2
j
δei + ∂2sj

∂e2
j
δT +O(δe2) = 0. (3.30)

The first two terms correspond to the thermal relaxation, which is assumed to
be zero for the equilibrium. Solving this equation for δei leads to an expression
that corresponds to the energy exchange between internal and external degrees of
freedom. Thus, equation (3.26) and (3.27) can be expanded by an explicit term to

2This condition already sustained the statistical weight of the two-particle problem in the
microcanonical ensemble, eq. (3.20).
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distribute the energy to internal energies,

ei new = ei old + δqold + κint

(
∂si old
∂ei old

− ∂sj old
∂ej old

)
∆t−


∂2sj old
∂e2

j old

∂2si old
∂e2

i old
+ ∂2sj old

∂e2
j old

 δT , (3.31)

ej new = ej old − δqold − κint
(
∂si old
∂ei old

− ∂sj old
∂ej old

)
∆t−

 ∂2si old
∂e2

i old
∂2si old
∂e2

i old
+ ∂2sj old

∂e2
j old


︸ ︷︷ ︸
weights δT to specific heat

δT . (3.32)

A visualisation of eq. (3.31) and (3.32) is shown in figure 3.3. The yellow point
represents the particles’ centre of mass. The green arrow indicates the exchange of
internal and external energy, which is given by the last part of equation (3.31). The
red arrows represent the thermal noise (the analogue is the second part of equation
(3.31)) and the magenta arrow indicates the deterministic thermal relaxation, κint.
In eq. (3.19) and (3.28) the parallel momentum, ∆p‖, and thermal noise, δqnew, are
Gaussian distributed. Thus, the new parallel momentum ∆p‖new is drawn according
to Gaussian distribution, referring to equation (3.19). The thermal noise of the
interaction is characterised by δq. The fluctuations of δq are controlled by the
probability distribution (3.28). The form of this noise was chosen to be Gaussian,
which can be motivated by the spirit of a thermostat controlled by a heat bath with
normalisation σq old. The proposed new state gives rise to determine the old state
δqold (3.31) and δqnew by the reverse step of equation (3.31)

δqold =ei new − ei old − κint
(
∂si old
∂ei old

−−∂sj old
∂ej old

)
∆t

+


∂2sj old
∂e2

j old

∂2si old
∂e2

i old
+ ∂2sj old

∂e2
j old

 δT , (3.33)

δqnew =ei old − ei new − κint
(
∂si new
∂ei new

− ∂sj new
∂ej new

)
∆t

−

 ∂2sj new
∂e2

j new

∂2si new
∂e2

i new
+ ∂2sj new

∂e2
j new

 δT . (3.34)

δT denotes the change of kinetic energy caused by the insertion of the drawn parallel
momentum of particles i and j. Thus, the general acceptance criterion, eq. (3.25),
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results in

p(+)
acc

p
(−)
acc

=
√
σp oldσq old

σp newσqnew
exp

(
si(ei new) + sj(ej new)− si(ei old)− sj(ej old)

kB

)
×

× exp
(
−

∆p2
‖ old

2σp‖ old

+
∆p2
‖ new

2σp‖ new

+ δq2
old

2σqold

− δq2
new

2σqnew

)
. (3.35)

Here, the deterministic thermal relaxation is accompanied by the random one given
by the probability distribution P (δqold) of the random noise δq. We will accept a
step if a random number ξr will be smaller than the acceptance criterion of the
current step. The random number ξr is uniformly distributed between [0, 1].

pacc = min

1,
PT̄ loc

new
(∆p‖old)

PT̄ loc
old

(∆p‖new)
P (δqnew)
P (δqold)

e
s(ei new)+s(ej new)

kB

e
s(ei old)+s(ej old)

kB

 (3.36)

Finally, the key aspects of eMC method are:

• The acceptance criterion is based on the decomposed microcanonical partition
function. Hence, the Monte-Carlo scheme is flexible to the choice of internal
entropies s(e) and the related physical mechanisms that control the proposed
new internal energies, i.e., entropy must be differentiable with respect to
energy, e.

• The algorithm works independently from the choice of the form of the internal
entropy.

• The internal thermal relaxation parameter, κint, can be addressed to an
underlying complex structure, i.e., this allows to distinguish between intra-
and inter-molecular thermal relaxation.

• It is numerically more stable than a first-order eDPD scheme. Hence, it gives
access to study collective processes on long time and length scales.

Table 3.1 concludes main characteristics, i.e., parameters of eMC. They are struc-
tured into their dependence onto external or internal DoFs. The right column gives
information about connection and dependencies of other parameters. At this point,
eMC is the only method that allows to decouple the physics of internal DoF and a
classic microcanonical integration scheme via one universal Monte-Carlo scheme.
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parameter description dependence
microcanonical properties - external DoF
Re averaged end-to-end distance
N̄ degree of polymerisation N̄ = (ρb3)2N

N number of segments N̄
bσ−1 = 1 averaged harmonic bond distance N̄
ρ0σ

3 density of the system N̄
vij soft interaction parameter eq. (3.52)

(other potentials are possible)
∆p||old couples int.& ext. energy ∆p|| ← P (∆p||), eq. (3.19)

drawn from Gaussian distr.
δT difference in kinetic energy ∆p||, αcouple

αcouple controls correlation between
∆p||old, ∆p||new –

T extkB external temperature 2
3

〈
mi
2 v

2
i

〉
N
,eq. (3.53)

dτverlet
md increment of integration

thermal properties - internal DoF
eint internal energy kBT

s(eint) internal entropy cV ln(e)
cV internal specific heat capacity exp. data

∂e(s(e)) and ∂2
e (s(e)) have to exist.

δq thermal noise eq. (3.28)
κint internal (intra or inter)

thermal relaxation constant
κinter determin. relax. of ei, ej c-g. particle type
κintra determin. relax. of ei, ej c-g. architecture
κintra maximal relaxation max. s(e), eq. (3.38)
T intkB internal temperature [11] 〈e〉

cv/kB+1
dτ eMC

md increment of call eMC

Table 3.1 An overview about obligatory and free choices of the eMC scheme. It is
distinguished between internal and external DoFs.
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3.3.3 eMC: limiting cases of thermal conductivity

Two limiting cases of the eMC scheme are considered. In the first case the internal
thermal relaxation constant κint equals zero. Thus, there is no internal coupling
between two interacting particles any more. In consequence, the internal energy
acts like a local thermostat only. If a portion of energy is added to a single particle’s
internal energy, this energy will relax such that kinetic and internal temperature
end up in thermal equilibrium. We conclude that the internal DoFs, ei and ej, only
interact via ∆p‖, and the acceptance probability reads

pacc = min

1,
PT̄ loc

new
(∆p‖old)

PT̄ loc
old

(∆p‖new)
e

s(ei new)+s(ej new)
kB

e
s(ei old)+s(ej old)

kB

 . (3.37)

In the second case the maximum relaxation is deduced. The maximum thermal
relaxation corresponds to an instantaneous equal temperature of two interacting
internal DoFs. The maximum of internal thermal relaxation is reached if an over
damping of internal energies starts. Due to the discreteness of ∆t, the cold particle
could become hotter than the hot particle, if κint∆t were chosen non-physically
large. The maximal value of κint immediately equilibrates the local temperatures,
∂si
∂ei

∣∣∣
ei+δeint

i
= ∂sj

∂ej

∣∣∣
ej−δeint

i
. This requirement yields

κint
max∆t ≈ −1

∂2si
∂e2

i
+ ∂2sj

∂e2
j

=
cloc

i cloc
j T loc2

i T loc2
j

cloc
i T loc2

i + cloc
j T loc2

j
. (3.38)

If κint was chosen higher than this limiting value the acceptance rate will decrease,
cf. fig. 4.5.

3.4 Universal, soft, coarse-grained model of polymer
melt

The DoFs, which have been integrated out, have to be specified by a functional
form. If the DoFs are lumped together to an internal energy, they are in equilibrium
with themselves and have no dynamics. Hence, the internal DoF of each particle -
internal energy e is controlled by an entropy energy relation s(e), which quantifies
the internal states of the internal DoF at a given energy e. All states are equilibrium
states. The form of the internal entropy has to be differentiable with respect to
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internal energy to be related to inverse temperature, ∂s(e)/∂e = 1/Tloc. The
simulations are performed on a level where polymers have universal behaviour.
Therefore, the universal description is restricted that the coarse-grained model
reproduces the invariant property Re, at a specific temperature T in equilibrium [11].
The system will have bonded and non-bonded interactions, bonded interactions will
be harmonic and non-bonded will be covered by a density approximation, which is
related to the particles’ spatial positions. Hence, the Hamiltonian, Ĥ, is comprised
of three parts: (i) kinetic energy T̂ = ∑

i
p2

i

2m , (ii) bonded interactions, Ĥb, and (iii)
non-bonded interactions, Ĥnb.

Bonded interactions are described by entropic springs. This choice implies that
particles mimic a Gaussian distribution along the polymer chain and exhibit random-
walk-like statistics.

Ĥb = 3kBT

2b2

nN∑
i

∆r2
i . (3.39)

Here, ∆ri represents the distance between bonded particles, and Re
2 = b2N denotes

the unperturbed end-to-end distance of the polymer. Coincidentally, the related
statistical segment length b = σ is the smallest relevant length scale in the model.
The number of polymers is n. The number of spatial positions that form each
polymer is N + 1, consequently the number of bonds is (N + 1)− 1 = N . Hence, the
sum runs over all nN bonds. Our coarse-grained model is parametrised to reproduce
the invariant property, Re, at a specific temperature T in equilibrium. Thus, we
choose kconf = kBT/b

2. In the subsequent work, the non-equilibrium simulation,
kconf is fixed, i.e., it does not depend on the local temperature.

Non-bonded interactions are assumed to be of the form Ĥnb = ∑
i<j V (ri − rj)

with a soft pair potential, V . This soft repulsion stems for the excluded volume
on the atomistic scale. In our coarse-grained model, the strength of this repulsion
is chosen large enough to restrain fluctuations of the total density on the smallest
relevant length scale of the coarse-grained description, i.e., we do not attempt to
reproduce the isothermal compressibility of the underlying atomistic description. In
accord with previous studies, we choose V (r)/kBT = Kisov(r) where Kiso quantifies
the inverse isothermal compressibility. The potential form is v(r) = 15

2πρσ3 (1− |r|
σ

)2
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for |r| < σ and 0 otherwise with an averaged density ρ0 = n(N + 1)/V [11].

Ĥnb =
∑
i<j
V (ri − rj) ≈

KisokBTN

2 · ρ0R
3
e

N

∫ d3r

R3 (φ̂(r)− 1)2 (3.40)

= KisokBTρ0

2

∫
dr3(φ̂(r)− 1)2 (3.41)

Here, φ̂(r) = 1
ρ

∑
i δ(r−ri) are the local normalised densities. The fluctuations of the

local normalised density are on the length scale ∆L and scale like ∆L3〈(φ̂−〈φ̂〉)2〉 =
1

Kisoρ
. This can also be characterised by a correlation length ξ = b/

√
12Kiso. 3 Under

this assumption, we fix kcomp = kBTKiso, where T characterizes the equilibrium
thermodynamic state, at which the model is parametrised. Recollect the main idea
we want to find a functional form of the internal entropy s(e). Every degree of
freedom, which has been integrated out cannot contribute to the conformational
entropy, in order to this they have to be recovered by a collective degree of freedom
- internal energy. Hence, the total free energy of the system is fixed and invariant
under the level of coarse-graining. The idealised partition function of the system
can be expressed by

Zk =
∫ dr3(N+1)ndp3(N+1)n

h3(N+1)nn! exp
(
−Ĥ({r}, {p})

kBT

)

=
∫ dr3(N+1)ndp3(N+1)n

h3(N+1)nn! exp
−T̂ + Ĥb({r}) + Ĥnb[φ̂({r})]

kBT

 . (3.42)

The partition function can be related to a free energy, which will be our invariant
quantity, F

kBT
∼ − ln(Zk). The canonical ensemble at temperature T and the free en-

ergy are decoupled into two contributions of (i) Gaussian chains - the conformational
part, (ii) the non-bounded energy, which has been replaced by density fluctuations
[11]. If consecutive coarse-graining is applied, contribution of the internal DoFs are
taken into account, too. The conformational part is calculated from the Hamiltonian,
Hb({r}), where each bond contribution of distance between bonded particles ∆ri

3This correlation length characterizes the crossover from intramolecular density fluctuations on
short length scales to an almost incompressible liquid on large length scales. The correlation
length can be calculated by the structure factor of a homopolymer melt in a random phase
approximation [58], which is utilised for small wave vectors, qRe � 1, S(q) ∝ 1

1+(ξq)2 , with
ξ = b/

√
12Kiso.
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decouples into a Gaussian integral

Fconf

kBT
∼ −3

2nN ln(kBT/kconf),

⇒Econf

kBT
∼ 3

2nN,
Sconf

kB
∼ 3

2nN ln(kBTe/kconf).

The end-to-end distance Re always represents an invariant property at a specific
temperature T in equilibrium. The contribution of density fluctuations scales as
follows

Fcomp

kBT
∼ 1

2(V/ξ3) ln(Kisoρξ
3) = −1

2
nN

ρξ3 ln(kBT/kcompρξ
3),

⇒Ecomp

kBT
∼ 1

2
nN

ρξ3 ,
Scomp

kB
∼ 1

2
nN

ρξ3 ln(kBTe/kcompρξ
3).

ξ is the correlation length of density fluctuations, because the free energy is claimed
to be invariant under successive coarse-graining. Hence, the free energy difference
of two consecutive coarse-grained steps is described by an internal free energy -
Fint = F − F ′. Before following this approach, we condition the directive that (i)
the form of Ĥb is invariant under coarse-graining, i.e., lumping two particles into
a new, coarser particle, N → N ′ = N/2, only the parameter b changes according
to b → b′ =

√
2b for the physically relevant property Re to remain invariant [59].

Additionally, it is required that (ii) in the soft, coarse-grained model, the ratio ξ/b
remains unaltered under coarse-graining, corresponding to an invariant Kiso. The
approach has to be independent from temperature, which could be considered a
contradiction, but we will consider situations that deal with small temperature
gradients only. We perform a top-down approach and use experimental data, which
will include a temperature dependency. The major part of external degrees of
freedom, spatial positions, and momenta that have been integrated out will enter
into the internal energy contribution per segment. N ′ indicates the number of
coarser particles of a chain, which remain by successively lumping two particles
together. On a high level of coarse graining, the energy and entropy take the form

e

kBT
∼ 1

2N/N
′(3α + β

ρξ3 ) ,
s

kB
∼ 1

2N/N
′(3α + β

ρξ3 ) ln kBT + const. (3.43)

Therefore, eliminating temperature, we obtain the universal form,

s(e) = cV ln(e) + const, (3.44)
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after multiple coarse-graining steps of a Gaussian polymer melt. cV is related to the
specific heat of the internal-energy reservoir. In our top-down modelling scheme the
parameters, averaged end-to-end distance Re, density ρRe

3/N , specific heat capacity
cV /kB are taken in comparison to experimental data. These model parameters
determine the thermodynamics of our universal, soft, coarse-grained model. For a
given entropy s(e) of internal DoFs, we express the first and second derivatives,
∂s
∂e

= 1
T loc(e) and ∂2s

∂e2 = − 1
clocT loc , via the local temperature T loc(e) and specific heat

cloc(e) of the particle [11]. This form also allows a rescaling of the simulation
parameter, which permits observation of steady-state temperature profiles, i.e.,
thermal conductivities, invariant to explicit discretisation of polymers’ segments,
sec. 4.2. Due to the flexibility of internal entropy in eMC, also other forms of
coarse-grained models for complex molecules can enter in s(e), i.e., models derived
by first principle calculations [60].

3.5 Details on the implementation
In the previous section, the eMC method was introduced. In the following, details
about the implementation are discussed. The implementation of the coarse-grained
model has to recover (i) conformational (ii) thermodynamic (iii) dynamic properties.
The eMC scheme has been devised by the idea of a thermostat, momenta and
coordinates of a coarse-grained particle are updated by a short molecular-dynamics
MD simulation using the Velocity-Verlet integration scheme. This scheme locally
conserves momentum and energy, but leaves the internal DoFs unaltered. Thus, the
Velocity-Verlet scheme is presented and details on parametrisation of non-bonded
potential to recover χN and κisoN are discussed.

3.5.1 Integration scheme - Velocity-Verlet
The external DoFs interact via bonded and non-bonded potentials, pairwise forces
f(r) = −∇rV (r), respectively. The simulation uses a microcanonical integration
scheme - Velocity-Verlet algorithm - to integrate the equations of motion of explicit
DoFs. The Velocity-Verlet integration scheme

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+ ∆t2
2
~f(t) +O(∆t3), (3.45)

~v(t+ ∆t) = ~v(t) + (~f(t) + ~f(t+ ∆t))
2 ∆t+O(∆t3), (3.46)

50



CHAPTER 3. SIMULATION TECHNIQUES

approximates the exact integration by two half steps with a step with constant
coordinates, and a step with constant velocities [61]. The algorithm satisfies
two aspects. Firstly, the scheme is time reversible. Thus if a step of the form
~x → ~x(t + ∆t) is applied, one inverts the velocity v(t + ∆t) → −v(t + ∆t) and
performs a Velocity-Verlet step again. The new position ~x(t + 2∆t) is equal to
the starting position ~x(t). This is important, because if two particle pairs get a
new velocity drawn from a probability distribution that corresponds to the same
velocity with different sign, the position will be the same like before, i.e., it ensures
a detailed balanced Monte-Carlo move. Secondly, the numeric solution is very close
to the true Hamiltonian and for time-step ∆t→ 0 approaches the true Hamiltonian
- symplectic [62, 63].

3.5.2 Potentials

The coarse-graining procedure reduces the explicit degrees of freedom to a minimal
set of potentials and parameters: isothermal compressibility, κN , invariant degree of
polymerisation, N̄ , averaged end-to-end distance, Re, and in case of polymer blends
incompatibility, χN , is added [64]. Bonds are represented by a harmonic potential,
which yields the polymers to be a Gaussian chain and fulfil Rouse dynamics.

Vb(|r|) = EB
2 |r|

2 (3.47)

Here, EB is the harmonic bonding constant, r is in units of σ. Likewise EBσ2/kBT =
3 is chosen resulting in an averaged bond distance of bσ−1 = 1. Non-bonded
interactions are realised by a soft repulsive interaction. The soft characteristics are
a result of the coarsening procedure [64]. Qualitatively summarised, two coarse-
grained particles can overlap while the particles that they represent, have a strict
volume exclusion. Non-bonded potential

Vnb(|r|) = vij
2 (1− |r|)2 (3.48)

has a cut-off distance at r = 1σ. The soft repulsion is controlled by interaction
constant, vij . To map this constant onto incompressibility, κN , and incompatibility
parameter, χN , one can formulate the Hamiltonian, eq. (3.49), approximately by a
pairwise interaction, eq. (3.50). It is assumed that packing effects are negligible and
the radial pair distribution function equals g(r) = 1, which is a good assumption
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for dense systems of soft coarse-grained particles.

Hnb = kBT
√
N̄

R3
e

∫
dr3

(
κN

2 (φ̂A + φ̂B)2 + χNφ̂Aφ̂B

)
(3.49)

≈
∑
i<j
Vnb(r − r′) = 1

2
∑
ji
Vnb(r − r′) (3.50)

Here, kBT sets the energy. N̄ is the invariant degree of polymerisation and Re the
averaged end-to-end distance. In eq. 3.50, the self-interaction in the virial has been
neglected. Afterwards, the non-bonded potential is inserted and eq. 3.50 rewritten
into an integral form, and expanded for density φ(r) = ρ−1

0
∑
δ(r − ri).

Hnb ≈
1
2

∫
dr
∫

dr′ρ2
0φ(r) (φ(r) +∇φ(r)(r − r′) + . . . )V (r − r′)

This integral is solved for a spherical symmetry. Hence, 4π follows from integration
over dϑ and dϕ.

Hnb =4πρ2
0

2

∫
d|r| · |r|2

(
vij
2 (1− |r|)2

) ∫
drφ̂2 = 1

2ρ
2
0
πr3

0
30

∫
dφ̂2 (3.51)

Combining this with eq. (3.49) yields the relation

vij = 15 · kBT · (κ+ χ)N
√
N̄

πR3
eρ

3
0r

3
0

≈ 15(κ+ χ)
πρ0r0

. (3.52)

This equation relates the isothermal compressibility κN and incompatibility χN
of two monomer types A and B to the interacting constant vij of the soft bonded
potential, eq. (3.48).

3.5.3 Temperatures

The simulation couples eMC to a microcanonical integration scheme. Hence, system
can be characterised by different approaches of temperature. One possibility is to
relate the kinetic energy with an averaged kinetic temperature of the system.

T extkB = 2
3

〈
mi

2 ~v
2
i

〉
N

(3.53)

The average runs over N particles. m represents the mass and v is the velocity of
the i-th particle. Assuming that N is large one defines the external temperature
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Figure 3.4 Snapshot of temperature pro-
files of internal and kinetic temper-
ature in a transient and station-
ary state of a RNEMD simulation.
κintτmd/(kBT

2) = 100. T is in reduced
units kBT = 1. In real units it matches
a temperature around ≈ 400 Kelvin.
Hence, the system is above the glass
temperature [11].
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according to the volume of slabs chosen to perform the RNEMD technique. The
internal temperature is defined by the inverse of the derivative of the internal
entropy. Therefore, the microcanonical partition function is calculated considering
that internal DoF are only related to an internal temperature.

Zmc = 1
N !

∫ E

0
de1· · ·

∫ E

0
deN exp

(∑
i
s(ei)

)
δ(E −

∑
i
ei) (3.54)

N denotes the number of energies ei, and the entropy takes the form s(e) = cV ln(e).
The delta function is expressed in a Fourier representation.

Zmc = 1
N !

∫ E

0
de1· · ·

∫ E

0
deN

∏
i

ecV
i

1
2π

∫ ∞
−∞

dk exp
(
ikE −

∑
i
ikei

)

= 1
N !

∫ ∞
−∞

dk exp(ikE)
[∫ E

0
de ecV exp(−ike)

]N

The integral for
[∫ E

0 de ecV exp(−ike)
]
is replaced by a Debye function g(kE),[

EcV +1 ∫ 1
0 dx xcV exp(−ikEx)

]
= [EcV +1g(kE)].

Zmc = 1
N !2πE

N(cv+1)−1
∫ ∞
−∞

d(kE) exp(ikE)gN(kE)︸ ︷︷ ︸
2πK

= K

N !E
N(cV +1)−1

K is an integration constant. Finally, the microcanonical partition function is used
to calculate the entropy.

S(E)
kB

= ln(Zmc) = (N(cV + 1)− 1) ln(E)−N ln(N) +N + ln(K) (3.55)
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The expression N ! has been replaced by Sterling’s formula ln(N !) = N ln(N) −
N +O(ln(N)). The inverse temperature is given by the derivative of the internal
entropy with respect to energy. Hence, the internal inverse temperature reads

1
T (E) = ∂S

∂E
= (N(cV + 1)− 1)

E
= cV + 1
〈e〉

− O
( 1
N

)
. (3.56)

Figure 3.4 presents a temperature profile of a homopolymer melt. However, the
temperature gradient was created, the internal and kinetic temperature coincide,
excluded fluctuations. If energy is added to internal DoFs internal temperature
immediately changes while the kinematic temperature follows with a delay according
to relaxation from internal to external DoFs.

3.5.4 RNEMD simulation

The eMC scheme enables us to mimic energy transport properties of polymers.
Therefore, strategies to measure thermal properties are discussed. To investigate
thermal properties of the polymer melt, a constant heat flux is applied to the
system. The system is divided into slabs of the size σ. Particles are organised
by a box structure. Each box has the size σ3. This size is given by the cut-off
distance of non-bonded soft interaction. Thus, a particle in a specific box interacts
with particles that are distributed to 26 surrounding boxes + 1 box containing the
particle itself. Hence, this box structure is already there, each box is flagged if it is
associated with the hot slab or cold slab, respectively. At the centre of the system a
hot slab is considered. At the leftmost side the cold slab is considered, fig. 3.5. Now,
an external flux will transport energy from the cold to the hot slab. Subsequently,
polymers will compensate this unbalanced state. The balance emerges in form of a
thermal profile in steady-state, i.e., it is a linear response of to the externally driven
system. This strategy is known by the term reverse nonequilibrium molecular
dynamics simulation (RNEMD) and was applied to particles’ momenta first [65].
q̇ represents the constant flux that is applied to the system.

q̇ = −DT
dT
dx = const. (3.57)
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Figure 3.5 The system is a period box. This box is subdivided along the x axis into
small slabs. The RNEMD strategy to applies an external thermal current to the
system. At a constant rate, energy is moved from cold to hot slab that the system’s
response is a temperature profile in steady-state. A move can be created via treating
particles’ (i) internal energy (ii) external/kinetic energy. To get an impression of an
temperature profile cf. fig. 3.4.

The flux is constant. Thus, eq. (3.57) is integrated. The integration leads to a linear
temperature profile

lim
t→∞

T (x, t) = −DT

q̇
· x+ T0. (3.58)

T0 = 1 is the reference temperature at spatial position x = 0. Depending on the
problem two different cases of transferring energy between cold and hot slab are
considered.

Energy to internal DoFs The flux will act on particles’ internal DoF - internal
energy, e. Depending on the amount of energy, which has to be transported in a
time interval ∆t, small portions are equally subtracted from all particles’ internal
energies that belong to the cold slab. This energy is equally distributed to all
particles’ internal energies that belong to the hot slab. The maximum of energy
that can be transported, is given by an interplay between (i) the maximum energy
that can be subtracted by internal DoFs (ii) rapidity of internal thermal relaxation,
videlicet the energy which has been taken out of particles’ internal DoF has to be
recovered by surrounding particles, [11].

Energy to external DoFs If the eMC routine is switched off, there is no coupling
between internal and external DoFs. Hence, the energy flux has to be done by
external DoFs. Again, the system is divided into slabs of size σ. The original
RNEMD strategy proposed by Müller-Plathe is: search for the hottest particle
in the cold slab and swap this particle with the coldest particle into the hot slab
[65]. But this strategy causes a lot of fluctuations in the current itself such that
a steady-state condition is not stable and fluctuates. For transferring of kinetic
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energy from cold to the hot region the velocities of all particles that belong to the
hot (cold) slab, are rescaled. This strategy enables the transport of exactly the
amount of energy that is dictated by the flux.

3.6 Single chain in mean field
It was pointed out that the time and the length scale polymers show universal
behaviour. In consequence this universal scale can be represented by a minimal
set of parameters. Polymers are formed by monomers, which are connected via
Gaussian bonds, and interact via a soft bonded potential. To observe dynamics
induced by directed self assembly (DSA) one can formulate explicit equations of
motion and solve them via an integration scheme or Velocity-Verlet, respectively.
In the single chain in mean field (SCMF), pairwise non-bonded interactions are
represented by a quasi-instantaneous field approximation [66]. In consequence,
chains, i.e., monomers, exclusively interact via these quasi-instantaneous fields.
Only local interactions accordingly, e.g., harmonic bonded potentials are taken into
account explicitly. The advantage of the quasi-instantaneous field approximation
is that the computationally intensive part of calculating the non-bonded pairwise
interactions is replaced by a quasi-instantaneous field. Hence, the displacement of a
polymer, i.e., segment, is done via Monte-Carlo scheme, smart Monte-Carlo scheme,
respectively. The scalability and computational efficiency of this method comes into
play, because the scheme only needs one global communication: update the density
fields, which leads to a new quasi-instantaneous field approximation.

According to this thesis, the SCMF method has been used in two cases. Firstly,
the framework allows to set up complex systems, e.g., star polymers quite accurately
and helps to pre-equilibrate the systems before performing sustained simulations.
Secondly, from collaboration with the department of chemical physics, University
of Göttingen, we worked out a possible dependence of photoswitches (cis/trans
azobenzene) on directed self assembly. Therefore we expanded the SCMF imple-
mentation, i.e., SOft coarse-grained Monte-Carlo Acceleration 4, by introducing an
additional scaling constant for the harmonic bond parameter 5. This parameter can
be interpreted to represent the influence of the cis/trans azobenzene photoswitches
on level of a coarse-grained description, sec. 4.9.

4A complete description of the implementation and benchmarks for different architectures is
available in [67].

5Newest version of the code is always available on Git-Lab https://gitlab.com/InnocentBug
/SOMA.git, April 12, 2018.
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4 Simulation results

In this chapter, results of the investigation of thermal properties of polymer melts
are presented. They are obtained by coarse-grained molecular dynamic simulations
performed with the eMC method. Simulated systems are comprised of structures
of monomers, soft cubic crystals, homo-, diblock-, and star polymers. The dy-
namic and static characteristics of these structures are studied. Consequently,
thermal properties in equilibrium, steady-state, and non-equilibrium conditions
are investigated. In addition, phonon properties of a system with a low level of
coarse-graining are studied. These systems are treated without an additional DoF
internal energy, e, (without eMC thermostat). To observe a density of states, a
soft fluid is quenched. In the quenched state, the Hessian matrix is computed and
the corresponding eigenvalues are calculated. Finally, preliminary results on photo
switches are presented. Photoswitches enable us to change the structural phase of
a diblock copolymer melt and give rise to a control tactic of energy transport by
controlling the systems’ interfaces.

4.1 Parametrisation - energy Monte-Carlo

Coarse-grained parameter. eMC is a general method to simulate energy-
transport phenomena. Therefore, a soft coarse-grained molecular dynamics simula-
tion, which allows us to reproduce thermal properties of polymers, has been imple-
mented. In a top-down approach, experimental values can be used to parametrise
all values of the simulation. Representative for this technique is a minimal set of
universal parameters to describe real system’s behaviour: isothermal compressibility
KisoN

1, invariant degree of polymerisation N̄ = (ρb3)2N (ρ is a number density, N

1to avoid confusion with thermal relaxation constant κint, we consistently changed the common
notation κN = KisoN
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number of segments 2), averaged end-to-end distance Re, and in case of polymer
blends incompatibility, χN , is added [64]. At this point, it is worth to mention that
simulation parameters typically depend on the temperature. Both, the isothermal
compressibility KisoN and the incompatibility parameter χN are proportional to
the inverse temperature. In consequence, the soft interaction vij also fits into a
single temperature only. Hence, temperature differences are kept small.

Reduced units Simulations are performed in reduced units, because data types,
e.g., floats, have a limited accuracy. The accuracy benefits from magnitudes of
the order of 1. In consequence, we set the range σ of the non-bonded interactions
equal to the statistical segment length, σ = b, and measure all length scales in
these units, i.e., σ = b = 1. All energies are measured in units of the thermal
energy at which the equilibrium properties of our coarse-grained model correspond
to that of the underlying chemically realistic model, i.e., ε = kBT = 1 [11]. The
time scale in the simulation is characterised by τmd. In many cases, the time scale
of a simulation τmd is redefined in Rouse relaxation times, τr = ξN2b2

3π2kBT
= Nb2

3π2D . [59].
It corresponds to the longest relaxation time of a polymer and permits an invariant
connection between systems that have been discretised differently with respect to
their chain discretisation. The time scale of an experiment is determined by the
diffusion/relaxation time of a polymer, 〈~x2〉 = 6Dt, and the diffusion constant of an
experiment is mapped on the time scale of the simulation, sec. 4.3.1.

Internal DoF eMC method adopts the idea of eDPD by reintroducing degrees
of freedom that have been integrated out to a coarse-graining procedure by one
additional DoF, i.e., internal energy. This internal energy, e, is determined by a
top-down approach, which equally distributes specific heat capacity of a real system
of polymers to a coarse-grained one. To describe the relation between energy and
entropy, we use the universal form s(e) = cV ln(e) from sec. 3.4. In case of high
coarse-graining, reducing the number of segments N ′ → N/2 implies an increase
of specific heat capacity c′v → 2cv. Internal energies interact and exchange energy
between each other. This is captured by an internal thermal relaxation constant,
κint. Investigating the real time of the internal DoFs in the simulation is quite
challenging. Especially in our case, we deal with two time scales: a time scale of
the integration step according to the Velocity-Verlet scheme, τmd, and the time

2A typical order of magnitude for the invariant degree of polymerisation is 104 or
√
N̄ ≈ 64

respectively.
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increment we apply for calling the eMC update. If it is not specified in a different
way, we set all time steps to the same increment. This means we call the eMC
routine once in each integration step, i.e., update of momenta and positions for each
pair of particles that interacts in a specific interaction range σ. The real time scale
(to compare to experiments) will be observed by the diffusion, which is characterised
by Rouse dynamics of a polymer, in the bulk, sec. 4.3.1.

Energy conservation First simulations will cover static properties. To validate
the implementation, it is useful to study all kind of energies. By definition, the
eMC method has been constructed so that energy is conserved by a local eMC
move. In consequence, the change of the system’s energy is influenced by the
choice of the microcanonical integration scheme: Velocity-Verlet integration. The
integration step is dt = 0.005. Hence, the Velocity-Verlet scheme practically ensures
an energy-conserving system. Although typical simulation times are 10000 τmd,
global energy only changes by a fraction of 10−6, which is covered by the uncertainty
induced by the data types representing momenta and spatial positions as well as
finite dt in the Velocity-Verlet scheme.

4.2 Invariant polymer melt - rescaling of properties

Thermal properties that are observed by simulation, should be independent of the
degree of coarse-graining. In analogy to the universal equilibrium statistics of the
Gaussian chain model, the universal conformational motion, i.e., Rouse dynamics,
the internal energy of a coarse-grained segment, and its internal entropy converge
towards a universal form for highly coarse-grained models. Hence, a polymer melt
composed of homopolymers exhibits the same thermal behaviour independent from
N - the explicit discretisation into chain segments at a fixed invariant degree of
polymerisation N̄ .
In order to investigate how the model parameter behave under coarse-graining,

we assume that the specific heat capacity of the system is dominated by the internal
DoFs. In consequence, specific heat capacities of the explicit DoFs play a sub-
dominant role. The averaged end-to-end distance Re of a chain defines an invariant
length scale in the system. The energy that is transported in one step dt calculates
to: rnecurrentA dt 3. The cross-sectional area A is defined in units of R2

e such that
3We chose the expression rnecurrent to be consistent with the input parameter of the implemen-
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Discretisation: N=64 N=32
σ = b σ64 = b64 = Re/

√
N64 σ32 = b32 = b64

√
2

cV cV 64 cV 32 = 2cV 64

ρ0R
3
e ρ64 = N64npoly

V
ρ32 = ρ64

2
ρσ3 ρ64σ

3
64 = ρ64b

3
64 =

√
N̄√
N64

ρ32σ
3
32 =

√
2ρ64b

3
64

κint ∼ λT 2 σ
(ρσ3)2 κint 64 ∼ λT 2 Re√

N̄
κint 32 ∼ κint 64√

2

Table 4.1 A coarse-grained system of homopolymers is systematically reduced from
N = 64 to N = 32 segments. Hence, the system is invariant under polymers’ end-to-end
distance Re, statistical segment length, density, and internal thermal relaxation are
rescaled. V represents the total volume in units of R3

e.

the same energy is transported to the same invariant area.
Under these requirements, we can determine all parameters through a top-down

approach leaving the length scale Re and global energy invariant. One coarsening
step k = 1 follows an iterative strategy by reducing the explicit discretisation of
a chain from N ′ = N/2. In the following, we discuss the rescaling of all relevant
parameters. The internal specific heat increases by a factor of 2, because two internal
DoFs are lumped to one new internal DoF. The scaling of the internal thermal
relaxation constant κint is estimated by the energy transfer across a plane of area
A. The energy transport per eMC step is given by the number of particle pairs
that straddle the plane, ρAσ · ρσ3, and the mean energy transfer, κint∆t∇TσT 2 , by
a single pair [11, 45]. The corresponding heat current, j ∼ ρ2σ4κint

∇Tσ
T 2 , allows a

comparison with Fourier’s law, eq. (2.14), j = λ∇T . Hence, one obtains the estimate
κint ∼ λσT 2

(ρσ3)2 [11], cf. sec. 4.3.2. In consequence, the internal thermal relaxation
constant κint is rescaled by

√
2.

Table 4.1 relates parameters of two systems discretised in N32 and N64 polymers.
In order to keep physical properties invariant, the statistical segment length, b =
Re/
√
N64, and the interaction range, σ64, increase by a factor

√
2 and, in turn,

the rate of internal energy transfer, κ64
int, decreases by a factor of

√
2 (in the limit

of high degree of coarse-graining). To verify this scaling procedure, a system of
homopolymers is systematically reduced from N = 64 to N = 16 segments, with
two successive steps N64 → N32 → N16. The system size is invariant in units of
Re. The invariant degree of polymerisation,

√
N̄ ∼ 40, is constant, too. Figure

4.1 shows the temperature profile of two equal systems represented on different

tation: [rnecurrent] =
[
kBT
τmdσ2

]
.
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Figure 4.1 Temperature profile of two systems represented on different levels of coarse-
graining N = 64, 16, with

√
N̄ ∼ 40. The slope of the temperature profile emerges

through the application of the RNEMD method to the internal DoFs. Parameters
are compiled in tab. 4.2. In between the green vertical lines, the slopes agree to 99
percent.

levels of coarse-graining N = 64, 16. Parameters of the simulations are completed in
table 4.2. The current to create a steady-state condition is realised via a RNEMD
strategy, which is applied to the internal DoFs, cf. sec. 3.5.4. The cross-section in
both systems is about A ∼ R2

e
4.

Discussion The gradients of the two realisations of the same system agree with
each other. Fitting a linear function to the steady-state temperature profile in the
area that is enclosed by the two vertical green lines, results in a linear slope of
temperature, which agrees to 99 %. This result affirms that eMC allows for an
invariant representation of a polymer melt. Although, the slope in both systems
agrees, fig. 4.1, there is a marginal difference in both temperature profiles, which
has been compensated. Technically, the thickness of the hot and cold slab is set to
σ. Hence, in units of Re, the slabs have a different size, which can be observed in
the fig. 4.1, too. To compensate for this effect, the system’s width is approximately

4Technically, the implementation usually calculates the explicit energy, which is transported
in a step tmd, through the cross-section area in units of σ. Hence, we modified the routine
rne(CONF *conf) such that the calculation of cross-section area and amount of energy that is
transported is in units of Re.
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Discretisation: N=64 N=16 rescaling for k=2
Re/σ Re,64σ

−1 = 7.937 Re,16σ
−1 = 3.873 ∼ 2

cV /kB 10000 40000 4
V/Re ∼ 10× 1× 1 ∼ 10× 1× 1 const.
ρ0σ

3 5.13 10.275 ∼ 2
ρR3

e ∼ 600 ∼ 2500 ∼ 4
κint 1000000 50000 1

2
Nnpoly 26304 6576 4
(rnecurrent)τmdσ2

kBT
200 200 const.

eMC update range σ σ const.

Table 4.2 A coarse-grained system of homopolymers, with invariant degree of polymeri-
sation

√
N̄ ∼ 40, is systematically reduced from N = 64 to N = 16 segments. The

polymer’s end-to-end distance Re = b
√
N − 1 remains invariant. Statistical segment

length σ, density ρ, specific heat capacity cV , and internal thermal relaxation κintare
rescaled.

10 Re only. Hence, the system size in x-direction was chosen to be LN64,xσ
−1 = 80,

LN16,xσ
−1 = 40, because the different size of the slabs in units of Re has to be

compensated such that (LN64,x−2σ)
Re,64

≈ (LN16,x−2σ)
Re,16

≈ 9.82Re. Here, Re,64 and Re,16σ
−1

are in units of σ. Hence, the temperature profile is symmetric, and the effective
distance over which energy is transported between hot and cold slab is about 4.92
Re. The fit area indicated by the green vertical lines is even smaller in order to leave
out the effect of the external current. In the given rescaling scheme, the time scale
is left invariant, because the eMC routine transports the same amount of energy
in the same discrete time interval ∆t. Here, we converge towards the universal
equilibrium statistics. In fact, in the rescaling of parameters, the time scale has not
been taken into account yet. In consequence, the time scale has to be redefined
by diffusion constants obtained by the mean-squared displacement, which agrees
with a universal conformational motion of a polymer, i.e., the thermal conductivity
remains invariant but not the Lewis number (ratio of thermal and mass diffusivity).
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4.3 Homopolymers - eMC
In the first section, we gave an overview of the parameters of eMC and showed
that eMC can reproduce temperature profiles that are invariant under the explicit
discretisation of the systems. Firstly, we will pick up the discussion on definition
of a time scale following the idea of an universal conformational motion of a
polymer. Secondly, thermal properties, e.g., macroscopic thermal conductivity, of
a homopolymer melt are investigated systematically in steady-state by studying
the RNEMD strategy, time-step dependencies, internal relaxation parameters, and
length of a homopolymer.

4.3.1 Kinematic diffusion constant

A soft model of polymers has universal characteristics, which are embraced by a
minimal set of parameters. This universal characteristics also corresponds to a
universal time scale. This time scale is typically defined by kinematic diffusion. The
mean-squared displacement of the polymers’ centre of mass, g3, characterises the
diffusion via the relation 〈~x2〉 = 6Dtmd. D represents the self-diffusion coefficient.
It remains the question whether the kinetic diffusion is influenced by eMC scheme.
The system is comprised of soft potentials. Hence, the diffusive characteristics

are mainly driven by the friction induced by eMC, which destroys correlations of
the velocities. However, we want to check the influence of the internal thermal
relaxation, κint, on kinematic diffusion. The scheme is tested on this criterion,
because it is common to distinguish between different internal thermal relaxations,
κint. Indeed, diffusion of external DoFs should be independent from any of these
influences. The probability distribution of the thermal noise δq, eq. (3.28), is scaled
by κint, which could induce higher fluctuations in the internal DoFs. In consequence,
the probability distribution of parallel momenta could change, because it is weighted
by its local temperature Tloc.

The mean squared displacement of polymers, g3, is measured for identical systems
with different internal thermal relaxation constants. Figure 4.2 shows g3 divided by
time, t, for diverse internal relaxation constants, κint. Dividing g3 by t enables to
read the diffusion constant, D, directly. The trend of this figure reveals that internal
thermal relaxation constant does not have a significant influence on the diffusive
properties of the system. The scaling behaviour coincides Rouse like behaviour,
too. There is (i) a ballistic regime, which is controlled by the local interactions that
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Figure 4.2 Displacement of polymers’ centre of mass as a function of internal thermal
relaxation, κint, divided by time t. The diffusion constant can be read from the graph
Dσ2τ−1

md = 0.00004879± 4 · 10−7 and is on average independent from κint. The system
is comprised of homopolymers, discretised by N = 32. Partial re-equilibration constant
is set to α = 0.1. The system’s mean density is ρ0σ−3 = 5.686, nN = 152832.

scales with ∝ t2, (ii) a diffusive regime that scales with ∝ t. This diffusive regime
yields an invariant time scale, the Rouse time,

τRouse = Nb2

3π3D
= (13300± 10) τmd,

which is determined by the time that is needed to diffuse the distance of Re. This
time is calculated by the average over all trajectories which permits reasonable
statistics. With common values for polymers (PMMA) Dreal

sec
nm2 ≈ 10, Re/nm ≈ 50,

the characteristic time scale can be estimated as τ ≈ R2
e

3π2D sec. ≈ 8.44, which
relates the time scale between experiment and simulation. The Rouse time, which
was estimated by the linear diffusion, can be used to connect the time scale of
the simulation to τmd/sec ≈ 0.00114. Hence, if the time scale of microcanonical
integration scheme and eMC update is chosen equally, the time scale of internal
thermal relaxation constant can be related as well with a real time scale given in
unit of seconds. The Peters thermostat was introduced in sec. 3.2.2. We pointed out
that this is a gentle way to keep correlations by usage of an additional weighting
constant α. In the implementation we used the expression α = (1 − αcouple) that
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Figure 4.3 Displacement of monomers as a function of partial relaxation α of the parallel
momenta in a melt of homopolymers, discretised by N = 32. Thermal relaxation
constant is set to κint = κmax

10 . The system’s mean density is ρ0σ−3 = 5.686, nN =
152832. A high α induces a high weighting of the old parallel momenta, which increases
correlations.

αcouple controls the weight between the old and new drawn momentum. Thus, the
new parallel momentum of two particles is modified by

p‖new = αcouplep|| old +
√

(1− α2
couple)∆p‖new.

Here, ∆p‖new is drawn from the Gaussian distribution PT loc
old

(∆p||new), cf. eq. (3.19).
Fig. 4.3 demonstrates the influence of αcouple on the system’s diffusive behaviour.
Considering the Rouse model and the diffusion of a single monomer, one observes
the sub-diffusive characteristic, which is ∝

√
12kBTb2t

πξ
∝
√
t [59]. However, the

diffusion constant is related to the VAC function D = 1
3
∫∞

0 〈vi(0)vt(t)〉dt. If αcouple

equals 0 the two successive velocities are uncorrelated5. If the weighting constant
αcouple → 1 the correlation becomes high, too. This high correlation is connected
with low friction, which results in a faster diffusion for αcouple = 0.9, cf. fig. 4.3. All
the following simulations are performed with a value αcouple = 0.1, which means the
system has a high friction but the old momenta are partially included. Additionally,
the influence of the number of eMC calls at fixed time step and for different time

5In the implementation we set the input parameter αcouple = 1− α. Hence Peters thermostat
falls back to Lowe-Andersen thermostat for the value αcouple = 0
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steps has been tested, cf. appx. 6.5, appx. 6.4. As a side note, it should be mentioned
that, if a DoS is determined, any kind of thermostats are switched off.

4.3.2 Thermal properties in steady-state
Thermal properties of a system are investigated by the RNEMD method. The
method is explained in sec. 3.5.4. In short, during RNEMD simulations, we divide
the system into small slabs along the long x-direction. In the leftmost slab – cold
slab – we subtract a small portion of the internal energy, ei, from each particle in
each integration time-step, ∆t. The energy is subtracted from the internal DoF,
ei, rather than from the kinetic energy, because the specific heat of the internal
DoF is larger than that of the momenta and also dominates a system’s thermal
properties. Energy is added to the internal energies of particles in the hot slab, which
is situated a distanceLx/2 away, sec. 3.5.4. This outer energy flux, j, is compensated
by an energy flux through the system, and the concomitant temperature profile is
monitored. Practically, some limiting cases of this strategy have to be considered.

• The number density of particles in the involved, hot and cold, slabs has to be
large enough in order to include the transported energy properly.

• The density is influenced by the local temperature. In consequence, high
temperature gradients can change the local densities that are indirectly related
to the transport properties, too. In the worst case, this would result in
non-linear steady-state conditions.

• If the temperature in the hot slab becomes too high, the density reduces.
Hence, the mean free path of the hot particles increases and the number of
particles in the hot slab decreases dramatically.

• If the rne-current implies a transported energy that is higher than the internal
energies can take, RNEMD scheme will stop with an error output, i.e., the
maximum internal energy is determined by the sum of all internal energies in
a slab, so that a current, which is above the maximum value, fails.

In order to avoid this critical cases we restrict RNEMD to currents, which are an
order of magnitude smaller than the specific heat capacity of a single particle. This
yields an uncritical temperature difference, which also abates the argument that
parametrisation of the potentials (external degrees of freedom) depends on the local
temperature.
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RNEMD - dependence of temperature profile and applied current

In this part, we investigate the follow question: does the applied current have an
influence on the resulting thermal conductivity? Hence, we take a small system,
comprised of homopolymers - discretisation N = 16. The system size is L/σ3 =
56×6×6, averaged density is ρσ3 ≈ 12.7, the total number of particles is nN = 25600,
and the local non-bonded interaction vij = 0.5. The internal specific heat capacity
is set to cV /kB = 10000, and the internal thermal relaxation is κintτmd

kBT 2 = 500. The
time-step of the eMC update and Velocity-Verlet algorithm will be dt = 0.005.
The resulting maximal internal thermal relaxation, which leads to an instantaneous
thermal relaxation of two internal degrees of freedom, calculates to κint

maxτmd
kBT 2 = 1 · 106.

The energy transported in each step is A·dt·(rnecurrent). A denotes the cross-section
area A = Ly ·Lz. Using Fourier’s law, eq. (2.14), we can determine the macroscopic
thermal conductivity, λ, of the system by the gradient of the temperature profile in
steady-state and the applied current.

λστmd
kB

= (rnecurrent)
∂xT

(4.1)

Since the macroscopic thermal conductivity has to be invariant when changing
the applied RNEMD current the slope of the temperature profile, ∂xT , has to
change. Hence, we apply different RNEMD energy currents: rnecurrentτmdσ2

kBT
= 100,

200, 300 and 400, and measure the slope of the temperature profile in a steady-state
condition. After the slope of the temperature does not change anymore, profiles
have been averaged over a period of t = 5000 τmd with increments of ∆t = 10τmd.

The results are compiled in tab. 4.3. These values allow the conclusion that the
profile does not depend on the applied current. Errors of the gradients result from
fit procedures. The form of this formula implies that the macroscopic thermal
conductivity is invariant according to the choice of the applied current, because
a higher current is compensated by a higher thermal gradient, i.e., system is in a
linear-response regime.

This allows us to optimise the measurement of thermal conductivities by limiting
the maximal slope of the temperature profile in steady-state. Hence, the temperature
differences can be kept small so that the interaction parameters of explicit DoFs are
in a range, where effects of temperature changes can be neglected. Practically, it has
been shown that, if the transported energy is two orders of magnitudes smaller than
the particle’s internal energy, the equilibration to a steady-state condition will be
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rnecurrent·τmdσ2

kBT
100 200 300 400

∂xT ·σ
T

0.00294(6) 0.00583(2) 0.00873(3) 0.01146(6)
λστmd

kB
34013(6) 34305(7) 34364 (12) 34904(18)

Table 4.3 resulting macroscopic thermal conductivity of a polymer melt is invariant
according to the choice of applied RNEMD current. Overall parameters are N =
16, L/σ3 = 56 × 6 × 6, cV /kB = 10000, ρσ3 ≈ 12.7, vij = 0.5. Weighted average
〈λ〉rnecurrent = 34204± 4.

uncomplicated. Nevertheless, if one considers a too high current, the equilibration to
a linear stable steady-state condition will not be possible in a passable computational
time.

RNEMD - Time-step dependencies

Next we investigate transport phenomena in polymer melts. It is important to
make sure that the observed properties are independent from the choice of the
time-step increment. Hence, the thermal conductivity of the system primarily is
independent of the discretisation of our time scale. The time scale is dictated by
the microcanonical integration scheme. We already mentioned that there are two
different time scales: a microcanonical one defined by diffusion and a thermal one
given by the internal relaxation parameter κint. These time scales are linked together
by using the same increment of calling the Velocity-Verlet integration scheme and
the eMC update, respectively. The proposed internal energy does not depend on
the discrete time-step, because the deterministic thermal relaxation linearly scales
with dt

κint

(
∂si old
∂ei old

− ∂sj old
∂ej old

)
dt. (4.2)

Fluctuations of the thermal noise depend on the probability function that is nor-
malised by the local temperature and the time-step dt, which also keeps the system
invariant, eq. (3.28), eq. (3.31). Fig. 4.4 shows temperature profiles, created by the
RNEMD simulation, cf. sec. 3.5.4. The discretisation varies between dt = 0.001 τmd

and dt = 0.009 τmd. The current is set to rnecurrentτmdσ2

kBT
= 100. The specific heat

capacity that determines the internal entropy is set to cV /kB = 10000. The inter-
nal thermal relaxation is κintτmd

kBT 2 = 5000. The invariant degree of polymerisation
is N̄ = 3200, with an average density ρb3 = ρσ3 = 10. Due to fluctuations, the
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Figure 4.4 Invariant temperature profiles - non-averaged - in steady-state created by a
constant current: rnecurrentτmdσ2

kBT
= 100. Eq. (4.2) ensures that the gradient is invariant

under time discretisation. The discretisation varies between dt = 0.001− 0.009 τmd.
Internal specific heat capacity is set to cV /kB = 10000. Internal thermal relaxation,
κint, is set to κintτmd

kBT 2 = 5000. Invariant degree of polymerisation N̄ with average
number density ρσ3 = 10.

temperature profiles do not match completely - when averaged, they are congruent.
The total energies in initial state differ, because the particles’ positions are drawn
randomly so that the potential energy differs, too. The eMC scheme conserves the
energy so that this difference cannot be compensated. The gradients will be the
same, but there will be a small offset in the temperature, too.

Discussion Fig. 4.4 permits the conclusion that eMC can mimic energy transport
independent from the time discretisation. In consequence, the transport properties
implemented by eMC can be decoupled from the microcanonical integration scheme
efficiently. Hence, the integration step of the Velocity-Verlet scheme can be fixed
to a value that satisfies that energy is conserved (limited by global error of the
integration scheme O(dt4)), and that the computational expensive eMC update
is controlled by a different time increment, which is larger, i.e., dr

τmd
= 0.005 and

dτeMC = 0.01. In the best case scenario, one gets about two orders of magnitude
in time performance, by decoupling the integration scheme, compared to common
values that have been used by eDPD simulations dt ∼ 0.0001τmd [41].
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Figure 4.5 Macroscopic thermal conductivity as function of internal conductivity, κint,
as obtained by RNEMD simulations. The maximal conductivity κmax

int according
to Eq. (3.38) is indicated by a red, vertical line. The green curve represents the
acceptance rate of eMC moves, which sharply declines beyond κmax

int [11].

eMC - scaling of internal thermal relaxation κint

In the previous sections, we gave an overview of the scaling of properties of eMC.
Now we investigate the dependence of the macroscopic thermal conductivity as a
function of the internal thermal relaxation κint, cf. eq.(3.31). In the example, we
use a chain discretisation, N = 32, a number density of coarse-grained segments,
ρσ3 = 11.32, and system size 60σ× (6σ)2. Periodic boundary conditions are applied
in all directions. The specific heat is cV /kB = 45.375, and the compressibility is
κN = 50. The velocity-Verlet integrator uses a time-step of ∆t/τMD = 0.005. To
drive the systems to a steady-state condition, we apply the RNEMD strategy
to internal DoFs. From the slope of the temperature profile, we determine the
macroscopic heat conductivity according to Fourier’s law, (2.14), again: λ = j

∂T/∂x
.

Fig. 4.5 presents the dimensionless thermal conductivity λστmd
kB

as a function of the
normalised internal heat conductivity, κintτmd

kBT 2 . In the limit κintτmd
kBT 2 = 0, the energy is

solely transferred via the particles’ momenta and coordinates, and we find the value
λ0στmd
kB

= 1540(4). Heat transfer involves two processes: a heat conduction (heat
diffusion) and heat advection (heat transfer by bulk fluid flow, e.g., along the x-axis).
The thermal relaxation between two interacting particles is mainly driven by the
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internal DoFs’ internal relaxation constants. Hence, the contribution of external
DoFs to the energy transport is small compared to the direct exchange of energy
between the internal DoFs. Thus, we study the dependence of the macroscopic
thermal conductivity on the internal conductivity, κint. For intermediate values of
κint, the thermal conductivity is well described by a linear relation,

λ(κint)
στmd

kB
= λ0στmd

kB
+ (54± 5)κintτmd

kBT 2 . (4.3)

Discussion To provide an analytical order-of-magnitude estimate of the macro-
scopic thermal conductivity, λ, we follow Mackie, Bonet Avalos and Navas [45], and
estimate the energy transfer across a plane of area A. The energy transport per eMC
step is given by the number of particle pairs that straddle the plane 6, ρAσ ·ρσ3, and
the mean energy transfer, κint∆t∇TσT 2 , by a single pair [11]. The corresponding heat
current scales like j ∼ ρ2σ4κint

∇Tσ
T 2 . In comparison with Fourier’s law, eq. (2.14),

j = λ∇T , one obtains the estimate κint ∼ λσT 2

(ρσ3)2 . This order-of-magnitude estimate
gratifyingly agrees with the slope found by the linear relation [11].
For large values of κint, we observe deviations from the linear relation, i.e., the

macroscopic thermal conductivity increases slower and the acceptance rate, pacc,
of the proper eMC moves decreases. The deviations become significant around
κmax

int τMD
kBT 2 ≈ cv

2kB
τMD
∆t = 4537.5. A simple strategy to overcome this limitation and

increase λ consists in reducing the time-step ∆t or in decoupling the time scales
of the Velocity-Verlet integration and the eMC scheme, i.e., performing multiple
eMC moves for one Velocity-Verlet integration step. To connect the macroscopic
thermal conductivity to experiments, we use the value λ = 0.18W/mK (PMMA) for
the experimental heat conductivity, and obtain κint∆t

kBT 2 ∼ λ
kB

σ∆t
(ρσ3)2 = λ

kB

b3
0
D0

g3/2

3π2η2
∆t
τ
∼

107g3/2 ∆t
τ

for the dimensionless quantity. Thus, the larger the degree g of coarse-
graining, the larger κint has to be. This value has to be contrasted with the limit
value,κ

max
int ∆t
kBT 2 ≈ c0

2kB
g. Since the thermal diffusivity DT and the heat conductivity

λ are related via DT = λ
cV ρ

, we obtain, for the ratio between thermal and mass
diffusivity, the Lewis number Le = DT

D
≤ ρσ3

2
σ2

D∆t , i.e., large densities and small
time intervals between proper eMC steps give rise to large Lewis numbers that are
characteristic for polymer materials [11].

6The temperature gradient ∂xT , is discretised to ∆T
∆x and the deterministic amount of energy

that is transported per particle per time dt, κint

(
1
T1
− 1

T2

)
is rewritten into a temperature

gradient ∆T
T 2 = ∆x

T 2

(∆T
∆x
)
.
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Figure 4.6 Temperature profiles in steady-state depend on the soft interaction parameter
vij(cf. eq. 3.52). Macroscopic thermal conductivity increases for higher vij. Polymer
segments are N = 16. Box dimensions are L/σ3 = 56× 6× 6. Internal specific heat
per particle is cV = 10000. Number density is ρσ3 ≈ 12.7, and the RNEMD current
is rnecurrentτmdσ2

kBT
= 200.

Macroscopic thermal conductivity and isothermal compressibility

Performing eMC simulations, the main part of a system’s energy is given by the
internal DoF. Hence, the macroscopic thermal conductivity is dominated by the
scaling of the internal thermal relaxation κint. Nevertheless the explicit DoF, i.e.,
positions, momenta influence thermal properties, matters.

Hence, we investigate whether the external DoFs have an influence on the slope
of the temperature profile in steady-state, i.e., the macroscopic thermal conductivity.
Thus, we fix the internal thermal relaxation constant κintτmd

kBT 2 = 500 to a low value.
The soft interaction parameter vij varies in the range of vij = 1− 500 (the relation
of eq. 3.52 allows us to calculate the range KisoN ≈ 42− 2.13 · 104).
The general parameters of the system are: chain discretisation N = 16, system

size in σ L/σ3 = 56 × 6 × 6, specific heat capacity applied to universal form
of entropy cV /kB = 10000, and number density ρσ3 ≈ 12.7. An energy current
rnecurrentτmdσ2

kBT
= 200 is applied to the internal DoFs. Fig. 4.6 shows the steady-state

temperature profiles that emerge by applying a RNEMD current. Here, different
colours indicate the strength of the soft interaction parameter. Temperature profiles’
slopes decrease as soft interaction increases, which indicates a higher macroscopic
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Figure 4.7 The blue chart represents the slope, ∂T
∂x , of temperature of the profiles

presented in fig. 4.6, as a function of the soft interaction parameter, vij, (eq. 3.52).
Slopes give rise to the macroscopic thermal conductivity λ(vij), which is normalised
by macroscopic thermal conductivity λ(vij) = 1. Parameters are equal to figure 4.6.

thermal conductivity at higher soft interaction parameter vij. Fig. 4.7 represents
slope (blue) and thermal conductivity (red dashed line) of temperature profiles
fig. 4.6, which have been evaluated. The slope was calculated by a linear fit, error
bars result from the fit procedures. The thermal conductivity (red) was normalised
by the homopolymer melt’s thermal conductivity at soft interaction parameter
vij = 1. Hence, the second ordinate shows the fraction by which macroscopic
thermal conductivity has increased. The normalised thermal conductivity can be
divided in two areas. In the first interval up to vij < 100, the conductivity increases
fast, whereas in the second part, vij > 100, the conductivity slightly rises.

Discussion Without any additional information about the system one can indicate
two reasons for an increase of the thermal conductivity. The first reason: if the
soft interaction parameter increases, the energy that can be exchanged by momenta
is higher, i.e., the speed of sound of the system increases by c =

√
∂p
∂ρm

, where p
represents pressure and ρm mass density, respectively. Hence, we did simulations of
a homopolymer melt without internal DoF of density waves in the system, sec. 4.8.3,
but even if the speed of sound of a longitudinal wave (pressure wave) increases trough
the soft interaction parameter, this does not explain the quantitative scaling of

73



4.3. HOMOPOLYMERS - EMC

0 0.5 1 1.5 2 2.5 3
r/σ

0

0.5

1

1.5

2

g
(r

)

v=     1
v=   10
v=   50
v= 100
v= 200
v= 300
v= 400

Figure 4.8 Pair correlation function, g(r), of a soft polymer melt with varied soft inter-
action parameter vij. Peaks indicate that the polymer melt becomes a structured fluid
for increased vij. Overall parameters are N = 16, L/σ3 = 56× 6× 6, cV /kB = 10000,
ρσ3 ≈ 12.7.

thermal conductivity, fig. 4.7. The second reason: the system undergoes a transition
that implies fluid-like packing effects. Usually, the system’s parameter are chosen so
that homopolymers are a soft fluid, which radial pair distribution function equals
g(r) ≈ 1. Hence, g(r) has been measured for all systems, fig. 4.8. The number of
particles interacting via eMC in range σ is calculated by numerical integration of
g(r) from rσ−1 = 0 up to rσ−1 = 1. The number of neighbours are stated in second
column of tab. 4.4. If the process is dominated by eMC (even if the maximum
value of soft interaction is high vij = 500 and the internal thermal relaxation was
chosen to be small), the macroscopic thermal conductivity, λ ∼ (ρσ2)2, scales with
the density that can be related to the number of interacting particles in a sphere
with radius σ. Hence, we calculate the squared number of interacting particles and
rescale this number by number of particles at vij = 1 (third column tab. 4.4). This is
compared with the thermal conductivity (tab. 4.4, fourth column), which has been
rescaled by its value at λ(vij = 1), too. Finally, we conclude that the soft interaction
parameter vij influences thermal conductivity mainly by structural change, i.e., a
change of interacting neighbours that scales with density squared, too. Indeed this
relies on a thermal transport that is mainly influenced by internal DoFs, because
the RNEMD current has been applied to the internal DoFs, too. Hence, up to this
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vij neighbouring particles particle(vij)
particle(vij=1) λ(vij)/λ(vij = 1)

1 53.00 1 1.00(1)
50 54.56 1.06 1.14(6)
100 56.94 1.15 1.20(8)
200 58.88 1.23 1.25(10)
300 59.64 1.26 1.27(3)
400 60.04 1.29 1.29(10)

Table 4.4 Number of particles in the interaction radius r0/σ = 1 (second column)
calculated from the pair correlation function, fig 4.8, as a function of soft interaction
parameter vij (first column). (third column) squared number of interacting particles
rescaled by the number of particles at vij = 1. (fourth column) macroscopic thermal
conductivity as function of soft interaction parameter, rescaled by macroscopic thermal
conductivity at vij = 1.

point, it remains open how thermal transport changes under modifying interaction
parameters? If internal DoFs are left out, and if the thermal current is applied to
external DoFs only. However, later, on we will investigate the thermal conductivity
of a soft fluid without internal DoF cf. sec. 4.7.

Polymer length

Decimated DoFs are lumped together into an internal energy. In principle, these
DoFs are specified by translation, rotation, vibration, etc., but the time and
length scale of the dynamics of these DoFs are different from eMC. Certainly,
vibrational frequencies, i.e., phonons, propagate much faster along a chemical bond
than via a non-bonded interaction. Hence, the dynamics of these inter-molecular
and intramolecular connections motivate a differentiation of the internal relaxation
parameter κint depending on the underlying molecular architecture. Therefore,
we choose a different thermal relaxation constant according to the underlying
architecture. If two segments are bonded together, the deterministic thermal
relaxation constant, κint, is called intramolecular. Considering the non-bonded
interaction the thermal relaxation constant is the inter-molecular one. The transport
along a polymer is modelled such that eMC is always applied to two bonded beads,
even if their distance is outside of the normal eMC interaction range of one σ (the
averaged distance between bonded particles is b = 1σ). The influence of chain length
on conductivity is studied in a polymer melt, which is comprised of homopolymers
discretised by Nxx = [8, 32, 64, 128] segments. In sec. 4.2, we discussed the rescaling
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Figure 4.9 The thermal conductivity as a function of the ratio of inter- versus intramolec-
ular thermal relaxation constant, for various lengths (number of segments) of a linear
polymer chain, N = 8, 32, 64, 128. Thermal conductivities are observed by RNEMD
simulations. All values are normalised to macroscopic thermal conductivity of a
polymer consisting of N = 8 segments. The averaged density ρσ3 is kept constant. In
consequence, the systems are distinguishable by their number of bonded interactions
only.

of parameters, which allows us to observe a temperature profile in steady-state, which
is invariant under the underlying explicit discretisation. Here, the averaged density
ρσ3=11.9, specific heat capacity cV = 99, total number of particles Nxxn = 32512,
volume V σ−3 = 80×6×6, and soft interaction vij = 0.66 are kept unaltered, whereas
the intramolecular thermal relaxation is stepwise increased. The inter-molecular
conduction is kept constant at a value of κinter

int τmd
kBT 2 = 10. This ensures that the

difference of thermal conductivities mainly depends on chain connectivity. Fig. 4.9
represents the macroscopic thermal conductivity as a function of the ratio of intra-
and inter-molecular thermal relaxation. The abscissa indicates the ratio of inter-
and intramolecular thermal relaxation constant. The maximum ratio that has been
considered is κintra

int
κinter

int
= 10000, which agrees with an instantaneous thermal relaxation

of two internal DoFs, i.e., the maximum is κmax
int τmd
kBT 2 = 100000. The macroscopic

thermal conductivities are extracted from the slope of a temperature profile in
steady-state, which was created by the RNEMD scheme acting on internal DoFs
[11, 65]. The colours indicate the discretisation of the homopolymer, black N8, red
N32, green N64, blue N128. A high intramolecular relaxation induces a higher bulk
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conductivity. The values have been rescaled by λN8 at κratio = 1. In this figure,
κratio represents the ratio of relaxation constants κinter

int
κintra

int
.

Discussion At first glance, one observes that the macroscopic thermal conductivity,
λ, of an isotropic polymer melt increases by the ratio of inter- and intramolecular
conductivity by a factor of ∼ 1.5. At a fixed ratio, a higher number of segments
increases the macroscopic thermal conductivity, too. The macroscopic thermal
conductivities at a ratio κratio = 1 differ, because the number of interactions that is
given by the neighbouring shell of radius σ is different. The difference is caused by
the additional condition that was introduced to eMC, because the eMC scheme
will always be applied to bonded particles, even if their distance is larger than the
cut-off distance σ. This number of additional connections increases by a polymer’s
degree of polymerisation.
The fact that the inter- and intramolecular transport acts on different scales7

has been found in atomistic molecular dynamic simulations, e.g., the role of the
molecular mechanism of heat conduction in a liquid of different alkane species
has been calculated via non-equilibrium molecular dynamic simulations (Lennard-
Jones potentials in atomic units). For the applied length scale of our universal
linear polymers we qualitatively agree with their simulations [68], i.e., they have
calculated different transport coefficients corresponding to stretching, angle, torsion,
and the inter-molecular part of the van-der-Waals forces. They also concluded
that, if the degree of the polymerisation is increased, the macroscopic conductivity
will be dominated by intramolecular transport processes, and is increased [69].
Simulations on the thermal conductivity of single polyethylene chains using molecular
dynamics simulations showed that intramolecular conductivities can outperform
thermal properties of compared bulk systems by orders of magnitudes [70]8. Finally,
experimentalists showed that the thermal conductivity of polyethylene nano-fibres
is 1000× higher compared to a bulk thermal conductivity, which is of the order of
∼ 0.1 [W/mK] [71]. This indicates that the ratios that have been chosen for inter-
and intramolecular thermal relaxation of internal DoF can be directly related to
experimental results. Hence, the results provided by fig. 4.9 can be experimentally
proven by the following setup: two systems of homopolymers with a ratio of degree

7Typically, molecular bond vibrations are in the tera-hertz regime, which reveals a high ability
to transport energy. Unconnected molecules interact via van-der-Waals forces, which are
comparatively weak and more susceptible.

8They calculated the thermal conductivity of a polyethylene nano fibre to λ m K
W = 350.
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of polymerisation, which is 16 (N128/N8). A ratio of 1000 in the thermal relaxation
constants indicates a difference of about 20% in macroscopic thermal conductivity,
which is within the possibility of an experimental measurement.

4.4 Diblock copolymers - eMC in steady-state
A major goal in engineering applications is a control tactic of energy transport.
Energy-transport phenomena, which give rise to a control tactic, have been known
for a long time, e.g., thermal resistance at an interface [72]. Also, combining
materials with different thermal characteristics into interface-forming composites can
outperform the bulk properties of the materials. These composite materials benefit
from a strongly reduced phonon propagation caused by the phonon mismatch at the
interfaces. Promising candidates, tungsten/polycarbonate multilayers, have been
found by pump-probe experiments [6]. In contrast to the expense of creating these
structures, directed self-assembly of polymers gives rise to composite structures by
minimal effort. Especially, if these polymers are highly functionalised, i.e., inclusion
of silica and gold nano particles. Although, polymers are treated as insulators by
the majority this is true for the bulk behaviour only, because thermal conductivity
of a single chain can be orders of magnitudes higher, e.g., polyethylene nanofibres
[71, 73]. Hence, we investigate two mechanisms: the first mechanism is the Kapitza
resistance, i.e., thermal resistance, induced by an interface. The second mechanism
uses the high intramolecular conductivity along the chain to compensate the thermal
barrier of an interface.

4.4.1 Kapitza resistance

To verify the effect of a thermal resistance, we apply eMC simulations to AB-diblock
copolymers, which have been self-assembled and equilibrated to a lamellar structure.
The eMC scheme incorporates interface effects primarily by varying the internal
relaxation, κint, according to the type of internal pairwise interaction. The first
numerical example has an invariant degree of polymerisation N̄ = 15000, density
ρσ3 = 21.5, and an internal specific heat of a single DoF cV /kB = 3000. The thermal
relaxation within a type A or B is assumed to be one order of magnitude higher
than the thermal relaxation between different types. The internal conductivity
along a chain is independent of the type of polymer. To be more accurate, we
now differentiate between four different internal thermal relaxation constants into
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Figure 4.10 A heat flux is applied to an AB multilayer formed by directed self-assembly
of diblock copolymers. The normalised number density ρσ3 indicates the alternating
AB multilayers. RNEMD induces a temperature profile T(x). Reducing the internal
thermal relaxation constant for inter-molecular interaction between A and B species
induces a sharper gradient at the interface. This is illustrated in the inset more
precisely. Parameters are κintraτmd

kBT 2 = κAAτmd
kBT 2 = κBBτmd

kBT 2 = 1000, κABτmd
kBT 2 = 100,

Kiso = 10.

the deterministic part of eMC. Depending on the architecture, we decide on a
different kind of thermal relaxation. If two interacting particles are connected via a
harmonic potential, the thermal relaxation constant is called intramolecular thermal
conductivity, κintraτmd

kBT 2 = 1000. If particles interact via a non-bonded potential,
only their internal thermal relaxation is κAAτmd

kBT 2 = 1000 and κBBτmd
kBT 2 = 1000. It is

assumed that the DoS of two bulk systems are different. Hence, modes are only
transported from one coarse-grained segment to the other if they can propagate
in both bulk phases. Therefore, in a first approach, the inter-molecular internal
thermal relaxation between A and B types is reduced, κABτmd

kBT 2 = 100.

Using the RNEMD strategy, we apply an energy flux to a self-assembled multi-
layer of diblocks. This induces the steady-state temperature profile, shown in fig.
4.10. The abscissa has been rescaled by the invariant scale of the averaged end-to-end
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Figure 4.11 Macroscopic thermal conductivity, λinterface, at the interface of alternating
polymer domains formed by AB diblocks. Conductivity λinterface is normalised by
thermal conductivity of the bulk, λinterface. Inset: gradient of the observed steady-
state temperature profile T(x), cf. fig. 4.10. To the left hand side, the internal
thermal relaxation,κintAB, between AB interactions is reduced so that resistance of
the interface increases.

distance Re = b ·
√
N32. A-phase is coloured grey and B-phase is coloured white. At

the AB interface, the temperature gradient is sharper than in the bulk region. For
the bulk region, the slope corresponds to the one of a melt of homopolymers [11].
Assuming that the interface is sharp, there is a jump in the temperature that can
be related to the Kapitza resistance. The geometrical expression for the Kapitza
resistance is given by the inset of fig. 4.10. The Kapitza length in this numerical
example is Re = 0.91. It has been shown before that the macroscopic thermal
conductivity is proportional to the squared density ρ2. In case of a melt of diblock
copolymers, our soft model has a small density dip at the interface (this is model
specific and larger than in experimental systems). This dip, in principle, influences
the macroscopic thermal conductivity across the interface, but this dip (i) is small
in contrast to the interaction range of eMC and (ii) averaged out by considering
the average internal energy per particle in a specific slab. To demonstrate that
the density dip does not dominate the behaviour, the thermal relaxation, κAB,
between A and B types is reduced systematically. The averages over uncorrelated
steady-state temperature profiles allows us to calculate a smooth gradient from the
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Figure 4.12 Macroscopic thermal resistance, R = λ−1
interface at the interface of alternating

polymer domains formed by AB diblocks, cf. fig.4.11. Resistance is normalised to
thermal resistance of the bulk. The resistance increases for reducing the internal
relaxation, κAB

temperature profile, inset fig. 4.11. The maximum of the gradient is located at the
interface and enables us to calculate the thermal conductivity at the interface λinter.
The minimum belongs to the thermal conductivity of bulk phase of A or B, λbulk.
Fig. 4.11 presents the thermal conductivity at the interface as a function of ratio of
internal relaxation constant, κratio = κint AB

κint bulk
. For a low value of internal relaxation

of κint AB, the conductivity of the interface is reduced. Fig. 4.12 presents the thermal
resistance of the interface, R(κratio) = λbulk

λ(κratio) . The resistance, R, represents a
dimensionless quantity, because R was normalised by the bulk conductivity, λbulk.
The bulk conductivity corresponds to a pure homopolymer melt without advanced
structures, i.e., interfaces. In the limit κint AB → 0 the resistance will go to R→∞
and in the limit of κint AB → κbulk and loss of structure information the resistance
R will be one. However, measurement in this regime is computationally intensive,
because small gradients require more statistics.

Discussion The essence of fig. 4.12 is to connect simulations and experiments:
take any experimental setup and measure a thermal conductivity for (a) ordered
polymer melt, (b) disordered polymer melt, e.g., PMMA-b-PS. In case of an ordered
lamellar polymer phase (a) one can estimate by atomic force microscopy the average

81
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number of interfaces, i.e., lamellar period. Knowing the number of interfaces and
global thermal bulk conductivity (b) by experimental results allows for an estimation
of the thermal resistance of a single interface. This can be used to determine the
ratio of the internal relaxation constants κint, because the interfacial influence on
thermal transport properties determine the internal relaxation constants according
to a top-down approach by experimental results.

Kapitza resistance also has been observed by molecular dynamic simulations of a
hard/soft interface [74], as well as by Lennard-Jones super-lattices [30], but these
methods are limited to small time and length scales.

4.4.2 Cut diblocks

Interfaces created by directed self-assembly induce a thermal resistance. However,
results also showed that intramolecular transport properties influence thermal con-
ductivity, too. Hence the following hypothesis was confirmed: molecular connectivity
across an interface influences macroscopic transport properties of the materials.
This effect can be isolated by changing the morphology of AB diblocks to A and B
homopolymers, i.e., cutting the diblocks at the junction point. The junction points
of the AB diblocks are localised at the interface region. However, the part of in-
tramolecular connections is much smaller than the inter-molecular ones. To enhance
their influence one increases the intramolecular thermal relaxation constant by up
to 5 orders of magnitudes, κintraτmd

kBT 2 = 106, κinterτmd
kBT 2 = 10. Hence, the intramolecular

coupled internal energies relax fast. This is consistent with previous studies, i.e.,
experimental results indicate a high thermal conductivity of polyethylene nano-fibres
[71, 73]. If the lamella structure is formed by directed self-assembly, a RNEMD
current is applied to the system. Hence, a steady-state temperature profile is
observed, fig. 4.13 (blue). The same system is taken, but the junction points are
cut in order to have alternating domains of A- and B-homopolymers with the same
characteristics 9. Now, the intramolecular connections, which have compensated
the interfacial resistance, are eliminated and one observes a small resistance at the
interfaces of homopolymer layers (red dashed line). The interfaces are periodically
averaged so that a geometrical expression of Kapitza length is observed, inset fig.
4.13. The linkage between the A- and B-block across the interface increases the
macroscopic thermal conductivity that compensates for the Kapitza resistance,

9The alternating domains of homopolymers are only metastable and will undergo a transition
from a micro- to a macro-phase.
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Figure 4.13 Thermal transport through alternating AB multilayers. The layers are
either comprised of self-assembling copolymers or layers of macro-phase-separated
homopolymers. The systems are identical with the exception of their molecular
connectivity. The linkage between the A- and B-block in the copolymer increases the
macroscopic thermal conductivity and decreases the Kapitza resistance, lK/Re ≈ 0.11,
at the interfaces. In the inset the temperature was averaged for all interfaces.

lK/Re ≈ 0.11, which is observed for the case of alternating homopolymers without
the connection of junction points.

Conclusion We conclude that junction points act like thermal bridges and com-
pensate the barrier of the interfaces, i.e., they thermally connect the bulk regions
and act like antennae that spread energy. The idea of spread energy to a system
will be continued by investigation of energy transport of star polymers in the next
sec. 4.5.

4.5 Star polymers - eMC in non-equilibrium state

As previously shown, thermal conductivities depend on the length of polymers, and
polymers can act like thermal bridges to connect two bulk phases. Star polymers
come along with an additional spatial arrangement, which is correlated with its
thermal properties.

We define the structure of a star polymer by a junction point, which is the centre
of the star, and a specific number of arms, which are connected to this junction point.
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Figure 4.14 Star polymer with 15 arms. Each arm consists of 31 monomers. Total
number of segments, which correspond to the star polymer is n = 15 · 31 + 1 = 466.
Size is measured in terms of the radius of gyration. The star polymer is surrounded
by homopolymers, which are not visualised. Colour indicates decline of internal
energy/temperature, compare fig. 4.17.

The length of an arm is fixed to 31 monomers. Hence, a star polymer with N = 15
arms consists of nstar = 15 · 31 + 1 = 466 monomers, fig. 4.14. The star polymer’s
characteristic invariant length scale is defined by the radius of gyration Rg. Each
simulation considers only one star polymer in a box V · σ−3 = 30× 30× 30 with
periodic boundary conditions. The star polymer is surrounded by homopolymers
discretised into N = 32 beads. The averaged density of this system is ρ0σ

3 = 11.32
such that the system contains about nall = 3.05 · 105 particles. The number of
arms of the star polymer is limited roughly by averaged density ρ0 times volume
of unit sphere r = 1σ. In consequence, the largest star polymer consists of 45
arms - nstar = 1396 monomers. In principle, more arms are possible but remaining
under the limit of the averaged number density ensures that packing effects in the
star remain small. The largest star polymer has a fraction of nstar/nall ≈ 0.5%
according to the total volume. Hence, inserting a small portion of energies to the
star polymer will not have an influence on global temperature kBT = 1. Figure
4.15 shows the normalised density distribution of monomers, which correspond to
the star polymer (top) or to surrounding homopolymers (bottom). The spatial
position of the junction point is located at x/σ = 0. All polymers have an isothermal
compressibility NKiso = 30. The interaction between star polymers’ arms and the
surrounding homopolymers are chemically neutral, i.e., χN = 0. The systems are
large, thence, they are created via SCMF simulations. The systems have been
simulated for five Rouse relaxation times, which are defined by the surrounding
homopolymers. Thereupon, the configuration is handed over to the implementation
of eMC scheme. The structure that is read in, is relaxed for one Rouse time
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Figure 4.15 Normalised density distri-
bution of a star polymer in a melt
of homopolymers Nhomo = 32. The
junction point of the star polymer
sets the origin x/σ = 0. Circles cor-
respond to star polymers (top), and
squares correspond to homopoly-
mers (bottom). Each arm consists
of 31 monomers, and N is the star
polymer’s number of arms. The
x-length is scaled by the averaged
bond distance.
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again before the measurement of relaxing of an inserted energy portion starts. The
internal thermal relaxation constant is set according to the molecular connectivity
κinterτmd
kBT 2 = 100 and κintraτmd

kBT 2 = 500000. Hence, κintra matches the maximum thermal
internal relaxation constant κmax. The internal specific heat capacities are set
equally to cV = 1000 kB independently from the type of segment. The integration
and the eMC update is set to dtτ−1 = 0.001. Fig. 4.15 represents two types of
densities, homopolymers’ and star polymers’ density. This densities are rescaled by
the system’s averaged number density ρ0. Colours indicate the number of arms. Star
polymers have a peak at x/σ = 1, which corresponds to the first nearest neighbours
of the junction point, i.e., the star polymer’s centre. The peak is increased by
the star polymer’s number of arms. The ends of the star polymer’s arms are
free, i.e., there is no preference to be dissolved by the surrounding fluid comprised
of homopolymers. Hence, homopolymers smoothly enter the space between the
arms. If the number of arms is low, the space in between is larger. If the number
of arms is higher, the space in between is smaller, fig. 4.15. If one modifies the
incompatibility, χN = 20, one induces a repulsion between the star polymer’s arms
and the surrounding fluid. Hence, the star polymer reorders into a sphere. The
radius of the sphere depends on the volume, which is defined by the number of arms
and the averaged density Rsphere/σ =

(
3V

4πρ0

)1/3
. Figure 4.16 shows the normalised
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Figure 4.16 Number of eMC interactions per particle in interaction range R = σ as a
function of the number of arms. A particle that belongs to a star polymer has two
types of interaction, star-star and star-(homo)poly(mer). Red curves correspond to
full solubility with χN = 0. Blue curves corresponds to χN = 20, which induces a
compression of the star polymer into a sphere. The number of interactions significantly
decreases by switching, χN = 0→ 20.

number of neighbours considered for internal energy exchange during the eMC
step, i.e., denoted by interactions in the following, for two cases: star-to-star and
homo-to-star polymer interactions. Technically, we iterate over all star polymer’s
particles and count the number of interactions that occur due to the interaction
of star-star and star-homopolymer. The two kind of interactions are counted in
two conditions χN = 0 and χN = 20, respectively. The red curves correspond
to full solubility χN = 0. The blue curves correspond to stars that have been
compressed into a sphere with χN = 20. In case of χN = 0, the star polymer’s
arms are fluctuating freely, hence star-to-homopolymer interactions are the largest
ones. In case of changing from χN = 0 to χN = 20 the reordering into a sphere is
accompanied by a reduction of possible homopolymer-to-star polymer interactions.
Now we continue to investigate star polymers’ dynamic properties. To determine
a thermal relaxation of the star polymer, we double the internal energies of the
monomers corresponding to the star polymer, eint = 2 · e0 · kBT . Then, we track the
averaged internal energy at distance r as function of time.

Figure 4.17 represents the internal energy normalised by the equilibrium internal
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Figure 4.17 Origin r/σ = 0 is set by the centre of mass of the star polymer. Averaged
energy e(r) at position r is normalised by the equilibrium internal energy of a
monomer e0. Initial energy of the star polymer is twice as large as the equilibrium
internal energy of a monomer e0. The time interval between the curves is small,
0.125 τmd.

energy e0 as a function of distance from the centre of mass of the star polymer. In
this example, the star polymer consists of 30 arms. Blue curves indicate χN = 20
and the red ones χN = 0, again. The time difference between each of the curves
is 0.125 τ . The blue curve ends at ∼ 5, because this corresponds to the radius of
gyration of a star polymer with 30 arms that has been compressed into a sphere. We
observe that the relaxation of energy happens faster in the system where the star
polymer’s arms have good solubility, χN = 0. The example is extended to multiple
number of arms. In these systems, the sum of internal energy of the star polymer
is tracked by time, since the star polymer’s internal energy has been increased by
eint = 2 · e0 · kBT . Hence, the total energy that is added to the star is twice the
equilibrium energies of particles that correspond to the star polymer. This tracking
allows us to determine a thermal relaxation parameter as a function of the number
of arms. In the limit that the internal relaxation κint is high the heat-transfer is not
exclusively diffusive. The form changes to Newton’s law of cooling, i.e., Fourier’s
law, eq. (2.14), because the gradient of transported energy is constant. For the
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Figure 4.18 Thermal relaxation α, eq. (4.4) as a function of number of arms of the
polymer. The red curve corresponds to full solubility with a χN = 0. The blue curve
corresponds to a χN = 20, which induces a compression of the star polymer to a
sphere. In this case, the number of eMC interactions reduces to the ones at the
surface.

internal energy. i.e., internal temperature, we can formulate the relation

Tint(t) = Tint + Tint · exp
(
− t
α

)
. (4.4)

α represents a relaxation time. Eq. (4.4) is fitted to the energy data - results are
shown in fig. 4.18. It represents the two cases of χN = 0 (red curve) and χN = 20
(blue curve). If α is small, the relaxation will be fast. If α is high, the relaxation of
energy from star polymer into the surrounding fluid will be slow. A more intuitive
way to interpret α is the mean time of energy to stay in the star polymer.

Discussion In principle, we observe two time scales in the thermal relaxation of
star polymers. The first time scale is defined by the distribution of energy in the
star polymer itself. The second one is the time scale on which energy is absorbed by
the surrounding fluid. In this example, we restricted us to the second case only. The
internal thermal relaxation constant is chosen to be at the maximum limit in order
to ensure a fastest thermal relaxation of two segments inside the star polymer. If
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we double the equilibrium10 energy of each star polymer’s particle, this corresponds
to an equally distributed energy in the star polymer, i.e., the first time scale is
negligible. We showed that switching the morphology of the star polymer, which
induces a compression into a sphere increase the time energy required to relax.
Hence, the effective interface between star polymer and homopolymers reduces the
possible eMC interactions as well. Therefore, the energy leaves the star polymer
much slower. This can be related in a one-to-one correspondence to the number of
surrounding particles, which absorb the star polymer’s energy. The results might
open the question: does the number of arms increase the thermal relaxation, because
more arms should spread energy more efficiently? We conclude that the relaxation
depends on the possibility of transferring energy contained in the arms to the fluid.
This is reduced with an increasing number of arms, because the number of eMC
interactions per number of arms decreases, fig. 4.16. It remains the question whether
structures that have been investigated in this example can be addressed by real
experiments. Fortunately, photo-responsive star-polymer shells have been created
by Dennis Hübner [75]. Here, the junction point is set by a gold nanoparticle and
the arms are functionalised by cis-to-trans isomerisation of azobenzene-containing
molecules, for some details also compare to sec. 4.9. The essence is that they may be
used as a tactic to control thermal relaxation by the solubility of the star polymers
in the solution. In the spirit of thermal antennae that can be switched by light
between two states, they exhibit high and low thermal relaxation, respectively.

4.6 Thermal conductivity of homopolymers
separated by simple cubic soft crystals

The thermal conductivity of crystals is typically orders of magnitudes higher than
the thermal conductivity of polymers. The difference can be rationalised by the
structural difference of the bonds and the specific heat capacities. Hence, in order
to represent hard and soft materials, we use a structural difference for the bond
structure and external microcanonical interactions.
The polymers interact via a soft repulsive potential V (rij)

kBT
= vij

2 (1 − r)2 with
repulsion parameter vij = 1 and a cut-off at r/σ = 1. The potential of two connected
10Equilibrium energy means energy of star polymer at internal temperature equals T = 1. Hence,

when we double the internal energy, we increase the star polymer’s temperature, too. Certainly,
the fraction of star polymer’s energy weighted to the complete system is about one-tenth of a
per cent that global temperature is kept constant in first approximation.

89



4.6. THERM. CONDUCT. OF POLY. SEPARATED BY CUBIC CRYSTALS

monomers is harmonic and centred at rij = 1σ, V (rij)
kBT

= EB

2 (1− r/σ)2.
The crystal is formed via harmonic bonds, Vcry(rij)

kBT
= 10 · (a−r/σ)2, with minimum

potential energy at a = 0.5. The structure is arranged on a cubic lattice such that
each particle has six nearest bonded neighbours. The crystal also has a soft repulsive
interaction between non-bonded particles with interaction parameter vij = 5. The
soft repulsive interaction between homopolymers and crystal segments is set to
vij = 1.
The thermodynamic properties are kept universal in the sense that we address

specific heat capacities and internal thermal conductivities on the right order of
magnitudes. Specific heat capacity of a crystal’s particle is cV /kB = 5000, and the
specific heat capacity of a polymer segment is cV /kB = 500. The internal thermal
relaxation constants are (i) polymer κPoly

int τmd
kBT 2 = 1000, (ii) crystal κ

Cry
int τmd
kBT 2 = 10000,(iii)

thermal connection between crystal and polymer κCryPoly
int τmd
kBT 2 = 500, (iv) directly

connected bonds κintra
int τmd
kBT 2 = 100000. We apply an external current, rnecurrentkBT

τmdσ2 = 100.
Figure 4.19 shows the resulting temperature profile in a steady-state condition,
because the system is created symmetrically, the plot of the temperature profile
has been reduced to one half only. To calculate a local temperature, the inverse
temperatures of each particle within the slab, width δx/σ = 0.2, are averaged.

Discussion According to the underlying structure, one observes two independent
thermal conductivities - the crystal’s and polymer’s thermal conductivity. The
crystal (C) and polymer (P) regions are separated by the dashed green lines. In
applying an external energy current, the system is driven far from equilibrium
such that, in an unfavourable case one observes a non-physical behaviour of the
temperature at an interface. The second law of thermodynamics dictates that
a hot and a cold particle, with temperature T1>T2, never reaches the condition
T1 < T2 but T equil.

1 = T equil.
2 . If the difference of specific heat between two particles

is large and the internal thermal relaxation is high, this law can be violated. From
a microcanonical point of view, one could argue that energy that is transferred
from a heavy to a light particle increases momenta, too. In consequence, the lighter
particle has a higher mobility and kinetic temperature increases.

In the eMC scheme, depending on the time discretisation, a portion of the energy
from the hot to the cold particle is transported, but this can evoke a temperature
condition where temperatures have been crossed, i.e., in an update step, the cold
particle becomes hotter than the hot particle was before. Hence, we introduced an
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Figure 4.19 External energy current (red) applied to a mixture of homopolymers (P)
N = 16 and simple cubic crystals (C), lattice constant a = 0.5, results in a steady-
state temperature profile (blue). Internal specific heat capacities of each segment
are cCry

v /kB = 5000, cPoly
v /kB = 500. Internal thermal relaxation constants are

κCry
int = 10000, κPoly

int = 1000, κintra
int = 100000 κCry−Poly

int = 500 and the applied current
rnecurrentτmdσ2A

kBT
= 100.

additional condition, T old
1 ≤ T old

2 ⇔ T new
1 ≤ T new

2 , which fulfils detailed balance and
inhibits a crossing of temperatures.

In fig. 4.19, we cannot determine an additional thermal resistance at the interface.
Firstly, the interface, which is visualised by the green dashed lines, is not sharp
but very soft and smooth, because polymers are small N = 16 and the packing
density of the crystal is not very high, too. In consequence, polymers can penetrate
the crystal structure and the inter-facial effect is blurred, because of fluctuations
of the interface position in the y and z plane. Secondly, the coupling between
the crystal’s particles and polymers is not significantly smaller than the internal
thermal relaxation constant of non-bounded polymers. The contrast of specific heat
of the two phases also can be motivated with a selective inclusion of silica or gold
nanoparticles, in one phase [76], [77]. Also the description of crystal is ambitious: an
ordered cross-linked network of polymers would be a more appropriate description,
which also fits to studies on thermal properties of cross-linked polymers [78]. In
these studies it was shown that cross-linked polymers have an increased thermal
conductivity.
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4.7 Thermal conductivity without internal DoFs
In the previous section we applied eMC to homo, diblock, and star polymers.
Transport properties have been mainly influenced by the internal DoFs. Therefore
we want to investigate thermal transport in systems without internal degrees of
freedom. Hence, the following simulations are done without the eMC scheme or
any other thermostat.

4.7.1 Thermal conductivity of a uniform fluid

We use the RNEMD technique again to drive the system into a steady-state
condition. The energy current is applied to the particles’ momenta. The system is
treated microcanonically, thus, thermostats are completely switched off. Momenta
are initialised with Maxwell-Boltzmann-distributed velocities. Hence, the system’s
global temperature, which is treated in reduced units kBT = 1, is defined by the
system’s kinetic energy. Temperature is defined locally for each slab of thickness
∆xσ−1 = 1, too. The dimensions are Lxσ−1 = 40;Lyσ−1 = Lzσ

−1 = 5, the system’s
boundaries are periodic, and it contains N = 15008 particles. The density is
ρσ3 = 15. System is considered in two cases. In the first case, the system contains
monomers. In the second case, the system is comprised of homopolymers, discretised
in N = 32 beads, and averaged bond length b = 1 = σ. Fig. 4.20 represents the
macroscopic thermal conductivity as a function of isothermal compressibility, i.e., the
soft interaction parameter, for the two mentioned cases. The thermal conductivity
of the monomer system decreases for higher isothermal compressibilities whereas
the thermal conductivity of the homopolymer system increases.

Discussion The thermal conductivity of monomers at small vij is driven by the
mobility of the particles. If the soft interaction is small, the friction vanishes.
Hence, the particles have a higher mobility and ballistic characteristics, which
increases transport of energy. If the soft interaction is increased, the ballistic part is
decreased. Hence, transport of the fluid is dominated by diffusive characteristics.
Polymers already have a low ballistic regime, because it is suppressed by the bond
connectivity. Hence, their transport characteristics are dominated by diffusion.
Comparing monomer and polymer system for high soft interaction reveals a higher
conductivity of the polymer system. Hence, polymers have a more directed transport,
because intramolecular connections are strong and have a higher frequency than non-
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Figure 4.20 Macroscopic thermal conductivity, λ, of a soft fluid, without internal DoF,
represented by a soft repulsive interaction v. The fluid is comprised of monomers
(blue) or homopolymers (red). Inset represents the friction of the monomer system
as a function of the soft interaction parameter.

bonded interactions. Hence, intramolecular connections induce a more deterministic
part of kinetic energy, which is transported along segments. The length of this
directed transport channel is higher than the random scattered part in the monomer
system.
In sec. 4.3.2 we discussed the influence of the degree of polymerisation and

intramolecular thermal conductivity on the macroscopic thermal conductivity using
eMC, i.e., including internal DoFs. We discussed that the order of magnitude,
which is in between intra- and inter-molecular connectivity, κint, can be motivated
by experimental results. But a justification within our soft coarse-grained model
is also possible, because we get at high soft interaction parameter, v = 19, and an
increase of macroscopic thermal conductivity ∼ 1.5 between systems comprised of
monomers or polymers, respectively.

4.7.2 Thermal resistance of a mixture of soft monomers

Now, we continue to thermal transport of a soft fluid composed of two monomer
types. The soft interaction of these monomers is chosen in such a way that the
system macroscopically phase separates. This is accompanied by two interfaces
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energy current

hot slab
cold slab

Figure 4.21 Soft fluid composed of two
types. Types are distinguished in
their soft interaction parameter vij.
The two types macro-phase separate
in such a way that two interfaces are
formed. An energy current is always
applied to the slab that is centred in
the blue phase, red respectively.

between the phases if periodic boundary conditions are applied in each direction.
If an energy current is applied to this system, the interface creates a resistance.
Observing this resistance, we compare this qualitatively with the overlap of the
DoS of the pure bulk systems, sec. 4.8.2. Similar strategies have been applied
to Lennard-Jones fluids [40] and Lennard-Jones super-lattices [30]. The system
is microcanonical such that temperature will be defined by the particles’ kinetic
energy. Energy is transported between a hot-slab and cold-slab region by rescaling
particles’ momenta. We use this approach, because it reduces the fluctuations in
the temperature profiles. Per contra a normal swapping routine: (i) find the hottest
particle in the cold slab (ii) find the coldest particle in the hot slab (iii) swap their
corresponding momenta. This standard routine has a lot of fluctuations, which
requires increased statistics, and it breaks down if the energy of the cold particle in
hot slab is larger than the hot particle in the cold slab.

The system contains N = 15000 particles, half of which are type A and type B,
respectively, fig. 4.21. The size of the system is Lxσ−1 = 40;Lyσ−1 = Lzσ

−1 = 5
and is periodic, and the size of a slab is ∆xσ−1 = 1. The soft interaction parameter
is varied between v = 1 and v = 7 in steps of 1. This parameter range yields 7× 7
possible configurations. The incompatibility between A and B monomers is set
to vAB =

(
vA+vB

2 + 4
)
. The choice of this value enables the system to relax in a

macro-phase separated state. As a result of macro-phase separation two densities
are observed. These two bulk densities are located in the red- and blue-coloured
region, fig 4.21. The pressure and the density of the system are balanced. Hence, the
local densities of phase A and phase B depend on the isothermal compressibility or
soft interaction parameter vA, vB, respectively. Figure 4.22 represents the densities
of bulk region A (left) and bulk region B (right), in the presence of a small thermal
current j = 0.25 · A · dt. The thermal current is applied via a RNEMD scheme to
explicit DoF. Hence, the density in bulk region A is observed as a function of soft
interaction parameters, vA and vB, of both phases. The densities in the configuration:
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Figure 4.22 Colour code indicates the averaged density of the phase, as a function of the
soft interaction parameters va and vb. (left) chart indicates A phase, which includes
the cold slab. (right) chart indicates the B phase which includes the hot slab.
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Figure 4.23 Colour code indicates the thermal conductivity of the phase A (left) and
phase B (right), as a function of the soft interaction parameters vA and vB. The
A phase includes the cold and the B phase includes the hot slab. Two trends can
be identified: the thermal conductivity decrease for higher v (which quantitatively
agrees with behaviour observed in pure monomer systems), and higher densities
exhibit higher thermal conductivity, cf. fig. 4.22.

vA = 1 and vB = 7, vA = 7 and vb = 1, are not symmetric, because the phase A
includes the hot and phase B the cold slab, which are used to create the external
thermal current. At a constant finite current, the system forms a temperature
profile in a steady condition. Fig. 4.23 presents thermal conductivities that have
been observed by temperature profiles in steady-state condition again. We calculate
the temperature jump that emerges at the interface in the steady-state temperature
profiles. Since the system has two interfaces, we average the temperature jump. The
temperature jump of a system is observed under two conditions: A→B and B→A
depending on the direction in which the current is applied. The linear resistance,
R, of the interface is independent of the current j. Here c is any constant, which
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Figure 4.24 Thermal resistance of an interface formed by a binary mixture of A and B
monomers. The colour scale indicates the thermal resistance, R, from zero to one
via the colour gradient from white over blue to green. The thermal resistance has
been extrapolated to zero current, cf. eq. (4.5). If phase A and B have the same soft
interactions, the resistance of the interface vanishes. Vice versa, if the difference in
va and vb is high, resistance is increased. The error of the Resistance is about 20
percentage of the total value, which inhibits more detailed evaluation.

denotes the resistance which depends on the current applied to the system.

∆TA→B
jA→B

= R + c · jA→B
∆TB→A
jB→A

= R− c · jB→A

⇒ R = ∆TA→B −∆TB→A

2jA→B
(4.5)

Adding up the two left equations yields a resistance of the interface independent of
the current that is assumed symmetrically jA→B = −jB→A. The resulting resistance
of the interface, R, is represented by fig. 4.24. The figure suggests that the thermal
resistance increases for a mismatch between soft interaction parameter vA and vb.

Discussion High differences in soft interaction parameters dramatically increase
the densities in phase A and B, but staying in the restriction of the soft model
this cannot be avoided. In general, high densities allow more possible interactions,
hence the transport of energy can be faster. The thermal conductivity of a pure
monomer system, in which the soft interaction parameters are small, is mainly

96



CHAPTER 4. SIMULATION RESULTS

driven by friction, cf. fig. 4.20 (inset). Hence, in fig. 4.23 the same dependency can
be observed: decreased thermal conductivities for higher interaction parameters. In
contrast, higher densities increase thermal conductivity.

4.8 Phonon properties - microcanonical system
In general, studying phonon properties of fluids is quite challenging, because typically
only longitudinal waves can be observed. If there are phonon vibrations in a polymer
melt, they are local, decay very fast, and one expects an incoherent behaviour with
respect to transport properties. The first part of this section studies the properties
of a system of soft monomers. From here, we will go on to polymer blends. Finally,
we outline properties of a simple cubic crystal and homopolymers to investigate
transport properties of propagating modes induced by the crystal through the
polymer melt.

4.8.1 Quench a soft MD simulation

The most challenging part before the harmonic matrix, i.e., the Hessian matrix, can
be calculated and diagonalised, is to quench the system to a local minimum. Only if
the quenching to a local equilibrium is successful, can stable modes be observed. It
is a good criterion to check a quench procedure via monitoring the forces, because,
in a local equilibrium, the gradient of the potential energy has to be zero.

Steepest descent We quench the system with the steepest descent method, which
is an iterate first-order optimisation algorithm. Therefore, we introduce a viscosity
in arbitrary units, which damps the forces and causes a local minimisation of the
local forces. To quench the system in a local minimum, one sets the kinetic energy to
zero and than applies a high damping rate, which can be understood as an intrinsic
viscosity.

pαi = εdamp · Fα
new = ε0 · dt

vij
· Fα

new (4.6)

xαi = xαi,old + pαi
mα

i
dt. (4.7)

α = {x, y, z} addresses the index of the dimension. i is the particle’s index. p is the
momentum and x the position. εdamp is the damping constant � 1. Eq. 4.6 means
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Figure 4.25 A small system is quenched down to a local minimum. In the initial step,
kinetic energy is set to zero, and a viscous force damps the system, Lσ−3 = 4 · 4 · 8,
particles N = 1280. The damping, εdamp = 0.001, is strong, hence, the system
remains in a local minimum and not a global one, snapshots red.

that we follow the gradient to minimise the local potential. It is important that the
minimisation of the system is very fast, and that the intrinsic viscosity induces a
high damping. Otherwise, the system’s local equilibrium is being undertaken and it
ends up in a global minimum, which does not conserve the conformational structure
of the particles. Furthermore, the strength of the potential influences the quenching
procedure. Hence, the damping constant εdamp is scaled by time the increment dt
and the largest soft interaction parameter that occurs in the system. The particles
will optimise their local structure into a local minimum. Hence, the sum over all
absolute forces allows an estimate of the quality of the local quench. Fig. 4.25
represents a small system that has been quenched. The initial system (coloured
in red) is quenched and the local forces are optimised such that the sum over all
absolute forces changes to zero. Finally, the quenched structure is quite similar to
the initial one, but the initial forcefield coloured in shades of blue is minimised to
uniform blue.

Build up of entries of the harmonic matrix We explained how a system is
quenched to a local minimum by minimisation of the gradient of the forces. To
apply a harmonic matrix to the quenched system, we postulate for the system
following the properties:

• particles have a local equilibrium position,
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• each normal mode acts like a harmonic oscillator and the centre of mass does
not move,

• the normal modes do not interact,

• quenching the system is an instantaneous minimisation of the force fields.

Hence, we calculate the second derivatives of the pairwise bonded and non-bonded
potentials from the structural information of the system. Non-bonded potentials
are harmonic and soft repulsive, bonded interactions are harmonic, too, but the
potential is shifted such that the minimum is at averaged bond distance bσ−1 = 1.
This potential has also been applied in the quench. Bonded interactions are applied
beyond the cut-off distance. The matrix has the size: dimension × number of
particles, which results in n, m= 3×N . Each entry of the matrix Mn,m is indexed
with n and m. These indices imply the direction x, y, z and the index of the particle
i,j. Hence, we observe different forms of the matrix entries.

1. Same direction, same particle:
M [n(i, x),m(i, x)], M [n(i, y),m(i, y)], M [n(i, z),m(i, z)],

2. different direction, same particle:
M [n(i, x),m(i, y)], M [n(i, x),m(i, z)], M [n(i, y),m(i, z)],

3. same direction, different particle:
M [n(i, x),m(j, x)], M [n(i, y),m(j, y)], M [n(i, z),m(j, z)],

4. different direction, different particle:
M [n(i, x),m(i, y)], M [n(i, x),m(j, z)],M [n(i, y),m(j, z)].

All pairwise potentials are represented within the Hamiltonian, H{r}, where r
represents all particles’ spatial positions. The number of neighbours that are
coupled by a potential is #P . Based on the different types of matrix entries, we
can define the general forms,

1. M [n(i, x),m(i, x)] = ∂2H{r}
∂xi∂xi

= ∑#P
j

∂V (ri,rj)
∂xi∂xi

,

2. M [n(i, x),m(i, y)] = ∂2H{r}
∂xi∂yi

= ∑#P
j

∂V (ri,rj)
∂xi∂yi

,

3. M [n(i, x),m(j, x)] = ∂2H{r}
∂xi∂yi

= ∂V (ri,rj)
∂xi∂yi

,

4. M [n(i, x),m(j, y)] = ∂2H{r}
∂xi∂yj

= ∂V (ri,rj)
∂xi∂yj

.
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Here x, y, z indicate the directions and i and j indicate the particle’s id. Hence, to
get the other terms of the harmonic matrix, x can be replaced by y and z. The
explicit form of the derivatives can be found in appendix, sec. 6.6. This formalism,
which was enumerated, is applied to particles’ potentials. The matrix entries, which
emerge by the bonded potentials are predictable from the bond structure, i.e.,
they are independent from the microscopic configuration, whereas the non-bonded
interactions have to be applied to the underlying configuration. Hence, in case of
non-bonded interactions, one has to consider N2 possible interactions which are
limited by the cut-off distance of the bonded potential only11. To check if a matrix
has been calculated in the right way, e.g., the matrix has to be symmetric, and the
sum of each row and column has to be zero.

4.8.2 Thermal resistance of a soft fluid mixture by DoS

We will investigate the density of states of a soft system and vary the isothermal
compressibility. The system is contains N = 5145 particles, has cubic dimensions
V σ−3 = 7× 7× 7, and an averaged number density of ρσ3 = 15. The non-bonded
interactions are scaled from v = 1 up to v = 7. We determine the density of states
by harmonic matrix approximation. Hence, the system is quenched first. The
quench follows the strategy explained in sec. 4.8.1. But we want to expose the main
assumptions: to apply the harmonic matrix approximation the forces are minimised
first. Hence, the system is quenched firstly by setting the kinetic energy to zero and
secondly by applying a high damping rate - intrinsic viscosity controlled. For all
systems, the time increment is dt = 0.0001 and the damping is ε0 = 1. According to
different soft interactions, the total damping is between εdamp = [0.000015 : 0.0001].
The quench of the system is done for 105 steps.

Finally, the harmonic matrix is calculated from the quenched structure. This
matrix is diagonalised via the Intel®MKL library, which allows us to determine
the spectrum of eigenvalues, λi. Taking the square root of all eigenvalues, ω =
sign(λ)

√
abs(λ), gives rise to a frequency spectrum, DoS D(ω) respectively. Taking

the sign(λ) and the absolute values enables to show negative frequencies, i.e., complex
modes too. These modes always appear if the system has not been quenched to
an accurate local equilibrium state. They represent unstable modes that drive the
11Technically, calculating the entries for the harmonic matrix can be accelerated, because the

system is already divided in boxes that have the size of to cut-off distance. Thus, in three
dimensions, one has to consider 27− 1 neighboured boxes only as well as the box in which the
particle is located.
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Figure 4.26 DoS of a soft fluid composed of monomers with bulk density ρ0σ3 = 15.
The system was quenched by 10000 steps via steepest descent method to a local
minimum, dt = 0.001, e0 = 1. Afterwards, the harmonic matrix has been calculated
and diagonalised via Intel®MKL library. Eigenvalues’ square roots have been collected
in a histogram, which represents the DoS of the system.

system to its new local minimum [79]. Fig. 4.26 represents the DoS, which was
calculated by the explained procedure, for various interaction parameter. In the small
frequency regime of each DoS, a quadratic scaling ω2 might be identified. Maxima
in the DoS qualitatively could be explained by scaling of maximum frequency of
Debye model, ωD = cs ·

(
6π2N
V

) 1
3 , eq. 2.25. The velocity of sound, cs, or velocity

of a propagating density peak, respectively, linearly increases by the isothermal
compressibility KisoN , cf. sec. 4.8.3. The quenching procedure becomes easier for
higher soft interaction parameter. If the soft interaction becomes stronger, the
energy barriers of local minima increase, become localised and sharper. Therefore,
the local minima are shaped more precisely, and also higher frequencies are observed.
Frequencies, i.e., the peak of the DoS, also increase by the density, appendix fig. 6.4.

The resulting DoSs are used to estimate a resistance at an interface and the
transmission coefficient respectively. A vibrational mismatch at the interface can be
formulated in claiming that only frequencies that propagate in both bulk systems,
can overcome the interface. Other remaining frequencies are reflected by the interface
and stay in the bulk material. Fig. 4.27 represents two DoSs. The overlap A is
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Figure 4.27 The overlap (shaded black) of two bulk DoSs for v = 2 and v = 6, cf.
fig. 4.26, enables the estimation of resistance that is induced by a vibrational mismatch
at the interface.

shaded black and characterises the modes, which can propagate in both systems.
All possible combinations are shown in fig. 4.27. We define the thermal resistance
by the part of modes that are reflected by a mismatch, and the resistance is crudely
estimated as R = 1 − A. If two identical bulk systems are in contact they are
indistinguishable. Hence, the approach to resistance, R, does not considers structural
effects of interfaces, such that the diagonal is zero (shaded white), fig. 4.28. Systems
that are not identical have a mismatch, hence there is a resistance. The resistance
is maximised by increasing the deviation of interaction. The overlap of v = 1 and
v = 8 is approximately zero. Hence, the resistance of the interface becomes 1, i.e.,
100 percent.

Discussion The most challenging part of calculating a DoS is the quench. It
can take multiple runs to observe a successful quench, because the system has
imaginary modes left. A disadvantage of the framework is that we could not find a
criterion that guarantees a quench in a stable local equilibrium before the DoS had
been calculated. These calculations can be performed faster by using accelerator
cards, i.e., Nvidia Pascal or Intel Knights Landing, but finally this is the most
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Figure 4.28 Thermal resistance observed by overlap, A, of DoS of bulk systems. The
thermal resistance is defined by the part of modes, which are reflected by a mismatch,
and the resistance is crudely estimated by R = 1−A

time-consuming part 12.
As already mentioned, increasing the potential allows us to quench the system

easier, because the landscape of the potentials becomes sharper and the local minima
are better separated. In the quench procedure, one also has to consider small
time increments, because too large increments are insensitive for local equilibrium
positions. Hence the damping constant was chosen as a combination of time
increment, interaction constant of potentials, and an additional damping constant.

4.8.3 Density waves in a homopolymer melt

The system is composed by linear harmonic chains, which interact via a soft
potential, sec. 3.5.2. The strength of soft interactions is given by the inverse
isothermal compressibility κN . The system is treated microcanonically without
making use of thermostats. Hence, we set a kinetic energy such that the averaged
kinetic temperature is kBT = 1, cf. eq. 3.53. The system is considered to be
three-dimensional with periodical boundary conditions. Nevertheless, we will focus
the analysis on the one-dimensional case along the x-axis and average over the other
12Beside the computing, it is also challenging to handle the size of the matrices, in the context of

storage and memory allocation on GPUs.
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Figure 4.29 Density of a homopolymer ρ0σ3 = 10 for different time steps τmd. At τmd,
densities have been increased by a factor of 4 at position Lx/2±∆x/2. The maximal
amplitude of the peak Apeak(t) propagates through the system along the x-axis.

directions (y, z) to improve statistics. We divide the system into small ∆x slabs
according to the x-axis and measure the density by time. The starting point is
a system with equally distributed densities, ρ0σ

3 = 10. In the middle of the box
at position Lx/2±∆x/2, the densities are instantaneously increased by a variable
factor. Technically, we write a configuration file and add a specific number of
particles in the area that was specified. The velocities of the new particles are
drawn from a Maxwell Boltzmann distribution with kBT = 1. Of course, this can be
understood as non-physically, - but particles are soft and the overlap does not induce
singularities. While unrealistic conditions can be created, a few integration steps
are adequate so that these overlapping effects can be fully compensated. Starting
from this point, time evolution of the density profile can be examined whithout any
difficulties. Such a density profile at different times is shown in figure 4.29. In this
example the equilibrium density of the homopolymer melt was rescaled to 1 by the
averaged density ρ0σ

3 = 10. Hence, at time t = 0 the density at Lx/2±∆x/2 has
been increased by a factor of 4 (∆xσ−1 = 1). The density peak splits in two parts
and propagates through the system. In the course of propagation of the peak’s
amplitude is damped. Than, we can conclude that a longitudinal density wave in
a soft, coarse-grained melt of homopolymers has damped ballistic behaviour. The
position of peaks as a function of time allows us to extract the velocity of the peaks,
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Figure 4.30 Position of density peaks along z-axis as a function of time τmd. The position
is averaged over the two peaks. Compare also to fig. 4.29.

fig. 4.30. We observe that the propagation of the peaks is constant and apply a
linear fit to get the velocities of the peak. The velocities of the density peaks depend
on the isothermal compressibility parameter κisoN. ∝ vij. Figure 4.29 shows that
the density peaks are damped. This damping is induced by local dissipation via
non-bonded and bonded potentials. The damping of the amplitude can be described
by an exponential decay.

Apeak(t) = A0 · exp(−tτ). (4.8)

The result of the fit is shown in figure 4.31 (blue).

Discussion We conclude that the maximum of the peak has a higher damping at
low isothermal compressibility or vij respectively. If the isothermal compressibility
is increased we observe that the decay time is lower and the density peaks can
propagate through the system for a longer time. However, instead of a diffusive
behaviour the created pressure wave splits into two parts and propagates as a
longitudinal wave through the system. If the two pressure waves collide against
each other they are reflected, too. The damping of the pressure wave is constant
that an exponential decay of the amplitude is observed. The result that pressure
waves propagate in a polymer melt has formed a concept that we want to outline in
the following subsection.
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Figure 4.31 Red curve is the decay of the density peak’s amplitude as a function of
the isothermal compressibility, cf. eq.(4.8). Blue curve results from a linear fit of
figure 4.30 varying the function of isothermal compressibility.

4.8.4 Outlook on homopolymer melts and simple cubic crystals

In section 4.6, a composite system, which consists of an alternating structure of
homopolymers and soft cubic crystals, has been presented. This composite system is
used again, with the difference that all contributions of internal DoFs and eMC are
left out and the system deals only with explicit DoFs. In this system, propagating
of modes that are generated in a soft crystals are studied. The system is tested to
answer the following question: do the polymers in between two soft crystals have a
range in frequency space that permits a better propagation of a mode. Here, the
second crystal is used to detect the modes that have been created in the other soft
cubic crystal and propagated through the polymer melt. Figure 4.32 summarises
the setup that is used. An alternating structure of polymers and soft cubic crystals
is putted into a periodical system. In the first crystal, a mode is created, whereas
the second crystal detects the mode. A possible selective mechanism that confirms
the hypothesis, might be found in bond vibrations that allow a better propagation.
In a first test, the response of the second crystal has been tested. Hence, the

momentum of the centre of mass of the first crystal has been exited by a constant
external frequency. This created a longitudinal wave, which exponentially decayed
in the polymer melt. Therefore, the distance between the two crystals, which is
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Figure 4.32 The system is comprised of
soft repulsive harmonic bonded parti-
cle (light blue), which form a crystal-
like structure, and homopolymers
(N = 16, averaged bond distance of
b = 1σ). In one of the crystals, a vi-
brational mode is inserted. The mode
propagates through the homopolymer
melt and is measured in the second
crystal.

P PC

vibrational mode

periodic box

response

CM

filled with polymers, has been chosen so that the propagating wave is not completely
damped. The external frequency, which is inserted to the crystal’s momentum,
is generated by a modulation of a sine ∼ sin(ωt), with ω = 2π

τmd
. Assuming that

some frequencies propagate better through the polymer melt, one should obtain
a higher amplitude of the induced frequency in the second crystal that detects
the amplitudes. But no specific mode of the polymer melt that increases/reduces
transport behaviour that is observed by the second crystal has been observed yet.

4.9 Results on azobenzene photo switches
In section 4.5, we motivated the structural change of the solubility of the star poly-
mers by cis-trans azobenzene photo switches. Azobenzene is a chemical compound
which consists of two phenyl rings that are linked by a double-bond of nitrogen. The
change of structure and solubility via an interaction with light was first observed
by Hartley in 1937. He found the cis-form of the azobenzene [80]. Fig. 4.33 shows
the chemical structure of azobenzene in the trans- and cis-state. The cis-state is
an excited state that can be obtained by an UV light. The other way around, the
trans-state is reached by thermal noise or the backward reaction of an incident
photon. Even if the structure returns to stable trans-states by thermal noise, struc-
tures created by an exited cis-state are stable for hours up to days [77]. Photo
switches are good candidates to induce a structural change, because both of their
reversible isomerisation and change of dipole moment. Recent experiments have
shown that an in-situ light-controlled switching of a block-copolymer morphology
during dip-coating of a thin film is possible [81]. Figure 4.34 shows two AFM
images of phases emerged by dip-coating. The coating was performed under two
conditions (i) in the dark (left image) and (ii) excited to the cis-state (right image)
by UV light. Here, one observes either a lamella or a hexagonal phase. Similar
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Figure 4.33 Azobenzene is a chemical com-
pound which consists of two phenyl
rings, which are linked by a double bond
of nitrogen. An incident photon can in-
duce a change of morphology and shift
the azobenzene to an exited metastable
cis-state (forward λ ≈ 370[nm], back-
ward λ ≈ 400[nm]). Azobenzene can
return down to the ground state again
by thermal noise ∆ or an incident pho-
ton.

Figure 4.34 In-situ light-controlled switch-
ing of a block copolymer morphol-
ogy during dip-coating of a thin film.
Reprinted with permission from ACS
Macro Letters, [81], Copyright (2002)
American Chemical Society.

experiments have been done by Hübner, who investigated different phases of a
PAzoPMA-b-PBA in trans- and cis-state [77].

Photo switches have also been investigated by atomic force probe experiments to
motivate light-powered molecular machines [82]. In this atomic force probe setup
they created a polymer that consists of azobenzene-repeating units. Additional
linkers at the ends have been added to fix the polymer to the atomic force microscopy
tip and to the substrate. The substrate itself is a glass, which hosts a TIR (total
internal reflection) setup. Hence, the experimental setup allows the switch between
trans- and cis-state by coupling in an UV light source. The authors found out
that the change from a cis- to a trans-state changes the contour length of the
polymer. This experimental setup also has been mimicked by molecular dynamic
simulations [83]. In both cases, they measured the difference of extension ∆l
per switched azobenzene monomer at a given force. The experiment provided
a change of ∆l/(monomer Å) = 0.6, and the simulations provided a change of
∆l/(monomer Å) = 1.45, here the switch was performed vice versa. From this, one
can motivate that the influence of photo switches can be described by changing the
harmonic bond distance. Experimentally, this could be confirmed on a larger scale by
a macroscopic effect. They created a vertically oriented, self-assembled azobenzene
monolayer, which was coated on a gold substrate. On top of the monolayer, they put
a mercury electrode drop. Hence, they have created an electrical metal-molecule-
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metal junction switching the trans- to cis-state (forward λ ≈ 370[nm], backward
λ ≈ 400[nm]), which enables them to change the (tunnelling) distance between the
electrodes that is also associated with mechanical work, i.e., lifting of the mercury
drop [84].
Azobenzene photo switches have been studied for a lot of different applications.

In the context of SCMF simulations we want to use photo switches to control the
directed self assembly of a diblock copolymer on a substrate. In order to observe
different phases that change the macroscopic thermal transport properties of the
polymeric material we assume that the mechanical change, cf. [82], of the elongation
of an azobenzene polymer can be represented by a change of the harmonic potential’s
bond distance. Therefore we introduced a scaling of the harmonic bond constant,
which indirectly controls the bond distance and chain stress tensor, respectively.
The SCMF method has been introduced in sec. 3.6.

4.9.1 In-situ switching during dip-coating

The natural lamella spacing of symmetric diblocks can be derived from minimisation
of single chain stress tensor of a lamellar in a unit cell to L0 ≈ 1.74 [Re] ≈ 100 [nm],
for χN = 30, which enables the connection to the experimental measurement of the
lamellar spacing and the length scale of the SCMF simulation. The typical thickness
of one single lamellar is of the order of 50 [nm]. In conformity with the experiment,
the film is thin and has a height h/Re = 0.5. All other parameters are specified in
table 4.5. The substrate, in an experiment, preferentially attracts the A or B part of
the diblock. Hence, we introduce an additional preference for the A part on top of
the substrate. This surface preference is exclusively applied to the first layer on top
of the substrate. The height of this layer corresponds to one cell of the density fields
or quasi-instantaneous field approximations, respectively. In collaboration with
experimentalist, the group of Roy Shenhar, The Hebrew University of Jerusalem,
different phases of thin films compromised of symmetric diblocks have have been
identified. In a parameter study of the preference of the substrate was tuned to
their observations, which are three different phases: a perpendicular lamellar phase
from σext. = 0− 17, a hexagonal phase from σext. = 18− 25 and a horizontal lamella
phase starting at σext. = 18− 25. In the numerical example, we prepare two systems,
which have a surface preference of σext. = 17, in the switched and the unswitched
case. This preference enters in between the hexagonal and lamellar phase.
Fig. 4.35 represents these two numerical examples. The orange-black colour

109



4.9. RESULTS ON AZOBENZENE PHOTO SWITCHES

Parameter value unit
Nreference beads 64 –
dt 0.17 t

χN 30 e

κN 30 e

Lx × Ly × Lz 30× 30× 0.66666 R3
e

nx × ny × nz 360× 360× 8 –
σext. 17 e

diblock structure A{32}B{32} –
AA HARMONICVARIABLESCALE –
AB harmonic –
BB harmonic –
harmonicvariablescale 1.0; 1.5 –

Table 4.5 Simulation parameters of a thin film of symmetric AB diblocks coated on
a preferential surface, with periodic boundary conditions in x- and y-direction. The
z-layer nz = 7 and nz = 0 restricts polymers to be in layer nz = 1 − 6. The z-layer
nz = 1 is modified with a repulsive/attractive field, which has the strength σext. = ±17.

Figure 4.35 This is the top view of a thin film composed of AB diblocks, which have been
simulated with SCMF. The left image represents the trans-state without excitation.
In the right image the harmonic bond distance of diblocks’ A part has been switched,
i.e., rescaled a factor of 1.5. Hence, the right image represents the exited, switched
case, in which a more compact hexagonal cis-state is observed. The black colour
indicates the B part, the A part is left blank. Detailed parameters are summarised in
table 4.5. Simulations ran for 400.000 Monte-Carlo sweeps or ∼ 40 Rouse-relaxation
times, respectively.

indicates the B part of the diblock, white space in between covers the switches A
part of the diblock. The left unswitched system is in the lamella phase, whereas the
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CHAPTER 4. SIMULATION RESULTS

switched system is the hexagonal phase.

Discussion A simulation that is done at the boundary of two phases can be
switched into another phase. This can be explained by the change of the stress
that is induced by chain segments. Via switching, the elongation of the chain
decreases. Hence, it becomes more compact and more blocks, which are attractive,
can adsorb at the surface. Simulations have been started in a random, unordered
phase that represents the initial, solvent-swollen state of dip-coating. Hence, free
energy barriers are low and it is easier to end up in a final state. The energy barrier
of an interface increases by increasing the invariant degree of polymerisation N and
the incompatibility parameter χN . Nonetheless, it is possible to recover structures
that have been observed by experiments.

4.9.2 In-situ switching in a thin film with periodic boundary
conditions

Now, we discuss simulation results of diblock copolymers in a film with periodic
boundary conditions. Figure 4.36 shows the phase diagram of a diblock copolymer.
This phase diagram has been calculated by Matsen using SCFT calculations [85].
The x-coordinate represents the volume fraction and the y-coordinate corresponds
to the incompatibility parameter χN . Black lines mark the phase boundaries in the
case that distance of A and B segments are symmetric, bA/bB = 1. Blue lines mark
phase boundaries in the case that statistical segment length of A and B segments
are not symmetric, ratio bA/bB = 1.5. The motivation to select a ratio on this
order is taken by the atomic force probe experiments, which have been discussed
before [82, 83]. The important phases are marked by coloured areas: the blue
area indicates a cylindrical phase, the red area indicates the region where a switch
might be possible, the green area indicates a lamella phase. In between these three
phases the two white intervals are left which correspond to a gyroid phase. The red
point indicates the position in the phase diagram where simulations are performed,
f = 0.4, χN = 17. Below the black dashed line, only a micellar ordering into
phases is observed, i.e., the system is in the disordered phase. Hence, at the chosen
position in the phase diagram, the free energy barrier, which has to be passed to
change the phase, is lower and the probability increases to observe a switch of phase,
which is induced by the change of harmonic bond distance. Figure 4.37 represents
two top views of SCMF simulations that have been simulated for approximately
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4.9. RESULTS ON AZOBENZENE PHOTO SWITCHES

Parameter value unit
Nreference beads 64 –
dt 0.17 t

χN 17 e

κN 30 e

Lx × Ly × Lz 30× 30× 0.9166 R3
e

nx × ny × nz 180× 180× 5 –
diblock structure A{25}B{39} –
BB HARMONICVARIABLESCALE –
AB harmonic –
AA harmonic –
harmonicvariablescale 1.0 → 1.5 –

Table 4.6 Simulation parameters of a thin film of AB diblocks. Periodic boundary
conditions are applied to all directions.

40 Rouse-relaxation times. Detailed simulation parameters can be found in table
4.6. The two top views represent two cases: default state with an equal ratio of
harmonic bonds and a switched state with a rescaling of the harmonic bond distance
by b = 1.5. The left image is the default and the right image is the switched case.
In the default state, the lamella phase dominates the system’s phase, whereas in
the switched case, the system changes its phase, which might be characterised by
cylindrical phase. The switching was applied to the longer B part of the diblock.
Hence, this can be related to the phase diagram: bB becomes smaller, whereas the
ratio bA/bB becomes larger.

Discussion The SCMF simulations agree with the idea motivated by the form
of the phase diagram. The phase diagram was calculated via self-consistent field
theoretical calculations performed by Matsen [85]. These calculations do not con-
sider thermal fluctuations, hence, these calculations predict a lower transition to
a disordered state. Practically, we determined this phase transition in SCMF
simulations by reducing the incompatibility parameter down to χN ≈ 15. The
simulations have been performed close above the disordered-to-ordered phase transi-
tion to have a high probability to observe a switched phase, which is not a lamella
one. The phase transition between disordered to lamellar is fluctuation-induced
first order, transitions between different spatially modulated phases are first order
already within mean field. Probability in this context means that approximately
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Figure 4.36 Phase diagram of a diblock with equal (black) and modified ratio bond
distance (blue). The red point addresses values of the simulation: incompatibility
χN = 17 and volume fraction f ≈ 0.4. Below the black-dashed line, only a poor
ordering of phases is observed. The phase named by S represents spherical micelles
arranged on a cubic grid, BCC. The blue area indicates a cylindrical phase. The red
area indicates the region where a switch might be possible. The green area indicates
the lamellar phase. Between these three phases, the two white intervals correspond
to the gyroid phase. Figure (modified) with permission from J. Phys. Cond. Mat.,
[85], Copyright (2018) IOP Publishing.

Figure 4.37 Top view of two SCMF simulations. Snapshot is taken at 40 Rouse-
relaxation times. The left part is the default state, the right part is the switched
condition. The colour code, which runs from white to black, represents the type
of the block from A to B. Hence, the black part represents the B part that was
switched. The incompatibility parameter is χN = 17, which exhibits fluctuations of
interfaces. Hence, the system is close to a disordered phase, because being close to
this transition point enables a high influence of the switching. Detailed parameter of
the simulation can be found in table 4.6.
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4.9. RESULTS ON AZOBENZENE PHOTO SWITCHES

only two simulations out of ten show a change of morphology that can by observed
in figure 4.37. Hence, getting a better understanding of the instabilities that are
induced by the modification of the bonds, requires additional methods, for instance
a string method that provides information about the change of system’s free energy.
We could show that a change of the structural phase induced by photo switches is
possible.

Hence, assuming that in the different phases the alignment of interfaces is changed,
this can be employed as a control tactic to modify thermal properties of a system.
The transport properties of a bulk phase could also be modified by inclusion
of nanoparticles to enhance the contrast in change of thermal conductivity. One
observes a switched phase if the change induced by the bonds is large enough to drive
a stable across a metastable condition into an unstable condition. Meta-stability is
not enough, because nucleation can take a long time.
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5 Conclusion

Coarse-grained systems allow a universal description of polymers by a minimal
set of parameters: a length scale given by the mean end-to-end distance of a
polymer, an isothermal compressibility that controls the strength of the non-bonded
interactions, and an invariant degree of polymerisation. This universal description
relies on explicit DoF that are coarse-grained particles’ momenta and spatial
positions. The new eMC scheme couples internal DoFs, which have been integrated
out, to the explicit DoFs that each coarse-grained particle gets an additional
internal DoF. eMC conserves system’s total energy and bases on a microcanonical
partition function. Based on the microcanonical description, we derived a universal
form of the acceptance criterion, which considers the statistical weight of two
particles and leaves the proposed new states open to the physics that covers realistic
dynamics, i.e., a thermal relaxation between internal DoFs. A proposed new
state depends on two particles’ internal energies and parallel momentum that is
accepted/rejected by the Metropolis rate. This Monte-Carlo approach prohibits
discretisation errors of first-order integration schemes, which are characteristic for
eDPD models. By overcoming this limitation eMC allows to study energy transport
phenomena on long time and length scales, i.e., structural change of morphologies
under temperature gradients - Thermophoresis, but also specific effects, which
follow from local properties of the underlying molecular structure, e.g., specific heat
capacity, polymer chain confirmations and density differences.

The new eMC scheme gave insights into transport phenomena in complex poly-
meric systems. We have shown that the explicit discretisation of a time step does
not influence the macroscopic thermal conductivity. The friction in soft systems
is mainly controlled by the thermostat, which is called more often for smaller
time increments. The RNEMD method has been applied to the polymer melt,
and caused a linear response, i.e., a linear temperature profile in a steady-state
condition. This linear response of the polymer melt permitted that the resulting
macroscopic thermal conductivity remains unaltered under the explicit choice of
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the current. If the polymers’ specific heat capacity is dominated by the internal
DoFs, it confirmed that the dependency is linear between the internal thermal
relaxation, κint, and the macroscopic thermal conductivity, λ ∼ κint. The system’s
transport properties are also influenced by the isothermal compressibility, i.e., the
soft interaction parameter of the non-bonded potential. Hence, increasing the
isothermal compressibility results in an increased thermal conductivity, too. For
this purpose, the polymer melt becomes a more structured fluid, which modifies the
number of particles’ interactions within the range of the eMC update. The eMC
generated invariant transport properties, because a polymer melt was parametrised
on different coarse-grained levels. On these different levels, temperature profiles in a
steady-state condition, i.e., the thermal conductivities, became invariant. Therefore,
a strategy was presented to rescale the specific heat capacity, cV , internal thermal
relaxation,κint, and external current by leaving the length scale, Re, - averaged
end-to-end distance - unaltered. These insights were combined to cover structural
effects that also have been found in experiments by eMC. We emphasised that
introducing a parameter set that separates between, e.g., inter- and intramolecular
internal thermal relaxation or the length of a polymer, control the macroscopic
thermal conductivity. We expanded our studies of thermal transport characteristics
to a polymer melt of diblocks. Driven by an incompatibility parameter χN , diblocks
formed lamella structures by directed self-assembly. We showed that interfaces
influence the thermal conductivity and induce an additional thermal resistance,
.i.e., Kapitza resistance. Therefore, we changed the ratio of the parameter set of
internal thermal relaxation. A comparison between alternating domains of polymers
compromised of (i) diblocks (ii) cut diblocks at the junction point showed a direct
influence of molecular connectivity on eMC. We continued with the study of star
polymers, whose thermal relaxation was controlled by the incompatibility parameter,
χN . High incompatibility induced a compression of the free-fluctuating arms of
the star polymer to a sphere - minimised interface with less contact to surrounding
melt of polymers than before. Finally, we combined a simple cubic lattice of a soft
cubic crystal with a polymer melt and expanded eMC to a broad range of internal
thermal conductivities and specific heat capacities. Based on the simulation results,
we conclude that macroscopic thermal conductivity is controlled by the polymer
architecture and interfaces formed by directed self-assembly. Hence, these control
tactics can be exploited by (a) tailoring the thermal relaxation constant, which is
dependent on the architecture, (b) the varying the degree of polymerisation, (c)
modifying the incompatibility parameter.
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CHAPTER 5. CONCLUSION

We calculated the DoSs by a diagonalised harmonic matrix. The matrices are
obtained via a quench of the system. To quench the system the steepest descent
method was chosen, which can be understood by introducing an intrinsic viscosity.
From the DoS, we assumed a vibrational mismatch at the interface and calculated
a transmission coefficient, and thermal resistance respectively.

Based on experiments that have been done on photo switches in polymers we mo-
tivated a strategy to implement the transition from trans- to cis-state (isomerisation
and change of the dipole moment) by a rescaling of the harmonic bond constant.
This strategy allowed us to recover trends of experiments conducted with dip-coated
polymers, which indicated that phase changes from hexagonal to lamella phases
are possible. But it also showed that an in-situ switching from one to another is
possible.

117





6 Appendix

L=750 nm

Figure 6.1 Symmetric diblock copolymers phase separated into a lamella pattern via
self-assembly (∼ 5 · 105 particle). eMC enables to investigate large structures even
if system sizes in this thesis have been smaller, i.e., we studied thermal transport
across alternating interfaces that are reduced to a one dimensional temperature profile,
fig. 4.10. The typical size of these systems is added by the rectangular box.

6.1 Microphase separated diblocks
eMC allows to study energy transport on large time and length scales. Fig. 6.1
represents a large system that has been simulated by the eMC scheme. The red
colour indicates the A and the yellow colour indicates the B phase. In this thesis, we
focused on system sizes that allow a systematically study, i.e, of thermal transport
across interfaces. These systems sizes are chosen smaller to reduce computational
effort. A typical system size that has been considered in these studies is marked in
fig. 6.1, too. This figure motivates that the capabilities of eMC are not exhausted
yet.
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6.2. DOS OF HARMONIC CHAINS VIA VAC
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Figure 6.2 FFT power spectrum of VAC (inset). If VACs have calculated for Gaussian
chains without non-bounded interactions. Distance vectors of chain segments have
been grown randomly by a three-dimensional Gaussian distribution. Even the FFT
is in arbitrary units it can be related with the DoS of a harmonic chain. Maximum
frequency is ωmax = 2

√
EB/m ≈ 3.47τ−1
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Figure 6.3 FFT power spectrum of VAC (inset). VACs have been calculated a chain,
which was discretised by N= 32, non-bounded interactions are increased. Vertical
dashed line, ωmax = 2

√
EB/m ≈ 3.47τ−1

md, vanishes by increasing the soft interaction
vij. The number density of the system is ρσ3 = 10.

6.2 DoS of harmonic chains via VAC

Transport properties are strongly influenced by the chain conformations. This
counts for simulations, which include and exclude internal DoFs. The structure
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Figure 6.4 DoS for a system with fixed soft interaction parameter v = 3. Varying the
densities of the system between ρσ3 = 5, 7.5, 10, 12.5. The number of particles is
4800. We observe that increasing the density shifts the peak of the DoS to higher
frequencies.

of a polymer can be described by a linear harmonic chain. In section 2.2.3, we
introduced a harmonic one-dimensional chain. Each segment’s motion is affected
by the forces of their neighbours only. Hence, there are no acting external forces
or non-bonded interactions, respectively. Fig. 6.2 represents free harmonic chains
without any external forces. They are the ideal set to test the work flow of
identifying a DoS by a Fourier transformation of the VAC. Then, the maximum
and minimum frequency, which can be observed in these systems, can be calculated
analytically. Maximum frequency is calculated by the harmonic bonding constant,
EB, to ωmax = 2

√
EB/m ≈ 3.47τ−1

md. In an additional step, we introduced soft
repulsive non-bonded interaction to the system. The ability of chain segments to
vibrata is restricted, and the frequency spectra of the chains are dumped, fig. 6.3.

6.3 DoS of a soft fluid for different densities

We explained the quenching procedure in the main part of the thesis for different
interaction parameters, sec. 4.8.2. Fig.6.4 concludes the DoS of a system of soft
monomers v = 3 containing 4800 particles. Box dimensions have been selected cubic.
We observe that increasing the density shifts the peak to higher frequencies.
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6.4. DEPENDENCE OF TIME INCREMENTS ON DIFFUSION
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Figure 6.5 The diffusion time of homopolymers, N = 32, as a function of the time
increment, scales linearly with the time increment of eMC, D(dt) = (0.05± 0.001) ·dt.
The time increment is equal for eMC and the Velocity-Verlet scheme. Hence, eMC is
called once per integration.

6.4 eMC: dependence of time increments on
external DoFs diffusion

The eMC scheme has been explained in terms of a thermostat. The polymer systems
are described by soft models so that the friction in the system is mainly influenced
by a thermostat. The thermostat destroys correlations between particles’ momenta.
In a small numerical example, we measure the mean-squared displacement of centre
of mass of a polymer and determine the diffusion constant. The number density
of the system is ρσ3 = 6, the soft repulsive interaction is vij

kBT
= 0.6667, internal

thermal relaxation is κintτmd
kBT 2 = 1000, specific heat capacity of each internal DoF is

cV /kB = 1000.

Fig. 6.5 represents the thermal diffusion constants, D, as the function of the
time increment eMC has been called. The diffusion values are calculated from
the mean-squared displacement of the polymers’ centre of mass and long time
behaviour t→∞ of g3, respectively. Figure 6.5 shows a linear dependence between
calling eMC and the diffusion constants. This has the advantage that the thermal
conductivity increases on the one hand, and on the other hand the centre of mass
diffusion decreases, which dictates the time scale and still rescales the macroscopic
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Figure 6.6 The diffusion time is determined via g3, mean-squared displacement of poly-
mer’s centre of mass. The time increment equals the time increment of the Velocity-
Verlet scheme. Within one Velocity-Verlet step the eMC scheme is called up to 20
times. The partially weighted parallel momenta are destroyed successively by number
of eMC calls. Friction reaches the maximum when there are no correlations left and
might becomes independent from number of calls.

thermal conductivity to larger values.

6.5 eMC: dependence of the number of eMC calls
on external DoFs’ diffusion

The eMC routine couples the internal DoFs by partially weighted exchange of
the parallel momentum of an interacting particle pair. The parallel momentum
is drawn from a Gaussian distribution, which has been normalised by the mean
local temperature of the two particles. The partial weighting between old and new
parallel momenta is controlled by a constant α = 0.1. Hence, a higher number of
calls destroys the correlation between two consecutive Velocity-Verlet integration
steps, which increases friction in the system and reduces the diffusion time of the
polymer’s centre of mass. Figure 6.6 represents a numerical example, in which
the number of eMC calls per Velocity-Verlet integration has been increased. The
number density of the system is ρσ3 = 6, the soft repulsive interaction is vij = 0.6667,
internal thermal relaxation is κintτmd

kBT 2 = 1000, and specific heat capacity of each
internal DoF is cV /kB = 1000, again cf. sec. 6.4.
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6.6. EXPLICIT DERIVATIONS TO CALCULATE ENTRIES OF THE
HARMONIC MATRIX

One observes that the diffusion D, which is determined by the polymer’s mean-
squared displacement of the centre of mass, is reduced by increasing the number
of eMC calls. However, at high number of eMC calls, i.e., when the number of
calls is larger than 10, it seems to be that the diffusion constant D converges to
a constant value. We also used the same framework to identify the dependence
of number of calls of eMC on macroscopic thermal conductivities, cf. [11]. Here,
we measured the decay length of a Gaussian profile, and thermal conductivity λ,
respectively.

6.6 Explicit derivations to calculate entries of the
harmonic matrix

Potential

Vsoft = k

2 · (1−∆r)2

= k

2 ·
(

1−
√

(∆x)2 + (∆y)2 + (∆z)2
)2

= k

2 ·
(

1−
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
)2

1st Derivatives
∂Vsoft

∂∆r = k · (1−∆r)

∂Vsoft

∂∆x = k ·
(

1−
√

(∆x)2 + (∆y)2 + (∆z)2
)
· 2(∆x)

2
√

(∆x)2 + (∆y)2 + (∆z)2

= k ·∆x ·
(

1 + 1√
(∆x)2 + (∆y)2 + (∆z)2

)
∂Vsoft

∂x1
= k · (x1 − x2) ·

(
1 + 1√

(x1 − x2)2 + (∆y)2 + (∆z)2

)
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2nd Derivatives

∂Vsoft

∂∆x∂∆x = k

(
1 + 1√

(∆x)2 + (∆y)2 + (∆z)2
− ∆x2

((∆x)2 + (∆y)2 + (∆z)2)3/2

)
∂Vsoft

∂∆x∂∆y = k · −∆x∆y
((∆x)2 + (∆y)2 + (∆z)2)3/2

∂Vsoft

∂∆x∂∆y = k · −∆x∆y
((∆x)2 + (∆y)2 + (∆z)2)3/2

∂2V

∂rx1∂rx2

= k

(
1 + 1√

(x1 − x2)2 + (∆y)2 + (∆z)2
− (x1 − x2)2

((x1 − x2)2 + (∆y)2 + (∆z)2)3/2

)
∂2V

∂rx1∂ry2

= k · −(x1 − x2)(y1 − y2)
((x1 − x2)2 + ((y1 − y2))2 + (∆z)2)3/2

∂2V

∂rx1∂rz2

= k · −(x1 − x2)(z1 − z2)
((x1 − x2)2 + ((∆y))2 + (z1 − z2)2)3/2

∂2V

∂ry1∂rx2

= k · −(x1 − x2)(y1 − y2)
((x1 − x2)2 + ((y1 − y2))2 + (∆z)2)3/2

∂2V

∂ry1∂ry2

= k

(
1 + 1√

(∆x)2 + (y1 − y2)2 + (∆z)2
− (y1 − y2)2

((∆x)2 + (y1 − y2)2 + (∆z)2)3/2

)
∂2V

∂ry1∂rz2

= k · −(y1 − y2)(z1 − z2)
((∆x)2 + ((y1 − y2))2 + (z1 − z2)2)3/2

∂2V

∂rz1∂rx2

= k · −(x1 − x2)(z1 − z2)
((x1 − x2)2 + ((y1 − y2))2 + (z1 − z2)2)3/2

∂2V

∂rz1∂ry2

= k · −(y1 − y2)(z1 − z2)
((∆x)2 + ((y1 − y2))2 + (z1 − z2)2)3/2

∂2V

∂rz1∂rz2

= k

(
1 + 1√

(∆x)2 + (∆y)2 + (z1 − z2)2
− (z1 − z2)2

((∆x)2 + (∆y)2 + (z1 − z2)2)3/2

)

6.7 Calculating large EV problems

Many physical problems can be expressed by an eigenvalue problem. Hence, it
is necessary to find easy tools to solve such problems. In the following, we want
to present tools that have been used to calculate large eigenvalue problems. The
presented algorithms deal with dense symmetric matrices but can also handle sparse
matrices. These algorithms are adopted from the documentation of CUDA and

125



6.8. CHANGE OF THE BONDED POTENTIAL TO AVOID THE COLLAPSE
OF THE GAUSSIAN BOND

Intel®MKL.

EV problems via CUDA GPU architectures can be used very efficient to calcu-
late large eigenvalue problems. Pascal architecture gives rise to a new feature -
cudaMallocManaged. Practically, this allows the GPU to handle more memory,
which is physical available by using memory pages. The hard limit of the problem
size is set by the size of the lwork, which is ≈ 32 000. Due to the Licence of
Nvidia, we only refer to the documentation of the Nvidia Toolkit 1 and suggest to
start with the package CuSolver and the routine: cuSolverDN: Dense LAPACK.

EV problems via Intel®MKL Also, CPU architectures give rise to large eigenvalue
problems. Intel64 has the advantage that lwork can be larger such that the
problem size is not limited any more. The EV solver compiled for Knights landing
architecture is only faster than a Nvidia P100 if the problem size pretends to use
cudaMallocManaged. 2

6.8 Change of the bonded potential to avoid the
collapse of the Gaussian bond

In fact, quenching a system of polymers via steepest descent causes a collapse of
chains. This collapse of Gaussian chains is predictable, because their distance of
segments is proportional to the temperature. In principle, there are two different
ways to preserve the structure of the bonds (i) re-scale the harmonic bond energy
with the inverse temperature (ii) swap from Gaussian bonds to harmonic springs
with an arbitrary origin, which is equal to bσ−1 = 1. Strategy (i) breaks down
in feasibility, because it becomes quite challenging to define a temperature in
quenched state. In consequence, we follow strategy (ii). The potential changes
from V1(r) = k1

2 · r
2 to V2(r) = k2

2 · (r − 1)2. We claim the bonded energy to be
constant under this transformation such that

∫∞
0 P1(r)V1(r) =

∫∞
0 P2(r)V2(r). P1(r)

and P2(r) are assumed to have a fixed second moment σ2. We do this assumption,
because other analytic approaches failed. The harmonic constant k1 is given and
k2 is chosen so that the derivation σ2

1 = σ2
2 = σ2 of both remains unaltered. We

1(http://docs.nvidia.com/cuda/index.html, April 12, 2018).
2(https://software.intel.com/en-us/articles/introduction-to-the-intel-mkl-exten

ded-eigensolver, April 12, 2018).
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solve the integral
∫∞

0 P1(r)V1(r)r2 =
∫∞

0 P2(r)r2V2(r) and reshape the solution as a
function of k1 and k2.

k2 =
2√
2π exp

(
−1
2σ2

)
+ (1+σ2

1)
σ1

(
1 + erf

(
−1√
2σ1

))
2√
2π exp

(
−1
2σ2

2

)
+ σ2

(
1 + erf

(
1√
2σ

)) . (6.1)

We define the constants A = exp
(
−1
2σ2

)
and B = erf

(
−1√
2σ1

)
and claim for a typical

order of σ = 0.1 that A ≈ 0 and B = 1. Hence, under these specific conditions, we
get a relation between harmonic constants k1, k2 and σ.

k2 ≈
(1 + σ2)
σ2 · k1 ≈ 101 · k1. (6.2)

This strategy is however not quite accurate, because reducing the distribution of
bonds to its mean distance µ = 1 (for kBT = 1) and derivation σ is quite tough.
Therefore, we already started the simulation with a modified potential with arbitrary
origin at bσ−1 = 1. We chose the harmonic spring in the order of relation 6.2. As
a side remark, towards the choice of the cut-off distance of the soft non-bonded
potential, which is rcutσ

−1 = 1, forces of bonded interactions are always calculated
independently from cut-off.

6.9 C implementation of the eMC algorithm
For the interested reader, the core function of eMC scheme, cf. fig.3.2, is presented.
This implementation is a strict realisation of the theoretical scheme introduced in
sec. 3.3 and visualised in fig. 3.3.

1 /∗ Extract from s o f t cg md s i m u l a t i o n ∗/
/∗ Implemented by M. Langenberg and M. Muel ler ∗/

3 #i n c l u d e " main . h "
#i n c l u d e " r250 . h "

5 . . .
kappa = calc_kappa ( conf , p a r t i c l e 1 , p a r t i c l e 2 ) ;

7 e1_old = p a r t i c l e 1−>e ; /∗ ol d energy o f p1 ∗/
s1_old = s ( p a r t i c l e 1 ) ; /∗ ol d entropy o f p1 ∗/

9 ds1_old = ds ( p a r t i c l e 1 ) ; /∗ i n v e r s e temperature o f p1 ∗/
dds1_old = dds ( p a r t i c l e 1 ) ; /∗ second d e r i v a t i v e o f entropy f o r s p l i t t i n g T to i n t e r n a l

e n e r g i e s ∗/
11 e2_old = p a r t i c l e 2−>e ; /∗ ol d energy o f p a r t i c l e 2 ∗/

s2_old = s ( p a r t i c l e 2 ) ; /∗ ol d entropy o f p a r t i c l e 2 ∗/
13 ds2_old = ds ( p a r t i c l e 2 ) ; /∗ i n v e r s e temperature o f p2 ∗/

dds2_old = dds ( p a r t i c l e 2 ) ; /∗ second d e r i v a t i v e o f entropy f o r s p l i t t i n g T to i n t e r n a l
e n e r g i e s ∗/

15 m1 = p a r t i c l e 1−>m; /∗ mass o f p1 ∗/
m2 = p a r t i c l e 2−>m; /∗ mass o f p2 ∗/

17 invmcm = 1 . 0 / (m1+m2) ; /∗ i n v e r t e d mass ∗/
mred = invmcm∗ m1∗m2 ; /∗ reduced mass mu∗/

19 i f ( r2>R2MIN) {\ /∗ pretend high i n f i n i t y v a l u e s i f c e n t e r s a re c l o s e to each o t h e r ∗/
norm = 1 . 0 / r2 ;
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21 }
e l s e {

23 norm = 1 . 0 /R2MIN ;
}

25 norm = s q r t ( norm ) ; /∗ c a l c u l a t e n o r m a l i s a t i o n ∗/
f o r ( idim =0, ppara_old =0; idim<conf−>Ndim ; idim++) { /∗ loop over dimensions , decompose momenta∗/

27 dist_omp [ idim ] ∗= norm ;
dp_omp [ idim ] = m2∗invmcm∗ p a r t i c l e 1−>p [ idim ] − m1∗invmcm∗ p a r t i c l e 2−>p [ idim ] ;

29 ppara_old += dp_omp [ idim ] ∗ dist_omp [ idim ] ;
}

31 kqt_old = kappa∗ conf−>h ∗( ds1_old−ds2_old ) ; /∗ thermal r e l a x a t i o n ∗/
sigmaq = 2∗ kappa∗ conf−>h ; /∗ n o r m a l i s a t i o n c o n s t a n t o f thermal n o i s e ∗/

33 dq_old = s q r t ( sigmaq ) ∗ gauss_r250 ( 0 . 0 , 1 . 0 ) ; /∗ draw o ld thermal n o i s e from g a u s s i a n d i s t r .
∗/

T_loc = 2 . 0 / ( ds1_old+ds2_old ) ; /∗ c a l c u l a t e the l o c a l i n t e r n a l temperatur from p1 and
p2 ∗/

35 sigmap_old = mred∗T_loc∗ a2 ; /∗ n o r m a l i s a t i o n c o n s t a n t f o r momenta d i s t r i b u t i o n ∗/
dp_old = s q r t ( sigmap_old ) ∗ gauss_r250 ( 0 . 0 , 1 . 0 ) ; /∗ draw an o ld p a r a l l e l momentum from

g a u s s i a n d i s t r . ∗/
37 ppara_new = a1 ∗ ppara_old + dp_old ; /∗ c a l c u l a t e new p a r r a l e l momentum , weighted by a1 ∗

de_kin = ( ppara_new∗ppara_new−ppara_old ∗ ppara_old ) / ( 2 . 0 ∗ mred ) ; /∗ d i f f e r e n c e i n k i n e t i c
energy ∗/

39 e1_new = e1_old + kqt_old + dq_old −de_kin ∗ dds2_old /( dds1_old+dds2_old ) ; /∗new i n t e r n a l
energy e1 ∗/

e2_new = e2_old − kqt_old − dq_old −de_kin ∗ dds1_old /( dds1_old+dds2_old ) ; /∗new i n t e r n a l
energy e1 ∗/

41 i f ( ( e1_new>0)&&(e2_new>0) ) { /∗ i f the e n e r g i e s ar e l a r g e r 0 ∗/
p a r t i c l e 1−>e = e1_new ; /∗ c a l c u l a t e a l l new v a l u e s ∗/

43 s1_new = s ( p a r t i c l e 1 ) ; /∗ d e s c r i p t i o n compare to i n i t i a l c a l c u l a t i o n s ∗/
ds1_new = ds ( p a r t i c l e 1 ) ;

45 dds1_new = dds ( p a r t i c l e 1 ) ;
p a r t i c l e 1−>e = e1_old ; /∗ r e s t o r e ∗/

47 p a r t i c l e 2−>e = e2_new ;
s2_new = s ( p a r t i c l e 2 ) ;

49 ds2_new = ds ( p a r t i c l e 2 ) ;
dds2_new = dds ( p a r t i c l e 2 ) ;

51 p a r t i c l e 2−>e = e2_old ; /∗ r e s t o r e ∗/
sigmap_new = 2 . 0 ∗ mred /( ds1_new+ds2_new ) ∗ a2 ; /∗ n o r m a l i s a t i o n c o n s t a n t o f p a r a l l e l momentum

d i s t r . /
53 dp_new = ppara_old − a1 ∗ppara_new ; /∗ new p a r a l l e l momentum c a l c u l a t e d from random

ol d one ∗
kqt_new = kappa∗ conf−>h ∗( ds1_new−ds2_new ) ;

55 dq_new = e1_old − e1_new − kqt_new − de_kin ∗dds2_new /( dds1_new+dds2_new ) ;
i f ( kappa==0){ /∗ l e a v e out the thermal n o i s e d i s t r i b u t i o n because exchange depends on p

only ∗/
57 pre = s q r t ( sigmap_old /sigmap_new ) ;

arg = s1_new+s2_new−s1_old−s2_old ;
59 arg += −0.5∗dp_new∗dp_new/sigmap_new + 0 . 5 ∗ dp_old∗dp_old/ sigmap_old ; /∗ ppara_new i s

chosen from old c o n f i g u r a t i o n ∗/
prob = pre ∗ exp ( arg ) ;

61 } e l s e {
pre = s q r t ( sigmap_old /sigmap_new ) ;

63 arg = s1_new+s2_new−s1_old−s2_old ; /∗ e n t r o p i e s s t a t i s t i c a l weight
two p a r t i c l e problem ∗/

arg += −0.5∗(dq_new∗dq_new−dq_old∗dq_old ) / sigmaq ; /∗ n u l l ∗/ /∗ thermal n o i s e
∗/

65 arg += −0.5∗dp_new∗dp_new/sigmap_new + 0 . 5 ∗ dp_old∗dp_old/ sigmap_old ; /∗
p a r a l l e l momenta∗/

prob = pre ∗ exp ( arg ) ;
67 }

i f ( ( prob >1) | | ( double_r250 ( )<prob ) ) { /∗ V e r i f y new proposed MC s t e p with prob ∗/
69 nacc_omp ++; /∗ Counts f o r s u c c e s s f u l a c c e p t a n t c e ∗/

p a r t i c l e 1−>e = e1_new ;
71 p a r t i c l e 2−>e = e2_new ;

f a c = ppara_new−ppara_old ;
73 f o r ( idim =0; idim<conf−>Ndim ; idim++) {

p a r t i c l e 1−>p [ idim ] += f a c ∗dist_omp [ idim ] ;
75 p a r t i c l e 2−>p [ idim ] −= f a c ∗dist_omp [ idim ] ;

}
77 }

}/∗ e1_new > 0 && e2_new > 0 ∗/
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6.10 Nomenclature and list of abbreviations

Latin character
Variable meaning unit

c speed of sound σ/τmd

D(ω) density of states 1

E energy ε

f Boltzmann eq. probability distribution
function

1

F free energy kBT

FC conservative force mστ−2
md

FD dissipative force mστ−2
md

FR random force mστ−2
md

Hb Hamiltonian bonded potentials kBT

Hnb Hamiltonian non-bonded+ potentials kBT

JQ energy flux ε/σ2

kB Boltzmann constant 1.380 · 10−23 [J]/[K]
K wavevector σ−1

m mass 1

N number of segments 1

N̄ invariant degree of polymerisation 1

~p momentum mσ/τmd

P probability distribution 1

δq thermal noise in eMC ε

Rinterface thermal resistance at interface 1

s(e) internal entropy kB

S entropy kB

T temperature T

δT kinetic energy that is distributed ε

rnecurrent energy transported per area Ain time
τmdσ

2

kBT
τmdA
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E energy kBT

~U averaged velocity in BE σ/τmd

vij soft interaction parameter kBTσ
2

v velocity σ/τmd

Zmic microcanonical partition function 1

Table 6.1 List of Latin characters

Greek character
Variable meaning unit

α re-equilibration constant of Peter’s
thermostat

1

αi transmission probability transmission
of phonons

1

β 1/kBT 1/ε
Γ friction of Lowe-Andersen thermostat mσ−1τ−1

md

ε energy scale ε

κ isothermal compressibility τ 2
mdσ/m

κint thermal conductivity for eMC move εkB

κT inverse isothermal compressibility at
fixed temperature

(τ 2
mdσ/m)−1

µ reduced mass m

ξr Gaussian distributed friction mσ−1τ−1
md

λ macroscopic thermal conductivity εkB

θT Einstein temperature T

σ length scale of the box σ

ρ density m/σ3

Φ particle based density m/σ3

χ Flory interaction parameter ε

ωD weighting function in DPD 1

ωD Debye cut-off frequency 1/τmd
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ωR weighting function in DPD (soft
force)

1

ω frequencies 1/τmd

ωE Einstein frequency 1/τmd

Ω microcanonical ensemble 1

Table 6.2 List of Greek characters

List of abbreviations
Abbreviation meaning

AFM Atomic force microscopy
AMM acoustic mismatch model
BE Boltzmann equation
CG coarse-grained
CUDA® Compute Unified Device Architectur, by

Nvidia Corporation
DE differential equation
DMM diffusive mismatch model
DSA directed self-assembly
DPD dissipative particle dynamics
DoS density of states
DoF degrees of freedom
eDPD energy conserving dissipative particle dy-

namics
eMC energy Monte-Carlo
Intel®MKL Intel ® Math Kernel Library
MD molecular dynamics
LAPACK Linear Algebra Package
LED light-emitting diode
PMMA Polymethylmethacrylate
PS Polyethylene
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RNEMD reverse non-equilibrium molecular dy-
namic

SCMF single chain in mean field
SCFT self-consistent field theory
SCD stochastic differential equation
SOMA soft coarse-grained Monte-Carlo accelera-

tion
SThM scanning thermal microscopy
TDE thermal diffusion equation
TRM thermal reflection method
VAC velocity autocorrelation function

Table 6.3 List of abbreviations
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