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Abstract 

Sufficient reservoir permeability is essential to exploit heat resources for geothermal energy. Reliable 

prediction of permeability and in consequence flow rate in a deep geothermal reservoir is difficult to 

predict because subsurface data are rare. Since fracture density often increases around fault zones, 

fault-related reservoirs have become prime targets for exploration. However, this is not without risk, 

because fault-related permeability can vary greatly on the small scale. 

My cumulative thesis is part of the AuGE Project (Aufschlussanalogstudien und ihre Anwendbarkeit 

in der Geothermischen Exploration), which aims to establish outcrop studies as an important part of 

geothermal exploration. My thesis is concerned with the predictability of geological parameters of 

fault zones based on outcrop studies within the Upper Rhine Graben (URG), an area that, due to its 

elevated geothermal gradient, is promising for geothermal energy. Additionally, I investigated the in-

fluence and interaction of the most relevant parameters for geothermal reservoir quality in a numeri-

cal sensitivity study. 

I carried out fieldwork in faulted and unfaulted outcrops of Muschelkalk and Buntsandstein rocks. 

The results of these outcrop studies show that fault zones have the potential to increase flow rate by 

many orders of magnitude. My co-workers and I found that a relationship exists between the perme-

ability of the fault zones and lithological parameters, but also that fault permeability is heterogeneous 

even within the same lithology. Quantification of these observations was, however, not possible. 

To test transferability of the data collected at the surface to depth, these results were compared with 

data from a nearby well. The study shows that certain petrological properties are comparable, but key 

parameters, such as petrophysical properties and fracture-system parameter, are not. The latter are 

responsible for the fluid flow rate and therefore extrapolation of outcrop data to depth would lead to 

misjudgement of the reservoir characteristics. 

Subsequently, I modelled the fluid and heat transport in a reservoir with a geothermal doublet with 

the aim to understand the influence of various structural parameters. I found that high permeabilities, 

permeability contrasts and anisotropies, caused by bedding and fractures, have a large potential to 

reduce the exploitable reservoir volume and thus the reservoir’s quality. Accordingly, faults with highly 

conductive damage zones are likely to provide only small utilisable volumes and are thus, in many 

cases, less suitable as geothermal reservoir. My sensitivity study also shows the role of the hydraulic 

gradient and how its importance depends on permeability and reservoir configuration. 

My dissertation helps to better estimate reservoir quality. I showed that structurally complex reser-

voirs are not only difficult to explore, but also potentially less yielding than homogenous reservoirs. In 

addition, increasing heterogeneity hinders the identification of outcrops as suitable analogues prior 

drilling. My sensitivity study constitutes a step forward in better understanding and classifying the pa-

rameters that control reservoir quality.  

My findings show that only a combination of outcrop and well data, together with geophysical explo-

ration and tracer tests, and detailed knowledge of the impact of different parameters can allow a reli-

able estimation of the reservoir’s lifetime. 
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Kurzfassung 

Um vorhandene geothermische Ressourcen profitabel nutzen zu können, sind ausreichende Reser-

voirpermeabilitäten unerlässlich. Die Abschätzung von Permeabilitäten, und folglich möglichen Fließ-

raten, in tiefengeothermischen Reservoiren ist aber durch eine geringe Informationsdichte im Unter-

grund generell schwierig. Störungsgebundene Reservoire versprechen ein erhöhtes Potenzial, da sie 

oft eine erhöhte Bruchdichte und damit eine erhöhte strukturelle Permeabilität aufweisen. Problema-

tisch ist allerdings, dass die Permeabilitäten von Störungen auf kleinstem Raum stark variieren können. 

Meine kumulative Dissertation, als Teil des Projektes AuGE (Aufschlussanalogstudien und ihre An-

wendbarkeit in der Geothermischen Exploration), hatte zum Ziel, Aufschlussanalogstudien besser in 

das geothermische Explorationskonzept zu integrieren. Dazu haben wir die Vorhersagbarkeit von Ge-

steins- und Bruchsystemparametern um Störungszonen im Oberrheingraben (URG), einem potenziel-

len Gebiet für die hydrogeothermische Stromerzeugung in Deutschland, untersucht. Zusätzlich habe 

ich den Einfluss und die Wechselwirkung relevanter geologischer Parameter auf die Reservoirqualität 

in einer numerischen Sensitivitätsstudie untersucht.  

Die Geländearbeiten haben wir an gestörten und ungestörten Aufschlüssen im Muschelkalk und 

Buntsandstein durchgeführt. Die Ergebnisse unserer Aufschlussstudien stützen das Potenzial von Stö-

rungszonen, die Permeabilität um mehrere Größenordnungen zu erhöhen. Weiterhin fanden wir einen 

Zusammenhang zwischen der Permeabilitätsstruktur von Störungszonen und lithologischen Parame-

tern. Es wurde jedoch auch deutlich, dass störungsgebundene Permeabilitäten innerhalb vergleichba-

rer Lithologien stark schwanken. Eine Quantifizierung dieser Beobachtung war aber nicht möglich.  

Um die Übertragbarkeit der an der Oberfläche gewonnenen Daten in den Untergrund zu überprüfen, 

haben wir diese mit Messungen aus einer im Arbeitsgebiet befindlichen Tiefbohrung verglichen. Die 

Ergebnisse zeigen, dass im Aufschluss bestimmte petrologische Eigenschaften mit ausreichender Ge-

nauigkeit auf das Reservoir übertragen werden konnten, die im Aufschluss beobachteten petrophysi-

kalischen Eigenschaften wie Porosität und Permeabilität jedoch nicht. Auch die Bruchsystemparame-

ter, welche hauptverantwortlich für die Fließraten sind, unterscheiden sich signifikant. Eine simple Ext-

rapolation der Aufschlussdaten hätte somit zu einer Fehleinschätzung der Reservoirqualität geführt. 

Die anschließende numerische Sensitivitätsstudie habe ich am Beispiel einer geothermischen Dub-

lette durchgeführt. Die Ergebnisse zeigen ab welchen Werten Permeabilitätskontraste und -anisotro-

pien, hervorgerufen durch Schichtung und Brüche, das nutzbare Reservoirvolumen negativ beeinflus-

sen. Meine Studie beschreibt auch den zunehmenden Einfluss des hydraulischen Gradienten auf die 

Reservoirqualität bei steigenden Permeabilitäten. Hochpermeable Störungszonen sind meinen Model-

lierungen zu Folge aufgrund verringerter Reservoirvolumen als geothermisches Reservoir oftmals we-

nig geeignet.  

Meine Dissertation hilft, die Qualität von geothermischen Reservoiren besser einzuschätzen und ver-

deutlicht, dass heterogene Reservoire nicht nur schwieriger zu explorieren, sondern potentiell auch 

weniger ergiebig sind als homogene Reservoire. Zunehmende Heterogenität erschwert es auch, geeig-

nete Aufschlüsse vor dem Abteufen einer Bohrung als geeignetes Analog zu identifizieren. Meine Sen-

sitivätsstudie ist ein Schritt, um Reservoirgüte bestimmende Parameter in ihrer Bedeutung besser ein-

zuordnen.  

Die gewonnenen Erkenntnisse zeigen, dass nur die Kombination von Aufschlussdaten mit vorhande-

nen und zukünftigen Observationsbohrungen, geophysikalischen Daten und Tracerversuchen sowie 

dem Wissen über den genauen Einfluss der verschiedenen Parameter eine sinnvolle Abschätzung der 

Eignung und Nutzungsdauer eines Reservoirs für die geothermische Nutzung ermöglicht. 
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List of symbols and abbreviations 

Symbol Unit Description 

� mm2 cross-sectional area 

� mm fracture aperture 

�� J kg-1 K-1 heat capacity 

� mm specimen diameter 

��  unit vector 

��	 m mean grain size 


 GPa Young’s Modulus 

� - Strain 


� GPa dynamic Young’s Modulus  


�,  ��� GPa effective Young’s modulus 


� GPa Young’s Modulus of intact rock 


� GPa static Young’s Modulus  

� kg m s-² Force 

� m-1 fracture density 

�, � mm grain size 

� m s-2 acceleration due to gravity 

� m reservoir height 

� %, fraction fracture porosity 

� Wm-1K-1 thermal conductivity 

� m2 Permeability 

�� m² fracture permeability 

�� m s-1 hydraulic conductivity of fractures 

�� m² matrix permeability 

�� MPa m-1 fracture normal stiffness 

� m, mm profile length, specimen length 

� kg m-1 s-1 dynamic viscosity 

�� mm m-1 pressure gradient 

� m3 s-1, Wm-3 production rate, heat source or sink 

� m s-1 fluid velocity 

  %, phi, fraction Porosity 

! - rebound hardness 

!", #" - synthetic shear fractures 

$� kg m-3 bulk density 

$� kg m-3 fluid density 

$%&� kg m-3 log based bulk density 

$� kg m-3 matrix density 

∆� m pressure reduction 

() m average inverse discontinuity spacing 

S - grain size sorting 

* MPa Stress 

*� MPa normal stress 

+ m2 s-1, °C transmissivity or temperature 

+	 MPa indirect tensile strength 

∆,� sec m-1 sonic travel time in a fluid 

∆,%&� sec m-1 sonic travel time through the reservoir 

∆,�-,.�/ sec m-1 sonic travel time through the matrix 

0�( MPa uniaxial compressive strength 

1� m s-1 compressional-wave velocity 

1� m s-1 shear-wave velocity 
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Abbreviation Description 

AuGE 
Aufschlussanalogstudien und ihre Anwendbarkeit in der 

Geothermischen Exploration 

BFH Northern Black Forest High 

BG Bresse Graben 

BL Badenweiler-Lenzkirch Fault 

BT Burgundy Trough 

CFC central fault core 

CL outcrop Cleebourg 

DFC distal fault core 

DFN discrete fracture network 

DSI Dipole Sonic Imager log 

DZ damage zone 

EG Eger Graben 

FC fault core 

FMI Formation Micro Imager log 

FSH Fenno-Scandia High 

FZ fault zone 

GR gamma ray log 

GT1 geothermal well Brühl 

HB outcrop Hanbuch 

HG Hessian grabens, hydraulic gradient 

HIT hundred-degree isothermal 

Ho-H Hochwald-Horst 

HR host rock 

IL outcrop Illingen 

IQR interquartile range 

IT outcrop Ittlingen 

KF outcrop Kammerforster 

KN outcrop Knittlingen 

KT Kraichgau Trough 

LB Baden-Baden-Lalaye-Lubine- Fault 

LDS Litho Density Sonde log 

LG Limagne Graben 

LRG Lower Rhine Graben 

LS outcrop Leistadt 

mm Middle Muschelkalk 

MNH Mid North Sea High 

mo Upper Muschelkalk 

mu Lower Muschelkalk 

MZ mixed zone 

n sample quantity 

NL outcrop Nussloch 

OH Odenwald-Spessart High 

OT Offenburg Trough 

PPC Powered Positioning Caliper 

QFL quartz, feldspar, lithoclast 

REV representative elementary volume 

RFH Ringkobing-Fyn High 

RS outcrop Riesenstein 

SGH Main Southern German High 

SHB South Hunsrück-Taunus border Fault 

SL low-angle cross-bedded sandstones 

SNB Saar-Nahe Basin 

SP slip surface 

SPI secondary porosity index 

ST Schramberg Trough 

ST trough cross-bedded sandstones 

URG Upper Rhine Graben 

URH Main Upper Rhine High 

VG Vistrenque Graben 

ZB Zaberner Basin 
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 Introduction 

 Renewable Energy 

The need to mitigate global climate change, to conserve finite fossil fuels, to secure the long-term 

energy supply, and to achieve nuclear phase-out in Germany by 2022, requires increasing exploitation 

of renewable energy resources (URL1: EEG 2014). The amount of renewable electricity generation in 

Germany has constantly risen and more than quadrupled from 7% in 2000 to 31% in 2015, when the 

“Renewable Energy Law” came into force. In 2011, the share of renewable energies on the gross elec-

tricity generation exceeded that of nuclear power, although fossil fuels are still the dominant energy 

source (Fig. 1.1). To achieve the target of the “Renewable Energy Law”, i.e. to increase the share of 

renewable energies in the German energy mix to 40 – 45% in 2025 and to 80% until 2050, further 

expansion is mandatory (Fig. 1.1; URL2: U.S. Energy Information Administration, EIA).  

 

Figure 1.1: The German electricity generation from 1990 to 2014 by energy sources. a) The gross electricity production and b) 

detailed view on renewable energy sources (values from URL2: U.S. Energy Information Administration, EIA). 

The largest share of the produced renewable electricity in 2014 is distributed between wind-, bio- 

(biomass, waste), and solar-energy. While bio- and wind-power have increasingly grown in the last 

years, geothermal power generation still exists in a kind of niche (Fig. 1.1b). However, geothermal 

electricity generation has a high potential in Germany (Paschen et al., 2003) and, like water power, it 

has the advantage of continuous availability, which enables it to contribute to the base load supply. 

Since the generation of water power is restricted by the available storage space, further development 

of geothermal electricity generation is desirable.  

Besides electricity generation, geothermal energy can be used for heating and cooling, which is al-

ready carried out in 333.000 operating systems in Germany (URL3: Bundesverband Geothermie). The 

proportion of thermal power on the total renewable heat supply, at 7%, is clearly higher compared to 

its portion of the electricity sector (BDEW, 2016, Fig. 1b).  

 Geothermal Energy 

The energy used by geothermal systems originates from radioactive decay processes of U, Th, and K 

isotopes in the Earth’s crust (about 70%), and from compressional heating (about 30%). The mean ge-

othermal gradient worldwide lies at about 25 – 30°C km-1, but varies considerably (Stober and Bucher, 

2012). Thus, geothermal energy is especially used in volcanically-active regions, such as Iceland, Italy, 

Indonesia, Philippines, and the United States (URL4: Thinkgeoenergy). In regions like Iceland, the geo-

thermal gradient reaches values up to 200°C km-1 (Flóvenz and Saemundsson, 1993). By contrast, in 

Germany the mean geothermal gradient is about 35°C km-1, with highest mean values being reported 

for the Upper Rhine Graben at 45 – 50°C km-1 (Fig. 1.2a; Sauer et al., 1982). Thus, deep geothermal 

reservoirs in Germany, that allow the production of electricity economically, can be found commonly 

at depths deeper than 3 km, if a minimum temperature of 100°C for such purposes is assumed. 
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Geothermal systems can be subdivided in “shallow” and “deep”. Shallow geothermal systems are 

cost efficient, and have very limited exploration risk; but they are, in most cases, only capable of heat-

ing smaller facilities. In contrast, deep geothermal systems, commonly defined as systems below 400 m 

(Stober and Bucher, 2012), can be used to generate electrical power additionally to thermal energy. 

The utilization of deep geothermal systems has a higher risk due to the uncertainties in meeting the 

conditions needed in the target reservoir, the presently low degree of efficiency in generating electrical 

power, and the high drilling costs.  

 

Figure 1.2: a) Map showing the temperature gradient in Germany (URL5: LIAG) and all deep geothermal projects. b) Presen-

tation of the 10 power plants in Germany, colour coded by the reservoir formation, that produces or did produced electricity, 

including the technical parameters flow rate, temperature, and depth. Power plants encircled in blue, red, and green are 

located in the Molasse Basin, the Upper Rhine Graben, and the North German Basin, respectively. 

With the current state of the art, geothermal electricity can be produced with binary methods at 

temperatures of at least 100°C. These methods, Organic Ranking Cycles (ORC) or Kalina systems, use 

organic or ammonia solutions as carrier fluid with low evaporating temperature to drive turbines at 

lower temperatures (e.g., DiPippo, 2005; Schulz et al., 2009; Schulz, 2011). The required flow rate for 

power generation is 14 to 28 l s-1 (e.g., Paschen et al., 2003; Schulz et al., 2009). To achieve such flow 

rates, a minimum permeability of 10-13 m2 is needed (Jung et al., 2002; Stober et al., 2011). Insufficient 

permeabilities can be enhanced using stimulation methods, but these are linked to the problem of 

inducing seismic events (e.g., Häring et al., 2008; Baisch et al., 2009; Cladouhos et al., 2010). The 

strongest seismic event (magnitude of 2.7) was observed in Landau and lead to a growing public re-

sistance to such projects (Plenefisch et al., 2015). 

In general, two types of deep geothermal reservoirs are utilized. First, hydrogeothermal reservoirs, 

which are characterised by naturally high transmissivities and fluids that act as a heat carrier (aquifer). 

The second type is the petrothermal reservoir. In this case the reservoir is dry and is utilized by the 

injection of external fluids (e.g., DiPippo, 2005; Huenges, 2010; Stober and Bucher, 2012). 

In Germany there are three regions with a known hydrogeothermal potential: The Upper Rhine Gra-

ben, the Molasse Basin, and the North German Basin (Fig. 1.2a; Stober et al., 2011; URL6: GeotIS). The 

Molasse Basin benefits from highly permeable karst aquifers (Malm), whereas the high geothermal 
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gradient in the Upper Rhine Graben, and to a minor extent in the North German Basin, has the ad-

vantage of shallower-located geothermal reservoirs (Fig. 1.2; Jung et al., 2002; Paschen et al., 2003). 

Due to the rigorous demands on temperature and flow rate of the reservoir formation (e.g., Huenges 

et al., 1999; Paschen et al., 2003; Schulz et al., 2009), there are only nine successful deep geothermal 

projects that currently produce electrical power in Germany (URL6: GeotIS). Three others are under 

construction in the Molasse Basin (Kirchweidach, Oberhaching, Holzkirchen, URL6: GeotIS). Most of 

the successful power plants are located near Munich in the Molasse Basin that utilize karst aquifers in 

the Malm. In the Upper Rhine Graben, only 3 power plants were established. By contrast, the five failed 

projects in this region demonstrate the risk in establishing such systems (Fig. 1.2a). The reasons the 

geothermal projects failed were insufficient permeability or absence of thermal water, as, for instance, 

in Trebur (URL7: Trebur), Offenbach (URL6: GeotIS), Speyer (URL8: iTG), Bad Urach (URL8: iTG), Mau-

erstetten (URL8: iTG), and Geretsried (URL8: iTG), or too high fluid salinity, as in the Genesys project 

(URL8: iTG), or technical problems, as in Bellheim (URL6: GeotIS). Despite promising reservoir condi-

tions, the geothermal project Brühl failed due to the insolvency of the planners (GeoEnergy GmbH), 

increasingly public and political resistance, and because no new investors could be found (URL8: iTG). 

Additionally, the power plant Neustadt-Glewe in the North German Basin stopped electrical power 

generation after 5 years in 2007, when the production temperature became too low. However, this 

project still produces thermal energy (URL6: GeotIS). 

 Fault-related geothermal reservoirs 

Faults often comprise two major architectural elements: the core zone and the damage zone. The 

latter often possesses an increased fracture density (e.g., Caine et al., 1996; Faulkner et al., 2010; Bense 

et al., 2013), which in turn may provide enhanced permeability. Faults are expected to have a high 

geothermal potential for three reasons. Firstly, brittle fault zones may constitute volumes with an in-

creased chance of a naturally high permeability. Secondly, because of fluid circulation from greater 

depth, they may form small-scaled positive temperature anomalies. Lastly, along steep-dipping faults 

the exploitation depth can be readjusted within a certain range. That enables the producer to react on 

temperature deviations; a benefit compared to hydrogeothermal systems (Paschen et al., 2003; Jung, 

2007).  

However, the characteristics of a fault core and damage zones can largely vary, even on small scale 

(e.g., Knipe, 1993; Caine et al., 1996; Wibberley et al., 2008). This leads to large uncertainties in pre-

dicting and understanding fluid-flow behaviour at one specific location on one particular fault (Paschen 

et al., 2003; Jung, 2007). 

 Analogue studies 

To date, geothermal exploration strategy comprises the evaluation of available data from seismic 

surveys, previous boreholes, and geological maps. Since none of these methods provides local infor-

mation about the achievable fluid flow in the subsurface, there is a high risk of making the wrong 

decisions with regard to the selection of drilling targets.  

Analogue studies have been utilised to improve the understanding of subsurface reservoir structure 

in the oil industry since 1960 (Budding and Inglin, 1981; Keogh et al., 2007). Since then it has become 

common practice to supplement sparse subsurface datasets with data derived from the surface (How-

ell et al., 2014). The most common analogue is the outcrop. Outcrops are used with the aim to obtain 

a more accurate impression of the sedimentological and stratigraphic features of the sub-surface, and 

thus to the petrophysical properties and subsequent information about the possible hydrocarbon flow 



1.5 Aims 

4 
 

(Howell et al., 2014). Further aspects have focused on the dimensions and distributions of faults and 

fractures to analyse the quality of oil traps (England and Townsend, 1998; Manzocchi et al., 2008). 

However, the need to prospect site-specific high permeability is significantly higher for geothermal 

reservoirs than for the oil industry and thus the requirements on analogue studies are different. One 

fundamental problem of analogue studies is that they represent point information and the challenge 

is to interpret heterogeneous inter-well reservoir properties, or to extrapolate surface data, and cor-

relation concepts to the subsurface. Wells provide high-resolution vertical datasets, but allow only 

sparse lateral sampling. Seismic profiles cover a large lateral area, but lack a high resolution to image 

structural features, such as fractures that control the fluid flow (Bense et al., 2013; Howell et al., 2014). 

Outcrop studies, in contrast, facilitate the possibility to map fault architecture, attributes, such as ap-

erture and orientation of fractures and rock matrix permeabilities in detail. However, the vertical di-

mension is often restricted and it is impossible to measure the hydrogeological impact of the studied 

fault directly (Bense et al., 2013). Most problematic, however, is the distance between the outcrops 

and the envisaged reservoir.  

 Aims 

This thesis is a part of the multidisciplinary research project “Outcrop Analogue Studies in Geothermal 

Exploration” (AuGE), funded by the German Federal Ministry for Economic Affairs and Energy (refer-

ence number: 0325302D), aimed to develop improved exploration strategies to enhance the success 

of deep geothermal energy projects. This project finished in 2015. 

The first aim of my thesis is to analyse the applicability of outcrop analogue studies to determine the 

quality of fault-related geothermal reservoirs, prior to drilling activity.  

The second aim is to rank the geological parameters that control geothermal reservoir quality in 

terms of their importance and to estimate the accuracy with which they must be determined. I then 

show how these parameters affect the temporal behaviour of a geothermal energy reservoir.  

This thesis attempts to fulfil these aims using three different methods (Fig. 1.3): 
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Figure 1.3: Basic concept and specific questions examined in this thesis. 

The first part includes detailed field studies to investigate the suitability of fault zones as potential 

geothermal reservoirs in sand- and limestones. The aim is to obtain an impression of the main struc-

tural characteristics of fault zones and associated fracture systems, and variations in rock properties, 

for instance, estimates of the permeability anisotropy of different fault zones.  

The second part compares outcrop analysis, i.e. fracture-system parameter, petrophysical and petro-

graphical rock properties, with geophysical well-log measurements and drill cuttings. The aim is to 

analyse the transferability of outcrop measurements to the sub-surface and to identify to which extent 

surface-related studies can be used to increase the predictability of sub-surface characteristics.  

In the third part, a numerical 4D-sensitivity study is presented that analyses the effect of different 

rock properties and natural flow field conditions on the thermal development of a geothermal reser-

voir. The objective is to demonstrate how the observed range of rock- and fracture-system parameters 

affects the fluid circulation within hydrogeothermal doublets over time. The aim is to assess the most 

important parameters and their extent to ensure geothermal energy production.  

 Thesis outline 

This thesis is composed of the following chapters: 

1. Introduction 

2. Study area and geological setting 

3. Methods 

4. Publication (I): Bauer, J.F., Meier, S., Philipp, S.L., 2015: Architecture, fracture system, mechanical 

properties, and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine 

Graben. Tectonophysics 647-648, 132-145. 

5. Publication (II): Meier, S., Bauer, J.F., Philipp, S.L., 2015: Fault zone characteristics, fracture sys-

tems and permeability implications of Middle Triassic Muschelkalk in Southwest Germany. Journal 

of Structural Geology 70, 170-189. 

Publications (I) and (II) address the first part of my thesis and present outcrop studies that inves-

tigate the structure of fault zones hosted in successions of (I) clastic- and (II) carbonate rocks.  
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In publication (I) we present the structural and mechanical properties of a fault zone. The ana-

lysed fault is highly heterogeneous, i.e. fault zone structure and associated fracture-system pa-

rameter change over the different fault zone parts as well as between different layers. We show 

that this fault would allow fluid flow across the fault core, and that the possibility of a hydraulically 

active fracture system is enhanced within the fault. We concluded that faults in porous sand-

stones are potential targets for geothermal reservoirs.  

Publication (II) deals with structural differences and past fluid flow between variably-oriented 

normal, reverse, and oblique-slip faults with displacements of 1 to 40 m. Normal faults especially 

seem to enhance the fracture-induced permeability in directions parallel to the fault and regional 

structures of the URG in N-S and NW-SE, and NE-SW-direction.  

6. Publication (III): Bauer, J.F., Krumbholz, M. Meier, S., Tanner, D.C., 2017: Predictability of proper-

ties of a fractured geothermal reservoir: the opportunities and limitations of an outcrop analogue 

study. Geothermal Energy 5 (1), 24. http://dx.doi.org/10.1186/s40517-017-0081-0. 

The focus of the manuscript is to evaluate the applicability of outcrop studies to improve predic-

tions on fault-related reservoirs in the tectonically-complex Upper Rhine Graben. It represents 

the second part of my thesis. Our results show that, in this case, the comparability of data from 

surface investigations and well data is not given. In addition, observed surface trends for e.g. rock 

porosity or cementation could not be extrapolated to depth.  

7. Numerical sensitivity study of parameters that control the quality of geothermal reservoirs 

In this chapter, I present a sensitivity study based on numerical models, which analyse the effect 

of different parameters and variations of parameters on the thermal development of a geothermal 

reservoir. Our results show that small variations in the hydraulic gradient configuration, permea-

bility of different layers, fracture induced permeability anisotropy, and fault zones have significant 

effects on the utilized volume of the reservoir. Most importantly our models show that fault-re-

lated reservoirs are, in many configurations, very short lived. 

8. Discussion 

9. Conclusion and perspective
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 Study area and geological setting 

 Study area 

The study area is located in the Upper Rhine Graben (URG; Fig. 2.1). Selected Buntsandstein outcrops 

on the western graben shoulder are in the highlands of the Haardt (outer eastern edge of the Palati-

nate Forest) and the Wasgau (outer southern edge of the Palatinate Forest). Outcrops at the eastern 

graben shoulder are in the Kraichgau-Basin and in the highlands of the Odenwald. The studied 

lithostratigraphy, deposited within the Germanic Basin, comprises Lower to Middle Buntsandstein 

(Lower Triassic) and limestones of the complete Muschelkalk group (Middle Triassic). Well data, used 

in this study, is from the geothermal site (Brühl), in vicinity of the eastern graben shoulder. The loca-

tions and lithologies of the outcrops and the well are shown in Figure 2.1.  

 

Figure 2.1: Localities and lithologies of the studied outcrops (LS – Leistadt, HB – Hanbuch, Cl – Cleebourg, RS – Riesenstein, 

KF – Kammerforster, NL – Nussloch, IT – Ittlingen, KN – Knittlingen, IL – Illingen) and borehole GT1-Brühl (Map basis: NASA-

ASTER-USGS Elevation Model). The extension of the study area and the extension of the URG is marked on the schematic 

map of Germany. 

 Geological setting 

 Prerift-setting 

The most important pre-rift structures of the Upper Rhine Graben were established during the Var-

iscan Orogeny in the Palaeozoic (Devonian until Carboniferous), and consist of NE- to ENE-striking crus-

tal discontinuities. These faults subdivide the different units of the Variscan Internides and form the 

boundaries of Permo-Carboniferous troughs and highs (Fig. 2.2). A further significant structural trend 

was formed during widespread basin formation and volcanic activity in the Carboniferous to early Per-

mian; and consists of an NNE-SSW-trending system of sinistral-shear faults that are associated with 

the intrusive bodies of the Vosges, Black Forest, and Odenwald (e.g., Ziegler, 1990; Schumacher, 2002; 

Schwarz and Henk, 2005; Ziegler et al., 2006).  
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After the Variscan Orogeny ended, the formation of the Germanic Basin at the Permian-Triassic 

boundary started with the onset of the breakup of the 

Pangea supercontinent and the related widening of the 

Tethys Ocean (Ziegler, 1990; Scheck-Wenderoth et al., 

2008). The intracratonic Germanic Basin, also called the 

Central European Basin, extends from the North Sea in 

the north to Switzerland in the south and from Poland 

in the east to England in the west. It persisted until the 

end of the Jurassic (Ziegler, 1990). The Germanic Basin 

was surrounded by several Variscan massifs, which pro-

vided the source of the clastic sediments (Ziegler, 1990; 

Feist-Burkhardt et al., 2008). The interaction between 

sea-level rise, sediment supply, and subsidence caused 

the formation of different facies types of the Triassic 

stratigraphy (Bachmann et al., 1999; Feist-Burkhardt et 

al., 2008; compare Section 2.3 and Fig. 2.5).  

The Mesozoic sediments rest unconformably on the 

Permo-Carboniferous series (Schumacher, 2002; 

Szurlies, 2007; Feist-Burkhardt et al., 2008). In the URG 

area only Triassic to late Jurassic sediments (Kim-

meridgian) were deposited. It is unsure whether Creta-

ceous sediments were eroded or not deposited at all in 

the URG (e.g., Ziegler, 1990; Schumacher, 2002; 

Reicherter et al., 2008). This hiatus is attributed to Late 

Cretaceous until late Palaeogene inversion tectonics 

with NNE-SSW-directed compression, caused by rifting 

in the south Atlantic and the Pyrenean Orogeny (Kley 

and Voigt, 2008). Far-field stresses of the continental 

collision e.g., led to southward tilting of Mesozoic rocks 

within the URG area and to the uplift of the Harz Moun-

tains, the Rhenish Slate Mountains, and the Ore Moun-

tains (e.g., Illies, 1975; Littke et al., 2005; Reicherter et 

al., 2008). During the late Eocene, the compressional 

stress field and the reactivation of Palaeozoic fault sys-

tems led to the formation of the URG (Schumacher, 

2002; Dèzes et al., 2004; Schwarz and Henk, 2005). 

 Synrift-setting 

The URG evolved in two major phases, characterized by complex interaction of extensional and strike-

slip movements, due to major stress field changes (e.g., Illies, 1972; Schumacher, 2002; Ziegler et al., 

2006). During the first phase, until the late Eocene, the NNE-SSW-directed compression, led to the 

reactivation of the Variscan and Permo-Carboniferous ENE-WSW- and NNE-SSW-striking fault systems 

into a transtensional strike-slip system. Under these conditions the individual Palaeozoic troughs coa-

lesced and formed the initial structure of the URG (e.g., Schumacher, 2002; Schwarz and Henk, 2005). 

During the late Eocene to late Oligocene, the compressional period was followed by NW-SE- to WNW-

ESE-extension that initiated the rifting of the URG (Fig. 2.3a; Larroque and Laurent, 1988; Schumacher, 

Figure 2.2: Pre-rift setting of the URG area with Var-

iscan fault traces (SHB: South Hunsrück-Taunus border 

Fault; LB: Baden-Baden-Lalaye-Lubine Fault; BL: Ba-

denweiler-Lenzkirch Fault) and Permo-Carboniferous 

troughs and highs (SNB: Saar-Nahe Basin; OH: Oden-

wald-Spessart High; KT: Kraichgau Trough; BFH: North-

ern Black Forest High; OT: Offenburg Trough; URH: 

Main Upper Rhine High; ST: Schramberg Trough; BT: 

Burgundy Trough; SGH: Main Southern German High). 

The later URG main fault traces are indicated in grey 

(after Schumacher, 2002). 
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2002; Schwarz and Henk, 2005). The main rifting phase ended in Early Oligocene, but continued to a 

minor extent in the northern URG (e.g., Illies and Greiner, 1979; Ziegler, 1992; Schwarz and Henk, 2005; 

Ziegler and Dèzes, 2006).  

The second phase began in the 

Early Miocene and is character-

ized by the reorientation of the 

stress field from NW-SE to NE-

SW extension (Fig. 2.3b). Under 

these conditions the major gra-

ben-forming faults were ef-

fected by sinistral and dextral 

oblique displacements, local in-

version, and normal displace-

ments (Illies and Greiner, 1979; 

Schumacher, 2002). 

The recent stress field of the 

URG is relatively uniform distrib-

uted in the URG with NW-SE- to 

NNW-SSE-oriented maximum 

horizontal stress (Heidbach et 

al., 2008; Meixner et al., 2016). In the southern part of the URG the maximum horizontal stress com-

ponent is, with a direction of 145° to 160°, more variable than in the northern part with 130° to 135° 

(Delouis et al., 1993; Plenefisch and Bonjer, 1997; Heidbach et al., 2008). Recent stress- and faulting 

regimes vary from north to south in the URG: In the southern segment a strike-slip regime (78 9 7:) 

and in the northern part a combination of strike-slip and extension dominates (7;~7:; 78 9 7:; 

Larroque et al., 1987; Becker and Paladini, 1990; Plenefisch and Bonjer, 1997).  

 Graben structure and Moho topography 

The Upper Rhine Graben has a north-south extension of about 300 km and is limited to the north by 

the Rhenish Massif near Frankfurt and to the south by the Jura Mountains near Basel. The NNE-SSW-

trending and 40 km wide graben intersects thereby the tectonostratigraphic units of the Variscan In-

ternides (Fig. 2.4a; Schumacher, 2002; Schwarz and Henk, 2005). 

Figure 2.3: Schematic overview of the two-stress phases of the URG formation. a)

The rifting phase is characterised by NW-SE- to WNW-ESE-directed extension. b)

The transtension and transpression stage is characterised by NE-SW-directed ex-

tension (kinematics and stress-field orientation after Schwarz and Henk, 2005). 
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Figure 2.4: a) Geological map of the Upper Rhine Graben. Grey lines indicate main Cenozoic fault traces of the URG, black 

lines are Variscan fault traces (after Schumacher, 2002; Eisbacher and Fielitz, 2010). b) Subcrop of Mesozoic sediments of the 

URG, with indicated Permo-Carboniferous highs (grey; after Schumacher, 2002).  

The uppermost Palaeozoic to Mesozoic pre-rift sediments increase in age from the south (Late Juras-

sic) to the north (Permian), and form a southward-dipping monoclinal structure in the northern URG 

(e.g., Pflug, 1982; Schumacher, 2002). Whereas in the southern part of the URG the pre-rift sediments 

form a synclinal-anticlinal structure, with Middle Jurassic sediments in the areas of Strasbourg and 

Basel, with Middle Jurassic sediments between these cities (Fig. 2.4b; e.g., Pflug, 1982; Schumacher, 

2002).  

The URG, as displayed in the seismic profiles DEKORP9N and DEKORP9S (Brun et al., 1991; Wenzel et 

al., 1991; Brun et al., 1992) and in isopach maps of the syn-tectonic graben sediments (Doebl and Ol-

brecht, 1974; Doebl and Teichmüller, 1979), has a half-graben structure. Syn-sedimentary thicknesses 

change along the N-S-extent of the graben, with the thickest depositions in the southern part located 

close to the western boundary, and in the northern part at the eastern boundary fault (Doebl, 1967; 

Brun et al., 1992). Accordingly, the greatest displacement (up to 5000 m) of the boundary faults can 

be found in the NE and the SW (Brun et al., 1992). The structure of the boundary faults also changes 

its character along the extent of the graben. In the southern part a listric character of the western 

boundary fault has been interpreted (Brun et al., 1991; Brun et al., 1992), while in the northern part 

more planar boundary faults are predicted (Durst, 1991; Meier and Eisbacher, 1991; Wenzel et al., 

1991).  

The horizontal and lateral extension of the URG is still under debate. The amount of the horizontal 

extension is calculated to lie in the range between 2.5 and 8.5 km (Doebl and Teichmüller, 1979; 

Groshong, 1996; Schwarz and Henk, 2005), and the lateral extent of the NNE-striking boundary faults 

is likely between 1.5 and 4 km (Schwarz and Henk, 2005). In response to the graben extension and 

strike-slip movements, the graben shoulders were uplifted by about 1500 m. However, the graben 

shoulders are mostly eroded and have lost their topographical elevation (Schwarz and Henk, 2005). 
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Along the extent of the URG the Moho has been raised from 30 km outside the URG area to 

27 – 28 km at the northeastern graben area, and 24 – 25 km at the southern part of the URG (Brun et 

al., 1991; Wenzel et al., 1991; Brun et al., 1992). Therefore, the geothermal gradient and the thermal 

heat flow are elevated in the URG. The temperature gradients range from <30° C km-1 up to 100°C km-1 

(Sauer et al., 1982; Schellschmidt and Clauser, 1996; Stober and Bucher, 2014; compare Fig. 1.2a). In 

comparison, the uplifted graben shoulders have values of 20 – 33 C km-1 (Doebl and Teichmüller, 1979; 

Teichmüller and Teichmüller, 1979).  

  Stratigraphy of the studied outcrops 

The Triassic stratigraphy of the Germanic Basin is a result of the interaction between periodic marine 

ingressions, sediment supply, and subsidence. The Triassic succession is composed of the fluvial and 

playa deposits of the Buntsandstein, evaporites and marine deposits that form the Muschelkalk, and 

the Keuper that comprises mainly evaporates and fluvial deposits (Bachmann et al., 1999; Feist-

Burkhardt et al., 2008).  

The Buntsandstein Group of the Germanic Basin is subdivided into three sub-groups: The Lower-, 

Middle-, and Upper Buntsandstein. It is composed of cyclic alternations of sand-, silt-, and claystone 

that were deposited under mostly fluvial conditions. The lithostratigraphic classification of the 

Buntsandstein is based on the correlation of cyclic grain-size variation and unconformities (e.g., 

Dachroth, 1985; Szurlies, 2007; Feist-Burkhardt et al., 2008; Hagdorn and Nitsch, 2009). However, at 

the southern margin of the Germanic Basin uncertainty regarding the lithostratigraphic classification 

of the Buntsandstein exists. This is caused by a combination of the lack of Buntsandstein unconformi-

ties, an overall decreased sediment thickness, an incomplete stratigraphic record, and the closer prox-

imity to the sediments source area, i.e. resulting in larger grain-size (Fig. 2.5; e.g., Paul, 1982; Ziegler, 

1990; Lepper et al., 2006).  
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Figure 2.5: Buntsandstein Paleography and the location of the study area (black box). MNH: Mid North Sea High, RFH: Ring-

købing-Fyn High, FSH: Fenno-Scandia High; modified after Ziegler, 1990). 

As a consequence of this uncertainty, the Buntsandstein formations have been classified in various 

ways that has led to many different local names (e.g., Dachroth, 1985; Szurlies, 2007; Feist-Burkhardt 

et al., 2008; Hagdorn and Nitsch, 2009). The correlation between the most common classifications is 

outlined in Fig. 2.6 for NE France (Bourquin et al., 2006), the Palatinate Forest (Backhaus, 1974; Rich-

ter-Bernburg, 1974), the Odenwald (Eisbacher and Fielitz, 2010), and the Kraichgau (Junghans, 2003).  

The lithostratigraphic record of the Buntsandstein in the Odenwald comprises three major sedimen-

tary cycles: Two progradational fluvial cycles (Eck’scher Zyklus, Hauptkonglomerat Zyklus), with NE-

directed flow of pebbly and coarse-grained sands. These cycles were followed by a third SE-directed 

cycle within a retrograde fluvial system (Röt Zyklus; Dachroth, 1985; Eisbacher and Fielitz, 2010). All 

sandstone outcrops as well as the reservoir formation are located in the second cycle within the “Bau-

sandstein” in the Odenwald and the “Rehbergschichten” in the Palatinate forest. However, the classi-

fication of the outcrop Cleebourg is uncertain. In Ménillet et al. (1989) the outcrop is characterized as 

“Lower Grés vosgiens”, in Eisbacher and Fielitz (2010) the outcrop is allocated to the “Trifelsschichten”, 

and in Andreae et al. (1892) it is simply assigned to the “Grés vosgiens” Formation (Fig. 2.6).  
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Figure 2.6: Lithostratigraphic correlation of the Buntsandstein between a) the western and b) the eastern graben shoulder. 

The formations studied in the outcrops are indicated by yellow boxes from left to right: “Grés Vosgien” (Cleebourg), “Re-

hbergschichten” (Leistadt), “Bausandstein Formation” (Riesenstein and Kammerforster), “Karneol-Dolomit-Horizont” to “Un-

terer Geröllhorizont” (well Brühl GT1).  

The Muschelkalk is subdivided into three sub-groups: The Lower-, Middle-, and Upper Muschelkalk 

that occur basin wide without significant changes in facies (Schweitzer and Kraatz, 1982; Engesser and 

Leiber, 1991; Hagdorn and Simon, 2005). In contrast to the Buntsandstein, index fossils and concise 

marker beds allow for a basin-wide correlation of the stratigraphy and a detailed classification of the 

Muschelkalk group (Hagdorn and Simon, 2005). The succession consists of alternating carbonates, 

evaporates, and to a minor extent of siliciclastic sediments, which were deposited under shallow ma-

rine conditions on a gently NW-inclined ramp (Schweitzer and Kraatz, 1982; Engesser and Leiber, 

1991). The Lower Muschelkalk is composed of undulated-bedded limestones and marlstones (Wel-

lenkalk), with subordinate oolites, and lithoclastic limestones (Eisbacher and Fielitz, 2010). The Middle 

Muschelkalk is characterized by micritic dolomites, gypsum-halite evaporites, and mudstones. Disso-

lution of the evaporites led to major thickness variations and to the formation of residual clays 

(Engesser and Leiber, 1991). The Upper Muschelkalk comprises a succession of fossil-rich carbonates, 

marls, and clays interbedded with micritic limestones characterized by a low fossil content (Schweitzer 

and Kraatz, 1982; Engesser and Leiber, 1991). Muschelkalk outcrops that were analysed in this work 

cover the complete Muschelkalk group.
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 Methods 

Methods applied in this thesis comprise structural geological fieldwork, laboratory-, thin section-, and 

image analysis, as well as numerical methods, and are briefly introduced in the following sections.  

The sub-surface datasets were provided by John Reinecker (GeoThermal Engineering GmbH) and 

comprise geophysical borehole measurements, descriptions of drill cuttings, pumping- and injection 

tests. The descriptions of cuttings are given in Appendix 1 – Fig. A1.  

 Fieldwork 

Field measurements were carried out to determine (I) fracture-system- and (II) rock-mechanical pa-

rameters.  

(I) Fracture systems were recorded using scanline and rectangular window-sampling methods. When 

applying the scanline method, only attributes of fractures that intersected the tape are recorded (e.g., 

Priest and Hudson, 1981; Priest, 1993; Adler et al., 2013). The fracture parameters that were measured 

include: orientation, density, connectivity, aperture, trace length, termination, and filling. The scan-

lines were carried out in at least two different directions to minimize measuring error, i.e. to avoid 

underrepresentation of unfavourably-oriented fractures. The advantages of the scanline method are 

its simple and quick application, and the possibility to measure spatial variations of the fracture system 

across fault zones to analyse, e.g. the extent and expression of the damage- and core-zone (e.g., 

Terzaghi, 1965; Priest, 1993; Adler et al., 2013). However, scanlines sub-perpendicular to the fault zone 

cannot capture the variations of fractures that are of the same orientation. Thus, a rectangular win-

dow-sampling method was also applied to measure the 2-D fracture system variability across and along 

fault zones and to reduce the sampling bias (Priest, 1993; Watkins et al., 2015).  

(II) During fieldwork, an L-Type Schmidt Ham-

mer was used to determine the rebound hard-

ness, an indirect method to evaluate the hard-

ness and strength of rocks (e.g., Cargill and 

Shakoor, 1990; Torabi et al., 2010; Fig. 3.1). The 

mode of operation of the Schmidt Hammer is as 

follows: when the Schmidt Hammer is pressed 

against a surface, it’s piston, which is loaded to 

0.735 Nm is automatically released. Impact with 

a surface absorbs part of the piston’s energy. 

The remaining energy, which represents the 

“rebound hardness”, is measured by the re-

bound distance of the piston (e.g., Deere and 

Miller, 1966; Aydin and Basu, 2005; Viles et al., 

2010). The advantages of the Schmidt Hammer 

include portability, non-destructivity, and time 

and cost efficiency. However, regressions be-

tween the rebound hardness and mechanical 

rock properties, such as uniaxial compressive strength (=>?@ and Young’s Modulus (A) measured in 

the laboratory often vary significantly, even within the same lithology (see Yagiz, 2009 for summary). 

Further limitations are its extreme sensitivity to, e.g. surface roughness, discontinuities, and moisture 

content (e.g., Barton and Choubey, 1977; Viles et al., 2010). Nonetheless, many measurements were 

Figure 3.1: Photograph of a L-Type Schmidt Hammer, with de-

tailed setup of the device (setup from DigiSchmidt operating in-

structions URL9: proceq).  
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performed in this work to supplement the limited number of laboratory measurements and to obtain 

rock hardness variations at different areas of the fault zone and in different layers.  

 Laboratory analysis 

In the laboratory, static measurements of the rock strength, static and dynamic elastic parameters 

were determined, parallel and perpendicular to bedding. These measurements were carried out on 

15 oriented rock samples taken from outcrops. 

Specimen Preparation: For the rock-mechanical tests right circular specimens were prepared. The 

usual specimen diameter to measure uniaxial compressive strength (=?>) is 50 mm, whereas samples 

for static Young’s Modulus (AB) and indirect tensile strength (CD) should be 40 mm in diameter. Speci-

men height to diameter ratios are 2:1 for the measurement of =>? and AB. Additionally, the upper 

limit of =>? was measured on specimens with a ratio of 1:1 (Fairhurst and Hudson, 1999; Mutschler, 

2004). Because it was not possible to collect samples of the necessary dimensions in the Cleebourg 

and Riesenstein outcrops with a hammer, cylinders, 30 mm in diameter, were directly cored with a 

water-cooled drill. Nevertheless, the specifications which require a sample diameter of at least 30 mm 

and at least 10 – 20 times the maximum grainsize were maintained (Fairhurst and Hudson, 1999; 

Mutschler, 2004).  

Uniaxial compressive tests to determine =?> and AB were performed according to DIN-EN-1926 

(2007) and ISRM 2007 (Ulusay and Hudson, 2007), using a Universal Class 1 Testing Machine from the 

company Walter & Bai at the University of Göttingen. The tests were performed on dry specimens with 

two different height to diameter ratios: 1:1 for =?> and AB, 2:1 for maximum =?>. During uniaxial 

compression tests (Fig. 3.2a) a specimen is compressed axially (7; E 0, 78 9  7G 9 0) at a constant 

rate of 1000 N s-1. The peak stress or =?> is reached when the rock loses its ability to support the 

applied stress (Fig. 3.2b). Each test for AB includes preloading until the sample approximately reaches 

70% of the expected =?>, to close microfractures and flaws; the specimens is then loaded until rock 

failure. The relationship between stress (7) and strain (H) is directly proportional and is defined by 

Hook’s Law (Eq. 3.1). The recorded slope of the straight-line portion of the stress-strain curve gives AB 

(Fig. 3.2b), 

AB 9 IJ
IK   [Pa], Eq. 3.1 

where L7 and LH are the differences between stress and strain between 40 and 60% of maximum =?> 

(Fig. 3.2b).  

Figure 3.2: a) Uniaxial compression test to determine =?> and AB. b) Corresponding stress-strain curve of a compressive test 

to determine UCS and E). c) Measuring procedure of the Brazilian test to determine T0 after Thuro et al., 2001). 
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Brazilian test: To determine CD, Brazilian tests according to DIN-22024 (1989) and ISRM 1981 (Brown, 

1981) were performed. Specimens were loaded perpendicular to the disc-shaped specimen axis with 

a constant rate of 30 Ns-1 (Fig. 3.2c). The loading causes tensile deformation parallel to the load direc-

tion. Based on the Brazilian test, CD is calculated from the sample dimensions (M, N) and the peak 

force (O): 

CD 9 8DDDP
QRS   [Pa]. Eq. 3.2 

Ultrasonic measurements: Transient times of ultrasonic pulses with a frequency of 0.25 MHz were 

measured parallel and perpendicular to bedding using a ScopeMeter from the firm Fluke at the Uni-

versity of Göttingen. The corresponding shear-wave velocities can be calculated from the specimen’s 

diameters. Corresponding compressional velocities (TU) are estimated based on the typical TU TB⁄  ratio 

of 1.7 for sandstones (Pickett, 1963). The dynamic elastic constant (Young’s Modulus – AW), was calcu-

lated with the following equation:  

AW 9 2 ∙ Z1 \ TU@]TB8 [Pa]. Eq. 3.3 

In these equations ] is the density that was determined based on the known specimen volume and 

masses (Eq. 3.4): 

] 9 ^_`abc
:defg_ 9 ha

Qijc  [kg m-3]. Eq. 3.4 

 Thin-section and image analysis 

Thin-section analysis: Thin sections were impregnated with blue resin for optical microscopy with a 

transmitted light microscope (Zeiss Axioplan 2). For the petrographic quantification of the rocks the 

thin sections were analysed by classical point-counting, using the half-automated point counter 

Petrolog lite. The grid size for point counting was set to 1.5 times of the maximum grainsize. The num-

ber of points measured in each thin section is 300. Components distinguished were quartz, feldspar, 

lithic components, clay minerals, and cement. The modal composition was used for classification, after 

McBride (1963). According to Soyk (2015) opaque grain coatings or patches in the pore space are clas-

sified as clay minerals associated with Fe-oxides. 

Image analysis: A scan of each thin section (300 DPI) was taken under plane-polarized light to deter-

mine textural characteristics such as grainsize, sorting, and porosity with the software ImageJ (Ras-

band, 2011).  
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To distinguish between the grains and the 

pore space filled with blue resin, a binary im-

age was calculated, in which white and black 

pixels represent the grains and pore space, re-

spectively (Fig. 3.3). The binary file was com-

pared with the original image to identify mis-

matches in the classification of pore space. 

Identified mismatches were eliminated either 

by manual adjustment or by re-training the 

software identification for the whole image. 

These processes were repeated until the bi-

nary image had sufficient quality. Porosity was 

than calculated as area fraction in ImageJ.  

For each thin section, the grainsize was also 

measured. For this purpose, the grainsize of 

about 100 grains was measured along a scan-

line using a 1D measuring tool. The grainsize 

was classified after Wentworth (1922) and the 

sorting (?) was calculated and defined after 

Folk and Ward (1957) and Eq. 3.5, 

? 9 klm \ k;n4 \ kpq r kq6.6  [-], Eq. 3.5 

where ϕlm, ϕ;n, ϕpq, and ϕqrepresent the grain size in phi values at 84, 16, 95, and 5 percentiles. 

 Numerical models 

 Numerical software 

The numerical models were constructed with the software package Comsol Multiphysics 5.0, that 

uses the Finite Element Method (FEM). In this method, the modelled volume is subdivided into several 

smaller elements. For each of these smaller and thus simpler elements, the required initial functions 

and physics are solved separately. The implementation of these initial functions into partial differential 

equations and the definition of boundaries as well as initial conditions produce a numerical solvable 

equation system. Thus the interaction between each element and its surroundings can be specified, 

resulting in a valid solution for the whole model (e.g., Pinder and Gray, 1977; Zielke et al., 1991; Kolditz, 

1997).  

The software conducts multiphysical simulations, i.e. different physics, physical properties, and equa-

tions that are stored within different software modules and can be coupled. The interfaces used in this 

thesis are in the subsurface-flow module, which provides basic equations that define the heat 

transport in porous media (Eq. 3.6) and fluid flow, as described by Darcy’s law (Eqs. 3.9 and 3.10). 

  

Figure 3.3: Image analysis in ImageJ. a) Scaled scan of a thin sec-

tion under plane polarised light. b) The generated binary file, with 

white pixels representing the grains and black pixels representing 

the pores. 
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Heat transport in porous media is calculated with the partial differential equation (PDE), 

Z]>U@_v wx
wb \ ]>Uy ∙ zC 9 z ∙ {|_vzC} \ ~,   Eq. 3.6 

which describes that the temperature (C) change at one point caused by conductive and advective 

processes (left hand side) or due to a heat source or sink (~, right hand side). The effective volumetric 

heat capacity (Z]>U@_v: Eq. 3.7) and the effective thermal conductivity (|_v: Eq 3.8) used in this equa-

tion, represents the equalised value between the rock matrix and the fluid (1 – porosity [�]):  

Z]>U@_v 9  �B Z]�U@B \ Z1 r �B@ Z]�U@� [J kg-1 K-1] Eq. 3.7 

|_v 9 �B|B \ Z1 r �B@|�  [W m-1 K-1]. Eq. 3.8 

The velocity field y of the advective term in Eq. 3.8 is implemented by adding the flow field described 

by Darcy’s law (Eqs. 3.9 and 3.10), which states that the fluid flow direction is controlled by the pres-

sure gradient (��), 

~ 9 �
�� Z]�B@ \ � ∙ Z]y@ [kg m-3] Eq. 3.9 

y 9  r �
� Z�� \ ]��N@ [m s-1], Eq. 3.10 

where �U is the heat capacity, | is the thermal conductivity, � is the porosity, ~ is the mass source, ] 

is the density, � is the permeability, y is the fluid velocity field, � is the fluid viscosity, �� is the pressure 

gradient vector, � is the acceleration due to gravity, and �N is the unit vector over which the gravity 

acts. The subscripts s and f denote the characteristics for solids and fluids, respectively.  

The parameters ]� and � in Darcy’s law are temperature 

dependent. That means there is a bidirectional coupling 

between these PDE’s (Fig. 3.4). However, in my study bidi-

rectional coupling was deactivated. Thus, only the pres-

sure-driven fluid-flow is simulated, i.e. the conductive or 

density-driven heat-transport and fluid-flow is neglected. 

The justification for this limitation is given in detail in Sec-

tion 3.4.3 (Model calibration and simplifications).  

 Model design  

The thermal development of a geothermal reservoir was modelled by coupling heat transfer and 

groundwater flow in a time-dependent study. To investigate the effects of different rock permeabili-

ties, types of heterogeneities and anisotropies (layering, fracturing), depending on the natural fluid 

flow regime within the sub-surface, five basic model scenarios were designed (Fig. 3.5). 

Figure 3.4: Coupling of different physical proper-

ties (after Oberdorfer, 2014). 
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Figure 3.5: Five basic model geometries. For explanation of the different model configurations, see the model scenario de-

scription. 

The modelled volume is defined as a box with a side length of 4000 m and a height of 2400 m. The 

modelled volume lies between 1600 and 4000 m depth. A geothermal doublet was simulated by in-

cluding two cylindrical wells, spaced 1500 m apart, and arranged in N-S direction, 3200 m below the 

land surface (Fig. 3.6a). Since typical borehole diameters of ca. 6 5/8" (ca. 17 cm) cannot be realised 

due to meshing restrictions, the well is modelled with a diameter of 1 m. To account for the larger 

diameter, the well length was reduced to simulate the surface area of the geothermal well Brühl GT1.  

Scenario 1 simulates a fully-homogeneous rock volume. In this scenario, the input parameters, per-

meability and porosity, were systematically modified to assess their interplay and impact on the ther-

mal development of the reservoir. The parameters were varied within ranges that, according to Bär 

(2012) and Jodocy and Stober (2011), are typical for the Buntsandstein in the Upper Rhine Graben. 

In scenario 2 sedimentary layers were included to test for the effect of different permeabilities.  

In scenario 3 the effect of fracture-induced anisotropy was analysed. To realize fracture flow, a con-

tinuum approach was applied. The continuum approach uses replacement media, that provide prop-

erties identical to the mean hydraulic properties of a given fracture system (e.g., Berkowitz et al., 1988; 

Lege et al., 1996; Kolditz, 1997). Thus, fracture flow was implemented by defining anisotropic equiva-

lent porous media for the different domains (c.f., Section 3.4.3).  

In scenario 4 the combination of fractured and layered reservoirs was tested. The effect of a succes-

sively increased amount of non-stratabound fractures was investigated.  

Scenario 5 models fault-related reservoirs. A fault that strikes N-S with a normal displacement of 

60 m was implemented. The fault has a 7 m thick core and two 40 m wide damage zones. The hydro-

geological properties of the fault-zone domains were successively changed to simulate hydrological 

end-members, as defined by Caine et al. (1996). They are: barrier, conduit, and the combined conduit-

barrier system.  

 Model calibration and simplification 

Temperature model: The initial temperature (CD) of the modelled volume was assigned with a tem-

perature gradient of 0.047°C m-1 resulting in 150°C at a depth of 3200 m, as measured for the Brühl 

reservoir (Reinecker et al., 2015; URL6: GeotIS). The top and bottom boundaries were thermally iso-

lated (Eq. 3.11), 

� Z�zC@ 9 0, Eq. 3.11 

with � being a vector normal to the boundaries, states that there is no temperature difference across 

the boundaries, i.e. there is no heat flux across the boundaries.  
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The side boundaries, however, are modelled as open boundaries (Eqs. 3.12 and 3.13):  

C 9 CD �� � ∙ y < 0 Eq. 3.12 

rzC ∙ � 9 0, �� � ∙ y ≥ 0 Eq. 3.13 

This means that heat can flow out or into the modelled volume at the exterior temperature of CD. Thus, 

the modelled temperature field is not limited by, but extends across these model boundaries.  

The injection temperature of the injection well was set to 40°C and the reservoir cools down in ac-

cordance with the fluid-flow model.  

Fluid-flow model: The pressure gradient (��) that controls fluid flow (Eq. 3.10), was defined by sev-

eral uniform hydraulic gradients, set as fixed boundary conditions at the model sides. The top and 

bottom boundaries are no flow boundaries that define a vertically-confined aquifer. Variable flow di-

rections were assigned by the rotation of the hydraulic gradient from 0 – 315° in 45° steps (Fig. 3.6b). 

The height of the hydraulic gradient was calculated from the surface elevation and groundwater depth 

maps within the study area and by assuming hydrostatic conditions within the sub-surface (GMTED, 

2010; Fan et al., 2013; Gleeson et al., 2016). Corresponding to the groundwater gradient of the study 

area, the height of the hydraulic gradient was varied from 0, 1, 5, to 20 mm m-1 (Fig. 3.6c, d). Hydraulic 

circulation between the implemented geothermal doublet was induced by predefined production- and 

injection rates of 75 l s-1. In consequence, the pumping and injection pressures could become econom-

ically inefficient or unrealistic, depending on the predefined rock permeability.  

 

Figure 3.6: a) Model setup. b) Directions of the hydraulic gradient as used in the models were simulated by the rotation of 

the boundary conditions. c) Frequency of the hydraulic gradients as determined for the study area by using d) the groundwa-

ter gradient map in vicinity of the geothermal well Brühl GT1 (database from GMTED, 2010; Fan et al., 2013; white dashed 

lines show the boundary faults of the URG). 

To gain the best compromise between computing times and realistic results, it was necessary to de-

activate the bidirectional coupling between fluid-flow model and the temperature model. This meant 

that water density and viscosity were set to a constant, which excludes density-driven fluid-flow 

(Eq. 3.6, left hand side, left term). However, conductive heat transport and density-driven fluid-flow 

are relatively small in comparison to the pressure-driven fluid-flow and advective heat transport (Berg-

man et al., 2011). Furthermore, the resistance to flow does not change with temperature; this leads to 
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constant and identical injection- and production pressures. I also tested for the effect of bidirectional 

coupling and found that its implementation does not change the general trend of the modelled tem-

perature development, except that in homogeneous models the reservoir cools down slower (Appen-

dix 2.1 – Fig. A2). Further simplifications were necessary to reduce the complexity of the fracture mod-

els (scenario 3). Certainly, discrete fracture models would provide optimal comparability to natural 

fracture systems. However, discretizing fracture domains require an extremely fine mesh to allow 

modelling of individual fractures with apertures on the mm-scale and thus produce excessive compu-

tational effort. Especially for large-scale consideration, rocks with high fracture density and connectiv-

ity can be assumed to form a homogeneous continuum (REV) and continuum models provide sufficient 

approximations (e.g., Berkowitz et al., 1988; Lege et al., 1996; Kolditz, 1997).  

Mesh: The numerical mesh consists of 220,658 tetrahedral elements with side lengths ranging from 

1 to 712 m (Fig. 3.7a). The domain surrounding the well needs to have a finer mesh, otherwise it would 

not be possible to build geometry components of 1 m. This, however, would exceed the computational 

budget of the whole model. Thus, the injection and production well was surrounded by cylinders with 

a smaller mesh-size (Fig. 3.7b). Equally, the other domains were meshed at different sizes to gain best 

compromise between computational effort and precision. 

 

Figure 3.7: Varying mesh quality, depending on the size of the modelled structures. a) whole model. The fault and damage 

zone are modelled with a fine mesh, while the rest of the domain is assigned a coarse mesh. b) shows an E-Z cross-section 

through the injection well.
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 Fault zones in Lower Triassic sandstones 

 

Architecture, fracture system, mechanical properties, and permeability 

structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben 

Tectonophysics 647-648 (2015). doi: 10.1016/j.tecto.2015.02.0141 

Keywords: fault zone; fracture-system parameter; mechanical rock properties; permeability; 

Buntsandstein; Upper Rhine Graben 

Highlights: Fault zone in porous Bunter sandstone includes core-, transition- and damage zone. 

Segregated core zone may provide fluid flow through linked host rock lenses. 

Stiff and strong transition zone shows characteristics from core- and damage- zone. 

Fracture aperture, connectivity, thus permeability increases towards the fault core. 

Fracture affected mechanical rock properties decrease towards the fault core. 

 

Abstract 

Close to the western Upper Rhine Graben Main Fault, Alsace, a NNE-SSW-striking fault zone, crosscut-

ting porous, thick bedded Triassic Middle Bunter sandstone was investigated in detail, including its 

architecture, discontinuity system, mechanical rock properties and implications on its permeability 

structure and fault zone type. Field observations indicate a three-part fault zone structure including 

core-, transition- and damage zone. The at least 14 m thick fault core is composed of various slip sur-

faces and deformation bands, which encompass fractured host rock lenses. When connected, host 

rock lenses may transport fluids through the core zone. Adjacent transition zones are highly fractured 

in R1-orientation, show folded beds and contain P1-oriented deformation bands. R1 and P1- fractures 

are synthetic shear fractures and project with an acute angle (10 – 20°) towards the fault plane. Only 

in the damage zone, fault-parallel striking fractures occur. Here, increasing fracture apertures and con-

nectivity may increase the permeability towards the fault core. Mechanical rock properties from 

12 rock samples (Young’s Modulus, uniaxial compressive strength, tensile strength) measured in all the 

parts of the fault zone, show highest values within the transition zone. In-situ measurements of the 

rebound-hardness with a Schmidt Hammer and analytical approaches, however, indicate that effective 

Young’s moduli are two to sixteen times lower than the Young’s moduli of intact rock. Values clearly 

decrease towards the fault core, even in the transition zone and are in average lower than effective 

Young’s moduli in the damage zone. Although many fault zones in sandstone are sealing structures 

these field study show, that fault zones in porous sandstone may allow fluid flow. 

                                                           
1 This Chapter is largely identical to the article entitled „Bauer, J.F., Meier, S., Philipp, S.L. (2015): Architecture, 

fracture system, mechanical properties, and permeability structure of a fault zone in Lower Triassic sandstone, 

Upper Rhine Graben. Tectonophysics 647-648, 132-145." 
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 Introduction 

Fault zones are of particular importance to estimate reservoir permeability because they, depending 

on their architecture, enhance or impede permeability of the rock (Caine et al., 1996; Caine and 

Forster, 1999; Agosta et al., 2007; Gudmundsson et al., 2010). In that connection, outcrop analogue 

studies are useful to analyse the fault zone architecture and thereby increase the predictability of fluid 

flow behaviour through and across fault zones in the corresponding deep reservoir (Chesnaux et al., 

2009; Reyer et al., 2012).  

Based on outcrop studies of consolidated brittle rocks, Caine et al. (1996) developed a conceptual 

fault zone model comprising core zone and surrounding damage zones with different properties and 

thicknesses. The fault core accommodates most of the strain and displacement of the fault zone and 

is formed by gouge and cataclasite, which cause a low permeability. The damage zone consists of minor 

faults and an increased fracture density (as fracture count per meter) compared to the host rock and 

therefore exhibits an enhanced permeability. Fracture induced permeability depends mainly on frac-

ture aperture and connectivity. The fracture connectivity itself depends on fracture lengths, orienta-

tions and densities (De Marsily, 1986; Hestir and Long, 1990; De Dreuzy et al., 2001). In the fault zone 

model after Caine et al. (1996), the ratio between damage zone and total fault zone thickness contrib-

utes to the overall fluid flow behaviour of the entire fault zone.  

Although this conceptual model is widely accepted, it does not apply to all rock types, in particular 

not to porous sandstone (Heynekamp et al., 1999; Rawling et al., 2001; Rawling and Goodwin, 2006; 

Caine and Minor, 2009). Therefore, two additional fault zone models have been proposed for different 

rock types (Fig. 4.1).  

 

Figure 4.1: Different architectures and structural elements of fault zones in a) crystalline rocks with fault core (FC) composed 

of breccia and fault gouge and damage zone (DZ) with increased fracture density (Caine et al., 1996), b) in porous sandstones 

with fault core (FC) composed of clay and a damage zone (DZ) with deformation bands. As a third fault zone part mixed zones 

(MZ) with deformed and mixed sediments where established (Heynekamp et al., 1999; Rawling and Goodwin, 2006) and in 

c) in unlithified to poorly lithified sediments with structured fault core into a central part (CFC) with clay membranes and host 

rock lenses and the distal part (DFC) composed of a mixture of sand and clay or clay lenses in a matrix of sand. The damage 

zone includes clusters of or single deformation bands. (Fig. 4.1a, b modified after Loveless et al., 2011; Fig. 4.1c modified after 

Clausen et al., 2003). 

They also separate a central core zone and surrounding damage zones with different mechanical, 

hydrological, and structural characteristics. For porous rocks Heynekamp et al. (1999) found that there 

are mixed zones between the core and damage zone (Fig. 4.1b).  

  



4.2 Geological setting 

24 

 

In this model, the damage zone includes deformation bands or zones of deformation bands. The main 

impact of deformation bands, referred as zones with grain deformation, is the porosity reduction and 

therefore they also commonly involve a permeability reduction (Antonellini and Aydin, 1994; Rawling 

et al., 2001). The adjacent mixed zones are composed of deformed sediments, or zones with destroyed 

bedding. Within the mixed zone host rock lenses (elongated rock bodies originating from the damage 

zones) are common. In the centre a clayey core occurs and is often reported as a low permeability zone 

(Heynekamp et al., 1999; Caine and Minor, 2009). In contrast, the fault zone model developed by 

Clausen et al. (2003) for unconsolidated to poorly consolidated sediments, divides the core zone into 

a central and a distal part instead of mixed zones (Fig. 4.1c). The central part is composed of host rock 

lenses, enveloped by clay membranes, and is surrounded by the distal fault core: a mixture of sand 

and clay. The damage zone also includes mostly deformation bands. In the latter two fault zone models 

in porous sandstone permeability decreases because of fault-related processes such as cataclasis or 

the formation of deformation bands rather than fractures. Thus, fault zones in clastic reservoirs may 

have a high sealing capacity (Antonellini and Aydin, 1994). In cases, however, where highly permeable 

beds juxtapose across the fault zone strike, the formation of host rock lenses in the core zone may 

allow fluid flow across the reservoir (Lindanger et al., 2007). Fault zone architecture does not only vary 

due to different lithology, but also along fault zone strike, down dip and time (e.g., Faulkner et al., 

2010). 

Beside the different effects of fractures and deformation bands on rock permeability they have con-

trary effects on effective rock mechanical properties. While fractures reduce the effective mechanical 

rock properties, such as uniaxial compressive strength (Kemeny and Cook, 1986), Young’s Modulus 

(Priest, 1993) or the brittle strain of a fault zone (Schultz, 2003) and increase permeability of the rock 

mass, mainly compaction deformation bands reduce the permeability and mechanical rock properties 

increase within the band (Fossen et al., 2007). These differences in the mechanical evolution in turn 

modify the mode of failure within the fault zone and therefore the permeability structure (Aydin and 

Johnson, 1978; Fossen et al., 2007). Thus, good constraints on the effective material properties are 

needed to investigate and to model the permeability structure of the faulted lithology (Renshaw, 1996; 

Loveless et al., 2011).  

In this paper, we present a detailed study of one outcrop exposing a fault zone at the western graben 

shoulder of the Upper Rhine Graben near Cleebourg (France). The study has two main objectives: First, 

we present the architecture of the fault zone. We examine, whether the described fault zone models 

(cf., Fig. 4.1) can be used and are focused on a highly-deformed transition zone between the core and 

the damage zone. In particular, we discuss the permeability structure of the fault zone, including its 

fracture system within the different parts of the fault zone. Second, we present results of mechanical 

laboratory measurements of 12 intact outcrop rock samples. We examine the effects of fractures on 

the effective mechanical properties using the measured fracture data and mechanical rock properties 

in an analytical approach (Priest, 1993). To compliment these calculations, we also estimate effective 

mechanical properties with in-situ Schmidt Hammer measurements. 

 Geological setting 

The European Cenozoic Rift System is a system of NNE-SSW- to N-S-trending grabens (Fig. 4.2a). Most 

prominent part of the system is the Upper Rhine Graben that extends about 300 km from the Rhenish 

Massif (Frankfurt) in the north to the Jura Mountains (near Basel) in the south (Fig. 4.2b). Thereby the 

Upper Rhine Graben crosses the tectonostratigraphic units of the Variscan internides (e.g., Illies, 1977; 

Ziegler, 1992; Schumacher, 2002). 
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Figure 4.2: a) The European Cenozoic Rift System with N-S- to NNE-SSW-oriented graben systems (light grey; LRG: Lower 

Rhine Graben; HG: Hessian grabens; EG: Eger Graben; BG: Bresse Graben; LG: Limagne Graben; VG: Vistrenque Graben); in 

black the study area; URG: Upper Rhine Graben simplified after Ziegler and Dèzes, 2007). b) Simplified tectonic map of the 

Upper Rhine Graben. Black lines represent the main fault systems with Variscan terrain boundaries (LB: Baden-Baden-Lalaye-

Lubine Fault; HSR, South Hunsrück-Taunus border Fault (modified after Ziegler and Dèzes, 2007). c) Zoom into the tectonic 

details of the studied outcrop area (white dot) at the Zaberner Fractured Boundary Zone with the western Rhine Graben 

Border Fault (in Alsace: Faille vosgienne) in the west and the Rhine Graben Main Fault (in Alsace: Faille rhénane) in the east 

(modified after Stapf, 1988, 1996). The GPS-coordinates give the location of the outcrop and the red dashed line indicates 

the studied fault zone.  

Traditionally, the graben has been geomorphological divided into a southern, central and a northern 

part, because the section between Strasbourg and Karlsruhe has more NE-SW-orientation (Schu-

macher, 2002). Its initiation started during the middle Eocene to early Miocene as an extensional rift 

valley in consequence of orogenic activity in the Alps and Pyrenees (e.g., Illies and Greiner, 1978; 

Ziegler, 1992; Ziegler and Dèzes, 2006). First climax of subsidence took place from Eocene to Early 

Oligocene and was interrupted during Miocene to Lower Pliocene and started again in Pliocene until 

recent time (Illies, 1977). The development of the Upper Rhine Graben was partly controlled by mantle 

diapirism, different stress fields and structures inherited from Variscan orogeny (e.g., Bergerat, 1987; 

Schumacher, 2002; Ziegler and Cloetingh, 2004; Edel et al., 2007). The evolution of the Upper Rhine 

Graben included four different stress regimes from its initiation until today. In the late Eocene rifting 

episode, the Upper Rhine Graben was affected by an N-S-oriented compressional regime, alternated 

by an E-W-oriented extension in Oligocene and renewed compression with NE-SW-orientation during 

Early Eocene. The most significant change in the stress field took place in Miocene at which the maxi-

mum stress field shifts to a horizontal position with a new NW-SE- to NNW-SSE-orientation (Bergerat, 
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1987; Schumacher, 2002). Under these conditions the Upper Rhine Graben is characterized by a con-

tinental transform zone with an N-S-trending sinistral motion (Illies and Greiner, 1978; Schumacher, 

2002).  

The Upper Rhine Graben is limited by prominent eastern and western boundary fault systems 

(Fig. 4.2b), which separate the sediment-filled graben and the uplifted graben shoulders. Along large 

parts of its boundary the Upper Rhine Graben has two sets of dominant fault zones (Brun et al., 1991; 

Schumacher, 2002).  

The studied outcrop at Cleebourg is located between those nearly NE-SW-striking distinct fault zones 

at the Zaberner Fractured Boundary Zone, namely the western Rhine Graben Border Fault (in Alsace: 

Faille vosgienne) in the west and the western Rhine Graben Main Fault (in Alsace: Faille rhénane) in 

the east (Eisbacher and Fielitz, 2010). The 10 km wide Zaberner Fractured Boundary Zone exposes 

roughly 1 km thick Triassic sediments. The NE-SW-striking faulted blocks are separated and offset by 

N- to NNE-striking faults of younger ages (Fig. 4.2c) (Eisbacher and Fielitz, 2010). The studied NNE-

SSW-striking fault zone is located in the Hochwald-Horst, a flexure with dip of around 30° in direction 

to the near western Upper Rhine Graben Main Fault (in Alsace: Faille rhénane; Eisbacher and Fielitz, 

2010). The outcrop is located close to the western graben margin. In this area the Upper Rhine Graben 

Main Fault has a normal offset of 1.2 km (Eisbacher and Fielitz, 2010). 

 Outcrop characterization and methodology 

The outcrop is located in Alsace (north-east France; cf., Section 4.2), exposing porous, thick bedded 

Trifels sandstones belonging to the Triassic Middle Bunter (Ménillet et al., 1989; Eisbacher and Fielitz, 

2010). The exposure allows a 3D-view, including quarry floors, on the northwestern fault block and 

core zone of one fault zone (Fig. 4.3). Fault zone type and displacement are difficult to obtain and 

discussed in detail below. 

Fault zone characteristics and fracture-system parameter were examined by using cross-section and 

window survey measurements. The maximum length of the cross-sections is limited by outcrop size. 

The following fracture-system parameter were recorded: fracture density, orientation (strike direction 

and dip angle), aperture, length, mineralization, and connectivity. The length is measured linearly be-

tween fracture ends. If either one or both fracture tips extend beyond the outcrop we measured the 

fracture’s minimum length. The aperture is measured perpendicular to fracture walls at its maximum 

value. As an indication for fracture connectivity and thus for a potential hydraulically active fracture 

network we measured fracture terminations in three different categories: fracture tips free, one tip 

connected, and both tips connected. Paleo-fluid transport is derived by fracture mineralization in five 

different categories: open, coloured or discoloured, incrustation, clay filled and mineralized. 

Within the fault core zone deformation bands, slip surfaces (layers composed of fault gouge with 

some displacement), host rock lenses and lithological content were reported. To avoid cross-section 

orientation bias recording fractures with parallel strike to one surface, cross-sections were placed par-

allel and perpendicular to the strike of the fault zone (cf., Terzaghi, 1965; Caine and Tomusiak, 2003). 

Cross-section measurements perpendicular to the fault plane started at the fault core margin. To get 

three-dimensional data of the fracture sets and to analyse the variations in horizontal connectivity, 

window survey measurements on four locations on the quarry floors with different distances to the 

main fault zone were used.  
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Figure 4.3: Schematic 3D-view of the studied outcrop with marked cross-sections, as well as the four recorded quarry floors 

(rectangles) on different outcrop levels and distances to the main fault zone and sample points Cl1-1 to Cl4-3 and K1 for 

mechanical laboratory measurements (red dots). 

To characterize the mechanical effects of fractures on rock mass properties, laboratory experiments, 

analytical approaches, and in-situ experiments were performed. In the different parts of the fault zone 

cylindrical rock samples were drilled out (Fig. 4.3) with a coring-machine to enforce compression tests 

(Mutschler, 2004) and Brazilian tests (Brown, 1981; diametral compressive strength test) to investigate 

the uniaxial compressive strength =>? [MPa], static Young’s Modulus AB [GPa] and indirect tensile 

strength CD [MPa] of unfractured rock mass. Where possible, the specimens were taken parallel and 

perpendicular to bedding or parallel and across fault zone strike, respectively. Differing from Fairhurst 

and Hudson (1999) specimen diameters for AB and CD measurements was 35 mm and for =>? 45 mm. 

The specimen ends are flat to ± 0.05 mm. In advance of compression tests, we determined the speci-

men’s volumes and masses to calculate their bulk densities ρ� [kg m-3]. 

Since fractures reduce the stiffness of in-situ intact rock masses we use an inverse correlation of the 

number of discontinuities to calculate effective Young's moduli A_ to get the distribution of mechanical 

rock properties along fault zone parts after Priest (1993; Eq. 4.1),  

A_ 9 7�M
∆M 9 � 1

AB
\ 1

?|�
�

�;
 [Pa]. Eq. 4.1 

When a fractured rock cube with a length M [m] gets compressed normal to fracture plane with a 

normal stress 7�  [MPa] the change in length ∆M [m] (or strain) depends on the Young’s Modulus 

A`  [GPa] of the intact rock mass, on the fracture normal stiffness |� [MPa m-1] (normal stress per unit 

closure of the fracture) and � [m] the average, inverse discontinuity density. The first part of Eq. 4.1 

corresponds to Hooke’s Law, but includes the strain through fracture closure (Gudmundsson, 2011).  
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In the following calculation of A_ perpendicular and parallel to the fault plane, with the second part 

of Eq. 4.1, parameters AB and � were used as obtained in the field at different positions at the cross-

sections. For |�, which is very difficult to obtain in the field (Zangerl et al., 2008), published data and 

empirical relations to =>? were used (e.g., Chang et al., 2006; Reyer and Philipp, 2014). 

An L-Type Schmidt Hammer (impact energy: 0.735 Nm, USC range: 18 – 70 MPa) was used to esti-

mate the effective uniaxial compressive strength and Young’s Modulus along the cross-sections as well 

as at the rock sample positions before drilling (Deere and Miller, 1966; Aydin and Basu, 2005; Yagiz, 

2009; Torabi et al., 2010; Viles et al., 2010). In a Schmidt Hammer, a hammer released by a spring, 

indirectly impacts against the rock surface through a plunger. Part of the energy released by the spring 

is consumed by plastic deformation on the rock surface. The remaining elastic energy determines the 

rebound distance of the hammer. The travelled distance corresponds to the rebound-hardness � [-], 

expressed as a dimensionless scale on the device. Thereby, higher rebound-distances indicate a higher 

stiffness of the tested rock mass. Each measured rebound-hardness (�) is a mean value determined 

from 10 impacts, applied at different points spaced at minimum 20 mm apart from each other. For 

mean value calculations, the minimal and maximal �-value remains unaccounted to eliminate outliers. 

That instrument allows a detailed map of mechanical property variations, but no detailed absolute 

values, within the different fault zone parts (Viles et al., 2010). Correlations between � with A and 

=?> are commonly used; see Yagiz (2009) for a summary. Included constants in those relationships, 

however, mainly depend on lithological characteristics, making it difficult to find one relationship for 

all rock types. Therefore, we use the �-value only for rough estimations on the effective mechanical 

property variations. 

 Fault zone architecture 

In the damage zone of the NNE-SSW-striking fault zone four normal faults (FZ1 – 4) with displace-

ments of 2 to 6 cm and one oblique slip fault are formed (FZ5; Fig. 4.4a, c, d). The displacement and 

the fault zone type of the main fault zone are unknown because only the northwestern fault block and 

no slickensides are exposed and therefore part of the discussion. The bedding dips 15 – 65° towards 

the southeast, gets steeper, and is sometimes folded towards the fault core (Fig. 4.4b).  

 

Figure 4.4: a) Photograph of the main fault zone with highlighted fault core and minor fault zone locations (FZ1-4, cross-

section H1). b) Fault zone orientations of the minor faults (dashed lines) and the main fault zone strike (bold line) as well as 

the dip of bedding (equal area, lower hemisphere). c) Detailed photographs of the minor normal fault zones (FZ1-4) in the 

damage zone. d) Top view on oblique-slip fault FZ5 at quarry floor 2 (cf., Fig. 4.3). 
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The main fault zone and all minor faults strike sub-parallel to the main fault trends (N-S to NNE-SSW 

and NE-SW) of the Zaberner Fractured Boundary zone. Two minor faults (FZ1, 2) are antithetic and 

three (FZ3 – 5) synthetic with respect to the observed main fault zone strike within this outcrop (Figs. 

4.2 and 4.4b). 

 Core zone  

The partly exposed fault core shows an internally segregated zone with a minimum thickness of 14 m. 

Most common features are slip surfaces (sometimes transport water) and deformation bands, which 

encompass host rock lenses. Also common are Fe-Mn-concretions and sand pebbles or patchy clay 

(Fig. 4.5). Most of these slip surfaces strike parallel to the main fault zone, others in N-S-direction, are 

unpolished and not silicificated but oftentimes iron-stained (Fig. 4.5a). They can be detected easily, 

due to separation of lithological distinct components on each side. They merge with each other but 

are most discontinuous. Lower strained host rock lenses are fractured and range from consolidated or 

unconsolidated material composed of clay, silt or sand.  

 

Figure 4.5: a) Orientations of slip surfaces (black dots), main fault zone (red rectangle) and discontinuities which transport 

water (blue triangle) within the core zone (lower hemisphere, equal area) b) Photograph of the central fault core at cross-

section K3. c) Sketch of the architecture of the central core zone. 

  



4.4 Fault zone architecture 

30 

 

 Transition zone 

According to Heynekamp et al. (1999), there is a transition zone between the fault core and the dam-

age zone with different deformation characteristics. This zone can be characterized either as distal 

fault core (Fig. 4.6a, b) (Clausen et al., 2003) or as mixed zone (Fig. 4.6c, d) (Heynekamp et al., 1999). 

In both cases, this fault zone part combines characteristics from the central fault core and the damage 

zone. The transition zone includes mostly fractures and to minor degree deformation bands, which 

separate small host rock lenses, bedding is more continuous, and the rock is more compact than in the 

fault core. In some cases, there are small clay lenses in a sandy matrix as well as beds that can be traced 

from the damage zone into the transition zone. At cross-section K4 to K6 occurs a clear slip surface 

between the damage zone and the aforementioned transition zone, relating this part to a unit of the 

fault core (distal fault core), but at cross-sections K1 to K3 a clear slip surface separates the central 

fault core from this transition zone, making it comparable to the mixed zones after Heynekamp et al. 

(1999).

 

Figure 4.6: a) Transition between the damage zone and the core zone at cross-sections K4 – K6. A clear slip surface between 

the damage zone (DZ) and the transition zone causes a distal fault core (DFC) with fault parallel host rock lenses and high 

fracture density. b) Top view on quarry floor 3 with the transition from the damage zone to distal fault core apparent through 

the reduced fracture density and their change in strike. c) Transition between the damage zone and the core zone at cross-

section K2. A clear slip surface between the transition zone and the core zone, characterizes this part as mixed zone (MZ). 

The mixed zone contains smeared beds, clay lenses, deformation bands as well as a high fracture density. d) Detailed photo-

graphs of the transition zone at cross-section K2.  

 Damage zone 

The damage zone is less affected by deformation than the core and transition zone. Most common 

structural elements in the damage zone are fractures. Deformation bands, common features in porous 

rocks or sands (Bruhn et al., 1994) are absent or invisible in this porous sandstone. Further, the damage 

zone also includes five minor fault zones. The lateral extension of the damage zone is vague and part 

of the discussion.  
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 Fracture-system parameter  

 Orientation of structural features 

The most common discontinuities in the damage zone are fractures. Fracture orientations are plotted 

in symmetrical rose diagrams as well as normal to fracture planes in stereographic projection to get 

statistical fracture orientation data from the different parts of the fault zone (Fig. 4.7). In general, four 

main different orientations occur, namely: NNE-SSW, NE-SW, E-W and N-S. 

The main fracture set of the damage zone has a fault parallel (NNE-SSW) orientation with equal quan-

tity of synthetic and antithetic fractures. Antithetic fractures show a wider scatter and become less 

frequent with larger distance to the core zone, whereas synthetic fractures are uniformly distributed 

in the northwestern faulted block (Fig. 4.8b).  

 
Figure 4.7: Fracture and deformation band populations (marked with roman numerals: I-IV) in the different fault zone parts 

shown in symmetrical rose-diagrams and as contour plots of poles to fracture planes (equal area, lower hemisphere). The 

main fault strike is marked by a bold line and minor faults by dashed lines. a) NNE-SSW-striking fractures in the damage zone 

(population I). b) N-S-striking fractures in the transition zone of the northwestern faulted block (population II). c) N-S- and E-

W-striking fractures within the transition zone of the northeastern faulted block (population II and III). d) NE-SW-striking 

deformation bands in the transition zones (population IV). e) NNE-SSW-striking fractures in host rock lenses in the core zone 

(population I). Fractures in host rock lenses (e) and damage zone fractures (a) have a fault parallel strike, whereby fractures 

in the transition zones (b, c) strike N-S and deformation bands (d) parallel to regional structures in NE-SW-direction.  

In contrast to the fracture orientation in the damage zone reflecting the fault orientation, the main 

fracture set in the transition zones strikes N-S and forming a 20 – 30° angle to the main fault zone. 

Additionally, there are E-W-striking fractures in the northeastern transition zone (Fig. 4.7a, b, c). Be-

side fractures, deformation bands are common in the transition zones and core zone. Most of the 

deformation bands in the transition zones strike parallel to the regional structures in NE-SW and con-

sequently form a 26° angle to the main fault plane (Fig. 4.7d). Fractures in host rock lenses of the cen-

tral core zone strike, similar to the uppermost slip surfaces, mostly parallel and synthetic to the main 

fault zone in NNE-SSW-direction (Fig. 4.7e). 

  



4.5 Fracture-system parameter 

32 

 

 Fracture density 

To obtain the fracture density distribution across and along the fault we measured the density per-

pendicular and parallel to the main fault at cross-sections and on quarry floors.  

The data of window surveys show an increasing fracture density towards the fault core. The density 

of parallel striking fractures is much higher compared with perpendicular striking fractures, but the 

relative enhancement of perpendicular striking fractures towards the fault core is 1.5 times higher.  

Data from horizontal cross-sections show a relation similar to measurements from window surveys, 

where fracture densities increase towards the major fault plane and at contacts to minor faults as well 

(Fig. 4.8a). The highest fracture density occurs in the northwestern transition zone, including mostly 

N-S-striking fractures (Fig. 4.8a, c). Fault parallel fractures are nearly absent in this transition zone and 

increase only in the damage zone (Fig. 4.8b, c).  

Within the transition zone at the northeastern faulted block E-W- and fault-parallel fractures are 

more frequent than in the northwestern transition zone (Fig. 4.8b, c), but this zone is still dominated 

by N-S-striking fractures.  

 

Figure 4.8: Histograms show the fracture density distribution perpendicular to the fault plane at cross-section H1. Lines indi-

cate the minor fault zone location, grey bars the fault core position and the dashed area the transition zone between the 

fault core and the damage zone. a) Fracture density distribution for all fractures. b) Fracture density distribution of fracture 

population I (strike-direction: NNE-SSW). Fracture population Ia is synthetic (dip ESE), Ib is antithetic to the fault (dip WNW). 

c) Fracture density distribution of fracture population II and III (strike direction: N-S and E-W). Fracture population IIa dip 

east, IIb dip west, IIIa dip N and IIIb in S-direction.  

 Fracture length and aperture 

Fracture length and aperture data were plotted against the distance from fault core and strike direc-

tion. Because fracture lengths and apertures are specific for different fracture populations, they are 

separated according to orientation data (Fig. 4.9). In general, longer fractures have higher fracture ap-

ertures. The ratio of aperture (b) and length (l) is defined as the fracture aspect ratio (b/l). It follows 

that the shorter the fracture in relation to its aperture the higher is its aspect ratio.  

The widest apertures occur in the transition zone of the northwestern faulted block and decline with 

increasing distance from the core zone and increase again around the minor faults. However, in the 
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damage zone ESE-dipping fractures (synthetic to the main fault zone) show the highest and WNW-

dipping (antithetic fractures) the lowest values of apertures (Fig. 4.9a, b).  

The fracture length distributions show contrary relations. The lowest values occur in the distal zone 

and show an abrupt increase in the damage zone, where the longest fractures are mostly antithetic to 

the main fault zone (Fig. 4.9c, d).  

 

Figure 4.9: Diagrams showing the variations of fracture aperture [mm] and fracture length [m]. a) Apertures against distance 

from fault core separated after their dip direction (Ia: dip ESE, Ib: dip WNW, IIa: dip E and IIb: dip S). Lines indicate the minor 

fault zone positions. b) Apertures in a circular diagram versus strike direction. c) Fracture length against distance from fault 

core with marked minimum length values. Lines indicate the minor fault zone positions. d) length in a circular diagram versus 

strike direction.  

In contrast to the cross-sections, fracture apertures measured on the quarry floors get wider with 

increasing distance from the fault core. Comparable is, that NNE-SSW striking fractures (fracture pop-

ulation I) are longer compared with other orientations. However, fracture lengths do not change 

clearly with increasing distance from fault core, neither perpendicular nor parallel to the main fault 

zone. 
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Figure 4.10: a) Relation between fracture length [cm] and aperture [cm]. b) The aspect ratio (aperture [cm]/length [cm]) with 

increasing distance from fault core at cross-section H1. A high aspect ratio indicates a short fracture in relation to its aperture. 

c) aspect ratios of fractures in a circular diagram versus strike direction according to the profiles measured.  

The relation between fracture length and fracture aperture shows that they are negatively correlated 

within the outcrop (Fig. 4.10). In most cases fractures with high apertures have short lengths. 

 Fracture connectivity and mineralization 

The fracture connectivity in the outcrop is low with 51% unconnected and just 14% fractures con-

nected at both tips. In general, the connectivity increases with proximity to the core zone. In detail, 

86% of all fractures connected at both tips and 49% of fractures connected at one tip are located in 

the transition zones and get less frequent with increasing distance from the fault core (Fig. 4.11a, b). 

The highest fracture connectivity is given for N-S-striking fractures and the lowest for fractures striking 

sub-parallel to the main fault plane.  

Most fractures are open (71%) and only 7% are mineralized. 95% of all mineralized fractures are lo-

cated in the transition zones (Fig. 4.11c, d). 
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Figure 4.11: Histograms show the variations of fracture connectivity (a) and fracture mineralization (b) across the fault zone 

at cross-section H1. Lines indicate the minor fault zone positions, the hatched area the transition zone. Circular diagrams 

showing the fracture connectivity (c) and mineralization (d) versus strike direction and distance from core zone of all fractures 

measured in the outcrop. 

 Mechanical rock properties 

 Laboratory measurements 

The measured mechanical rock properties are listed in Table 1. For the 12-measured rock samples 

the uniaxial compressive strength (=>?) values range between 33.4 MPa and 60.8 MPa within the 

damage zone, 53.4 MPa and 66.6 MPa within the transition zone and the one sample taken in the core 

zone has a UCS of 15.0 MPa parallel to bedding. Values measured perpendicular to bedding range be-

tween 36.7 MPa and 60.1 MPa inside the damage zone and between 48.6 MPa and 73.9 MPa inside 

the transition zone.  

Young’s moduli (AB) parallel to bedding range between 7.6 GPa and 17.0 GPa within the damage zone, 

8.2 GPa and 15.6 GPa within the transition zone and the value taken in the core zone is 4.2 GPa. The 

values perpendicular to bedding are 9.2 GPa and 18.4 GPa within the damage zone, 9.5 GPa and 

18.6 GPa inside the transition zone. 

Indirect tensile strength (CD) measurements amount about 1.7 MPa to 3.5 MPa inside the damage 

zone and within the transition zone about 2.3 MPa and 2.8 MPa, the core zone sample gives 0.6 MPa 

parallel to bedding. The values perpendicular to bedding range between 1.2 MPa and 2.0 MPa within 

the damage zone and between 1.7 MPa and 2.7 MPa within the transition zone. The core sample 

amounts to 0.6 MPa. Measured =>? and AB values with compression parallel to bedding are mostly 1 

to 1.9 times lower than values perpendicular to bedding. CD is however 1 to 1.7 times lower with com-

pression perpendicular to bedding planes than values parallel to bedding (Table 4.1).  
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Table 4.1: Summarized mean values of the mechanical rock properties: 0�(, 
� and +	 parallel and perpendicular to bedding. 

Grey marked samples are located in the transition zone, K1 in the core zone. All other samples are located in the damage 

zone. 

sample 
parallel to bedding  perpendicular to bedding 

0�( [MPa] 
� [GPa] +	 [MPa]  0�( [MPa] 
� [GPa] +	 [MPa] 

Cl 1-1 53.4 ± 0.4 8.2 ± 2.2 2.3 ± 0.6  48.6 ± 6.2 9.5 ± 1.1 1.7 ± 0.4 

Cl 1-2 33.4 ± 1.5 8.6 ± 1.0 1.9 ± 0.1  40.5 ± 2.8 11.4 ± 1.1 1.7 ± 0.3 

Cl 1-3 33.4 ± 6.1 10.5 ± 2.0 1.7 ± 0.4  36.7± 7.6 9.3 ± 1.2 1.7 ± 0.3 

Cl 1-4 46.7 ± 6.7 11.9 ± 4.3 2.6 ± 0.7    2.0 ± 0.1 

Cl 1-5 36.7 ± 6.2 7.6 ± 1.0 2.2 ± 0.3  44.5 ± 1.1 14.5 ± 3.3 1.2 ± 0.3 

Cl 3-1 61.1 ± 1.0 13.6 ± 1.4 2.5 ± 0.3  58.7 ± 0.8 14.7 ± 1.1 2.5 ± 0.4 

Cl 3-2 40.5 ± 6.8 8.9 ± 2.9 3.0 ± 0.4  49.6 ± 2.2 9.2 ± 0.3 2.0 ± 0.2 

Cl 3-3 35.9 ± 2.2 11.4 ± 0.6 2.2 ± 0.1  39.8 ± 11.0 10.0 ± 1.7 1.3 ± 0.3 

Cl 4-1 66.6 ± 6.8 15.6 ± 1.8 2.8 ± 1.1  73.9 ± 3.1 18.6 ± 2.9 2.7 ± 0.4 

Cl 4-2 60.8 ± 12.4 17.0 ± 0.3 3.5 ± 0.3  56.6 ± 15 18.4 ± 3.4 3.3 ± 0.9 

Cl 4-3 46.6 ± 5.6 13.2 ± 0.7 3.4 ± 0.4  60.1 ± 2.6 11.0 ± 1.1 1.7 ± 0.2 

K1 15.0 ± 1.6 4.2 ± 0.8 0.6 ± 0.2    0.6 ± 0.1 

        
That means the highest =>? values, perpendicular and parallel to bedding, occur within the transition 

zone and the lowest within the core zone. The distribution of the highest AB is differing from the =>? 

values. At cross-section H3 the highest AB values occur in the transition zone, at cross-section H1 albeit 

in the damage zone and at cross-section H4 the values are nearly similar for the transition and damage 

zone. CD reaches the highest values inside the damage zone, followed by the transition and core zone. 

The lowest values always occur in the core zone. Generally, the mechanical properties are the highest 

at cross-section H4, followed from cross-section H3. The lowest values occur at cross-section H1. Also 

the bulk rock density ] increases from cross-section H4 to H3 to H1 with 2146 to 2183 to 2188 kg m-3.  

 Schmidt Hammer rebound-hardness 

Values from cross-section surveys H1, H2 and H3 were taken under wet conditions and are therefore 

much lower than sample values at the corresponding position (measured in the laboratory) and cross-

sections H4 and K7 which are taken under dry conditions. Previous studies have shown that moisture 

reduces rock hardness about 10 to 30% (Barton and Choubey, 1977; Viles et al., 2010). This implies 

that these data cannot be compared directly. At any rate, the in-situ rebound-hardness tests exhibit 

higher �-values with increasing distance from the fault core (Fig. 4.12).  

 

 

Measurements within the fault core were not possible in large parts, meaning that the rebound-hard-

ness must be lower than 15, which is the lowest measured value inside the outcrop. The only meas-

urements at cross-section K7dry range between 26 and 32 [-] in x-direction. The sample value in that 

Figure 4.12: Closely spaced rebound-hardness meas-

urements against the distance from fault core at dif-

ferent cross-sections. Rebound-hardness from the 

rock samples are marked with stars. The hatched 

area shows the transition zone between the fault 

core and the damage zone and the grey area show 

the core zone. 
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cross-section averages 26 [-]. The highest !-values occur at cross-section H4dry (34 – 44), followed by 

cross-section H1wet (15 – 28), H2wet (16 – 25) and H3wet (15 – 22).  

 Effective Young’s moduli 

Using the determined fracture densities along the damage zone, AB [GPa] and =>? [MPa] of the rock 

samples (Table 1), the effective Young’s moduli A_ [GPa] were calculated with equation 1 (cf., Sec-

tion 4.3; Fig. 4.13).  

The increased fracture densities near the fault core clearly decrease A_. A_-values range between 

1 and 7 GPa compared with the laboratory values (AB) between 8 to 17 GPa. In particular, A_ is two to 

sixteen times lower than AB. The decrease of A_ is highest near the fault core as well as around the 

minor fault zones. 

 

Figure 4.13: Calculated effective and intact Young's Moduli [GPa] perpendicular to the fault zone at cross-section a) H1, b) 

H3 c) H4 and d) parallel to the fault zone at cross-section H6 (cf., Fig. 4.3). The hatched areas show the transition zone be-

tween the fault core and the damage zone and dashed lines in a) the position of the minor fault zones.  

 Discussion 

 Fault zone architecture  

The studied fault zone, crosscutting porous, thick bedded sandstones, can be divided into three dif-

ferent parts: damage zone, transition zone and core zone. The at least 14 m thick central fault core 

contains high strain zones (slip surfaces), separated by low strain zones with different grain sizes, po-

rosities, and consolidation states (host rock lenses). Similar heterogeneous fault core characteristics 

have been described by Faulkner et al. (2003; Carboneras strike slip fault – mica shists – south-eastern 

Spain) and Foxford et al. (1998; salt related normal Bartlett fault zone – sandstone – SE Utah), where 

individual high strain zones encompass less strained host rock lenses. Such distributed fault cores were 

explained with the aid of varying mechanical rock properties and the transition of stress to strain or 

rather strain hardening and strain softening processes (Faulkner et al., 2003; Faulkner et al., 2010).  

Strain softening, or reduced load bearing capacity in the stress-strain curve after failure, leads to 

strain concentration on fractures, which develop into fault zones. Strain softening is induced through 

e.g. intense fracturing, incorporated weak rocks into the slip surface forming clay smear, breccia or 

gouge. Particularly, clays are mechanically weak (Byerlee, 1978) and clayey fault cores with low shear 
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resistance would localize deformation and form weak narrow fault cores like the five minor fault zones 

within the damage zone. Thus, strain softening would prevent the building of the observed 14 m thick 

fault core structure. In contrast, strain hardening is an increased load bearing capacity after failure, 

where the rock gets stronger with increasing strain. Strain hardening causes, for example by the for-

mation of deformation bands, porosity reduction or generic increasing grain contact area and in-

creased shear resistance. In cases where a slip surface strain hardens, a self-locking effect, new slip 

planes in weaker rocks may generate. Strain hardening processes may be an explanation regarding the 

large thickness of the observed fault core, consisting of various slip surfaces (Childs et al., 1996; Foxford 

et al., 1998). The development and incorporation of host rock lenses further increase the fault core 

thickness and may result in the observed 14 m thick fault core.  

The fault core is surrounded by a 1 – 5 m thick transition zone. We observed that this architectural 

fault zone part combines characteristics from the core and the damage zone. This comes apparent 

through the change in fracture orientations, degree of deformation and occurrence of deformation 

bands within the transition zone. There is a sharp contact either distal or proximal to the central fault 

core and thus, the transition zone is not just a part of the core or the damage zone.  

Our observations, concerning the structural characteristics of the transition zone, show some simi-

larities with those described by Heynekamp et al. (1999) and Clausen et al. (2003). The former authors 

characterize this zone as a “mixed zone”, which is also observed in poorly lithified sediments by Rawl-

ing et al. (2001) and Rawling and Goodwin (2006; Sand Hill Fault – Rio Grande Rift), Caine and Minor 

(2009; San Ysidro Fault – Albuquerque Basin), and Minor and Hudson (2006; various faults – northern 

Albuquerque Basin). Mixed zones range from intact, friable sediments to mixtures of clay, sand and 

gravel with relicts of sedimentary bedding. Bedding is mostly rotated in direction towards the fault 

zone strike. Further, they observed a sharp contact between the mixed zone and the core zone. This 

description is consistent with our observation in the upper part of the outcrop. The transition in the 

middle part of the outcrop coincides to a larger extent with the model by Clausen et al. (2003). Based 

on extensional faults in unconsolidated silt to fine-grained sand (Northwestern Bornholm, Denmark), 

they distinguished between a distal and a central fault core. The distal fault core has similar character-

istics as the mixed zones, but is in sharp contact towards the damage zone and is thus comparable to 

our observation in the middle part of the outcrop. Divergent to the descriptions above, we observed 

the highest fracture densities within the entire fault zone in the transition zone and lower incidence of 

deformation bands.  

The transition zone is encompassed by the damage zone and is composed of mostly open fractures 

and minor faults. Fractures within the damage zone are mostly sub-parallel to the fault zone strike. 

Estimation of the lateral extent of the damage zone is not possible. Due to the minimum fault core 

thickness of 14 m, however, the damage zone thickness is presumably larger than the outcrop dilation 

(>40 m).  
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 Fracture-system parameter 

For all exposed fault zone parts, we observed differing fracture-system parameter. As already men-

tioned, the most obvious distinction between the damage zone and the transition zone comes appar-

ent by changing fracture orientations. Within the damage zone mostly fault parallel fractures occur 

(NNE-SSW) as well as an orthogonal-oriented fracture set, which is shifted toward an N-S-orientation 

within the transition zone and then rotated back within the core zone (Fig. 4.8). We conclude that 

these fractures are shear fractures in an R1-orientation after Petit (1987). This observation has an im-

portant effect on the interpretation of the fault zone type (see below).  

Fracture density, aperture and connectivity control the hydraulic connectivity of the fracture network 

(De Marsily, 1986; Hestir and Long, 1990; De Dreuzy et al., 2001). Previous studies of fault zones show 

an increased fracture density towards the fault core (Caine et al., 1996; Reyer et al., 2012). Similarly, 

we observe that the relative enhancement of fractures oriented perpendicular to the fault strike is 

higher than for parallel striking fractures. This may play an important role regarding the fracture con-

nectivity, because the probability of interconnected fractures increases with (i) density and (ii) fracture 

orientations. Therefore, the fracture connectivity increases with proximity from the fault core and is 

highest for R1-fractures (N-S-orientation) within the transition zone.  

We observed slightly increased fracture apertures with decreasing distance from the fault core, 

whereby the fracture length clearly decreases. N-S-striking fractures within the transition zone have 

the widest apertures and shortest length. Fracture aperture partly depends on the local stress field 

(cf., Philipp et al., 2007): Fractures perpendicular to 1 get closed and parallel striking fractures tend to 

open. Due to the recent stress field (active since Miocene; 1 NW-SE; Schumacher, 2002) NNE-SSW-

striking damage zone fractures are rather closed than N-S-striking transition zone shear fractures. It is 

also known that even small shearing leads to twisted fracture walls (self-propping effect) and lead to 

a sustained increase of the fracture aperture even under unfavourable stress fields (Häring, 2007).  

We propose two main reasons to explain that most of the transition zone fractures remain short. 

First, the phenomenon is explainable by mechanical layering and related changes in rock stiffness 

(Young’s Modulus). A propagating fracture is arrested, when it reaches a mechanically weak contact 

such as an open bedding contact or a fracture (Economides and Nolte, 2000; Gudmundsson, 2011). 

Mechanical layering does not necessarily coincide with sedimentary bedding, but rather coincides with 

changes in grain size, porosity or mineralization in one bed and thus induced changes in mechanical 

rock properties. In particular, due to changes of Young’s Modulus within and around the transition 

zone (see below), the stress field may change locally and form an inhomogeneous or unfavorable stress 

field for a propagating fracture. Second, the short fractures are mostly interconnected and their high 

density implies that these beds are saturated with fractures resulting in stress shadows. Therefore, 

these fractures get linked to each other and remain consequently short (cf., Van der Pluijm and 

Marshak, 2004). 

Consistent with the described fracture network the only mineralized fractures occur within the tran-

sition zone. Also common are Fe-Mn-oxide incrustations or staining within the entire fault zone, mostly 

in NE-SW-orientation. These features indicate a hydraulically active fracture network in the past. Our 

observations correspond to the description by Eisbacher and Fielitz (2010). They found mineralizations 

mostly in NNW- to WNW-striking or locally in N-S-striking faults or fractured zones. Near the western 

Rhine Graben Main Fault, they further describe NE-striking Fe-Mn-ore (sometimes Pb-Zn) mineraliza-

tion. Most fractures within the outcrop, however, remain open and enable a potentially enriched re-

cent fluid transport.  
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 Fault zone type and displacement 

The type, displacement and thickness of the described fault zone are unknown. Various indications, 

however, allow us to characterize it as an ESE-dipping, sinistral oblique-slip fault (see below).  

The orientation of structural components (fractures, deformation bands, minor faults, slip surfaces), 

are used to define the fault slip direction. The slip direction is defined as the bisecting plane between 

R1- and P1-fractures. Riedel shear fractures (R1-fractures) are synthetic towards the fault zone, project 

into and form mostly 10-20° angles towards the fault plane. P1-fractures are likewise synthetic (Petit, 

1987; Katz et al., 2004). With respect to the main fault zone orientation, transition zone fractures occur 

predominantly in the R1-shear orientation with left lateral motions. P1-orientation is in particular 

marked at the minor fault FZ5 (NE-SW-orientation), which also shows a sinistral motion. Also, defor-

mation bands within the core zone are in P1-orientation. This indicates a sinistral movement caused by 

a NNW-SSE-oriented 1 during fault zone formation. That may relate the fault zone formation to Mio-

cene with a NW-SE- to NNW-SSE-oriented stress field (including a sinistral slip regime; Bergerat, 1987; 

Schumacher, 2002; cf., Section 4.2). This assumption also fits with the general description of the Zab-

erner Fractured Boundary Zone with mostly N- to NNE-striking faults that cut and offset the graben 

parallel (NE-SW) faults (Fig. 4.2; Eisbacher and Fielitz, 2010). Because the south-eastern terrain clearly 

cut downwards in direction to the graben centre and the closeness to the graben centre an ESE-dipping 

normal component is likely. All these assumptions define the exposed fault block as the footwall.  

Scaling relationships of the displacement have often been performed based on the damage zone 

thickness (Faulkner et al., 2011), core zone thickness (Scholz, 1987; Bastesen et al., 2013) or the trace 

length of the fault zone (Dawers and Anders, 1995). They exhibit mostly a wide scatter (even in log-log 

plots), because of different host rocks, tectonic regimes or different methods defining damage or core 

zone thickness (Faulkner et al., 2010; Bense et al., 2013). Most of these scaling relationships show 

increasing displacement with increasing damage zone or core zone thicknesses. In our study, however, 

such relations are not applicable, since the thickness of the different fault zone parts and the trace 

length are unknown. In general, the at least 14 m thick core zone and the proximity to the Rhine Gra-

ben border lead to the assumption of a high displacement fault.  

  Permeability structure  

The fault zone model after Caine et al. (1996) gives four end members for the overall permeability 

structure of brittle fault zones. The fault core is outlined as a barrier to fluid flow and the damage zone 

enhances the permeability due to a high fracture density. Depending on the thickness of the different 

zones, distributed conduits, localized conduit, localized barriers and combined conduit-barrier systems 

were identified (Caine et al., 1996). Small-scale normal fault zones in sandstones, described by Reyer 

et al. (2012), tend to be localized barriers. They further observed that higher displacement faults more 

likely are combined conduit-barrier systems. In those cases, the damage zone contains deformation 

bands. Rawling et al. (2001) classified large displacement faults in poorly lithified sediments (Sand Hill 

Fault) with deformation band dominated damage zones, as barriers to fluid flow. 

Both fault zone models, however, are not applicable on the presented fault zone, because the tran-

sition zone is not taken into account, the presented fault core is not just a sealing structure and the 

damage zone does not contain deformation bands.  

An exact determination of the fluid flow category after Caine et al. (1996) is not possible because of 

the unknown fault zone thickness, but it best corresponds into the combined conduit-barrier classifi-

cation. The fracture dominated damage zone increases the permeability. The structure of the fracture 
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system indicates an increased permeability towards the fault core in NE-SW direction and orthogonal 

to it, because of increasing apertures and densities of such striking fractures.  

Mixed zones are referred to have a reduced permeability compared with the host rock (Rawling et 

al., 2001; Rawling and Goodwin, 2006). But within the studied transition zone, besides deformation 

bands, also the highest fracture density, aperture and connectivity occur. Thus, the fracture induced 

permeability may even be higher in comparison with the damage zone and shifted towards N-S and 

E-W.  

The central core zone, which contains permeability reducing structures like narrow slip surfaces com-

posed of fault gouge as well as deformation bands, also includes areas with more consolidated, porous 

and fractured rock. This means that the core zone itself represents a combined conduit-barrier system. 

Fluid flow across the fault zone could be possible when the fractured lenses within the core zone are 

interconnected or rather allow fluids to pass through the low-permeability high strain zones. Such pro-

cesses are, for example, observed by hydraulic pumping tests within a deformation band dominated 

fault zone in sandstone, where a mostly uninterrupted fluid communication occurs between both fault 

walls (Medeiros et al., 2010). Furthermore, we observed some areas which transport water around slip 

surfaces within the core zone, which also imply a fault core parallel fluid transport. Otherwise some 

water storage within the porous sands between the in permeable fault gouges may be possible. 

Under high fluid pressure, the slip tendency reaches twice the tensile strength of the rock (2 CD, Gud-

mundsson et al., 2010). The low tensile strength of the core zone (cf., Section 4.5) may facilitate, even 

under low shear stresses, slip events within the fault core (Gudmundsson et al., 2010). 

 Mechanical properties of the fault rock 

Knowing the mechanical rock properties is a key issue to understand and predict fault zone formation, 

architectural components, and therefore fluid flow conditions. We determined that UCS-values are 

higher in the transition zone than in the damage zone. In comparison to the damage zone also AB 

values are sometimes higher within the transition zone and CD does not clearly change. Obviously, 

mechanical rock properties within the core zone are by far the lowest. All measured values are partic-

ularly comparable with the lower end from normal values of sandstones (AB: 0.4 – 84.3 GPa, =>?: 

6 – 170 MPa, CD: 0.4 – 25 MPa; Gudmundsson, 2011). 

Normally, it is easier for fractures to propagate along bedding planes, than to pass through it and 

accordingly mechanical rock properties measured perpendicular to bedding are higher than parallel 

values (Hoek and Brown, 1997). Within this sandstone there is just a slight anisotropy between the 

mechanical rock properties of bedding parallel and bedding perpendicular measurements (Table 4.1). 

That means beddings planes within this sandstone have little impact on mechanical rock properties. 

Further it is possible that microfractures reduce the mechanical rock properties perpendicular to bed-

ding in comparison to values parallel to bedding planes.  

However, laboratory data are higher than in-situ values due to smaller amounts of fractures (Priest, 

1993). These variations were measured by using a Schmidt Hammer and calculated by analytical ap-

proaches after Priest (1993). Both methods do not reflect increased =>? or AB within the transition 

zone. First, the �-values taken from rock samples do not show clearly increased values within the tran-

sition zone. Second, the closely spaced taken in-situ �-values (which are effective values) rather indi-

cates gradually increasing mechanical rock parameters, with decreasing fracture densities (Fig. 4.13). 

Also, our calculations regarding A_ show that the Young’s Modulus in particular is reduced around the 

minor faults and within the transition zone, where the highest fracture density occurs (Figs. 4.9 
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and 4.14). From that we derive that the mechanical parameters of intact rock are highest in the tran-

sition zone, but effective values are in average lower than in the damage zone. These variations in 

effective Young’s moduli lead to stress concentrations within the outer part of the damage zone or in 

the host rock, where A_ is higher because of lower fracture densities. However, although the core zone 

rather tends to form a stress shadow, most strain remains within this zone, for example because of 

already existing weak fault planes (Gudmundsson et al., 2010; Gudmundsson, 2011). 

 Conclusions  

1. Detailed field studies of a fault zone crosscutting Lower Triassic sandstones in Alsace (north-east 

France) show that previous conceptual fault zone models are not applicable to the observed fault 

zone in porous sandstone because of a thick fault core and a fracture dominated transition zone 

and damage zone.  

2. Fault zones in porous rocks are often deformation band dominated, but here these are less com-

mon within the transition and core zone so that the sealing effect of these structures is less devel-

oped within the described fault zone. Also the fault core, consisting of highly strained slip surfaces 

and lower strained fractured host rock lenses, may allow fluid flow across the fault induced by 

linked fractured host rock lenses.  

3. Within the damage zone the aperture and density of fault parallel striking fractures as well as fault 

perpendicular striking fractures increase towards the fault core. This may lead to an increased 

fracture connectivity and enhance the possibility of a hydraulically active fracture network. 

4. Compared with the damage zone larger fracture apertures and connectivity on fracture tips occur 

within the transition zone. This may enhance the fracture induced permeability in N-S-direction to 

a greater extent compared with other directions and fault zone parts.  

5. Mechanical laboratory measurements of intact rock specimens display the highest uniaxial com-

pressive strength and Young’s Modulus within the transition zone. But fracture affected effective 

Young’s moduli (determined with a Schmidt Hammer and analytical approaches) are smaller in the 

transition zone and increase with increasing distance from the fault core.  

6. Fault zones in the Lower Triassic Bunter, and possibly other porous sandstones, not always are 

sealing structures. Even a thick fault core is not inevitably a barrier for fluid flow. Low tensile 

strength within the core enhances the risk for slip events during ongoing reservoir production. The 

damage zone, with mostly open fractures, may be potentially drilling targets for geothermal pro-

jects in the Upper Rhine Graben system. But because the connectivity decreases clearly with in-

creasing distance from the fault core hydraulic stimulations may be needed.  
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 Fault zones in Middle Triassic limestones 

 

Fault zone characteristics, fracture systems, and permeability implications 

of Middle Triassic Muschelkalk in Southwest Germany 
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Highlights: Fault zone structure and lithology affect permeability in Muschelkalk rocks. 

The fault zones are clearly related to the formation of main regional structures. 

Fracture system connectivity and permeability is improved close to fault cores. 

Various mechanical properties affect permeability evolution (fracture propagation). 

All analysed fault zones were hydraulically active during evolution. 

 

Abstract 

Fault zone structure and lithology affect permeability of Triassic Muschelkalk limestone-marl-alterna-

tions in Southwest Germany, a region characterized by a complex tectonic history. Field studies of eight 

fault zones provide insights into fracture-system parameter (orientation, density, aperture, connectiv-

ity, vertical extension) within fault zone units (fault core, damage zone). Results show decreasing frac-

ture lengths with distances to the fault cores in well-developed damage zones. Fracture connectivity 

at fracture tips is enhanced in proximity to the slip surfaces, particularly caused by shorter fractures. 

Different mechanical properties of limestone and marl layers obviously affect fracture propagation and 

thus fracture system connectivity and permeability. Fracture apertures are largest parallel and sub-

parallel to fault zones and prominent regional structures (e.g., Upper Rhine Graben) leading to en-

hanced fracture-induced permeabilities. Mineralized fractures and mineralizations in fault cores indi-

cate past fluid flow. Permeability is increased by the development of hydraulically active pathways 

across several beds (non-stratabound fractures) to a higher degree than by the formation of fractures 

interconnected at fracture tips. We conclude that there is an increase of interconnected fractures and 

fracture densities in proximity to the fault cores. This is particularly clear in more homogenous rocks. 

The results help to better understand permeability in Muschelkalk rocks. 

                                                           
2 This Chapter is largely identical to the article entitled „Meier, S., Bauer, J F., Philipp, S.L., 2015. Fault zone char-

acteristics, fracture systems and permeability implications of Middle Triassic Muschelkalk in Southwest Germany. 

Journal of Structural Geology 70, 170-189”. 
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 Introduction 

Since fault zones show a different permeability structure compared with their host rocks, they may 

control crustal fluid flow (Chester and Logan, 1986; Caine et al., 1996; Sibson, 1996; Caine and Forster, 

1999; Agosta and Kirschner, 2003; Micarelli et al., 2006b; Caine et al., 2010; Faulkner et al., 2010; 

Gudmundsson et al., 2010; Agosta et al., 2012; Philipp, 2012; Reyer et al., 2012). They can either act 

as conduits or barriers, depending on their infrastructure and the local stress field (e.g., Caine et al., 

1996; Agosta et al., 2010; Gudmundsson et al., 2010). In general, fault zones consist of distinct units 

with different properties. Namely, the fault core in the fault-zone centre, comprising fault gouge, brec-

ciated material and mineral precipitations, and the surrounding damage zone, characterized by an in-

creased fracture density and minor faults (Chester and Logan, 1986; Caine et al., 1996; Berg and Skar, 

2005), where pre-existing structures such as bedding are commonly preserved (e.g., Billi et al., 2003). 

The increased fracture densities in the damage zones may lead to an enhanced permeability (Caine et 

al., 1996; Faulkner et al., 2010; Gudmundsson et al., 2010). In contrast, fault gouge with reduced grain 

sizes as well as mineral precipitation within the fault core decrease permeability in many cases. During 

slip in active fault zones, however, fractures or pores may get interconnected and provide an enhanced 

permeability within this unit (e.g., Sibson, 1994; Caine et al., 1996).  

The damage-zone/fault-core model based on of fault zones in brittle rock, however, is not applicable 

to all fault zones due to their formation in different rock types with various mechanical properties (e.g., 

porous sedimentary rocks). Some authors therefore describe additional units in high porosity or un-

consolidated sediments, such as mixed zones embedded between fault core and damage zone 

(Heynekamp et al., 1999), or a distal fault core at the margins of the fault core (Clausen et al., 2003). 

Furthermore, additional structures in porous rocks may form which show contrary effects on permea-

bility compared to fractures: deformation bands (sandstones, carbonates) or stylolithes (carbonate 

rocks), with enhanced sealing capacities (Aydin, 1978; Antonellini and Aydin, 1994; Tondi et al., 2006). 

These structures are the result of either grain movement, grain rotation or grain fracturing in narrow 

bands of localized strain (deformation bands), and pressure solution (stylolithes) (Aydin, 1978; 

Antonellini and Aydin, 1994; Tondi et al., 2006), and may lead to a decreased permeability (Antonellini 

and Aydin, 1994; Fossen et al., 2007).  

In fractured reservoirs fractures may have great effects on fluid flow, since they can either increase 

reservoir permeability or increase permeability anisotropy (Nelson, 1985; Gudmundsson, 2011; Philipp 

et al., 2013). Because matrix permeability in geothermal reservoir rocks is negligible in most cases and 

high flow rates are needed for successful geothermal projects, the characterization of fault zones and 

associated fracture systems is of particular importance (Paschen et al., 2003; Philipp et al., 2010; Stober 

et al., 2011; Reyer et al., 2012). In the present study, we use outcrop analogues to analyse the effect 

of fault zones on fracture-system parameter and permeability in fault-related and fractured geother-

mal reservoirs. 

Outcrop analogues expose rocks similar to those found at geothermally relevant depths (in terms of 

stratigraphy, lithology, facies) and therefore provide an opportunity to study fracture-induced perme-

ability of potential geothermal reservoir rocks (Philipp et al., 2010). We focus on the Middle Triassic 

Muschelkalk which forms one potential geothermal reservoir in a region with comparatively high geo-

thermal gradient in Germany: the Upper Rhine Graben (URG; Paschen et al., 2003; Stober and Jodocy, 

2009; Stober et al., 2011). We investigate whether the simplified fault core-/damage zone model is 

applicable to define the permeability structure of fault zones crosscutting more or less brittle car-

bonates. In particular, we focus on the fracture systems associated with the fault zones. Deformation 
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bands or stylolithes were not visible macroscopically in the field and therefore are not taken into ac-

count. 

We present results of eight fault zones crosscutting Muschelkalk rocks of the Kraichgau Syncline lo-

cated on the eastern graben shoulder of the URG (Fig. 5.1) aiming at characterizing fault zones and 

associated fracture systems. First, we show preferred orientations of fault zones and associated main 

fracture sets in the Kraichgau Syncline. Here we aim at integrating fault zone developments in the 

context of the regional stress field evolution. Second, we characterize three selected fault zones in 

detail. We examine selected fracture-system parameters (orientation, density, aperture, connectivity, 

vertical extension) within defined fault-zone units and their distributions across the fault zones. Special 

attention is given to record mineral precipitations within the fault zone units and in particular within 

fractures to highlight preferred orientations of past fluid flow. With the studies, we gain insights into 

the development of fracture-associated permeability of Muschelkalk rocks. 

 

Figure 5.1: Simplified geological maps (modified from Walter, 2007) of the Upper Rhine Graben (URG; left) and the Kraichgau 

study area (right). The locations of the quarries are marked by dark-grey dots (IL – Illingen; IT – Ittlingen; KN – Knittlingen; NL 

– Nussloch). The axis of the Kraichgau Syncline is marked by a dashed line.  
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 Geological setting 

The URG forms the central part of the Cenozoic European Rift System, which extends from the North 

Sea to the Mediterranean Sea (Illies, 1972; Ziegler, 1992; Schumacher, 2002; Ziegler and Dèzes, 2005). 

This extensional structure, margined by master normal faults, was formed since Eocene in a weakened 

region, due to a thinned crust and a thermal anomaly, and exhibits a displacement of approximately 

4 km (Illies, 1972; Illies and Greiner, 1978; Ziegler and Dèzes, 2005). The graben interior is filled with 

Tertiary and Quaternary sediments. The Variscan basement as well as Permian and Mesozoic for-

mations crop out at the eastern and western graben shoulders (Illies, 1972; Walter, 2007), which were 

uplifted during subsidence within the graben (Schweitzer and Kraatz, 1982; Trunkó, 1984; Ziegler, 

1992).  

The URG shows an asymmetric setting with larger displacement at the eastern graben margin (Illies, 

1972; Eisbacher and Fielitz, 2010). Due to a complex fault block structure within the graben and varia-

tions in displacement, lithological changes are common and an irregular graben floor is developed (Il-

lies, 1972; Trunkó, 1984).  

The URG evolution is marked by repeated stress field changes, for example in Oligocene and Miocene 

(Illies, 1972; Trunkó, 1984; Schumacher, 2002). In the Pliocene, the URG was reactivated again, result-

ing in strike-slip movements from changes in the regional stress field (Illies and Greiner, 1978; 

Schumacher, 2002). The shear components led to reactivations of primary normal faults as oblique-

reverse faults in particular at the eastern graben margin (Illies, 1972; Ziegler, 1992). The recent stress 

field provides a strike-slip stress regime parallel to the graben axis as well (e.g., Ziegler, 1992, and 

references therein; Schumacher, 2002; Heidbach et al., 2008).  

Our study area, the Kraichgau Syncline (Fig. 5.1), is located on the eastern graben shoulder of the 

URG and part of the Franconian-Syncline (Walter, 2007). This syncline belongs to a system of ENE-

WSW trending intramontane basins, which developed during the Stephanium and Early Permian due 

to reactivations of Variscan structures (Schumacher, 2002; Ziegler and Dèzes, 2005). In context of the 

URG tectonics the Kraichgau Syncline was mildly uplifted compared with the adjacent highs of Oden-

wald and Black Forest on the eastern graben shoulder (Schweitzer and Kraatz, 1982; Engesser and 

Leiber, 1991). Various fault zones crosscut the Kraichgau Syncline with preferred orientations of SSW-

NNE, SW-NE and NW-SE (Trunkó, 1984).  

The Middle Triassic Muschelkalk, divided into Lower, Middle and Upper Muschelkalk, has a total thick-

ness of 200 m to 230 m. The succession is composed of alternating carbonates and evaporates 

(Schweitzer and Kraatz, 1982; Engesser and Leiber, 1991). These alternations are the results of sea-

level-changes during their deposition in the epicontinental sea (Engesser and Leiber, 1991). 

The Lower Muschelkalk shows a total thickness of approximately 75 m to 78 m and comprises car-

bonates, i.e. limestones, marly limestones, marls and dolomites, which were deposited under shallow 

marine conditions (Schweitzer and Kraatz, 1982; Engesser and Leiber, 1991). The thickness of Middle 

Muschelkalk rocks is varying but shows a maximum of 100 m (Engesser and Leiber, 1991; Eisbacher 

and Fielitz, 2010). These alternating carbonates and evaporites (dolomite, gypsum, anhydrite, rock 

salt) were formed under a shallow marine environment in a marine basin that repeatedly became iso-

lated and experienced significant evaporation. Leaching of these evaporates has led to the aforemen-

tioned thickness variations, and only residual clay is commonly present (Engesser and Leiber, 1991). 

The 85 m to 100 m thick formation of the Upper Muschelkalk can be further subdivided into three 

main subunits, named as Trochiten-Kalk (mo1), Nodosus-Schichten (mo2) and Semipartitus-Schichten 

(mo3). They are characterized by micritic limestones, which are low on fossils, alternating with fossil-
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rich carbonates, marls and clay (Schweitzer and Kraatz, 1982; Engesser and Leiber, 1991). Deposition 

has been ascribed to a shallow marine environment characterized by changing water conditions (mi-

critic limestones versus tempestites; Schweitzer and Kraatz, 1982; Engesser and Leiber, 1991). 

 Field studies 

To obtain information on fault-zone infrastructures, well exposed fault zones with distinct fault zone 

units are needed. The selected quarries, where the Muschelkalk rocks are crosscut by various fault 

zones, are located in the northern and southern part of the Kraichgau Syncline (Fig. 5.1). The Nussloch-

quarry is situated near the URG master-fault, whereas the Illingen-quarry shows the maximum dis-

tance of approximately 30 km to the graben margin. Due to the tectonic history of the study area, 

including changes in the regional stress field resulting in reactivations (cf., Section 5.2 and 5.5.1), the 

fault zones are of different types and show various displacements (cf., Table 5.1; Section 5.5.1). The 

damage zones of some main fault zones include minor faults, as is expected by progressive fault growth 

(e.g., Childs et al., 2009). 

To characterize the fault zone infrastructures, we determined the thicknesses and lithological fea-

tures of the fault cores as well as the damage zone characteristics (damage zone widths and properties 

of the fracture systems within the damage zones; see below). According to previous studies we define 

the boundary between fault core and damage zone as the boundary between faulted rock (e.g., fault 

gouge or breccia, lenses, dragged bedding) and pronounced original bedding where the fracture den-

sity is higher than the background density (cf., Braathen et al., 2009; Bastesen and Braathen, 2010; 

Bastesen et al., 2013; Schueller et al., 2013). 

Cinematically and mechanically, fractures can be distinguished in extension fractures and shear frac-

tures, depending on their relative movement to the fracture plane (Fossen, 2010; Gudmundsson, 

2011). Extension fractures show a relative movement normal to the fracture plane (opening/extension 

mode, for example joints and veins) and shear fractures in direction parallel to it (shear modes: e.g., 

Twiss and Moores, 2007; Gudmundsson, 2011). Since there is not always the possibility to obtain clear 

evidence for fracture kinematics in the field, we use the general term fracture for a surface across 

which the rock has lost cohesion. 

Table 5.1: Analysed fault zones. The fault zone types refer to the reflections in the discussion (Section 5.5.1). 

quarry number of fault zones fault zone type displacement 

Nussloch (NL) 1 
normal fault zone with  

associated minor fault 

~40 m,  

minor fault unknown 

Knittlingen (KN) 1 reactivated reverse fault zone unknown 

Knittlingen (KN) 2 
normal fault zone, 

reactivated as reverse fault 
~4 m 

Illingen (IL) 1 
oblique-slip fault zone  

with minor fault 

horizontal unknown,  

vertical ~0.15 m,  

minor fault unknown 

Illingen (IL) 1 normal fault zone 0.30 m 

Illingen (IL) 1 reverse fault zone 0.57 m 

Ittlingen (IT) 1 normal fault zone ~3 m 

    
To determine the damage zone width, the fracture density distribution (number of fractures per unit 

length) normal to the slip surface was detected, if possible, in several limestone beds of these lime-

stone-marl-alternations, using the scanline-method (e.g., Priest and Hudson, 1981; Berg and Skar, 

2005; Micarelli et al., 2006b). The selected limestone beds are well exposed and traceable over several 
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meters. In rare cases of covered beds, we used beds with comparable thicknesses for continued scan-

lines. Each scanline starts at the boundary of the fault core and damage zone (the fault core thickness 

was measured at this zero point) and runs towards the damage-zone-/host-rock transition of the hang-

ing wall and footwall, except for the scanline across the Illingen oblique-slip fault (cf., Sections 5.4.1 

and 5.4.2 – IL). Additional scanlines within the undisturbed host rock give information on background 

fractures. We define the outer boundary of the damage zone as the point where the fracture density 

clearly decreases towards background fracturing (e.g., Childs et al., 2009; Schueller et al., 2013). Be-

sides the fracture orientations (strike direction and dip angle), the properties of each fracture within 

the defined fault zone units were examined as follows.  

One important fracture parameter in terms of reservoir permeability is the fracture aperture. Few 

open fractures with larger apertures may enhance the permeability, because the flow rate depends on 

the cube of the fracture aperture (cubic law; De Marsily, 1986; Odling et al., 1999) and fluid flow may 

be channelled along the widest parts of a fracture (Odling and Roden, 1997; Philipp et al., 2013, and 

references therein). We show the maximum values of fracture apertures, that is the maximum fracture 

dimension measured perpendicular to the fracture walls (Philipp et al., 2013). However, we have to 

consider that measurements under surface conditions are not directly applicable for permeability cal-

culations for example due to uplift induced expansion and erosion as well as weathering effects such 

as karstification. It is intended that our measurements provide indications for fracture aperture distri-

butions within fault zones, but no absolute values. 

Additionally, it is necessary to distinguish between open fractures and fractures sealed with mineral 

precipitations. Open fractures include no filling material between the fracture walls (Nelson, 1985). 

We name fractures showing mineral precipitations, for example deposits of calcite or silica, mineral-

ized fractures. They are indicators for past fluid flow, whereas they could act as barriers for recent fluid 

flow in potential geothermal reservoirs (Nelson, 1985; De Marsily, 1986; Philipp, 2012). Thus, the frac-

ture orientations and distance to the fault core of mineralized fractures were noted during the field 

studies. Due to sealing of these fractures the fracture thickness was measured instead of fracture ap-

erture. 

Furthermore, the fracture system connectivity is of great importance in our investigation, because 

only interconnected fractures could form a hydraulically active fracture network (Stauffer and 

Aharony, 1994; Odling et al., 1999; Ortega and Marrett, 2000; Micarelli et al., 2006b; Philipp et al., 

2013). We distinguish between connected and unconnected fractures, that is, between fractures 

whose tips terminate against other fractures, and unconnected fractures with no visible connection. 

These observations indicate the degree of physical connection of the fracture system. 

Additionally, we take the fracture vertical extension into account. First, the fracture length was inves-

tigated as the distance of a straight line connecting the two fracture tips in vertical direction (also 

referred to as fracture height). Second, we considered how far the fractures propagate through the 

mechanically layered rocks, distinguishing ‘stratabound’ and ‘non-stratabound’ fractures (Odling et al., 

1999). Stratabound fractures are restricted to only one limestone bed. Non-stratabound fractures, 

however, expand across several beds and therefore may create a hydraulically relevant flow path be-

tween multiple layers.  
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 Field results 

In this section, first a short overview of the orientations of all analysed fault zones and of the fracture 

systems within the quarries is presented. Second, detailed results of fault-zone infrastructures and 

associated fracture system properties of selected, well exposed fault zones are shown to analyse their 

complex structures and discuss their most likely specific tectonic development. 

 Fault zone and fracture system orientations 

We show the orientation of the fracture system (all fracture data of fault zones and host rock) as well 

as the fault zone orientations within the quarries Nussloch (NL), Illingen (IL), Knittlingen (KN) and 

Ittlingen (IT) (Fig. 5.2; the colour code refers to the fault zone classifications in the discussion; Sec-

tion 5.5.1). Despite the Knittlingen-quarry exposes additional fault zones, we only present results of 

three fault zones due to the best accessibility in the outcrop.  

 
Figure 5.2: Orientation of fracture systems and fault zones (n = number of fractures) in the quarries Nussloch (NL), Illingen 

(IL), Knittlingen (KN) and Ittlingen (IT). Left: Symmetrical Rose Diagram (10°-classes), the fault zones are plotted as lines. Right: 

Schmidt Diagram, equal area projection, lower hemisphere. The fractures are marked by poles (black), the fault zones by 

great circles and poles. Colour code indicating fault zone type see key. These definitions refer to the reflections in the discus-

sion (Section 5.5.1). 

The analysed fault zones are formed parallel to regional structures of the URG and the Kraichgau 

Syncline in NNE-SSW- to N-S-direction, NW-SE-direction and E-W-direction. The individual fracture sys-

tems are clearly affected by the fault zones: main fracture sets are formed parallel or sub-parallel to 

the fault zone strikes, except for the Knittlingen-quarry, where a wider scatter in fracture orientations 

occurs.  

Since footwall and hanging wall show an asymmetric deformation behaviour resulting in different 

fracture patterns within these fault blocks (e.g., Berg and Skar, 2005; Reyer et al., 2012), detailed frac-

ture data are separated in fractures in footwalls versus fractures in hanging walls of the fault zones 

(Fig. 5.3; the colour code refers to the fault zone classifications in the discussion; Section 5.5.1). The 

main fracture set is developed parallel to the fault zone strike in almost all hanging walls. In the foot-

walls, however, the fracture sets are formed either sub-parallel to or exhibit an angle of approximately 
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30° to the fault zone strike. These fractures may be shear fractures (Riedel shears) associated with the 

fault zone. Some of these fractures, however, may be not directly fault-related, but rather background 

fractures associated with the main regional stress field. Differing fracture orientations within the de-

fined fault zone units are developed particularly in the Knittlingen-quarry. 

 
Figure 5.3: Fracture orientations of the fractures in footwall and hanging wall of the fault zones (FZ) analysed in Nussloch 

(NL), Knittlingen (KN), Illingen (IL) and Ittlingen (IT). Left: Symmetrical Rose Diagram (10°-classes), the fault zones are plotted 

as lines. Right: Schmidt Diagram, equal area projection, lower hemisphere. The fractures are marked by poles (black), the 

fault zones by great circles and poles. Colour code indicating fault zone type see key. These definitions refer to the reflections 

in the discussion (Sections 5.1.1. to 5.1.3.).  
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Figure 5.4 shows the fracture system orientation within the fault zone in Illingen. Due to the steep 

dip of this fault zone, we distinguish between eastern fault block, western fault block and fault core 

only. The fracture systems in the eastern and western fault blocks contain main fracture sets parallel 

to main and minor (western fault block) slip surfaces. Fractures with differing orientation in the eastern 

fault block are interpreted as background fractures associated with main regional structures. The main 

fracture set in the fault core is different with strike NNE-SSW. 

 

Figure 5.4: Fracture system orientation in the main fault zone in Illingen (IL) separated in eastern fault block, fault core and 

western fault block: Fault zone (FZ) 2 as main fault and FZ 3 as minor fault within the western fault block (marked by dashed 

lines). Left: Symmetrical Rose Diagram (10°-classes), the fault zones are plotted as grey lines. Right: Schmidt Diagram, equal 

area projection, lower hemisphere. The fractures are marked by poles (black), the fault zones by great circles and poles in 

each case (grey).  

 Detailed fault zone analysis 

Nussloch: The steep-dipping fault zone cropping out in the Nussloch quarry (northern Kraichgau; cf., 

Fig. 5.1) is hosted in parts of the entire succession of the Muschelkalk. The first slip surface (SP 1; NE) 

juxtaposes Middle Muschelkalk rocks, mainly residual clay and dolomite, and limestone-marl-alterna-

tions of the Lower Muschelkalk in the lower outcrop-level as well as Middle Muschelkalk rocks in the 

upper level. Another adjacent slip surface (SP 2; SW) juxtaposes these Middle Muschelkalk rocks and 

the Upper Muschelkalk (Fig. 5.5). A synthetic minor fault zone located in the hanging wall (Upper Mus-

chelkalk) intersects with this main slip surface SP 2. The triangularly shaped area embedded between 

the slip surfaces of main and minor fault is highly fractured at their intersection (named as fractured 

zone; Fig. 5.5b). 
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Figure 5.5: Field pictures of the analysed fault zone in the Nussloch-quarry (SP = slip surface, also referred to as slip plane). 

a) Outcrop overview. View S. b) Fault zone overview, fault zone parts 1 to 3 are shown in detail in the lower section. View SE 

(b1 and b3) or to NW, respectively (b2). The trace of the minor fault is marked by a dashed line. 

The up to 13 m wide fault core is embedded between the main slip surfaces and consists of inclined 

Middle Muschelkalk rocks and underlying Lower Muschelkalk rocks (Figs. 5.5 and 5.6). In general, this 

fault core comprises deformed rock, fault breccia and isolated host rock lenses, particularly at the fault 

core/hanging-wall-transition. In the Middle Muschelkalk part, grey coloured residual clay is dragged 

downwards in an s-shape. Minor slip surfaces within the fault core displace the rocks at several loca-

tions. At the fault core-hanging-wall-boundary the fault core is characterized by red-coloured, up to 

1.5 m wide mineralizations (Fig. 5.6).  
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Figure 5.6: Sketch and field picture of the analysed fault zone in the Nussloch-quarry (view W). See person for scale. Outcrop 

overview: Picture location is displayed by the grey ellipse, the fault zone trace by grey, and black lines (dashed lines - assumed 

fault zone trace). 

The fracture density distribution normal to the fault zone was examined in several scanlines. The 

highest fracture density occurs at contact to the slip surface (Fig. 5.7). However, there is no decrease 

to background fracturing with rising distance to the fault core. We assume that the outer damage zone 

boundary is not reached in the analysed fault zone section and that our measurements were exclu-

sively performed within the damage zone. Two scanlines cut the minor fault zone within the hanging 

wall damage zone and therefore their minor damage zone as well (Fig. 5.7b). 
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Figure 5.7: Fracture density distribution normal to the main fault zone in the Nussloch-quarry. a) Data from all scanlines in 

the footwall up to 3 m (left) and hanging wall up to 5 m (right) distance to the fault core. b) Overview-picture of the hanging 

wall including one minor fault zone (left, view SE; scanline locations are traced) and fracture density distribution in the longest 

profiles 1 and 2 (up to 16 m). These profiles cut the minor fault zone in the SW (marked by the red bar) and therefore their 

damage zone. In the grey labelled zones, the rock mass is destroyed or covered, not every fracture was detected individually.  

Illingen: The steep fault zone in Illingen shows slight changes in strike-direction (see above; Fig. 5.8). 

The quarry provides the possibility to study both the fault core in the south (Figs. 8a and 8b) and one 

slip surface in the north (Fig. 5.8c). Various structures are hosted on the undulating slip surface ex-

posed in the North such as slickenlines and slip fibers. Additionally, we observed limestone beds ro-

tated and truncated against each other (Fig. 5.8c). 

The fault core in the south, embedded within the two main slip surfaces, comprises fault breccias at 

contact to the main slip surfaces, limestone beds folded to an anticline in the upper center, flexures at 

contact to the western slip surface, and limestone lenses (Fig. 5.8a). Minor slip surfaces juxtapose the 

rocks at the bottom of the wall with a normal displacement of approximately 15 cm (Fig. 5.8b). The 

dip-direction and dip-angle of the bedding changes within the fault core, with a steeper angle towards 

the western main slip surface (Fig. 5.8b). Similar flexures are formed in the eastern fault block at con-

tact to the slip surface, whereas the bedding in the western fault block is more or less horizontal. The 

western fault block is crosscut by one minor fault zone. 
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Figure 5.8: Overview of the main fault zone in Illingen: Trace of main and minor fault zones are displayed by lines in the 

outcrop overview (colour code indicating fault zone type see key; these definitions are based on the reflections in the discus-

sion in Section 5.5.1; dashed lines – assumed fault zone trace). a) Fault core at the southern quarry border (view S). b) Detailed 

sketch of the lower fault core part with lower hemisphere projection of the poles (bedding). c) Field pictures of the exposed 

fault plane in the northern outcrop part (view W). 

Knittlingen: The low-angle fault zone in Knittlingen with unknown displacement because of lacking 

visible marker horizons shows various deformation structures in hanging wall and footwall in particular 

(Fig. 5.9). The most conspicuous structure in the footwall is a synthetic minor fault. Between main and 

minor slip surface thin and softer layers are folded, but the thick and competent bed underneath is 

broken and shows a counter clockwise rotation. Another noticeable structure in the footwall is one 

water-bearing antithetic discontinuity, which intersects with the aforementioned minor slip surface. 

The hanging wall, where a flexure is formed, is less deformed than the footwall. 

The fault core comprises various structures like lenses and both upwards and downwards dragged, 

tilted, and folded bedding. Other fault core parts are completely mineralized or comprise brecciated 

rock.  



5.4 Field results 

56 

 

 

Figure 5.9: Overview pictures and sketch of the described fault zone (FZ 1) cropping out in the Knittlingen-quarry (view NW). 

The sketch shows the soft and thin folded layers as well as the broken and rotated competent bed. 

One outcrop-level beneath, where decimetre-thick limestone beds crop out, a differing deformation 

behaviour is observable in the footwall. The competent beds are compressed, but not folded. In con-

trast, flexures occur in the hanging wall. The fault core in this fault zone part is brecciated and com-

prises discoloured zones. Some limestone beds are dragged upwards in the fault core, similar to the 

upper section of this fault zone. 

We determined the fracture density distribution normal to the fault zone (Fig. 5.10). Our results show 

no clear decrease to background fracturing with rising distance to the fault core. In addition to the high 

fracture density at contact to the slip surface an increased fracture density was detected at a distance 

of 2 to 3 m in the hanging wall.  
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Figure 5.10: Fracture density distribution normal to the described fault zone (FZ 1) in the Knittlingen-quarry. a) Data from all 

scanlines in the footwall up to 3 m (left) and hanging wall up to 4 m (right) distance to the fault core. b) Overview-picture of 

this fault zone (left, view NW; scanline locations are traced; scale: see folding rule expanded to 1 m) and fracture density 

distribution in the longest profile (right, up to 8.5 m). In the grey labelled zones, the rock mass is covered or destroyed, not 

every fracture was detected individually. 

 Fracture connectivity  

As mentioned in Section 5.3, the fracture connectivity is one important parameter in terms of reser-

voir permeability (Stauffer and Aharony, 1994; Odling et al., 1999; Micarelli et al., 2006b). We plot the 

fracture length versus fracture orientation (scale: 0° – 180°; Fig. 5.11), and fault core distance [m] 

(Fig. 5.12) respectively, where we distinguish between connected (connected at either one or both 

tips) and unconnected fractures. Some fractures are marked by a star, because only the minimum 

length could be detected when one fracture tip was visible.  

We plot the fracture length [m] of all fractures within the fracture systems vs. fracture orientation 

(Fig. 5.11a). In general, shorter fractures (up to a fracture length of 1 m) are more common within the 

quarries. Due to this huge number of comparatively shorter fractures, we show the data of fractures 

up to a fracture length of 1 m (Fig. 5.11b), in addition, to get a higher resolution on their fracture con-

nectivity. The percentage of fractures with great length is generally higher for fractures parallel or sub-

parallel to major slip surfaces and to regional structures (i.e. URG, axis of the Kraichgau Syncline).  

Most of the fractures are unconnected, whereby especially shorter fractures formed parallel to the 

fault zones provide a better connectivity within the fracture system. The highest percentage of inter-

connected fractures, and fractures connected at both fracture tips in particular, occurs within the 

Nussloch fracture system.  
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Figure 5.11: Fracture connectivity of the fracture systems in the quarries Nussloch, Illingen and Knittlingen (colour code see 

key; classified fracture types: percentage is shown for the entire dataset). Fracture length [m] vs. strike (scale: 0° – 180°). a) 

All fracture data. b) Fracture data for shorter fractures up to 1 m length. The fault zone orientations are marked by a grey 

line. Fractures, from which only the minimum length was determined because only one tip was visible, are labelled with a 

star.  

To show the connectivity of the fracture system within the fault zones, we plot the fracture length [m] 

and connectivity vs. fault core distance [m]. Individual long fractures are formed up to 6 m distance to 

the fault core of the fault zone in Nussloch, whereby the fracture length decreases with distance to 

this unit. Very few fractures (up to 0.5 m in length) are connected at both tips in the hanging wall of 

this fault zone, mainly up to a maximum distance of 3 m to the fault core (Fig. 5.12a). In the footwall 

fewer fractures with lengths up to 0.3 m are connected at one fracture tip. 

The fracture system within the fault zone in Illingen contains mostly unconnected fractures, apart 

from individual fractures in the eastern fault block (Fig. 5.12b). Within the separated fault zone units 

of the fault zone in Knittlingen some fractures show connectivity at one fracture tip (Fig. 5.12c). These 
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fractures, however, do not exceed a fracture length of 0.2 m, with one exception in the footwall 

(0.6 m). 

In general, the data show a decreasing fracture length with increasing distance to the fault cores but 

a better connectivity of fractures with lengths up to 0.5 m (Fig. 5.12). That implies an improvement of 

fracture system vertical connectivity based on these comparatively shorter fractures in the fault zone 

units, as mentioned above.  

 

Figure 5.12: Fracture connectivity of the fractures within the main fault damage zones (colour code see key): a) Nussloch. b) 

Illingen. c) Knittlingen. In the grey labelled zone, the rock formation is covered or destroyed, not every fracture was detected 

individually. The positions of fault core and minor fault zones are marked by dark-grey or by black dashed lines, respectively. 

Fractures, from which only the minimum length was determined because only one tip was visible, are labelled with a star. 

 Fracture vertical extension 

Fractures extending over multiple limestone beds (i.e. non-stratabound fractures) may increase the 

reservoir permeability across the mechanically layered Muschelkalk rocks in vertical direction. Strata-

bound fractures, however, are restricted to one bed (cf., Section 5.3.; Odling et al., 1999). Therefore, 

we plot the percentage of stratabound to non-stratabound fractures determined in the quarries sep-

arately for the unit’s fault zone and host rock and the same data in relation to the fault core distance 

of the detailed fault zones (cf., Section 5.4.2; Figs. 5.13b, 5.13d, and 5.13f). Due to isolated limestone 

beds within the fault core of the fault zone in Illingen and a resulting rare dataset compared with the 

other outcrops, the fracture system within this fault zone is separated to eastern fault block, fault core 

and western fault block (Fig. 5.13d). In Figure 5.13 the fault zone types refer to the definitions in the 

discussion (Section 5.5.1.). 

The percentage of non-stratabound fractures in the Nussloch-quarry is higher for all separated units, 

with a slightly increased value in the analysed fault zone and a lowest value in the host rock of Upper 
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Muschelkalk (HR mo, Fig. 5.13a). Within the fault zone, non-stratabound fractures clearly increase with 

proximity to the core zone (Fig. 5.13b). At the minor fault crosscutting the hanging wall of the main 

fault zone, the amount of non-stratabound fractures is enhanced in the minor fault hanging wall. 

 

Figure 5.13: Percentage of stratabound vs. non-stratabound fractures. a) Fracture data of the Nussloch-quarry separated to 

the main fault zone (FZ), host rock of the Lower Muschelkalk (HR mu) and of the Upper Muschelkalk (HR mo). b) Fracture 

data determined normal to the main fault zone in the Nussloch-quarry (cf., Section 5.4.2). c) Fracture data of the Illingen-

quarry separated to FZ 2 (main fault zone), FZ 1, and FZ 4. d) Fracture data determined normal to the main fault zone (FZ 2) 

in the Illingen-quarry (cf., Section 5.4.2) separated to eastern fault block (FB), fault core (FC) and western fault block. The 

percentage of fractures with no declaration in Illingen is marked by a shaded signature. e) Fracture data of the Knittlingen-

quarry separated in FZ 1, FZ 2, FZ 3 and host rock (HR). f) Fracture data determined normal to FZ 1 in the Knittlingen-quarry 

(cf., Section 5.4.2). The definition of stratabound and non-stratabound fractures is illustrated with a sketch (modified from 

Odling et al., 1999). The fault zone types refer to the reflections in the discussion (Section 5.5.1).  
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In contrast, the general percentages of stratabound fractures in Illingen and Knittlingen are higher 

(Figs. 5.13c and 5.13e), except for fractures within one fault zone in Knittlingen (FZ 3; Fig. 5.13e). The 

fault zone in Illingen contains a higher percentage of non-stratabound fractures within the eastern and 

western fault blocks, but a smaller value within the core zone of this main fault. 

Within one fault zone in Knittlingen, described in detail in Section 5.4.2 – KN (FZ 1), the percentage 

of stratabound fractures at contact to the fault core is high (Fig. 5.13f), particularly in the footwall. 

Non-stratabound fractures, however, increase in direction to the aforementioned antithetic disconti-

nuity crosscutting the footwall (cf., Section 5.4.2 – KN). 

 Mineralized and open fractures  

We show the fracture aperture data to describe the fracture aperture distribution within the fault 

zones. Preferred fracture orientations and fracture locations for past fluid flow are highlighted by re-

cording mineral-precipitations within the fracture system (cf., Section 5.3). We plot the fracture aper-

ture or thickness [mm] versus fracture orientation (Fig. 5.14, left) as well as the percentages of miner-

alized fractures (Fig. 5.14, centre). Finally, we plot the fracture aperture or thickness [mm] in relation 

to the fault core distance (Fig. 5.14, right). In all plots, we distinguish between mineralized and open 

fractures. Mineralized fractures with unknown thicknesses (e.g., due to only one visible fracture plane) 

are plotted with a fracture thickness of 0.1 mm in order to represent the fracture location in relation 

to the fault core distance. 

The fracture systems in the quarries Nussloch, Illingen and Knittlingen contain mainly open fractures. 

The highest amounts of mineralized fractures were observed in the host rock of the Upper Muschelkalk 

and within the damage zone of the main fault zone in Nussloch. In Knittlingen and Illingen a minor 

amount of mineralized fractures was detected, where the few mineralized fractures are developed 

mainly within the fault zones. 

In general, our data show a preferred orientation of fractures sealed with minerals parallel and sub-

parallel to the analysed fault zones and to regional structures like the URG, Variscan and Hercynian 

structures (Fig. 5.14), that is in NNE-SSW-, NE-SW- and NW-SE- direction. Fractures with comparatively 

larger apertures or thicknesses up to 4 mm (Illingen) are accumulated in these main directions as well. 

Several of these thicker fractures show mineral-precipitations, particularly in the Nussloch quarry 

(Fig. 5.14a).  

In all described fault zones, the fracture apertures or thicknesses decrease with increasing distance 

to the slip surfaces. By contrast, no clear relation between mineralization and fault core distance be-

comes apparent. In Nussloch and Knittlingen (Figs. 5.14a and 5.14c) many fractures located close to 

the fault core show mineralizations, but also at distance up to a few meters. In the Illingen oblique-slip 

fault zones (Fig. 5.14b), however, only few fractures, located in the fault core, are mineralized. 
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Figure 5.14: Mineralized and open fractures: a) Nussloch. b) Illingen. c) Knittlingen. Left: Fracture aperture and thickness 

[mm] vs. strike. The fault zone orientations are marked by a grey line. Centre: Percentage of mineralized fractures separated 

in fault zones and host rock (except for Illingen (b) due to the minor database). Right: Fracture aperture and thickness [mm] 

in relation to the fault core distance [m], the positions of fault core and minor fault zones are marked by dark-grey or by black 

dashed lines, respectively. The positions of mineralized fractures with unknown aperture are marked by open stars.  

 Discussion 

 Kinematics and tectonic evolution of the fault zones 

The described fault zones show different geometric features and dissect this area in different blocks. 

In this section, we aim at explaining the evolution of the analysed fault zones, regarding to the different 

stress field phases and interpreting fault zone kinematics. 
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Schumacher (2002) discusses the evolution of the URG within a changing regional stress field envi-

ronment in detail and names four main evolution phases: 

1. Late Eocene: N-S- to NNE-SSW-oriented compression (σ1-direction: NNE) resulting in left lateral 

strike-slip. Primary ENE-WSW- and NNE-SSW- oriented faults were reactivated as normal faults or 

strike-slip faults, respectively. 

2. Early Oligocene: WNW-ESE- to E-W-oriented extension (σ3-direction: WNW) within the main rifting 

phase with regional normal faulting. 

3. Late Oligocene: NE-SW-oriented compression (σ1-direction: NE) resulting in right lateral strike-slip 

(also reactivation of URG-parallel faults as right lateral strike-slip faults).  

4. Miocene (to recent): NW-SE-oriented compression (σ1-direction: NW) resulting in left-lateral 

strike-slip. 

Beside extensional and shear induced elements, structures indicating a compressional regime in the 

study area also are described in previous studies. Illies and Greiner (1978) for example mention pri-

mary normal faults of the eastern graben rim, which had been overprinted by younger reverse faults 

and small scale up-thrusts are described formed north of Karlsruhe (Ziegler, 1992). 

The fault zones analysed in the present study reflect the aforementioned stress field changes and are 

clearly related to the formations of main regional structures, in particular URG and Kraichgau Syncline. 

Like the URG, the Kraichgau Syncline consists of a block mosaic, separated by various fault zones, 

caused by extension, left lateral strike-slip or compression within the stress field of the URG formation 

(e.g., Kleinschnitz and Engesser, 2009, and references therein). 

Nussloch: We define the Nussloch fault zone as a normal fault zone with a total displacement of at 

least 40 m, distributed on step faults. This extension structure is located close to the graben master 

fault and most probably part of a fault system described in literature: Kleinschnitz and Engesser (2009) 

mentions a stepwise fault zone induced subsidence of the Kraichgau east of Nussloch. One of these 

fault zones crosscutting the Kraichgau east of Nussloch juxtaposes the Upper Muschelkalk and the 

Lower Muschelkalk formation. Both strike direction (NW-SE) and displacement coincide with the ana-

lysed Nussloch normal fault zone. The stress field of this normal fault zone formation is in good accord-

ance with the stress field characterized by left-lateral strike-slip and NE-SW-extension in Miocene (cf., 

Schumacher, 2002). 

Illingen: Based on the flexures in the fault core and the eastern fault block at contact to the main slip 

surfaces of the Illingen fault zone (southern quarry-part) we assume a step fault induced normal dis-

placement from western towards eastern fault block. Due to the exposed slickenlines which show a 

strike-slip and a dip-slip component (northern quarry-part) and the minor slip surfaces within the fault 

core (southern quarry-part) we define the Illingen fault zone as an oblique-slip fault zone. The afore-

mentioned structures and the high deformation grade of the slip surface exposed in the North indicate 

also a reactivation of the fault zone.  

We assume that the tectonic elements within the Illingen quarry are affected by a strike-slip regime, 

but also by E-W-extension, probably caused by σ1 oriented NNW-SSW, resulting in the formation of 

the main oblique-slip fault zone. Due to the orientation, parallel to the URG, this fault zone can be 

linked to the regional stress field of the URG. Beside the normal dip-slip component within the main 

oblique-slip fault zone another extension induced structure occurs in the formation of one NNE-SSW-

oriented normal fault zone. We define a third fault zone as an ENE-WSW-oriented reverse fault zone 

due to exposed markers which indicate a reverse displacement and therefore a compression induced 
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structure. The associated stress fields of fault zones formation and reactivation are in-line with the 

regional stress field in late Eocene or Oligocene (cf., Schumacher, 2002). 

Knittlingen: Both extension and compression structures are exposed in Knittlingen and indicate a 

complex local tectonic history. Compression induced structures, i.e. reverse faults and folds (particu-

larly flexures) are the most prominent structures in this quarry.  

The rock formation within the characterized fault zone (FZ 1) in Knittlingen shows a high deformation 

grade. We assume repeated slip events on the fault plane and a formation of this fault zone by fault 

linkage within these rocks characterized by alternating mechanical properties. Fault linkage could ex-

plain the variety in fault core characteristics along the fault plane (lenses, tilted bedding or fault brec-

cia) (Bastesen et al., 2009; Childs et al., 2009; Bastesen and Braathen, 2010; Bastesen et al., 2013). 

Flexures in the hanging wall indicate a main upward movement of this fault block. Furthermore, flexure 

monoclines of softer limestone and marl beds as well as one broken and rotated competent bed hosted 

in the footwall are clearly caused by compression, where different mechanical properties of limestone 

and marl obviously have led to different deformation of the limestone beds.  

However, it seems that this fault zone was subjected to an extensional regime to a minor degree since 

some fault zone parts locally show extension structures (downward tilted bedding at contact and 

within the fault core). We propose a partially reactivation of this fault zone due to changes in dip angle 

where some fault core parts (probably with lower dip angle) were reactivated first. However, compres-

sional structures predominate and thus we characterize this fault zone as reactivated reverse fault 

zone. Within this quarry, additional structures of compressive deformation occur in form of flexure 

monoclines (strike direction NW-SE), which show beginning fracturing and fault development along 

the axial surface (fold propagation fault). 

Two other exposed fault zones (strike direction: NW-SE) show both a normal displacement and com-

pressional structures like flexures or compressed limestone beds indicating a reactivation (inversion) 

of these primary normal faults.  

A changing local stress field is common in regions characterized by a complex fault block structure 

due to rotation of σ1-direction at fault zones. The formation may be related to the regional stress field 

of the URG in Miocene (cf., Schumacher, 2002) with slight changes of the local stress field. It is, how-

ever, difficult to classify the local stress field at fault zone formation and reactivation. The fracture 

system, characterized by a wide scatter in fracture orientation, is affected by this complex local stress 

field as well. 

 Past Fluid flow 

Mineralized fractures and mineralizations within fault zones crosscutting the study area are described 

in several previous studies. Illies (1972) mentions tertiary mineral veins (e.g., barite, fluorite and vari-

ous ore minerals), which are developed at both graben shoulders as consequence of mineralization 

through open fissures, but absent within the graben fill due to a differing stress regime. In addition, 

Eisbacher and Fielitz (2010) refer to NW-oriented fault zone and fractures, which are sealed by miner-

alizations.  

Our data show that fractures formed in this NW-SE-direction are mineralized within the fracture sys-

tems of the studied quarries as well, particularly in the Nussloch-quarry. Furthermore, mineralized 

fractures accumulate in directions parallel and sub-parallel to the graben master fault and may there-

fore be related to the graben formation. 
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In the present study, the comparatively high amount of mineralized fractures within the Nussloch-

quarry is conspicuous. We conclude that these mineralizations may be connected to the formation of 

the well-known Pb-Zn-deposit of Wiesloch (e.g., Walter, 2007; Kleinschnitz and Engesser, 2009), which 

is located close to the Nussloch-quarry. This Pb-Zn-deposit was formed in context of the URG develop-

ment, as hydrothermal metal-bearing fluids circulated through the fractures and faults (Kleinschnitz 

and Engesser, 2009). 

 Past fluid flow with regard to fault zone permeability evolution 

The permeability structure within fault zones and thereby associated fluid flow is changing during 

fault zone evolution and depends on their individual infrastructure (e.g., Caine et al., 1996; Agosta and 

Kirschner, 2003; Billi et al., 2003). The fault core of active faults zones may act as a conduit for fluid 

flow, if fractures or pores get interconnected during slip, whereas this unit acts as a barrier in inactive 

fault zones due to reduced grain sizes (cf., Section 5.1; e.g., Sibson, 1994; Caine et al., 1996).  

Billi et al. (2003) discuss fault zone permeability development during their evolution in carbonate 

rocks in detail, including the following two main stages. First, they define a conduit stage, which pre-

cedes the formation of the fault core. When fracturing starts, the fault zone permeability increases 

and the fault zone acts as a self-enhancing conduit. In the second stage, the fault zone permeability 

structure is changing, due to the beginning of particle rotation and particle fracturing. The fine-grained 

matrix increases within the particle population and reduces the fracture connectivity and permeability 

(Billi et al., 2003; Micarelli et al., 2006a). As a result, the fault core starts to seal and may become a 

barrier for fluid flow. Fluid flow is limited to the fault damage zone at this stage, particularly in prox-

imity to the fault core, where the rock is still highly fractured (Billi et al., 2003).  

This evolutionary model of fault zone permeability is applicable to our study. The fault cores of all 

analysed fault zones show mineralizations and therefore signs of fluid flow within this fault zone unit, 

independently of their type, particularly the up to 1.5 m wide mineralizations at the fault core-hanging-

wall-boundary in Nussloch. Both fractures within the fault core (Illingen oblique-slip fault zone) and 

the whole fault core unit of smaller scale fault cores (Knittlingen reactivated reverse fault zone) are 

sealed by minerals as well. Additionally, red coloured areas and zones of discolorations indicate fluid 

flow within the fault cores in Nussloch and Knittlingen.  

During fault zone evolution, this fluid flow, but also a grain size reduction, led to sealing of the fault 

cores and barrier formation within this fluid circulation system. As proposed by Billi et al. (2003) we 

assume that fluid flow was then localized within the fault zone damage zones characterized by an en-

hanced fracture density. In the present study, several fractures are sealed with minerals within this 

unit, particularly with orientations parallel and sub-parallel to the fault zones. 

 Fracture system characterization within the fractured reservoir 

In order to enable fluid flow in a fractured reservoir, the fracture system and the individual beds have 

to be hydraulically connected (e.g., Odling et al., 1999; Ortega and Marrett, 2000; Micarelli et al., 

2006a; Micarelli et al., 2006b; Reyer et al., 2012). Previous studies show enhanced percentages of in-

terconnected fractures within damage zones and an increase in fracture connectivity from the proto-

lith-damage zone boundary towards the fault plane (Micarelli et al., 2006a; Agosta et al., 2010). De-

spite our data show that most of the fractures are not connected with other fractures at fracture tips 

we conclude improved fracture vertical connectivity in proximity to slip surfaces of the fault zones, 

particularly caused by comparatively shorter fractures up to a length of 0.5 m. The Nussloch normal 

fault zone with a displacement of some tens of meters, which was formed under an extensional regime 
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in context of the URG and Kraichgau tectonics, exhibits the best fracture connectivity within the dam-

age zone fracture system of all analysed fault zones since fractures connected at both fracture tips are 

included in particular.  

It has long been recognized that the average 

fracture density in thinner beds is typically 

higher compared with thicker beds due to the 

formation of a stress shadow (Hobbs, 1967; 

Narr and Suppe, 1991; Gross et al., 1995; Van 

der Pluijm and Marshak, 2004). In general, our 

data show a similar behaviour, with highest 

fracture densities in comparatively thinner lime-

stone beds. Figure 5.15 exemplary shows the 

bed thickness [cm] versus fracture density 

(number of fractures per meter) of all fracture 

data in Nussloch, separately for fault zone and 

host rock. In addition, we observe that lime-

stone beds with similar thicknesses show higher 

fracture densities within the fault damage zone compared with the host rock. As proposed in previous 

studies (Caine et al., 1996; Berg and Skar, 2005; Micarelli et al., 2006a; Reyer et al., 2012), we observed 

a further enhanced fracture density in proximity to the slip surface. Thus, the probability of the for-

mation of interconnected fractures in horizontal direction increases in this fault zone part.  

Our data generally show the significance of mechanical layering for fracture propagation and fracture 

arrest at contacts, as shown in several previous studies (Narr and Suppe, 1991; Odling et al., 1999; 

Gross and Eyal, 2007; Larsen et al., 2010; Reyer et al., 2012; Boro et al., 2013; Philipp et al., 2013; Afşar 

et al., 2014). Reyer et al. (2012), for example, propose that the number of stratabound fractures is 

generally higher in mechanically layered sedimentary rocks, which are characterized by abrupt litho-

logical changes (Narr and Suppe, 1991; Gross et al., 1995), such as the Lower Muschelkalk of the North 

German Basin, compared with more homogeneous units. The mechanical layering of these limestone-

marl-alternations affects the fracture propagation and fracture arrest respectively due to stiffness var-

iations and stress field changes (Gross and Eyal, 2007; Larsen et al., 2010; Reyer et al., 2012). For ex-

ample, Larsen et al. (2010) and Philipp et al. (2013) describe the effects of fracture arrest at contacts 

such as stylolithes, zones of multilayers, welded layers, and cavities which induce a mechanical layering 

that does not coincide with clear lithological changes. In the limestone-marl-alternations of the Middle 

Triassic Muschelkalk, however, the mechanical contrasts match with lithological contacts: stiff lime-

stone beds alternate with soft marl layers. Despite this effect of mechanical layering is obvious, non-

stratabound fractures may be formed as result of linkage processes of pre-existing fractures induced 

by faulting (Agosta et al., 2010). Therefore, we focus on the distribution of non-stratabound fractures 

in relation to the fault core distance for further reservoir characterization in the present study and 

summarize fracture data of all scanlines, neglecting the limestone bed thicknesses.  

Our data of the Knittlingen-quarry show that the comparatively thick marl layers (ca. 10 cm) which 

induce a strong mechanical layering clearly act as stress barriers for fracture propagation. Many frac-

tures become arrested at contacts to marl layers due to the changing stress field, regardless of the 

fracture locations (close to the slip surface or at distance). 

Figure 5.15: Nussloch-quarry: Bed thickness [cm] vs. fracture 

density [fracture count m-1], separately for fault zone and host 

rock. 
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In both other quarries (marl thickness 0.5 

to 2 cm) a better connectivity between 

multiple limestone beds is caused by non-

stratabound fractures, particularly at con-

tact to the fault core in the Nussloch-

quarry, where the fractures propagate 

across the thinner marl layers in the more 

homogenous rock formation. Therefore, 

we assume that the effects of mechanical 

layering on fracture propagation in fault 

zones are significant.  

Philipp et al. (2013) propose that diage-

netic processes (cementation, pressure solution, mechanical compaction) in reservoirs lead to stiffness 

homogenizations of adjacent layers where a formerly mechanically layered succession may behave 

mechanically as a single layer. Thus, this effect is of particular importance for fracture propagation and 

permeability in a fractured reservoir and should be taken into account.  

In general, our data show that the possibility of interconnected fracture formation increases with 

increasing fracture densities in proximity to the fault core, particularly in more homogenous rocks. The 

reservoir permeability is enhanced by the development of hydraulically active pathways across several 

beds (non-stratabound fractures) to a higher degree compared with the improvement caused by the 

formation of fractures interconnected at the fracture tips. 

The best fracture induced reservoir permeability in the present study is proposed for the Nussloch 

normal fault. The enhanced permeability in this normal fault is caused by a high percentage of non-

stratabound fractures, which may provide a hydraulically active pathway across several limestone beds 

(e.g., Odling et al., 1999) and supported by improved fracture vertical connectivity. 

 Permeability implications on the analysed fracture systems 

Open fractures are of particular importance in terms of reservoir permeability. In the present study, 

many fractures remained open. These open fractures are potential pathways for recent fluid flow in 

fractured reservoirs associated with the characterized fault zones.  

As an extension of the cubic law (cf., Section 5.3) we use calculations of the hydraulic conductivity 

|�[m s-1] for sets including parallel and open fractures [m s-1] after Bear (1993; Eq. 5.1) to show fracture 

orientations of fractures which enhance the permeability of the fracture system: 

|� 9 ��∙a
;8�∙R Z∑ �Gg̀�; @  [m s-1],  Eq. 5.1 

where ]�is the fluid density [kg m-3], � the acceleration due to gravity [m s-2], μ the dynamic viscosity 

[Pa s], M the profile length [m] and � the fracture aperture [m].  

Since fracture data of surface measurements in the outcrop analogues are used for our calculations, 

for fluid reservoirs we have to consider that fracture parameters change with increasing depth, result-

ing for example in reduced fracture apertures and densities (Lee and Farmer, 1993). Therefore, we aim 

at highlighting fracture orientations with enhanced permeabilities, but no absolute values. 

We show permeability calculations based on the surface measurements exemplary for the quarries 

Nussloch and Knittlingen. We conclude that increased fracture frequencies in the damage zones and 

larger fracture apertures parallel and sub-parallel to fault zone strike and to regional structures like 

Figure 5.16: Based on surface measurements calculated hydraulic 

conductivity (��-value) [m s-1]: a) Nussloch. b) Knittlingen. The fault 

zone orientations are marked by grey lines.  
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the URG and Variscan structures may lead to enhanced permeability compared with other orientations 

(Fig. 5.16). 

We propose that surface data may be used for estimations of fault zone characteristics at depth. 

Several fault zone and fracture system characteristics or at least relationships should be applicable to 

reservoir conditions. Also at depth the fracture density would be enhanced at contact to the slip sur-

faces. Furthermore, we assume that the distribution of fractures with largest apertures at contact to 

the slip surface and parallel and sub-parallel to fault zone strikes remains the same. Thus, estimations 

on reservoir permeability are generally possible based on surface measurement in outcrop analogues. 

In order to obtain realistic permeability estimations, it is essential to vary fracture-system parameter 

such as aperture and density to adapt these parameters to reservoir conditions in further investiga-

tions. The received fracture data of the present study serve as a basis of future numerical models for 

example of fluid and heat transport in fault zones. 

 Conclusion  

Based on outcrop analogue studies of eight fault zones crosscutting limestone-marl-alternations of 

the Middle Triassic Muschelkalk in the Kraichgau Syncline (Southwest Germany) we conclude: 

1. Fault zone formation and reactivation in the Kraichgau Syncline is clearly affected by regional stress 

field changes of the Upper Rhine Graben development. Fault zones and associated main fracture 

sets have orientations similar to prominent regional structures, such as the NNE-SSW-oriented 

oblique-slip fault zone parallel to the URG or the NW-SE-oriented normal fault zone parallel to the 

step faults which induced the subsidence of the Kraichgau Syncline. 

2. Fractures extending across multiple limestone beds of the exposed limestone-marl-alternations 

may create pathways for fluid flow across these beds in the reservoir, but different mechanical 

properties of limestone and marl obviously also affect fracture propagation. An enhanced fracture 

density and fracture connectivity of shorter fractures within the fracture system in the fault dam-

age zones at contact to the fault core may improve reservoir permeability. 

3. Increased fracture frequencies in fault damage zones and largest fracture apertures in direction of 

fault zone strike and of prominent regional structures may lead to enhanced permeability com-

pared with other orientations. Fractures formed in these directions which are sealed by minerals 

as well as mineralizations within fault cores indicate hydraulic activity during fault zone evolution. 

4. The fault damage zones in the Middle Triassic Muschelkalk may be potential drilling targets of 

geothermal wellbores in the adjacent Upper Rhine Graben although in many cases the hydraulic 

connectivity of the natural fracture network may need to be improved. Well-developed fault cores 

may be potential barriers for fluid flow in inactive fault zones. 
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Highlights: We test the potential of outcrop studies in exploration for geothermal energy.  

Essential reservoir parameters are compared in outcrop and well data. 

Because important reservoir parameters strongly differ they are not predictable. 

Such studies have limited potential for geothermics in complex faulted areas. 

 

Abstract 

Minimizing exploration risk in deep geothermics is of great economic importance. Especially, 

knowledge about temperature and permeability of the reservoir is essential. We test the potential of 

an outcrop analogue study to minimize uncertainties in prediction of the rock properties of a fractured 

reservoir in the Upper Rhine Graben. Our results show that although mineralogical composition, clay 

content, grain size, and fabric type are basically comparable, porosity and quartz cementation are not. 

Young’s Modulus, as observed in the outcrop closest to the reservoir is about twice as high (~64 GPa) 

as observed in the reservoir (~34 GPa). Most importantly, however, the parameters that describe the 

fracture system, which are essential to predict reservoir permeability, differ significantly. While the 

outcrops are dominated by perpendicular fracture sets (striking NE-SW and NW-SE), two different con-

jugate fracture sets (striking NW-SE and N-S) occur in the reservoir. Fracture apertures, as reported 

from the FMI, are one order of magnitude wider than in the outcrop. We conclude that our outcrop 

analogue study fails to predict important properties of the reservoir (such as permeability and poros-

ity). This must be in part because of the tectonically complex setting of the reservoir. We propose that 

analogue studies are important, but they must be treated with care when attempting to predict the 

controlling parameters of a fractured reservoir.

                                                           
3 This Chapter is largely identical to the article entitled „Bauer, J.F., Krumbholz, M., Meier, S., Tanner, D.C., 2017. 

Predictability of properties of a fractured geothermal reservoir: The opportunities and limitations of an outcrop 

analogue study. Geothermal Energy 5 (1), 24.” 
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 Background 

The most essential requirements for a geothermal reservoir are sufficient temperature and permea-

bility (e.g., Jung et al., 2002; Paschen et al., 2003; Schulz et al., 2009; Schulz, 2011). Whereas the geo-

thermal gradient for a given region is commonly constrained to a sufficient degree, estimates of po-

rosities, fracture systems, permeabilities, and therefore the achievable convective heat flow in a 

planned fractured reservoir are subject to large uncertainties (Domenico and Palciauskas, 1973; 

Agemar et al., 2012). Permeability provided by barren fractures, commonly referred to as structural 

permeability (e.g., Sibson, 1996; Jolie et al., 2015), and thus the convective heat flow, may be substan-

tially increased in fault-related reservoirs by locally enhanced fracture intensities and therefore create 

prime targets for geothermal exploration (Paschen et al., 2003; Jung, 2007; Vidal et al., 2016). How-

ever, estimating the potential of a fractured hydrogeothermal reservoir is a major problem. This is 

because of the limited amount of data available to estimate the permeability in the subsurface and 

thus to predict achievable flow rates for geothermal power exploitation (at least 20 kg s-1 MW-1, Franco 

and Villani, 2009). Permeability values are typically at best restricted to a small number of existing 

wells close to the envisaged reservoir and not necessarily representative of larger volumes. It is thus 

inherent that the quality of predictions made on reservoir properties largely depends not only on the 

distance between exploration wells in the reservoir, but also on the heterogeneity of the latter 

(e.g., Müller et al., 2010; Fitch et al., 2015). This holds particularly true for fluvial sedimentary rock 

sequences that are characterized by frequent changes of rock properties, both laterally and vertically 

(Morad et al., 2010). This is the case for the Lower Triassic (Buntsandstein) in the Upper Rhine Graben 

(URG), where lithostratigraphic correlations are further complicated by a complex system of fault block 

tectonics (Boigk and Schöneich, 1970; Sauer et al., 1982; Villemin et al., 1986).  

Predictions of heterogeneities on a larger scale from point information such as borehole logs have 

therefore large uncertainties. Geophysical methods, such as 2D or 3D reflection seismics, in contrast, 

provide continuous spatial information, which can be used to image large structural geological heter-

ogeneities, such as faults. Due to their resolution, however, they can only provide limited data on 

small-scale structures such as fractures. 

One common approach to reduce the observational gap between well and seismic data is to include 

outcrop data into the exploration strategy (Chesnaux et al., 2009; Philipp et al., 2010; Howell et al., 

2014; Reinecker et al., 2015). The advantages of this approach are that, if good outcrops exist, lateral 

as well as vertical heterogeneities of rock- and fracture-system properties can be observed in detail. 

These properties are challenging or even impossible to sample adequately using borehole logs and in 

general they are invisible to seismics.  

An outcrop will always be different from its subsurface analogue, even if it exposes age-equivalent 

rocks, since it must have experienced a different burial/uplift history and thus different diagenetic 

conditions. In addition, outcrops are not always available in the desired size, quality, and/or quantity.  

Consequently, the resolution of the different methods used to analyse a reservoir needs to be scaled 

accordingly. For instance, the scale of observation is important with respect to fracture orientation. 

While (sub)recent microcrack orientations are commonly consistent over large volumes (e.g., 

Vollbrecht et al., 1994; Krumbholz et al., 2014a) and therefore predictable, larger fractures have usu-

ally a more complex history and thus exhibit more variable systematics. A direct implication is that the 

strength of the rocks is also scale dependent (Krumbholz et al., 2014b). 

However, outcrop studies only provide limited 2D/3D information and it is necessary for the observed 

rock properties to be corrected to be comparable with the conditions at reservoir depth. In addition, 
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the deformation history of the target formation may be different from that of the outcrop. For in-

stance, faults at depth may juxtapose rock units, but possibly not in the outcrop. 

The structural permeability provided by fractures (joints and faults) may vary locally within several 

orders of magnitude. Numerous studies have shown that the fracture intensity in a fault zone often 

increases towards the fault core, and with increasing fault displacement (e.g., Hull, 1988; Faulkner et 

al., 2011; Reyer et al., 2012; Shipton et al., 2013). Thus, damage zones of large-scale fault zones are 

prime targets for geothermal exploration. When evaluating fault properties, it is, however, crucial to 

take into account that (1) faults and fault zones may act either as conduits, barriers, or as combined 

conduit-barrier systems for fluid flow (e.g., Chester and Logan, 1986; Caine et al., 1996; Evans et al., 

1997; Farrell et al., 2014) and (2) that the characteristics of faults and brittle fault zones can vary con-

siderably, even on small spatial scale (e.g., Caine et al., 1996; Schulz and Evans, 2000; Faulkner et al., 

2010; Laubach et al., 2014). Consequently, reliable prediction of the structural inventory of faults and 

its hydrological impact on the planned geothermal reservoir is crucial. Given the amount of parameters 

needed to be investigated to predict the properties of fractured and fault-related reservoirs, careful 

selection of outcrop analogues is essential to ensure their comparability to the reservoir under explo-

ration.  

This study focusses on the rock properties and fracture-system parameters in outcrops and compares 

them with equivalent reservoir data. The study was carried out in the Lower Triassic of the Upper Rhine 

Graben (URG), a potential, but still underexplored target for geothermal exploitation. Outcrop data 

are compared with reservoir information from the geothermal well Brühl GT1 within the URG, close to 

the eastern graben shoulder. In total, four outcrops on the eastern and western graben shoulders were 

selected; they belong to the Lower to Middle Buntsandstein (Fig. 6.1). 

 

Figure 6.1: a) Location of the URG b) Solid geological map of the study area. The locations of the outcrops studied (LS: Leistadt; 

CL: Cleebourg; RS: Riesenstein; KF: Kammerforster) are indicated by red dots, the geothermal well Brühl GT1 is represented 

by a blue diamond (map modified after Eisbacher and Fielitz, 2010). c) Permo-Carboniferous troughs and highs in the URG. 

Black lines indicate Variscan fault traces (after Schumacher, 2002). d) Fault map showing major fault traces in the graben and 

on adjacent graben shoulders that indicates the complex deformation history (modified after Meixner et al., 2016). Red lines 

in b) to d) show main Cenozoic boundary faults of the URG. 

We analyse the rock parameters that directly control the reservoir performance, they are porosity, 

and fracture-system parameters, such as mineralization, orientation, intensity, and aperture. Other 

rock parameters, such as tensile strength, Young’s Modulus, and uniaxial compressive strength are of 

interest from an engineering point of view, e.g. in terms of borehole stability or in case reservoir stim-

ulation becomes necessary.  
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  Site descriptions and methods 

 Regional geology and geothermal setting  

The URG is part of the European Cenozoic Rift System and strikes NNE-SSW, its length is about 

300 km, and it is about 30 – 40 km wide (e.g., Illies, 1977; Ziegler, 1992; Schumacher, 2002; Fig. 6.1).  

The structural pre-rift setting of the URG was established during the Variscan Orogeny; Permo-Car-

boniferous wrench tectonics formed NE- to ENE-trending fault zones (e.g., Ziegler, 1990; Schumacher, 

2002; Schwarz and Henk, 2005). These fault zones form the boundaries of the Variscan Internides and 

Permo-Carboniferous troughs and highs (Fig. 6.1c). Early Carboniferous, NNE- to SSW-oriented, sinis-

tral shear zones are associated with Lower Carboniferous to Permian intrusive bodies (Vosges, Black 

Forest, Odenwald; e.g., Ziegler, 1990; Schumacher, 2002; Schwarz and Henk, 2005).  

The formation of the URG in the Cenozoic occurred in two main phases and was controlled by multi-

phase reactivation of Variscan and Permo-Carboniferous discontinuities (e.g., Illies, 1972; Schumacher, 

2002; Ziegler et al., 2006). The first rifting phase occurred during the Late Eocene until Late Oligocene, 

and was characterized by NW-SE- to WNW-ESE-directed extension (e.g., Ziegler, 1992; Schwarz and 

Henk, 2005; Ziegler and Dèzes, 2006). The second main phase of graben formation began in Early Mi-

ocene and was marked by reorientation of the stress field to NE-SW extension. As a consequence, the 

major graben-forming faults are characterized by sinistral and dextral oblique displacements, local in-

version, and normal displacements (Illies and Greiner, 1979; Schumacher, 2002). Uplift and erosion 

was limited to the central and southern parts of the URG, while subsidence and sedimentation shifted 

southwards during the Miocene (Bartz, 1974; Pflug, 1982). The recent maximum horizontal stress com-

ponent in the URG is NW-SE to NNW-SSE-oriented (Heidbach et al., 2008). However, fault-plane solu-

tions reveal a change in faulting regime from dominantly strike-slip faulting in the southern part to a 

combination of strike-slip- and extensional movement in the northern URG (Larroque et al., 1987; 

Plenefisch and Bonjer, 1997). 

The Buntsandstein rocks that were studied here represent the marginal facies of the Germanic Basin 

and comprise mainly fluvial to playa deposits. The Odenwald-Spessart High separates different depo-

sitional areas of the studied outcrops (Fig. 6.1c). Within the Palatinate Forest, fluvial and aeolian facies 

alternate, whereas aeolian sediments are absent in the Odenwald (Hagdorn and Nitsch, 2009). Since 

the unconformities that define the basic lithostratigraphic units of the Buntsandstein in the northern 

Germanic Basin are not clearly documented in the study area, distinction between the different units 

is difficult (Dachroth, 1985; Bourquin et al., 2006; Szurlies, 2007; Feist-Burkhardt et al., 2008; Hagdorn 

and Nitsch, 2009). Further complications are introduced by the varying Buntsandstein thicknesses; 

they vary from about 60 m in the south of the graben to approximately 500 m around Karlsruhe, but 

further northward the thickness decreases again to about 300 m (Boigk and Schöneich, 1970; Stober 

and Bucher, 2014). Additionally, the Buntsandstein can be found at different depths, ranging from 

about 1000 m below the land surface, down to 4000 m near Karlsruhe. This is due to intense block 

tectonics and differences in the subsidence and exhumation history (Boigk and Schöneich, 1970; Sauer 

et al., 1982; Villemin et al., 1986). One consequence of the complex geology is that several lithostrati-

graphic classifications of the Buntsandstein units exist (e.g., Backhaus, 1974; Richter-Bernburg, 1974; 

Hagdorn and Nitsch, 2009). Within the URG, the regional geothermal gradient is elevated to 

45  – 50°C km-1, with local hot spots that have temperature gradients of up to 100°C km-1 and make 

the URG a prime target for geothermal exploration in Germany (Schellschmidt and Clauser, 1996; 

Stober and Bucher, 2014). This positive temperature anomaly is commonly explained by a raised Moho 
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due to the graben formation (Brun et al., 1992) or by advective fluid flow (Schellschmidt and Clauser, 

1996; Pribnow and Schellschmidt, 2000). 

 Study area 

The graben shoulders expose Triassic rocks of Lower to Upper Buntsandstein. The outcrops studied 

(Figs. 6.1 and 6.2) comprise one outcrop with a fault zone (Fig. 6.2a; Cleebourg) and one without an 

exposed fault zone (Fig. 6.2b; Leistadt) on the western graben shoulder. On the eastern graben shoul-

der, two additional outcrops without fault zone exposure were studied (Fig. 6.2c; Riesenstein and Kam-

merforster).  

The location of the geothermal well Brühl GT1 is southwest of Heidelberg, approximately 12 km west 

of the eastern graben shoulder (Fig. 6.1a, d). The thickness of the reservoir is 162 m and lies between 

3157 and 3319 m measured depth (MD), close to a system of three NNW-, W-, and NE-dipping 

transtensional faults that are part of a negative flower structure (Lotz, 2014a). The targeted reservoir 

zone is intersected by an 80° westwards-dipping transtensional fault. The normal vertical displacement 

of this fault is approximately 70 m (Reinecker et al., 2015), although the strike-slip component is un-

known.  

 

Figure 6.2: Geological maps of the outcrops studied on the western graben shoulder, a) Cleebourg and b) Leistadt, and on 

the eastern graben shoulder, c) Riesenstein and Kammerforster (maps modified after Eisbacher and Fielitz, 2010).  

 Methods 

Outcrop-based methods 

In this study, we used classic structural geological fieldwork, including mechanical rock-property 

measurements, and optical microscopy, which included image analysis of selected thin sections of rock 

samples. 

Standard parameters of the fracture system were recorded using scanline and window-sampling 

methods (e.g., Terzaghi, 1965; Priest, 1993; Adler et al., 2013). The recorded fracture-system parame-

ter include orientation, intensity (number of fractures per meter), connectivity, aperture, and whether 

the fractures are cemented or not. 

Laboratory-based methods: 

16 rock samples were taken: 12 from the outcrop at Cleebourg, 1 from Leistadt, 2 from Riesenstein, 

and 1 from Kammerforster. From each of the samples, at least six right-circular cylinders were taken 

for mechanical testing. The rocks were classified according to their fabric type after Miall (1978) and 

dried samples were used to determine the ultrasonic shear-wave velocity (TB), uniaxial compressive 

strength (=>?), static Young’s Modulus (A), tensile strength (CD), and bulk density (]�). Transient times 

of shear-wave velocities were measured at a frequency of 0.25 MHz. The compression tests were car-

ried out according to ISRM 1989 (Fairhurst and Hudson, 1989) and the indirect tensile strength was 
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measured using a Brazilian test after ISRM 1981 (Brown, 1981). The bulk densities of the samples were 

calculated using their mass to volume ratios.  

For comparison of petrophysical and petrographical properties, 24 thin sections of the samples from 

Cleebourg were saturated with blue resin. Using optical microscopy, we determined porosity, cemen-

tation, grain size, and mineralogical composition. For petrographical quantification of the rock, thin 

sections were analysed using classical point-counting (300 points) and classified after McBride (1963). 

Petrographic analyses of rock samples of the other outcrops (Leistadt, Riesenstein, and Kammerfor-

ster) were previously performed by Soyk (2015).  

Porosity and grain size were assessed by digital image analysis with the software ImageJ (Rasband, 

2011). An optical scan of each thin section with a resolution of 300 dpi was taken under plane polarized 

light. To distinguish between the grains and the dyed resin-filled pore space, a binary image was cal-

culated, with white pixels representing the grains and black pixels the pore space. The porosity was 

then calculated as an area fraction in ImageJ. The sizes of about 100 grains along a scanline were meas-

ured and classified after Wentworth (1922). While our 2D approach cannot compete with the accuracy 

of 3D analysis, e.g., Sahagian and Proussevitch (1998), Berg et al. (2016) concluded that, in the majority 

of cases, the accuracy of 2D porosity estimates can be considered sufficiently close to 3D results. 

Analytical methods: 

To estimate the matrix permeability (�g) in the reservoir from the properties determined in the out-

crop study, the porosity-permeability relation (Kozeny-Carman, Eq. 6.1) was utilized, 

�g 9 � �G
Z1 r �@8  � ¡qD8

180� [m²], Eq. 6.1 

in which � is the porosity and ¡qD is the mean grain size (Freeze and Cherry, 1979).  

To estimate the structural permeability in analytical models, it is an accepted approach to approxi-

mate naturally rough fractures by parallel plates with a constant aperture and to apply the cubic law 

(e.g., Snow, 1965, 1969; Witherspoon et al., 1980; Bear, 1993). Consequently, the permeability (��) of 

sets of differently-oriented fractures was estimated using: 

�� 9 1
12M £¤ �Gg

`�; ¥ [m²], Eq. 6.2 

where M is the profile length [m] and � is the fracture aperture [m] (Bear, 1993).  

Reservoir-based methods: 

The reservoir formation was analysed based on drill cuttings, i.e. no core was taken, but pumping and 

injection tests and standard wireline logging were carried out. 

The geophysical logging devices that were used are listed in Table 6.1. The logs are available for the 

uppermost 140 m of the reservoir section. 

The density-correction log from the LDS tool records the absolute deviation from the measured bulk 

density. For deviations larger than 15 [kg m-3], the determined bulk density was found to be not reliable 

and corresponding well sections were rejected during the evaluation of the bulk density and, thus, also 

for calculations of bulk porosity and the dynamic elastic parameters. The logging quality was further 

evaluated by the well caliper from the FMI tool. In the places where the well caliper returned values 

that deviate more than 15% from the bit size (> 0.22 m, < 0.16 m), log signals from the LDS were found 

to affect the bulk density measurements and therefore rejected in further interpretation. 
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Table 6.1: Wireline-logging tools used in this study (GR: Gamma Ray, FMI: Formation Micro Imager, DSI: Dipole Sonic Imager, 

LDS: Litho Density Sonde. MD: Measured Depth). 

tool log interval (MD) (m) measurements of evaluation of 

GR 3305 – 3150 natural gamma rays 
sand/clay content, depth correlation of 

the various logging tools 

FMI 3295 – 3150 
electrical resistance, well cali-

per 

sedimentary facies, detection of 

open/closed fractures, fracture orienta-

tion, fracture intensity, fracture apertures 

DSI 3293 – 3150 
compressional- and shear-wave 

velocities 

matrix porosity, elastic mechanical rock 

properties, lithology 

LDS 3294 – 3150 

emitted gamma rays, Compton 

scattering and photoelectric ab-

sorption 

bulk porosity, bulk density, lithology  

    Density- or bulk porosity Ф� was determined using a quartz equivalent rock density Z]g§bi`¨) of 

2650 kg m-³, a formation fluid density (]�ef`W) of 1170 kg m-3, and the measured bulk density log (]eda) 

after (Schlumberger, 1989): 

Ф� 9 ]g§bi`¨ r ]eda]g§bi`¨ r ]�ef`W
 [-]. Eq. 6.3 

The sonic- or matrix porosity Фg was estimated with the Wyllie time-average method using p-wave 

velocities (Schlumberger, 1989). This method requires an estimate of fluid and matrix travel times 

(∆��ef`W = 607 sec m-1, ∆�g§bi`¨  = 182 sec m-1) and compares these with travel times measured in 

the reservoir (∆�eda): 

Фg 9 ∆�eda r ∆�g§bi`¨∆��ef`W r ∆�g§bi`¨
  [-]. Eq. 6.4 

Since sonic log-derived porosities largely ignore secondary porosity, such as fractures, and the density 

log responds primarily to as the bulk porosity, the difference was used to calculate the fracture poros-

ity, referred to the secondary porosity index (SPI) of the reservoir (Schlumberger, 1989).  

To compare the bulk densities of the dried surface samples and the fluid saturated rocks in the well, 

the log measurements were corrected by replacing the water-filled pores with air.  

Elastic properties of the reservoir rock include dynamic Young’s Modulus (Ad). It is derived from the 

measured densities and elastic wave velocities (compressional- TU and shear-wave velocity TB): 

AW 9 ]TB8 ∙ 3TU8 r 4TB8TU8 r TB8
 [Pa]. Eq. 6.5 

The formation structural permeability was determined equivalent to outcrop calculations, using the 

cubic law (Eq. 6.2). Data on fracture apertures and densities are based on FMI images; data on fracture 

mineralization was analysed using a combination of FMI, LDS, and DSI, provided by J. Reinecker (GeoT). 

The results were compared with determined bulk permeabilities from pumping and injection tests. 

The reservoir transmissivity is specified as follows: 

C 9 2.3 ∙ ~
4ª ∙ ∆� [m² s-1] Eq. 6.6 

and the formation permeability [m²] as: 

� 9 C
« ∙ ¬

]�� [m²], Eq. 6.7 

where ~ is the production rate [m³ s-1], ∆s is the pressure reduction [m], « is the reservoir height [m], 

]� is the fluid density [kg m-3], � is the acceleration due to gravity [m s-2], and ¬ [kg m-1 s-1] the dynamic 

fluid viscosity (Kruseman and Ridder, 1992).  
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 Outcrop properties 

 Rock properties 

Whereas the Triassic sandstones in outcrops on the western graben shoulder are yellowish, brownish 

to red coloured, and, in some cases, they are totally bleached, the investigated sandstones from the 

eastern flank are red, and not, or only slightly, bleached. Typical fabric types of the studied rock sam-

ples comprise trough cross-bedding, partly with mudstone intraclasts (St) and low-angle (<10°) cross-

bedding (Sl). Both fabric types are interbedded by thin silty claystone layers.  

Despite different lithostratigraphies, 

the mineralogical compositions for all 

studied outcrops cluster narrowly in the 

fields of subarkose and lithic subarkose; 

the Leistadt samples show an increased 

amount of lithic components (Fig. 6.3).  

Rock porosity estimations based on 

image analysis show that the rock 

porosities at the eastern flank have only 

minor variations and lie between 3 and 

8%: the porosities estimated at the 

western flank vary between 2 and 22% 

(Fig. 6.4a). Quartz cementation at the 

western flank does not exceed 7% and 

covers only a small range, in contrast to 

the eastern flank, where the 

cementation lies between 2 and 23% 

(Fig. 6.4b). The average clay content lies 

in a narrow range between 6 and 8% for 

the outcrops of Cleebourg, Leistadt, and Riesenstein. Only in the Kammerforster outcrop is the clay 

content of 12% significantly higher (Fig. 6.4c). The corresponding API values (from gamma-ray 

measurements) in the outcrops lie in the range of 77 – 95 (Reinecker et al., 2015). The grain size is 

medium sand with a slight tendency to finer sand in the easterly outcrops, and sorting is moderate to 

well (Fig. 6.4d). The bulk densities are lower on the western graben shoulder, with mean values for the 

outcrops ranging from 2150 to 2240 kg m-3. On the eastern graben shoulder, the mean bulk density 

lies between 2330 and 2340 kg m-3 (Fig. 6.4e). Notably, the low-angle cross-bedded sandstones (Sl) in 

Cleebourg have in general higher porosities, bulk densities, and quartz cementations compared with 

the trough cross-bedded sandstones (St). 

Figure 6.3: Modal composition of sandstone samples from the different 

locations in a QFL diagram, after McBride (1963). Sandstone composi-

tions of Leistadt, Riesenstein, and Kammerforster are adopted from Soyk 

(2015). 
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Figure 6.4: Box-whisker plots of the petrophysical and petrographical characteristics of the analysed sandstones. Data are 

presented according to their locations, from west to east. The individual boxes are coloured according to their fabric type. a) 

Porosity, b) cementation, c) clay content, d) grainsize, e) bulk density, f) uniaxial compressive strength (0�(), g) indirect 

tensile strength (+	), and h) static Young’s Modulus (
�,-,). Equivalent information from Leistadt, Riesenstein, and Kammer-

forster are adopted from Soyk (2015). 

The mechanical properties determined include uniaxial compressive strength (=>?), indirect tensile 

strength (CD), and static Young’s Modulus (ABb§b). The properties exhibit comparable values on the 

western graben shoulder (=>?: 41.0 – 54.3 

[MPa]; CD: 2.1 – 3.8 [MPa]; ABb§b: 10.8 – 12.8 

[GPa]), but on the eastern graben shoulder 

they are consistently about twice as large 

(=>?: 80 – 100 [MPa]; CD: 4 – 7 [MPa]; 

ABb§b: 15 – 25 [MPa]). The only exception is 

the indirect tensile strength (CD), where the 

difference between the eastern and western 

outcrops is smaller, but still considerable. In 

general, there is a clear tendency that the me-

chanical rock properties increase eastwards 

(Fig. 6.4f-h). Accordingly, sonic velocity (TB) 

Figure 6.5: Box-whisker plots of a) shear-wave velocities 

and b) dynamic Young’s Moduli (
�­�), as calculated 

from sonic velocities. Outcrops ordered according to 

their location, from west to east, and colour coded ac-

cording to fabric type. 



6.3 Outcrop properties 

78 

 

follows the same trend as static Young’s Modulus and also increases towards the east (Figs. 6.4h, 6.5a). 

Assuming a typical TU/TB ratio of about 1.7 for sandstones (Pickett, 1963), we calculated the dynamic 

Young’s Modulus. The mean values range from 35 GPa in Cleebourg to 64 GPa in Kammerforster 

(Fig. 6.5b), and are thus two to four times higher than the corresponding static measurements.  

 Fracture-system parameter 

NE- to SW-striking fractures are present at all the different locations (Fig. 6.6). In addition to this, a 

small group of fractures strike NW – SE in the Leistadt and Kammerforster outcrops (Fig. 6.6b, c). In 

Leistadt, the NE- to SW-striking fracture set is the main set, whereas in Kammerforster the NW- to SE-

oriented set appears to dominate. 

Notably in the Cleebourg outcrop (Fig. 6.6a), within fault zone exposure, the orientation of the main 

fracture set seems to be layer specific, i.e. in layers 1 and 2 the fractures are sub-parallel to the fault, 

whereas in layer 3 the dominant fracture orientation is about 30 – 40° rotated clockwise compared to 

layers 1 and 2 and the fault (Fig. 6.7). 

 

Figure 6.6: Fracture orientation data shown in equal area-scaled rose diagrams with 10° bin size and in pole plots (equal area, 

lower hemisphere). a) Cleebourg (CL) fracture orientation data with the strike of the main fault (bold line) and minor faults 

(dashed lines) marked, b) Leistadt (LS), c) Kammerforster (KF), and d) Riesenstein (RS). 

The mean fracture intensities in the outcrops without fault zone exposure on the eastern graben 

shoulder do not exceed 0.8 m-1, compared to up to 1.2 m-1 in Leistadt on the western graben shoulder. 

In the Cleebourg outcrop with fault zone exposure, the mean fracture intensity is 3.3 m-1 in the damage 

zone and, in two of three measured layers, shows increasing fracture intensity towards the fault plane 

(Fig. 6.7). In layer 1, the fracture intensity reaches a maximum of 27 m-1 in the vicinity of the fault plane, 

but in layer 3 the maximum is only 9 m-1.   
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Figure 6.7: Fracture orientation and intensity in Cleebourg, shown for three individual layers. In layers 1 and 2, the fracture 

orientations are comparable and the fracture intensity increases towards the fault core. In layer 3, fracture orientation and 

intensity show a different pattern. Rose diagrams with equal area scaling and 10° bin size and equal area pole point plots on 

the lower hemisphere. 

For Cleebourg, background parameters of the fracture system cannot be provided, due to the limited 

extent of the outcrop. However, in the outcrops without fault zone exposure, larger blocks that are 

almost fracture free occur, in contrast to the Cleebourg outcrop (Table 6.2). 

Table 6.2: Summary of fracture intensity, mineralization, and connectivity for the outcrops studied. 

outcrop 
fracture intensity [m-1]  amount of mineralization [%]  

connectivity [%] 
mean min max  none partial open full  

Cleebourg 3.3 0 27  87 6 7  49 

Leistadt 1.2 0 5  89 7 4  40 

Kammerforster 0.7 0 3  100 0 0  35 

Riesenstein 0.8 0 3  100 0 0  20 

          
The highest fracture connectivity occurs within the fault zone in Cleebourg, where 49% of all meas-

ured fractures are interconnected. In the proximity of the fault core, i.e. within 5 m distance, the 

amount of connected fractures rises to 66%. In contrast, in outcrops without fault zone exposure, only 

20 – 40% of the fractures are interconnected (Table 6.2).  

The vast majority of the observed fractures were not affected by mineralization. We observed 7% 

mineralized fractures only in the western outcrops (Table 6.2; Fig. 6.8). This mineralization comprise 

mostly quartz and baryte.  

The mean fracture aperture in Cleebourg is about 0.8 mm, and therefore lower than in Leistadt at 

1.0 mm. In Leistadt, the widest fracture apertures occur in fractures classified as partially open. They 

reach a maximum aperture of 14 mm and belong to the NW- to SE-striking set. In Cleebourg, the max-

imum fracture aperture is 7 mm and was observed in the N- to S-striking fracture set, close to the fault 

plane (Fig. 6.8). 
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 Permeability data 

Matrix permeabilities of the outcrops, 

calculated using Eq. 6.1, range between 

2·10-13 m2 and 8·10-13 m2 for the western 

outcrops, with the highest values deter-

mined for the Leistadt samples, followed 

by St and Sl samples from Cleebourg 

(see Section 6.3.1). The matrix permea-

bilities at the eastern outcrops are about 

one order of magnitude lower (Fig. 6.9).  

Structural permeabilities, derived using 

Eq. 6.2, range between 10-10 and 10-13 m² 

for Cleebourg and from 10-9 to 10-15 m² in 

Leistadt, for the different fracture sets. 

Since fracture intensity and apertures in 

Cleebourg increase towards the fault 

plane, calculated fracture permeabilities 

follow this same trend. Main orientations 

of enhanced fracture permeabilities in 

Cleebourg change from N-S close to the 

fault core to NE-SW in the damage zone. 

In Leistadt, the estimated maximum 

fracture permeability was determined for 

the NW- SE-oriented fracture set and 

reaches values about one order of 

magnitude higher with respect to 

Cleebourg. 

 

 

 

 

Figure 6.9: Box-whisker plot of the calculated matrix permeabilities. 

Outcrops ordered according to their location, from west to east, and 

colour coded according to fabric type. 

 

Figure 6.8: Half-circular diagrams showing the rela-

tion between fracture strike and apertures or thick-

ness of fill, respectively. a) Cleebourg, a1) – a4) frac-

ture data from the Cleebourg outcrop with adjusted 

scale for improved readability and b) Leistadt. Aper-

tures from the eastern outcrops of Kammerforster 

and Riesenstein are not available. Rose diagrams 

scaled for mean aperture in 10° bins. The bold red

lines show the direction of the regional maximum 

horizontal compressive stress (NW-SE to NNW-SSE; 

Heidbach et al., 2008). 
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 Reservoir properties 

 Rock properties 

For depths between 3150 and 3282 m (MD), which covers almost the complete vertical extent of the 

reservoir, drill cuttings are available. From the cuttings, the rocks encountered in the well were classi-

fied as light red to red-brownish sandstones, 

with grain sizes that reach from silt to coarse-

grained sand which is well to poorly sorted. 

The mineralogical composition of the cuttings 

is predominantly subarkosic with low to tight 

porosity and high cementation (Reinecker et 

al., 2015). Typical sedimentary fabric types 

from FMI image logs comprise an alternation 

of horizontally and cross-bedded sandstone 

beds, interbedded by thin silty claystones 

(Reinecker et al., 2015).  

The values of the gamma-ray log range be-

tween 20 and 104 API. Most values lie in a 

range between 35 and 83 API (mean 60 API), 

with the lowest values in the middle of the 

reservoir. The strongest variations in the 

gamma-ray log occur at about 3270 to 3280 m and in the uppermost 20 m of the reservoir. There are 

two intervals with considerably higher API: 3180 – 3200 m and 3240 – 3270 m (Fig. 6.10a). 

The recorded TU/TB ratios range from 1.0 to 2.9 (Fig. 6.10b). The majority of the formation has TU/TB 

ratios between 1.6 and 1.8, which are typical values for clean sandstone, whereas higher ratios may 

indicate higher clay content (Pickett, 1963). Equivalent to the gamma-ray log, the TU/TB ratio shows 

strong variation at about 3200 m, between 3270 and 3280 m, and in the top 20 m of the well log 

(Fig. 6.10). 

The log data presented in Figs. 6.11 and 6.12 are complete datasets. Data found to be unreliable are 

indicated as dashed lines (see Section 6.2.3) and were not included in further evaluation.  

 

Figure 6.10: Box-whisker plot of the calculated matrix permeabili-

ties. Outcrops ordered according to their location, from west to 

east, and colour coded according to fabric type. 
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Figure 6.11: Vertical bore logs of lithological and mineralogical properties and corresponding histograms. a) Results from LDS 

gamma-ray log, implying reduced API values in the middle of the reservoir. b) Ratio of 1� and 1� wave velocities, used to 

determine the purity of the reservoir sandstone. Typical values for sandstone are marked in blue. 

The calculated bulk densities under dry conditions in the reservoir lie between 1143 and 2648 kg m-3 

(mean 2323 kg m-3), with the majority of data falling in the range between 2070 and 2534 kg m-3 

(Fig. 6.11a). The bulk porosity, calculated according to Eq. 6.3, varies from 0 to 58% (mean about 13%). 

Most of the determined porosity data lie between 5 and 22%. There is a slight tendency towards higher 

bulk porosities with increasing depth until about 3240 m, below which the porosity decreases. Matrix 

porosity (Eq. 6.4) varies in the range of 0 to 48% (mean 16%). Common values lie between 3 and 27%. 

The bulk porosities document a higher variability with depth, compared to the matrix porosity. Over 

large parts of the reservoir formation, however, the calculated bulk porosity is lower than the matrix 

porosity (Fig. 6.11b, d). 
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Figure 6.12: Vertical bore logs of rock properties and corresponding histograms. a) The bulk density as calculation basis for 

b) the bulk porosity. c) The compressional wave velocities (and additionally the shear-wave velocities) as calculation basis for 

d) the matrix porosity. The grey dotted lines show data rejected due to bad hole conditions. 

The dynamic Young’s Modulus of the reservoir formation was derived from DSI and LDS logs (Eq. 6.5). 

Even after removing unreliable data (see Section 6.2.3), the determined Young’s Modulus covers a 

wide range of 2 – 71 GPa, where the majority of data lie between 20 and 46 GPa and have a mean 

value of 34 GPa (Fig. 6.12).  

 

Figure 6.13: Vertical varia-

tion of Young’s Modulus with 

histogram. The grey dotted 

lines show data rejected due 

to bad hole conditions. The 

calculation is based on den-

sity and compressional (1�) 

and shear (1�) wave veloci-

ties, as shown in 

Fig. 6.11a, c). 
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 Fracture-system parameters 

Fracture properties measured based on FMI logs comprise orientation, intensity, aperture, and min-

eralization (analysed and provided by J. Reinecker). Two different fracture systems, separated at a 

depth of 3270 m, were identified.  

Above 3270 m, the main fracture set strikes NW-SE and NNW-SSE and may constitute a conjugate 

fracture set. Most of the fractures dip sub-vertically, and only a small amount dip less than 80°. Below 

3270 m, the fractures are differently oriented. Although the fractures probably also form a conjugate 

set, the strike of the fractures is rotated clockwise to a N- to NNE-direction. The dip component is 

considerably shallower, i.e. less than 80°, compared to the set above 3270 m (Fig. 6.13).  

Figure 6.14: Fracture properties derived from the 

FMI log (analysed and provided by J. Reinecker). 

a), b) the fracture orientations, above and below 

3270 m depth, respectively, in equal area-scaled 

rose diagrams with 10° bin size. The dashed red 

line shows the strike of the fault that cuts through 

the reservoir. c) and d) Show the corresponding 

pole point plots (equal area, lower hemisphere) 

with the great circle showing the fault orientation. 

e), f) Half-circular diagrams showing the relation 

between fracture strike, with respect to aperture 

and fracture filling. Rose diagrams scaled for mean 

aperture for 10° bins. The red lines indicate the lo-

cal maximum horizontal stress direction from the 

well (Reinecker et al., 2015).  

A large amount of the fractures are par-

tially mineralized (46%) or completely 

closed by mineralization (13%). The ob-

served fracture apertures span 

3 – 22 mm (mean 8.5 mm). The largest 

apertures were detected for partly-min-

eralized fractures, which deviate, in 

terms of orientation, by about 20° anti-

clockwise from the main fracture set 

above and by 40 – 50° below 3270 m 

(Fig. 6.12e, f). The maximum horizontal 

stress direction in the reservoir is about 

N 150° (Reinecker et al., 2015). This 

means fractures striking 30° counter 

clockwise from the main horizontal stress 

direction show the largest apertures.  

The vertical fracture intensity varies be-

tween 0 and 6 m-1 (mean about 0.3 m-1). 

Fractures seem to concentrate in four intervals, i.e. there are depth intervals that differ considerably 

with respect to fracture intensity (Fig. 6.14a). Decreasing fracture aperture with increasing depth, i.e. 

due to increasing confining pressure, is not observed.  
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Fracture porosity, as determined 

using the secondary porosity index 

(see Section 6.2.3), lies in a range be-

tween -26 and 43% with a mean of -

3% (Fig. 6.14b), even if data classified 

as unreliable are excluded. However, 

excluding negative fracture porosity, 

the mean fracture porosity is 5%.  

Comparison of fracture apertures 

from FMI with the secondary poros-

ity index (SPI) shows that high SPI val-

ues do not correspond to the higher 

amounts of detected fractures or vice 

versa (Fig. 6.14).  

 Reservoir permeability 

Increased mud loss between 3200 

and 3282 m depth and total mud loss 

below 3282 m depth indicates drasti-

cally increased permeability at this 

depth (Reinecker et al., 2015, 

Fig. 6.14). The high permeability was 

confirmed and quantified by injec-

tion and production tests. 

In the production test, 1000 m³ 

thermal water was produced in 

15,480 s (4 h and 18 min), which cor-

responds to an average production 

rate (Q) of 65 l s-1. At the maximum 

production rate of 70 l s-1, the pres-

sure drop was 0.28 MPa, equivalent 

to a productivity index of 

29 l s-1 bar-1. During the injection 

test, 3084 m3 water was injected at 

2.6 MPa within 61,920 s (17 h and 

12 min), i.e. with a mean rate of 

50 l s-1. The maximum injection rate was 90 l s-1, which resulted in an injectivity index of 3.6 l s-1 bar-1. 

The skin effect of the borehole is estimated from the difference between the pressure in the well be-

fore and directly after shut-in and amounts to 2.3 MPa. If the skin effect of the well is neglected, the 

injectivity index is 30 l s-1 bar-1. In consequence, the reservoir transmissivity (Eq. 6.6) reaches values of 

about 4.6·10-4 m2 s-1, whereas the mean integrated reservoir permeability is about 7.2·10-14 m2, accord-

ing to Eq. 6.7.   

Figure 6.15: Plots showing the vertical variation of a) fracture aperture and 

b) the calculated fracture porosity (secondary porosity index), and observed 

mud loss during the drilling operation, as a proxy for the structural permea-

bility. The grey dotted lines show rejected data, e.g. data found to be biased 

by bad hole conditions, red bold lines negative and blue bold lines positive 

fracture porosities. 
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 Discussion  

The aim of this study was to evaluate to what extent the concept of outcrop analogue studies, as 

commonly applied in hydrocarbon exploration (Budding and Inglin, 1981; Keogh et al., 2007), could be 

used to improve predictions about the quality of geothermal reservoirs, with focus on permeability.  

 Lithology 

The comparison of outcrop and well data show that rock properties that determine lithology, such as 

mineralogical composition and grain size, are in good agreement, despite some uncertainties in strat-

igraphic correlation. All rocks analysed fall into the fields of subarkose and lithic subarkose (Fig. 6.3), 

with medium to fine grain size, and a tendency for finer grain size towards the east (Fig. 6.4d), as pre-

viously reported by Reinecker et al. (2015) and Soyk (2015). The rocks in the reservoir cover a some-

what wider range of grain size and are less well sorted (Reinecker et al., 2015). The similar API values 

for the outcrops (77 – 97 API) and the reservoir rocks (35 – 85 API; Reinecker et al., 2015) show that 

the clay contents are comparable. Also, the rock facies, as confirmed by fabric types, are comparable 

between surface and sub-surface (Reinecker et al., 2015).  

 

Quartz cementation, which has a direct effect on rock properties, such as density, porosity, and 

strength, has a trend at the surface which increases from west (3 – 7%) to east (3 – 23%; Fig. 6.5b). 

These findings agree with observations made by Soyk (2015) and with the observations in the reservoir, 

where the quartz cementation of cuttings is described as high (Reinecker et al., 2015). However, the 

highly variable quartz cementation in the eastern outcrops does not cause high variability in porosity 

(3 – 8%) and density (2117 – 2592 kg m-³; Fig. 6.4a, b). In the west a wide range in porosity is observed 

(2 – 22%), where the quartz cementation is well defined in a narrow range (Fig. 6.4). In the reservoir, 

“high” quartz cementation is accompanied by a highly variable matrix porosity (0 – 27%; Fig. 6.11d). 

Thus, even though direct correlation between porosity and cementation is impossible for the reservoir, 

since cementation has only been reported from drill cuttings, the cementation to porosity ratio ap-

pears to be inconsistent with that observed at the surface. Rock density seems to be comparable be-

tween reservoir and the eastern outcrops. The fact that strong variation in cementation does not cause 

strong variation in porosity might be due to the fact that during diagenesis, the rocks were subjected 

to different conditions. While early cementation may initially reduce the matrix porosity, during burial 

it may also counteract further porosity loss due to compaction. Consequently, late cementation may 

cause high cementation rates in rocks that already have been compacted, i.e. that already have low 

porosity (e.g., Ehrenberg, 1989; Ramm and Bjorlykke, 1994; Molenaar et al., 2007).  

Differences in the burial and thermal history of the Buntsandstein (e.g., Steingötter, 2005; Clauer et 

al., 2008; Rupf and Nitsch, 2008; Soyk, 2015) and thus regional diagenesis have been described for the 

URG. Furthermore, the complex structural geology has likely caused strong heterogeneities, e.g. along 

deep-seated faults that may provide preferred pathways for fluids and thus have locally strong effects 

on cementation and porosity. Thus the prediction of porosity and cementation, in a lateral and vertical 

sense, is difficult for the Buntsandstein of the URG. However, in a less complex structural situation, 

with knowledge of original rock composition, thermal, and diagenetic history, it may be possible to 

better predict porosity.  
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The values determined for tensile and compressive strength from the outcrop samples follow a trend 

that is consistent with increasing quartz cementation and decreasing porosity from east to west 

(Figs. 6.4 and 6.5). Average dynamic Young’s Moduli determined for the outcrops span from 35 GPa in 

the west to 64 GPa in the east (Figs. 6.4 and 6.5). In the reservoir, the determined average dynamic 

Young’s Modulus is 34 GPa (Fig. 6.12). This means the outcrops closest to the reservoir have dynamic 

Young’s Moduli almost twice as high as those obtained from the reservoir. Since dynamic as well as 

static Young’s Moduli increase with depth (e.g., Carlson and Gangi, 1985; Holt et al., 2005), Young’s 

Modulus at reservoir depth should therefore be higher than at the surface. Thus, Young’s Modulus at 

reservoir depth has been highly underestimated. This agrees with the high porosity (e.g., Dunn et al., 

1973; Palchik, 1999; Palchik and Hatzor, 2004), as reported from the well logs, but not with the high 

quartz cementation reported from the drill cuttings. The other rock mechanical parameters cannot be 

compared since measurements of tensile-, and compressive strength are not feasible in the well. How-

ever, based on the poor correlation of porosity, cementation, and density, one can expect that they 

are also highly variable in the reservoir.  

Variable mechanical rock properties also influence the development of fracture systems (Narr and 

Suppe, 1991; Gross et al., 1995; Odling et al., 1999; Gross and Eyal, 2007; Laubach et al., 2009). Since 

fracture systems, besides matrix permeability, are most essential in geothermal energy, because they 

provide a large part of the permeability (e.g., Snow, 1965; Witherspoon et al., 1980; Nelson, 1985; 

Hestir and Long, 1990; Bear, 1993), detailed knowledge of fractures in the reservoir is desirable. 

 

The fracture orientations derived from the outcrops in this study show a degree of similarity; for 

instance, a common NE-SW set exists, and in three of the four outcrops a second NW-SE group occurs 

(Fig. 6.6). However, other studies carried out in this region (e.g., Peters, 2007; Dezayes et al., 2015; 

Meier et al., 2015) show that a wider range of fracture patterns have been observed in this area. In 

addition, we found that in the Cleebourg outcrop with fault zone exposure, individual layers host dif-

ferent fracture systems (Fig. 6.7). Both observations suggest that the permeability-controlling fracture 

patterns are difficult to predict in the study area. This assumption is further supported by the two 

fracture patterns that were identified in the well, based on FMI data (Fig. 6.13; Reinecker et al., 2015). 

None of these fracture patterns coincides with those observed at the surface. At a depth of about 

3275 m, i.e. the depth at which the total mud loss occurred, and where the API values are increased 

(Fig. 6.10a), a fault is expected based on the seismics (Lotz, 2014a). We propose that it is likely that 

this fracture system belongs to the damage zone of the fault, rather than reflecting the regional trend.  

The fracture intensity is comparable among the outcrops, but significantly increases in Cleebourg 

where a fault is exposed. The same holds for the fracture connectivity, which is highest in Cleebourg. 

In the Brühl GT1 well, the upper fracture system appears to be dominated by a conjugate sub-vertical 

fracture set, and is thus likely to be poorly connected. This assumption is supported by the low to 

moderate mud loss in this section. In the lower fracture system, in contrast, the fractures dip shallower 

and have a higher variability in strike, which favours better connectivity (Fig. 6.13), supported by the 

increasing mud loss at this depth (Fig. 6.14b). However, from the FMI log, as well as from the secondary 

porosity index (fracture porosity), increased fracture intensity, at the depth where the fault is ex-

pected, cannot be confirmed (Fig. 614b). 
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The average fracture apertures observed at the surface range from 0.8 mm in Cleebourg 

(range: 0.1 – 7 mm), to 1.0 mm in Leistadt (range: 0.1 – 14 mm), whereas the apertures derived from 

the FMI are, on average, 8.5 mm (range: 3 – 22 mm; Figs. 6.8, 6.13, and 6.14a). Thus, the apertures at 

depth are reported to be about one magnitude of order larger, despite the higher confining pressure. 

When utilizing these data, and using the cubic law (Eq. 6.2) to roughly estimate and compare structural 

permeabilities between outcrop and reservoir conditions, we show that the structural permeability for 

the different fracture orientations in the outcrops lies between 10-9 and 10-15 m2 (Leistadt), and 10-10 

and 10-13 m2 (Cleebourg). In the reservoir, based on FMI, it is in the range of 10-9 – 10-11 m2. The bulk 

permeability of the reservoir determined by the pumping tests is 10-14 m2, and thus estimates of the 

structural permeability, only based on FMI, are three to five orders too high, but close to outcrop data. 

This apparent overestimation of bulk permeability by FMI might, for example, result from excessive 

tool standoffs due to bad hole conditions or to the common enlargement of fractures close to the well 

(Luthi and Souhaité, 1990). Notably, also the fracture porosity of about 5% determined with the SPI is 

about three orders higher than typical values (e.g., Snow, 1968; van Golf-Racht, 1982). This and the 

fact that SPI values and FMI fracture locations do not correspond are strong indicators for technical 

problems and/or bad hole conditions during logging. 

Bulk permeability can be controlled by few fractures with considerably larger apertures (e.g., Snow, 

1965, 1969; Witherspoon et al., 1980; Nelson, 1985; De Marsily, 1986; Hestir and Long, 1990; Bear, 

1993). These may be at least to a certain degree provided by partly mineralized fractures, or by frac-

tures favourably oriented to the present-day stress field. Partially mineralized fractures and fractures 

sub-parallel to the recent major stress direction are both reported to provide larger apertures (e.g., 

Teufel et al., 1991; Heffer and Lean, 1993; Laubach et al., 2004; Marrett et al., 2007; Singhal and Gupta, 

2010, Figs. 6.8 and 6.13). The observations in the outcrop Leistadt and in the reservoir confirmed that 

partly mineralized apertures are wider compared to barren fractures. However, aperture and the main 

horizontal stress direction do not correlate in general. For instance, the widest fracture apertures in 

the Leistadt outcrop are sub-parallel to the regional maximum horizontal stress direction, while they 

deviate in Cleebourg by about 45° and in the well by about 30° counter clockwise from the maximum 

horizontal stress direction. Reasons for the observed mismatch at the surface could be disturbances in 

the local stress field caused by topography or faults (Barton and Zoback, 1994). The mismatch in the 

reservoir, where the present-day stress orientation was determined by borehole breakouts, shows 

that the concept, even under perfect conditions, is not generally applicable and should thus be applied 

with caution. Fractures that have an acute angle of about 20 – 30° to the maximum horizontal stress 

direction, as observed in the well, are subject to a high shear component. It has been shown, for ex-

ample, by Barton et al. (1995) and Rogers (2003) that such fractures can constitute preferable path-

ways for fluid flow. Noteworthy, also fracture sets normal to the maximum compressive stress were 

reported by Laubach et al. (2016) to provide high permeabilities over long time spans. 

 Summary and conclusions 

It is commonly thought that, if an outcrop is of the same formation and depositional facies, it may 

serve as an analogue to derive in-depth knowledge about the conditions in the envisaged reservoir. 

However, this statement on outcrop analogue studies constitutes the “classic chicken and egg prob-

lem”, because the appropriateness of any given outcrop is unknown until the reservoir itself has been 

analysed. This requires that the cost-intensive drilling process is at least advanced before analogue 

outcrops are sought out. 
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In the example presented here, the comparison of the data derived from outcrop and well logs shows 

that, in particular, the most relevant parameters for geothermal energy exploitation, i.e. the fracture 

system and porosity, show notable differences and cannot be extrapolated from the surface to reser-

voir depth. We conclude that the concept of outcrop analogue studies, based on standard methods, 

has, in this case, limited potential to minimize exploration risk for this fault-related geothermal reser-

voir.  

The main reasons for the differences in observations are attributed to two facts. Firstly, the URG is a 

complex geological area, i.e. the area underwent a multiphase deformation history, and is character-

ized by sedimentary rocks that show strong facies changes at a small scale. Given, however, a less 

complex setting, knowledge of original rock composition, thermal history, and fracture timing should 

improve comparison and prediction of cementation (Lander et al., 2008; Lander and Laubach, 2015) 

and thus allow mechanical rock properties to be better determined. 

Secondly, the fact that the reservoir is fault controlled introduces an extra amount of uncertainty, 

since fault and fracture architecture and therefore the hydraulic characteristics can undergo significant 

changes that depend on a variety of different factors and their interplay, e.g. host rock lithology, dis-

placement, pre-existing structures, temperature, depth, time, and stress conditions (e.g., Caine et al., 

1996; Schulz and Evans, 2000; Shipton and Cowie, 2001; Lunn et al., 2008; Faulkner et al., 2010; Bense 

et al., 2013).  

We conclude that in our study area the outcrops are simply unfavourable as a reservoir analogue. 

Aiming for fault-related fractured reservoirs can, under the right circumstances, promise increased 

structural permeability, but at the same time this significantly lowers the chance to predict the reser-

voir conditions from surface outcrops. Conversely, outcrop analogue studies have a higher potential 

to produce meaningful results in homogenous areas such as large basins that do not have complex 

internal structures.  

To further improve the concept of analogue studies, the next step must be to identify ranges within 

which essential parameters must be determined, to allow for an early evaluation of the quality of a 

reservoir. 
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 Numerical sensitivity study of parameters that control the quality of geo-

thermal reservoirs 

 Introduction 

In the last chapter, I showed that many of the parameters that control the quality of a geothermal 

reservoir (e.g., porosity, permeability, permeability’s anisotropy) are difficult to predict and often only 

a wide range of parameter values can be provided. Therefore, it is desirable to investigate which of the 

parameters exert the major control on the reservoir’s performance over time and with which accuracy 

they must be predicted to allow for a reasonable estimate of the geothermal reservoir’s quality. This 

is of importance since the exploitation of geothermal reservoirs is not only subject to high exploration 

risks, but also to high initial costs (Paschen et al., 2003; URL3: Bundesverband Geothermie). In conse-

quence, a geothermal reservoir must operate over a minimum time period, typically several decades, 

to reach the break-even point. The end of the performance of a geothermal reservoir is commonly 

reached, if at a given flowrate, the production temperature falls below a certain threshold, i.e. the 

amount of energy produced per unit time becomes too low (Paschen et al., 2003; Schulz, 2011). The 

uncertainties of these predictions have been underlined by several examples of initially-successful 

deep geothermal projects that suddenly were subject to an unexpected drop in temperature (e.g., 

Bödvarsson and Tsang, 1982; Horne, 1982a, b; MacDonald et al., 1992; Beall et al., 1994; Parini et al., 

1996; Ocampol et al., 1998; Tenma et al., 2008) and in consequence never reached a profitable life 

span.  

The most important parameters in exploration for geothermics comprise temperature and permea-

bility, as well as a number of rock physical parameters (e.g., porosity, petrography), and fluid proper-

ties (e.g., viscosity, and chemical composition). Based on this information, predictions on a reservoir’s 

performance over time are commonly carried out using analytical and numerical models (e.g., 

Gringarten and Sauty, 1975; Gringarten et al., 1975; Bödvarsson and Tsang, 1982; Bakhsh et al., 2016; 

Gan and Elsworth, 2016; Li et al., 2016). 

In modern geothermal facilities, the geothermal waste water is reinjected. This is mandatory due to 

environmental concerns regarding toxic components of the fluid (e.g., fluorine (F); cadmium (Cd); bo-

ron (B), arsenic (As), radioactive minerals) and to maintain reservoir pressure (e.g., Bödvarsson and 

Tsang, 1982; Horne, 1982a; Shook, 2001). However, reinjecting cold waste water can result in a com-

plex interplay between the natural flow field and the circulation induced by production and reinjection 

of the geothermal fluid (Bense et al., 2013). Thus, negative effects on the thermal development of the 

reservoir can be expected that have the potential to reduce the reservoir’s performance. These effects 

might be expressed either as generally lower temperatures of the produced geothermal water and/or 

in a reduced time to thermal breakthrough (Bödvarsson and Tsang, 1982; Horne, 1982a). 

In the following I present a 4D numerical sensitivity study carried out using the software package 

COMSOL Multiphysics. The main objective of this study is to evaluate, using simplified models, how 

varying lithological- and structural parameters affect the fluid circulation between hydrogeothermal 

doublets (i.e. the convective fluid transport) and thus the thermal development of a reservoir. This 

sensitivity study aims 1) to determine the most important parameters needed to evaluate geothermal 

exploration, 2) to estimate ranges of accuracy for these parameters that should serve as reliable input 

parameters for modelling, and 3) to provide a ranking of the most promising reservoir configurations.  
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I inspect the thermal breakthrough times, geometry, and size of the heat transfer volume. The range 

of input parameters I used in the models for e.g. porosities, permeabilities, and permeability aniso-

tropies were obtained from outcrop and wellbore data in the lower Triassic (Buntsandstein) of the 

Upper Rhine Graben (URG). I decide to set the thermal breakthrough temperature to 100°C, because 

this is the minimum temperature binary cycles can use to produce economically electricity (e.g., 

DiPippo, 2005; PK-Geothermie et al., 2007; Schulz et al., 2009; Schulz, 2011).  

 Justification of Model parameters 

My sensitivity study comprises a large suite of numerical models, in which I successively varied the 

hydraulic gradient direction and height (see Section 3.4.3), material, and structural parameters to iden-

tify their importance, interplay, and in consequence their effect on the thermal development of geo-

thermal reservoirs. For a detailed scenario de-

scription, see Section 3.4.2. The necessary mate-

rial parameters for the coupled heat- and fluid 

transport (Eqs. 3.6, 3.9, and 3.10) are: The heat 

capacity (�U), the thermal conductivity (|), the 

density (]), the fluid viscosity (�), the porosity 

(�), and the permeability (�). 

The heat capacity of rocks is considerably lower 

than that of fluids. The thermal conductivity of 

rocks on the contrary is significantly higher than 

that of fluids (Sydney and Clark, 1966). Both pa-

rameters are strongly coupled due to the rock’s 

pore space which at depth is commonly fluid-

saturated, and are thus calculated as a balanced 

composition in COMSOL (Eqs. 3.7 and 3.8). 

Since, | (2.5 – 2.8 [W m-1 K-1]) and �U 

(650 – 720 [J kg 1 K-1]) of dry sandstones only 

vary over a small range (PK-Geothermie et al., 

2007; Stober et al., 2011; Bär, 2012) and have 

only minor relevance in hydrogeothermal facili-

ties (PK-Geothermie et al., 2007; Schulz et al., 

2009; Stober et al., 2011), I do not specified 

them separately throughout the model suite. 

Also, the rock- and fluid density, as well as the fluid’s viscosity were kept constant (cf. Sections 3.4.3 

and 3.4.3; Table 7.1). Therefore, my numerical models focus on permeability and porosity variations 

(Table 7.2; Fig. 7.1). The range of variations I applied is typical for the study area (Fig. 7.1) and thus 

used throughout the model suite. 

Table 7.1: Material properties used for all models 

parameter symbol values unit 

fluid properties 

density 

heat capacity 

thermal conductivity 

viscosity 



]
�U 

|
�

 

1100 

4200 

0.6 

280 

 

kg m-³ 

J kg 1 K-1 

W m-1 K-1 

Pa s 

rock properties 

density 

heat capacity 

thermal conductivity 

 

] 

�U 

| 

 

2400 

670 

2.6 

 

kg m-³ 

J kg 1 K-1 

W m-1 K-1 

 

Table 7.2: Default values for porosity and permeability and 

corresponding model codes used in the different scenarios. 

From left to right increasing permeability () and from top to 

bottom increasing porosity ( ).  

M1: 

10-15 m²; �=0.03 

M2: 

10-13 m²; �=0.03 

M3: 

10-11 m²; �=0.03 

M4: 

10-15 m²; �=0.14 

M5: 

10-13 m²; �=0.14 

M6 

10-11 m²; �=0.14 

M7: 

10-15 m²; �=0.25 

M8: 

10-13 m²; �=0.25 

M9: 

10-11 m²; �=0.25 
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Figure 7.1: Permeability and porosity values listed by method, and sub-surface (light grey) and surface (dark grey) data from 

Buntsandstein rocks of the URG and adjacent areas. a) Permeability and corresponding hydraulic conductivity. Orange and 

grey bars represent pore permeability and bulk permeability values, respectively. b) Porosity [%]. The default parameters I 

used in this study are shown in blue.  

The model M5 (Table 7.2), with medium permeability and porosity, represents the benchmark pa-

rameters needed for geothermal electricity generation, according to e.g., Jung et al. (2002), and URL3: 

Bundesverband Geothermie. The model suite comprises five basic scenarios. In scenario 1, I investigate 

the general effect of changing porosity and permeability in a homogenous rock volume. In the scenar-

ios 2 to 5, I successively increase the model’s complexity by introducing sedimentary layers, fracture-

induced permeability anisotropy, and fault zones. Reservoir-confining layers (referred as claystone lay-

ers) are assigned with permeability values of 1 to 4 orders of magnitude lower than that of the reser-

voir layers (referred to as sandstone layers). Fracture anisotropy was simulated by values that are 1 to 

3 orders of magnitude higher in different directions. The default parameter I use for the fault core 

permeability is 10-18 m2, while damage zone(s) have values 1 to 4 orders of magnitude higher than the 

host rock.  
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 Results of the sensitivity study 

 Scenario 1 (S1): Homogeneous reservoir volume 

In scenario 1, I test, using homogeneous and isotropic models, the influence of permeability and po-

rosity, under hydraulic gradients of varying height and direction, on the propagation of the thermal 

front in a geothermal reservoir. My aim here was to initially identify their interplay and their influence 

on structure-independent temperature development.  

In models with low permeability (M1, M4, M7; Table 7.2; Fig. 7.2a, d), only the porosity influences 

the propagation of the 100°C isothermal (HIT). However, with increasing permeability the hydraulic 

gradient gains influence on the reservoir’s performance, while the relative impact of porosity ceases 

(Fig. 7.2b – c, e – f). 

 

Figure 7.2: Temperature development and breakthrough times of homogeneous reservoir volume, depending on the perme-

ability, porosity, and hydraulic gradient configuration. a to c) show the temperature development of the produced fluid over 

time. The reservoir’s permeability increases from left to right. Only north- and southward-directed gradients are shown. In a) 

the temperature development depending on the porosity value is presented. The influence of the hydraulic gradient is not 

noticeable. In b) and c) the porosity is set to 0.14 the influence of the height of the hydraulic gradient increases with perme-

ability. d to f) show polar plots of the breakthrough times for all model configurations with increasing reservoir permeability 

from left to right. The segment of the circle indicates the direction of the hydraulic gradient. The distance from the centre 

indicates the time to thermal breakthrough. The individual temperature development of the nine basic models are shown in 

Appendix 2.2 – Fig. A3.  

Depending on the height and direction of the hydraulic gradient, I observed in this model suite break-

through times from 8 yr to infinite (>200 yr). With the shortest breakthrough times observed in the 

high permeability and low porosity model (M3; Table 7.2), for the case of a southward directed hy-

draulic gradient of 20 mm m-1 (Fig. 7c, f; Appendix 2.2 – Fig. A3c).  
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In cases with no assigned hydraulic gradient (green lines in Fig. 7.2a – c) or when the required pump-

ing pressure to achieve flow rates of 75 l s-1 exceeds the natural hydraulic gradient (low permeable 

models), the induced pressure difference in the wells controls the fluid flow regime. The result is that 

the HIT forms a spherical body (Fig. 7.3a). In consequence, I deduce that the expansion of the HIT is 

independent of permeability and only controlled by porosity; higher porosities result in a higher life-

time of the reservoir (Fig. 7.2a, d). With increasing hydraulic gradient height, assigned to the medium 

and high permeability models, the shape of the exploited reservoir volume becomes ellipsoidal, i.e. 

the exploited reservoir volume becomes smaller (Fig. 7.3b, c; Appendix 2.2 – Fig. A4). This effect be-

comes stronger with increasing permeability and lead to an increasing effect of the hydraulic gradient 

direction and height.  

In the simulations with southward directed gradient i.e. natural fluid flow direction is oriented from 

the injection to the production well, the HIT very quickly reached the production well (Fig. 7.3b). North-

ward directed hydraulic gradients, however, hindered the HIT reaching the production well (Fig. 7.3c). 

 

Figure 7.3: Effect of variable hydraulic gradient (HG) directions on the reservoir shape in homogeneous reservoir models. 

Figures show the HIT for the medium porosity and high permeability model (M6) after 160 yr of heat production. In a) no 

hydraulic gradient, b) southward-directed hydraulic gradient with a height of 20 mm m-1, and c) a northward-directed 

hydraulic gradient with a height of 20 mm m-1. The complete sequence of figures for the M6 model of all hydraulic gradient 

configurations is shown in Appendix 2.2 – Fig. A4. The HIT is colour-coded for depth. 

Notably, the hydraulic gradient’s importance is stronger when the reservoir permeability reaches val-

ues that are recommended for economical electricity production (i.e. >10-13 m2; Jung et al., 2002; URL3: 

Bundesverband Geothermie; medium permeability models: M2, 5, 8).  

 Scenario 2 (S2): Layered reservoir volume 

In the second scenario, I introduced layers into the model setup that constitute permeability con-

trasts, i.e. I confined the sandstone layers within layers of lower permeability, as typically observed in 

the URG Buntsandstein, caused by clay layers or variations in the sandstone layers themselves (Figs. 7.1 

and 6.9; Jodocy and Stober, 2011; Sass and Hoppe, 2011; Bär, 2012; Reinecker et al., 2015). The default 

input parameters of the sandstone layers, i.e. reservoir layers, correspond to the medium porosity 

models (M4, M5, and M6; Table 7.2).  

In detail, I observe the best-performing reservoir configuration to be when the layered succession 

comprises permeability contrasts of 101. In this case, the time for the HIT to reach the production well 

is increased, with respect to scenario 1 (compare Figs. 7.2 and 7.4). Higher permeability contrasts, 

however, cause notably faster cooling of the reservoir (Fig. 7.4).  
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Figure 7.4: Temperature development and breakthrough times of layered reservoir volumes depending on the permeability 

contrast, sandstone permeability, and hydraulic gradient configuration. a to c) the temperature development of the produced 

fluid over time. Only north- and southward-directed gradients are shown. The sandstone permeability increases from left to 

right. In a) and b) permeability of the confining layers is varied. The influence of the hydraulic gradient is small. In c) only the 

permeability contrast of 104 is presented. d to f) Polar plots of the breakthrough times for all model configurations, with 

increasing reservoir permeability from left to right. The segment of the circle indicates the direction of the hydraulic gradient. 

The distance from the centre indicates the time to thermal breakthrough. The individual temperature developments of the 

12 basic models are shown in Appendix 2.3 – Fig. A5.  

In the layered reservoir models, I observed, depending on permeability contrasts and hydraulic gra-

dient configurations, breakthrough times from 7 yrs to infinite (Fig. 7.4). The slightly-decreased per-

meability in the confining layers causes a step-like pattern in the HIT, however it is still spherical in 

shape, which results in an increased surface to volume ratio (Fig. 7.5a), and leads to later thermal 

breakthrough times compared to the homogenous models (Figs. 7.2, 7.4; Appendix 2.3 – Figs. A3 and 

A5).  

 

Figure 7.5: Effect of increasing permeability contrast on the reservoir shape in layered reservoir models. Figures show the HIT 

for the medium porosity and medium permeability model (M5) after 60 yr of heat production, simulated for a hydraulic 

gradient (HG) of 0 mm m-1. The applied permeability contrasts are a) 101, b) 102, and c) 104. The HIT is colour-coded by depth.  
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Higher permeability contrasts reduce the hydraulic interconnection between the different layers and 

thus the exploitable part of the reservoir becomes increasingly restricted to only the production and 

injection layer (Fig. 7.5). In consequence, the re-injected cold-water lead to a premature cooling of the 

production area. The restriction in exploitable volume can however be counteracted by a northward-

directed hydraulic gradient of sufficient height (> 1mm m-1) that hinders the HIT in reaching the pro-

duction well. In contrast, unfavourably-oriented hydraulic gradients can cause very short lifetimes of 

the reservoir (Fig. 7.4). In conclusion, high permeability contrasts in layered reservoirs increase the 

possibility that the HIT reaches the production well faster than in homogeneous models.  

 Scenario 3 (S3): Fractured reservoirs 

In this step, I introduce fracture-induced permeability anisotropy into the model setup. The default 

model parameters correspond to the medium porosity and permeability model (M5) and the anisot-

ropy factor (permeability parallel/vertical to the fractures) is varied from 101 to 10³, as typical for po-

rous fractured rocks (e.g., Caine and Forster, 1999; Jourde et al., 2002; Flodin and Aydin, 2004; Bense 

and Person, 2006).  

My models show that the best reservoir configuration depends on the interplay between the hydrau-

lic gradient configuration, and the height and orientation of the permeability anisotropy (Fig. 7.6). In 

general, under hydraulic gradients of zero height, increasing N-S-directed permeability anisotropy lead 

to premature cooling of the reservoir (green lines in Fig. 7.6a – c), compared to homogeneous models 

in scenario 1 (Fig. 7.2).  

 
Figure 7.6: Temperature development and breakthrough times of fractured reservoir volumes depending on the fracture 

induced permeability anisotropy and hydraulic gradient configuration. a to c) the temperature development of the produced 

fluid over time for the medium permeability and medium porosity model (M5). The N-S-oriented permeability anisotropy 

increases from left to right. Only north- and southward directed gradients are shown. Polar plots show the breakthrough 

times for all model configurations for d) N-S-oriented and e) E-W-oriented permeability anisotropy. The segment of the circle 

indicates the direction of the hydraulic gradient. The distance from the centre indicates the time to thermal breakthrough.  
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Changing the height and direc-

tion of the hydraulic gradient 

and the permeability anisotropy, 

I observed breakthrough times 

from 6 yr to infinite (Fig. 7.6). Al-

ready low fracture anisotropy in-

hibits the development of a 

spherical HIT, as observed in the 

homogeneous models 

(Fig. 7.3a), but favour an ob-

lately-shaped HIT, with de-

creased reservoir volume 

(Fig. 7.7). The width of the ob-

late-shaped HIT is oriented par-

allel to the anisotropy and be-

comes narrower with increasing 

anisotropy (Fig. 7.7a, b). As pre-

vious observed, northward-di-

rected gradients suppress the 

HIT reaching the production 

well, while southward-oriented 

hydraulic gradients can cause ex-

tremely short breakthrough 

times due to the limited reser-

voir volume (Fig. 7.6).  

According to my model, the HIT 

will not reach the production 

well if the anisotropies are high 

enough and nonparallel to the 

well alignment (Fig. 7.6e; Appen-

dix 2.4 – Fig. A6). 

In cases where high hydraulic 

gradients and high anisotropies 

are in-line, thermal expansion in the z-direction is additionally hampered, forming a HIT that is limited 

to a small channel (Fig. 7.7d). The width of the cooled volume is so narrow that it does not cool down 

the complete thermal catchment area of the production well (Fig. 7.7f). As a consequence, the reser-

voir cools down extremely fast during the first years, but the production temperature never reaches 

the cut-off temperature of 100°C, (Fig. 7.6c; dark blue dashed line). If the height of southward-directed 

gradient is <20 mm m-1, or no hydraulic gradient is applied (Fig. 7.7g), the width of the HIT is wider, 

and the reservoir cools down (Figs. 7.6c; green line; Fig. 7.7g; Appendix 2.5 – Fig. A7). For the lowest 

northward-directed gradients, the production temperature is only slightly influenced by the re-injec-

tion of geothermal water and stays at a constant high temperature level (Figs. 7.7e and Fig. 7.6c). As a 

consequence, long lifetimes become more likely with increasing N-S-directed anisotropy, but at the 

same time the risk of rapid cooling increases (Fig. 7.6).  

Figure 7.7: Effect of increasing N-S-directed permeability anisotropy on the reser-

voir shape in fractured reservoir models. Figures show the HIT for the medium 

porosity and medium permeability model (M5) after 20 yr of heat production with 

variable hydraulic gradient (HG) configurations and increasing permeability ani-

sotropy from left to right. a, b) No hydraulic gradient and c, d) high southward-

directed gradients of 20 mm m-1. e to f) Top view of models with high permeability 

anisotropy under varying hydraulic gradient configuration. e) Northward-directed 

gradient of 1 mm m-1, f) southward-directed hydraulic gradient of 20 mm m-1, g)

no hydraulic gradient. In Appendix 2.4 – Fig. A7, the effect of all hydraulic gradient 

configurations on the HIT for models with high anisotropies are presented. 
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 Scenario 4 (S4): Fractured and layered reservoirs 

In this section, I investigate the combined effect of layering and fracturing on reservoir performance. 

The basic setup, i.e. porosity and permeability, is based on model M5, with a permeability contrast of 

101 to 103. Within the model series the only modification I applied is that I successively increased the 

permeability anisotropy in the confining layers from zero to a value equalling that of the reservoir 

layers. Initially only the sandstone layers are assigned with a permeability anisotropy. I only present 

results for the extreme case of the anisotropy being parallel to the well alignment, i.e. in the N-z plane. 

As previously observed in Section 7.3.2 (layered reservoirs), increasing permeability contrasts be-

tween different horizontal layers increasingly prevents the propagation of the HIT in z-direction 

(Fig. 7.5). In contrast, increasing fracture-induced permeability anisotropy prevents the propagation of 

the HIT in x-direction and in z-direction if the high anisotropies are in-line with high hydraulic gradients 

(Fig. 7.7; Appendix 2.5 – Fig. A7). In combination, both effects lead to decreased reservoir performance 

compared to reservoirs modelled as either layered or fractured (Figs. 7.4, 7.6 and 7.8).  

 

Figure 7.8: Temperature development and breakthrough times for layered and fractured reservoir volumes depending on 

the permeability contrast, fracture-induced permeability anisotropy, and hydraulic gradient configuration. Figures show the 

temperature development of the produced fluid over time for the medium permeability and medium porosity model (M5) 

for north- and southward directed hydraulic gradients: a, b) Permeability anisotropy of 101 and increasing permeability con-

trast from left to right, and c, d) Increasing permeability anisotropy from left to right. In this case, the height of the permea-

bility contrast does not influence the temperature development.  

Depending on the configuration between height and direction of the hydraulic gradient, the perme-

ability anisotropy, and the permeability contrast, the breakthrough times range from 1 yr to infinite 

(Fig. 7.8).I observe that a slight permeability contrast (101) in combination with fracture-induced ani-

sotropy in the sandstone layers, restricts the propagation of the HIT in the vertical and horizontal di-

rection efficiently and leads to a strong decrease in exploitable reservoir volume and consequently 

earlier breakthrough times compared to the layered succession model and fractured model (Figs. 7.4a, 

7.6a, and 7.8a, b). Increasing permeability contrast, exaggerates this effect remarkably (Fig. 7.8c, d). 

Notably, already a low fracture induced permeability anisotropy in the sandstone layers impedes the 

positive effect observed in the layered succession models with a permeability contrast of 101 (Figs. 7.4a 

and 7.8a, c). 
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A permeability anisotropy ≥10² alone prohibits connection between reservoir and its confining lay-

ers, i.e. independently of the permeability contrast of the layered succession, propagation of the HIT 

in z-direction is inhibited. As a consequence, for models with a permeability anisotropy ≥10², the 

height of the permeability contrast does not influence the thermal development (Figs. 7.8c, d and 

7.9c, d).  

In general, the utilized reservoir volumes are comparatively small. The suppressed propagation of the 

HIT in z-direction due to sedimentary layering or high anisotropy yields not only wider lateral extent of 

the HIT (Fig. 7.9), but also its faster propagation towards the production well. This holds for all mod-

elled hydraulic gradients, except for high, northward-directed gradients (Fig. 7.8; Appendix 2.6 – 

Fig. A8). Notably, the highest southward-directed gradient does not lead to unlimited reservoir perfor-

mance as observed in the model suit S3 (fractured models without layering), since the cooling front 

surrounds the production well and causes rapid cooling by itself (Fig. 7.7f, Fig. 7.9f, Appendix 2.6 – Fig. 

A8). 

Models with stepwise-decreasing anisotropy contrast, i.e. fractures have propagated through the 

confining layers, show that the production temperature cools down slower. Depending on the hydrau-

lic gradient, the possibility to achieve unlimited usability also increases. In cases where fracture-system 

parameter are identical in the different layers, i.e. permeability anisotropy contrast is 0, the tempera-

ture development in the reservoir is identical to the homogeneous and anisotropic models (cf. Fig. 7.6; 

Appendix 2.6 – Fig. A8f).  

 

Figure 7.9: Effect of increasing N-S-

oriented permeability anisotropy 

and contrast on the reservoir shape 

in fractured and layered reservoir 

models. Figures show the HIT for 

the medium porosity and medium 

permeability model (M5) after 60 yr 

of heat production with variable hy-

draulic gradient configurations. a to 

d) Permeability anisotropy in-

creases from left to right, the per-

meability contrast increases from 

top to bottom. No hydraulic gradi-

ent is assigned. e-f) top view of 

models with high permeability ani-

sotropy and a high permeability 

contrast with varying hydraulic gra-

dient configuration. e) Northward-

directed gradient of 1 mm m-1, f)

Southward-directed hydraulic gra-

dient of 20 mm m-1, g) No hydraulic 

gradient.  
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 Scenario 5 (S5): Fault-related reservoir 

In this scenario, I include a fault or fault zone into the medium porosity and permeability model (M5). 

The fault is either defined as low permeable fault core with or without a conductive damage zone or 

as a highly conductive damage zone without fault core. Thus, I simulate barrier-, conduit faults, and 

combined conduit-barrier systems. The individual parts of the fault (zone) are modelled first as ho-

mogenous bodies and in a second step, with permeability anisotropy in the damage zone parallel to 

the fault orientation and sedimentary layering within the host rock.  

In my models in which the fault core acts as barrier, the fault permeability was ¯ 10-16 m2. Therefore, 

the fault core restricts the usable reservoir volume, since fluids cannot pass through it. In consequence, 

the thermal breakthrough times were reached much faster compared to the homogeneous models 

(Figs. 7.10a, d and Fig. 7.2b; Appendix 2.7 – Fig. A9). My models also show that breakthrough times 

further decreases for conduit- or combined conduit-barrier faults (Fig. 7.10b, c). I observed the short-

est breakthrough times for conduit-barrier systems. 

 

Figure 7.10: Temperature development, breakthrough times, and reservoir shape of fault-related reservoir volumes depend-

ing on fault zone structure and hydraulic gradient configuration. a to c) the temperature development of the produced fluid 

over time for the medium permeability and medium porosity model (M5) for north- and southward directed hydraulic gradi-

ents. Models are crosscut by a fault simulated as a) a barrier fault zone with a core zone permeability of 10-18 m2, b) a con-

ductive fault with a damage zone permeability of 10-11 m2, and, c) a conduit-barrier system with a core zone permeability of 

10-18 and a damage zone permeability of 10-11 m2. d to f) the corresponding shape of the HIT after 40 yr of heat production, 

simulated for a hydraulic gradient of 0 mm m-1. Temperature development and reservoir shape of fault models with variable 

damage- and core zone permeability are shown in Appendix 2.7 – Figs. A9 to A11. 

Depending on the hydraulic gradient, the modelled breakthrough times range from 6 yr to unlimited 

(Fig. 7.10a – c). The extreme short lifetimes, are observed for faults that act as conductor and conduit-

barrier system and result from the effect that the usable reservoir volume becomes restricted to the 

higher permeable damage zone (Fig. 7.10e, f), i.e. the fluid propagates preferably in the damage zone. 

With increasing damage zone permeability, the propagation of the HIT into the host rock is further 
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supressed. In consequence, increasing damage zone permeability leads to decreasing reservoir perfor-

mances (Appendix 2.7 – Fig. A10). Further I observed that for conduit-barrier system, the core zone 

permeability has only minor influence on the thermal development (Appendix 2.7 – Fig. A11) of the 

reservoir. However, due to the reduced damage zone thickness, i.e. only one part of the damage zone 

is utilized, the reservoir cools down faster compared with faults that constitute a purely conductive 

system (Fig. 7.10b, c; Appendix 2.7 – Fig. A11).  

Since the modelled thermal development between conducting faults and conduit-barrier systems is 

rather similar (Fig. 7.10b, c), I present the effects of fracture-induced permeability anisotropy within 

the damage zone only for conducting faults. Default material parameters are similar to the medium 

porosity and permeability model (M5; Table 7.1), with a permeability contrast for the host rock of 101 

and 103. Since I assume a non-stratabound fracture system with anisotropy values of 101 and 103 in 

the damage zone, permeability contrast can be neglected, as shown in Section 7.3.4 and Appendix 

2.6 – Fig. A8. The fracture-induced permeability anisotropy is modelled to be parallel to the fault, as 

often reported (Caine et al., 1996; Shipton and Cowie, 2003; Berg and Skar, 2005; Fossen et al., 2007; 

Faulkner et al., 2010; Bense et al., 2013).  

I observed that the thermal development of reservoirs utilising conducting faults, with an anisotropic 

damage zone, mostly depends on the degree of the fracture-induced anisotropy and the hydraulic 

gradient configuration, while the influence of host rock layering is less important. With increasing an-

isotropy, the importance of the hydraulic gradient increases, and the thermal development becomes 

(almost) independent of the permeability contrast within the host rock (Fig. 7.11a – d).  

In models with no assigned hydraulic gradients, reservoir performance decreases with increasing per-

meability anisotropy (Fig. 7.11), while at the same time the possibility to achieve unlimited reservoir 

performance increases for northward-directed gradients. Equally for scenario 3 (Section 7.3.3), the 

highest southward-directed gradient also results in unlimited reservoir lifetime; however, the produc-

tion temperature is only slightly above the 100°C (Fig. 7.11b, d).  
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Figure 7.11: Temperature development and breakthrough times of reservoirs utilising conductive faults, depending on per-

meability anisotropy in the damage zone, permeability contrasts in the host rock, and the hydraulic gradient configuration. a 

to d) the temperature development of the produced fluid over time. The permeability anisotropy increases from left to right 

and the permeability contrast increases from top to bottom. Only north- and southward-directed gradients are shown. e to 

f) polar plots of the breakthrough times for all model configurations with increasing permeability anisotropy from left to right. 

The segment of the circle indicates the direction of the hydraulic gradient. The distance from the centre indicates the time to 

thermal breakthrough.  

Depending on the height and direction of the hydraulic gradient and the anisotropy factor, break-

through times range between 1 yr and infinite (Fig. 7.11a – d). The span in breakthrough times and the 

reduced reservoir performance, compared to homogeneous fault zones, results from the effect that 

increasing permeability anisotropies within the damage zone strongly prevents the propagation of the 

HIT into the host rock (Fig. 7.12). Additionally, the vertical propagation of fluids in the fault(zone), as 

previous observed in scenario 3 (Figs. 7.7), becomes restricted.  
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Figure 7.12: Effect of increased 

permeability anisotropy in the 

fault damage zone on the reser-

voir shape for conductive faults. 

Figures show the HIT for the me-

dium porosity and medium per-

meability model (M5) after 40 yr 

of heat production, simulated for 

a hydraulic gradient of 0 mm m-1. 

a) the permeability contrast in the 

host rock and the fracture-in-

duced permeability anisotropy of 

the damage zone is 101, b) the 

permeability contrast in the host 

rock and the fracture-induced 

permeability anisotropy of the 

damage zone is 103. 

Thus, for high permeability anisotropies, the propagation of the geothermal water is restricted within 

the damage zone with a small vertical extent, and thus the exploitable volume becomes very small 

(Fig. 7.12b). To prevent rapid reservoir cooling, it is mandatory to have northward-directed gradients, 

or high southward-directed gradients that counteract the low reservoir volume and lead to unlimited 

performances (Fig. 7.11f). If the fluid flow is controlled by the production and injection pressure alone, 

or low to medium southward-oriented hydraulic gradients act on the system, thermal breakthrough 

times are reached already after 1 year.  

 Summary 

My numerical sensitivity study uses conceptual models to examine the thermal development of hy-

drogeothermal reservoirs. My models show first that height and direction of hydraulic gradients have 

strong influence on the thermal development of geothermal reservoirs. Thus they demonstrate the 

importance of including the hydraulic gradient when making an estimate of reservoir cooling during 

production. The impact of the hydraulic gradient increases with increasing reservoir permeability and 

if structural inhomogeneities are included into the simulation (e.g., sedimentary layering, fractures, 

faults). Thus, the hydraulic gradient constitutes a crucial factor whether or not a reservoir can be ex-

ploited over a long-time span (Fig. 7.13).  

In the model suite of homogeneous reservoirs, I observed that higher porosity models, due to the 

increased heat capacity of the rocks, lead to longer reservoir performances. However, with increasing 

permeability, the impact of porosity on the thermal development becomes less important, while the 

importance of the hydraulic gradient increases. However, the threshold at which point the hydraulic 

gradient gains in influence, depends not only on the permeability value, but rather on the applied 

pumping and injection pressure. This means that in cases when the hydraulic gradient exceeds the 

induced pressure difference between the wells (which primarily depends on the pumping rate), the 

appropriate wellbore locations need to be considered carefully. In general, hydraulic gradient config-

urations that support fast fluid flow from the injection to the production well (i.e. southward directed 

gradients in the models, compare Fig. 3.6) shorten thermal breakthrough times. In contrast, hydraulic 

gradients that prevent the cold reinjected fluid to propagate towards the production well (i.e. south-

wards directed gradients in the models) expand the thermal lifetime of a reservoir. However, in homo-

geneous model suits, most reservoir configurations are promising and have therefore the potential for 

long usability. The only exceptions are high permeability models with high southward-directed hydrau-

lic gradients (Fig. 7.13a). 
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Including sedimentary layering, that constitutes a permeability contrast into the model setup, results 

in clearly earlier breakthrough times when the permeability contrast is ≥ 102. This is the threshold at 

which the fluid circulation becomes restricted to the production layer. Notably a smaller permeability 

contrast of 101 increases the thermal performance of the reservoir. The quality of layered successions 

is thus controlled by the height of the permeability contrast, the default permeability of the higher 

permeable layers, and, in cases of high permeability models, by the direction of the hydraulic gradient. 

The overall reservoir quality is reduced compared to the homogeneous model suite, since the risk to 

achieve short production times is clearly increased for layered succession constituting permeability 

contrasts ≥ 102 (Fig. 7.13b).  

Fracture induced permeability anisotropy, leads to clearly reduced reservoir volumes, since the fluid 

is preferably transported along them. The higher the anisotropy the stronger the channelling effect 

becomes. In extreme cases, with the fracture anisotropy parallel to the well alignment, they remarka-

bly shorten the thermal breakthrough time. On the contrary, perpendicular-oriented anisotropies have 

the potential to hinder fluids to reach the production well, independent of the hydraulic gradient di-

rection and height. Thus, in extreme cases, fractured reservoirs can clearly not only reduce the geo-

thermal reservoir quality, when compared to layered and homogeneous reservoirs (Fig. 7.12c), but 

also can improve it. To prevent rapid reservoir cooling, these observations demonstrate the im-

portance to know:  

1. fracture orientation and their anisotropy,  

2. the natural hydraulic gradient direction and height,  

and adjust: 

3. the well locations,  

4. and the production and injection pressures.  

The combination of fracture-induced permeability anisotropy and layering, i.e. reduced interconnec-

tion between different layers due to permeability contrasts, and channelling along fractures, addition-

ally complicates the system and its predictability. Dependent on the height of the permeability con-

trast, the anisotropy value, the hydraulic gradient configuration and whether the fractures are strata-

bound or not, the thermal development of the reservoir can vary significantly. In general, in models 

with a permeability anisotropy of 101 in the sandstone layers, increasing permeability contrasts lower 

the reservoir performance (Fig. 7.8a, b). For fracture-induced permeability anisotropies ≥102, how-

ever, layering does not influence the thermal development of the reservoir, and makes it possible to 

achieve long lifetimes for positive-oriented hydraulic gradients (Fig. 7.8c, d). However, high fracture N-

S-directed anisotropy (103), in combination with high gradients oriented between the injection and the 

production well, only result in unlimited reservoir performances in a non-stratabound fracture system. 

If this is not the case, it cools down extremely fast. Also, the positive effect of a layered succession with 

a permeability contrast of 101 is counteracted by fractures.  

In the homogeneous fault zone models, I observed that faults, independent of their internal structure, 

decrease the reservoir performance significantly, compared to homogeneous models (Fig. 7.10a – c). 

Notably, conductive faults lead to a more rapid reservoir cooling compared with barrier faults, due to 

the channelling of fluids within the limited volume of the damage zones. The exploitable reservoir 

volume and also the breakthrough times of conducting faults further decreases when sedimentary 

layers and fractures are added to the model setup. In consequence, for fault-related reservoirs it is 

mandatory to know a number of parameters (damage zone thickness, layering, fracture anisotropy, 
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hydraulic gradient) and their precise combination to make reliable estimates on the reservoir perfor-

mance. Nonetheless, not only faults acting as barrier but also conducting fault zones clearly reduce the 

probability to receive high production temperatures over a long-time span (Fig. 7.13d). This holds es-

pecially true for the often-observed cases that fractures hosted in a damage zone are aligned parallel 

to the fault. 

 
Figure 7.13: Normalized number of thermal breakthrough times depending on the hydraulic gradient direction. a) for homo-

geneous reservoir models (scenario 1: n = 288), b) layered reservoir models (scenario 2; n = 320), c) fractured reservoir models 

(scenarios 3, n = 36), and d) heterogeneous and anisotropic fault zone models (scenario 5; n = 136). With increasing structural 

complexity (top to bottom), the probability for short reservoir lifetimes increases. Scenario 4 (fractured and layered reservoir) 

is not shown due to the small number (n = 24) of experiments.
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 Discussion 

My thesis evaluates rock- and fracture-system parameters of fault zones and their predictability, with 

the aim to increase the success rate of fault-related hydrogeothermal projects. Attributes of fracture 

systems, petrological, and lithological parameters were determined using outcrop analogue studies in 

the Upper Rhine Graben (URG). The extrapolation of outcrop findings to depth was tested using a 

comparative study of outcrop and borehole data. Finally, the impact of the determined geological pa-

rameter ranges on thermal depletion of a hydrogeothermal doublet was tested using a comprehensive 

numerical sensitivity study. 

In this discussion, I firstly give a short overview of operating geothermal projects worldwide and their 

different geological settings. Secondly, I discuss findings of our outcrop analogue studies and, based 

on this, the suitability of fault zones as targets for geothermal energy. Thirdly, I discuss the current 

exploration methods in geothermics and the contribution that outcrop analogue studies can make. I 

also discuss possible approaches that may help to improve the predictability of fault zone features that 

are important from the hydraulical point of view. Fourthly, I discuss the possible impacts of different 

reservoir structures and their properties on the fluid and heat transport, based on the results of the 

numerical modelling. Lastly, I discuss the effects of model simplification and possible improvements 

that would allow a more accurate depiction of the reservoir system, and to which degree improved 

model accuracy is useful. 

 Geothermal projects worldwide and their geological setting 

Analysis of the distribution of successful geothermal projects worldwide shows that they are basically 

established in areas with active volcanism or in tectonically-active settings (Barbier et al., 2012; 

Glassley, 2014; Moeck, 2014; URL4:Thinkgeoenergy; Fig. 8.1), and were explored often directly from 

surface expressions, such as hot springs or fumaroles (Barbier, 2002; Bruhn et al., 2010). Typical geo-

logical settings that provide geothermal resources, according to Glassley (2014) and Moeck (2014), can 

be subdivided into:  

1) Compressional geological settings, i.e. orogenic belts, or foreland basins (Japan, Russia, New Zea-

land, Philippines, Central- and South America), where most geothermal facilities are installed.  

2) Strike-slip geological settings as in North America along the San Andreas Fault or the Anatolian 

Fault in north Turkey.  

3) Extensional geological settings, e.g. along mid oceanic ridges, such as the Mid-Atlantic Ridge, in 

Iceland and the Azores. Other examples are back-arc spreading centres, such as in northern New 

Zealand. Further extensional environments that provide geothermal resources are intraconti-

nental rift settings. Examples are the Imperial Valley in the USA, the East Pacific Rise in Mexico, 

and the East-African Rift in Ethiopian and Kenya.  



8 Discussion 

107 

 

 

Figure 8.1: Heat flow map (a) and geothermal energy producing projects (b) worldwide according to tectonic setting. Most 

geothermal facilities are in active tectonic settings that constitute high enthalpy regions. Heat flow map from URL10:Ther-

moGIS, tectonic settings based on Simkin et al., 2006, and locations of geothermal projects after URL4 : Thinkgeoenergy.  

All these geological environments benefit from various processes, but have in common very high ge-

othermal heat flows at the surface (~150 mW m-2; Fig. 8.1a; URL11: IHFC) and are mostly tectonic ac-

tive (Barbier, 2002; Glassley, 2014; Moeck, 2014). Compressional regions, i.e. subduction zones, are 

characterized by rising melts and thus they comprise hot volcanic systems that provide shallow, long-

lasting heat sources (e.g., Iwamori, 1997; Stein, 2003; Glassley, 2014). On the other hand, transitional 

systems, often provide major rupture zones that allow fluids to circulate from great depth (e.g., 

Kennedy et al., 1997; Glassley, 2014). Extensional settings benefit from an uprising mantle, which 

forms young, fractured, and thus hot and permeable crust (Flóvenz and Saemundsson, 1993; Glassley, 

2014).  
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In Germany, utilization of deep geothermal energy takes place in three settings; within an intracra-

tonic basin (North German Basin – extensional type), a foreland basin (Molasse Basin – compressional 

type), and in the URG, as part of an intracontinental rift system (European Cenozoic Rift System – ex-

tensional type; Fig. 1.2; URL3: Bundesverband Geothermie; Stober et al., 2011). In contrary to e.g. ge-

othermal power plants established in extensional settings as in the north of New Zealand, where rifting 

is still active and characterised by recent volcanic activity (Glassley, 2014; Moeck, 2014), the tectonic 

activity of the URG (studied here), the Molasse Basin, and the North German Basin is considerably 

lower and no recent volcanic activity has taken place (Simkin et al., 2006). As a consequence, all three 

regions of geothermal interest in Germany are characterised by relatively low geothermal heat flow 

(average 65 mW m-2; Stober et al., 2011) near the global average (70 mW m-2, Li et al., 2017), with the 

highest values observed in the URG at 60 – 140 mW m-2 (Haenel and Staroste, 1988). In consequence, 

all three regions are of low enthalpy type, which only allows the utilization of geothermal power using 

binary cycles. Thus, the generation of geothermal power in Germany can be currently considered to 

be at an early state.  

To date, exploitation of low enthalpy, hydrogeothermal sedimentary reservoirs for power generation 

is rare and most realisations can be found in Germany, Austria, and China (URL4: Thinkgeoenergy). In 

the North China Basin and in the Molasse Basin (Germany), mostly karstified and fractured limestone 

reservoirs are explored (Jung et al., 2002; Paschen et al., 2003; Masum, 2015). In these regions, how-

ever, the risk of dry wells seems to be lower than in the URG, where fractured clastic rocks are utilized 

(Jung et al., 2002; Paschen et al., 2003). In the Molasse Basin, only two from eight electricity-producing 

projects failed in recent years, in contrast to six from nine in the URG (Section 1.2; URL: 6 – 8). These 

projects failed mostly due to insufficient reservoir permeability (URL: 6 – 8). In consequence, the com-

bination of deep-seated reservoirs and the difficulties in exploring heterogeneous sedimentary succes-

sions requires detailed and advanced exploration methods to exploit the geothermal potential in Ger-

many that doubtlessly exists. 

 Should fault zones be a target for geothermal energy? 

As stated above, most geothermal projects in Germany that failed, encountered insufficient perme-

ability in the envisaged reservoir volume. While insufficient permeability may also be technically im-

proved by stimulation methods, for instance by widening existing or by creating new fractures, it re-

mains an unsure venture (DiPippo, 2016) and increases the risk of induced seismicity (Baisch et al., 

2009; Cladouhos et al., 2010; Häring et al., 2008). Thus, it is desirable to improve the success rate by 

finding initially sufficient permeable reservoirs. 

In this context, faults and fault zones are more and more often proposed as potential reservoir for-

mations (Paschen et al., 2003; Jung, 2007; Agemar et al., 2016; Meier, 2016; Stober et al., 2016). A vast 

number of studies have shown that faults have a large impact on fluid flow conditions in the Earth’s 

crust and have the potential to greatly improve permeability (e.g., Sibson, 1977; Byerlee, 1993; Caine 

et al., 1996; Caine and Forster, 1999; Haneberg et al., 1999; Micarelli et al., 2006a; Kurz et al., 2008; 

Caine et al., 2010; Faulkner et al., 2010; Wibberley et al., 2010; Bense et al., 2013). However, many 

processes during fault zone evolution can either decrease permeability e.g. particulate flow (e.g., 

Heynekamp et al., 1999; Rawling and Goodwin, 2006; Caine and Minor, 2009), cementation (e.g., 

Bruhn et al., 1994; Bastesen and Braathen, 2010; Caine et al., 2010), and cataclasis (e.g., Aydin and 

Johnson, 1978; Antonellini and Aydin, 1994, 1995; Gibson, 1998), or increase permeability e.g. fractur-

ing (e.g., Agosta and Kirschner, 2003; Balsamo et al., 2010; Caine et al., 2010), brecciation (e.g., Bruhn 

et al., 1994; Caine and Minor, 2009; Caine et al., 2010; Walker et al., 2013), and dissolution (e.g., 
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Micarelli et al., 2006a, Bruhn et al., 1994; Bastesen and Braathen, 2010; Caine et al., 2010). The range 

of interaction and linkage between direct controlling factors such as clay smear (Sperrevik et al., 2002; 

Yielding, 2002), bed thicknesses (Hobbs, 1967; Narr and Suppe, 1991; Gross et al., 1995; Van der Pluijm 

and Marshak, 2004), mechanical rock properties (Faulkner et al., 2010), and external factors, such as 

depth of formation (Twiss and Moores, 2007; Ishii et al., 2010), geological setting, water-rock interac-

tions (Bruhn et al., 1994; Haneberg et al., 1999; Molli et al., 2010), displacement (Knott, 1994; 

Manzocchi et al., 1999; Sperrevik et al., 2002; Mitchell and Faulkner, 2009) determine the mode of 

rock failure and thus the permeability of faults. Fault zone structures are consequently of a heteroge-

neous, anisotropic, and discontinuous nature (Shipton and Cowie, 2003; Mitchell and Faulkner, 2009; 

Faulkner et al., 2010). Thus, the impact of faults on fluid flow must also be considered as highly com-

plex, and to vary significantly even on small scales.  

As many other authors before, we observed the tendency for fracture density to be inversely propor-

tional to the distance to the fault (Chapters 4 and 5), and that fault-related fractures tend to align sub-

parallel to the main fault (Caine et al., 1996; Shipton and Cowie, 2003; Berg and Skar, 2005; Fossen et 

al., 2007; Faulkner et al., 2010; Bense et al., 2013). We also observed that fracture system properties 

(density, orientation, dimension, interconnectedness, and the amount of stratabound- and non-strat-

abound fractures) in general, can greatly vary, not only between the foot- and hanging-wall (Aydin and 

Johnson, 1978; Antonellini and Aydin, 1995; Clausen et al., 2003; Berg and Skar, 2005), and between 

different outcrops, but also within the same outcrop in different layers (Chapters 4, 5, and 6). The 

consequence of this is that the impact of fault zones on fluid flow, within a certain rock volume, is 

difficult to predict. 

The data recorded in our outcrop studies from the URG (Fig. 2.1) did not allow to identify a relation-

ship between e.g. fault zone thicknesses and properties such as displacement (Knott, 1994; Manzocchi 

et al., 1999; Sperrevik et al., 2002; Mitchell and Faulkner, 2009), or fault geometry (Rotevatn et al., 

2009; Huenges, 2010; Faulds and Hinz, 2015). One important reason for these negative results must 

be attributed to the poor outcrop conditions (size and amount) in the study area and the consequently 

limited amount of fault zones that could be studied in detail. In most outcrops, it was a problem to 

distinguish the true extent of the damage zone. Possible reasons for these observations are: that the 

extent of the outcrops was too small, that in outcrops with a number of faults different damage zones 

intersected, or that a damage zone simply does not exist. 

However, in mechanically more homogeneous lithologies, i.e. such with high layer thicknesses 

(Buntsandstein: Cl; Sections 4.4.5 and 6.3.2; Upper Muschelkalk mo1: NL; Section 5.4), the density of 

fractures clearly increases within the damage zones towards the fault, and a higher amount of non-

stratabound fractures and a higher fracture connectivity could be observed compared to faults hosted 

in the Triassic Nodosus Beds (mo2; NL; Section 5.4). This observation shows the inextricable connection 

between structural characteristics, lithological and mechanical aspects, and therefore their impact on 

the hydraulic properties of faults. However, the complex interaction of different processes and param-

eters that influence fault zones characteristics (e.g., fracture orientation and density) likely precludes 

the ability to predict fault zone structures, even from one outcrop to another. Therefore, it is not sur-

prising that no general trend for fracture-system parameter could be observed in our outcrop studies. 

Further complexity in extrapolation from outcrop data to reservoir depth is introduced by differences 

in diagenetic and geological history (uplift and erosion on the graben shoulders vs. subsidence and 

sedimentation at the graben centre), increasing confining pressures with depth, and changes in stress 

field and stress state.  
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At least qualitatively, we could observe that faults can form promising geothermal reservoirs in terms 

of improved structural permeability (Chapters 4 and 5). The benefit of such point observations, how-

ever, has to be balanced against the heterogeneity of faults and fault zones (Faulkner et al., 2010; 

Mitchell and Faulkner, 2009; Shipton and Cowie, 2003). A few examples of this are: the observation 

that C02-leakage along faults in the Paradox Basin (Utah – USA; Dockrill and Shipton, 2010) occurs only 

in few locations, which, in addition, change over time, or by the observation that neighbouring springs 

along the Borax Lake Fault in Oregon (USA) have extremely different temperatures (Fairley and Hinds, 

2004). In conclusion, faults and fault zones can affect the geothermal potential in both a positive and 

a negative fashion, or possibly in some cases, not at all. While the densely faulted system of the URG 

is a promising area for fault-related geothermal energy, the risk of dry wells is significantly increased 

due to the complex und often unknown impacts of faults on rock permeability in an already complex 

geological setting. 

 Exploration methods in geothermics  

The current exploration strategy for geothermal energy includes four different stages:  

1) selection of reconnaissance regions,  

2) selection of prospect areas,  

3) selection of drill sites,  

4) drilling and reservoir testing (Barbier, 2002).  

Detailed knowledge about the spatial distribution of structural, lithological, and diagenetic parame-

ters to characterize reservoirs is essential, but sub-surface data are commonly rare. To fill these gaps 

outcrop analogue studies have been recently used in Germany to identify promising locations for geo-

thermal energy production (e.g., Sass and Hoppe, 2011; Bär, 2012; GeORG-Projektteam, 2013; Rohrer, 

2015; Soyk, 2015; Aretz et al., 2016; Meier, 2016; Stober et al., 2016).  

For example, the project “Hessen 3D” analysed the matrix permeability, porosity, heat conductivity, 

and heat capacity of different rocks in the northern URG to identify suitable lithologies and facies types 

for deep geothermal reservoirs and implemented the results in a 3-D structural model (Sass and 

Hoppe, 2011; Bär, 2012). However, based on the results, faults and fault zones were declared the 

greatest uncertainty factor. In consequence, the hydraulic behaviour of the faults was not separately 

specified and no general assumptions about the geothermal potential of fault-related reservoirs was 

made. It was concluded, similar to other projects, such as e.g. TAB (Paschen et al., 2003), StörTief (Age-

mar et al., 2016), GeORG (GeORG-Projektteam, 2013), and GeoTIS (Schulz et al., 2009), that faults and 

fault zones need to be considered site specific, but have the potential to considerably improve reser-

voir quality in terms of permeability. The StörTief project further noted that, on a large scale, the prob-

ability of meeting permeable faults appears to be higher when young and active faults are targeted 

that have an appropriate geometry (crossing normal faults, horsetail structures, relay ramps), are 

hosted in rigid and homogeneous rocks, and are favourably oriented to the local stress field (Stober et 

al., 2016). However, since there are many other factors, including e.g. fault displacement, depth of 

formation, but also stress states, and diagenetic conditions over time that need to be considered when 

deciphering fault zone structures and their hydraulic behaviour in the sub-surface, these factors can 

only be used for the selection of prospect areas worthy of further examination. That the projects at 

Geretsried, Mauerstetten (Molasse-Basin), and Trebur (URG), which targeted fault-related reservoirs, 

failed due to insufficient permeability, is likely to be a manifestation of this difficulty to predict fault-

zone structures, despite promising prospective conditions, as listed above (URL8: iTG).  
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We also found for the study area in the URG that our observed surface trends of e.g. porosity and 

permeability of Buntsandstein rocks could not be transferred to depth (Chapter 6). The common ap-

proach of outcrop analogue studies in geothermics of extrapolating these crucial parameters to reser-

voir depth is thus fundamentally challenged. These difficulties must be explained at least partly by 

differences in the scale of observation, and different measuring methods in the sub-surface and at the 

surface. Most problematic is, however, the heterogeneity of rock properties at larger scales and spe-

cifically those of faults. In many cases, one cannot decide whether an outcrop can serve as analogue 

before the cost intensive drilling process. 

Especially in areas like Germany, exploration is difficult, since easily recognizable surface manifesta-

tions of hot and permeable sub-surface structures, such as hot springs, are mostly absent, and outcrop 

conditions are unfavourable in many areas. Further complications arise due to non-thermal ground-

water horizons that additionally hinder or falsify surface observation (Barbier, 2002). Thus, exploration 

risk is comparatively high and demonstrates the need to develop new or to improve existing prospec-

tion methods. These improvements must specifically aim for a better spatial resolution when evaluat-

ing the distribution of permeability that dominantly control the thermal- and hydraulic conditions in 

the subsurface.  

Some of these geophysical prospecting methods are, for example:  

1. aeromagnetic surveys, which can be used to detect anomalies of low magnetic susceptibility 

that can indicate hydrothermal alteration (Bruhn et al., 2010; Riveros et al., 2014),  

2. electrical resistivity measurements that can detect regions of low resistivity, which is an indi-

cation of hot water-filled and highly porous rocks (Llera et al., 1990; Bruhn et al., 2010), and 

3. seismic measurements that can give insight into structural parameters of the subsurface (Lü-

schen et al., 2011), but also can provide evidence of fluid-filled fractures due to an increased 

TU TB⁄  ratio (Bauer et al., 2010).  

Other promising techniques that can be used in early stage of exploration include, for example, the 

analysis of 4He, 3He, and N2 anomalies, C14 concentrations and tracer tests. 4He and N2 are indicators 

of fluids originating from the deep crust (Kennedy et al., 1997), and, together with mantle 3He, they 

provide evidence of deep-seated faults (Kennedy et al., 1997). C14 concentrations, in addition, can 

serve as a measure of hydraulic residence time (Barbier, 2002). These chemical isotope methods can 

thus provide important insights into the origin, evolution, and location of geothermal water and there-

fore likely geothermal recourses (Haneberg et al., 1999; Barbier, 2002). These techniques, as well as 

tracer tests (Adams, 2001), have a large potential to provide deep insights into the movement of sub-

surface water and the impact of injection and production activity on fluid flow. However, in many 

cases, the prerequisite for such analysis is the existence of prospecting wells. 
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 Numerical sensitivity study 

The exploration of geothermal reservoirs, however, does not only include identification of zones with 

sufficient temperature and permeability, but also the question for how long the resource can be uti-

lized. This is commonly estimated using numerical experiments. However, until realisation of the time- 

and cost-intensive exploration methods, as described above, the structural, hydrological, and litholog-

ical parameters in the target reservoir are insufficiently constrained. In consequence, the significance 

of preliminary numerical models based on them is unknown. For my numerical models, I thus used 

data from my outcrop studies to narrow down ranges within which I tested geological parameters and 

their impact on reservoirs.  

I intentionally developed a simple numerical model setup to estimate the impact of different struc-

tures, rock characteristics, and hydraulic gradient configurations on the fluid- and heat transport (i.e. 

the reservoir capacity) and to analyse which parameters need to be known and to which accuracy. I 

tested permeability and porosity inhomogeneities (e.g., layering) and permeability anisotropies (e.g., 

fractures and faults) to quantify their effect on reservoir lifetimes. My results provide important infor-

mation about these parameters and their effect on the longevity of geothermal reservoirs.  

I show that with increasing permeability (Fig. 7.2) and permeability heterogeneity (Fig. 7.4), the im-

pact of the hydraulic gradient on the fluid- and heat transport increases. The threshold at which the 

natural hydraulic gradient needs to be considered is reached when its influence on the flow field out-

performs the gradient induced by the well pressure. Since the required pumping pressure decreases 

with increasing permeability the hydraulic gradient gains importance at higher permeabilities. Intro-

ducing sedimentary layering (permeability contrasts) in geothermal systems reduces the usable reser-

voir volume. Permeability contrasts become significant if they reach about two orders of magnitude. 

The consequence is that in unfavourable cases (i.e. a highly permeable reservoir layer is confined by 

lower permeable layers and the hydraulic gradient has the same orientation as the induced flow field), 

the reservoir potentially depletes very fast. Therefore, when a notable hydraulic gradient is expected, 

knowledge of its height and direction is essential in choosing the appropriate well configuration.  

In contradiction to, for example, Bär (2012) and Stober et al. (2011), but in agreement with Aliyu and 

Chen (2017), porosity was found to have one of the lowest impacts on the reservoir performance 

(Figs.7.2; Appendix 2.2 – Fig. A3), among the parameters tested. In detail, my models show that the 

significance of porosity decreases dramatically when the permeability value reaches 10-13 m2, as rec-

ommended for geothermal reservoirs (Jung et al., 2002). Thus, in porous reservoirs, in order of priority, 

the main factors that control reservoir quality are: permeability, the hydraulic gradient properties, 

permeability contrasts, porosity.  

In the case of a fractured reservoir, the impact of the permeability-anisotropy direction with respect 

to the doublet’s spatial configuration is most important. When the anisotropy direction is in-line with 

the doublet location, the reservoir cools down very quickly, caused by the impeded peripheral fluid 

flow, which restricts the fluid access to a larger rock volume (Fig. 7.7). This observation holds for almost 

all hydraulic gradient configurations. In general, the reinjected fluid preferably follows the trend of 

permeability anisotropy. These observations are in agreement with previous studies by Bakhsh et al. 

(2016), Bense and Person (2006), Biemans (2014), and Fu et al. (2016). Premature cooling of the ex-

tremely channelled fluid flow can only be counteracted by high hydraulic gradients that hinder the 

reinjected cold fluid to reach the production well. However, permeability anisotropies not in-line with 

the production- and injection wells, promise longer reservoir lifetimes, since the cold re-injected fluid 

is unlikely to reach the production well. 



8 Discussion 

113 

 

Comparable observations have been made by Bakhsh et al. (2016), who used a discrete single fracture 

model, designed with Comsol Multiphysics. They showed that the presence of only one fracture, which 

connected production and injection well, reduces the thermal breakthrough time significantly. They 

also showed that matrix permeability and porosity of the host rock only marginally influences the tem-

perature development, when permeability is dominantly provided by fractures. Biemans (2014) fur-

ther showed, based on DFN models of different fracture networks, that increasing fracture density also 

reduces thermal breakthrough times. This is because accessible heat capacity is reduced to small vol-

umes in the close vicinity of thermally interacting fractures, i.e. heat transport is less supported by the 

rock matrix.  

In consequence, and supported by my models, I predict that geothermal reservoirs that utilize con-

ducting faults with a high fracture-induced permeability and anisotropy parallel to the fault, have the 

high potential to channel the re-injected fluid to the production well, in most hydraulic gradient con-

figurations (Sections 7.3.5 and 7.4). This results in fast depletion of the reservoir. The successful ex-

ploitation of fault-related reservoirs, requires thus detailed knowledge of fracture orientation, frac-

ture-permeability anisotropy, the amount of non-stratabound and stratabound fractures, as well as 

the permeability contrast of different layers, damage zone thickness, and most important the hydraulic 

gradient to choose appropriate well locations to prevent fast thermal breakthrough.  

Based on my modelling study and the findings of the comparative outcrop analogue study at Brühl 

(Chapter 6), I propose that fault zones as potential geothermal reservoirs must be considered critically. 

I conclude that exploitation of less structurally-complex reservoirs is not only less risky, but promises 

also improved reservoir lifetimes.  

That my simplified models give results that are, at least qualitatively, comparable to real geological 

reservoirs is shown by several examples of geothermal projects worldwide. For instance, rapid tem-

perature drops (within 3 years) of individual wells in four of the five geothermal facilities using multiple 

wells in Japan in the 70’s (Otake, Onuma, Onikobe, Hotchobaru, and Kakkonda – see Fig. 8.1; 

Bödvarsson and Tsang, 1982; Horne, 1982b; DiPippo, 2005) were observed. In the Hotchobaru field, 

for example, the location of the injection and production wells were initially chosen to prevent early 

thermal breakthrough caused by an unfavourable oriented hydraulic gradient. The observed fast de-

crease in temperature was later found to be caused by altered pressure conditions in the reservoir due 

to reinjection and production, i.e. the flow field within the reservoir was reversed due to the pumping 

activity. The reason was that the cold re-injected fluid circulated within the spatially-restricted damage 

zone from the injection to the production well (Bödvarsson and Tsang, 1982; Horne, 1982b; DiPippo, 

2005).  

With respect to the geothermal site Brühl, I surmise that, even after gaining more details from the 

well logs from the geothermal reservoir, estimates of the reservoir performance are still highly specu-

lative. From the well measurements, it is known that the integrated overall rock permeability is about 

10-13 m². Based on the borehole geophysics, and the known high heterogeneity of the Buntsandstein 

Formation, a succession of high and low permeable beds must be considered. According to my numer-

ical models, it is very likely that this configuration will restrict the vertical extent, and therefore the 

volume, of the reservoir. Based on the FMI data, the fracture system, which is likely part of a damage 

zone, is roughly parallel to the NNW-SSE-oriented fault, and highly conductive (Chapter 6).It was 

planned to place both the production- and the injection well in this damage zone, i.e. in a zone of high 

permeability anisotropy (Reinecker et al., 2015; Fig. 8.2b). I suggest that it is likely that this highly con-

ductive fracture system would form a direct flow pathway between the doublets; this was also envis-

aged during prospection (Reinecker et al., 2015). The expected low E-W-directed hydraulic gradient, 
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derived from the hydraulic gradient map (Fig. 3.6), is unlikely to disturb the direct flow path between 

the planned wells, as shown in my models in Figs. 7.11f and 7.12. Under these conditions, I consider 

that there would have been a high risk that the reservoir depletes thermally within a very short time. 

However, between the originally-planned well locations, an E-W-directed fault has been identified in 

the 3-D seismics (Fig. 8.2a). The hydraulic effect of this fault (i.e. whether positive, negative or not 

relevant), can only be speculated, since no details about the fault are available. It is possible that this 

fault compartmentalizes the whole reservoir, i.e. it constitutes a barrier to fluid flow and hinders the 

injected cold fluid reaching the production well. It is also possible that this fault does not affect the 

fluid path. A third option could be that if the fault is conducting that it drains the injected cold fluid 

either completely or partly in E-W-direction and so eventually it improves the reservoir’s performance 

over time.  

My findings indicate that, especially in faulted reservoirs, where direct circulation between the wells 

is aimed at, a number of alternative borehole configurations should be considered to impede early 

thermal depletion. One possible configuration, as proposed by Fu et al. (2016), could be to place an 

injection well in the centre of a number of production wells to increase so the exploitable reservoir 

volume.  

 

Figure 8.2: Overview of the planned geothermal site location – Brühl. a) Location and temperature distribution in 3 km depth 

of the study area (URL6: GeotIS). b) Isopach map of the top of Middle Buntsandstein with fault traces, the well Brühl GT1, 

and the initial planned location for the injection well (figures modified after Lotz, 2014a, b).  

In general, high structural complexity, which commonly includes permeability anisotropy due to var-

iations in fracture systems, layer-induced heterogeneities at different scales, or the highly variable 

permeability structures of faults, together with the often-unknown hydraulic gradient, make it ex-

tremely challenging, if not impossible, to reliably determine the capacity of a geothermal project from 

reservoir parameters that were derived from classical exploration. Reasonable estimates on reservoir 

performance require data from a sufficient number of prospecting wells, subsequent tracer tests, and 

detailed analysis of rock heterogeneities and anisotropies. The latter should preferably be known to 

the highest possible degree for the whole reservoir volume.  

  



8 Discussion 

115 

 

 Possible improvements of numerical models of geothermal reservoirs 

My sensitivity study aims to improve the understanding of the role and interplay of prime parameters 

e.g. porosity, permeability, and structural framework, on reservoir quality. To focus on these parame-

ters, I made a number of simplifications regarding e.g. geometry, and the use of continuum models 

(Section 3.3.4). In the following, I discuss these simplifications and give advice on improvements that 

may in the future allow for more accurate models and in consequence more meaningful predictions of 

reservoir quality.  

Continuum models, as applied in this study, are known to underestimate the tendency for flow chan-

nelling in individual fractures and within fracture networks (Li et al., 2016). Discrete fracture models 

(DFN) in contrast, do not have this tendency, and instead provide the opportunity to analyse precisely 

the effect of diverse fracture patterns. However, it is only possible to take benefit from this approach 

if the fracture patterns are known in detail. This is commonly not the case, since fracture patterns are 

mostly only known in two dimensions. Thus, the advantages of the DFN approach cannot, at least in 

most cases, be realized, due to the lack of input parameters (Chapter 6). In contrary, fracture system 

idealization in DFN modelling and the uncertainty in the fracture characteristics, has the potential to 

increase the error remarkably. However, if I compare my sensitivity study with those of, e.g., Biemans 

(2014), Fu et al. (2016), and Bakhsh et al. (2016), the general conclusions drawn from all these studies 

are comparable. Thus, in most cases, I consider that the continuum approach is sufficient.  

A similar statement applies to simplifications made in terms of permeability and porosity properties 

of different layers and for the idealized fault zone structures, as I applied in my models. The main 

reason why this simplification is justified is because internal inhomogeneities are commonly unknown. 

To generate a site-specific model setup, with near real-life conditions, findings from direct sub-surface 

measurements i.e. from drill cores, would be necessary in unrealistically high spatial resolution. In ad-

dition, using data from outcrops, where properties can be observed in a high spatial resolution, can 

also be misleading, since we showed for the case of the Brühl GT1 borehole that these data could not 

be transferred to depth with the required accuracy. Nevertheless, outcrop data are still of prime im-

portance to e.g. constrain permeability contrasts that may remarkably change reservoir performance.  

I recommend that further sensitivity studies are carried out that not only include the effects of such 

changes in rock properties at a smaller scale, but also evaluate different reservoir configurations in 

more detail, e.g. they include small-scale changes in fault characteristics or vary the well configura-

tions. 

In my sensitivity study, I included neither the effect of variable rock storage capacity i.e. the ability of 

a rock to take in or to release fluid under varying pressure conditions, nor the effect of heterogeneity 

in heat conductivity and heat capacity. All three parameters largely depend on the rock’s porosity (Kol-

ditz, 1997; Stober et al., 2011). Since I used open model boundaries that allow a continuous inflow of 

hot thermal water, changes in the storage capacity do not influence my model results. To which degree 

the storage capacity influences the reservoir performance must be tested separately, but it can be 

considered less important, since in most geothermal facilities, production does not take place without 

re-injection, i.e. the water supply can be considered sufficient. To which extent heterogeneity in the 

heat capacity and heat conductivity influence the temperature development, i.e. due to preferred dis-

charge of heat in rock volumes with high heat conductivity, is another topic worthy of further exami-

nation.  
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Some simplifications of my models were made with regards the underlying physics in the model set 

up. For example, I decoupled the fluid viscosity and density from temperature and thus inhibited den-

sity-driven convection. This simplification can be assumed to have only a minor influence on the mod-

els since density-driven convection cells require a combination of high rock permeability (>10-14 m²), 

high geothermal gradients, and large homogenous rock volumes (Hochstein, 1988). Since less perme-

able beds in Triassic Buntsandstein and Muschelkalk rocks are common (e.g., Bär, 2012; Jodocy and 

Stober, 2011; Reinecker et al., 2015; Sass and Hoppe, 2011), and I found that permeability contrasts of 

10² between different layers are sufficient to supress hydraulic connection; I consider this simplifica-

tion valid. In addition, the decoupling of temperature and fluid properties resulted in a decrease in 

computational time by a factor of about 100 in the cases of the homogenous reservoir models.  

Nevertheless, I also tested a fully coupled model (fluid properties dependent on temperature, Ap-

pendix 2.1 – Fig. A2), and found that convection does not alter the general temperature development 

of the simulated geothermal system. The only difference I observed was a lower cooling rate in the 

homogeneous models (scenario 1 – homogeneous reservoir models). Thus, density-driven fluid con-

vection, at least in my models, in which fluid flow in heterogeneous rocks is mainly forced by high 

pressure differences, should be negligible, as also proposed by Kaiser et al. (2011).  

Another important physical factor that can affect the reservoir quality, but was not part of this study, 

is the chemical composition of aqueous fluids. As a result, scaling and corrosion of geothermal wells is 

often (e.g., Genesys, Soultz-sous-Forêts), but not always observed, and constitutes a not yet com-

pletely understood phenomena (Mundhenk et al., 2013). 
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 Main findings and conclusions 

 Main findings to key questions 

Here I summarize the main findings of my thesis, based on the aims and questions outlined in Sec-

tion 1.5 (Fig. 1.3).  

1) Are fault zones suitable reservoirs for geothermal energy production in terms of permeability? 

Based on our outcrop analogue studies, faults in formations with thick layers and weakly-pronounced 

mechanical contrasts among the layers (Trochitenkalk – mo1, Buntsandstein – sm), form damage 

zones that have a higher fracture connectivity and a higher amount of non-stratabound fractures com-

pared to damage zones that are hosted in thinly-bedded layers with high mechanical contrast (e.g., 

the Triassic “Nodosus Beds” – mo2). Also, fracture apertures were often found to be enhanced for 

fractures oriented sub-parallel to analysed faults and to the strike of prominent URG faults. A general 

pattern for fracture-system parameter could not be observed. This holds for the background fracture 

patterns as well as for fracture patterns in damage zones. In addition, no preferred orientation or sys-

tematic could be found for sealing structures that was valid over a large area. Nevertheless, we con-

clude that fault damage zones, especially in lithologies with higher bed thicknesses, constitute struc-

tures of enhanced permeability.  

2) Can outcrop studies improve knowledge of the subsurface? 

My main findings regarding this question are twofold. First outcrop studies are the only way to study 

properties of the reservoir rocks and fracture-system parameter in detail before the cost intense drill-

ing process. In addition, if a sufficient number of outcrops exists, studying them may provide some 

trends and scaling laws for the analysed parameters. Therefore, outcrop analogue studies will always 

remain an important part of subsurface exploration. 

However, at least for my study area, I show that several parameters that are relevant for the quality 

of geothermal reservoirs (e.g. fracture-system parameter), could not be predicted from one outcrop 

to another. Other parameters, such as porosity and permeability correlate in the study area, but still 

with a high variability in parameter values, which, according to my modelling experiment, is too high 

to make reliable predictions about the reservoir. Moreover, when comparing the results from the out-

crop analogue studies with that derived from the envisaged reservoir, most parameters were not com-

parable, did not followed trends observed at the surface, and could not have been predicted. This 

shows that the commonly-proposed high potential of outcrop analogue studies must be seen more 

critically, at least in structural complex areas. This conclusion holds especially true for fault-related 

geothermal reservoirs, in which an extra amount of uncertainty is introduced by the heterogeneous 

nature of faults and their damage zones.  

However, after detailed knowledge of the reservoir system has been gained, an appropriate outcrop 

analogue can be chosen and used to improve understanding of the reservoir system by using better 

geological parameters in the numerical model. 

3) What is the potential of fault-related geothermal reservoirs and what are the most promising res-

ervoir conditions? 

Faults and their damage zones promise high permeabilities and are thus in the focus of exploration. 

The evaluation of the local potential of a faulted reservoir however necessitates cost- and time-con-

suming methods and is subject to a high degree of uncertainty. When the desired conditions in a 

faulted reservoir are encountered, at the same time the high permeability has the large potential to 



9.2 Conclusions and outlook  

118 

 

restrict the amount of energy available. This is especially the case for the often-favoured doublet con-

figuration, with production- and injection well placed in the high permeable damage zone. This is be-

cause the usable reservoir volume becomes restricted to the highly permeable damage zone, i.e. to a 

comparatively small volume, and in consequence a significantly reduced reservoir lifetime must be 

considered. For modelling the lifetime of such reservoir structures, I therefore recommend choosing 

the maximum values for permeability. Nevertheless, the findings of my sensitivity study, given that 

reservoir parameters are properly known, can be used to maximize reservoir performance by choosing 

appropriate well locations. 

Based on the manifold problems in exploration and exploitation of fault-related reservoirs, I suggest 

shifting the focus in the future on reservoirs of less structural complexity in order to increase the suc-

cess rate in exploration. 

 Conclusions and outlook 

Many studies based on outcrop analogues, including this thesis, show that fault zones have the po-

tential to either increase, or decrease permeability. However, fault zone attributes that control per-

meability, as well as other basic parameters that determine reservoir quality, cannot be prospected 

with the required accuracy using outcrop surveys alone. Additionally, fault zones with their hetero-

genous nature, increase the uncertainties in the prediction of reservoir-quality significantly.  

I found that qualitative structural and sedimentary heterogeneities tend to reduce the usable reser-

voir volume, and so the lifetime of the reservoir. When aiming to explore fault-related reservoirs, it 

must be considered that both reduced reservoir permeability as well as high damage zone permeability 

and anisotropy are likely to have negative impacts on the reservoir performance. The latter is due to 

the possible restriction of the usable reservoir volume to the damage zone, which in consequence 

increases the possibility of fast thermal depletion.  

I propose that the doubtless given, but also difficult to exploit potential of fault-related reservoirs for 

geothermal energy production should be critically re-evaluated. Reported difficulties in exploration 

and exploitation of faulted reservoirs lead me to the conclusion that the usable potential of fault zones 

is overstated. Thus, I conclude that geothermal prospection should focus more on structurally-less 

complex reservoirs that are easier to explore, easier to exploit, and promise longer reservoir lifetimes. 

Another important implication of my thesis is that a geothermal resource should be carefully moni-

tored during exploitation to improve the understanding of the specific reservoir conditions. Findings 

of these observations could then be used to plan further suitable well configurations at the same site 

to increase the amount of exploitable geothermal energy, and also to learn for future projects. 

With respect to the development of better exploration methods, it would be valuable to carefully re-

evaluate failed and successful geothermal projects. It would be helpful at such locations to use a suite 

of new and classical exploration methods, and test whether they would have delivered the reservoir 

parameters that were later observed.  

In summary, the focus in future research must shift more towards studies that analyse the influence 

of heterogeneities e.g. faults, layers, etc. on the quality of geothermal reservoirs. In addition, the often-

unconsidered effect of the hydraulic gradient must be analysed in more detail, especially its impact on 

structurally-complex reservoirs. This knowledge must then be combined with reliable data from pilot 

boreholes, including core analysis, geophysical data, tracer test, and surface-related geophysical meth-

ods to improve predictions of geothermal reservoirs. Only a responsible combination of all the availa-

ble methods has the potential to increase significantly the success rate in finding and exploiting long-

lasting geothermal reservoirs. 
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 Description of drill cuttings 

 

Fig. A1: Description of the drill cuttings and stratigraphic units encountered in the well Brühl (modified after Reinecker et al. 

(2015).  
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 Numerical model results 

Appendix 2.1. Justification of unidirectional coupling  

 

 

Fig. A2: Comparison of the temperature development and breakthrough times between unidirectional- and bidirectional 

coupled models. In general, the bidirectional coupling (i.e. the parameters $� and � in Darcy’s law are temperature depend-

ent) lead to increased reservoir lifetimes in homogeneous reservoir volumes, however the general trend of the modelled 

production temperature development does not change. Differences between unidirectional and bidirectional coupled models 

decreases with increasing permeability. 
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Appendix 2.2. Scenario 1 (S1): Homogeneous reservoir models 

 

 

Fig. A3: Temperature development and breakthrough times of the nine basic homogeneous reservoir volumes, depending 

on the permeability, porosity, and the hydraulic gradient configuration. a to i) only north- and southward directed gradients 

are shown. The reservoir’s permeability increases from left to right, the reservoir’s porosity from top to bottom. Arrows 

indicates the shortest thermal breakthrough times. 
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Fig. A4: Effect of variable hydraulic gradient directions and height on the reservoir shape in homogeneous reservoir volumes. 

Figures show the HIT for the high permeability and medium porosity model (M6) after 160 yr of heat production. The height 

of the hydraulic gradient increases from left to right, the applied hydraulic gradient direction is varied from N to NW in 45° 

steps from top to bottom as indicated by the sketch on the right side of the figure. The injection well is placed in the north 

(blue dot) and the production well is placed in the south (red dot). 
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Appendix 2.3. Scenario 2 (S2): Layered reservoir models 

 

 

Fig. A5: Temperature development and breakthrough times of layered reservoir volumes depending on the sandstone per-

meability, permeability contrast, and the hydraulic gradient configuration. a to I) Only north- and southward directed gradi-

ents are shown. The sandstone permeability increases from left to right, the permeability contrast increases from top to 

bottom. Arrows indicates the shortest thermal breakthrough times. 
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Appendix 2.4. Scenario 3 (S3): Fractured reservoirs with E-W- directed anisotropy 

 

 

Fig. A6: Effect of increasing E-W-directed permeability contrast on the reservoir shape in fractured reservoir volumes. Figures 

a to c) show the HIT for the medium porosity and medium permeability model (M5) after 20 yr of heat production. No hy-

draulic gradient is applied.  
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Appendix 2.5. Scenario 3 (S3): Fractured reservoirs with N-S- directed anisotropy 

 

 

Fig. A7: Reservoir shape of fractured reservoir volumes with a N-S-directed fracture induced permeability anisotropy of 103 

depending on the hydraulic gradient direction and height. If high fracture induces anisotropies are in-line to the hydraulic 

gradient direction, hydraulic gradients >1 mm m-1 prevent the propagation of the HIT in z-direction. In the case of high south-

ward directed hydraulic gradients, the HIT reaches the production well very fast, but does not cool down the complete catch-

ment area of the production well. The injection well is placed in the north (blue dot) and the production well is placed in the 

south (red dot). 
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Appendix 2.6. Scenario 4 (S4): Fractured and layered reservoir volumes 

 

 

Fig. A8: Combined effect of layering and fracturing on the thermal development, breakthrough times, and reservoir shape. 

Only north- and southward directed gradients are shown. The permeability contrast of the layered succession is 103, the 

permeability anisotropy of the sandstone layers is 102. From a to f) the permeability anisotropy of the claystone layers in-

creases from homogeneous to a value equal to the permeability anisotropy in the sandstone layers, i.e. the fractures are 

nonstratabound. In the last case (f), the temperature development in the reservoir is identical to the homogeneous and 

anisotropic model (Fig. 7.6b). Arrows indicates the shortest thermal breakthrough times. 
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Appendix 2.7. Scenario 5 (S5): Fault-related reservoirs 

 

 

Fig. A9: Temperature development, breakthrough times, and reservoir shape of fault-related reservoir volumes acting as 

barrier depending on fault core permeability and hydraulic gradient configuration. The host rock properties are based on the 

medium permeability and medium porosity model (M5). a to c) the temperature development of the produced fluid over 

time for north- and southward directed hydraulic gradients. The fault core permeability increases from left to right. Arrows 

indicates the shortest thermal breakthrough times. d to f) the corresponding shape of the HIT after 40 yr of heat production, 

simulated for a hydraulic gradient of 0 mm m-1. Arrows indicates the shortest thermal breakthrough times.  
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Fig. A10: Temperature development, breakthrough times, and reservoir shape of fault-related reservoir volumes acting as 

conductor depending on damage zone permeability and hydraulic gradient configuration. The host rock properties are based 

on the medium permeability and medium porosity model (M5). a to c) the temperature development of the produced fluid 

over time for north- and southward directed hydraulic gradients. The damage zone permeability increases from left to right. 

Arrows indicates the shortest thermal breakthrough times. d to f) the corresponding shape of the HIT after 40 yr of heat 

production, simulated for a hydraulic gradient of 0 mm m-1. 
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Fig. A11: Temperature development, breakthrough times, and reservoir shape of fault-related reservoir volumes acting as 

combined conduit-barrier system depending on fault core permeability and hydraulic gradient configuration. The host rock 

properties are based on the medium permeability and medium porosity model (M5). a to c) the temperature development 

of the produced fluid over time for north- and southward directed hydraulic gradients. The fault core permeability decreases 

from left to right. Arrows indicates the shortest thermal breakthrough times. d to e) the corresponding shape of the HIT after 

40 yr of heat production, simulated for a hydraulic gradient of 0 mm m-1. 
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