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Abstract 
 
Activity-induced regulation of surface post-synaptic receptor number is a well-known mechanism 

underlying synaptic plasticity, but the molecular machinery mediating this process is poorly 

understood. In a screen of synaptotagmin (syt) isoforms, we found that pHluorin-syt3 undergoes 

Ca2+-dependent endocytosis in hippocampal neurons upon stimulation. Syt3 was present at 

synapses, and enriched on post-synaptic membranes. Recombinant syt3 pulled down the endocytic 

protein AP-2 and GluA2, but not GluA1, GluN1, GluN2 or GABAAR1, and also pulled down 

BRAG2, a protein important for activity-dependent internalization of AMPA receptors. Over-

expression or knockdown of syt3 post-synaptically did not change mEPSCs, and basal 

transmission in hippocampal syt3 knockout slices was unchanged. However, syt3-overexpressing 

neurons internalized more GluA1 and GluA2 than control neurons upon stimulation with AMPA 

or NMDA. This internalization was blocked in syt3 KO, syt3 knockdown, and syt3 calcium-

binding mutant expressing neurons, and was mimicked by application of the GluA2-3Y peptide, a 

tyrosine rich sequence important for activity-mediated GluA2-AMPAR internalization.  

 

Strong LTP was normal in syt3 KO hippocampal slices, but weak LTP failed to decay and persisted 

for hours, consistent with syt3 internalizing receptors, which is necessary for decay of weak LTP. 

The reinforcement of weak LTP in syt3 KO slices was mimicked and occluded by the GluA2-3Y 

peptide. ZIP (a peptide that blocks atypical PKCs leading to GluA2-AMPAR internalization and 

decay of potentiation) failed to cause decay of synaptic potentiation in both strong and weak LTP 

in syt3 KO hippocampal slices consistent with a defect in receptor internalization. LFS-LTD was 

also abolished in syt3 KO slices. Syt3 KO mice learned as well as wild-type littermates in the 

reference memory version of the water maze, but persevered to the original platform position more 

than WT mice even 4 days after platform reversal. In addition, syt3 KO mice performed worse 

than WT mice in the delayed matching to place task, and persevered to previous platform positions 

more than WT, indicating a higher consolidation of working memory and/or an impairment in 

forgetting.  

 

In summary, we found that syt3 is involved in a post-synaptic ‘forgetting’ mechanism by which 

receptors are internalized following stimulation to promote decay of synaptic potentiation. 
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1. Introduction 

1.1.  Synaptic transmission 

Neurons are electrically active specialized cells in vertebrates and invertebrates and are the 

building blocks of their nervous systems. They communicate with each other via a) electrical 

synapses composed of channels that allow diffusion of ions between them or b) chemical synapses, 

which are specialized junctions where electrical signals are transduced to a chemical signal in the 

pre-synaptic neuron and back to an electrical signal in the post-synaptic neuron.  

 

Chemical synapses are critical components of the brain, which can be thought of as a complex 

network of a large number of neurons, in simple terms. The chemical messengers at such chemical 

synapses, called neurotransmitters, diffuse across the synaptic cleft by Brownian motion and 

activate receptors on the post-synaptic membrane. Neurotransmitter binding to their respective 

(ionotropic) receptors initiates a membrane depolarization which propagates towards the soma of 

the post-synaptic neuron. The most common excitatory neurotransmitter is L-glutamic acid or 

glutamate, which occurs at most of the excitatory synapses in the brain (Graham L Collingridge, 

Isaac, & Wang, 2004; J. E. Lisman, Raghavachari, & Tsien, 2007). 

 

Communication at such synapses can be rapid, i.e., the delay between the electrical signal reaching 

the pre-synaptic membrane and being initiated on the post-synaptic membrane is on the  

millisecond scale, and 0.6 ms at hippocampal mossy fiber synapses (J. E. Lisman et al., 2007). 

Some synapses in the mammalian central nervous system have evolved to sustain extremely high 

frequencies of transmission. For example, the highest known rate of synaptic transmission is at the 

mossy fiber synapse in the cerebellum at 1.6 kHz (Delvendahl & Hallermann, 2016), while other 

synapses have evolved to transmit with high temporal precision, for example at the Calyx of Held 

synapse in the auditory brainstem (Borst & Soria van Hoeve, 2012). 
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• Types of neurotransmitter release 

Spontaneous neurotransmitter release is defined as the release from pre-synaptic terminals 

observed after inhibition of voltage gated sodium channels, i.e. in the absence of action potentials. 

In this case, stochastic fusion of single synaptic vesicles releases a quantum of neurotransmitter. 

Synchronous release, on the other hand, is evoked by an action potential such that the release of 

transmitter is tightly synchronized with the arrival of the action potential at the axon terminal. 

Synaptotagmin1 (or synaptotagmin2) is the calcium sensor that is necessary for this type of release. 

It is thought that a distinct synaptic vesicle pool marked by the non-canonical SNARE Vti1a 

mediates spontaneous release (D. M. Ramirez, Khvotchev, Trauterman, & Kavalali, 2012) and 

spontaneous and evoked vesicle pools are distinct (Fredj & Burrone, 2009), although this is 

debated (Groemer & Klingauf, 2007; Hua, Sinha, Martineau, Kahms, & Klingauf, 2010; Wilhelm, 

Groemer, & Rizzoli, 2010). 

 

Asynchronous release is the release of transmitter that occurs from approximately 10 - 500 ms 

after the arrival of the action potential (following synchronous release that occurs in the first few 

ms). 

 

• Types of neurotransmitter receptors 

Ionotropic receptors are membrane proteins that change conformation upon ligand 

(neurotransmitter) binding. This opens a transmembrane pore, providing a transient conductance 

through which ions can flow into or out of the post-synaptic neuron and change its local 

transmembrane potential. These receptors can be selective to certain ions. 

 

The most relevant glutamatergic ionotropic receptors to synaptic transmission are α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl D-Aspartic acid (NMDA) 

receptors. The AMPA receptor, named after its artificially developed selective agonist AMPA, is 

a tetrameric membrane protein composed of four subunits, GluA1-4, and two splice isoforms of 

GluA2 and GluA4. All AMPA receptors are permeable to sodium and potassium but only GluA2-

lacking AMPA receptors are permeable to calcium. As these receptors open and desensitize very 
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quickly, they are said to mediate fast synaptic transmission in the central nervous system and are 

the most common glutamate receptor (Henley & Wilkinson, 2016; Shepherd & Huganir, 2007). 

 

The NMDA receptor is named after its selective agonist, NMDA. It is also an ionotropic receptor 

that is permeable to sodium, potassium and calcium. It opens upon binding glutamate and glycine. 

However, it doesn’t conduct at resting membrane potentials because its pore is blocked by external 

Mg2+ ions. It only conducts at depolarized membrane potentials when the Mg2+ block is relieved. 

NMDA receptors are a necessary source of calcium influx to the post-synaptic side of the synapse 

upon simultaneous pre- and post-synaptic activation and hence, play a critical role in synaptic 

plasticity (Paoletti, Bellone, & Zhou, 2013). 

 

1.2.  Synaptic Plasticity 

Another unique, and arguably most critical property of synapses, is the ability to modulate their 

transmission properties. This change in efficacy of transmission is called synaptic plasticity. A 

neuron in the mammalian brain receives ~10,000 synaptic connections but synaptic plasticity 

allows a neuron to selectively change its connection strength with distinct pre-synaptic partners 

(Henley & Wilkinson, 2016).  

 

Chemical synapses between two neurons have a stable input-output response characteristic until 

the pre-and post-synaptic sides of the synapse undergo a distinct pattern of coordinated activity 

resulting in an increase or decrease in strength. An increase in synaptic strength is termed synaptic 

potentiation whereas a decrease in synaptic strength is termed synaptic depression. In 1973, Tim 

Bliss and Terje Lomo (in Per Andersen’s laboratory in Oslo, Norway) published findings from 

field recordings in the hippocampi of anesthetized rabbits demonstrating that brief high frequency 

bursts of pre-synaptic action potentials caused a persistent potentiation of the post-synaptic current, 

calling this phenomenon "frequency potentiation". Four 10 sec long 15 Hz trains of stimulation 

each separated by at least 20 minutes in perforant path synapses led to a pathway-specific increase 

in field potentials recorded from post-synaptic granule cells that persisted for at least 5 hours (Bliss 

& Lømo, 1973; Lomo, 2003). This persistent shift in the input-output response characteristic of a 

synapse towards higher response was termed long-term potentiation (LTP) and the above 
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publication is credited for the discovery of this phenomenon, which is now firmly believed to be 

the synaptic correlate of learning and memory (A et al., 2015; Nabavi et al., n.d.; Poo et al., 2016; 

S. Ramirez et al., n.d.; Redondo et al., 2014; Roy et al., 2016; Ryan, TJ, Roy, DS, Pignatelli, M, 

Arons, A, & Tonegawa, S, n.d.). A persistent weakening of synapses was first discovered in the 

cerebellum in 1980 and termed long-term depression (LTD) (Ito M & Kano M, 1982). In 1983, 

Graham Collingridge showed that the NMDA receptor serves as a coincidence detector for the 

post-synaptic expression of plasticity, owing to its unique property of requiring both glutamate 

binding to an extracellular ligand binding site and relief of its magnesium block by membrane 

depolarization. Post-synaptically expressed NMDA receptors mediate post-synaptic calcium 

influx only when the pre- and post-synaptic sides of the synapse undergo simultaneous 

depolarization. While pre-synaptically released glutamate activates NMDA receptors, post-

synaptic depolarization via AMPA receptors or back propagating action potentials are required to 

relieve their magnesium block (G. L. Collingridge, Kehl, & McLennan, 1983). 

 

• Homosynaptic vs heterosynaptic plasticity 

Heterosynaptic plasticity refers to the input specific modulation of synaptic strength, as discussed 

above. However, in 1998, Gina Turrigiano (Brandeis University, USA) discovered that neuronal 

firing is also subject to a homeostatic regulation, similar to other physiological variables like body 

temperature and blood glucose levels. A neuron employs molecular mechanisms to tune the 

synaptic strength of all its synapses at once, termed synaptic scaling or homeostatic plasticity. 

Chronic silencing of neuronal cultures with tetrodotoxin for 24-48 hours causes neurons to 

homeostatically scale up synaptic strength whereas increasing activity of cultures with bicuculline 

causes neurons to scale down synaptic strength (Gina G. Turrigiano, Kenneth R. Leslie, Niraj S. 

Desai, & Lana C. Rutherford & Sacha B. Nelson, 1998; Turrigiano & Nelson, 2004). 

 

It was also shown that such homeostatic mechanisms can operate at individual synapses (Bartlett 

& Wang, 2011). Chronic optogenetic activation of a subset of synapses on the dendrite of a post-

synaptic neuron decreased surface AMPA receptor levels only at activated synapses, leaving 

nearby synapses unaffected (Qingming Hou, Gilbert, & Man, 2011). Conversely, silencing a subset 

of synapses increased surface AMPA receptor levels only on the synapses that were silenced (Q 

Hou, Zhang, & Jarzylo, 2008). 
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• Weak LTP and strong LTP 

Strong-LTP, or late-LTP, refers to potentiation that persists for at least few hours in vitro or even 

up to several weeks in vivo. It is most well-studied in the Schaffer collateral CA3 to CA1 

connection in the hippocampus, but occurs in multiple brain regions. Using extracellular field 

recordings, brief high frequency stimulation of afferent fibers of hippocampal CA1 pyramidal 

neurons has been shown in a number of studies to lead to robust LTP in acute hippocampal slices 

(in vitro) or in freely behaving animals (in vivo). Strong-LTP derives its name from the strength 

of the LTP induction stimulus whereas late-LTP derives its name from the duration of persistence 

of LTP, but they refer to the same phenomenon. Strong-LTP induction protocols are a) spaced 

high frequency stimulation (HFS), typically employing three 100 Hz trains with a duration of 1 

second separated by at least 5 minutes (P. Park et al., 2013), or b) theta burst stimulation, which 

involves pairing coincident EPSPs and postsynaptic action potentials in a burst, i.e., 5 times at 

100 Hz. Multiple theta stimulation trains are usually delivered at 0.1 Hz, each theta train consisting 

of 5 bursts at 5 Hz. (Hoffman, Sprengel, & Sakmann, 2002). Strong-LTP induction requires de 

novo protein synthesis and NMDA receptor activation (P. Park et al., 2013). 

 

Weak-LTP, or early-LTP, refers to potentiation that decays completely in less than 1-2 hours 

(Villarreal, Do, Haddad, & Derrick, 2002; Xiao, Niu, & Wigström, 1996). Weak-LTP derives its 

name from the strength of the LTP induction stimulus whereas early-LTP derives its name from 

the duration of persistence of LTP, but they refer to the same phenomenon. Weak-LTP induction 

stimuli are typically weaker versions of strong-LTP induction stimuli. For instance, while a strong 

HFS (4 trains of 30 pulses at 100 Hz, with an inter-train interval of 5 minutes) induced strong-LTP 

that persisted for at least 24 hours, a weak HFS (2 trains of 30 pulses at 100 Hz, with an inter-train 

interval of 5 minutes) induced weak-LTP that decayed to baseline in 2 hours at the CA3-CA1 

synapse in vivo in the hippocampus (Z. Dong et al., 2015). Weak LTP is thought to be the early 

phase of strong LTP, that might not require de novo protein synthesis and depend on NMDA 

receptors (P. Park et al., 2013; Raymond, 2007; Reymann & Frey, 2007). 
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• LTD and depotentiation 

On the other hand, low frequency pre-synaptic stimulation for more extended periods of time leads 

to robust long-term depression or LTD. A typical LTD induction protocol, termed low frequency 

stimulation (LFS) is 1 Hz stimulation for 15 min. LTD induced via NMDA receptor activation 

requires protein synthesis (G. Collingridge, Peineau, Howland, & Wang, 2010). 

 

Depotentiation refers to the reversal of LTP by stimulation protocols similar to those used to induce 

LTD. Although depotentiation induction mechanisms strongly overlap with LTD induction 

protocols, there are some reported differences. For example, 2 Hz LFS was reported to induce 

depotentiation but not LTD (G. Collingridge et al., 2010; T. M. Sanderson, 2012). 

 

• Spike timing dependent plasticity (STDP)  

In addition to the use of field stimulation and recordings from many neurons at once in the 

protocols described above, LTP or LTD can also be evoked in individual pairs of pre-and post-

synaptically connected neurons, using whole cell recordings, and pairing of stimulation in a 

temporally coordinated fashion (also discussed above in Theta burst stimulation). Induction of pre-

synaptic action potentials followed within 10 milliseconds by post-synaptic stimulation yields 

LTP. On the other hand, if post-synaptic action potentials precede pre-synaptic action potentials 

by up to 15 milliseconds, LTD is induced. This phenomenon was conceptualized as spike timing 

dependent plasticity (STDP) (Dan Y, Poo MM, 1992; Edelmann et al., 2015). Donald Hebb, a 

Canadian psychologist, hypothesized in 1949 a phenomenon, which was later aptly summarized 

as “neurons that fire together, wire together” (Lowel S, Singer W, 1992). The discovery of STDP 

provided the neurobiological correlate for this theory of Hebbian learning. Temporally non-

correlated firing of connected neurons doesn’t affect their connection strength. However, 

temporally correlated firing of two connected neurons within a short time window of 10-15 

milliseconds can change connection strength, such that the post-synaptic neuron firing later is 

"rewarded" (the synapse is strengthened) whereas post-synaptic firing earlier than pre-synaptic is 

"punished" (the synapse is weakened). 
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• Metaplasticity 

The increased excitability of two recently potentiated neurons increases the likelihood of 

potentiation of other synapses in the network. Thus, in a large network of inter-connected neurons, 

the Hebbian plasticity model is prone to lead to uncontrolled potentiation of all synapses. The 

Bienenstock Cooper Munro (BCM) theory of sliding plasticity thresholds accounts for how this is 

prevented. In a more active network, the threshold for LTP induction is increased, such that those 

stimuli that would have originally caused LTP will now be too weak to cause any further 

potentiation (Cooper & Bear, 2012). This "metaplasticity" may be regulated by adjustment of the 

number or composition of synaptic NMDARs, and thus the amount of calcium influx the post-

synaptic side of the synapse experiences in response to pre-synaptic stimulation (Philpot, Cho, & 

Bear, 2007). Reductions in post-synaptic calcium influx via metaplasticity can increase the 

threshold of plasticity induction, potentially protecting potentiated synapses from any 

depotentiating stimuli and could be the mechanism used by synapses to lock away memories safely 

for posterity (Hardt, Nader, & Wang, 2014). 

 

• Calcium is an important regulator of synaptic plasticity 

Calcium ion influx and changes in spatiotemporal [Ca2+] in dendrites is crucial for the induction 

and expression of synaptic plasticity. Dendritic spines are protrusions consisting of a bulbous head 

separated from the dendrite by a thin neck, as in the "mushroom spines" commonly found in 

hippocampal CA1 pyramidal neurons (Sabatini, Oertner, & Svoboda, 2002). The spine neck 

isolates the spine from the dendritic shaft biochemically, by acting as a diffusion barrier for 

calcium, second messengers and other enzymes critical to plasticity (Govindarajan, Israely, Huang, 

& Tonegawa, 2012; J. Lisman, Yasuda, & Raghavachari, 2012). It also isolates the spine 

electrically, by virtue of its high input resistance (Harnett, Makara, Spruston, Kath, & Magee, 

2012). A biochemical cascade will occur in the spine if the signaling cascade in a spine culminates 

before there is significant diffusion of components across the spine neck. This property allows a 

neuron to independently regulate the strength of its synaptic connections with multiple pre-

synaptic partners. As described in the next few sections, the spine architecture also regulates the 

trafficking of AMPA receptors (Choquet & Triller, 2013). 
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Calcium is essential for both LTP and LTD. While LTP is induced by rapid and large 

accumulations of calcium, LTD is induced by small calcium influxes over extended periods of 

time. It is not entirely clear how calcium influx can lead to extremely divergent consequences for 

synaptic plasticity (G. Collingridge et al., 2010). Calmodulin, a cytosolic C2 domain containing 

Ca2+ binding protein, can regulate the balance between LTP and LTD in spines by binding 

incoming Ca2+ and subsequently activating Calmodulin dependent Kinase II (CamKII), which has 

low calcium affinity and leads to LTP, or calcineurin, which has high calcium affinity and leads 

to LTD (Li, Stefan, & Le Novère, 2012). 

 

The resting [Ca2+] in spines and dendrites is in the range 40-100 nM (Sabatini et al., 2002). Spines 

in CA1 pyramidal neurons have ~5-10 fold higher surface to volume ratios and ~2-3 fold lower 

endogenous Ca2+ buffering capacity than apical dendrites, thus allowing large and extremely rapid 

[Ca2+] changes in spines compared to dendrites. For example, a single action potential evokes a 

Ca2+ influx of ~1.5 µM in spines but only ~ 0.2 µM in dendrites (Sabatini et al., 2002). At the same 

time, Ca2+ is rapidly extruded from the spine with a time constant of ~12 ms (Sabatini et al., 2002). 

 

The most important dendritic plasma membrane calcium ion channels are NMDA receptors and 

L type/ R-type voltage gated calcium channels (Sabatini et al., 2002). Calcium influx from these 

sources can also be amplified by calcium release from internal stores via Ryanodine receptors 

(RyRs) and Inositol-1,4,5-triphosphate (InsP3Rs) receptors on the endoplasmic reticulum (ER) or 

its extensions in spines known as the spine apparatus, in a phenomenon termed calcium induced 

calcium release (CICR) (Berridge, 1998). Almost all of the Ca2+ that flows in is rapidly extruded 

from the spine by ion channels on the post-synaptic membrane, like the plasma membrane Ca2+ 

ATPase (PMCA), or sequestered into internal stores via Sarco/endoplasmic reticulum Ca2+ -

ATPase (SERCA) pumps (Sabatini et al., 2002). Although bulk [Ca2+] in spines reaches a few µM 

at most, regions within a few nanometers of the Ca2+ source, called nanodomains, can reach 10 – 

100 µM for a few microseconds. Ca2+ currents evoked by action potentials (APs) are brief (< 1ms) 

and small whereas synaptically evoked NMDAR currents are much larger and last longer (>100 

ms) (Sabatini et al., 2002). 
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• AMPA receptor trafficking 

The trafficking of AMPA receptors between synaptic and extra synaptic surface compartments, 

and between the surface and internal compartments in dendrites, is tightly regulated (Carroll RC, 

Lissin DV, von Zastrow M, Nicoll RA, Malenka RC, 1999). Dendritic spines are not only isolated 

electrical and biochemical subcompartments on dendrites but also contain intricate machinery to 

regulate AMPA receptor trafficking. The number (or conductance) of receptors on the plasma 

membrane surface at the post-synaptic density (PSD) directly correlates with synaptic strength. 

Surface AMPA receptor composition, which results from a balance between surface diffusion, 

endocytosis and exocytosis is widely regarded as the most important mechanism underlying 

 

Introduction figure 1: AMPA receptor trafficking in dendrites. 
AMPA receptors are highly mobile in extra-synaptic zones but diffusionally trapped at the post-synaptic density 
(PSD) or at endocytic zones (EZ). The PSD is enriched in DLG-MAGUKs (Disc Large Homologues-Membrane 
associated Guanylate Kinases) like PSD95, Homer1 and Shank which serve an important scaffolding and functional 
role. BRAG2 is aso enriched in the PSD. The endocytic zones are plasma membrane regions skirting the PSD which 
are enriched in Clathrin, AP2, dynamin2 and Endophilin2,3 and held close to the PSD by dynamin3 oligomers 
linked to Homer1 and Shank. Constitutive AMPA receptor internalization proceeds via the clathrin independent 
endocytosis pathway onto Arf6 containing endosomes and subsequently into recycling endosomes. Activity 
dependent internalization proceeds via clathrin dependent endocytosis, which recycles transferrin receptors in 
resting conditions via recycling endosomes. TC10, a Rho GTPase, controls loading and unloading of AMPA 
receptors onto Arf6 endosomes. The various Rab GTPases and syntaxin isoforms in the different vesicle trafficking 
stages are shown. 
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synaptic plasticity and consequently, learning and memory (Derkach, Oh, Guire, & Soderling, 

2007; Henley & Wilkinson, 2016; Shepherd & Huganir, 2007). 

1.3.  Constitutive trafficking of AMPA receptors mediates basal synaptic 

transmission 

AMPA receptors recycle even in basal conditions, with complete turnover of surface receptors 

occurring in ~15 mins (J. W. Lin et al., 2000). AMPA receptors are constitutively endocytosed via 

clathrin mediated endocytosis at specialized endocytic zones close to PSDs (Blanpied, Scott, & 

Ehlers, 2002; Lu et al., 2007; Petrini et al., 2009; Rácz, Blanpied, Ehlers, & Weinberg, 2004) into 

recycling endosomes, with subsequent exocytosis via Rab11 and Rme1 (M. Park, Penick, 

Edwards, Kauer, & Ehlers, 2004; Petrini et al., 2009). The clathrin mediated endocytosis pathway 

is known to constitutively recycle transferrin receptors (Jurado et al., 2013; Tao-Cheng et al., 

2011), also via recycling endosomes (Ehlers, 2000; M. Park et al., 2004). 

 

• Molecular machinery mediating clathrin mediated endocytosis 

Clathrin mediated endocytosis is initiated by BAR domains (named after proteins they were found 

in: Bin, Amphiphysin, Rvs), wedge shaped structures that insert into the plasma membrane and 

curve it by occupying a larger volume on the membrane surface than at the midline of the 

membrane. Membrane binding proteins bind the phospholipid PIP2 (phosphatidylinositol-4,5-

bisphosphate or PtdIns(4,5)P2) on the cytoplasmic face of the plasma membrane and generate the 

initial membrane curvature (McMahon & Boucrot, 2011).  

 

This is followed by recruitment of AP2 (McMahon & Boucrot, 2011), which in turn recruits cargo, 

together with clathrin (Kelly BT, Graham SC, Liska N, Dannhauser PN, Höning S, Ungewickell 

EJ, Owen DJ, 2014; Kirchhausen, Owen, & Harrison, 2014; Robinson, 2004). The core domain of 

AP2 binds to plasma membrane cargo, including the C-termini of AMPA receptors and also 

clusters multiple AP2 complexes at the membrane by binding to other accessory proteins. Other 

domains attached to the core domain via appendage-like long flexible linkers, cluster AP2 

complexes effectively at endocytic sites and also serve as a binding interface for clathrin (which 
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cannot bind membranes directly). In some cases, cargo specific adaptors bind to AP2 linker 

domains and recruit receptors to AP2 (McMahon & Boucrot, 2011; Schmid & McMahon, 2007).  

 

Clathrin polymerizes to form a lattice or vesicle coat (Schmid & McMahon, 2007). Clathrin coat 

assembly, dispersal, and reassembly occurs in ~30 s in dendrites of neurons transfected with 

clathrin-GFP, similar to the time-course for synaptic vesicle endocytosis. The clathrin coat is 

rapidly recycled in spines whereas events in dendritic shafts drew clathrin from distant pools 

(Blanpied et al., 2002). Dynamin is a GTPase that forms a spiral around the neck of a coated vesicle 

and uses energy derived from GTP hydrolysis to constrict and pinch off a coated vesicle from the 

plasma membrane (Ferguson & De Camilli, 2012). 

 

• Endocytic zones at dendritic spines 

Like synaptic vesicles, which are endocytosed at regions lateral to active zones, AMPA receptors 

are also thought to be endocytosed at clathrin rich ‘endocytic zones’ in regions lateral to PSDs in 

dendritic spines. Clathrin coated pits have been observed in dendrites and lateral domains of spines 

but almost never in the PSD by electron microscopy (Petrini et al., 2009). Immunogold labelling 

experiments revealed that AP2 levels peaked ~290 nm lateral to the PSD, clathrin at ~340 nm and 

dynamin-2 at ~390 nm from the PSD, the furthest tangential point being ~700 nm on average. 

These endocytic proteins were found even in the absence of coated endocytic pits, suggesting they 

are always present at specific endocytic zones (Rácz et al., 2004). In culture, endocytic zones (EZs) 

marked with clathrin-DsRed are normally very stable next to PSD95-GFP puncta whereas clathrin 

puncta in dendritic shafts show some random movement (Blanpied et al., 2002).  

 

The post-synaptic endocytic zone is stabilized structurally by a dynamin3-Homer-Shank complex 

(Lu et al., 2007). While dynamin-1 is important for SV endocytosis in pre-synaptic terminals, 

dynamin-2 and dynamin-3 have important post-synaptic functions. While dynamin-1 and 

dynamin-2 are involved in membrane scission, dynamin-3 has a scaffolding function at endocytic 

zones. The dynamin-3 immunogold signals peaked at ~350 nm from the PSD edge, coinciding 

with that of clathrin. The oligomerization of dynamin-3 with itself and dynamin-2 is necessary for 

its scaffolding function. Dynamin-3 also binds actin associated endocytic adaptors in the PSD 

bringing it in close proximity to receptors (Lu et al., 2007).  
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• Surface diffusion of AMPA receptors 

AMPA receptors diffuse in the plasma membrane, and are much more diffusive at extra-synaptic 

sites than within the PSD. Synaptic activity increases extra-synaptic diffusion of AMPA receptors 

(Groc, Heine, Cognet, & Brickley, 2004). Stargazin interacts with PSD95 via its PDZ domain 

(Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA, 2002), and stabilizes 

AMPA receptors at the PSD  in ~80 nm nanodomains (MacGillavry, Song, Raghavachari, & 

Blanpied, 2013; Nair et al., 2013). Glutamate binding to AMPA receptors disrupts the AMPA 

receptor-stargazin interaction, increasing their mobility out of the PSD (Constals et al., 2015). Like 

the PSD, dynamin-3 scaffolded endocytic zones (described in on page 12 above) in the lateral 

domains of PSDs on spines, provide a second barrier to AMPA receptor diffusion (Petrini et al., 

2009).  

 

AMPA receptors are diffusionally slowed down at EZs as much as at PSD surfaces. EZs can be 

physically dislocated from the lateral domains of spines by expressing a Homer1 binding deficient 

mutant of dynamin-3 (Lu et al., 2007; Petrini et al., 2009). Uncoupling EZs from the PSD also 

reduced the number of synaptic GluA1-AMPA receptors by more than half although the total 

number of surface GluA1-AMPA receptors was unaffected. This is either because constitutively 

surface trafficked receptors are no longer diffusionally trapped at EZs and, therefore, escape to 

extra-synaptic areas, or the supply of constitutively internalized AMPA receptors to the local spine 

recycling endosome pathway is cut off. Thus, endocytic zones, which cover ~85% of the spine 

area, are crucial to maintain a basal synaptic surface AMPA receptor population by reducing 

diffusion of AMPA receptors to extra-synaptic areas and maintaining a supply of AMPA receptors 

in the local constitutive recycling pathway via AP2-mediated constitutive endocytosis (Rácz et al., 

2004; Petrini et al., 2009). 

 

How are AMPA receptors diffusionally slowed at the EZ? Experiments suggest that the intrinsic 

molecular composition and properties of EZs limit AMPA receptor diffusional mobility, 

independent of the PSD. Slowed down receptors that spent long enough at the EZ are internalized 

via clathrin mediated endocytosis. GluA1-AP2 binding via the cytoplasmic C-tail R848 residue on 

GluA1, is necessary for the internalization and diffusional trapping of AMPA receptors at EZs 
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(Petrini et al., 2009). The AP2 complex is thought to exist in an inactive “closed” conformation in 

the cytosol that prevents unproductive interaction with clathrin. Binding to plasma membrane 

enriched PIP2 and to transmembrane cargo (like positively charged motifs on AMPA receptor C-

tails or on synaptotagmins as shown in Introduction figure 2 on page 34), triggers conformational 

changes in AP2 that allow efficient binding to clathrin and phospholipids and bud formation which 

initiates clathrin coat assembly (Grass, Thiel, Honing, & Haucke, 2004; Kelly BT, Graham SC, 

Liska N, Dannhauser PN, Höning S, Ungewickell EJ, Owen DJ, 2014). 

 

Thus, the surface diffusion and the constitutive clathrin mediated endocytosis of AMPA receptors 

are tightly inter-linked. 

 

• Constitutive trafficking of AMPA receptors 

Another important player in constitutive clathrin mediated endocytosis of AMPA receptors is 

Arc/Arg3.1, an immediate early gene important for LTP and LTD and memory consolidation 

(Shepherd & Bear, 2011). Molecularly, Arc mediates constitutive endocytosis of AMPA receptors 

(Chowdhury et al., 2006) (Waung, Pfeiffer, Nosyreva, Ronesi, & Huber, 2008), mediated via its 

interactions with AP2 (DaSilva et al., 2016). 

 

Other studies also showed that AMPA receptors are internalized constitutively by clathrin 

mediated endocytosis. Competitive inhibition of the GluA2-AP2 interaction in basal conditions by 

the AP2 binding motif of synaptotagmin1, KRLKKKKTTIKK, increased AMPA receptor surface 

expression and caused an increase in mEPSC amplitude by ~15% (Kastning K, Kukhtina V, Kittler 

JT, Chen G, Pechstein A, Enders S, Lee SH, Sheng M, Yan Z, Haucke V., 2007). Application of 

the dynamin inhibitory peptide (DIP), which inhibits dynamin-amphiphysin interactions and thus 

clathrin mediated endocytosis, caused a robust run-up of EPSCs (Glebov, Tigaret, Mellor, & 

Henley, 2015; Lüscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, Nicoll 

RA, 1999). However, evidence for clathrin independent endocytosis of AMPA receptors has been 

mounting as well (Petralia, Wang, & Wenthold, 2003; Tao-Cheng et al., 2011). Almost all (98%) 

coated pits and vesicles near the plasma membrane of neuronal somas and dendrites show 

immunogold labelling for clathrin. While ~75% of them contained transferrin receptors, only 

~25% of them contained GluA2 signal in basal conditions. At endocytic zones, although almost 
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all (93%) coated pits contained transferrin receptors in basal conditions, but almost none of them 

contained GluA2. This suggests GluA2-AMPA receptors are not preferentially endocytosed by 

clathrin mediated endocytosis in basal conditions at EZs (Tao-Cheng et al., 2011). 

 

Indeed, very recent studies showed that constitutive internalization of AMPA receptors is clathrin 

independent, and these evidences are arguably stronger than those showing clathrin-dependence 

(Glebov et al., 2015; Zheng, Jeyifous, Munro, Montgomery, & Green, 2015). Multiple approaches 

used to block clathrin mediated endocytosis (clathrin heavy chain shRNA mediated knock down, 

expression of dominant negative mutant of AP180 or dynamin2, and inhibition of dynamin2 

GTPase activity by dynasore or Pitstop2) significantly reduced internalization of transferrin 

receptors as expected. However, these perturbations did not affect constitutive internalization of 

GluA1 or GluA2-containing AMPA receptors whatsoever (Glebov et al., 2015). Inhibiting GluA2-

AP2 interactions also did not affect EPSCs in basal conditions (Griffiths et al., 2008; S. Lee, Liu, 

Wang, & Sheng, 2002). Another study showed that AMPA receptors are constitutively internalized 

via Arf6 (a GTPase important for membrane trafficking) containing endosomes, which is known 

to be a clathrin-independent pathway (Zheng et al., 2015). These studies are not in conflict with 

those showing that AMPA receptors are constitutively internalized via clathrin mediated 

endocytosis (M. Park et al., 2004; Petrini et al., 2009), because constitutively internalized 

transferrin receptors and constitutively internalized AMPA receptors converge at recycling 

endosomes (Glebov et al., 2015). Only the mechanism of internalization at the plasma membrane 

is different. While the conversion of GDP to GTP by TC10 loads AMPA receptors onto Arf6 

endosomes, its GTPase function is important for exit of AMPA receptors from Arf6 endosomes 

back to the plasma membrane via recycling endosomes (Zheng et al., 2015) (Introduction figure 1 

on page 10). Another unexpected player in constitutive AMPA receptor internalization is the 

GTPase, Rac1, which was so far only implicated in regulation of spine morphology and regulation 

of membrane trafficking through actin polymerization. Pharmacological blockade of Rac1 also 

blocked the constitutive internalization of AMPA receptors (Glebov et al., 2015). 

 

AMPA receptors are constitutitvely recycled back to the surface via the GTPase Rab11 and Eps-

15 homology domain protein EDH1/ Rme1 from recycling endosomes. This exocytosis is 
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dependent on syntaxin13, but not syntaxin7, which mediates trafficking of receptors to late 

endosomes (M. Park et al., 2004) (Introduction figure 1 on page 10).  

 

1.4.  Activity dependent trafficking of AMPA receptors mediates synaptic 

plasticity 

Depending on the stimulation received at a synapse, the number of AMPA receptors at the PSD 

surface can be altered to regulate synaptic strength by a) redirecting the flux of existing AMPA 

receptors through various recycling pathways, or b) increasing or decreasing the total number of 

AMPA receptors in circulation. During LTP, the trafficking of AMPA receptors in the recycling 

endosome pathway described above is upregulated. The exocytosis of GluA1 containing AMPA 

receptors from recycling endosomes via Rab11, Rme1 and syntaxin13 is necessary for glycine 

induced chemical LTP in culture and HFS-LTP at the CA3-CA1 synapse in the hippocampus 

endosomes (M. Park et al., 2004). Although the extent to which AMPA receptors are constitutively 

internalized via clathrin mediated endocytosis is probably very low (as argued on page 14  above), 

activity mediated AMPA receptor internalization or LTD is mediated largely via clathrin mediated 

endocytosis (Carroll et al., 1999; S. Lee et al., 2002; Lüscher C, Xia H, Beattie EC, Carroll RC, 

von Zastrow M, Malenka RC, Nicoll RA, 1999; Man et al., 2000; Wang YT, Linden DJ, 2000). 

After NMDA-induced AMPA receptor internalization, GluA2 immunogold label was found twice 

as often at clathrin coated pits, and the number of labels per pit on extra-synaptic or spine 

membranes also doubled (Tao-Cheng et al., 2011). In addition, disruption of the GluA2-AP2 

interaction by the GluA2 (DA849-Q853) peptide blocked LFS-LTD in the hippocampus (S. Lee et 

al., 2002) and in the perirhinal cortex (Griffiths et al., 2008) and also blocked ‘natural forgetting’ 

of memories in rats (Migues et al., 2016). Thus, GluA2-AP2 interactions (and by extension 

clathrin-mediated endocytosis) are necessary for activity dependent AMPA receptor 

internalization.  

 

• Stimulation induced internalization of AMPA receptors 

Many plasma membrane receptors, including b1 and b2 adrenergic receptors (Yoshihara T, 

Yonoki Y, Saito M, Nakahara T, Sakamoto K, Ishii K, 2013), cannabinoid CB1 receptors (Coutts 
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AA, Anavi-Goffer S, Ross RA, MacEwan DJ, Mackie K, Pertwee RG, Irving AJ, 2001), and 

Neuropeptide Y (Y1) receptors (Pheng et al., 2003) internalize upon binding their agonist. 

Application of glutamate, insulin, AMPA or NMDA to dissociated neuronal cultures internalizes 

AMPA receptors, and has been used to examine the underlying molecular machinery (Beattie et 

al., 2000; Carroll et al., 1999; Ehlers, 2000; T. Hayashi, 2004; S. H. Lee, Simonetta, & Sheng, 

2004; S. Lee et al., 2002; J. W. Lin et al., 2000). Both AMPA or CNQX/DNQX, competitive 

antagonists of AMPA receptors that occupy the ligand binding site, induce internalization of 

AMPA receptors (J. W. Lin et al., 2000). However, CNQX induced internalization is smaller in 

magnitude and not dependent on L-type voltage gated channels or inhibited by serine threonine 

phosphatases PP1 and PP2A (unlike AMPA induced internalization), indicating different 

mechanistic underpinnings (J. W. Lin et al., 2000). On the other hand, GYKI 52466, a non-

competitive antagonist that binds an allosteric site of AMPA receptors does not induce AMPA 

receptor internalization (J. W. Lin et al., 2000).  

 

AMPA stimulation leads to transient internalization of AMPA receptors followed by recycling to 

the surface (Ehlers, 2000; S. H. Lee et al., 2004). AMPA induced internalization depends on 

clathrin (J. W. Lin et al., 2000), voltage gated calcium channels (Beattie et al., 2000), calcium 

influx (Beattie et al., 2000; Ehlers, 2000), and calcineurin, a serine/threonine phosphatase ((Beattie 

et al., 2000); but see also (J. W. Lin et al., 2000)) but not tyrosine phosphatases (J. W. Lin et al., 

2000). Internalization is highly enhanced by PP1 and PP2A inhibitors (J. W. Lin et al., 2000). 

 

NMDA-induced internalization of AMPA receptors (also termed chemical LTD) and LFS-LTD 

share common signalling pathways (Beattie et al., 2000; Ehlers, 2000). NMDA induced 

internalization depends on Ca2+ influx and activation of phosphatase pathways including 

calcineurin (PP2B) (Beattie et al., 2000) and PP1 (Ehlers, 2000), but not on voltage gated calcium 

channels (Beattie et al., 2000). NMDA stimulation also leads to lysosomal degradation after 

internalization (Ehlers, 2000; S. H. Lee et al., 2004). 

 

LFS-LTD and mGluR-LTD: 

Low frequency stimulation induced LTD (LFS-LTD), which also causes internalization of AMPA 

receptors, is dependent on NMDA receptors (Scholz et al., 2010), calcium influx and phosphatases 
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but not on tyrosine phosphatases (Scholz et al., 2010). mGluR (metabotropic glutamate receptor)-

LTD, induced by application of DHPG, a selective agonist of group 1 mGluRs, is dependent on 

dephosphorylation of GluA2 (Moult, Corrêa, Collingridge, Fitzjohn, & Bashir, 2008). LFS-LTD 

and mGluR-LTD do not occlude each other (Nicoll RA, Oliet SH, Malenka RC, 1998) but 

converge on the 3Y motif of GluA2 (Scholz et al., 2010). 

 

Insulin stimulation mediated AMPA receptor internalization: 

Insulin induced AMPA receptor internalization is much slower than AMPA induced 

internalization, reaching maximal levels in ~30 min (J. W. Lin et al., 2000). Internalization is 

dependent on tyrosine phosphatases (J. W. Lin et al., 2000), dynamin2 and calcium influx (Beattie 

et al., 2000; Man et al., 2000) and calcineurin (Beattie et al., 2000). Insulin mediated internalization 

is abolished by mutation of the 3 tyrosine residues (Y869, Y873, Y876) in the GluA2 3Y 

(869YKEGYNVYG877) motif to alanines leaving constitutive trafficking unaffected (Ahmadian et 

al., 2004). Insulin induced LTD also increases GluA2-AP2 interaction (Man et al., 2000). Although 

insulin receptors (IGF-1) are expressed on post-synaptic densities, it is not clear exactly how 

insulin induces AMPA receptor LTD. Thus, although LFS-LTD and insulin-LTD are mediated by 

different mechanisms, they converge at clathrin mediated endocytosis (Wang YT, Linden DJ, 

2000) and occlude each other (Man et al., 2000). 

 

• Subunit rules of activity dependent AMPA receptor internalization 

The unique signalling motifs on the cytoplasmic tails (C-tails) of the different AMPA receptor 

subunits affect their trafficking in different ways (Henley & Wilkinson, 2016; Isaac, Ashby, & J, 

2007). The extracellular and transmembrane domains of all subunits are similar but the C-tails, 

which affect their interacting partners and trafficking mechanisms, can be divided into two classes 

based on sequence similarity (Shepherd & Huganir, 2007):  

• GluA1, GluA4 and the splice isoform of GluA2 which have longer C-tails. 

• GluA2, GluA3 and the splice isoform of GluA4.  

The GluA2 subunit seems to dominate over GluA1 with regard to AMPA or NMDA induced 

internalization (S. H. Lee et al., 2004). The lack of AMPA induced internalization of GluA1 

homomers could be rescued by switching their C-tail with the GluA2 C-tail, showing that the 
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GluA2 C-tail possesses unique motifs required for AMPA induced internalization (S. H. Lee et al., 

2004). 

 

Phosphorylation of residues on the C-tails are well-known regulators of AMPA receptor 

trafficking. The two important types of residues that can be phosphorylated are:  

a) Serine/threonine. Prominent phosphatases include calcineurin, protein phosphatase 1 (PP1) 

and protein phosphatase 2 (PP2A, PP2B). Dephosphorylation of S845 and phosphorylation of 

S831 in the GluA1 cytoplasmic tail (C-tail) promotes LTD (Lee HK, Kameyama K, Huganir RL, 

Bear MF, 1998) and AMPA receptor endocytosis (Ehlers, 2000). Phosphorylation of S880 of 

GluA2 decreases GluA2-GRIP binding leaving GluA2-PICK1 binding unaffected, leading to 

AMPA receptor internalization (Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL, 2000; 

Takashi Hayashi & Huganir, 2004).  

b) Tyrosine. Prominent kinases include receptor type kinases Lyn, Src, Fyn and non-receptor type 

tyrosine kinases Fak, Pyk2. 

 

The GluA C-tails bind AP2 via a stretch of positively charged residues in the GluA2 C-tail 

(844KRMKV848) (S. Lee et al., 2002). As mentioned above, although AP2 binds GluA2 

constitutively (on page 14) and is present at endocytic zones (on page 12), disrupting this 

interaction doesn’t affect basal transmission (S. Lee et al., 2002). However, activity dependent 

AMPA receptor internalization is dependent on clathrin mediated endocytosis (Glebov et al., 2015; 

Migues et al., 2016) and the GluA2-AP2 interaction (S. Lee et al., 2002). This implies that 

mechanisms that induce AMPA receptor internalization either activate AP2 or recruit it to GluA2 

and initiate AMPA receptor internalization via clathrin mediated endocytosis. 

 

1.5.  Important players in activity dependent AMPA receptor internalization 

• PICK1 recruits AMPA receptors to sites of clathrin mediated endocytosis 

PICK1 (Protein interacting with protein kinase C-1) is enriched in the PSD (Rocca et al., 2013) 

and is a multifunctional player in AMPA receptor internalization during LTD in hippocampal 

neurons. PICK1 is also necessary for NMDA induced internalization of AMPA receptors 

(Terashima et al., 2008). An N- and C-terminal acidic stretch of amino acids on PICK1 can bind 
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calcium and confer a biphasic calcium dependence to its interaction with GluA2 (Hanley JG, 

Henley JM., 2005). PICK1 interacts with GluA2 (and GluA3 (Kumlesh K. Dev, 1999)) but not 

with GluA1 via its PDZ domain (Hanley JG, Henley JM., 2005; Rocca et al., 2013) in a calcium 

dependent manner.  

 

PICK1 regulates AMPA receptor trafficking through the recycling endosome pathway in basal 

conditions, as it colocalizes with Rab5 and Rab11 but not Rab7 (see Introduction figure 1; (Hanley, 

2010)). PICK1 restricts surface trafficking of AMPA receptors (D.-T. T. Lin & Huganir, 2007), 

while NSF (N-ethylmaleimide-sensitive factor) promotes constitutive surface trafficking of 

AMPA receptors by disrupting GluA2-PICK1interactions using a-/b- SNAPs (Hanley, Khatri, 

Hanson, & Ziff, 2002).  

 

A more detailed molecular mechanism has recently emerged (Fiuza et al., 2017), suggesting that 

PICK1 shuttles GluA2-containing AMPA receptors to sites of clathrin coated pits for endocytosis. 

STED microscopy revealed PICK1 at endocytic zones where it binds GluA2 to a small extent in 

basal conditions as AMPA receptors are diffusing rapidly in and out of synaptic and endocytic 

zones. The calcium influx during an NMDA induced AMPA receptor internalization enhanced the 

PICK1-GluA2 interaction, which could be detected in the first 2 minutes after stimulation. In the 

next 2 minutes, the PICK1-AP2 interaction was enhanced by calcineurin, which was matched by 

an increased PICK1-dynamin interaction and a weakening of the PICK1-GluA2 interaction, 

probably at clathrin coated pits. Additionally, the PICK1 C-tail could catalyze the oligomerization 

of dynamin in co-sedimentation assays, suggesting PICK1 facilitates pinching off of the neck of 

the clathrin coated pit.  

 

At the same time, PICK1 also affects actin polymerization leading to AMPA receptor 

internalization (Rocca et al., 2013). PICK1 directly binds Arf1 (ADP-ribosylation factor-1, a 

GTPase) in a GTP dependent manner via its PDZ domain. In basal conditions, most Arf1 is present 

in its GTP-bound state, which forces PICK1 into a locked conformation. This allows PICK1 to 

only weakly inhibit Arp2/3, a GTPase that mediates polymerization of actin filaments and 

structural stability of the spine. Upon NMDA receptor activation, GIT1 (an ArfGAP/ Arf GTPase 

activating protein) activation converts Arf1-GTP to Arf1-GDP. This unlocks PICK1, allowing it 
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to inhibit Arp2/3 and block actin polymerization, leading to spine shrinkage and AMPA receptor 

internalization (Rocca et al., 2013) (See Figure 26). 

 

• Rab5 internalizes AMPA receptors into the recycling endosome pathway 

~75% of Rab5 immunogold signal was found at the post-synaptic side of synapses, where it 

associates with membranes via its C-terminal geranyl geranyl groups at 100-300 nm from the PSD 

edge (T. C. Brown, Tran, Backos, & Esteban, 2005). Rab5 is mostly in its inactive (GDP bound) 

configuration and converted to its active form upon NMDA stimulation. Rab5 is necessary and 

sufficient for NMDA and LFS-induced LTD but doesn’t affect constitutive AMPA receptor 

trafficking. The removal of synaptic GluA2-AMPA receptors by Rab5 relies on the GluA2-AP2 

interaction (T. C. Brown, Tran, Backos, & Esteban, 2005). 

 

• BRAG2 binds to dephosphorylated Y876 and is necessary for LTD 

BRAG2 (Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factor 2) is a guanine-

nucleotide exchange factor (GEF) for the small GTPase, Arf6, which is an important coat 

recruitment factor at the plasma membrane (D’Souza-Schorey & Chavrier, 2006) and involved in 

endosomal trafficking of AMPA receptors (Zheng et al., 2015). BRAG2, like PICK1, is enriched 

in the PSD. BRAG2 is activated during stimulation by binding to all short AMPA receptor C-

termini, i.e, GluA2, GluA3, GluA4short but not the long C-terminus of GluA1. BRAG2 is activated 

upon binding the GluA2 C tail Y876 and activates Arf6 by replacing the GDP in Arf6 with GTP. 

Thus, upon induction of NMDA receptor activation, BRAG2 promotes Arf6-mediated clathrin 

dependent endocytosis of GluA2- containing AMPA receptors (Scholz et al., 2010).  

 

DHPG induced mGluR-LTD requires dephosphorylation of GluA2 (Moult et al., 2006). Therefore, 

it is quite possible that mGluR-LTD requires BRAG2 activation via dephosphorylated Y876, 

although this has not been tested. On the other hand, LFS-LTD doesn’t require dephosphorylation 

of GluA2 and in fact increases phosphorylation of GluA2 (Ahmadian et al., 2004). Although 

mGluR-LTD and NMDA receptor dependent-LTD have different underlying mechanisms and do 

not occlude each other (Nicoll RA, Oliet SH, Malenka RC, 1998), they are both blocked by 

BRAG2 knockdown (Scholz et al., 2010), showing that they converge on BRAG2. 
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Insulin-LTD is perhaps independent of BRAG2, as BRAG2 mediated Arf6 activation requires 

dephosphorylated GluA2 Y876, whereas insulin induced internalization requires one or all 

tyrosines in the 3Y motif (Ahmadian et al., 2004). Similarly, it is not clear if AMPA induced 

internalization is BRAG2 dependent, since AMPA induced internalization of GluA2 3Y->3A, 

(Ahmadian et al., 2004) and of GluA2 D868-883 (J. W. Lin et al., 2000) was unaffected, but AMPA 

induced internalization of GluA2 Y876F was abolished (Takashi Hayashi & Huganir, 2004).  

 

• The 3Y internalization machinery 

The mechanistic link of activity induced AMPA receptor internalization and tyrosine 

phosphorylation of GluA2 is not entirely clear (Fitzjohn & Bashir, 2010). However, an effective 

method to selectively inhibit activity dependent AMPA receptor internalization, leaving 

constitutive internalization intact, has emerged in the last 12 years. Competitive inhibition of the 

3Y machinery by the GluA2-3Y peptide blocked the insulin mediated internalization of AMPA 

receptors without affecting constitutive trafficking (Ahmadian et al., 2004). A membrane 

permeable version of the peptide, Tat-GluA2-3Y, blocked the decay of weak-LTP in the 

hippocampus without affecting baseline transmission or strong-LTP in freely behaving rats (Z. 

Dong et al., 2015), blocked LFS-LTD in the hippocampus (Ahmadian et al., 2004; Z. Dong et al., 

2013), and in the amygdala (Yu, Wu, Liu, Ge, & Wang, 2008), and blocked depotentiation in the 

hippocampus (Migues et al., 2016) and morphine induced generation of silent synapses in the 

nucleus accumbens (Graziane et al., 2016). Thus, the 3Y machinery has emerged to be necessary 

for NMDA receptor dependent LTD and activity dependent AMPA receptor internalization (Z. 

Dong et al., 2015). Although it is still not clear what is the phosphorylation profile of the three 

tyrosines in the GluA2-3Y motif or at other tyrosines and how it is mechanistically linked to the 

effects of insulin, AMPA and NMDA stimulations, it is quite clear that competitive inhibition of 

the 3Y machinery, i.e., those players that require any or all of the three tyrosines in the 3Y motif, 

with the GluA2-3Y peptide is an effective means to abolish activity dependent AMPA receptor 

internalization leaving basal transmission unaffected. 
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• Other known players in activity dependent AMPA receptor internalization 

Hippocalcin is a calcium binding protein that is necessary for LTD but not basal transmission or 

LTP. It is enriched in synaptosomal membranes but not in purified clathrin coated vesicles isolated 

from rat brain homogenate. It is specifically enriched in PSD fractions but only in the presence of 

Ca2+, suggesting it recruits AP2 to clathrin coated pits upon a calcium influx (Palmer et al., 2005). 

 

CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus 

anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor 

internalization. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity 

dependent, but not constitutive, internalization of both NMDA-and AMPA-type glutamate 

receptors (Loebrich et al., 2016). 

 

• The mechanisms of decay of LTP and PKMz 

The best candidate for the persistent phase of strong-LTP is an atypical protein kinase C isoform 

M-zeta (PKMz), which is necessary and sufficient for the persistence of LTP and memory but not 

for induction (Ling et al., 2002). The catalytic domain of Protein kinase C is normally inhibited by 

its regulatory domain until activated by a second messenger. PKMz lacks a regulatory domain, 

giving it a unique property of being constitutively catalytically active in its protein form. NMDA 

receptor dependent LTP releases the translational block on PKMz mRNA in dendrites, following 

which PKMz is recruited to potentiated spines via PICK1 dimers. Although its autocatalytic 

function is self-propagating, it is however, still not clear how PKMz can maintain its protein levels 

long after induction of LTP, despite its turnover (Sacktor, 2011). In fact, it becomes more difficult 

to inhibit PKMz, at longer times after LTP induction. To inhibit persistence of late-LTP 1 hour 

and 3 hours after induction, the minimum concentrations of ZIP required increase from 1 µM to 

2.5 µM (Serrano, Yao, & Sacktor, 2005).  

 

The mechanism of PKMz mediated synaptic potentiation has been delineated (Y. Yao et al., 2008): 

PKMz maintains the increased surface trafficking of GluA2-AMPA receptors, by upregulating 

NSF-mediated disruption of GluA2-PICK1 interactions (Hanley JG, Henley JM., 2005; Y. Yao et 

al., 2008). The zeta inhibitory peptide, ZIP, inhibits the catalytic function of PKMz. However, the 
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specificity of ZIP, and its validity as a specific PKMz inhibitor has been questioned (Frankland 

PW, Josselyn SA, 2016; LeBlancq, McKinney, & Dickson, 2016). The role of PKMz itself was 

also questioned when two studies reported that the constitutive PKMz KO mouse still showed 

persistent strong-LTP (A. M. Lee et al., 2013; Volk, Bachman, Johnson, Yu, & Huganir, 2013). 

However, it was later shown that this was due to persistent activation of PKM i/l, which takes 

over for PKMz when it is knocked out; An exclusive role of PKMz in the maintenance of late-

LTP persistence but not induction was further confirmed using acute shRNA mediated knockdown 

of PKMz (Tsokas P et al, 2016; Wang, Sheng, Ren, Tian, & Lu, 2016). 

 

To the best of our knowledge, the 3Y machinery is the only known mechanism which is necessary 

for the decay of LTP. The decay of strong-LTP upon ZIP application can be blocked by the GluA2-

3Y peptide (Z. Dong et al., 2015), and the ZIP mediated decrease in the number of synaptosomal 

AMPA receptors after LTP induction could be blocked by the GluA2-3Y peptide (Migues et al., 

2010). Interestingly, the 3Y machinery does not seem to be continuously active in the persistent 

phase of strong-LTP, as application of the GluA2-3Y peptide alone 1 hour after induction of 

strong-LTP did not cause any increase in synaptic potentiation (Z. Dong et al., 2015). Thus, the 

3Y machinery is specifically necessary for the decay of LTP but not for basal transmission. 

 

• Engrams- the neurobiological correlate of memory 

Memory engrams bridge the conceptual gap between synaptic plasticity and behavioral learning. 

The term engram was originally coined by Richard Semon, who articulated four properties of an 

engram, the neurobiological manifestation of a memory: a) The event that the engram encodes 

should cause a modification in the brain, that persists long after the end of the event, b) The engram 

should be capable of being recalled behaviorally upon relevant environmental cues, c) The engram 

contains information about what happened during the time of encoding and that predicts what can 

be retrieved during subsequent retrieval, d) The engram may exist in a latent state between the 

active processes of encoding and retrieval (Josselyn, Köhler, & Frankland, 2015). 

 

It is now clear that an engram is the change in signaling efficacy of a specific constellation of 

synapses across ensembles of neurons, not restricted to one brain region. In the last few years, the 
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Susumu Tonegawa lab (MIT, Massachusetts, USA) has managed to label neurons in the 

hippocampus and the amygdala which were activated during the encoding of an aversive memory. 

Optogenetic reactivation of these engrams could retrieve the typical fearful behavior in mice long 

after the aversive experience, in a neutral environmental context (S. Ramirez et al., 2013). Synaptic 

engrams of learning two distinct motor tasks were also successfully labelled in the mouse motor 

cortex. Extinguishing the engram from one task did not affect the learning corresponding to the 

other engram, suggesting acquired motor skills are stored in task-specific synapse ensembles in 

the brain (Hayashi-Takagi et al., 2015). Granule cells of the dentate gyrus in a fear engram 

exhibited a higher AMPA/NMDA ratio compared to nearby non-engram granule cells upon 

stimulation of perforant path afferents, providing a clear demonstration of LTP as the synaptic 

manifestation of a memory (Ryan, Roy, Pignatelli, Arons, & Tonegawa, 2015). A causal link 

between synaptic plasticity and memory was shown by the association of an optogenetically 

activated auditory input into the amygdala with a foot shock, inactivating it by an optogenetic LTD 

stimulation protocol and reactivating the same memory by an optogenetic LTP stimulation 

protocol (Nabavi et al., 2014). Thus, synaptic plasticity is the underlying neurobiological correlate 

of behavioural learning. 

 

1.6.  Behavioral analysis of learning and memory  

• What is Learning? 

Learning is one of the most important tools of survival that any organism uses to avoid or extricate 

itself from aversive living conditions and maximise its exposure to favorable ones and thus, 

increase the chances of survival of itself and its progeny. Memory consolidation refers to the 

process of stabilization of neurobiological modifications that were initiated upon learning by 

association of an environmental context with a particular event. Allowing consolidation to 

complete increases the likelihood of the memory surviving its expected lifetime and not decaying 

to a state of non-existence or irretrievability. Memory retrieval refers to the expression of a 

previously learnt behaviour, termed ‘conditioned response’, upon exposure to the previously 

associated environmental context by reactivation of a part or whole of the memory engram.  
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• What is Forgetting? 

A memory can be forgotten, either because its corresponding memory trace has been erased or the 

memory cannot be retrieved although it is existent. Other intermediate dysfunctions could lead to 

forgetting, for instance, the quality of a memory trace could have deteriorated beyond a certain 

point (for instance, crucial aspects of the memory trace could have been corrupted) such that no 

meaningful retrieval is possible anymore (Hardt, Nader, & Nadel, 2013; Hardt et al., 2014). 

Forgetting in the laboratory is usually tested on rodent models by memory extinction paradigms, 

which aim to abolish a learned conditioned response, which was previously associated with a 

conditioned stimulus. Extinction has been found to occur via a) learning, i.e., acquisition of another 

memory that inhibits the expression of the original conditioned response or b) unlearning, i.e., 

extinguishing of the original memory trace. The former is thought to be the mechanistic 

underpinning of most extinction paradigms because the originally learned conditioned response 

can be retrieved after a sufficiently long time period between the extinction training and the 

memory recall (K. Myers & Davis, 2007; Tovote, Fadok, & Lüthi, 2015). 

 

• Forgetting curves 

A ‘natural forgetting’ curve refers to the rate of (active/ passive) decay of a memory over time, 

perhaps because of disuse and gradual deterioration of the memory trace. Increasing the retention 

delay time period between the consolidation of a memory and its subsequent retrieval is used to 

study the neurobiology behind natural forgetting. This is a meaningful assay only if the inherent 

lifetime of the consolidated memory is short, for example, if it decays within hours or days. The 

activity dependent internalization of GluA2-AMPA receptors in various brain regions is necessary 

for ‘natural forgetting’ (Migues et al., 2016). For instance, a long-term ‘object location’ memory 

in rats decayed over 13 days and this decay could be blocked by infusing the GluA2-3Y peptide 

(or a peptide which selectively inhibits GluA2-AP2 interaction) into the dorsal hippocampus twice 

daily during the entire delay period or from day 8 onwards, by which point the memory had almost 

completely decayed. Similarly, the decay of a conditioned place preference memory, which 

decayed over 10 days, could be blocked in rats by two daily infusions of the GluA2-3Y peptide 

into the dorsal hippocampus. Another example is a ‘learned’ auditory cued fear extinction memory 

in the infralimbic cortex which decayed over the course of 7 days in rats, and could be blocked by 
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two daily infusions of the GluA2-3Y peptide into the infralimbic cortex (Migues et al., 2016). 

Thus, natural forgetting is an active process involving internalization of GluA2-containing AMPA 

receptors from previously potentiated synapses. 

 

Natural forgetting might be the closest to a ‘memory erasure’ form of forgetting, i.e., for a memory 

trace to degrade to a quality beyond a certain point, such that no meaningful retrieval is possible. 

 

The watermaze task was first described in 1981 by Prof. Richard Morris, in which mice have to 

learn the position of a submerged hidden platform in reference to external visual cues. The 

presence of the memory is indicated by the search path of mice near the platform position in probe 

tests, where the platform has been removed after traininig. Repetitive probe tests are known to 

cause extinction of the spatial memory. However, spatial memories in the reference watermaze are 

highly resistent to natural forgetting in mice (Lattal, Mullen, & Abel, 2003). A 10-day retention 

delay period between the last training session and a probe test led to almost no decay in spatial 

memory. Four daily 60 second probe tests lead to spatial memory extinction, but only after 8 days. 

The same rate of extinction was achieved by placing the platform in a random position every day. 

However, a better approach to extinguish a spatial memory was found to be by training mice to a 

platform in a quadrant opposite to the original platform position (termed platform reversal). After 

training to a hidden platform in the opposite quadrant, mice spent less time in the quadrant with 

the original platform position compared to mice which received the other forms of extinction 

(Lattal et al., 2003).  

 

In a delayed matching to place watermaze task, rodents are trained to find a unique platform 

position every day (Nakazawa et al., 2003; Zeng et al., 2001). The ‘working’ memory of the 

platform position from the first trial is used to find the platform more effectively in the remaining 

trials of the day, during which the platform position is unchanged. Probe trials in this paradigm are 

done on trial 2. In rats, increasing the retention delay between trial 1 and trial 2 to 24 hours brought 

the probe test performance levels to chance level. A big difference of this task with other above-

mentioned tasks is that this is a working memory task, leading to a weakly consolidated memory 

(da Silva, Bast, & Morris, 2014).  
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• Fear extinction- Learning and Unlearning paradigms 

Fear conditioned memories are one of the most robust memories and can persist for weeks or even 

months. Another widely studied memory extinction phenomenon is fear memory extinction. After 

contextual fear conditioning - achieved by pairing a particular context with an aversive stimulus 

such as a foot shock - extinction training or exposure to the same context without any foot shocks 

leads to a reduction in freezing responses. However, the delay between the last training session 

and the first extinction session alters the mechanism of the extinction involved. When extinction 

training is done 24 hours after training in the ‘learning’ fear extinction paradigm, an ‘inhibitory’ 

extinction memory is formed, mainly in the infralimbic cortex, which inhibits the expression of 

the conditioned response leaving the original fear memory, mainly in the amygdala, intact. 1-3 

weeks after the extinction training, the infralimbic extinction memory decays, and the original fear 

memory trace is active (Kimura, Silva, & Ohno, 2008; K. M. Myers, Ressler, & Davis, 2006; A. 

Suzuki et al., 2004). When extinction training is done 15 min to 1 hour after training in the 

‘unlearning’ fear extinction paradigm, the original fear memory trace is thought to undergo erasure 

and thus, cannot be retrieved when memory retrieval is attempted 1-3 weeks after the extinction 

training. However, the only evidence that fear memory is unlearned is the absence of spontaneous 

reversal (Kimura et al., 2008; Mao, 2006; K. M. Myers et al., 2006). The internalization of GluA1-

AMPA receptors in the amygdala has been shown to be the underlying mechanism in unlearning 

fear extinction in rats (Mao, 2006). Both extinction paradigms lead to abolishment of the 

conditioned response, however, it reappears after 1-3 weeks in the ‘learning’ fear extinction, a 

phenomenon called spontaneous reversal, but does not reappear in ‘unlearning’ fear extinction 

(Kimura et al., 2008; Migues et al., 2016; K. Myers & Davis, 2007; Tovote et al., 2015).. 

 

• Interfering with a memory update (reconsolidation) can erase memories 

Memory is, in fact, continuously being updated. Every retrieval has been shown to transiently 

weaken a memory trace and make it more plastic, perhaps allowing for new information to be 

integrated into pre-existing memories. Reconsolidation processes, which are mechanistically very 

similar to those operating during memory consolidation, stabilize the memory trace (Hong et al., 

2013; Nader K, Schafe GE, Le Doux JE, 2000; A. Suzuki et al., 2004). In an amazing 

demonstration of the retrieval based weakening of a memory, human patients with post-traumatic 
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stress disorder were cured of their fearful associations of a traumatic experience if they were 

administered the b adrenergic receptor blocker, Propranolol (which can cross the blood brain 

barrier and block memory reconsolidation mediated by the noradrenergic system) while recalling 

every detail of the traumatic experience. This removes the fear of the traumatic experience and 

associated aversive symptoms, but not the memory of the traumatic experience itself (Schwabe, 

Nader, & Pruessner, 2013). Blocking reconsolidation by injecting mice with anisomycin, a protein 

synthesis blocker, and performing a probe test after reference memory watermaze training, has the 

same effect, and erases the spatial memory of the hidden platform. This effect was prevented if 

mice were injected with anisomycin but left in their home cages, i.e., both retrieval of the spatial 

memory and inhibition of protein synthesis were necessary for memory erasure (A. Suzuki et al., 

2004). This demonstrates a transient destabilization of a memory upon retrieval, which must be 

reconsolidated to re-stabilize the memory trace. 

 

The destabilization of fear memories is dependent on NMDA receptor activation and 

internalization of GluA2 containing AMPA receptors (Hong et al., 2013). Fear memories are 

significantly weakened by injecting rats with anisomycin 1 hour before retrieval of contextual fear 

memories. This memory destabilization is prevented by infusion of the GluA2-3Y peptide into the 

lateral amygdala 1 hour before memory retrieval, indicating that memory retrieval based memory 

destabilization is dependent on the 3Y machinery. In an independent experiment, micro-infusion 

of NASPM (1-Naphthyl acetyl spermine, a selective antagonist of GluA2 lacking/ calcium 

permeable AMPA receptors) into the lateral amygdala immediately after fear memory retrieval 

also led to fear memory destabilization, suggesting that calcium influx through calcium permeable 

AMPA receptors inserted after memory destabilization are important for memory reconsolidation. 

NASPM mediated memory destabilization was also blocked by GluA2-3Y peptide infusions 1 

hour before retrieval. Thus, retrieved fear memory is destabilized by internalization of GluA2-

containing AMPA receptors. The calcium influx from surface GluA2-lacking calcium permeable 

AMPA receptors upon retrieval is necessary for fear memory reconsolidation (Hong et al., 2013). 

In parallel findings relating to late-LTP at the CA3-CA1 synapses in acute hippocampal slices, 

blocking calcium permeable AMPA receptors with philanthotoxin during the first 30 minutes after 

induction but not later could block the consolidation of LTP (Adesnik & Nicoll, 2007; Plant et al., 

2006).  
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Memory retrieval-based extinction has been observed in the watermaze as well. At the end of 

training to a platform position, the most spatially precise search of the hidden platform is seen 

during the 10-20 second time bin of the probe test, and search behavior gradually worsens over 

the remaining 20-60 seconds (Maei et al., 2009). The repeated retrieval of the hidden platform 

spatial memory leads to within-trial extinction in probe tests, perhaps via 3Y machinery mediated 

AMPA receptor internalization. 

 

1.7.  Synaptotagmins 

Synaptotagmins are a family of calcium sensing proteins, with 17 known mammalian isoforms, 

that are necessary for calcium triggered membrane fusion and, hence, exocytosis of cargo from 

neurons. They consist of a short N-terminal domain, a transmembrane domain and a flexible linker 

region followed by two C-terminal calcium binding C2 domains. Other proteins like Doc2 and 

rabphilin, which are also involved in transmitter release, contain C2 domains but lack a 

transmembrane domain, and are thus not classified as synaptotagmins. The C2A domains of syt3, 

5, 7, and 10, which have been hypothesized to be present on the plasma membrane (Südhof, 2002) 

have ~5 to 20 times higher Ca2+ binding affinity than those of the synaptic vesicle localized 

isoforms  syt1, and syt2 (Sugita, Shin, Han, Lao, & Südhof, 2002). Thus, while the vesicular 

isoforms are known to be necessary for fast synchronous release, the plasma membrane isoforms 

are thought to mediate slow asynchronous release (Sugita et al., 2002).  

 

• Can synaptotagmins mediate endocytosis? 

Syts1-8 bind AP2, suggesting they may function in endocytosis (Li C et al, 1995). In dissociated 

hippocampal cultures, syt1-mediated endocytosis of synaptic vesicles requires its calcium binding 

ability (and/or its SNARE complex binding ability) but not its lipid binding/ membrane bending 

ability. However, there also seems to be a calcium independent endocytic pathway of synaptic 

vesicles. (J. Yao, Kwon, Gaffaney, Dunning, & Chapman, 2012). Syt1 was first shown to bind to 

clathrin-AP2 with high affinity (Kd=0.1 nM) via its C2B domain (Zhang, Davletov, Südhof, & 

Anderson, 1994), which is necessary for endocytosis in PC12 cells (Grass et al., 2004). 

Oligomerization of the C2B domain is essential for this interaction with AP2 (Grass et al., 2004). 

Syt1 binds the µ2 and a subunits of AP2 via residues K326 and K327 within a positive peptide 
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stretch in its C2B domain (KRLKKK326K327TTIKK). This sequence is highly homologous to the 

syt3 sequence (Grass et al., 2004) and resembles the stretch of positively charged residues of the 

GluA2 sequence (844KRMKV848) which binds AP2  (S. Lee et al., 2002). In the case of synaptic 

vesicle endocytosis, SV2 contains two endocytic motifs, YSRF and YRRI, recognized by AP2, 

suggesting that syt1 and SV2 co-operatively induce clathrin mediated endocytosis of synaptic 

vesicles (Grass et al., 2004; Maritzen, Podufall, & Haucke, 2010). However, AP2 was reported to 

have only a minor role in synaptic vesicle endocytosis compared to Stonin2, since RNAi of AP2 

subunits did not affect synaptic vesicle retrieval, but RNAi of Stonin2 strongly impaired 

endocytosis, which could be rescued by expression of RNAi resistant Stonin2 (Willox & Royle, 

2012). Syt1 binds Stonin2 in a calcium independent manner, most likely predominantly through 

the C2A domain, and recruits it to the plasma membrane. Stonin2 binds AP2-µ, Eps-15 and 

intersectin as well, indicating it could act as an adaptor for assembling the components necessary 

for clathrin mediated endocytosis  of synaptic vesicles (Maritzen et al., 2010). 

 

Another study showed that a conserved tryptophan based WHXL motif in syt1 is necessary for 

syt1 internalization; the W404A mutation in syt1 abolished internalization (Jarousse, Wilson, 

Arac, Rizo, & Kelly, 2003). Interestingly, the WHQL motif in syt3 is exposed in the Ca2+ unbound 

state and buried in the calcium bound state (Vrljic et al., 2010) and may therefore bind endocytic 

components dependent on its state. 

 

• Synaptotagmin 1 

Synaptotagmin-1 (syt1) is the most abundant syt isoform and is necessary for the synchronous 

release of neurotransmitter from pre-synaptic axon terminals (Geppert M et al, 1994; Nishiki, 

2004). When an action potential arrives at the pre-synaptic membrane, voltage-gated calcium 

channels open, causing ‘docked’ synaptic vesicles within 10 nanometers of the calcium source to 

fuse (Eggermann, Bucurenciu, Goswami, & Jonas, 2011). Before fusion, a stable 4-helix bundle 

structure called the SNARE (SNAP (Soluble NSF Attachment Protein) REceptor) complex 

consisting of syntaxin1 and SNAP25 on the plasma membrane and synaptobrevin2 (syb2/ 

VAMP2) on the synaptic vesicle membrane is held in a ‘trans’ pre-fusion conformation along with 

syt1 and complexin. The influx of calcium and its subsequent binding to the C2 domains of syt1 

set off a chain of events whose exact mechanism is still not clear, despite more than 200 
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publications. The C2A and C2B domains of syt1, which are the most evolutionarily conserved of 

all synaptotagmin isoforms (Südhof, 2002), exhibit Ca2+-dependent binding to interfaces on the 

SNARE complex and phospholipids (Sugita et al., 2002; Zhou et al., 2015). Syt1 partially inserts 

into the plasma membrane upon binding calcium and via its interactions with SNARE complex 

and phospholipids, brings membranes closer than 0.9 nm, the critical distance to promote stalk 

formation (Zhou et al., 2015). Once triggered by syt1, membrane fusion of the synaptic vesicle 

membrane with the pre-synaptic plasma membrane is an almost instantaneous (< 1 ms) reaction.  

 

• Synaptotagmin 3 

Syt3 is the third most abundant synaptotagmin isoform after syt1 and syt2 but nothing is known 

about its function. The first cloned syt3 cDNA sequence was 2096 base pair long (NCBI Refseq: 

NM_019122, (Mizuta et al., 1994)). The protein is 588 amino acids long (NCBI Refseq: 

NP_061995) and weighs 63.3 Kilodaltons. Syt3 probably doesn’t undergo alternative splicing (Li 

C et al, 1995). Syt3 is expressed on synaptic plasma membranes but not enriched on synaptic 

vesicles (Butz, R, Schmitz, Jahn, & Südhof, 1999). The ~10 fold higher Ca2+-dependent 

phospholipid binding (Sugita et al., 2002) and at least 200 fold higher Ca2+-dependent syntaxin1 

binding (Li C et al, 1995) of syt3 compared to syt1, suggested that syt3 mediates asynchronous 

transmitter release by detecting both micro- and nano-domain calcium (Butz et al., 1999; Sugita et 

al., 2002; Vrljic et al., 2010), rather than only nan-domain calcium like syt1. The syt3 C2A domain 

can bind 3 Ca2+ ions (via D386 and D388) and the C2B domain can bind 2-3 Ca2+ ions (via D520 

and D522) (Vrljic et al., 2010), Introduction figure 2 on page 34), like syt1. Syt3 has been shown 

to bind VAMP-2, syntaxin-1 and SNAP-25 (Vrljic et al., 2010), anionic lipids (Bhalla, Chicka, & 

Chapman, 2008; Sugita et al., 2002), negatively charged phosphatidylserine-rich Folch liposomes 

(Martens, Kozlov, & T, 2007) and plasma-membrane-like lipids in a SNARE-catalyzed Ca2+ 

dependent manner (Vrljic et al., 2010). 

 

A unique property of the plasma membrane syt isoforms, syt3, syt5, syt6 and syt10 is that they can 

homo- or hetero-oligomerize via cysteine disulphide linkages at their N-terminus in vitro (Fukuda 

M et al, 1999). Although the closest relative of syt3 is syt6, it is unlikely that functional syt3-syt6 

oligomers exist because syt6 is most strongly expressed in the olfactory bulb, where syt3 shows 

almost no expression (Butz et al., 1999).  
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The crystal structure of syt3 has been solved in the Ca2+ unbound (Sutton, Ernst, & Brunger, 1999) 

and Ca2+ bound states (Vrljic et al., 2010). Interestingly, the C2 domains undergo a large 

displacement upon binding calcium such that the 562WHQL565 motif (Jarousse et al., 2003) is 

available for interactions in the Ca2+ unbound conformation (‘extended’ conformation) and buried 

in the Ca2+ bound conformation (‘compact’ conformation). smFRET (Single molecule-Förster 

resonance energy transfer) studies with the syt3 C2AB domain showed that the two syt3 C2 

domains are very dynamic and occupy a broad range of conformations between the extended 

conformation and the compact conformation in vitro, with the former being predominant. Addition 

of calcium or the cis (post-fusion state) pre-synaptic SNARE complex shifted syt3 C2AB to a more 

compact conformation. However, there was a much larger shift to the compact conformation in 

the presence of both calcium and the SNARE complex, indicating a synergistic rather than an 

additive effect. Thus, in a manner similar to syt1, interaction of syt3 with the SNARE complex 

pushes syt3 into the Ca2+ bound compact conformation (Vrljic et al., 2010) 

 

We report a function for syt3 on the post-synaptic membrane, where it internalizes AMPA 

receptors as a necessary part of the 3Y machinery to cause decay of LTP and promote forgetting. 
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Introduction figure 2: The important interaction motifs of syt3 

(A) Syt3 is 588 amino acids long and consists of a trans-membrane domain (TM) and C-terminal calcium sensing 
C2A and C2B domains. The critical calcum binding aspartate residues are D386, D388, D520 and D522 (Bhalla et 
al., 2008). Residues, R483 and K484, in the amino acid stretch KKRKTSIKK, are the homologous amino acids in 
syt1 that are necessary for AP2 binding (Grass et al., 2004). The WHQL motif is exposed for interactions in the 
extended syt3 C2AB conformation and buried in the compact conformation (Vrljic et al., 2010). (B) Sequence 
alignment of AP2 binding regions in syt1, syt3 and GluA2. Conserved residues are shown in red. 
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2. Materials and Methods 

2.1.  Mouse lines 

Prof. Thomas Südhof (Stanford University, USA) created the synaptotagmin 3 (Syt3) knock-out, 

synaptotagmin 6 (Syt6) knock-out, synaptotagmin 5 (Syt5) knock-in and synaptotagmin 10 (Syt10) 

knock-in quadruple targeted mutation mice. These mice were obtained from the Jackson laboratory 

(B6;129-Syt6tm1Sud Syt5tm1Sud Syt3tm1Sud Syt10tm1Sud/J, stock no. 008413) and then crossed with 

Black6/J mice to isolate mice with homozygous knock-out alleles of Syt3 but WT alleles of Syt5, 

Syt6 and Syt10. The genotype of the first breeder pairs was confirmed before initiating the colony. 

For subsequent generations, only the syt3 genotype was confirmed. All alleles were detected using 

standard PCR methods (see section ‘Mouse tail biopsy genotyping’ below). As far as possible, the 

breeding pairs were chosen from different litters. Animals were used keeping in mind the 3 Rs of 

ethics for animal research – 1) Replacement: use strategies that avoid usage of animals as far as 

possible, 2) Reduction: use strategies to get necessary scientific information from as few animals 

as possible and 3) Refinement: use methods that minimize pain and suffering and maximize 

welfare of the animals used. For instance, to reduce the number of mice used for breeding, 

homozygous breeder pairs were used.  

 

• Mouse tail biopsy genotyping 

0.2 cm long tips of tails were clipped from juvenile mice without administration of anaesthesia or 

from adult mice after sacrificing them (Picazo & García-Olmo, 2015). Tail biopsies were lysed in 

500 µl lysis buffer (100 mM Tris-HCl (pH 8.5), 5 mM EDTA (pH 8.0), 0.2 % (w/v) SDS and 200 

mM NaCl). 70 µg proteinase K (Ambion AM2546) was added and the solution was incubated 

overnight at 55 °C with mixing at 1400 rpm (Eppendorf Thermomixer comfort). The suspension 

was then centrifuged at maximum speed on a benchtop microcentrifuge (Eppendorf 

Microcentrifuge 5424 at 14680 rpm) for 10 min at room temperature. The genomic DNA was 

precipitated from the supernatant by adding 500 µl of 100% isopropanol (Roth #AE73), vortexing 

thoroughly and centrifuging at maximum speed (as above) for 10 min at room temperature. The 

precipitated DNA-pellet was washed with 1 ml of 70% (v/v) ethanol (Roth #9065 diluted with  
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Table 1: The syt3/ syt5/ syt6/ syt10 quadruple targeted mutation mouse line 

Summary of the targeted mutations and the primer sequences by which they could be detected. 

Further details are available on the website https://www.jax.org/strain/008413.   

 

milli-Q water) and centrifuged at maximum speed (as above) for 10 min at room temperature. The 

washed DNA pellet was allowed to dry at room temperature for a few hours. The genomic DNA 

Target gene Syt3 Syt5 Syt6 Syt10 

Chromosome position of 

gene 
7 7 3 15 

Wild-type forward 

primer sequence 

CAG TCC TGC 

TCT AAC AAC 

AGG AAG 

TGG AG 

GAT ATC TCT 

GTG AGC CTG 

CTA ACC C 

CAG CCT CCT 

CGC CGT GGT 

AGT TAT 

CCT ACC AGT 

GTG CCT TAT 

CAT C 

Wild-type reverse primer 

sequence 

CAG CAC CAG 

TTA GCG TGT 

CAT ATG TGA 

CCG AGC TGA 

TGG TGT TGG 

CTC TG 

AGG ATG CTG 

GCT CTG TGG 

TCT GTC 

CAT ATC CAA 

GCA GAC CAC 

AAG G 

Wild-type amplicon band 

size (base pairs) 
527 354 332 550 

Mutant forward primer 

sequence 

GGA TGC GGT 

GGG CTC TAT 

GGC TTC TGA 

Same as Syt5 

WT forward 

primer sequence 

TAT CGC CTT 

CTT GAC GAG 

TTC TTC TG 

Same as Syt10 

WT forward 

primer sequence 

Mutant reverse primer 

sequence 

Same as Syt3 

WT reverse 

primer sequence 

CTG GCA TCC 

AAA TCC TGA 

CCT GGG 

TCT TTC CCT 

TTG ATT GGT 

GCC TGT G 

Same as Syt10 

WT reverse 

primer sequence 

Mutant amplicon band 

size (base pairs) 
300 860 400 455 

Type of targeted 

mutation 
Knockout Knock-in Knockout Knock-in 

Site of 

targeted 

mutation 

Exon Exon 1 Exon 3 -- Exon 2 

Amino 

acid 
Amino acid 220 -- Amino acid 964 -- 
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pellet was resuspended in 100 µl milli-Q water. Specific DNA sequences were amplified using the 

polymerase chain reaction (PCR) on a thermal cycler (Eppendorf MasterCycler). 

 

One reaction mix (50 µl) for qualitative PCR was comprised of: 

2 µl genomic DNA (as isolated above) 

5 µl 10X DreamTaq Buffer (Thermo Fisher Scientific) 

1 µl Forward primer (10 µM) 

1 µl Reverse primer (10 µM) 

0.4 µl 25 mM dNTPs 

0.25 µl 
Taq polymerase (Thermo Fisher Scientific 

#EP0702) 

40.35 µl Milli-Q water 

 

The cycling program used to genotype for the presence of the Syt3/Syt5/Syt6/Syt10 allele was: 

Temperature of cycler Duration 

94 ºC 3 min 

94 ºC 0.5 min 

69 ºC 1 min 

72 ºC 1 min 

72 ºC 2 min 

4 ºC infinite 

 

After the completion of the PCR, 25 µl of the PCR reaction mix was loaded onto a solid agarose 

gel (1.5 % (w/v) ultrapure agarose (Invitrogen #16500) in 1X TAE buffer (40 mM Tris, 20 mM 

acetic acid, 1 mM EDTA)). For visualization of DNA bands, Roti-safe (Carl Roth #3865), a 

fluorescent gel stain was added to the liquid gel after it cooled down to 60-70°C. To estimate sizes 

of the amplified DNA fragments, a DNA ladder was also loaded onto the same gel (Thermo Fisher 

100 bp GeneRuler #SM0321). Subsequently, standard nucleic acid electrophoresis (P. Y. Lee, 

Costumbrado, Hsu, & Kim, 2012) was performed under constant voltage such that the maximum 

applied electric field was 5 V/cm, where the distance is measured between the cathode and anode 

of the electrophoresis chamber. The amplified DNA fragments were then visualized under a UV 

lamp (iNTAS Gel iX20 Imager). 

 35 loops 
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2.2.  Cell culture 

Use of animals for experimentation was approved and performed according to the specifications 

of the Institutional Animal Care and Ethics Committee of Göttingen University (T10.31), and of 

the German animal welfare laws. 

• Mouse (P0) dissociated hippocampal culture 

The following protocol was modified from that used by Prof. Oliver Schlüter (European 

Neuroscience Institute Göttingen). This protocol uses very low serum concentrations for longer 

times (0.5% serum for the 1st week and halved every subsequent week) rather than high serum for 

short times (5% serum for 1st day and then no serum). Dissection medium (see Table 2) was kept 

ice cold before dissection. All surfaces were sterilized with 70% (v/v) ethanol. All solutions, into 

which non-sterile components were added, were sterile filtered across 0.22 µm pore size 

membranes (Nalgene rapid flow 151-4020 for 500 ml, Milipore X348 for 50 ml, PALL life 

sciences Acrodisc syringe filter for 10 ml) before use. The incubator (Thermo Scientific Hera Cell 

240i) used during the protocol was maintained at 37 °C & 5% CO2. The 5% serum medium, 

enzymatic solution and inactivation solution (see Table 2) were pre-incubated in the incubator for 

at least 0.5 hours before use. Plating medium (see Table 2) was pre-warmed to 37 °C in the water 

bath. DNAase1 (see Table 2) was always added just before use and sterile filtration. The cell 

suspension was always kept in the incubator during waiting times to maximize cell viability. The 

typical cell yields from this protocol were 220,000-300,000 cells per hippocampus. 

 

The protocol was as follows: 

1. 12 mm (diameter) glass coverslips (Menzel Gläser, thickness #1) were acid etched by shaking 

in a 1M HCl solution (approximately 1:10 dilution of 32% HCl, Roth #P074, in deionized 

water) for 24-30 hours at room temperature. A large surface area of the glass beaker used for 

shaking ensured that the entire surface area of all coverslips was thoroughly etched. After 

etching, the coverslips were washed thoroughly in milli-Q water at least 5 times and left in 

100% ethanol for at least 6 hours before coating. For coating, coverslips were washed thrice 

with autoclaved milli-Q water under a laminar flow hood and transferred into a 24-well plate 

(CytoOne). After drying, they were left in PEI coating solution (see Table 2) for 0.5 to 7 days 

at room temperature outside the laminar flow hood wrapped in silver foil. After coating, 
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coverslips were washed with autoclaved milli-Q water once and left in water at room 

temperature until use. 

2. P0 pups were decapitated and the heads were sterilized with a few drops of 70% (v/v) ethanol 

solution (Roth #T913). The skin was cut open with fine forceps taking care not to let the outer 

surface of the skin touch or fold back onto the skull or brain in the later steps. The skull was 

then peeled back the two hemispheres and removed. Piercing both eye sockets with forceps 

and squeezing the skull at its rostral tip made this step easier and more efficient. 2-3 brains 

were harvested at once and transferred to ice cold dissection medium. 

3. The two brain hemispheres were separated by squeezing along the interhemispheric fissure and 

the midbrain was scooped out carefully so as not to damage the hippocampus attached to it. 

The meninges were then removed by peeling them back caudally starting from close to the 

striatum where they generally tear upon separation of the hemispheres. The meninges strongly 

adhere to the inferior surface of the hippocampus and extra care was taken not to tear the 

hippocampus while peeling off the meninges. Hippocampi were collected in fresh dissection 

medium in a 15 ml falcon tube. 

4. Enzymatic solution (+ 10 µl DNAase1 solution per ml) was sterile filtered onto the hippocampi 

and left in the incubator for 30 min. Using a nutator during this step gave slightly better yields. 

5. The papain activity was stopped by removing the enzymatic solution and adding sterile 

inactivation solution (+ 10 µl DNAase1 solution per ml) and gently inverting the falcon tube 

10 times. All hippocampi were then washed thrice with 7-8 ml of 5% serum medium. 

6. After adding 2 ml of 5% serum medium, the hippocampi were triturated by repeatedly passing 

a volume of 1 ml through the tip of a 1 ml plastic micropipette tip up to 15 times. 2 ml of 5% 

serum medium was added and the cell suspension was allowed to settle for 2 min in the 

incubator. 

7. 2 ml of the suspension was carefully collected from the top, avoiding the bigger chunks. Step 6 

was repeated to yield a final cell suspension volume of 4 ml. 

8. The cell suspension was centrifuged at 500xg (Eppendorf 5810R) at room temperature for 

5 min. The cell pellet was resuspended in a mixture of fresh 5% serum medium and plating 

medium, keeping in mind that the cell suspension would be diluted further in the next step and 

that the serum in the final medium must be diluted 10-fold to 0.5%. 



Chapter 2. Materials and Methods    
 

 40 

9. 10 µl of the cell suspension was added to 10 µl of trypan blue solution and the cell density was 

estimated using a hemocytometer (Marienfeld Neubauer counting chamber, depth 0.1 mm). 

Cell preparations with good cell viability usually had bright circular cells with tails under the 

microscope. Extremely small cells, cells with a rough membrane or cells which did not exclude 

the blue dye were not counted. 

10. Cells were plated at a density of 120,000 cells per well. FUDR solution (2.5 µl/ well, see Table 

2) was added to the cultures on DIV 4 to stop proliferation of glial cells. On DIV 7, 250 µl of 

the conditioned medium was exchanged with 250 µl of feeding medium to reduce the 

concentrations of glutamate and prevent excitotoxicity of neurons. If cells had to be maintained 

longer than 2 weeks in culture, 250 µl of the conditioned medium was exchanged with 250 µl 

of feeding medium again on DIV 14, DIV 21 and so on. 

Table 2: Formulation of reagents needed for mouse (P0) dissociated hippocampal cultures 

Solution Final Composition Catalogue Number Preparation Instruction 

Dissection 

Medium 

(mGBSS, 

pH 7.4) 

Hanks buffered salt solution 

(HBSS) 

Gibco #14170-088 500 ml HBSS 

20 mM HEPES Gibco #15630-080 10 ml of 1 M HEPES stock 

solution 

1.5 mM CaCl2 Roth #HN04 750 µl of 1M CaCl2 stock 

solution 

10.2 mM MgCl2 Roth #KK36 0.486 g of MgCl2 stock 

solution (As 1M MgCl2 stock 

solution gets precipitated) 

4 mM NaOH Roth #P031 250 µl of 10 M NaOH stock 

solution 

Enzymatic 

Solution 

(ES) 

 

Dissection Medium (mGBSS) Prepared as above 10 ml mGBSS 

0.2 mg/ml L-cysteine 

Hydrochloride monohydrate 

Sigma 30129 2 mg of L-cysteine salt 

0.5 mM NaEDTA (pH 8) Roth (MW 292.25) 100 µl of 50 mM NaEDTA 

(pH 8) 

1 mM CaCl2 Roth #HN04 10 µl of 1M CaCl2 stock 

solution 
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3 mM NaOH Roth #P031 30 µl of 1M NaOH stock 

solution 

--  Worthington systems 

#LS003126 

100 µl of Papain suspension 

5% Serum 

Medium 

(SM) 

 

Dulbecco’s modified eagle 

medium + Glutamax 

(DMEM+GM) 

Gibco #31966-021 47.15 ml DMEM + GM 

5% (v/v) heat inactivated Fetal 

Bovine Serum 

Gibco # 10500-064 2.5 ml of FBS 

1x Mito+ supplements VWR 734-1317 100 µl of (500X) Mito+ serum 

extender stock solution 

0.5x MEM vitamins Gibco #11120-037 250 µl of 100x MEM Vitamins 

Inactivation 

Solution 

(IS) 

5% Serum Medium (SM) Prepared as above 10 ml of 5% SM 

2.5 mg/ml Bovine serum 

albumin (BSA) 

Roth #8076.1 25 mg of BSA 

Feeding 

Medium 

(NB+) 

Neurobasal medium (NB) Gibco #21103-049 48 ml NB  

Penicillin (100 U/ml) + 

Streptomycin (100 µg/ml) 

Gibco #15140-122 500 µl of 100x Penicillin/ 

Streptomycin stock solution 

2 mM Glutamax 

(L-Alanyl L- Glutamine) 

Gibco #35050-038 500 µl of 100x Glutamax 

1x B-27 supplement Gibco #17504-001 1 ml of 50x B-27 stock 

solution 

Plating 

Medium 

(PM) 

Neurobasal medium (NB) Gibco #21103-049 47.75 ml NB  

 

Penicillin (100 U/ml) + 

Streptomycin (100 µg/ml) 

Gibco #15140-122 500 µl of 100x Penicillin/ 

Streptomycin stock solution 

 

2 mM Glutamax  

(L-Alanyl L-Glutamine) 

Gibco #35050-038 500 µl of 100x Glutamax 

1x B-27 supplement Gibco #17504-001 1 ml of 50x B-27 stock 

solution 

0.049 mM L-aspartate +  

0.05 mM L-glutamate 

Prepared as below 250 µl of 200x (L-aspartate + 

L-glutamate) stock solution 
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200x (L-

aspartate + 

L-

glutamate) 

stock 

solution 

 

9.78 mM L-aspartate  Roth 1690 

(MW 133.1)    

65.1 mg L-Asp acid  

9.99 mM L-glutamate Abcam ab120049 

(MW 147.13) 

73.5 mg L-Glu acid   

Autoclaved milli-Q water -- 

50 ml; Solution sonicated at 

37°C and thoroughly vortexed 

and dissolution ensured before 

freezing aliquots at – 20 °C 

PEI coating 

solution 

0.04% Polyethyleneimine 

(PEI) solution 

Sigma #P3143 1% (w/v) stock solution 

diluted 25-fold in autoclaved 

milli-Q water. 

Trypan 

blue 

0.4% Trypan blue solution Sigma #T8154 Use stock solution directly 

DNAase1 

solution 

10 mg/ml DNAse1 Sigma #DN25 or 

Roche #10104159001 

10 mg/ml DNAse1 in 150 mM 

NaCl solution, sterile filtered 

and stored at – 20 °C in 200 µl 

aliquots 

FUDR 

solution 

~41 mM FUDR Sigma #F0503 100 mg 

~20 mM Uridine Sigma #U3003 50 mg 

Autoclaved milli-Q water -- 10 ml 

 

• Rat embryonic (E18 to E19) dissociated hippocampal cultures 

Dissection medium (see Table 3) was cooled by placing on ice. The trypsin solution and the 

plating medium (see Table 3) were pre-warmed at 37ºC in a water bath. All surfaces were 

sterilized with 70% (v/v) ethanol. 

The protocol was as follows: 

1. Ethanol sterilized 12 mm glass coverslips (Menzel Gläser, thickness #1) were washed with 

autoclaved milli-Q water and placed into 24-well plates (cytoOne). 70 µl of PDL coating 

solution (see Table 3) was applied to each coverslip so as to just cover their entire exposed 

surface area and left in the dark outside the laminar hood for 1-6 hours. After coating, the 

coverslips were washed thrice with autoclaved milli-Q water and allowed to dry before plating 

cells. 
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2. Wistar rats pregnant with E18-E19 pups (bred at the University Medical Center of Göttingen 

(UMG) animal facility) were euthanized with carbogen (95% O2 and 5% CO2). The fur on the 

abdomen was sterilized by spraying with 70% (v/v) ethanol (Roth #T913) before cutting it 

open. The uterus with the pups was then removed and transferred into a 10-cm petri dish 

(CytoOne) under the dissection hood. The pups were decapitated after cutting them out of the 

amniotic sac and the heads were collected in a 10-cm petri dish containing dissection medium. 

After cutting out the cerebellum, the cerebrum was gently squeezed out from under the skull 

using the blunt end of scissors and collected in fresh dissection medium. After cutting out the 

midbrain and removing the meninges, the hippocampi were dissected and collected in fresh 

dissection medium in a 15 ml falcon tube on ice.  

3. The collected hippocampi were digested in 2 ml of 0.05% trypsin solution for 20 min at 37ºC 

in a water bath.  

4. After aspirating the trypsin, the tissue was washed thrice with 5 ml of 4ºC dissection medium. 

The washed hippocampi were then triturated in 1 ml of plating medium by gently pipetting 

the hippocampi through the tip of a 1 ml plastic micropipette tip up to 15 times. The cell 

suspension was then filtered with a 100 µm pore size cell strainer (Corning #352360). After 

pre-wetting the strainer with 1ml of plating medium, the cell suspension was applied to the 

membrane and washed through with 8 ml of plating medium. 

5. 10 µl of the cell suspension was mixed with an equal volume of trypan blue solution. The 

number of living cells were estimated by excluding the blue dye permeated cells using a 

hemocytometer (as for mouse P0 cultures above) to estimate the final cell concentration.  

6. Cells were plated at a density of 80,000 cells per well and cultured in plating medium in a cell 

culture Incubator (Thermo Scientific Hera Cell 240i) at 37°C and 5% CO2. 

 

Table 3: Formulation of reagents needed for embryonic rat dissociated hippocampal cultures 

Solution Final Composition 
Catalogue 

Number 
Preparation Instruction 

Dissection Medium Hanks buffered salt 

solution (HBSS) 

Gibco #14170-088 500 ml HBSS 

10 mM HEPES Gibco #15630-080 5 ml of 1 M HEPES stock 

solution 
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Trypsin solution 

 

0.05% trypsin-EDTA Gibco #25300-054 Stock solution used directly 

Plating medium 

(NB+) 

 

Neurobasal medium (NB) Gibco #21103-049 48 ml NB  

 

Penicillin (100 U/ml) +  

Streptomycin (100 µg/ml) 

Gibco #15140-122 500 µl of 100x Penicillin/ 

Streptomycin stock solution 

 

2 mM Glutamax  

(L-Alanyl L-Glutamine) 

Gibco #35050-038 500 µl of 100x Glutamax 

stock solution 

1x B-27 supplement Gibco #17504-001 1 ml of 50x B-27 stock 

solution 

0.1 M Borate buffer Sodium Tetraborate  

 

Sigma 229946 0.475 g 

Boric acid Sigma B9645 0.31 g 

Autoclaved milli-Q water -- 100 ml; pH adjusted to 8.5 

with 32% HCl and sterile 

filtered; freshly prepared for 

every batch of PDL coating 

solution 

PDL coating 

solution 

0.5 mg/ml  

Poly-D-Lysine  

Sigma P7886 100 mg PDL + 200 ml of 

0.1M borate buffer 

(formulation above) 

 

• HEK 293 cell culture 

HEK 293 (HEK) cells were cultured in 10-cm cell culture dishes (Greiner #664160) in 10 ml of 

HEK 293 plating medium (see Table 4) in the incubator at 37°C and 5% CO2. HEK cells were 

split first by washing once with 37°C warm DPBS (Gibco #14190-094). They were then removed 

from the culture dish by treatment with 1 ml of 37°C warm 0.25 % Trypsin-EDTA (Gibco #25200-

056) and gently tapping the dish. Fresh 37°C HEK 293 plating medium (10ml/ dish) was then 

added to deactivate trypsin and appropriate dilutions were plated onto new culture dishes. 
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For long-term storage, when a dish reached 80-90 % confluence, cells were trypsinized (as above) 

and centrifuged (3000 rpm for 3 min at room temperature in an Eppendorf 5810R centrifuge). The 

pellet was then resuspended in 1 ml of freezing serum (see Table 4). 500 µl aliquots were made in 

cryotubes and transferred to an isopropanol freezing container (Thermo Scientific/Nalgene #5100-

0001) for slow freezing, and subsequently stored at -80°C. For starting a culture, one of these 

cryostocks was thawed in a water bath at 37°C and rapidly diluted with 10 ml of HEK 293 plating 

medium, pelleted and resuspended in 10 ml of fresh HEK 293 plating medium to remove DMSO 

from the medium. 

 

Table 4: Formulation of reagents needed for culturing HEK cells 

Solution Final Composition 
Catalogue 

Number 

Preparation 

Instruction 

HEK 293 

plating medium  

Dulbecco’s modified eagle 

medium (DMEM) 

Gibco #41966-029 44.5 ml DMEM 

10% (v/v) heat inactivated Fetal 

Bovine Serum 

Gibco # 10500-064 5 ml FBS 

Penicillin (100 U/ml) 

+ Streptomycin (100 µg/ml) 

Gibco #15140-122 500 µl of 100x (Penicillin 

+ Streptomycin) stock 

solution 

 

Freezing serum 50% (v/v) heat inactivated Fetal 

Bovine Serum 

Gibco # 10500-064 500 µl FBS 

Dulbecco’s modified eagle 

medium (DMEM) 

Gibco #41966-029 400 µl DMEM 

10% (v/v) Dimethyl sulfoxide 

(DMSO) 

Sigma #276855 100 µl DMSO 
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2.3.  Transfection 

• Calcium phosphate transfection of HEK cells for Western blot analysis 

Upon reaching 80-90% confluence, the HEK cell culture was passaged and split at 1:6 to 1:10 for 

transfection on the following day or at 1:20 to maintain the culture. Before transfection, cells were 

first washed with 10 ml of prewarmed DPBS (Gibco #14190-094). For transfection of one 10-cm 

dish, 25 µg of plasmid DNA was added to 360 µl autoclaved milli-Q H2O mixed with 40 µl of 

sterile filtered 2.5 M CaCl2 (Roth #HN04). 400 µl of transfection buffer was then added on a vortex 

under gentle mixing (274 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 15 mM D-Glucose, 42 mM 

HEPES titrated to pH 7.01-7.05 with NaOH and sterile filtered). This mixture was incubated at 

room temperature for 20 min in the dark and added to the dish. 24-48 hours later, transfected HEK 

cells in 10 cm plates were harvested in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 

mM EDTA, 0.5% NP40, and protease inhibitors) for western blotting. 

 

• Lipofectamine 2000 transfection of primary neuronal cultures 

Neurons in dissociated hippocampal cultures were transfected on DIV 10 using 

Lipofectamine 2000 (Thermofisher Scientific). All Neurobasal medium (Gibco #21103-049) used 

was pre-warmed in a water bath at 37°C. For every well (of a 24 well plate) to be transfected, a) 

1µl of Lipofectamine 2000 in 50 µL of Neurobasal medium and b) 1 µg of plasmid DNA in 50 uL 

of Neurobasal medium were incubated separately at room temperature for 5 min. Both solutions 

were mixed together thoroughly by pipetting up and down at least 30 times before incubating for 

20 min at room temperature. Meanwhile, conditioned culture medium (which contains various 

factors secreted into the plating medium by cells and is crucial for cell viability) was removed (and 

~10% (v/v) fresh medium was added to it), stored in the incubator at 37°C and 5 % CO2 and 

replaced with 400 µl Neurobasal medium. 100 µl of the lipofectamine-DNA mixture was then 

added to each well and incubated for 2 hours at 37°C and 5% CO2. The cells were washed once 

with 500 µl of Neurobasal medium and then ~450 µl of conditioned medium was returned to each 

well before being put back into the incubator. Care was taken not to let neurons dry out while 

exchanging medium. For transfection of mouse P0 cultures, it was crucial to adjust the osmolarity 

of the Neurobasal medium to that of the conditioned medium (1 mM D-Mannitol (Sigma #M4125) 

was added to increase osmolarity by 1 mOsm and then sterile filtered). Experiments were 
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conducted 2 days after transfection at the earliest to allow for expression of plasmids or maximal 

knockdown in the case of shRNA-mediated knockdown of syt3. 

 

2.4.  Imaging 

• Immunohistochemistry (IHC) of acute hippocampal slices 

This experiment was performed by Dr. Binu Ramachandran (Trans-synaptic signalling group, ENI 

Göttingen). Acute hippocampal slices were prepared as described (Ramachandran & Frey, 2009). 

Briefly, 8-week old mice were anesthetized with isoflurane and decapitated. The hippocampus was 

removed and 400 µm thick slices from the dorsal hippocampus were cut transversely in ice-cold 

artificial cerebrospinal fluid (ACSF) containing, in mM: 124 NaCl, 4.9 KCl, 1.2 KH2PO4, 2 

MgSO4, 2 CaCl2, 24.6 NaHCO3 and 10 D-glucose (saturated with 95% O2 and 5% CO2, pH 7.4, 

∼305 mOsm), using a tissue chopper (Stoelting). Slices were fixed in 4% paraformaldehyde in 

PBS (see Table 5) for 30 min and washed thrice for 20 min each with PBS. After washing, slices 

were incubated in antibody buffer (2% donkey serum, 0.1% Triton X-100 and 0.05% NaN3 in PBS) 

for 30 min at room temperature. Then, slices were incubated with primary antibodies in antibody 

buffer overnight at 4°C. Next, slices were washed thrice with PBS for 20 min each and incubated 

with fluorescently-tagged secondary antibodies for 2 hours at room temp. Slices were then washed 

thrice for 20 min each with PBS and mounted onto microscope slides with Fluoromount-G (Sigma) 

and the edges sealed with nail polish. Images were collected using 10x air and 40x oil immersion 

objectives on a Zeiss A1 laser scanning confocal microscope with Zen software (Carl Zeiss). 

Digital images were processed using Adobe Photoshop software. 

 

Table 5: Solutions used for immunocytochemistry 

Buffer Final Composition 
Catalogue 

number 
Preparation instructions 

Deioinized H2O -- 500 ml 

38 mM NaH2PO4・2H2O Roth #2370 2.96 g 
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0.2 M 

phosphate 

buffer 

162 mM Na2HPO4・

12H2O 

Roth #T876 29.01 g 

8% PFA 

solution 

80 g/L Paraformaldehyde 

(PFA) 

Roth #0335 40 g PFA; To dissolve PFA, 500 ml 

deionized water was heated to 65°C 

in a draft chamber. After 15-20 

drops of 5M NaOH, PFA was added 

slowly. Solution was filtered and 

stored at 4°C. 

4 % PFA 

solution 

8% PFA solution As prepared above Equal volumes of both solutions 

mixed together; Stored at 4°C. 0.2 M phosphate buffer As prepared above 

10X PBS Na2HPO4 Roth #T876 14.4 g 

KH2PO4 Merck #104873 2.4 g 

NaCl Roth #P029 80 g 

KCl Roth #6781 2 g 

Deionized H2O -- 1 liter; pH 7.4 with NaOH. Solution 

filtered and stored at room 

temperature. 

Buffer D 2% Donkey serum Sigma #D9663 1 ml donkey serum 

0.1% (w/v) Triton X-100 Roth #3051 250 µl of 20% Triton X-100 stock 

solution (10 g Triton X-100 in 

50 ml deionized H2O) 

0.05% (w/v) NaN3 Roth #K305 250 µl of 10% NaN3 stock solution 

(5 g NaN3 in 50 ml deionized H2O) 

2x PBS As prepared above 10 ml of 10X PBS stock solution; 

Total volume 50 ml made with 

deionized H2O 

Mowiol 

solution 

9.6 g Mowiol 4-88 Roth 0713 Stirred at 40-50°C for a few days; 

Supernatant aliquoted and frozen in 

liquid nitrogen after mixture was 

allowed to settle, and stored at -20°C 

24 g glycerol Roth 3783 

9.6 ml of 1M Tris (pH 8.5) Roth A411 

62.4 ml milli-Q H2O -- 
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• Immunocytochemistry (ICC) 

Cultured neurons were fixed for 20-30 min in 4% PFA solution (see Table 5) at room temperature. 

After washing thrice in 1X PBS (see Table 5) for 3 min each, the fixed samples were stored in 1X 

PBS at 4°C or used immediately for immunostaining. To prevent non-specific antibody binding, 

samples were incubated with buffer D (see Table 5) for 30 min. Triton X-100 was included in 

buffer D when permeabilization of cells was desired, and was omitted for staining surface epitopes 

in non-permeabilized conditions. Primary antibodies (in buffer D) were added to the samples 

overnight at 4°C. The following day, samples were washed thrice in 1X PBS for 3 min each, after 

which secondary antibodies (in buffer D) were added and incubated at room temperature in the 

dark for 2 hours. After secondary antibody incubation, samples were washed thrice in 1X PBS for 

3 min each. Next, the coverslips were mounted in 10 µl Mowiol solution (see Table 5) on glass 

slides. After allowing the Mowiol to solidify at room temperature in the dark for 9-48 hours, 

samples were stored at 4°C in the dark. Fixed sample imaging was done using a 63X oil immersion 

objective on a Zeiss LSM 710 confocal microscope. 
 

•  Receptor internalization assays 

300 µl of conditioned medium from each well of dissociated hippocampal neurons was removed 

and saved in the incubator. For GluA1, 10 µl of 0.05 µg/µl anti-GluA1 (extracellular epitope: 

Calbiochem #PC246) was added to 200 µl of conditioned medium per well. For GluA2, 1 µl of 

anti-GluA2 (extracellular epitope: Millipore #MAB397) was added to 200 µl of conditioned 

medium per well. Neurons were incubated for 15 min in the incubator at 37°C and 5% CO2. Wells 

were then washed with 500 µl pre-warmed 37°C NB+ (see Table 3) for 3 min in the incubator to 

remove excess antibody. Medium was then removed and cells were incubated with 200 µl NB+ 

containing 100 µM AMPA (S-AMPA, the active optical isomer of AMPA, abcam #ab120005, 

from a 10 mM stock in milli-Q water), 100 µM NMDA (Sigma #M3262, from a 50 mM stock in 

milli-Q water), or NB+ alone (for non-stimulated conditions) for 3 min in the incubator.  

Stimulation solutions were then removed and all coverslips were incubated for an additional 8 min 

in 250 µl conditioned media. Coverslips were then fixed in 4% PFA solution (see Table 5), and 

immunostained (see ‘Immunocytochemistry (ICC)’ on page 48 above for general protocol). First, 

surface receptors were labelled by blocking cells in non-permeabilizing conditions in buffer D 

without Triton X-100. Surface receptors were then labelled with Alexa 647 secondary antibodies 
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(of species corresponding to primary antibody; see Table 7) for 1 hour at room temperature. 

Internal receptors would not be labelled in this step because cells are non-permeabilized. Cells 

were washed thrice in 1X PBS for 3 min each. Cells were then permeabilized in buffer D with 

Triton X-100. Primary antibodies against MAP2 (chick) and GFP (mouse anti-GFP for GluA1 

labelling and rabbit anti-GFP for GluA2 labelling) were added and incubated at 4°C overnight or 

for 2-4 hours at room temperature (see Table 6). Cells were then washed thrice in 1X PBS for 3 

min each. Internal receptors were then labelled with Alexa 546 secondary antibodies (of species 

corresponding to primary antibody; see Table 7). Surface receptors would not be labelled in this 

step because surface epitopes have been saturated with 647 secondary antibodies. For analysis, 

regions of interest were manually drawn around cell somas in ImageJ (NIH Image), using MAP2 

or GFP signal as a guide. The internalization index was calculated as the ratio of internal to surface 

receptor fluorescence. Only experiments in which control cells showed the expected receptor 

internalization in stimulated conditions were considered for quantitation. 
 

•  pHluorin timelapse imaging 

For timelapse experiments, a 12 mm diameter glass coverslip (Menzel Gläser, thickness #1), on 

which dissociated hippocampal neurons were cultured, was set on top of a 25 mm diameter glass 

coverslip (Menzel Gläser, thickness #0), which in turn was fixed by vacuum grease onto a field 

stimulation chamber (Warner Instruments) containing 100 µl extracellular solution (140 mM 

NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 5.5 mM D-glucose, 20 mM HEPES, pH = 7.3). 

Field stimulation was delivered via a stimulator (A.M.P.I. Master-9) connected to a stimulus 

isolator (WPI A385). Transfected cells were selected, and images were acquired at 1 s intervals 

and 500 ms exposure times, with 484/20nm excitation and 517/20nm emission filters through 

100X oil objectives, on an inverted microscope (Zeiss Axio Observer A1) with a Photometrics 

Evolve EMCCD camera, and Lambda DG-4 fast-switching light source interfaced with 

Metamorph software. A baseline of images was collected before addition of high potassium buffer 

(100 mM NaCl, 45 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 5.5 mM glucose, 20 mM HEPES, pH = 

7.3), 100 µM AMPA, 100 µM NMDA, or field stimulation to depolarize neurons. All field 

stimulation experiments were done in the presence of 1 µM tetrodotoxin (Tocris). Dendritic 

regions were selected in Metamorph and fluorescence intensity plotted versus time. 
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•  Antibodies 

Table 6: List of primary antibodies used 

Primary 

Antibodies 
Host Catalogue 

number 
Application Company 

GFP rabbit Ab290 ICC (1:1000) Abcam 

Synaptophysin guinea pig 101004 ICC (1:2000) Synaptic Systems 

MAP2 chick C-1382-50 ICC (1:2500) Biosensis 

vGlut1 rabbit 135303 ICC (1:1000) Synaptic Systems 

Gephyrin mouse 147011 ICC (1:500) Synaptic Systems 

vGAT mouse 131011 ICC (1:500) Synaptic Systems 

PSD-95 mouse MA1-045 ICC (1:1000) Thermo Fisher Scientific 

piccolo rabbit 142003 WB (1:1000) Synaptic Systems 

Synaptobrevin2 

(VAMP2) 
Mouse 

104211 

(Clone 69.1) 
WB (1:1000) Synaptic Systems 

Homer guinea pig 160004 WB (1:1000) Synaptic Systems 

rab-GDI mouse 130011 WB (1:1000) Synaptic Systems 

Tubulin mouse 302211 WB (1:1000) Synaptic Systems 

rab3a mouse — WB (1:1000) provided by Reinhard Jahn 

syntaxin1a mouse — WB (1:1000) provided by Reinhard Jahn 

synapsin mouse — WB (1:1000) provided by Reinhard Jahn 

Synaptotagmin 1 mouse 105101 WB (1:1000) Synaptic Systems 

SNAP25 
mouse 111011 

WB (1:1000) Synaptic Systems 
guinea pig 111004 

Synaptotagmin3 

(SYT3) 

rabbit 
105133 

(syt3NT) 
ICC (1:500) Synaptic Systems 

mouse N278.19 WB (1:1000) Neuromab 

GluA1 rabbit PC246 1:100 Calbiochem 

GluA2 mouse MAB397 ICC (1:500) Millipore 

GluA3 rabbit 1731-1 WB (1:1000) Epitomics 

GluN1 rabbit AB9864 WB (1:1000) Millipore 
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GluN2A mouse MAB5216 WB (1:1000) Millipore 

GABAAR1 rabbit AGA-005 WB (1:2000) Alomone 

EEA1 rabbit — WB (1:1000) provided by Reinhard Jahn 

GRIP rabbit 151 003 WB (1:1000) Synaptic Systems 

Pick1 rabbit PA1-073 WB (1:1000) Thermo Fisher Scientific 

BRAG2 rabbit — WB (1:1000) 

Provided by Dr. Hans 

Christian Kornau  

(Scholz et al., 2010) 

 

Table 7: List of secondary antibodies used 

Secondary Antibodies with conjugated 

dye 
Host 

Catalogue 

Number 
Applications Company 

Anti-guinea pig Alexa 647 Goat A-21450 ICC (1:1000) Invitrogen 

Anti-rabbit Alexa 546 Goat A-11010 ICC (1:1000) Invitrogen 

Anti-chick Alexa 405 Goat 175765 ICC (1:1000) Abcam 

Anti-mouse Alexa 488 Donkey A-21202 ICC (1:1000) Invitrogen 

HRP-coupled monoclonal mouse Mouse 1706516 WB (1:2000) Bio-Rad 

HRP-coupled rabbit polyclonal Rabbit 1706515 WB (1:2000) Bio-Rad 

Anti-guinea pig Alexa 647 Goat A-21450 ICC (1:1000) Invitrogen 

Anti-rabbit Alexa 546 Goat A-11010 ICC (1:1000) Invitrogen 

Anti-chick Alexa 405 Goat 175765 ICC (1:1000) Abcam 

  

2.5. Mammalian expression constructs 

Mammalian expression constructs used were: pHluorin-syt3, i.e., superecleptic pHluorin fused to 

the N-terminal end of SYT3 as previously described (Dean et al., 2012); GFP-syt3 and mCherry-

syt3, sub-cloned by replacing the pHluorin in pHluorin-syt3 with GFP or mCherry, respectively; 

the calcium-binding mutant of syt3 (generated by Genscript) by mutagenesis of 4 amino acids 

(D386N, D388N, D520N, D522N) of pHluorin-syt3, where these sites correspond to the calcium-

binding sites of syt1 (D230, D232, D363, D365 respectively) (Bhalla et al., 2008; Vrljic et al., 



Chapter 2. Materials and Methods 
 

 53 

2010); SYT3 shRNA knockdown constructs 

KD1 (TGCTGTTGACAGTGAGCGACAAGCTCATCGGTCAGATCAATAGTGAAGCCACA

GATGTATTGATCTGACCGATGAGCTTGGTGCCTACTGCCTCGGA), KD2 (TGCTGTTG

ACAGTGAGCGCAGGTGTCAAGAGTTCAACGAATAGTGAAGCCACAGATGTATTCGT

TGAACTCTTGACACCTATGCCTACTGCCTCGGA) and KD3 (TGCTGTTGACAGTGAGC

CAGGATTGTCAGAGAAAGAGAATAGTGAAGCCACAGATGTATTCTCTTTCTCTGACA

ATCCTTTGCCTACTGCCTCGGA) in the pGIPZ vector, co-expressing turboGFP (from Thermo 

Scientific Openbiosystems). 

  

• Plasmid DNA amplification 

Electrocompetent E. coli cells (Stratagene #200249) were transformed by mixing 0.5-1 µg plasmid 

DNA with 50 µl of electrocompetent cells. This mixture was transferred to an electroporation 

cuvette (Biozym Scientific GmbH #748010), and an 1800 Volt electric pulse was delivered 

(Electroporator 2510, Eppendorf). Subsequently, 1 ml of 37°C autoclaved LB medium 

(Roth #X968) was added to cells and incubated at 37°C for 15-30 min while mixing at 1400 rpm 

(Eppendorf Thermomixer comfort). 100 µl of this cell solution was streaked with a 100 µl 

micropipette tip onto a 10 cm LB-Agar dish containing 50 µg/ ml kanamycin or 100 µg/ ml 

ampicillin depending on the antibiotic resistance marker on the plasmid, and incubated overnight 

at 37°C. The following day, single colonies were picked and used to inoculate 5 ml LB liquid 

cultures (with appropriate antibiotic), which were incubated for 6-8 hours. This culture was used 

to inoculate a larger culture volume of 400 ml for overnight incubation until OD600 reached 3-4. 

Cells were pelleted by centrifugation at maximum speed at 4°C for 30 min in an Eppendorf 5810R 

centrifuge and plasmids extracted using the NucleoBond Xtra Maxi kit (Macherey Nagel). DNA 

yield and purity was determined with a Nanophotometer (Implen GmbH, Germany). 

 

2.6.  Biochemistry 

All biochemistry experiments were carried out by Dr. Saheeb Ahmed and Dr. Katja Burk (Trans-

synaptic signalling group, ENI Göttingen). 
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• Subcellular fractionation from whole brain  

Rat brains were homogenized in ice-cold homogenization buffer (320 mM sucrose, 4 mM HEPES, 

pH 7.4 with NaOH) using 10 strokes at 900 rpm. These samples were then centrifuged at 1,000 gmax 

for 10 min. The supernatant (S1) was retained. The resulting pellet (P1) contains large cell 

fragments and nuclei. S1 was then centrifuged at 15, 000 gmax for 15 min. The supernatant (S2) 

obtained from this centrifugation contains soluble proteins and the pellet (P2) contains 

synaptosomes. The pellet (P2) was then carefully resuspended in 1 ml of homogenization buffer. 

9 ml of ice-cold milli-Q H20 was added and homogenized with three strokes at 2,000 rpm. 50 µl 

of 1M HEPES and protease inhibitors were then added. The lysate was next centrifuged at 17,000 

gmax for 25 min to separate synaptosomal membranes (LP2) from synaptosomal cytosol (LS2). The 

LP2 pellet was resuspended in 6 ml of 40 mM sucrose and layered over a continuous sucrose 

gradient from 50 mM to 800 mM. The sucrose cushion was then centrifuged at 28,000 rpm for 

2 hours. Following centrifugation, the region between ~0.04 and 0.4 sucrose was collected and 

separated by chromatography on controlled-pore glass beads (CPG column) run overnight. The 

first peak (PI) contained larger membrane fragments and synaptic vesicles (SVs) were found in 

the second peak.   

 

• Immuno-organelle isolation of synaptic vesicles  

Mouse monoclonal antibodies directed against VAMP2 and syt1 were coupled to Protein G 

magnetic Dynabeads (Invitrogen) in PBS for 2 hours at 4°C. Antibody-coated beads were added 

to whole brain S1 fractions in a 1.5 ml eppendorf tube and incubated overnight at 4°C. Magnetic 

beads were separated from immuno-depleted supernatant using a magnet and washed thrice with 

PBS. Bound vesicles were eluted in sample buffer and analyzed by SDS-PAGE and Western 

blotting.  

 

• Synaptosome trypsin cleavage assay  

Synaptosomes were prepared and treated with trypsin as previously described (Ahmed, Holt, 

Riedel, & Jahn, 2013; Boyken et al., 2013). Purified synaptosomes were centrifuged for 3 min at 

8,700xg, 4°C. The pellet was resuspended in 320 mM sucrose, 5 mM HEPES (pH = 8). For trypsin 

cleavage, a 0.1 mg/ml trypsin stock solution was added to yield a final protein-protease ratio of 
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100:1. Synaptosomes were incubated for 10, 20, 30, 60 or 90 min at 30°C with gentle agitation. 

Samples were then centrifuged for 3 min at 8,700xg and the resulting pellet was resuspended in 

sucrose buffer containing 400 µM Pefabloc (Roche) to stop trypsin cleavage activity. Samples 

were then analyzed by SDS-PAGE and Western blotting.  

 

• Recombinant pulldown assays 

Recombinant His-tagged SYT3 C2AB (the soluble portion of syt3, i.e. end of transmembrane 

domain to C-terminus; provided by Edwin Chapman, University of Wisconsin, Madison) was 

expressed in E. coli and purified as previously described (Bhalla et al., 2008). Recombinant SYT3 

was then incubated with solubilized rat brain homogenate for 2 hours at 4°C. After incubation, 

nickel beads were added and additionally incubated for 2 hours at 4°C. The mixture was then 

poured into a MT column (Biorad) and washed thrice with washing buffer (20 mM Tris pH 7.4, 

500 mM NaCl, 20 mM imidazole). Proteins bound to the recombinant syt3 in the column were 

eluted with elution buffer (20 mM Tris pH 7.4, 500 mM NaCl, 400 mM imidazole). Eluted proteins 

were resolved by SDS-PAGE gels and analyzed by Western blotting. 

 

2.7.  Electrophysiology 

• Whole-cell electrophysiology in dissociated hippocampal embryonic rat cultures 

Dissociated hippocampal cultures were transfected on DIV10. DIV 16-20 neurons growing on 

individual coverslips were placed in a custom-made recording chamber and bathed in HEPES 

buffered saline prepared as indicated in Table 8 except that [NaCl]=136 mM and pH=7.2. The 

temperature of the bath was maintained between 30-32ºC by heating with a thermistor taped below 

the bath chamber and a DC voltage power supply (Voltcraft VLP-1302A). To record miniature 

excitatory post-synaptic currents (mEPSCs), 1 µM tetrodotoxin (Tocris #1069) was added to the 

extracellular solution to block action potentials. 50 µM picrotoxin (Abcam #ab120315), which 

inhibits GABAA receptors, was added to isolate glutamatergic receptor mEPSCs. An upright 

microscope (Olympus BX51WI) equipped with a 40X water-immersion objective, fluorescent 

light source (Prior Scientific Lumen 200Pro), and filters for GFP fluorescence imaging were used 

to visualize neurons transfected with syt3-GFP or turboGFP-expressing syt3 knockdown 
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constructs. Patch pipettes were pulled from borosilicate glass (Harvard Instruments #300060; 1.5 

mm OD, 0.86 mm ID, 3-6 MΩ) using a P-97 micropipette puller (Sutter Instruments). The internal 

solution used is shown in Table 9. Whole-cell patch-clamp recordings were obtained using a 

HEKA EPC10 USB double patch clamp amplifier coupled to Patchmaster acquisition software. 

The fast capacitance, slow capacitance and series resistance were always compensated using in-

built functions in Patchmaster. Signals were low pass filtered using a Bessel filter at 2.9 kHz and 

digitized at 5 kHz. mEPSCs were recorded while holding neurons at -60 mV in the voltage-clamp 

mode. The series resistance was monitored every 1-5 min during recording to ensure it did not 

change by greater than ±3 MΩ, and neurons were recorded from only if uncompensated 

Rs < 20 MΩ. mEPSCs were analyzed using Mini Analysis software v6.0.3 (Synaptosoft) with an 

amplitude threshold of 3.5 times RMS noise (maximum allowed amplitude threshold was 18 pA). 

 

• Whole-cell electrophysiology in dissociated hippocampal postnatal mouse cultures 

Miniature excitatory post-synaptic currents (mEPSCs) were recorded from DIV13 – DIV19 

dissociated hippocampal neurons cultured P0 mice, after transfections on DIV 10. All recording 

conditions were the same as in section ‘Whole-cell electrophysiology in dissociated hippocampal 

embryonic rat cultures’ above except that the bath was at room temperature, i.e., ~20°C and 

100 µM picrotoxin was added to isolate glutamatergic receptor mEPSCs. For AMPA stimulation, 

coverslips were transferred to 100 µM S-AMPA (abcam #ab120005) in 250 µl prewarmed feeding 

medium (Table 2 on page 40) and returned to the incubator at 37°C and 5% CO2 for 2 min. In a 

stimulation protocol identical to that used in the surface receptor internalization assays, the 

coverslips were then returned to conditioned medium in the incubator for 8 minutes. An upright 

microscope (Zeiss Examiner D1) equipped with a 40X-water immersion objective, fluorescent 

light source (Zeiss Colibri), and appropriate filters for GFP imaging was used to visualize 

transfected cells on a monitor. Whole-cell patch clamp recordings were obtained using an ELC-

03XS patch clamp amplifier (NPI electronics, Germany) with custom written data acquisition 

scripts for IgorPro 6.12A software (Wavemetrics), obtained from Prof. Dr. Oliver Schlüter 

(European Neuroscience Institute Göttingen). Recorded signals were low-pass filtered using a 

Bessel filter with a cut-off frequency of 3 kHz and digitized at a sampling rate of 10 kHz using a 

data acquisition interface (HEKA instruments, InstruTECH ITC-18). The fast capacitance was 

compensated before breaking into the cell. For neurons stimulated with S-AMPA, the time after 
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stimulation was noted. For every recorded neuron, the holding current, series resistance (test pulse 

voltage step/ peak capacitive transient current), and input resistance (test pulse voltage step/ 

plateau current) were monitored every 10 seconds by application of a square voltage step pulse. 

Only those recordings where RS < 20MΩ, and where RS did not change by more than 10% were 

analyzed. A custom written MATLAB (Mathworks) script was used to generate random file names 

for each recording to blind the analyzing experimenter with respect to the genotype, transfection 

and stimulation condition of the recording. To set a detection threshold in Mini Analysis 

(Synaptosoft), average RMS noise levels were determined from five stretches of baseline that did 

not contain any mEPSCs. The detection threshold was set as 3.5-times the average RMS noise. 

The period to search for a local maximum was 30 ms, the time before a peak to search for baseline 

was 20 ms and the period to search for decay time was 20 ms. The decay time was defined as the 

time after which the amplitude reached 37% of its peak value, representing the exponential decay 

time constant. The area threshold was set to the value of the amplitude threshold +1 to exclude 

noise-related fluctuations in the baseline. For each cell, at least 200 mEPSC events were analysed. 

Table 8: Formulation of extracellular solution for whole-cell recordings in dissociated hippocampal 

cultures 

Concentration Component Catalogue number Preparation Instructions 

142 mM NaCl Roth 9265 Adjust pH to 7.4 with 10 M 

NaOH (Roth 9356) for 10X 

stock and store at 4°C. mOsm 

of 1X buffer should be ~295. 

When storing stock longer than 

2 weeks, exclude D-glucose. 

2.5 mM KCl Roth 6781 

10 mM HEPES Roth HN77 

10 mM D-Glucose Roth HN06 

2 mM CaCl2 Roth HN04 

1.3 mM MgCl2 Roth KK36 
 

 

 

Table 9: Formulation of intracellular solution for whole-cell recordings from dissociated 

hippocampal cultures 

Concentration Component 
Catalogue 

number 
Preparation Instructions 

130 mM K-gluconate Sigma P1847 Dissolve salts in ~75% of total solution volume at 

room temperature. To avoid degradation of ATP 10 mM NaCl Roth 9265 
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10 mM Hepes Roth HN77 and GTP salts by the acidic pH of the solution, 

adjust pH to ~7.5 with 1M KOH (Roth 6751) 

before adding last two components. 

1 mM EGTA Roth 3054 
0.133 mM CaCl2 Roth HN04 
2 mM MgCl2 Roth KK36 
3.5 mM Na2-ATP Sigma A7699 To avoid degradation of ATP and GTP salts at 

room temperature, adjust pH to 7.3 with 1M KOH 

(Roth 6751) immediately after adding last two 

components, place solution on ice and sterile filter. 

Freeze aliquots at -80°C. Check mOsm is ~285. 

1 mM Na-GTP Sigma G8877 

 

•  Whole-cell electrophysiology in acute hippocampal slices 

Table 10: Formulation of NMDG cutting buffer for slicing of aute hippocampal slices for whole-cell 

recordings 

 

Patch pipettes with a resistance of 2.5-5 MΩ were prepared from glass capillaries (Harvard 

Apparatus # 300060; 1.5 mm OD, 0.86 mm ID) using a P-97 puller (Sutter Instruments). P12-P17 

mouse pups were anesthetized with isoflurane (Abbott, Wiesbaden, Germany) and decapitated. 

The brain was carefully extricated and the cerebellum was cut out to provide a flat surface onto 

which the brain could be glued with its rostro-caudal axis perpendicular to a metal plate and gently 

Concentration Component 
Catalogue 

number 
Preparation Instructions 

135 mM NMDG Sigma 66930 Adjust pH to 7.4 with 32% HCl 

(Roth P074) (~60 ml HCl for 2 litres 

of 3X stock after dissolving 

NMDG). 3X stock solution can be 

stored indefinitely at 4°C. 

1 mM KCl Roth 6781 

1.2 mM KH2PO4 Roth P018 

1.5 mM MgCl2 Roth KK36 

0.5 mM CaCl2 Roth HN04 

20 mM 
Choline 

bicarbonate 
Sigma C7519 

Add last three components to make 

1X buffer and check mOsm is ~310. 

Bubble with carbogen for > 15 min 

and partially freeze and mix to make 

icy slush before use. 

12.95 mM D-Glucose Roth HN06 

1X cutting buffer As above 
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resting against a 1.5% agarose (Invitrogen #16500) block. The brain was then quickly submerged 

in an icy slush of NMDG cutting buffer (see Table 10). The icy slush was obtained by freezing the 

buffer at -80°C for 30 min and then tapping the bottle to break the ice formed around the glass. 

300 µm coronal hippocampal slices were obtained with a Leica VT1200 vibratome (Wetzlar, 

Germany) and a stainless steel blade (Feather/ Astra Rasierklingen) in an icy slush of NMDG 

buffer. Slices were transferred to a submerged-type preincubation chamber with a nylon mesh 

bottom (Gibb AJ and Edwards FA, Chapter 10, Microelectrode techniques, The Plymouth 

workshop handbook) filled with ACSF (see Table 11) and incubated at 35°C for 0.5 hours followed 

by another 0.5 hours at room temperature. A bubbler (Sigma #59277) was positioned at the edge 

of the cylindrical chamber outside the inner perforated sub-chamber to allow a convectional flow 

of oxygenated ACSF that holds the slices down on the nylon mesh. Typically, the time taken 

between decapitation and transfer of slices to the preincubation chamber was 15-20 min. Before 

transferring to the recording chamber, two cuts perpendicular to the CA3 pyramidal cell layer at 

the lateral end of the slice and perpendicular to the CA1 pyramidal cell layer at the medial end of 

the slice were made using microdissection scissors (WPI) under a stereoscopic microscope (Zeiss 

Stemi 2000) to prevent recurrent activation of the CA1 neurons by CA3-CA3 and CA1-entorhinal 

cortex circuits respectively.  

 

Slices were then submerged in a recording chamber, weighted down between nylon fibers and 

perfused with carbogen-bubbled ACSF by gravity flow. Solution from the bath was removed using 

a peristaltic pump (Dynamax RP-1) via a micro-slit outlet (WPI #ST-3L 64-1408) to ensure 

smooth and continuous perfusion. The bath was maintained at 30-32°C using a heated perfusion 

rod (ALA scientific #HPT-2) at the bath inlet and thermistors under the chamber controlled by a 

temperature controller (NPI instruments, TC-20). The temperature was regularly monitored using 

a digital thermometer (Voltacraft #K102) and adjusted accordingly. CA1 neurons were visualized 

with an upright microscope (Zeiss Examiner D1) equipped with a 40X water-immersion objective 

and DIC (differential interference contrast) optics. The intracellular pipette solution used is shown 

in Table 12 below. Whole-cell patch-clamp recordings were obtained using a ELC-03XS patch 

clamp amplifier (NPI electronics, Germany). Signals were low pass filtered using a Bessel filter at 

3 kHz and digitized at 10 kHz using a data acquisition interface (HEKA instruments, InstruTECH 

ITC-18). A custom written data acquisition script for IgorPro 6.12A software (Wavemetrics),  
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 Table 11: Formulation of artificial cerebrospinal fluid (ACSF) for whole-cell recordings from acute 

mouse hippocampal slices 

 

Table 12: Formulation of internal solution for recording evoked EPSCs from acute hippocampal 

slices 

Concentration Component 
Catalogue 

number 
Preparation Instructions 

130 mM CsMeSO3 Sigma C1426 Dissolve salts in ~75% of total solution volume 

at room temperature. To avoid degradation of 

ATP and GTP salts by the acidic pH of the 

solution, adjust pH to ~7.5 with 1M CsOH 

(Fluka 21000) before adding last three 

components. 

2.67 mM CsCl Sigma 203025 

10 mM HEPES Roth HN77 

1 mM EGTA Roth 3054 

3 mM QX-314 Cl 
Tocris 2313/ 

Sigma L1663 

5 mM TEA-Cl Fluka 86616 

15 mM 
Phosphocreatine 

disodium salt 
Sigma P7936 

4 mM Mg-ATP Sigma A9187 To avoid degradation of ATP and GTP salts at 

room temperature, adjust pH to 7.4 with 1M 

CsOH immediately after adding last three 

components. Place solution on ice and sterile 

filter. Freeze aliquots at -80°C. Check that 

mOsm is ~300. 

0.3 mM Na-GTP Sigma G8877 

5 units/ml 
Creatine Phospho-

kinase 
Sigma C3755 

 

Concentration Component Catalogue number Preparation Instructions 

124 mM NaCl Roth 9265 Make 10X stock solution 

without NaHCO3 and D-

Glucose and store at 4°C. After 

making 1X ACSF and bubbling 

with carbogen for 15 min, 

check that pH is ~7.4 and 

mOsm is ~300. 

4.4 mM KCl Roth 6781 

1 mM NaH2PO4 Roth 2370 

26.2 mM NaHCO3 Roth 6885 

1.3 mM MgSO4.7H2O Roth P027 

2.5 mM CaCl2.H2O Roth HN04 

10 mM D-Glucose Roth HN06 
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obtained from Prof. Dr. Oliver Schlüter (European Neuroscience Institute, Göttingen) was used to 

visualize and acquire electrophysiological data. Schaffer collaterals were stimulated at the distal 

dendritic region of the stratum radiatum on the border of the lacunosum-moleculare at 0.1 Hz using 

a bipolar glass electrode (World precision instruments, WPI #TST150-6) filled with ACSF and 

coupled to a triggerable stimulator (A.M.P.I. Isoflex). 

 

The fast capacitance was compensated before breaking into the cell. Evoked synaptic EPSCs were 

first recorded at a holding potential of -56 mV, the average measured reversal potential for 

pharmacologically isolated GABAA receptor IPSCs in wild-type slices. GABAA receptor-

mediated currents were then recorded at 0 mV, the average measured reversal potential for 

pharmacologically isolated NMDA and AMPA receptor EPSCs. Next, 100 µM picrotoxin in 

ACSF (Sigma #P1675) was perfused while holding at -56 mV and the elimination of GABAA 

receptor IPSCs at 0 mV was confirmed. The residual AMPA+NMDA receptor EPSC at 0 mV was 

later subtracted from the GABAA receptor IPSC. The AMPA+NMDA receptor compound EPSC 

was then recorded at +40 mV in the presence of 100 µM picrotoxin, where the amplitude of the 

EPSC approximately 60 ms after the peak is the pure NMDA receptor EPSC, since the measured 

AMPA receptor EPSC decay time constant was τ ≈ 20 ms. Because the AMPA receptor EPSCs 

recorded at -56 mV after picrotoxin perfusion were free of any GABAA receptor IPSC components, 

they were used in the final analysis of NMDA/AMPA and GABA/AMPA ratios. The input and 

series resistance (Rs) were monitored before recording every EPSC. A minimum of 30 evoked 

responses was averaged for each receptor EPSC. Recordings where Rs was > 25 MΩ or changed 

by more than ± 20% during the recording were not used for analysis. Input resistances ranged 

between 100-400 MΩ and did not change by more than ± 20% during the course of a recording. 
 

• Extracellular recordings from acute hippocampal brain slices 

These experiments were performed by Dr. Binu Ramachandran (Trans-synaptic signaling group, 

European Neuroscience Institute Göttingen). Electrophysiological experiments were performed on 

400 µm thick hippocampal slices prepared from 8-12 week old male mice as previously described 

(Ramachandran & Frey, 2009). Slices were pre-incubated for at least 3 hours in a custom built 

humidified interface-type chamber in ACSF (see Table 13). Following pre-incubation, the 

stimulation strength was set to elicit a population spike of approximately 25% maximal amplitude. 
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For stimulation, biphasic constant current pulses were used. A baseline was recorded for at least 

60 min before LTP induction. Four 0.2 Hz biphasic, constant-current pulses (0.1 ms per polarity) 

were used for testing responses post-tetanus for up to 4 hours. Strong LTP was induced by a 3xTET 

high frequency stimulation with three stimulus trains of 100 pulses, stimulus duration 0.2 ms per 

polarity with 10 min intertrain intervals. Weak LTP was induced with a 1xTET single tetanus of 

16 pulses at 100 Hz, stimulus duration 0.2 ms per polarity, modified for mouse hippocampal slices 

from the protocol consisting of 21 pulses used for rat hippocampal slices. The fEPSP slope was 

used to determine potentiation of synaptic responses. The Tat-GluA2-3Y peptide (sequence 

YGRKKRRQRRR-869YKEGYNVYG877, provided by Prof. Yu-Tian Wang, University of British 

Columbia, Vancouver, Canada) was used at a concentration of 1 µM (Migues et al., 2016) and ZIP 

(provided by Prof. Todd Sacktor, SUNY Downstate Medical Center, New York, USA) was used 

at a concentration of 1 µM  corresponding to its IC50, 1 hour after LTP induction (Serrano et al., 

2005).  

Table 13: Formulation of artificial cerebrospinal fluid (ACSF) for extracellular field recordings 

from acute mouse hippocampal slices 

Concentration Component Catalogue number Preparation Instructions 

124 mM NaCl Roth 9265 Make 10X stock solution 

without NaHCO3 and D-

Glucose and store at 4°C. After 

making 1X ACSF and bubbling 

with carbogen for 15 min, check 

that pH is ~7.4 and mOsm is 

~300. 

4.9 mM KCl Roth 6781 

1.2 mM KH2PO4 Roth P018 

24.6 mM NaHCO3 Roth 6885 

2 mM MgSO4.7H2O Roth P027 

2 mM CaCl2.H2O Roth HN04 

10 mM D-Glucose Roth HN06 

 

2.8.  Behavioral Experiments 

Behavioral experiments were performed on 3-5 month old male mice in a blinded fashion. Mice 

were individually housed at the European Neuroscience Institute Göttingen, Germany animal 

facility in standard environmental conditions (temperature, humidity), with ad libitum access to 

food and water on a 12 h light/dark cycle from 7 AM to 7 PM. Video tracking was done with the 

TSE monitoring system Videomot3D. All behavioral experiments were authorized under the 
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project, “Funktion des Kalzium bindenden Protein Synaptotagmin 3 auf molekulare Mechanismen 

des Gedächtnisses”, ID# G15.1794 granted by the ‘Niedersächsisches Landesamt für 

Verbraucherschutz und Lebensmittelsicherheit’ (LAVES, Lower Saxony, Germany). All behavior 

experiments were carried out by Ankit Awasthi, who successfully completed a course in laboratory 

animal science according to the recommendations of the FELASA (Category B) before starting 

behavioral experiments. The course was organized by the Central Animal Facility, University 

Medical Center Göttingen (UMG), Göttingen, Germany. 

 

•  Open field, novel object recognition and elevated plus maze 

In the open field test, mice were introduced near the wall of an empty opaque square plexi-glass 

box and allowed to freely explore the arena for 5 min. The arena was scented with 70% ethanol 

before every trial. Time spent in the center relative to near the walls, and the total path travelled 

was recorded.  

For novel object recognition, mice were introduced to the open field containing two identical 

objects (upside down plastic lab bottle caps taped to the floor) for 5 min on the day after the open 

field test. Exploration of either object was manually scored. To test short term memory, mice were 

put back into the open field ~ 12 min later where one of the bottle caps was replaced with a LEGO 

block and the % time spent exploring the LEGO block was analyzed. Animals that explored either 

of the two objects for <1 sec during training or testing were excluded from analysis. 

For the elevated plus maze, mice were introduced at the intersection of two open and two closed 

arms in a 4-arm maze. The arena was scented with 70% ethanol before every trial. % time spent 

in the open arms was analysed. 

 

• Spatial novelty recognition 

Mice were tested for exploration of a novel arm of a Y-maze as previously described (D. J. 

Sanderson et al., 2009). Mice were introduced to one of the open arms (called start arm, see Figure 

16 below) and allowed to freely explore the two open arms of a Y-maze with transparent walls and 

wooden chips on the floor for 5 min while the third arm (novel arm) was blocked from entry with 

an opaque obstruction. The start arm was always the same whereas the cohort was counterbalanced 

with respect to choice of the novel arm. The extra-maze cues consisted of standard lab equipment 
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and tables. For recall of short-term spatial memory, mice were put back in the start arm 2 min after 

end of the habituation phase and allowed to freely explore all three arms of the Y-maze for 2 min. 

The % time spent exploring the novel arm (reported as discrimination ratio) was analyzed. For 

recall of long-term memory, mice were habituated as before in a different room than that where 

short term memory was tested, for 5 min per session. Three sessions were administered overall, 

one every 24 hours. This room had empty walls with pieces of black paper of different shapes and 

sizes and lab coats hung on the walls, which were up to 1 meter away from the end of the Y-maze 

arms. 24 hours after the last training session, mice were allowed to explore all three arms of the 

Y-maze for 2 min and the discrimination ratio was analysed. 

 

• Contextual fear conditioning 

Mice were introduced to a sound isolated fear conditioning box (inner dimensions 30.5 cm x 24.1 

cm x 21 cm, Med Associates Inc. # VFC-008-LP) for 3 min in the context followed by 30 sec of 

an auditory tone co-terminating with a 2 sec long 0.7 mA shock. The context consisted of white 

light, 80 dB white noise sound and the shock grating scented with 70% (v/v) ethanol. Movements 

of mice were detected by an infrared camera. Freezing behavior (no body movement except 

breathing) was considered when the detected motion stayed below an empirically determined 

threshold for at least 1 second. To test fear memory, mice were placed in the training context for 

3 min and % time spent freezing was analyzed. Short term memory and long term memory recall 

were performed 1 hr 20 min and 24 hours after training, respectively. 

 

•  Reference memory water maze 

Naive mice from two independent cohorts were trained to find a 13 x 13 cm square hidden platform 

submerged 1.5 cm below the surface in a 1.1 m diameter circular pool filled with white opaque 

water at 19 ± 2°C. Mice were trained for 4 trials per day in succession, during each of which mice 

swim in search of the platform for 1 min. A trial ended when the mice spent at least 2 sec on the 

platform, after which they were left on the platform for 15 sec prior to the start of the next trial. 

Animals that failed to find the platform after 1 min were guided to it and left to stand on the 

platform for 15 sec. Four shapes around the pool (star, square, triangle, circle) served as visuo-

spatial reference cues. The mice were placed into the pool facing the wall at the beginning of each 
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trial, and the position of pool entry was from four different directions, the order of which was 

randomly shuffled daily. For probe trials, the platform was removed and mice were placed into the 

pool near the wall in the quadrant opposite to that of the original platform location and allowed to 

search for the platform for 1 min. Two subsequent probe tests (on day 7 and day 10 for cohort 1, 

or day 8 and day 11 for cohort 2) were performed to monitor learning of the first platform position 

and a third probe test was performed 3 days (for cohort 1) or 4 days (for cohort 2) after reversal, 

i.e., switching the platform position to the opposite quadrant. Only data from coincident days of 

training from the 2 cohorts was pooled together for analysis. 

 

Video tracking data was analyzed using a custom written Matlab code to extract time-tagged xy-

coordinate information and quantify escape latency, path length, platform crossings, proximity 

(mean distance of all tracked path points to platform center, which is reported to be a more effective 

parameter than escape latency to quantify spatial specificity of watermaze search patterns (Maei, 

Zaslavsky, Teixeira, & Frankland, 2009), percent time spent in target quadrant, percent time spent 

on platform and average swimming speed. Occupancy plots were generated by calculating 

normalized densities of path points within a grid size of 2.1 cm x 2.1 cm (Garthe, Behr, & 

Kempermann, 2009), followed by data smoothening and interpolation to plot heat maps (See page 

67 below for methodology). To generate combined occupancy plots of probe trials from both 

cohorts, in which the platform was in different positions, the tracking data from one cohort was 

transposed and mirror imaged with respect to the center pool line and superimposed on data from 

the second cohort. A circular area encompassing platforms of both cohorts was defined as the 

target area (see Figure 20E below). 

 

•  Delayed matching to place water maze 

The delayed matching to place task protocol was performed as previously described (Nakazawa et 

al., 2003) with modifications. Mice were first habituated to the task protocol by training them to 

swim to a visible platform (marked by a graduated cylinder coated with multi-coloured paper 

placed on top of a submerged platform) placed at a unique position every day for 3 days in a 1.1 m 

diameter circular pool filled with white opaque water at 19 ± 2°C. The circular platform was 

submerged 1.5 cm below the surface and had a radius of 5 cm. Four shapes around the pool (star, 

square, triangle, circle) served as visuo-spatial reference cues.  
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After habituation, mice were trained to one of 16 unique hidden platform positions at two fixed 

distances from the pool center (11 in an outer ring and 5 in an inner ring) each day over 16 days. 

During training, the platform was shifted to a new random position every day in a different 

quadrant alternating between inner and outer rings as much as possible. All mice underwent 4 trials 

of 2 min every day and a trial ended when the mice spent at least 2 sec on the platform, after which 

they were left on the platform for 15 sec and then returned to their home cage. Inter-trial intervals 

were 5 min and mice were warmed with infrared lamps after every trial. The drop-off points on a 

particular day were in a random order with respect to the platform position of that day. Mice were 

divided into two groups for counterbalancing in which each group experienced different 

alternations of platform positions between inner and outer rings, to prevent non-spatial chaining 

search strategies in which mice search for platforms within a certain distance of the pool wall. 

Starting from day 10 of training, the inter-trial interval between trial 1 and trial 2 was increased to 

1 h 15 min. Trial 2 on day 16 was a probe trial, i.e., the platform was removed and the exploratory 

behavior of mice was recorded for 2 min. The positional data from this trial until the first entry 

into the platform area was used to calculate proximity, escape latency and path length. All mice 

were trained at the same time of the day as far as possible, i.e. some mice were always trained in 

the morning while others were always trained in the evening. Some training sessions were 

inevitably in the dark cycle, for example until 8 PM, because of the large number of total training 

trials in a day. 

 

The last 0.5 seconds of the trial were excluded to generate occupancy plots of training trials. 

Quantitation of search strategy was performed as previously described (Garthe et al., 2009), where 

a custom Matlab script was used to extract time-tagged xy-coordinate information from video 

tracking data of all trials. A custom written Matlab script then classified all individual trials into 

search strategies (Garthe et al., 2009). The following parameters were used for classification of the 

indicated search strategies:  

1. Direct swimming strategy: total path length ≤ 1.4 x distance between drop-off point and 

platform center, ≥ 80% path points within a 30° goal corridor angle;  

2. Focal search strategy: mean proximity to platform center ≤ 0.35 x pool radius, mean proximity 

to path centroid ≤ 0.4 x pool radius; 
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3. Directed search strategy: ≥ 70% path points within a 30° goal corridor angle; 

4. Perseverance strategy: mean proximity to previous platform center ≤ 0.5 x pool radius, mean 

proximity to path centroid allowed for perseverance ≤ 0.6 x pool radius; 

5. Chaining strategy: ≥ 70% path points inside annulus around the ring of platforms (inner or 

outer) containing the current day's platform, by 0.01-0.02 x pool radius, annulus for platforms 

in outer ring between 0.52 x pool radius and 0.73 x pool radius, annulus for platforms in inner 

ring between 0.22 x pool radius and 0.42 x pool radius; 

6. Scanning strategy: ≥ 80% of path points inside scanning radius (a circular area enclosing all 

platforms, 0.73 x pool radius), total % pool area scanned ≥ 10% and ≤ 50%; 

7. Thigmotaxis: ≥ 30% of path points within close wall zone between 0.85 x pool radius and 

edge of pool, and ≥ 50% of path points within wider wall zone between 0.75 x pool radius and 

edge of pool; 

8. Random search strategy: % pool area scanned ≥ 50%. 

 

• Occupancy plots to analyze watermaze search paths 

To extract average trends in search paths, occupancy plots were generated based on based on 

(Garthe et al., 2009). The occupancy plots visualize the density of space searched by mice in a heat 

map, generated by a custom written Matlab code based on the scattercloud function by Steve 

Simon (Matworks file ID #6037). The pool was divided into a 50 x 50 square grid and the search 

density (number of video track points normalized to total number of points in the search path) in 

each bin was calculated. A search density function was calculated in the 2-dimensional plane of 

the pool by smoothening the calculated search density values in both directions of the plane (using 

the ‘localsmooth’ option in the scattercloud function above). For generating the average of 

multiple search paths, all paths were superimposed and search densities in each bin were 

calculated. To compare two groups of search paths, i.e. WT and syt3 KO mice, heat maps 

(generated using ‘jet’ colourmap in Matlab, ranging from dark blue for lowest values to bright red 

for the highest values) were linearly scaled between the minimum and maximum search densities 

across both groups. Using the same scaling of the heat map for both groups ensured that occupancy 

plot colors between two groups could be quantitatively compared. For comparison of WT and KO 

search, each trial was separately scaled, which means occupancy plot colors between different 

trials were not comparable.  
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As all training trials ended only when mice stood at the platform for 2 seconds, a high search 

density appeared around the platform (Methods figure 1A, C, D, F above) decreasing the resolution 

of the search density in the rest of the pool. Therefore, the last 0.5-1.5 seconds of the data from 

each trial was removed to generate final occupancy plots for search analysis. 

 

 

Methods figure 1: Generating occupancy plots from mouse search paths 

A) Plot of a representative mouse training trial, with pool boundary lines in red, two platform positions shown in 
green and magenta, and the entire area divided into a 50 x 50 square grid. Search densities were calculated in each 
bin and occupancy plots generated without density smoothening and interpolation showing warmer colors for 
higher search densities. White boxes indicate zoomed regions in (B) and (C). Each point along the search path is 
indicated by red dots. As the mouse has to stand on the platform for 2 seconds for the trial to end, the platform area 
shows very high densities. (D-F) Heat map of occupancy plots of the same search path shown in (A-C), generated 
by calculating search densities in each bin, and smoothening and interpolating density data in the 2-D plane to 
extract general trends of spatial search. 
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Two parameters, N, the number of bins in the x or y direction, and L, the magnitude of smoothening 

using the localsmooth function (within the scattercloud function) were optimized to generate 

occupancy plots (Methods figure 2D). 

 

 

• Strategy classification algorithm to analyze watermaze search paths 

Finding the hidden platform in the watermaze is a hippocampal dependent spatial task and wild-

type mice are known to adopt more spatially specific search strategies over the course of training. 

 

Methods figure 2: Optimizing parameters for generation of occupancy plots 

(A-D) A representative training day search path dataset of all syt3 knockout mice in the reference watermaze was 
used to generate occupancy plots using different values for N and L, i.e., a N x N square grid and L, a parameter 
for the search density smoothening function, ‘Localsmooth’. N=100 gave search densities too highly confined 
around search paths (A, B). Increasing smoothening by increasing L=0.5 (A) to L=1 (B) did not increase 
diffusiveness of search densities. (C, D) Decreasing the total number of bins 4-fold by N=50 gave much more 
diffuse search densities. As increasing smoothening from L= 0.5 (C) to L=1 (D) yielded a more diffusive search 
density pattern, N=50 and L=1 were chosen to generate all occupancy plots. 
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Immediately upon being introduced to the watermaze for the first time, mice show a ‘wall-

hugging’ or thigmotactic behaviour but advance to other strategies rapidly within the first 1-3 days 

of training after overcoming this emotional response to a stressful situation. Mice start a ‘random 

search strategy’ as they learn that a hidden platform in the pool is the only means of escape. This 

strategy is then replaced with a ‘scanning’ strategy, where mice swim in the center of the pool and 

mostly avoid the walls in order to examine distal visual cues as well as possible. ‘Random search’ 

and ‘scanning’ lack any directional specificity. However, mice may evolve their search behaviour 

to ‘chaining’, where they swim at a fixed distance from the wall in an annulus containing the 

platform. PSD-95 KO mice and rats with hippocampal lesions, both of which show impaired 

learning, adopt a typical chaining strategy (Gallagher, Burwell, & Burchinal, 2015; Migaud et al., 

1998). As mice shift from non-spatial or egocentric search strategies to a spatial or allocentric one, 

they adopt strategies relying on the extramaze spatial cues and swim in a directed fashion toward 

the platform irrespective of their starting point. As the spatial memory becomes more precise over 

further training, mice take a direct path to an area around the platform, where they focus their 

search in a very local area in the ‘focal search’ strategy. The most efficient spatial strategy mice 

eventually learn is ‘direct swimming’, where they swim in an almost straight line directly to the 

platform. 'Perseverence' then refers to persistently returning to a previous platform position when 

the platform is moved to a new position. Thus, thigmotaxis and perseverance can be considered 

special strategies. ‘Random search’, ‘scanning’ and ‘chaining’ are non-spatial search strategies 

whereas ‘directed search’, ‘focal search’ and ‘direct swimming’ are spatial search strategies in 

order of their spatial precision (Methods figure 3 below). 

 

A custom written Matlab code was used to sort all search paths according to genotype. Specific 

mathematical constraining conditions and custom written scripts to analyze specific parameters of 

search paths (Methods figure 3A below) were used to classify individual search paths into one of 

the eight possible search strategies, or as ‘unrecognized’. All parameters for strategy analysis were 

optimized by trial and error, beginning by relaxing constraints on the spatial strategies to determine 

maximum level of detection and then adjusting parameters to achieve an intermediate conservative 

level of detection. This was then repeated for the non-spatial search strategies. The precision of a 

set of parameters was manually determined by visually inspecting the search paths until a 

satisfactory strategy classification was achieved. 
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Methods figure 3: Strategy classification algorithm for watermaze search path analysis 

(A) Mouse search paths, during a probe test or a training trial, illustrative of the corresponding strategy are shown. 
The various constraining conditions (with illustrations when needed) used to assign a search strategy to a search 
path are mentioned to the right of the corresponding strategy. (B) Algorithm used to classify a search path.  
Modified from (Figure 5, Garthe et al., 2009). 
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Learning in the watermaze is traditionally analyzed by escape latency and path length for training 

days, and % time spent in the target quadrant and crossings of the platform (analyzed using Matlab, 

Methods figure 4B, C below) for probe test performance evaluation. However, proximity and 

entropy are emerging as better parameters for watermaze performance evaluation (Maei et al., 

2009). Analyzing search strategies over the course of training can help to explain any discrepancies 

in analysis from above-mentioned parameters. 

 

Methods figure 4: Illustrations of custom written functions to calculate various watermaze 

parameters 

(A) The video tracking system (Videomot 3D, TSE systems) extracts mouse centroid coordinates and vertices of 
bounding boxes around the mouse body for each frame of video tracking in real time. (Left) Imported data of 
bounding boxes for a representative mouse trial. (Right) A custom written Matlab script makes a mask of all points 
within the superimposed bounding boxes indicated in white. The pool outline is shown in white. This allows 
calculation of the % pool area covered by a search path. (B) A custom written Matlab script calculates the % time 
spent in a target quadrant by calculating the fraction of search path points inside a target quadrant, indicated by red 
crosses and number of crossings of a target platform by counting number of groups of consecutive search path 
points inside a platform area (C). For the example shown, % time spent in quadrants 1 and 2 were 31.2% and 
15.5% respectively. Number of crossings of the green and magenta platform were 3 and 2 respectively. All search 
path points are shown as black crosses. 
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3. Results 

3.1.  Synaptotagmin3 is expressed on the post-synaptic plasma membrane 

• A polyclonal antibody was validated to detect syt3 specifically 

In collaboration with Synaptic Systems GmbH (Göttingen), a polyclonal antibody (syt3NT 

antibody; catalogue number 105133) was developed for immunocytochemistry and Western 

blotting to detect synaptotagmin3 (syt3) specifically amongst all other isoforms. It was raised by 

immunizing rabbits with a peptide (amino acids 86-169) in the linker region between the syt3 

transmembrane domain and the C2A domain. The linker region (amino acids 76 to 298 of the rat 

syt3 sequence, see Introduction figure 2) is the most variable region amongst all synaptotagmin 

isoforms, and thus served as the ideal epitope to raise an isoform specific antibody. To test 

specificity, HEK293 cells (which do not express synaptotagmins endogenously and therefore 

served as a clean background) were transfected with these constructs using the calcium phosphate 

method, fixed and immunostained (see section 2.4 above) with the syt3NT antibody. Only syt3-

GFP transfected cells showed a bright syt3 antibody signal whereas other synaptotagmin isoforms 

showed only non-specific background signal (Figure 1A below). Lysis of these transfected HEK 

cells and analysis by Western blotting also showed an isoform specific signal at the expected band 

size, (63 KDa syt3 + 27 KDa GFP) (Figure 1B below). This validated the isoform specificity of 

the syt3NT antibody for use in immunocytochemistry and Western blotting. Experiments in Figure 

1A and Figure 1B below were performed by Jan Schrader and Dr. Saheeb Ahmed (Trans-synaptic 

Signaling Group, ENI Göttingen), respectively. 

 

• Syt3 is expressed in dendrites at excitatory and inhibitory synapses 

The syt3NT antibody revealed syt3 is expressed at high levels in brain, adipose tissue, heart and 

kidney relative to the pancreas, liver, skeletal muscle or lung (Figure 1C below). While a previous 

study using a syt3 specific antibody found syt3 expression in the rat hippocampus and cerebellum 

but not in the cortex or olfactory bulb (Butz et al, 1999), the syt3NT antibody revealed syt3 

expression in the mouse hippocampus and cortex, but not in the cerebellum or olfactory bulb. 

Additionally, syt3 is expressed in thalamus and striatum but not in the hypothalamus or pituitary 
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gland (Figure 1D below). We observed stable expression of syt3 from embryonic (E14) to adult 

(P110) time points in brain (Figure 1E below). Experiments in Figure 1C-D and Figure 1E below 

were performed by Dr. Saheeb Ahmed and Dr. Katja Burk (Trans-synaptic Signaling Group, ENI 

Göttingen), respectively. 

 

 

Figure 1: Syt3 is expressed in the mouse brain and other organs. 

(A) Validation of the isoform specificity of a syt3 polyclonal antibody (syt3NT, see Table 6) for 
immunocytochemistry; the syt3NT antibody doesn’t detect any other synaptotagmin isoforms expressed in HEK 
cells as GFP fusion constructs. Scale bar = 10 µm. (B) Validation of the isoform specificity of syt3NT antibody for 
Western blotting; the syt3NT antibody doesn’t detect any other synaptotagmin isoforms in lysates from GFP-syt 
transfected HEK cells. (C) Syt3 is highly expressed in the brain, adipose tissue and heart compared to other organs. 
(D) Syt3 is highly expressed in the hippocampus, cortex, thalamus and striatum compared to other brain regions. 
(E) Syt3 expression remains stable from embryonic (E14) to adult (P110) ages. Tubulin and lactate dehydrogenase 
(LDH) served as loading controls. 
These experiments were performed by Dr. Saheeb Ahmed, Dr. Katja Burk and Jan Schrader. 
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To test if syt3 is indeed expressed at synapses, rat dissociated hippocampal cultures (see section 

2.2 above) were immunostained (see section 2.4 above) using the syt3NT antibody. Neurons were 

transfected (see section 2.3 above) with EGFP, which is expressed cytoplasmically, serving as a 

volume marker and microtubule associated protein-2 (MAP-2) was used as a marker for dendrites. 

The syt3NT antibody revealed a punctate endogenous syt3 signal in dendrites but not in MAP-2 

negative processes axons (Figure 2A below). Using epifluorescence microscopy, these 

endogenous syt3 puncta were found to be colocalized with synaptic markers (Figure 2B-D): 

 

 

Figure 2: Endogenous syt3 is localized to dendrites at synapses 

(A) A neuron in culture transfected with EGFP (left) shows endogenous syt3 on a MAP2-positive dendrite, but not 
on a nearby thin transfected MAP2 negative axon (arrowheads). The three panels on the right are a zoom-in of white 
boxed area in the left-most panel. Scale bar = 5 µm. (B) Syt3 colocalizes with a pre-synaptic marker, synaptophysin 
(syp), and the post-synaptic markers PSD-95 and GluA1, a subunit of AMPA receptors. Scale bar = 5 µm. (C) Syt3 
is expressed at excitatory as well as inhibitory synapses. Syt3 puncta colocalize with pre- and post-synaptic 
excitatory synapse markers, vGlut1 and PSD-95, respectively. (D) Syt3 puncta also colocalize with pre- and post-
synaptic inhibitory synapse markers, vGAT and gephyrin, respectively. Scale bar = 5 µm. 
These experiments were performed by Dr. Yo Shinoda (ENI Göttingen). 
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Synaptophysin (syp) is expressed on synaptic vesicle membranes in pre-synaptic axon terminals. 

Post-synaptic density protein 95 (PSD-95), also known as synapse associated protein-90 (SAP-

90), is an important component of the post-synaptic density, an electron dense structure just below 

the post-synaptic membrane which serves an important scaffolding function. GluA1 (previously 

known as GluR1) is a subunit of AMPA receptors, found predominantly at synaptic sites in 

dendrites. All experiments in Figure 2A-D above were performed by Dr. Yo Shinoda (Trans-

synaptic Signaling Group, ENI Göttingen). As the resolution limit of epifluorescence microscopy 

is not enough to resolve pre- and post-synaptic proteins, other biochemical approaches were used 

to determine the precise subcellular localization of syt3.  

 

Subcellular fractionation can be used to isolate synaptosomes, which consist of axonal terminals 

with resealed pre-synaptic membranes attached via adhesion molecules to exposed post-synaptic 

membrane (Figure 3C below). The fractions obtained during subcellular fractionation of brain 

homogenate correspond to subcellular compartments including nucleus, cytoplasm, membranes, 

mitochondria, synaptosomes and synaptic vesicles. The relative enrichment of a protein in these 

fractions indicates its subcellular localization. In agreement with previous studies (Butz et al., 

1999; Sugita et al., 2002), we found syt3 was found enriched in the crude synaptosomal fraction 

(P2’) and the purified synaptosomal membrane fraction (LP1) (Figure 3A below). As syt3 is highly 

homologous to syt1 and syt2, one might predict syt3 to be present on synaptic vesicles. However, 

in concurrence with previous studies (Butz et al., 1999; Sugita et al., 2002), purified synaptic 

vesicles obtained from subcellular fractionation revealed no syt3. Immunoprecipitation of syt1 and 

syb2 (Synaptobrevin2/ VAMP2) to isolate synaptic vesicles also revealed that syt3 is not present 

on synaptic vesicles (Figure 3B).  

 

To test if syt3 is localized to pre- or post-synaptic membranes, a trypsin cleavage assay of 

synaptosomes was performed. Because the pre-synaptic terminal of purified synaptosomes is 

sealed and the post-synaptic side of the membrane is exposed, only post-synaptic proteins are 

cleaved by trypsin (Boyken et al., 2013). Using this assay (see section 2.6 above), we found that 

syt3 was degraded like other post-synaptic proteins (GluA1, GluN1, PSD95 and Homer) (Figure 

3C,D below). As expected, synaptic vesicle proteins (synaptophysin, synapsin, synaptotagmin1, 

rab3a, synaptobrevin2/ VAMP2), pre-synaptic scaffolding proteins (piccolo) and pre-synaptic 
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plasma membrane SNARE proteins (SNAP25, and syntaxin1a) were not degraded (Figure 3D). 

This experiment conclusively showed for the first time that syt3 is on post-synaptic membranes. 

All experiments in Figure 3A-D were performed by Dr. Saheeb Ahmed (Trans-synaptic Signaling 

Group, ENI Göttingen). 

 

 

Figure 3: Syt3 is predominantly localized to post-synaptic membranes 

(A) Western blot analysis of fractions obtained from subcellular fractionation of mouse brain homogenate: 
Homogenate (H), P1 (nuclei and membrane fragments), crude synaptosomal fraction (P2’) and corresponding 
supernatant (S2), synaptosomal fraction (LP1) and, synaptic vesicle fraction (LP2), PI and supernatant (LS2). (B)  
Immunoprecipitation using syt1 or syb2 antibodies coupled to magnetic beads and Western blot analysis showed 
synaptic vesicle proteins but no syt3 in the bound fraction (left). Control IPs with rabbit IgG (r-IgG) and mouse 
IgG (m-IgG) beads showed no proteins in the bound fraction (P) (right). (C) Sketch of a synaptosome, in which 
the pre-synaptic membrane reseals protecting its contents whereas the post-synaptic membrane does not reseal 
leaving post-synaptic proteins accessible to the extracellular solution. Red arrowheads and green circles show 
epitopes of the antibodies that were used to detect the indicated proteins by Western blotting. (D)  Upon treatment 
of synaptosomes with trypsin, pre-synaptic proteins were protected from cleavage (left) whereas post-synaptic 
proteins and syt3 were degraded (right).  
These experiments were done by Dr. Saheeb Ahmed (ENI Göttingen) and sketch prepared by Dr. Camin Dean 
(ENI Göttingen). 
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3.2.  Syt3 undergoes activity-dependent endocytosis upon stimulation 

Superecliptic pHluorin (SEP) is a pH sensitive variant of green fluorescent protein (GFP) that can 

be used to monitor endo- or exocytosis of proteins of interest. pHluorins fluoresce in physiological 

extracellular solution of pH 7.4 and this fluorescence decreases by ~20 fold in the acidic lumen of 

synaptic vesicles with pH 5.5 (Fernández-Alfonso, Kwan, & Ryan, 2006).  

 

Interestingly, in a screen of 12 pHluorin-syt isoforms, pHluorin-syt3 was the only isoform that 

endocytosed upon stimulation in culture, and did so only in dendrites (Dean et al., 2012). Phluorin-

syt3 fluoresces in basal conditions indicating that the N-terminal end of a syt3 subpopulation is 

extracellular, i.e. pHluorin-syt3 is on the plasma membrane, in resting conditions (Figure 4A 

below). Upon a depolarizing stimulus by bath application of 45 mM KCl (Figure 4B), or specific 

activation of NMDA receptors (100 µM NMDA + 20 µM CNQX) (Figure 4C) or AMPA receptors 

(100 µM AMPA + 50 µM APV) (Figure 4D), this fluorescence exponentially decays, indicating 

endocytosis. The internalization of the N-terminal domain of syt3 (endocytosis) was blocked in 

0 mM extracellular [Ca2+], suggesting that syt3 endocytosis is calcium dependent (Figure 4B-D, 

right panels).  

 

Field stimulation experiments (see section 2.4 above) were used to determine the calcium source 

required for endocytosis of syt3. 1 µM TTX was added in these experiments to block action 

potentials and hence, reduce variability in the response due to recurrent activity of neurons. 

Increasing the frequency, duration or current of the electrical field stimulation caused a gradual 

increase in the endocytic response (Figure 4E below). A stimulation protocol which yielded 

maximal response in terms of fluorescence decay was used for subsequent experiments, i.e., 20 Hz, 

30 sec, 100 mA biphasic pulses. Blocking AMPA receptors (with 20 µM CNQX) and/ or NMDA 

receptors (with 50 µM APV) caused the same reduction of pHluorin-syt3 endocytosis. This could 

be explained by NMDA receptors acting as the calcium source for syt3 endocytosis and AMPA 

receptor activation providing the depolarization to relieve the magnesium block of NMDA 

receptors. Blocking L-type voltage-gated calcium channels (using 10 µM Nifedipine) in addition 

to AMPA and NMDA receptors further reduced syt3-pHluorin endocytosis, indicating L-type 

calcium channels are an additional calcium source for syt3. The marginal fluorescence decay in  
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Figure 4: pHluorin-syt3 undergoes calcium dependent endocytosis upon stimulation in culture. 

(A) A hippocampal neuron in culture transfected with pHluorin-syt3 is fluorescent in basal conditions (left panel, 
0 sec) as fluorescence decays exponentially after stimulation (middle panel, 100 sec). Adding NH4Cl reveals 
internal pHluorin puncta (right panel, 300 sec). Scale bar= 5 µm. (B) Bath stimulation with 45 mM KCl induces 
a decay in fluorescence (left panel, n=58 ROIs/ 4 neurons/ 3 cultures), which is blocked in 0 mM extracellular 
[Ca2+] (right panel, n=57 ROIs/ 4 neurons/ 3 cultures). (C) Bath stimulation with 100 µM NMDA (+ 20 µM CNQX) 
induces a decay in fluorescence (left panel, n=33 ROIs/ 5 neurons/ 3 cultures), which is blocked in 0 mM 
extracellular [Ca2+] (right panel, n=40 ROIs/ 3 neurons/ 3 cultures). (D) Bath stimulation with 100 µM AMPA 
(+ 50 µM APV) induces a decay in fluorescence (left panel, n=37 ROIs/ 7 neurons/ 3 cultures), which is blocked 
in 0 mM extracellular [Ca2+] (right panel, n=42 ROIs/ 6 neurons/ 3 cultures). (E) Endocytosis of pHluorin-syt3 
was correlated with the strength of field stimulation (in 1 µM TTX). N = ROIs/ number of neurons/ number of 
cultures in legend. (F) Field stimulation in 50 µM APV and/ or 20 µM CNQX reduced endocytosis of pHluorin-
syt3, which was further reduced by 10 µM Nifedipine. 1 µM TTX was added during field stimulation. n=33 ROIs/ 
5 neurons/ 3 cultures for all conditions except non-stimulated, where n = 53 ROIs/ 11 neurons/ 6 cultures. 
These experiments were carried out by Dr. Yo Shinoda (ENI Göttingen) except panel (e) by Ankit Awasthi. 
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the absence of field stimulation indicates the bleaching rate of pHluorin (Figure 4F above). 

Experiments in Figure 4A-D, F above were performed by Dr. Yo Shinoda (Trans-synaptic 

Signaling Group, ENI Göttingen). 

 

3.3.  Recombinant syt3 pulls down GluA2 and BRAG2 

Since the endocytosis of pHluorin-syt3 resembles that of GluA2-pHluorin upon NMDA 

stimulation (D.-T. T. Lin & Huganir, 2007) and AMPA or NMDA stimulation can induce 

internalization of AMPA receptors (Beattie et al., 2000; Ehlers, 2000; S. H. Lee, Simonetta, & 

Sheng, 2004; S. Lee, Liu, Wang, & Sheng, 2002; J. W. Lin et al., 2000), the binding partners of 

syt3 were examined for the presence of AMPA receptor internalization machinery. As multiple 

immunoprecipitation attempts with the syt3NT antibody failed, recombinant pull down assays 

were used. Soluble syt3 C2AB fused to a His-tag was recombinantly expressed, affinity purified 

and immobilized on nickel beads (see section 2.6 above). Binding partners of syt3 were pulled 

down from mouse brain homogenate (Figure 5A below) in the absence of calcium and in the 

presence of 500 mM NaCl. 

 

Syt3 indeed pulled down a subunit of AMPA receptors, GluA2, but not the other subunits GluA1 

or GluA3. Syt3 did not pull down the obligatory subunit of NMDA receptors, GluN1 (Paoletti, 

Bellone, & Zhou, 2013), GluN2A or a subunit of GABA receptors, GABAAR1 (Figure 5B below). 

 

GluA2 is a key player in internalization of AMPA receptors via interacting partners of its C-tail. 

In the last nearly 20 years, various interacting partners of the GluA2 C-terminal tail have been 

discovered which regulate its trafficking (H. Dong, RJ, Fung, Lanahan, & Worley, 1997; Hanley, 

Khatri, Hanson, & Ziff, 2002; Jaafari, Henley, & Hanley, 2012; S. Lee et al., 2002; Rocca et al., 

2013; Scholz et al., 2010; Yao et al., 2008) (Figure 5C below). We found that out of these proteins, 

BRAG2, was pulled down by syt3, along with AP-2, but GRIP and PICK1 were not pulled down 

by syt3 (Figure 5B below). 

 

As the interaction between synaptotagmin1 (syt1) and the pre-synaptic SNARE (SNAP (Soluble 

NSF Attachment Protein) REceptor) proteins is crucial for calcium evoked membrane fusion and 
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neurotransmitter release, we also tested if syt3 pulled down any post-synaptic SNARE proteins. 

We found that syt3 indeed pulled down SNARE proteins implicated in LTP, SNAP47 and 

syntaxin3 (Jurado et al., 2013); a protein implicated in activity dependent surface trafficking of 

AMPA receptors, syntaxin4 (Kennedy, Davison, Robinson, & Ehlers, 2010),(Arendt et al., 2015); 

and VAMP3, which has so far only been implicated in trafficking of glutamate transporters in 

astrocytes (Ropert, Jalil, & Li, 2016) and was found in Cajal-retzius cells (Barber et al., 2015) 

(Figure 5B). These experiments were performed by Dr. Saheeb Ahmed (Trans-synaptic Signaling 

 

Figure 5: Recombinant syt3 pulls down GluA2, AP-2 and BRAG2 from brain homogenate 

(A) Validation of recombinant pull down assay by Western blot. In brain homogenate input, syt3 is ~70 kD. 
Recombinantly expressed and affinity purified syt3 C2AB is ~55 kD. (B) Western blot analysis of the pull down 
assay. Input was mouse brain homogenate; syt3+ indicates pulled down proteins which bound to recombinant syt3 
C2AB immobilized on nickel beads; syt3- indicates protein that bound non-specifically to beads alone as a negative 
control. (C) Diagram of the most important proteins implicated in regulating trafficking of AMPA receptors via 
their interaction with the GluA2 cytoplasmic C-terminal tail. AP-2: Adaptor protein complex; NSF: N-
ethylmaleimide-sensitive factor ATPase; BRAG2: Brefeldin-A resistant Arf guanine nucleotide exchange factor 
(GEF) for the guanosine triphosphate hydrolase (GTPase) Arf6 (ADP-ribosylation factor 6); GRIP: Glutamate 
receptor interacting protein; PICK1: protein interacting with protein kinase C. 
The recombinant pull down assays were performed by Dr. Saheeb Ahmed (ENI Göttingen). Dr. Katja Burk ran 
Western blots to test GluA3, PICK1 and BRAG2 pulldown. 
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Group, ENI Göttingen). Dr. Katja Burk (ENI Göttingen) performed Western blot analysis for 

GluA3, PICK1 and BRAG2. 

3.4.  Syt3 mediates AMPA and NMDA induced AMPA receptor internalization 

As syt3 binds GluA2, AP2 and BRAG2, we next tested if syt3 is necessary for the activity 

dependent internalization of AMPA receptors. Many studies have used selective agonist 

stimulation of ionotropic glutamatergic receptors with AMPA or NMDA to induce internalization 

of AMPA receptors (Beattie et al., 2000; Ehlers, 2000; S. H. Lee, Simonetta, & Sheng, 2004; S. 

Lee, Liu, Wang, & Sheng, 2002; J. W. Lin et al., 2000). Incubation of live neurons with antibodies 

against surface epitopes of endogenous GluA1 or GluA2 AMPA receptor subunits and subsequent 

selective staining of surface and internal populations with different fluorophore-conjugated 

secondary antibodies was used to examine the internalization of AMPA receptors upon stimulation 

with AMPA or NMDA (see section 2.4 above). Because the transfection method used had low 

efficiency, i.e., ~10% cells were transfected, the analyzed neurons were predominantly innervated 

by wild type pre-synaptic partners. Thus, this method allows selective determination of post-

synaptic effects of overexpression of wild-type syt3 (syt3-GFP), calcium mutant syt3 (syt3Cam) 

or small hairpin RNA (shRNA)-mediated syt3 knockdown (syt3 KD). 

 

Figure 6: Validation of shRNA mediated knockdown of syt3 
Western blot analysis of HEK cells expressing syt3 in the presence or absence of three distinct syt3 shRNA 
knockdown constructs.  
This experiment was performed by Dr. Saheeb Ahmed (ENI Göttingen). 
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Figure 7: Post-synaptic syt3 mediates AMPA & NMDA induced AMPA receptor internalization. 

(A-B) Hippocampal neuron cultures sparsely transfected with EGFP, syt3-GFP, shRNA syt3 KD or syt3Cam (a 
syt3 calcium mutant) were used to alter post-synaptic syt3 (top row). Antibody uptake assays were used to 
distinctly label surface (middle row) and internal (bottom row) populations of endogenous GluA1 (A) and 
GluA2 (B)-containing AMPA receptors in the presence and absence of 100 µM AMPA stimulation. (C-D) 
Overexpressing syt3 increased AMPA receptor internalization, whereas syt3 KD or syt3Cam blocked AMPA 
induced internalization of GluA1 (C) and GluA2 (D). Number of neurons analyzed for GluA1: EGFP=69 (ctrl), 
46 (AMPA), 47 (NMDA), syt3-GFP=65 (ctrl), 47 (AMPA), 43 (NMDA), syt3 KD=41 (ctrl), 38 (AMPA), 24 
(NMDA), syt3 Cam=37 (ctrl), 36 (AMPA), 31 (NMDA); for GluA2: EGFP=64 (ctrl), 68 (AMPA) 28 (NMDA), 
syt3-GFP=46 (ctrl), 46 (AMPA), 23 (NMDA), syt3 KD=51 (ctrl), 69 (AMPA), 23 (NMDA), syt3 Cam=42 (ctrl), 
28 (AMPA), 27 (NMDA). Statistical significance determined by Student’s t-test with Bonferroni correction. 
Experiments were performed by Ankit Awasthi and Dr. Camin Dean (ENI Göttingen) and analyzed by Dr. Camin 
Dean. 
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The syt3 KD constructs were first validated in HEK cells. Up to 80% reduction in syt3 protein 

levels could be achieved by co-transfection of the three syt3 KD shRNA constructs (Figure 6 

above). 

 

 AMPA or NMDA stimulation increased the internalization of GluA1 and GluA2 (Figure 7C-D, 

Figure 8A-B) in cell somas. Post-synaptic syt3 over-expression further enhanced the AMPA or 

NMDA mediated internalization of GluA1-containing and GluA2-containing AMPA receptors. 

On the other hand, overexpressing a calcium mutant of syt3 or knocking down syt3 blocked the 

AMPA or NMDA induced GluA1 or GluA2 internalization altogether. Overexpression of the 

calcium mutant of syt3, in fact, led to significantly higher surface accumulation of GluA2-

containing (Figure 7D) but not GluA1-containing AMPA receptors (Figure 7C) upon AMPA or 

NMDA stimulation. Importantly, none of the manipulations of post-synaptic syt3 had any effect 

on the basal surface/internal levels of GluA1-containing or GluA2-containing AMPA receptors. 

Thus, syt3 and its calcium binding sites are necessary for AMPA or NMDA induced internalization 

of GluA1-containing and GluA2-containing AMPA receptors. These experiments were performed 

by Ankit Awasthi and Dr. Camin Dean (ENI Göttingen) and analyzed by Dr. Camin Dean. 

 

 

Figure 8:  Syt3 is necessary for NMDA induced GluA1 and GluA2 internalization 
(A-B) Representative images of GluA1 (A) and GluA2 (B) antibody uptake assays. Analysis of this dataset is 
shown in (Figure 7C-D above).  
These experiments were performed by Ankit Awasthi and Dr. Camin Dean; analyzed by Dr. Camin Dean (ENI 
Göttingen) 
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The syt3 knockout (KO) mouse (see section 2.1 above) was validated using the syt3NT and syt3NB 

(from Neuromab) antibody in Western blotting and immunohistochemistry. Syt3 was detected as 

a single band at the expected size of ~70 KDa in wild-type mouse brain homogenate but not in 

syt3 KO mouse brain homogenate (Figure 9A above). Similarly, syt3 was detected in somas of CA1 

and CA3 pyramidal neurons and granule cells of the dentate gyrus in hippocampal slices from WT 

mice but not from syt3 KO mice (Figure 9B-D above). These experiments were performed by Dr. 

Saheeb Ahmed and Dr. Binu Ramachandran (ENI Göttingen). 

 

 

Figure 9: Validation of the syt3 knockout mouse 

(A)Western blots show syt3 detected at the expected size of ~70 KDa in WT mouse brain homogenate but not in 
KO brain homogenate. Syt3NB refers to a syt3 antibody from Neuromab. (B-D) Syt3 was detected in somas of 
CA1(B) and CA3 (C) pyramidal neurons and dentate gyrus granule cells (D) in WT hippocampal slices but not in 
syt3 KO mouse hippocampal slices. MAP2 was used to mark dendrites. All scale bars = 50 µm. 
Experiments in panel A were performed by Dr. Saheeb Ahmed (ENI Göttingen) and in panels B-D were performed 
by Dr. Binu Ramachandran (ENI Göttingen) 
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As the syt3 knockout mouse was available, we repeated the AMPA receptor internalization assays 

in hippocampal cultures from homozygous syt3 knockout mice (see section 2.2 above). AMPA 

and NMDA induced GluA2 internalization was blocked in syt3 KO cultures, an effect which could 

be mimicked by bath application of the Tat-GluA2-3Y peptide to WT cultures (Figure 10A, B), 

which blocks the activity dependent internalization of GluA2 containing AMPA receptors, leaving 

basal trafficking of AMPA receptors unaffected. The mechanism of action of the GluA2-3Y 

peptide is most likely via competitive inhibition of binding of BRAG2 to the dephosphorylated 

Y876 residue of the GluA2 C-terminal tail and the subsequent recruitment of AP2 and clathrin to 

 

Figure 10: AMPA and NMDA induced GluA2 internalization is blocked in syt3 KO mouse cultures 

(A) Representative images of surface and internal labelled GluA2 in wild type and syt3 KO mouse cultures in 
basal, AMPA and NMDA stimulated conditions. AMPA stimulations were also carried out in WT cultures in the 
presence of 1µM Tat-GluA2-3Y peptide. (B) Quantitation of GluA2 internalization index (mean ± SEM) in the 
indicated conditions. AMPA and NMDA induced GluA2 internalization was blocked in syt3 KO cultures. 
Application of the membrane permeable GluA2-3Y peptide to WT cultures mimicked the effect of syt3 KO 
cultures. Scale bars = 10 µm. Number of neurons analyzed: wt=29 (ctrl), 22 (AMPA), 17 (NMDA), syt3 KO=31 
(ctrl), 24 (AMPA), 18 (NMDA), wt+GluA2-3Y= 18. Scale bars = 10 µm; Significance determined by Student’s t-
test with Bonferroni correction. 
This experiment was performed by Ankit Awasthi and analyzed by Dr. Camin Dean. 
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mediate endocytosis of GluA2 containing AMPA receptors (Ahmadian et al., 2004; Z. Dong et al., 

2013, 2015; Hardt, Nader, & Wang, 2014; Migues et al., 2016; Scholz et al., 2010). 

 

3.5.  Syt3 does not affect basal synaptic transmission or receptor composition 

The antibody uptake/ receptor internalization assay showed that syt3 doesn’t affect internalization 

of AMPA receptors in basal conditions but is necessary for activity dependent internalization of 

AMPA receptors. However, this analysis could have included many extra-synaptic receptor 

populations and thus, might not be directly relevant to synaptic transmission and plasticity. We, 

thus, checked basal synaptic receptor composition using whole-cell recordings, which exclusively 

measures synaptic receptors.  

 

Miniature excitatory post-synaptic currents (miniature EPSCs/ minis) recorded from transfected 

neurons in hippocampal cultures were analyzed. In the presence of tetrodotoxin (TTX), EPSCs 

recorded from neurons arise only from spontaneous release of neurotransmitter, which is thought 

to be mediated by stochastic fusion of single synaptic vesicles with the pre-synaptic membrane. 

Since pre-synaptic release is quantal, the amplitude of mEPSCs reflects the number of post-

synaptic receptors and the frequency of mEPSCs reflects the number of pre-synaptic quanta 

released. The mEPSC decay kinetics could be affected by the receptor subtype composition (Liu 

SJ et al., 2012). Over-expression or knock-down of syt3 did not affect the amplitude, frequency or 

decay time of mEPSCs (Figure 11A-D below). mEPSC decay time = 2.3 ± 0.2 ms (EGFP), 2.1 ± 

0.2 ms (Syt3-GFP), 1.9 ± 0.2 ms (Syt3 KD) (Mean ± SEM). 

 

We corroborated these results by comparing basal synaptic transmission at the CA3-CA1 synapse 

in acute hippocampal slices from P12-P21 syt3 KO mice and WT littermates. The amplitude of 

the EPSCs evoked by stimulation of the CA3 Schaffer collaterals is dependent on the stimulation 

intensity which affects the number of stimulated synapses. Thus, only the ratios of the various 

post-synaptic currents are comparable between slices. There was no change in the NMDA/AMPA, 

GABA/AMPA or GABA/ NMDA ratio (Figure 11F-H below) in the syt3 KO mouse. There was 

also no change in the AMPAR EPSC decay time (WT: 19.4 ± 4 ms, KO: 21.9 ± 4.6 ms), or 

GABA IPSC decay time (WT: 76 ± 4.9 ms, KO: 58.8 ± 7 ms). 
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Figure 11: Syt3 does not affect basal synaptic transmission 

(A) A neuron transfected with EGFP (white) in rat hippocampal culture impaled by a patch pipette. Superposition 
of the bright field image shows nearby untransfected neurons. (B) Representative AMPA receptor mEPSCs 
recorded from neurons transfected with EGFP (control), syt3-GFP (overexpression) and syt3KD constructs (knock-
down) in the presence of 1µM TTX and 50 µM picrotoxin at a holding potential of -60 mV. (C-D) The amplitude 
(C) and average frequency (D) of mEPSCs (mean ± SEM) was unaffected by a change in post-synaptic syt3 levels. 
Significance determined by Student’s t-test with Bonferroni correction (EGFP= 8 neurons/ 2 cultures, syt3-GFP= 
15 neurons/ 3 cultures, syt3 KD= 9 neurons/ 2 cultures). (E) Representative traces of post-synaptic currents evoked 
in CA1 pyramidal neurons by stimulation of CA3 Schaffer collaterals in acute hippocampal slices from syt3 
knockout mice and WT littermates. After recording AMPA receptor EPSCs at the measured Cl- reversal potential 
and GABA receptor IPSCs at the reversal potential for AMPA & NMDA receptors, 100 µM picrotoxin was 
perfused in order to record NMDA+AMPA receptor compound EPSCs at a holding potential of +40 mV. The 
NMDA receptor EPSC was measured from the compound EPSC at 60 ms aftr the onset of the AMPA EPSC. (F-
H) Receptor ratios (mean ± SEM) at the CA3-CA1 synapse were unchanged in syt3 KO mice. Significance 
determined by Student’s t-test (n = 9 slices/neurons from 4 animals for wild-type, and 9 slices/neurons from 5 
animals for syt3 knockout).  
Most of the data for panels E-H were generated and analyzed by Noam Nitzan (MSc IMPRS Neuroscience 
Göttingen) under the supervision of Ankit Awasthi and the remaining by Ankit Awasthi. 
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3.6.  Syt3 is necessary for AMPA induced synaptic AMPA receptor 

internalization 

• Effect of syt3 on mEPSC amplitude and frequency 

Although syt3 is necessary for AMPA or NMDA induced internalization of GluA1-containing and 

GluA2-containing AMPA receptors (section 3.4 above), a further question remains: Is syt3 

necessary for activity-dependent internalization of synaptic AMPA receptors? To test this, AMPA 

receptor mEPSCs were recorded by whole cell recordings at a holding potential of –60 mV in the 

presence of 1µM TTX and 100 µM picrotoxin from syt3 knockout and wildtype littermate mouse 

hippocampal cultures. To test the effect of syt3 on activity-dependent internalization of synaptic 

AMPA receptors, mEPSCs were recorded from neurons in basal conditions and after stimulation 

with 100 µM AMPA, as in receptor internalization assays (section 3.4 above).  

 

There was a statistically significant shift of the mEPSC amplitude distribution towards smaller 

amplitudes and a decrease in median amplitudes following stimulation (Figure 12A, F below). 

Overexpression of syt3 caused a statistically significant increase in the fraction of events in the 5-

10 pA and 10-15 pA amplitude bins upon AMPA stimulation (Figure 12B), whereas such an 

increase was only observed in the 5-10 pA amplitude bin in control conditions, suggesting at least 

some of the GluA1- and GluA2-containing AMPA receptors internalized by syt3 in the receptor 

internalization assays are directly involved in synaptic transmission. However, the decrease in 

median mEPSC amplitude upon stimulation was not significantly enhanced upon post-synaptic 

syt3 overexpression (Figure 12F) indicating that some proportion of AMPA receptors internalized 

by syt3 are extra-synaptic. 

 

Nevertheless, the shift in amplitude distribution and reduction in median amplitude was completely 

blocked in syt3 KO cultures (Figure 12C, F) and almost completely in WT cultures treated with 

1µM Tat-GluA2-3Y peptide (the distribution slightly shifted to the left in Figure 12D although the 

median was not significantly different in Figure 12F). Preliminary data showed that the KO 

phenotype could be rescued by over-expressing syt3-GFP in syt3 KO cultures indicated by a 

leftward shift in the amplitude distribution and a decrease in median amplitude (Figure 12E, F). 

Thus, syt3 is necessary for the AMPA induced internalization of synaptic AMPA receptors. 
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Figure 12: Syt3 is necessary for the AMPA induced internalization of synaptic AMPA receptors. 

(A-D) Upon AMPA stimulation, the frequency distribution of AMPA receptor mEPSC amplitudes is shifted to 
smaller amplitudes in neurons from WT mouse P0 cultures transfected with EGFP (A) or syt3-GFP (B) but blocked 
in syt3 KO mouse P0 cultures transfected with EGFP (C) or in WT mouse P0 cultures treated with 1 µM Tat-
GluA2-3Y peptide (D). The shift of the distribution to smaller amplitudes could be rescued in syt3 KO cultures 
(E) by expressing syt3-GFP (preliminary dataset). Statistical significance in A-E was tested by 2-way ANOVA 
with Sidak’s multiple comparisons test (**, p<0.01; ***, p<0.001; ****, p<0.01). (F) Quantitation of mEPSC 
amplitudes in panels A-E is shown as median ± S.E. mean. Statistical significance measured by Student’s t-tests 
between basal and stimulated conditions in each manipulation without assuming consistent standard deviations (**, 
p<0.01). Welch’s t-tests between basal condition in each manipulation vs. WT EGFP basal (####, p<0.0001). (G) 
The median frequency of mEPSCs was unchanged. Statistical significance measured by Student’s t-tests between 
basal and stimulated conditions in each manipulation. However, basal frequency in KO cultures transfected with 
syt3-GFP was higher than WT EGFP basal, WT syt3-GFP basal and WT EGFP+3Y but not syt3 KO EGFP basal 
conditions (#, p<0.05 student’s t-test). N is shown as neurons/cultures in each bar graph. Amplitude bins higher 
than 70 pA were excluded from analysis because they had an insignificant fraction of events. 
Parts of the dataset were generated and analyzed by Alina Heukamp & Tal Dankovich (MSc IMPRS Neuroscience, 
Göttingen) under the supervision of Ankit Awasthi and the remaining by Ankit Awasthi. 
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Comparing all mEPSC amplitude distributions in basal conditions revealed a significantly larger 

number of events in the 10-15 pA bin in syt3 KO (2 way-ANOVA with tukey’s multiple 

comparisons test: KO eGFP vs WT eGFP, p<0.0001; vs WT syt3-GFP, p<0.0001; vs WT eGFP + 

3Y, p=0.003), an effect that was not evident in the mean mEPSC amplitude after syt3 knock down 

in rat dissociated hippocampal cultures (Figure 11C above) or receptor internalization assays 

(Figure 7, Figure 8, Figure 10). This suggests that syt3 might also be partly involved in the surface 

trafficking of AMPA receptors in resting conditions. However, the median mEPSC amplitude in 

all syt3 manipulations in basal conditions were not significantly different (One-way ANOVA with 

Dunnett’s multiple comparisons test with WT eGFP basal, p> 0.29 in all cases) indicating that this  

was not a substantial function of syt3 relative to its role in AMPA induced internalization of 

synaptic AMPA receptors. 

  

Consistent with a predominantly post-synaptic function of syt3, there were no changes in mEPSC 

frequency, calculated as inverse of the median of the inter-event interval distribution. Expressing 

syt3 in KO cultures gave rise to an almost ~2-fold higher frequency of mEPSCs, but this data is 

preliminary and therefore inconclusive. 

 

• Effect of syt3 on mEPSC decay kinetics 

Interestingly, there was a concomitant decrease in the mEPSC decay time (Figure 13 below) along 

with the decrease in mEPSC amplitudes upon AMPA stimulation. As GluA2-containing AMPA 

receptors have longer decay times (Liu & Savtchouk, 2012), this shift could be explained by 

internalization of GluA2-containing AMPA receptors upon AMPA stimulation. The distribution 

of mEPSC decay time constant shifted to lower values (Figure 13A) and the median mEPSC decay 

time constant significantly decreased (by ~1 msec) upon AMPA stimulation (Figure 13F). 

 

Although the percentage of events in the 0-1 msec bin upon AMPA stimulation was significantly 

less for overexpression of syt3 compared to control conditions, the median values were not 

significantly different (Figure 13F), which suggests that overexpression of syt3 only marginally 

supressed the internalization of GluA2 containing AMPA receptors.  
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On the other hand, the AMPA induced decrease in mEPSC decay time was completely blocked in 

syt3 KO cultures (Figure 13C, F) or in WT cultures treated with 1 µM Tat-GluA2-3Y peptide 

 

Figure 13: Syt3 is necessary for the AMPA stimulation induced decrease in mEPSC decay time 

(A) Upon AMPA stimulation, the frequency distribution of AMPA receptor mEPSC decay time constant is shifted 
to smaller values in WT mouse neurons transfected with EGFP (A) or syt3-GFP (B) but blocked in syt3 KO mouse 
cultures transfected with EGFP (C) or in WT mouse P0 cultures treated with 1 µM Tat-GluA2-3Y peptide (D). 
The shift of the distribution to smaller values could be rescued in KO cultures (E) by expressing syt3-GFP 
(preliminary dataset). Statistical significance in A-E was tested by 2-way ANOVA with Sidak’s multiple 
comparisons test (*, p<0.05; ***, p<0.001; ****, p<0.01). (F) Quantitation of median mEPSC decay time constant 
in panels A-E shown as median ± S.E. mean. Statistical significance measured by Welch’s t-tests between basal 
and stimulated conditions in each manipulation (*, p<0.05; **, p<0.01), and by Welch’s t-tests between basal 
conditions in each manipulation vs. WT EGFP basal condition (#, p<0.05). N numbers are shown as neurons/ 
cultures in each bar graph. Decay time bins beyond 12 ms were excluded from analysis because they had an 
insignificant fraction of events. 
Parts of the dataset were generated and analyzed by Alina Heukamp & Tal Dankovich (MSc IMPRS Neuroscience, 
Göttingen) under the supervision of Ankit Awasthi and the remaining by Ankit Awasthi. 
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(Figure 13D, F), in agreement with a complete lack of internalization of AMPA receptors (Figure 

12C,D, F above). Preliminary data suggests this block could be partially rescued by expressing 

syt3-GFP in syt3 KO cultures (Figure 13E, F). 

 

Comparing all mEPSC decay time constant distributions in basal conditions revealed a significant 

shift to smaller values in syt3 KO cultures or WT cultures treated with 1 µM Tat-GluA2-3Y peptide 

compared to WT cultures transfected with EGFP or syt3-GFP (In the 1-2 ms bin, 2 way-ANOVA 

with Tukey’s multiple comparisons test: KO eGFP vs WT eGFP, p<0.0001; KO eGFP vs WT 

syt3-GFP, p<0.001; WT eGFP + 3Y vs WT eGFP, p<0.001; WT eGFP + 3Y vs WT syt3-GFP, 

p<0.05. In the 2-3 ms bin, 2 way-ANOVA with tukey’s multiple comparisons test: KO eGFP vs 

WT eGFP, p<0.0001; KO eGFP vs WT syt3-GFP, p<0.05; WT eGFP + 3Y vs WT eGFP, p<0.01. 

In the 5-6 ms bin, KO eGFP vs WT eGFP, p<0.05). Additionally, the median mEPSC decay time 

constant of syt3 KO cultures in basal conditions was significantly reduced in comparison with 

controls (p<0.05). This effect, which was not evident in the mean mEPSC decay time after syt3 

knock down in rat hippocampal cultures (section 3.5 above), could be due to less GluA2-

containing surface AMPA receptors in syt3 KO neurons, but this finding was not examined further. 

 

3.7.  Syt3 mediates LTP decay after induction 

Because syt3 mediates activity-dependent internalization of AMPA receptors in dissociated 

hippocampal cultures, we hypothesized that synaptic plasticity in syt3 knockout mice may be 

affected.  

 

Strong–LTP, induced by high frequency stimulation (three 1 s 100 Hz stimulation trains separated 

by 10 min) in the Schaffer collateral pathway, was unchanged in syt3 knockout mouse 

hippocampal slices (Figure 14A below). However, weak-LTP, induced by a weaker stimulation 

(16 pulses at 100 Hz), decayed in WT slices over the course of 1 hour but remained reinforced in 

syt3 KO slices for at least 4 hours (Figure 14B, D below). The decay of weak-LTP depends on 

activity dependent GluA2-AMPA receptor internalization via the C-terminal 3Y motif of GluA2, 

since competitive inhibition of this machinery via injection of the Tat-GluA2-3Y peptide into the 

dorsal hippocampus of rats blocked the decay of weak-LTP (Z. Dong et al., 2015). We found the 
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same effect of weak-LTP reinforcement by the GluA2-3Y peptide in acute mouse hippocampal 

slices (Figure 14C below). This result concurs with previous results showing that the GluA2-3Y 

peptide blocks AMPA or NMDA induced internalization of GluA1-containing and GluA2-

containing AMPA receptors (Figure 10 above) and AMPA induced internalization of synaptic  

AMPA receptors (Figure 12D,F and Figure 13D,F above).  

 

Figure 14: Weak-LTP is strongly reinforced in syt3 KO hippocampal slices 

(A) Time course of field excitatory post-synaptic potentials (fEPSP) slope recorded from the stratum radiatum of 
acute hippocampal slices from wild-type and syt3 KO mice. Strong-LTP was induced by 3 trains of 100 Hz, 1 sec 
stimulation separated by 10 minutes (n=6 WT, 6 KO). Strong LTP is unaffected in syt3 KO slices. (B) Time course 
of fEPSP slope from WT and syt3 KO mouse hippocampal slices upon induction of weak-LTP by 1 train of 100 Hz, 
160 msec stimulation (n=10 WT, 11 KO). Weak LTP is reinforced in syt3 KO slices. (C) Effect of 1 µM Tat-
GluA2-3Y peptide on weak-LTP recorded from WT mouse hippocampal slices upon induction with 1 train of 
100 Hz, 160 msec stimulation (n=9 WT, 7 WT+Tat-GluA2-3Y). The GluA2-3Y peptide strongly reinforces weak 
LTP. (D) Effect of 1 µM Tat-GluA23Y peptide on weak-LTP recorded from syt3 KO mouse hippocampal slices 
upon induction with 1 train of 100 Hz, 160 msec stimulation (n=6 KO, 7 KO+Tat-GluA2-3Y). The effect of the 
GluA2-3Y peptide is occluded in syt3 KO slices. 
This experiment was performed by Dr. Binu Ramachandran (ENI Göttingen). 
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As syt3 pulled down GluA2, AP2 and BRAG2 (Figure 5B above) and is necessary for activity 

dependent AMPA receptor internalization (section 3.4 and 3.6 above), it appears that syt3 is part 

of the internalization machinery which is inhibited by the GluA2-3Y peptide. The extent of 

mechanistic overlap between knocking out syt3 and applying the GluA2-3Y peptide was tested. In 

terms of reinforcement of weak-LTP, knocking out syt3 completely occluded the effect of the 

GluA2-3Y peptide (Figure 14D above). 

 

The "3Y" mechanism behind the decay of strong or weak-LTP (which mediates activity dependent 

internalization of AMPA receptors and is inhibited by the GluA2-3Y peptide) is also inhibited by 

an atypical protein kinase C isoform called Protein kinase C isoform zeta, or PKMζ (Z. Dong et 

al., 2015). Bath application of 1 µM ZIP (Zeta inhibitory peptide, a membrane permeable peptide 

whose sequence matches the consensus sequence of the regulatory domain of protein kinase C and 

therefore inhibits its catalytic domain) 1 hour after LTP induction can lead to decay of strong-LTP, 

which otherwise persists for hours (Serrano, Yao, & Sacktor, 2005; Yao et al., 2008). The GluA2-

3Y peptide prevents the ZIP mediated decay of strong-LTP indicating that the 3Y internalization 

machinery is necessary for decay of strong-LTP. However, the 3Y internalization machinery does 

not seem to be active throughout the persistent phase of LTP because application of the GluA2-

3Y peptide alone an hour after strong-LTP induction does not cause an increase in potentiation (Z. 

Dong et al., 2015). As GluA2-3Y renders strong-LTP insensitive to ZIP, the effect of ZIP in the 

maintenance phase of strong-LTP in syt3 KO slices was tested. 

 

Although ZIP caused decay of strong-LTP at the CA3-CA1 synapse in WT mouse acute 

hippocampal slices (Figure 15A below), this decay was blocked in syt3 KO slices supporting our 

hypothesis (Figure 15B). Extending the results from Z. Dong et al., 2015, who showed that the 

GluA2-3Y peptide renders strong-LTP insensitive to ZIP, weak-LTP reinforced by the GluA2-3Y 

peptide in WT hippocampal slices was also found to be insensitive to ZIP (Figure 15C). 

Confirming the necessity of syt3 in the 3Y machinery, weak-LTP in syt3 KO mice was also found 

to be insensitive to ZIP (Figure 15D). 

 

All experiments in Figure 14 and Figure 15 were performed by Dr. Binu Ramachandran (ENI 

Göttingen). 
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Figure 15: ZIP mediated decay of LTP is blocked in the syt3 KO mice 

(A) Time course of fEPSP slope from the CA3-CA1 synapse of WT hippocampal slices upon induction of strong-
LTP. Application of 1 µM ZIP (Zeta inhibitory peptide) 1 hour after LTP induction leads to decay of strong-LTP. 
(n=6 WT, 6 WT+ZIP). (B) Time course of fEPSP slope from the CA3-CA1 synapse of syt3 KO hippocampal slices 
upon induction of strong-LTP. Application of 1 µM ZIP 1 hour after LTP induction does not lead to decay of strong-
LTP. (n=6 KO, 6 KO+ZIP). (C) Time course of fEPSP slope from the CA3-CA1 synapse of WT hippocampal 
slices upon induction of weak-LTP. Application of 1 µM ZIP 1 hour after LTP induction does not lead to decay of 
Tat-GluA2-3Y reinforced weak-LTP (n=7 WT, 7 WT+ZIP). (D) Time course of fEPSP slope from the CA3-CA1 
synapse of syt3KO hippocampal slices upon induction of weak-LTP. Application of 1 µM ZIP 1 hour after LTP 
induction does not lead to decay of Tat-GluA2-3Y reinforced weak-LTP (n=6 KO, 6 KO+ZIP). 
This experiment was performed by Dr. Binu Ramachandran (ENI Göttingen). 
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3.8.  Syt3 KO mice show normal learning but impaired forgetting 

As syt3 is a necessary component of the 3Y machinery and hence, necessary for the activity 

dependent internalization of AMPA receptors and synaptic depression, the effect of syt3 in decay 

of memories, forgetting, was tested. As weak-LTP at the CA3-CA1 synapse in the hippocampus  

was reinforced into strong-LTP in syt3 KO mice in vitro, we also tested if short-term memory was 

reinforced into long-term memory or if the syt3 KO mouse could learn tasks better than WT mice, 

or if older memories interfered with expression of a newer memory. 

 

• Syt3 KO mice show no anxiety, hyperactivity or impairments in recognition 

memory 

Syt3 KO mice were tested on standard behavioural tests including the open field and elevated plus 

maze to test for anxiolytic behaviour. The exploration pattern of the elevated plus maze and the 

open field indicated that syt3 KO mice have normal anxiety (Figure 16A, D). Syt3 KO mice weigh 

less than their WT littermates (Figure 16B). Syt3 KO mice did not show any hyperactivity (Figure 

16D). Thus, anxiety or hyperactivity cannot be confounding factors for the spatial memory and 

fear memory tests conducted on the syt3 KO mice.  

 

The novel object recognition task, which is a visual recognition task, involves the perirhinal cortex 

(S. Griffiths et al., 2008). Short-term novel object recognition memory, recalled 12 min after 

habituation to objects was not improved in syt3 KO mice (Figure 16E).  We then tested short-term 

and long-term memory in a hippocampal task of spatial exploration. GluA1 knockout mice showed 

impaired short term memory but enhanced long-term memory in this task, indicating it can be used 

to study both kinds of memory (D. J. Sanderson et al., 2009). However, both short-term and long-

term spatial recognition memory were unchanged in the syt3 KO mouse (Figure 16F). The task 

was perhaps not optimized enough to test long-term memory because WT mice showed a 

discrimination ratio of only 0.5. Thus, we tested syt3 KO mice in other hippocampal dependent 

tasks.  
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Figure 16: Syt3 KO mice show no abnormalities in anxiety, hyperactivity or spatial memory 
(A) Syt3 KO mice show normal anxiety in the elevated plus maze. (Left) Video tracking results of a typical trial, 
where the position of the mouse in every frame is shown as a black cross. Mice typically avoid open spaces like 
the open arms. (Middle) A single frame from the video camera. The open arms are the horizontal arms. (Right) 
Syt3 KO mice spend the same % time in open arms as WT mice, indicating no anxiolytic behaviour (n= 20 WT, 
20 KO). (B) Syt3 KO mice are smaller and weigh lesser on average (n= 20 WT, 21 KO). (C) Syt3 KO mice show 
normal anxiety in the open field test. (Left) Video tracking results of a single trial, where the position of the mouse 
in every frame is shown as a black cross. Mice typically avoid open spaces like the 4 central squares away from the 
walls. (Right) A single frame from the video camera. Mice typically avoid the 4 central squares out of the 16 
squares. (D) (Left) Syt3 KO mice walk the same distance as WT mice, indicating no hyperactivity. (Right) Syt3 
KO mice spend the same % time in the central 4 squares of the open field as WT mice, indicating no anxiolytic 
behaviour (n= 20 WT, 21 KO). (E) (Left) Video tracking results of a typical trial, where the position of the mouse 
in every frame is shown as a black cross. Mice habituated to the open field explore objects (in this case, two identical 
bottle caps placed upside down) by cautiously approaching them and sniffing or touching them with their whiskers 
or poking their nose into cavities. Each approach can be distinctly seen. (Middle) A single frame from the video 
camera. (Right) Syt3 KO mice spent the same time exploring the novel object as WT mice, indicating no 
differences in short term (~12 min) novel object recognition memory (n= 13 WT, 14 KO). (F) (Left) Video tracking 
results of a typical training trial, where the entry into the novel arm is blocked. The position of the mouse in every 
frame is shown as a black cross. Mice explore the training arms and associate them with the extrinsic spatial cues. 
(Middle) A single frame from the video camera. (Right) Syt3 KO mice showed similar recognition of the novel 
arm as WT mice, indicating no differences in spatial recognition memory (n= 20 WT, 21 KO). 
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• Syt3KO mice can acquire short-term and long-term fear memories 

Contextual fear conditioning is a widely-used memory test based on Pavlovian conditioning. Mice 

are trained to fear a certain environment (context) by giving them a mild electric shock in it. The 

context entails a conditioned stimulus (CS), in this case the Skinner box with electric grating, 

specific lighting conditions, auditory stimulus of white noise presented throughout the task, 

specific shape and texture of walls and the faint smell of ethanol that all surfaces were cleaned 

with before every trial. Fear conditioning is known to give rise to robust memories with a single 

training session. During a training session, mice habituate to an innocuous context and form a 

sensory representation. The shock presented at the end of the training trial entails the uncondition- 

ed stimulus (US) which evokes hard-wired escape responses in the animals. Mice associate a 

previously innocuous CS with a US, such that when they are exposed to the CS at a later time 

point, they exhibit fear memory induced freezing behaviour, or conditioned response (CR), 

wherein mice do not show any movements except breathing. 

 

 

 

Figure 17: Syt3 KO mice consolidate short-term and long-term memories in contextual fear 

conditioning as well as WT mice 
(A) (Left) Quantitation of freezing behaviour of individual mice from a single naive cohort over the course of 
training with a 0.7 mA shock, memory recall after 1 hr 20 mins and a subsequent recall 24 hours later. All mice 
show robust increases in freezing during both tests indicating acquisition of contextual fear memories. (Right) 
Summary data from left panel, shown as mean ± SEM. % freezing time, an indicator of fear memory, was not 
significantly different in syt3 KO mouse compared to WT mice in both the short-term and long-term memory test. 
(B) Although syt3 KO mice were smaller, their response to shock was not different compared to WT mice, 
suggesting their sensory perception of the shock was similar to WTs. This makes the % freezing values comparable 
between syt3 KO and WT mice (n= 11 WT, 10 KO). 
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Syt3 KO mice consolidated short-term and long-term fear memories to the same extent as wild-

type mice, as indicated by a test 1 hr 20 min after training and 24 hours after training, respectively 

(Figure 17A). Although syt3 KO mice were smaller in size, their shock sensitivity (average 

increase in motion index in response to the shock relative to habituation period before shock) was 

not different in comparison to WT mice (Figure 17B), indicating their smaller size did not 

confound the acquisition of fear memory. Thus, syt3 KO mice can consolidate memories as well 

as WT mice, in agreement with normal strong-LTP at the CA3-CA1 synapse (Figure 14 above). 

 

The syt3KO mice were next tested for impairments in forgetting in the Morris water maze, which 

is a hippocampus dependent spatial memory task (M. Gallagher et al., 2015; C.V. Vorhees et al., 

2006). 

 

3.9.  Syt3 KO mice acquire a spatial memory normally in the reference memory 

watermaze but persevere to the original platform position after reversal 

• Syt3 KO mice learn as well as or better than WT mice 

In the reference watermaze task, originally described by Prof. Richard Morris in 1981, mice learn 

to swim to a hidden platform in a circular pool filled with opaque cold water using extrinsic spatial 

cues to develop allocentric strategies of navigation (Figure 18A below). Each of the 4 training 

trials each day ends with the mouse standing on the platform for 15 seconds, irrespective of 

whether the mouse finds or doesn’t find the platform (Figure 18B). On day 1, mice are stressed 

because of the new environment and swim around the perimeter of the pool looking for possible 

escape. Such ‘wall hugging’ behaviour is called thigmotaxis and rapidly decays over the first 2-3 

days of training . As the mice gradually learn that reaching the platform means escape from the 

cold water to the comfort of the home cage, their search paths evolve into more spatially specific 

and focussed ones (Figure 18C). To test spatial memory after ~6-10 days of training when escape 

latency has plateaued, probe tests are performed where mice swim in the pool in the absence of 

the platform for 60 seconds. Probe tests are usually performed at least 24 hours after the last 

training session to ensure mice are recalling long-term memory during the test. Spending more 

than 25% of the total time in the quadrant with the target platform is considered to be an indication 

of consolidated spatial memory. 
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Figure 18: Syt3 KO mice learn the platform position better than or as well as WT mice, both before 

and after platform reversal in the reference memory watermaze task. 

(A) Layout of the four extrinsic spatial cues around the pool and the platform positions before and after reversal. 
(B) Time course of training protocol. Solid boxes are training trials and dotted lines represent the boundaries of 
training days. (C) Video tracked typical single mouse trials across training days. (D-G) Time course of escape 
latency (D), path length (E), proximity to current platform (F) and swimming speed over training days (G) for 
pooled cohort data (mean ± SEM), n=24 WT and 22 KO (cohort 1: n = 10 WT, 9 KO; cohort 2: n = 14 WT, 13 syt3 
KO). Statisitcal significance tested by 2-way ANOVA with Bonferroni’s multiple comparisons test (*, p<0.05; **, 
p<0.01; ***, p<0.001; ****, p<0.0001). 
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The escape latency, or time taken to reach the platform has been the most commonly used 

parameter to evaluate performance in training trials. However, this parameter doesn’t take into 

account the spatial specificity of the search path. For instance, PSD-95 KO mice (Migaud et al., 

1998) or rats with hippocampal lesions (Gallagher et al., 2015) have severe deficits in memory 

acquisition but manage to learn the distance of the platform from the wall and circle the pool in an  

annulus and therefore, manage to keep their escape latencies low. Thus, proximity, or the average 

distance of the search path from the center of the platform, is a better indicator of performance as 

it is based on spatial specificity of search (Maei et al., 2009).  

 

 Syt3 KO mice seem to perform much better than WT mice on days 1-2, indicated by significantly 

shorter escape latencies and path lengths and smaller proximities (Figure 18D-F) but this is most 

likely because of a highly reduced thigmotactic behaviour, clearly evident from strategy analysis 

(Appendix Figure 6 on page 148) and the occupancy plots in both cohorts (Appendix Figure 1 on 

page 143 and Appendix Figure 2 on page 144). Therefore, although syt3 KO mice exhibited no 

anxiolytic behaviour in the elevated plus maze or open field maze (Figure 16A,C,D above), they 

show what appears to be anxiolytic behavior in the watermaze.  

 

 

Figure 19: Syt3 KO mice perform better or as well as WT mice in reference watermaze probe tests. 
(A-C) Cohort-wise quantitation of performance (mean ± SEM) in probe tests 1-2 using % time in target quadrant 
(A), proximity to target platform (B) and Number of crossings of target platform (C).  n=24 WT and 22 KO (cohort 
1: n = 10 WT, 9 KO; cohort 2: n = 14 WT, 13 syt3 KO). Statistical significance tested by Welch’s t-test for A and 
B, Mann-whitney’s U-test for C. 
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Over training days 3-10, the syt3 KO mice (in cohort 2 but not cohort 1) adopted a scanning 

strategy to a much larger extent than WT mice, but this gradually decreased over time (from ~50% 

more syt3 KO scanning trials on day 3 to ~20% on average till the end of the task for cohort 2, 

Appendix Figure 6 on page 148) accompanied by a stabilization of swimming speeds (from 

~18 cm/sec on day 3 for syt3 KO to ~15 cm/sec on average till the end of the task, Figure 18G 

above). Syt3 KO mice were not chaining, as might be expected in the case of a major hippocampal 

or spatial memory acquisition deficit throughout the training days (Appendix Figure 6 on page 

148). The scanning strategy is not as spatially specific as the focal search and directed search 

strategies. However, the proximity to the platform of syt3 KO mice was identical to WT mice 

(Figure 18F). Also, there were no major differences in the adoption of the spatially specific search 

strategies, like directed search, focal search and direct swimming (Appendix Figure 6 on page 

148). Most importantly, the performance of syt3 KO mice in probe test 1 and probe test 2 (Figure 

19 above) was as good as, or in some cases better than WT mice. 

 

Probe test performance is considered to be a robust indicator of spatial memory. Two probe tests 

(PT1 and PT2) were performed to monitor the rate of memory consolidation. Pooled data from 

both cohorts indicated that syt3 KO mice had acquired a spatially specific search in PT1 and PT2 

to the first platform position. However, cohort 1 performed significantly better in PT1, indicating 

faster learning. This could be an effect of the reinforced weak-LTP we observed in syt3 KO 

hippocampal slices. The % time spent on the platform was significantly higher in syt3 KO mice 

(Student’s t-test, p=0.049), proximity to platform was significantly lower in syt3 KO mice 

(Student’s t-test, p=0.027) and the % time spent in target quadrant was higher but not statistically 

significant in syt3 KO mice (Student’s t-test, p=0.057). In cohort 2, the % time spent on the 

platform was higher and close to significant (Student’s t-test, p=0.084). The individual search 

paths of syt3 KO mice also appeared spatially more focussed compared to WT mice upon visual 

inspection in PT 1 (Appendix Figure 3 on page 145). Thus, syt3 KO mice can acquire spatial 

memories at least as well as WT mice. These results are in agreement with normal strong-LTP in 

syt3 KO acute hippocampal slices (Figure 14A above). 
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• Syt3 KO mice lack within-trial extinction in probe tests 

The retrieval of a fear memory is known to temporarily destabilize the memory via NMDA 

receptor-dependent internalization of GluA2-containing AMPA receptors (Figure 4E,F, from I. 

Hong et al., 2013). A similar destabilization of spatial memory is known to happen during the 

course of a probe test. The proximity to the platform is known to reach a minimum during the 10-

20 sec time bin of a 60 sec probe test while the crossings of the platform reach a maximum during 

the same time, i.e., WT mice successfully retrieve the spatial memory. However, a ‘within-trial’ 

extinction is seen over the course of the remainder of the probe test, indicated by a gradual increase 

in proximity (Maei et al., 2009), perhaps because of destabilization of the memory mediated by 

GluA2-containing AMPA receptor internalization. As expected, WT mice showed within-trial 

extinction during PT 1 and PT2, however, syt3 KO mice lacked within-trial extinction. This effect 

is visible in the occupancy plots for PT 1 and PT 2 (Figure 20A, C below) but quantitation of 

proximities indicated a statistically significant lack of extinction in syt3 KO mice only in the last 

time bin of PT 2 (Figure 20B, D below). 

 

• An older memory doesn’t interfere with acquisition of a newer one in syt3 KO mice 

Injection of the GluA2-3Y peptide in the dorsal hippocampus did not cause ‘proactive 

interference’, i.e., acquisition of an object location memory did not interfere with acquisition of a 

new object location memory in the same context (Migues et al, 2016). The acquisition of a new 

hidden platform spatial memory was tested in the syt3 KO mouse by platform reversal after 

training to an initial hidden platform. Platform reversal in the reference memory watermaze is used 

to test cognitive flexibility or the ability to form a new memory in the same context and retrieve it 

when needed. After platform reversal in the reference memory watermaze, mice must acquire a 

new spatial memory and forget the older memory, either by erasing the older memory or blocking 

its retrieval. Syt3 KO mice could acquire the new spatial memory as well as WT mice in reversal 

training, indicating that the older memory did not interfere with acquisition of the new one. Syt3 

KO mice spent > 25% time in the new platform quadrant in PT3 and their proximity to and number 

of crossings of the new platform were not significantly different from WT mice (Figure 21A-C 

below). In fact, on the first day of training after reversal (Day 11, Figure 18F above), syt3 KO  
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Figure 20: Syt3 KO mice lack within-trial extinction in watermaze probe tests 
(A) Time binned occupancy plots of WT and syt3 KO mice, after pooling data from both cohorts, during probe 
test 1. The schematic on the right shows the location of the platform.  Syt3 KO mice show stronger spatial focus in 
their search for the platform than WT mice, not only in each time bin but also on average. (B) Quantitation of the 
proximity (mean ± SEM) to the platform in PT 1 indicates no significant difference between WT and syt3 KO mice. 
(C) Same as A but for probe test 2. Syt3 KO mice show stronger spatial focus in their search for the platform than 
WT mice, not only in each time bin but also on average. (D) Quantitation of the proximity (mean ± SEM) to the 
platform in PT 2 indicates a significant lack of within trial extinction in syt3 KO mice in the last time bin. (E) Data 
from two cohorts (in which the platform position was different) was pooled by taking a mirror image of all search 
paths from cohort 1, superimposing on cohort 2 and generating occupancy plots. The schematic shows a circular 
region enclosing the superimposed platforms, which was used as the platform area for this dataset.  n=24 WT and 
22 KO (cohort 1: n = 10 WT, 9 KO; cohort 2: n = 14 WT, 13 syt3 KO). Statistical significance tested by Student’s 
t-test. 

C 
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Figure 21: Syt3 KO mice acquire the new platform position memory as well as WT mice, showing 

no proactive interference from the original platform position memory. 

(A-C) Quantitation (mean ± SEM) of % time in quadrant with the new platform (A), proximity to new platform 
position (B) and number of crossings of the new platform (C) during probe test 3 after reversal indicate that syt3 
KO mice acquired a memory of the new platform position as well as WT mice. n=24 WT and 22 KO (cohort 1: n 
= 10 WT, 9 KO; cohort 2: n = 14 WT, 13 syt3 KO). Statistical significance tested by Welch’s t-test for A and B, 
Mann-Whitney’s U-test for C. 

 

mice had significantly lower proximity to the new platform, suggesting syt3 KO mice learn faster 

than WT mice. 

 

• Syt3 KO mice persevere to the original platform after reversal 

Recent studies have shown that inhibition of the 3Y internalization machinery using the Tat-

GluA2-3Y peptide can block the ‘natural’ forgetting of memories (Migues et al., 2016). If older 

memories are forgotten to a lesser extent, they have a stronger chance of being retrieved along 

with the retrieval of newly formed ones. Rats injected with the GluA2-3Y peptide systemically 

showed perseverance to the original platform on the second day of training after reversal (Figure 

2 from Z. Dong et al., 2013). In concordance with this study, analysis of training days after 

platform reversal indicated that syt3 KO mice persevered significantly more to the original 

platform on the third day (Figure 22A below). Additionally, a significantly higher perseverance to 

the original platform position was evident in probe test 3 after reversal. Syt3 KO mice were 

significantly closer to the original platform position and crossed it significantly more than WT 



Chapter 3. Results 
 

 107 

mice (Figure 22B, C). Visual inspection of occupancy plots also clearly indicated a higher 

perseverance of syt3 KO mice to the original platform (Figure 22D), which could also be quantified 

as lower proximity to the original platform in multiple time bins of probe test 3 (Figure 22E). Thus, 

syt3 KO mice exhibit impaired forgetting in the reference memory watermaze, indicated by higher 

retrieval of a remote memory when a recent memory was recalled. 

 

 

Figure 22: Syt3 KO mice persevere to original platform after reversal 
(A) Time course of number of crossings of original platform over the training days after reversal (mean ± SEM). 
(B-C) Quantitation (mean ± SEM) of proximity to original platform (B) and number of crossings of original 
platform (C) on probe test 3 after reversal indicate that syt3 KO mice persevere to the original platform significantly 
more than WT mice. (D) Time binned occupancy plots of WT and syt3 KO mice, after pooling data from both 
cohorts, during probe test 3 indicate perseverance of syt3 KO mice to the original platform. (right) Platform in 
orange is the original platform, and in red is the platform after reversal. (E) Quantitation (mean ± SEM) of the 
proximity to the original platform in PT 3 indicates syt3 KO mice have significantly lower proximities than WT in 
multiple time bins.  n=24 WT and 22 KO (cohort 1: n = 10 WT, 9 KO; cohort 2: n = 14 WT, 13 syt3 KO). Statistical 
significance tested by Kruskal Wallis’s test with Dunn’s multiple comparison for A, Welch’s t-test for B, E and 
Mann-whitney’s U-test for C. (*, p<0.05; **, p<0.01; ***, p<0.001). 
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To quantitatively test an impairment in forgetting in the syt3 KO mouse, performance in a more 

demanding version of the watermaze was tested. 

 

3.10. Syt3 KO mice persevere to older platform positions in the delayed 

matching to place watermaze task 

• The delayed matching to place (DMP) watermaze is a test for working memory 

A less commonly used variant of the reference memory watermaze is the DMP watermaze where 

the hidden platform position is changed every day to a new position in the pool. Each day the 

position remains unchanged over the course of four training trials (Figure 23A below). Although 

mice perform badly on the first trial of any given day as they have no way to predict where a 

platform will be on that day, they perform much better once they learn that the position doesn’t 

change over the course of any given day. This improvement in performance over the last three 

trials of the day, called savings, relies on the short-term/ working memory ability of mice to 

remember the platform position on very limited exposure and also to ‘forget’ previous platform 

positions. Thus, while the reference memory watermaze relies on long-term memory consolidation 

over multiple days, most likely correlating with strong-LTP, the DMP watermaze relies on short-

term memory, perhaps correlating with weak-LTP at the synaptic level. As weak-LTP is strongly 

reinforced in syt3 KO mouse hippocampal slices (Figure 14B above), they might perform better 

than WT mice in this task. On the other hand, as syt3 KO mice persevere to the older memory in 

the reference memory watermaze (section 3.9 above), they may perform worse than WT mice in 

this task. 

 

Mice were dropped from four different points around the pool, which were shuffled in a pseudo-

random manner with reference to the platform position across days. The platform was placed in a 

different quadrant on each consecutive day as far as possible. To avoid any biased search caused 

by picking platforms in a regular pattern across the inner and outer ring of platforms, the cohort 

was counterbalanced with respect to the order in which platforms were picked in the two platform 

rings. Mice were first habituated to the DMP task for 3 days by training them to swim to a visually 

cued platform, placed at a different position every day. All mice learned to swim to the platform 

and remain on it for 30 seconds before being picked up by the experimenter. As in the reference 
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memory watermaze, syt3 KO mice showed anti-thigmotactic behaviour, indicated by much lower 

search densities of syt3 KO mice at the wall compared to WT mice. As indicated by the occupancy 

plots for this phase of the task, both WT and syt3 KO mice showed no thigmotactic behaviour by 

day 2 or day 3 (Figure 23B below). 

 

• Syt3 KO mice are strongly impaired in the DMP watermaze 

The analyzed parameters were averaged across the 4 days in a training block to minimize 

variability in the savings parameter and to extract general trends. Savings were calculated by 

normalizing parameters with respect to the mean trial 1 parameter value for that genotype. All 

mice failed to improve in the last three trials of the day during the first block of training as they 

acclimatized to the task and the changing positions every day. From block 2 onwards, WT mice 

showed savings in escape latency, path length and proximity over the last three trials of the day. 

Syt3 KO mice were highly impaired at the DMP task, indicated by the significantly smaller savings 

in proximity, escape latency and path length (Figure 24A-C below). Increasing the delay period 

 

Figure 23: Design of the DMP watermaze task 

(A) Schematic of all 16 platform positions used in the task, distributed into four blocks of four days each. Blue 
outlined mazes indicate days where all mice were counterbalanced with respect to platforms being present in inner 
or outer ring of platforms. The trial 1 - trial 2 inter-trial interval was increased to 75 min from day 10 onwards. 
(B) Habituation phase of DMP watermaze. Daily average occupancy plots of all WT and syt3 KO mice upon 
training to swim to a visually cued platform, located at the position indicated by red in the schematic. Syt3 KO 
mice show no deficits in visual acuity. 
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between trial 1 and trial 2 to 75 min did not affect the impairments in parameter savings in syt3 

KO mice. As impairments in the DMP savings can occur because of increased perseverance to  

previous platform positions, we next used the strategy analysis algorithm to quantify the fraction 

of perseverance trials and proximity to previous platform positions. Syt3 KO mice also swam 

 

Figure 24: Syt3 KO mice are strongly impaired in the DMP watermaze task 
(A-C) Quantitation (mean ± SEM) of proximity (A), escape latency (B) and path length savings (C) with respect 
to trial 1 over the course of four blocks of training. Results across the four days in a block are averaged. Platform 
positions used on each day are shown on the schematic on top. Syt3 KO mice show consistently worse savings 
compared to WT mice over all blocks of training. The search path until the first latency to cross the target platform 
on the probe test (day 16 trial 2) was used to calculate savings. (D) Quantitation (mean ± SEM) of swimming speed 
over the course of all training days. 2-way ANOVA for swimming speed of WT vs KO was significant (p<0.0001). 
n=20 WT and 14 KO. Statistical significance determined by Student’s t-test for A-C, 2-way ANOVA with 
Bonferroni’s multiple comparisons test for D (*, p<0.05; **, p<0.01; ***, p<0.001). 
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significantly faster than WT mice almost throughout the task (Figure 24D above), increasing the 

importance of analyzing proximity rather than escape latency or path lengths, as they can be 

confounded by swimming speed. 

 

On visual inspection of occupancy plots of both counterbalanced sub-cohorts (labelled CB1 and 

CB2), some convincing examples could be found showing higher perseverance of syt3 KO mice 

to platform positons from one or two days before the current day of training (Figure 25A below). 

In terms of strategy classification, very few spatially direct strategies could be detected in spite of 

relaxing the criteria of detection for direct swimming or direted search strategies. This could be 

because spatial memories were weak in this task because of very limited exposure of mice to 

platform positions. Systematic analysis of all search paths in pooled data from both sub-cohorts 

showed that syt3 KO mice had a greater % of trials on most days that were classified as scanning 

(Appendix Figure 9 on page 151) and perseverance to previous days’ positions (Figure 25B below) 

compared to WT mice. On the other hand, WT mice had more random search strategies (Appendix 

Figure 9). Considering that all platform positions were at two fixed distances from the walls, 

chaining could be an easy workaround strategy but very few WT or syt3 KO mice adopted chaining 

strategies (Figure 25C below). 

 

To test for spatial memory, a probe test was performed on day 16 by removing the platform in 

trial 2. Syt3 KO mice showed a dramatically different search pattern compared to WT mice. Syt3 

KO mice seemed to focus their search on an annulus between the two rings containing the 

platforms whereas WT mice searched relatively randomly throughout the pool, although showing 

higher focus on the day 16 platform position relative to most other areas of the pool (Figure 25A 

below). As expected from this search pattern, syt3 KO mice had lower proximities to most previous 

platform positions. The lower proximities were statistically significant to four previous positions 

that were all in the top left quadrant, perhaps because the density of platform positions in that 

quadrant was one of the highest in the pool (Figure 25D). Thus, syt3 KO mice had impaired DMP 

savings on any given day because they forgot previous platform positions to a lesser extent than 

WTs and persevered to these previous positions. 
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Figure 25: Syt3 KO mice perform worse in the DMP watermaze because of impaired forgetting 

(A) Occupancy plots of all WT and syt3 KO mice from a sub-cohort in representative sample trials across all 
training blocks showing higher perseverance of syt3 KO mice to previous platform positions in comparison to WT 
mice. (Right) Schematic showing current day’s platform in red, the previous day in orange, and the platform two 
days previously in yellow. (B) % trials on all training days classified as perseverance to previous day’s platform 
position using strategy analysis. (C) % trials on all training days classified as chaining using strategy analysis. (D) 
Quantitation of proximity (mean ± SEM) to all previous platform positions in the day 16 probe test, normalized to 
WT. A positive value indicates a lower proximity of KO with respect to WT. V1, V2 and V3 are visual cued 
platform training days. Syt3 KO mice show decreased proximity to all platform positions and significantly 
decreased proximity to 4 previous platform positions compared to WT. 2-way ANOVA for genotype effect, 
p<0.0001; Bonferonni’s correction for multiple comparisons for platform V3: p=0.044, day 5: p=0.02, day 9: 
p=0.028, day 12: p=0.033.  n=20 WT and 14 KO for B-D. 
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4. Discussion 

4.1.  Syt3 is expressed on post-synaptic membranes 

Butz et al 1999, who were the first to use a syt3 antibody (validated in syt3 knockout mice), found 

high levels of syt3 protein in the hippocampus and the cerebellum in brain and much lower levels 

in the cortex and the olfactory bulb. Our findings were partially in agreement, where we found 

high expression in the hippocampus and the cortex but almost none in the cerebellum or olfactory 

bulb. Additionally, we found syt3 expression in the striatum and the thalamus but none in the 

hypothalamus and pituitary (Figure 1D). High levels of syt3 were also detected in the 

mesencephalon, hindbrain and the spinal cord (Butz et al., 1999). Many early studies detected syt3 

protein expression in pancreatic beta cells (H. Brown et al., 2000; Mizuta et al., 1994, 1997), which 

secrete insulin in response to glucose. However, a later study using an affinity purified antibody 

highly specific to syt3 (Gut et al., 2001) detected high levels of syt3 in rat brain homogenate, but 

not in INS-1 pancreatic beta cell lines. Syt3 was detected in somatostatin positive delta-cells 

(which constitute 10% of all islet cells), but not in their secretory vesicles. Thus, syt3 is not in 

beta-cells of primary islet of Langerhans cells and is most likely not involved in insulin exocytosis 

in the pancreas, in agreement with the weak expression of syt3 we observed in the pancreas relative 

to the brain (Figure 1C). 

 

Syt1 expression starts before birth and increases gradually after P0 (Butz et al., 1999). In contrast, 

syt3 expression was shown to start around birth (P0) and reach a maximum between P4 and P11 

(Butz et al., 1999). However, we found syt3 expression at embryonic stages as early as E14, which 

remained relatively stable between P14 and P110 (adult) (Figure 1E). The only difference between 

the two studies was that we used mouse brain homogenate, whereas Butz et al. used rat brain 

homogenate. It remains to be rigorously tested if syt3 expression begins before birth (P0) or after 

synaptogenesis (~P10 to P14), and would additionally be interesting to test if the developmental 

expression profile of syt3 is different in different brain areas. 

 

We found that syt3 has punctate staining and is localized to synapses in dissociated hippocampal 

cultures. Butz et al showed synaptic staining of syt3 which was very similar to syt1 in the outer 
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and inner plexiform layers of the bovine retina (Butz et al., 1999). By light microscopy we found 

that syt3 colocalises with both pre- and post-synaptic markers. However these experiments alone 

cannot distinguish pre from post-synaptic localization. Resolving pre- and post-synaptic proteins 

is only optically possible using super-resolution microscopy. Three color 3D STORM (Stochastic 

Optical Reconstruction Microscopy), for example, has a resolution of 14 nm in the xy-plane and 

35 nm in the z-direction (Dani, Huang, Bergan, Dulac, & Zhuang, 2010). Using bassoon and homer 

as pre-and post-synaptic reference points, the centroids of the two markers were found to be 

separated by 154 nm, allowing many pre-and post-synaptic proteins to be resolved, even when 

they are on synaptic plasma membranes (Dani et al., 2010). The plasma membranes itself cannot 

be visualized with such methods, but it can be done by electron microscopy. It would therefore be 

interesting to test if syt3 is present on the post-synaptic plasma membrane by immunogold 

labelling, although this technique has the caveat that only a subset of molecules in each preparation 

are labelled. 

 

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat/Cas9) based genetic 

editing is now possible in postmitotic neurons in vitro and in vivo using homology independent 

targeted integration (HITI) (K. Suzuki et al., 2016). Thus an alternative approach to endogenous 

antibody labelling to detect protein localization (which may or may not work in some preparations, 

depending on the antibody), is to knock in peptide tags (HA- or myc- tags, for which high affinity 

antibodies are available) and localize endogenous proteins of interest using electron microscopy. 

This method could also be used to perform antibody uptake assays to monitor intracellular 

trafficking of endogenous levels of protein. SLENDR (single-cell labeling of endogenous proteins 

by CRISPR-Cas9- mediated homology-directed repair) can be used to sparsely knock in desired 

tags via in utero electroporation, making imaging in backgrounds with large number of synapses 

easy (Mikuni, Nishiyama, Sun, Kamasawa, & Yasuda, 2016). 

 

The subcellular localization of proteins can also be determined biochemically by subcellular 

fractionation. (Butz et al., 1999) showed that syt3 is enriched in the synaptic plasma membrane 

fraction but not in the purified synaptic vesicle fraction from brain homogenates, in contrast to 

syt1, which was enriched in both (Butz et al., 1999). They also found that syt1, but not syt3, was 

enriched in the purified synaptic vesicle fraction. In agreement with Butz et al., we found that syt3 
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was enriched in synaptosomal membrane fractions but not in synaptic vesicle fractions, or purified 

synaptic vesicle fractions (Figure 3A). Immuno-organelle isolation of synaptic vesicles confirmed 

the absence of syt3 (Figure 3B).  

 

Both our experiments, and those of Butz et al. indicate that syt3 is present on synaptosomal plasma 

membranes. However, these fractionation experiments do not distinguish if syt3 is present on the 

pre- or post-synaptic plasma membrane. To test this we used a synaptosome trypsin cleavage assay 

in which presynaptic proteins are distinguished by being protected from cleavage, while post-

synaptic proteins are cleaved. In the synaptosome trypsin cleavage assay, the presynaptic plasma 

membrane protein syntaxin1a was protected from cleavage because only a small portion of its 

sequence is extracellular, whereas the presynaptic protein neurexin, which has a significantly 

larger extracellular domain, is accessible to cleavage (Figure 3C,D). The short N-terminal domain 

of syt3 must be extracellular because pHluorin fused to the N-terminus of syt3 fluoresces in basal 

conditions, meaning it is in contact with extracellular solution (Figure 4). If syt3 was on the pre-

synaptic membrane, its cleavage pattern would have been like that of syntaxin1a, which has a very 

small extracellular domain. However, no large fragment of syt3 remained following cleavage, and 

multiple small cleavage products were observed (full blot not shown), unambiguously showing 

that syt3 is on post-synaptic plasma membranes. 

 

Various proteins involved in AMPA receptor internalization including BRAG2 (Scholz et al., 

2010), PICK1 (Rocca et al., 2013) and hippocalcin (Palmer et al., 2005) are enriched in the post-

synaptic density (PSD) fraction, which contains internal post-synaptic compartments as well as 

plasma membrane, and which can be isolated biochemically. It would be interesting to test for 

enrichment of syt3 in detergent extracts of post-synaptic densities before and after inducing AMPA 

receptor internalization. We hypothesize that the proportion of internal syt3 at PSDs would 

increase following stimulation to induce AMPA receptor internalization. 

 

4.2.  Syt3 endocytoses upon stimulation 

SEP (super ecliptic pHluorin) was originally developed to monitor exocytosis of synaptic vesicles 

by attaching it to the lumenal domain of integral synaptic vesicle associated proteins where there 



Chapter 4. Discussion    
 

 116 

is no fluorescence in basal conditions when the pHluorin is inside acidified internal synaptic 

vesicles, and any increase in fluorescence can be interpreted as vesicles fusing such that the 

pHluorin moeity comes in contact with the more basic extracellular solution. However, it has been 

shown that NMDA bath application of neurons transfected with pHluorin-GluA2, which is 

partially present in non-acidified internal dendritic compartments, can cause acidification of these 

compartments and a corresponding decrease in fluorescence, confounding the interpretation of a 

decrease in fluorescence as endocytosis of pHluorin-GluA2 on the surface (Ashby, 2004; Rathje 

et al., 2013). Similarly, N-terminally tagged syt3-pHluorin shows a robust decrease in fluorescence 

upon stimulation, which is interpreted as endocytosis. Since ~23% of total syt3-pHluorin is 

expressed in non-acidified internal compartments, ~ 57% in acidified internal compartments and 

~20% on the surface (Dean et al., 2012), this observed decrease in fluorescence could be partly 

due to the acidification of internal syt3-pHluorin populations. 
 

However, the kientics of endocytosis we observed were similar by four different methods of 

stimulation - AMPA, NMDA, 45 mM KCl and field stimulation - and could be completely blocked 

in 0 extracellular Ca2+ with the first three kinds of stimulation (Figure 4B-F on page 79), suggesting 

that the decrease in fluorescence was indeed endocytosis of plasma membrane syt3 into acidified 

internal comparmtents (and this endocytosis was calcium-dependent). Nevertheless, the 

internalization of syt3 could be tested by GFP antibody uptake assays in syt3 pHluorin-expressing 

cells, in future experiments. To our knowledge there is no currently existing antibody which 

detects the extracellular domain of syt3, which could be used to assay internalization of 

endogenous syt3 in antibody uptake experiments.  However, one could examine the recycling of 

endogenous syt3 in basal and stimulated conditions by surface biotinylation assays (Ehlers, 2000). 

 

4.3.  Syt3 is a novel addition to the GluA2 3Y internalization machinery 

With the discovery of syt3, which acts via the 3Y region of the GluA2 cytoplasmic tail, we uncover 

a novel addition to the 3Y machinery. Both a peptide corresponding to the 3Y region, and knockout 

of syt3 robustly block activity-dependent, but not constitutive, AMPA receptor internalization at 

the cellular level, ZIP mediated decay of strong-LTP, and forgetting at the behavioral level (Z. 

Dong et al., 2013, 2015; Migues et al., 2016). Although we didn’t quantify the proportion of 
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synapses that express syt3, the fact that syt3 is the third most abundant syt isoform (Butz et al 

1999) suggests that syt3 could play a global role in activity-dependent synaptic weakening in the 

hippocampus and also perhaps in other brain regions. 

 

Both syt3 and syt7 have been classified as plasma membrane isoforms (Jackman, Turecek, 

Belinsky, & Regehr, 2016; Sugita et al., 2002). Transfection of PC12 neuroendocrine cells with 

YFP-fusion constructs showed that both syt3 and syt7 have an exclusively membrane localization, 

in stark contrast to syt1, which is present mainly on vesicles in these cells (Sugita et al 2002). In 

neurons, it has recently been shown that syt7 is the calcium sensor mediating paired pulse 

facilitation on the pre-synaptic membrane at neuronal synapses (Jackman et al., 2016), while we 

show syt3 is on the post-synaptic membrane, where it regulates receptor trafficking. The C2A 

domains of both syt3 and syt7 isoforms show ~5-20 times higher Ca2+ affinity than syt1 (Sugita et 

al 2002). However, an interesting difference between the two isoforms is that although syt7 C2B 

and syt3 C2B domains have high sequence similarity, syt7-C2B has high Ca2+ regulated-

phospholipid binding affinity, while syt3 C2B did not show any phospholipid binding even at very 

high calcium concentrations in a liposome cosedimentation assay (Sugita et al 2002). Similarly, it 

was shown that syt3-C2A, syt7-C2A and syt7-C2B but not syt1-C2A or syt3-C2B have correlated 

phospholipid binding profile to calcium sensitivity in an in vitro assay of norepinephrine 

exocytosis from PC12 cells (Sugita et al 2002). In addition, while syt1-C2A required 200 µM 

[Ca2+] for syntaxin binding, syt3-C2A and syt7-C2A required much lower [Ca2+] (Li et al 1995). 

Syt1 may be tuned to respond to nanodomain calcium concentrations near docked synaptic vesicles 

in presynaptic active zones, while syt3 responds to lower calcium concentrations in microdomains 

lateral to the post-synaptic density. 

 

What is the precise molecular mechanism by which syt3 mediates AMPA receptor internalisation?. 

The findings that a) syt3 is expressed on the post-synaptic plasma membrane (Figure 3D), b) the 

calcium binding ability of syt3 is necessary for receptor internalization (Figure 7), c) the syt3 C2A 

and C2B domains undergo a large relative displacement upon binding calcium in the presence of 

a SNARE complex in vitro (Vrljic et al., 2010), and d) syt3 pulls down GluA2 and AP2 from brain 

homogenate in 0 extracellular calcium (Figure 5 on page 81) suggest that syt3 is one of the first 

players in the internalization pathway. Syt3 probably binds Ca2+ coming into the cell through 
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NMDA receptors and L-type voltage gated Ca2+ channels (Figure 4F on page 79) at the plasma 

membrane, and may promote the clustering of AP2 and GluA2 at nucleation sites of clathrin coated 

pits (Godlee & Kaksonen, 2013; Kirchhausen et al., 2014; Schmid & McMahon, 2007). It will be 

interesting to examine the binding partners of syt3 in different calcium concentrations and at 

different ionic strengths, both of which are known to affect binding in vitro (Vrljic et al., 2010, 

Sugita et al., 2002), to further test activity-dependent regulation of syt3 to its binding partners.  

 

Which binding motifs are likely to mediate syt3 function? The syt1 residues, K326A and K327A, 

which are necessary for syt1-AP2 binding and highly conserved among synaptotagmins, implicate 

the homologous residues in syt3, R483 and K484, in syt3-AP2 interaction (Grass et al., 2004; 

Haucke, Wenk, Chapman, Farsad, & De Camilli, 2000). If the syt3-AP2 interaction is necessary 

for its function, a syt3 R483A/K484A mutant should not be able to rescue the decrease in mEPSC 

amplitude  upon AMPA stimulation observed in syt3 knockout neurons (Figure 12E on page 90). 

Neurons expressing GluA2 R845A, which can’t bind AP2, showed normal AMPA-induced 

internalization (Lee et al., 2002). But AMPA-induced internalization was abolished in syt3 

knockouts. It is therefore possible that AMPA-induced AMPA receptor internalization is mediated 

by syt3 as an adaptor between GluA2 and AP2, since syt3 binds both GluA2 and AP2. 

 

Complexin, syntaxin3, syntaxin4 and SNAP47 are necessary for AMPA receptor exocytosis 

(Ahmad et al., 2012; Jurado et al., 2013; Arendt et al., 2015). Syt3 also binds syntaxin3, syntaxin4 

and SNAP47, and not syntaxin1 or SNAP25, suggesting it is a component of the post-synaptic 

(and not pre-synaptic) fusion machinery (Figure 5B). Its binding to SNARE proteins suggests a 

possible role in exocytosis in addition to endocytosis. Interestingly, we occasionally observed 

exocytotic events in pHluorin-syt3 experiments performed in lower calcium concentrations (i.e. 1 

mM instead of 2 mM). Syt3 may therefore promote recycling of receptors both to and from the 

membrane, but be predisposed to endocytose receptors at physiological calcium concentrations. 

As post-synaptic complexin KD in vivo didn’t affect LTD (Ahmad et al, 2012), endocytic 

functions are most likely complexin independent. 

 

Syt3 did not pulldown PICK1 in 0 Ca2+ conditions (Figure 5B on page 81), which binds to GluA2 

to a small extent in basal conditions (Fiuza et al., 2017) and is important for maintaining basal 
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transmission via PICK1-Arf1 interactions (Rocca et al., 2013). As PICK1 is necessary for LTD 

(Terashima et al., 2008) and is required for NMDA mediated AMPA receptor internalization 

(Fiuza et al., 2017), it would be interesting to test if syt3 binds to PICK1 at physiological Ca2+ 

concentrations. BRAG2 requires dephosphorylated Y876 on GluA2 (Scholz et al., 2010) to be 

activated and internalize receptors, while Y876 phosphorylation is necessary to stabilize AMPA 

receptors at synapses (Hayashi and Huganir., 2004). Binding of syt3 to BRAG2 (Figure 5B on 

page 81) could recruit BRAG2 to GluA2 with dephosphorylated Y876 and cause GluA2 

internalization. Because syt3 specifically mediates activity-dependent internalization of GluA2, 

binding of syt3-BRAG2 and syt3-AP2 in physiological Ca2+ concentrations  or after induction of 

chemical LTD could be increased, and would be interesting to test. 

 

4.4.  Syt3 is necessary for AMPA/ NMDA induced AMPA receptor 

internalization 

The flux of AMPA receptors going into intracellular compartments and back onto the surface is 

constantly changing. The internalization index (Figure 7C,D and Figure 10B), or the proportion of 

internalized receptors relative to those remaining on the surface quantifies the overall amount of 

internalization of AMPA receptors at specific timepoints. Internalization assays revealed that syt3 

is needed for activity-dependent but not constitutive AMPA receptor internalization. The protocol 

we used, allowing antibody to bind for 15 min before the assay should lead to saturated labelling, 

as shown in Lin et al 2000, where maximal AMPA stimulation dependent receptor internalization 

occurs ~15 mins after stimulation. We stimulated hippocampal cultures (Figure 7, Figure 10 and 

Figure 12) with 100 µM AMPA which could have depolarized NMDA receptors as well, leading 

to AMPA receptor internalization by multiple mechanisms. However, previous studies found only 

minor differences in internalization with 100 µM AMPA in comparison to 100 µM AMPA + 

100 µM APV conditions in with NMDA receptors are blocked (Lin et al., 2000).  

 

An advantage of our receptor internalization assays in comparison to other studies, is that we 

performed internalization assays on endogenous AMPA receptors. Transfected individual AMPA 

receptor subunits are expressed as homomeric AMPA receptors in neurons (Lee et al., 2004), 

which are rarely found in the adult brain. In addition, overexpression of AMPA receptor subunits 
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often leads to unwanted potentiation of synapses under investigation (if such receptors are 

efficiently targeted to the synaptic surface), which can additionally confound the interpretation of 

the results. Nonetheless, many studies of subunit rules of AMPA receptor trafficking (Lee et al., 

2002; Lee et al., 2004; Lin et al., 2000; Ahmadian et al., 2004; Hayashi & Huganir., 2004) still 

found various C-terminal sequence determinants of trafficking using such ‘unphysiological’ 

AMPA receptors.  

 

A complete abolishment of activity-induced AMPA receptor internalization upon expression of a 

syt3 calcium mutant indicates that its expression exerts dominant negative effects. This could 

indicate homo-oligomerization of syt3 in physiological conditions, but this remains to be tested. 

Expression of a syt3 calcium mutant also led to significantly higher surface expression of GluA2-

containing AMPA receptors, but not GluA1-containing receptors, following stimulation (Figure 

7D). As the majority of hippocampal AMPA receptors in principal neurons are GluA1/GluA2 and 

GluA2/GluA3 AMPA receptors and those in interneurons are GluA4 containing (Henley & 

Wilkinson, 2016), this effect could be specifically related to GluA3, but this was not further tested 

due to a lack of antibodies against the extracellular domain of GluA3. In addition, we show for the 

first time that the Tat-GluA2-3Y peptide (similar to syt3 knockout) also abolishes AMPA-induced 

internalization of endogenous GluA2-containing AMPA receptors in dissociated mouse 

hippocampal cultures (Figure 10).  

 

A decrease in mEPSC amplitudes upon NMDA stimulation has been shown in neurons (Davidson, 

Xiao, Dai, & Bergson, 2009), but we chose to stimulate cultures with AMPA as it had a somewhat 

stronger effect (Figure 7C). While neurons were fixed 8 minutes after AMPA stimulation in 

internalization assays (Figure 7 and Figure 10), mEPSCs were recorded after AMPA simulation 

between 10 and 90 minutes after stimulation. The rate of surface recycling of AMPA receptors 

equals the rate of internalization ~15 minutes after stimulation (S. H. Lee et al., 2004). Thus, the 

decrease in mEPSC amplitude should be maximal for whole cell recordings performed ≥15min 

after AMPA stimulation. However, the effect of syt3 overexpression on AMPA-induced reduction 

of mEPSC amplitude (Figure 12F above) was not as striking as that observed in the internalization 

assays. This may be because signal in somas was analyzed in internalization assays (as per 

previously published protocols) where syt3-GFP overexpression was prominent, while mEPSCs 
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detect changes in surface AMPA receptors specifically at synapses, where syt3 overexpression 

was sometimes weaker. Overexpressed syt3-GFP (or pHluorin-syt3; Figure 4A) in wild-type 

neurons was mostly confined to the soma and proximal dendritic shafts but Syt3-GFP signals could 

be detected at synapses, including distal synapses, by immunocytochemistry (data not shown). 

Alternatively, syt3 overexpression may lead to enhanced receptor internalization of predominantly 

extra-synaptic receptors, consistent with previous studies in which components of endocytic zones 

are observed peri-synaptically. In any case, abolishment of AMPA-induced decreases in mEPSC 

amplitude in syt3 KO neurons indicates that syt3 is indeed necessary for internalization of synaptic 

AMPA receptors. 

 

The cytoplasmic tails of AMPA receptor subunits possess the positively charged motif KRMVK, 

conserved between GluA1-3, which is known to bind AP2. Ca2+ influx at the post-synaptic plasma 

membrane may lead to conformational changes in syt3 that trigger increased binding to AP2, either 

directly, or indirectly via the RRLKKRK motif of AP2 and a Stonin-2 like adaptor molecule, 

promoting AMPA receptor internalization. The Y876 residue of GluA2, which is 

dephosphorylated as a downstream consequence of stimulation, may promote clathrin coat 

formation by activation of the Arf6 GTPase by BRAG2 (Kirchenhausen et al., 2014); Arf6-GTP 

has been shown to promote clathrin-AP2 to pre-synaptic membranes (Krauss et al., 2003). 

 

4.5.  Syt3 is necessary for decay of LTP 

A major research effort has been aimed at understanding the mechanistic underpinnings of strong-

LTP since its discovery. A well-established ‘plasticity related protein’ is PKMzeta, which is 

necessary for the persistence of strong-LTP. Recently, studies have reported a mechanism of 

‘inertia’ at synapses, which reverses any activity-induced increases in the number of synaptic 

AMPA receptors. The GluA2-3Y machinery, is necessary for this reversal, and the decay of weak-

LTP to baseline. However, it is inhibited by PKMzeta to sustain strong-LTP (Z. Dong et al., 2015). 

These opposing forces ensure that, depending on stimulation parameters, synapses undergo 

sustained potentiation, or short-term increases in strength, which then decay to "normal" levels. 

We have discovered a novel player, syt3, in the GluA2 3Y-dependent pathway, that mediates LTP 

decay.  
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Compared to mechanisms of induction and maintenance of LTP, very few studies have examined 

the mechanisms of decay of LTP, which is widely thought to result from a decrease in surface 

GluA2 receptors by internalization. The decay of weak-LTP is abolished by APV application 

(Xiao et al., 1996). Thus, NMDA receptor mediated internalization of GluA2 AMPA receptors is 

necessary for decay of LTP. Injecting the dorsal hippocampus of rats with the GluA2-3Y peptide 

could rescue a remote memory (Migues et al, 2016). In addition, blocking NMDA receptors with 

CPP infusions blocked decay of a spatial memory in rats (Villarreal et al., 2002). Thus, NMDA 

receptor mediated internalization of GluA2 AMPA receptors is also necessary for forgetting at the 

behavioral level. 

 

PKMzeta is also well known to play a role in forgetting. An object location memory, which is 

hippocampus dependent, in rats required PKMzeta during the first week of training, but this 

memory ‘naturally’ decayed by day 35 after training, suggesting that the PKMzeta recruited upon 

memory consolidation gradually decreases in activity or amount, perhaps leading to 3Y 

machinery-mediated decay of memory (Hardt et al., 2010). These experiments suggest a 

competition model for the sustenance of strong-LTP, i.e., maintenance of memory by PKMzeta 

mediated surface expression of GluA2-AMPA receptors versus internalization of GluA2-AMPA 

receptors by the 3Y machinery. Metaplastic changes, or changes in synaptic NMDA receptor 

composition from GluN2B containing to GluN2A containing NMDA receptors, could reduce post-

synaptic calcium influx. This would prevent stimuli that would normally decrease PKMzeta and 

cause depotentiation, to become innocuous and thus safely lock away a memory for much longer 

periods of time (Zinebi F. et al., 2003). 

 

4.6.  Syt3 is necessary for forgetting of spatial memories 

• Syt3 KO mice show impaired forgetting in the reference watermaze 

We used syt3 knockout mice for behavioral assays to ensure a complete absence of syt3 and avoid 

possible nonspecific effects of knockdown. However, given that the syt3 knockout mice are 

consistitutive, we cannot exclude possible confounding effects of syt3 knockout in extra-

hippocampal brain regions. The only verifiable "non-hippocampal" effects (most likely not related 
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to memory) we observed in syt3 KO mice were smaller body size and faster swimming speeds, 

and less thigmotaxis and higher scanning in the watermaze.  

 

Recently developed transgenic mice which lack NMDA receptors in the CA1 and dentate gyrus 

regions of the hippocampus performed better than controls in the spatial reference memory 

watermaze task, raising doubts whether hippocampal LTP is really needed to acquire spatial 

memories. Interestingly, in these mice, the retrieval of the spatial memory of a hidden platform 

suffered from interference from previously acquired memories in the watermaze (Bannerman et 

al., 2012). 

 

We found that syt3 knockout mice showed a similar prevalence of previously acquired memories 

in the watermaze. Syt3 KO mice could acquire spatial memories as well or better than controls in 

the reference memory watermaze. However, like rats injected with the GluA2-3Y peptide in the 

dorsal hippocampus (Dong et al., 2013), syt3 KO mice showed stronger perseverance to the 

original platform on the second day of training after reversal, compared to wild-type mice. 

Although platform reversal might not lead to complete forgetting of the original platform position 

(Lattal, Mullen and Abel 2003), perseverance to the original platform could indicate stronger 

consolidation or increased retrieval of the original platform memory. The latter is more likely to 

be true for the syt3 KO mouse, since learning of the original platform position was similar to 

controls. The fact that the original memory is not really forgotten, could also perhaps explain why 

the perseverance effects observed in the syt3 KO mice were quantitatively small, i.e., syt3 KO 

mice were ~5 cm closer in proximity to the original platform in probe tests compared to WT mice. 

Although the average distance between platforms is as large as 59 cm, the effect of ‘normal 

forgetting’ in WT mice decreased the proximity to the original platform by only 11.5 cm. Thus, 

one might not expect large changes in proximity in a mouse strain with deficits in forgetting. The 

largest difference in proximity to a hidden platform during a probe test repoted to date is only ~13 

cm in data pooled from 370 control mice and 388 mice with severe learning deficits (Maei et al, 

2009). Thus, a difference in proximity of ~5 cm is quite large by comparison.  

 

To ensure these effects were indeed because of an impairment in forgetting, one could estimate 

the maximum possible difference in proximity, or quantify changes in proximity normalized to 
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maximum differences in proximity throughout training, as % forgetting. An ideal experiment to 

demonstrate impairments in forgetting would be to induce extinction of the original platform 

position by injecting mice with anisomycin 1 hour before a probe test, since anisomycin abolishes 

reconsolidation (Suzuki et al, 2004) and presumably promotes 3Y machinery-mediated AMPA 

receptor internalization (Hong et al, 2013). Anisomycin-injected syt3 KO mice should show 

impaired extinction or forgetting, and continue to remember the original platform after platform 

reversal, and anisomycin-injected wild-type mice would be expected to completely forget the 

original position. We also observed a lack of a within-trial extinction in probe tests in syt3 

knockout mice, presumably because of a lack of GluA2-AMPA receptor internalization upon 

memory retreival (Hong et al, 2013). The strongest evidence for an impaired forgetting in syt3 KO 

mice was in the last probe test following reversal, when the biggest differences in proximity to 

original platform of up to ~8 cm were observed in syt3 KO mice in all time bins except 10-30 secs. 

There were no significant differences in the time bins 10-30 sec, probably because this is when the 

current memory (in this case, memory of the current platform position after reversal) is retrieved 

most effectively. 

 

• Syt3 KO mice show impaired forgetting in the DMP watermaze 

We hypothesized that the reinforced weak-LTP in syt3 KO mice may result in deficits in working 

memory and ability to forget previous platform positions and remember new ones in the delayed 

matching to place (DMP) task - a working-memory learning task, in which the hidden platform is 

moved to a new position each day for 16 days, where each day the mice have 4 trials to learn the 

new position. Mice with NMDA receptors specifically knocked out in CA3 neurons in the 

hippocampus (Nakazawa et al, 2003) and forebrain specific calcineurin knockout mice showed 

deficits in this task (Zeng et al, 2001). We hypothesized that syt3 KO mice would be maximally 

different from WT mice when the delay retention period between trial 1 and trial 2 was increased 

to 75 min, if decay of weak LTP (which decays with this same time course) is important for 

forgetting previous platform positions and learning new ones. The syt3 KO mice were highly 

impaired in the delayed matching to place (DMP) watermaze - a working-memory learning task. 

However, there was no conspicuous difference upon increasing the trial 1 and trial 2 inter-trial 

interval from 5 min to 75 min. The perseverance of syt3 KO mice to older platform positions 

suggests that their inability to "forget" previous positions may result from enhanced consolidation 
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of the memory of previous platform positions over the course of several days, resulting in impaired 

forgetting in syt3 KO mice.   

 

The probe trial performance in the DMP watermaze task in rats reaches chance levels in 24 hours 

(Da Silva et al, 2013). However, it is not clear if LTD or depotentiation (i.e. synaptic depression 

below basal levels or depression of previously potentiated synapses, respectively) underlies this 

forgetting. Extrapolating to mice, we would expect that WT mice should forget the previous day’s 

platform position in the DMP task. The higher perseverance of syt3 KO mice to the previous day’s 

platform position compared to WT mice on almost all days of training clearly showed that syt3 

KO mice have either a) impaired forgetting, or b) stronger consolidation of working memory, both 

of which are in agreement with reinforced weak LTP observed at the CA3-CA1 synapse in syt3 

KO mice. In the probe test of the DMP task, which is the most reliable indicator of memory (Da 

Silva et al., 2013), syt3 KO mice show a strikingly different pattern of search focus compared to 

WT mice; syt3 KO mice are ~4 cm more proximal to most platform centres from previous days. 

It is important to note that increased perseverance of syt3 KO mice to all previous platform 

positions indicates that multiple spatial memories could be consolidated. Unconsolidated 

memories cannot be retrieved and strategy analysis indicated that perseverance trials were not due 

to a random search path near previous platform positions. Thus, syt3 KO mice can consolidate and 

remember a remarkably large number of unique platform positions in the same spatial context. 

 

In summary, we discovered that syt3 is predominantly on the post-synaptic membrane, where it 

regulates AMPA receptor trafficking via the 3Y motif of GluA2. It does not affect constitutive 

trafficking but only activity dependent internalization of AMPA receptors to counteract synaptic 

potentiation and promote forgetting. 
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Figure 26: Summary of the role of syt3 in AMPA receptor trafficking 
Illustrations show AMPA receptor trafficking pathways. Black arrows on top of each illustration indicate net effect 
of AMPA receptor trafficking on synaptic depression or potentiation. Syt3 is a component of the the activity-
dependent AMPA receptor 3Y internalization machinery. 
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6. Appendix 

 

Appendix Figure 1: Occupancy plots for cohort 1 in reference memory watermaze 
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Appendix Figure 2: Occupancy plots for cohort 2 in reference memory watermaze 
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Appendix Figure 3: Individual mouse trajectories in probe test 1 of reference memory watermaze 
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Appendix Figure 4: Individual mouse trajectories in probe test 2 of reference memory watermaze 
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Appendix Figure 5: Individual mouse trajectories in probe test 3 of reference memory watermaze 
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Appendix Figure 6: Strategy analysis of reference memory watermaze 
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Appendix Figure 7: Occupancy plots for sub-cohort CB 1 in delayed matching to place watermaze 
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Appendix Figure 8: Occupancy plots for sub-cohort CB 2 in delayed matching to place watermaze 
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Appendix Figure 9: Strategy analysis of delayed matching to place watermaze 
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List of abbreviations 
Abbreviation Expansion 
°C Degree celsius 

ADP Adenosine diphosphate 

AMPA a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA Analysis of variance 

AP2 Adaptor protein-2 

APV/ AP5 (2R)-amino-5-phosphonovaleric acid 

Arc Activity-regulated cytoskeleton-associated protein 

Arf ADP ribosylation factor 

Arp Actin related protein 

ATP Adenosine triphosphate 

BAPTA 1,2-bis(o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid 

BRAG Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factor 

C57B6/J B6/ B6J/ Black 6/ C57 Black mice 

CA Cornu ammonis 

Ca2+ Calcium 

Cas9 CRISPR associated protein 9 

CB1 and CB2 Counterbalanced sub-cohort1 and 2 (in the DMP watermaze task) 

cm Centimeter 

CNQX 6-cyano-7-nitroquinoxaline-2,3-dione 

CPG Controlled pore glass 

CRISPR Clustered regularly interspaced short palindromic repeats 

DHPG (S)-3,5-dihydroxyphenylglycine 

DIV Day in vitro 

DMP Delayed matching to place 

dNTP Deoxynucleotide triphosphate 

E’x’ Embryonic age in ‘x’days, for example E19 is a 19-day old embryo 

EEA1 Early endosome antigen1 

eGFP Enhanced green fluorescent protein 

EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

Eps15 Epidermal growth factor receptor substrate 15 

EPSC Excitatory post-synaptic current 
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GABA Gamma-aminobutyric acid 

GAP GTPase-activating proteins 
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GEF Guanine nucleotide exchange factor 

GFP Green fluorescent protein 

GluA Subunit of AMPA receptors 

GluN Subunit of NMDA receptors 

GRIP Glutamate receptor interacting protein 

GTP Guanosine triphosphate 

h/ hr Hour/ hours 

HEK Human embryonic kidney (HEK293) cell line 

HFS High frequency stimulation 

Hz Hertz 

InsP3R Inositol triphosphate receptor 

IPSC Inhibitory post-synaptic current 

KD Knock-down 

KDa Kilodalton 

KO Knockout 

LFS Low frequency stimulation 

LTD Long term depression 

MAP2 Microtubule associated protein 2 

mEPSC Miniature excitatory post-synaptic current/ mini 

mGluR Metabotropic glutamate receptor 

min Minute/ minutes 

ms Millisecond 

NASPM 1-Naphthyl acetyl spermine 

NMDA N-Methyl-D-aspartic acid  

NSF N-ethylmaleimide-sensitive factor/ N-ethylmaleimide sensitive fusion 

protein 

OV Sodium orthovanadate 

PAO Phenylarsine oxide 

PICK1 Protein interacting with protein kinase C-1 

PIP2/ PtdIns(4,5)P2 Phosphatidylinositol 4,5-bisphosphate 
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PKMz Protein kinase C isoform Mzeta 

PMCA Plasma membrane Ca2+ ATPase 

PP Protein phosphatase 

PSD Post-synaptic density 

PT Probe test (in watermaze) 

P’x’ Postnatal rodent age in ‘x’ days, for example P0 is a just born pup 

Rme1 Eps15 homology domain protein (EHD)1/Rme1 

RNA Ribonucleic acid  

RNAi RNA interference 

RyR Ryanodine receptors 

s/sec Second/ seconds 

SEM Standard error of mean 

SEP Super-ecliptic pHluorin 

SERCA Sarco/endoplasmic reticulum Ca2+-ATPase 

shRNA Small-hairpin RNA 

a/b-SNAP Alpha/ Beta N-ethylmaleimide-sensitive factor attachment protein 

SNAP25 Synaptosomal-associated protein 25 

SNARE SNAP (Soluble NSF Attachment Protein) REceptor 

STED Stimulated emission depletion microscopy 

STORM Stochastic optical reconstruction microscopy 

Syp Synaptophysin 

Syt Synaptotagmin 

TARP Transmembrane AMPA receptor regulatory protein 

TTX  Tetrodotoxin 

VAMP Vesicle-associated membrane protein 

vGAT Vesicular GABA transporter  

vGluT Vesicular glutamate transporter 

WT Wild-type 

ZIP Zeta inhibitory peptide 
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