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ABSTRACT 

The world around us is shaped in such a way that our hands are necessary to accomplish 

most activities of daily living. It is therefore undeniable that the loss of the upper limb, 

partial or total, represents a severe impairment. With current advancements in robotic 

technology, it is now possible to replace a missing limb with a dexterous upper-limb 

prosthesis. However, the development of a reliable human machine interface (HMI), 

connecting the user and the prosthesis, is still an open challenge. Essentially, the HMI 

defines an invariant mapping scheme to transform electromyogram (EMG) signals 

generated by the user into movements on the prosthetic device, thereby allowing the user to 

control available functions by generating appropriate (predefined) EMG signals. An HMI 

control driven by EMG signals is known as myoelectric control or myocontrol. EMG 

signals associated with a particular motor task are distinct and repeatable and therefore, it is 

possible to use one of the many well-known machine learning (ML) algorithms as HMI for 

estimating different user motor intentions. With ML-based HMIs, users can directly activate 

a desired prosthesis function by producing EMG signals associated to that function during 

supervised learning. Although conceptually promising, ML-based control has shown a 

limited clinical viability, mainly due to the lack of reliability and robustness during 

real-time use. The aim of this thesis was to improve the reliability and robustness of 

ML-based control by developing context- and physiology- aware ML methods for 

upper-limb myocontrol. Today, most ML methods used for myoelectric control follow the 

conventional pattern recognition paradigm, where training data is collected using a 

supervised procedure and a mathematical function is fitted over the collected data to define 

an invariant mapping scheme between the user’s EMG and available prosthesis movements. 

This conventional approach has two limitations. First, the mapping scheme (between the 

EMG and available movements) remains static (invariant) during use and does not consider 

the dynamics associated with real-life use of prosthesis. Second, the mathematical function 

fitted over the training data is assumed to implicitly capture the physiological principles 

behind generation of EMG; this assumption might not be true, as many commonly applied 

ML methods do not model the underlying physiology. The first limitation can be solved by 

developing ML methods which can consider context information describing the state of the 

system and/or environment during prosthesis use. This context information can be acquired 

either directly from the user or by placing additional sensors (e.g. inertial units) on the 

prosthesis. The former idea of deriving context information from the user is quite 

interesting, as it gives to the ML an opportunity to improve control by considering user’s 



 

requirement(s) during use. This thesis proposes one ML method (called Modular 

Regression, see Chapter 2) which exploits user-generated context information to improve 

control for different activities of daily living (ADL). Specifically, the proposed ML method 

organizes each prosthesis function as a module, which the users can insert/remove as 

required to best accomplish a given ADL. Next, if additional sensors were placed on the 

prosthesis to automatically derive context information, the ML controller would get an 

opportunity to (automatically) monitor the state of the prosthesis and react accordingly to 

maximize reliability and robustness. This thesis proposes one ML approach (called 

context-driven control, see Chapter 3) which utilizes context information from additional 

sensors to model different prosthesis states and then, the parameters of ML control were 

adapted to mitigate expected disturbances in each prosthesis state. Thus, with both new ML 

methods, the mapping scheme (between the user’s EMG and available movements) does not 

remain static, but becomes reactive to the context information coming from the user or 

additional sensors. Experiments involving functional tasks were conducted to compare the 

newly developed context-aware ML methods with the conventional ML-based control. The 

experimental results indicate that the context-aware methods significantly outperform 

conventional ML control. The second limitation of conventional ML approaches, i.e. the 

fitted mathematical function may or may not capture the latent physiology information, can 

be solved by designing ML methods that are aware of the underlying muscle physiology. 

This thesis presents one ML algorithm (based on the cosine similarity metric, see Chapter 4) 

which exploits the principle of muscle coordination to classify EMG for online myoelectric 

control. Specifically, the principle of muscle coordination states that force production for a 

given movement relies on the coordination of different muscles and the EMG amplitude of 

involved muscles scales uniformly with the amount of force exerted. And therefore, the 

presented physiology-aware ML method was designed based on the assumption that 

amplitude-related EMG features for each movement are distributed along the line joining 

the origin of the feature space and the average maximum voluntary contraction of the 

movement. This assumption led to a simple training procedure and a computationally 

efficient solution. The presented physiology-aware ML method was extensively compared 

with the state-of-the-art ML method using four functional tasks. The results indicated that 

the new method performs significantly better than the standard ML method, while utilizing 

less training data and smaller computational effort. Overall, this thesis points to the 

potential advantage(s) of ML methods that exploit context and physiology information for 

online myocontrol over standard ML methods (with a static mapping scheme and no 

modelling of physiology), which largely prevail in the literature. Moreover, all ML methods 



 

presented in this thesis are simple, robust and computationally efficient, and therefore, they 

can be directly used for interfacing most prosthetic devices available in the market, with a 

minor hardware upgrade.      
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Figure 4.7: Summary of the results for the amputee participant. (A) The Box-and-Blocks test, (B) Clothespin 

test, (C) the Bottle Transfer task and (D) the Bottle Turn tasks. CoS performed consistently better than LDA in 

all four tasks. (the horizontal line within a box indicates median, the box indicates IQR, and the circles indicate 

outliers). ....................................................................................................................................................................................................................... 66 
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Figure 4.10: Post-processing rules based on cosine similarity (CS) for the context aware component (CAC) 

presented in Chapter 3 (Figure 3.2 and Figure 3.3). In each of the five states, the post-processing rules based-on 
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1 INTRODUCTION 

The human-hand is a truly outstanding dexterous tool, which is essential for interaction and 

perception of the world around us. We use our hands to accomplish most activities of daily 

living (ADL) and therefore, it is not surprising that upper limb injuries are among the most 

common ones [1], [2]. Most upper limb injuries occur at home, during work, or while 

performing sports [1], [3], [4]. The loss of upper limb, total or partial, can lead to severe 

impairments. Worldwide there are millions of people whose lives are affected by the loss of 

upper limb. In the United States alone, there are approximately more than one million 

people living with an amputation [5] and, approximately more than ten thousand upper limb 

amputations are observed annually. A vast majority of them occur either due to trauma or 

tumor [6].  

The loss of upper limb can affect the physical, mental and social state of the patient. To 

cope up with ADL, patients tend to develop compensatory strategies that might have a 

negative impact on their musculoskeletal system. A prolonged disability can also result in 

difficulties reintegrating into the society, thereby affecting the patients’ psychological 

health. For this reason, it is considered best to replace the missing limb with an artificial 

assistive device. Today, it is possible to replace a missing limb with a dexterous prosthesis, 

but an efficient and user-friendly human-machine interface (HMI) is still missing. This 

chapter introduces the current state-of-the-art technologies in upper-limb hand prosthesis, 

by providing an overview on the design, usage and limitations of available devices. The 

chapter concludes with an outline of the main aims of this thesis.  
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1.1 Prosthetic hands: an overview on design and usage 

The need for prosthetic devices has been recognized centuries ago, and their earliest 

mention dates back to a number of ancient civilizations [7]. These prosthetic devices were 

passive and had a very limited functionality (due to the lack of an active component). The 

first passive prostheses with some active components appeared in the middle ages, but they 

were mostly used as a part of the bodily-armor and had springs which could be adjusted by 

the contralateral hand. A development towards a more active/functional solution was 

necessary. The first active “body-powered prostheses” appeared in the early 20
th

 century, 

followed by the development of active “self-powered prostheses” in the last half of the 20
th
 

century. Based on the historical evolution of prosthetic devices, they can be divided into 

three categories: 

i. Passive Prosthesis: Due to the absence of an active component, passive devices are 

mostly used in bimanual tasks that require fixation or support of an object, or for 

gesticulation in social interaction. In general, they have a limited potential in terms 

of supporting complex ADL. Nonetheless, they are a preferred choice of many 

amputees due to their overall simplicity and exceptional appearance [8]. 

ii. Body-Powered Prosthesis: A body-powered prosthesis operates by attaching a cable 

and a harness around the shoulder opposite (contralateral) to the damaged arm. In a 

body-powered prosthesis allowing the opening/closing of hand (or gripper), the user 

opens the prosthesis by extending the contralateral shoulder and closes the 

prosthesis by relaxing the shoulder. Extending the contralateral shoulder pulls the 

cable and as the cable tightens, it opens the hand and vice-versa closes the hand. The 

downsides of this system are that it requires the usage of compensatory movements 

on the unaffected side and the use of a bulky cable/harness configuration makes the 

setup visually less appealing. Nevertheless, they are still preferred by many 

amputees, on account of the robust and easy-to-use control strategy and due to the 

availability of feedback via extended physiological proprioception [9].  

iii. Self-Powered Prosthesis: As the name suggests, a self-powered prosthesis is an 

electrically powered device and it uses motor(s) to make the required movement(s). 

Each motor represents a single degree-of-freedom (DoF). The polarity and amount 

of current given to a motor determines the direction and strength of the produced 

movement. For example, in a self-powered prosthesis allowing opening/closing of 

hand, the polarity of current given to the motor will determine if the hand (grip) is 
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opening or closing and, the amount of current will determine the speed at which the 

grip aperture changes; and ultimately, the exerted grasping force. Similarly, for wrist 

rotation, changing the polarity of current will switch the direction of rotation (i.e. it 

will switch between pronation and supination) and controlling the amount of current 

will determine the speed of rotation in either direction. The Michelangelo Hand 

from Ottobock (Germany) and the i-Limb from Touch Bionics (U.K.) are typical 

examples of self-powered prostheses (see Figure 1.1). The Michelangelo Hand has 

two DoFs (i.e. two motors), one for opening/closing the hand-grip and one for wrist 

rotation. The i-Limb has five individually controllable fingers and six DoFs – 

specifically, it has five motors for the flexion of each finger and one additional 

motor for the rotation of thumb. In real-life application, a prosthesis user should be 

able to control both the polarity and amplitude of current flowing through each 

motor. To achieve this, a human-machine interface (HMI) is used to connect the 

user and the prosthesis. The HMI, essentially, defines a scheme to transform bodily 

signals generated by the user (such as electrical signals from the muscles [10]) into 

movements on the prosthetic device, thereby allowing the user to control available 

functions by generating appropriate (predefined) bodily signals. Section 1.2 

discusses various state-of-the-art HMIs used in research and commercial 

applications.  

 

The three prosthesis types (mentioned above) are the choices currently available to patients. 

The final choice made by a particular patient depends on subjective preferences, level of 

amputation, medical recommendation, cost, etc.  

 

Figure 1.1: Examples of active self-powered prostheses. (A) The i-Limb hand from 

Touch Bionics U.K. (www.touchbionics.com). (B) The Michelangelo Hand from 

Ottobock, Germany (www.ottobock.com). The images also show the portable batteries 

which power the prostheses during daily use.  
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During the last two decades, prosthetic hands have improved considerably in terms of 

overall appearance and offered functionality. But, the rejection rates of upper-limb 

prosthesis have remained exceptionally high, because the end-users find it very challenging 

to perform very simple ADLs such as eating, grooming, hygiene and manual work [11], 

[12]. According to a comprehensive literature review from 2007 [13], the rejection rates for 

self-powered prostheses were still about one third for paediatric and one fourth for adult 

patients. An important shortcoming of available devices is the lack of embodiment, i.e. these 

devices are perceived more as a tool and less like a part of one’s own body. A large number 

of amputees fitted with an active body-powered or a self-powered prosthesis use their 

prosthesis in a passive way [12], [14]. The overall lack of embodiment arises due to the 

following reasons,  

i. Lack of Feedback: The human hand has a sensory-motor coupling, i.e. it is an 

integration of a sensory system and a motor system. The motor system allows us to 

perform different actions such as grasping and manipulation. The sensory system 

provides us a proprioceptive feedback (regarding the relative position of different body 

parts) and a haptic feedback (regarding the properties of material, touch, etc.). Most 

commercially available prosthetic devices provide, to some extent, a substitution for the 

lost motor function(s), but they do not provide any sensory feedback. Restoring the 

natural sensory feedback in upper-limb prosthetic devices is an important research topic 

[15], [16], but it will not be covered in the scope of this work.    

ii. Poor Controllability: Something that has not changed during the past 50 years is how 

prostheses are controlled. The mechanisms used to control body-powered prosthesis are 

inherently unintuitive and tiresome. The advent of self-powered prosthesis opened up a 

possibility to provide an artificial hand with a natural and intuitive control over multiple 

DoFs, but the commercially available HMIs for self-powered prosthesis still remain 

mundane and unintuitive for the user [17]. A number of novel HMI schemes have been 

proposed to overcome this limitation, but most proposed methods are not robust enough 

for practical applications (see Section 1.2). In essence, a HMI with a natural control 

over multiple degrees of freedom is yet to be realized [18]. 

In the past few decades, the aforementioned rejection-factors have inspired the scientific 

community to create a number of promising HMI schemes which could promote the day-to-

day use of multifunctional prostheses. This thesis, especially, focuses on improving the 
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reliability and robustness of available HMI schemes. The next section will provide an 

overview on the HMI schemes currently used in research and commercial applications.         

1.2 State-of-the-art interfaces for self-powered prosthesis 

The available HMI interfaces for self-powered prostheses operate using a simple 

physiological phenomenon behind muscle contraction. During contraction, muscles 

generate electrical potentials called electromyograms (EMG), which can be measured by 

placing electrodes on the surface of the skin [10]. In amputated users, surface EMG (sEMG) 

signals are acquired from the muscles remaining in the residual limb. For real-life use, the 

user’s EMG signals are provided as an input to the HMI and in response, the HMI activates 

the required prosthesis movement(s). Although an HMI can be operated using signals other 

than EMG (e.g. signals from the brain [19]), sEMG has remained the most important 

control signal for prosthetic applications since the 1950 [18]. This is due to its easy access 

(via surface electrodes) and close representation of the underlying muscle physiology. An 

HMI interfaced using EMG signals is called a myoelectric controller, and a self-powered 

prosthesis interfaced using EMG signals is called a myoelectric prosthesis.  

Essentially, a myoelectric HMI defines an invariant mapping function between the user’s 

EMG signals and the available prosthetic function(s). A number of HMIs have been 

proposed over the years, but the most commonly used interface is the classic two-channel 

control. In this system, a pair of electrodes is used to gather EMG signals from a pair of 

antagonist muscles (e.g. the wrist flexor and extensor muscle pair remaining in the 

amputated limb of a user). To control prostheses with a single DoF, such as a simple 

gripper, the user contracts the flexor muscle to close the grip and the extensor muscle to 

open the hand. The amplitude of the generated EMG signal (which depends on the 

contraction strength [10]) is used to determine the velocity of opening/closing movement; 

and ultimately, the grasping force when contact occurs during closing. In a multi-DoF 

prosthesis, a co-activation of both muscles is used to switch between DoFs [20]. 

Alternatively, the switching can also be done via prolonged activation of a single muscle 

[21] or via a simple button on the prosthesis [22]. The two-channel control works very well 

in case of single-DoF prosthesis, but it becomes very slow and cumbersome when used with 

a multi-DoF prosthesis, mainly, because switching is required each time the user wants to 

use a different function [17]. For instance, if the user wants to control the wrist joint after 

grasping a particular object (e.g. when grasping a water bottle for pouring), the system 

forces the user to cycle through all available prosthesis movements only to gain the control 
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over the wrist joint. Moreover, the two-channel control is non-intuitive because the same 

group of muscles is used to control different functions. 

To overcome the limitations of two-channel control, researchers have proposed myoelectric 

control schemes based on machine learning (ML). It is well-know that, the EMG signal 

pattern associated with a particular motor task is distinct and repeatable [23]. This provides 

an opportunity to train one of the many well established ML algorithms to detect and 

identify different user-movements. With ML-based control, the user can activate a desired 

prosthesis function directly by producing a muscle activation pattern that was associated to 

that function during supervised training. A typical ML-based myoelectric control scheme is 

depicted in Figure 1.2, and its important components are, namely, the feature extractor, the  

ML controller, the supervised training-unit (required to calibrate the ML controller) and the 

post-processing unit.   

 

For feature extraction, sEMG signals are acquired from several electrodes placed around the 

residual limb, and usually about 6 to 12 electrodes are used depending upon the size of the 

residual limb [24]. The acquired signals are band-pass filtered (usually in the range of  

5-500 Hz) and then sampled at 1kHz [25]. From the band-pass filtered sEMG signals, time 

and/or frequency domain features are extracted over a sliding time window of certain length 

(e.g. 128 ms) and overlap (e.g. 32 ms) between neighbouring windows [26], [27]. Some of 

the most popular sEMG features are:  

 Root Mean Square values, 𝑅𝑀𝑆 ∶= √
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Figure 1.2: Typical scheme used to implement machine learning based myoelectric 

control for dexterous upper-limb prostheses. 
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 Slope Sign Change, 𝑆𝑆𝐶 ∶=
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𝑁𝑤
∑ 𝑐

𝑁𝑤
𝑘=1 ; 𝑐 = {

 1; 𝑖𝑓 𝑧𝑘  ≶ 𝑧𝑘−1 𝑎𝑛𝑑 𝑧𝑘  ≶ 𝑧𝑘+1      

 0; 𝑜/𝑤 𝑜𝑟 𝑖𝑓 |𝑧𝑘 − 𝑧𝑘±1| < 0.01𝑉
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where 𝑧𝑘  is the 𝑘𝑡ℎ  sample of the observed 𝑁𝑤  samples in a given time window.  

In practise, a feature set is constructed by extracting several features from each EMG 

channel. For example, the most commonly used feature set is the Hudgins time domain 

feature set [28], where MAV, ZC, SSC and WFL features are evaluated from each channel. 

A feature vector is formed by concatenating features evaluated from all channels, and it has 

size 𝑑 = 𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 equal to the product of the number of channels (6~12) and 

the number of features extracted per channel (𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  = 4 for Hudgins feature set). In 

literature, a variety of features sets have been proposed with promising results [29]–[31].  

The ML methods used for myoelectric control can be roughly divided into regression [32]–

[34] and classification [35]–[37] approaches. The first ones yield a simultaneous and 

proportional estimate for all available prosthesis movements (e.g. simultaneously turning 

the wrist and closing the hand to grasp an object lying on a table), while the later provides a 

sequential and proportional control over each prosthesis function (e.g. first, turning the wrist 

to orient the hand and then, closing the hand to grasp object on a table). Both methods 

(regression and classification) represent the paradigm of a supervised machine learning 

problem. As it is customary in supervised ML, the data-set 𝒟 required to train the system is 

collected during a supervised training procedure. The supervised learning is accomplished 

by providing visual movement cues on a computer screen and asking the user to reproduce 

the indicated movement, using either the maximum voluntary contraction (MVC) for the 

movement [38] or graded contraction strengths (e.g. 30%, 60%, 90%) normalized to MVC 

[39]. The recorded data-set comprises of 𝑁  (feature vector, target value) pairs 𝒟 =

{(𝑥1, 𝑦1), … (𝑥𝑁, 𝑦𝑁)}  ≅ (𝑋, 𝑌), easily represented by a matrix 𝑋 ∈  𝑅𝑁×𝑑 juxtaposing all 

recorded feature vectors 𝑥𝑖  ∈  𝑅𝑑  and a matrix 𝑌 juxtaposing all target values 𝑦𝑖  presented 

as visual cues. In case of regression, 𝑦𝑖  ∈  𝑅𝑀  with M representing the available DoFs on 

the prosthetic device, and for classification, 𝑦𝑖  ∈  𝑆𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 where 𝑆𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠  is the set 

of all available prosthetic movements represented as discrete labels.   

Let us sketch a running example for a regression-based ML controller. Consider the case of 

the Michelangelo prosthetic hand manufactured by Ottobock, endowed with one motor for 

the grip open/close function and one additional motor for the rotation of the wrist. In this 

case 𝑀 = 2 and we assume that the first component of the matrix 𝑌 corresponds to grip 
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open/close and the second component corresponds to wrist rotation. Also, assume that, we 

are interested in training 𝐾 =  5 actions: the rest action (associated to no movement), the 

hand-close action (associated to closing movement of the grip), the hand-open action 

(associated to opening movement of the grip) and pronation/supination actions for the wrist. 

In this case, each row in matrix 𝑌 ∈  𝑅𝑁×𝑀  will represent one of the five actions, being 

𝑦𝑟𝑒𝑠𝑡  =  [0, 0]𝑇 , 𝑦𝑐𝑙𝑜𝑠𝑒  =  [1, 0]𝑇 , 𝑦𝑜𝑝𝑒𝑛  =  [−1, 0]𝑇 , 𝑦𝑝𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛  =  [0, 1]𝑇 and 

𝑦𝑠𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛  =  [0, −1]𝑇. The simplest type of regression is the so-called linear regression, 

which can be used to determine a mapping matrix 𝑊 that predicts prosthesis movement 𝑦̂ 

for any arbitrary input vector 𝑥̂  ∈  𝑅𝑑 generated by the user, as follows:  

𝑦̂1×𝑀 = 𝑥̂1×𝑑  ∙ 𝑊𝑑×𝑀                                                               (1.1) 

The predicted movement 𝑦̂1×𝑀  subsequently determines the velocity with which the 𝑀 

available prosthetic motors are moved. And, by assuming a linear model with Gaussian 

noise, the mapping matrix 𝑊 can be calculated from the data-set 𝒟 ≅ (𝑋, 𝑌), as follows: 

𝑊 = (𝑋𝑇𝑋 +  𝜆𝐼𝑑)−1 𝑋𝑇𝑌                                                     (1.2) 

where 𝐼𝑑 is an identity matrix of order 𝑑 and 𝜆 > 0 is a regularization term used to prevent 

overfitting [40]. The regression equation can be extended by applying the so called  

kernel-trick, to incorporate nonlinearities present in the training data. The most 

straightforward way is to pre‑process each feature vector with a non-linear basis function 

𝜑 ∶  𝑅𝑑 → 𝑅𝐷. The choice of 𝜑 is obviously crucial, and it can be chosen from a variety of 

well-known basis functions based on Fourier transform [41].  

Furthermore, let us also consider how a classification based ML-controller in Figure 1.2 

would work. In regression, the matrix 𝑌 comprised of real valued numbers (representing 

normalized velocity of motors), but for classification, 𝑌 contains discrete labels from the set 

 𝑆𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠  representing all available movements. In the previous example with 𝐾 =  5 

actions, this set would be  𝑆𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 = {𝑅𝑒𝑠𝑡, 𝐶𝑙𝑜𝑠𝑒, 𝑂𝑝𝑒𝑛, 𝑃𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛, 𝑆𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛}. The 

goal of classification is to determine a mapping function 𝑓 that estimates the movement 

class  𝑦̂ = 𝑓(𝑥̂) for any input vector 𝑥̂  ∈  𝑅𝑑 generated by the user. And, the velocity for 

the motor corresponding to the estimated movement class is determined by normalizing the 

sum of input amplitude values (e.g. sum of MAV features from all channels) by the sum of 

MVC amplitudes of the detected class. The simplest and the most popular classification 

function used for myoelectric control is the Linear Discriminant Analysis (LDA) [28]. And, 
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other well-known methods such as k-nearest neighbours (kNN) [42] and support vector 

machines (SVM) [43] have also been used for myoelectric control.  

In myoelectric community, regression is considered very important for providing a natural 

control over all available prosthetic DoFs, as it can provide a simultaneous control over all 

DoFs, thereby mimicking natural movements of the human hand (e.g. simultaneously 

turning the wrist and closing the hand to grasp an object lying on a table). But, regression 

methods seem to work reasonably well only up to two DoF simultaneous control [44], and 

they are very susceptible to cross-talk (i.e. the activation of unwanted DoFs when trying to 

activate desired DoFs). Contrary to this, classification methods are suitable for a stable 

control (i.e. with less cross-talk) over more than 2 DoFs in a sequential manner. Hence, 

there is a trade-off between robustness and naturalness of control when choosing between 

classification and regression as the method of choice for myocontrol [45], [46].  

One downside of using off-the-shelf ML methods, such as regression and classification, is 

that the underlying mathematical function(s) may or may not capture the latent 

physiological principles responsible for generating the observable EMG signals [47]. For 

example, it is hypothesized that the central nervous system uses muscle synergies as 

building blocks for generation of meaningful movement [48], [49]. And, mathematically 

speaking, muscle synergies can be seen as basis functions applied by the nervous system to 

move a large number of muscles using only a few independent control signals [50]. In 

myocontrol literature, this knowledge of underlying physiological principles has been 

exploited to directly estimate the latent synergy coefficients by using techniques like 

non-negative matrix factorization (NMF) [51], independent component analysis [47] or 

deconvolution [52]. For example, Jiang et al. used NMF to determine the latent synergy 

coefficients, which were then used for simultaneous and proportional control of 2 DoFs 

[51]. Next, it is also know that force production in a given task (e.g. grasping) relies on the 

coordination of a set of muscles and the EMG amplitude of activated muscles scales 

uniformly as a function of applied force [53], [54]. This physiological phenomenon is called 

the principle of muscle coordination. In myocontrol literature, the knowledge of muscle 

coordination has been applied to extract EMG features invariant against muscle contraction 

strength and then, standard ML methods (e.g. classification) were applied on the extracted 

features to achieve myoelectric control. For example, He et al. proposed a novel feature 

extraction scheme based on discrete Fourier transform to produce EMG features invariant 

against muscle contraction levels [55]. Recently, Al-Timemy et al. also proposed a feature 

extraction scheme to minimize the effect of muscle contraction strength, where the required 
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feature-set was derived by estimating the orientation between the power spectrum of the 

original EMG signal and its nonlinear version [56]. The extracted features were then given 

as inputs (for learning and prediction) to a traditional ML method (e.g. LDA). Lastly, it is 

worth mentioning that, although ML methods inspired from the underlying physiological 

principles are expected to gradually gained attention in the myocontrol community, standard 

methods like regression and classification still remain dominant in research application; 

partially due to the fact that, the latter has been tested more than the former under clinical 

and/or laboratory settings. 

Despite decades of research and promising results under laboratory conditions, ML-based 

myocontrol methods have shown a limited clinical viability [57], [58]. There is only one 

commercially available solution (the COAPT complete control [59]) implementing a control 

based on pattern recognition, but it has still to prevail in clinical practices. Till today, the 

classic two-channel control remains popular in commercial use on account of its simplicity 

and robustness during real-life use. An important factor limiting the practical usage of 

ML-based myocontrol is the inherent non-stationarity of sEMG signals. sEMG is known to 

change under the influence of electrode displacement [60], [61], change in arm position 

[62], muscle fatigue, changing conductivity (e.g. due to perspiration, humidity, or 

temperature), etc. Important strategies proposed to overcome these issues have been 

summarized in the following subsection. 

1.2.1 Methods to improve the robustness of ML-based myoelectric control 

A traditional ML-based myoelectric controller defines a single time-invariant (stationary) 

mapping function between the user’s EMG signals and prosthesis commands. Naturally, 

this stationary mapping approach encounters robustness problems on account of the 

inherent non-stationary behaviour of EMG signals. For example, unexpected changes in 

sEMG patterns during simple moving of the prosthesis can lead to misclassification of hand 

movements [63]. One simple approach to overcome such problems is to apply a set of error 

correction rules in the post-processing unit (shown in Figure 1.2). One common post-

processing approach is the majority vote filtering [26], where the outputted decision at a 

given time represents the most frequently classified movement over the last several time 

steps. Another post-processing approach is the decision-based velocity ramp [64]. Here, a 

counter is associated to each class and upon detection of a particular class, the associated 

counter value for that class is increased while all other counter values are decreased. The 

velocity of the corresponding motor is then proportional to the counter’s value. In practice, 
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the robustness comes for the fact that a small misclassification has a little effect on the 

overall value of the counter associated to the class that was observed consistently. Both 

post-processing approaches, thus, try to filter out spurious misclassifications occurring due 

to unexpected transient changes in sEMG signals. Furthermore, a slightly different 

post-processing approach based on parallel classifiers was proposed by [65], [66], where 

decisions made by multiple classifiers were compared and the prosthesis was forced to take 

no action when there was a disagreement between decisions made by individual classifiers.  

Similar to the underlying ML controller, the post-processing rules defined in the beginning 

remain static (time-invariant) and do not account for variations in EMG over time. This 

shortcoming can be alleviated by performing the so-called adaptation, which is 

implemented by regularly collecting new training samples to adapt the ML. This adaptation 

can be either supervised, where the user updates the ML model occasionally when the 

performance degrades [67], or unsupervised, where the ML controller automatically updates 

itself based on some confidence measure that an incorrect decision was made [68]. Both 

methods for adaptation work well in case EMG signals slowly varying over time, but 

supervised adaptation has shown better performance [68]. In myocontrol literature, 

adaptation is sometimes also called incremental learning [69] or co-adaptive learning [70].   

In general, post-processing rules and adaptation are good strategies to improve robustness in 

unimodal systems i.e. systems using only EMG as input for prosthesis control. A different 

strategy for achieving robust control is to use multimodal sensor fusion, i.e. utilizing other 

input modalities besides EMG to overcome its shortcomings [71]. This can be implemented 

in three different ways, namely, as a single-stage multimodal system, a multi-stage 

multimodal system or a semi-autonomous system (as illustrated in Figure 1.3). 

In a single-stage multimodal system, features are evaluated separately for each modality and 

then given as inputs to a single ML controller. Gijsberts et al. proposed a single-stage 

multimodal classifier utilizing accelerometer data besides EMG and demonstrated that, the 

multimodal approach outperforms unimodal classification by ~5% when classifying 40 

different hand and wrist movements [72]. Similarly, Fougner et al. used accelerometer data 

besides EMG to resolve the so-called limb position effect [73], i.e. an effect where a ML 

trained using single arm position data fails to generalize over different arm positions [74]. 

They demonstrated that the classification accuracy can be improved by simply adding just 

one 3-axis accelerometer on the forearm alongside the EMG sensors. Recently, Krasoulis et 

al. showed that including all modalities available in a typical inertial measurement unit 

(IMU), i.e. acceleration, gyroscope and magnetometer data, is better than using just one 
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modality (namely, acceleration) [75]. Apart from IMU derived modalities, other sensor 

modalities have also been used to achieve multimodal control [76]. For example, Jaquier et 

al. combined force myography (FMG) [77] with traditional sEMG to perform regression 

over wrist, hand and single-finger movements [78].  

 

A multi-stage multimodal system uses ML to automatically detect different prosthesis states 

and switch between different ML-controllers depending on the detected state (see  

Figure 1.3B). Each ML-controller is optimized to operate in a specific state, and it utilizes a 

different input modality as compared to the ML responsible for switching. Geng et al. used 

a multi-stage system to compensate for the limb position effect. They measured the limb 

position using accelerometer data and switched between different unimodal EMG classifiers 

to mitigate the effect of limb position change [79], [80]; here, each unimodal classifier was 

training using EMG data collected in the corresponding arm position. This multi-stage 

switching approach provided more robust classification than simply inputting both EMG 

and accelerometer data into the same ML controller [79].                                             

A semi-autonomous system integrates a conventional myoelectric controller with an 

automatic control unit (ACU) (see Figure 1.3C). Here, the end-user has complete control 

over the behaviour of the myoelectric controller, but the ACU is allowed to make 

 

Figure 1.3: Three approaches for multimodal sensor fusion in upper-limb prostheses:  

(A) single-stage multimodal control system, (B) multi-stage multimodal control system 

and (C) semi-autonomous control system.  
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independent decisions based on information gathered via sensors. Essentially, a 

semi-autonomous system represents the paradigm of shared-control, where the 

responsibility of task completion is shared between the user and the system (ACU). For 

example, in [81], a simple contact sensor (a pressure sensitive transducer) was used to 

automatically select one of the two available prosthesis grasp types (pinch or lateral), and 

user-generated signals were used to control the movement of the prosthesis. In [82], a slip 

senor was used to automatically detect slipping-events, and the applied grip force was 

spontaneously adjusted to prevent slipping of the object. Moreover, instead of having just 

one automatic function (as in the case of [81], [82]), as state machine can be used to activate 

between different automatic functions as required [83]. Next, instead of monitoring sensors 

placed inside the prosthesis, the ACU can also monitor sensors placed on the user to 

determine the onset of compensatory movements (e.g. slight raise of shoulder before 

grasping) and/or complete action(s) automatically. For example, [84] implemented 

automatic coordination between the (prosthetic) elbow joint and the movement of the 

(intact) shoulder via IMU. Recently, Markovic et al. used artificial vision and inertial 

sensors to determine the combined state of the user, the prosthesis and the environment 

[85], [86]. In this scheme, the ACU automatically adjusted the prosthesis parameter (e.g. 

wrist rotation and hand pre-shaping) to mimic natural interaction between the user and 

environment. And, by means of the simple two-channel myoelectric interface, the user was 

allowed to manually correct and fine-tune the automatic decisions made by the system. 

Finally, it is also worth mentioning that, this work focuses on improving non-invasive 

methods used for myoelectric control. Today, however, researchers are also using surgical 

procedures (e.g. targeted muscle reinnervation [87]) and invasive electrode placement (e.g. 

osseointegration [63]) to improve the quality of EMG signal recording and thereby, the 

quality of myoelectric control. These topics, however, are beyond the scope of this thesis.  

1.2.2 Methods used to validate myoelectric control  

Evaluating the performance of a new myoelectric control is a difficult task [88]. Over the 

years, researchers have proposed numerous methods for evaluating (quantifying) the 

performance of myoelectric control. Principally, these evaluation methods can be divided 

into three categories: offline evaluation, online evaluation using virtual tasks and online 

evaluation using functional tasks. 

For offline evaluation, a participant/user is asked to perform different movements 

(repetitively) as indicated via visual cues, and the corresponding sensor data is stored for 
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offline analysis. The most commonly used offline evaluation scores are either R
2
 error [89] 

(for Regression) or classification accuracy [90]. The R
2
 error measures the amount of 

variability a regressor can estimate with respect to the reference cues, and a higher R
2
 value 

indicates a better regressor. For a classification-based control, the classification accuracy 

measures the percentage of correctly classified movement-labels with respect to the 

indicated movement cues, and thus, a higher classification accuracy indicates a better 

classifier. These offline measures were regularly used in the past, but recent investigations 

show a poor association between offline evaluation and clinical relevance [88]. For this 

reason, nowadays, new control methods are evaluated online using virtual and/or functional 

tasks.  

An online evaluation is better than an offline evaluation because it keeps the user in loop 

with the control and as a result accounts for human adaptation to the system. The most 

popular online virtual task is the Fitts’ law test [91], wherein subjects are required to control 

a cursor on the screen in order to reach random targets on the screen [92], [93]. Lately, 

virtual reality based online evaluation frameworks are being used to simulate real-life 

prosthesis use (with a certain level of abstraction), where users are required to steer a 

prosthetic-avatar in 3D space [94]. The advantage of an online virtual task is that it offers a 

realistic test scenario while alleviating the need for a full system implementation, e.g. one 

does not need to invest time in designing sockets for the prosthesis. Nevertheless, the 

influence of important realistic factors such as weight of the prosthesis, weight of the 

grasped object, stump dynamics, quality of socket fitting, etc. is not accounted for in virtual 

tests [95]. These factors can only be incorporated by using an online functional task.   

The simplest and the most commonly used functional task for online evaluation is the  

Box-and-Blocks test [96] shown in Figure 1.4A, wherein the participants are required to 

transfer as many blocks as possible, from one compartment to the other, within 60 seconds. 

The outcome measure of performance is the number of blocks transferred per minute. The 

disadvantage is that the test requires only opening and closing of the hand and thus, it 

provides an evaluation only for a single DoF. A test commonly used to evaluate two DoFs, 

specifically the opening/closing of the hand and pronation/supination of the wrist, is the 

clothespin test [97] shown in Figure 1.4B. It requires a participant to pick up three pins from 

a horizontal bar, rotate them and place them on a vertical bar. The outcome measure is the 

time required to successfully transfer three pins. Other functional tests widely used for 

evaluating myoelectric control with respect to ALD are, namely, the Southampton Hand 
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Assessment Protocol (SHAP) [98], Jebsen-Taylor Hand Function Test [99], unilateral below 

elbow test (UBET) [100], etc.  

In practice, a functional evaluation is considered very important to assess the operation of a 

new myocontrol method [88]. And therefore, all myocontrol methods developed as a part of 

this work were evaluated using functional tasks.   

 

1.3 The main aims of this thesis      

Most ML-based methods used for myoelectric control follow the conventional pattern 

recognition paradigm, where training data is collected using a supervised procedure and a 

mathematical function is fitted over the collected data to determine an invariant mapping 

scheme between the user’s EMG patterns and available prosthesis functions. This approach 

may not be optimal, as it might not consider two important aspects associated with online 

use of prosthesis. First, the context information describing the state of the system and/or 

environment, which might have the potential to facilitate prosthesis control, is not 

considered by most ML controllers. Second, the information regarding the underlying 

physiological phenomenon responsible for the generation of sEMG patterns may not get 

implicitly modelled by the applied mathematical function [47]. Therefore, the main 

objective of this thesis is to develop methods which can exploit context and physiology 

information to improve the performance/robustness of myocontrol schemes based on 

machine learning.  

 

Figure 1.4: Examples of functional tasks used to validate myoelectric control. (A) The 

Box-and-Blocks test. (B) The clothespin test. 
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The context information required for describing the state of the system and/or environment 

can be either derived from addition sensors (placed in a prosthesis) or directly from the user. 

The latter gives to the user(s) a possibility to interact with the ML controller by generating 

appropriate context information (which both the user and ML can understand). Most 

myoelectric systems available today do not provide any possibility of an active interaction 

between the user and the prosthesis, and as a result, there remains a gap between the user 

and the underlying mechanisms used to control the prosthesis. Recently, this gap has been 

recognized by prosthetic manufacturers like Touch Bionics, who nowadays provide a 

smartphone application that can be used to customize the classic two-channel controller. 

But now, with the expected increase of ML-based myoelectric systems in the commercial 

market, it becomes necessary to develop new methods which can be used to bridge the gap 

between the user and an advanced ML-based myoelectric controller. Chapter 2 presents one 

such method, which exploits context information generated by the user to improve 

ML-based myocontrol for different ADL.  

A downside of relying solely on user-generated context information to improve control is 

that the burden of generating information lies on the user. Therefore, multimodal sensor 

fusion can/should be used to derive context information from additional sensors placed 

either on the user or inside the prosthesis. Previously, context information available from 

additional sensors was used to either improve the performance of a typical ML controller 

(single- and multi- stage control in Figure 1.3A-B) or implement semi-automatic control 

(Figure 1.3C). The sensor fusion methods used to improve ML control, available today, 

follow the conventional pattern recognition procedure, where all available information 

(EMG + other modalities) is presented as input (for training and prediction) to the ML 

controller, and the underlying mathematical function is expected to implicitly capture the 

regularity in the presented data. But, the available context information has not been used to 

determine the state of the prosthesis and/or the user, which can be very helpful in deciding 

how the ML controller should/must be adapted in order to counter possible problems arising 

during different states of online use. For example, misclassifications (due to unexpected 

changes in EMG patterns) may occur when the prosthesis is moving [63] and in such cases, 

additional sensors (e.g. accelerometers) can be used to detect if the prosthesis is moving and 

adapt the ML controller to minimize the odds of misclassification when moving; e.g. 

minimizing the odds of dropping a glass of water while moving. Chapter 3 presents one 

such multimodal sensing scheme, which models different states associated with online 

prosthesis use and adapts the ML controller to improve its robustness. Lastly, it is worth 
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mentioning that, applying multimodal sensor fusion to achieve semi-automatic prosthesis 

control is an important research topic, but this work will focus only on designing control 

strategies that are manual.  

Next, with most off-the-shelf ML methods, the mathematical function fitted over the 

training data is assumed to implicitly model the latent physiological principles behind 

generation of EMG patterns. This assumption may not be true for many commonly applied 

ML methods. As outlined in Section 1.2.1, there are a number of new ML methods which 

consider latent physiological principles to achieve myoelectric control. These methods use 

the knowledge of physiology to either create a model for the underlying physiological 

process (e.g. by identifying synergies [47], [51], spike trains [52]) or extract EMG features 

which are classified using off-the-shelf ML methods [55], [56]. But, the knowledge of 

physiological principles has been rarely focused on improving practical aspects of 

myoelectric control, such as reduction of training time, minimization of computational cost, 

simplification of hardware, etc. Chapter 4 presents one such machine learning method, 

which utilizes the knowledge of physiological principles to minimize training time and 

computational cost required for online myoelectric control.  

In total, this thesis comprises of three main studies focusing on improving the robustness of 

ML-based myocontrol by: a) integrating context information from the user (Chapter 2),  

b) integrating context information from on-board sensors (Chapter 3), and c) integrating 

physiology information to improve the modelling of EMG (Chapter 4). The concepts 

presented in these individual studies are highly compatible with each other and therefore, it 

is possible to merge them into a single machine learning scheme – which can exploit both 

context and physiology information to improve the performance/robustness of ML-based 

myocontrol. In doing so, the larger goal is to improve the overall end-user experience and 

thereby, the clinical acceptance-rate of ML-based myoelectric prostheses.       
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2 USING TASK-SPECIFIC CONTEXT TO 

CUSTOMIZE MYOCONTROL 

This chapter has been based on the recently published paper:  

G. K. Patel, M. Nowak and C. Castellini, "Exploiting Knowledge Composition to Improve 

Real-Life Hand Prosthetic Control" in IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 25, no. 7, pp. 967-975, July 2017.  

2.1 Motivation 

In the commercial market, prosthetic manufacturers (like Touch Bionics, U.K.) have 

introduced an ‘interactive’ smart-phone App that allows users to customize their classic 

two-channel controller. In this App, users can setup different daily living situations (e.g. at 

home, at work, recreation, sports, etc.), and upon selection of a particular situation, the App 

configures the prosthesis to provide custom grip patterns required for that situation. This 

new possibility to customize the myoelectric control has been welcomed by the users [101], 

but it still suffers from the inherent limitation of the underlying two-channel controller, i.e. 

a co-contraction is required to switch between the selected grip patterns. As mentioned in 

Section 1.2, ML-based schemes can be used to overcome this limitation. With the advent of 

ML-based myoelectric control in the commercial market (e.g. COAPT system [59]), it is 

now important that the users of these systems also enjoy the possibility of customizing their 

prosthesis as required. With this goal in mind, this chapter discusses a novel approach that 

brings to the users a possibility to actively ‘customize’ their ML-based myoelectric control. 

Specifically, the new method makes use of task-specific context information (e.g. the user is 
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ironing clothes, the user is shopping, etc.) to select custom grip patterns required for the 

task. Thus, the new method provides a similar level of interactivity as the currently 

available smart-phone App for the two-channel control, but with the added value that the 

underlying control scheme is ML based.  

This custom selection of grip patterns has a clear application in case of a multi-articulated 

prosthesis offering a large variety of grip types. As the number of offered grip types 

increases, it become very challenging for the end-users to produce distinct sEMG patterns 

required to operate the corresponding ML-based control. For didactic purposes, Figure 2.1A 

depicts pattern overlap between six different sEMG patterns in a 2D space of projected 

RMS features. If all patterns were to be used during online control (Figure 2.1A), an attempt 

to perform the power grip would probably result in problems due to an unwanted interaction 

with the flat grip. But, reducing the set of allowed patterns may lead to a more stable 

control, since the interaction with undesired pattern(s) can eliminated (Figure 2.1B). This 

possibility of having a reduced set of patterns can be helpful in certain real-life situations, 

for example while Ironing a piece of cloth only two grips types are needed, namely, power 

grasp (to hold the iron) and pinch grip (to manipulate the cloth). 

 

 

Figure 2.1: Visualizing the pattern overlap between six different sEMG patterns in 

a 2D space of projected RMS features. The presented data was collected from one 

of the participants during the experiment (see Section 2.3 for more details). 

Principle Component Analysis (PCA) was used to reduce the dimensions of RMS 

features extracted from eight sEMG channels and the explained variance was 

72%. 
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2.2 Modular regression to adapt task-specific context  

Consider a user who wants to operate the i-Limb prosthetic hand (from Touch Bionics, UK) 

using a regression-based ML control. And for the sake of simplicity assume that, the user 

wants to use 𝐾 =  6 different grip types, namely, the power grasp, pointing index, two-digit 

pinch, pre-flat, flat-grip and rest (see description in Table 2.1). In order to train these 

patterns, the user follows a supervised training procedure and generates a data-set 

 𝒟 = {(𝑥1, 𝑦1),… (𝑥𝑁, 𝑦𝑁)}  ≅ (𝑋, 𝑌) containing sEMG features 𝑥𝑖 ∈ 𝑅𝑑  corresponding to 

target prosthesis actions  𝑦𝑖 ∈  𝑅𝑀 . For the i-Limb hand, 𝑀 = 6 represents the 6 motors 

available in the robotic hand – one motor for the flexion of each finger and two motors for 

the rotation and flexion of the thumb each. As discussed in Section 1.2, regression can be 

used to determine a matrix 𝑊 that predicts action 𝑦̂ = 𝑥̂𝑊  for any user-generated input 

vector 𝑥̂  ∈  𝑅𝑑.  

Traditionally, the matrix 𝑊 is evaluated once in the beginning and remains fixed throughout 

usage. As described in Section 1.2 and Equation 1.2, the matrix 𝑊 can be calculated by 

using the full data-set 𝒟 ≅ (𝑋, 𝑌) as follows, 

𝑊 = (𝑋𝑇𝑋 +  𝜆𝐼𝑑)−1 𝑋𝑇𝑌                                                       (2.1) 

This traditional approach of using the full data-set 𝒟  to evaluate 𝑊  will be called full 

regression (FR). Understandably, FR does not allow the user to customize ML control as 

and when required. This, however, can be achieved by employing the newly designed 

modular regression (MR) approach. In MR, the 𝐾 = 6 available patterns are organized as 

separate modules, and the user is allowed to include/exclude a particular module (or pattern) 

as required. To implement MR, the data-set 𝒟 is first organized into 𝐾 =  6 modules as 

follows,  

𝒟 =  

(

 
 
 
 

 

[
 
 
 
 
 
 
 𝑋𝑝𝑤 

𝑋𝑝𝑜

𝑋𝑝𝑖

𝑋𝑓𝑙

𝑋𝑝𝑓

𝑋𝑟𝑒 ]
 
 
 
 
 
 

 ,

[
 
 
 
 
 
 
 𝑌𝑝𝑤 

𝑌𝑝𝑜

𝑌𝑝𝑖

𝑌𝑓𝑙

𝑌𝑝𝑓

𝑌𝑟𝑒 ]
 
 
 
 
 
 

 

)

 
 
 
 

                                                       (2.2) 

where, 𝑋𝑗 ∈ 𝑅𝑁𝑗×𝑑 , 𝑌𝑗 ∈ 𝑅𝑁𝑗×𝑀 and 𝑁 = ∑ 𝑁𝑗
𝐾
𝑗=1  for 𝑗 = 1,… , 𝐾  patterns. And, each 

matrix 𝑌𝑗  consists of 𝑁𝑗  juxtaposed copies of target values representing a particular 

prosthesis action (see Table 2.1). For example consider 𝑌𝑝𝑤  for the power grasp,  
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𝑌𝑝𝑤 = [
[1 1 0 1 1 1 1]

⋮
[1 1 0 1 1 1 1]

] =  [

𝑦𝑝𝑤

⋮
𝑦𝑝𝑤

]                                               (2.3) 

Any matrix 𝑌𝑗 represents only the minimum and maximum activation of each target motor, 

and the regression interpolates the intermediate values required during online control. This 

greatly simplifies the training procedure as the user only needs to enact maximum voluntary 

contractions for each movement being training [38], [67].   

 

Next, the terms 𝑋𝑇𝑋 and 𝑋𝑇𝑌 in Equation 2.1, which contain information regarding all  𝐾 

actions, can be rewritten to represent each action separately,  

𝑋𝑇𝑋 = ∑𝑋𝑗
𝑇𝑋𝑗

𝐾

𝑗=1

;  𝑋𝑇𝑌 = ∑𝑋𝑗
𝑇𝑌𝑗

𝐾

𝑗=1

                                         (2.4) 

And, since 𝑌𝑗  is a juxtaposition of 𝑁𝑗 identical vectors 𝑦𝑗 , the equivalence 𝑋𝑗
𝑇𝑌𝑗 = 𝑋̅𝑗 𝑦𝑗 

𝑇 

can be established, where, 𝑋̅𝑗 = ∑ 𝑥𝑘𝑗
𝑁𝑗

𝑘=0
.  

Therefore, Equation 2.1 can be re-written as follows,  

𝑊 = (∑𝑋𝑗
𝑇𝑋𝑗

𝐾

𝑗=1

+  𝜆𝐼𝑑)

−1

∑ 𝑋̅𝑗 𝑦𝑗 
𝑇

𝐾

𝑗=1

                                       (2.5) 

Table 2.1: Different actions which can be performed using the i-Limb hand and the 

corresponding motor-commands ( 𝑦𝑎𝑐𝑡𝑖𝑜𝑛). For the vector  𝑦𝑎𝑐𝑡𝑖𝑜𝑛 , assume that the 

first component of the vector corresponds to thumb flexion, second component 

corresponds to thumb adduction, third component corresponds to the motor 

controlling the index finger flexion and so on for the remaining three fingers. 

Actions 𝒚𝒂𝒄𝒕𝒊𝒐𝒏 Description 

Power 𝑦𝑝𝑤 = [1 0 1 1 1 1 ] All fingers flexed, thumb abducted and flexed. 

Point 𝑦𝑝𝑜 = [1 0 0 1 1 1] 
All fingers flexed but Index, thumb abducted & 
flexed. 

Pinch 𝑦𝑝𝑖 = [1 0 1 1 0 0 ] 
Index and Middle finger flexed, thumb abducted 
and flexed. 

Pre-Flat 𝑦𝑝𝑓 = [0 1 1 1 1 1 ] All fingers flexed, thumb adducted but not flexed. 

Flat 𝑦𝑓𝑙 = [1 1 1 1 1 1 ] All fingers flexed, thumb adducted and flexed. 

Rest 𝑦𝑟𝑒 = [0 0 0 0 0 0 ] All fingers at rest, thumb abducted but not flexed. 
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In this way, 𝑊 can be (re-)constructed by storing 𝐾 doublets (𝑋𝑗
𝑇𝑋𝑗 , 𝑋̅𝑗) for each target 

activation 𝑦𝑗 . The proposed MR approach, thus, gives a possibility of building a reduced 

model by plugging only some of the doublets into Equation 2.5. For instance, if a particular 

task only requires a subset 𝐾′ ⊆ 𝐾 of all actions, a reduced model 𝑊𝐾′  can be evaluated 

on-the-fly as follows,  

𝑊𝐾′ = (∑ 𝑋𝑗
𝑇𝑋𝑗

𝑗∈𝐾′

+  𝜆𝐼𝑑)

−1

∑ 𝑋̅𝑗 𝑦𝑗 
𝑇

𝑗∈𝐾′

                                 (2.6) 

In theory, users can employ MR to build one specific model 𝑊𝐾′  for each ADL, allowing 

them to use the best possible model at all times. For example, while ironing a piece of cloth, 

the model 𝑊𝐾′  may contain only the two required grip types, namely, power grasp and 

pinch grip. It was hypothesised that the systematic usage of MR would improve the 

accuracy of prediction, and therefore, the reliability of the myoelectric control. The 

experimental procedure used to verify this hypothesis has been outlined in the upcoming 

section. 

Lastly, notice that, the FR and MR equations can support incremental learning and 

therefore, it was always possible to update the prediction model (𝑊 or 𝑊𝐾′) by adding new 

training samples for individual grip patterns. This is particularly useful for countering the 

effect of changes in sEMG signals over time or due to fatigue [69]. From here on, the term 

Pattern Update will be used to describe the process of re-computing a new prediction model 

by adding new training samples for a given pattern. Mathematically speaking, a new set of 

training samples 𝒟+ = {(𝑥𝑗,1
+ , 𝑦𝑗), … (𝑥𝑗,𝑁

+ , 𝑦𝑗)}  ≅ (𝑋𝑗
+, 𝑌𝑗) for the 𝑗𝑡ℎ  pattern can be used to 

update the current doublet for the 𝑗𝑡ℎ  pattern as follows,  

(𝑋𝑗
𝑇𝑋𝑗 ,  𝑋̅𝑗)𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  (𝑋𝑗

𝑇𝑋𝑗 ,  𝑋̅𝑗)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + (𝑋𝑗
+𝑇

𝑋𝑗
+,  𝑋̅𝑗

+)                (2.7) 

Moreover, for the online experiment, the FR and MR equations were extended by applying 

the Random Fourier Feature (RFF) kernel, as suggested in [67]. This involves 

pre-processing each sample 𝑥 ∈ 𝑅𝑑  with a non-linear sinusoidal transform 𝜑 ∶  𝑅𝑑 → 𝑅𝐷 , 

which projects each EMG feature vector 𝑥𝑑 to a higher-dimensional feature space with 𝐷 

dimensions. The transformed data 𝜑(𝑥) was, then, used for both learning and prediction. 
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2.3 Materials and Methods 

In order to check whether the usage of MR would yield a better myocontrol with respect to 

FR, an experiment was conducted with fourteen able-bodied participants performing 

functional ADL tasks. The experiment was conducted according to the Declaration of 

Helsinki [102]. During the experiment, the participants wore a splint, on which a left-sided 

i-Limb Revolution prosthesis (from Touch Bionics, U.K.) was mounted as shown in  

Figure 2.2. The robotic hand was controlled wirelessly using a custom-made serial-over-

Bluetooth circuit. The sEMG signals were also acquired wirelessly using a Myo bracelet 

manufactured by Thalmic Labs (www.myo.com) with 𝑑 = 8 sEMG channels. And, for each 

sEMG channel, the RMS envelope was evaluated every 5 ms over a window size of 150 ms 

and then, the RMS values were filtered using a low-pass Butterworth filter of order 1 and 

cut-off frequency 2Hz. The FR and MR based control schemes were implemented as a 

stand-alone C# program on a standard PC equipped with two Bluetooth dongles, one to 

acquire sEMG data from the Myo bracelet and the second to control the prosthesis. Both FR 

and MR were operated using filtered RMS features extracted from 𝑑 = 8 EMG channels. 

 

The functional tasks performed during the experiment were designed to reflect frequently 

required ADLs. The participants were able to complete each functional task using a specific 

subset of  𝐾 =  6 actions mentioned in Table 2.1. A description of each task is as follows, 

i. Ironing: A piece of square-shaped cloth and a standard iron were placed on a table. 

The participants were instructed to use a power grasp to hold the iron and a pinch 

grip to handle the cloth. First, the participants had to iron the cloth four times right 

to left with the prosthetic hand; and for safety reasons, the iron was never turned-on. 

 

Figure 2.2: The experimental setup comprising of the i-Limb Revolution prosthetic 

hand mounted on a splint and the Myo Armband with eight sEMG sensors.   
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The participants were allowed to use their right hand to steadily hold the cloth while 

ironing. Next, the cloth was flipped using both hands and the back-side was again 

ironed four times. Finally, the cloth was folded twice (corner to corner) using both 

hands, reducing its size to one quarter of the original size. In this task, two grip 

patterns were required with MR, namely, power grasp – to grab the iron, and pinch 

grip – to grab the cloth for folding. 

ii. Library: A starting point was marked approximately 4 meters away from a book-shelf 

and a book was placed on the top compartment of the shelf. Additionally, a desk 

with a keyboard was placed near the shelf, alongside the path between the starting 

point and the shelf. After walking towards the shelf from the starting point, the 

participants grabbed the book using a power grasp and placed it on the desk near the 

keyboard. Next, the participants used a point index grip to enter the title of the book 

via the keyboard. Lastly, before returning back to the starting point, the participants 

placed the book back to its original location using a power grasp. Here, two grip 

patterns were required with MR, namely, power grasp – to grab the book, and point 

index grip – to type the name. 

iii. Arranging: Two pairs of crosses (×) and vertical lines (|) were marked on an alleviated 

platform. The task consisted of placing two flyers and two bottles each on the | and × 

markers respectively. To start the task, participants took six flyers in their right hand 

and thereafter, they used a combination of pre-flat and flat grasp to pick-and-place 

two flyers from the right hand onto the vertical line (|) markers. The flyer pick-and-

place task was accomplished by first executing the pre-flat grip and then placing the 

flyer between the thumb and the radial side of the index finger, thereafter the thumb 

was closed by executing the flat grasp. Furthermore, six bottles were placed between 

the alleviated platform and the participants, who then used a power grasp to pick-

and-place any two bottles on the cross (×) markers. In case, if the participants would 

lose the grasped bottle during pick-and-place (e.g. due to accidental opening), they 

would grasp a new bottle from the block of six bottles placed in front of them. Here, 

three grip patterns were required with MR, namely, power grasp – to grab the 

bottles, pre-flat and flat grip – to handle the flyers.  

iv. Shopping: A starting point was marked approximately 4 meters away from a shelf, on 

which three items, namely, water-bottles, fruits and chocolates were placed at 

different heights. A standard shopping basket was given to the participants in their 

right hand. A keyboard was placed on a desk alongside the path between the shelf 
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and the starting point. At first, the participants walked towards the shelf with the 

basket in their right hand and then, used their prosthetic hand to pick-and-place 

items from the shelf into the basket. Specifically, the participants used a power grasp 

to pick-up a bottle, a pinch grip to pick-up a fruit and a chocolate. Next, they used a 

point grip to enter a PIN (1973) on the keyboard, before walking back towards the 

starting point. Thus, three grip patterns (power, pinch, point) were required for 

control with MR.  

v. Playing Jenga: A small Jenga tower with 30 blocks was pre-constructed for the 

participants, with two blocks coming out of the tower on the left-side. Firstly, using 

a point grip, the participants were asked to push the two blocks inwards, until a part 

of the block comes out on the right-side. Next, with the sound hand, the participants 

removed the two blocks from the right-side of the tower. Finally, they used a pinch 

grip to pick-and-place two Jenga blocks on top of the tower, from a pile of blocks 

placed on the side. Thus, two grip patterns were required for MR, namely, point 

index grip – to push the blocks out and pinch grip – to place new blocks on top of 

the tower. 

The outline of the experimental procedure is shown in Figure 2.3. Before performing the 

aforementioned functional tasks, the participants were introduced to the concept of 

myoelectric control and were informed that the system could be trained by producing the 

MVC of required patterns for 5 seconds. The training data for a given pattern was collected 

by verbally synchronizing the start of the training phase, which was immediately followed 

by the robotic hand mimicking the pattern being trained. Meanwhile, the participant would 

contract the forearm muscles to produce a comfortably high fingertip force on the splint and 

the corresponding sEMG signals were recorded as training data. The end of the training 

phase was subsequently indicated by the prosthesis, as it would release the configured 

action (being trained) and quickly go back to rest. The required prediction model (𝑊 

or 𝑊𝐾′) was speedily evaluated by the system, making it possible to immediately transfer 

the control (of prosthesis) back to the participant at the end of the training phase. 

Furthermore, all participants were informed that the experiment was tailored to compare 

two different control approaches, but specific details regarding both approaches (e.g. exact 

name of each approach, or how one approach was better than the other, etc.) were not 

disclosed, in order prevent any expectation bias. Soon after, the participants were 

challenged to perform two round (Round 0 and Round 1) of five tasks using FR and MR as 

the control method. The sequence in which the two control methods were administered was 
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randomized order across participants, i.e. half of them used FR followed by MR and the 

other half had the order reversed; plus, the order in which the tasks were performed was 

also randomized across participants.  

 

The Round 0 was used to familiarize the participants with the tasks and the control method. 

Here, the participants used the respective control method (FR or MR) for the first time, and 

the training data required to evaluate the prediction model (𝑊 or 𝑊𝐾′) was gathered in a 

cumulative fashion by training-upon-requirement, i.e. training a given pattern as-and-when 

it was required for a task, until all five tasks were successfully completed. The prediction 

model evaluated in Round 0 was carried over to Round 1, and the participants were always 

allowed to add more training data to the model. The decision to add more training data in 

Round 0 was collectively taken by the participant and the experimenter via verbal 

interaction, whereas, in Round 1, the request to perform a Pattern Update was independently 

expressed by the participant. Next, for Round 1, the same five tasks were administered 

again (in the same order as in Round 0) and three outcome measures of performance were 

recorded, namely, the Task Completion Time (TCT), number of Pattern Updates (PUs) 

requested and the number of Errors incurred. The measure PUs indicate the number of 

times a Pattern Update was requested (done by adding new training data for 5 seconds) in 

Round 1. And, the measure Errors was calculated by counting the number of objects 

accidentally dropped during each task and the number of accidental hand openings while 

typing in the Library and Supermarket task. Lastly, notice that, no outcome measure was 

evaluated for Round 0, as the aim of this round was to familiarize the participants with the 

task and the control method.  

The experimental protocol can be better understood by considering the experimental 

timeline presented in Figure 2.4. This particular timeline is taken from a participant 

 

Figure 2.3: The experimental protocol used to compare the two control methods, namely, 

Full Regression (FR) and Modular Regression (MR). The sequence in which both 

methods were administered across participants was randomized, and the order in which 

the five tasks (Ironing, Library, Arranging, Shopping and Playing Jenga) were 

performed was also randomized (indicated by an asterisk). 
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belonging to the group which was administered FR before MR. In the beginning, no training 

data was available to perform task T1 (in Round 0 with FR), and therefore, the participant 

trained all the required patterns (power, pinch, point, rest) for task T1. Later on, due to poor 

performance, the patterns pinch and rest were incrementally updated by collecting new 

training data (for 5 seconds each). And, after T1 was successfully completed, tasks T2, T3 

and T4 were performed, during which the patterns power (in T2) and point (in T3) were 

incrementally updated. So far, the patterns pre-flat and flat were not required during tasks 

T1 to T4, and therefore, their training data was not available in the system. Following the 

paradigm of training-upon-requirement, the patterns pre-flat and flat were trained for the 

first time before performing task T5, during which the pattern pre-flat was updated twice 

incrementally. The prediction model evaluated at the end of Round 0 was used to perform 

tasks in Round 1, where the outcome measures TCT, PUs and Errors were registered for 

evaluation. In this particular case, PUs = 3 as three updates were requested, namely, one for 

power (in T2) and two for point (in T3 and T4). Next, with MR, the required training data 

was collected in Round 0, again by following the paradigm of training-upon-requirement 

and allowing incremental updates. Thereafter, Round 1 was performed and the three 

measures were registered for evaluation.       

 

 

Figure 2.4: An experimental timeline. The participant performed two rounds of five tasks 

with FR, followed by two rounds with MR. Symbols: ‘+’ – Pattern Update for the given 

pattern, T1 - Shopping, T2 - Ironing, T3 - Library, T4 – Jenga and T5 - Arranging. 
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The evaluated outcome measures for FR and MR control were compared using the 

Wilcoxon signed rank test for dependent samples, and a Bonferroni correction was applied 

wherever necessary. All results are reported in terms of median and interquartile  

range (IQR) – denoted as median {IQR}. The required statistical analysis was performed 

using the software STATISTICA (from Dell, US) and the threshold for significance was set 

to 𝑝 =  0.05. 

2.4 Experimental Results 

Figure 2.5 summarizes the results for TCT obtained using FR and MR. The median overall 

time required to complete the tasks using MR (1.1{0.8−1.7} minutes) was significantly 

lower than using FR (1.9{1.3−2.4} minutes) with 𝑝 <  0.001 . Moreover, the average 

overall TCTs with FR and MR were 2.0±0.9 and 1.4±0.8 minutes respectively, and this 

represents an average overall decrease of 30% in TCT with MR.  

 

The number of PUs required in Round 1 with MR (1{0-1}) were significantly lower than 

FR (2.5{2-3}) with 𝑝 <  0.05. But, the total number of Errors incurred in Round 1 with 

MR (4{1.3-6.5}) and FR (5{4.3-6.8}) were not statistically different (𝑝 > 0.05). If the total 

Errors observed in Round 1 were normalized by the number of task (i.e. 5), it approximates 

to about one error per task with either method. Therefore, it can be suggested that, the 

 

Figure 2.5: Summary of the comparison between FR and MR, showing the median 

Task Completion Time (TCT) in minutes during Round 1 for five different ADLs. 

(‘***’ indicates p<0.001, the horizontal line within a box indicates median, the box 

indicates IQR, the triangle indicates mean and the circles indicate outliers). 
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observed Error count per task was too small to make a meaningful comparison between the 

two approaches.  

Lastly, at the end of the experiment, all participants were asked to report their subjective 

impression/feeling on which approach according to them provided better control. Twelve 

out of fourteen participants reported that the myoelectric control in the rounds with MR was 

better, and two participants reported perceiving no difference between the two approaches.  

2.5 Discussion 

This chapter presented a new method called Modular Regression (MR) which provided a 

simple way to interact with a regression-based myoelectric controller. With MR, each 

prosthesis action (grip) was formulated as a module, which the user could insert/remove as 

required to best accomplish a given task. In an online experiment, the new MR approach 

was compared with the classic FR approach of using all available actions at all times. The 

results indicated that, overall, the five ADL tasks in the experiment could be performed 

significantly faster with MR in comparison to FR. Thus, MR offers not only a simple way 

for the users to interact with the underlying control, but it also provides functional 

improvement during online control. 

The experimental protocol used to compare the performance of FR and MR was designed to 

mimic the everyday use of a multi-articulated prosthesis. Ideally, a new training dataset 

must be provided to the ML controller each time the donning and doffing of sEMG 

electrodes occurs. And, because the number of offered grip types is high, a user cannot be 

expected to train all available patterns every morning (when donning and doffing of 

electrodes may occur before and after shower). At first, the user would train a set of few 

most frequently required patterns and, then, gradually add new patterns by following the 

paradigm of training-upon-requirement. As new patterns are added, the overlap in feature 

space would increase (Figure 2.1A), resulting in a possible degradation of performance over 

time. In such cases, the presented MR method can be used to minimize the interaction with 

undesired patterns. Although, depending upon usage and experience, prosthesis users are 

expected to improve their performance over time [103]. In case of an experienced user, the 

performance with FR might already so good that the contribution of MR becomes 

redundant. Therefore, MR could be implemented as an optimal component, i.e. initially 

activated to support a naive user and then deactivated once the user becomes experienced. 
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The available user-interactivity and functional improvement with MR can be extended, in 

the future, by adding more interactive features. One possibility is to update the underlying 

ML control each time the user indicates that a failure (Error) has occurred. This could, for 

example, possibly decrease the 4{1.3-6.5} Errors observed with MR during the experiment. 

Another possibility would be that the ML controller could regularly monitor the quality of 

generated sEMG patterns and provide suggestions (or tips) on which combination of 

patterns may or may not work properly. This could, for example, motivate the user to 

improve the discriminability of patterns belonging to a possibly problematic combination, 

by using previously proposed methods to improve signal generation [104], [105]. 

An inherent drawback of relying on user-generated information is that the burden of 

generating context information lies on the user. Thus, before introducing additional 

interactive features, care must be taken to maintain a balance between the amount of context 

information required from the user and the corresponding performance gained. 

Alternatively, the burden on the user could be minimized by automatically generating 

context information from additional sensors. For example, with MR, not only can the subset 

of patterns be chosen willingly by the user, but the prosthetic device can potentially 

recognise situation(s) and automatically apply a reduced set of patterns tailored for the 

detected situation. One possibility is to mark various daily living objects (e.g. Iron) using a 

so-called grip-chip [101], and the automatic selection of the required patterns can be applied 

when the prosthesis finds itself in close proximity to one of these grip-chips (e.g. automatic 

selection of power and pinch grip when close to Iron). Another possibility is to detect 

various daily living situations via vision and/or GPS (Global Positioning System) sensors. 

For example, the act of approaching an ATM to withdraw cash is a situation that could be 

automatically detected via vision and/or GPS sensors. By doing so, an intelligent prosthesis 

could assume that pointing action (to enter one’s own PIN on a keypad) and flat grip (to 

insert/extract a credit card and to take the cash) are likely to occur, and could automatically 

generate a model to predict on the reduced set of most likely patterns.  

The idea of using additional sensors to automatically adapt the ML controller is especially 

interesting, since it allows automatic generation of context information and minimizes the 

burden on the user. But unfortunately, prosthetic hands available today are not equipped 

with vision or GPS sensors and therefore, the selection of ADLs has to remain manual for 

now. Nevertheless, many commercially available devices are equipped with embedded 

sensors that can provide proprioceptive (e.g. acceleration, orientation) and/or exteroceptive 

(e.g. force, aperture) information. Indeed, this information can be exploited to improve 
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prosthesis control based on ML. One example is to use an embedded contact (force) sensor 

to detect if an object is being held by the prosthesis, and once the contact is established, the 

goal should be to minimize the odds of dropping the object. This could, also, possibly 

decrease the 4{1.3-6.5} Errors observed with MR during the experiment. The upcoming 

chapter discuses a multimodal sensors fusion technique which was developed to improve 

the robustness of ML-based control by exploiting context information available from 

sensors embedded within prosthesis. 
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3 CONTEXT-DRIVEN MACHINE 

LEARNING FOR MYOCONTROL 

This chapter has been based on the recently published paper: 

G. K. Patel, J. M. Hahne, C. Castellini, D. Farina, S. Dosen, "Context-dependent 

adaptation improves robustness of myoelectric control for upper-limb prostheses", in 

Journal of Neural Engineering, vol. 14, no. 5, September 2017. 

3.1 Motivation and the novel concept 

Most commercial and research prostheses are equipped with sensors that provide 

proprioceptive (e.g. joint angles) and/or exteroceptive (e.g. grasping force) information. 

However, this information has not been used to improve prosthesis control based on 

machine learning. The main idea of this chapter is to show how context information from 

various on-board prosthesis sensors can be exploited to improve ML-based myoelectric 

control. 

As discussed in section 1.2, a conventional myoelectric controller defines a time-invariant 

mapping function between the user’s muscle activity and the prosthesis commands. This 

mapping function, usually, remains fixed (static) during use. Contrary to the conventional 

approach, this chapter proposes a novel method (shown in Figure 3.1) to adapt this mapping 

online based-on the state of the prosthesis (context information) detected via embedded 

proprioceptive and exteroceptive sensors. The new control framework is called the 

context-driven machine learning control (cxMLC), and it comprises of two interacting units: 

a context-aware component (CAC) and a conventional machine learning controller (MLC). 
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The CAC infers context information (e.g. prosthesis states) from the real-time sensor data, 

and this information is used to modulate the parameters of the MLC. Thus, the mapping 

between the user’s EMG signals and the generated prosthesis command (defined by MLC) 

becomes reactive to the inferred context information (and does not remain static).  

In particular, this chapter presents one specific implementation of the general conceptual 

scheme in Figure 3.1. The presented cxMLC implementation contains a CAC unit which 

modulates only the output parameters (activation thresholds) of the MLC, leaving the 

internal parameters of MLC unchanged. Another implementation of the general scheme in 

Figure 3.1 could include a CAC unit that adapts the internal parameters (e.g. class prior 

probabilities) of the MLC based on available context information; but this implementation 

is beyond the scope of this chapter. 

 

 

Figure 3.1: Conceptual scheme of the proposed context-driven ML-based myoelectric 

control (cxMLC). The scheme integrates a conventional ML-based myoelectric 

controller (MLC) and an automatically driven context-aware component (CAC). The 

context inference is realized by the CAC using proprioceptive (e.g. orientation, 

gyroscope) and exteroceptive (e.g. force, aperture) sensors embedded within the 

prosthesis. And, the parameters (e.g. activation thresholds) of MLC are adjusted in 

real-time based on the inferred context information. 
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3.2 Context-Driven Control 

The incremental Ridge Regression with Random Fourier Features, discussed in [67], was 

adapted to implement the conventional myoelectric control (MLC). The implemented MLC 

was used for the sequential and proportional control of five prosthesis functions available in 

the Michelangelo Hand, namely, wrist pronation, wrist supination, palmar grasp closing, 

lateral grasp closing and hand opening. These prosthesis functions were controlled by EMG 

signals obtained from five muscle contraction patterns, namely, wrist radial deviation, ulnar 

deviation, wrist flexion, closed fist and wrist extension, respectively. The sEMG signals 

required to operate the MLC were acquired using the wireless Myo armband (from Thalmic 

Labs, CA) with 𝑑 = 8  sEMG channels. For each sEMG channel, RMS features were 

evaluated every 5 ms over a window size of 150 ms and then, filtered using a low-pass 

Butterworth filter of order 1 and cut-off frequency 2Hz. The most recent sample of the 

filtered RMS envelope was given as input to the MLC and the output was the predicted 

movement (𝑦̂𝑖) for the five prosthesis functions. Next, a threshold 𝑇 (default value 0.2) was 

applied to the predicted movement 𝑦̂𝑖  to remove the uncertainty at low contraction levels 

and then, the obtained value was multiplied by a fixed gain 𝐺 (of 1.25 for grip open/close 

and 1.00 for wrist rotation). Thus, the relationship between the command generated by the 

user (𝑦̂𝑖) and the control command sent to the prosthesis (𝑦̂𝑖
′) can be formulated as, 

𝑦̂𝑖
′ =  𝐺𝑖( 𝑦̂𝑖 − 𝑇𝑖)                                                           (3.1) 

where, 𝑦̂𝑖
  and 𝑦̂𝑖

′ denote the predicted activations before and after thresholding and gain 

multiplication were applied; and their values remained in the range [0,1], where 1 indicated 

maximum activation. The subscript 𝑖 denotes different prosthesis functions, namely, palmar 

(P), lateral (L), hand open (O) and wrist rotation (R). The sequential and proportional 

control was implemented by retaining the maximum value from the set {𝑦̂𝑃
 , 𝑦̂𝐿

 , 𝑦̂𝑂
 , 𝑦̂𝑅

 } of 

predicted movements and setting all other values to zero. Thereafter, the term 𝑦̂𝑖
′ was used 

to determine the velocity with which the corresponding prosthesis motor was moved. 

The CAC was implemented as a finite state machine (FSM) representing typical phases 

(states) arising during prosthesis use (see Figure 3.2). Specifically, five different prosthesis 

states, namely, Free, Closing, Grasping, Holding and Moving were considered in this 

implementation. And, as shown in Figure 3.2, the state-transitions were triggered by 

monitoring online sensor data coming from three different sensors embedded within the 

prosthesis socket, namely, the force and grip aperture sensor in the Michelangelo prosthesis 

(providing normalized force (𝐹 ) and aperture (𝐴)) and the IMU in the Myo armband 
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(providing orientation (𝛼, 𝛽, 𝛾)  and net angular velocity |𝜔|). In each state, a set of rules 

was activated for post-processing of the commands  𝑦̂𝑖  generated by the MLC (see  

Figure 3.3). The aim of this post-processing was to minimize the unwanted/spurious 

activation of different prosthesis functions and therefore, the thresholds 𝑇𝑖 were adapted to 

suppress/eliminate the unwanted activation of specific functions.  

 

Figure 3.4 shows an example of how different CAC state-transitions were triggered during 

online control. Initially, the hand/prosthesis was in the Free state and the threshold 𝑇𝑖 was 

set to its default value of 0.2. Next, the user started closing the hand (either using palmar or 

lateral grip) to grasp an object and soon, the aperture threshold 𝐴 ≥ 𝐴𝑇 was reached. The 

CAC entered the Closing state to indicate that the hand was configured into a specific grasp, 

ready to enclose the object. To assist the user in forming a stable grip, the threshold for 

wrist rotation was increased to reduce the odds of accidental wrist rotation(s) during grip 

 

Figure 3.2: State machine for context aware component (CAC). The state machine 

detected five prosthesis states: Free, Closing, Grasping, Holding and Moving. The 

conditions for transition between the states, indicated next to the arrows, were based 

on comparing the real-time sensor data (from embedded gyroscope, force and 

aperture sensors) to predefined thresholds. The annotations are: A – normalized grip 

aperture, F – normalized grasping force, (α, β, γ) – elbow orientation and |ω| – elbow 

angular velocity. The threshold values were: AT = 0.2, FT = 0.02, θT = 10° and 

ωT = 1rad/s. 
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closure. Next, the force sensor detected contact with the object (𝐹 > 𝐹𝑇 ) and so, the 

Grasping state was activated. In this state, the user adjusted the grasping force as required, 

before preparing to lift the object. Here, the forearm orientation (𝛼, 𝛽, 𝛾)  and the final 

grasping force were registered upon entry and exit from this state, respectively (as indicated 

in Figure 3.3). 

 

Figure 3.3: State based rules for context aware component (CAC). In each of the five 

prosthesis state, a pre-defined set of rules was used to post-process the outputs of the 

MLC. See the text for a detailed description of these rules. The annotations are:  

𝑦̂𝑖
  – the predicted movement, 𝑇𝑖  – activation threshold, R – Rotation, L – Lateral,  

P – Palmar and O – Hand Opening. 

In the next step, the user lifted the object. This action was easily detected by monitoring the 

difference between the current forearm orientation and the orientation that was registered in 

the Grasping state. Once the object was lifted (∆𝛽 > 𝜃𝑇), the CAC entered the Holding 

state. The aim of this state was to allow the user to manipulate the object while 

simultaneously preventing an accidental opening of the hand. Therefore, the wrist rotation 

threshold was set back to the default value (to allow easy manipulation) and the hand 

opening threshold was increased (to prevent an accidental drop). Additionally, to open the 

hand in this state, the user was required to produce an unambiguous opening command (by 

generating a strong signal) with no concomitant rotation command. This was enforced by 

the “distinct open” rule (see Figure 3.3), which assured that the hand opened only when the 

user clearly indicated an explicit intention to release the object. This rule would not block 

all spurious opening commands, but it would weaken their effect. A weak spurious opening 

command could still decrease the applied grasping force, and multiple such commands 
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generated over time could eventually reduce the contact force down to zero, leading to an 

unintentional dropping of the object. To prevent this, the “Restore Force” rule was 

implemented to readjust the grasping force to the level registered when exiting from the 

Grasping state. This was the force level that the user adjusted as appropriate for the object, 

just before the object was lifted. Additionally, in the Holding state, the grip type orthogonal 

to the grip in-use was disabled i.e. if the palmar grip was used to grasp the object, then the 

lateral grip was disabled and vice versa.  

 

Lastly, the Moving state was activated when the user started moving with the prosthesis 

(|𝜔| > 𝜔𝑇). In this state, the wrist rotation threshold as well as the threshold for the distinct 

open rule was increased in compared to the Holding state (see Figure 3.3). The aim was to 

stabilize the prosthesis configuration, i.e., to maintain a fixed grasping force and wrist 

orientation while moving. Once the moving would be finished (detected by |𝜔| < 𝜔𝑇), the 

CAC would enter back into the Holding state. Lastly, it is important to note that, no 

prosthesis function was actually disabled in any of the states – it was just made more or less 

difficult to activate. Put differently, in some states, the user was required to exert more 

 

Figure 3.4: An example of how different CAC state transitions were triggered during 

online control with cxMLC. The annotations are: 𝐴  – normalized grip aperture,  

𝐹  – normalized grasping force, (𝛼, 𝛽, 𝛾)  – elbow orientation and |𝜔|  – net elbow 

angular velocity. And, the thresholds for state-transitions were: 𝐴𝑇 =  0.2, 𝐹𝑇 =  0.02, 

𝜃𝑇  =  10° and 𝜔𝑇 =  1𝑟𝑎𝑑/𝑠. 
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effort to indicate a clear determination for activating a certain function, whose threshold 

was increased to eliminate spurious activations.  

An experiment involving functional tasks was conducted to examine the benefits of utilizing 

CAC besides MLC for prosthesis control. During this experiment, participants were 

administered two control methods, namely, MLC and cxMLC (i.e. CAC + MLC), in a 

randomized order. For MLC, the prosthesis was controlled by applying a fixed threshold on 

the commands generated by the user, whereas for cxMLC, the CAC was used to 

post-process the generated commands as explained above. The experimental procedure used 

to compare MLC and cxMLC has been outlined in the next section. 

3.3 Materials and Methods  

An experiment was conducted with ten able-bodied participants performing three different 

functional tasks designed to test the robustness of myoelectric control. This experiment was 

conducted according to the Declaration of Helsinki [102]. The experimental setup wore by 

the participants is shown in Figure 3.5. It comprised a wireless Myo armband (from Thalmic 

Labs, CA) and a left-sided Michelangelo prosthesis (from Ottobock, DE) mounted on a 

bypass socket. The armband incorporated eight channels for sEMG acquisition and an IMU 

for measuring the forearm orientation (𝛼, 𝛽, 𝛾) and net angular velocity (|𝜔|). The armband 

was placed approximately 5 cm below the elbow joint of the left arm and it was oriented 

such that the positive X-axis of the IMU was pointing towards the volar side of the wrist. 

The Michelangelo prosthesis had an inbuilt force and aperture sensor, which were used to 

acquire normalized force and aperture values corresponding to the maximum grasping force 

(~100 N) and hand aperture (~11 cm for palmar and ~7 cm for lateral grasp), respectively. 

All prosthesis functions (grasping and rotation) were controlled wirelessly using velocity 

commands  𝑦̂𝑖
′ , obtained after post-processing the user-generated commands 𝑦̂𝑖

  (see 

Equation 3.1). The MLC and cxMLC based control schemes were implemented as a 

software program on a standard PC equipped with two Bluetooth dongles, one to acquire 

sEMG data from the Myo bracelet and the second to control the prosthesis. Furthermore, as 

seen in Figure 3.5, an additional wireless IMU (MTx, Xsens, NE) was also placed on the 

upper-arm to measure its orientation. The positive X-axis of this IMU was aligned with the 

X-axis of the Myo armband, pointing towards the elbow crease. The sensor data coming 

from this IMU was not used for online control, but it was only used for the assessment of 

user movement during the experiment. Thus, in the future, all components (eight sEMG 
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electrodes, forearm IMU, force and aperture sensor) required for online control can be 

integrated into a single socket, leading to a self-contained solution. 

 

An outline of the experimental protocol is shown in Figure 3.6. First, the participants were 

introduced to the concept of myoelectric control and then, the system components were 

placed on their left arm (as shown in Figure 3.5). Next, the participants were made to stand 

in an upright position with their elbows flexed at 90° and the training data required to 

calibrate the MLC was collected by producing the MVC of each pattern for 5 seconds. The 

training data for the pattern rest (corresponding to no movement) was collected using both 

static and dynamic conditions. For the static-rest, the participants were asked to relax their 

forearm muscles for 5 seconds while maintaining the elbow at 90° flexion. For the 

dynamic-rest, the participants were asked to move their elbow and shoulder while keeping 

their forearm muscles relaxed. Specifically, the following four dynamic-rest movements 

were trained: (1) repetitive elbow flexion/extension between 0° and 90° for 5 s. (2) 

repetitive medial and lateral rotation of the shoulder (i.e. forearm moving left and right) for 

 

Figure 3.5: Experimental setup. It comprised a Michelangelo prosthesis with an 

embedded force (I) and aperture sensor (II), a Myo armband (III) with eight sEMG 

channels and an embedded IMU sensor, and an additional IMU (IV) to measure the 

upper-arm orientation. Importantly, the IMU sensor placed on the upper-arm (IV) 

was not required for the online control of prosthesis, but it was only employed for 

monitoring user movement.  
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5 s, (3) repetitive shoulder flexion between 0° and 90° for 5 s and (4) repetitive shoulder 

abduction and adduction for 5 s. These dynamic-rest movements were included in the 

training to minimize the effect of spurious EMG activations observed during dynamic arm 

movements. The collected training data was used to train the MLC prediction model and 

then, the quality of MLC control was examined by asking the participants to produce the 

command 𝑦̂𝑖
  for each prosthesis function in four different arm positions, namely, forearm 

down, elbow flexed, arm frontally extended and arm laterally extended (as shown in  

Figure 3.7). Specifically, an on-screen digital oscilloscope (embedded within our software) 

was used to visualize the activations generated by the MLC and the quality of control in 

each arm position was examined by asking the participants to produce/modulate 𝑦̂𝑖
  in the 

range 0-80%. If the participants were not able to modulate the activation in the range  

0-80%, the MLC control was deemed not good enough and the respective pattern was 

incrementally trained in that position by producing the MVC for 5 s. This was done to 

improve the quality of MLC control and also to ensure the same baseline quality of control 

across participants. 

 

After the MLC training, participants were made to stand in front of a table with adjustable 

height, where the Box-and-Blocks setup (Figure 1.4A) was placed approximately 20 cm 

away from them. Two types of wooden blocks were used during this experiment (each 

compliant with a particular prosthesis grip): (i) the standard cubical wooden block with the 

side length of 2.5 cm to be grasped with a palmar grip and (ii) a modified cuboidal wooden 

block with the dimensions of 2.5×3.0×7.5 cm to be grasped with a lateral grip. And, before 

starting a countdown timer, either 30 cubical blocks or 6 cuboidal blocks were placed in the 

left compartment of the setup. A standard PC monitor was placed approximately 125 cm 

away from the participants to provide visual task instructions. Furthermore, an arm position 

detector was calibrated for identifying the participants’ arm position during functional tasks. 

 

Figure 3.6: The experimental protocol used to compare conventional (MLC) and context 

driven (cxMLC) ML-based myoelectric control. Three tasks were administered to the 

participants sequentially (AWP, WT and HS), and each task was performed using both 

control methods, but the order in which the two control methods were administered was 

randomized across participants (indicated by an asterisk). 
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This calibration was done by asking the participants to bring their arm in each of the four 

arm positions AP1-4 (shown in Figure 3.7), where the pitch angle for the forearm and the 

pitch and yaw angles for the upper-arm were registered. The online identification of arm 

position was done by comparing the real-time angles with the registered values, wherein a 

tolerance/mismatch of ±30° was permitted. This online identification of arm position was 

not used for prosthesis control, but only to ensure that the participants were correctly 

following the experimental protocol. Lastly, all participants were made to familiarize with 

each functional task by performing it for approximately 5 minutes using MLC. The 

description of each functional task follows.   

 

After calibration and familiarization, all participants performed three functional tasks, 

namely, Arm and Wrist Positioning (AWP) task, Wrist Tracking (WT) task and Hand 

Shaking (HS) task (as outlined in Figure 3.6). In all three tasks, the participants were 

required to perform a predefined number of rounds using both control methods (MLC and 

cxMLC). A round, in each task, was defined as a time interval during which the participants 

performed as many trials as possible. To start a trial, the participants would pick up a 

wooden block from the left compartment of the box using the indicated grasp (palmar or 

lateral). The participants also adjusted the grasping force to be between 30–70% of the 

maximum force, using a visual force feedback provided on the computer screen. Once the 

block was appropriately grasped, the so-called Visual Task Instructor (VTI) was triggered 

by the experimenter (and seen on the computer screen). The VTI was used to indicate a 

sequence of actions, which had to be performed before returning the block back to the right 

 

Figure 3.7: Arm Positions (AP). These arm positions were used during the experimental 

tasks. (A) AP1: forearm down, (B) AP2 embow flexed, (C) AP3: arm frontally extended, 

(D) AP4: arm laterally extended. 
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compartment of the box (end of trial). A trial was deemed successful if the block was 

transferred from the left to the right compartment, whereas if the block was dropped during 

VTI, the trial was considered failed. Lastly, note that the notion of round and trial was the 

same in all three functional tasks, i.e. each task comprised several rounds and in each round, 

the participants did multiple trials. However, the VTI and therefore the requirements in each 

functional task were different, as outlined below, 

i. Arm and Wrist Positioning Task (AWP): A single round of this task lasted 4 minutes 

and in each round, the participants did multiple trials. In a single trial, the VTI 

presented four different target arm postures (AP1-4), each followed by a target wrist 

orientation. First, a random arm position from the set AP1-4 was presented as an 

image on the computer screen. The arm position detector, then, waited for the 

participants to bring their arm in the required position. Next, the current and target 

wrist orientations were displayed as metronomes by the VTI as shown in  

Figure 3.8A. The participants were required to move the metronome indicating the 

current wrist orientation to match the metronome indicating the target orientation 

(and remain inside it for 250 ms). The target metronomes were randomly selected 

from a set of predefined target angles {−120°,−60°, 0°, 60°, 120°}, and a tolerance 

of ±15° was allowed. Once the target wrist orientation was achieved, a new target 

arm position was presented to the participants. This process was repeated four times 

in a single trial i.e. four target arm positions were presented randomly, followed by a 

random (non-repeating) target wrist orientation. Lastly, all participants did four 

rounds of this task with each control method (MLC and cxMLC), wherein two 

rounds were performed by using the palmar grip to grasp the object and the other 

two were performed with the lateral grip; both grip types were administered 

alternately. 

ii. Wrist Tracking Task (WT): A single round of this task lasted 4 minutes and in total, 

two rounds (one with palmar and one with lateral) were performed for each control 

method. In a single trial, the VTI presented one target arm position (from the set 

AP1-4) which remained fixed during the trial. The task for the participants was to 

keep their arm fixed in the indicated position and control the wrist orientation, such 

that the metronome representing the current orientation would track the moving 

target metronome, as indicated in Figure 3.8B. The trajectory for the moving target 

metronome was generated by randomly selecting eight centre-angles from the set 

{−120°,−90°,−60°,−30°, 30°, 60°, 90°, 120°} and then, the target metronome was 
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rotated between those centre-angles with a velocity randomly selected from the set 

{30°/𝑠, 45°/𝑠, 60°/𝑠}. The centre angles were chosen such that the sign between the 

consecutive angles would change. In this way, the participants were challenged to 

repeatedly pronate and supinate. Additionally, each time the target metronome 

reached one of the eight centre-angles, it stopped until the participants successfully 

positioned their prosthesis wrist within the target metronome (centre-angle±10°). 

Hence, a single trial of the WT task comprised of tracking a moving target on the 

screen while keeping the arm fixed in a given position.  

iii. Hand Shaking Task (HS): A single round of this task lasted 3 minutes and in total, two 

rounds (one with palmar and one with lateral) were performed for each control 

method. In a single trial, the VTI indicated a direction in which the participants had 

to shake their forearm until the pie-chart traversed a full circle, as shown in  

Figure 3.8C. The indicated direction of shaking was either left-and-right or 

up-and-down. The angular velocity (|𝜔|) of the elbow joint was monitored and the 

participants were required to generate angular velocity |𝜔|  in the range 

[𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥] for 10 seconds; and, the pie-chart indicated the fraction of time for 

which |𝜔| was in the required range. The thresholds [𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥] for up-and-down 

shake were [2, 4.5] 𝑟𝑎𝑑/𝑠, whereas for left-&-right shake they were [2.5, 5] 𝑟𝑎𝑑/𝑠; 

this difference was due to the greater difficulty when shaking against gravity. 

 

 

Figure 3.8: Visual Task Instructor (VTI). (A) VTI for AWP task: the participants were 

required to match the metronomes indicating the current and the target wrist 

orientations. (B) VTI for WT task: the participants had to track the moving target by 

using the metronome indicating the current wrist orientation. (C) VTI for HS task: the 

participants had to shake their forearm in the indicated direction (here, left-and-right) 

until the pie-chart traversed the full circle. 
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After the experiment, all participants were given a questionnaire in which they had to report 

their subjective experience(s) regarding the two control methods. In this questionnaire, the 

terms Approach 1 and Approach 2 were used to indicate either MLC or cxMLC - depending 

upon the sequence in which they were administered. The complete questionnaire has been 

provided as a supplementary material in Appendix I. This questionnaire was divided into 

three parts: (a) Task Physical Demand: where, the participants were asked to assess the 

physical demand required for completing each of the three tasks, independent of the control 

method, (b) Control Cognitive Demand: where, the participants were asked to access the 

mental demand and frustration level associated with each control method, independently of 

the three tasks. (c) Control Comparison: where, the participants were asked to make a 

one-on-one comparison between the two control methods by reporting their subjective 

impression regarding: performance of wrist rotation, performance of grasping, confidence 

of not losing a grasped object, difficulty in releasing a grasped object and delay experience 

before releasing a grasped object. 

The primary outcome measures used to compare MLC and cxMLC were the number of 

successful and failed trials per round observed during all three tasks. A further comparison 

between MLC and cxMLC was made by evaluating four offline secondary measures from 

the recorded data, which were as follows: a) Number of Spurious Opening Commands: 

calculated by counting the number of spurious opening pulses observed between the start 

and end of VTI in all successful trials of a given round for each task, b) Number of Spurious 

Grasping Commands: calculated by counting the number of spurious grasping pulses 

generated for the orthogonal grip type between the start and end of VTI in all successful 

trials of a given round for each task. In cxMLC, the commands for the orthogonal grip were 

suppressed in the Holding and Moving state and so, this value was always zero for cxMLC, 

c) Absolute Change in Force: the mean absolute difference between the normalized 

grasping force at the beginning and end of VTI for each successful trial in a given round for 

each task, d) Unwanted Wrist Rotation: the mean absolute difference between the wrist 

orientation at the beginning and end of VTI for each successful trial in a given round with 

the HS task. Optimally, all secondary measures should be equal to zero, as participants were 

not supposed to generate opening/closing commands or change the grip force/grip type 

during the tasks. Also, in the HS task, the participants were not supposed to rotate the hand.  

For a given task and outcome measure, the Wilcoxon signed rank test was used to compare 

the performance of MLC versus cxMLC. In the questionnaire, the reported Task Physical 

Demand between the three tasks was compared using the Freidman test followed by a 
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post-hoc average rank test for pairwise comparison. All results are reported in terms of 

median and interquartile range (IQR) – denoted as median {IQR}. The required statistical 

analysis was performed using the software STATISTICA (from Dell, US) and the threshold 

for significance was set to 𝑝 =  0.05. 

3.4 Experimental Results 

Figure 3.9 summarizes the results for the two primary outcome measures used to compare 

MLC and cxMLC. In the AWP task, the median number of successful transfers with 

cxMLC were significantly higher than MLC (5{4-6} vs. 4{2-5} with 𝑝 < 0.001) and the 

median number of dropped objects with cxMLC were significantly lower than MLC  

(0{0-0} vs. 2{0-3} with 𝑝 < 0.001). In the WT task, no significant difference was observed 

between the median number of successful transfers with MLC and cxMLC (3{2-5} vs. 

4.5(4-5) with  𝑝 > 0.05), but the median number of failed transfers with cxMLC were 

significantly lower than MLC (0{0-1} vs. 1{0-2} with 𝑝 < 0.05). And, for the HS task, the 

median successful transfers with cxMLC were significantly higher than MLC  

(5{5-6} vs. 5{3-6} with  𝑝 < 0.05) and the number of failed trails with cxMLC were 

significantly lower than MLC (0{0-0} vs. 0{0-2} with  𝑝 < 0.01). In the HS task, the 

participants did not drop a single object with cxMLC. 

Figure 3.10 and Figure 3.11 illustrate the benefit of using cxMLC in regards to the four 

secondary outcome measures. Figure 3.10A demonstrates the impact of spurious opening 

commands. Here, the participant issued four accidental opening commands while 

performing the AWP task with MLC, which led to an accidental decrease in the exerted 

grasping force. This could have been prevented if cxMLC was used for control, as all 

spurious opening commands were below the state-dependent threshold. Figure 3.10B 

demonstrates the impact of spurious closing commands. Here, the grasping force exerted on 

the object increased due to spurious closing commands issued for the orthogonal grip type 

(here, palmar). The object was grasped using lateral grip, but palmar commands were 

accidentally issued, causing the tightening of the grip. This could have been prevented if 

cxMLC was used instead of MLC, as it disables closing commands pertaining to the 

orthogonal grip type. Figure 3.11A shows the application of the “Restore Force” rule in the 

Holding state. It can be observed that, the grasping force was restored to its registered value 

whenever a drop was detected during the control with cxMLC. Figure 3.11B shows an 

unwanted wrist rotation observed during a trial of the HS task, wherein spurious wrist 
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rotation commands were issued towards the end of the trial. It can be speculated that all but 

two of these spurious rotation commands would have been blocked if cxMLC were used for 

control, as the spurious signals would have been under the state-dependent threshold for the 

Moving state. 

 

 

 

Figure 3.9: Summary of the results for the two primary outcome measures obtained 

with MLC and cxMLC: (A) Number of successful objects transferred per round in 

three tasks (AWP, WT, HS). (B) Number of objects dropped (while making a transfer) 

per Round in three tasks. (‘*’, 𝑝 < 0.05; ‘***’, 𝑝 < 0.001; the horizontal line within 

a box indicates median, the box indicates IQR and the circles indicate outliers). 

 

 

Figure 3.10: Representative signals recorded during the online experiment, 

demonstrating the possible advantage of cxMLC in relation to MLC. (A) Spurious 

Opening Commands observed during control with MLC and (B) Spurious Closing 

Commands observed during control with MLC.  
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Figure 3.12 and Figure 3.13 summarizes the results for the four secondary outcome 

measures obtained using MLC and cxMLC. The number of spurious opening commands 

with cxMLC were significantly lower than MLC for the tasks AWP (0{0–0.25} vs.  

2{0.75–4} with 𝑝 < 0.001) and HS (0{0–0} vs. 1{0–2} with 𝑝 < 0.01). The number of 

spurious closing commands with cxMLC were zero (as the orthogonal grip type was 

disabled), but the number of such commands with MLC were significantly higher than zero 

in all three tasks AWP (1{0–10},  𝑝 < 0.001 ), WT (0.5{0–4.75},  𝑝 < 0.01 ) and HS  

(1.5{0–3}, 𝑝 < 0.05). Next, the absolute change in normalized grasping force with cxMLC 

was significantly lower than MLC for the tasks AWP (0.05{0.03–0.075} vs.  

0.1{0.0375–0.175} with 𝑝 <  0.01) and HS (0.04{0.02–0.05} vs. 0.085{0.03–0.13} with 

𝑝 < 0.05). And, the amount of unwanted wrist rotation in the HS task with cxMLC was 

significantly lower than MLC (15°{4°–32°} vs. 40°{7°–85°} with 𝑝 <  0.05). 

 

 

 

 

 

Figure 3.11: Representative signals recorded during the online experiment, 

demonstrating the advantage of cxMLC in terms of how (A) Variations in Force were 

restored during control with cxMLC, and how (B) an unwanted wrist rotation could have 

been prevented in the HS task by increasing the corresponding activation threshold as in 

the Moving state. (the asterisks indicate two spurious commands which would have 

crossed the state dependent threshold for the Moving state in cxMLC control.)  
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Figure 3.14 summarizes the scores given by the participants in the questionnaire. The 

physical demand for the task WT was significantly higher than tasks AWP and HS  

(70{60–78.75} vs. 40{35–65} and 70{60–78.75} vs. 55{35–55}, with 𝑝 <  0.05).  It could 

be speculated that, the constraint of fixing the arm in one position (especially AP3 and AP4) 

during some trials led the participants to experience a higher physical demand for the WT 

 

Figure 3.12: Summary of the results for the secondary outcome measures obtained from 

the offline analysis. (A) Number of spurious opening commands observed during 

successful trials in each round with MLC and cxMLC. (B) Number of spurious closing 

commands observed during successful trials in each round with MLC and cxMLC.  

(‘*’, 𝑝 < 0.05 ; ‘**’, 𝑝 < 0.01 ; ‘***’, 𝑝 < 0.001 ; the horizontal line within a box 

indicates median, the box indicates IQR and the circles indicate outliers). 

   

 

 

Figure 3.13: Summary of the results for the secondary outcome measures obtained from 

the offline analysis. (A) The mean change in normalized grasping force from beginning 

till the end of trial for each successful trial in a given round with MLC and cxMLC.  

(B) The mean change in wrist orientation from beginning till the end of trail for each 

successful trial in a given round with MLC and cxMLC (HS task only). (‘*’, 𝑝 < 0.05; 

‘**’, 𝑝 < 0.01; the horizontal line within a box indicates median, the box indicates IQR 

and the circles indicate outliers). 
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task. The reported frustration with MLC was significantly higher than with cxMLC 

(57.5{41–65} vs. 37.5{31–52.5} with 𝑝 < 0.05), whereas the mental demand required with 

both control methods was similar (55{31.5–70} vs. 37.5{26.5–52.5} with 𝑝 > 0.05). Next, 

Figure 3.14C makes a direct point-by-point comparison between the two control methods 

MLC and cxMLC. The participants reported being more confident of not dropping the 

grasped object with cxMLC, as indicated by the reported median score of 40{0–50} which 

was significantly higher than zero (with  𝑝 < 0.05 ). The reported scores for other 

comparison questions were not significantly different from zero. 

 

3.5 Discussion  

This chapter presented a new method called context-driven ML control (cxMLC) that 

provided a simple way to improve the robustness of ML-based control (MLC) by 

integrating context information available from additional prosthesis sensors. Specifically, 

the information available for additional sensors was used to determine the prosthesis state 

(context), and then the robustness of MLC was improved by applying a set of simple 

post-processing rules to mitigate expected disturbances. In an online experiment, the new 

 

Figure 3.14: Summary of the results for the questionnaire. (A) Task Physical Demand 

reported for the three tasks AWP, WT and HS. (B) Control Cognitive Demand reported in 

terms of Mental Demand and Frustration for control with MLC and cxMLC. (C) Control 

Comparison between MLC and cxMLC. (‘*’, 𝑝 < 0.05; the horizontal line within a box 

indicates median, the box indicates IQR and the circles indicate outliers)    
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cxMLC method was extensively compared with the conventional method (MLC) using 

three functional tasks. The experimental results indicated that, cxMLC was able to decrease 

the number of unwanted opening, closing and rotation commands, and thereby improve 

performance (success rate and/or dropped objects) in all three functional tasks. Thus, 

cxMLC offers not only a simple way to integrate context information coming from 

additional prosthesis sensors, but it also provides functional improvement during online use. 

The experimental protocol used to compare the performance of MLC and cxMLC was 

carefully designed to challenge the robustness of both methods. The functional evaluation 

integrated several factors that are known to cause problems during the online use of a 

myoelectric prosthesis, for example: (1) changing the position of arm during use (examined 

in AWP task), (2) generation of myoelectric commands in rapid succession (examined in 

WT task), and (3) performing rapid arm movements (examined in HS task). The first 

problem (of changing arm position during use) has been investigated in several recent 

studies [73], [79], [80], where it has been shown that repositioning the arm could (slightly) 

change the EMG patterns and thereby influence the overall performance. Similarly, rapid 

generation of myoelectric commands is characterized by many transient muscle activations, 

which could lead to a decrease in the overall performance [106]. Lastly, fast arm 

movements, such as shaking, could also lead to unintended muscle activations and thereby 

spurious prosthesis responses. Previously, a test similar to the shaking test was used to 

demonstrate the robustness of osseointegration [63] against motion artefacts (as shown in 

the video [107]).  

In the past, multimodal sensor fusion has been used to either improve the performance of a 

ML-based controller [72], [73], [75], [79], [80] or achieve semi-automatic control [82]–

[86]. The presented method (cxMLC) advances the state-of-the-art in the former direction, 

as it utilizes multimodal sensor data to improve the robustness of a ML-based controller. In 

[72], [73], [75], [79], [80], the context information was derived only from proprioceptive 

sensors (e.g. IMU), but the new method (cxMLC) utilized information from both 

proprioceptive and exteroceptive sensors (i.e. force and aperture data along with IMU). 

Furthermore, the context information in [73], [79], [80] was used to mitigate the effect of a 

single factor (i.e. arm position), whereas cxMLC compensated for different factors 

(disturbances) pertaining to different prosthesis states. For example, states Closing and 

Grasping stabilized the wrist during grip-closure, Holding prevented accidental opening of 

the hand, and Moving filtered out unwanted activations arising during motion. Next, 

cxMLC is also different from semi-automatic methods for sensor fusion, where the context 
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information is processed in parallel with sEMG data to achieve partial automatic control 

(see Figure 1.3C). Contrary to this, in cxMLC, the context information was processed in the 

background and the online control always remained manual, i.e. each prosthetic function 

was activated only in response to EMG command(s) generated by the user. 

In the current implementation of cxMLC, the context information was used to influence 

only the extrinsic parameters (mostly, activation thresholds) of the ML controller. However, 

the presented concept is general and can be used to influence other extrinsic as well as 

intrinsic parameters of the ML controller. One possibility is to modulate the gain (an 

extrinsic parameter) of each DoF depending on the state of the prosthesis. This could be 

applied to provide a better force control in the Holding state, thereby allowing the user(s) to 

accurately change the applied force on the object. For example, in the Michelangelo hand 

prosthesis (used for the experiment), an attempt to decrease the applied force on a rigid 

object could sometimes result into an accidental dropping of the object, as the hand loses 

contact with the object when opening commands are given to reduce force. This issue could 

be addressed by lowering the gain of hand opening commands in the Holding state. 

Likewise, the control could also be improved by modulating internal parameters such as 

class priors associated with different movements depending on the prosthesis state. Next, 

the state-transitions in the current implementation of CAC were triggered using simple 

IF-THEN rules applied on the observed sensor data. In the future, state-transitions could be 

triggered by using more advanced methods such as hidden Markov models [108]. Lastly, 

the presented CAC could also be applied to enhance the performance of the classic 

two-channel controller. For example, the threshold for hand opening could be increased in 

the Holding state to prevent unintended opening of the prosthesis during co-contractions 

(which are needed to switch between available prosthetic DoFs, see Section 1.2). 

The current chapter demonstrated that modulating activation thresholds to 

suppress/eliminate spurious commands can increase the robustness of myoelectric control 

based on ML. This concept (of suppressing spurious commands) could be improved further 

by simply utilizing a better criterion (or metric) to suppress/eliminate spurious commands. 

Currently, the CAC employs activation thresholds as the criterion for eliminating spurious 

commands, but this has one downside. Specifically, it simply eliminates all estimated 

activations (coming from MLC) below the state-dependent threshold, but it does not assess 

the quality of EMG patterns responsible for the observed activation. For example, the 

activation threshold for hand opening in the Holding state was 0.5 and therefore, all hand 
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opening commands with an estimated strength lower than 0.5 were always suppressed 

(without assessing the quality of input EMG patterns). But, before suppressing an estimated 

command, it could be beneficial to examine whether the command was generated 

intentionally by the user or caused by unwanted muscle activation. One way to examine this 

is to compare the input EMG signals with the EMG data recorded during training. The 

required comparison could be made by leveraging one of the many well-known distance 

metrics such as Euclidean distance, Mahalanobis distance, cosine similarity, etc., but it 

would be beneficial to employ a metric which reflects upon the latent physiological 

principles behind generation of EMG patterns. The next chapter proposes to use cosine 

similarity as a metric for assessing the quality of EMG patterns. The chapter first describes 

how the cosine similarity metric reflects the underlying physiological principle of muscle 

coordination [53], [54] and then investigates how well this metric can be applied for online 

myoelectric control.    
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4 A PHYSIOLOGY-INSPIRED METRIC 

FOR CLASSIFYING EMG  

This chapter has been based on the recently submitted paper:   

G. K. Patel, C. Castellini, J. M. Hahne, D. Farina, S. Dosen, "A Novel Classification 

Method for Myoelectric Control of Hand Prostheses Inspired by Muscle Coordination", 

submitted to IEEE Transactions on Neural Systems and Rehabilitation Engineering. 

4.1 Motivation 

With most ML methods available today, the modelling of EMG data is done by following 

the conventional pattern recognition paradigm, where a training dataset is collected using a 

supervised procedure, and then a mathematical function is fitted over the collected data. 

One shortcoming of this conventional paradigm is that, the modelling of EMG data is done 

without considering the underlying physiological phenomenon responsible for the 

generation of EMG patterns. Instead, the conventional procedure relies solely on the 

mathematical function to implicitly capture the underlying regularities in the data. This 

generalization may not be optimal, as many commonly applied ML methods (e.g. LDA 

[28]) may not model the underlying physiologically relevant principles [47]. This chapter 

discusses a method that models EMG data based on the knowledge of physiology that 

forearm muscles act consistently in a coordinated manner. 

The neural mechanisms underlying the coordination of forearm muscles for single- and 

multi-digit force production tasks were studied by Valero-Cuevas [53] and Poston et al. 

[54]. They demonstrated that force production relies on the coordination of different 
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forearm muscles and that the EMG amplitude of active muscles scales uniformly as a 

function of applied force during muscle contraction. Thus, for a given movement, the same 

set of muscles is consistently recruited and their activation level is proportional to the 

amount of force exerted. As mentioned earlier, this physiological property is called the 

principle of muscle coordination. This principle was previously exploited by He et al. [55] 

and Al-Timemy et al. [56] to compute EMG features invariant against muscle contraction 

strength. The computed invariant feature set was, then, presented as an input (for learning 

and prediction) to traditional classifiers (e.g. LDA). But instead of defining a new feature 

set, as in [55] and [56], the aim of this chapter is to investigate how well the principle of 

muscle coordination can be applied to model the standard amplitude-related EMG features 

(i.e. RMS or MAV features) for online myoelectric control. Specifically, the chapter 

proposes to use cosine similarity as a metric to model the amplitude-related EMG features. 

Previously, this metric was used only for analysing the property of muscle coordination 

[53]–[55], but it was never applied for online myoelectric control. This chapter investigates 

if and how well the cosine similarity metric can be applied for online myoelectric control, 

and also discusses why this metric is a better measure for assessing the quality of EMG 

signals as compared to other metrics such as Mahanolobis distance or Bayesian confidence.  

4.2 Classification Method inspired by Muscle Coordination  

The amplitude-related EMG activity recorded from 𝑑  sensors placed on the forearm 

muscles can be represented by a 𝑑-dimensional feature vector 𝑥⃗𝑑 = (𝑎1, 𝑎2, … , 𝑎𝑑), where 

𝑎𝑖  is either the root mean square (RMS) or mean absolute value (MAV) of the 𝑖𝑡ℎ-channel 

computed over a time window. From here on, any feature vector  𝑥⃗𝑑  containing only 

amplitude-related EMG features will be referred to as an amplitude feature vector (AFV) 

for simplicity. Next, the property of muscle coordination suggests that, for a given 

movement of forearm muscles, the amplitude of EMG signals acquired from active muscles 

scales uniformly as a function of contraction strength ([53], [54]). Thus, all AFVs 

associated with a give movement can be interpreted as vectors pointing in the same 

direction irrespective of the contraction intensity. Therefore, an entire population of AFVs 

associated with each movement can be modelled using a single prototype AFV, and the 

classification of movement can be achieved by measuring the orientation with respect to the 

registered prototype vector.   
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In the current implementation, the prototype vector for a given movement was determined 

during supervised training by averaging the AFVs recorded while performing the maximum 

voluntary contractions (MVC) of the movement for 3 seconds. In the classification step, the 

cosine similarity metric was used to compare an input vector 𝑥⃗𝑑 with the average MVC 

recorded for each movement class, and the movement with the maximum cosine similarity 

was given as the classification output: 

arg max
𝑚

(
𝑥⃗⃗⃗𝑑 ∙ 𝑃⃗⃗⃗𝑑,𝑚

|𝑥⃗⃗⃗𝑑| ∙ |𝑃⃗⃗⃗𝑑,𝑚|
;𝑚 ∈ 𝑆𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠)                                          (4.1)  

where, 𝑥⃗⃗⃗𝑑 is an input AFV generated by the user and 𝑃⃗⃗⃗𝑑,𝑚 is the prototype vector for the 

𝑚𝑡ℎ movement representing the average of AFVs recorded while performing the MVC of 

the 𝑚𝑡ℎ movement for 3 seconds.  

Next, our knowledge of muscle coordination does not provide an understanding for the 

minuscule EMG activity observed during rest (i.e. no muscle contraction). This EMG 

activity (associated with the hand at rest) is characterized by minuscule noisy activations 

around some mean value [109]. Thus, the rest class can be modelled as a Gaussian 

distribution with a fixed mean and covariance. In the classification step, the distance 

between an input vector  𝑥⃗𝑑 and the Gaussian distribution was measured by calculating the 

Mahanolobis distance 𝑑𝑀𝐻(𝑥⃗𝑑) as follows: 

𝑑𝑀𝐻(𝑥⃗𝑑) = √(𝑥⃗⃗⃗ − 𝑈⃗⃗⃗)
𝑇
𝐶−1 (𝑥⃗⃗⃗ − 𝑈⃗⃗⃗)                                                (4.2) 

where, 𝑈 is the mean and 𝐶 is the covariance of the rest class. And, the input vector  𝑥⃗𝑑 was 

classified as rest, if the measured distance 𝑑𝑀𝐻(𝑥⃗𝑑) was less than or equal to a pre-defined 

threshold 𝑇 , else the vector  𝑥⃗𝑑  was classified according to Equation 4.1, i.e. when 

𝑑𝑀𝐻(𝑥⃗𝑑) > 𝑇. The threshold 𝑇 was determined by measuring the Mahanolobis distance 𝑑𝑀𝐻 

to the MVC of the nearest prototype, and then setting its value to 30% of 𝑑𝑀𝐻 (𝑃⃗⃗⃗𝑛𝑒𝑎𝑟𝑒𝑠𝑡). 

Hereafter, this classification scheme based on cosine similarity will be abbreviated as CoS.  

4.2.1 Comparing CoS with a data-driven approach 

Figure 4.1 illustrates the difference between a conventional data-driven approach (such as 

LDA) and the proposed muscle coordination inspired approach (CoS). For didactic 

purposes, the figure shows modelling of EMG data in a 2D space of projected features, 

whereas the full dimensionality was used for online control (see experimental procedure in 

Section 4.3). A data-driven approach (here, LDA) will minimize the model fitting error 
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without considering the physiological relevance of the training points. For example, with 

LDA in Figure 4.1C, the MVC of the ulnar-deviation movement was actually assigned to 

the extension class. Moreover, the area of the feature space assigned to the ulnar-deviation 

class is closed (a triangle) and rather small compared to other classes. With increasing 

contraction intensity, an ulnar-deviation vector moves away from the origin and crosses into 

the extension class. Contrary to this, the CoS classifier generates a physiologically 

meaningful model for the EMG data, where each movement class is modelled using an open 

cone radiating away from the origin and the rest class is modelled using an ellipse centred at 

the mean of the AFVs representing hand at rest.  

 

 

Figure 4.1: (A) 2D Projection of amplitude-related EMG features generated by an 

able-bodied participant performing four different movements, namely, wrist- flexion and 

extension, ulnar- and radial- deviation plus rest. (B) The data for the rest class modelled 

as a Gaussian distribution. (C) and (D) Visualization of classification boundaries 

obtained after applying the LDA and CoS model on the transformed data, respectively. 

Principal Component Analysis (PCA) was used for dimensionality reduction and the 

explained variance was 81%. The plotted data has been collected according to the 

procedure explained in Section 4.3. 
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4.2.2 Cosine similarity: a metric for assessing the quality of EMG patterns 

A good modelling metric not only provides a way to classify EMG patterns for online 

control, but it can also be used as a confidence measure to assess the quality of EMG 

patterns presented as input to the classifier. A good confidence measure can be used to 

implement a post-processing scheme to reject possibly erroneous decisions made by the 

classifier, and the prosthesis could be forced to take no action when the measured 

confidence is low. Figure 4.2 compares the use of cosine similarity versus Mahanolobis 

distance for modelling the distribution of EMG data. The Mahanolobis distance models data 

using a Gaussian distribution and therefore, it represents the case of many widely used 

classification methods (such as LDA) which assume an underlying Gaussian distribution 

before fitting a model on the data. In Figure 4.2, the points RM and R1 represent the radial-

deviation class with different contraction intensity and points UM and U1 represent the 

ulnar-deviation class. According to the property of muscle coordination, points RM and R1 

are expected to have the same likelihood (or confidence) of belonging to the radial-

deviation class, and point U1 is expected to have a lower likelihood of association to the 

radial-deviation class. But, when a Mahanolobis distance metric is used to model the data, 

point RM is assigned a lower likelihood of belonging to the radial-deviation class as 

compared to point R1, and points RM and U1 have the same likelihood of belonging to the 

radial-deviation class. On the contrary, the cosine similarity metric assigns the same level of 

confidence to points RM and R1, and a lower confidence to point U1 for the radial-deviation 

class. Thus, the cosine similarity metric can be seen as a physiologically meaningful 

measure of confidence. 

For regression-based control, Bayesian statistics can be applied to determine a predictive 

distribution 𝒩  around an estimate  𝑦̂ ~ 𝒩(𝑥̂  ∙ 𝑊, 𝑐[1 + 𝑥̂𝑇(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑥̂]) , where 

𝑥̂ ∈  𝑅𝑑  is an input feature vector generated by the user during online control, the term 

𝑥̂  ∙ 𝑊 represents the mean of the predictive distribution (same as Equation 1.1), the term 

𝑐[1 + 𝑥̂𝑇(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑥̂] represents the confidence interval (or spread of the distribution) 

and 𝑐, 𝜆 are constants that depend on the variance in the dataset 𝒟 ≅ (𝑋, 𝑌). In theory, the 

confidence interval (determined by [1 + 𝑥̂𝑇(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑥̂]) can be used to determine the 

credibility of the predicted simultaneous and proportional movement  𝑦̂  ∈  𝑅𝑀 . But, as 

illustrated in Figure 4.3, this confidence measure is highly dependent on the distribution 

density of the training data points, i.e. confidence is high in regions where the density of 

training points is high and decreases as the density of training points decreases. Thus, the 
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Bayesian approach is data-driven and therefore, does not provide a physiologically 

meaningful measure of confidence.  

Currently, there is a lack of confidence measures which can be used to assess the quality of 

EMG during simultaneous and proportional control, but the same physiological principle 

behind cosine similarity could be extended to design a confidence measure for such a 

control. In literature, it has been shown that EMG patterns pertaining to simultaneous 

activation of multiple DoFs are simple linear combinations of single DoF movements [110] 

(for example, EMG signals pertaining to the simultaneous extension and ulnar-deviation of 

the wrist is a linear combination of EMG signals pertaining to just wrist extension and just 

ulnar-deviation). From this knowledge, it can be speculated that each simultaneous 

activation could be represented using a new prototype vector obtained via the linear 

combination of prototype vectors representing single movements, and the cosine similarity 

with respect to the new prototype vector can be used as a confidence measure for 

simultaneous activation. The validation of this hypothesis is beyond the scope of this thesis, 

but it gives us an insight into how the principle behind cosine similarity could be applied in 

different application scenarios. 

 

 

Figure 4.2: Cosine similarity versus Mahanolobis distance based modelling of EMG 

data. A Mahanolobis distance models data using a Gaussian distribution (represented 

by an ellipse), whereas the cosine similarity models each class using a line connecting 

the origin of the feature space to the MVC of the class. The models have been generated 

using the data shown in Figure 4.1A. 
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Figure 4.3: Confidence evaluated by applying Bayesian statistics on the transformed 

training data shown in Figure 4.1A. The value of estimated confidence depends on the 

distribution density of the training points, i.e. the estimated confidence is high in regions 

with high density of training points, and it decreases as the density of training point 

decreases. The presented Bayesian confidence was calculated after applying the 

Random Fourier Feature kernel [67] on the transformed training data.  

This section emphasized the theoretical benefits of using cosine similarity as a metric for 

modelling EMG data. In practice, an experimental evaluation is required to measure the 

practical benefits of our theoretical understanding. Therefore, an online experiment was 

conducted to examine the practical benefits of using the CoS classifier for myoelectric 

control. During this experiment, the CoS classifier was extensively compared with the 

academic state-of-the-art LDA classifier [26], [27]. The experimental procedure used to 

compare CoS and LDA has been described in the next section.  

4.3 Materials and Methods 

An experiment involving one amputee and eleven able-bodied participants was conducted 

to compare the performance of the CoS classifier with the LDA classifier. This experiment 

was conducted according to the declaration of Helsinki [102]. The experimental setup wore 

by the participants is shown in Figure 4.4. All able-bodied participants were fitted with a 

bypass socket attached to a right-sided Michelangelo prosthesis (from Ottobock, DE) and 

the amputee was fitted with a custom-made socket attached to a left-sided Michelangelo 

prosthesis. The sEMG signals were acquired using eight commercially available double 

differential EMG electrodes (13E200 AC from Ottobock, DE) placed circumferentially and 
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equidistantly around the forearm. For able-bodied participants, the electrodes were strapped 

using an adjustable Velcro armband (Figure 4.4A), whereas the electrodes were integrated 

within the custom-made socket for the amputee (Figure 4.4B). The captured EMG signals 

were pre-amplified and band-pass filtered by the electrodes and then sampled at 1 kHz 

using a wireless data acquisition card (AXON Master 10-bit A/D converter from Ottobock, 

DE). The CoS and LDA based classification schemes were implemented as a software 

program on a standard PC equipped with two Bluetooth dongles, one to acquire sEMG data 

from the electrodes and the second to control the prosthesis. Both classifiers were used for 

the sequential and proportional control of four prosthesis functions, namely, hand closing 

(palmar grip), hand opening, wrist pronation and supination. These prosthesis functions 

were controlled by sEMG signals obtained from four contraction patterns, namely, wrist 

flexion, wrist extension, radial- and ulnar-deviation, respectively.  

 

The LDA classifier was implemented according to the standards recommended by [26], 

[27], whereas the CoS classifier was implemented as discussed in Section 4.2. The Hudgins 

time domain features (i.e. MAV plus ZC, SCC, WFL) was extracted by segmenting the raw 

sEMG signal using time intervals of 128 ms with an overlap of 32 ms per frame [27]. The 

training data for the CoS classifier was collected by asking the participants to produce the 

MVC of five classes (four movements plus rest) for 3 seconds. Next, the training data for 

the LDA classifier was collected by asking the participants to track trapezoidal trajectories, 

with plateaus normalized to 30%, 60% and 90% of average MVC, using a cursor indicating 

the normalized sum of amplitude values across all electrodes. Recording data at different 

contraction levels and in different arm postures is recommended for LDA [26], [27]. 

 

Figure 4.4: Experimental setup for (A) able-bodied participants and (B) the amputee 

participant.   
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Therefore, the training data for LDA was recorded at three different contraction levels 

(30%, 60%, 90%) and in three different arm positions, namely, elbow bent in front of the 

torso, hanging arm and arm stretched forward in the sagittal plane at shoulder level. In total, 

45 movement trajectories (5 patterns × 3 levels × 3 postures) were presented during the 

training for LDA, where the duration of each trajectory was 5 s (1 s rise, 3 s hold, 1 s fall 

time) followed by a 2 s rest interval between trajectories. Thus, the recording of the training 

data took approximately 7 minutes for the LDA and a mere 30 seconds for CoS (as only 

MVC data was required to train CoS). Moreover, the LDA classifier was operated using the 

full Hudgins time domain feature set (as recommended in [26], [27]), whereas the CoS was 

operated using only the MAV features. In the post-processing step, a majority vote filtering 

of length seven was applied to the classification stream of both classifiers. And, the strength 

of the classified movement was determined by removing the mean baseline EMG activity 

and then normalizing the sum of input amplitude values by the sum of MVC amplitudes of 

the detected movement class. Thereafter, the velocity of the corresponding motor was 

determined by applying a fixed threshold of 0.2 and gain of 1.2 to the estimated strength of 

the detected movement.  

The comparison between CoS and LDA was made using four functional tasks with varying 

level of difficulty. A description of each task is as follows,  

i. Box-and-Blocks Test: The test setup comprises a box divided in two compartments, 

one empty and the other filled with blocks (see Figure 1.4A). In a single round, the 

participants transferred as many blocks as possible, from the filled to the empty 

compartment, within 60 seconds. The outcome measure was the number of blocks 

transferred in one minute [96].  

ii. Clothespin Test: In this test, a Rolyan Graded Pinch Exerciser with three red pins was 

used as the test setup (see Figure 1.4B). In a single round, the participants were 

asked to pick up three pins from the horizontal bar, rotate them and place them on 

the vertical bar. The outcome measure was the time required to successfully transfer 

three pins.  

iii. Bottle Transfer Task: The purpose of this (and the following) task was to evaluate the 

robustness of control when dealing with (i.e. transferring/manipulating) heavy 

objects. Two parallel lines were marked 120 cm away on a 2 meter wide table, and 

three water-bottles (diameter 6 cm and height 25 cm) filled with one litre water 

(approx. 1 kg at room temperature) were placed on the side where the prosthesis was 

connected (i.e. on the right-side for the able-bodied participants and left-side for the 
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amputee). The floor in front of the table was marked with a square 60 cm in side 

length, and the participants were instructed not to step out of the square marker 

during the task. In a single round, the participants had to pick up three bottles, one at 

a time, and transfer them to the other side of the table. The order in which the bottles 

were picked up did not matter. Next, the participants had to transfer the same three 

bottles back to their initial position, thereby completing a single round. If a bottle 

was dropped during lift / transfer / placement, it had to be placed back to its initial 

position and then retransferred. The two outcome measures recorded in each round 

of this task were the task completion time and the number of bottles dropped. 

iv. Bottle Turn Task: The setup from the previous task was adapted in this task. In a single 

round, the participants had to pick up a bottle, turn it by about 90° to horizontal 

orientation and lay it down on the other side. This was done one-by-one for all three 

bottles, with no constraint of a fixed order. Next, the bottles were picked up, turned 

to vertical orientation and placed back to their initial position, thereby completing a 

single round. Similar to the previous task, the task completion time and the number 

of bottles dropped were recorded as outcome measures. 

An outline of the experimental procedure is shown in Figure 4.5. Before performing the 

aforementioned functional tasks, the participants were introduced to the concept of 

myoelectric control and the training data required for classification was collected as 

described previously. All participants were informed that the experiment was tailored to 

compare two different control approaches, but in order to prevent expectation bias, specific 

details regarding both approaches (e.g. exact name of each approach, or how one approach 

was different from other, etc.) were not disclosed. Thereafter, the participants were 

explained how each of the four tasks had to be completed, and in order to familiarize them 

with the tasks, they were asked to practice each task at least once. The experimental 

evaluation was divided into two blocks (as seen in Figure 4.5) and in each block, a different 

control method (either LDA or CoS) was administered randomly across participants; i.e. 

half used LDA followed by CoS and vice versa. In a given block, the participants 

sequentially performed four rounds of the Box-and-Blocks, Clothespin, Bottle Transfer and 

Bottle Turn task, i.e. they performed four rounds of Box-and-Blocks task followed by four 

rounds of Clothespin test and so on as indicated in Figure 4.5. At the end of the experiment, 

the participants had to report their subjective experience regarding the two control methods, 

wherein each method was subjectively scored with a number between 0 and 10; with 10 

representing the best control over all prosthesis movements. 
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For a given outcome measure, the Wilcoxon signed rank test was used to compare the 

performance of CoS versus LDA. All results are reported in terms of median and 

interquartile range (IQR) – denoted as median {IQR}. The required statistical analysis was 

performed using the software STATISTICA (from Dell, US) and the threshold for 

significance was set to 𝑝 =  0.05. 

4.4 Experimental Results 

Figure 4.6 summarizes the results for the online assessment performed with the able-bodied 

participants. For the Box-and-Blocks test, the participants transferred 12.0{9.75-14.25} 

blocks in one minute using CoS, which was slightly but significantly higher than  

12.0{8.75-14.0} blocks with LDA (𝑝 <  0.05). The time taken to transfer three pins was 

similar for both LDA and CoS (26.4{20.4-40.0} s vs. 26.6{18.6-35.8} s with 𝑝 > 0.05). 

And lastly, the task completion time with CoS was significantly lower than LDA for both 

Bottle Transfer (35.6{31.2-45.0} s vs. 42.2{32.3-62.3} s with 𝑝 <  0.05) and Bottle Turn 

task (53.3{42.3-66.1} s vs. 70.4{54.8-85.5} s with 𝑝 < 0.05).  

Figure 4.7 summarizes the results for the online assessment performed with the amputee 

participant. Here, the performance of CoS was consistently better than LDA in all tasks. 

The amputee transferred a median of 24.5{24.0-25.3} blocks per minute with CoS versus a 

median of 17.5{16.8-18.3} blocks per minute with LDA. And, the median task completion 

time for the Clothespin, Bottle Transfer and Bottle Turn tasks were 11.6{11.1-12.0} s, 

20.4{19.2-22.0} s, 30.0{29.7-33.2} s with CoS versus 15.5{15.2-16.3} s, 36.8{34.7-39.8}s, 

44.8{44.4-45.5} s with LDA, respectively.  

 

Figure 4.5: The experimental protocol used to compare LDA and CoS classifier. The 

experiment was divided into two blocks, where either LDA or CoS was administered 

randomly across participants. In each block, four rounds (4R) of four functional tasks 

were performed. Abbreviations are, T1: Box and Blocks, T2: Clothespin, T3: Bottle 

Transfer, T4: Bottle Turn and 4R: four rounds.   
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Figure 4.8 summarizes the results for the number of bottles dropped by the able-bodied 

participants during the Bottle Turn and Transfer tasks. The number of drops observed in the 

Bottle Transfer task with CoS and LDA were similar, i.e. 0{0-0} vs 0{0-0.25} drops per 

round, respectively. For the Bottle Turn task, the number of drops with CoS (0{0-0}) was 

significantly lower than LDA (0{0-1}). The amputee did not drop any bottles during the 

Bottle Transfer or Turn task with either of the two methods. 

 

 

Figure 4.6: Summary of the results for the able-bodied participants. (A) The 

Box-and-Blocks test, (B) Clothespin test, (C) the Bottle Transfer task and (D) the Bottle 

Turn tasks. CoS performed better than LDA in three out of four tasks. (‘*’ indicates 

p<0.05, the horizontal line within a box indicates median, the box indicates IQR, and the 

circles indicate outliers). 

 

 

Figure 4.7: Summary of the results for the amputee participant. (A) The Box-and-Blocks 

test, (B) Clothespin test, (C) the Bottle Transfer task and (D) the Bottle Turn tasks. CoS 

performed consistently better than LDA in all four tasks. (the horizontal line within a box 

indicates median, the box indicates IQR, and the circles indicate outliers). 
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Lastly, the subjective assessment given by the participants was generally in favour of CoS 

with respect to LDA. Specifically, 8 out of 11 able-bodied participants reported better 

experience with CoS, 2 participants reported better experience with LDA and 1 participant 

reported perceiving no difference between LDA and CoS. The amputee gave a subjective 

score of 8 to CoS and 4 to LDA, i.e. CoS was preferred over LDA. Importantly, the 

 

Figure 4.8: Number of bottles dropped per round by able-bodied participants during  

(A) the Bottle Transfer and (B) the Bottle Turn tasks. (‘*’ indicates p<0.05, the 

horizontal line within a box indicates median, the box indicates IQR, and the circles 

indicate outliers). 

 

 

Figure 4.9: Prosthesis command (for hand opening and pronation) generated by the 

amputee during the Box-and-Blocks test. The hand opening commands were occasionally 

misclassified as pronation by both LDA and CoS. However, these misclassifications were 

more frequent in the control with LDA than with CoS. (The Box-and-Blocks test required 

only hand opening and closing for task completion and so, it is assume that the amputee 

did not intentionally activate pronation during the test.) 
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amputee reported having problems when trying to open the hand, as the hand opening 

commands were often misclassified as pronation. As shown in Figure 4.9, this problem was 

more dominant while controlling the prosthesis using LDA. Lastly, the average subjective 

score given by all participants for CoS (7.1±0.9) was significantly higher than for LDA 

(5.9±1.6), with 𝑝 < 0.05. 

4.5 Discussion  

This chapter presented a myoelectric classification scheme based on cosine similarity, 

which was inspired by the underlying physiological principle of muscle coordination [53], 

[54]. Specifically, the presented CoS classifier was designed based on the assumption that 

amplitude-related EMG features for each movement are distributed along the line joining 

the origin of the feature space and the average maximum voluntary contraction (MVC) of 

the movement. In an online experiment, the CoS classifier was extensively compared with 

the academic state-of-the-art LDA classifier using four relevant and challenging functional 

tasks. The experimental results showed that CoS significantly outperformed LDA in three 

out of four tasks for the able-bodied participants, and it performed consistently better than 

LDA in all tasks for the amputee participant. Thus, the CoS classifier not only provides a 

simple way to model the physiology behind muscle coordination, but it also provides an 

efficient online myoelectric control. In general, this chapter highlights the potential 

advantage of approaches that are inspired by the underlying physiological principles over 

purely data-driven methods that largely prevail in the literature. 

Overall, the CoS classifier offered a number of practical advantages over the state-of-the-art 

LDA classifier. First, the time required to train CoS (30 s) was much lower than LDA  

(7 min), which is very desirable for the day-to-day use of the system [68]. A brief training 

time (as with CoS) makes it very easy for the users to (re-)calibrate the system each time the 

donning and doffing of electrodes occurs (e.g. every morning before and after shower). 

Second, a 8-dimensional MAV feature space was used to operate the CoS classifier, 

whereas a 32-dimensional Hudgins time-domain feature space was used by the LDA 

classifier. Therefore, it is possible to simplify the EMG acquisition setup for operating CoS, 

as amplitude-related EMG features require a much lower sampling rate (~200Hz) as 

compared to the high sampling rate (~1 kHz) required for extracting the full time-domain 

feature set. This, and the fact that only prototype vectors need to be stored in memory, 

makes CoS suitable for implementation in a simple microcontroller (with a low sampling 

frequency and limited memory). Lastly, the CoS classifier is also suitable for adaptation (or 
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incremental learning), which is an important mechanism when considering a daily use [69]. 

For adaptation, the prototype for a single class or selected subset of classes, whose 

classification performance needs to be improved, could be easily updated by recording a 

few additional contractions. 

This chapter investigated if and how well the cosine similarity based modelling of EMG can 

be applied for online myoelectric control. The experimental results demonstrated that this 

modelling provides a superior performance in comparison to the standard Gaussian 

distribution based modelling (as in LDA). The current investigation can be seen as a first 

step towards applying cosine similarity as a metric for assessing the quality of sEMG 

patterns during online control. Previously, the quality of sEMG patterns was assessed by 

calculating the log-likelihood probabilities (i.e. via Gaussian modelling), which were then 

used as a confidence measure to reject potentially erroneous decisions made by the 

classifier [111], [112]. Similarly, the cosine similarity between the input (amplitude-related) 

EMG features and the prototype vector of the classified movement could also be used as a 

confidence measure to reject potentially erroneous decisions. Theoretically speaking, there 

are two possible ways of implementing a rejection-scheme based on cosine similarity. The 

first possibility would be the so-called direct rejection, in which all classified decisions with 

similarity less than a predefined threshold would be directly rejected. This scheme is similar 

to the log-likelihood based rejection scheme proposed by [112], where all classified 

decisions with likelihood less than 0.97 were rejected. The second possibility is the 

so-called cross-talk rejection, which could be used for suppressing cross-talk between two 

very close EMG patterns in the feature space. For example, the patterns extension and 

ulnar-deviation could sometimes be adjacent to each other in the feature space (as in  

Figure 4.1A) and therefore, the region near the boundary between the two classes is a place 

where cross-talk could occur. If EMG features were produced in this region during online 

control, the classified decisions would continuously toggle between the two classes. This 

problem could be avoided by checking if an input EMG feature is between the prototype 

vectors of the two adjacent classes and then rejecting the classified decision, if the similarity 

is less than a predefined threshold. But if the input EMG feature is not between the 

prototype vectors of the two adjacent classes (with possible cross-talk), the classified 

decision shall not be rejected (because such an EMG feature is far away from the region 

where cross-talk could occur).  
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4.5.1 Integrating Context and Physiology Information 

The CoS classifier is compatible with the concepts presented in the previous two chapters. 

In Chapter 2, Modular Regression (MR) was used to formulate each prosthesis function as a 

module, which the user could insert/remove as required to best accomplish a given task. 

Similarly, the CoS classifier associates each prosthesis function to a prototype vector, that 

can be considered equivalent to a module in MR. Therefore, each prototype vector can be 

treated as a module, which the user can insert/remove as and when required. The only 

difference between MR and CoS is that, MR is a regression-based method that can provide 

a simultaneous and proportional control, whereas CoS is a classification method that 

provides a sequential and proportional control. But, the concept of modularity and therefore 

the possibility to integrate user-generated context information is also available with CoS.  

In Chapter 3, the context information available from embedded sensors was used to detect 

prosthesis states, and the robustness of a machine learning controller was improved by 

adapting the activation thresholds to mitigate expected disturbances in each state. The 

presented CoS classifier is also an example of a machine learning controller and therefore, 

the same set of prosthesis states and post-processing rules could be adapted to further 

improve the robustness of control with CoS. For didactic purposes, Figure 4.10 shows how 

the context aware component (CAC, from Chapter 3) could be combined with the CoS 

classifier. Here, a new post-processing scheme based on the cosine similarity metric has 

been suggested to improve/replace the previous post-processing rules based on simple 

activation thresholds. Thus, instead of directly suppress the influence of a possibly spurious 

EMG activation, the cosine similarity metric (and therefore, the physiological principle 

behind muscle coordination) is being proposed to examine whether the input EMG was 

generated intentionally by the user or caused due to unwanted muscle activation. This could 

be achieved by first measuring the cosine similarity of the input EMG with respect to the 

prototype vector of the detected movement, and then the CAC would reject the decision 

made by CoS, if the measured similarity is below a certain predefined similarity-threshold.  

In theory, combining CAC with CoS to reject erroneous decisions is (perhaps) better than 

using direct rejection, where decisions are rejected based on a fixed (or static) threshold. 

Specifically, for direct rejection, there is always a trade-off when deciding on the absolute 

(or exact) value of the rejection threshold. If the rejection threshold is high, the robustness 

increases at the cost of user experience, because a high threshold would very often reject 

correct (or good enough) EMG patterns generated by the user. And, a lower rejection 
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threshold compromises robustness by allowing incorrect decision to pass. Contrary to this, 

using CAC allows us to adapt the rejection thresholds individually for different movements 

depending on the prosthesis state. For example, as seen in Figure 4.10, the rejection 

threshold for hand opening in the Moving state is higher, because it is less likely for the user 

to release the object while moving, whereas this threshold is lower in the Holding state 

where the user is more likely to release the object. Furthermore, it is also possible to entirely 

disable rejection of certain movements in specific states, for example, not rejecting hand 

open/close commands in the Closing/Grasping state (to allow smooth closing of the grip 

around an object) or not rejecting rotation commands in the Holding state (to allow smooth 

rotation/manipulation of object).  

 

 

Figure 4.10: Post-processing rules based on cosine similarity (CS) for the context 

aware component (CAC) presented in Chapter 3 (Figure 3.2 and Figure 3.3). In each of 

the five states, the post-processing rules based-on activation thresholds (𝑇) have been 

changed to IF-statements based on cosine similarity for evaluating the quality of EMG 

patterns responsible for the detected movement. The annotations are: 𝑦̂𝑖
  – the estimated 

strength for the classified movement (and 𝑦̂𝑖
 = 0  for all other movement), 𝐶𝑆𝑖 – cosine 

similarity of the input with respect to the prototype vector of the detected movement, 

∆1, ∆2 – rejection thresholds (∆2> ∆1), R – Rotation, L – Lateral, P – Palmar, O – Hand 

Opening, F – grip force. Lastly, it is to be noted that, a fixed activation of  𝑇 = 0.2 is 

always applied to remove uncertainties at low contraction intensities.     
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5 CONCLUSION 

The work presented in this thesis addressed the problems associated with most ML-based 

approaches used for upper-limb myocontrol. Usually, ML-based myocontrol is done by 

following the conventional pattern recognition paradigm, where training data is collected 

using a supervised procedure and then, a mathematical function is fitted over the data to 

define an invariant mapping scheme between the user’s EMG patterns and available 

prosthesis functions. Two problems associated with this conventional paradigm were 

identified, and possible solutions were presented by developing new ML-based approaches 

for myocontrol. The first problem with the conventional paradigm was that, the mapping 

scheme (between user’s EMG and prosthesis functions) remained static/invariant during use 

and did not consider the dynamics associated with the real-life use of a prosthesis. This 

problem was resolved by developing ML methods that can adapt the mapping scheme based 

on context information acquired from either the user or additional sensors placed on the 

prosthesis. In this way, the mapping scheme did not remain static, but it became reactive to 

the inferred context information. The second problem with the conventional paradigm was 

that, the mathematical function fitted over the training data was usually assumed to 

implicitly model the physiological principles behind generation of EMG patterns, but this 

assumption may not be true for many commonly used ML methods for myocontrol (such as 

the LDA). This problem was resolved by using a mathematical metric (cosine similarity) 

that was inspired by the physiological principle of muscle coordination and then, the same 

metric was applied for online myoelectric control.  

The concept of exploiting user-generated context information to improve the performance 

of ML-based control was investigated in Chapter 2. It was hypothesized that, this concept 
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(of exploiting user-generated context information) has a twofold advantage for online 

myoelectric control. First, it gives to the users a possibility to interact with the underlying 

ML controller and second, it gives to the ML controller a possibility to understand users’ 

requirement(s) and adapt accordingly to optimize performance. This concept was realized 

by developing a new ML method called Modular Regression (MR), which was able to 

integrate task-specific context information generated by the user. Specifically, with MR, the 

EMG patterns associated with different prosthesis functions were organized into modules 

(or doublets, see Equation 2.6), which the users could interactively insert/remove as 

required to best accomplish a given ADL. The experimental evaluation indicated that, 

ADLs (in the experiment) could be performed significantly faster with MR in comparison to 

the classic approach of using all available functions at all time. In general, the presented 

method illustrates the benefits of (the concept of) exploiting user-generated context 

information to improve ML-based myocontrol and motivates the need to further develop 

new ML methods, which can integrate a wide-variety of context information generated by 

the user. Although, as mentioned earlier, demanding too much context information from the 

user could easily turn the interactive aspect into a burden, and therefore care must be taken 

to identify a balance between the amount of context information required from the user and 

the corresponding performance gained. 

The concept of acquiring context information from proprioceptive and exteroceptive sensors 

to improve the performance of ML-based myocontrol was investigated in Chapter 3. 

Although a wide-variety of additional sensors can be placed either on the user or inside the 

prosthesis, the presented work focused on sensors which could be easily integrated inside 

the prosthesis socket – leading to a self-contained system. It was hypothesized that, 

additional sensors could be used to determine the state of the prosthesis and the mapping 

scheme of the ML-controller could be adapted to improve the performance depending on 

the detected prosthesis state. This concept was realized by developing a new approach 

called context-driven ML control (cxMLC), wherein a context aware component (CAC) 

was used to determine the state of the prosthesis and the mapping scheme was adapted by 

applying a set of post-processing rules to mitigate expected disturbances in each state. The 

experimental evaluation indicated that, cxMLC was able to minimize the number of 

spurious/unwanted prosthesis activations and thereby improve performance (success rate 

and/or dropped objects) in comparison to the conventional ML approach (where the 

mapping scheme was not adapted with changing prosthesis states). In general, the presented 

cxMLC control shows the benefits of (the concept of) acquiring context information from 
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additional sensors to improve control and motivates the need to further develop new 

approaches that can integrate more context information coming from new/same additional 

sensors. Although, care must be taken to keep the system self-contained within the 

prosthesis socket or to minimize the number of sensors being placed on the user, as having a 

large number of sensors on the user could directly increase the overhead of wearing and 

removing additional sensors each time the donning and doffing of system occurs.  

The benefit of employing the knowledge of latent physiological principles to achieve online 

myoelectric control was investigated in Chapter 4. It was hypothesized that, instead of using 

off-the-shelf mathematical functions to model EMG data for online control, the modelling 

of EMG could be improved by using the knowledge of latent physiological principles that 

are responsible for the generation EMG patterns. This concept was realized by developing a 

new classification scheme based on cosine similarity (CoS), which is a mathematical metric 

that reflects upon the physiological principle of muscle coordination [53], [54]. An online 

experiment was conducted to compare the new CoS classifier with the academic 

state-of-the-art LDA classifier. The experimental evaluation indicated that, the CoS 

classifier performed better than the LDA, while utilizing less training data and a lower 

dimensional feature set (amplitude vs. time domain features); thereby, offering a possibility 

to simplify the training procedure and acquisition hardware. In general, the presented 

method points to the potential advantage of approaches that are inspired by the underlying 

physiological principles over purely data-driven methods that largely prevail in the 

literature.  

Different concepts presented in this thesis were strongly linked to each other. The main 

concept in Chapter 2 was to allow customization of ML control by organizing different 

prosthesis functions into modules, which the users could interactively insert/remove to 

improve the robustness of myocontrol. This concept is also applicable to the CoS classifier 

presented in Chapter 4, where each movement was modelled using a prototype vector, 

which the users can interactively insert/remove as required. Next, the main concept in 

Chapter 3 was to combine a ML-based myoelectric controller with a context aware 

component (CAC), which infers context information coming from additional prosthesis 

sensors to mitigate expected disturbances. The CoS classifier presented in Chapter 4 is an 

example of a ML-based myoelectric controller and therefore, the performance of CoS could 

indeed be improved by combining it with the CAC. Hence, the CoS classifier not only 

models the physiological principle behind muscle coordination, but it also offers the 

possibility to utilize context information coming from the user and/or additional prosthesis 
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sensors – thus, leading to a context- and physiology- aware machine learning scheme for 

upper-limb myocontrol. 

Lastly, the clinical relevance of this work can be emphasized from the fact that, all 

presented methods were designed to improve the robustness of ML-based myoelectric 

control. This would potentially give the users more confidence in using their ML-based 

myoelectric controller, and could eventually increase the acceptance-rate of ML-based 

myoelectric prostheses in the market. Plus, all presented methods were evaluated using a set 

of relevant and challenging functional tasks, which can be seen as a first step toward the 

clinical transferability of the developed methods. Moreover, all presented ML methods are 

simple and computationally efficient, and therefore can be directly used for interfacing most 

prosthetic devices available in the market, with a minor hardware upgrade. For example, the 

use of MR requires a simple smartphone App, which is very easy to provide given that most 

patients might own a smartphone. Similarly, to use cxMLC, manufacturers would need to 

place few additional sensors in the prosthesis socket, some of which are already available in 

existing devices. For example, the Michelangelo hand (from Ottobock, DE) has a force and 

aperture sensor but does not have an IMU, whereas the i-Limb hand (from Touch Bionics, 

UK) has an IMU but does not have a force and aperture sensor. Additionally, this work was 

focused on improving the performance of ML-based myocontrol driven by non-invasive 

(surface) EMG recording and therefore, it is very suitable for patients who want to avoid 

surgical procedures targeted towards improving control (via invasive EMG recording [63], 

[87]), but still want to use a multi-articulated prosthesis with a dexterous control. 
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