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Abstract

Reactions in solution are important in the chemical and pharmaceutical industry as well as
in biochemical contexts. In fact, the solvent effects are stronger than many other factors and
can slow down or speed up a reaction by many orders of magnitude. However, the complexity
of chemistry in solution poses a serious challenge for the computational chemistry community.
Therefore, methods have been developed starting from different approximations which are well
suited for some aspects but are forced to neglect others.

Two aspects have to be considered in order to model a system in solution. The first as-
pect is the description of the potential energy, which have to be described accurately. Methods
ranging from a purely classical description to a complete quantum mechanical one are avail-
able. The second aspect concerns temperature effects. Molecular simulations are commonly
used although continuum solvation models pose an alternative since they include these effects
implicitly.

In this work I will present a novel hybrid quantum mechanics/molecular mechanics ap-
proach. The solute is described with quantum mechanical methods allowing to account for
reactivity and polarisation effects while the solvent is described by molecular mechanics.
This strikes a good compromise between accuracy and computational costs for the energetics.
The simulations are carried out with the Metropolis Monte Carlo method. High efficiency is
achieved by three key approaches: (1) computation of the electrostatic coupling between solute
and solvent with 1°' order perturbation theory, (2) efficient evaluation of the long-range electro-
statics with a shifted force operator, (3) efficient evaluation of the interactions by an numerical
integration implemented for graphical processing units.

The influence of the parameters inherent to our approach has been thoroughly investigated
on a number of benchmark systems. Empirical guidelines have been established along the way
which have been used for subsequent applications to biochemically relevant systems e.g. the
mutagenic properties of halogenated uracil bases. Properties like solvent structures and elec-
tronic spectra as well as relative free energies can be computed efficiently by the here presented
approach.
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CHAPTER 1

Introduction

Water is an ubiquitous solvent in biochemical contexts and the most abundant component
of living organisms. In fact, it accounts in most organisms for about 70% of their weight. In
humans, for example, more than two thirds of this water is found inside of the cells where the
many chemical reactions of the metabolism take place. Without any doubt water is the most
important solvent for biological processes and it participates itself in many of them. [1,2] As an
example, water is involved in the formation of heteropolypeptides and subsequently catalyses
the dynamical disorder of the same. These peptides have been suggested as the precursor for

the amino acid based life hence water plays a key role for the chemical origin of life. [3, 4]

A different aspect is the wide use of solvents in the chemical industry as reaction media and
equally important in order to purify chemicals. The size of the global solvent market in 2015
was about USD 20 billions. [5] Consequently, this aspect has received considerable attention
in order to devise new techniques, synthetic routes or optimised solvents in order to reduce the

solvent consumption and the environmental impact. [6, 7]

Interestingly enough, the biochemical and industrial paths coincide when considering the
activity of enzymes in organic solvents. The highest enzymatic activity can be found when the
conformational mobility and structure of the enzyme is close to its native state. [8] Theoretical
chemistry has a key role in understanding these systems because it allows to study such effects
at an atomistic level. Warshel already realised nearly four decades ago that the understanding
of enzyme reactivity requires the understanding of chemistry in solution and that large macro-
molecules like enzymes can be seen as special solvents themselves. [9, 10] For these efforts to
theoretically study complex chemical systems he has been honoured with the Nobel prize in
chemistry in the year 2013.

Understanding chemistry in solution has been a driving force for the development of new
models, theories and computational approaches from the very beginning in the field of theoret-
ical chemistry as well as related disciplines. And this interest never ceased as it can be seen for
example in the cluster of excellence RESOLYV [11] which aims not only at an understanding of
solvent controlled processes but one step further at designing them.

At the molecular level one of the most important aspects is the structure of solvent molecules
around a solute. This arrangement in shells requires a detailed understanding of all involved
interactions and the underlying physics. Due to this high complexity available methods focus

on different aspects of solvation and are forced in turn to make approximations for others which



leads to many different approaches. Currently a selection of methods includes classical i.e. force
field-based molecular dynamics or Monte Carlo simulations, hybrid approaches which combine
quantum and classical mechanics, empirical methods based on macroscopic properties to screen
electrostatic interactions, continuum descriptions of solvents or the statistical mechanics based
reference interaction site models. [1]

Quantum mechanics can in principle compute chemical reactions and effects accurately.
However, even the considerable advances in the computer hardware and the associated increase
in the computing power do not allow to describe these complex systems completely with quan-
tum mechanics. On the other hand, pure molecular mechanics lacks the accuracy and transfer-
ability that is required for a quantitative understanding. Hybrid quantum mechanical/molecular
mechanical methods pose a viable alternative but nevertheless require large amounts of com-
putational resources. Studying chemistry in solute with these methods on a routinely basis with
commodity hardware has been the motivation for this work. By developing an efficient hybrid
method for simulations which harnesses recent technological advancements of graphic cards
an important step has been made in that direction. In this hybrid scheme perturbation theory
has been applied to quantum mechanics/molecular mechanics calculations and combined with
Monte Carlo simulations.

This thesis has been partitioned in the following way: The second Chapter describes first the
basics of quantum mechanics including the developments of density functional theory which
has been used for the studies in this work. Second, classical force fields are introduced with
a special focus on the treatment of long-range electrostatic interactions. Then the coupling
of these methods and further ways to model solvent effects are presented. Finally, molecular
simulation methods and possibilities to compute properties in solution are described.

A description of the method developed in this work is given in Chapter three. First the
theoretical basis and limitations of the approach are discussed. Then the focus is laid on the
implementation of this method in the context of graphics cards. This Chapter concludes with a
description of the infrastructure and suite of modules that has grown over the years around the
core of the hybrid simulation algorithm.

Any method development is closely intertwined with a continuous process which reveals
errors, limits of the approximations employed and finally the correctness of the here developed
approach. This has been investigated in Chapter four. Simple systems have been studied and
the results are compared to experimental and theoretical findings.

The Chapters five, six and seven are devoted to different aspects of solvation in the context of
computational chemistry. First, the ability of hybrid methods to describe the solvent structure
is assessed in Chapter five. Second, the computation of electronic spectra is investigated in
Chapter six. Last, in Chapter seven the newly established methodology is used to study the
differential solvent effects of the uracil base which are of biochemical interest.

At the end in Chapter eight this thesis finishes with a summary and discusses paths for future

work and further improvements of this approach to model solvent effects.



CHAPTER 2

Theory

2.1 Quantum Mechanics

Quantum Mechanics (QM) builds the underlying theory to describe the physics of atomic
and subatomic particles. In the field of chemistry, which usually focuses on the description
of valence electrons, one then refers to quantum chemistry. The laws of classical physics are
generally recovered from QM for the limit of large length scales. Newton’s second law F' = ma
describes the evolution of particles in classical physics, while the time-dependent Schrodinger
equation is the analogue in QM. Especially of interest are stationary states which occur when
the wave functions described by the time-dependent Schrédinger equation form standing waves.

These stationary states can be described by the simpler time-independent Schrodinger equation

HYU = EV (2.1)

with the Hamilton operator H, the wave function ¥ and the energy E. Two different approaches
to solve this equation will be discussed in the remainder of this Section. There will be one further
assumption. This is, that the motion of the electrons and the nuclei can be separated because the
electrons are orders of magnitudes lighter than the nuclei. As a result the Schrédinger equation
depends only parametrically on the position of the nuclei and solving this electronic Schrodinger
equation leads to the potential energy surface. This constitutes the Born-Oppenheimer approx-

imation.

2.1.1 General Wave Function Theory

The Hartree-Fock (HF) theory is the starting point for what is dubbed ab initio electronic
structure methods. Every electron is described by an orbital which is a function of the co-
ordinates of the latter and its spin. The wave function is constructed as a Slater determinant
which respects the anti-symmetry requirement. Namely, that only the sign of the wave function
changes upon exchange of two indistinguishable electrons. [12]

The electronic Hamilton operator H in atomic units for N electrons and V.. nuclei is
given by

H=T.+ Vue+ Vee + Vi (2.2)



with the kinetic energy operator
1 Nelec

R — Z V2, (2.3)
the potential energy between nuclei and electrons
Nnuc Nelec 7
Ve R 9
the potential energy between electrons and electrons

1 Nelec Nelec 1

Ve = - o
25 G ri -yl

(2.5)

and the potential energy between nuclei and nuclei

1 Nnuc Nnuc Z Zb

The last term is constant for a given nuclear configuration. These equations can be solved by
means of the variational principle which states that the exact wave function is a lower bound-
ary to any trial wave function. Consequently, the parameters of a trial wave function can be
optimised by minimising the energy.

The resulting non-linear equations lead to the solution of an effective one-electron operator.
The motion of an electron is solved under the influence of the average field of the other electrons.
This is denoted as mean-field theory. However, this results in an iterative procedure what is
commonly referred to as Self-Consistent Field (SCF) theory. Applying this procedure yields
the electronic energy of the ground state as well as a set of occupied molecular orbitals with
associated orbital energies.

Realistic systems can only be solved if the molecular orbitals are expanded in terms of
known basis functions, the so-called atomic orbitals, which together make up the basis set.
This approach is also known as the Linear Combination of Atomic Orbitals (LCAO) approxi-
mation. In periodic systems the wave function can be conveniently expanded in plane-waves.
On the other hand, in non-periodic systems Gaussian functions are most commonly used as
atomic orbitals which are known as Gauss-type Orbitals (GTOs). While the exact functions for
a single electron system would be Slater functions (Slater-type Orbitals (STOs)) the GTOs have
considerable computational advantages. According to the Gaussian product rule the product of

two Gaussian functions is again a Gaussian.
The HF method determines the best possible solution for a single Slater determinant for

a given basis set. The remaining difference to the exact energy is defined as the correlation

energy:
Ecorr = Lvexact — EHF (27)

The correlation energy arises from the instantaneous interaction between electrons which is al-
ways negative and cannot be captured due to the mean-field approach. Mainly three approaches



are used to capture correlation effects: Configuration Interaction (CI), Many-Body Perturbation
Theory (MBPT) and Coupled Cluster (CC) Theory.

2.1.2 Density Functional Theory

The beginning of Density Functional Theory (DFT) is marked by the proof of Hohenberg
and Kohn [13] that the electron density uniquely defines the ground state energy. They showed
that a one-to-one correspondence between the density and the ground state energy and conse-
quently also between the density and the wave function exists. However, the exact form of this
functional is not known. Nevertheless, DFT is of high interest because it promises high com-
putational savings. Wave function based approaches depend on 4 N coordinates — the position
and spin of /V electrons — while the density is always defined by exactly three spatial coordi-
nates after integrating out the spin, independent of the system size. The developments in DFT
have focused foremost on finding increasingly accurate approximations towards the unknown
functional. These will be outlined in the following including examples of functionals that have
been used in this work. [12]

The electronic energy functional can be partitioned into several terms analogue to the terms

that have been introduced for the general wave function theory (Equation 2.2):
Eper(p] = T(p] + Enelp] + Jp] + K[p]. (2.8)

These terms are the kinetic energy 7'[p], the interaction between the nuclei and the electrons
E\[p] and the electron-electron interactions described by the Coulomb term .J[p| and the ex-
change term K[p] as a function of the density p. The nucleus-electron interaction as well as the

Coulomb term are given by the classical expressions

Nnuclei Za Ra
Bulpl == 3 [ ar 29)
_Lorp(r)p(r’) .

with the nuclear charges Z,, and positions R,,.
The first formulation including kinetic and exchange energy was derived for the uniform

electron gas and is known as the Thomas-Fermi-Dirac model [14, 15]:

Trelp) = = (35°)° [ pir)ar @.11)

Kplp] = —i (i)é /p%(r)dr (2.12)

However, the assumption of a uniform electron gas works only for a few physical systems,
e.g. valence electrons of classical metallic systems. Especially covalently bonded systems are

described qualitatively wrong by this model because molecules are not stable under these as-



sumptions. The main reason is the inaccurate description of the kinetic energy which is typically
underestimated by about 10%.

A major development that made DFT methods applicable to molecular systems was a differ-
ent approach to the kinetic energy introduced by Kohn and Sham. [16] The kinetic energy can
be computed exactly for a system of non-interacting electrons if these are described by orbitals

analogue to HF. The density and the kinetic energy are given then as

Nelec
p=> ¢l (2.13)
=1
ol = 35 (o e 4) (2.14)
slp pt [ 9 i/ - .

The obvious disadvantage is the introduction of orbitals, which increases the number of spatial
coordinates from 3 to 3N. Furthermore, the description of a non-interacting systems as in HF
means that correlation effects of the kinetic energy are missing. These have to be described by
an additional term. The missing contributions are generally combined with the exchange con-

tributions to the exchange-correlation term E..[p]. The resulting DFT energy is consequently

Exs[p] = Ts[p] + Euelp] + J1p] + Exclp)- (2.15)

It remains to find an exchange-correlation functional that describes the kinetic and potential
correlation energy as well as the exchange energy. Nevertheless, this formulation of DFT is
considerably more robust with regard to the choice of the functional because the exchange-

correlation energy is about an order of magnitude smaller than the kinetic energy.

The systems investigated throughout this work are closed shell systems without unpaired
electrons. Only the exchange-correlation functional depends on the spin. This is usually for-
mulated as a function of the total density and the spin polarisation ¢

S (2.16)

Pa + Pp
which is the normalised difference density that is again equal to zero for a closed shell system.
Furthermore, it is common to define the effective volume with radius r, that contains a single
electron A
gmﬁ’ =pt (2.17)

and to formulate the exchange and correlation energy as a function of the energy per particle

B = [ peclo(mlar + [ peclo(r)lar. (2.18)

The Local Spin Density Approximation (LSDA) is based — similar to the Thomas-Fermi-
Dirac model — on the uniform electron gas and assumes therefore that the density is slowly

varying. The exchange contribution is therefore equivalent to Equation 2.12 and formulated in



terms of the spin polarisation
PN = ~CLfi(O)ps (2.19)

X

with the spin polarisation function

I~

w0
ol

RO =5 (A0 +a-0). (2.20)

Analytical expressions for the correlation energy are only known for the high and low density
limits. Fitting functions have been devised which reproduce the known limits and high-level
Quantum Monte Carlo results for the intermediate range. One example is the formula from
Vosko, Wilk and Nusair (VWN) [17]

AN 0) = el 0) + () [ O] (12 ) 4 1) - e 0120 @21
2
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X () (hl X(x) " Q tan™ 2z + b)l (229
v = JF (2.24)
X(z) =2 +br +c (2.25)
Q0= Vie—F (2.26)

and A, x, b and c being the fitting parameters. The main error of LSDA lies for molecular
systems in the approximation of the exchange energy which is roughly underestimated by 10%.
This error is larger than the total correlation energy which is usually overestimated, for example
the strength of bonds is consequently also overestimated.

The Generalised Gradient Approximation (GGA) is the inclusion of the first derivative of
the density as a variable. This goes towards a better description of a varying, non-uniform
density. This approach is generally formulated as a correction to LSDA, as in this example of
the B88 exchange functional [18]:

D88 — (LDA | A\ BS8 (2.27)
A — g3 z* - (2.28)
* 1+ 6fxsinh™ z
\Y%
r= ’ | (2.29)
p3

with the fitting parameter /3 that is determined using experimental data on rare gas atoms. This

approach can reduce the error in the exchange energy by two orders of magnitude. Equivalent



improvements can be devised for the correlation functional and one example which is often
used in combination with the B88 exchange [19] has been formulated by Lee, Yang and Parr
(LYP) [20]:

LYP _ 4, PaPp
‘ p? (1 + dp’%>
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with the parameters a, b, ¢ and d that are fitted against exact numerical data from the helium
atom.

Further improvements can be achieved by including higher-order derivatives into the func-
tional leading to so-called meta-GGA functionals. However, the more common next step is
the inclusion of HF exchange into the functional. The motivation is that if the Kohn-Sham or-
bitals would be identical to the HF orbitals the exact exchange for the non-interacting system
would be the exchange computed by the HF method. One improvement lies in the reduction of
the self-interaction error which is equal to zero in HF. However, the precise amount of exact
exchange that should be included is not known, mostly system dependent and generally fitted
against experimental data. One prominent example is the B3LYP functional [17,20-22] which
is defined by three parameters a, b, ¢ combining the previously shown B88 exchange and the

LYP correlation functional with a fraction of exact exchange:

E)]i?)LYP — E}I:SDA 4 G(EixaCt . E}I(JSDA) 4 b(E}]?88 - E)I:SDA)

+ BYWN 4 ¢(EMYP — gYWN), (2.33)

The computation of the DFT energy requires a procedure very similar to the HF method.
Canonical Kohn-Sham orbitals are generated which are expanded in terms of atomic orbitals
and an analogue of the Fock matrix is built allowing the computation of the one-electron and
the Coulomb terms. However, the exchange-correlation contribution is defined in terms of
the density and derivatives thereof and depends implicitly on the integration variable itself.
Accordingly, these integrals cannot be solved analytically but have to be computed by means of

a numeric integration. Generally, this requires the integration of a function F'() over all space

I= / Fr)dir ~ 3 AF(r;) (2.34)

which is exact for an infinite number of grid points. However, in practice one tries to find the



smallest possible number of grid points for a given accuracy. Generally, more points are required
in regions of a strongly varying density for example near the nuclei and fewer in regions of a
more uniform density. Some of the ideas to construct these grids for the numerical integration

are illustrated in the following Section.

2.1.3 Numerical Integration in DFT

The basic idea of the following approach is that any molecular function F'(7) can be parti-

tioned into a sum of contributions due to the nuclei n [23]
F(r)=> Fu(r). (2.35)

A weighting function is assigned to each nucleus which is equal to unity close to itself and

vanishes near all the other nuclei with the property
> wa(r) = 1. (2.36)

Thus, the space is not partitioned into strictly separated, distinct cells but into overlapping,
fuzzy and continuous cells. This allows to simplify the multi-centre integration to a simpler

single-centre integration /,,

Fo(r) = wa(r) F(r) (237)
1=%1, (2.38)
I, = / Fo(r)d3r, (2.39)

An appropriately chosen weighting function allows using conventional single-center integration

approaches in polar coordinates.

The space is separated in Voronoi polyhedra, [24] that means each nucleus ¢ is surrounded
by a polyhedron which contains all points in space that are closer to ¢ than to any other nucleus.
For periodic atomic lattices these are known as Wigner-Seitz cells. [25] Confocal elliptical coor-

dinates which depend explicitly on the distance between two nuclei 7;; allow a simple definition

of these polyhedra
pyj =1 (2.40)
Tz‘j
Ay =" @41)
Tij

with r; and r; being the distances to the nuclei. The third coordinate is the angle about the
internuclear axis ¢;;. For example p;; = 0 corresponds to the plane in the middle between the
two nuclei with the vector connecting the two nuclei being the normal vector of this plane. The
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ranges for these coordinates are defined as

0 < ¢y < 2m, (2.42)
~1<py < 1. (2.44)

The definition of a step function s(1;;)

17 _1§,ulj§0

s(pij) = (2.45)
0, 0< Mij <1
allows to define the polyhedron on a given nucleus i as
Pi(r) = [ s(uis) (2.46)

JFi

which is equal to unity for any given point inside of the polyhedron and equal to zero outside.

In order to generalise the strictly separated polyhedra to fuzzy overlapping ones, the step

function is replaced by a continuous analogue s. which fulfils the following conditions

s(=1) =1, (2.47)
s(+1) =0, (2.48)

ds
— = 0. 2.49
(dﬂ>ui1 ( :

As stated before they are unity close to one nucleus and vanish at all other nuclei. Furthermore
they are continuous and do not have any cusp at the position of the nuclei. However, this does
not define a unique function. A simple polynomial p(;;) of two terms has been found to work
well and fulfils the conditions:

3 1

p(pij) = Qg ~ 5#?}- (2.50)

Repeatedly applying this function allows to go from very fuzzy overlapping cells towards the
discrete cells until the original step function is recovered. It has been found that three times

works reasonably well for general applications which leads to the final expression:

sl =5 1= (o (0 ()] 251)

and allows the definition of the weights as

Zl;ln SC(Nm)

m i#£m
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For most molecules different elements are present and the polyhedra should reflect the corre-
sponding element to some degree. Bragg-Slater radii can be used to adjust the volume to the
corresponding element and allow a polyhedron to occupy correspondingly a smaller or larger
space. At this point the multi-centre integration has been simplified to the single-centre inte-

gration which will be shown in the following text.

The single-centre integrals are partitioned by means of a product ansatz into the integration

over the distance and the angles as defined in a polar coordinate system
I, = / / Fo(r, 0, ¢)r2 sin 6drdfde. (2.53)

Grids and weights for the Gauss-Markov quadrature over the surface of a unit sphere have been
given by Lebedev. [26] The angles can be integrated separately but it turned out to be more
efficient to integrate for both angles combined over the surface. Lebedev devised a quadrature
formula invariant under the octahedron group and under inversion G§ which defines a number

of points on the surface that are equivalent:

Points Coordinates

6 (0,0,41),(0,%1,0), (£1,0,0)
1 1 1
212 —=(+1,+1,0), —=(£1,0,£1), —(0, £1, +1
: 7 175 ) )
—
V3

41,41, +1)
VE24 (g, £y, ), (K, my, £y, (Ema, £, 1)
with 217 +mj =1
24 (Epr £k, 0), (£pk, 0,241, (0, £pr, £qi)
with p; +¢; = 1.

This leads to the quadrature formula with the grid points a7, b¥, ¢! and the corresponding weights
Ai; Bks Cl

Alzf )+ A Zf )+ As Zf
Ny
+ZBkab’“+CZf

(2.54)
with a total of N = 26 + 24N, grid points with /V; < 3. The weights are determined by guaran-
teeing the exact integration on the surface of all polynomials up to order n. It can be shown that
only the polynomials invariant under group GG§ need to be considered and the resulting linear
equations have been solved and tabulated up to n = 131. For order 11, 17, and 23 the result-
ing number of grid points with non-zero weights are 50, 110 and 194 respectively. Relatively
large angular grids are required to integrate accurately the step-like feature in the internuclear
regions and about 100-200 grid points achieve an accuracy of about 5—6 significant digits in
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FIGURE 2.1 Grid for an ethanol structure according to Lebedev for the angular integration and Mura and
Knowles for the radial integration.

the integration.

The radial integration is carried out by Chebyshev-Gauss quadrature of second order:

+1 " . .
T i i
=) de~ 3 st (e o (oos (55m)) - €@
_/1 x2g(x) dx ;n+1s1n n—|—17T g | cos n+17r (2.55)

This has the advantage over the widely used Gauss-Legendre quadrature that analytical formulas
are known for the Chebyshev weights and points. The integration over the range —1 to 1 is
transformed onto the range 0 to co. Different mappings have been proposed including the
formula by Becke:

r= rmii—z (2.56)
with r,,, corresponding to the midpoint of the integration interval x = 0. This parameter is cho-
sen as half the Bragg radius in order to represent a meaningful physical scale for the distribution
of the radial grid. Hydrogen is an exception where the Bragg radius itself has been used without

applying the factor % A different mapping proposed by Mura and Knowles [27] is
r=—alog, (1 —z™) (2.57)

where o and m can be choosen freely. This mapping exhibits a balanced representation of
the nuclei, bonded and long-range regions. The performance of these grids is revisited in the
context of the perturbative Monte Carlo method also with regard to the number of grid points
in Section 4.1. An example of a typical grid for ethanol is shown in Figure 2.1. The different

number of points in nuclear, inter-nuclear and long-range regions can be easily distinguished.
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2.2 Molecular Mechanics

The solution of the Schrédinger equation (Equation 2.1) is computationally very expensive
which arises mainly from the large number of degrees of freedom due to the electrons. One
approach to reduce the degrees of freedom has been illustrated with DFT (Section 2.1.2). How-
ever, the electrons react instantaneously to the change of the positions of the nuclei as stated
by the Born-Oppenheimer approximation. This means they can be treated separately. The po-
tential energy can be described as a parametric function of the coordinates of the nuclei. This
function is called a force field which attempts to describe the QM potential energy surface.

Force fields are parametrised for atoms or groups of atoms with similar properties which is
based on the chemically intuitive concept of functional groups. Such a group denotes a small
number of atoms that exhibits similar functionality in different molecules, e.g. a carboxyl or
phenol group. This suggests that a transferable function can be derived to describe a func-
tional group in the context of various molecules. One example are carbonyl groups where the
bond length of C-O double bonds are always around 1.2 A, the frequencies are usually about
1700 cm™! and the carbon is always found in a planar geometry. Additionally, the heat of for-
mations of linear alkanes can be estimated based only on the chain length suggesting that all

CH,, groups contribute a constant value to the energy. [28]

torsion

QCNVO,

FIGURE 2.2 Schematic representation of the different terms in MM methods.

Force fields describe molecules with a ”ball and spring” model. Most commonly, the po-
tential energy is separated in bonded terms which include contributions from bonds, angles and

torsions and non-bonded terms for the electrostatic and van der Waals interactions:
EMM = Ebond + Eangle + Etorsion + qu + EvdW (258)

which are illustrated in Figure 2.2. Information about the connectivities have to be specified
as they do not emerge naturally as in the case of the Schrédinger equation where electrons are
described explicitly. Furthermore, the type of atoms has to be given in order to distinguish
e.g. a carbon in an alkane group or in a carbonyl group. Many different functions have been
proposed for these terms and parameters can be derived from high-level QM methods or fitted
in order to reproduce experimental results. Compared to QM methods the computational costs
are reduced by several orders of magnitude. However, deriving parameters for a force field

is far from trivial. If not noted differently explicit formulas are given in the following for the
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Optimized Potentials for Liquid Simulations - All Atoms (OPLS-AA) force field. [29-31] The
latter has been used throughout this work.

2.2.1 Bonded Terms

The bonded and angle terms are described both by a simple harmonic potential, which can

be understood in terms of a Taylor expansion that is truncated after the first term:

Ebond = Z Kr(r - Tref>2 (259)
bonds

Eangle = Z K@(@ - @ref>2 (260)
angles

with the force constants K which specify the stiffness of the bond and the angle. The natural
bond length r,.s and angle O, are in the simplest case equivalent to the equilibrium value
of the bond or angle. However, more generally speaking it is the value which reproduces the
experimental equilibrium bond length or angle for the minimum energy geometry. In larger
molecules the equilibrium values deviate slightly from the natural values due to further terms
and e.g. bonds are generally longer. This simple description as it is used in the OPLS-AA force
field has the obvious shortcoming that reactions including changes of the bonding situation
cannot be described. The bonds are specified explicitly and the harmonic potential has the
wrong limiting behaviour for the dissociation. Including further terms of the Taylor expansion
improves the accuracy around the equilibrium position but does not describe the dissociation

correctly. One way forward is to choose a different function form like the Morse potential
Eyorse = D (1 — exp(—a(r — rref)))2 (2.61)

which reproduces the correct dissociation energy and accurate energies around the equilibrium
position. However, for simulations at standard conditions mostly the range up to 40 kJ/mol
is accessible which are well described even by a harmonic potential with lower computational
costs.

The torsional potential which describes the change of the energy associated with the rotation
around a bond is very different from the bond or angle term. The potential can have multiple
minima which are separated by relatively small barriers. Consequently, a large range of angles
is accessible without a clear equilibrium value. Moreover, the potential is periodic and should
give the same energy after one period. These criteria are fulfilled by a Fourier series:

3
Vi : 4
Broson = > 25 (14 (=1)""cos (i¢ + ¢1)) - (2.62)
torsion i=1
with the different terms for ¢ representing 360°, 180°,... periodicity, V; specifies the barriers for
the conversion between the minima and ¢; shifts the position of these. Some of the V; can be
equal to zero e.g. for the rotation around the C-C bond in ethane only the V3 term is required,

which gives rise to three equivalent minima and maxima. How the combination of all three
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FIGURE 2.3 Rotation potential corresponding to Equation 2.62 with V; = 0.5, Vo = —0.2and V3 = —0.5
and all ¢; = 0.

terms gives rise to a more complex torsional potential is shown in Figure 2.3.

2.2.2 Non-Bonded Terms

The van der Waals term — one of the non-bonded expressions — describes the short range
repulsion as well as the intermediate range attraction between atoms which is neither connected
with bonded nor electrostatic interactions. For example the dispersion interaction gives rise
to the attractive feature of the potential together with higher order electron correlation effects.
However, the induced dipole-dipole interactions are the dominating contribution which there-
fore determine the R~% decay of the van der Waals interaction for large distances. A typical
example is the interaction between non-polar molecules such as alkanes or rare gas atoms. The
repulsive part for short distances is due to the overlap of the electron densities which are re-
pelling each other. Therefore, an approximately exponential decay of this repulsion should be

expected. However, mostly due to practical considerations a common function is the Lennard-

Butw =4 faeas [("“”) c (““”)6] (2.63)

a>b Tab Tab

Jones potential

with o4, describing the beginning of the attractive part and ¢, the depth of the well. Both
parameters are computed as the geometric mean from atomic parameters. This reduces the
number of required parameters with only two for each atom type. The sum includes all atoms
that are separated by more than three bonds and f,;, is always equal to one with the exception
of the 1,4-interactions which are scaled by f,, = 0.5 in OPLS. The 1,4-interacting atoms are
also interacting through the bonded torsion potential and therefore the van der Waals interaction
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is scaled down. The computational advantage of the Lennard-Jones potential is that it is very
cheap because only the square of the distances is needed — not the distance itself — and the
r~12 is just the square of the r~°® term and can be computed very efficiently. It should be noted
that the van der Waals terms are parametrised against experimental data which gives rise to an
effective two-body potential which includes many body effects in an average way. This model
assumes an isotropic density of the atoms. Two cases where this is only approximately correct
are hydrogen atoms, the single electron involved in the only bond is always displaced towards
the neighbouring atom, and atoms with lone pairs, e.g. nitrogen or oxygen. However, many
models do not take into account this effect and compensate for it through the treatment of the

electrostatic interaction which, however, has the wrong distance dependence.

The missing half of the non-bonded interactions are the electrostatic interactions. The distri-
bution of the electrons inside of a molecule leads to positively and negatively charged regions.
These are especially important for polar compounds. The simplest approach to model the elec-
trostatic interaction is to assign partial charges to the atoms which interact through the Coulomb

potential

2
qaqr€
By = fab (2.64)

a>b Tab

again with the scaling factor f,;, = 0.5 in OPLS-AA for 1,4-interactions. Some force fields use
bond dipoles instead which give in most cases equivalent results. The partial charges can be de-
termined from QM calculations. Mostly, they are fit in order to reproduce the exact electrostatic
potential near the molecule, e.g. on the van der Waals surface. Furthermore, the partial charges
can be simultaneously fitted against experimental data like free solvation energies in order to
construct an effective two-body potential that incorporates again many-body effects in an av-
erage way. A prominent example is water with a dipole moment of 2.5 Debye in condensed
phase compared to 1.8 Debye in gas phase. Fitting against experimental data improves the ac-
curacy considerably in this case. Alternatively, QM methods that are known to overestimate

the polarisation like Hartree-Fock can be used.

The description of the electrostatic interaction solely by partial charges can lead to consid-
erable errors because the electrostatic potential is not accurately represented. The inclusion of
higher-order electric moments or of additional charges not associated with an atom can improve
the accuracy and allows an anisotropic description of atoms. Nonetheless, the inclusion up to
quadrupoles increases the computational costs by nearly one order of magnitude. However, if
many-body effects are important atomic polarisabilities have to be taken into account explic-
itly. The first contribution comes from the dipole p;,4 induced by the electric field F' which is

created by electric moments on other sites
Hing = oF (2.65)

with the polarisibility of the site itself. This gives rise to the polarisation contribution to the
electrostatic interaction

1
Euo = §NindF. (2.66)
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Every induced dipole in turn contributes to the electric field and influences the induced dipoles
on other sites. Hence, an iterative procedure is required until the induced dipoles are solved in
a self-consistent way. This increases the computational costs at least by a factor of about two
depending on the number of iterations needed until convergence.

Finally, these terms (Equation 2.58) may be coupled by so called cross terms. For instance
the bond lengths which are included in the definition of an angle give rise to a stretch-bend
term. In order to avoid a huge number of parameters these terms are either independent of the
involved atoms or take into account a single central atom type. A closely related correction is
for example the dependence of the natural bond length on the electronegativity of the involved

atoms which is comparable to a stretch-electrostatic cross term.

2.2.3 Long-Range Electrostatic Interactions

The description of liquids requires an approach very similar to the one of crystals. Many
molecules are needed — on the order of hundreds to thousands — to describe accurately sol-
vent effects. However, to avoid surface effects and molecules evaporating into the surrounding
vacuum Periodic Boundary Conditions (PBC) have to be employed. The condensed system is
constructed inside of one of the five space filling polyhedra, most commonly a cube, and then
duplicated in all directions. Therefore, the model is quasi-periodic and if a molecule leaves
the central box through one wall its image enters through the opposite wall. A schematic two-
dimensional representation is shown in Figure 2.4.

In the terminology of the minimum image convention the central box is called the original
simulation cell and all its copies are images. Only particles and properties of the original have
to be recorded if each particle always interacts with its closest image of the other particles of
the original box. The distance in the minimum image convention 7 can be obtained from the

distance r of any two particles for a cubic system with edge length L according to

F=r—int <£> L. (2.67)
The same formula can be applied to obtain the Cartesian coordinates of the particle in the orig-
inal box as long as all coordinates are positive which results in the original box ranging from 0
to L along all three axes.

The evaluation of non-bonded terms for an infinite system can be rather challenging. The
van der Waals interactions with their distance dependence of ¢ are rather short-ranged and
become negligible after a distance of about 10 A. This allows to introduce a cut-off so that
only interactions between particles below a given distance are taken into account. This can be
equivalently seen as the interaction of a given particle with all other particles inside a sphere
with the radius of the cut-off r. as it is visualised in Figure 2.4. A cut-off radius larger than
half of the box length should be avoided in the minimum image convention. However, the
Coulomb interactions between partial charges are very long-ranged and a simple cut-off leads to
sizeable discontinuities. Two different approaches are well-established to treat the electrostatic

interaction correctly under consideration of PBC which will be discussed in the following.
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FIGURE 2.4 Schematic representation of PBC in two dimensions for a square. The original cell and
particles in black and the images in green. For one of the particles a spherical cut-off is shown.

The first one is the Ewald summation [32] which divides the long-range interaction in two
contributions. The short-range contribution is computed in real space while the long-range one
is evaluated using a Fourier transform in reciprocal space. Both summations converge quickly
in their respective spaces and can be truncated while retaining high accuracy. A number of
difficulties arise with this approach. The Ewald summation formally requires a neutral system
and introduces for charged systems a uniform neutralising background charge which, however,
deviates from the actual charge distribution. [33] Furthermore, it has been shown that the free
energy landscapes of proteins is altered because of the artificially introduced periodicity. A
single protein is restricted to interact with its images in exactly the same orientation and sec-
ondary structure. This can even reverse the population of minima on the free-energy landscape
as shown for a dialanine model system. [34] Another study showed that the a-helical configu-
ration is artificially stabilised and the unfolding processes are hindered due to the Ewald sum-
mation. [35] Three factors have been identified to increase the artefacts due to the periodicity
which is a charged solute, a solvent with low dielectric constant and a solute with a size that is
non-negligible compare to the cell size. [36]

Pairwise alternatives [37—-39] have been proposed which avoid the explicit periodicity alto-
gether and just use a summation in real space. While this approach seems to be simple minded
at first sight, it is based first on the realisation that the effective scaling of the electrostatic in-
teraction with the distance is considerable lower than 7~! in condensed phase. Second, that the

Ewald summation has been used historically for very small systems with correspondingly short
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cut-off for the real space term in order to make calculations computationally feasible. With
nowadays computer power large systems of 40 A edge length can be routinely simulated which

allows using cut-offs up to 20 A.

Truncating the summation with a spherical cut-off leads generally to a volume with a total
net charge different from zero. It has been realised that this is the main cause of the poor
convergence and unsystematic behaviour of the direct summation. A careful grouping of ions
or atoms in neutral groups which are either completely included or excluded by the cut-off
leading to a net charge equal to zero cures this erratic behaviour and gives results equivalent
to the Ewald summation and converging quickly with the distance. For example the Madelung
constant of an ion in a perfect crystal has been shown to depend with =5 on the distance of
other ions. [37] However, sorting of ions into neutral groups is computationally expensive and

impractical in highly disordered systems like melts or liquids.

An alternative approach is to neutralise the spherical volume by projecting for every ion a
charge with the opposite sign onto the surface of the sphere. This guarantees that the central
ion interacts only with neutral pairs — the actual and the projected charge. Careful derivation
lead to the realisation that the physical concept of charge neutralisation at the surface is indeed
equivalent to the concept of using a shifted operator for the Coulomb interaction. The simplest
formulation is the shifted potential Vsp which is 0 at the cut-off

o U(T) — Ve T S e
Vsp(r) = (2.68)
0 >,

with the force

Fgp(r) = (2.69)
0 r >,

Notwithstanding a smooth potential, the force is not continuous at the cut-off. This leads to
problems especially in Molecular Dynamics (MD) simulations which rely on the gradients and
leads to an energy drift during the simulation. This can be addressed by deriving a shifted force

potential Vs which fulfils the requirement

dVsp
dr

r=re¢

— 0. (2.70)

Furthermore, the electrostatic interaction oscillates with increasing cut-off and therefore
converges only slowly against the correct value. The introduction of a damping parameter
leads to accelerated convergence and allows using a smaller cut-off. For the simple Coulomb

potential

o(r) = q’fj (2.71)
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FIGURE 2.5 Coulomb interaction of two unit charges with opposing signs for the Coulomb, a shifted and
a shifted force potential, both with o = 0.

this leads to the final expressions for r < r. of the damped shifted force potential

erfc(ar)  erfe(ar,) erfc(ar,)  2a exp(—a’r?)
- + 2 + 3 /2
72 m T

(r— TC)>‘| (2.72)

Vpsr(r) = ¢:q; .

and accordingly the forces

erfc(ar 2a erfe(—a?r? erfc(ar, 200 exp(—a’r?
Fose(r) = g, K (ar) ( )> B < (are) p( )

r2 /2 r r2 /2 Te
(2.73)
with the damping constant o and the complementary error function
fo(z) = — [ () (2.74)
erfc(z) = — exp(— . .
vl P

The accuracy of this approach has been investigated by comparing energies, forces, torques,
velocity autocorrelation functions and the derived power spectra with reference simulations
using the Ewald summation. Equivalent results have been obtained in all cases for r, > 12 A
and with damping. For Metropolis Monte Carlo (MC) simulations which are only based on
the energies and do not need forces it is valid to use & = 0. This saves computational time
because the expensive evaluation of the error function is not required. These approaches have
been extended by enforcing that higher derivatives are as well equal to O at the cut-off. [39]
This might be necessary for MD simulations in extremely ionic systems as shown in a study of
ionic liquids. In that study 59 ionic liquid combinations of six cations and seven anions have
been simulated. A correlation coefficient (12? value) in comparison with results form the Ewald

summation of 0.99 has been found for the most accurate shifted operator. [40] It is also possible
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to additionally integrate group based cut-offs into these methods which increases the accuracy
even further.

I conclude that pairwise direct summation methods are a viable alternative to the Ewald
summation with high accuracy, linear scaling with the systems size, low computational costs
and trivial parallelisability. Furthermore, it avoids non-physical artefacts introduced by the
enforced periodicity of the Ewald summation and makes it suitable for systems like solid-liquid

interfaces or membranes.

2.3 Solvation Models

Many QM studies are carried out in vacuum. However, most biochemical processes take
place in aqueous solution. Any chemical reaction inside of cells i.e. the metabolism is em-
bedded in water which may even participate in these reactions. Another example are enzymes
which are often embedded in membranes and closely interact with them. The folding of en-
zymes and thus also their activity depends as well on the environment. Therefore, there is a
large interest in computing the effect of the solvent in the context of QM calculations. Different
effects occur upon inserting a solute into the solvent. The solvent is polarised by the solute
which in turn changes the charge distribution of the solute. The electric moments, most dom-
inantly the dipole moments, of the solvent orient with regard to the solutes electric moments.
These two effects which are long-range in nature give rise to the screening of electrostatic in-
teractions which is quantified by the dielectric constant e. For example, the interaction of two
charges in water is reduced by about 80, nearly two orders of magnitude. Further solvent ef-
fects are short-ranged and arise from the explicit molecular structure of the solvent molecules.
This gives rise to a arrangement of solvent molecules in a shell-like structure around the solute.
Specific interactions e.g. hydrogen bonds are very important in aqueous solution. Furthermore,
solute and solvent do not only interact via electrostatics but also van der Waals interactions are
important. Finally, charge transfer effects go beyond polarisation effects. Solvent models have
been developed which focus on an accurate description of some of these effects while approxi-
mating others which gives rise to a number of different approaches. These will be discussed in

the following Sections.

2.3.1 Continuum Solvation Methods

Continuum solvation models stem from the macroscopic description of the solvent as a
continuum characterised by the dielectric constant €. A cavity is formed inside this continuum
— which requires the energy G'., to form — and the solute is placed inside it (Figure 2.6). Van
der Waals interactions with the solvent are generally stabilising and among these the dispersion
interactions G;sp, are dominating while for short distances the repulsion G,., becomes more
important due to the overlap of the wave functions. Finally, the polarisation of the solvent and
in turn the polarisation of the solute results in an electrostatic stabilisation GG.;. Consequently,
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FIGURE 2.6 Schematic representation of the solute (red) inside of a cavity (green) in the continuous
solvent (black waves).

the free energy of the solute can be formulated as
G = Gcav + Gdisp + G'(rep + Gel + Gtm (275)

with an additional term for the thermal motion G,, in order to obtain absolute free energies.

The first step is the definition of the cavity since there is no unique correct way to define a
cavity. A simple spherical or ellipsoidal one greatly simplifies the computation of further effects
but it turns out that a molecular shaped cavity is required for accurate results. A computationally
efficient approach is to use a scaled van der Waals surface. However, cavities embedded inside
of the solute can be filled in a non-physical way with small parts of the continuum. A better
approach is therefore to use the solvent accessible surface (SAS) which can be constructed by
running a probe sphere on the surface of the solute. Nevertheless, the results are sensitive to
the radius of this probe sphere or the factor used for scaling the van der Waals radii and they
are commonly fitted in order to reproduce experimental results. Furthermore, even the SAS
can lead to discontinuities in the case of geometry optimisations if suddenly a cavity becomes
accessible. A third possibility is to construct a cavity based on an isodensity surface, a typical
value is 0.001 of the electron density.

The energy for the creation of the cavity G, as well as interactions which are specific for
the first solvation shell cannot be modelled within the framework of continuum models. Either
they are neglected altogether (Conductor-like Screening Model (COSMO) [41]) or they are
parametrised as a simple function of the surface of the cavity (Polarizable Continuum Model
(PCM) [42] or Solvent Model Density (SMD) [43]). Dispersion contributions are generally
treated together with the cavity term. More sophisticated models use a force field like approach
with atom specific parameters.

Clearly, the explicit structure of the first solvation shell is inadequately represented. There-
fore, specific interactions e.g. hydrogen bonds or terminally carbonyl groups in solvents like
acetone cannot be described. These interactions are by definition not in accordance with a

continuum description. However, it has been argued that the combination of electrostatic, dis-
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persion and repulsion terms used in models like PCM can account even for specific interac-
tions. [44,45] In a hybrid fashion the explicit representation of a few solvent molecules can be
combined with the continuum description. However, in the case of a parametrised dispersion
and cavity term this has to be done with care because these contributions are generally fitted
without explicit solvent. Furthermore, the sampling of this microsolvated system is usually ne-
glected so that the higher accuracy of the specific interactions is traded for the loss in phase
space sampling which is in an average way contained in continuum models. For example sys-
tems which require a single hydrogen bonded solvent molecule in a well defined position can

benefit from this approach.

The accuracy of continuum models is most sensitive to the description of the electrostatic
term G (which depends as well strongly on the definition of the cavity). The mutual polarisa-
tion resulting in an electrostatic stabilisation can be described on different levels of sophistica-

tion. The governing equation is the Poisson equation
V(e(r)Ve(r)) = —4mp(r) (2.76)

with the electrostatic potential ¢, the charge distribution p and the dielectric constant €. The
dielectric constant is usually simplified to be independent of the position so that this equation
simplifies to
9 4m
VEp(r) = ——p(r). (2.77)
The reaction field defined as the difference of the potential in vacuum and solution

Oreac = Psolv — Pvac Can then be used to compute the corresponding energy

Er(p,p) = /R (T breac(r)dr. (2.78)

Approximate representations of the solutes charge distribution combined with simplified cav-
ities lead to different models. The Generalised Born/Surface Area model [46] describes the
solute by partial atomic charges. The Onsager model [47] uses a dipole moment for the solute
and assumes a spherical cavity. This approach has been generalised to higher electric moments

and ellipsoidal cavities.

A different representation is required in order to solve these equations for arbitrarily shaped
cavities. The reaction field energy is reformulated into an integral over the surface of the cav-
ity I'

Enlp,p) = [ o(s)Vii(s)ds’ (2.79)
r
with the potential V;, due to the charge distribution of the solute p’ given by
by [ P)
VI, (r) = /R3 i (2.80)

The surface charge density o can be determined from the integral equation

/F ka(s, s')o(s')ds' = by(s), 2.81)
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with the Green kernel of some operator A and b, depending linearly on p’. In practice the appar-
ent surface charge density is discretised into point charges associated with small segments m of

the surface. The choice of A and b, leads to different models for the electrostatic stabilisation.

In a matrix representation the different models can be formulated conveniently. The rel-
evant quantities are the vector of the apparent surface charges o, the diagonal matrix of the
segments S, the vector of the electrostatic potential due to the solute on the segments ¢~ and
the vector of the associated normal components of the electric field e;X . Using the exact dielec-

tric boundary conditions leads to the DPCM expression [48]

€
dro =

1 (ef + DSa’) (2.82)

with D which generates the normal vectors of the electric field due to the apparent surface
charges . The COSMO approach [41] which is formally exact only for the limit of ¢ = oo,
since it uses the boundary conditions of an ideal conductor, is given by

6_
€+

0=

1
1¢X + ASo (2.83)

with the Coulomb interaction matrix A for the charges o. For neutral solutes it is recommended
to use for the empirical parameter x = 0.5 and for ions x = 0. The advantage of COSMO is that
it depends only on the apparent surface charges and not on the normal components of the elec-
tric field which are computationally more expensive to obtain and more sensitive to numerical
noise. Finally, the integral equation formulation (IEF) of PCM can be obtained by replacing
this dependence on the normal components by an expression based on COSMO leading to

e—1
e+ 1

e—1
e+ 1

(47r1 _ DS) o= (D—478") A'¢" (2.84)
with the unit matrix I. IEFPCM is an improvement over DPCM. However, it is computationally
more expensive than COSMO and more sensitive to numerical problems due to the dependence
on the asymmetric matrix . One of the assumptions for these models is that the charge distri-
bution of the solute is completely contained inside of the cavity. This is generally not correct
and causes considerable errors in DPCM while COSMO and consequently IEFPCM are less

sensitive to this problem.

The COSMO-RS approach extends the COSMO model to realistic solvents (RS). It has
been realised that a solvent that can provide the ideal opposite surface charge density for a
solute is as efficient in screening the solute as an ideal conductor. Any solvent that cannot
provide this ideal surface charge density leads to a mismatch of not exactly opposite surface
charge densities. This explains the successful application of COSMO to water. Water exhibits
a broad range of different surface charges so that it can easily match in a close to ideal way with
a solute and itself. Consequently, one could argue the description of water as an ideal conductor

is qualitatively correct.

In practice the surface charge density is determined from a COSMO calculation and the
o-profile, the probability function to find a certain surface charge density, is constructed for the
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solute and any solvent. This allows a simple treatment of the intermolecular interactions through
local pairwise potentials. The misfit energy relative to the ideally screened case is computed for
the optimal pairing of these fragments and a constant scaling factor of 0.64 is applied to account
for the polarisibilty of involved molecules. [49, 50] The fragments are treated as independent
which means that sterical constraints due to the actual geometry of the solvent molecules are
not taken into account. Finally an extra term has been introduced for the treatment of hydrogen

bonds in order to capture the effect of the mutual charge penetration.

2.3.2 Reference Interaction Site Model

The Reference Interaction Site Model (RISM) is based on principals from statistical me-
chanics and starts from a Ornstein-Zernike type integral equation. [51] The RISM approach
works with spatial distributions instead of directly exploring the phase space. Ornstein and
Zernike proposed to split the total correlation function into two terms: the first term includ-
ing only the direct contribution and the second term all indirect contributions, e.g. the first
molecule affects a third molecule which in turn influences the second molecule. The total cor-
relation function measures the effect of a molecule on a second one for a given distance and is

related to the radial distribution function g(72) by
h(rm) = g(rlg) — 1. (285)

The starting point for the three dimensional RISM approach [52-54] (3D-RISM) is given by
Mriz) = 3 [ calr = 1) xen (r)ar (2.86)

with the direct correlation function ¢, () and the site-site susceptibility - (7) which includes
inter- and intramolecular terms. The indices run over all interaction sites of all included solvent
species. The asymptotic behaviour for distances beyond the first solvation shell can be derived
as

(1) o _1:13(;) (2.87)

with the interaction potential ., () between the solute and the interaction site  of the solvent.

In order to solve Equation 2.86 an additional closure relation is needed which relates the
total and direct correlation function and includes as well the interaction site potential. Two
examples which both reproduce by construction the correct asymptotic behaviour are the Mean
Spherical Approximation (MSA) [55] and the Hypernetted Chain Closure (HNC). [56] The first
one leads to non-physical negative values in the vicinity of associative peaks for the distribution
function and the latter can lead to numerical problems for charged sites in polar solvents so that

no solution can be found for the given set of equations. The closure proposed by Kovalenko



26

and Hirata (KH) [57] combines the advantages of both closures to

gy = | P [TRE T —e ()] forgy(r) <1 (2.88)
' L= 123(;) + ho (1) — ¢y (7) for g, (r) > 1

with a linearised version of MSA applying to regions of solvent enrichment and HNC to regions
of solvent depletion. A similar approach is the partial series expansion up to order n (PSE-n)

[58] which combines the KH closure and HNC by interpolating between them.

The 3D-KH closure slightly underestimates the height of associative peaks but at the same
time slightly widens the peaks. Consequently, the integral of a peak (e.g. coordination num-
bers), is reproduced rather accurately because these effects cancel out each other. A repre-
sentative example with regard to the accuracy is water bound to the MgO surface where the
coordination numbers are reproduced with 90% accuracy and the positions of the peaks with
about 0.5 A deviations compared to MD. [59] However, the main advantage of the 3D-RISM
approach lies in the computational savings because direct simulations are not required. A large
explicit solvent simulation with about one million solvent molecules can instead be solved on a
standard workstation in a rather short calculation with 98% correlation for the density maxima

compared to results from MD.

In practice, the first step is a dielectrically consistent RISM (DRISM) [60] calculation which
affords the solvent susceptibility x that is required as input for the 3D-RISM calculations. Sec-
ondly, the embedded cluster RISM method is used to determine the solvent effect on the solute
electronic structure in a self-consistent way similar to the self-consistent reaction field approach
(Section 2.3.1). The 3D-RISM equations are discretised on a uniform three dimensional grid
which includes the first 2—-3 solvent shells. Non-periodic contributions are separated out, then
the convulation is solved very efficiently by a fast Fourier transform in reciprocal space and
finally the non-periodic contributions are added back. [52,61]

Analytical formulas can be derived for a number of thermodynamic properties, e.g. the

excess chemical potential for the KH closure
ox 1 1, 1
i = 1 oo [ GOk (1) = e, (r) = Sh(r)e, ()] ar @289)
ksT = 2 2

with the solvent density p., and the Heaviside step function ©. The excess free energy together

with free solvation energy F., can be related to the free energy of reaction in solution
AG =~ AFEq,, + Ap™. (2.90)

This merely requires the application of 3D-RISM to the products and educts which is compu-
tationally very efficient. [58]
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2.3.3 Explicite Solvation with Hybrid QM/MM Methods

The full QM treatment of complete proteins is nowadays possible with algorithmic ad-
vances as well as an increase in the available computing power. However, this approach limits
severely the possibility to explore the phase space. On the other hand, extensive sampling can
be achieved with molecular mechanics which allows to study even slow folding processes of
enzymes. Nevertheless, the classical potential cannot describe quantum effects which are im-
portant e.g. for reactivity where bonds are broken and formed frequently. This is the context in
which hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) methods have been devel-
oped. The high-accuracy of QM methods is used for a small part of special interest — the high
level (HL) — like the active site of an enzyme or transition metal catalyst in solution. The effi-
ciency of Molecular Mechanics (MM) methods is used to describe the large number of particles
of the embedding environment — the low level (LL) — like the protein or the solvent. Different
schemes have been developed in order to couple these methods which will be discussed briefly

in the remainder of this Section. [62]

In this scheme the Hamiltonian is replaced by an effective Hamiltonian. Depending on the
approach the energy can be partitioned in two different ways. In the subtractive scheme the
energy for the total system (S) is given by

E*® = Egy + Eyy — E- (2.91)

The advantage of the subtractive scheme is its simplicity because no direct coupling between
QM and MM has to be computed. However, empirical parameters have to be available even for
the HL. which can be especially problematic for reactions. Furthermore, the interaction between
HL and LL is computed only at the MM level. In contrast, the additive scheme includes an

explicit term for the coupling between HL. and LL
E* = Eqw + Exiie + Equinu (2.92)

The MM computation is only carried out for the LL. This scheme is most commonly used for
QM/MM calculations and the definition of the coupling term gives rise to different flavours of
QM/MM methods. Three variants are presented in the following going from low accuracy and

low computational costs to high accuracy and high computational costs. [63]

In both the substractive and additive schemes, the mechanical embedding treats the coupling
completely at the MM level which is computationally very efficient. The disadvantages are
that empirical parameters are required also for the HL.. These do not necessarily represent the
correct charge distribution of the HL. If the character of an atom changes during the course of
an reaction its parameters should be adjusted. There is no clear way to do this. Finally, the
electronic density does not interact in any way with the charges of the LL and is not polarised
by the environment.

The electrostatic embedding scheme improves upon this by computing the electrostatic in-
teraction at the QM level. The point charges of the LL are directly included in the Hamiltonian.
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Thus, the electronic density of the HL is polarised by its environment. However, MM point
charges in the direct vicinity of the HL can cause a spurious polarisation of the QM density
and charge leakage from QM atoms to MM sites may occur. Nevertheless, it has been found
that this is a minor problem for limited basis sets. [64] This embedding scheme is widely used
and the results are reasonable although it is not clear if the interaction is described correctly.
The MM partial charges are parametrised to give a balanced description of the force field and
not to represent the true charge distribution. Replacing part of a system with the correct charge

distribution could deteriorate the results. [65]

Finally, the most sophisticated scheme takes the polarisation of both HL. and LL into ac-
count. The electrostatic embedding is combined with a polarisable force field. While the solute
polarises the solvent the same holds true vice versa. Therefore, this mutual polarisation has to
be solved iteratively in a self-consistent way and is associated with considerably higher compu-
tational costs. Approximate schemes can be introduced which truncate this iterative procedure

before convergence is reached.

The comparison with MM simulations and the QM cluster approach, which has in principle
a more accurate formulation of the potential energy, reveals the strength and weaknesses of the
QM/MM approach. The optimization of geometries is an important criteria for the accuracy of
any method. QM/MM approaches have a clear advantage in comparison with the QM cluster
approach. The geometry of a cluster in vacuum cannot be simply optimised because severe
surface effects will influence the results. For example the density of a solvent cluster is lower
at the surface and solvent molecules rearrange in order to maximise the interaction with the
cluster. Therefore, it may be necessary to artificially keep the position of one or several atoms
of the outer molecules fixed. This constraints might introduce a bias into the results. QM/MM
approaches include the complete environment explicitly and it has been shown that reliable
geometries can be obtained even with relatively small QM parts. [66] Furthermore, it is not clear
which parts of the environment should be included with the QM cluster approach. Obviously
this choice might be biased and lead to the right results for the wrong reasons. A similar decision
has to be made in QM/MM methods about the size of the QM part. However, the difference
between a group at the MM level or the QM level is obviously much smaller than a group at
the QM level or the continuum solvation. [67] Finally, large clusters which are expected to
increase the accuracy turn out to be problematic in some cases especially in the description
of reaction pathways. The study of the potential energy surface is complicated by a manifold
of minima which are associated with small unrelated changes in the environment. This can
be partly circumvented by using snapshots from classical simulations which can provide an
approximate sampling of the configuration space. A different approach is to freeze a part of the
environment after the initial geometry optimisation. This restricts the environment to a single

local minimum and avoids thereby the effect of unrelated solvent rearrangements on the energy.

QM/MM methods with their smaller QM part and the associated lower computational costs
can be used to sample degrees of freedom on a short time scale. However, compared to MM
or semiempirical methods the computational costs are much higher and it is not possible to

simulate longer time scales or to extensively sample the phase space. Therefore, it turns out to
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be difficult to obtain dynamic information or free energies because entropic effects cannot be
easily estimated.

The energy is more sensitive to the size of the QM system than the geometry during op-
timisations. Therefore, it can turn out to be advantageous to first optimize the geometry with
a QM/MM approach with a rather small QM system. Then one can carry out a single point
calculation with a larger QM part to obtain accurate energies. [66] This also removes the de-
pendence on the empirical force field. It has been observed that different force fields can have a
large influence on the energetics. [68] However, this approach does not correct for the inherent
dependence of the sampling of the configuration space on the force field.

The definition of HL. and LL is critical for any QM/MM study. For the treatment of a single
solute with its surrounding solvent the choice of the HL is usually only the solute itself. The
situation can be more complicated for the description of enzymes. The active site which should
be included in the HL usually contains a metal ion, a potential substrate and amino acid side
chains in direct vicinity. However, these side chains are covalently bound to the embedding
enzyme. The QM/MM boundary has to cut at some point through one of these covalent bonds.
These junctions have to be dealt with at the QM as well as at the MM level of theory.

The link-atom method is technically simple and therefore widely used. The dangling bond
of the QM part is saturated with an additional atom which is not present in the real system. This
is usually a hydrogen atom but can be in principle any atom with a single valence. The position
of the link-atom is determined by the cut bond in order to avoid additional degrees of freedom.
The cut bond is only treated at the MM level. [63]

The pseudobond method avoids the introduction of additional atoms. Instead it assigns the
MM atoms which participate in a cut bond a specifically designed basis set and an effective core
potential to saturate the free valency of the neighbouring QM atom. These boundary atoms in-
teract therefore with the MM part as well as the QM part. The pseudopotentials can be designed
to reproduce the properties of certain groups, e.g. a methyl group. [63, 68]

Finally a frozen localized orbital approach can be used. A special localized orbital is placed
at the QM atom of the cut bond and oriented correctly along the bond. This orbital is kept frozen
during the self-consistent field cycles and does not mix with other orbitals. In this way it is used
to satisfy the free valency of the atom. It can be imagined as a frozen lone pair which replaces
the original bond. [68]

Nevertheless, the overpolarisation of the electronic density at the boundary can pose serious
problems. Different schemes have been developed to remove MM charges in close vicinity to
the QM part for example by reassigning them to neighbouring atoms. The charges can be also
scaled to decrease the polarisation effect or described by a more accurate Gaussian distribution.

It has been observed that the results depend strongly on this boundary treatment. This in-
fluence can be decreased considerably by increasing the size of the QM part and consequently
moving the junction away from the active centre. It has been recommended that the distance to
the active centre should be at least two residues. [67]

Besides the treatment of the border, the computation of long-range electrostatics is tech-
nically difficult and there is no unique approach which turns out to be ideal. For pure MM
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computations the Ewald summation method is routinely applied. [32] First implementations of
the Ewald summation for QM/MM calculations neglected the QM-QM interaction. However,
implementations including all interactions have been developed in the context of plane-wave
calculations [69] and more recently also with a real space multigrid approach by Parrinello and
coworkers. [70,71] A simple approach is to use a cutoff for the MM charges which are included
in the Hamiltonian. This works rather well because in most cases the long-range polarisation
of the QM density can be neglected. Alternatively, point charges or multipoles which represent
the true electrostatic potential of the QM part can be computed. These electric moments can be

used subsequently for the Ewald summation. [68]

By and large, QM/MM methods have been established as a state-of-the-art approach and
can be routinely used to study localized electronic events embedded in a large environment.
However, the setup remains complicated and the methods are far from a black box approach.
The results can in principle be improved by increasing the size of the QM region. However, one
encounters the same problems as with QM cluster calculations: the sampling of the QM system

is problematic and the choice on which parts to include in the QM system might be biased.

2.4 Molecular Simulations

Traditionally a vast majority of chemical experiments is carried out in solution at a finite
temperature, most commonly room temperature. Also biochemically relevant processes occur
mostly in aqueous solution with a number of further molecules like ions, acids and bases setting
a certain pH or even whole proteins or aggregates like membranes making up very complex
systems. The thermodynamic state in liquid phase is controlled by a few macroscopic variables
with the most natural being the number of particles /V, the pressure P and the temperature 7'.
Any thermodynamic property depends on the state and not only on the instantaneous coordinates
and momenta of the particles. Therefore, approaches treating the particles as isolated according
to an ideal gas which is the basis of the rigid rotor/harmonic oscillator approach in QM cannot

be used for this type of systems.

Any measurement of an observable is in fact the time average of the instantaneous realisa-

tions of this property which can be formulated as

Aobs = (A(T())) time (2.93)
1 tobs
= /O A(T(8)) dt. (2.94)

The instantaneous coordinates and momenta define a point of the phase space I" which evolves
along a trajectory with time. This evolution is defined by Newton’s equations of motion for a
classical system. The MD method described in the following Section 2.4.1 uses this approach

to compute thermodynamic properties.

The basis for statistical mechanics, however, is based on a slightly different approach. Gibbs
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suggested to replace the average over time by an average over an ensemble

AObS = <A|pens>ens (295)
= > A(T) pens(T). (2.96)
T

An ensemble is here a collection of points in phase space that are distributed according to
the probability pe,s. Instead of following a system moving through the phase space with time
['(t) one can equivalently observe the probability distribution for a fixed phase point with time
p(I',t). For a system in equilibrium the distribution does not change with time % = (0 and it
is consequently denoted as equilibrium distribution. The MC method is based on the description
of ensembles and will be discussed in Section 2.4.2.

Both of these methods rely on the important property of ergodicity. If we observe the tra-
jectory of a system starting from an arbitrary point in phase space and it passes through all
points of the phase space returning to the initial position the system is considered ergodic. If
on the other hand regions of the phase space are not accessible and contain cyclic trajectories
then the system is not ergodic. In that case the region of phase space that is sampled is depen-
dent on the initial conditions. Deep wells or barriers can lead to inaccessible regions in phase
space. However, in practice it is impossible to prove the ergodicity of a realistic system and
only independent simulations with different initial conditions gives some evidence towards this
important property.

The averages presented so far are computed either for an infinite amount of time or for an
infinitely large ensemble which affords identical results for any simulation under the condition
of ergodicity and a constant equilibrium distribution. However, the difficulty lies in sampling
sufficiently long the important part of phase space. These rather vague formulations emphasise
the difficulties in defining what is sufficiently long and which parts of phase space are actually
important. Many configurations can be discarded due to the overlap of atoms. Nevertheless,

the remaining space cannot be easily defined.

2.4.1 Molecular Dynamics

Molecular dynamics is a method which computes the integral over time as formulated in
Equation 2.93 in order to evaluate thermodynamic properties as function of the state. The equa-
tions governing the evolution in time for a potential which is independent of the time ¢ and the

momenta p; can be formulated as 6NV first order differential equations

iy = P (2.97)
my;
pi=—-V;V (2.98)

or equivalently 3V second order differential equations

.. Di
r,— —
m;

(2.99)
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with the number of particles N and the coordinates r;. These equations fulfil a number of
properties. For a potential that depends only on the distances between particles and without
external field the total linear momentum is conserved for an isolated system as well as under
periodic boundary conditions. Since the potential is not time dependent, the derivative of the
Hamiltonian is constant as well %—If = 0. Hence, the energy of the system is conserved. Finally,
the equations are reversible in time. Upon change of the sign of all momenta a system follows its
trajectory in reverse direction. These properties should be maintained by any algorithm devised
to solve the differential equations at hand.

For a continuous potential V' as they have been introduced in Section 2.2 a finite differ-
ence approach can be used. The idea is to evolve the system stepwise in time according to the
equations of motion and thereby to numerically evaluate the desired integral over time. The
predictor-corrector algorithm is a widely used finite difference method and variations thereof
give rise to a number of integrators. The predictor step is based on a Taylor expansion at the

time ¢ which allows to predict the system at time ¢ + At

PP(t+ A1) = (1) + Atolr) + L APa(f) + (2.100)
v (t + At) = v(t) + Ata(t) + ;Atzb(t) +... (2.101)
a® (t + At) = a(t) + Atb(t) + . .. (2.102)

with the coordinates r and their first, second, etc. derivatives v, a, b. Any of these derivatives
can be formulated as well as a numerical derivative according to a backward two-point scheme
based on previous steps e.g. (¢ — At) and r (¢ —2At). Different schemes include the expansion
up to different order which allows balancing the accuracy with the computational costs.

A corrector step is needed to incorporate the equations of motion into the algo-
rithm and generate a correct trajectory. Therefore, the exact accelerations are com-
puted at the predicted positions which allows to estimate the error of the prediction
Aa(t + At) = a®™**(t + At) — a®(t + At). Next, this estimate can be used to correct the
positions

re(t + At) = r7(t + At) + coAa(t + At) (2.103)

with some constant ¢y. Generally, this correction step is carried out only once because the asso-
ciated costs with the evaluation of the forces is very high. However, in principle the correction
may be carried out iteratively converging to arbitrary accuracy.

Different realisations of the predictor-corrector algorithm vary in their accuracy and the
computational costs, to which degree the conservation laws are obeyed and if the algorithm is
time reversible. The conservation of the energy is important because it ensures that the trajectory
stays on the correct hypersurface in phase space and only then the correct ensemble is generated.

The natural ensemble that is generated by MD — considering liquid phase simulations un-
der PBC — is the microcanonical ensemble (NV E) with a constant number of particles /V, a
constant volume V' and a constant energy F. Different ensembles can be generated by introduc-
ing a thermostat to obtain the canonical ensemble (N'V'T") or by adding furthermore a barostat to
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obtain the grand canonical ensemble (/N PT"). The simplest approaches achieve this by scaling
the velocities or the volume respectively. However, this does not generate the canonical dis-
tribution because the temperature and pressure do not have the correct fluctuations. Based on
the work of Nosé a thermostat has been developed by Hoover. [72] This approach introduces
an additional degree of freedom which represents a heat bath. It can be shown that this ap-
proach produces the canonical ensemble. Furthermore, the algorithm can be used equivalently
to obtain the grand canonical ensemble with another additional degree of freedom. These are
examples for global thermostats because the temperature is defined as a function of all parti-
cles. On the other hand, a local thermostat dissipates energy locally and heats up parts of the
system while others are cold down. An example is the Langevin dynamics [73] which has been
introduced for the simulation of polymers. The effect of a viscous solvent is mimicked which
allows controlling temperature as well as pressure and thereby approximating the canonical or

grand canonical ensemble.

2.4.2 Metropolis Monte Carlo Simulations

The ensemble average of any property depends on the partition function Z which is defined

for a continuous canonical system as the integral over the phase space I"
Z = / exp(— AV (D))dD (2.104)

with the total energy V' (I') and 5 = ka Based on the partition function any observable A can

be computed as an ensemble average by

(A) o — fAexp(—ZﬁV(F))dF' (2.105)

These integrals could in principle be computed by Monte Carlo simulations. However, while the
numerator depends only on likely configurations where A is significant the partition function is
rather sensitive to the huge amount of unlikely configurations which in their entirety contribute
still significantly. Additionally, the large number of degrees of freedom resulting in a huge phase
space cannot be sampled easily and most time is spent on configurations that are energetically
so unfavourable due to the overlap of the repulsive cores of atoms that they are physically
irrelevant.

This lead to the development of the importance sampling which focuses the sampling on
the important parts of the phase space. Instead of sampling an even distribution and weight-
ing every sample with their corresponding weight exp(—V (I")/(kgT)) as suggested by Equa-
tion 2.105, the samples are generated with the probability exp(—V (I')/(kgT’)) and do not have
to be weighted at all. Therefore, an ensemble average is simply given by the sum over the
realisations of A

(s = 1 2 Al) (2.106)

with the number of configurations N. In other words, the sampling is carried out according
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to the desired distribution which is in known beforehand and is in this case the Boltzmann
distribution. As a result, the partition function does not have to be computed explicitly at any
given time with this approach. However, the difficulty is shifted to finding an efficient algorithm

to generate points in phase space according to the Boltzmann distribution.

For this purpose, a Markov chain is constructed which satisfies the conditions that each
sample belongs to the phase space and that every step depends only exactly on the current con-
figuration but is independent of all previous configurations. The equilibrium distribution p can
then be reached by successive application of the transition matrix IT which is built from the tran-
sition probability to move from a state n to any state m including to remain in the current state

given by the diagonal elements. The equilibrium distribution satisfies the eigenvalue equation
pIl = p (2.107)

with the eigenvalue unity. The transition matrix is a stochastic matrix because the sum of all
elements of a row is unity >_,, I1,,, = 1. It has exactly one eigenvalue that is unity with the
corresponding eigenvector giving the equilibrium distribution while all other eigenvalues are
positive and smaller than unity. They govern how fast a given distribution converges towards
the equilibrium distribution upon application of the transition matrix. It is guaranteed for any
transition matrix that the equilibrium distribution is reached and this is in fact independent of
the start conditions but in the interest of computational costs it is important that this is reached

as fast as possible.

Microscopic reversibility can be imposed in the definition of the transition matrix

but is not strictly necessary. The matrix II only has to obey the weaker condition given by
Equation 2.107. The transition step is separated into two parts. First a new state is proposed
according to the proposal matrix P and second the step is accepted according to the acceptance
matrix A. The proposal matrix is chosen to be symmetric which reflects the detailed balance

condition (Equation 2.108) and the elements of the acceptance matrix are given by

m

Ay = min ( , p”) (2.109)

as it has been suggested by Metropolis and coworkers. [74] Important to note is that the accep-

tance depends only on the ratio 54 and therefore does not depend on the partition function.

In order to show that indeed the equilibrium distribution is obtained by this procedure we

write down the probability to move from state s to r as a function of the energy of these states

1 E,. < E;
Ds—r = By B (2.110)
e kT E. > FE,.

If we consider now an ensemble of states and carry out a Metropolis Monte Carlo step in all the
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systems, the net number of systems going from state s to r is

e ()
Ds—sr = ij —1 (2.111)

with £, > F. In the case of an equilibrium distribution the ratio of the probabilities of the two

states is

Vs _ exp (75)
Ve exp (;—?)

which we can insert into Equation 2.111 resulting in p,_,, = 0. This means if we have already

(2.112)

the equilibrium distribution this procedure will not change the distribution and therefore obeys
Equation 2.107. In the case that more systems are in state s than in state » compared to the
equilibrium distribution

v, e (5F)

Vr exp (_k’;’)

and consequently we obtain p, ,. > 0. Hence the distribution changes until equilibrium is

(2.113)

reached.

The proposed steps are carried out by choosing randomly a single particle and translating it
to arandomly selected position inside of a cube. The size of the cube is critical for the number of
accepted steps and consequently for the convergence. If the steps are very short many steps are
accepted but the generated states are highly correlated and the system progresses only slowly.
If on the other hand too large steps are choosen most steps are rejected and the sampling is also
inefficient. The step size is highly system dependent and a target acceptance ration of about 50%
is widely used although it can be shown that acceptance ratios of 23.4% are more efficient. [75]
Furthermore, it has been shown that the asymptotically ideal acceptance ratio depends on the
target distribution. [76]

For anisotropic particles (e.g. molecules) additional rotational steps have to be carried out.
There is no unique solution for the step size of translation and rotation for a given target accep-
tance ratio hence the rotation step size is usually fixed and only the translation step is varied.
Furthermore, this samples only the intermolecular degrees of freedom with rigid molecules.
The sampling of internal degrees of freedom requires special attention and is an ongoing field
of research. The different conformers due to the secondary structure of a protein can be sam-
pled by carrying out steps in the dihedral angles of the backbone. However, the overlap between
atoms becomes very likely for larger molecules and no unique approach has been established so
far for the sampling of internal degrees of freedom. Based on the work of Maginn and cowork-
ers [77] a method has been implemented in the MC program package DICE [78] which breaks
the molecule of interest into fragments, separates the hard and soft degrees of freedom and fi-
nally reconnects these fragments in order to generate very efficiently new configurations based

on a configurational bias MC approach.

The acceptance criteria depends on the potential of the involved states but only the change

of the energy has to be computed. That means for a two-body potential only terms involving



36

the changed positions M have to be recomputed instead of the total energy

AE =Y f(ry) (2.114)
€M j#i
which means that the computational costs for the change of the energy scale only linear with
the system size. The acceptance criteria proposed by Metropolis and coworkers [74] in fact
maximizes the acceptance of steps and therefore the phase space exploration. It is important to
note that in case a state is not accepted the previous state has to be taken into account another
time in order to obtain the correct averages.

2.5 Free Energies in Solution

The free energy cannot be computed as an ensemble average with the Metropolis Monte
Carlo method because it depends directly on the partition function. However, the change of
the free energy can be computed by employing a procedure that is similar to calorimetry. The
change of the free energy along some path from a reference state to the state of interest can be
computed with the Free Energy Perturbation (FEP) method. Since the free energy is a state func-
tion any path can be chosen and opposite to calorimetry this path does not have to be physically

accessible and can even include changes of the Hamiltonian.

The free Helmholtz energy A is defined as a function of the partition function @) by
A=—kgThQ@Q. (2.115)

Since the free energy cannot be computed directly we write an expression for the change of the
free energy from reference r to target ¢

At — AT = —kBT(ln Qt —1In QT’) (2116)
— —kyTn gt (2.117)

Next, the partition function of the target can be separated by adding and subtracting the potential
of the reference

J oxp (—gap(Vi = Vi +V5)) dT
Qr
Jexp (—gr(Vi = V2)) exp (—ipVs) dT
QT ‘

A — A, = —kpT (2.118)

= —kpT

(2.119)

Now it is obvious that the latter expression is indeed an ensemble average of the change of
the potential energy and does not depend on the partition function directly in the framework of
Metropolis MC simulations. This relationship has been first derived by Zwanzig [79] and the
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final formulation is
1
AA, . = —kpTn <eXp (—(Vt _ w)>> (2.120)
kgT .

evaluated at the reference state r.

The expression for the reverse direction can be obtained by simply exchanging the indices
of target and reference and ideally the same change of the free energy should be obtained just
with the opposite sign. However, the formal requirement of FEP is that all configurations of the
target configuration space are included in the reference space. With a decreasing overlap be-
tween reference and target the energetic difference between the forward and reverse simulation
becomes larger. It is possible to estimate the free energy change as the average of forward and
reverse directions. However, this is strongly discouraged because the underlying assumption is
that the phase space of the reference which is not included in the target is as large as the phase
space of the target which is not included in the reference. Nevertheless, this cannot be known
in advance and many times one direction is actually clearly preferred and only associated with
a small error. Using a simple average in such a case will consequently result in an even worse

estimate of the free energy change.

The best possible estimator for the free energy is the Bennett Acceptance Ratio (BAR)
method which uses results of the forward as well as the reverse simulation simultaneously to
achieve the best possible accuracy. [80] Let us consider a simulation with additional moves
which keep the configuration fixed but switch from the reference to the target potential or vice
versa. For the acceptance ratios of those moves it can be formulated

MU, — U,)exp(=U,) = M(U, — Uy) exp(=U,) (2.121)

with the Metropolis function M (z) = min(1, exp(—=z)). Integrating this expression over the

configuration space and multiplying it with % and % respectively leads to

[ MU, — U,) exp(—=U,)dI'

f M(UT - Ut) eXp(—Ut)dF
Qr t '

Qr 0,

-Q

(2.122)

Both fractions are actually ensemble averages of either the target and reference and can be

rewritten as
Qr (MU, - y)),

Q. (MU -U)),

Moreover, it can be shown that this expression can be further improved by substituting the

1
1+exp(z)

(2.123)

Metropolis function by the Fermi function f(x) = and shifting the potentials by a

constant C'
Q U, U, +0)),

Qt a <f<Ut -U, — C))r

with C' depending on the unknown ratio of the partition functions

ant
Qtnr

exp(C) (2.124)

C=In (2.125)
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and the steps sampled in the reference n, and the target state n;. This leads to the final equations

to estimate the free energy change

Y fU = U+ C) s
AAe =1 —In— 2.126
’ anf(Ut_U'r_O>+C nn'r ( )
Ady =C —In 2 (2.127)

n,

which have to be solved self-consistently. The results are rather insensitive to the actual number
of steps sampled in the target or reference state and in practice just the results of two separate
simulations are analysed by this procedure instead of carrying out a single simulation with
switching moves.

If the overlap is still insufficient then the free energy cannot be estimated at all and further
intermediate states have to be constructed. As pointed out before these do not have to correspond
to actual physical systems. Changes might include geometrical degrees of freedom or changes
in the Hamiltonian. A common option is to build a linear combination of the Hamiltonian of

target and reference state H = \H,; + (1 — \) H,. and to stepwise change A from zero to unity.

2.6 Computation of Electronic Spectra

The following formalism to compute electronic spectra will be applied in Chapter 6. Upon
the interaction of a molecule with an external field the former may undergo a transition from the
ground state to an excited state. Computationally this physical phenomenon may be described
by linear response theory and in the framework of DFT the response of the density to a time-
dependent external field is derived which allows determining the response to any external field.

The proof of Hohenberg and Kohn [13] has been extended by Runge and Gross [81] to
time-dependent systems and shows that at any given time the density is uniquely determined by
the external potential. In order to obtain the linear response function a time-dependent external

potential is added to the Hamiltonian
H = Hy + Vi (1), (2.128)

Starting from the time-dependent Schrodinger equation in the interaction picture, which means

that both state vectors as well as operators are time-dependent, the time evolution is given by
.d
i (W (t)) = Vi |W(t)) (2.129)

with |W(t);) = exp (iHot) | (t);) and V; = exp (iHot) Veut(t) exp (—iHot). Expanding this
expression as a Dyson series and truncating after the first term, which corresponds to the linear

response, leads to
W(e)) = [wO) —i [ Vi(t)|e())ar. (2.130)

Because of the truncation after the first term — linear response — this expression is only exact

for small perturbations. A second approximation is visible as the lower limit of —oc. This adi-
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abatic approximation means that the perturbation is turned on slow enough that the unperturbed
wave function can follow the perturbation. This holds only true for small perturbations. The
response function for arbitrary operators can be derived but in Time-Dependent Density Func-
tional Theory (TD-DFT) mostly the response of the density is of interest. Upon performing a
Fourier transform the frequency-dependent response is obtained

§(p(r,w)) = /x(r, W) Ve (7, w)dr! (2.131)

with the external potential in the frequency domain

Vet (P, w) = /OO Vext (7', 1) exp(iwt)dt. (2.132)

—0o0

Using the ground state as initial state and inserting the set of unperturbed states the spectral

representation of the response function can be obtained

x(r, 7" w) = lim
7]—>0

Z l Polp(r)¥n) {Tulp(r)Wo) _ (Polp(r')|¥n) (¥nlp(r)|Po)
w—(E — Ep) +1in w4+ (E, — Ey) +1in
(2.133)
The excitation energies can be determined from the poles of this function. [12]

TD-DFT can be also used in the context of QM/MM calculations for the QM part allow-
ing to study the influence of the environment on the electronic excitations. If the excitations
are computed for fixed solute and solvent configurations then vertical excitation energies are
obtained. This is a good approximation because the solvent rearranges only slowly upon ex-
citation. Furthermore, using a force field with fixed partial charges there is only an indirect
influence on the excitation energies. Due to the inclusion of the charges in the Hamiltonian the
unperturbed density is influenced which in turn affects the excitations. However, the electronic
response of the solvent may need to be considered for certain systems which can be done in
combination with a polarisable force field.

On the other hand, in the formalism of continuum models the response of the continuum can
be separated into a fast and a slow response. In the context of electronic excitations the slow
term corresponds to the response of the nuclear coordinates while the fast term describes the
response of the electronic density of the solvent molecules. This separation leads to the non-
equilibrium regime. Consequently, the unperturbed state is influenced by the embedding which
influences indirectly the excitations but an additional term represents the explicit dependence
of the excitations on the fast response of the medium. [82]
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CHAPTER 3

The Perturbative Metropolis Monte
Carlo Method

The computational costs in QM/MM based simulations is solely determined by the QM
calculation. The latter requires many costly iterations in the SCF cycles. It has been realised by
a number of groups at about the same time that the influence on the wavefunction of a single
MC step in a QM/MM based simulation is very small. [84-86] Compared to MD generally only
a single molecule is moved in MC simulations. The change of the total energy is consequently
much smaller. It is also important to note that MD simulations require the fully converged wave
function because the energy as well as the forces are needed for the algorithm. The forces which
are the first derivates of the energy are much more sensitive to numerical noise and a stricter

convergence is necessary. MC simulations, however, are based only on the energies.

Therefore, an approximation can be used in order to compute the change of the energy of
a single MC move without doing a full SCF cycle. Truong and Stefanovich proposed to use
first order perturbation theory and thereby were the first to establish the terminology for this
approach. [86] In other words, the Perturbative QM/MM Metropolis Monte Carlo (PMC) ap-
proach is a method to perform simulations at the QM/MM level with huge computational sav-
ings by introducing a single approximation for the calculation of the change of the electrostatic
interaction term between QM and MM part. The working equations as derived by Truong and
Stefanovich will be described in the following Sections. Subsequently, these will be extended to
systems under periodic boundary conditions where special care has to be taken of the long-range
electrostatic interactions. An efficient implementation in the context of hybrid architectures has
been developed [83] which combines the strength of a Graphics Processing Unit (GPU) from
graphic cards and the conventional Central Processing Unit (CPU) into a single algorithm. This
allows carrying out simulations which are several orders of magnitudes faster than full QM/MM
MC or MD simulations. Furthermore, these simulations can be run on commodity hardware and
at the same time allow energy savings of up to 64%. Finally, further implementation details,

used libraries and additional modules for the analysis of trajectories will be presented.

The material in this Chapter was presented in part in Reference [83].
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3.1 Basic Formulation

The effective Hamiltonian that is used for PMC simulations is partitioned as in the additive
QM/MM approach discussed in Section 2.3.3. The terms correspond to the QM part which
describes the solute in vacuum, the purely classical part which describes the internal energy of

the solvent and the interaction between those two subsystems:
Het = Hom + Hommm + Hum (3.1)

The total energy is given as

B = <\II‘HQM Yy

Tia

o

\1:> IS A pdw . v (3.2)
A « T Aa

with the index ¢ running over the electrons and A over the nuclei of the solute, while « runs

over the solvent interaction sites. The partial charges are given by ¢, nuclear charges by Z and

the distances between sites by r. The effective Hamiltonian as defined in Equation 3.2 changes

upon the move of a single molecule by the term

1 1

AH=> > —qa <, - ) (3.3)
i oEm Tia Tia

with the new distances given by 7’. It is important to note that this term depends only on the in-

teraction sites m of the single molecule that has been moved while the first term in Equation 3.2

depends on the coordinates of all solvent molecules. Given that the perturbation is small the

change of the energy can be computed by first order perturbation theory

AEtot = <‘I/

1 1 1 1

> g <, - )‘\If> +>>° qaZA< — — ) + AEYY + AEM,
aEm Tia i A aEm T Ax T Aa

(3.4)
The change of the energy depends only on the wave function of the previous step. Consequently,
no SCF cycle has to be performed and only a few one-electron integrals have to be evaluated
which considerably reduces the computational costs. The first term describing the electrostatic
interaction between the QM and MM subsystem can be expressed in the dependence of the

density matrix by

> ~la (}—1>

aEm Tia Tia

AE = 3 P <u > (35)

[
with the density matrix elements P,, and the basis functions | x) and | »). The number of
one-electron integrals therefore scales with m x k? for k basis functions.

In the conventional QM/MM formulation the Hamiltonian Hqmm describing the interac-
tion between QM and MM systems is tightly coupled to the Hamiltonian of the QM part Hqu.
Any change in a degree of freedom requires recomputing both terms which includes costly SCF

cycles until a fully converged wave function is obtained. The approximation introduced only
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for the Hommwm operator allows to decouple these terms. It simplifies the description of the
interaction between the QM and MM system to a two-body potential. The change of the en-
ergy is therefore independent of the size of the total MM system and depends only on a single
molecule. It also allows to independently sample the configuration space of the QM and MM
systems. This is especially important because the number of solvent degrees of freedom is con-
siderably larger than the solute one’s. Extensive sampling is required to obtain well converged

and statistically relevant results.

A slightly different route has been developed by Gao and coworkers [87] which is based
on the gas phase wave function. In effect, the wave function does not have to be optimised
during the simulations and with embedding potential at any given moment. As a consequence,
the perturbation approach cannot be restricted to first order but the expansion has been derived
up to second order. In every step the molecular electrostatic potential V' (R) from the QM
molecule at the position R,,, of the MM charges ¢,,, has to be computed. This allows computing

the vertical interaction energy which is the first order perturbation energy
EY =3 ¢, V(R,) (3.6)

for M charge sites. V(R,,) is explicitly given as a function of the gas phase density matrix P’

72
by ,
Z, 1
V(R,,) = “ 3P <u ‘ u> . (3.7)
(;1 Rma MZJ; K |Rm - ’l"1|

The electronic polarisation energy approximated by the second term of the perturbation can be

computed as

2
V>> (3.8)

with the indices ¢ and j running over occupied and virtual space and the orbital coefficients

virt occ 1

B =33
iog

M 1
(Z Cuices 2 <“ ' Ry — 71|

Ei—Ej

cui- The advantage of this particular formulation of the perturbation terms is that only the gas
phase wave function is needed which can be computed once at the start of the simulation. This
approach has been termed the Generalized Molecular Interaction Potential with Polarization
Correction (GMIPp). Studies of hydrogen bonded interactions showed that the polarisation
energy deviates by about 3% from the exact result. In order to reduce the computational costs
further the orbitals considered for the polarisation energy can be truncated with an energy cut-off

criterion (e.g. 3 Eyp).

A closely related approach by Pulay and coworkers [88] computes the first order term in the
same manner but switches for more distant solvent sites to a multipole representation for the
solute in order to increase the computational efficiency. In a preparation phase the generalised
multipoles and polarisibilities are determined which are used subsequently in the simulation.
For the evaluation of the electrostatic polarisation term the electrostatic potential from the sol-

vent in the solutes volume has to be evaluated on a grid which is used together with the predeter-
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mined polarisibilities to approximate the second order term. An expansion of the electrostatic
potential in a Fourier series leads to numerical stability and allows the efficient evaluation of the
second order term. First benchmarks lead to speed-ups of more than four orders of magnitude
with an average error of 1-2 kcal/mol but an extension to PBC has not been brought forward
until now.

Both of these approaches require an unnecessarily high order of the perturbation because
they suffer from the choice of the gas phase wave function as their unperturbed reference which
is a completely unpolarised wave function. However, the computational costs of converging the
wave function embedded in the partial charges is comparable to the gas phase calculation even
for thousands of solvent molecules. Ultimately, our choice of reference is closer to the target
function requiring much smaller corrections. This means that the perturbation due to a solvent
move is considerably smaller and can therefore be accurately described by first order perturba-
tion theory. Furthermore, the limit of the full QM/MM simulations can be easily recovered in
the PMC approach by simply increasing the number of updates. However, in the approaches
based on a gas phase wave function the only way to improve the accuracy is by increasing the

order of the perturbation expansion which is not guaranteed to converge.

3.1.1 Limits of the Perturbation Approach

The same wave function could indeed be used for a complete MC simulation which would
correspond to computing the density for the initial configuration and freezing it subsequently.
However, the error introduced by using first order perturbation theory accumulates throughout
the simulation. In order to limit this error it is advised to update the wave function in regular
time intervals. Initial studies used a very conservative criterion with updates being carried
out for every step inside a cut-off radius of about 5 A around the QM part and at least every
20 steps. [84, 85]

It has been found later that even for very small ion-water clusters with only one or two
water molecules the enthalpies of binding are very stable for up to 2000 perturbative steps and
the deviation is on the order of magnitude of the statistical error of those simulations. [89] For
every update the energy can be computed with the old as well as the new wave function, which
allows estimating the error of the perturbation theory

TpMC = E ( P5;9V10“5> . E( Pﬁl;rrent)‘ (39)

This error increases consistently with more perturbative steps between successive updates. It
has also been found that the errors for anions are larger than for cations which shows that more
updates are required for solutes with a larger polarisability. [86] In liquid systems with a much
larger number of solvent molecules the number of steps between two updates can be increased
considerably. This will be further investigated in Section 4.2.

While it has been obvious from the beginning that the error of the perturbation approach
depends on the distance to the solute molecule, the approximate dependence can be derived
from classical electrostatics. The electric field F' that a solvent molecule experiences due to the
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presence of the solute is given by
F=Y %y, (3.10)
X T’Z-

with the distance r between solute and solvent and the unit vector v along this distance. The
induced dipole moment g of the solvent molecule is given as the product of the electric field
and the polarisability &

u=aoa-F (3.11)

and the resulting energy due to the polarisation is

1
Epq = —5F - F. (3.12)

The error (Equation 3.9) can be seen as the change of the energy with respect to the position of

a solvent molecule
AE (3.13)
o = —. .
PMC Ar
Inserting Equation 3.12 and considering the limit of » — 0 the distance dependence is approx-

imately given by
1

Tomc O . (3.14)
This reveals a very short-range nature of the error which is consequently rather insensitive to
the solute itself. This formal distance dependence has been used to define a weighting function
to estimate the error of the perturbative approach and reduce the number of updates. It has been
found that the number of perturbative steps can be increased up to about 2000 steps to guarantee
an error in the total electronic energy as small as 0.01 kcal/mol for Na*(H20);25. This error is
well below any statistical accuracy commonly reached by simulations and the number of water
molecules — while larger than previous examples — is still an order of magnitude smaller than

typical simulations in solution. [90]

3.1.2 Computation of the Electrostatic Perturbation Term

The computation of the electrostatic perturbation term (Equation 3.5) requires the evaluation
of a sum of one-electron integrals. These are also part of every conventional QM calculation
and are generally known as three-center nuclear attraction integrals:

/¢z (A,OéA,Tl,l,m) iqu (B,aB,n,l,m) dv. (315)
T

q

with Gaussian functions at the centres A and B and a point charge at the centre Q. The Gaussian
functions are defined as

¢ (Av A, T, lv m) = TLA(TL, la m, O-/A)(x - xA)n(y - ?/A)l(z - ZA)m exp (—OéAT124> (316)
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with the normalising constant

na(n,l,m,as) =na(n,ca)na(l,ca)na(m, oq)

-1 (20‘/4)‘1‘(404/4)’5[(2/@—1)!!}—%.

ken,lm d

(3.17)

These functions are categorised accordingtothesum L =n+[1l+m: L =0—s, L =1 — p,

L = 2 — d, and so forth. I will show as an example the evaluation for two s functions.

The inverse distance operator i commutes with the Gaussian functions. This allows build-
ing the product of the two Gaussians which, according to the Gaussian product theorem, is again

a Gaussian function
2 2\ _ 2
na(n,l,m,as)exp (—aArA) ng(n,l,m,ag)exp (—OzBrB) = npexp (—aprp> (3.18)

with ap = a4 + ap and the combined normalising constant

dACQRB

np :exp< |A—B|2> nANg. (3.19)

ap

The centre P of this Gaussian is on a line between the two original centres

A B
P— %' (3.20)
ap
Boys [91] derived that an integral of this type can be evaluated as
1 o
T
/ — exp (—apr?p) dV = — /exp (—Tu2) du (3.21)
Tq ap 0
with the argument 7T’
T=ap|Q-P|. (3.22)

In practice the integral is evaluated with different approaches according to the value of 7',
which are summarised in Table 3.1. Recursive formulas can be derived for Gaussians with
L > 0 which allows the evaluation based on the here presented formulas. A more recent
investigation established an optimized algorithm for the evaluation of the Boys functions which

achieved an up to 19% reduced number of floating point operations. [92]

TABLE 3.1 Computation of the integral (eq. 3.21) for different values of 7" in atomic units. The values
Fy(T*) are precomputed and tabulated.

T Fo(T)
T <1071 q Fo(T) ~ 1

1076 ay < T <10ag | Fp(T) =~ ¥¢_o T=D0 7 (T7)

10ay <T <34ay | Fo(T)= 3,/% — 55 exp(—T)

T > 34 a Fo(T) =~
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Difficulties arise in evaluating these integrals when going from cluster models to periodic
systems. Initial studies assumed that the electrostatic interaction decays quickly enough with
the distance. Under the condition that the integrals evaluate approximately to zero for large r a
rigorous cut-off can be introduced. Although this may be true for the short-range van der Waals
(vdW) interactions, the electrostatic interactions decays formally only with % Consequently,
the potential approaches only very slowly zero. Therefore, using a cut-off leads to interface
effects. With this in mind a shifted force operator will be used as it has been introduced in
Section 2.2.3. The downside is that such an operator cannot be integrated analytically. The
resulting integrals are not over all space but only over the volume of the cut-off centred on
the partial charges and not on the atoms. Therefore, the resulting space is not symmetric with
respect to the basis functions. This leads also to the situation where parts of the electron density
are influenced by a point charge while others do not feel its influence at all.

Consequently, a numerical integration scheme has been used. Based on established ap-
proaches of DFT as presented in Section 2.1.3 the density is first evaluated on a numerical grid
and partial charges are generated by multiplying with the weights of the grid points. Finally,
these partial charges are used to compute the interaction with the molecule that has been moved
during a MC step. The accuracy of this numerical integration will be investigated further in Sec-
tion 4.1. However, the shifted operator is now only applied to compute the interaction between
a grid point and a partial charge of a solvent molecule. This means that the interaction com-
puted during the perturbation steps is not consistent with the density and interaction computed
in the QM calculations. In other words, when the electronic density is generated the solute is
embedded in unscaled charges and the shifted operator is used to compute the energies after the
SCF cycles have been already converged. It is expected that this has only a minor effect on the
results. In order to obtain consistent results the shifted operator would have to be applied during
the SCF cycles of the QM program. This can be straightforwardly implemented by building the
Coulomb operator in the same grid used for the QM/MM run.

3.2 Implementation in Hybrid Architectures

The PMC method is a hybrid QM/MM method. The classical and QM calculations have
very different computational requirements, different algorithms and use different data struc-
tures. With this in mind it is clear that no single computer architecture can perfectly match all
these requirements and that on the level of the hardware a hybrid approach has to be imple-
mented as well. After the initial implementation of a reference algorithm working on conven-
tional CPUs only a solid framework and the basic PMC implementation has been developed
for a hybrid GPU-CPU algorithm in close collaboration with Sebastido Miranda from the group
of Pedro Tomas [83] on which all further extensions are based. The program is developed in
C++11 and interfaces a development version of the Molpro program suite [93] for QM cal-
culations. The GPU functionality has been implemented in OpenCL and is therefore neither
restricted to a certain hardware vendor nor to graphic cards as the only possible accelerator.

The structure of the algorithm is shown schematically in Figure 3.1. After the initial charge
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FIGURE 3.1 Schematic representation of the PMC algorithm with the functions computing the Coulomb
and vdW interaction of the MM system and the Coulomb and vdW interaction between QM and MM
system.
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density is constructed, the first cycle of perturbative MC steps can be executed. At first a MC
step is proposed and subsequently all changes of the energy terms are computed which includes
the change of the Coulomb and vdW energy of the MM part as well as the coupling term. The
QM/MM Coulomb term includes the interaction of the charge density as well as the charge
of the nuclei with the partial charges describing the solvent molecules. These contributions
are accumulated and the move is either rejected or accepted. Averages are computed on the
fly and in regular intervals the energies as well as the configuration can be saved to a file for
later analysis. Finally, another charge density is generated by the QM program suite and this

procedure repeats until the desired number of steps have been carried out.

Based on the CPU implementation, timings have been obtained for a capped arginine cation
in the QM system embedded in 1301 classically treated water molecules (Table 3.2). They
show clearly that a large majority of the time is spent on computing the electrostatic coupling
term between QM and MM part. The large number of data points of the numerical grid can be
perfectly exploited by a fine grained data level parallelism on the GPU which is reflected by the
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TABLE 3.2 Kernel execution times of a CPU (i7-4770K) reference implementation and a GPU (GTX
780Ti) implementation.

Kernel CPU GPU Speed-up
Step Generation 32 us 0.04% | 17 us 3.0 % 1.88
AEge 76077 us 98.80 % | 473 us  83.3 % 160.84
AEMM 791 us 1.03% | 40 pus 7.0 % 19.77
AEYIW 4pus  0.01% | 18us  32% 0.22
Decision 94 ps 0.12% | 20 us 3.5 % 4.70
Total 76998 us  100.00 % | 568 us  100.0 % 135.55
OpenCL :
Device Multiple CPUs
1. PMC
2. PMC
1.QM
3. PMC
2. QM
1. PMC 3.QM
2. PMC
1.QM
3. PMC
2. QM
Run Time 3.QM
Y

FIGURE 3.2 Schmematic representation of the PMC algorithm with multiple Markov chains being gen-
erated in parallel.

speed-up of about 160 compared to the CPU implementation. The subsequent developments
showed, however, that it is essential to reduce the overhead resulting from the communication
between the CPU and GPU. Therefore, the complete cycle of perturbative steps between two
subsequent QM calculations has been implemented with OpenCL. While some parts of the
Metropolis MC algorithm are inherently serial and not well suited for GPUs as it can be seen
from the five times slow-down of the vdW QM/MM term the overall speed-up obtained is still
significant. Furthermore, the different energy terms can be computed independently and exploit
a task grained parallelism. This leads to an overall speed-up of about 135 for a whole cycle of
perturbative steps.

While a new charge density is generated by the QM module the simulation cannot continue
until this task is completed. In order to avoid this bottleneck a coarse-grained parallelism at
the Markov chain level is exploited. The memory-less property of a Markov chain allows to
carry out several shorter simulations which are subsequently combined instead of a single long
simulation. Therefore, multiple charge densities are generated on the available CPU cores while
the GPU carries out the perturbative steps (Figure 3.2). This overlapping execution guarantees
that all available resources are utilised as efficiently as possible.

In the event that the GPU modules become the bottleneck, additional graphics cards can be

included in the calculation. Therefore, a performance aware load-balancing scheme has been
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implemented which divides the grid points for the electrostatic QM/MM term for the different
devices and guarantees after a couple of iterations that all GPUs need about the same time to
compute the energy for the assigned grid points. Therefore, the implementation scales very well
with the number of CPU cores — which is often unfavourable for conventional QM methods
— as well as GPU devices.

A more practical measurement shows that this allows the calculation of about 500 pertur-
bative steps per second for a small test system (6 QM Atoms, 1494 MM atoms). The run time
of a whole set of simulations consisting of 25 times 24.8 M PMC steps can be reduced from
283 days on a standard workstation to about 2 days with OpenCL acceleration. This alleviates
the current restriction of conventional QM/MM methods with regard to the time scale of simu-
lations and allows sufficient sampling of the configuration space which can otherwise only be

achieved by a substantial amount of computational resources.

3.3 Additional Modules of the PMC Program Suite

Further functionalities and details of the implementation of the PMC program suite which
extend its applicability, increase the usability and efficiency and allow a number of analyses
are outlined in this Section. A schematic overview of all modules is given in the mindmap in
Figure 3.3. One example are the classical simulations, which could be run with other program
packages but many times technical details are different, files are not compatible and the set-up
has to be carried out for two program packages. Here, the simulations can be carried out for
initial equilibration or to diverge the chains from a common starting structure and conveniently
continued with PMC.

In order to take advantage of the existing set of Tinker tools version 7.1 [94] the file format
for geometries is specified in the tinker xyz file format and is also saved automatically in the
same except for trajectories which are written directly in the standard xyz format reducing the
amount of data. Furthermore, force field parameters can be specified in a native PMC format
but also standard Tinker parameter files can be read directly. Therefore, solutes can be prepared
and solvated with the program xyzedit, subsequently optimized and then directly used to start
a simulation with the PMC program.

Different levels of theory and coordinates systems can be employed to run MC simulations.
QM can be used in gas phase, in combination with continuum models or also for clusters and
the sampling is carried out in cartesian coordinates. MM and PMC can be used with rigid
molecules in combination with PBC. In that case only the intermolecular degrees of freedom
are sampled. The three-centre nuclear interaction integrals for the perturbative steps without
periodic boundary conditions — therefore without shifted force operator — have been imple-
mented in a stand-alone version in the programming language C during my master thesis. [95]
This module was directly included in the PMC program and allows an extremely fast evaluation
without the overhead of calling a QM suite which makes it about three orders of magnitudes
faster. Besides the electron density it requires additional information about the basis set and

molecular orbitals from the QM program.
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FIGURE 3.3 Mindmap of modules and functionalities included in the PMC program suite.

Free energy perturbation theory can be used in combination with the MM as well as the
PMC module. For the classical simulations the single as well as the dual topology approach
have been implemented, meaning whether or not the initial and final states are described in the
same topology. It has been argued that the single topology is always advantageous and at worst
equivalent to the dual topology approach. [96] However, there are techniques that can only be
used in the latter and they can increase the efficiency considerably. [97] For the computation of
free solvation energies the vdW interactions between solute and solvent are turned off stepwise.
Numerical instabilities at the endpoints of this step require the use of soft-core potentials. [98]
These potentials explicitly depend on the alchemical variable A but they are identical to the vdW
potential for A\ = 0and \ = 1

Eoaw = 4e\" [(a (1= N™) + (;)6> o <a (1—\™) + (;)6> 1] (3.23)

with the common values for the parameters m = n = 1, & = 0.5 — which can be adjusted if
required — while € and o define the vdW potential.

The classical energy contributions needed for the pure MM as well as the PMC simulations
are carried out in reduced units. The natural length unit under PBC is the box length L so that
all distances are expressed as multiples of the box length r..q = 7. Subsequently, according to

the minimum image convention the distances are computed as

T = T'eq — round(7eq) (3.24)
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with round returning the nearest integer. Using reduced units avoids the division by the box
length every time a distance is computed. To be able to use reduced units directly for the com-
putation of the energy with the force field the parameters of the vdW ¢ and Coulomb ¢; term as

well as any cutoffs . are transformed according to the following equations

g
=2 3.25
o=7 (3.25)
Te
Fo= e 3.26
Te=7 (3.26)
g = 1 (3.27)

Constants which are required for the computation of the shifted force potential e.g. the recip-
rocal cutoff ~! and r~2 are precomputed. Only for the QM calculation step (which is carried
out without PBC) the coordinates are transformed back and translated into the central unit cell.

The force field computations have been optimized to some degree in order to exploit mem-
ory locality and consequently to reduce L3 cache misses as measured by the tool Cachegrind
which is part of the program package Valgrind. [99] Exploratory studies showed that the lim-
iting factor due to the system size is the memory bandwidth and it turned out that for example
the computation of all €;¢; or ¢;q; products (for the vdW and Coulomb term respectively) at
the beginning of the simulation reduced naturally the number of floating point operations but
slowed down the simulations by requiring even more data to be loaded from memory.

Special attention has been paid to the computation of the distances not only because most
of the CPU time is spent on it but also because different implementations can vary widely in
their memory footprint. The memory layout of these is shown in Figure 3.4 while on the GPU
it is always advantageous to compute the distances on-the-fly. The first naive implementation,
storing the complete distance matrix, turned out to use too much memory for large systems in
the context of multi-chain simulations. However, this implementation has advantages as well.
Namely, trivial access to the distance r;; as well as r;; is guaranteed and the distances are se-
quentially stored which allows efficient access due to data prefetching. Using only one triangle
of the matrix can speed-up the calculations because the limiting factor has been the memory
bandwidth. Furthermore, the memory footprint can be reduced by mapping one triangle of the

matrix onto a vector with the index v defined according to

v:i+U—D%. (3.28)

The correct order of loops accessing the distances should be guaranteed in order to read them
as much as possible sequentially.

A flexible implementation could be easily realised by using inheritance and overloading

a function e.g. getDistance(i, j) but virtual function calls are associated with a cost and this

should be avoided in this case of a low-level function that is called many times and has only

a very short execution time. Furthermore, many times composition should be preferred over

inheritance. [100] In order to achieve the required polymorphism the delegation pattern is used

and a very fast implementation of delegates has been presented based on templates by Ryazanov
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FIGURE 3.4 Schematic representation of the memory layout of different algorithms storing the distances.
Left: full matrix without diagonal, middle: only the upper triangle, right: the upper triangle mapped onto
a vector.

[101] which has been subsequently improved and modified for C++11 by Kryukov. [102] This
allows a good trade-off between flexibility and efficiency.

The random numbers which are essential for MC simulations are generated by a Pseudo
Random Number Generator (PRNG) which can be easily changed should this be required for
certain applications. The default is set to the 64bit Mersenne Twister developed by Matsumoto
and Nishimura. [103] In the current implementation the random numbers are generated on the
CPU and then transferred for the perturbative steps to the GPU. However, a more recent im-
plementation of the Mersenne Twister specifically for GPUs has been developed and could be
used instead. [104] The initialisation of the PRNG is done with true random numbers from the
operating systems which might fall back to pseudo random numbers if the entropy pool is ex-
hausted. The state of the PRNG is saved for any completed simulation and can be loaded to
conveniently continue a simulation.

Commonly required ensemble averages are computed on-the-fly with an updating algo-
rithm avoiding numerical instabilities especially for variances as developed by LeVeque and
coworkers. [105] The analysis of simulations in order to compute changes of free energies is
carried out by the Python library pymbar. [106] The computation of the free energy change
over several windows specified by an xyz-trajectory is automated and one or both directions
for the integration can be chosen. The wrapper for pymbar includes algorithms to analyse time
series [107] which allow to select a subset of uncorrelated samples — a requirement for the sta-
tistical analysis and especially the error estimation. A generic framework allowing the analysis
of trajectories has been developed and can be easily extended for further properties. Imple-
mentations to generate Radial Distribution Functions (RDFs) as well as angular RDFs and to
compute displacements and dipole moments are included.

The library Libconfig [108] has been used to read configuration as well as input files. It
is a library to parse structured configuration files which are, however, more compact than xml
files making them especially suitable for input files. Additionally, it is type aware which adds
an extra layer of automatic checks for the input that does not have to be implemented and
avoids tedious string parsing. All logic that constructs run-time parameters based on the input
or available hardware is cleanly separated and crashes loudly upon encountering errors in order
to avoid spending time on faulty simulations. This module could be separated into a stand-alone
module for a queuing system in order to check for errors before even submitting any calculation.
Error messages include the line number of the input where the error has been encountered and
the type of error which is again facilitated by the library Libconfig.
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CHAPTER 4

Benchmarks

The PMC approach depends mostly on two parameters. The first one is the size of the
grid employed for the numerical integration. The second one is the frequency with which the
electronic density is updated with QM calculations. In this Chapter the influence of these pa-
rameters will be assessed. Thereby, guidelines will be established which allow carrying out
simulations at the level of full QM/MM simulations but at considerably reduced computational
costs. The benchmark systems have been selected either due to their low computational cost
which makes them accessible for carrying out many simulations with varying parameters or due
to the available experimental and theoretical reference data.

These findings will be used in the second half where I will establish that this QM/MM
approach is capable to reproduce — at least qualitatively — experimental findings and captures
the essential physics which are needed to describe solute-solvent interactions. Free energies of
solvation as well as the free energy torsional potential of hydrogen peroxide will be computed
by means of PMC simulations.

4.1 Numerical Integration

A discrete representation of the electronic density is obtained on a radial grid. This al-
lows integrating over the density with a numerical integration scheme. Different ways of con-
structing the radial integration grid have been discussed in Section 2.1.3. The convergence of
Becke’s [23] and Mura and Knowles’ [27] variants has been compared for several different grid
sizes. The actual number of grid points used in the radial integration are determined by a dy-
namic algorithm in the Molpro program package [93] according to a specified target accuracy.
This accuracy would be obtained for the integration of the Slater-Dirac functional. Eighty-two
snapshots of a PMC simulation of a capped arginine cation in TIP3P water have been used
for the analysis. A sphere of solvent molecules has been constructed including all molecules
with at least one atom inside a radius of 12 A. A representative snapshot as well as the Lewis
structure of the solute are shown in Figure 4.1. This system without PBC has been deliberately
constructed to compare with the analytical integrals. The energies have been computed at the
PBE/def2-SVP [110, 111] level of theory.

The Root Mean Squared Deviation (RMSD) of the electrostatic interaction relative to the

The material in this Chapter was presented in part in Reference [109].
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(a) Snapshot with solvent. (b) Lewis structure of solute.

FIGURE 4.1 Arginine cation with NMe cap at the C terminus and acetate cap at the N terminus with a
sphere of TIP3P water.

analytical results are shown in Figure 4.2a. Given a very large number of grid points corre-
sponding to a very high target accuracy both grids converge to the exact result. However, the
Mura and Knowles grid converges faster and leads to a RMSD value of only about 1 kJ/mol
for a target accuracy of 107% E;,. One should keep in mind that the target accuracy is for the
Dirac-Slater functional and does not translate directly to the accuracy for the electrostatic in-
teraction. This is in average about —400 kJ/mol for this system. Therefore, the deviation of
1 kJ/mol is less than 1%. The general convergence pattern also appears more consistent for the
grid by Mura and Knowles (Figure 4.2b). This confirms that this grid exhibits a balanced de-
scription for the nuclei, the bonded and the long-range region which becomes in this benchmark
apparent in the more robust behaviour with regard to changes in the configuration of the solvent
partial charges as represented especially by the lower maximum deviation. Furthermore, this
grid is the default grid for conventional DFT calculations in Molpro [93] which confirms that
the accurate description of the electronic density is reflected in the accurate description of the
electrostatic interaction.

A considerable advantage of the PMC approach are the immense computational savings
which allow extensive sampling at the accuracy of full QM/MM simulations. Therefore, it is
very important to ascertain that indeed the same configuration space is sampled with the chosen
numerical grid. The numerical grid might add noise to the exact results and while the average
deviation in the energy is very low the sampling of the configuration space might be affected
more severely given that not a fixed set of configurations is studied. In MD two simulations
with identical initial conditions are required to result in the same trajectories. However, in

MC simulations this is not required due to the stochastic nature of the algorithm. In fact, the
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FIGURE 4.2 Electrostatic interaction for different grids with the exact results as a reference for snapshots
of a PMC simulation of a capped arginine cation in TIP3P water at the PBE/def2-SVP level of theory.

same trajectories can be only obtained because a pseudo random number generator is used.
Nevertheless, we will assess our simulations by this criteria although it is not strictly required.
Furthermore, the potential energy as well as the change of the potential energy can be monitored
throughout a simulation. Ideally, the error in the potential energy should not accumulate during
the whole perturbative cycle. However, only the change of the potential energy in every step is

used for the MC acceptance criteria and it is important that the error is constant in this value.

Since the convergence for very large grids has been established a grid with 107! Ej, target
accuracy. The latter will be used as the reference which allows analysing an actual simulation
under PBC. Results for a series of simulations with decreasing target accuracy up to 107¢ Ey,
are represented in Figure 4.3a. The QM solute ethanol has been simulated for one PMC cycle
in 498 molecules of TIP3P water in a box with the edge length of 24.6 A at the temperature of
298 K. The energies have been computes at the B3LYP-D3/def2-TZVP [17,20-22,111-114]
level of theory and with OPLS-AA [41] vdW parameters for the solute. The deviation of the
absolute potential energy from the reference has been computed for every step. For 1071° and
10~° Ej, target accuracy in the grid the error of the potential energy for every structure stays
well below 0.5 kJ/mol. This deviation is only caused by the differences in the electrostatic
interaction so that it is about 1% of the electrostatic interaction. Only for 108 and 10~" E,, the
error increases to about 1.2 kJ/mol in the second half of the PMC cycle. It is also apparent that
the error starts to accumulate throughout the simulation. For all of these simulations a single
step associated with a large error leads to the larger error in the potential energy in the second
half of the simulation. However, it can be also seen in the case of 10~% and 10~" E,, target
accuracy in the grid that the error can be reduced again. This can be either due to the same step

but in the reverse direction or due to a different step with an error of the opposite sign.

Moreover, it should be noted that the MC algorithm uses only the change of the energy for
the acceptance criteria of a step. The error in the differences is shown in Figure 4.3b and it

can be seen that only a few steps have an error larger than 1 kJ/mol. While it is not a strictly



58

2 :

% — 9 g 1

E 10 — 8 : )

= —7 =

g — S A

= <

| |

- =

~— _1 | | g/ _1 [

0 02 04 06 038 1 0 02 04 06 038 1

PMC steps / 10* PMC steps / 10*
(a) Energy (b) Change of energy

FIGURE 4.3 Comparison of relative potential energies of PMC simulations with B3LYP-D3/def2-TZVP
and OPLS-AA parameters of the same trajectory with different grid sizes. — log(Target Accuracy) is
given in the legend with the reference being 11.

necessary criterion that different MC chains do not diverge it is a sufficient one. Only the
simulation with 10~° target accuracy in the grid diverges at about 8200 steps and it appears to
have suddenly much larger errors. This is because it is not directly comparable to the reference
which is based on a different set of configurations from that point onwards. These benchmarks
show that the same configuration space is sampled even with a relatively low target accuracy in
the grid of 10~% E,, for several thousand steps. Based on these short simulations with the fine-
grained analysis it appears to be only a random error, introducing no systematic bias. Next, I
will investigate the influence on more complex observables e.g. the free energy that cannot be
expressed as a simple ensemble average.

Simulations have been carried out and analysed with BAR in order to determine free en-
ergies of solvation. These results will be analysed in more detail in Section 4.3. Here, the
free energy change due to the decoupling of the electrostatic interaction between solute and
solvent will serve as the final benchmark for the accuracy of the numerical grid. Compared
to the potential energy this is a very sensitive criterion because the relative free energy mainly
depends on structures far from equilibrium which are rarely sampled. Any bias with regard to
the exploration of the configuration space will be revealed in these simulations. The results for
the previously used system — QM ethanol in TIP3P water with B3LYP-D3/def2-TZVP and
OPLS-AA parameters — are shown in Figure 4.4. For up to a target accuracy of 10~ Ey, in the
grid, the error in the free energies stays within 5% of the free energy of the reference simulation
and does not accumulate noticeably over the four \ steps. For the target accuracy in the grid
up to 107% E, the error is slightly larger than 5% but only for even smaller grids a clear and

systematic deviation becomes apparent.
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FIGURE 4.4 Decoupling of the electrostatic interaction of an free energy perturbation calculation for
ethanol in water with PMC (B3LYP-D3/def2-TZP and OPLS-AA vdW parameters) with different grid
sizes. — log(Target Accuracy) is given in the legend and the energies are relative to 11. The shaded area
denotes 5 % of the free energy (=~ 1.8 kJ/mol).

4.2 Updates of the Density

The number of QM calculations to update the electron density is the most important factor
determining the computational costs. The accuracy that can be obtained for a given number
of updates depends on the properties of the solute and the solvent. The limit of many updates
corresponds to the full QM/MM approach with the exactly polarised density in every step which
naturally comes also with the costs of a full QM/MM simulation. The limit of no updates cor-
responds to the frozen density approximation. A single electron density is generated for the
initial configuration and used throughout the whole simulations and the polarisation effects are
described only by perturbation theory. With the following benchmark set the lowest possible
number of updates will be established in order to reach a given accuracy. The number of re-
quired updates naturally depends on the solute as well as the solvent which allows at this point
to establish only empirical guidelines. These have nevertheless proven their value in further
studies and applications that have been carried out during this work. Furthermore, for a given
combination of solute, solvent, system size and QM method it might be possible to increase
the number of updates and therefore the accuracy by merely using the available hardware more
efficiently. This is possible due to the overlapping execution of QM and perturbative steps (see

Section 3.2) as long as the QM calculations are the more time consuming portion.

Free energy calculations have been carried out and will be analysed in the following Sec-
tion 4.3. Here the results for the electrostatic decoupling of a single QM water embedded in
the TIP3P water model are shown in Figure 4.5. The solvent box had the edge length of 24.6 A
and contained 498 TIP3P water molecules. The simulation has been carried with a temperature
of 298 K. These are the contributions to the free solvation energy that depend on the accuracy
of the perturbation approach and consequently on the frequency of the density updates. Addi-
tionally, the QM system is very small, the solute as well as the solvent is polar, donating and
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accepting hydrogen bonds are expected between the QM and MM part which means that this
system is very sensitive to any error in the electrostatic coupling term. The results show that the
free solvation energy is very stable for updates carried out every 5 k—100 k steps with deviations
of about 2-3 kJ/mol. This is about 10% of the free energy change for this example and of the
order of magnitude of the statistical accuracy. If the number of updates is reduced even further,
a systematic underestimation of the free solvation energy can be observed. The maximum error
reaches about 10 kJ/mol for one update every 10 M steps which corresponds to only eight QM
calculations for the whole simulation.

The systematic change of the free solvation energy can be understood in terms of the dis-
tributions of the interaction energies (Figure 4.5). The interaction energies are reduced consid-
erably with a maximum at about —120 kJ/mol for a 5 k update frequency to about —70 kJ/mol
for the 10 M update frequency. This change of 50 kJ/mol is rather surprising because at the
same time the free energy of solvation changes only by about 10 kJ/mol. Further investigations
are warranted into the relation between these two values. A possible explanation might be that
when the density is updated it has the best possible polarisation for the interaction with the
current configuration. Then the simulation proceeds, newly generated configurations are very
similar and most moves occur for solvent molecules far from the solute so that the perturbation
approach works very well. However, if the same density is used for many steps slow processes
like exchange of solvent molecules in and rearrangements of the first solvation shell can oc-
cur and the density is not properly polarised. The perturbation approach breaks down and the

interaction energy is underestimated.

Nevertheless, the free energies are remarkably insensitive even for a nearly frozen density.
The reason for this is that the instantaneous difference of the potential energy which goes into
the exponential averaging or BAR depends on the error made for the reference state o,eference as

well as the target state o,rget

AEPME — (Etarget +o target) - (Ereference +o reference) (4.1)

so that the error of AEPMC is given by
AET — AEPMC = Otarget — Oreference- (42)

Given that the error of the perturbation approach is similar in the reference and target states
the error in the energy difference is close to zero. If the error of both states changes similarly
with the update frequency, the combined error is rather independent of the number of updates.
However, the potential energy, however, which depends only on a single state cannot benefit
from this fortuitous error cancellation. The analysis of the average potential energy shown in
Figure 4.6 confirms these findings. The average is stable for updates carried out every 10 k—
1 M steps and decreases suddenly as soon as the updates are more than 1 M steps apart by about
500 kJ/mol. This is not accompanied by a larger standard error of the determined averages.
However, the standard deviation, which is the measure of the variability of the distribution,

increases by about one order of magnitude. This corresponds to the different and it seems larger
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parameters) with increasing frequency of density updates for one QM water in TIP3P solvent. Left:
ensemble average and standard error, right: standard deviation.

configuration space that is sampled because of the larger error in the perturbation approach.

Nevertheless, the difference in the potential energy is still less well below 1%.

4.3 Free Energies of Solvation

Free energies of solvation are experimentally and theoretically well studied which makes
them an important target of any new method attempting to describe solvent effects. [98] Many
biological processes are governed by free solvation energies especially in the context of proteins
or membranes. Any two molecules interacting in solution need to be at least partially desolvated,
e.g. a ligand binding to a protein or a catalyst. The transport of drug molecules is of great
importance for pharmacological applications. [115]

The theoretical basis for the computation of free solvation energies is straightforward but
sufficient sampling as well as an accurate description of the interaction between solute and
solvent are required. The free solvation energy is computed in the context of PMC simula-
tions by a stepwise decoupling of the interactions between solute and solvent and a subsequent
analysis with FEP or BAR. First, the electrostatic interaction is turned off linearly in four
steps. In case large differences between the forward and reverse simulation have been encoun-
tered, which are indicative of a poor configuration space overlap the number of steps has been
doubled. In the second phase the vdW interactions are decoupled which involves a soft-core
potential in order to avoid numerical problems in the analysis of the free energies at the end
points (A = 0 and A = 1) as discussed in Section 3.3. The ) protocol for this part has been
chosen according to the study by Sherman and coworkers [115] in order to improve the accu-
racy and reduce the variance of the results. The solute geometries have been optimised with
B3LYP-D3/def2-TZVP [17,20-22,111-114] and COSMO [41] correction (¢(toluene) = 2.379,
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¢(chloroform) = 4.806, e(acetonitrile) = 35.88 and e¢(water) = 80.0). Thermodynamic cor-
rections have been included based on the rigid rotor-harmonic oscillator approximation in gas
phase and COSMO. Geometry relaxation effects have been considered as well at the level of
the continuum model. The simulations have been carried out at 298 K with B3LYP-D3/def2-
TZVP and OPLS-AA vdW parameters for the solute. The number of molecules n and the box
length [ for the solvents are: acetonitrile (n = 395, [ = 41.0 A), water (n = 2132, [ = 40.0 A),
chloroform (n = 479, [ = 39.98 A) and toluene (n = 263, [ = 36.0 A).

Reactions in solution and many other processes involve solute-solvent interactions in the
initial as well as in the final state. For this reason, the error depends only on the differential
error of the potential between the two states. In this case, the final state is naturally without any
interaction between solute and solvent which makes free solvation energies rather sensitive to
inaccuracies in the potential because the result cannot benefit from any error cancellation.

Classical force fields lack not only the transferability but also the accuracy in many cases.
The PMC approach is expected to improve the description of the electrostatic interaction. How-
ever, a balance between electrostatic and van der Waals interactions is needed for the free sol-
vation energies. Standard force fields such as OPLS-AA [29-31] have never been parametrised
with QM/MM applications in mind. Hence, the replacement of only the electrostatic term of
the force field might lead to an unbalanced description and no improvement in the results. In
fact, recent studies [116] argued that a systematic improvement of free energies with QM/MM
is not generally possible.

Here, in total twenty-nine energies for four different solvents and solutes with varying prop-
erties have been computed. PMC simulations of 80 M steps with updates every 20 k steps have
been carried out and classical simulations with the same number of steps for the vdW part. The
results are summarised in comparison to experimental results [117] in Figure 4.7 and in Ta-
ble 4.1 which lists the exact combination of solute and solvent. The experimental results are
Gibbs free energies while the simulations have been carried out in the canonical ensemble so
that the computed results are Helmholtz free energies. It can be safely assumed that this ef-
fect is negligible for the small solutes of this benchmark set and very large simulation boxes
of about 40 A. Exploratory studies with ethanol in water, increasing the box edge length from
about 24 A, showed that the change in the free solvation energies is smaller than the statistical

accuracy of the simulations.

Focusing on the results with water as solvent, first of all it can be noted that even small so-
lutes with a correspondingly small QM region like water and ammonia in water can be described
surprisingly accurate by QM/MM calculations. These systems are both strongly influenced by
specific interactions, here most notably hydrogen bonds. Other hydrogen bonded systems like
the series of alcohols show larger errors in comparison with the experimental results. However,
the qualitative description and most importantly the energetic ordering is very well preserved.
Examples are 1-propanol and 2-propanol which show the same free solvation energy or the or-
dering of ethane and ethene which is characterised by an energetic difference of only 2.5 kJ/mol
experimentally which is still reproduced by the simulations. Last, the standard error of the free
solvation energy in water is about an order of magnitude larger than with other solvents. This
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is due to the rigid structure of water including rather strong hydrogen bonds and consequently
slow dynamics for example for solvent exchanges in the first solvation shell. This can be also
seen in the considerably higher correlation between consecutive configurations and the associ-
ated high statistical inefficiency. To reach a similar statistical certainty for all systems 10-100
times more steps would be required for water but for the purpose of the benchmark the results

were deemed sufficient.

An interesting outlier is the alcohol ethane-1,2-diol which is the only example with two
hydroxyl groups. The experimental free solvation energy of —38.9 kJ/mol is overestimated by
a factor of nearly two with —64.1 kJ/mol. A combination of different factors may lead to this
large difference. The geometries of the solutes are optimised in continuum solvation models.
Here, the two hydroxyl groups might lead to a number of hydrogen bonds involving one or
more water molecules that are connecting these groups in a bridging manner. This very spe-
cific structure of the first solvation shell would distort the equilibrium geometry of the solute
and could not be described even qualitatively by the continuum model. Additionally, this could
also involve hydrogen bonds with more unusual geometric parameters. In this context dynamic
effects of the solute in concert with environment as well as polarisation effects can play an im-
portant role. First, dynamic effects are only considered by the rigid rotor-harmonic oscillator
model because a rigid solute geometry is used. This is a severe approximation especially in the
case of rotations around the dihedral angle which orients the hydroxyl groups with respect to
each other. Second, the water molecules in bridging positions might be differently polarised
which cannot be reproduced by the effective potential with fixed charges. If hydrogen bonds
occurring between water molecules and the solute and among water molecules of the first sol-
vation shell are very different from average hydrogen bonds in bulk solvent then large errors

can be expected.

Aromatic systems which might include specific interactions involving the 7-system are de-
scribed rather accurately for all solvents with errors up to 5 kJ/mol with the exception of toluene
in water. Also, when the solvent molecules include an aromatic system as in the case of toluene,

only described by a force field, the results agree well with the experimental findings.

The comparison between the QM/MM results and equivalent results obtained by purely
classical simulations where the solute has been described as well with the OPLS-AA force
field reveal to which degree the results can be improved with the hybrid approach. The results
are directly be compared in Figure 4.8. The free solvation energies with water and toluene as
solvent are clearly improved for 10 of 12 and for 3 of 4 combinations respectively. In these cases
clearly the insufficient description of the electron distribution by the effective potential of the
force field cannot accommodate for the polarisation of the solute and consequently describes
the electrostatic interaction between solute and solvent incorrectly. Next, only two solutes have
been simulated in toluene with rather good accuracy but it can be seen that the results are nearly
identical to the classical simulations. Nevertheless, this shows the robustness of the QM/MM

approach.

Lastly, we discuss the chloroform solution results. The latter show a large systematic under-
estimation of about 10 kJ/mol in the MM as well as with QM/MM. The hybrid approach does
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FIGURE4.7 Solvation free energies computed with PMC (B3LYP-D3/def2-TZVP and OPLS-AA, OPLS-
UA for chloroform) in comparison with experimental results. The solutes and solvents are listed in
table 4.1. The colour coding is water—blue, toluene—black, acetonitrile—green and chloroform—red.
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FIGURE 4.8 Solvation free energies computed with PMC (B3LYP-D3/def2-TZVP and OPLS-AA, OPLS-
UA for chloroform) and MM MC (OPLS-AA, OPLS-UA for chloroform) in comparison with experimen-
tal results. The solutes and solvents are listed in table 4.1.
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TABLE 4.1 All combinations of solute and solvent that have been used to compute free energies of sol-
vation with the standard error o and experimental results (Exp.). [117] All energies are given in kJ/mol.
Computations (Comp.) have been carried out with PMC (B3LYP-D3/def2-TZVP and OPLS-AA, OPLS-
UA for chloroform).

Solute Solvent Comp. o  Exp.
Water Water —298 1.3 -264
Ammonia Water —20.5 1.3 —-18.0
Ethane Water 6.7 0.8 7.7
Ethene Water 3.5 1.1 5.3
Methanol Water —14.9 1.7 -214
Ethanol Water —233 1.5 -21.0
Ethane-1,2-diol Water —64.1 1.7 -—-38.9
1-Propanol Water —-18.8 1.7 —-19.9
2-Propanol Water —18.7 1.6 —20.2
Ethanal Water —109 1.6 —-14.6
Toluene Water —12.1 1.3 —-3.7
Phenol Water —23.8 1.9 =277
4-Hydroxybenzaldehyde Water —-46.2 2.0 —-43.9
Ethanol Toluene —11.8 0.6 —13.9
Water Toluene —-4.1 03 —7.1
Ethanol Acetonitrile | —17.5 1.2 —18.5
Butanone Acetonitrile | —19.2 0.8 —19.8
1,4-Dioxane Acetonitrile | —17.1 0.9 -22.3
Toluene Acetonitrile | —23.0 04 —-19.6
Water Chloroform | —0.6 0.3 —8.6
Ammonia Chloroform —-04 0.3 -10.1
Methanol Chloroform -52 04 —-13.9
Ethanol Chloroform -9.1 04 -16.5
Ethane-1,2-diol Chloroform | —15.7 04 —-25.0
1-Propanol Chloroform | —11.0 0.4 —18.5
2-Propanol Chloroform | —11.9 04 —-17.9
Ethanal Chloroform | —12.1 0.4 —15.3
Toluene Chloroform | —21.5 0.5 —22.9
Pyridine Chloroform | —21.5 0.5 —27.0
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not change the results considerably and does also not consistently improve upon the classical
simulations. This suggests a problem in the potential of the solvent which cannot be improved
with a better description of the solute. Additional simulations with a set of modified partial
charges for chloroform confirm these findings with the results shown in Figure 4.9. The dipole
moment has been computed with Coupled Cluster with Singles and Doubles (CCSD) and a
cc-pVTZ basis set including the COSMO (e = 4.806) correction at the HF level (PTE scheme)
which results in a dipole moment which is 1.3 times larger with the continuum model than in
the gas phase. Subsequently, the modified chloroform potential has been constructed by scaling
the original partial charges by the same factor of 1.3. Classical simulations of pure chloroform
have been carried out in order to confirm that the solvent structure is not fundamentally dis-
turbed by these modifications. The corresponding radial distribution functions are shown in
Figure 4.10. Only the CH-CH radial distribution function shows very minor changes of the
height of the first peak while the position is perfectly retained. Conversely, the free solvation
energies computed with this modified potential show a systematic shift towards the experimen-
tal values which reduces the error by about 2.5 kJ/mol as obtained by a linear fit. This shows
clearly that the description of the electron distribution of the solute as well as of the solvent
molecules is important. The partial charges are fitted in order to obtain a balanced description
and internal consistency for the force field but it can be seen that this does not necessarily make
the potential suitable in the context of QM/MM simulations as opposed to the water model that
works very well without further adjustments. Even though the importance of the dipole moment
has been shown, further aspects might be relevant. If the dipole moment is estimated in order
to reproduce the experimental results this would lead to a huge overestimation with about 5 D
compared to the experimental value [118] in liquid phase of 1.25 D. The example of chloroform
shows that attention has to be paid to the classical as well as the QM side in order to achieve

high accuracy in the coupling term.
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FIGURE 4.9 Solvation free energies computed with PMC (B3LYP-D3/def2-TZVP and OPLS-AA vdW
parameters) in chloroform with standard parameters (OPLS-UA) and chloroform with an increased
dipole moment (OPLS-UA(1.3x)).
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FIGURE 4.10 MC Radial distribution functions for pure chloroform with OPLS-UA and an increased
dipole moment (OPLS-UA(1.3x)). Top left: CI-Cl, top right: CI-CH, bottom: CH-CH.
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4.4 Free Energy of Torsional Potentials

Reaction pathways are fundamentally affected by the surrounding media through non-
covalent interactions and polarisation effects. It might also come to be that solvent molecules
participate in reactions. Thus whole new pathways might come accessible and not only the
stability of stationary points relative to each other is effected. In this Section I will investigate
the possibility to describe reaction pathways in the context of PMC simulations combined with
FEP and the BAR analysis. As a model, hydrogen peroxide, a seemingly simple system will be

investigated and the free energy for the internal rotation of the same will be determined.

Hydrogen peroxide is subject to intense study in several different fields. In atmospheric
chemistry it is relevant as the dominating oxidant for SO, in clouds, [119] in industrial processes
it is used for advanced and environmentally friendly water treatment due to its antibacterial
and oxidising properties [120] and in numerous biochemical processes it plays an important
role. For example, in the context of membrane transports and the modulation of transcription
factors, [121-123] as a signalling agent of pathways that regulate the reactive oxygen species
concentrations of the intracellular volume [124] and as a source of oxidative stress. [125] As a
by-product of metabolic reactions like the conversion of hypoxanthine to xanthine it is generated
directly inside of the cells. [126] Especially hydrogen bonded complexes of hydrogen peroxide
are relevant in metabolic environment and for the modulation of biological processes. [126,127]
Finally, it is the simplest molecule that exhibits helical chirality with the conversion from P to M
being possible due to the hindered internal rotation. Therefore, the barrier for this transition has
been the target of experimental as well as theoretical studies. [128—131] The solvent structure

will be investigated under a different context in Section 5.1.

PMC simulations have been carried out with a temperature of 298 K varying the dihedral
angle in 2.5° steps with 20 M steps for every value and 2 M intermediate steps in order to reach
equilibrium after changing the geometry of the solute. Density updates have been carried out
every 1000 steps throughout. The B3LYP-D3/def2-TZVP [17, 20-22, 111-114] method has
been used for the QM calculations and the TIP3P water model [132] as well as vdW parameters
for hydrogen peroxide from the work of Margulis and coworkers. [133] The box with the edge
length of 40.0 A contained 2132 water molecules. Additionally, the potential has been computed
in gas phase and with COSMO [41] (e = 80) corrections at the same level of theory. These

results are shown in Figure 4.11.

Independent of the environment the barrier of the cisoid transition state at 0° is considerably
higher than the transoid barrier at 180°. However, the former is decreased from about 33 kJ/mol
in gas phase to about 22 kJ/mol with PMC and 19 kJ/mol with COSMO. In contrast, the transoid
barrier is only increased with the continuum description while PMC decreases this barrier as
well. This shows clearly that an explicite solvent structure is important for the description of
specific interactions like hydrogen bonds which are here accepting and donating with respect to
the solute. The effect on the transoid transition state is qualitatively wrong with the continuum
model. Our findings are in agreement with the QM/MM replica exchange MD simulations by
Choi and coworkers. [134] However, in their study only the HF/3-21G level of theory has been
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FIGURE4.11 The torsional potential of hydrogen peroxide computed in gas phase, with COSMO (e = 80)
and in TIP3P water with PMC (B3LYP-D3/def2-TZVP).

used for the QM system. Furthermore, they used the TIPSP water model which we found to
be unsuitable for QM/MM applications (see Chapter 5). Their results have to be considered
with caution and the agreement might be coincidental. They found that the cisoid barrier is
lowered by about 15 kJ/mol while the transoid transition state is stabilised by about 2 kJ/mol.
The position of the minimum had been located at about 90° which is in fair agreement with
100° from both COSMO and PMC while the gas phase minimum is at about 120°. This shows
another important effect of solute-solvent interactions. The latter not only influence the relative
stability of the stationary points but also their geometry.
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CHAPTER 5

Impact of QM/MM on Solvent

Structures

The arrangement of the solvent molecules around a solute and the properties of the solute
itself depend on an accurate description of the energetics of such a system. The agreement with
experimental findings of the solvent structure is a good measure of any method that attempts to
simulate processes in solution.

The solvent can influence the solute in different ways. The direct effect changes the ener-
gies of stationary points with respect to each other, e.g. a reaction barrier is lowered due to a
favourable interaction at the transition state or an unfavourable one at the minima. An example
is the Cope elimination which experiences a million fold increase in the reaction rates going
from a protic to an aprotic solvent. Hydrogen bonding can stabilise the reactant and thereby
increases the effective barrier and slows down the reaction. [135] This emphasizes again the
importance of hydrogen bonds and directional interactions which are not well described with
continuum and classical approaches.

Furthermore, the geometric effect influences the actual position or even existence of station-
ary points. At last, the curvature of the potential energy surface of internal degrees of freedom
of the solute is affected. This is called the vibrational effect because the vibrational levels and
consequently the free energy surface is changed. In particular, a correct description of the first
solvent shells is fundamental and requires a balanced description of the energetics between
solute and solvent.

The solvent structure is typically analysed in terms of radial distribution functions. These
represent the short range order of a liquid compared to the ideal gas for a pair of elements.
Values larger than 1 represent an increased number of atoms and values smaller than 1 show re-
gions which are depleted. For large distances the distribution converges to 1 for liquids because
they do not exhibit any long range order. The distribution can be analysed for pairs of ele-
ments, e.g. between oxygen atoms in water, which reveals the shell-like arrangement of water
molecules around another water molecule. Typically, 2—-3 solvent shells can be distinguished
in such distributions.

Radial distributions functions are experimentally accessible via X-ray or neutron scattering

data. However, the analysis of the data and the derivation of radial distribution functions via

The material in this Chapter was presented in part in Reference [109].
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the structure factor is quite involved. One of the difficulties is that intramolecular contributions
are strongly dominating the experimental data. Furthermore, hydrogen atoms are very difficult
to detect with X-ray diffraction. Many experimental results are only available for the heavier
atoms.

On the other hand, molecular computer simulations can be trivially analysed in terms of
radial distribution functions. The analysis amounts to merely counting the number of pairs as a
function of the distance for a trajectory. The angle can be additionally measured which results
in the angular radial distribution functions. Especially for hydrogen bonds the combination of
bond length and angle are important criteria to analyse the strength and existence of hydrogen
bonds. A typical geometric criterion is a bond length up to 2.5 A and an angle of up to 30° as
it is defined for example in Figure 5.3. [136] Furthermore, the distributions can be collected

along a reaction pathway and differential solvent effects on stationary points can be assessed.

5.1 Hydrogen Peroxide

Here, hydrogen peroxide is revisited under the aspect of the solvent structure and hydrogen
bonding. The free energy potential of the dihedral angle has been studied in Section 4.4 where
the biological relevance of this system has been described as well. PMC simulations at the
minimum of the potential have been carried out for 640 M steps at a temperature of 298 K with
the same computational settings as before. In short, the B3LYP-D3/def2-TZVP [17,20-22,111-
114] level of theory combined with different water models [137] and the vdW parameters from
the study of Margulis and coworkers. [133]

The solvent structure as well as the hydrogen bond interactions can be studied with the radial
distribution functions which are shown in Figure 5.1 for the TIP3P water model. The maxima
of the peaks denoting the position of the solvent shells have been compared in more detail with
a wide range of theoretical studies in Table 5.1. A prominent feature of the distributions is the
difference between the bands corresponding to donating and accepting hydrogen bonds. The
former is at about 0.22 A shorter distances than the latter which is in agreement with the gen-
erally known higher hydrogen bond donor capability of hydrogen peroxide than its capability
to accept hydrogen bonds. A second peak can be seen in the H---OW distribution while two
more peaks are present in O---HW. The oxygen-oxygen distribution (O-OW) matches closely
the distinguishable accepting and donating hydrogen bonds with two close peaks. However,
the distance between them is two times larger with 0.45 A than the corresponding distance in
the H--OW.

It comes as no surprise that the results match very closely the QM/MM MD study by
Martins-Costa and Ruiz-Lépez [125] which uses nearly the same combination of methods even
though a fixed solute geometry has been used in the PMC simulations. Born-Oppenheimer MD
simulations [138] show a slightly longer hydrogen bond length but the results agree very well.
The elongated hydrogen bonds can be explained by the better QM description of the solvent
molecules which allows capturing dynamic and polarisation effects of the solvent and even dif-

ferent protonation states as the potential is inherently reactive. However, these seem to play
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FIGURE 5.1 PMC Radial distribution function g(r) of donating (O--HW) and accepting (H--OW) hy-
drogen bonds of hydrogen peroxide and the oxygen-oxygen function (O-OW). The full lines have been
simulated with B3LYP and the dashed ones with PBE.

a minor role or in the case of the polarisation it is already captured sufficiently well by the
effective potential of the water model.

However, the comparison with further simulations using only force fields show considerable
deviations especially for the first solvation shell. The fixed point charge model employed by
Coutinho and coworkers [127] combined with TIPS, which is the original parametrisation of
TIP3P, shows a shift of all bands up to 0.2 A and misses the third solvent peak of the O--HW
distribution altogether. Since the water model is rather similar this can be attributed to the less
accurate description of the electron density of the solute. The QM derived polarisable force
field atom-bond electronegativity equalization method (ABEEM) used by Yang and coworkers
[139] improves upon this especially for the more distant solvent shells. However, the error in
the peaks corresponding to the hydrogen bonds have still an error of more than 0.1 A. This
is especially surprising because terms are included which describe the donating and accepting
hydrogen bonds. It is not expected that the reference geometries and energies are the root of the
problem because the MP2/AVTZ//MP2/AVDZ level of theory including corrections for the basis
set superposition error is widely used in studies of water clusters and only minor differences
are found with respect to the standard CCSD(T). [141-144] However, only small clusters of
hydrogen peroxide and 1-6 water molecules have been used which includes in the best case only
the first solvation shell and might be too restrictive in this case. Finally, the setup of the system
is different with about 30 % mass fraction of hydrogen peroxide instead of a single molecule
which might account for the differences in the long-range region of the O--HW distribution.

The comparison with the best available data in the literature shows that a quantitatively
correct description of the solvent structure is obtained with the PMC approach. Dynamic and

polarisation effects of the solvent beyond the effective potential are negligible at least for this
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TABLE 5.1 Comparison of the peak positions of the RDFs shown in Figure 5.1 with results from Cabral
[138]: BOMD (B3LYP-D3), Ruiz-Lopéz [125]: QM/MM MD (B3LYP/6-31G*, TIP3P), Coutinho
[127]: MM MC (TIPS), Yang [139]: MM MD (ABEMM), Rode [140]: QMCF MD (HF/DZP, BJH-
CF2) and Choi [134]: QM/MM-MD (MP2/6-31G*, TIP5P). Not reported distributions are left empty

» »

while peaks that are not present are denoted by ”-".

Ref. Method O--HW H--OW O0-OW
QM MM 1st 2nd 3rd 1st 2nd 1st 2nd

[138] B3LYP-D3 1.91 3.24 4.18 1.74 3.65

[125] B3LYP TIP3P 1.85 3.26 4.02 1.64 3.61

[127] TIPS 208 342 - 1.81 3.81

[139] ABEMM 202 3.25 6.00 1.75 3.68

[140] HF BJH-CF2 210 3.37 - 1.77  3.56 3.00

[134] MP2 TIPSP 2.88

B3LYP-D3 TIP3P 1.89 3.28 4.03 1.67 3.65 2,72 3.29
B3LYP-D3 TIP4P 1.90 3.23 4.02 1.72  3.66 2.714 3.32
PBE-D3 TIP3P 1.91 3.28 4.02 1.68 3.58 2.69 3.30

specific system. Furthermore, water is an ubiquitous solvent and good transferability of these
findings is expected towards other solutes. This is supported by the analysis of the free solva-
tion energies computed in Section 4.3. The interaction between solute and solvent appears to
be accurately described by QM/MM approaches. The large differences between the different
theoretical studies cannot be clearly attributed to inaccuracies in the solute or the solvent poten-
tial. Therefore, the influence of different different density functionals as well as solvent models
will be investigated in the following.

It is expected that the PMC simulations depend only very little on the functional used for
the DFT calculations of the solute. While the energies might differ significantly, the densities
generated by different functionals are expected to be very similar. Therefore, simulations have
been carried out with the PBE [110] functional. The comparison with results from the hybrid
functional B3LYP in Figure 5.1 shows that they are nearly identical and the small deviations
are in the range of the statistical error. The HF method used in the study by Rode might show
larger errors but little dependence on the functional or basis set is expected.

Next, different water models have been used to investigate the influence of the MM model
in hybrid QM/MM simulations. The results are shown in Figure 5.2 and the peak positions are
listed in Table 5.1 except for TIP5P where no meaningful peaks can be assigned. While the
results from TIP3P and TIP4P are very similar, the TIP5P distribution functions are fundamen-
tally distorted and appear to be in parts poorly converged. In a purely classical simulation the
results can be clearly improved going from TIP3P over TIP4P to the TIP5P water model, in-
creasing the number of partial charges. However, it is known from simulations of liquid water
with QM/MM methods, that the TIP5P water model can cause large errors and can disturb the
solvent structure completely. [65] It appears that the additional negative charge sites in TIP5P
which describe the lone pairs (LP) of the oxygen get embedded in the electron density of the

QM molecule. The main reason is that no vdW parameters are associated with these sites. This
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leads to a strong polarization of the density and very short distances for hydrogen bonds as it
can be seen in the additional RDF for H-LP which places the lone pair at about 0.65 A. The
consequences are very short distances for the peaks of the first solvation shell of all RDFs in-
volving an oxygen of the water (H---OW, O-OW). Another problem can appear especially in
MC simulations. Due to the short distance between lone pair and proton of 0.65 A, the lone
pair can reach with a single move the nucleus of the proton and becomes immediately trapped
there due to the highly attractive Coulomb interaction which even further distorts the solvent
structure around the solute and also leads to insufficient sampling.

Based on these results the strong influence of the employed force field — in this case the
water model — becomes apparent which explains the large differences between the available
literature values. The results reported by Choi [134] have to be considered with care. However,
only the O-OW distribution has been reported which allows no further conclusions. On the
other hand, the results for TIP3P and TIP4P are very similar. The additional site in the TIP4P
is located close to the oxygen in the middle of the water molecule and cannot be embedded in
the electron density. It has been shown that for TIP4P water the RDF is least changed upon
switching a single MM water to a QM description and that TIP4P exhibits therefore the best
compatibility within a QM/MM approach. [65]
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FIGURE 5.2 PMC (B3LYP-D3) Radial distribution functions for pairs X-Y with the QM atoms X and the
MM site Y. HW and OW denote the oxygen and hydrogen atom of the respective water model and L.P
the site describing the lone pairs of a water molecule (only for TIP5P).
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5.2 Methylchloride

Nucleophilic substitution reactions of methyl alkanes
X"+ CR3Y - XCR3+Y"™

are well known for being strongly influenced by solvent effects. The double-well potential in
gas phase changes to an unimodal reaction in aqueous solution. Experimentally measured trans-
fer rates are reduced by 20 orders of magnitude in solution [145] which demonstrates the drastic
effect the solvent has on the reaction. It is argued that the barrier is influenced due to the re-
quired desolvation of the nucleophile and a greater charge dispersal in the transition state. [146]
Computational studies with a continuum model confirmed indeed that a large electron density
redistribution occurs near the transition state. [145] A selection of the computational studies
that have been carried out for X = Y = Cl include classical simulations, [146] continuum sol-
vation models [145, 147] and Car-Parrinello Molecular Dynamics (CPMD) simulations. [148]
Additionally, the reaction with X = Br and Y = Cl has been investigated with CPMD simula-
tions. [136] Here, I will carry out PMC simulations of the reaction with X = F and Y = Cl. The
solvent structure as a fundamental property will be studied at the vdW complex, i.e. when the
fluoride coordinates to chloromethane but no bond breaking or forming takes place yet. Simu-
lations with B3LYP-D3/def2-TZVP [17,20-22,111-114] and the TIP3P water model have been
carried out at the temperature of 298 K for 640 M steps with density updates every 20 k steps.
The RDFs have been sampled every 10 k steps. The box with 2132 water molecules had the
edge length of 40.0 A.

The radial distribution functions around the leaving chlorine have been collected in this
educt state and compared to results from CPMD simulations for very similar systems with
chloride [148] or bromide [136] instead of fluoride which are all shown in Figure 5.4. In those
studies the simulations have been carried out with about 30 water molecules in a simulation box
with the edge length of 10 A using a proton as counterion. For the Cl system 3—5 ps have been
simulated in the canonical ensemble (7' = 300 K) with the Perdew-Zunger LSDA functional
combined with the BP86 GGA functional. A frozen core approximation has been used in com-

bination with an augmented plane wave basis for the valence electrons. It should be noted that

Distance (H-Cl)

\

!

Angle (HOCI)

FIGURE 5.3 Left: Nucleophilic substitution involving chloride and fluoromethane. Right: Definitions of
distance and angle for the analysis of the angular radial distribution functions.



78

Cl--HW Cl-OW

g(r)

r/A r/A

FIGURE 5.4 PMC Radial distribution functions of the leaving Cl in the educt state with B3LYP-D3/def2-
TZVP and OPLS-AA parameters. Left: Cl to H of water, Right: Cl to O of water with the literature
results X=Cl, Y=CI [148] and X=Br, Y=CI [136] (at the transition state).

these simulations have been carried out at the transition state of the Sy2 reaction. A pseudo po-
tential approach has been used for the Br system with the HCTH GGA functional. Production
runs have been carried out for 4-12 ps in the micro-canonical ensemble.

Comparing the PMC with the CPMD simulations it can be seen that the first peak in the
Cl--HW distribution is located at about 2.25 A for the F and Br system. However, for the Cl
system this peak is missing altogether. Additionally, a rather broad second peak can be found
roughly around 4 A for all systems. In the Cl1-OW distribution the picture is less clear. It is rather
unstructured in the case of the Cl and Br system while in the F system a peak can be found at
about 3.2 A. In the other systems an accumulation of oxygen between 3 and 5 A is noticeable
but without a distinctive maximum. Most surprising is the missing hydrogen bonding region
in the case of the Br system. In the same study the comparison with CH3Cl has been drawn
which defines the lower limit for the height of this peak. However, the educt state does not
conform to this limit which suggests that there might be a severe approximation in the choice
of the computational methods or the set-up of the simulations which strongly influences the
hydrogen bonding. It can be seen that the short simulation time scales for both Cl and Br result
in poorly converged distributions. Another consequence is the large asymmetry of more than
5 kcal/mol in the free energy of the Sy2 reaction which has been computed for the ClI system.
However, this reaction is by definition thermoneutral. It has been suggested to include the
solvent degrees of freedom into the reaction coordinate of the constrained sampling procedure
in order to accelerate the slow solvent rearrangement upon change of the solutes geometry.
Nevertheless, such a coordinate cannot be easily constructed.

Another limitation due to the high computational costs of the CPMD simulations is the
small simulation box which leads to an artificially high concentration compared to experimental
conditions. In contrast, the volume is an order of magnitude larger in the PMC simulations and
the interaction between the solute and its image is by construction zero. This is also most
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FIGURE 5.5 PMC Radial distribution functions of the leaving Cl in the educt state with the water models
TIP3P, TIP4P and TIP5P and the QM approach B3LYP-D3/def2-TZVP.

likely responsible for the shift of the second peak in the Cl---HW distribution which in the PMC
simulations has the maximum at about 4.7 A and extends beyond 5 A. However, with a system
size of 10 A in the CPMD simulations the peak cannot go beyond 5 A and is artificially shifted
to smaller distances in the range of 3.5-4.5 A. Consequently, the slightly ordered structure in
the range of 5-10 A is not represented in the CPMD simulations as well as the unstructured part
representing the bulk solvent for distances larger than 10 A. It is expected that a considerable

finite size effect is present in the CPMD simulations.

The experiments are carried out at neutral pH with potassium as counterion and in the CPMD
simulations a proton has been used. The shifted force operator in PMC allows to simulate

charged systems so that an investigation is possible without spurious effects of the counterion.

The influence of the employed force field has been reassessed. As opposed to hydrogen
peroxide in the previous Section the solute is charged and is exclusively a hydrogen bond ac-
ceptor. The RDFs of simulations with TIP3P, TIP4P and TIP5P are shown in Figure 5.5. Again,
the results of the TIP3P and TIP4P models are very similar and show only minor differences
in the height of the peaks while their positions are not changed. Furthermore, the results with
the TIP5P model are less disastrous because the water molecules only build donating hydrogen
bonds towards the solute which means that the additional charge sites describing the lone pairs
point away from the solute. However, the first feature in the Cl---HW distribution at about 2.3 A
is very unstructured and corresponds to very unstable hydrogen bonds. This does not agree with
the more structured distribution as suggested by the CPMD results.

The angular radial distribution function has also been constructed and is in excellent agree-
ment with the results from the Br system by Schettino and coworkers. [136] At this point specific
attention is paid to the influence of the level of theory on the configuration space that is sampled.
In Figure 5.6 these distributions are compared for PMC and classical MD simulations with the
equivalent parameters. The radial distribution is qualitatively different, the PMC results show a
first hydration shell at about 2.2 A which is completely missing with the force field description.
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FIGURE 5.6 Angular radial distribution function for the educt of the Sn2 reaction with PMC
(B3LYP-D3/def2-TZVP and OPLS-A A vdW parameters) using the TIP3P water model and MM (OPLS-
AA and TIP3P).

Furthermore, the PMC results show H-O-Cl angles lower than 40° for short distances. These
values are typical for a halide anion solvation shell determined by hydrogen bonds. While the
radial distribution is normalised the angular one is commonly not normalised. Therefore, the
expected peak centred around 0° is missing and seen at slightly larger angles.

The angular radial distribution functions with the water models TIP4P and TIP5P are shown
in Figure 5.7. They confirm that TIP3P (Figure 5.6 left) and TIP4P match very closely also with
respect to the angular distribution. Unexpectedly, they also reveal that the angular distribution
is maintained even for the TIPSP water model. While the hydrogen bond strength is severely
reduced with this model the angular distribution typical for hydrogen bonds is reproduced.

These results reveal a restriction of the widely used sequential QM/MM approach in which
first classical simulations are carried out and subsequently the approximate energies are im-
proved with a hybrid QM/MM approach. [149, 150] However, the configurations are only gen-
erated at the MM level of theory which can be problematic for example for the system that has
been studied here. Even in the theoretical situation that the classical simulations generate more
accurate configurations than the high level method the sequential approach can lead to a large
variance and inaccurate averages. This is the case whenever the configuration spaces are dif-
ferent or in other words the position of the minima on the potential energy surface are not the
same. Schematically, this situation is illustrated in Figure 5.8. However, these problems do not
occur in the PMC simulations since QM/MM itself can be used for the sampling.
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FIGURE 5.7 Angular radial distribution function for the educt of the Sny2 reaction with PMC
(B3LYP-D3/def2-TZVP and OPLS-AA vdW parameters) and the water models TIP4P (left) and TIP5P
(right).

: >
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FIGURE 5.8 Schematic representation of the sequential QM/MM approach in the case of a strong depen-
dence of the sampling on the level of theory. The low level (LL) is shown in green, the high level (HL)
in red and the sampled distribution in gray. The energy corrections are represented by the arrows.
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CHAPTER 6

QM/MM Calculations of Electronic

Spectra in Solution

It is well known that the environment has a great influence on absorption and emission spec-
tra. [151, 152] The associated change of the colour of a substance in liquid phase is commonly
termed solvatochromism. The solvatochromic shift describes the shift of an absorption band
either upon going from gas phase to liquid phase. The ground state and excited state are sta-
bilised differently in solution which can cause a blue shift — a decrease in the wavelength — or
a red shift which corresponds to an increase in the wavelength. Therefore, solvatochromism is
a measure for the solute-solvent interactions [152,153] and experimentally chromophores have
been used as probes in order to study these interactions. [154—157]

A theoretical description of solvatochromism is challenging due to the combination of many
different interactions and dynamic effects. [151] For the description of the environment, con-
tinuum models have been used [42, 48, 158] as well as hybrid QM/MM approaches [159-161]
including sequential QM/MM studies. Continuum models have the obvious advantage of com-
putational efficiency. Additionally, they allow modelling the important fast response of the
continuum. This effect approximates the response of the electronic density of the solvent due
to the changed charge distribution of the solute upon excitation with the usual consideration of
the mutual polarisation in a self consistent manner. The slow term of the continuum is only
determined by the ground state and therefore this solvation is also termed non-equilibrium sol-
vation.

However, specific interactions cannot be described accurately, which is the strength of ex-
plicit solvent models like QM/MM methods. Combined with a fixed charge force field the
important polarisation of the solvent is, however, not taken into account. Only a polarisable
force field or a QM system including a number of solvent molecules can describe specific inter-
actions as well as polarisation effects. In the sequential QM/MM approach the computational
costs of the sampling are reduced by carrying out classical simulations to generate a set of rep-
resentative configurations. However, as pointed out before and demonstrated on the example of
methylchloride (Section 5.2) the configuration space can be very different and a simple correc-
tion of the energies with a high-level method cannot correct for this error. A practical limitation
is that few force field parameters are available for solutes in their excited state which are re-

quired for the simulation of emission spectra. One way around this is to parametrise a force
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field for ground state as well as the excited state which has been done successfully (e.g. Refer-
ence [162]) but requires a tedious parametrisation procedure for every solute and excited state.
Finally, QM cluster approaches may be used which, however, restrict the study of the potential
energy to a local minimum or mostly a limited number of snapshots. However, in principle this
is the most accurate description although this comes with a higher computational cost.

Here, I will explore the applicability of the PMC method which combines the accuracy of
full QM/MM methods with the computational efficiency of perturbation theory demonstrated in
Section 3.2. First, the computational approach will be explained. Second, a number of bench-
marks systems will be studied and third, the method will be extended to solvent mixtures. This
is a particular strength of explicit solvent models because implicit solvation models cannot ac-
count for these heterogeneous environments. Special sampling techniques are implemented to

make the sampling of solvent mixtures very efficient.

6.1 The PMC Methodology - Absorption and Emission Spectra

A short introduction illustrating the theoretical basis of TD-DFT has been given in Sec-
tion 2.6. Here I will explain how electronic spectra can be computed in the framework of PMC
simulations applying the TD-DFT method. Equivalently, any other method being able to com-
pute excited state densities in the context of QM/MM calculations may be used instead. How-
ever, I will focus on the TD-DFT method which strikes a good compromise between accuracy

and computational costs.

The working equations formulated in a matrix notation are given by the eigenvalue equation

A B X 1 0 X
=w (6.1)

B* A* Y 0 —1 Y
whereby matrices X and Y describe the linear response of the density matrix. The density
matrix of the excited state is then approximated by summing up the ground state density and

the unrelaxed difference density matrix in the following manner

D) =3 (X + Y)i(X+Y)s (6.2)
DZ’) =Y (X4+Y)uX+Y); (6.3)

a

with the assumption that the left and right solutions are identical. The density matrix D™ of

the excited state n is then
D™ = DO L D™ (6.4)

which allows, after transformation into the atomic orbital basis, computing of the TD-DFT
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excitation energy w,i”) for the PMC step k

) = wi? =3 D) <u

"

Z Qo (} — 1) 1/> (6.5)
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where w(™ corresponds to the excitation energy computed in the most recent update. For pe-
riodic systems the shifted force operator will be used instead and the excited state density is
evaluated as well as the ground state density on a numerical grid.

The simulation of absorption spectra uses the ground state density in order to sample the
configuration space while the respective excited state density may be used to compute emission
spectra. Therefore, the computational costs for the perturbative steps increase by about a factor
of two because in every step the electrostatic interaction of the target state’s electron density
with the environment has to be computed. The kernel, however, is identical and only the host
program and the decision kernel have been modified for the implementation. A simple optimi-
sation recomputes the excited state energy only if a MC move has been accepted and the solvent
configuration changes. An interface to the Molpro program package has been implemented for
TD-DFT calculations as well as Equations of Motion - Coupled Cluster with Singles and Dou-
bles (EOM-CCSD) theory. The implementation of TD-DFT in Molpro uses density fitting for
the electron repulsion integrals, approximates the exchange-correlation kernel by the adiabatic
local density approximation and assumes that the matrices A and B commute which may cause

some deviations of the excitation energies for larger systems and basis sets. [93]

6.2 Applications in Solute-Solvent Systems

6.2.1 Formaldehyde

Formaldehyde is an excellent benchmark system because of its reduced size. This allows
employing high-level QM methods to describe the electronic excitations. However, the com-
parison with experiments is problematic because no experimental value can be measured in
aqueous solution due to the formation of oligomers. Therefore, the experimental solvent shift
of acetone in aqueous solution is used as a reference. Nevertheless, extensive theoretical results
with many different combinations of QM methods and embedding approaches are available and
allow evaluating at the very least which computational choices might have a strong influence
on the results and which approximations can be made without further consequences.

The first three excitations of formaldehyde in aqueous solution and gas phase have
been studied with the PMC approach. The solute geometries have been optimised
with B3LYP-D3/def2-TZVP [17, 20-22, 111-114] while the simulations in PMC used the
aug-cc-pVDZ [163] basis set, OPLS-AA vdW parameters, TIP3P water [29-31]and a temper-
ature of 298 K. An additional classical MM MC simulation with the OPLS-AA force field has
been carried out. The edge length of the box has been 40.0 A and it contained 2132 water
molecules. Snapshots of this simulation have been used for QM/MM TD-DFT calculations in
a sequential QM/MM-type approach. The resulting absorption spectra are shown in Figure 6.1.
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TABLE 6.1 Theoretical studies for the first n-7* excitation of formaldehyde in gas phase w®P and the
solvent shift Aw in aqueous solution compared with PMC and sequential QM/MM simulations from this
work both with B3LYP/aug-cc-pVDZ denoted by * and experimental results for formaldehyde in gas
phase and the solvent shift for acetone as well as for highly concentrated formaldehyde.

Ref. QM Embedding Sampling w&P/eV  Aw/eV
[164] CIS QM MBE 4.47 0.35
[165] CIS(D) MLFMO FMO-HF  4.08 0.14
[164] TD-DFT(B3LYP) QM MBE (30 H,0) —— 3.81 0.13
[164] TD-DFT(B3LYP) QM MBE (81 H,0) —— 3.81 0.16
[164] EOM-CCSD QM MBE E— 3.92 0.15
[166] HF & EHP QM Cluster MM 0.39
[150] CIS(INDO) QM Cluster MM 0.27
[167] CASSCEF(4,3) PCM 4.03 0.12
[168] CASSCE(6,5) RISM 4.33 0.25
[169] CASSCEF(6,4) QM/MM, ASEP MM 4.04 0.18
[170] CASSCF(12,10) QM/MM-pol-vib MM 4.53 0.33
[171] RHF & ROHF QM/MM MM 3.47 0.24
[172] AM1 & CIS QM/MM-pol 4.07 0.14
[173] MCSCF(4,3) & MRCI(4,3) ASEP QM/MM  4.09 0.19
[174] CASSCF(12,10) & CASSI QM/MM/cont. 0.16
[175] LR-CCSD QM/MM-pol MM-pol  3.99 0.35
* TD-DFT(B3LYP) PMC 3.94 0.18
* TD-DFT(B3LYP) QM/MM MM 3.94 0.10
[176] Exp. (Formaldehyde) 4.07
[177] Exp. (Formaldehyde) 0.21
[178] Exp. (Acetone) 0.16

Furthermore, the absolute excitation energy in gas phase as well as the solvent induced shift
for the first n-7* excitation have been compared with theoretical studies from the literature in

Table 6.1 and experimental results for formaldehyde and acetone.

Taking a closer look at the first n-7* excitation I first want to consider the differences be-
tween the results in gas phase due to the QM method. Ideally, this will allow in a second step
discerning effects of the electronic structure method and the solvent model on the solvent shift.
The reference for the gas phase excitation is the experimental value of 4.07 eV. [176] It is
expected that the most reliable theoretical results are the MRCI(4,3) calculations on top of MC-
SCF(4,3) which gives a value of 4.09 eV that is in excellent agreement with the experimental
results. [173]

Next, a number of CASSCF based studies are considered. Generally, the results should
improve with the number of orbitals included in the active space and the number of electrons
under consideration. However, it seems like the largest active space results in the largest de-

viation of about 0.5 eV in the case of the CASSCF calculation with twelve electrons in ten
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orbitals. [170] On the other side the results with four electrons in three orbitals are very close to
the experimental results. [167] It is important to realise that CASSCF only accounts for static
correlation and has be shown that the vertical excitation energies are strongly overestimated
without further methods like CASPT2 or NEVPT2. These are based on top of CASSCF and
account for the important effects of the dynamic correlation. [179, 180] With this in mind the
results from the literature can be understood and the calculations with small active space rely
on the error cancellation between the missing dynamic correlation and the inaccurate static cor-
relation. However, it is questionable how reliable this error cancellation is under the influence

of the solvent model.

Another group of methods including TD-DFT, EOM-CCSD and linear response (LR) CCSD
is able to predict absolute excitation energies with an error of up to 0.3 eV. The largest error
is found here in the case of the TD-DFT calculations. However, it is expected that this is a
systematic error which has the same size in gas phase as well as in solution. DFT methods are
generally able to reproduce the electronic density with good accuracy and the interaction with
the environment is based on this quantity. Therefore, only a minor influence on the accuracy of
solvent shifts is expected. Another point of interest are the results based on the semiempirical
AM1 Hamiltonian. They suggest that a carefully chosen semiempirical method can give reliable
results at hugely reduced computational costs. However, careful and extensive benchmarking
is necessary in order to ascertain that the results are consistent and reliable for the properties of
interest. It is expected that all these methods are intrinsically able to predict accurate solvent

shifts without considering the influence of the solvent model.

Finally, the remaining studies have been carried out using the methods restricted open shell
HF, the electron-hole potential in combination with HF and Configuration Interaction with Sin-
gle Excitations (CIS). These methods predict the excitation energies qualitatively wrong and a
considerable influence on the solvent shifts is expected as well. While the computational costs
are clearly reduced, the loss in accuracy does not outweigh this gain in efficiency. Furthermore,
even sophisticated solvent models cannot lead to reasonable results if they are based on quali-
tatively wrong methods describing the electronic excitation. Consequently, the influence of the
solvent model and the electronic structure method on the solvent shifts cannot be discerned and

they will not be included in the following considerations.

Next, I will consider the differences between the predicted solvent shifts. A difficulty is
that no experimental value is available and furthermore there is no clearly superior approach
among these theoretical studies. It is generally assumed that the solvent shift of acetone of
0.16 eV [178] can serve as a rough estimate for the shift of formaldehyde. A second reference
is the experimental value measured in highly concentrated formaldehyde solution of 0.21 eV
[177] although it is assumed that this corresponds to formaldehyde surrounded by formaldehyde
molecules due to oligomerisation. Nevertheless, many of the theoretically predicted shifts are
in the range of 0.12-0.25 eV.

The CASSCF calculations with larger active space overestimate the solvent shifts as well.
This suggests that the consideration of dynamical correlation is important for the accurate pre-

diction of solvent shifts. Because of the rearrangement of the electronic density upon excita-
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tion there is a difference in the dynamic correlation between ground state and excitation state.
Therefore, the effect of the different solvent models PCM, RISM, sequential QM/MM and the
Averaged Solvent Electrostatic Potential (ASEP) cannot be separated from the intrinsic error of
the QM method.

The studies employing a QM description for the solute as well as the solvent have the most
accurate description of the interaction between these two systems. [164, 165] Various many-
body expansion (MBE) or fragmentation schemes can be used like the fragment molecular or-
bital approach. Nevertheless, the computational costs prohibit the sampling altogether or allow
it only at a very low level like HF. These studies agree closely with their predictions of 0.14—
0.16 eV. The effect by increasing the number of water molecules from thirty to eighty-one is
about 0.3 eV which suggests that these calculations are not yet converged with regard to the

number of solvent molecules.

The most accurate sampling is used in the study by Xu and Matsika [173] with QM/MM
simulations from which an ASEP has been constructed. The prediction of 0.19 eV agrees closely
with the PMC result of 0.18 eV which is based as well on a QM/MM sampling. The sequential
QM/MM approach with equivalent computational settings allows to assess the effect of the
sampling on the excitation energies. This is rather large with about 0.08 eV. In conclusion,
sequential QM/MM studies require very careful benchmarking of the classical potentials which
are used to generate the configurations used for high-level methods. Otherwise, the introduced

error can be easily larger than any error due to the electronic structure method.

The complete spectrum for the first three excitations is shown in Figure 6.1. Also the second
band is shifted compared to the sequential QM/MM approach but in this case to lower excitation
energies. Otherwise, one can note that only with considerable sampling well converged spectra
can be obtained as in the case of the PMC simulations. Even using a rather large number of
configurations generated by classical simulations is not enough. Another important point is,
that the oscillatory strength seems to be sensitive to the configuration space and that intensities
of the bands relative to each other are different in the PMC approach. Last, the band shape is
influenced as well and e.g. the band of the third excitation is slightly broadened which reflects

as well the different configuration space.

The obtained results and the comparison with a number of theoretical and experimental
results shows that TD-DFT can be used in combination with PMC simulations to obtain com-
plete electronic spectra on the fly and including the information about the band shapes. This is
possible at reduced computational costs compared to conventional QM/MM simulations. The
comparison with sequential QM/MM simulations showed that the effect of the potential used
for the sampling has a large effect on the electronic excitations. However, it became also clear
that the computation of electronic spectra is far from trivial. Moreover, no dominant effect can
be singled out on which should be in the focus of further developments. The biggest limitation
in our approach is the neglect of the solvent’s polarisation. It has been argued that this polarisa-
tion has also a large effect on the exploration of the configuration space and only a minor effect

if it is applied in a sequential manner. [175]
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FIGURE 6.1 Electronic excitations for formaldehyde in TIP3P water computed for snapshots of MM MC
(OPLS-AA) simulations and based on PMC (B3LYP/aug-cc-pVDZ and OPLS-AA vdW parameters)
simulations.

6.2.2 Propenal

Propenal, better known as acrolein, is the simplest unsaturated aldehyde with the trans iso-
mer being preferred at room temperature. Interestingly, the solvent shifts of the first two excita-
tions are with opposing signs which is typical for n-7* and 7w-7* excitations. This illustrates that
these excitations behave very differently under the influence of the solvent and pose a challenge

for theoretical models aiming at predicting these effects.

The experimental value of the first n-7* excitation in vacuum is 3.69-3.71 eV [181-184]
and the second 7-7* excitation is well separated at 6.41-6.49 eV. [181, 185, 186] Both solvent
shifts for aqueous solution have been determined experimentally as well. The first excitation in
solution has been placed at 3.86-3.91 eV [187] or 3.94 eV [181, 188] which results in a solvent
shift of 0.15-0.22 eV or 0.23-0.25 eV respectively. The second excitation has been measured
at about 5.9 eV [181, 188] which gives a shift of —0.51 to —0.59.

The small size of the solute allows high-level theoretical calculations in order to study the
complex electronic structure. This combined with the strong solvent effects aroused the interest
of the theoretical chemistry community. A selection of theoretical studies will be discussed in
the following text. A sequential QM/MM approach with TD-DFT with B3LYP has been car-
ried out by Canuto and coworkers and they determined a solvent shift for the n-7* excitation
of 0.2 £ 0.1 eV [189] in reasonable agreement with the experimental findings. CASPT2 com-
bined with PCM slightly overestimates the first excitations with 0.33 eV and underestimates
strongly the red shift with only —0.1 eV. [190] However, the direction of the shifts is correctly
reproduced. MRCISD+Q combined with the COSMO approach seems to improve upon this for
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aqueous solution with 0.21 eV and —0.43 eV respectively. [191] All these findings show that
the solvent shift of the first excitation can be well described with QM/MM methods as well as
continuum models.

On the other hand, the modelling of the solvent effects for the 7w-7* excitation is more chal-
lenging. It has been found by Mikkelsen and coworkers by comparing TD-DFT and coupled
cluster calculations that only the first excitation is well described by TD-DFT. Mainly electro-
static interactions cause the solvent shift of the first excitations while specific interactions are
important for the shift of the second excitations. [192]

Both solvent shifts are sensitive to the number of solvent molecules considered in the theo-
retical treatments. Aguilar and coworkers found that the first solvation shell accounts only for
about 35% of the first solvent shift. [193] The second excitation is even more sensitive in this
regard and a number of studies confirmed that the shift converges slowly with the number of
water molecules. [192, 194] It has been found by Mata [195] that up to fifty water molecules
have to be included in the QM system in order to obtain converged results with about —0.56 eV
with a many-body expansion based on EOM-CCSD. Canuto and coworkers carried out CIS(D)
calculations on clusters generated by MC simulations. They attempted to extrapolate the solvent
shift to the limit of a complete embedding and obtained a shift of —0.52 eV in good agreement
with the experimental results. [196]

In this work PMC simulations with 160 M steps at 298 K in the canonical ensemble com-
bined with TD-DFT have been carried out to study the first two excitations of propenal in gas
phase and aqueous solution. The B3LYP-D3 functional [17,20-22, 112-114] has been used
with the aug-cc-pVDZ basis set, [163] OPLS-AA vdW parameters [29-31] and the TIP3P wa-
ter model. [137] The obtained spectra is shown in Figure 6.2.

Computing the solvent shifts based upon the maxima of the peaks gives a value of 0.14 eV
for the first excitation. This confirms that the main interactions are of electrostatic nature which
are very well captured with the QM/MM approach and result only in a slight underestimation of
the shift compared to the experimental findings. This remaining deviation may be due to polar-
isation effects of the solvent or dynamic effects including solute as well as solvent molecules.
On the other hand, the red shift is strongly underestimated similar to previous studies with only
—0.12 eV. This result is comparable to the findings of the PCM study although the continuum
model captures different physical effects. Keeping in mind both the results from the continuum
model and from the QM/MM simulations can give further insight into the physics of the solvent
shift because they cover different solvent effects. Here it suggests that specific interactions as
well as polarisation effects are equally important and have to be treated on an equal footing in
order to obtain accurate results for this 7-7* and similar excitations.

Furthermore, PMC simulations pave the way to simulate complete electronic spectra in so-
lution and give information about the band shapes as well. In particular the asymmetry of the
n-m* band cannot be easily predicted without extensive sampling of the configuration space.
Furthermore, the configurations generated with the efficient PMC approach may serve as snap-
shots for more accurate methods. This is in the spirit of the sequential QM/MM approach but
with a higher level of theory already used for the sampling.
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FIGURE 6.2 Electronic excitations for propenal in TIP3P water computed on-the-fly with PMC
(B3LYP/aug-cc-pVDZ and OPLS-AA vdW parameters) simulations.

6.3 Applications in Binary Solvent Mixtures

In synthetic chemistry there is a considerable interest in solvent mixtures which may serve
as tunable reaction media. Many properties e.g. transport properties, the dielectric constant
or refractive indices can be conveniently adjusted simply by changing the composition of the
involved solvents. [197-200] Solutes immersed in such a media can be very sensitive to the
composition as in the case of bis-triazinyl-pyridine which has different equilibrium conforma-
tions depending on the methanol/water mixture. [201] Finally, interfaces formed between water
and organic solvents show intriguing catalytic effects due to the very specific environment of
dangling hydrogen bonds at the interface. [202] Simulations allow to study solvent mixtures
and reveal the molecular mechanisms of the aforementioned phenomena which are difficult to
be investigated experimentally. However, the long time scales on the order of nanoseconds of
the diffusion controlled mixing processes pose their own challenge for any theoretical simula-
tion. This issue will be addressed in the following Section by a specialised sampling procedure.
Thereupon, this procedure will be applied to study the influence of binary solvent mixtures on

electronic excitations.

6.3.1 Sampling of the Conformational Space

Based on a simple benchmark system I will investigate the mixing process of a binary sol-
vent mixture by increasing stepwise the complexity of the system. All the following simulations
have been carried out with a temperature of 298 K. The first system under consideration will be
a Lennard-Jones (LJ) liquid. For simplicity I will start with a system of 400 physically identical
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FIGURE 6.3 Simulations with conventional Metropolis MC and swap moves analyzed every 10 k steps.
The number of particles in one half of the system n, /5 is measured.

particles. However, the label A will be assigned to one half of the particles and B to the other.
This allows measuring the mixing process between the particles A and B simply by counting
the number of particles in each half of the simulation cell n; /o. The process is only controlled

by the diffusion because the particles A and B are identical and the free mixing energy is zero.

The MC approach allows — as opposed to MD simulations — introducing arbitrary steps
in order to generate new configurations. These steps do not have to correspond to any physical
process and only need to generate the correct ensemble. An obvious possibility is to use a MC
move that swaps a particle A with a particle B. In fact, moves that exchange two particles have
been used before usually in the context of low temperatures and therefore slow dynamics or in
systems with inherently slow dynamical processes e.g. glasses or supercooled liquids. [203—
205] In Figure 6.3a the standard protocol which includes only translation steps is compared with
a modified one that attempts to swap two different particles in every 10" step. For this particular
system the swap is not associated with any change in the total energy because all particles are
identical. Therefore any attempted swap is accepted and the system is mixed within the first
20 k steps. The standard protocol on the other side requires already about 10 M steps to reach
equilibrium for only 800 LJ particles.

However, the assumption of identical particles cannot be extended to binary solvent mix-
tures. Even if the involved molecules have a similar volume the interactions can be very differ-
ent considering water and organic solvents. Therefore, a more complex model of 1350 small LJ
particles and 500 ones which are twice as large will be investigated. Conventional and swap-
ping moves of a small with a large particle are compared in Figure 6.3b. Only a very minor
improvement due to the swaps can be seen in the beginning of the simulation after which the
swaps do not have any influence. This can be easily understood because only 0.005 % of the at-
tempted swaps are accepted at all. While a smaller particle fits well into the cavity of the larger
particle, the larger one rarely fits into the cavity of the small one. Every swap is combined with

a large increase in the potential energy and is therefore rejected.

One way to improve the protocol may be to swap one large particle with two smaller ones.
However, this approach still requires that the volume of the large particle is a multiple of the
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smaller one and is not generally applicable. Therefore, the low acceptance ratio will be ad-
dressed by introducing a bias. This biased MC method has been introduced first by Rosenbluth
and Rosenbluth [206] which used it to generate new conformations of polymers which are re-
jected as well with a high probability due to overlapping atoms. The generalised configurational
bias MC has been used to swap large particles with a number of smaller ones [207] and recently
to study phase equilibria in the Gibbs Ensemble. [208]

The bias is introduced by the following procedure. Trial configurations are generated for
the old configuration (before the swap) as well as for the new configuration (after the swap).
The trials are generated by randomly translating both particles while molecules would be also
rotated in this step. The weight of a configuration, denoted as the Rosenbluth weight, is defined
as

k
W(n) = _exp(-5V)) (6.6)
J
for k trials. Two random configurations are selected out of the new and old trials respectively
with the probability
exp (—FV,)
y = ——— " 6.7
p W (6.7)

Finally, this randomly selected new trial is accepted with the probability p(o — n)

plo—n)  Wi(n)

p<n N O) = W((O) exXp (_B(Vn - ‘/0)) (68)

which shows that the acceptance of the new configuration is proportional to the weight while
Equation 6.7 guarantees that energetically favourable trials are accepted with higher probability.
The trials help to sample the local partition function. If any trial in the new configuration is
energetically favourable the Rosenbluth weight and therefore the acceptance are increased. It is
important to keep in mind that only the acceptance is biased but the underlying transition matrix
and therefore the obtained distribution are not changed. The results are also independent of the
number of trials. Increasing the number of trials generates, however, a better estimate of the
local partition function. It is possible to use a different temperature which allows to accelerate
mixing processes or a simplified potential for the trials reducing the computational costs of
generating them.

In Figure 6.3b the results for a biased simulation are shown. Every 10 steps a biased swap
with 10 trials is attempted. This increases the acceptance of the swaps to 7.3 % and the system
converges in about 6 M steps to the equilibrium. The computational cost for a single trial
is similar to a conventional MC step. The simulation time is therefore increased and in this
case comparable to 11.4 M conventional steps. However, the convergence is still very much
accelerated. The devised sampling procedure will be used in the following Section for realistic
solvent applications.
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6.3.2 Nitroaniline

Nitroanilines are prototypical examples of so called push-pull chromophores. They are
composed of an electron-donating and -accepting groups connected by an aromatic system. The
three different isomers 2-nitroaniline (2-NA), 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA)
are shown in Figure 6.4. However, only for 2-NA and 4-NA the shown mesomeric structures
can be formulated where formally one electron is transferred from the amino group to the ni-
tro group. This has an influence on the first electronic excitation and it has been found that
the charge transfer character is considerably smaller for 3-NA. [209] Because the charge trans-
fer states — especially of 2-NA and 4-NA — are very sensitive to the environment they may
serve as probes for solute solvent interactions. Therefore, they received the attention from both
experimental [154] and theoretical groups. [210-214]

®
NH, ©NH2 . NH, NH, NH2
NO, 4N02
<>
NO,
NO, NOS

2-NA 3-NA 4-NA

FIGURE 6.4 Lewis structures of the three isomers of nitroaniline — 2-nitroaniline (2-NA), 3-nitroaniline
(3-NA) and 4-nitroaniline (4-NA) — and the mesomeric structures for 2-NA and 4-NA.

Two aspects will be investigated in the following. First, the solvent shift upon changing
from an apolar solvent i.e. cyclohexane to a slightly more polar one i.e. tetrahydrofuran. The
experimental shifts for 2-NA [215] and for 3-NA and 4-NA [216] are given in Table 6.2. Com-
putations have been carried out with TD-DFT with the B3LYP functional [17,20-22] and the
aug-cc-pVDZ basis set. [163] The solvent effect has been modelled with COSMO [50] with
¢(cyclohexan) = 2.02 and €(cyclohexan) = 7.43 and additionally with PMC simulations with
the TIP3P water model and updates of the density every 20 k steps. The simulations for 3-NA
and 4-NA have been carried out by Johannes Kircher during his bachelor thesis [217] under my
supervision.

The COSMO approach reproduces qualitatively the correct trend for 2-NA and 3-NA al-
though both shifts are underestimated by about 0.08 eV. Furthermore, the shift of 4-NA is pre-

TABLE 6.2 The solvent shifts in eV upon changing from cyclohexane to tetrahydrofuran from experiments
(2-NA, [215] 3-NA and 4-NA [216]), COSMO (B3LYP/aug-cc-pVDZ) and PMC (B3LYP/aug-cc-pVDZ
and OPLS-AA vdW parameters) calculations.

Isomer Experimental COSMO PMC
2-NA —0.18 —-0.10  0.01
3-NA —0.31 —0.23 —0.46
4-NA —0.59 0.04  0.03
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dicted close to zero although experimentally this shift is the largest one. The PMC simulations
describes the isomers with larger charge transfer character (2-NA and 4-NA) qualitatively wrong
and predicts shifts close to zero. However, the shift of 3-NA is estimated at about —0.46 and
overestimates even the experimental value. Especially for the charge transfer states inductive
effects of the solvent are important which can only be captured by a polarisable force field.
However, the drastic failure of both continuum model and QM/MM scheme including PMC
suggest an underlying problem in the computational approach. It has been argued that TD-DFT
even with the improved CAM-B3LYP functional fails for charge transfer states of 4-NA. The
reason lies in the overestimation of the charge separation in the ground state and at the same
time an underestimation in the excited state which is related to the response of TD-DFT to the
polarisable embedding. [214]

Second, the preferential solvation for the solvent mixtures of cyclohexane and tetrahydro-
furan have been studied. In an ideal solvent the dielectric constant of the mixture is given as a
linear combination of the dielectric constant of the pure solvents weighted by the mole fractions.
If the main interaction between the solute and the solvent can be described as the interaction of a
dipole with a homogeneous continuum then the solvent shift should be linear with the mole frac-
tion. However, even in ideal solvent mixtures non-linear effects are caused by the preferential

solvation.

It has been suggested that a general mechanism independent of solute and solvent is one
reason for the preferential solvation which is termed dielectric enrichment. Due to the differ-
ent polarity of the solvents one of them prefers to interact with the solute. This stabilisation
is balanced by an accompanying loss in the entropy of mixing of the solvents. [215,218,219]
However, this explains only part of the physics. It has been found that if specific interactions
between the solute and solvent are present they usually tend to dominate the preferential sol-
vation. These interactions can include for example hydrogen bonds or electron donor-acceptor

interactions. [215]

Explicit solvent models are in principle capable of describing these interactions and homo-
geneous environments that may occur in the solvent mixtures. Therefore, the solvent mixtures
have been analysed as well with PMC simulations with B3LYP/aug-cc-pVDZ and OPLS-AA
vdW parameters and the obtained results are shown in Figure 6.5. The edge length of the box
ranges from 49.15 A with 680 molecules cyclohexane to 46.98 A with 745 molecules tetrahy-
drofuran. 3-NA is most relevant in this case because it has the largest shift as predicted by the
simulations. One can see the effect of the preferential solvation when the shift deviates by about
0.1 eV from the linear shift. Interestingly, a saturation effect can be observed when the mole
fraction of tetrahydrofuran is increased even further. This can be understood in terms of the
potential interaction sites of 3-NA. Mostly the polar amino and nitro group can interact with
tetrahydrofuran and only a limited number of solvent molecules can coordinate at these groups.
If the number of polar solvent molecules is increased even further only a slight effect on the
shift is observed. If the complete environment is replaced by the more polar solvent one can
observe a slightly increased shift due to the long-range electrostatic interactions which have a

small influence but accumulate for many solvent molecules.
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FIGURE 6.5 The PMC (B3LYP/aug-cc-pVDZ) computed solvent shifts in the binary solvent mixture
of cyclohexane and tetrahydrofuran of 2-nitroaniline with experimental results [215] (top left), 3-
nitroaniline (top right) and 4-nitroaniline (bottom). The dashed lines denote the experimental shift for
x(THF)=1. For 3-NA the linear shift has been plotted as well with the continuous black line.
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These results show that the devised sampling protocol can be used to describe electronic
excitations in solvent mixtures. The largest limitation is certainly a static partial charge force
field which does not capture important inductive effects for charge transfer states. Furthermore,
the electronic structure might be insufficiently described by the TD-DFT method. The PMC
simulations allow using more accurate and costly QM methods because of the efficient protocol
that reduces the actual number of electronic structure calculations that have to be carried out.
An interface for the EOM-CCSD level has been implemented which will be used to explore this

aspect in future studies.
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CHAPTER 7

Differential Solvation Effect of the

Uracil Base

A Deoxyribonucleic Acid (DNA) molecule in its most typical form consists of two single
strands which are coiled around each other forming a double helix. The basic units are the
nucleotides which consist of a sugar, denoted deoxyribose, a phosphate group and one of four
nucleobases. The nucleobases Guanine (G), Adenine (A), Thymine (T) and Cytosine (C) are
shown in Figure 7.1. The helical structure of the DNA is maintained by the pairing of comple-
mentary nucleobases into the well-known Watson-Crick base pairs (see Figure 7.2). Hydrogen
bonds comprise the main interaction between the nucleobases of different strands and control

therefore the correct pairing between the nucleobases A-T and G-C.

The replication of a DNA molecule is illustrated in Figure 7.3. A plethora of enzymes is
involved in this process. First the double helix is unwound by a helicase and topoisomerase.
For each single strand a DNA polymerase creates the complementary sequence through com-
plementary base pairing. That means the old strand determines the sequence of the new strand.
Finally, a DNA ligase combines the separate fragments that have been created by the poly-

merase.

Ribonucleic Acid (RNA), which is closely related to DNA, contains Uracil (U) instead of
T. In position 5 Uracil has a hydrogen instead of the methyl group that is found in thymine.
However, because U and T are very similar U can be selected during the DNA replication

process instead of the correct T. Thereby, it will be incorporated into the DNA sequence which is

NH, o NH,
N N X BN
NH ~N NH N
¢ ¢ | ﬁ
P
AL, S LG LA
G A T:X=CH3 C
U: X=H
BrU: X=Br

FIGURE 7.1 Lewis structures of the nucleobases guanine (G), adenine (A), thymine (T) or uracil (U) and
cytosine (C).
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FIGURE 7.2 Lewis structures of the Watson-Crick base pairs as occurring in DNA with the backbone
indicated by R. Hydrogen bonds are shown in dashed lines.
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FIGURE 7.3 Schematic representation of the replication of DNA. This work has been created by Mariana
Ruiz. [220]
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one of the simplest modifications that can occur as confirmed by experimental studies. [221,222]
This does not disturb the structure of the DNA. In fact, bacteriophages exist which have DNA
that contains only U instead of T. [223] This mismatch is of special interest for this study because
instead of U also its brominated species 5-Bromouracil (BrU) can be incorporated which may
ultimately alter the sequence of the DNA.

It has been first suggested by Watson and Crick [224] that mutations of the DNA strand could
be caused by rare tautomeric forms of the nucleobases. The probability for these imino or enol
tautomers — estimated to be about ~ 0.01% — is very low but they could be essential for muta-
genic properties of certain nucleobases. Recent experimental findings confirm based on X-ray
crystal structures the rare tautomer hypothesis. [225] In this context halogenated nucleobases,
which exhibit mutagenic properties, have received considerable attention leading to a number
of experimental findings. 5-Chlorouracil, which is mutagenic, and also BrU — a well-known
mutagenic agent [226] — are biologically very relevant and can actually be generated in human
cells. Inflammatory conditions can lead to the production of hypochloric or hypobromic acid
which can in turn attack the DNA double helix and finally lead to the formation of halogenated
Uracil. Certain peroxidases can also form nitryl chloride which can chlorinate nucleotides as
well. [227] The fluorinated species has been suggested to have mutagenic properties but recent
experimental studies show no measurable effect. [228] Nevertheless, very little is known about
the origin of the mutagenic properties and the exact mechanism leading to point mutations of
the DNA.

The focus of this study will be on BrU which has been studied experimentally and theoret-
ically more than any other halogenated uracil. Different models (ionisation model, tautomeri-
sation model, wobble model) have been proposed in order to explain the mechanism of the
mutagenic action. [229-232] However, the experimental evidence is ambiguous and the the-
oretical studies are contradictory at best. It is in most cases assumed that a certain unknown
activation mechanism transforms U when the DNA is a single strand which in turn leads to the
mismatch in the complementary base pairing as illustrated in Figure 7.4. These proposed mod-
els will be investigated using PMC simulations and described in more detail in the following

Sections.
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FIGURE 7.4 Schematic representation of the assumed mechanism that leads to point mutations during the
DNA replication. Each branching represents a DNA replication and the activated enol Uol is one of the
intermediates shown in Figure 7.5.

7.1 Computational Details

Theoretical studies of the photoionisation of DNA show that the aqueous environment very
efficiently screens the stacking interactions between nucleotides. Therefore, nucleotides can be
treated separately and depend only weakly on the particular DNA sequence. [233] However,
local electrostatic interactions in DNA polymerases have been suggested to influence the oc-
currence of rare tautomers [225] and that the isolated treatment of a base pair in solution might
neglect important effects of the environment. In this Chapter all QM calculations have been
carried out with B3LYP-D3/def2-SVP [17,20-22,111-114] in combination with COSMO [41]
(e = 80.0). Furthermore PMC simulations have been carried out with B3LYP-D3/def2-SVP
in combination with the TIP3P water force field. [137] The Lennard-Jones parameters for the
solute have been taken from the OPLS-AA force field. [29, 30] The simulations have been car-
ried out with a temperature of 298 K and a box of 3243 water molecules with an edge length of
about 46 A.

As a correction for the rigid solutes used in the PMC simulations thermodynamic corrections
have been derived from the partition function using the rigid rotor/harmonic oscillator/ideal
gas approximation. The solute geometries for the PMC simulations have been taken from the
COSMO optimizations. All frequencies have been considered for the computation of thermo-
dynamic frequencies. This could cause generally a significant error but in this case only the
differential thermal corrections from gas phase to solution are of interest. Therefore, this is a
good approximation since even the relative geometry relaxation effect from gas phase to so-
lution is only about 0.2 kcal/mol. [234] Finally, the difference between the continuum and the
explicit solvent is expected to have an even smaller effect on the thermal corrections and is
negligible.

All nucleobases are methylated in the 1-position in order to model the influence of the DNA
backbone. The works by Hobza [232] and Tsukamoto [229,235] and their respective coworkers
use a hydrogen instead of a methyl group. However, the comparison shows that this influences

the results very little.
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FIGURE 7.5 Top: Lewis structures of the intermediates corresponding to the ionisation (U™), tautomeri-
sation (Uol) as well as U and G with hydrogen bond donor and acceptor capabilities indicated by arrows.
Bottom: The resulting base pairs.

7.2 lonisation Model

The first of the investigated models is the ionisation model which proposes that uracil is de-
protonated at the nitrogen in 3-position leading to U~. This changes the donating NH hydrogen
bond site to an accepting one (N) while the oxygen in 4-position becomes formally negatively
charged. The resulting Lewis structure is shown in Figure 7.5. Experimental results confirm
that the acidity of BrU is increased with a pK, of 7.84 + 0.03 compared to 9.71 for U. [236]
However, theoretical gas phase calculations suggest that the pairs U™-G and BrU~-G prefer a
twisted conformation with propeller twist and buckle angles of about 43°and 5-13°. [237] Only
two instead of three hydrogen bonds can be formed and the two unpaired donating sites are
repelling each other. This makes the planar conformation — which would be enforced in the

DNA helix — energetically even less favourable.

The acidity of U and BrU has been investigated with PMC simulations. Hydrogen bonds
are of large importance for the structures and an explicit description of the solvent is neces-
sary. However, the charge of the deprotonated species is especially challenging for QM/MM
approaches with force fields that do not include any explicit polarisation terms. Therefore, this
poses an interesting challenge for our implementation of the PMC approach. The pK, values
can be derived from the free solvation energies of the involved species considering the ther-

modynamic cycle shown in Figure 7.6. For U — and on the same way for BrU — the free

aq

dissociation energy in solution AGy.(U) can be computed from the free solvation energies

AGs,, and the dissociation in gas phase

AGE (U) = —AGy(U) + AGE (U) + AGso(U7) + AGso(HT). (7.1)

diss diss

This allows the direct computation of the pK, values
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FIGURE 7.6 Thermodynamic cycle with dissociation and solvation energies. Square brackets denote a
system in aqueous solution.

pK, = AGEL

diss

(In(10)RT). (7.2)

However, the computation of the free solvation energy of a proton is challenging and the asso-
ciated uncertainty may be so large that even qualitative conclusions cannot be drawn. Using an
experimental value of —1105 kJ/mol [238] leads to the values of —2.1 and —7.4 for U and BrU,
respectively. This allows qualitative conclusions and shows that the acidity is clearly increased
for the brominated species. However, this difficulty can be avoided altogether by computing
the change of the Ap K, upon going from U to BrU which is given by

AGH

diss

(BrU) — AGY;

diss

( ) = _AGSOIV( ) + AGsolv<U)
_'_AGdlss( ) AGgp (U

diss

) (7.3)
+AGsolv( I‘Ui) AGsolv<lj )

The free energy term AGj,, (H') does not have to be computed at all with this approach and no
experimental values are required. The obtained ApK, is —5.3 which is about two times larger
than the experimental value of —2. The results are in qualitative agreement but the acidity is
overestimated with the QM/MM approach. This may be caused by the description of the solvent
with fixed partial charges. Especially for the charged species U~ and BrU~ polarisation effects
will become more relevant and they are insufficiently captured by the average polarisation of the
effective potential. Furthermore, one can only partly benefit from error cancellation because the
error is larger in the charged species. The deviation in the ApK, value from the experimental
value is equivalent to an overestimation of the dissociation energy of 4.5 kcal/mol.

The base pairing between the ionised forms and G has been revisited under consideration
of solvent effects with COSMO. It has been confirmed that the twisted confirmation is still the
minimum. The propeller-twist and the buckle angles are —41° and 14° respectively with the
definition of the angles given in Figure 7.7. For BrU™-G the angles are —48.2° and 16°. This
agrees qualitatively with the gas phase studies, although the propeller-twist angle is slightly
larger for BrU and the buckle angle is larger for both bases by about 10°.

A relaxed surface scan of the dihedral angle shown in Figure 7.7 reveals that the barrier to the
planar transition state is only about 1.2 kcal/mol for both U™-G and BrU~-G. The bromine atom
does not influence the potential. The base pairs have to be forced into a planar conformation in
a DNA helix but the energetic penalty is very low. Furthermore, experimentally propeller-twist
angles of about 25° are known for A-T base pairs [239] and for example the protein L7Ae [240]
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FIGURE 7.7 Top: Definition of the dihedral angle with the involved atoms marked in green. Bottom:
Potential energy computed with B3LYP-D3/def2-SVP and COSMO (¢ = 80.0) as a function of the
dihedral angle for the U™-G and BrU™-G base pairs.

includes the non-canonical base pair A-G with a buckle angle of about 33°. This suggest that the
occurrence of the (Br)U~-G pair might be sensitive to the DNA context. Suitable neighbouring

base pairs could alleviate the energetic penalty of the large propeller-twist and buckle angles.

7.3 Tautomerisation Model

The tautomerisation model assumes that a non-negligible amount of the keto-enol form of
U (Uol, see Figure 7.5) is present in the equilibrium between the diketon U and Uol. The keto-
enol form matches very well with G forming all three hydrogen bonds and is therefore the ideal
analogue to C.

An exact experimental determination of the tautomerisation equilibrium constants K, is
difficult because one of the tautomers dominates greatly. The method of choice is in that case

the basicity method which determines the ratio of the acid constants of species (1) and (3) as
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FIGURE 7.8 Schematic representation of the experimental approach to determine the ration of the tau-
tomers of uracil.

shown in Figure 7.8. Assuming that the influence of the methyl groups is negligible the ratio of
the tautomers of U is approximately equal to the ratio of the acid constants. For weakly basic
amines one can define the concentration of the free base A and the conjugate acid HA* as a

function of the Hammett H, constant

[A]
[HAJ*

log = Hj + constant (7.4)

which leads to values for K, 0of 1.0 - 10~*and 5.0 - 10~ for U and BrU respectively. Another

approach is to plot log [H[ﬁ + against Hy — which should be close to linear — and choose an H,

in the middle between the two p K, values. This gives the values 5.0 - 10~% and 2.0 - 1072 for
U and BrU respectively. [236] These analyses agree that the amount of keto-enol is increased
for the brominated species even if still very low.

Most theoretical results agree with the finding that the diketo form is energetically much
more stable. However, the difference between U and BrU is very much under debate. Gas
phase and PCM computations show no difference at all, [231, 232] classical simulations hint
at an increased tautomerisation of U [234] and QM cluster calculations with 50 and 100 water
molecules show a very strong preference for the keto-enol form in BrU. [229, 235] Microsolva-
tion studies with 1-2 water molecules reveal a sensitivity of the equilibrium to the position of the
water molecule. [231] Furthermore, the presence of sodium ions which are relevant in biolog-
ical environments might have a significant influence on the equilibrium. [230] Unfortunately,
we did not investigate this aspect in this work.

It becomes clear that the description of solvent effects is crucial for this step. Microsolva-
tion studies are strongly biased because the position of the water molecules is chosen manually.
Continuum models lack the explicit solvent structure description, which is especially crucial
for hydrogen bonds, and entropic effects are not very well described. QM cluster models are
the most accurate approach in describing the electronic structure but miss completely any sam-
pling of the configuration space while classical simulations are at the other end of the spectrum
with sufficient sampling but empirical potential energy functions. An investigation with PMC
simulations of the tautomerisation model combines the sampling at a rather high level of theory
with an explicit description of solvent molecules.

The tautomerisation in aqueous solution has been studied by PMC simulations. A thermo-

dynamic cycle (Figure 7.9) — similar to the cycle shown in the ionisation model — has been
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FIGURE 7.9 Thermodynamic cycle with tautomerisation and solvation free energies. Square brackets
denote a system in aqueous solution.

used leading to the computation of free solvation energies as well as the tautomerisation in gas
phase. The determining factor for the reactivity in solution is the difference between the free
solvation energies of reactant U and product Uol. The results are summarised in comparison

with theoretical studies from the literature in Table 7.1.

The gas phase results show that the free tautomerisation energies are rather insensitive to the
QM description. HF in comparison with QCISD(T) shows an error of about 3 kcal/mol which
can be attributed to correlation. However, even HF reproduces correctly the energetic ordering
— the difference between U and BrU. This ordering is consistent for all methods employed and
is about 0.5—0.7 kcal/mol except for QCISD with only 0.3 kcal/mol. All these calculations un-
derestimate the difference as confirmed by LCCSD(T) [241] calculations with basis set extrapo-
lation to the complete basis set limit from aug-cc-pVTZ and aug-cc-pVQZ basis sets. [163,242]
This results in a difference of about 0.9 kcal/mol. The deviation of the QCISD results can be
understood in terms of the remaining finite basis set effect and the geometries that have been
only optimised with HF. The DFT approach with the functional B3LYP and D3 dispersion cor-
rections used in this work is a good compromise between accuracy and computational costs for
the simulations. The functional gives an accurate description of the electron density which is
decisive for the interactions between the solute and solvent in the simulations. The results from
the PMC simulations can be combined with the coupled cluster gas phase results which show
overall the smallest deviation from the experimental results for the absolute values. However,
the preference of BrU over U is little influenced by the gas phase results and solvent effects

dominate the difference between U and BrU.

The determining difference between the studies in solution is the treatment of the solvent
effects. In this case the experimental results, which predict a stabilisation of about 1-2 kcal/mol
of BrUol compared to Uol, are the reference for any theoretical study. The continuum model
stabilises slightly the keto-enol form but it does not distinguish between U and BrU emphasizing
again that the explicit description of the solvent is necessary. The force field-based simulations
predict even a destabilisation of the brominated species which shows on the other hand that
the QM description of the solute is fundamental in this particular case to obtain accurate free
solvation energies. This is in agreement with the findings of the hydrogen bonding in the case
of methylchloride in Section 5.2 where it has been found that the classical simulations cannot
reproduce the hydrogen bond between the halogen and water. Therefore, only the PMC and QM

cluster model computations predict indeed an energetic order in agreement with the experiment.
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TABLE 7.1 Free tautomerisation energy in gas phase and solution kcal/mol and Ky = I[(E?gi] The
gas phase calculations from the work of Luque and coworkers [234] used the 6-311+G(d,p) basis set
and HF/6-311+G(d,p) optimized geometries. For the PMC (B3LYP-D3/def2-SVP and OPLS-AA vdW

parameters) simulations the level of theory for the gas phase reaction is specified in the Table.

AGtaut Ktaut
U BrU U BrU
Gas Phase B3LYP-D3 12.7 13.2 5.0-1071% 211071
HF [234] 13.7 14.3 9.0-107* 3.3-107
MP?2 [234] 10.5 11.2 20-107% 6.1-107°
MP4(SDTQ) [234] 112 11.8 6.1-107° 22-107°
QCISD [234] 11.5 11.8 3.7-107° 22-107°
QCISD(T) [234] 10.9 - 1.0-107% -
LCCSD(T)/CBS[3,4] 9.6 10.5 9.0-107% 2.1-10°8
Solution =~ COSMO 11.8 11.8 23.107° 2.1-107°
PMC + B3LYP-D3 109 9.2 99-107% 9.2-1077
PMC + LCCSD(T)/CBS[3,4] 78 6.5 1.8-107% 1.8-107°
MM MC [234] 9.8 11.0 6.5-10% 86-107°
Cluster Model [229] 9.3 —45 1.5-1007 1.9-10%3

5.5 4.5 1.0-107* 5.0-107*

Experiment [236]
P 45 2.3 5.0-107% 2.0-1072

However, the cluster model results overestimate strongly the stability of BrUol by predicting
even the keto-enol form as preferred over the diketo form. While the cluster model is the most
accurate approach to compute the interactions it uses a single optimised geometry. This neglects
temperature and ensemble effects and the results cannot be directly compared to experimental
values. Interestingly, it shows that for a certain solvent configuration the equilibrium is shifted
strongly towards the enol. However, sufficient sampling, explicit solvent and a reasonable
high-level QM description have to be combined to obtain quantitative results. Nevertheless,
the computation of absolute equilibrium constants remains challenging and the error is about
two to three orders of magnitude. Due to the constants depending exponentially on the free
energy even the smallest deviations have a large influence on the final result. Nevertheless,
the PMC simulations combined with the best gas phase results predict indeed a stabilisation of

1.3 kcal/mol which is in good agreement with the experimental findings.

7.4 Wobble Model

Opposed to the above presented models, the wobble model proposes not a direct trans-
formation of U but rather a different binding mode of U with G (see Figure 7.5). If U just
changes slightly its geometry inside the double helix two of the hydrogen bond sites can pair
with G and form a mismatching pair. Experimentally these pairs have been observed in RNA
molecules. [243, 244] In DNA a pH dependent equilibrium between the wobble pair and the
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TABLE 7.2 Interaction energies computed with B3LYP-D3/def2-SVP and COSMO (e = 80) in kcal/mol.

Dimer H Br
U-G(Wobble) —-13.1 —13.3
Uol-G —23.4 —-23.3
U~ -G(twisted) —-17.1 —-16.1
U~-G(planar) —-15.9 —-15.0
C-G —20.8

ionic pair has been found for BrU as well as the fluorinated species. [245, 246] However, it
has been suggested that the possibility to wobble is intrinsic to U and does not depend on the
halogen. [235] This is in agreement with the experimental findings.

Interaction energies have been computed for the wobble pair and the pairs of the ionisation
and tautomerisation model as well as the canonical C-G pair to establish a reference. Comparing
the interaction energies of the different models the Uol-G pair shows the largest interaction
energy, even larger than the one of the canonical pair C-G by about 2.5 kcal/mol. The other
mismatched pairs show lower interaction energies up to 8 kcal/mol. The wobble model with
the mismatched U-G pair has as expected the weakest interaction. However, all of them form
stable dimers compared to the separated monomers. Furthermore, if Uol is present it will form
a stable dimer with G and will not be replaced by the canonical base C. The overall shape of
the dimer has been experimentally excluded as the decisive factor. Different sites have been
identified in DNA polymerases which recognise mismatched pairs. However, these do not
recognise the mismatch by the shape but through specific interactions. [225]

A comparison between U and BrU reveals that the strength of the base pair interaction
does not depend on the bromine atom in 5-position. This excludes the wobble model as a
possible pathway leading to mutations. Interestingly, also the other models show little difference
between U and BrU. This strongly suggests a separate activation step before the actual base
pairing as in the ionisation and tautomerisation model.

Finally, it has been found that U and BrU behave differently in the triplet state and that this
might be the reason for the mutagenic properties. [117] However, the mutation reaction requires

no light or radiation and the involvement of excited states is rather unlikely. [235]

7.5 Deactivation Pathways

In the theoretical study by Hu and coworkers [231] a deactivation mechanism has been sug-
gested which might explain the different mutagenic properties of U and BrU. It has been found
that the mismatching pair G-Uol may react to Gol-U by a simple proton transfer reaction as
shown in Figure 7.10. This reaction followed by another DNA replication step would in the
end result only in the original base pair A-T. This pathway is represented schematically in Fig-
ure 7.11. It had been found that for both U and the bromated species the reaction is without
barrier. However, for U the free reaction energy is —5 kcal/mol while it is about 0 kcal/mol for
BrU. This means that the equilibrium is strongly shifted towards the deactivated species for U
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FIGURE 7.10 Lewis structure of the deactivation step from G-Uol to Gol-U.
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FIGURE 7.11 Schematic representation of the proposed deactivation mechanism. Each branching repre-
sents a DNA replication.

but that the bromated species follows only by about 50% the deactivation pathway. Neverthe-
less, the theoretical studies had been carried out only at the HF/STO-3G level of theory in gas
phase so that another look at these reactions is warranted.

Two-dimensional surface scans have been carried out with B3LYP-D3/def2-SVP [17, 20—
22,111-114] with the CPCM model (¢ = 80). The coordinates of the scan denote the O-H bond
of the Uol that is broken and the N-H bond of G which is formed. The resulting contour plot
is shown in Figure 7.12 with the reaction proceeding from the bottom right corner to the top
left corner following the minimum energy path. Looking at the free reaction energies they are
about 0 kcal/mol for both species. This stands in contrast to the previous results which is due
to the higher accuracy of the QM method. However, it also does not show any preference for
the deactivation of either species. On the other hand, the reaction barriers are about 6 kcal/mol
and 5 kcal/mol for Uol-G and BrUol-G, respectively. This shows a slight preference for the
deactivation of BrUol-G assuming the reaction is kinetically controlled. Furthermore, one can
notice that the reaction of the BrUol-G system proceeds through a very shallow intermediate
state at about d(NH) = 1.63 A and d(OH) = 1.39 A which is not present for Uol-G. This means
that BrUol-G is in equilibrium with this energetically very close intermediate and consequently
is more likely to follow from the deactivation pathway over the lower and less wide barrier.

Our findings of the deactivation pathway under consideration of correlation effects by DFT
with the B3LYP functional and D3 dispersion corrections hint at the possibility of a preferred
deactivation for the bromated species. However, our findings suggest a kinetic control of the re-
action rather then a strong thermodynamic preference. Therefore, these findings hint at another

factor which contributes to the difference in the mutagenic properties of U and BrU.
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FIGURE 7.12 The potential energy surface computed with B3LYP-D3/def2-SVP and COSMO (e = 80)
for the proton transfer between Uol and G (left) and BrUol and G (right). The colour scale is in kcal/mol.
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CHAPTER 8

Summary and Future Work

In this thesis a new method for simulations in condensed phase has been brought forward.
The PMC is a hybrid QM/MM approach describing the system of interest with the high accuracy
of QM methods and the environment with an explicit representation and the low computational
cost of MM methods. The key step has been to apply first order perturbation theory to reduce
the costs of the energy calculations during the MC simulations. This allows exploring the con-
figuration space at the QM/MM level and goes thereby beyond the accuracy of commonly used
sequential QM/MM approaches. It has been demonstrated that PMC allows to study chemistry
in solution and aspects have been identified where the description of the physics by this ap-
proach is not sufficient. However, chemistry in solution is an active field of research in the
computational chemistry community and the PMC method is a good starting point for further

developments. Some of these possibilities will be considered in the following text.

The choice of the reference wave function for the perturbation theory makes our approach
more efficient than alternative developments. [87, 88] The convergence of the wave function
with embedding allows to restrict the perturbation to first order because the perturbation due to
a MC move can be treated accurately. Further work in this direction should explore alternative
reference wave functions. It might be advantageous to use a reference from a continuum calcu-
lation which takes the solvent through the average description of the continuum into account.
Therefore, it might be possible to avoid the updates of the wave function altogether because
the wave function is already polarised for solution but not biased towards a certain solvent con-
figuration. Another way would be to construct the ASEP on the fly and use this to compute
the wave function. This goes one step further than the continuum model because the explicit

solvent representation is considered.

Furthermore, a specialised procedure for simulations under PBC conditions has been pre-
sented. Avoiding the computational costs and problems of the Ewald summation, the direct
summation with a shifted force operator has been proposed. This requires the numerical in-
tegration of the electrostatic interaction between the QM and MM system. However, a very
efficient implementation utilising the computing power of GPUs has been developed which
benefits from the simple energy expressions and the high data parallelism. There remains space
for improvement because of inefficiencies on the GPU due to branch divergence. This occurs
because of the cut-off of the long-range interactions. Particles that are within the cut-off and

particles that are too distant from each other are computed at the same time. Using a grid or-
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dered according to the coordinates would already reduce this problem. Additionally, separating
the grid into cells based on a neighbour list as they are commonly used in large scale simulations

would allow to reduce the computational costs as well. [247]

The parameters of the proposed approach have been thoroughly tested and guidelines have
been devised for future applications. The number of updates allows to balance between accuracy
and computational costs. These show a dependence on the solute and the solvent and can be
drastically reduced or increased as required. For example, in apolar solvents only few updates
are required while in water with its strong hydrogen bonding interactions more updates have
to be carried out. Further developments can replace this static and empirical criteria with a
dynamic approach in order to reduce the computational costs without sacrificing accuracy. A
first way would be a simple geometric or distance based criteria. Another possibility would be
to evaluate the deviation from the exact energy on the fly and increase or decrease the number

of updates as required.

Furthermore, the accuracy of the numerical integration has been evaluated which is used
to compute the electrostatic interaction between the QM and MM system in the perturbation
steps. It has been found that the integration can be well converged towards the exact solution
by increasing the number of grid points. The large amount of grid points does not slow down
the simulations significantly because the architecture of graphics cards is well suited for this

purpose.

Benchmark calculations computing free solvation energies have been presented. These con-
firmed that the physics of solute-solvent interactions is well captured by our PMC method.
However, the results also raised concerns regarding the compatibility of classical force fields
with QM methods. Especially the simulations in chloroform showed a strong dependence on
the force field. This issue has been confirmed when studying the influence of different classical
water models on the solvent structure. Improving a force field for purely classical simulations
is not necessarily accompanied by an improvement in QM/MM calculations. The TIPSP water
model should clearly be avoided in this context because of the charge sites without repulsive
vdW interactions that become embedded in the electronic density. Furthermore, the correct
definition of vdW parameters during reactions is not clear. While the overall change of free
energy is independent of this choice, the shape of the reaction barrier depends clearly on it.
Conventionally, a simple linear interpolation is used for reactions. This shows that force fields

have to be developed with the explicit focus on the use in QM/MM schemes.

The computation of electronic spectra in solution is a very challenging task. However,
it has been shown that the PMC approach in combination with TD-DFT can give valuable
insight into the physics of solvent shifts. However, given certain types of excitations (e.g.
charge transfer) the current approach shows severe restrictions. On one hand, the description
of the solvent without considering more than the average effect of the polarisation can lead
to large errors in absolute excitation energies as well as solvent shifts. On the other hand,
TD-DFT lacks the required accuracy for charge transfer excitations in the context of embedding
methods. To improve the former different ways can be pursued in future work to account for

polarisation based developments allowing for a rapid evaluation of polarisation effects in MC
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simulations [248-250] or based on generalised polarisabilities. [88] To overcome the limits of
TD-DFT more accurate methods may be used in future applications which is facilitated by the
reduced number of QM calculations needed in the PMC approach.

Additionally, it has been shown recently that especially for emission spectra the effect of the
geometry optimisation is very important. [251] While quantum MC methods emerge with recent
advances in the evaluation of forces as the most accurate method for the optimisation of excited
state geometries even for larger systems, [252,253] solvent effects have been considered mostly
with continuum models in this context. Geometry optimisations in PMC could be carried out
in different ways. First, the ASEP can be evaluated and the geometry can be optimised in the
usual self-consistent way. Second, the averages of the forces can be evaluated directly from
the simulations followed by an optimisation step. The influence of these approaches on the
geometries has to be assessed in future work. In a completely different approach one would
simply sample the degrees of freedom of the QM system as well and avoid the problem of the
rigid geometry altogether. This would give access to vibrational properties of the solute under
consideration of solvent effects.

The application of the PMC approach to binary solvent mixtures showed the potential of
improved MC moves. Also for pure solvents more efficient MC moves can be devised. [254—
256] Furthermore, not only the generation of the configurations can be improved but also the
formulation of the observables itself. The zero-variance principle allows deriving renormalised
observables with greatly reduced variance. [257] This means that less MC steps are required to
obtain the same statistical accuracy.

Finally, the application of the PMC approach in order to understand the processes that may
damage the DNA showed the value of this newly developed approach. Especially in biochem-
istry solvent effects are ubiquitous and efficient and accurate methods need to be developed in
order to deepen our understanding of these complex systems. This thesis contributes towards
this and will certainly help in future applications to understand the complex interplay of inter-

actions in solution.
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