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1 Abstract 
Relationships between organisms in the soil are very important to control the equilibrium of an 

ecosystem. Many factors and conditions play a crucial role for the development and functioning of 

decomposers and predators, i.e., plant species richness have an effect on soil biota, increasing the 

diversity of organisms. During recent years, fatty acid (FA) analysis has become a very useful tool to 

reveal food webs and feeding preferences of different organisms. The present study took place in the 

framework of the “Jena Experiment”, located in the floodplain of the Saale River near the city of Jena, 

Thuringia, Germany. Animal samples were collected from 76 plots with different plant diversity levels: 

1, 2, 4, 8 and 16 and different functional groups: grasses, legumes, small herbs and tall herbs. Soil 

animals were extracted by heat, collected in diluted glycerol and transferred into 70% ethanol for 

storage under room temperature. The most abundant decomposers were: Allolobophora chlorotica and 

Aporrectodea caliginosa, while the most abundant predators were: Geophilus flavus, Lithobius microps, 

Amara aenea and Aleocharinae beetles. Neutral lipid fatty acids (NLFAs) were used to test if plant 

species richness affect the presence and amount of FAs in the animals and to expose their feeding 

habitats and preferences in the field. Results indicated that plant species richness has no effect on FA 

patterns in decomposers and predators, being the presence and amount of FAs only influenced by the 

species itself. Although, more species and more individuals were found in plots with more plant species 

richness, the results were not statistically significant. The presence of bacteria, fungi and plant markers 

in the FA composition of the decomposers and predators suggests trophic transfer and incorporation of 

intact soil microbial FAs into the FA profiles of the animals, proving the effectiveness of this method 

not only for laboratory experiments but also for investigations in the field. The plant marker 18:1ω9 

was the most abundant FA in all animals, suggesting plant and plant feeding prey species preferences.  

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

2 Introduction 
The soil system 

Soil is a very interesting and heterogeneous system; where in a minimal space a high diversity of small 

organisms interacting each other (SCHEU & SETÄLÄ, 2002). These organisms take part in many 

direct and indirect relations between them, being the direct transfer of matter and energy to control the 

equilibrium of the system (ELTON, 1927). Soil has been and still represents an important system for 

investigations, due to its significant features (DORAN & ZEISS, 2000) developing productive, 

environmental, ecological and social roles on ecosystems (RODA et al., 2003). Soil process and the 

organisms living in the soil need to be understood for a proper management and conservation of 

terrestrial ecosystems (VALLADARES, 2004a). 

 

Role of plant diversity and plant functional groups in terrestrial ecosystems 

Nowadays there is a discussion about the role and how much plant species richness and plant functional 

groups affect the functioning of organisms in the soil (EISENHAUER et al., 2010). The loss of plant 

diversity has a negative impact on soil organisms, affecting their density, diversity and functioning 

(HOOPER et al., 2005; EISENHAUER et al., 2010). In contrast the increase of plant diversity has a 

positive effect, increasing the diversity of soil animals and other components in a soil food web 

(SULKAVA & HUHTA, 1998) making the soil more resistant against environmental disturbances 

(JEFFERY et al., 2010) and pest attacks (LANDIS et al., 2000). 

Soil biota require nutrients and micronutrients for their metabolism. The lack of some of them can 

affect the correct functioning in the ecosystems (MULDER et al., 2002). Although some functional 

groups such as legumes are good for the soil by providing nitrogen (HOOPER et al., 2005; MULDER 

et al., 2002; TEMPERTON et al., 2007) they have less importance than plant species richness 

(EISENHAUER et al., 2010, 2011). 

 

Diversity of soil invertebrates 

The biodiversity of soil invertebrates is represented by organisms classified according to their body size: 

Microfauna are the smallest, with dimensions < 0.1 mm. Nematodes, rotifers and protozoans belong to 

this group and they act as nutrients recyclers, regulating the bacteria and fungus populations. 

Mesofauna includes animals with dimensions between 0.1 – 2.0 mm. Collembolans, mites and 

enchytraeids are examples of this group. They take part as microbial populations regulators and 

fragmenting vegetal residues. The biggest ones are macrofauna with dimensions > 2.0 mm. In this 

group are included earthworms, molluscs, crustaceans, spiders and insects, developing several 

functions that contribute directly with the soil structure (SWIFT et al., 1979). The feeding preferences 

for soil animals, distribute them in different groups or categories, having decomposers, herbivores and 

predators which interact with each other building food chains (COLEMAN, 1985). 
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Earthworms 

Earthworms are a very important group of animals in terrestrial ecosystems (EDWARDS & BOHLEN, 

1996), processing through their bodies circa 250 tonnes of soil per hectare every year (LAVELLE et al., 

1981). This work has a significant influence on the physical, chemical and biological soil properties, 

making these animals fundamental in the modification of the soil structure, accelerating the organic 

matter decomposition and the recycling of nutrients through their interactions with other decomposers 

(DOMINGEZ et al., 2010). 

As earthworms feed on plant tissue and organic matter in different stages of decay, living 

microorganisms and their dead remains are also ingested (DOUBE et al., 1997). Earthworms have 

different feeding manners that are used to classify them in some groups: Detritivores that feed on plant 

litter and mammalian dung at or near the soil surface. Earthworms that feed on soil organic matter and 

dead roots ingested with soil are found in deeper places and are classified as geophages (LEE, 1985). 

There are other sub-classifications for detritivores, having epigeics, restricted to the surface, and 

anecics which feed preferentially on surface but they live borrowed in the soil (BOUCHE, 1977). 

Geophages earthworms are also sub-divided into groups such as polihumics, mesohumics and 

oligohumics (LAVELLE, 1981). In this study we used two geophages earthworm species: 

Allolobophora chlorotica and Aporrectodea caliginosa. 

Centipedes 

Centipedes are hunters living in soil and litter. The species are very small with just a few millimeters or 

they can growth up to 30 cm. As a lethal weapon to hunt they inject poison to their prey using the 

maxillipedes (JEFFERY et al., 2010). The two centipede subgroups prevailing in Germany are 

Lithobiomorpha and Geophilomorpha which differ in life history, development, nutrition and 

microhabitat. Lithobiomorpha are sit-and-wait predators while Geophilomorpha search actively for 

prey in litter and soil (WOLTERS & EKSCHMITT, 1997). 

Centipedes from the order Lithobiomorpha have long and strong legs used to move fast on the soil 

surface with a few number of body segments, while Geophilomorpha species are usually smaller and 

narrower with a high number of body segments. Different soil invertebrates such as: mites, nematodes, 

collembolans, enchytraeids, small insects, spiders and earthworms represent potential prey for 

centipedes (JEFFERY et al., 2010). 

The two centipede species used were Lithobius microps (Lithobiomorpha) and Geophilus flavus 

(Geophilomorpha). 

(Coleoptera – Carabidae) 

Carabidae is one of the most numerous and abundant families of the order Coleptera (DILLON & 

DILLON, 1972), being distributed all the terrestrial ecosystems, excluding the Antarctic (ERWIN, 

1985). Carabids are represented in the planet with more than 30,000 species (REICHARDT, 1977). In 

the present study we worked with Amara aenea a common carabid beetle considered as an omnivorous 

species, feeding on pollen, fungi, and insects highlighting its preference on plant seeds (MENALLED 

et al., 2007). 
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Aleocharinae (Coleoptera – Staphylinidae) 

Beetles from the Aleocharinae family are the most varied group from the order Coleoptera described 

around the whole world. More than 1,000 described genera and more than 12,000 species are registered. 

Their size can vary between 2.5 to 5 mm. Although, they are considered generalist predators, hunting in 

the leaf litter and soil communities (ASHE, 1998), reports show them as parasites (MAUS et al., 2001), 

mycophagous (ASHE, 1984) and also as pollinators (BERNAL & ERVIK, 1996). 

 

Soil food web analysis 

For many years researchers have worked with different techniques such as direct feeding observations, 

macroscopic gut dissection and examination of prey remains for the analysis of soil food webs and the 

study of trophic relationships in the field (SUNDERLAND, 1987). Early studies on the diet of soil 

invertebrates focused on food choice experiments under laboratory conditions (MARAUN et al., 2003; 

RUESS et al., 2004), further studies were based on the analysis of faeces (CHAUVAT et al., 2007). 

Some investigations focused on the analysis of gut contents (PONGE, 2000; ADDISON et al., 

2003;TRAUGOTT, 2003; JUEN & TRAUGOTT, 2005; EITZINGER & TRAUGOTT, 2011). With 

success stable isotope analysis based mainly on carbon and nitrogen isotopes were used to reveal the 

transfer of matter in food webs and relationships between soil organisms (MINAGAWA & WADA 

1984; NEILSON et al., 1998; SCHAEFER, 2003).  

Further procedures have also expanded the attention among soil biologists, using electrophoretic or 

serological techniques (TRAUGOTT, 2003). Quantitative polymerase chain reaction (qPCR) is also an 

excellent instrument to describe trophic relationships within subterranean food webs (LUNDGREN, et 

al., 2009) and to analyze diets of fungal feeding invertebrates (REMÉN, 2010). Another approach is 

the use of pyrosequencing of prey DNA in faeces that is a practical and economical method to know 

about the feeding habits of animals (BROWN et al., 2012). 

In recent times, fatty acids (FAs) have been used to track certain markers from different trophic levels, 

revealing diets and food web links (RUESS et al., 2002; 2004, 2005a; CHAMBERLAIN & BLACK, 

2005; POLLIERER et al., 2010; FERLIAN et al., 2012).  

 

Fatty acids as trophic biomarkers in soil food webs 

The knowledge of crucial animals like decomposers and predators in the soil is key to understand the 

mechanisms of degradation and treatment of organic wastes based on the action of the organisms 

(DOMINGUEZ, 2004). To study those interactions, efficient techniques that characterize the structure 

and function of microbial communities are required, being FA analysis a good choice to make it 

possible (ZELLES, 1999). 

Lipids play a crucial function in organisms providing sources of energy (neutral lipids) and making part 

of the structural component of cell membranes (phospholipids). Fatty acids are the predominant 

components of the lipids, having a mixed structure of saturated or unsaturated carbon chains (IUPAC-

IUB, 1978). 
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Some FAs are specific for certain diets; e.g. branched chain (iso, anteiso) and cyclic FAs are specific 

markers for bacterial diets (WELCH, 1991; ZELLES, 1999; HAUBERT et al., 2006), whereas linoleic 

acid (18:2ω6,9) is known as a fungi marker (FROSTERGARD & BAATH, 1996), oleic acid (18:1ω9) 

is known as a plant marker (RUESS et al., 2005). 

The use of FAs was recorded many years ago to investigate the relationships between predator and prey 

in aquatic food webs (DESVILETTES et al., 1997; LEVEILLE et al., 1997). The application of this 

method in soil organisms revealed the trophic transfer of FAs from different levels (RUESS et al., 2002; 

2004, 2005a; CHAMBERLAIN & BLACK, 2005; POLLIERER et al., 2010; FERLIAN et al., 2012). 

 

Aims of the study 

As plant species richness affects soil biota, it was tested if FA patterns are influenced for this condition. 

Fatty acids can be tracked over more than one trophic level. With this approach it is possible to 

reconstruct trophic webs and to place different organisms living in the soil according to their feeding 

preferences; so FAs were used to find out the feeding habits and trophic positions of the animals in a 

terrestrial ecosystem. The hypotheses of the study were: 

 Plant species richness influences FA patterns of decomposers and predators, since they 

contribute to increase the diversity of organisms and the components in soil food webs, 

fundamental for the equilibrium of soil process. 

 Using FA analysis it is possible to reconstruct trophic webs, since they have been used as a tool 

to reveal feeding habits and trophic transfer from decomposers to higher levels in a soil food 

web. 

 Plant species richness has a positive effect by increasing the diversity and number of animals in 

the soil. 

We conducted the experiment, analyzing the macrofauna presented in 76 soil samples which are part of 

the Jena Experiment (Table A1), in order to find the most abundant decomposers and predators present 

in the samples. The animals were taxonomically identified and their FA profiles were analyzed. 
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3 Material & Methods 
3.1 Study Area 

The Jena Experiment is located in the floodplain of the Saale river near the city of Jena, Thuringia, 

Germany, 50055´N, 11035´E, 130 m a.s.l. The mean annual temperature in the area is 9.30 C with 

annual precipitations reaching 587 mm (KLUGE & MÜLLER-WESTEMEIER, 2000). This initiative 

is coordinated by a number fo institutions including the University of Jena and the Max-Planck-

Institute for Biogeochemistry, working in conjunction to other universities and research centers in 

Germany and Switzerland. In this territory, 82 plots of 20 x 20 m were distributed in four blocks with 

equal number of plots. The Jena Experiment is considered an excellent place to settle experiments 

using many resources, factors, conditions and parameters in order to provide knowledge about the 

impact of plant diversity in many ecosystems. The high plant diversity levels in the area, ranging from 

monocultures to 2, 4, 8, 16 and 60 plant species make this experiment ideal to test questions related to 

diversity levels and plant functional groups. The functional groups include grasses, legumes, small and 

tall herbs. The size, distribution and characteristics of each plot, allows the establishment of several 

investigations, highlighting the interactions between decomposers, herbivores and predators, used to 

understand the functioning and the equilibrium of the ecosystems. (ROSCHER et al., 2004) 

  
Fig. 1.Aerial view of the experimental area in May 2003 to recognize the  

arrangement of the individual plots. Picture: Jussi Baade, Jena University. 
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Fig. 2. Distribution of the different blocks and plots of the experimental area 

 

3.2 Plot selection 

76 samples from 76 different plots were used for our study. The criteria of selection were based in the 

diversity level (plant species richness) present in the plots. In this experiment there we selected the 

diversity levels 1, 2, 4, 8 and 16. They were considered as well four different functional groups: grasses, 

small herbs, tall herbs and legumes. 

3.3 Experimental design 

The plant functional groups grasses, small herbs, tall herbs and legumes are distributed in the plots. The 

presence of these functional groups is balanced, having 40 plots with grass species, 39 with small herbs, 

40 with tall herbs and 39 with legumes (Table A1). 

3.4 Soil sampling 

There were taken soil cores of 5 cm diameter and 5 cm depth on plots with plant species richness 1, 4 

and 16 (20 plots in total) in December 2011. Three samples per plot were mixed roughly, stored in a 

cooler and once arriving to the institute, they were stored at -20 °C. 

3.5 Sampling of Macrofauna 

Soil macrofauna was collected form soil cores taken to a depth of 10 cm in October 2011. Soil cores 

were taking using a steel corer (20 cm diameter). One core per plot was taken (80 plots), soil animals 

were extracted by heat (KEMPSON et al., 1963), collected in diluted glycol, and transferred into 70% 

ethanol for storage. 
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3.6 Identification of the animals 

For earthworms I used SIMS & GERARD (1985), SCHAEFER (1994), and BAEHRMANN (2011). 

Chilopods were identified with the books of SCHAEFER (1994), BAEHRMANN (2011). For beetles 

representing the Family Staphylinidae I used FREUDE et al. (1964), HARDE & SEVERA (2000) and 

for the family Carabidae were used HARDE & SEVERA (2000) and TRAUTNER & 

GEIGENMULLER (1987). 

3.7 Selection of the samples for the fatty acid extraction 

For the fatty acid analyses, there were chosen the most abundant decomposer and predator taxa. 

Animal samples were tested for their NLFA patterns and microorganisms for PLFA. 

3.8 Phospholipid fatty acid extraction 

To start with the extraction, we weighted the soil samples, putting 4 g of soil in each tube (50ml) then 

we followed the next steps: 

For extraction 

18.5 ml of Bligh & Dyer reagent were added to the samples and vortexed (1 x 10 ml and 1 x 8.5 

ml). Then all the samples were transferred to a shaker, shaking them for two hours (vortexed after 

one hour shaking). The next step was to vortex the samples and centrifuge them for 10 minutes at   

2500 rpmat 10 0C. After that, the supernatant was put in new 50 ml tubes, using a Pasteur pipette. 

At the end the residue was washed with 2.5 ml of Bligh & Dyer, vortexed, centrifuged and the 

supernatant was transferred like before. This procedure was repeated two times. 

For phases-separation 

6.0 ml chloroform and 6.0 ml citrate-buffer were added to the supernatant. The mixture was 

vortexed for one minute (both phases need to be mixed well and the twirl needs to reach down to 

the bottom) then centrifuged for ten minutes at 2500 rpm in 10 0C. The next step was to take the 

upper phases out using a Pasteur pipette. Then the bottom (organic) phase was taken out with a new 

Pasteur pipette. After that a defined volume from the bottom (organic) phase was taken (between 

one and three milliliters). The last step was to evaporate the organic phase by using a rotary 

evaporator (40 minutes at 40 0C; with a defined volume of 2 ml. The tubes had to be closed 

immediately. 

For lipid-fractionation 

Silicic acid columns were conditioned with 2 x 1 ml chloroform, and then all samples were 

dissolved in 300 µl chloroform separately. Samples were vortexed and put on the columns with a 

Pasteur pipette. Samples were washed again with 2 x 300 µl chloroform and put again on the 

columns. For the elution of the lipid fractions were used: 5 ml chloroform to collect the neutral 

lipids, 10 ml acetone for glycolipids and 5 ml methanol for phospholipids. At the end the 

chloroform phase (NLFAs) and the methanol phase (PLFAs) were evaporated using a rotary 

evaporator (90 minutes at 40 0C; chloroform phase finished after 60 minutes). 
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For alkaline methanolysis 

30 µl of the internal standard (19:0) was added to the samples, then 1 ml methanol-toluene-solution 

(1:1, v/v) and vortex. After that, 1 ml 0.2 M methanolic potassium hydroxide was added and 

vortexed again, proceeding with the incubation in water (15 minutes at 37 0C). Next 2 ml hexane-

chloroform-solution, 0.3 ml 1 M acetic acid and 2 ml deionized water were added and all vortexed. 

The samples had to be centrifuged for ten minutes at 2500 rpm and 10 0C. Then the upper organic 

phase was transferred to a new tube with a Pasteur pipette. The bottom phase was washed again 

with 2 ml hexane-chloroform-solution, vortexed and then centrifuged. The last step was to transfer 

the upper organic phase again in a new tube and to evaporate the organic phase by using a rotary 

evaporator (40 0C/60 minutes). 

Finally, samples were put in 100 µl isooctane and vortexed three times holding the tube horizontal 

to get sure everything was solved. At the end FAs were put into vials by using a Pasteur pipette and 

the samples were stored at -20 0C until the measurement. 

3.9 Neutral lipids fatty acid extraction  

Before starting the extraction of the FAs for the animals selected, a length measurement was made. 

There was only one special step with earthworms included. A longitudinal incision was made along the 

body wall and the whole gut was meticulously removed from the earthworm body. The following steps 

were: 

Extraction and fractionation 

Ten samples and two blanks were extracted at the same time. Each sample was put in a 10 ml screw 

cap tube. Five milliliter of a single phase extraction solvent (chloroform, methanol and 0.05 M 

phosphate buffer at the ratio of 1:2:0.8) were added and shaken overnight. The next day the 

extraction solvent was transferred into new tubes, 2.5 ml new extraction solvent was added to each 

sample, shaken for two hours and transferred to the previous solvent. Distilled water and 

chloroform were added (both 0.8 ml). The mixes were centrifuged for five minutes (1500 rpm) and 

allowed to separate for 45 minutes. The top two phases were removed. The bottom phases were 

transferred to silicic acid columns after washing them with chloroform (two times 2.5 ml). With the 

next steps the FAs in the solutions were fractionated into NLFAs, glycolipid FAs and PLFAs. The 

NLFA fractions were collected by eluting them with chloroform (two times 2.5 ml) and collecting 

them in new tubes. Glycolipid FAs were eluted with acetone (three times 2.5 ml) and discarded. 

PLFAs were eluted with methanol (two times 2.5 ml) and collected in new tubes. Both NLFA and 

PLFA fractions were dried in a rotational vacuum concentrator (50°C). 

Saponification 

We added 1.0 ml of reagent 1 to the samples, and then vortexed and the tubes were put in 70 0C. 

After 20 minutes the samples were vortexed again and kept under 70 0C for 70 minutes. So in total 

it was used 70 0C for 90 minutes as it was recommended by (van Dooremalen et al., 2009) then the 

samples were cooled for 40 seconds using ice. 
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Methylation 

2.0 ml of reagent 2 was added to the samples and then vortex and put in 80 0C for 10 minutes. After 

10 minutes the samples were cooled immediately for 40 seconds with ice. 

Extraction 

1.25 ml of reagent 3 was added and then, the samples were rocked for 10 minutes. Then the 

samples were centrifuged for 5 minutes at 1500 rpm in 4 0C. The next step was to remove the 

bottom phase, saving the top phase. 

Wash 

3.0 ml of reagent 4 was added and then, the samples were rocked for 5 minutes, following the 

centrifugation for 5 minutes at 1500 rpm in 4 0C. The last step was to remove the top phase and to 

transfer the fatty acids to a gas chromatography (GC) vial. Finally the vials were caped and stored 

at -20 0C until analysis. 

3.10 Quantification and identification of fatty acids 

Fatty acid methyl esters (FAMEs) were analyzed by gas chromatography (GC) using a Perkin Elmer 

CLARUS 500 GC with a flame ionization detector, equipped with a PE-5 capillary column (30 m x 

0.32 mm i.d., film thickness 0.25 µm). The temperature program started with 60 0C (held for 1 minute) 

and increased by 30 0C per minute to 160 0C followed by 3 0C per minute to 260 0C. The injection 

temperature was 250 0C and helium was used as carrier gas. FAMEs were identified by 

chromatographic retention time comparison with a standard mixture composed of 37 different FAMEs 

ranging from C11 to C24 (Sigma-Aldrich, St Louis, USA). Modern gas chromatographic (GC) methods 

facilitate the separation of individual fatty acids, and with the aid of commercially available standards 

about 40 fatty acids can by identified by retention time and mass spectra (BRONDZ, 2002). 

3.11 Statistical analysis 

All percentage values of FAs were arcsine-square root transformed prior to analysis to achieve normal 

distribution of the data. For the analysis of the FA profiles via discriminant function analysis (DFA) in 

each experiment the dimensions of the data set were reduced using nonmetric multidimensional scaling 

(NMDS). For testing differences between the individual FAs in each experiment multivariate analysis 

of variance (MANOVA) was used. All statistical analyses were conducted using STATISTICA 7.1 for 

Windows (StatSoftInc, Tulsa, OK, USA). 
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4 Results 
 

4.1 Influence of plant species richness on the number of individuals and species of decomposers 

and predators 

The number of individuals and species of decomposers and predators was not influenced by plant 

diversity (ANOVA F4,71 = 1.83, p> 0.05, F4,71 = 2.37, p> 0.05), finding no significant difference 

between all treatments (Tukey´s Honestly Significant Difference test; p> 0.05; Table 1 and 2). 

 

Table 1.P-values of Tukey´s Honestly Significant Difference Test; p < 0.05, comparing the plant diversity levels against 

each other in relation to the number of individuals. 

Plant diversity level 1 2 4 8 16 

1 1.00 0.85 0.63 0.17 0.17 

2 0.85 1.00 0.99 0.71 0.71 

4 0.63 0.99 1.00 0.91 0.91 

8 0.17 0.71 0.91 1.00 1.00 

16 0.17 0.71 0.91 1.00 1.00 

 

Table 2.P-values of the Tukey´s Honestly Significant Difference Test; p < 0.05, comparing the plant diversity levels against 

each other in relation to the number of species. 

Plant diversity level 1 2 4 8 16 

1 1.00 0.97 0.36 0.28 0.08 

2 0.97 1.00 0.73 0.64 0.28 

4 0.36 0.73 1.00 1.00 0.94 

8 0.28 0.64 1.00 1.00 0.97 

16 0.08 0.28 0.94 0.97 1.00 
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4.2 Principal components analysis (PCA) of the main decomposers and predators 

The PCA analysis showed the position of the different groups according to their fatty acid composition 

(Fig. 3). The decomposer group (Aporrectodea caliginosa and Allolobophora chlorotica) were 

positioned close to each other, having in their fatty acid composition most of the bacteria markers. The 

predator group (Geophilus flavus, Lithobius microps and Alleocharinae beetles) were close positioned, 

showing the plant marker 18:w9c as the common fatty acid in the group. High values in the ratio of the 

animals were found (see Table 3). 

 
Fig. 3. PCA analysis of decomposers (Allolobophora chlorotica, Aporrectodea caliginosa) and predators 

(Geophilus flavus, Lithobius microps, Amara aenea and Aleocharinae). 

 

Table 3. Independent factors of the multivariate analysis of variance (MANOVA) of the experiment. (Sowndiv: Plant 

species richness, Funcgr: Functional groups, Leg: legumes, Grass: grasses, Sherb: small herbs, Therb: tall herbs, 0: absence, 

1: presence). 

 

species ratio 

Allolobophora chlorotica 3.05 

Aporrectodea caliginosa 2.17 

Geophilus flavus 4.86 

Lithobius microps 4.08 

Aleocharinae 7.31 

Amara aenea 1.61 
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4.3 Multivariate analysis of variance (MANOVA) of the decomposers and predators 

We tested the effect of animal species, plant species richness (one, two, four, eight and sixteen plant 

species) and plant functional groups (legumes, grasses, small herbs and tall herbs) in the fatty acid 

composition of decomposers and predators (Table 4). 

Table 4. Independent factors of the multivariate analysis of variance (MANOVA) of the experiment. (Sowndiv: Plant 

species richness, Funcgr: Functional groups, Leg: legumes, Grass: grasses, Sherb: small herbs, Therb: tall herbs, 0: absence, 

1: presence). 

Class Levels Values 

Species 6 A. chlorotica, A. caliginosa, G. flavus, L. microps, A. aenea, Alleocharinae 

Sowndiv 5 1, 2, 4, 8, 16 

Funcgr 4 1, 2, 3, 4 

Leg 2 0, 1 

Grass 2 0, 1 

Sherb 2 0, 1 

Therb 2 0, 1 

 

Before starting the test, the data were log transformed and reduced to two axes. MANOVA showed that 

the models were statistically significant (p< 0.05). The fatty acid compositions of the animals differed 

highly significant (p< 0.001) just for animal species. Factors like plant species richness (Sowdiv) and 

plant functional groups (Funcgr) were not significant collectively and/or individually in the presence 

and amount of the fatty acids composition of decomposers and predators (p < 0.05; Table 5). 

Table 5. P-values of the two models for decomposers and predators. (level of significance: * p ≤ 0.05, ** p < 0.01, *** p < 

0.001) 

Axis 1 p Axis 2 p 

Model 0.0054 ** Model 0.0009 *** 

Species 0.0004 *** Species < 0.0001*** 

Sowdiv 0.4926 Sowdiv 0.9812 

Funcgr 0.3004 Funcgr 0.0926 

Leg 0.3381 Leg 0.9729 

Grass 0.3053 Grass 0.8863 

Sherb 0.4343 Sherb 0.3526 

Therb 0.4541  Therb 0.3702 
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Analyzing the fatty acids (FA) individually, we observed that most of them were statistically 

significant, supporting the general results of the model. Only the FAs: 8:0, 11:0, i16:0 and 16:0 were 

not significant. All bacteria markers with exception of i16:0 were significant. The fungi marker 18:2w6 

and the plant marker 18:1w9c were highly significant (Table 6). 

Table 6.F-values (F) and p-values (p) of the NLFAs of Allolobophora chlorotica, Aporrectodea caliginosa, Geophilus 

flavus, Lithobius microps, Amara aenea and Aleocharinae.(Level of significance α = 0.05). 

 

 
 

A. chlorotica A. caliginosa G. flavus L. microps Aleocharinae A. aenae 
 NLFA Marker FA F F F F F F p 

08:00 

 

1.35 2.97 2.33 5.03 3.3 0.62 0.1171 

10:00 

 

1.26 1.08 1.07 1.18 1.29 0.11 <.0001 *** 

11:00 

 

0.19 0.12 0.02 0.07 0 0 0.0925 

12:00 

 

1.21 3.34 8.12 5.05 12.37 0.42 <.0001 *** 

14:00 

 

0.46 0.73 1.03 2.34 0.71 1.11 <.0001 *** 

i15:0 Bacteria 1.13 0.97 0.1 0 0 0 <.0001 *** 

a15:0 Bacteria 0.09 0.05 0.1 0 0 0 0.0160 * 

i16:0 Bacteria 0.32 0.39 20.54 0 0 0 0.5330 

16:1w7 Bacteria 0.68 0.45 1.84 0.66 0.41 7.39 <.0001 *** 

161:W5 

 

0.07 0.59 0.05 0 0 1.7 <.0001 *** 

16:00 

 

17.21 14.94 0 18.04 18.8 12.73 0.2482 

i17;0 Bacteria 0.3 0.39 0 0 0 0 0.0012 ** 

17:00 

 

1.53 1.95 0.51 0 0 0 <.0001 *** 

18:2w6 Fungi 5.05 8.26 4.97 5.43 2.41 22.54 <.0001 *** 

18:1w9c Plant 37.44 34.17 52.54 54.79 55.92 50.65 <.0001 *** 

18:1w7 Bacteria 9.57 12.86 6.3 4.13 6.29 1.12 <.0001 *** 

18:00 

 

10.56 11.47 3.81 1.97 1.37 1.83 <.0001 *** 

20:04 

 

3.8 7.03 1.39 0 0 0.29 <.0001 *** 

20:03 

 

0.23 0.92 0 0 0 0 <.0001 *** 

20:02 

 

2.21 3.46 1.08 1.41 1.69 0 <.0001 *** 

23:00 

 

2.44 0.39 0.23 0 0 0 <.0001 *** 
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4.4 NLFAs of decomposers and predators 

The FA composition differed significantly between each species (DFA after NMDS; reduced to two 

dimensions). The position of the different taxa according to their fatty acid composition placed the 

decomposers Allolobophora chlorotica and Aporrectodea caliginosa close to each other. Geophilus 

flavus, Lithobius microps and the Alleocharinae beetles were close related, representing the predator 

group. Amara aeneae took an intermediate position (Figure 4). 

Root 1 vs. Root 2

 Aleocharinae

 Allolobophora chlorotica

 Amara aenea

 Aporrectodea caliginosa

 Geophilus flavus

 Lithobius microps
-8 -6 -4 -2 0 2 4 6

Root 1

-6

-4

-2

0

2

4

6

8

10

12

R
o
o
t 2

 

Fig. 4. Discriminant function analysis of NLFAs of Allolobophor achlorotica, Aporrectodea caliginosa, Geophilus flavus, 

Lithobius microps, Amara aenea and Aleocharinae. Ellipses represent confidence ranges p = 0.08 

 

 

 

 

 

 

 

 

 

 

 



19 
 

The most abundant FA was the plant marker 18:1ω9. In the predators, we observed the absence of the 

bacterial marker i17:0. The bacterial markers i15:0 and a15:0 were present in low proportions in 

G. flavus but completely absent in the other predators. The most abundant bacterial marker present in 

predators was 18:1ω7. It was noticeable the higher amount of bacterial markers in the decomposers 

compared with the predators. The fungi marker 18:2ω6 was present in all the taxa but in consider 

higher proportions in Amara aenea. The C20 PUFAs were present in small amounts (Fig. 5).  

 

Fig. 5. Concentrations (percentages of total ± SD; note log scale) of NLFAs comparing the decomposers and predators: 

Allolobophora chlorotica, Aporrectodea caliginosa, Geophilus flavus, Lithobius microps, Amara aenea and Aleocharinae. 

 

Allolobophora chlorotica 

 

The most abundant FA was the plant marker 18:1ω9c (37.44%). The fungi marker contributed with 

5.05 %. Total bacteria marker was 12.09 % and C20 PUFAs were registered with 8.68 % of the total FA 

composition. The remaining composition is represented by other FAs. 
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Fig. 6. Concentrations of NLFAs of Allolobophora chlorotica. Error bars with Standard error is shown 
 

Aporrectodea caliginosa 

 

The most abundant FA registered was the plant marker 18:1ω9c (34.17%). The total amount of bacteria 

markers contributed with 15.11%, belonging 12.86% to the FA 18:1ω7. A considerable amount of the 

fungi marker 18:2ω6 was reported with 8.26%. C20 PUFAs contributed with 11.8% of the total amount 

of FAs. 

 

 
Fig. 7. Concentrations of NLFAs of Aporrectodea caliginosa. Error bars with Standard error is shown. 
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Geophilus flavus 

 

The most abundant FA was 18:1ω9 (52.54%). Bacterial marker contributed with 29.39%, belonging 

20.54% to the FA i16:0. The fungi marker 18:2ω6 was presented with ca. 5% of the total FA 

composition. C20 PUFAs, contributed with just 2.7%. 

 

 

Fig. 8. Concentrations of NLFAs of Geophilus flavus.Error bars with Standard error is shown 

Lithobius microps 

 

The most abundant FA was 18:1ω9c (54.79%). The total amount of the bacteria marker was 4.79%, 

belonging 4.13% to the FA 18:1w7. The fungi marker 18:2ω6 contributed with 5.43% and the 

C20 PUFAs with just 1.41% of the total amount of FAs presented in this animal. 

 

 

Fig. 9. Concentrations of NLFAs of Lithobius microps. Error bars with Standard error is shown 
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Amara aenea 

 

The most abundant FA was 18:1ω9c with 50.65%. The total amount of bacteria markers was 8.51%, 

belonging 7.39% to the FA 16:1ω7. The fungi marker 18:2ω6 was registered in high concentrations as 

well with 22.54%. Total C20 PUFAs have just contributed with 0.29% of the total FA amount for this 

beetle. 

 

 

Fig. 10. Concentrations of NLFAs of Amara aenae. Error bars with Standard error is shown 

Aleocharinae 

 

The most abundant FA was 18:1ω9c with 55.92%. The bacteria marker just contributed with 6.7% of 

the total FA amount, having in 18:1ω7 6.29%. The fungi marker 18:2ω6 was registered in low 

concentrations (2.41%) and the total C20 PUFAs was 1.69%. 

 

 

Fig. 11. Concentrations of NLFAs of Aleocharinae. Error bars with Standard error is shown 
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5 Discussion 

5.1 Fatty acid patterns related to plant species richness 

Our results show that plant species richness has no effect on the fatty acid composition of decomposers 

or predators. The composition and amount of fatty acids only depends of each species. 

Although we found less individuals and less species in monocultures, having an increase of both factors 

while the number of plant species increase, the results were not statistically significant, rejecting the 

hypothesis that the number of individuals and species is higher in plots with more plant species. This 

result is consistent with HEDLUND et al. (2003) who did not find any significant difference between 

plant species richness and abundance of soil organisms. In contrast, HADDAD et al. (2009) found that 

plant species richness has highly significant overall effects on the abundances of other organisms and 

on trophic interactions. Supporting those findings BENSON & HARADA (1988) and FERREIRA & 

MARQUEZ (1998) stated that plant species richness propitiates a very well structured litter, keeping 

the availability of ecological niches for many species, offering many food sources and increasing the 

diversity of animals in the soil. 

5.2 NLFAs of decomposers and predators 

The low concentration of FAs registered in the animals may be explained due to way and time of 

sample storage. We used 70% ethanol under room temperature for a period superior to four months, so 

many of the fatty acids and part of the amount may have been lost during that time. This can be support 

by VINK et al., (2005) who observed that DNA degradation occurs in tissue stored in ethanol at room 

temperature over six weeks. In addition, POST et al. (1993), RIESS et al. (1995) and DILLON et al. 

(1996) recommend preserving invertebrates at -80
0
C to avoid the loss and degradation of molecular 

contents. 

In the present study, we found twenty-two fatty acids, ranging from 6:00 to 23:00, finding different 

bacterial markers, highlighting the 18:1ω7 as the most abundant. The fungi and plant markers 18:2ω6 

and 18:1ω9 respectively were identified, being 18:1ω9 the most abundant FA detected in all taxa. The 

ratio of 18:1ω9 to 18:2ω6, used for distinguishing between plant feeders and fungal feeders (RUESS et 

al., 2007) was high, suggesting that the animals feed more on plants or on plant feeding prey species.  

Since the diet of earthworms consists mainly of dead plant material (HANSEN and CZOCHANSKA, 

1975), the results support the findings of DUNGAIT et al. (2008) that FA 18:1ω9 as the most abundant 

in Allolobophora chorotica and fungi and bacteria markers are registered in low concentrations. 

Indeed, Allolobophora chlorotica and Aporrectodea caliginosa are root feeders (BOUCHE & 

KRETZSCHMAR, 1974), ingesting bacterial colonies while feeding on dung organic matter 

(HANSEN and CZOCHANSKA, 1975; LATTAUD et al., 1998; DUNGAIT et al., 2008). The 

presence of the FA 18:2ω6 cannot be used to demonstrate that earthworms feed on fungi because this 

FA is abundant in the tissues of soil microfauna and may have been assimilated in the earthworm gut 

from ingested soil microfauna such as nematodes. In addition, it has been shown that this FA can be 

synthesized by several insects (STANLEY-SAMUELSON et al., 1988; CANAVOSI et al., 2001). 
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In Lithobius microps, we did not find the bacterial markers i15:0 and 15:0. This result is similar to the 

one found by POLLIERER et al. (2010), who fed Collembola species with bacteria, registering very 

low concentrations of these FA fewer than 1%, pointing out these FAs as very difficult to transfer from 

one level to another. In contrast, the bacterial marker 18:1ω7 was found in concentrations higher than 

4%, results similar to FERLIAN et al. (2012), who also found in Lithobius species, values higher than 

4%, suggesting these FA as a good one to trace bacteria based food chains and energy channels in the 

field. 

The high ratio between 18:1ω9 to 18:2ω6 and the highest concentration registered in the plant marker 

18:1ω9, suggest that Lithobius microps feeds on plant or on plant feeding prey. This result can be 

explained as lithobiids hunt in the litter and upper soil layers (POSER, 1990) where potential prey for 

this predator such as enchytraeids that feed on plant material (BONKOWSKI et al., 2000; BRIONES et 

al., 2005) and collembolans that feed mainly on fungi (MARAUN et al., 2011; POLLIERER et al., 

2010), but can feed as well on leaves (POLLIERER et al., 2010). In addition, centipedes are generalist 

predators whuch when starving may feed on leaf litter (JEFFERY et al., 2010).  

The high concentrations of plant and fungal markers and low concentrations of bacterial markers in 

Lithobius microps were similar to FERLIAN et al., (2012), suggesting that bacterial feeding prey 

species are of minor importance for lithobiids. 

In this study the high ratio and high concentration of the plant marker 18:1ω9 and low concentrations 

of fungi and bacterial markers, suggest that the diet of G. flavus comprises mainly on prey that feed on 

plant with a small consumption of fungi and bacteria. This result can be support by BOUCHÉ, (1997) 

who proposed that Geophilomorpha species feed on lumbricids and enchytraeids, which consume plant 

detritus, incorporating high amounts of plant marker FAs that can be transferred to one trophic level to 

another. A contrasting result were found by FERLIAN et al., (2012), who suggest that 

Strigamia acuminate (Geophilomorpha) feed on bacterial and fungi feeding prey species and 

Geophilus ribauti feed on decomposers consuming mainly plant litter colonized by fungi. 

Since Amara aenea, consumes pollen, fungi, insects and mainly plant seeds (MENALLED et al. 2007), 

our results confirm the feeding habits of this species, showing the presence of two bacterial markers: 

16:1ω7 and 18:1ω7, high proportions of the fungi marker 18:2ω6 and the highest amount of the plant 

marker 18:1ω9. In addition, the ratio between 18:1ω9 and 18:2ω6 suggest the preference of this beetle 

for plant or plant feeding prey. 

In Aleocharinae we found high concentration of the fungi marker 18:2ω6 but highest concentration on 

the plant marker 18:1ω9 with a high ratio between 18:1ω9 and 18:2ω6, suggesting the consumption of 

fungal feeding prey species but highlighting the preference for plant feeding prey species. This result 

can be explained since these beetles are mainly generalist predators in leaf litter and soil communities 

(ASHE, 1998); where fungal feeding prey species are abundant (BERG & BENGTSSON, 2007). In 

addition, numerous Aleocharinae groups can feed directly on fungi (ASHE, 1992) and others on pollen 

(BERNAL & ERVINK, 1996). 
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5.3 Conclusions 

Results of this study indicated that plant species richness has no effect on FA patterns in decomposers 

and predators. The presence of bacteria, fungi and plant markers in the FA composition of the animals 

show trophic transfer from one level to the other and provide hints on the feeding habits of the animals 

and their trophic position within the soil. The profile of the NLFAs of the animals comprised mainly 

the plant marker 18:1ω9 with little concentration of other FAs, suggesting that decomposers and 

predators feed mainly on plant and/or on plant feeding prey species, with low incorporation of fungi 

and bacteria. Interestingly, plant species richness does not increase the number of individuals and 

species in the soil samples; however, more studies are needed taking into consideration the storage 

methods and time of FAs extraction from animals. 
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8 Appendix 
Table A1: Selected plots with different diversity levels (sowndiv) and functional groups (funcgr). 

Legumes (leg), grasses (grass), small herbs (sherb) and tall herbs (therb). 

plotcode sowndiv funcgr leg grass sherb Therb 

B4A09 1 1 1 0 0 0 

B2A05 1 1 0 1 0 0 

B3A06 1 1 0 1 0 0 

B1A18 1 1 0 0 1 0 

B2A04 1 1 0 0 0 1 

B4A13 1 1 0 0 0 1 

B1A08 1 1 1 0 0 0 

B2A15 1 1 1 0 0 0 

B4A12 1 1 0 1 0 0 

B2A13 1 1 0 0 1 0 

B3A17 1 1 0 0 1 0 

B1A15 1 1 0 0 0 1 

B3A01 1 1 0 0 0 1 

B1A05 2 1 1 0 0 0 

B1A07 2 1 0 0 0 1 

B1A16 2 2 0 1 1 0 

B1A17 2 2 0 1 0 1 

B2A02 2 1 0 1 0 0 

B2A08 2 2 1 0 0 1 

B2A19 2 1 0 0 1 0 

B2A20 2 2 1 0 1 0 

B3A02 2 2 0 1 0 1 

B3A08 2 1 0 1 0 0 

B3A19 2 2 0 1 1 0 

B3A21 2 1 1 0 0 0 

B4A14 2 1 0 0 1 0 

B4A15 2 2 1 0 1 0 

B4A17 2 1 0 0 0 1 

B4A21 2 2 1 0 0 1 

B1A13 4 1 1 0 0 0 

B3A13 4 1 0 1 0 0 

B2A06 4 2 1 0 1 0 

B4A07 4 2 1 0 0 1 

B4A11 4 3 1 1 0 1 

B1A19 4 3 0 1 1 1 

B3A23 4 4 1 1 1 1 

B2A09 4 1 0 0 1 0 
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B3A11 4 2 0 1 1 0 

B3A03 4 3 1 1 1 0 

B4A22 4 1 0 0 0 1 

B1A21 4 2 0 1 0 1 

B2A16 4 3 1 0 1 1 

B1A04 4 4 1 1 1 1 

B2A01 4 4 1 1 1 1 

B4A04 4 4 1 1 1 1 

B1A02 8 2 0 1 0 1 

B1A03 8 3 1 1 1 0 

B1A12 8 1 1 0 0 0 

B1A14 8 4 1 1 1 1 

B2A12 8 1 0 0 0 1 

B2A14 8 4 1 1 1 1 

B2A17 8 2 1 0 1 0 

B2A21 8 3 1 0 1 1 

B3A04 8 1 0 1 0 0 

B3A05 8 3 1 1 0 1 

B3A07 8 4 1 1 1 1 

B3A20 8 2 1 0 0 1 

B4A06 8 1 0 0 1 0 

B4A08 8 2 0 1 1 0 

B4A10 8 3 0 1 1 1 

B4A16 8 4 1 1 1 1 

B3A09 16 1 0 1 0 0 

B4A20 16 2 1 0 0 1 

B1A06 16 2 0 1 0 1 

B2A22 16 3 1 1 0 1 

B1A20 16 3 1 0 1 1 

B2A18 16 4 1 1 1 1 

B3A22 16 4 1 1 1 1 

B3A16 16 2 1 0 1 0 

B2A10 16 2 0 1 1 0 

B3A24 16 3 1 1 1 0 

B1A11 16 1 0 0 0 1 

B4A02 16 3 0 1 1 1 

B1A01 16 4 1 1 1 1 

B3A22 16 4 1 1 1 1 

B4A18 16 4 1 1 1 1 

 

Table A1 Part 2: Selected plots with different diversity levels (sowndiv) and functional groups (funcgr). Legumes (leg), 

grasses (grass), small herbs (sherb) and tall herbs (therb). 
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