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Abstract 

Test anxiety can hinder students from achieving their full potential in evaluative situations, such 

as tests or examinations. Converging evidence suggests that performance-related worries 

impair the working memory of these students. However, the mechanisms by which worries 

affect the working memory of test-anxious students remain poorly understood. The present 

work aimed to fill this gap by comparing the electroencephalography (EEG) of lower and higher 

test-anxious students performing a cognitive task in both a low and a high pressure condition. 

Two studies addressed the response monitoring in test-anxious students by analyzing the 

error-related negativity (ERN) – an event-related potential occurring shortly after an erroneous 

response. Results revealed that the ERN was enhanced by performance pressure in higher 

but not in lower test-anxious students. The third study assessed the working memory costs of 

performance pressure by analyzing frontal midline theta (FMΘ) – a signal known to reflect 

working memory processes. Results showed that FMΘ was increased by performance 

pressure, especially in students with higher test anxiety. Across studies, self-reported worries 

during the task were unrelated to EEG measures and test-anxious students did not show 

performance impairments. Taken together, results demonstrate that test-anxious students 

exhibit increased neural activity under performance pressure, suggesting that they need 

compensatory effort to maintain performance in evaluative situations. 
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1. General Introduction 

 We live in a test-conscious, test-giving culture in which the lives of people are in part 

 determined by their test performance.  

 Seymour B. Sarason (1959, p. 26) 

 

Stated over five decades ago, this sentence holds true nowadays more than ever. 

Without doubt, tests and examinations play an important role in shaping the career of 

individuals in contemporary societies. For instance, consider the educational path towards 

becoming a psychologist in Germany. To enroll for a bachelor degree in psychology, most 

German universities require that students have achieved a certain Grade Point Average (GPA) 

in high school. In recent years, this GPA standard has been fairly competitive, so that only a 

fraction of applicants have been admitted to study psychology (see Formazin, Schroeders, 

Köller, Wilhelm, & Westmeyer, 2011). Or consider the usage of standardized tests for college 

admission in the United States. Here, the achievement in standardized tests, such as the 

Scholastic Assessment Test (SAT) or the American College Test (ACT), is one of the most 

important factors for a successful college application (see Atkinson & Geiser, 2009). These 

are just two examples in which the evaluation of performance has a direct and far-reaching 

impact on people’s lives. 

The increasing importance of performance evaluation has been linked to a rise of 

anxiety in students (see Pekrun & Götz, 2006; Zeidner, 1998). For instance, anxiety has been 

shown to be the most frequent emotion reported by university students regarding performance 

evaluation (Pekrun, 1992). Similarly, fear of failure has been suggested to have increased in 

school children (see McDonald, 2001). Such anxiety towards evaluation is commonly referred 

to as test anxiety in the literature (see Zeidner, 1998).  

A study by Folin, Denis, and Smillie (1914) is considered the first empirical investigation 

on test anxiety (see Spielberger & Vagg, 1995). Folin and colleagues reported that the level of 

glycosuria (i.e., the excretion of glucose into the urine) was elevated in about one fifth of 

medical students after taking an important examination. The authors suggest that the rise of 

glycosuria in these students is due to increased levels of anxiety during the examination. 

However, systematic research on test anxiety started did not start until the 1950s with the work 

by Mandler and S. B. Sarason at Yale University. Their pioneering work included formulating 

the first specific theory on test anxiety, introducing a questionnaire to assess test anxiety, and 

demonstrating that test anxiety is related to lower performance in standardized tests (Mandler 

& Sarason S. B., 1952; S. B. Sarason & Mandler, 1952). Since then, the number of studies on 
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test anxiety have been constantly increasing with particularly booming years in the 1980s (see 

Stöber & Pekrun, 2004; Zeidner, 1998).  

Results demonstrate that test anxiety is a prevalent problem affecting students across 

educational levels with female students being especially at risk (see Hembree, 1988). 

Strikingly, test anxiety is not just an “unpleasant feeling” but is inversely related to the well-

being, self-esteem, and physical health of students (see Hembree, 1990; Zeidner, 1998). 

Moreover, students with high test anxiety show in average lower achievements in school and 

in standardized tests than their lower test-anxious classmates (for meta-analyses, see 

Ackerman & Heggestad, 1997; Hembree, 1988). Converging evidence suggest that this link 

between test anxiety and test performance is due in part to the detrimental effect of 

performance-related worries on the working memory of test-anxious students (see Hembree, 

1988; Moran, 2016; Wine, 1971). However, the specific mechanisms by which worries affect 

the working memory of test-anxious students remain an area of active research (see Berggren 

& Derakshan, 2013; Eysenck, Derakshan, Santos, & Calvo, 2007; Maloney, Sattizahn, & 

Beilock, 2014). Neuroimaging techniques, such as functional magnetic resonance imaging 

(fMRI) and electroencephalography (EEG), promise to significantly contribute to the unraveling 

of these mechanisms. Given the great importance of performing well in evaluative situations 

to succeed in modern societies, there is an urgent need to improve our understanding of the 

mechanisms underlying test anxiety by using both behavioral and neuroscientific research 

techniques.   

 

1.1. Definition and Phenomenology of Test Anxiety  

Test anxiety has not been listed as a mental disorder in the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5; American Psychiatric Association, 2013) or the 

International Statistical Classification of Diseases and Related Health Problems (ICD-10; 

World Health Organization, 1992).1 Therefore, there is no generally accepted definition of test 

anxiety in the literature and descriptions of the nature and phenomenology of test anxiety vary 

between authors. Spielberger (1972) has suggested differentiating between anxiety as a 

relatively stable personality trait (i.e., trait anxiety) and anxiety as transient state (i.e., state 

anxiety). Based on this distinction, test anxiety can be conceptualized as a situation-specific 

form of trait anxiety (Spielberger, Anton, & Bedell, 1976). Accordingly, Zeidner (1998) defines 

test anxiety as a “set of phenomenological, physiological, and behavioral responses that 

accompany concern about possible negative consequences or failure on an exam or similar 

evaluative situation” (p. 17).  

                                                
1 Note that in the recently revised DSM-5 it is now possible to specify for a social anxiety disorder that it 
is restricted to “speaking or performing in public” (p. 203). 
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Evaluative situations are most common in school and universities in which intellectual 

abilities are assessed by class tests, written and oral exams, or standardized tests. However, 

the anxiety over the evaluation of sensorimotor skills can also be reasonably subsumed under 

the concept of test anxiety. For instance, imagine an audition of a student applying for a music 

school or conservatory. Furthermore, performance is often evaluated in the performing arts 

and in sports. Typically, in situations in which sensorimotor skills are evaluated an audience or 

a jury is present. DeCaro and colleagues (2011) have therefore suggested differentiating 

between two type of performance pressure, namely, monitoring pressure and outcome 

pressure. While monitoring pressure refers to the evaluation of a performance by an observer 

or an audience, outcome pressure arises when incentives for optimal performance are large 

or poor performance is associated with negative consequences. In most evaluative situations, 

aspects of both types of performance pressure are present. However, the salience of 

monitoring pressure is typically higher when sensorimotor skills are evaluated (e.g., audition) 

than when intellectual skills are evaluated (e.g., written exam) (see DeCaro et al., 2011). 

The phenomenon that students often show lower performance in high-stake tests than 

expected given their skill level has been referred to as choking under pressure in the literature 

(Baumeister, 1984; Beilock & Carr, 2001; Beilock, Kulp, Holt, & Carr, 2004; Running, Ligon, & 

Miskioglu, 1997). Students with high levels of test anxiety have been suggested to be 

especially prone to choke under pressure (Beilock et al., 2004; Ramirez & Beilock, 2011). As 

such, both concepts are closely related: while choking under pressure describes performance 

impairments due to performance pressure, test anxiety refers to individual differences in 

responding to performance pressure.  

Test anxiety has been discussed as being related to other forms of anxiety, especially 

to general anxiety and to math anxiety. General anxiety has been conceptualized as a trait 

anxiety that is not specific to a situation but affects individuals in various aspects of their life 

(Spielberger, 1972). In contrast, test anxiety is thought to be specific to evaluative situations. 

Not surprisingly, these two forms of anxiety have been shown to be correlated (for a meta-

analysis, see Hembree, 1988). Indeed, individuals with high general anxiety are also likely to 

be anxious towards evaluation. Although empirically related the two forms of anxiety are 

addressed as distinct in the literature (Hembree, 1988; Zeidner, 1998). Math anxiety, in turn, 

refers to the “feelings of tension and anxiety that interfere with the manipulation of numbers 

and the solving of mathematical problems in a wide variety of ordinary life and academic 

situations” (Richardson & Suinn, 1972, p. 551). Two seminal meta-analyses by Hembree 

revealed that test anxiety (Hembree, 1988) and math anxiety (Hembree, 1990) share some 

key commonalities. For instance, they are both related to lower academic performance—in the 

case of test anxiety in tests in general, in the case of math anxiety in tests on mathematics 

(Hembree, 1990). However, measures of test anxiety and math anxiety have been reported to 
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correlate only with small-to-medium effect sizes with each other while different measures of 

the same construct are highly correlated (Dew, Galassi, & Galassi, 1983; Hembree, 1990; 

Schillinger, Vogel, Diedrich, & Grabner, 2018). Therefore, test anxiety and math anxiety are 

widely considered as distinct yet related forms of anxiety in the literature.  

Regarding the symptoms of test anxiety, Liebert and Morris (1967) have suggested to 

differentiate between a cognitive component, labeled as worry, and an affective component, 

labeled as emotionality. Worry can be described as “any cognitive expression of concern about 

one's own performance” (Liebert & Morris, 1967, p. 975), including ruminations, negative or 

interfering thoughts, and catastrophizing. Emotionality, in contrast, refers to affective or 

autonomic reactions towards evaluative situations, such as accelerated heartbeat, sweating, 

muscle tension, nausea, or dizziness (Hembree, 1988; Liebert & Morris, 1967). In addition, 

some authors have emphasized the role of behavioral and motivational symptoms associated 

with test anxiety, most prominently the tendency to avoid the test situation (Pekrun et al., 2004; 

Zeidner, 1998).  

Taken together, test anxiety is conceptualized in the present work as a situation-

specific trait anxiety over the evaluation of intellectual or sensorimotor skills having a cognitive 

and an affective facet.  

 

1.2. Assessing Test Anxiety 

The first questionnaires to assess test anxiety, including the Test Anxiety Questionnaire 

(TAQ; Mandler & S. B. Sarason, 1952), the Test Anxiety Scale for Children (TASC; S. B. 

Sarason, Davidson, Lighthall, Waite, & Ruebush, 1960), and the Test Anxiety Scale (TAS; I. 

G. Sarason, 1958; I. G. Sarason & Ganzer, 1962), conceptualized test anxiety as a 

unidimensional construct. This view was challenged by factor analytic findings showing that 

the items of these questionnaires in fact loaded on multiple factors (Gorsuch, 1966; 

Sassenrath, 1964). In turn, Liebert and Morris (1967) suggested differentiating in the 

assessment of test anxiety between worry and emotionality as discussed in the previous 

section. Based on this suggestion, Spielberger (1980) introduced the 20-item Test Anxiety 

Inventory (TAI) with a subscale for each of the two facets of test anxiety. Items are rated on 4-

Point Likert scale with labels ranging from 1 (almost never) to 4 (almost always). To this day, 

the TAI is one of the most popular questionnaires to assess test anxiety (see Szafranski, 

Barrera, & Norton, 2012).  

The TAI was adapted into German (TAI-G) by Hodapp and colleagues (Hodapp, 1991; 

Hodapp, Laux, & Spielberger, 1982) including several revisions. Firstly, while in the original 

TAI items refer to situations before, during, and after an examination, the German version 

focuses on individuals’ responses in the test situation. Secondly, the worry component was 
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further divided into worry about the test and task-irrelevant, interfering thoughts (see also I. G. 

Sarason, 1984). Finally, a new subscale assessing the lack of confidence was introduced (e.g. 

“I am convinced that I am going to perform well”). The four subscales of the questionnaire (i.e., 

worry, emotionality, interference, lack of confidence) could be validated by means of 

confirmative factor analyses, and all subscales show a good-to-excellent internal consistency 

(Hodapp & Benson, 1997; Keith, Hodapp, Schermelleh-Engel, & Moosbrugger, 2003). Most 

recently, the number of items of the TAI-G was reduced to five items for each subscale (in total 

20) and the questionnaire was renamed into German Test Anxiety Inventory 

(Prüfungsangstfragebogen, PAF)  (Hodapp, Rohrmann, & Ringeisen, 2011). The PAF was 

shown to be reliable and valid psychometric tool and was normed on a large sample of both 

school students and university students (Hodapp et al., 2011). In conclusion, the PAF can be 

considered as the state-of-the-art questionnaire to assess test anxiety in German-speaking 

students.  

 

1.3. Prevalence of Test Anxiety  

Surprisingly, few data are available on the prevalence of test anxiety. One reason for 

this might be the different definitions of test anxiety within the literature as well as the various 

instruments that have been used to assess test anxiety. In addition, there has been a lack of 

adequate norms to classify which levels of test anxiety can be considered as heightened (see 

McDonald, 2001). In the following, we will first summarize studies on the prevalence in school 

children, followed by studies on the prevalence in college and universities students. Finally, 

we will briefly discuss differences in test anxiety between groups of students.  

Hill and Wigfield (1984) have speculated that 20 to 25% of the elementary and 

secondary school students in the United States would have heightened levels of test anxiety. 

Recent studies on test anxiety in secondary school students in the United Kingdom (UK) 

suggest that the prevalence might be slightly lower, with a reported mean prevalence rate of 

15.1% (for a meta-analyis, see D. Putwain & Daly, 2014). Since most of these studies had 

rather small sample sizes, D. Putwain and Daly (2014) also collected data from a more 

comprehensive sample (2435 secondary school students in 11 schools). Results revealed that 

16.4% of the surveyed students reported themselves to be high test-anxious, with twice as 

many female students (22.5%) as male students (10.3%) scoring above the cut-off. Regarding 

the prevalence of test anxiety in Germany, Zech (1979) has reported that as many as 51% of 

the surveyed secondary school students exhibit heightened levels of test anxiety. However, 

more recent studies are lacking and the prevalence of test anxiety in German students might 

be more similar to that of the students in the UK.  
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In a study by Chapell and colleagues (2005), 13.6 % of the university students were 

classified as having high test anxiety. While there was no difference between Master’s and 

PhD students, undergraduate students showed significantly higher level of test anxiety than 

graduate students. This estimate of the prevalence of test anxiety in higher education is in line 

with a large annual survey conducted by the German student services (Middendorf et al., 

2016). In 2016, 13% of the surveyed students reported to have a need for counseling regarding 

high levels of test anxiety. Again, the proportion of test anxiety was significantly higher in 

female students (15%) than in male students (10%). The lower prevalence rate of test anxiety 

in universities students than in school students also correspond to meta-analytic findings 

regarding the change of the average test anxiety across students in the course of education 

(Hembree, 1988). More specifically, test anxiety was reported to occur as early as in the first 

grade and to increase in subsequent grades until reaching a plateau in grades eight to nine. 

Through grades 10-12 as well as in college the average level of test anxiety was then shown 

to slightly decrease (but cf. D. W. Putwain, 2007).  

Female students were shown to report higher levels of test anxiety than male students 

in both secondary school (D. Putwain & Daly, 2014) and higher education (Middendorf et al., 

2016). Hembree (1988) could demonstrate that this gender gap is significant across all levels 

of education. Similarly, studies suggest that test anxiety tends to be higher in African-American 

and Hispanic students (Hembree, 1988). However, more recent studies did not find a 

significant difference between Caucasian and African-American students in elementary school 

(Beidel, Turner, & Trager, 1994; Turner, Beidel, Hughes, & Turner, 1993) and current data 

regarding test anxiety in Hispanics as well as in minorities in Germany are missing.  

In summary, test anxiety affects students across all educational levels, with female 

students being especially at risk. While evidence suggest that about one fifth of school students 

exhibit significant levels of test anxiety, the prevalence rate of test anxiety in higher education 

has been estimated to be around 10-15%. 

 

1.4. Test Anxiety and Test Performance 

From the beginning of empirical investigations into test anxiety, researchers have been 

interested in the question of how test anxiety is related to performance in tests and 

examinations. In a seminal study, S. B. Sarason and Mandler (1952) addressed this question 

by analyzing academic achievements as a function of test anxiety. The group of students with 

the highest test anxiety showed significantly lower scores in standardized tests including the 

scholastic aptitude test (SAT) and the mathematics aptitude test (MAT) as compared to those 

students with the lowest test anxiety. Across students, test anxiety was negatively correlated 

with the scores of an intelligence test administered in a group setting.  
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Similar findings have been reported regarding the link between anxiety and 

performance in school children. Hill and Sarason (1966) compared the performance in 

standardized tests of the 10% most test-anxious fifth and sixth graders with those of the 10% 

least test-anxious students. Results revealed that while the former group was lagging almost 

a year behind in reading and mathematics the latter groups was well ahead compared to 

national norms. In another study, D. W. Putwain (2008) analyzed how individual differences in 

test anxiety relate to the General Certificate of Secondary Education (GCSE), a test taken at 

the end of compulsory secondary schooling in the UK. There was a small but significant inverse 

relationship between test anxiety and grades in the GCSE. The difference between high test-

anxious and low test-anxious students equated to almost one grade in the GCSE (D. Putwain 

& Daly, 2014). 

The meta-analysis by Hembree (1988) provides a fine-grained analysis of the 

relationship between test anxiety and different facets of academic performance including 

intelligence tests, aptitude/achievement tests, and grades (see also Ackerman & Heggestad, 

1997; Seipp, 1991). Test anxiety turned out to be consistently related to lower intelligence 

scores throughout education (i.e., from grade 1 to postsecondary). Similarly, high test-anxious 

students performed lower in aptitude/achievement tests, but this relationship did not become 

significant until grade 4. Comparing high test-anxious to low test-anxious students across 

standardized tests (i.e., intelligence and aptitude/achievement tests) revealed a mean effect 

size of -0.48. Also, course grades and the GPA were negatively correlated with test anxiety 

although effect sizes appear to be slightly smaller. This was confirmed by Chapell and 

colleagues (2005) who reported a significant but small inverse relationship between test 

anxiety and the GPA in both undergraduate (r = -.15) and graduate students (r = -.09). Finally, 

Hembree (1988) has reported that, across the different measures, test performance was more 

closely related to worry than to emotionality within test anxiety (see also Cassady & Johnson, 

2002; Seipp, 1991) 

Taken together, there is a wealth of data showing that test anxiety and especially the 

worry component is related to poor academic performance throughout education.  

 

1.5. Accounting for the Anxiety-Performance Link 

Given that test anxiety is inversely related to test performance, the question arises how 

this link can be accounted for. In general, two types of models, assuming different directions 

of causality, have been proposed in the literature: interference models and deficit models 

(Hembree, 1988; Sommer & Arendasy, 2014; Tobias, 1985). According to the interference 

models, test anxiety exercises a direct and detrimental influence on test performance. Thus, 

test anxiety is thought of as being the cause of the lower test performance of test-anxious 
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students. Alternatively, deficit models assume that students who struggle with tests in the first 

place are more prone to worry about their performance and thus to become test-anxious. Here, 

poor test performance is thought to be the actual cause of test anxiety. In the following, we will 

discuss both models in more detail and summarize the evidence for either direction of 

causality. We conclude by synthesize a working model for the present empirical investigations.  

 

1.5.1. Interference Models 

In one of the first theories on test anxiety, Mandler and S. B. Sarason (1952) postulated 

that a test situation evokes two kinds of learned drives in students: task drives and anxiety 

drives. Task drives can be described as the need to complete a task as well as possible in an 

evaluative situation. These drives are reduced by responses that contribute to completing the 

task at hand, such as solving a problem. Anxiety drives, in contrast, are thought to be 

associated with two classes of responses. Task-centered responses are functionally 

equivalent to the responses triggered by task drives and will result in an increased effort to 

complete the task. Self-centered responses, instead, will be manifested in “[…] feelings of 

inadequacy, helplessness, heightened somatic reaction, anticipations of punishment or loss of 

status and esteem, and implicit attempts at leaving the test situation” (Mandler & S. B. Sarason, 

1952, p. 166). According to Mandler and Sarason (1952), test-anxious students are 

characterized by a high anxiety drive as well as the tendency toward self-centered responses 

to anxiety. As a consequence, students with high test anxiety experience in evaluative 

situations what Mandler and S. B. Sarason (1952) phrased anxiety-produced interference.  

In a seminal review, Wine (1971) summarized the evidence for the notation that test 

anxiety is interfering with task performance. Based on the findings that especially the worry 

component seems to predict task performance (Liebert & Morris, 1967), the review concluded 

with giving a more attentional account of interference:     

 An attentional interpretation states simply that the reason "worry" debilitates task 

 performance is that it is attentionally demanding and distracts attention from the task. 

 (Wine, 1971, p. 100) 

As such, Wine (1971) translated the behavioristic theories by S.B. Sarason into a cognitive-

attentional theory of interference (see Zeidner, 1998), which has been also referred to as 

distraction theory in the literature (e.g. Beilock & Carr, 2001; Markman, Maddox, & Worthy, 

2006; Yu, 2015).  

 The idea that worries are the key mechanism by which anxiety affects cognitive 

performance has been recurring in the more recent processing efficiency theory (Calvo & 

Eysenck, 1992). This theory provides a general framework to explain how anxiety is related to 
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cognition. An important innovation to the distraction theory by Wine (1971) – reminiscent of the 

two responses to the anxiety drive postulated by Mandler and S. B. Sarason (1952) – is that 

worry is thought to have two reverse effects on test performance. Firstly, “worrisome thoughts 

consume the limited attentional resources of working memory, which are therefore less 

available for concurrent task processing.” (Eysenck et al., 2007, p. 337). This detrimental effect 

of worries is conceptualized to primarily affect the phonological loop and the executive 

functions of the working memory (see Baddeley, 2003). Secondly, being worried about failing 

is activating compensatory efforts to maintain task performance. Such compensatory efforts 

are thought to comprise both an increase in effort (e.g., “trying harder” to complete a task) and 

the usage of auxiliary strategies (e.g., articulatory rehearsal when reading). If such resources 

are available, task performance (i.e., the performance effectiveness) will remain unaffected. 

However, given that more cognitive resources have been used to maintain task performance, 

the processing efficiency is reduced. In general, anxiety is predicted to have a greater effect 

on processing efficiency than on performance effectiveness. According to Eysenck and 

colleagues (2007), this prediction can be tested by analyzing both response times and 

accuracies in a task. While reduced accuracy in a task would indicate a lower performance 

effectiveness, prolonged response times are thought to reflect reduced processing efficiency.  

 In the attentional control theory, a recent update of the processing efficiency theory, 

Eysenck and colleagues (2007) further specify how anxiety is thought to exercise its influence 

on the executive functions. The executive functions are further differentiated into (1) inhibition 

(i.e., to prevent interference from task-irrelevant stimuli), (2) shifting (i.e., to dynamically adapt 

to task demands), and (3) updating (i.e., to monitor working memory representations) (see 

Miyake et al., 2000). The attentional control theory states that the shifting and the inhibition 

function require more attentional control than the updating function and are therefore primarily 

affected by anxiety. However, in test-anxious individuals, the updating function has also been 

reported to be impaired when tested in stressful conditions (Calvo, Ramos, & Estevez, 1992; 

Darke, 1988). 

 Both the distraction theory (Wine, 1971) and the attentional control theory (Calvo & 

Eysenck, 1992; Eysenck et al., 2007) assume that the detrimental effect of worries on the 

working memory is central for explaining the link between test anxiety and cognitive 

performance. There is a wealth of evidence in support of this notion, including that (1) high 

test-anxious students show lower task performance than low test-anxious students when 

instructions are ego-involving but not when instructions are neutral, (2) test-anxious students 

report more worries during a test and that worries can impair students’ working memory, (3) 

test performance of test-anxious students improves after interventions aiming to reduce 

performance-related worries.  
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 A bulk of studies have addressed the role of ego-involving or ego-threatening 

instructions on test performance. Such instructions are usually implemented by informing 

participants that the task at hand is diagnostic about their intelligence or cognitive abilities. 

According to Wine (1971), results suggest that high test-anxious students perform more poorly 

if instructions are ego-involving compared to neutral task instructions. The opposing pattern of 

results holds true for low test-anxious students. Directly comparing the two groups of students 

shows that only with ego-involving instruction high test-anxious students are outperformed by 

low test-anxious students. In a recent meta-analysis, Moran (2016) has summarized studies 

addressing the effect of ego-involving instruction on simple span measures. In the digit span 

task, for instance, participants are asked to memorize and recall a serially presented sequence 

of digits. The digit span is the longest sequence of digits a participant can reproduce. Across 

studies, ego-involving instructions had a large aggregated effect (g = -.62) on simple span 

measures, i.e., fewer items could be recalled as compared to neutral task instructions. Finally, 

evidence of the detrimental effects of ego-involving instructions comes from studies on choking 

under pressure (Beilock, 2008; Beilock & Carr, 2001, 2005; Beilock & DeCaro, 2007; Beilock 

et al., 2004; Beilock, Rydell, & McConnell, 2007; Byrne, Silasi-Mansat, & Worthy, 2015; Chib, 

De Martino, Shimojo, & O’Doherty, 2012; DeCaro et al., 2011; Lee & Grafton, 2014; Markman 

et al., 2006; Mattarella-Micke, Mateo, Kozak, Foster, & Beilock, 2011; Mobbs et al., 2009; 

Ramirez & Beilock, 2011; Yu, 2015). In one study, Ramirez and Beilock (2011) asked 

participants to perform two blocks of complex arithmetic problems. After completing the first 

block, participants were randomly assigned to one of two conditions. In the control condition, 

they were instructed to continue solving the problems in the second block just as in the first 

block. In the pressure condition, instead, participants were exposed to an ego-involving test 

scenario in which they were filmed during the task and received a monetary reward if they 

could improve their performance in the second block. Results revealed that participants in the 

control condition showed a better performance in the second block as compared to the first 

block. Participants in the pressure condition, however, showed a marked drop in performance 

in the second block.  

 Students with test anxiety have been repeatedly shown to report more worries during 

a test as compared to lower test-anxious students (for reviews, see Wine, 1971; Zeidner, 1998)  

In an elegant study, Deffenbacher (1978) compared low and high test-anxious students in 

solving anagrams either in a low stress or in a high stress condition. After completing the task, 

students were asked to rate their emotions during the test and to estimate how much time they 

had effectively spent on the task. High test-anxious students in the stress condition solved 

fewer anagrams and reported more worries than both high test-anxious students in the low 

stress condition and low test-anxious students in the high stress condition. Strikingly, high test-

anxious students under stress reported spending only 60% of their time working on the task 
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as compared to 77.65% reported by test-anxious students without stress. Another line of 

research has addressed the causal role of worries by experimentally inducing worries while 

participants perform random generation tasks. In such tasks, participants have to produce a 

random sequence of items (e.g., by pressing different buttons) and hence try to avoid repeating 

or stereotyped patterns. These tasks have been shown to have relatively high working memory 

demands (see Moran, 2016). Hayes and colleagues (2008) compared low and high test-

anxious students performing a random generation task in two conditions. While participants 

were asked in the worry condition to think about a personal topic that had been bothering them, 

they should think about a positive topic in the positive thought condition. Comparing the 

randomness of the produced sequences between groups and conditions revealed that there 

was no difference between groups in the positive thought condition. However, high test-

anxious students showed a lower performance in the worry condition as compared to the low 

test-anxious students. Across studies, Moran (2016) reported a significant effect of engaging 

in worries on random generation tasks with a medium effect size (g = -.38). 

  Finally, evidence for the interference of test anxiety on test performance comes from 

studies on the treatment of test anxiety. Hembree (1988) concluded in his meta-analysis that 

both behavioral and cognitive-behavioral intervention are effective in reducing test anxiety. 

Each type of treatment was accompanied by an improvement in performance in both 

standardized tests and the GPA. Instead, improving study skills alone had no significant 

effects, neither on the level of test anxiety nor on test performance. In a more recent study by 

Ramirez and Beilock (2011), a short intervention of expressive writing, which is thought to 

alleviate worries and ruminations, was tested on the choking under pressure effect on complex 

arithmetic as discussed above. Before starting with the second block of complex arithmetic, 

participants were asked to either write about their feelings towards the upcoming test 

(expressive writing) or about an unemotional event (unrelated writing). While students in the 

unrelated writing condition showed the expected drop in performance, this choking under 

pressure effect was neutralized in the expressive writing condition. A similar effect of 

expressive writing was also reported in ninth graders facing their final high-school exam in 

biology. Students were assigned to an expressive writing condition or to think about a topic 

that would not be covered on the exam. In the analysis, participants were further divided into 

low test-anxious and high test-anxious students. Strikingly, while test-anxious students in the 

expressive writing group improved in their final exam grade as compared to the control 

condition, no significant effect was found for low-test anxious students. This suggest that the 

intervention was effective in reducing worries in test-anxious students and that without this 

burden students could improve their performance in the final exam.    
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1.5.2. Deficit Models 

While interference models of test anxiety have been the predominating view in the 

literature, deficit models have also received some support (see Zeidner, 1998). Researchers 

have suggested two types of deficits that can account for the lower performance of test-anxious 

students (Tobias, 1985). Firstly, students with high test anxiety might have lower study skills 

as compared to lower test-anxious students. According to this explanation, test-anxious 

students exhibit deficits in the initial acquisition and storage of the learning material. Secondly, 

test-anxious students might have inferior test-taking skills. Test-taking skills refer to strategies 

in a test, such as monitoring the time during the test or returning to difficult items at the end of 

the test (see Kirkland & Hollandsworth, 1980). In both scenarios, students with lower skills are 

thought to realize that they are doing poorly before or during a test and start worrying about 

their performance. As such, test anxiety is seen as an epiphenomenon of poor study or test-

taking skills without having a direct effect on task performance. Indeed, there is some evidence 

that test-anxious students have lower study and test-taking skills, and that these skills are 

related to poor test performance.  

Studies suggest that high test-anxious students have on average lower study skills than 

students with low test anxiety (for reviwes, see Tobias, 1985; Zeidner, 1998). In one study, 

Naveh-Benjamin and colleagues (1981) compared the study skills of low and high test-anxious 

undergraduate students in a psychology course. Results revealed that test-anxious students 

had specific problems acquiring the learning material throughout the semester. More 

specifically, they performed poorly in take-home examinations, reported problems learning the 

material in the course, and had problems picking out the important points in a reading 

assignment. Not surprisingly, these students received a worse course grade than their low 

test-anxious classmates. More recently, Cassady (2004) investigated the interplay between 

test anxiety and study skills across the learning–testing cycle. In the preparation phase, test-

anxious students reported lower study skills and prepared less efficient notes that they were 

allowed to use in the actual test. The reported study skills were negatively correlated with 

students’ test anxiety. However, while test anxiety was inversely related to course exam 

performance, there was no significant relation between study skills and performance.    

Similarly, studies have linked test anxiety to deficits in test-taking skills (for a review, 

see Tobias, 1985). In one study, Bruch and colleagues (1983) addressed the question of 

whether test performance is predicted by test-taking skills and test anxiety over and above 

scholastic abilities (as assessed by the SAT). Students were tested in a multiple-choice test 

and a short math test while reporting their test-taking skills and their state anxiety. For both 

tests, test-taking skills explained significant variance in test performance over and above the 
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ability level. Instead, the level of anxiety during the test appeared to be only related to the 

performance in the math test and explained significant less variance than the test-taking skills.  

 

1.5.3. Present Working Model 

The present literature review revealed that both interference models and deficit models 

have received empirical support in the literature. This suggests that the relationship between 

test anxiety and test performance is to some degree bidirectional. According to a reciprocal 

model, students with low study or test-taking skills are more prone to feel anxious in the 

preparation phase as well as during a test. Being anxious in the test, in turn, will further harm 

the test performance of these students (for a detailed discussion, see Zeidner, 1998). This can 

result in a vicious cycle in which students become increasingly test-anxious while academic 

performance is declining (see also Carey, Hill, Devine, & Szücs, 2016). However, test anxiety 

has been reported to be only moderately correlated with study skills (Cassady, 2004) and test-

taking skills (Bruch, 1981). Moreover, studies could dissociate test anxiety and skill deficits by 

comparing low and high test-anxious students with both low and high skills (Birenbaum & 

Pinku, 1997; Naveh-Benjamin, 1991). In light of this evidence, deficits in study and test-tasking 

skills might be best conceptualized as an additional factor in a more complex interplay between 

test performance and test anxiety (see Tobias, 1985).  

The overwhelming majority of the reviewed studies suggest that being anxious in a test 

situation has a direct and detrimental effect on cognitive performance and that performance-

related worries mediate this relationship. The aim of the present empirical investigations was 

therefore to better understand the effect of worries on the cognition of test-anxious students. 

For this, the effect of test anxiety on task performance was conceptualized based on the 

theories by Wine (1971) and Eysenck (Calvo & Eysenck, 1992; Eysenck et al., 2007). This 

distraction model is depicted in Figure 1. In this model, test-anxiety is conceptualized as a 

personality trait that interacts with the evaluative character of a situation in inducing 

performance-related worries in students. Theses worries, in turn, are thought to impair the 

working memory of students including the executive functions and the phonological loop (see 

Baddeley, 2003). As a consequence, working memory resources have to be split between the 

task at hand and the distracting worries. If the combined demands of task-related and worry-

related processes exceed the available working memory resources, performance impairments 

will result.  
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Figure 1. Distraction model of the effect of test anxiety on cognitive performance (Calvo & Eysenck, 
1992; Eysenck et al., 2007; Wine, 1971). 

 

1.6. Using Neuroimaging Techniques  

Converging evidence suggest that performance-related worries impair the working 

memory of test-anxious students. However, the specific mechanisms by which worries affect 

the working memory of test-anxious students remain an area of active research (for recent 

reviews, see Berggren & Derakshan, 2013; Maloney, Sattizahn, & Beilock, 2014). Eysenck 

and colleagues have suggested that neuroimaging techniques, such as fMRI and EEG, are 

promising to unravel theses mechanisms (Derakshan & Eysenck, 2009; Eysenck & 

Derakshan, 2011; Eysenck et al., 2007). In particular, neuroimaging techniques can provide 

information about the working memory costs of anxiety that are not detectable by measuring 

overt behavior alone. For instance, an EEG study by Righi and colleagues (2009) addressed 

the effect of general anxiety on attentional control using a Sustained Attention to Response 

Task (SART). In the task, a series of digits between 1 and 9 was presented in quick succession. 

Participants had to response to all digits (Go trials) except for the 3 in which case a response 

had to be inhibited (NoGo trials). Results revealed that neither trait nor state anxiety were 

significantly related to task performance. However, students with higher anxiety exhibited an 

increased amplitude of the N2 in the NoGo trials as compared to students with lower anxiety. 

The N2 is an event-related potential (ERP) peaking between 200 and 350 ms and has been 

linked to attentional control (for a review, see Folstein & Van Petten, 2008). Thus, on the 

behavioral level, attentional control appeared to be unaffected by individual differences in 

anxiety. On a neural level, however, the increased amplitude of the N2 suggest that anxious 

students used compensatory effort for inhibiting a response in the NoGo trials. Similarly, T. L. 

Ansari and Derakshan (2011) have reported that high anxious students show an increased 
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frontal Contingent Negative Variation activity (CNV) during an antisaccade task, while there 

was no difference in the task performance between low and high anxious students. 

Furthermore, fMRI studies have linked anxiety to an increased activity in the dorsolateral 

prefrontal cortex (DLPFC) - a candidate region for implementing attentional control in the 

human brain (Basten, Stelzel, & Fiebach, 2011; Fales et al., 2008; but cf. Bishop, 2009).  

In the studies reviewed above, high anxious individuals performed at about the same 

level as low anxious individuals but exhibited significantly increased neural activity. 

Consequently, Eysenck and colleagues have suggested that the anxiety-related increase in 

neural activity reflects compensatory effort by anxious individuals to maintain task performance 

(Derakshan & Eysenck, 2009; Eysenck & Derakshan, 2011; Eysenck et al., 2007). Such 

compensatory efforts are thought to comprise of both the increase in attentional control in the 

first place (e.g. “trying harder” to inhibit a response) and the usage of auxiliary strategies (e.g. 

articulatory rehearsal when reading). 

 

1.7. Aims and Outline of Studies  

Evidence suggest that increased neural activity in anxious individuals during a cognitive 

task reflects compensatory effort to maintain task performance (for reviews, see Derakshan & 

Eysenck, 2009; Eysenck & Derakshan, 2011; Eysenck et al., 2007). These studies have 

addressed the neural activity during cognitive tasks in participants varying in their level of 

general anxiety (T. L. Ansari & Derakshan, 2011; Basten et al., 2011; Bishop, 2009; Fales et 

al., 2008; Righi et al., 2009; Savostyanov et al., 2009).  However, studies on the neural activity 

in test-anxious students are largely lacking. The present work aimed to fill this gap by directly 

addressing the neurocognitive mechanisms underlying test anxiety. For this, we related 

different measures in the human EEG to individual differences in test anxiety. Compared to 

other neuroscientific techniques (e.g., fMRI), the temporal resolution of EEG is superior (up to 

1 ms) allowing us to gain fine-grained and precise temporal information about cognitive 

processes (see Schillinger, 2016). Based on the distraction model depicted in Figure 1, test-

anxiety was conceptualized as a personality trait that interacts with the evaluative character of 

a situation in inducing performance-related worries. Therefore, in all three studies students 

with lower and higher test anxiety were tested performing a cognitive task in both a high 

pressure condition and a low pressure control condition. Table 1 provides an overview of the 

present studies including the study design and the EEG measures used. 
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Table 1. Overview of the present studies with study design (including the factor evaluation and test 
anxiety) and the different measures in the electroencephalography (EEG).  

Study 
Study Design 

EEG 
Evaluation Test Anxiety 

Response Monitoring Under Performance Pressure Within Continuous ERN 

Response Monitoring in High Test-anxious Students Within Extreme Groups ERN 

Working Memory Costs of Performance Pressure Between Continuous FMΘ 

Note. ERN = Error-related negativity, FMΘ = Frontal midline theta.  

 

 

1.7.1. Studies on the Error-related Negativity (ERN) 

A crucial skill for success in a test is to monitor ongoing responses and to dynamically 

adapt to errors (see Hirsh & Inzlicht, 2010). More specifically, students in a test situation have 

to evaluate their response to a given problem in a limited period of time. Was the given 

response correct, or did they commit an error? If an error has been committed, students need 

to increase attentional control in order to maintain task performance (Eysenck et al., 2007; 

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). However, little is known about 

how worries affect response monitoring in a test situation. Two present studies addressed this 

question by analyzing a negative deflection in the human EEG emerging shortly after an error 

has been committed. This error negativity (Ne; Falkenstein, Hohnsbein, Hoormann, & Blanke, 

1991) or error-related negativity (ERN; Gehring, Goss, & Coles, 1993) peaks around 50 to 100 

ms relative to response onset and is most pronounced at frontocentral recording sites. The 

ERN is typically studied in reaction time tasks in which participants have to respond to a target 

stimulus by pressing one of two buttons (two-alternative forced choice), such as the Flanker, 

Go/NoGo, or Stroop paradigm (for a review, see Gehring, Liu, Orr, & Carp, 2012). 

Different lines of research suggest that the amplitude of the ERN is modulated by 

worries. Firstly, the ERN has been shown to be enhanced in patients with mental disorders 

linked to worries and ruminations, including general anxiety disorder and obsessive-

compulsory disorder (for a review, see Weinberg et al. 2011). In the same vein, the ERN has 

been demonstrated to be enhanced in individuals with higher general anxiety (Hajcak, 

McDonald, & Simons, 2003), negative affect (Hajcak, McDonald, & Simons, 2004; Luu, Collins, 

& Tucker, 2000), math anxiety (Suárez-Pellicioni, Núñez-Peña, & Colomé, 2013), 

perfectionism (Perrone-McGovern et al., 2017), and helplessness (Pfabigan et al., 2013). 

Secondly, worry has been shown to be the dimension of anxiety which is most closely related 

to the reported increase in the ERN (for a meta-analysis, see Moser, Moran, Schroder, 

Donnellan, & Yeung, 2013). For instance, Moser and colleagues (2012) reported that the ERN 
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amplitude was negatively correlated to worry but not to arousal in female undergraduate 

students. Finally, a recent study has shown that a short intervention of expressive writing, 

which is thought to alleviate worries and ruminations (see Ramirez & Beilock, 2011), is effective 

in reducing the ERN in individuals with chronic worry (Schroder, Moran, & Moser, 2018).  

Taken together, studies have consistently demonstrated that anxiety and, in particular, 

worry is related to an enhanced ERN. At the same time, performance in tasks used to measure 

the ERN (e.g., Stroop) appears to be uncompromised in anxious individuals (for a meta-

analysis, see Moser et al., 2013). Moser and colleagues (2013) have therefore suggested that 

the increased ERN in anxious individuals reflects compensatory efforts to maintain task 

performance. According to the compensatory error-monitoring hypothesis, anxious individuals 

focus their attention on internal worries thereby reducing resources dedicated to performing 

the actual task. As a result, anxious individuals have to increase their attentional control to 

maintain task performance, including monitoring ongoing responses and to dynamically adapt 

to errors. This compensatory effort is thought to give rise to more neural activity after 

committing an error as reflected in an increased ERN.  

The present two studies aimed to better understand the effect of worries on the 

response monitoring in test-anxious students. In the first study, 18 female university students 

were tested in performing a numerical Stroop task in both a high pressure condition modeling 

a real-life test situation and a low pressure control condition. Test anxiety was assessed with 

the German Test Anxiety Inventory (Prüfungsangstfragebogen, PAF) (Hodapp et al., 2011) 

and correlated with both task performance and EEG indices of response monitoring. While 

behavioral performance data provided mixed evidence, EEG indices suggest changed 

response monitoring in the high pressure condition as well as in relatively test-anxious 

participants. The second ERN study aimed to extend these findings by assessing test anxiety 

more systematically and by directly relating worries to the amplitude of the ERN. For this, two 

groups of 25 students were selected from a larger pool of subjects aiming to maximize the 

difference between groups in test anxiety. The two extreme groups were tested as in Study 1 

in a high pressure and a low pressure condition performing a numerical Stroop task. In addition, 

participants reported their worries regarding their performance throughout the experiment 

using a Faces Anxiety Scale (FAS).  
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1.7.2. Study on Frontal Midline Theta (FMΘ) 

Another way to elucidate the mechanisms by which test anxiety affects the working 

memory of test-anxious students is by measuring the neural oscillations during a cognitive 

task. Mental activity has been shown to be accompanied by neural oscillations in different 

frequency bands (see, Klimesch, 1999). Most noticeably, frontocentral oscillations in the theta 

band (4-8 Hz), referred to as frontal midline theta (FMΘ), have been linked to working memory 

processes (for reviews, see Hsieh & Ranganath, 2014; Inanaga, 1998). In particular, FMΘ has 

been demonstrated to increase with the memory load in classical working memory tasks, such 

as the Sternberg task (e.g., Jensen & Tesche, 2002) and the N-back task (e.g., Gevins, Smith, 

McEvoy, & Yu, 1997). Interestingly, ERPs following uncertain events such as errors (error-

related negativity; ERN), punishment (feedback-related negativity; FRN), and conflict-inducing 

stimuli (N2) have been recently shown to originate from a transient oscillatory synchronization 

of FMΘ (for reviews, see Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015). These 

ERPs, in turn, have been consistently reported to increase with the level of anxiety (for a meta-

analysis, see Cavanagh & Shackman, 2015). Based on these findings, Cavanagh and 

Shackman (2015) have proposed that the increased FMΘ in anxious individuals reflects the 

need for attentional control regarding uncertain or threatening events.  

In the present study, we aimed to directly assess the effect of worries on the working 

memory of test-anxious students. According to the distraction model (see Figure 1), worries 

additionally tax the working memory of test-anxious students in an evaluative situation. Given 

that FMΘ is sensitive to working memory demands, we reasoned that FMΘ is increased in 

test-anxious students under performance pressure. To test this prediction, students with 

varying levels of test anxiety performed two blocks of a working memory demanding arithmetic 

task while reporting their worries (see Beilock et al., 2004). After completing the first block, 

participants were randomly assigned to one of two pressure conditions. While the control group 

was instructed to work through the second block of problems just as before, the pressure group 

was exposed to a high-pressure test scenario. Previous studies using this paradigm have 

reported that participants in the pressure group show a significant performance drop in the 

second block as compared to the control group (Beilock & Carr, 2005; Beilock & DeCaro, 2007; 

Beilock et al., 2004; Ramirez & Beilock, 2011). In the present study, we related this choking 

effect to both individual differences in test anxiety and the modulation of FMΘ. To test whether 

test-anxious students show higher working costs under performance pressure due to worries, 

a mediation approach was used.   
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2. Study 1 – Response Monitoring Under Performance Pressure   

2.1. Introduction  

2.1.1. Choking Under Pressure in Mathematics 

Acquiring mathematical knowledge and procedures through formal education plays an 

ever-increasing role in modern society (De Smedt et al. 2011; Grabner and Ansari 2010). 

Despite the importance of mathematical education, mathematics is often linked to worries and 

feelings of anxiety. According to the Programme for International Student Assessment (PISA), 

an alarming percentage of 61% of the interviewed students reported that they are worried to 

get poor grades in mathematics and 59% stated that they are afraid that it will be difficult for 

them in mathematics classes (OECD, 2013).  

Worries related to mathematics have been suggested to be a potential cause of poor 

mathematics achievement. Especially in high-stake tests, when students try to perform at their 

best, such worries might hinder students from achieving their full potential (Ashcraft, 2002; 

Beilock, 2008). Across domains, students often show lower performance in high-stake tests 

than expected, given their still level (Beilock et al., 2004). In the literature, the term choking 

under pressure has been used to describe this phenomenon (Baumeister, 1984). According to 

the distraction account, a prominent theory to explain choking under pressure of academic 

skills, worries are the initial condition of a cognitive mechanism that ultimately leads students 

to fail (DeCaro et al., 2011; Eysenck et al., 2007; Wine, 1971). In detail, the theory claims that 

being in a test situation is inducing worries and task-irrelevant thoughts about the test, one’s 

performance, and potential consequences of doing poorly. These ruminations are thought to 

coopt working memory, and when the combined demands of task-related and extraneous 

processing are exceeding the individual working memory capacity, this will result in 

performance impairments.  

Acquiring mathematical concepts and applying mathematical procedures impose a 

considerably high working memory load on the learner (Raghubar, Barnes, & Hecht, 2010). 

Thus, following the distraction account, mathematics should be especially vulnerable to 

choking under pressure. This is in line with empirical evidence provided by Beilock and 

colleagues demonstrating that choking under pressure affects mathematical problem solving 

(for a review, see Beilock 2008). In an initial study, they compared the accuracy with which 

participants solved arithmetic problems in a high pressure condition to a low pressure control 

condition (Beilock et al., 2004). While participants were instructed to solve problems as good 

as possible in the control condition, they were subjected to performance pressure in the high 

pressure condition. For this, participants were told that they would receive a monetary reward 

for good performance as part of a team effort (outcome pressure). In addition, participants 
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were videotaped during the experiment and were led to believe that the recording would be 

used for educational purposes (monitoring pressure) (see DeCaro et al. 2011 for a detailed 

discussion of pressure situations). Results showed that the problem solving rate was impaired 

by performance pressure, but only for arithmetic problems with high working memory demands 

(see also, Beilock and DeCaro 2007; Ramirez and Beilock 2011). 

 

2.1.2. The Role of Test Anxiety 

While choking under pressure is a general phenomenon, students with test anxiety 

have been suggested to be particularly affected by it (Beilock et al., 2004). Test anxiety is a 

specific fear of failure before or during a test which is accompanied by increased arousal, 

tension, and bodily reactions—on a affective level—and worries, irrelevant thoughts, and 

catastrophizing—on a cognitive level (for a review, see Zeidner 2007). According to the 

distraction account, the tendency of worrying about a test is making test-anxious students more 

prone to fail in evaluative situations (Eysenck et al., 2007; Wine, 1971). In a study by Calvo 

and colleagues (1992), high test-anxious individuals exhibited inferior working memory 

capacity as compared to lower test-anxious participants, but only under evaluative stress 

condition. Moreover, in a longitudinal study, Ramirez and Beilock (2011) showed that test 

anxiety is linearly related to academic achievement in ninth-grade students. However, this 

relationship was alleviated by an expressive writing intervention which specifically aimed to 

reduce performance-related worries. Thus, choking under pressure depends on both 

situational performance pressure and individual test anxiety. 

 

2.1.3. Response Monitoring in Test Situations 

To succeed in an academic test, it is important to monitor ongoing responses and to 

dynamically adapt to errors (Hirsh & Inzlicht, 2010). More specifically, in a test situation, 

students have to evaluate their response to a given problem in a limited period of time. Was 

the given response correct, or did they commit an error? If an error has been committed, 

students need to take measures in order to uphold task performance. One way to adjust to an 

error is to increase cognitive control in order to avoid committing another error (Eysenck et al., 

2007; Ridderinkhof et al., 2004). Previous research has highlighted the role of prefrontal brain 

structures for the implementation of cognitive control, including performance monitoring and 

behavioral adjustment to errors (Carter, 1998; Ridderinkhof et al., 2004).  

So far, only few studies have addressed the question of how responses are monitored 

in the domain of mathematics. In one functional magnetic resonance imaging (fMRI) study, 

Ansari and colleagues (2011) compared the brain activation of highly mathematical competent 
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participants to relatively lower mathematical competent participants during arithmetic problem 

solving. Crucially, in the analysis, the authors directly compared correctly solved arithmetic 

problems to incorrectly solved arithmetic problems. Results indicated higher brain activity in 

prefrontal areas when an arithmetic error was committed. In the right dorsolateral prefrontal 

cortex, this effect was modulated by the mathematical competence of participants. Highly 

mathematical competent participants exhibited stronger activation in this area compared to 

relatively lower mathematical competent students. These results suggest that individuals with 

high mathematical competence exhibit improved performance monitoring during a 

mathematical task and implement greater cognitive control following the commission of an 

arithmetic error. 

Furthermore, in mathematics, response monitoring seems to be especially crucial since 

mathematical problems are often associated with a single correct solution. For instance, there 

is only one appropriate solution to an arithmetic problem. Therefore, errors might be more 

salient in mathematics as compared to other school-related domains. Also, evaluating 

responses in mathematics is particularly important in order to avoid consequential errors.  

 

2.1.4. The Error-related Negativity (ERN) 

When looking at the brain response, as measured through EEG, a response in a choice 

task is typically followed by a negative deflection in the EEG signal, which has been shown to 

be more pronounced for erroneous responses (error-related negativity, ERN) than for correct 

responses (correct response negativity, CRN) (Falkenstein et al., 1991; Gehring, Goss, Coles, 

Meyer, & Donchin, 1993). The ERN has been demonstrated in various tasks, including Flanker 

(e.g., Falkenstein et al. 1991), Go/NoGo (e.g., Kim et al. 2007), color-naming Stroop (e.g., 

Hirsh and Inzlicht 2010), and—most recently—numerical Stroop task (Suárez-Pellicioni et al., 

2013). It peaks around 50 to 100 ms relative to response onset and is most pronounced at 

centro-parietal recording sites. Most studies have suggested the anterior cingulate cortex 

(ACC) as a candidate brain region for generating the ERN (for a review, see Gehring et al. 

2012).  

The ERN has been proposed to reflect activity related to cognitive processes underlying 

response monitoring (Falkenstein et al., 1991; Gehring, Goss, Coles, et al., 1993). More 

specifically, in a choice reaction time, an error is often committed before the processing of the 

target stimulus is completed. As the response is carried out, e.g., by pressing a button, the 

processing of the stimulus continues. Then, the difference of the correct response, based on 

the ongoing stimulus processing, is compared to the actual response, which has been initiated. 

When the two representations do not match, an error signal arises, which is thought to be 
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reflected in the ERN (Coles, Scheffers, & Holroyd, 2001). However, the precise functional 

significance of the ERN is a subject of ongoing debate (for a review, see Gehring et al. 2012).  

While the ERN is thought to reflect activity specific to error processing, the difference 

potential between CRN and ERN (ΔERN) has been suggested to reflect activity more broadly 

related to response monitoring (Riesel, Weinberg, Endrass, Meyer, & Hajcak, 2013). Thus, it 

is common to analyze in addition to the ERN the difference potential ΔERN. The test-retest 

reliability of both measures have been shown to be excellent over a period of two weeks (Olvet 

& Hajcak, 2009a) and moderately high over a period of up to 2.5 years (Weinberg & Hajcak, 

2011). Furthermore, when measured with different tasks (viz., Flanker, Stroop, Go/NoGo) the 

ERN has been demonstrated to exhibit a moderately high and the ΔERN a slightly higher 

convergent validity (Riesel et al., 2013). Taken together, the ERN and the ΔERN can be 

considered as stable, trait-like electrophysiological measures (see Weinberg and Hajcak 

2011). 

Interestingly, converging evidence suggest that the ERN is sensitive to affective and 

motivational factors, including feelings of anxiety. Specifically, individual differences in trait 

anxiety (e.g. Hajcak et al. 2003) and negative affect (e.g. Hajcak et al. 2004) have been shown 

to be directly related to an increased ERN amplitude. In a recent study, Suárez-Pellicioni and 

collegues (2013) showed that math-anxious students exhibit an enhanced ERN in a numerical 

Stroop task, but not in a classical, color-naming Stroop. In addition, patients with a diagnosis 

of generalized anxiety disorder as well as obsessive-compulsive disorder are characterized by 

an increased ERN amplitude (for a review, see Weinberg et al. 2011). Among different 

dimensions of anxiety, apprehension or worry has been shown to be most closely associated 

with the ERN (Moser et al., 2013). Thus, in the present study, we expected the ERN/ΔERN to 

linearly increase with individual level of test anxiety. 

In addition to individual differences, the ERN has been demonstrated to be modulated 

by situational factors inducing performance pressure (Ganushchak & Schiller, 2008; Hajcak, 

Moser, Yeung, & Simons, 2005; Kim, Iwaki, Uno, & Fujita, 2005). In an elegant study, Hajcak 

and colleagues (2005) investigated how the ERN is modulated by monetary incentive, on the 

one side, and by social evaluation, on the other side, using a Flanker task. In the first 

experiment, monetary incentive was varied on a trial-by-trial basis using a cue ahead of the 

target stimulus. Participants could either earn “5” or “100” points for responding correctly to the 

target stimulus. (Participants were instructed that points were transferred into money after 

completion of the experiment.) Results showed that the amplitude of the ERN following errors 

in trials with high value was significantly higher than in trials with low value. In the second 

experiment, a control condition in which participants were instructed to respond as quickly and 

as accurately as possible was compared to an evaluative condition. In the evaluative condition, 

participants were monitored throughout the experiment by a research assistant and were told 
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that their performance would be compared to the result of other students. All participants were 

tested in both conditions within a single EEG session starting with either of the conditions in a 

counterbalanced order. Similarly to the results of the first experiment, the ERN was significantly 

increased in the evaluative condition relative to the control condition. Thus, in the present 

study, combining monetary incentives and social evaluation, we expected the ERN/ΔERN to 

be increased in the high pressure condition as compare to the low pressure condition. 

 

2.1.5. Numerical Stroop Paradigm 

In this study, ERPs were measured using a numerical Stroop paradigm in which 

participants are required to compare two digits either according to their numerical magnitude 

or according to their physical size while ignoring the respective other dimension (Besner & 

Coltheart, 1979; Henik & Tzelgov, 1982; Kaufmann et al., 2005). The physical task (i.e., 

selecting the physically larger digit) is considered to provide a measure of the automatic 

processing of numerical magnitude (Bugden and Ansari 2011). More specifically, when the 

physically larger digit has to be selected, the numerical information of the pair of digits is 

irrelevant to the task. Nevertheless, participants typically show slower response times when 

stimuli are incongruent (i.e., the physically larger digit is numerically smaller) than when stimuli 

are congruent (i.e., the physically larger digit is also numerically larger) or neutral (both digits 

are the same number but differ in physical seize) (e.g., Kaufmann et al. 2005). Thus, the 

numerical information is processed automatically either facilitating (congruent trials) or 

inhibiting (incongruent trials) the response to the physical size. The numerical task (i.e., 

selecting the numerically larger digit), instead, is a number comparison task with conflicting 

physical size information. Here, the numerical magnitude information needs to be processed 

explicitly in order to select the numerically larger digit. Similar to the physical task, the irrelevant 

dimension, physical size, influences stimulus processing and congruency effects occur. 

Combining physical and numerical task, the numerical Stroop paradigm (as used in the present 

study) provides an elegant way to investigate automatic as well as explicit magnitude 

comparison.  

Importantly, the ability to compare numbers has been suggested to be an important 

predictor of general mathematical achievement (Holloway & Ansari, 2009; Vogel, Remark, & 

Ansari, 2015). In one study, for instance, children’s magnitude comparison ability was 

predicting mathematics achievement assessed one year later. This effect hold true when 

controlling for age, intellectual ability, and speed of number identification (De Smedt, 

Verschaffel, & Ghesquière, 2009). Furthermore, children with atypical development of 

numerical abilities, such as developmental dyscalculia, have been shown to exhibit impaired 

number comparison (Landerl, Bevan, & Butterworth, 2004; Rousselle & Noël, 2007). Taken 
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together, the numerical Stroop paradigm taps into magnitude comparison processes which are 

considered as an essential step in the development of mathematical competencies.  

In addition, in a speeded version, the numerical Stroop paradigm is well suited for 

measuring the ERN (respectively ΔERN) which requires a large number of repetitions in order 

to obtain a sufficient number of error trials (see also Suárez-Pellicioni et al. 2013).  

Finally, the interference between physical and numerical information in comparing two 

numbers requires attentional control to respond accurately (Posner & Petersen, 1990). 

Interestingly, attentional control has been suggested to be impaired by anxiety, including 

individual differences in anxiety as well as anxiety-inducing contextual factors (for a review, 

see Eysenck et al. 2007).  

Regarding the behavioral performance, we expected that the performance in the 

numerical Stroop is impaired in the high pressure condition relative to the low pressure 

condition. Furthermore, we predicted that the task performance is linearly related to the 

individual level of test anxiety. Since the numerical task used in the present study is relatively 

easy compared to the complex arithmetic problems used by behavioral studies on choking 

under pressure in mathematics (e.g., Beilock et al. 2004) we expected response times to be a 

more sensitive indicator of task impairments than accuracy rates.  

 

2.1.6. Hypotheses  

In summary, we hypothesized that the ERN, as an indicator of error processing, and/or 

the ΔERN, as an indicator of general response monitoring, are increased by situational 

performance pressure. Moreover, we expected electrophysiological indices to be linearly 

related to the individual level of test anxiety. At the behavioral level, we expected, firstly, that 

response times are higher in the high pressure condition relative to the low pressure condition. 

Secondly, we predicted response times to linearly increase with the individual level of test 

anxiety. 
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2.2. Methods 

2.2.1. Participants 

Twenty-one female psychology students participated in the present study.2 All 

participants were right-handed and had normal or corrected-to-normal vision. Two data sets 

had to be excluded from further analyses due to a technical malfunction during the EEG 

recording and one data set because of near-perfect task performance (inclusion criterion: 

minimum of five errors per pressure condition, see Olvet & Hajcak, 2009a, 2009b). All 

participants met the inclusion criteria of a maximum of 20 % errors per pressure condition. 

Thus, the remaining sample comprised 18 participants, aged between 18 and 32 years (M = 

21.06, SD = 3.45 years). Participants gave written informed consent and received course credit 

for their participation. The study was approved by the ethics committee of the psychology 

department at the University of Göttingen. 

 

 

Figure 2. Schematic 
display of an EEG trial 
with incongruent number 
pair. 

 

 

 

 

2.2.2. Apparatus and Materials 

2.2.2.1. Numerical Stroop task 

In the numerical Stroop task, a pair of Arabic digits was presented to the participants in 

the middle of the computer screen using E-Prime 2.0 software (Psychology Software Tools, 

Pittsburgh, PA, USA), and subjects had to indicate the larger of the two numbers. The digit 

pairs were created by combining the cardinal numbers without the boundary numbers one and 

                                                
2 Only female participants were recruited since gender differences have been reported for both 
mathematics (Else-Quest et al. 2010) and test anxiety (Hembree 1988). To avoid possible confutations 
with stereotype threat effects (Nguyen and Ryan 2008) all experiments were conducted by a team of a 
female and a male examiner. 
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nine while keeping a numerical distance of one. This results in six pairs of digits (2–3, 3–4, 4–

5, 5–6, 6–7, 7–8), which were presented in both lateral configurations (e.g., 2–3, 3–2). The 

single digits of the number pairs were displayed in different font sizes (small: 40, medium: 60, 

large: 80) creating an interference between the numerical and the physical size of the digits. 

In the congruent condition, the numerically larger number was also displayed in larger font size 

(e.g., 2 3), while in the incongruent condition numerical magnitude and font size did not match 

(e.g., 2 3). Participants’ task consisted of either selecting the numerically larger (numerical 

task) or the physically larger number (physical task). Thus, in the numerical task, participants 

had to respond to the numerical magnitude while ignoring the physical size of the digits. In the 

physical task, instead, participants had to respond to the physical size of the digits ignoring the 

numerical magnitude. The neutral stimulus condition, in which one dimension should not 

influence stimulus processing, differed between the two task conditions. For the numerical 

task, both digits of a pair were displayed in medium font size (e.g., 2 3), while in the physical 

task condition the same digit was displayed in different font sizes (e.g., 2 2). Task condition 

was alternated in blocks and participants were instructed at the beginning of each block to 

which dimension of the stimuli they were required to respond.  

The temporal sequence of an EEG trial is depicted in Figure 2. Each trial started with 

the presentation of a red fixation asterisk for 500 ms, followed by a 200 ms blank screen. Then, 

the target stimulus (i.e., digit pair) was presented for 300 ms, and response recording started 

with stimulus onset. Subsequently, the screen turned black for an interval of 700 ms in which 

response recording continued. Trials were interleaved by a 1000 ms inter-trial interval 

displaying a grey asterisk. In order to minimize eye artefact, participants were asked to avoid 

eye blinks unless the asterisk turned grey. Participants selected the left digit by pressing the 

left button of a button box with the index finger and the right digit by pressing the right button 

with the middle finger. 

 

2.2.2.2. German Test Anxiety Inventory (PAF) 

 Test anxiety was assessed using the German Test Anxiety Inventory 

(Prüfungsangstfragebogen, PAF) (Hodapp et al., 2011), which is originally based on the test 

anxiety inventory by Spielberger (1980). The questionnaire uses a 4-point Likert scale and 

consists of 20 items asking for the feelings and thoughts experienced in test situations (e.g., 

During tests, I find myself thinking about the consequences of failing). The resulting overall 

score ranges between a minimum of 20, indicating very low test anxiety, and a maximum of 

80, indicating very high test anxiety.  
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The PAF is designed to assess test anxiety as a situation- specific trait anxiety, which 

is stable over time. This assumption has been confirmed by previous studies using latent-trait 

analysis (Keith et al., 2003). Thus, in the present study, it is assumed that participants’ test 

anxiety score were stable between the time of administrating the test anxiety questionnaire 

and the previous two EEG sessions. 

  

2.2.2.3. EEG data acquisition 

EEG was acquired through a BioSemi Active Two system (BioSemi, Amsterdam, The 

Netherlands) from 64 scalp electrodes placed according to the extended 10–20 system. An 

electrooculogram (EOG) was recorded from three additional electrodes; two placed 

horizontally at the outer canthi of both eyes, and one placed above the nasion between the 

inner canthi of the eyes. EEG and EOG signals were sampled at 512 Hz and filtered between 

DC and 128 Hz. 

 

2.2.3. Procedure 

All participants were tested in two separate EEG sessions: a high pressure condition 

and a low pressure control condition. Half of the participants were randomly assigned to start 

with the high pressure condition, the other half to start with the low pressure condition. Between 

the two EEG sessions was an interval of 2 weeks. In each condition, participants performed a 

numerical Stroop task. In a third session, which was scheduled on a separate day after 

completing both EEG sessions, participants filled out the test anxiety inventory and answered 

demographic questions.  

In the high pressure condition, a test score was computed for each participant based 

on speed and accuracy in the numerical Stroop task. The student with the highest score was 

rewarded with a 30€ gift card (outcome pressure). In addition, participants were monitored by 

the experimenters while doing the task through a web cam in the EEG cabin (monitoring 

pressure). Both measures were explained to the participants at the beginning of the study. The 

camera was mounted before recording started in front of the participants and the experimenter 

reiterated that their performance would be evaluated. To demonstrate the functionality of the 

monitoring, the video recorded by the webcam was transferred onto participants’ monitor for 

about a minute before the numerical Stroop task started. After completion of the series of all 

experiments, participants were debriefed, and the student with the best test score received the 

gift card.3  

                                                
3 The high pressure scenario used in the present study differed in some points from the scenario 
reported by Beilock and colleagues (e.g. Beilock et al. 2004). Since the participating psychology 
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In the low pressure condition, participants were instructed to respond as quickly and as 

accurately as possible, as common in psychological testing. No camera was recording the 

participants during the session and participants were not rewarded for their performance.  

Except for the pressure manipulation, the experimental procedure of both EEG 

sessions was identical. Upon arrival, participants were seated in an EEG cabin, and EEG 

electrodes were placed. The recording started with a 3 min sequence in which participants 

were asked to deliberately execute eye movements. This data were used later on in the 

analysis to remove eye movement artifact from the data (see data analysis). Participants 

received task instructions on screen, and then completed a block of 14 practice trials for each 

task condition (numerical, physical) in which feedback was provided (viz., “correct”, “wrong”, 

“too slow”). Then, the experiment started and stimuli were presented in blocks alternating 

between task conditions. At the beginning of each block, participants were instructed whether 

they had to select the numerically or the physically larger number. To keep the error rate in the 

range of 5–25 %, participants received manipulated feedback at the end of each block (see 

Gehring, Liu, Orr, & Carp, 2012). If less than 5 % errors were committed in a block, participants 

were asked to respond quicker; and if more than 25 % errors were committed, participants 

were asked to slow down. In between that range, participants were instructed to continue as 

before. This “feedback” was provided at the beginning after 36 trials (short block) and then 

after 72 trials (long block). In total, 936 number pairs were presented in six short and ten long 

blocks. To avoid participants losing their concentration a short break was implemented after 

half of the trials. Each EEG test session took about 1.5 h, including task instructions as well as 

mounting and de-mounting of electrodes. 

 

2.2.4. Data Analysis 

2.2.4.1. Linear mixed models  

A linear mixed model approach was employed to test whether performance pressure 

and test anxiety modulated task performance as well as electrophysiological indices of 

response monitoring. Linear mixed models predict an outcome variable based on a 

combination of discrete or continuous variables while allowing to specify random terms for 

repeated measurements (for a review, see, Kliegl et al. 2011). In the present study, this allowed 

to predict the outcome variables (i.e., response time, accuracy, ΔERN) based on the discrete 

variable pressure (repeated measures) and the continuous variable anxiety. Linear mixed 

models with random intercepts were set up using the lme4 package (Bates, Maechler, Bolker, 

                                                
students in the present study were likely to be familiar with psychological experiments it seemed 
implausible to us to involve a cover story with confederates. 
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& Walker, 2014) in the R environment (R Core Team, 2015). To test whether the factor 

pressure and anxiety as well as the interaction of both significantly affected the outcome 

variables, we compared a model containing the factor of interest against a restricted model 

using likelihood ratio tests. In addition to the χ2 statistics of the model comparison, the Akaike 

information criterion (AIC) was computed for each model. Parameters’ estimate and standard 

error (SE) for the model with the highest goodness of fit are reported. 

 

2.2.4.2. Behavioral Data 

The overall score of test anxiety was calculated for each participant by adding up all 

single item scores. For the linear mixed model analysis, raw values were z-transformed to 

improve the interpretability of the estimates (see Schielzeth 2010).  

Response time and accuracy were aggregated individually for each condition, i.e., 

pressure (low, high), task (numerical, physical), and congruency (congruent, neutral, 

incongruent). Missed responses were treated as errors for calculating the accuracy rate and 

were excluded from the mean response time and the ERP analyses. To test whether 

performance pressure affected task performance, a 2 (pressure) × 2 (task) × 3 (congruency) 

repeated measurement ANOVA was conducted with response time and accuracy as 

dependent variable. To further analyze the interaction of performance pressure with individual 

test anxiety, a linear mixed model was setup for each dependent variable based on the result 

of the ANOVA. This restricted model was then compared against a model including a term for 

test anxiety and a model including the interaction of performance pressure and test anxiety. 

 

2.2.4.3. Electrophysiological Data 

EEG data were analyzed using EEGLAB 13.2.1 (Delorme & Makeig, 2004) and 

ERPLAB 4.0 (Lopez-Calderon & Luck, 2014) in the MATLAB environment (Mathworks, Inc., 

Natick, MA, USA, release 2013a). The signal was rereferenced to the mean (common average 

reference) and bandpass filtered with cutoffs of .1 and 30 Hz (Olvet & Hajcak, 2009b). Eye 

movement artifacts were automatically corrected using regression coefficients which were 

estimated based on data of the eye movement sequence (Schlögl et al., 2007). Response-

locked epochs from 400 ms before response onset to 600 ms after response onset were 

extracted with a 100 ms baseline [−200 −100]. To detect remaining artifacts, a moving window 

peak-to-peak threshold of 100 μV with a window size of 200 ms and a step size of 100 ms was 

applied to channel FCz. The valid trials were then averaged for error responses (obtaining the 

ERN) and correct responses (obtaining the CRN) for each participant and pressure condition. 

To quantify the ERN and CRN, the mean amplitude between 0 and 100 ms at electrode FCz 
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was extracted (see Olvet and Hajcak 2009b). Finally, the ΔERN was computed by distracting 

the mean CRN from the mean ERN for each participant and pressure condition (Riesel et al., 

2013). 

To test whether the mean amplitude of ERN and of the ΔERN were modulated by 

performance pressure as well as individual test anxiety, we compared nested linear mixed 

model containing the factor of interest against restricted models.  

 

 

 
Figure 3. (a) Mean response time and 
(b) accuracy as a function of 
congruency (congruent, neutral, 
incongruent), task (numerical, 
physical) and pressure (low, high). 
Error bars indicate +/- 1 standard error. 

 

 

2.3. Results 

2.3.1. Behavioral Data 

Test anxiety scores varied among participants between a minimum of 36 and a 

maximum of 61 (M = 47.5, SD = 7.18). Individual test anxiety scores are depicted in Figure 5. 

Compared to the norm sample (Hodapp et al., 2011), 15 participants showed average test 

anxiety and 3 participants (ID: 9, 13, 14) showed heighted levels of test anxiety (cut-off raw 

value: 56). None of the participants had a test score indicating strongly heightened test anxiety 

(cut-off raw value: 67).  
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Figure 3 shows the mean response time and accuracy as a function of pressure, task 

and congruency. Both, task condition, F(1, 17) = 151.50, p < .001, and stimulus congruency, 

F(2, 34) = 57.98, p < .001, significantly affected response times, as expected based on 

previous literature. Furthermore, there was a significant interaction between task and 

congruency, F(2, 34) = 45.71, p < .001. Confirming our hypothesis, response times were 

significantly increased when performance pressure was applied, F(1,17) = 4.791, p < .001. 

The effect of pressure did not interact with task condition nor stimulus congruency (all p values 

≥ .252). 

Similar to response times, stimulus congruency, F(2, 34) = 41.46, p < .001, and task 

condition, F(1, 17) = 96.12, p < .001, had a significant effect on accuracy as well as the 

interaction between these factors, F(2, 34) = 38.23, p < .001. Surprisingly, performance 

pressure significantly improved accuracy, F(1, 17) = 5.23, p = .035. No other interaction 

reached statistical significance (all p values ≥. 125). Hence, the restricted linear mixed model 

contained an interaction between stimulus congruency and task condition as well as a main 

effect for pressure (Congruency * Stroop + Pressure).4 The model comparison revealed that 

test anxiety [χ2(1) = .84, p = .359, AIC: 1943.0 vs. 1944.2] did not significantly affected 

response times. However, the interaction between test anxiety and performance pressure 

turned out significantly [χ2(1) = 7.22, p = .007, AIC: 1939.0]. Compared to the low pressure 

condition, response times were decreased by 5.37 ms ± 1.98 (standard errors) for a gain of 

one standard score in test anxiety. Regarding the accuracy, the percentage of correct 

responses was neither significantly modulated by test anxiety [χ2(1) = 2.48, p = .115, AIC: 

1301.6 vs. 1301.1] nor by the interaction of test anxiety and performance pressure [χ2(1) = .18, 

p = .670, AIC: 1302.9]. (For scatter plots of both output variables as a function of test anxiety, 

see Figure S 1) Thus, the hypothesis according to which response times linearly increase with 

the individual level of test anxiety could not be confirmed. Performance pressure did not 

interact with stimulus congruency or task condition in affecting task performance. Therefore, 

trials were averaged across congruency and task conditions in the EEG analysis to increase 

the number of errors and thus the signal to noise ratio. 

 

 

                                                
4 In the notation of the linear mixed models used in the present manuscript,  “+” indicates a main effect 
and “*” indicates an interaction  term. 
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Figure 4. (A) Average waveforms of correct and erroneous response for low pressure and high pressure 
condition. (B) Mean amplitude in an interval of 100 ms after response onset for response type and 
pressure condition.  

 

2.3.2. Electrophysiological Data 

Figure 4a shows the average waveforms of correct and erroneous responses in the low 

pressure and the high pressure condition. The mean amplitude of the ERN and the CRN (0–

100 ms relative to response onset) are depicted in Figure 4b, indicating a subtle difference in 

the ERN and a more pronounced difference in the CRN between pressure conditions. The 

following linear mixed model analysis was based on the mean amplitude of the ERN and the 

difference between ERN minus CRN (ΔERN). Results of model comparison predicting the 

ERN and ΔERN are listed in Table 2. The ERN was neither significantly modulated by 

performance pressure, individual test anxiety nor the interaction of both factors. However, 

performance pressure significantly affected the ΔERN, increasing it by about .70 μV ± .28 

(standard errors). Furthermore, test anxiety significantly modulated the amplitude difference 

between CRN and ERN. In detail, the ΔERN was increased by .83 μV ± .34 for a gain of one 

standard score in test anxiety. Including an interaction term between performance pressure 

and test anxiety did not further improve the goodness of fit of the model. Figure 5 depicts the 

ΔERN as a function of test anxiety for both pressure conditions. Taken together, 

electrophysiological data indicate that response monitoring is modulated by performance 

pressure and test anxiety independently. 
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Table 2. Result summary for nested mixed linear models predicting the output variable (OV) ERN and 
ΔERN. Models were compared against each other using maximum likelihood tests providing χ2 values, 
degrees of freedom between models df χ2, and corresponding p values. Akaike information criterion 
(AIC) are listed as an indicator of goodness of fit.  

OV Predictor AIC χ2 df χ2 p 

ERN Intercept 345.22    

 Pressure 347.10 0.12 1 .729 

 Pressure + Test anxiety 349.09 0.00 1 .944 

 Pressure * Test anxiety 351.00 0.09 1 .759 

ΔERN Intercept 137.43    

 Pressure 133.96 5.47 1 .019 

 Pressure + Test anxiety 130.96 5.00 1 .025 

 Pressure * Test anxiety 132.86 0.10 1 .753 

Note. ERN = Error-related negativity.    

 

 

 

Figure 5. Scatter plot of 
ΔERN as a function of 
performance pressure and 
test anxiety (raw values). 
Numbers indicate individual 
subjects. Linear regression 
lines were fitted for each 
pressure condition for 
illustrative purposes. 

 

 

2.4. Discussion 

The aim of the present study was to shed light on how responses are monitored in high-

stake tests. Moreover, we were interested to see whether altered response monitoring is 

related to choking under pressure. The study extends previous research on response 

monitoring under pressure in two ways. Firstly, we conjointly analyzed the influence of 

situational performance pressure and individual test anxiety on task performance as well as 

electrophysiological indices of response monitoring. Previous studies, instead, have either 
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focused on the question of how individual differences in anxiety or how situational factors affect 

response monitoring. Thus, to the best of our knowledge, the present study is the first to 

combine both individual and situational factors in investigating response monitoring. Secondly, 

the present study was designed in a more applied and educational setting and hence has a 

better ecological validity compared to previous studies. More specifically, (a) in the present 

study, a real-life test situation was modeled by combining outcome and monitoring pressure 

making a connection to the literature on choking under pressure (see DeCaro et al. 2011). 

Similarly, (b) we specifically addressed the question of how test anxiety affects response 

monitoring and behavioral performance measurements. Compared to general trait anxiety or 

obsessive-compulsive disorder, as investigated by the majority of previous studies addressing 

the relationship between the ERN and anxiety (see Moser et al. 2013), test anxiety is highly 

relevant to the phenomenon of choking under pressure. (c) Finally, unlike previous studies, we 

used a numerical task in the present study (cf. Suárez-Pellicioni et al. 2013) which is related 

to mathematical achievement and competencies. Taken together, the present results are 

highly relevant to educational settings in general and mathematics education in particular.  

Regarding the ERP analyses, we hypothesized that the ERN and/or the ΔERN are 

increased by both performance pressure and test anxiety. At the behavioral level, we expected, 

firstly, that response times are higher in the high pressure condition relative to the low pressure 

condition. Secondly, we predicted response times to linearly increase with the individual level 

of test anxiety. 

Electrophysiological data indicated that response monitoring is changed by 

performance pressure. In general, this finding confirms previous studies according to which 

the ERN is modulated by performance pressure (Ganushchak & Schiller, 2008; Hajcak, Moser, 

et al., 2005; Kim et al., 2005). Unlike previous studies, we only found a significant effect on the 

difference potential between CRN and ERN (ΔERN), but not on the ERN alone. While the ERN 

is thought to reflect activity specific to error processing, the ΔERN has been suggested to 

reflect activity more broadly related to response monitoring (Riesel et al., 2013). However, we 

are cautions in drawing any firm conclusions from the absence of a significant effect regarding 

the ERN. As depicted in Figure 4a, the absolute amplitude of the ERN differed between 

pressure conditions in the predicted direction. A possible explanation of why this effect did 

not turn out to be significant is that a different experimental procedure was used in the 

present study in contrast to the study by Hajack and colleagues (2005), which has reported 

a significant effect of social evaluation on both ΔERN and ERN. More specifically, while 

Hajack et al. (2005) manipulated social evaluation stress within a single EEG session, we 

manipulated performance pressure between two separated EEG sessions. The test-retest 

reliability of the ERN over a period of 2 weeks has been reported to be excellent (Olvet & 
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Hajcak, 2009a). Nevertheless, recording data in two separated sessions is likely to increase 

the variability in the data. Thus, even though the sample sizes of both studies were identical, 

the difference of ERN amplitude between pressure conditions might have failed to reach 

statistical significance in the present study. The ΔERN, however, was significantly increased 

by performance pressure. As depicted in Figure 4a and b, this effect resulted from both a subtle 

difference in the ERN and a more pronounced difference in the CRN between pressure 

conditions. The exact interplay of the ERN and the CRN is a subject of ongoing research. Both 

components have been suggested to be mutually dependent and to reflect the same cognitive 

control mechanism (see Simons 2010). For instance, the CRN has been shown to be less 

negative on trials preceding errors relative to trials preceding correct responses (Hajcak, 

Nieuwenhuis, Ridderinkhof, & Simons, 2005). Accordingly, we interpreted the modulation of 

the ΔERN in the present study as indicating a general change of response monitoring. Thus, 

the present results provide further evidence that response monitoring is changed in high-stake 

tests.  

The analysis of the ERPs further revealed that the ΔERN was linearly related to 

individual differences in test anxiety. This suggests that high test-anxious individuals differ in 

response monitoring compared to low test-anxious individuals. To the best of our knowledge, 

this provides first evidence that test-anxious individuals exhibit altered response monitoring. In 

general, this finding fits into the emerging picture according to which the CRN as well as the 

ERN are modulated by various forms of anxiety (see Moser et al. 2013). However, in the 

present analysis, the interaction between test anxiety and performance pressure did not further 

improve the goodness of fit of the linear mixed model. Thus, performance pressure and test 

anxiety modulated ΔERN independently. A possible explanation of why both factors did not 

interact with each other might be that both pressure conditions were perceived as an evaluative 

situation to some degree by participants. Indeed, the frequent and manipulated feedback 

typically used in ERN paradigms might be perceived as pressuring, especially for high test-

anxious individuals. A way to overcome this limitation would be to label the low pressure 

condition explicitly as non-diagnostic.  

Despite the difference in electrophysiological measures, behavioral data provided 

mixed evidence in regard of our hypotheses. As expected, response times were higher in the 

high pressure condition than in the low pressure condition. However, this effect was subtle 

having a range of 10 to 20 ms, depending on stimulus congruency and task condition. 

Accuracy, instead, was notably increased by 1-3 % when pressure was applied. Contrary to 

our expectations, response times significantly decreased with the individual level of test 

anxiety, but only in the high pressure condition. Accuracy, instead, was neither affected by test 

anxiety nor by the interaction between test anxiety and performance pressure.  
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Considering the effect of performance pressure, the pattern of behavioral results rather 

indicates that participants emphasized accuracy at the cost of response time in the high 

pressure condition. Thus, regarding the question of whether altered response monitoring in 

high-stake tests contribute to task impairments due to performance pressure, the present study 

remains inconclusive. A possible explanation for the lack of pressure-related task impairments 

might be that the numerical Stroop task used in the present study was too easy for participants. 

According to the distraction account, task impairments result when the combined working 

memory demands of task processing and extraneous processing (i.e. worries about the test) 

are exceeding the individual working memory capacity. However, if the demands stay within 

the limit of the working memory capacity, task performance remains unaffected. The working 

memory load imposed by the present task is arguably lower than the one imposed by the 

complex arithmetic tasks used by behavioral studies which have reported substantial task 

impairments under performance pressure (Beilock & Carr, 2005; Beilock & DeCaro, 2007; 

Beilock et al., 2004). However, this presents a major challenge of investigating the ERN in 

regard of the phenomenon of choking under pressure in general. Paradigms which have been 

used to measure the ERN, including Flanker, Stroop, and Go/NoGo are similar to the numerical 

Stroop task regarding their working memory demands. However, complex mathematical 

problems, as used by behavioral studies on choking, are not well suited to measure the 

CRN/ERN for two reasons. Firstly, it is unclear whether the ERN can be measured in a task 

which is not in a two-alternative forced choice format (Gehring et al. 2012). Secondly, a number 

of at least 6 error trials per condition is needed to obtain a relatively stable ERN (Olvet & 

Hajcak, 2009b). But, at the same time, an error has to be a relatively unlikely event within the 

task and therefore error rates should stay moderately low (see Gehring et al. 2012). Thus, a 

large number of trials is needed to measure the ERN reliably. However, complex mathematical 

tasks usually require a certain processing time which makes it hardly possible to record a 

sufficiently large number of trials in a single EEG session. A possible alternative to the 

approach of testing response monitoring and task impairments within the same paradigm might 

be to measure each variable in a separate experiment. More specifically, electrophysiological 

indices of response monitoring could be measured in a single EEG session under social 

evaluation stress using a paradigm which meets the beforehand mentioned requirements for 

measuring the ERN (e.g., a numerical stoop task). In a second experiment, the same 

participants would be tested behaviorally in two pressure scenarios using complex 

mathematical tasks having high working memory demands (e.g. Gauss’s modular arithmetic). 

Correlating the ERN/ΔERN measures, obtained in the EEG experiment, with the task 

performance under performance pressure, obtained in the behavioral experiment, might allow 

investigating how response monitoring is related to the phenomenon of choking under 

pressure.  
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Regarding the effect of individual differences in test anxiety, results suggest that, within 

the range of test anxiety scores included in the present study, higher test anxiety improves 

response times when academic pressure is applied. One explanation for this unexpected result 

might be that test-anxious students employ additional resources or compensatory effort to 

maintain task performance in an evaluative situation (Eysenck et al., 2007). If the task is 

relatively easy, as in the present study, this might even lead to improved performance of test-

anxious students.  

A limitation of the present study is that only a relatively small group of participants was 

tested. Compared to the norm sample, 15 participants showed average test anxiety and 3 

showed above-average test anxiety. However, none of the participants had a test score 

indicating strongly heightened test anxiety. Thus, participants’ test anxiety scores did not cover 

the full range of test anxiety, limiting the generalizability of the present results. Therefore, it 

would be important to test students with strongly heightened test anxiety in order to further 

extend our understanding of how test anxiety affects task performance as well as response 

monitoring. For this, participants could be first screened for test anxiety and then data could 

be collected from a sample covering the full range of test anxiety or of two extreme groups (low 

vs. high test anxiety). Given that the present study found a linear relationship between test 

anxiety and the ΔERN, the former approach might be a promising way. 

To conclude, the present study provides further evidence that response monitoring is 

altered in high-stake tests using a numerical task. Furthermore, it provides first evidence that 

high test-anxious individuals exhibit altered response monitoring. To determine how response 

monitoring is related to the phenomenon of choking under pressure further studies are needed. 

Performance tests are commonly used in schools and universities to assess mathematical 

ability and thus play an important role in shaping the career of individuals. Therefore, a better 

understanding of the social and affective conditions for students to achieve their full potential 

in mathematics tests is of great importance. 

 

 

 

 

 

 

 

 

 

 



 
38 

 

3. Study 2 – Response Monitoring in High Test-anxious Students 

3.1. Introduction 

Results of the previous study suggest that the response monitoring is modulated by 

both situational pressure and individual difference in test anxiety (Schillinger, De Smedt, & 

Grabner, 2016). More specifically, the ΔERN (i.e., the difference score between CRN and 

ERN) was enhanced under performance pressure as compared to the low pressure control 

condition and linearly increased with individual test anxiety in both conditions. However, there 

was no significant interaction between performance pressure and test anxiety in modulating 

the ΔERN. On a behavioral level, the study provided mixed evidence with slower response 

times but increased accuracies in the high pressure condition as compared to the low pressure 

condition. Contrary to predictions, students with higher test anxiety responded significantly 

faster under performance pressure than students with lower test anxiety.  

The lack of a significant interaction between performance pressure and test anxiety in 

Study 1 seems to be at variance with the conceptualization of test anxiety as a situation-

specific personality trait (Spielberger et al., 1976; Zeidner, 1998). According to this concept, 

test anxiety is specifically triggered by evaluative situations. Therefore, the detrimental effect 

of test anxiety on cognitive processes should be more pronounced under performance 

pressure than in a neural condition. One reason for the absence of such an interaction effect 

in Study 1 could have been the limited range of test anxiety within the study sample. Of the 18 

data sets included in the final sample, 15 participants had average test anxiety and three 

participants had high levels of test anxiety. None of the tested participants had very high levels 

of test anxiety and none had low or very low levels of test anxiety. Thus, the difference between 

students with lower and higher test anxiety was relatively small in the previous study. This 

limited variance of test anxiety scores is likely to make the difference in the response to the 

pressure manipulation more subtle and consequently less pronounced in the EEG indices. 

Furthermore, we did not control for differences in general anxiety in the previous study. General 

anxiety has been consistently shown to be moderately correlated with test anxiety (for a meta-

analysis, see Hembree, 1988). Unlike test anxiety, general anxiety is not thought to be specific 

to a situation (Spielberger, 1972) and can be therefore expected to affect cognitive processes 

also in tasks with neutral instructions. In fact, the relatively test-anxious students in Study 1 

are likely to have been also more anxious in general. This would have further diluted the effect 

of performance pressure on the ERN/ΔERN. Therefore, the present study aimed to compare 

the response monitoring of low and high test-anxious students while minimizing differences in 

general anxiety. 
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Moreover, the distraction model assumes that worries are the central mechanisms by 

which test anxiety impairs working memory processes (Eysenck et al., 2007; Wine, 1971). In 

an evaluation situation, test-anxious students are predicted to worry about their performance 

and the consequences of failing. In turn, such worries have been suggested to enhance the 

amplitude of the ERN (for a review, see Moser et al., 2013). The results of Study 1 are in line 

with this suggestion given that the ΔERN was enhanced by test anxiety and performance 

pressure, both of which are likely to increase worries. However, the link between the ΔERN 

and worries remained speculative given that worries were not directly assessed during the 

task. In the present study, we therefore aimed to directly relate worries in the test situation to 

the EEG indices of response monitoring.  

 

3.1.1. Present Study 

The present study aimed to extend the first study by (a) comparing the response 

monitoring of low and high test-anxious students while minimizing differences in general 

anxiety and (b) directly relating the EEG indices of response monitoring to worries reported 

under performance pressure. To this end, 341 university students were pre-screened for their 

test anxiety and general anxiety as part of a larger test battery (see Schillinger et al., 2018). 

The selection procedure aimed to form a high test anxiety (HTA) and a low test anxiety (LTA) 

group while minimizing differences in general anxiety between groups. Both groups were 

tested under performance pressure as well as in a low pressure control condition performing 

a numerical Stroop. We reasoned that the comparison of the two extreme groups would be 

more sensitive in revealing the predicted interaction between test anxiety and performance 

pressure in modulating the ERN/ΔERN. To directly relate EEG indices of response monitoring 

to worries, participants were asked to rate their performance-related worries at regular intervals 

throughout the experiment using a Faces Anxiety Scale (FAS) (Bieri, Reeve, Champion, 

Addicoat, & Ziegler, 1990; Punaro & Reeve, 2012; Trezise & Reeve, 2014b).  

In addition, the following changes were implemented to the methods of the present 

study. Firstly, the results of the previous study revealed that the numerical task of the numerical 

Stroop (i.e., selecting the numerically larger number) was significantly more difficult than the 

physical task (i.e., selecting the physically larger number). To increase the number of errors 

and hence the signal-to-noise ratio we focused on the numerical task in the present study. 

Secondly, both pressure conditions were recorded within a single EEG session in the present 

study to reduce the variability between conditions. This was done because the previous study 

failed to find a significant effect on the ERN in isolation, as reported by Hajcak and colleagues 

(2005). While Hajcak and colleagues (2005) recorded both a low pressure and a high pressure 

condition within a single EEG session, the previous study recorded the conditions in two 
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separate sessions. This might have increased the variability in the data, for instance, by 

differences in the electrode mounting between sessions. Thirdly, a manipulation check was 

included to check whether the pressure condition was actually perceived as being more 

stressful than the low pressure condition. For this, we adapted a procedure reported by Beilock 

and colleagues (2004) for the present study. In their study, participants were randomly 

assigned to perform a complex arithmetic task either in a high pressure condition or in low 

pressure control condition. Similar to the present study, performance pressure was 

manipulated by instructing participants that they receive a performance-based reward and 

would be filmed during the task. To check the effectiveness of this pressure manipulation, 

Beilock and colleagues (2004) assessed the state anxiety after each condition and asked 

participants to rate the importance, pressure, and success regarding the task. Finally, the 

results of the previous study suggest that test anxiety affects both the CRN and the ERN. More 

specifically, the main effect of performance pressure on the ΔERN resulted from two reverse 

effects on the CRN and the ERN respectively. While the ERN appeared to be enhanced by 

performances pressure, the CRN was rather decreased. These effects were added up in 

computing the difference scores between CRN and ERN (i.e., ΔERN). To disentangle the effect 

of performance pressure and test anxiety on both the CRN and the ERN we included both 

components as a factor within an analysis of variance (ANOVA).  

 

3.1.2. Hypotheses 

Regarding the manipulation check, we expected to find a similar pattern of results as 

reported by Beilock and colleagues (2004). More specifically, participants were predicted to 

report more performance pressure, lower success, and higher state anxiety in the high 

pressure condition than in the low pressure condition. Instead, the rating of the importance of 

the task was expected to be similar between pressure conditions. Text anxiety was included 

as an additional factor in the analysis of the manipulation check to explore whether the two 

groups differed in their perception of the pressure conditions.  

Given that Study 1 as well as previous research on the ERN (for a meta-analysis, see 

Moser et al., 2013) provided mixed evidence regarding performance impairments of anxious 

individuals, we did not formulate specific hypotheses regarding differences in response time 

or accuracy between conditions in the present study. 

Performance pressure and test anxiety were reasoned to interact in modulating worries 

during the task. While the HTA group was predicted to report higher worries under performance 

pressure than the LTA group, no difference between groups was predicted in the low pressure 

condition. 
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On an electrophysiological level, we hypothesized that EEG indices of response 

monitoring are modulated by both performance pressure and test anxiety. Based on previous 

research (for a meta-analysis, see Moser et al., 2013), we expected to see the effects of test 

anxiety and performance pressure primarily on the ERN and, to a lesser degree, on the CRN. 

Both LTA and HTA students were expected to display an enhanced ERN under performance 

pressure. Moreover, we predicted that the HTA group would exhibit a higher ERN than the LTA 

group in the high pressure condition but not in the low pressure condition. Finally, the ERN 

amplitude was predicted to be linearly related to the worry reported by LTA and HTA students 

in both pressure conditions.  

 

3.2. Methods 

3.2.1. Participants  

Participants were recruited from a pool of 341 university students who had been pre-

screened for test anxiety and general anxiety as part of a larger test battery (for a detailed 

description of the subject pool, see Schillinger, Vogel, Diedrich, & Grabner, 2018). The 

selection procedure aimed to form a high test anxiety (HTA) and a low test anxiety (LTA) group 

while minimizing differences in general anxiety between groups. For each group, 24 

participants were tested, but two data sets (both HTA group) had to be excluded due to low 

EEG data quality (see section EEG analysis), one data set due to technical problems during 

the recording (HTA group), and one data set due to a participant aborting the experiment 

because of nausea (LTA group). Thus, the final sample was comprised of 21 participants in 

the HTA group and 23 participants in the LTA group. All participants were right-handed with 

normal or corrected-to-normal vision and no history of psychological or neurological diseases. 

They gave written informed consent regarding the EEG recording but were not informed until 

the end of the experiment about the true purpose of the study. Fields of study of the participants 

included psychology (NLTA = 12, NHTA = 10), humanities (NLTA = 4, NHTA = 5), and science (NLTA 

= 7, NHTA = 6). Participants either received €12 (NLTA = 18, NHTA = 17) or 2 course credits (NLTA 

= 5, NHTA = 4) as compensation for participating in the study. The ethics committee of the 

University of Graz approved the study.  

Table 3 summarizes the differences between the groups in demographics and anxiety 

measures. The HTA group (score range: 51 to 70) had significantly higher levels of test anxiety 

than the LTA group (score range: 21 to 39). However, the two groups also differed significantly 

regarding their general anxiety with the HTA group (score range: 32 to 60) exhibiting higher 

levels of general anxiety than the LTA group (score range: 26 to 48). Importantly, the effect 

size of the difference in test anxiety (Cohen's d = -5.41) was considerably larger than those of 

the difference in general anxiety (Cohen's d = -1.52). In the LTA group, 16 participants were 
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classified as having low or very low test anxiety and six participants as having average test 

anxiety (see Table 3). In the HTA group, 17 participants were classified as having high or very 

high test anxiety and four participants as having average test anxiety. Note that there is a small 

overlap of participants with average test anxiety in both groups. However, the difference 

between the highest sum score in the LTA group and the lowest sum score in the HTA group 

was still more than 10. A list of all anxiety scores and the group assignment can be found in 

Table S 1. The proportion of female and male participants was counterbalanced between 

groups and the two groups did not differ significantly in age (see Table 3).  

 

Table 3. Differences between the low test anxiety (LTA) and high test anxiety (HTA) group in 
demographics and anxiety measures. Norm-based classification in five categories ranging from “very 
low anxiety” to “very high anxiety”. 

 LTA HTA Test statistic 

Age M (SD) 21.35 (3.19) 20.10 (1.73) t(42) = 1.60, p = .117, d = 0.48 

Females/Males 14/9 12/9 χ2(1) = < 0.01, p = .999, φ = -0.38 

Test anxiety    

     M (SD) 32.26 (4.37) 57.52 (4.95) t(42) = -17.99, p < .001, d = -5.43 

     Classification  5/11/7/0/0 0/0/4/15/2  

General anxiety    

     M (SD) 34.17 (5.65) 45.62 (9.06) t(42) = -5.08, p < .001, d = -1.53 

     Classification  0/0/21/2/0 0/0/14/3/4  

Note. LTA = low test anxiety, HTA = high test anxiety, M = mean, SD = standard deviation. Classification 
of anxiety sum scores as “very low” / “low” / “average” / “high” / “very high”; d = Cohen’s d, φ = Phi effect 
size.  

 

 

3.2.2. Apparatus and Materials 

3.2.2.1. Numerical Stroop 

The numerical Stroop paradigm was adjusted based on the findings of Study 1 and 

presented with Psychopy 1.73.04 (Peirce, 2007). To increase the number of error trials, we 

focused on the numerical task (i.e., selecting the numerically larger number) in the present 

study. This task has been shown in Study 1 to be significantly more difficult than the physical 

task (i.e., selecting the physically larger number). In each pressure condition, participants 

performed 11 blocks á 36 trials of the numerical task, resulting in a total of 396 trials per 

condition. Three blocks of the physical task á 36 trials were included to enhance the salience 

of the irrelevant physical dimension (inserted after the 1st, 4th, and 9th block of the numerical 

task). These distractor blocks were discarded from the behavioral and electrophysiological 

analyses. Furthermore, a fix blank interval of 200 ms was implemented after a response was 

given to ensure that the recording of the ERN was not confounded by the onset of the ITI. 
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Finally, the duration of the ITI was varied between 500 and 1000 ms to avoid monotonous 

response patterns. All other parameters of the paradigm remained unchanged as compared 

to Study 1, including the used number pairs and the trial order. The temporal sequence of an 

EEG trial is depicted in Figure 6. 

 

 

 

Figure 6. Schematic 
display of an EEG trial 
with incongruent number 
pair. The blank interval of 
200 ms after stimulus 
presentation was only 
presented when a 
response was given. 

 

 

 

3.2.2.2. German Test Anxiety Inventory (PAF) 

Test anxiety was assessed using the German Test Anxiety Inventory 

(Prüfungsangstfragebogen, PAF) (Hodapp et al., 2011), which is described in more details in 

the method section of Study 1. In the present study, sum scores were classified as either “very 

low”, “low”, “average”, “high”, or “very high” based on the gender-specific norm sample of 

German university students (Hodapp et al., 2011). 

 

3.2.2.3. State-Trait Anxiety Inventory (STAI) 

 The STAI is a well-known questionnaire used to assess anxiety including a state and 

a trait scale (Spielberger, 1980). While the state scale refers to the experience of anxiety in the 

particular moment of filling out the questionnaire, the trait scale refers to how frequent these 

feelings are experienced in general. Both scales consist of 20 items, which are rated on a 

4-point Likert scale. The labels of the state scale range from “not at all” to “very much so” and 

the labels of the trait scale from “almost never” to “almost always”. The German version of the 

STAI has been reported to be a reliable psychometric instrument as indicated by an excellent 

internal consistency for both the trait scale (Cronbach alpha = .90) and state scale (Cronbach 

alpha = .90) (Laux, Glanzmann, Schaffner, & Spielberger, 1981). A sum score was obtained 
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after reversing positively worded items (possible score range: 20-80). The sum score for the 

trait scale was classified as either “very low”, “low”, “average”, “high”, or “very high” based on 

the gender-specific norm sample (Laux et al., 1981). 

 

3.2.2.4. Worry Scale 

Worries were assessed using a Faces Anxiety Scale (FAS) displaying six facial 

expressions (see Figure 7). This scale is based on the Faces Pain Scale by Bieri and 

colleagues (1990) and has been previously used to assess worries in children related to 

literacy (Punaro & Reeve, 2012) and math performance (Punaro & Reeve, 2012; Trezise & 

Reeve, 2014a, 2014b). While the present study is, to our knowledge, the first to use this scale 

with adult participants in the context of learning, FASs have been previously reported for adults 

in medical settings (see Stuppy, 1998). The FAS was presented after each numerical task 

block (i.e., 11 times per condition) referring to participants’ worries about their performance in 

the preceding block regarding both response time and accuracy. Participants were instructed 

to select the first face (neutral expression) if they were not worried at all and the sixth face 

(expression of discomfort) if they were very worried about their performance.   

 

 

Figure 7. Faces Anxiety Scale 
(FAS) to assess performance-
related worries. Participants 
were instructed to select the 
first face if they were not 
worried at all and the sixth face 
if they were very worried about 
their performance.   

 

3.2.2.5. Manipulation Check 

Participants were asked to answer a number of questions in order to check whether the 

high pressure condition was actually perceived as being more stressful than the low pressure 

control condition (see Beilock, Kulp, Holt, & Carr, 2004). For this, the state scale of the STAI 

was administered after each condition to assess the level of state anxiety. At the end of the 

experiment, participants were then asked to rate both pressure conditions regarding (a) how 

important they felt it was to perform at a high level, (b) how much pressure they felt to perform 

at a high level, (c) how highly they would rate their performance in the task. Items were rated 

on a 7-Point Likert scale with answers ranging from (a) “not important at all” to “very important”, 

(b) “no pressure at all” to ”very much pressure”, (c) “very bad” to “very good”. In addition, 

participants were asked to describe why it was important for them to perform at a high level in 
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either condition using an open answer format. The items of the manipulation check can be 

found in Supp. Material 1 (in German).   

 

3.2.2.6. EEG data acquisition 

EEG was acquired through a BioSemi Active Two system (BioSemi, Amsterdam, The 

Netherlands) from 64 scalp electrodes placed according to the extended 10–20 system. An 

electrooculogram (EOG) was recorded from three additional electrodes; two placed 

horizontally at the outer canthi of both eyes, and one placed above the nasion between the 

inner canthi of the eyes. EEG and EOG signals were sampled at 256 Hz and filtered between 

DC and 128 Hz. 

 

3.2.3. Procedure 

The study was advertised as an EEG study on individual differences in comparing 

numbers. Upon arrival, participants filled out a consent form and were assigned to start either 

with the high pressure or the low pressure condition. Both conditions were recorded within the 

same EEG session separated by a 2 min break. The order of pressure conditions was 

counterbalanced between groups as well as between female and male participants.  

In the high pressure condition, participants were instructed that their performance in 

the numerical Stroop task would be evaluated. Firstly, outcome pressure was induced by telling 

participants that the computer will track their performance in the task and compute a 

performance score based on their response time and accuracy. Out of ten participants, the 

highest three performance scores would be rewarded with an additional €20, €10, and €5 

respectively. Secondly, monitoring pressure was induced by filming participants during the task 

with the alleged intention to evaluate their behavior. For this, the experimenter mounted a 

webcam in front of the participant and demonstrated the functionality of the camera by 

transferring the recorded video onto participant’s monitor while adjusting the camera.  

In the low pressure condition, participants were instructed to respond as quickly and as 

accurately as possible, as common in psychological testing. No camera was recording the 

participants during the task and no performance-based reward was given.  

The experimenter reminded participants before each pressure condition whether their 

performance would be evaluated or not. Except for the pressure manipulation, the 

experimental procedure of both conditions was identical: Participants were seated in an EEG 

cabin and EEG electrodes were placed. The recording started with a 3 min sequence in which 

participants were asked to deliberately execute eye movements. Then, a resting state EEG 

was recorded, which is not within the scope of the present study and is therefore not reported 
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in the following. Participants received task instructions on screen and then completed six 

practice trials for each task condition (i.e., numerical and physical) in which trial-based 

feedback was provided (viz., “correct”, “wrong”, “too slow”). At the end of the practice trials, 

participants were instructed on how to use the FAS and familiarized themselves with selecting 

a face by pressing the left and right button of the button box. Stimuli were presented in blocks 

with 11 numerical task blocks and three distractor blocks in which the physically larger number 

should be selected. After each numerical task block, participants rated their worries regarding 

their performance in the preceding block. Manipulated feedback was given with the aim to keep 

the error rate in the range from 5 to 25%. To find a better balance between controlling the error 

rate and the comparability between conditions (see Gehring et al., 2012), participants received 

a fixed negative feedback of being too slow after the numerical task block 2, 5, and 8. In the 

rest of the blocks, feedback was provided based on the error rate as described in the procedure 

section of Study 1. At the end of each condition, participants were given the state scale of the 

STAI to assess their state anxiety. After completing both conditions, participants additionally 

rated the importance, pressure, and success regarding each pressure condition. Each 

condition took about 25 min resulting in a total length of the experiment of about 1.5 h including 

instructions and (de)mounting of the electrodes. 

Importantly, neither the participants nor the experimenter knew whether an individual 

was assigned to the LTA or the HTA group (double blinding). At the end of the experiment, 

participants were debriefed about the true purpose of the study and invited to contact the 

experimenter to learn about their individual level of test anxiety.  

 

3.2.4. Data Analysis 

3.2.4.1. Statistical Software 

EEG data were analyzed using EEGLAB 14.1.1 (Delorme & Makeig, 2004) and 

ERPLAB 6.1.3 (Lopez-Calderon & Luck, 2014) in the MATLAB environment (Mathworks, Inc., 

Natick, MA, USA, release 2014b). Statistical analyses for both behavioral and 

electrophysiological data were carried out with the software SPSS 22.0 (IBM Corp. Released, 

2011). 

 

3.2.4.2. Behavioral Data 

To check whether participants perceived the pressure condition as being more stressful 

than the control condition, 2 (pressure) x 2 (group) analyses of variance (ANOVAs) were 

conducted for the importance, pressure, and success rating as well as the state anxiety. 

Behavioral performance was analyzed by 2 (pressure) x 2 (group) x 3 (congruency) ANOVAs 
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with mean response time (in ms) and mean accuracy (in percentage) as dependent variables. 

Misses were excluded from computing the response time and treated as errors regarding the 

accuracy. Finally, self-reported worries were averaged across the 11 blocks of the numerical 

Stroop task for each pressure condition and analyzed with a 2 (pressure) x 2 (group) ANOVA.  

 

3.2.4.3. Electrophysiological Data 

The EEG signal was re-referenced to the mean (common average reference) and the 

baseline (channel mean) was removed. To correct for a delay of the USB button box, the time 

stamp of the button press was corrected for 20 ms. Eye movement artefacts were corrected 

by means of independent component analysis (ICA). For this, the signal was first high-pass 

filtered with 1 Hz and response-locked epochs from 700 ms before response onset to 700 ms 

after response were extracted. Then, the signal was manually controlled and epochs with non-

stereotyped noise (e.g., excessive movement artefacts) were removed. The ICA was run on 

the remaining signal using the EEGLAB routine runica. For each participant and pressure 

condition, independent components reflecting vertical and horizontal eye movements were 

manually selected for removal. The EEG signal was then reloaded and preprocessed as 

described above but bandpass filtered with cutoffs of 0.1 and 30 Hz (see Olvet & Hajcak, 

2009b). In the next step, the selected independent components were removed from the signal. 

To detect remaining artifacts, a moving window peak-to-peak threshold of 50 μV with a window 

size of 200 ms and a step size of 100 ms was applied to channel FCz. Two data sets were 

excluded from further analyses due to a rejection rate of more than 10% of all trials confirming 

the low data quality that had been noted by the experimenter during the recording. The valid 

trials were averaged for error responses (obtaining the ERN) and correct responses (obtaining 

the CRN) for each participant and pressure condition. To quantify the ERN and CRN, the peak 

amplitude (µV) between 0 and 100 ms at electrode FCz was determined using ERPLAB. The 

peak amplitude was used as the dependent variable in an ANOVA with the factors response 

type (correct vs error), pressure (low pressure vs. high pressure), and group (LTA vs. HTA). 

To test whether the ERN is related to worries during the test, the ERN amplitude was correlated 

with the mean worry rating for each pressure conditions and test anxieties group.  

 

3.3. Results 

3.3.1. Manipulation Check 

Table 4 summarizes the differences in the mean rating of the manipulation check. The 

task was rated by both groups as relatively important given that all means were larger than 

five. There was a trend towards significance with participants rating the high pressure condition 
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as more important than the low pressure condition (for a summary of the ANOVAs, see Table 

5). Importantly, the pressure rating in the high pressure condition was significantly higher than 

in the low pressure condition with a large effect size (ηp
2 = .243). Moreover, there was a 

significant trend of group with students with high test anxiety reporting more pressure than 

students with low test anxiety. Directionally, the state anxiety was higher and the success rating 

was lower in the high pressure than in the low pressure condition in each group, but differences 

failed statistical significance. Taken together, results suggest that the manipulation of 

performance pressure was effective in the present study. 

 

Table 4. Means and standard deviations (in brackets) of the manipulation check ratings (R.) and the 
state scale of the State-Trait Anxiety Inventory (STAI) for each pressure condition and test anxiety group. 

  Importance R. Pressure R. Success R. State Anxiety 

LTA 
Low Pressure 5.26 (0.96) 3.78 (1.20) 3.70 (1.30) 42.13 (9.87) 

High Pressure 5.35 (1.03) 4.17 (1.40) 3.48 (1.44) 42.70 (10.83) 
      

HTA 
Low Pressure 5.19 (1.25) 4.10 (1.30) 3.86 (1.28) 43.90 (10.74) 

High Pressure 5.71 (0.72) 5.00 (1.10) 3.62 (1.07) 46.05 (11.22) 

Note. R. = Rating, LTA = low test anxiety, HTA = high test anxiety, Importance, Pressure, and Success 
were rated using a 7-Point Likert Scale. 

 

 

Table 5. Result summary of Analyses of Variance (ANOVAs) with the rating of importance, pressure 
and success as well as state anxiety as dependent variables. 

  F(1,42) p ηp
2 

Importance Rating 
   

      Pressure 3.37 .074 .074 

      Group 0.34 .564 .008 

      Pressure x Group 1.72 .196 .039 

Pressure Rating 
   

      Pressure 13.52 < .001 .243 

      Group 2.86 .098 .064 

      Pressure x Group 2.12 .153 .048 

Success Rating    

      Pressure 2.41 .128 .054 

      Group 0.18 .675 .004 

      Pressure x Group 0.01 .944 < .001 

State Anxiety    

      Pressure 1.92 .173 .044 

      Group 0.70 .408 .016 

      Pressure x Group 0.65 .424 .015 

Note. ηp
2 = Partial Eta Squared. 
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3.3.2. Behavioral Performance 

As depicted in Figure 8a, the response time did not significantly differ between the 

pressure conditions nor between LTA and HTA students (for a summary of the ANOVA, see 

Table 6). Not surprisingly, the response time was significantly modulated by the congruency 

of the target stimulus. Bonferroni-corrected comparisons of the means revealed that the 

response time was lowest in the congruent condition (M = 423.49, SD = 59.24) and significantly 

increased in both the neutral condition (M = 442.46, SD = 59.59, p < .001) and the incongruent 

condition (M = 458.12, SD = 61.34, p < .001). A similar pattern of results was found regarding 

the mean accuracy (see Figure 8b). There was no significant effect of pressure condition nor 

of group on the percentage of correct responses (for a summary of the ANOVA, see Table 7). 

Again, the accuracy differed significantly between congruency conditions. The accuracy was 

highest responding to a congruent number pair (M = 94.47, SD = 3.89) and decreased 

significantly responding to neutral (M = 91.71, SD = 5.77, p < .001) and incongruent number 

pairs (M = 72.22, SD = 14.36, p < .001).  

 

 

 

 
Figure 8. (a) Mean response time and 
(b) accuracy as a function of stimulus 
congruency, pressure condition and 
test anxiety. Error bars indicate +/- 1 
standard error. 
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Table 6. Result summary of Analysis of Variance (ANOVA) with response time (in ms) as dependent 
variable. 

 F(1,42) p ηp
2 

Main effects    

    Pressure 2.60 .114 .058 

    Congruency 115.44 < .001 .733 

    Group 0.56 .459 .013 

Interactions    

    Pressure x Group 2.42 .127 .055 

    Congruency x Group 1.47 .236 .034 

    Pressure x Congruency  2.18 .119 .049 

    Pressure x Congruency x Group 1.07 .347 .025 

Note. ηp
2 = Partial Eta Squared. 

 

Table 7. Result summary of Analysis of Variance (ANOVA) with accuracy (in % correct) as dependent 
variable.   

 F(1,42) p ηp
2 

Main effects    

    Pressure 1.05 .311 .024 

    Congruency 135.53 < .001 .763 

    Group 1.46 .233 .034 

Interactions    

    Pressure x Group 0.51 .477 .012 

    Congruency x Group 0.25 .780 .006 

    Pressure x Congruency  0.71 .496 .017 

    Pressure x Congruency x Group 1.20 .307 .028 

Note. ηp
2 = Partial Eta Squared. 

 

 

3.3.3. Worry Rating 

Means and standard deviations of the worry rating are summarized in Table 8. There 

was no significant main effect Pressure on worry, F(1,42) = 0.78, p = .377, ηp
2 = .019. Also, 

there was no significant difference between LTA and HTA students, F(1,42) = 0.80, p = .382, 

ηp
2 = .018. Contrary to our prediction, the interaction Pressure x Group failed statistical 

significance, F(1,42) = 0.37, p = .544, ηp
2 = .009. 
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Table 8. Means and standard deviations (in brackets) of the worry rating and correlations (Cor) with the 
ERN and accuracy (AC) for each pressure condition and test anxiety group. 

Note. LTA = low test anxiety, HTA = high test anxiety 

 

 

3.3.4. EEG Indices of Response Monitoring 

The average waveforms of the CRN and the ERN are depicted in Figure 9. In the LTA 

group, the waveforms of the CRN run parallel in both pressure conditions. The peak amplitude 

of the ERN instead appeared to be slightly enhanced under performance pressure. In the HTA 

group, the waveforms of the CRN were again highly similar between pressure conditions. 

However, the time course of the ERN started to drift apart between pressure conditions just 

before the button press was registered. The amplitude of the ERN was noticeably enhanced 

in the pressure condition as compared to the low pressure condition.  

The 2 (pressure) x 2 (group) x 2 (response type) ANOVA is summarized in Table 9. 

Results revealed a significant main effect Response Type with errors eliciting a more 

pronounced negativity than correct responses. Pairwise comparisons confirmed that the peak 

amplitude of the ERN was significantly more negative than the peak amplitude of the CRN 

across pressure conditions and groups (highest p value = .001; see Table S 2). Furthermore, 

there was a significant main effect Pressure as well as two significant interactions 

Response Type x Pressure and Pressure x Group. These effects were qualified by the 

significant 3-way interaction Response Type x Pressure x Group. Pairwise comparisons 

revealed that the ERN was significantly enhanced in the high pressure condition as compared 

to the low pressure condition in the HTA group (p < .001). However, there was no significant 

difference between pressure conditions regarding the CRN (p = .418). In the LTA group, 

neither the CRN (p = .751) nor the ERN (p = .623) significantly differed between pressure 

conditions. Directly comparing LTA and HTA students revealed that there was no significant 

difference regarding the CRN (p = .882) or the ERN (p = .807) in the high pressure condition. 

Similarly, the groups did not differ regarding the CRN (p = .800) or the ERN (p = .119) in the 

   Low Pressure  High Pressure 

LTA 

Mean (SD):  3.25 (1.08)  3.27 (1.15) 

Cor (Worry ~ ERN):  r = -.23, p = .299  r = -.02, p = .929 

Cor (Worry ~ AC):  r = -.57, p = .005  r = -.57, p = .004 
      

HTA 

Mean (SD):  3.45 (0.81)  3.57 (0.76) 

Cor (Worry ~ ERN):  r = .16, p = .503  r = .20, p = .382 

Cor (Worry ~ AC):  r = -.09, p = .699  r = -.27, p = .243 
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low pressure condition. Taken together, results suggest that the ERN was significantly 

modulated by performance pressure in the HTA group but not in the LTA group. The peak 

amplitude for both test anxiety groups is depicted in Figure 10 as a function of response type 

and performance pressure.  

 

 

 

 

Figure 9. Average waveforms of correct and erroneous responses in each pressure condition for (a) 
low test anxiety (LTA) and (b) high test anxiety (HTA) students.  
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Table 9. Result summary of Analysis of Variance (ANOVA) with the peak amplitude (in µV) as 
dependent variable. 

  F(1,42) p ηp
2 

Main Effects 
   

      Response Type 113.13 < .001 .729 

      Pressure 6.56 .014 .135 

      Group 0.19 .663 .005 

Interactions 
   

      Response Type x Pressure 8.82 .004 .174 

      Response Type x Group 1.20 .280 .028 

      Pressure x Group 4.84 .033 .103 

      Response Type x Pressure x Group 4.09 .049 .089 

Note. ηp
2 = Partial Eta Squared. 

 

 

 

 

 
Figure 10. Peak amplitude 
as a function of response 
type, pressure condition, 
and test anxiety. Error bars 
indicate +/- 1 standard 
error.  
 

 

 

3.3.5. The ERN and Worries 

Since the previous analysis revealed that the mean difference in the CRN between 

pressure conditions and test anxiety groups was small and insignificant (see Figure 10), 

correlations with the worry rating were computed with the ERN instead of the ΔERN. 

Contrary to our predictions, self-reported worries were not significantly correlated with 

the amplitude of the ERN in LTA or HTA students in either pressure condition (see Table 8). 

Post-hoc analyses were conducted to test whether worries were related to the number of errors 

in the numerical Stroop task. Correlation analyses revealed that LTA students with lower 

accuracy reported significantly more worries in both conditions (see Table 8). However, there 

was no significant relationship between the accuracy and the worry rating in either pressure 

condition for HTA students. 

  

-8

-6

-4

-2

0

Correct Error Correct Error

Pressure

Low
High

A
m

p
lit

u
d
e

 [
μ

V
]

Low test anxiety High test anxiety



 
54 

 

3.4. Discussion 

The present study aimed to extend Study 1 by (a) comparing the response monitoring 

of low and high test-anxious students while minimizing differences in general anxiety and (b) 

directly relating the EEG indices of response monitoring to worries reported under performance 

pressure. To this end, 341 university students were pre-screened for their test anxiety and 

general anxiety as part of a larger test battery (see Schillinger et al., 2018). The selection 

procedure aimed to form a HTA and a LTA group while minimizing differences in general 

anxiety between groups. Both groups were tested in a high pressure and a low pressure 

condition performing a numerical Stroop. To directly relate the ERN to worries, participants 

were asked to rate their worries at regular intervals throughout the experiment using an FAS 

(Bieri et al., 1990; Punaro & Reeve, 2012; Trezise & Reeve, 2014b). Based on the results of 

Study 1, a number of changes in the present methods were implemented including focusing 

on the numerical task of the Stroop paradigm, recording both pressure conditions within a 

single EEG session, checking the effectiveness of the pressure manipulation, and analyzing 

both the ERN and the CRN using an ANOVA approach. 

Data of 44 participants were included in the present analysis, 23 being assigned to the 

LTA group and 21 assigned to the HTA group. The two groups differed significantly in test 

anxiety with most participants in the LTA group being classified as either having very low or 

low levels of test anxiety and most participants in the HTA group having high or very high levels 

of test anxiety. However, we failed to completely control for differences in general anxiety 

between the LTA and the HTA group. More specifically, the HTA group also exhibited 

significantly higher general anxiety than the LTA group. Note that the effect size of the 

difference in general anxiety (Cohen's d = -1.52) was markedly lower than the effect size in 

test anxiety (Cohen's d = -5.41). Taken together, the selection procedure was successful in 

forming two extreme groups which are characterized primarily by their difference in test 

anxiety.  

 

3.4.1. Manipulation Check 

The manipulation check revealed that both pressure conditions were perceived as 

highly important by both LTA and HTA students as indicated by mean importance ratings being 

within the upper range of the 7-Point Likert scale across conditions (see Table 4). There was 

no significant difference between test anxiety groups but participants tended to generally rate 

the high pressure condition as being more important than the low pressure condition. The 

present importance ratings were also high as compared to the study by Beilock and colleagues 

(2004) based on which the manipulation check was adapted. There, participants reported 

slightly lower importance in both the control group (M = 4.63) and the pressure group (M = 
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5.03) than in the present study. That the importance ratings were high across pressure 

conditions is an important indicator that participants were motivated to perform the numerical 

Stroop task throughout the experiment. Differences between pressure conditions are therefore 

unlikely to result from a drop of motivation in the low pressure condition. Regarding the 

perceived success in the numerical Stroop, ratings were in the average range and tended to 

be lower under performance pressure for participants in both groups similar to the results 

reported by Beilock and colleagues (2004). Finally, pressure ratings were in the average or 

above average range with means ranging between M = 3.78 for LTA students in the low 

pressure condition and M = 5.00 for HTA students in the high pressure condition. Importantly, 

participants generally reported more performance pressure in the high pressure condition than 

in the low pressure condition. This difference was highly significant with a large effect size (ηp
2 

= .243). Moreover, the HTA group tended to report more performance pressure than the LTA 

group across pressure conditions. The present pressure ratings are highly similar to those 

reported by Beilock and colleagues in both the low pressure (M = 3.95) and the high pressure 

condition (M = 5.08). A similar pattern of results was present regarding the state anxiety with 

the mean state anxiety ranging between M = 42.13 for LTA students in the low pressure 

condition and M = 46.05 for HTA students in the high pressure condition. However, the 

difference between the pressure conditions as well as between test anxiety groups failed 

statistical significance. This is in discordance with the results by Beilock and colleagues (2004) 

who have reported significantly higher state anxiety in the high pressure condition (M = 42.68) 

than in the low pressure condition (M = 32.08). However, note that the difference between the 

two studies is due to participants reporting higher state anxiety in the low pressure condition 

of the present study than in the previous study. In fact, the state anxiety in the low pressure 

condition was on the same level as in the high pressure condition in Beilock’s study (2004). 

Taken together, the manipulation check confirmed that the task motivation was high throughout 

the experiment and that the pressure manipulation was effective. 

 

3.4.2. Behavioral Performance 

On a behavioral level, both response time and accuracy showed a significant effect of 

congruency with responses to incongruent trials being slower and less accurate than 

responses to neutral and congruent trials. However, there was no significant difference 

regarding the behavioral performance between test anxiety groups or pressure conditions. In 

contrast, we found in Study 1 that participants under performance pressure responded slower 

but more accurately than in the control condition. This pattern of results suggested that 

participants had changed their response criterion emphasizing accuracy at the cost of 

response times. This was clearly not the case in the present study with participants rather 
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responding faster and more accurately in the high pressure condition than in the low pressure 

condition. Furthermore, test anxiety was reported to be inversely related to the response time 

in Study 1. In the present study, in contrast, there was no significant difference between LTA 

and HTA student regarding their response time. One reason for this discrepancy between the 

two studies could be the different samples of students. While the sample of the first study 

consisted of psychology students, we tested in the present study both psychology students 

and students with other fields of study. As such, students in the present study are likely to have 

been less familiar with psychological testing. Furthermore, the majority of participants in the 

present study received money for their participation, while the former participants received 

course credits. Receiving money instead of course credits is likely to increase the motivation 

of participants, which is in line with the high importance ratings previously discussed. Taken 

together, students in the present study are likely to have uphold a high level of attention 

throughout the experiment, explaining the result that their performance did not differ between 

pressure conditions. That there are no behavioral differences between test anxiety groups is 

in accordance with the majority of previous studies addressing the ERN in anxious individuals 

(for a meta-analysis, see Moser et al., 2013).  

 

3.4.3. Test Anxiety and Worries 

Across conditions, the mean worry ratings were in the average range of the 6-Point 

FAS with means ranging between M = 3.25 for LTA students in the low pressure condition and 

M = 3.57 for HTA students in the high pressure condition (see Table 8). Contrary to our 

hypothesis, HTA students did not report significantly more worries in the high pressure 

condition than LTA students. This is surprising given that test-anxious students are 

characterized based on the distraction model to worry about their performance in an evaluative 

situation. However, it should be noted that the present pattern of results is numerically in line 

with this prediction. More specifically, the two test anxiety groups were more similar in the low 

pressure condition (mean difference = 0.20) than in the high pressure condition (mean 

difference = 0.30). However, the difference in the high pressure condition was still subtle and 

clearly failed statistical significance. A post-hoc analysis revealed that worries were 

significantly related to the accuracy in the numerical Stroop task in LTA, but not in the HTA 

students (see Table 8). While LTA students seemed to start worrying about their performance 

when realizing that they had made errors, this appeared not to be the case for HTA students. 

This difference in reporting worries might have contributed to diluting a potential difference in 

the worry rating between LTA and HTA students in the high pressure condition. 
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3.4.4. The Modulation of the ERN by Performance Pressure 

On an electrophysiological level, the analysis confirmed that the ERN was more 

negative than the CRN across all conditions as can be expected based on the literature (for a 

review, see Gehring et al., 2012). The analysis further revealed a significant 3-way interaction 

between the response type (CRN vs. ERN), performance pressure (low vs. high), and group 

(LTA vs. HTA) (see Figure 10). Pairwise comparisons showed that the CRN did not differ 

significantly between pressure conditions in either test anxiety group. The ERN, instead, was 

significantly enhanced under performance pressure for HTA students but not for LTA students. 

Directly comparing the ERN between groups revealed that there was no significant difference 

in either pressure condition. Taken together, results show that the ERN was modulated by 

performance pressure in HTA but not in LTA students. In contrast, we reported in Study 1 that 

the difference score between CRN and ERN (ΔERN) but not the ERN alone was significantly 

modulated by performance pressure. Comparing the bar plots of Study 1 (Figure 4) and Study 

2 (Figure 10) shows that the sample of Study 1 was more similar to the present LTA than to 

the present HTA group. More specifically, the amplitude of the CRN was lower and the ERN 

was higher under performance pressure in both the sample of Study 1 and the present LTA 

group. Differences between pressure conditions were small and each the CRN and the ERN 

alone did not differ significantly. However, adding up the reverse effects in computing the 

ΔERN explains why we found a significant effect of performance pressure on the ΔERN in the 

previous study. In the present study, the difference between CRN and ERN was taken into 

account by including the factor Response Type in the ANOVA, revealing that the effect of 

performance pressure on the ERN relative to the CRN did not reach statistical significance in 

the LTA group. Given that the LTA group consisted of students with mostly very low or low 

levels of test anxiety as compared to mostly average levels of test anxiety in the sample of 

Study 1, this is in support of a linear relationship between performance pressure and test 

anxiety in modulating the ERN. In greater detail, the subsample with the lowest test anxiety 

scores (i.e., the present LTA group) showed no significant modulation of the ERN or the ΔERN. 

The sample of Study 1 having mostly average levels of test anxiety displayed a significant 

modulation of the ΔERN due to the reverse effects of an increasing ERN and a decreasing 

CRN. Finally, the amplitude of the ERN was significantly enhanced by performance pressure 

in the subsample with the highest test anxiety (i.e., the present HTA group). Taken together, 

results suggest that the ERN is enhanced by performance pressure in higher but not in lower 

test-anxious students. 

The present EEG analysis revealed that the ERN was modulated by performance 

pressure in HTA but not in LTA students. At the same time, both test anxiety groups performed 

on the same level in both pressure conditions as indicated by similar response times and 
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accuracies. This pattern of results is in line with the compensatory error-monitoring hypothesis 

suggested by Moser and colleagues (2013). According to this hypothesis, the increased ERN 

in anxious individuals reflects compensatory efforts to maintain task performance. More 

specifically, anxious individuals are thought to focus their attention on internal worries, thereby 

reducing resources dedicated to performing the actual task. As a result, anxious individuals 

have to increase their attentional control to maintain task performance, including monitoring 

ongoing responses, and to dynamically adapt to errors. This compensatory effort is thought to 

give rise to more neural activity after committing an error as indicated by an increased ERN 

amplitude. In the present study, HTA students showed an increased ERN under performance 

pressure, suggesting that test-anxious students need compensatory effort to monitor their 

responses and to dynamically adapt to errors in an evaluative situation. 

Contrary to our hypothesis, we did not find that both test anxiety groups displayed an 

enhanced ERN under performance pressure. This seems to be in discordance to the study by 

Hajcak and colleagues (2005) who demonstrated in two experiments that the amplitude of the 

ERN was enhanced by evaluation as compared to a control condition. However, Hajcak and 

colleagues (2005) did not include individual differences in anxiety in their analysis. If we test 

the effect of performance pressure in the present study across the entire sample discarding 

the factor group, we find that the ERN is significantly enhanced in the high pressure condition 

as compared to the low pressure condition, t(43) = 2.80, p = .007 (paired-sample t-test). Thus, 

instead of being in discordance, the present study refines the findings by Hajcak and 

colleagues (2005). The previously reported effect of an enhanced ERN by evaluation (Hajcak, 

et al., 2005) seems to only hold true for individuals with higher levels of anxiety.  

Also, we predicted that HTA students would show a higher ERN in the high pressure 

condition than LTA students, while no difference between groups was expected in the low 

pressure condition. The amplitude of the ERN was in fact higher for HTA than for LTA students 

in the high pressure condition, but the mean difference was small and clearly failed statistical 

significance (see Table S 2). In contrast, the largest yet also insignificant difference between 

groups was a smaller ERN for HTA than for LTA students in the low pressure condition (see 

Figure 10). These findings appear puzzling given that previous studies have shown that the 

ERN is increased in anxious individuals (for a meta-analysis, see Moser et al., 2013). However, 

these studies addressed the ERN mostly in individuals with more general symptoms of anxiety 

and worry, including general anxiety disorder (see Weinberg et al. 2011), obsessive-

compulsory disorder (see Weinberg et al. 2011), general anxiety (Hajcak et al., 2003), negative 

affect (Hajcak et al., 2004; Luu et al., 2000), math anxiety (Suárez-Pellicioni et al., 2013), 

perfectionism (Perrone-McGovern et al., 2017), and helplessness (Pfabigan et al., 2013). In 

the present study, instead, we specifically addressed the ERN in individuals varying in 

situation-specific test anxiety while minimizing differences in general anxiety. It appears 
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therefore plausible that the difference in the ERN under performance pressure between LTA 

and HTA turned out subtle in the present study. This would also offer an explanation of why 

we found a significant main effect of test anxiety in Study 1 with a smaller sample size than in 

the present study. In Study 1, differences in general anxiety were not controlled for and these 

differences likely contributed to increase the ΔERN. However, it remains puzzling why the HTA 

group appears to exhibit a decreased ERN in in the low pressure condition of the present study. 

An attenuated ERN has been reported in patients with disorders such as severe depression, 

Attention deficit hyperactivity disorder (ADHD), schizophrenia, and substance abuse (for a 

review, see Weinberg et al. 2011). Weinberg and colleagues (2011) have suggested that the 

lower ERN in these individuals reflects disengagement from the task in the course of the 

experiment. In line with this explanation, these patients show, unlike anxious individuals, a 

lower performance in the paradigms used to measure the ERN as compared to healthy controls 

(Weinberg et al., 2011). In the present study, however, participants of both groups rated the 

low pressure condition as highly important. Furthermore, LTA and HTA students performed on 

the same level in both pressure conditions. Therefore, task disengagement of HTA students in 

the low pressure condition seems to be unlikely to account for the present tendency of a 

decreased ERN in these students. Another explanation could be that HTA students were more 

relieved than LTA students once they had completed the high pressure condition. This state 

of mind could have lowered the ERN in the subsequent low pressure condition. Note, however, 

that the order of the pressure conditions was counterbalanced in the present study. To test 

whether the order of testing had an influence on the ERN in HTA students we run an additional 

2 (response type) x 2 (pressure) x 2 (order) ANOVA with the subsample of HTA students. 

Results revealed that the order of testing had no significant effect on the CRN or ERN (see 

Table S 3). Future research is therefore needed to (a) clearly show that HTA students exhibit 

a lower ERN amplitude than LTA students with neutral task instruction and if so (b) to provide 

an explanation accounting for this phenomenon.    

Finally, the amplitude of the ERN did not significantly correlate with the worry rating of 

LTA or HTA students in either pressure condition. This is surprising given that worries have 

been suggested to be the component of anxiety most closely related to the reported increase 

of the ERN in anxious individuals (for a meta-analysis, see Moser et al., 2013). For instance, 

Moser and colleagues (2012) reported that the ERN amplitude was inversely related to worry 

but not to arousal in female undergraduate students. However, previous studies have, to the 

best of our knowledge, not assessed worries as a state, i.e., in the situation in which the ERN 

was recorded. Instead, worries were assessed as a trait, i.e., as the general tendency to worry, 

by using questionnaires. It remains therefore unclear whether the reported link between 

worries and the ERN is specific to the general tendency of anxious individuals to worry or the 

actual worries experienced by anxious individuals during the task. The present results suggest 
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rather that the worries experienced during the task are not related to the amplitude of the ERN. 

However, the worry rating in the present study appeared to be also related to the actual task 

performance, especially in LTA students. This raises the question of whether the FAS used in 

the present study actually assessed worries about performing well or rather participants’ 

awareness of having made errors. Future research would therefore need to evaluate the FAS 

with adult participants in the context of learning and possibly improve the scale to assess 

performance-related worries. Taken together, the present study remains inconclusive 

regarding the role of worries in modulating EEG indices of response monitoring.  

 

3.4.5. Conclusion 

The manipulation check demonstrated that the pressure manipulation was effective in 

the present study. On an electrophysiological level, the analysis revealed that the ERN was 

modulated by performance pressure in HTA students but not in LTA students. While the 

amplitude of the ERN was significantly enhanced in the pressure condition as compared to the 

control condition in HTA students, the amplitude did not significantly differ between pressure 

conditions in LTA students. At the same time, both test anxiety groups performed at the same 

level in the numerical Stoop task in both pressure conditions. Worries as assessed by an FAS 

turned out not to be significantly related to the amplitude of the ERN in either group. Instead, 

worries appeared to be directly related to the task performance for LTA but not for HTA 

students. Taken together, results are in line with the compensatory error-monitoring hypothesis 

(Moser et al., 2013), suggesting that test-anxious students need compensatory effort to 

monitor their responses and to dynamically adapt to errors in an evaluative situation.  
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4. Study 3 – Working Memory Costs of Performance Pressure 

4.1. Introduction 

4.1.1. Choking Under Pressure and Working Memory Demands 

The previous two studies have demonstrated that performance pressure affects the 

ERN in test-anxious students, suggesting that these students need compensatory effort to 

monitor their responses and to dynamically adapt to errors in an evaluation situation. However, 

task performance was not (Study 2) or not unambiguously (Study 1) impaired in test-anxious 

students as commonly reported by studies addressing the ERN in anxious individuals (see 

Gehring et al., 2012; Moser et al., 2013). One reason for the lack of performance impairments 

might be the relatively low working memory demands of the experimental paradigms typically 

used to measure the ERN, such as Flanker or Stroop tasks (see Gehring et al., 2012). For 

instance, the numerical Stroop paradigm used in the present research requires participants to 

compare two numbers in a short amount of time. While it is challenging to respond to the pairs 

of numbers given the time constrain, the comparison between the two numbers itself put only 

minimal working memory demands on participants. Consequently, it is not surprising that test-

anxious students can compensate for the postulated effect of worries on their working memory 

(Calvo & Eysenck, 1992; Eysenck et al., 2007; Wine, 1971). However, such rather low working 

memory demands stand in contrast to the demands of tasks students have to face in real-world 

tests or examinations. Here, working memory demands can be expected to be higher 

especially in the domain of mathematics (see Raghubar et al., 2010). When working memory 

demands increase, there is less space to compensate for distracting worries and consequently 

performance impairments are more likely to result.  

 In a seminal study, Beilock and colleagues (2004) addressed the phenomenon of 

choking under pressure (Baumeister, 1984) in mathematical problem solving. For this, they 

used so-called Gauss modular arithmetic as stimulus material (Gauss, 1801, as cited in 

Neumann, 2005). The objective of modular arithmetic is to judge the truth value of problem 

statements such as “62 ≡ 37 (mod5)”. The problem is solved by subtracting the second number 

from the first number (i.e., 62 - 37) and then dividing the resulting difference by the last number 

(i.e., 25 ÷ 5). If the dividend is a whole number (here, 5), the problem is true. If there is a 

remainder, the statement it false. The modular arithmetic problems either had a low or a high 

demand. While low demand problems consisted of two operands smaller than 10 (e.g., 

“9 ≡ 2 (mod4)”), high demand problems consisted of two 2-digit numbers and required a carry-

over operation (e.g., “62 ≡ 37 (mod5)”). An advantage of modular arithmetic as an 

experimental task is that is based on common arithmetic operations (i.e., subtraction and 

division) and is therefore highly ecologically valid for real-world tests assessing arithmetic 
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skills. At the same time, the notation of the problems as well as the specific sequence to solve 

them is unfamiliar to most students, allowing to control to some degree for previous task 

experience (see also Ramirez & Beilock, 2011). In the study by Beilock and colleagues (2004), 

participants were randomly assigned to either a control group or a pressure group prior to 

performing three blocks of modular arithmetic, with half of the problems having a low demand 

and the other half having a high demand. The first block served as a pretest of arithmetic 

performance and the second block was included to provide more practice. Crucially, the two 

groups received different instructions preceding the third block of problems. While the control 

group was informed that they would be performing another set of problems, the pressure group 

was exposed to a high pressure test scenario. For this, participants were instructed that they 

would receive an additional $5 if they could improve their performance in the last block as part 

of a team effort. More specifically, participants were told that they were paired with another 

participant who had already managed to improve her/his performance and that both would 

receive the reward if they could also improve in the upcoming set of problems. Finally, 

participants were instructed that they would be filmed during the task so that math teachers 

and scientists could examine their performance. Taken together, these measures were 

reasoned to exert performance pressure on participants similar to an actual high-stake test. 

This was confirmed by a manipulation check administered to both groups after completing the 

last block of arithmetic problems. Participants assigned to the pressure group reported 

significantly more performance pressure as well as higher state anxiety than those assigned 

to the control group. The accuracy in the first block was then compared as a pretest with the 

third block as a posttest of arithmetic performance. Results revealed that both groups could 

significantly improve in solving low demand problems in the last block. However, while the 

control group could also improve in solving high demand problems, the pressure group showed 

a marked drop in performance for these problems. This choking under pressure effect could 

be replicated by other studies by Beilock and colleagues  (Beilock & Carr, 2005; Beilock & 

DeCaro, 2007; Beilock et al., 2007; Ramirez & Beilock, 2011) as well as by other groups 

(Boere, Fellinger, Huizinga, Wong, & Bijleveld, 2016, but cf. Benny & Banks, 2015). Results 

are in line with distraction theories (Calvo & Eysenck, 1992; Eysenck et al., 2007; Wine, 1971), 

suggesting that the detrimental effect of performance-related worries can be compensated for 

when task demands are low but will start to impact performance once the combined demands 

of task-related and worry-related processes exceed the available working memory resources.  

 

4.1.2. Individual Differences in Test Anxiety  

The reviewed studies above have not related individual differences in test anxiety to 

the choking under pressure effect in mathematics. This is surprising given that distraction 



 
63 

 

theories predict that test-anxious students are especially prone to worry in an evaluative 

situation and hence to choke under pressure (Calvo & Eysenck, 1992; Eysenck et al., 2007; 

Wine, 1971). First evidence in support of this notion comes from a study by Ramirez and 

Beilock (2011). First, they showed that a short intervention of expressive writing, which is 

thought to alleviate worries and ruminations, can neutralize the choking under pressure in two 

laboratory experiments. The effectiveness of the intervention was then tested in helping 

students to cope with performance pressure in an actual examination. For this, ninth graders 

were asked just before their final high-school exam in biology to either write 10 min about their 

feelings towards the upcoming exam (expressive writing group) or to think about a topic that 

would not be covered in the exam (control group). The analysis focused on the relationship 

between students’ test anxiety and their final exam scores. While test anxiety was inversely 

related in the control group, this relationship was insignificant for students who had been 

assigned to the expressive writing condition. This suggest that the intervention was effective 

in reducing worries in test-anxious students and that without this burden students could 

improve their performance in the final exam. In reverse, it suggests that test-anxious students 

in the control condition performed lower than their actual skill level, hence, that they choked 

under pressure. This finding corresponds to the well documented inverse relationship between 

test anxiety and test performance (for reviews, see Ackerman & Heggestad, 1997; Chapell et 

al., 2005; Hembree, 1988; Seipp, 1991) and to converging evidence that this relationship is 

due in large parts to the detrimental effect of test anxiety on cognitive performance (for reviews, 

see Eysenck et al., 2007; Hembree, 1988; Mowbray, 2012; Wine, 1971). However, to the best 

of our knowledge, no laboratory study has yet directly related test anxiety to the phenomenon 

of choking under pressure. The first aim of the present study was therefore to test whether the 

degree of choking under pressure depends on individual differences in test anxiety.  

 

4.1.3. Frontal Midline Theta (FMΘ) 

The second aim of the study was to assess the working memory costs of performance 

pressure by measuring oscillatory brain responses during the task. In the EEG, mental activity 

is known to be associated with specific neural oscillations in different frequency bands. Most 

prominently, event-related synchronization (ERS) in theta frequency band (4-8 Hz) has been 

linked to working memory processes (for reviews, see Klimesch, 1999; Roux & Uhlhaas, 2014; 

Sauseng, Griesmayr, Freunberger, & Klimesch, 2010). Such working-memory related 

differences in the theta frequency band have been shown to be most pronounced at fronto-

central recording sites, referred to as frontal midline theta (FMΘ) (for reviews, see Hsieh & 

Ranganath, 2014; Inanaga, 1998). In particular, FMΘ has been demonstrated to increase with 

the memory load in classical working memory tasks, such as the Sternberg task (e.g., Jensen 
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& Tesche, 2002) and the N-back task (e.g., Gevins, Smith, McEvoy, & Yu, 1997). Interestingly, 

ERPs following uncertain events such as errors (error-related negativity; ERN), punishment 

(feedback-related negativity; FRN), and conflict-inducing stimuli (N2) have been recently 

shown to originate from a transient oscillatory synchronization of FMΘ (for reviews, see 

Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015). These ERPs, in turn, have been 

consistently reported to increase with the level of anxiety (for a meta-analysis, see Cavanagh 

& Shackman, 2015). Based on these findings, Cavanagh and Shackman (2015) have 

proposed the adaptive control hypothesis according to which the increased FMΘ in anxious 

individuals reflect the need for attentional control regarding uncertain or threatening events. 

However, only few studies have directly related symptoms of anxiety or situational stress to 

FMΘ in the time-frequency domain (Osinsky, Karl, & Hewig, 2017). Unlike ERPs, time-

frequency analyses comprise both phase-locked and non-phase-locked neural activity (see 

Kalcher & Pfurtscheller, 1995). In one study, Mueller and colleagues (2015) could demonstrate 

that the state anxiety during a reinforcement learning task was linearly related to FMΘ in a 

group of depressive patients but not in a control group. Similarly, FMΘ was shown to be 

increased in individuals with higher neuroticism following negative feedback (Mueller et al., 

2014). Other studies have reported a correlation between measures of trait anxiety and an 

ERS in the theta frequency band although at more posterior (Balconi & Crivelli, 2010) and 

lateral (Neo, Thurlow, & McNaughton, 2011) recording sites. In a recent study by Osinsky and 

colleagues (2017), participants were assigned to either a control group or a threat anticipation 

group prior to performing a simple two-choice task. The control group was told that they had 

to write an anonymous pro-and-con list about a topic of which they would be informed after the 

EEG session. In contrast, the threat anticipation group was informed that they have to give a 

speech after the EEG session, which would be videotaped and evaluated by a jury. Results 

revealed that FMΘ was higher during the task in the threat anticipation than in the control group 

for female but not for male students. In contrast, two studies have reported decreased FMΘ in 

anxious individuals under stress during an N-back task (Gärtner, Rohde-Liebenau, Grimm, & 

Bajbouj, 2014) and a mental arithmetic task (Gärtner, Grimm, & Bajbouj, 2015). In these 

studies, however, stress was induced by presenting an aversive, disturbing video clip to 

participants prior to the task which arguably involved different mechanisms as the threat of 

being evaluated.  
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4.1.4. Present Study 

The aim of the present study was (a) to test whether test anxiety is related to the degree 

of choking under pressure, and (b) to directly assess the working memory costs of performance 

pressure by measuring oscillatory brain responses during the task. To this end, we adapted 

the paradigm reported by Beilock and colleagues (2004) to meet the requirements of an EEG 

study. Participants were randomly assigned to either a control group or a pressure group prior 

to performing two blocks of modular arithmetic, with half of the problems having a low demand 

and the other half having a high demand. Skipping the second block of arithmetic problems 

allowed us to increase the number of trials in each block to 60. Increasing the number of trials 

was important for improving the signal-to-noise ratio for the EEG analysis. Note that previous 

studies by Beilock and colleagues have also compared two instead of three blocks (Beilock & 

Carr, 2005; Ramirez & Beilock, 2011) with similar results as reported in the first study (Beilock 

et al., 2004). In the present study, the first block of problems was used as a pretest of arithmetic 

performance. Preceding the second block of problems, the two groups received different 

instructions. While the control group was informed that they would be performing another set 

of problems, the pressure group was exposed to a high pressure test scenario. This scenario 

was based on the study by Beilock and colleagues (2004) including a performance-based 

reward of €10 and filming participants during the second block. However, we suspected that 

participants might not believe the cover story regarding the team effort as used by the original 

study given that they could be expected to be familiar with psychological testing. Instead, 

participants were informed that of the previous participants all but one could manage to 

improve their performance in order to induce pressure by way of a social comparison. The 

effectiveness of the manipulation was checked by the same procedure reported by Beilock and 

colleagues (2004). More specifically, participants were asked at the end of block 2 to rate their 

state anxiety as well as importance, pressure, and success regarding the second block. The 

degree of choking (i.e., the difference in accuracy between blocks) was then correlated with 

the individual level of test anxiety in both groups. 

Since previous studies did not assess the worries of participants during the experiment, 

the explanation that performance-related worries impaired the working memory of students 

assigned to the pressure groups remained to some degree speculative. To overcome this 

limitation, participants were asked in the present study to rate their worries at regular intervals 

throughout the experiment using a Faces Anxiety Scale (FAS) (Bieri et al., 1990; Punaro & 

Reeve, 2012; Trezise & Reeve, 2014b).  

Working memory costs of performance pressure were assessed by analyzing the 

event-related (de-)synchronization (ERS/ERD) (Pfurtscheller & Aranibar, 1977; Pfurtscheller & 

Lopes da Silva, 1999) in the theta frequency band (4-8 Hz) (Hsieh & Ranganath, 2014; 
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Inanaga, 1998; Klimesch, 1999; Roux & Uhlhaas, 2014; Sauseng et al., 2010). In the first step 

of the analysis, the ERS/ERD during block 2 was compared between the two groups for each 

task demand using cluster-based permutation tests (Maris & Oostenveld, 2007). We reasoned 

that the pressure group should exhibit a stronger ERS in the theta frequency band than the 

control group at frontal midline recording sites (i.e., Fz, FCz, and Cz). FMΘ was then defined 

at those frontal midline electrodes that were revealed by the cluster-based permutation tests 

to differ significantly between groups for both demands. Then, the differences in FMΘ between 

blocks was correlated with participants’ test anxiety scores. Finally, mediation analyses were 

used to test whether the hypothesized increase of FMΘ in test-anxious students in the pressure 

group could be explained by an increase in worries.  

 

4.1.5. Hypotheses 

Firstly, we expected to replicate the choking under pressure effect reported by previous 

studies (Beilock & Carr, 2005; Beilock & DeCaro, 2007; Beilock et al., 2004, 2007; Boere et 

al., 2016; Ramirez & Beilock, 2011). Regarding the manipulation check, participants assigned 

to the pressure group were predicted to report more pressure and higher state anxiety than 

those assigned to the control group. However, the rating of importance and of success was 

expected to be similar between groups. Regarding the behavioral performance, both groups 

were expected to show a higher accuracy for low demand problems in block 2 as compared to 

block 1. In contrast, the accuracy in solving high demand problems was predicted to increase 

in the control group but to decrease for the pressure group in block 2. Secondly, we 

hypothesized that the degree of choking in the high pressure condition is linearly related to the 

individual level of test anxiety.  

Participants in the pressure group were hypothesized to report more worries than 

participants assigned to the control group. The increase in worries between blocks was 

predicted to correlate with individual level of test anxiety. 

Using cluster-based permutation tests, we predicted that the pressure group would 

exhibit a stronger ERS in the theta frequency band than the control group at frontal midline 

recording sites. FMΘ was then defined at frontal midline electrodes which turned out to differ 

significantly between groups for both task demands. The difference in FMΘ between blocks 

was predicted to correlate with individual test anxiety in the pressure group but not in the 

control group. Finally, we hypothesized that the increase of FMΘ in test-anxious students in 

the pressure group would be mediated by an increase in worries.  
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4.2. Methods 

4.2.1. Participants  

Sixty-four university students participated in the present study and were randomly 

assigned to a pressure group or a control group. Two data sets (one in each group) had to be 

excluded due to excessive non-stereotyped artifacts in the EEG, one data set (pressure group) 

due to an accuracy rate lower than chance rate (50%) for the high demand problems in block 

1, and one data set due to a participant refusing to fill out the online questionnaires (pressure 

group). Thus, the remaining sample comprised 31 participants in the control group and 29 

participants in the pressure group. As can be seen in Table 10, the two groups did not differ 

significantly regarding their demographics including age and gender distribution. Moreover, the 

two groups were highly similar in their level of both test anxiety and general anxiety. 

All participants were right-handed with normal or corrected-to-normal vision and no 

history of psychological or neurological diseases. They gave written informed consent 

regarding the arithmetic task and the EEG recording, but were not informed until the end of 

experiment about the true purpose of the study. Furthermore, psychology and mathematics 

students were excluded from participating in the present study (see also Beilock et al., 2004). 

The former group was excluded because they could be expected to be less likely to believe 

that their performance would be actually evaluated. The latter group was excluded because 

the arithmetic task might have been too easy for them. The remaining fields of study included 

science (NControl = 11, NPressure = 11), humanities (NControl = 14, NPressure = 15), and law and 

economics (NControl = 6, NPressure = 3). Participants received €12 as compensation for their 

participation. In addition, all participants assigned to the pressure group received an extra of 

€10 irrespective of whether they could improve their performance in the second block. The 

study was approved by the ethics committee of the University of Graz. 

 

Table 10. Differences between the control and the pressure group regarding demographics and anxiety 
measures.  

 Control Group Pressure Group Test statistic 

Age M (SD) 22.84 (3.26) 23.48 (3.27) t(58) = -0.76, p = .448, d = -0.20 

Females/Males 20/11 20/9 χ2(1) = 0.01, p = .927, φ = 0.47 

Test anxiety M (SD) 41.03 (11.31) 39.48 (8.62) t(58) = 0.59, p = .555, d = 0.15 

General anxiety M (SD) 36.71 (11.06) 37.28 (9.12) t(58) = -0.22, p = .830, d = -0.06 

Note. M = mean, SD = standard deviation, d = Cohen’s d, φ = Phi effect size.  
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Figure 11. Modular arithmetic problem with (a) low demand and (b) high demand with corresponding 
step-by-step solution.   

 

4.2.2. Apparatus and Materials 

4.2.2.1. Modular Arithmetic Task 

 The objective of modular arithmetic is to judge the truth value of problem statements 

such as “62 ≡ 37 (mod5)”. The problem is solved by subtracting the second number from the 

first number (i.e., 62 - 37) and then dividing the resulting difference by the last number (i.e., 25 

÷ 5). If the dividend is a whole number (here, 5), the problem is true. If there is a remainder, 

the statement it false. Low demand problems consisted of two operands smaller than 10 and 

the first step (i.e., subtracting the second operand from the first operand) did not require to 

carry over. High demand problems consisted of two 2-digit numbers and the first step required 

to carry over. An example problem of each demand with step-by-step solution is depicted in 

Figure 11. Problems were presented in two blocks of 60 problems separated by a 2 min break. 

As can be seen in Figure 12, demand and truth (true vs. false) of the problems was balanced 

within each block. Problems were presented in a pseudorandomized order and each problem 

was used only once in the experiment. Participants pressed the left button of a number pad to 

indicate that a problem was false and the right button to indicate that a problem was true using 

the index fingers of their left and right hand respectively. 

 

(a) Low demand problem

9 ≡ 2 (mod 4)

1. Step: 9 - 2  = 7

2. Step: 7  4 = 1

3. Step: Remainder: 3 → False

(b) High demand problem

62 ≡ 37 (mod 5)

1. Step: 62 - 37 = 25

2. Step: 25  5 = 5

3. Step: Remainder: 0 → True
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Figure 12. Overview of modular arithmetic problems presented in two blocks with demand and truth 
value (true or false) balanced within each block.  

 

4.2.2.2. German Test Anxiety Inventory (PAF) 

Test anxiety was assessed using the German Test Anxiety Inventory 

(Prüfungsangstfragebogen, PAF; Hodapp et al., 2011), which is described in more detail in the 

method section of Study 1. In the present study, the PAF was administered via an online form 

a day after the EEG recording.  

 

4.2.2.3. State-Trait Anxiety Inventory (STAI) 

State and trait anxiety were assessed using the State-Trait Anxiety Inventory (STAI; 

Spielberger, 1980), which is described in more detail in the method section of Study 2. In the 

present study, the trait scale of the STAI was administered via an online form a day after the 

EEG recording. 

 

4.2.2.4. Worry scale 

Performance-related worries were assed using a Faces Anxiety Scale (FAS), which is 

described in more detail in the method section of Study 2. The FAS was presented after every 

sixth arithmetic problem. Problems were presented in a pseudo-randomized list in which half 

of every 6th trial was a low demand problem and the other half a high demand problem. 

Participants were instructed to select the first face if they were not worried at all having solved 

the preceding problem correctly and sixth face if they were very worried.   

 

 

 

 

 

120 problems

block 1

30 low 
demand

15 true 15 false

30 high 
demand

15 true 15 false

block 2

30 low 
demand

15 true 15 false

30 high 
demand

15 true 15 false
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4.2.2.5. Manipulation Check 

After completing block 2, participants were given a number of questions to check 

whether the pressure manipulation was effective (see Beilock et al., 2004). Firstly, the state 

scale of the STAI was administered after the second block in each group assessing the level 

of state anxiety. Secondly, participants were asked to rate the second block regarding (a) how 

important they felt it was to perform at a high level, (b) how much pressure they felt to perform 

at a high level, (c) how highly they would rate their performance in the task. Items are described 

in more detail in the method section of Study 2. 

 

4.2.2.6. EEG data acquisition  

EEG was acquired through a BioSemi Active Two system (BioSemi, Amsterdam, The 

Netherlands) from 64 scalp electrodes placed according to the extended 10–20 system. An 

electrooculogram (EOG) was recorded from four additional electrodes; two placed horizontally 

at the outer canthi of both eyes, one placed above and one below the right eye. EEG and EOG 

signals were sampled at 256 Hz and filtered between DC and 128 Hz. 

 

4.2.3. Procedure 

The study was advertised as an EEG study aiming to better understand how a new 

math skill is acquired. Upon arrival, participants filled out a consent form and answered 

demographic questions. Then, participants were seated in the EEG cabin and EEG electrodes 

were placed. The recording started with a 3 min sequence in which participants were asked to 

deliberately execute eye movements followed by a resting state EEG, which are not within the 

scope of the present study and are therefore not reported in the following. Participants received 

task instructions on screen and were asked to answer as quickly and as accurately as possible 

in block 1. Then, six practice trials followed (three for each demand) for which feedback was 

provided (viz., “correct”, “wrong”, “too slow”). In addition, the response time was displayed for 

after each practice trial allowing participants to assess the maximum response interval of 30 s 

used in the experimental trials. At the end of the practice trials, participants were instructed on 

how to use the FAS and familiarized themselves with selecting a face by pressing the left and 

the right button of the number pad.  

The first block consisted of 60 modular arithmetic problems and served as a pretest of 

arithmetic performance (for the balancing of task demand and truth value within each block, 

see Figure 12). As can be seen in Figure 13a, a trial started with a fixation period of 2 s, 

followed by the presentation of the problem until a response was given but for a maximum of 

30 s. A blank screen was display between trials for 1 s. Every sixth trial, participants were 
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asked to rate their worries about having solved the preceding problem correctly using the FAS 

(see Figure 13b). In order to analyze the same number of worry ratings for each demand, 

problems were presented in a pseudo-randomized list in which half of every sixth trial was a 

low demand problem and the other half a high demand problem. In addition, the demand was 

balanced within each group of six problems to control for possible effects of the problems 

presented before the present problem.  

The first second block consisted of 60 modular arithmetic problems and served as a 

posttest of arithmetic performance. While the control group was instructed to continue working 

through the problems as before, the pressure group was put into a high-pressure scenario. 

Firstly, outcome pressure was induced by informing participants that the computer had tracked 

their performance in block 1 and computed a performance score based on both the individual 

response time and accuracy. If they could manage to improve their score by 20% in the second 

block, they would be rewarded with an extra €10. In addition, participant received the 

information that all but one participant so far could manage to improve their performance. 

Secondly, monitoring pressure was induced by recording participant during the second block 

on videotape. Participants were instructed that this recording would be evaluated by a 

committee of teachers and scientists to better understand how modular arithmetic is learned. 

The experimenter then set up the video camera on a tripod directly to the right of participants, 

approximately 70 cm away.  

 At the end of the experiment, both groups filled out the state scale of the STAI and 

rated the importance, pressure, and success in the second block as a manipulation check. 

Participants were then debriefed about the true purpose of the study and those in the pressure 

group were informed that no videotape was recorded. Finally, participants received a code to 

use on the next day to fill out online questionnaires assessing test anxiety and general anxiety.  

 

 

 
 
Figure 13. (a) Schematic 
display of a trial with a low 
demand problem. (b) Every 
sixth trial, participants rated 
their worries using an FAS 
(here, a high demand 
problem is displayed). 

 

(a) Trial

(b) Every 6th trial

#
42 ≡ 23 (mod7)

2 s

until response
1 s

until response
max. 30 s

#
7 ≡ 3 (mod2)

2 s until response
max. 30 s

1 s
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4.2.4. Data Analysis 

EEG data were analyzed in the MATLAB environment (Mathworks, Inc., Natick, MA, 

USA, release 2014b) using EEGLAB 14.1.1 (Delorme & Makeig, 2004) for the pre-processing 

and Fieldtrip (version number 20171010; Oostenveld, Fries, Maris, & Schoffelen, 2011) to run 

cluster-based permutation tests. Further statistical analyses for both behavioral and 

electrophysiological data were carried out with the software SPSS 22.0 (IBM Corp. Released, 

2011) using the PROCESS package for the mediation analyses (A. Hayes, 2013). 

 

4.2.4.1. Behavioral Data 

Whether participants in the pressure group perceived block 2 as more stressful than 

participants in the control group was checked by independent t-tests with the importance, 

pressure and success rating as well as the state scale of STAI as dependent variables.   

Behavioral performance was analyzed by 2 (block) x 2 (demand) x 2 (group) ANOVAs 

with the dependent variable mean response time (in s) and mean accuracy (in percentage). 

The change in performance between blocks was then correlated with individual differences in 

test anxiety. For this, the difference in response time (RTblock2 - RTblock1 = ΔRT) and accuracy 

(ACblock2 - ACblock1 = ΔAC) was computed for low and high demand problems separately and 

correlated with test anxiety in each group.   

Self-reported worries were averaged and analyzed with a 2 (block) x 2 (demand) x 2 

(group) ANOVA. Again, the change in worries (worriesblock2 - worriesblock1 = Δworries) was 

correlated with test anxiety in each group.  

 

4.2.4.2. Electrophysiological Data 

The EEG signal was re-referenced to the mean (common average reference), the 

baseline (channel mean) was removed, and a 1 Hz high-pass filter was applied. Eye movement 

artifacts were corrected by means of independent component analysis (ICA). For this, non-

stereotyped noise was first removed from the continuous signal by visual inspection. Then, the 

ICA was run using the EEGLAB routine runica and independent components reflecting vertical 

and horizontal eye movements were removed for each block and subject. The signal was then 

again visually inspected and remaining artifacts were manually removed from the continuous 

signal. Finally, bad channels were defined based on the joint kurtosis of the recorded 

electrodes. Channels with a kurtosis deviating more than 5 SD from the mean were removed 

and interpolated.  
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We then explored the event-related (de-)synchronization (ERS/ERD) (Pfurtscheller & 

Aranibar, 1977; Pfurtscheller & Lopes da Silva, 1999) in the theta frequency band (4-8 Hz) 

across the scalp. The theta frequency band was defined from 4 to 8 Hz based on the review 

by Hsieh and Ranganath (2014). ERS/ERD values were derived as follows: the EEG signal 

was band pass filtered within the theta band and then squared to obtain the power. The power 

was averaged across time and trials for the reference (R) and the activation (A) interval. A 1.75 

s interval from 125 ms after fixation onset to 125 ms before stimulus onset served as baseline 

(see Figure 13). The reference interval was defined as the time from stimulus onset until a 

response was given. The last 20 ms of the activation interval were discarded to take temporal 

inaccuracy of measuring the time stamp of the button press into account. The ERS/ERD was 

calculated by the following formula (see Pfurtscheller & Aranibar, 1977):  

 

%𝐸𝑅𝑆|𝐸𝑅𝐷 =
(𝐴 − 𝑅)

𝑅
∗ 100 

 

If the band power is increasing in the activation interval as compared to reference interval, a 

positive value will result, which is referred to as event-related synchronization (ERS). If the 

band power is decreasing, a negative value will result, which is referred to as event-related 

desynchronization (ERD). The ERS/ERD scores were then compared between groups for 

each demand during block 2 using cluster-based permutation tests (Maris & Oostenveld, 

2007). For this, an independent t-test was computed for each electrode (critical alpha value = 

.05, uncorrected) and the probability of a cluster was determined by using a Monte-Carlo 

simulation with 10,000 random permutations (critical alpha value = .05, corrected; minimum 

cluster size = 3). To rule out that the two groups already differed in their pretest neural activity, 

we also compared the two groups for each demand during block 1 using the same cluster-

based permutation procedure.  

 We predicted that the pressure group exhibit a stronger ERS in the theta frequency 

band than the control group at frontal midline recording sites. Based on previous studies (e.g., 

Ishihara & Yoshii, 1972; Luu et al., 2004; Osinsky et al., 2017; Wang et al., 2015), the following 

frontal-central recording sites were considered as reflecting FMΘ: Fz, FCz, and Cz. FMΘ was 

then defined at those frontal midline electrodes that were revealed by the cluster-based 

permutation tests to differ significantly between groups for both demands. Then, the 

differences in FMΘ between blocks (FMΘblock2 - FMΘblock1 = ΔFMΘ) was correlated with 

participants test anxiety scores. 

 To explore whether the predicted increase of FMΘ in test-anxious students in the 

pressure group was due to an increase in worries, mediation analyses were used. For this, the 

change between blocks was averaged across demands for FMΘ (ΔFMΘAVG) and worries 
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(ΔWorriesAVG). In each group, a mediation model was tested with test anxiety as the predictor 

and ΔFMΘAVG as criterion variable including ΔWorriesAVG as mediating variable. Indirect effects 

were tested for significance using bias-corrected bootstrap confidence intervals based on 

10,000 bootstrap samples (see A. Hayes, 2013). 

 

4.3. Results 

4.3.1. Manipulation Check 

There was no significant difference between groups regarding the rating of 

performance pressure or state anxiety (see Table 11). Note the means tended towards the 

predicted direction, i.e., higher values in the pressure than in the control group but failed 

statistical significance. This is in contrast to previous studies that have reported significant 

differences in these measures using a similar pressure manipulation (Beilock & DeCaro, 2007; 

Beilock et al., 2004; Ramirez & Beilock, 2011). To further see whether the perceived pressure 

was related to individual differences in test anxiety, we correlated the rating of the pressure 

item with test anxiety scores. In the pressure group, students with higher levels of test anxiety 

reported more pressure regarding block 2 than lower test anxious students, r = .47, p = .009. 

However, a similar relationship was also found in the control group, r = .44, p = .014. Thus, it 

appears that higher test-anxious students in both groups perceived the second block of 

modular arithmetic as relatively stressful as compare to students with lower test anxiety.  

 

Table 11. Means and standard deviations (in brackets) of the manipulation check for each group.  

 Control Group Pressure Group Test statistics 

Importance R. 5.65 (1.05) 5.72 (0.88) t(58) = -0.31, p = .754, d = -0.07 

Pressure R. 4.00 (1.34) 4.21 (1.37) t(58) = -0.59, p = .557, d = -0.16 

Success R. 4.65 (1.33) 4.97 (1.01) t(58) = -1.04, p = .302, d = -0.27 

State Anxiety 33.58 (9.07) 36.41 (8.74) t(58) = -1.23, p = .223, d = -0.32 

Note. R. = rating; d = Cohen’s d. 
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Table 12. Result summary of Analyses of Variance (ANOVAs) with (a) response time (in ms) and (b) 
accuracy (in %) as dependent variable. 

  F(1,58) p ηp
2 

(a) Response time 
 

Main effects    

       Block 79.47 < .001 .578 

       Demand 276.54 < .001 .827 

       Group 0.46 .502 .008 

 
Interactions    

       Block x Group 8.70 .004 .130 

       Block x Demand 40.11 < .001 .409 

       Demand x Group 0.13 .718 .002 

       Block x Demand x Group 3.49 .066 .057 

(b) Accuracy 

 Main effects    

       Block 2.33 .132 .039 

       Demand 40.38 < .001 .410 

       Group < 0.01 .970 <.001 

 Interactions    

           Block x Group 1.14 .291 .019 

       Block x Demand 0.16 .899 <.001 

           Demand x Group 0.64 .428 .011 

           Block x Demand x Group 0.79 .379 .013 

Note. ηp
2 = Partial Eta Squared. 

 

 

4.3.2. Behavioral Performance 

Statistical analyses of the behavioral performance are summarized in Table 12. There 

was a significant main effect of Block as well as of Demand on the response time. As can be 

seen in Figure 14a, the response time decreased between block 1 and block 2 and problems 

with high demand were solved slower than problems with low demand. Furthermore, there was 

a significant interaction Block x Demand, with high demand problems showing a stronger 

decrease in response time between blocks than low demand problems. Finally, the factors 

Block and Group showed a significant interaction with participants assigned to the pressure 

group having a more pronounced decrease in the response time between blocks than those 

assigned to the control group. While the response time in block 2 was highly similar between 

groups, the pressure group appeared to respond slightly slower in block 1 than the control 

group (see Figure 14a). At this stage of the experiment, however, there should have been no 

systematic difference between groups. Therefore, it remains unclear whether the interaction 

effect Block x Group is due to the performance pressure or to the difference between groups 
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in pretest response times. Finally, the decrease in the response time between blocks in the 

pressure group seemed to be more pronounced for high demand problems than for low 

demand problems as indicated by a three-way interaction Block x Demand x Group with a 

trend towards significance (see Figure 14a).  

Regarding the accuracy, there was a significant main effect Demand, with low demand 

problems being solved more accurately than high demand problems (see Figure 14b). 

Contrary to expectations, there was no significant interaction Block x Group or a significant 

three-way interaction Block x Demand x Group.  

The correlation between the changes in performance between blocks and test anxiety 

are summarized in Table 13. Neither the change in response time (ΔRT) nor the change in 

accuracy (ΔAC) was significantly related to test anxiety in either of the two groups. Explorative 

analyses correlating test anxiety with the dependent measures (i.e., response time, accuracy, 

worry, FMΘ) in each block separately can be found in Table S 4. 

Taken together, there was a significant effect of demand with high demand problems 

being solved slower and less accurately than problems with low demand. Moreover, a learning 

effect was present as indicated by decreasing response times between block 1 and block 2. 

This effect was more pronounced for problems with high demand than for problems with low 

demand. Contrary to our hypothesis, participants assigned to the pressure group did not show 

a decrease in the accuracy of solving high demand problems in block 2. Furthermore, there 

was no significant relationship between individual test anxiety and changes in performance 

between blocks in either group.  

 

 

Figure 14. (a) Mean response time and (b) accuracy as a function of block, demand, and group. Error 
bars indicate +/- 1 standard error. 
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Table 13. Pearson correlations between test anxiety and the changes in response time (ΔRT), accuracy 
(ΔAC), worry (ΔWorries), and FMΘ (ΔFMΘ) between blocks. 

 ΔRT  ΔAC  ΔWorries  ΔFMΘ 

 Demand: Low High  Low High  Low High  Low High 

Control Group -.19 -.32  .12 -.19  -.13 .05  .23 .14 

Pressure Group -.19 .17  -.09 .01  .09 .04  .57** .48** 

Note. * = p < .05; ** = p < .01; *** = p < .001. 

 

 

Table 14. Descriptive statistics of the worry rating during each block for each demand and group. 

 

 

4.3.3. Worry Rating 

Means and standard deviations of the worry rating are summarized in Table 8. Since 

the means appeared to be rather low also the minimum and maximum are provided. 

Participants reported significantly higher worries about solving high demand problems than 

about solving low demand problems. However, there was no significant interaction Block x 

Group or a significant three-way interaction Block x Demand x Group (for a summary of the 

statistics, see Table 15). As can be seen in Table 13, the change in worries between blocks 

was not significantly related to test anxiety in either group. 

 

 

 

 

 

 

  Block 1 Block 2 

 
 

Low Demand High Demand Low Demand High Demand 

Control Group 

M (SD): 1.57 (0.78) 1.81 (0.66) 1.61 (0.85) 1.80 (0.73) 

[Min, Max]: [1.00, 4.20] [1.00, 3.60] [1.00, 4.80] [1.00, 4.20] 

      

Pressure Group 

M (SD): 1.68 (0.75) 2.00 (0.78) 1.70 (0.72) 1.98 (0.73) 

[Min, Max]: [1.00, 3.20] [1.00, 4.00] [1.00, 3.60] [1.00, 3.60] 
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Table 15. Result summary of Analysis of Variance (ANOVA) with worry as dependent variable. 

  F(1,58) p ηp
2 

Main Effects 
   

      Block 0.02 .888 <.001 

      Demand 18.28 <.001 .240 

      Group 0.66 .420 .011 

Interactions 
   

      Block x Group 0.02 .888 <.001 

      Block x Demand 0.33 .566 .006 

      Demand x Group 0.61 .438 .010 

      Block x Demand x Group < 0.01 .980 <.001 

Note. ηp
2 = Partial Eta Squared. 

 

 

 

Figure 15. Topographical maps of t-values corresponding to the contrast [Pressure - Control] in block 2 
for (a) low demand and (b) high demand problems with data filtered in the theta frequency band (4–8 
Hz). Analyses revealed a significant cluster (p < .05, corrected) for each demand (electrodes within a 
cluster are marked with white asterisks). Note that there were no significant differences between groups 
in block 2 (see Figure S 4). 

 

4.3.4. FMΘ under Performance Pressure 

There was no significant difference between groups in the theta activity at block 1 for 

either task demand (see Figure S 4). In contrast, theta appeared to be increased in the 

pressure group across the scalp during block 2, as indicated by almost entirely positive t values 

(see Figure 15). The cluster-based permutation test revealed a significant cluster (cluster p < 

T-values

Block 2: [Pressure - Control] 

theta band (4–8 Hz)

(a) Low Demand Problems (b) High Demand Problems
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.001) for low demand problems (i.e., ERSPressure >  ERSControl) in the theta frequency band 

ranging from right temporal to left parietal electrodes. The cluster peaked at fronto-central 

recording sites, including electrodes FCz and Cz. For high demand problems, the cluster-

based permutation test revealed a significant but more focal cluster (cluster p = .036). This 

cluster ranged from fronto-central to fronto-parietal electrodes. This cluster showed a local 

peak at fronto-central recording sites, including electrode Cz. The topographical maps of the 

raw ERS/ERD values for each group and demand can be found in the supplementary material 

(block 1: Figure S 3; block 2: Figure S 4). Since the cluster of both task demands showed a 

peak around electrode Cz individual FMΘ was extracted from this electrode for the following 

analyses. This is in line with previous research examining FMΘ at electrode Cz (Cavanagh & 

Frank, 2014; Ishihara & Yoshii, 1972; Jacobs, Hwang, Curran, & Kahana, 2006; Liu, Woltering, 

& Lewis, 2014; Massar, Rossi, Schutter, & Kenemans, 2012; Missonnier et al., 2006; Neo et 

al., 2011; Wang et al., 2015).  

Figure 16a depicts the mean FMΘ as a function of block, demand, and group. 

A 2 (block) x 2 (demand) x 2 (group) ANOVA showed no significant main effect Block, F(1,58) 

= 0.89, p = .766, ηp
2 = .002, but a significant main effect Group, F(1,58) = 4.41, p = .039, ηp

2 = 

.071, qualified by a significant interaction Block x Group, F(1,58) = 6.88, p = .011, ηp
2 = .106. 

These results confirm the cluster-based permutation tests (see Figure 15, Figure S 4). 

Moreover, there was a significant main effect Demand, F(1,58) = 11.56, p = .001, ηp
2 = .166, 

with low demand problems showing higher FMΘ than high demand problems. The interaction 

Block x Demand, F(1,58) = 0.76, p = .784, ηp
2 = .001, Demand x Group, F(1,58) = 0.79, p = 

.780, ηp
2 = .001, and the three-way interaction Block x Demand x Group were not significant, 

F(1,58) = 2.56, p = .115, ηp
2 = .042. Taken together, results demonstrate that FMΘ was 

increased by performance pressure at fronto-central recording sites for both demands.  

The relationship between the change in FMΘ between blocks (ΔFMΘ) and test anxiety 

is depicted in Figure 16b. Correlation analyses confirmed that the individual level of test anxiety 

was significantly related to ΔFMΘ for low demand (p = .001) and high demand problems (p = 

.008) in the pressure group (see Table 13). Note that both correlations remained significant 

when removing data of participant 35, which could be classified as an outlier based on Figure 

16b. In the control group, in contrast, there was no significant correlation between ΔFMΘ, 

neither for low demand problems (p = .222) nor for high demand problems (p = .454).  
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Figure 16. (a) Frontal midline theta (FMΘ) at electrode Cz as a function of block, demand, and group. 
Error bars indicate +/- 1 standard error. (b) Relationship of the change in FMΘ between blocks (ΔFMΘ) 
and test anxiety. Numbers indicate individual subjects. 

 

4.3.5. FMΘ and Worries 

Mediation models predicting the average change in FMΘ between blocks (ΔFMΘAVG) 

based on test anxiety for both groups are depicted in Figure 17. The average change in worries 

between blocks (ΔWorriesAVG) was entered as mediating variable. On a bivariate level, test 

anxiety was not significantly related to ΔFMΘAVG in the control group (c = .21, p = .247). There 

was no mediating effect of ΔWorriesAVG given that the 95% confidence interval did contain zero 

(ab = .02, CI95 = -0.208 to 0.129). Taking the change in worries between blocks into account, 

the relationship between test anxiety and ΔFMΘAVG remained insignificant (c’ = .19, p = .273).  

In the pressure group, test anxiety was significantly related to ΔFMΘAVG on a bivariate level (c 

= .61, p < .001). However, this relationship was not significantly mediated by a change in 

worries between blocks (ab = .01, CI95 = -0.064 to 0.120). The direct effect of test anxiety on 

ΔFMΘAVG remained highly significant (c’ = .60, p < .001) when controlling for the change in 

worries. Thus, the increase in FMΘ during block 2 in test-anxious students under performance 

pressure could not be explained by an increase in worry in these students. Standard errors 

and model summary for all paths of the mediation analyses can be found in Table S 5. 

Post-hoc analyses were conducted to test whether worries were related to the accuracy 

in the modular arithmetic task. For this, we correlated the ΔWorriesAVG with the average change 

in accuracy between blocks (i.e., ΔACAVG) for each group. Results revealed that participants 

who committed more errors in block 2 than in block 1 also reported more worries in block 2 

relative to block 1 in both the control group, r = -.45, p = .011, and the pressure group, r = -.49, 

p = .007.  
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Figure 17. Mediation 
model predicting the 
average change in FMΘ 
between blocks (ΔFMΘAVG) 
based on differences in test 
anxiety in (a) the control 
and (b) the pressure group. 
The average change in 
worries between blocks 
(ΔWorriesAVG) was entered 
as mediator variable. 
Decimals are the 
standardized regression 
coefficients. * = p < .05; ** 
= p < .01; *** = p < .001. 

 
 
 
 

 

4.4. Discussion  

The aim of the present study was (a) to test whether test anxiety is related to the degree 

of choking under pressure and (b) to directly assess the working memory costs of performance 

pressure by measuring oscillatory brain responses during the task. To this end, we adapted 

the paradigm reported by Beilock and colleagues (2004) for an EEG study. Participants were 

randomly assigned to either a control group or a pressure group prior to performing two blocks 

of modular arithmetic with half of the problems having a low demand and the other half having 

a high task demand. The first block served as a pretest and the second block as a posttest of 

arithmetic performance. Between blocks, the two groups received different instructions. While 

the control group was informed that they would be performing another set of problems, the 

pressure group was exposed to a high pressure test scenario. Participants in both groups were 

asked to rate their worries about performing well at regular intervals throughout the experiment 

using an FAS (Bieri et al., 1990; Punaro & Reeve, 2012; Trezise & Reeve, 2014b). Working 

memory costs of performance pressure were assessed by analyzing the ERS/ERD in the theta 

frequency band (4-8 Hz) at frontal midline recording sites (FMΘ) during the task (Cavanagh & 

Frank, 2014; Cavanagh & Shackman, 2015; Hsieh & Ranganath, 2014; Inanaga, 1998; 

Klimesch, 1999; Pfurtscheller & Aranibar, 1977; Pfurtscheller & Lopes da Silva, 1999; Roux & 

Uhlhaas, 2014; Sauseng et al., 2010). 

Test Anxiety ΔFMΘAVG

c’ = .19 (c = .21)

ΔWorriesAVG

a = -.06 b = -.32

(a) Control group

Test Anxiety ΔFMΘAVG

c’ = .60*** (c = .61***)

ΔWorriesAVG

a = .07 b = .05

(b) Pressure group
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4.4.1. Manipulation Check 

The manipulation check revealed that both groups perceived the second block of 

modular arithmetic as highly important. More specifically, the mean importance ratings were 

within the upper range of the 7-Point Likert scale with M = 5.65 in the control group and M = 

5.72 in the pressure group. As predicted, there was no significant difference between groups 

in their rating of importance (see also Beilock et al., 2004). That the importance ratings were 

high across groups is an important indicator that participants in both groups were motivated to 

perform well in the second block. Differences between groups are therefore unlikely to result 

from a lower motivation of participants in the control group. Regarding the perceived success 

in the modular arithmetic task, ratings were in the average range but did not differ significantly 

between groups. Contrary to expectation, the rating of performance pressure was not 

significantly higher in the pressure than in the control group. Pressure ratings of both the 

control (M = 4.00) and the pressure group (M = 4.21) were more similar to the pressure rating 

reported by Beilock and colleagues (2004) for the control group (M = 3.95) than those reported 

for the pressure group (M = 5.08). Finally, the state anxiety in the present study appeared to 

be higher in the pressure (M = 36.41) than in the control group (M = 33.58), but this difference 

also failed statistical significance. The state anxiety in the control group was similar to those 

reported by Beilock and colleagues (2004) for the control group (M = 32.08). However, the 

pressure group showed lower state anxiety that the previously reported pressure group 

(M = 42.68). Taken together, the manipulation check could not clearly confirm that the pressure 

manipulation was effective in the present study. This is in contrast to previous studies that have 

reported significant differences in these measures using a similar pressure scenario (Beilock 

& DeCaro, 2007; Beilock et al., 2004; Ramirez & Beilock, 2011).  

One reason for the lack of significant differences in the manipulation check might have 

been that we modified the pressure manipulation in the present study as compared to previous 

studies (Beilock & DeCaro, 2007; Beilock et al., 2004; Ramirez & Beilock, 2011). More 

specifically, previous studies instructed participants in the pressure group that they had been 

paired with another participant and that the reward of both would depend upon the performance 

of the present participant. This seemed implausible to us given that the present participants 

could be expected to be familiar with psychological testing. Instead, participants were informed 

that of the previous participants all but one could manage to improve their performance. This 

difference in the pressure manipulation might explain why we failed to find significant 

differences in the manipulation check in the present study. Note, however, that we found a 

significant difference in Study 2 regarding the pressure rating between pressure conditions. In 

Study 2, we did not provide information about the performance of other participants at all as 

part of the pressure manipulation. Therefore, it seems unlikely that changing the cover story 
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regarding the team effort can account for the lack of significant differences in the present 

manipulation check. Another explanation might be that participants in the present sample were 

less sensitive to the pressure manipulation resulting in only subtle differences in the 

manipulation check. In line with this explanation is that the pattern of results was directionally 

as predicted, with the pressure group reporting higher pressure and state anxiety than the 

control group. Although speculative, this might indicate cultural difference between studies. 

While the studies by Beilock and colleagues (Beilock & DeCaro, 2007; Beilock et al., 2004; 

Ramirez & Beilock, 2011) were conducted with US-American students, the present study 

included Austrian and German students. Future studies would be needed to address potential 

cultural differences in responding to performance pressure as manipulated in the present 

study.  

Post-hoc analyses were conducted to explore whether participants differed in their 

perception of performance pressure depending on their levels of test anxiety. In both groups, 

higher test-anxious students reported more performance pressure than lower test-anxious 

students. Thus, it appears that test-anxious students in both groups perceived the second 

block of modular arithmetic to some degree as an evaluative situation. In fact, this might have 

further contributed in diluting an already subtle difference in the pressure rating between the 

control group and the pressure group.  

Taken together, while the effectiveness of the pressure manipulation is called into 

question, students with higher test anxiety generally perceived the second block of modular 

arithmetic as relatively stressful as compared to students with lower test anxiety. 

 

4.4.2. Behavioral Performance 

On a behavioral level, the present findings revealed a main effect of demand, with high 

demand problems being solved slower and less accurately than problems with low demand. 

Furthermore, a learning effect was present as indicated by decreasing response times 

between block 1 and block 2. This effect was more pronounced for problems with high demand 

than for problems with low demand. Contrary to our hypothesis, participants assigned to the 

pressure group did not show a decrease in the accuracy of solving high demand problems in 

block 2. Instead, the accuracy did not differ significantly between blocks for low or high demand 

problems in either group. This is in sharp contrast to previous studies showing a decrease in 

the performance of problems with high demand in the pressure group (Beilock & Carr, 2005; 

Beilock & DeCaro, 2007; Beilock et al., 2004, 2007; Boere et al., 2016; Ramirez & Beilock, 

2011). For instance, Beilock and colleagues (2004) reported that the accuracy for solving high 

demand problems was at about 80% in the pretest in both the control and the pressure group. 

In the posttest, this accuracy further increased in the control group but decreased by over 5% 
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in the pressure group. In the present study, in contrast, the accuracies of solving high demand 

problems were already at about 90% for both groups in block 1 (see Figure 14). The accuracy 

rate did not change significantly between blocks in either group.  

However, previous studies reporting performance impairments in the pressure group 

also found significant differences between groups in the manipulation check (with the 

exception of Boere et al., 2016, who did not report a manipulation check). This might offer an 

explanation of why we failed to replicate the choking under pressure effect in the present study. 

Given that block 2 was not perceived as more stressful by the pressure group than by the 

control group, participants in the pressure group can also not be expected to show behavioral 

impairments due to performance pressure. An explanation for the lack of both differences in 

the manipulation check and performance impairments could be that we increased the number 

of trials in the present study in order to improve the signal-to-noise ratio for the EEG analysis. 

While Beilock and colleagues (2004) compared two blocks à 24 problems (with a middle block 

of 24 problems skipped in the analysis), we compared two blocks à 60 problems. Thus, 

participants had more practice in the present study possibly allowing them to achieve already 

a high level of accuracy in the first block. In the second block, participants therefore might have 

been skilled enough to cope with the detrimental effect of performance pressure and 

consequently report less pressure. However, another experiment reported by Beilock and 

colleagues (2004) does not support this explanation. In this experiment, the performance of 

solving high demand problems which were previously either infrequently (i.e., one or two times) 

or frequently (i.e., 50 repetitions) practiced was compared under performance pressure. 

Results revealed that those problems which were frequently practiced were unimpaired by 

performance pressure. However, performance pressure still harmed the accuracy with which 

infrequently practiced problems were solved. This suggest that while practicing a problem until 

the answer can be retrieved from memory neutralizes the effect of performance pressure, 

general practice on the solution algorithm alone cannot shield against choking. In the present 

study, we used a unique set of problems in each block. It therefore seems unlikely that the 

additional practice on the solution algorithm provided by increasing the number of trials can 

account for the present lack of significant behavioral effects. However, the overall high 

accuracy in the modular arithmetic task is indicating that the task was relatively easy for the 

present participants. Future studies should therefore consider to increase the difficulty of the 

task, for instance, by lowering the maximum response interval.  

It should be noted that one other published study also failed to find a significant effect 

of performance pressure on the accuracy in modular arithmetic. In this study (Benny & Banks, 

2015), students were asked to perform two blocks of modular arithmetic à 24 problems. While 

the first block served as a pretest of arithmetic performance, all participants were exposed to 

a high pressure scenario, as reported by Beilock and colleagues (2004), in the second block. 
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At the end of each block, participants were asked to fill out the state scale of the STAI. Similar 

to the present study, participants did neither report more state anxiety nor exhibited 

performance impairments in the second block as compared to the first block.  

Finally, changes between blocks in both the response time and the accuracy were not 

significantly related to individual differences in test anxiety. This was hypothesized based on 

previous research (for reviews, see Calvo & Eysenck, 1992; Eysenck et al., 2007; Moran, 2016; 

Wine, 1971) according to which test-anxious students are especially prone to be distractible 

by performance-related worries. However, given that there was no significant difference in the 

accuracy between groups it is not surprising that we did not find a correlation between test 

anxiety and the degree of choking within the pressure group. 

In summary, results revealed a higher performance for low demand than for high 

demand problems and a learning effect with decreasing response times between blocks. 

Contrary to expectations, participants assigned to the pressure group showed no performance 

impairments in the present study and changes in the performance between blocks were not 

related to individual differences in test anxiety.  

 

4.4.3. Performance Pressure and Worries 

Similar to the previous findings, participants in the pressure group did not report more 

worries during the second block of modular arithmetic than the control group. In general, the 

worry ratings in the present study were within the lower range of the 6-Point FAS (see Table 

14). Worry ratings were also low in comparison to Study 2 in which we reported ratings in the 

average range of the scale. Furthermore, there was no significant correlation between worries 

and individual differences in test anxiety. Given that the overall performance in the present 

study was high across conditions and groups, participants might have had little reason to be 

worried about their performance.  

 

4.4.4. Increased FMΘ Under Performance Pressure 

In the EEG analysis, we first compared the ERS/ERD in the theta frequency band 

across the scalp using cluster-based permutation tests. There was no significant difference in 

theta activity between groups at block 1 for either task demand (see Figure S 4). This was 

important to rule out that the two groups already differed in their pretest theta activity. In 

contrast, theta appeared to be increased in the pressure group across the scalp during block 

2, as indicated by almost entirely positive t values (see Figure 15). The cluster-based 

permutation tests revealed a significant cluster for each task demand. For low demand 

problems, the cluster ranged from right temporal to left parietal electrodes peaking at fronto-
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central recording sites, including FCz and Cz. The cluster for high demand problems was more 

focal ranging from fronto-central to fronto-parietal electrodes with a local peak at fronto-central 

recording sites, including Cz. Since the cluster of both task demands showed a peak around 

electrode Cz individual FMΘ was extracted from this electrode for the following analyses. This 

is in line with previous research reporting FMΘ at electrode Cz (Cavanagh & Frank, 2014; 

Ishihara & Yoshii, 1972; Jacobs et al., 2006; Liu et al., 2014; Massar et al., 2012; Missonnier 

et al., 2006; Neo et al., 2011; Wang et al., 2015). For instance, in one of the first studies on 

FMΘ, Ishihara and Yoshii (1972) defined FMΘ at the Fz-Cz lead. In another study, Liu, 

Woltering, and Lewis (2014) showed that the theta activity was most pronounced at Cz during 

a Go/No-go task in children. Extracting individual FMΘ from Cz was further demonstrated to 

be inversely related to both the age and the control ability of the children. However, it should 

be noted that FMΘ has also been commonly reported at more frontal recording sites, especially 

at Fz (for a review, see Hsieh & Ranganath, 2014). An ANOVA confirmed that FMΘ at Cz did 

not differ between groups at block 1 and was increased at block 2 for the pressure group as 

compared to the control group. Moreover, theta activity was higher for low demand problems 

than for high demand problems across blocks and groups. This finding is in line with studies 

by Grabner and De Smedt (De Smedt, Grabner, & Studer, 2009; Grabner & De Smedt, 2011, 

2012) showing that arithmetic problems that are retrieved from memory, display more theta 

activity than problems that are solved by using an arithmetic procedure. In the present study, 

the answer to the first step (e.g., 9 - 2) of solving low demand problems (e.g., “9 ≡ 2 (mod4)”) 

can be expected to be retrieved from memory (see Siegler, 1988).  In contrast, the answer to 

the first step (e.g., 62 - 37) of solving high demand problems (e.g., “62 ≡ 37 (mod5)”) are likely 

to require an arithmetic procedure.  

We then correlated the change in FMΘ between blocks (ΔFMΘ) and individual test 

anxiety in each group. Test anxiety was significantly related to ΔFMΘ for low demand and high 

demand problems in the pressure group (see Table 13). In the control group, in contrast, there 

was no significant correlation between ΔFMΘ and test anxiety for either task demand. Finally, 

mediation analyses were used to test whether the increase of FMΘ for test-anxious students 

in the pressure group was mediated by an increase of worries between blocks. The analyses 

revealed that there was no significant mediating effect of worries in explaining the relationship 

between test anxiety and ΔFMΘ. Instead, the change of worries seemed to be directly related 

to the change in accuracy, with participants of both groups who committed more errors in block 

2 than in block 1 also reporting more worries in block 2 relative to block 1.  

Taken together, the EEG analyses revealed that the theta activity was increased by 

performance pressure at frontal-midline recording sites, especially in students with higher 

levels of test anxiety. The findings corroborate recent studies that have addressed the effect 

of anxiety as well as situational stress on FMΘ in the time-frequency domain (see Osinsky et 
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al., 2017). Regarding situational stress, Osinsky and colleagues (2017) could demonstrate that 

FMΘ (recorded at electrode Fz) was increased in participants performing a simple two-choice 

task under threat anticipation as compared to a control group. However, this relationship was 

reported to only hold true for female but not for male participants. In contrast, we see an 

increase of FMΘ by performance pressure in the present study across female and male 

students. Adding gender as a factor in the ANOVA with FMΘ at electrode Cz as dependent 

variable did not change the effect of pressure. One difference between the two studies is that 

participants in the pressure group of the previous studies anticipated to be evaluated (i.e., to 

give a speech after the EEG recording), while they were evaluated during the task in the 

present study. This might offer an explanation of why we found a more robust difference in the 

theta activity between groups including both female and male students. Nevertheless, both 

studies provide evidence for the notion that performance pressure is inducing higher FMΘ 

while performing a cognitive task. Moreover, previous studies have shown that individuals with 

higher anxiety-related symptoms exhibit higher FMΘ than individuals without these symptoms 

(Balconi & Crivelli, 2010; Mueller et al., 2014, 2015; Neo et al., 2011). For instance, Mueller 

and colleagues (2014) have reported that FMΘ (recorded from electrode FCz) is increased in 

individuals with higher neuroticism following negative feedback. The present results add to this 

body of evidence by demonstrating that higher test-anxious students show a stronger increase 

in FMΘ by performance pressure than lower test-anxious students.  

The modulation of FMΘ by both situational performance pressure and individual 

differences in test anxiety is in line with the adaptive control hypothesis by Cavanagh and 

Shackman (2015). According to this hypothesis, increased FMΘ in anxious individuals reflects 

the need for attentional control regarding uncertain or threatening events (Cavanagh & 

Shackman, 2015). The adaptive control hypothesis was formulated based on findings that 

ERPs following uncertain events such as errors (ERN), punishment (FRN), and conflict-

inducing stimuli (N2) originate from a transient oscillatory synchronization of FMΘ (for reviews, 

see Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015). Against this backdrop, the 

present findings suggest that test-anxious students increased their attentional control in the 

pressure group. This might have enabled them to maintain their performance in solving the 

modular arithmetic problems. In fact, this offers another potential explanation of why we did 

not see performance impairments in the present study. By increasing their attentional control 

(e.g. “by focusing harder on the task”), test-anxious students might have been able to 

compensate for the detrimental effect of performance pressure and could maintain a high 

performance. Future studies are needed to better understand the cognitive processes that give 

rise to the FMΘ in test-anxious students who are being evaluated. Such studies should 

consider to implement a more direct indicator of attentional control to support the present 

explanation of higher FMΘ reflecting a compensatory increase in attentional control. For 
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instance, measuring the pupil dilation during the task could provide complementary information 

about the dynamics of attentional control in test-anxious students (for a review, see Beatty, 

1982). 

 

4.4.5. Conclusion  

The present study failed to replicate choking under pressure in mathematical problem 

solving (Beilock & Carr, 2005; Beilock & DeCaro, 2007; Beilock et al., 2004, 2007; Boere et 

al., 2016; Ramirez & Beilock, 2011). Participants assigned to the pressure group did not report 

more pressure and performed at the same level as participants assigned to the control group. 

Furthermore, the performance in the modular arithmetic task was not related to individual 

differences in test anxiety and self-reported worries were low across groups. In contrast, the 

study revealed significant differences between groups in the oscillatory brain responses during 

the task. The theta activity was increased by performance pressure at frontal-midline recording 

sites, especially in students with higher levels of test anxiety. Taken together, results are in 

line with the adaptive control hypothesis (Cavanagh & Shackman, 2015), suggesting that test-

anxious students increase their attentional control in an evaluative situation in order to maintain 

task performance.  
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5. General Discussion  

Test anxiety can hinder students from achieving their full potential in evaluative 

situations, such as tests or examinations. Converging evidence suggests that performance-

related worries impair the working memory of these students. However, the mechanisms by 

which worries affect the working memory of test-anxious students remain poorly understood. 

The present work aimed to fill this gap by comparing the EEG of lower and higher test-anxious 

students performing a cognitive task in three studies. Compared to other neuroscientific 

techniques (e.g., fMRI), the temporal resolution of EEG is superior (up to 1 ms) allowing us to 

gain fine-grained and precise temporal information about the neurocognitive mechanisms 

underlying test anxiety (see Schillinger, 2016). Previous research has suggested that 

increased neural activity in anxious individuals during a cognitive task reflects compensatory 

effort to maintain task performance (for reviews, see Derakshan & Eysenck, 2009; Eysenck & 

Derakshan, 2011; Eysenck et al., 2007).  

Based on the distraction model (Calvo & Eysenck, 1992; Eysenck et al., 2007; Wine, 

1971), test-anxiety was conceptualized in the present work as a personality trait that interacts 

with the evaluative character of a situation in inducing performance-related worries (see Figure 

1). Therefore, in all three studies lower and higher test-anxious students were tested 

performing a cognitive task in both a high pressure condition and a low pressure control 

condition (see Table 1).  

Two studies addressed the response monitoring in test-anxious students by analyzing 

the ERN – an event-related potential occurring shortly after an erroneous response. Different 

lines of research suggest that the amplitude of the ERN is increased in individuals who are 

prone to worry (for reviews, see Moser et al., 2013; Weinberg et al., 2011). At the same time, 

performance in tasks used to measure the ERN (e.g., Stroop) appears to be uncompromised 

in anxious individuals (for reviews, see Gehring et al., 2012; Moser et al., 2013). Moser and 

colleagues (2013) have therefore proposed that the increased ERN seen in anxious individuals 

reflects compensatory efforts to maintain task performance. The aim of Study 1 was to start 

answering the question of how performance pressure changes response monitoring and 

whether this depends on individual differences in test anxiety. For this, 18 female participants 

were tested performing a numerical Stroop in two pressure conditions (i.e., low vs. high 

pressure) including test anxiety as a continuous variable in the analysis. However, students 

test anxiety scores turned out to be mostly in the average range and we did not control for 

differences in general anxiety in this study. In Study 2, we therefore compared the response 

monitoring of low (N = 23) and high test-anxious (N = 21) students while minimizing differences 

in general anxiety. In addition, participants were asked to rate their worries at regular intervals 
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throughout the experiment using an FAS in order to directly relate the ERN to worries (Bieri et 

al., 1990; Punaro & Reeve, 2012; Trezise & Reeve, 2014b). Based on the results of Study 1, 

a number of changes in the methods of Study 2 were implemented including focusing on the 

numerical task of the Stroop paradigm, recording both pressure conditions within a single EEG 

session, checking the effectiveness of the pressure manipulation, and analyzing both the ERN 

and the CRN using an ANOVA approach. 

Given that the working memory load of the numerical Stroop task used in Study 1 and 

in Study 2 is relatively low the third study probed the effect of performance pressure using a 

more demanding task. For this, we adapted the choking under pressure paradigm reported by 

Beilock and colleagues (2004) to meet the requirements of an EEG study. Sixty participants 

were randomly assigned to either a control group or a pressure group prior to performing two 

blocks of modular arithmetic, with half of the problems having a low demand and the other half 

having a high demand. The first block served as a pretest and the second block as a posttest 

of arithmetic performance. While the control group was informed after the first block that they 

would be performing another set of problems, the pressure group was exposed to a high 

pressure test scenario during block 2. Participants in both groups were asked to rate their 

worries about performing well at regular intervals throughout the experiment using an FAS 

(Bieri et al., 1990; Punaro & Reeve, 2012; Trezise & Reeve, 2014b). Finally, working memory 

costs of performance pressure were assessed by analyzing the ERS/ERD in the theta 

frequency band (4-8 Hz) at frontal midline recording sites (FMΘ) during the task (Hsieh & 

Ranganath, 2014; Inanaga, 1998; Klimesch, 1999; Pfurtscheller & Aranibar, 1977; 

Pfurtscheller & Lopes da Silva, 1999; Roux & Uhlhaas, 2014; Sauseng et al., 2010). An 

increase in FMΘ has been linked to the need for attentional control regarding uncertain or 

threatening events by previous research (Cavanagh & Frank, 2014; Cavanagh & Shackman, 

2015)  

 

5.1. Summary of Results 

Results of Study 1 showed that the response monitoring is modulated by both 

performance pressure and individual difference in test anxiety (Schillinger et al., 2016). More 

specifically, the ΔERN (i.e., the difference score between CRN and ERN) was enhanced in the 

high pressure as compared to the low pressure condition and linearly increased with test 

anxiety in both conditions. However, there was no significant interaction between performance 

pressure and test anxiety in modulating the ΔERN. On a behavioral level, the study provided 

mixed evidence with slower response times but increased accuracies in the high pressure 

condition than in the low pressure condition. Contrary to predictions, students with higher test 
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anxiety responded significantly faster under performance pressure than students with lower 

test anxiety.  

The manipulation check of Study 2 firstly demonstrated that the pressure manipulation 

was effective as indicated by significantly higher ratings of performance pressure in the high 

pressure than in the low pressure condition. On an electrophysiological level, the ERN was 

confirmed to be more negative than the CRN across all conditions. The analysis further 

revealed that the ERN was modulated by performance pressure in HTA students but not in 

LTA students. More specifically, while the amplitude of the ERN was significantly enhanced in 

the pressure condition as compared to the control condition in HTA students, the amplitude 

did not significantly differ between pressure conditions in LTA students. On a behavioral level, 

both response time and accuracy showed a significant effect of congruency with responses to 

incongruent trials being slower and less accurate than responses to neutral and congruent 

trials. However, there was no significant difference in the behavioral performance between test 

anxiety groups or pressure conditions. Worries as assessed by an FAS turned out not to be 

significantly related to the amplitude of the ERN in either group. Instead, worries appeared to 

be directly related to the performance in the numerical Stroop task for LTA but not for HTA 

students.  

Considering the effect of performance pressure on EEG indices of response monitoring 

across the two studies revealed firstly that the subsample with the lowest test anxiety (i.e., the 

LTA group of Study 2) showed no significant modulation of the ERN or the ΔERN. Secondly, 

the sample of Study 1 with mostly average levels of test anxiety exhibited a subtle modulation 

of the ERN, which was only significant in relationship to the decreasing CRN (i.e., the ΔERN). 

Finally, in the subsample with the highest test anxiety (i.e., the HTA group of Study 2), the 

amplitude of the ERN was significantly enhanced by performance pressure. Taken together, 

results show that the ERN is enhanced by performance pressure in higher but not in lower 

test-anxious students. At the same time, task performance was not (Study 2) or not 

unambiguously (Study 1) impaired by either test anxiety or performance pressure as reported 

by previous studies on the ERN in anxious individuals (for reviews, see Gehring et al., 2012; 

Moser et al., 2013) or individuals being evaluated (Hajcak, Moser, et al., 2005). This pattern of 

results is in line with the compensatory error-monitoring hypothesis by Moser and colleagues 

(2013). The present findings suggest accordingly that test-anxious students need 

compensatory effort to monitor their responses and to dynamically adapt to errors in an 

evaluative situation.  

Study 3 could not replicate the previously reported choking under pressure effect in 

mathematical problem solving (Beilock & Carr, 2005; Beilock & DeCaro, 2007; Beilock et al., 

2004, 2007; Boere et al., 2016; Ramirez & Beilock, 2011). Participants assigned to the 

pressure group did not report more pressure and performed at the same level as participants 
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assigned to the control group. Furthermore, the performance in the modular arithmetic task 

was not related to individual differences in test anxiety and self-reported worries were low 

across groups. In contrast, the study revealed significant differences between groups in the 

oscillatory brain responses during the task. The theta activity at frontal-midline recording sites 

was increased by performance pressure, especially in students with higher levels of test 

anxiety. Taken together, results are in line with the adaptive control hypothesis by Cavanagh 

and Shackman (2015). The findings of Study 3 suggest accordingly that test-anxious students 

increase their attentional control in an evaluative situation in order to maintain task 

performance.  

 

5.2. Increased Neural Activity as Reflecting Compensatory Effort 

Eysenck and colleagues have suggested that the increase in neural activity seen in 

anxious individuals during a cognitive task reflects their compensatory effort to maintain task 

performance (Derakshan & Eysenck, 2009; Eysenck & Derakshan, 2011; Eysenck et al., 

2007). This proposition is based on a pattern of results reported by recent studies using 

neuroimaging techniques, such as EEG or fMRI. Studies have firstly shown that anxious 

individuals exhibit increased neural signals in different cognitive tasks, including an enhanced 

N2 in a Sustained Attention to Response Task (SART) (Righi et al., 2009), more frontal 

Contingent Negative Variation activity (CNV) during an antisaccade task (T. L. Ansari & 

Derakshan, 2011), and increased activity in the DLPFC in a Stroop task (Basten et al., 2011) 

as well as in an N-back task (Fales et al., 2008). Secondly, the performance in these tasks 

were reported not to differ significantly between lower and higher anxious participants. Thus, 

individuals with higher anxiety appear to use additional cognitive resources giving rise to the 

increased neural activity in order to perform on the same level as lower anxious individuals. 

In the same vein, Moser and colleagues (2013) have suggested the compensatory 

error-monitoring hypothesis to account for the increased ERN amplitude in anxious individuals. 

Firstly, the ERN has been reported to be enhanced for various forms of anxiety, including 

general anxiety disorder (see Weinberg et al. 2011), obsessive-compulsory disorder (see 

Weinberg et al. 2011), general anxiety (Hajcak et al., 2003), negative affect (Hajcak et al., 

2004; Luu et al., 2000), math anxiety (Suárez-Pellicioni et al., 2013), perfectionism (Perrone-

McGovern et al., 2017), and helplessness (Pfabigan et al., 2013). Again, the performance in 

tasks used to measure the ERN (e.g., Stroop) appears to be uncompromised in anxious 

individuals (for reviews, see Gehring et al., 2012; Moser et al., 2013). Thus, anxious individuals 

appear to use compensatory effort to monitor ongoing responses and to dynamically adapt to 

errors. This compensatory effort is thought to give rise to more neural activity after committing 

an error as reflected in an increased ERN. 
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Finally, Cavanagh and Shackman (2015) have proposed a general framework to 

explain an increase of FMΘ in anxious individuals. According to the adaptive control 

hypothesis, higher FMΘ reflects the need for attentional control regarding uncertain or 

threatening events (Cavanagh & Shackman, 2015). This accounts in a similar fashion for the 

link between anxiety and the ERN as the compensatory error-monitoring hypothesis (Moser et 

al., 2013). But other ERPs, such as the FRN following punishment or negative feedback and 

the N2 in response to a mismatch, have also been shown to originate from a transient 

oscillatory synchronization in the theta frequency band (Cavanagh & Frank, 2014; Cavanagh 

& Shackman, 2015). Most recently, studies have started to address the role of FMΘ in both 

anxiety and situational stress using time-frequency analyses. These studies have 

demonstrated that FMΘ is increased by situational stress (Osinsky et al., 2017) as well as in 

individuals with symptoms of anxiety (Balconi & Crivelli, 2010; Mueller et al., 2014, 2015; Neo 

et al., 2011). 

Taken together, different theoretical accounts have linked increased neural activity to 

compensatory efforts in anxious individuals during cognitive tasks. Note, however, that there 

are also studies which have found a decrease or decoupling of neural activity in anxious 

individuals. For instance, Bishop (2009) reported that students with higher general anxiety 

showed reduced activity in the  DLPFC in response to incongruent stimuli in a response-conflict 

task. However, higher anxious participants also responded significantly slower to the 

incongruent stimuli than lower anxious participants. These results are only at the first sight 

contradictory to the notion of increased neural activity as reflecting compensatory effort (see 

Eysenck & Derakshan, 2011). If anxious students do not use compensatory effort or disengage 

from the task, they are predicted to show performance impairments (Derakshan & Eysenck, 

2009; Eysenck & Derakshan, 2011; Eysenck et al., 2007). However, increased neural activity 

during a cognitive task without performance impairments is likely to indicate compensatory 

effort.  

The present findings are in line with the notion that increased neural activity is reflecting 

compensatory effort. Two studies have demonstrated that the ERN is enhanced by 

performance pressure in higher but not in lower test-anxious students without clear differences 

in the task performance between conditions. And in Study 3, FMΘ was increased by 

performance pressure, especially in students with higher levels of test anxiety. However, test-

anxious students could maintain their performance in the modular arithmetic task under 

performance pressure. Importantly, the cognitive tasks used in the present work were rated as 

highly important by both low and high test-anxious students (Study 2) as well as in the low and 

high pressure condition (Study 2 and Study 3). Thus, it seems unlikely that the present findings 

of higher neural activity reflect a purely motivational effect of performance pressure or test 

anxiety. In summary, the present three studies demonstrate that test-anxious students exhibit 
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enhanced neural activity performing a cognitive task under performance pressure. At the same 

time, the performance of test-anxious students appeared not to be impaired. Thus, students 

with higher test anxiety are likely to have used compensatory efforts to maintain their task 

performance under performance pressure.  

Given that the present work suggests that test-anxious students use compensatory 

efforts to uphold task performance in evaluative situation, the question arises what these 

compensatory efforts exactly are. According to the attentional control theory, compensatory 

efforts comprise both the increase in attentional control in the first place and the usage of 

auxiliary strategies (e.g. articulatory rehearsal when reading). Given that in the present studies 

usage of auxiliary strategies seems to be unlikely, test-anxious students probably increased 

their attentional control in performing the cognitive task. However, future studies are needed 

to better characterize the cognitive processes that give rise to the increased neural activity in 

test-anxious students being evaluated.  

 

5.3. Present Results within the Distraction Model  

The present research was framed within the distraction model of the effect of test 

anxiety on cognitive performance (see Figure 1). This model was synthesized based on the 

distraction theory by Wine (1971) and the attentional control theory by Eysenck and colleagues 

(Calvo & Eysenck, 1992; Eysenck et al., 2007). In this model, test-anxiety is conceptualized 

as a personality trait that interacts with the evaluative character of a situation in inducing 

performance-related worries in students. These worries, in turn, are thought to impair the 

working memory of students including the executive functions and the phonological loop (see 

Baddeley, 2003). As a consequence, working memory resources have to be split between the 

task at hand and the distracting worries. If the combined demands of task-related and worry-

related processes exceed the available working memory resources, performance impairments 

will result. How do the present findings relate to the distraction model? 

Firstly, the present work provides evidence that there is indeed an interaction between 

the personality trait of test anxiety and the evaluative character of a situation. In Study 2, test 

anxiety and performance pressure were shown to interact in modulating the ERN. In the same 

vein, there was a linear relationship between the increase of FMΘ in the pressure but not in 

the control group of Study 3. Note, however, that we did not find a significant interaction 

between test anxiety and performance pressure in modulating the ERN in Study 1. This might 

have been due to the fact that individual differences in general anxiety were not controlled for. 

The test-anxious students in Study 1 are therefore likely to also have been more anxious in 

general and thus to show a similar response monitoring in both pressure conditions. Taken 
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together, the present findings are in line with the distraction model according to which test 

anxiety affects the cognition depending on the evaluative character of a situation.  

With respect to the induction of worries in test-anxious students by being evaluated as 

assumed by the distraction model, the present studies appear to be in discordance with the 

model since we did not find evidence that higher test-anxious students experience more 

worries than lower test-anxious students. Worries were assessed in Study 2 and Study 3 by 

an FAS presented at regular intervals throughout the experiment (Bieri et al., 1990; Punaro & 

Reeve, 2012; Trezise & Reeve, 2014b). The FAS consisted of six facial expressions (see 

Figure 7) and participants were asked to select the first face (neutral expression) if they were 

not worried at all about their performance and the sixth face (expressing discomfort) if they 

were very worried about their performance. This worry rating was not significantly higher for 

HTA than for LTA students in either pressure condition of Study 2. Similarly, there was no 

significant difference between the worries reported by participants assigned to the pressure or 

the control group in Study 3. Instead, worries were rather directly related to the performance 

in the cognitive task used in the present studies – irrespective of participants’ test anxiety. In 

Study 2, worry ratings increased with the number of errors in the numerical Stroop task for LTA 

but not for HTA students. Similarly, students in both groups of Study 3 reported a higher level 

of worries in the posttest when they had committed more errors than in the pretest. Thus, the 

FAS appeared to have rather captured participants’ awareness of having made errors than 

their more abstract worries about performing well. Possible alternatives to using an FAS to 

assess worries are therefore discussed in the next section.  

The next part of the distraction model is the impairment of working memory processes 

by worries in test-anxious students. Here, the present neural data are in line with a detrimental 

effect of performance pressure on the working memory of test-anxious students. Both the 

stronger modulation of the ERN and the increase of FMΘ between blocks indicate that test-

anxious students needed compensatory effort to maintain their performance.  

 Finally, the distraction model aims to account for cognitive impairments of test-anxious 

students and eventually for their lower academic achievements. In contrast, we did not see 

clear behavioral differences between lower and higher test-anxious students in the present 

work. However, it is important to note that the detrimental effects of performance pressure are 

not conceptualized to directly translate into a lower performance within the distraction model. 

Instead, students are thought to have a limited working memory capacity (see Baddeley, 2003) 

that can allow to compensate for the detrimental effect of performance pressure. Only when 

the combined demands of task-related and worry-related processes exceed this working 

memory capacity performance impairments will result. Thus, if enough cognitive resources are 

available, task performance (i.e., the performance effectiveness) will remain unaffected. 

However, given that more cognitive resources have been used to maintain task performance, 
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the processing efficiency is reduced (see Calvo & Eysenck, 1992; Eysenck et al., 2007). In 

fact, the present findings of increased neural activity in test-anxious students under 

performance pressure is indicating that such additional cognitive resources have been used to 

maintain performance (see Berggren & Derakshan, 2013; Derakshan & Eysenck, 2009; 

Eysenck & Derakshan, 2011; Eysenck et al., 2007). Thus, while the performance effectiveness 

is unimpaired in the present studies, the processing efficiency seems to be lower in test-

anxious students under performance pressure.   

In summary, the present findings are by and large in line with the distraction model. 

Test anxiety and the evaluative character of a situation were shown to interact in modulating 

the ERN and FMΘ. Both neural signals, in turn, indicate a compensation of the detrimental 

effects of performance pressure on the working memory of test-anxious students. However, 

the present studies remain inconclusive regarding the role of worries in mediating the 

relationship between performance pressure and impaired working memory. Finally, while there 

were no clear performance impairments in the present studies, the neural data suggest that 

test-anxious students needed compensatory effort to maintain task performance, hence 

showing reduced processing efficiency.   

 

5.4. Limitations and Future Research 

As discussed in the previous section, performance-related worries were not related to 

individual differences in test anxiety or to the EEG measures in the present studies. Instead, 

worries appeared to be directly related to the performance in the cognitive tasks. This raises 

the question of whether the FAS we used in the present work captures worries about 

performing well or rather captures participants’ awareness of having made errors. The present 

FAS is based on the Faces Pain Scale by Bieri and colleagues (1990) and has been previously 

used to assess worries in children related to literacy (Punaro & Reeve, 2012) and math 

performance (Punaro & Reeve, 2012; Trezise & Reeve, 2014a, 2014b). Furthermore, the 

original FAS (Bieri et al., 1990) has been shown to be a reliable measure of the intensity of 

pain in adults. To the best of our knowledge, the present studies are the first to use an FAS to 

assess performance-related worries in adults. Future research is therefore needed to evaluate 

the FAS for assessing worries about cognitive performance in adults.   

Another approach to assess performance-related worries is to use an open answer 

format during or after an evaluative situation. For instance, Beilock and colleagues (2004) 

asked participants to recall their thoughts during the high pressure scenario after completing 

the last block of modular arithmetic. This verbal thought questionnaire revealed that worrisome 

thoughts accounted for more than half of all thoughts reported by participants. In another study 

(Benny & Banks, 2015), participants reported their thoughts while performing the modular 
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arithmetic tasks under performance pressure using five response options, including both 

positive and negative thoughts. Negative but not positive thoughts turned out to be inversely 

related to the performance in the modular arithmetic task. Both procedures are promising in 

assessing performance-related worries with more facets than by using an FAS.  

A further limitation of the present work is that a high pressure test situation was only 

simulated in the laboratory. By using a manipulation check, we could demonstrate that the 

pressure manipulation was effective in Study 2. However, the manipulation check in Study 3 

could not clearly confirm that the high pressure condition was perceived as more stressful than 

the low pressure condition. In general, modeling a real-life test situation in the laboratory is 

limited. Because of ethical considerations, participants cannot be actually evaluated, for 

instance, by giving them a real grade. Moreover, most students participating in laboratory 

experiments are volunteers who participate more often in such experiments either for money 

or course credits. As such, they can be expected to have some implicit or explicit knowledge 

about psychological testing. Especially students of psychology are therefore less likely to 

believe that they are actually evaluated in studies like the present.  

To overcome this limitation future studies could consider to address the effect of 

performance pressure in regard to real-world tests or examinations. The gold standard would 

certainly be to investigate test-anxious students while being in a real-world test situation, such 

as a written or oral exam. However, to the present day, it is not possible to record EEG in such 

situations, especially without interfering with the test situation. Alternatively, studies could 

investigate the cognition of test-anxious students before or after an important exam. For 

instance, Ramirez and Beilock (2011) tested an intervention of expressive writing for alleviating 

the effect of choking under pressure in a field experiment. For this, ninth graders were asked 

just before their final high-school exam in biology to either write 10 min about their feelings 

towards the upcoming exam (expressive writing group) or to think about a topic that would not 

be covered on the exam (control group). Results revealed that the relationship between test 

anxiety and the exam scores that was present in the control condition turned insignificant in 

the expressive writing group. Furthermore, Wu and colleagues (2014) compared the ERN 

between students undergoing preparation for a major exam and students without upcoming 

exams. While the two groups did not differ in in their ERN amplitude, the group facing the exam 

showed an increased positivity following the ERN. However, simulating performance pressure 

in the laboratory, as in the present studies, remain without alternative to investigate the 

neurocognitive mechanisms underlying test anxiety in an evaluative situation.  

Finally, the present results are limited by the fact that the studies did not include an 

independent measure of attentional control. The conclusion according to which the increase in 

neural activity in test-anxious students under performance pressure is due to compensatory 

effort and specifically to an increase of attentional control is therefore to some degree based 



 
98 

 

on reverse inference (see De Smedt et al., 2011). Future studies could support this reasoning 

by implementing an independent measure of attentional control. For instance, measuring the 

pupil dilation during the task could provide complementary information about the dynamics of 

attentional control in test-anxious students (for a review, see Beatty, 1982). Another idea would 

be to use a mental effort rating as common in research within the cognitive load theory (for 

reviews, see Brünken, Plass, & Leutner, 2003; Paas, Tuovinen, Tabbers, & Van Gerven, 

2003). For instance, Hadwin and colleagues (2005) asked children to rate their mental effort 

using a visual analog scale while performing different working memory tasks. Comparing lower 

and higher anxious children revealed that they did not differ in their accuracy across working 

memory tasks. However, higher anxious children reported higher mental effort in some of the 

working memory tasks.   

In summary, future research should consider assessing performance-related worries 

by using an open answer format as well as including an independent measure of attentional 

control. This could help to corroborate the present account of the increased neural activity in 

test-anxious students being evaluated as reflecting compensatory effort to maintain task 

performance.     

 

5.5. Concluding Remarks 

Test anxiety can hinder students from achieving their full potential in evaluative 

situations, such as tests or examinations. Converging evidence suggests that performance-

related worries impair the working memory of these students. The aim of the present work was 

to better understand the neurocognitive mechanisms by which worries affect the working 

memory of test-anxious students. In three EEG studies, higher test-anxious students were 

shown to display increased neural activity performing a cognitive task under performance 

pressure as compared to lower test-anxious students. At the same time, the performance of 

higher test-anxious students was not impaired in the present studies. Furthermore, self-

reported worries were not related to individual differences in test anxiety or the EEG measures. 

Instead, worries appeared to be directly related to participants’ awareness of having committed 

errors. Taken together, results demonstrate that test-anxious students exhibit increased neural 

activity under performance pressure, suggesting that they need compensatory effort to 

maintain performance in evaluative situations. Future research should aim to corroborate the 

present findings by improving the assessment of worries and by including an independent 

measure of attentional control.   
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7. Supplementary Material 

7.1. Study 1 – Response Monitoring Under Performance Pressure 

 

 

Figure S 1. Scatter plot of mean response times (A) and accuracy (B) as a function of performance 
pressure and test anxiety (raw values). Numbers indicate individual subjects. Linear regression lines 
were fitted for each pressure condition for illustrative purposes. 
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7.2. Study 2 – Response Monitoring in High Test-anxious Students 

Supp. Material 1. 
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Table S 1. List of the group assignment (LTA vs. HTA) and anxiety measures.   

Group  Gender  Test anxiety   General anxiety 

    Sum score T values Category  Sum score 

LTA  m  21 21 very low  44 
LTA  f  28 26 very low  43 
LTA  m  25 27 very low  31 
LTA  f  29 28 very low  34 
LTA  m  27 29 very low  29 
LTA  f  30 30 low  34 
LTA  f  31 32 low  29 
LTA  m  29 33 low  33 
LTA  f  32 34 low  33 
LTA  f  33 36 low  31 
LTA  f  33 36 low  28 
LTA  m  32 38 low  32 
LTA  m  32 38 low  26 
LTA  f  35 39 low  31 
LTA  f  35 39 low  35 
LTA  f  35 39 low  31 
LTA  f  36 40 average  33 
LTA  m  34 42 average  35 
LTA  m  35 43 average  37 
LTA  m  35 43 average  48 
LTA  f  38 43 average  28 
LTA  f  38 43 average  40 
LTA  f  39 44 average  41 

HTA  f  51 56 average  40 
HTA  f  55 60 average  42 
HTA  f  55 60 average  35 
HTA  f  55 60 average  45 
HTA  f  56 61 high  46 
HTA  f  56 61 high  33 
HTA  m  51 62 high  41 
HTA  m  51 62 high  57 
HTA  m  53 63 high  49 
HTA  f  58 63 high  35 
HTA  f  58 63 high  32 
HTA  m  56 65 high  60 
HTA  m  56 65 high  55 
HTA  m  56 65 high  42 
HTA  f  60 65 high  48 
HTA  m  58 67 high  58 
HTA  m  60 68 high  38 
HTA  f  63 68 high  46 
HTA  f  65 69 high  58 
HTA  m  65 72 very high  58 
HTA  f  70 74 very high  40 

Note. Scores are sorted by test anxiety t values. m = male, f = female, LTA = low test anxiety, HTA = 
high test anxiety. Categories based on t values with < 30 = very low, 30-39 = low, 40-60 = average, 61-
70 = high, >70 = very high. 
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Table S 2. Pairwise comparisons of the means between two conditions (I and J) with the peak amplitude 
(in µV) as dependent variable. 

  I J Mean difference SE p 

Low Pressure 
      

    CRN  LTA HTA -0.29 1.13 .800 

    ERN  LTA HTA -2.25 1.41 .119 

High Pressure 
      

    CRN  LTA HTA 0.17 1.15 .882 

    ERN  LTA HTA 0.36 1.45 .807 
       

LTA 
      

    CRN  Low Pressure High Pressure -0.13 0.39 .751 

    ERN  Low Pressure High Pressure 0.38 0.76 .623 

HTA 
      

    CRN  Low Pressure High Pressure 0.34 0.41 .418 

    ERN  Low Pressure High Pressure 2.98 0.80 < .001 
       

LTA 
      

    Low Pressure  CRN ERN 4.51 0.70 <.001 

    High Pressure  CRN ERN 5.00 0.64 <.001 

HTA 
      

    Low Pressure  CRN ERN 2.55 0.73 .001 

    High Pressure  CRN ERN 5.19 0.67 <.001 

Note. LTA = low test anxiety, HTA = high test anxiety, SE = Standard error, CRN = correct response 
negativity, ERN = error-related negativity. 

 

 

 

Table S 3. Result summary of Analysis of Variance (ANOVA) within HTA students including the factor 
order (high pressure condition first vs. low pressure condition first) with the peak amplitude (in µV) as 
dependent variable. 

  F(1,19) p ηp
2 

Main Effects 
   

      Response Type 48.31 < .001 .718 

      Pressure 7.34 .014 .279 

      Order 1.23 .281 .061 

Interactions 
   

      Response Type x Pressure 7.00 .016 .269 

      Response Type x Order 0.97 .337 .049 

      Pressure x Order 1.10 .308 .055 

      Response Type x Pressure x Order 0.95 .342 .048 

Note. ηp
2 = Partial Eta Squared, HTA = high test anxiety. 
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7.3. Study 3 – Working Memory Costs of Performance Pressure 

 

Table S 4. Pearson correlations between test anxiety and (a) response time, (b) accuracy, (c) worry, 
and (d) FMΘ for each group, block, and demand. 

 Block 1 Block 2 

Low Demand High Demand Low Demand High Demand 

(a) Response Time Control .36* .46** .23 .43* 

 Pressure -.24 -.26 -.46* -.20 

(b) Accuracy Control -.01 -.04 .23 -.17 

 Pressure -.03 -.20 -.08 -.16 

(c) Worry  Control .32 .27 .22 .27 

 Pressure .33 .40* .42* .45* 

(d) FMΘ Control -.05 .07 .12 .18 

 Pressure -.10 -.32 .35 .09 

Note. * = p < .05; ** = p < .01; *** = p < .001. 

 

 

 
Table S 5. Standardized regression coefficients, standard errors, and model summaries (R2 and F 
statistics) for the mediation models predicting the average change in FMΘ based on test anxiety. The 
change in worries between blocks was entered as a mediator variable. 

Model Variables Path β SE p R2 F statistics 

(a) Test anxiety       

  ΔWorries a -.06 .19 .747 <.01 F(1,29) = 0.11, p = .747 

        

 ΔFMΘ       

  ΔWorries b -.32 .17 .073   

  Test anxiety c’ .19 .17 .273 .15 F(2,28) = 2.49, p = .101 

        

(b) Test anxiety       

  ΔWorries a .07 .20 .715 .01 F(1,27) = 0.14, p = .715 

        

 ΔFMΘ       

  ΔWorries b .05 .15 .762   

  Test anxiety c’ .60 .16 <.001 .25 F(2,26) = 7.68, p = .002 

Note. FMΘ = Fontal midline theta 
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Figure S 2. Topographical maps of ERS/ERD (%) for groups (control, pressure) and demands (low, 
high) during block 1 in the theta frequency band (4–8 Hz). Warm colors represent an increase in theta 
(ERS) and cold color a decrease in theta (ERD) relative to the reference interval.  
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Figure S 3. Topographical maps of ERS/ERD (%) for groups (control, pressure) and demands (low, 
high) during block 2 in the theta frequency band (4–8 Hz). Warm colors represent an increase in theta 
(ERS) and cold color a decrease in theta (ERD) relative to the reference interval. 
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Figure S 4. Topographical maps of t-values corresponding to the contrast [Pressure - Control] in block 
1 for (a) low demand and (b) high demand problems with data filtered in the theta frequency band (4–8 
Hz). Analyses revealed no significant cluster for either demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Block 1: [Pressure - Control] 

theta band (4–8 Hz)

(a) Low Demand Problems (b) High Demand Problems

T-values



 
i 

 

 

Curriculum Vitae 

 
 
Vorname:  Frieder Leon 
Nachname:  Schillinger  
 
Geburtsdatum: 01.02.1984 
Staatsbürgerschaft: Deutsch 
 
Email:    frieder.schillinger@gmail.com 
 
 
 
 
 
Akademische Ausbildung 
 
12|2013 – 
Aktuell 

Promotion (Dr.rer.nat) in der Georg-August University School of 
Science (GAUSS) der Georg-August Universität Göttingen 
 

04|2004 – 
07|2011 

Studium der Psychologie auf Diplom an der Eberhart Karls 
Universität Tübingen 
 

04|2006 – 
10|2011 

Studium der Philosophie auf Bakkalaureus Artium (B.A) an der 
Eberhart Karls Universität Tübingen 
 

04|2003 – 
04|2004 

Studium generale am Leibniz Kolleg, Tübingen 
 
 

 
Arbeitserfahrung 
 
04|2015 – 
12|2017 

Wissenschaftlicher Mitarbeiter in der Abteilung für 
Begabungsforschung, Karl-Franzens-Universität Graz 
 

03|2013 – 
04|2015 

Wissenschaftlicher Mitarbeiter in der Abteilung für Pädagogische 
Psychologie, Georg-August-Universität Göttingen 
 

10/2009 – 
05/2011 

Wissenschaftliche Hilfskraft in der Abteilung Wahrnehmung, 
Kognition und Handlung, Max-Planck-Institut für biologische 
Kybernetik, Tübingen 
 

03/2009 – 
09/2009 

Wissenschaftliche Hilfskraft in der Abteilung Sozial-motivationale 
Prozesse, Leibniz-Institut für Wissensmedien (IWM), Tübingen 



 
ii 

 

 
Forschungsaufenthalt im Ausland 
 
11/2011 – 
07/2012 

Forschungsaufenthalt im Neuroimaging Laboratory, Santa Lucia 
Foundation und an der La Sapienza Universität, Rom, Italien 
 

04/2008 – 
10/2008 

Praxissemester (6 Monate) am National Institute of Mental Health, 
Unit on Cognitive Neurophysiology and Imaging, Bethesda, USA 
 

 
 
Peer-reviewed 

Schillinger, F. L., Vogel, S. E., Diedrich, J., Grabner, R. H. (2018). Math anxiety, intelligence, and 
performance in mathematics: Insights from the German adaptation of the Abbreviated 
Math Anxiety Scale (AMAS-G). Learning and Individual Differences, 61, 109-119. 

Schillinger, F. L. (2016). Event-related potentials (ERPs) reflecting feedback and error processing 
in the context of education. Zeitschrift für Psychologie, 224(4), 286–289. 
http://doi.org/10.1027/2151-2604/a000264 

Schillinger, F. L., De Smedt, B., & Grabner, R. H. (2016). When errors count: an EEG study on 
numerical error monitoring under performance pressure. ZDM - Mathematics Education, 
48(3), 351–363. http://doi.org/10.1007/s11858-015-0746-8 

de la Rosa*, S., Schillinger, F. L.*, Bülthoff, H. H., Schultz, J., & Uludag, K. (2016). fMRI 
Adaptation between Action Observation and Action Execution Reveals Cortical Areas 
with Mirror Neuron Properties in Human BA 44/45. Frontiers in Human Neuroscience, 
10, 1–10. http://doi.org/10.3389/fnhum.2016.00078  (*Authors contributed equally) 

Müller, K. M., Schillinger, F., Do, D. H., & Leopold, D. A. (2009). Dissociable perceptual effects 
of visual adaptation. PLoS ONE, 4(7). http://doi.org/10.1371/journal.pone.0006183 

 
Diplomarbeit 

Schillinger, F. L. (2010). Whole-brain fMRI using repetition suppression between action and 
perception reveals cortical areas with mirror neuron properties, Eberhard-Karls-
Universität Tübingen. Link 

 
Konferenzbeiträge 

Schillinger, F. L., Vogel, S. E., Diedrich, J., Grabner, R. H. (2017). Math Anxiety Is Related to 
Performance in Mathematics Beyond Individual Differences in Numerical Intelligence 
and Arithmetic Abilities: Insights from the German Adaptation of the Abbreviated Math 
Anxiety Scale (AMAS). International Convention of Psychological Science (ICPS). Vienna, 
Austria.  

Schillinger, F. L., Vogel, S. E., Koschutnig, K., Ansari, D., Grabner, R. H. (2016). Brain response to 
arithmetic errors is modulated by individual differences in mathematical competence in 
the inferior frontal gyrus (IFG). Conference of the Special Interest Group (SIG) 22 
"Neuroscience and Education" of the EARLI. Amsterdam, Netherlands. 

http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/Diplomarbeit-Schillinger.pdf


 
iii 

 

Schillinger, F. L., De Smedt, B. & Grabner, R. H. (2015). When errors count: An EEG study 
investigating error processing under performance pressure. Conference of the European 
Association for Research on Learning and Instruction (EARLI). Limassol, Cyprus.  

Schillinger, F. L., Hinze, A., de Smedt, B., Grabner, R. H. (2014). When errors count: An EEG 
study investigating arithmetic error processing under performance pressure. Conference 
of Junior Neuroscientists of Tübingen (NeNa). Schramberg, Germany. 

Schillinger, F. L., de la Rosa, S., Schultz, J., & Uludag, K. (2010). Whole-brain fMRI using 
repetition suppression between action and perception reveals cortical areas with mirror 
neuron properties, Perception, 39 (ECVP Abstract Supplement) 54. 

Schillinger, F., Müller, K., Do, D. H. & Leopold, D. A. (2008). Dissociable perceptual effects of 
visual adaptation. National Institute of Mental Health (NIMH) Retreat, Gettysburg, USA. 

 
 
Lehrerfahrung 
 
Lehrtätigkeit an der Karl-Franzens-Universität Graz 
 
Sommersemester 2017 Übung im Bachelor Psychologie: Statistische Verfahren am 

Computer (2 SWS) 
 

Sommersemester 2016 Übung im Bachelor Psychologie: Statistische Verfahren am 
Computer (2 SWS) 
 

 
Lehrtätigkeit an der Georg-August-Universität Göttingen 
 
Wintersemester 2014/15 Seminar im Bachelor Psychologie: Förderung individueller und 

institutioneller Lehr-Lern-Prozesse (2 SWS) 
 

Sommersemester 2014 Seminar im Bachelor Psychologie: Pädagogisch-psychologische 
Diagnostik und Beratung (2 SWS) 
 

Wintersemester 2013/14 Seminar im Bachelor Psychologie: Förderung individueller und 
institutioneller Lehr-Lern-Prozesse (2 SWS) 
 

Sommersemester 2013 Seminar im Bachelor Psychologie: Pädagogisch-psychologische 
Diagnostik und Beratung (2 SWS) 
 

 
Lehrtätigkeit an der privaten Pädagogischen Hochschule der Diözese Linz  
 
Wintersemester 2017/18 Seminar im Master „Neurowissenschaften und Bildung“: 

Prüfungsangst: Ursachen, Mechanismen und 
Interventionsmöglichkeiten (2 SWS kompakt, 01/02.12.2017) 
 

 


	List of Figures
	List of Tables
	List of Abbreviations
	1. General Introduction
	1.1. Definition and Phenomenology of Test Anxiety
	1.2. Assessing Test Anxiety
	1.3. Prevalence of Test Anxiety
	1.4. Test Anxiety and Test Performance
	1.5. Accounting for the Anxiety-Performance Link
	1.5.1. Interference Models
	1.5.2. Deficit Models
	1.5.3. Present Working Model

	1.6. Using Neuroimaging Techniques
	1.7. Aims and Outline of Studies
	1.7.1. Studies on the Error-related Negativity (ERN)
	1.7.2. Study on Frontal Midline Theta (FMΘ)


	2. Study 1 – Response Monitoring Under Performance Pressure
	2.1. Introduction
	2.1.1. Choking Under Pressure in Mathematics
	2.1.2. The Role of Test Anxiety
	2.1.3. Response Monitoring in Test Situations
	2.1.4. The Error-related Negativity (ERN)
	2.1.5. Numerical Stroop Paradigm
	2.1.6. Hypotheses

	2.2. Methods
	2.2.1. Participants
	2.2.2. Apparatus and Materials
	2.2.2.1. Numerical Stroop task
	2.2.2.2. German Test Anxiety Inventory (PAF)
	2.2.2.3. EEG data acquisition

	2.2.3. Procedure
	2.2.4. Data Analysis
	2.2.4.1. Linear mixed models
	2.2.4.2. Behavioral Data
	2.2.4.3. Electrophysiological Data


	2.3. Results
	2.3.1. Behavioral Data
	2.3.2. Electrophysiological Data

	2.4. Discussion

	3. Study 2 – Response Monitoring in High Test-anxious Students
	3.1. Introduction
	3.1.1. Present Study
	3.1.2. Hypotheses

	3.2. Methods
	3.2.1. Participants
	3.2.2. Apparatus and Materials
	3.2.2.1. Numerical Stroop
	3.2.2.2. German Test Anxiety Inventory (PAF)
	3.2.2.3. State-Trait Anxiety Inventory (STAI)
	3.2.2.4. Worry Scale
	3.2.2.5. Manipulation Check
	3.2.2.6. EEG data acquisition

	3.2.3. Procedure
	3.2.4. Data Analysis
	3.2.4.1. Statistical Software
	3.2.4.2. Behavioral Data
	3.2.4.3. Electrophysiological Data


	3.3. Results
	3.3.1. Manipulation Check
	3.3.2. Behavioral Performance
	3.3.3. Worry Rating
	3.3.4. EEG Indices of Response Monitoring
	3.3.5. The ERN and Worries

	3.4. Discussion
	3.4.1. Manipulation Check
	3.4.2. Behavioral Performance
	3.4.3. Test Anxiety and Worries
	3.4.4. The Modulation of the ERN by Performance Pressure
	3.4.5. Conclusion


	4. Study 3 – Working Memory Costs of Performance Pressure
	4.1. Introduction
	4.1.1. Choking Under Pressure and Working Memory Demands
	4.1.2. Individual Differences in Test Anxiety
	4.1.3. Frontal Midline Theta (FMΘ)
	4.1.4. Present Study
	4.1.5. Hypotheses

	4.2. Methods
	4.2.1. Participants
	4.2.2. Apparatus and Materials
	4.2.2.1. Modular Arithmetic Task
	4.2.2.2. German Test Anxiety Inventory (PAF)
	4.2.2.3. State-Trait Anxiety Inventory (STAI)
	4.2.2.4. Worry scale
	4.2.2.5. Manipulation Check
	4.2.2.6. EEG data acquisition

	4.2.3. Procedure
	4.2.4. Data Analysis
	4.2.4.1. Behavioral Data
	4.2.4.2. Electrophysiological Data


	4.3. Results
	4.3.1. Manipulation Check
	4.3.2. Behavioral Performance
	4.3.3. Worry Rating
	4.3.4. FMΘ under Performance Pressure
	4.3.5. FMΘ and Worries

	4.4. Discussion
	4.4.1. Manipulation Check
	4.4.2. Behavioral Performance
	4.4.3. Performance Pressure and Worries
	4.4.4. Increased FMΘ Under Performance Pressure
	4.4.5. Conclusion


	5. General Discussion
	5.1. Summary of Results
	5.2. Increased Neural Activity as Reflecting Compensatory Effort
	5.3. Present Results within the Distraction Model
	5.4. Limitations and Future Research
	5.5. Concluding Remarks

	6. References
	7. Supplementary Material
	7.1. Study 1 – Response Monitoring Under Performance Pressure
	7.2. Study 2 – Response Monitoring in High Test-anxious Students
	7.3. Study 3 – Working Memory Costs of Performance Pressure

	Curriculum Vitae

