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Introduction

It makes me so happy. To be at the beginning again, knowing almost nothing. . . The
ordinary-sized stuff which is our lives, the things people write poetry about—clouds—
daffodils—waterfalls. . . these things are full of mystery, as mysterious to us as the
heavens were to the Greeks. . . It’s the best possible time to be alive, when almost
everything you thought you knew is wrong.

— Tom Stoppard, Arcadia

Reductionism has been the basis of scientific methodology since the age of enlightenment.
In Discourse on the Method, René Descartes described his scientific method as “to divide
all the difficulties under examination into as many parts as possible, and as many as were
required to solve them in the best way” [1]. For centuries, under a belief that “a whole
can be understood completely if you understand its parts, and the nature of their ‘sum’ ”
[2], scientists have been pursuing a reductionist explanation of all phenomena in nature.
While great successes have been made through scientific reductionism in explaining both
the microscopic and the macroscopic world, the phenomena at human-scale, which are
of most concern to our daily life, have been left mysterious and unexplained.

By the mid-twentieth century, the reductionist dream was broken when more and more
scientists realized that many complex phenomena cannot be explained by simply summing
the understanding of their parts [3]: the knowledge on fluid dynamics does not lead to
the full predictability of the weather and the climate; the knowledge on chemistry and
biology does not enable us to understand how life arises from non-living matter; and the
knowledge on the behavior of a single starling does not ensure the comprehension of their
flocking behavior. Fascinating phenomena such as the weather, life, and the flocking of
birds arise from large collections of simpler components, but are much more than the
sum of them: the dynamical interaction between the parts gives rise to the complexity of
the whole.



2 Introduction

Complex networks: interaction matters

A network, essentially a collection of nodes connected by edges, is thus an ideal construct
for describing how a group of discrete objects interact with each other [4, 5]. In this
light, almost all complex systems can be represented as networks: the human brain is a
network of more than 80 billion of interconnected neurons sending each other synapses
[6, 7]; an ecosystem can be seen as a network of living organisms and the supporting
components of their environment linked by nutrient cycles and energy flows [8]; and
ultimately, the entire universe is a grand network of interacting planets, stars, galaxies
and all of space, time, matter, and energy [9]. Studying complex systems as networks, i.e.
focusing on the interaction between the components, can be a shortcut leading to the
source of complexity in complex systems.

Most real-world networks are complex networks, where the patterns of connection between
the elements are nontrivial: neither purely regular nor purely random [10]. Although
complex networks are inherently difficult to understand, due to the possible diversities
in their components and connections, among other complications [11], even networks
with identical nodes obeying simple rules of interaction can exhibit rich and complex
behaviors such as synchronization, chimera states and pattern formation [12–19], as a
consequence of the interplay between the network structure and the nonlinear dynamics
within and among the components.

The spontaneous emergence of such phenomena are signatures of self-organization: order
is created out of disorder, which seemingly defies the second-law of thermodynamics
stating that entropy, or disorder, always wins out over time. Self-organized network
dynamics underlies almost all aspects of the natural and the civilized world, from the
neural networks [20–22] and the gene regulatory circuits [23] in living organisms to
man-made communication networks [24, 25] and AC power grids [26, 14, 15] in human
industry. If these self-organized network systems were to stop functioning even for a
second, the world as we know it would cease to exist.

Network robustness and pattern formation

A robust function of these networked systems essentially relies on how their self-organizing
dynamics respond to external perturbations. In the real world, nothing is left alone: sys-
tems that are perfectly isolated from the environment without being disturbed simply
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do not exist. Evolving over eons of time, the self-organized networks in nature manage
to respond stably and reliably against environmental perturbations and even to acquire
new functions to adapt to new environments. The gene-regulatory network provide a
specific example. They exhibit robustness against mutations and the stochastic nature of
the production of individual protein molecules even in the absence of natural selection,
which was proved to be an emergent property of evolution [27, 28]. Operating close to a
critical regime of the average network connectivity, maximum robustness and evolvabil-
ity occur simultaneously [29]. However, how does the functional robustness arise from
the collective dynamic behavior of the components? How does self-organization work to
counteract the undermining of external noises while allowing novel features to emerge?
The first step towards answering these questions is to understand how complex networks
respond to external perturbations, i.e. the dynamic response patterns of complex networks.

Fundamental aspects of the formation of spatiotemporal patterns was originally estab-
lished for systems far from equilibrium in continuous space of a restricted dimension
of one or two [30, 31]. In the comprehensive review on pattern formation in systems
ranging from thermal convection in fluids to nonlinear optics [31], Cross et al. proposed
a theoretical framework where nonequilibrium spatiotemporal patterns are classified
according to the linear instabilities of the deterministic systems. The characteristic wave
vector and/or the characteristic frequency associated with the largest-real-part eigenvalue
of the linearized system dynamics at the instability threshold indicate the periodicity in
time and space of the formed pattern. Beyond the instability threshold, the dynamics of
the emerging patterns characterized by these wave vectors and/or frequencies may be ac-
curately described by simple equations called amplitude equations derived from perturbation
theory [32, 33].

The attention on pattern formation mechanism was soon extended to high-dimensional
networked dynamical systems. Although Othmer and Scriven pointed out that Turing
patterns observed in continuous reaction-diffusion systems can also occur in networks as
early as in 1971 [18], concrete evidences of the theory were limited to small networks
[17] and regular lattices [18, 19]. In 2010, Nakao and Mikhailov revealed through
extensive numerical simulation that Turing patterns exhibit strikingly different behavior
in large random networks, in contrast to classical diffusion in continuous or regular
media [34]. Novel classes of patterns emerge if the underlying network architecture is
further generalized. Patterns such as travelling waves and quasi-stationary patterns can
be induced in directed, hence non-symmetric networks [35] and distinct heterogeneous
patterns occur in multiplex networks [36].
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However, all the above mentioned works focused on patterns caused by the instability
of the system. Studies on the emerging dynamic patterns as a consequence of time-
dependent driving signals are limited. Besides Kaneko’s early work on the clustering
effect of external forcing on globally coupled chaotic systems [37], Coullet and Emilsson
reported strong resonant patterns in a continuous system of coupled oscillators [38]. For
regular sparse networks of phase oscillators, Zanette related the response pattern to a
sinusoidal driving with the underlying interaction network structure [39, 40].

A general theory about how dynamic patterns form in complex networks as a response
to time-dependent perturbations is still missing to date. To understand the pattern
formation mechanism and to predict network-wide responses to a given but arbitrary
perturbation signal remains to be an unfinished task. Its non-triviality lies in (i) the
high-dimensionality of the complex networked system, and (ii) the temporally irregular
and spatially distributed form of the perturbation signals as well as the responses.

Network sensitivity and perturbation spreading

While some network systems, such as gene regulatory networks and neural networks,
demonstrate high robustness in their steady reliable function against random disturbances,
other networks show high sensitivity to perturbations. That is, even a slight, highly lo-
calized deviation from normal state can rapidly spread across the entire network and
significantly affect the overall performance, sometimes even lead to catastrophic conse-
quences. Examples range from the outbreak of a worldwide pandemic of a new disease
[41–44] to the nontrivial propagation of tsunami waves [45] in natural systems, and inter-
net collapses caused by subsequent congestions [46] and power blackouts triggered by the
failure of a single element [47–49] in artificial networks. On 4 November 2006, a huge
power outage hit Europe, leaving about 15 million households without electricity for
about two hours. All of this started with a manual disconnection of a power transmission
line in Northern Germany, triggering a sequence of tripping of high-voltage lines and
inducing a severe frequency drop in the Western European power grid [50]. How does a
seemingly harmless mild disturbance escalate by spreading across the network? How fast
does a perturbation signal propagate through the complex interaction between nodes,
which propagation paths are dominating, and how strongly does it hit other nodes? To
answer these questions, it is essential to understand how a complex network transiently
responds to a single perturbation.
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An intensively studied topic in the field of perturbation spreading is the impact of a single
structural failure on supply networks, including the redistribution of load [51, 52] and
the loss of dynamical stability [47, 48]. The investigations of the resulting cascading
failure are mostly based on static models where the static load distribution before and after
a failure of infrastructure is computed separately [49, 53–55]. The effect of dynamical
load redistribution in a cascading failure is considered only recently [56, 57].

Important insights into the dynamical process of perturbation spreading in networks has
been gained in the study of epidemic outbreaks [41–44, 58–60]. Theoretical approaches
provide estimations of key quantities in epidemic spreading such as the epidemic threshold
and the size of epidemic outbreaks [41], however, few of them are exact. Most explicit
results are based on strong assumptions and rely on a mean-field approach [58]. Mean-
while, significant progresses have been made on data-driven microsimulation models
[60], which are capable of providing quantitative analyses supporting policy-making
in public-health domain. These models reveal interesting and nontrivial patterns in
epidemic spreading processes, which however still require theoretical understanding.

Theoretical efforts for quantitatively describing the transient process of perturbation
spreading have been made for specific systems with stochastic nature [43, 44, 59, 61–
63]. By replacing the geographic distance with a effective distance involving the transport
probability on edges, Brockmann and Helbing demonstrated that complex spatiotemporal
epidemic spreading patterns can be reduced to simple wave propagation patterns [43].
This measure of effective distance was recently justified by random walk theory and
generalized by including all paths connecting the source and target instead of only the
shortest one [44]. Specifically, the arrival times or the most efficient routing paths of a
spreading disease or information in networks of stochastic systems was quantified using
the effective distance and other analytical approaches [44, 59, 61, 62].

Thus, we can discern that, despite the importance and ubiquity of the problem of
perturbation spreading, general answers to simple questions like “When and how will a
perturbation affect a given node?” are still missing to date. Even for networks of linear
deterministic dynamical systems, the questions remain open [64].

Synopsis of the thesis

In this thesis, we develop a theory of dynamic response patterns for complex networks
under the influence of fluctuating perturbations. Motivated by the functional robustness
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and sensitivity against perturbations demonstrated by natural and artificial complex
networks, we aim at understanding how a normally functioning network of dynamical
systems reacts to external disturbances, which are fluctuating in time and distributed
in space. For the first time, we reveal novel spatiotemporal patterns in the response of
networks with nontrivial connectivity structures, employing methods from graph theory,
dynamical system theory and linear response theory. In addition to the derivation of the
main results from the second-order Kuramoto oscillator networks, we generalize the
theory by discussing the results in different regimes of the high-dimensional parameter
space.

The thesis is organized as follows. This introduction is followed by the main content of
the thesis which splits into three parts.

Part I In the first three chapters, we provide the theoretical foundations for the deriva-
tion of the main results of the thesis. In Chap. 1 we briefly review the basic concepts and
tools to describe networks and dynamical systems. Especially, we highlight the relation
between the Laplacian matrix and the shortest paths in Prop. 1 and the linear stability
analysis of networked dynamical systems. In Chap. 2 we present the established results
on the dynamics of network responses and indicate their limitations. Particularly, for net-
works of first-order dynamical systems with diffusive couplings, we establish the relation
between the Jacobian matrix of the system and the Laplacian matrix of the underlying
network architecture. In Chap. 3 we introduce a model class of phase oscillator networks,
based on the paradigmatic Kuramoto oscillator model [65]. Especially, we focus on the
most general case in the model class, the second-order Kuramoto-like oscillator model:
its relation to the collective dynamics of AC power grids and its dynamical features such
as the existence, the linear stability of a fixed point and its relation to a saddle-node
bifurcation.

Part II In the four chapters in Part II, we present our theory of the long-term dynamic
response patterns rising in networks driven by fluctuating and distributed signals. In
Chap. 4, we derive in detail the analytical solutions of the steady network responses
to a time-dependent driving signal, including to a sinusoidal signal with frequency
ω > 0 and to a step-function signal. Based on the explicit solutions, we identify distinct
spatiotemporal response patterns in three frequency regimes in Chap. 5. Specifically,
we analytically derive the characteristic responsive behaviors in the respective regimes
from the solutions via asymptotic analysis. In Chap. 6 we generalize our theory by
discussing the response patterns at the high- and low-damping limits of the second-order
Kuramoto-like oscillator model. In Chap. 7, based on the derived theory, we propose
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an approach to accurately predict the dynamic responses of a network to fluctuating and
distributed signals. The application of the approach is demonstrated in predicting the
frequency response of a sample power grid to real-world power fluctuations. At the end
of this part, we discuss the validity of the theory at the limit of strong perturbations and
heavy initial network loads.

Part III In the last three chapters of the thesis, we focus on the patterns in the transient
spreading of a single perturbation signal in networks. In Chap. 8, we derive the analytical
solution describing the full evolution of the network response to a driving signal, and
then focus on the transient response and derive a one-term approximation of the response
characterizing the first impact of the perturbation on the target node. In Chap. 9, we
quantitatively characterize and analyze the perturbation spreading behavior based on the
one-term approximation of network response. We demonstrate the asymptotic spreading
behavior in homogeneous networks and its explicit dependence on the network topology.
Based on these results, we propose an approach to accurately predict a perturbation’s
arrival time at each node in an arbitrary network under the construction of a topology-
independent master curve of perturbation spreading. In Chap. 10, we demonstrate the
generality of our results by considering different scenarios of perturbation spreading. Fur-
thermore, we propose two conjectures on the lower- and upper-bound of the asymptotic
speed of perturbation spreading in homogeneous networks of second-order dynamical
systems.

Finally, we summarize and discuss our results achieved in this thesis and give a brief
outlook to future research.





Part I. Fundamentals
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In Part I of the thesis, we provide the theoretical foundations which are relevant to the
concepts and findings presented in the later parts.

In Chap. 1, we begin with the basic concepts and the quantitative tools to describe
and to analyze networks, dynamical systems, and, as a combination of both, dynamical
processes on networks. Most of the content of this chapter is a subset of two branches of
mathematics, namely graph theory and dynamical systems theory.

In Chap. 2, we present the basic theory on the dynamics of networks’ responses to small
perturbations given that the system is close to a steady state, i.e. on the linearization of
system’s dynamics at a fixed point. In particular, we derive a general form of networks’
linear responses to perturbations on the state variable and to external driving signals.

In the last chapter of this part, Chap. 3, we introduce the dynamics of an important
type of networks which are made up of coupled phase oscillators. Additionally, we pay
special attention on a practical aspect of the second-order Kuramoto-like phase oscillator
network model. With a simple parameter mapping, it is directly related to the oscillator
model of AC power grids.



Chapter 1

Networks as Dynamical Systems

As the beginning of the thesis, we present the most fundamental concepts underlying
the study of dynamic network responses in this thesis. We start with basic and relevant
concepts in graph theory, such as graphs, paths and distances (Sec. 1.1). Particularly, we
highlight the relation between the distance between a pair of nodes and the element of
the power of Laplacian matrices associated to the node pair. In Sec. 1.2, we move on to
another branch of mathematics, i.e. dynamical system theory. We present the definition
of dynamical systems and focus on the linear stability analysis at fixed points. In the last
section of the chapter, Sec. 1.3, we combine the aforementioned concepts from the two
branches and present basic considerations about the dynamics of a networked system, i.e.
a system of coupled dynamical systems. We especially focus on the linearization of the
dynamics of a general network system with pair-wise coupling at the fixed point.

1.1 Networks

Networks are closely related to the concept graph in mathematical literature, which is
defined as a collection of vertices connected by edges, representing how a set of objects are
related to each other (Fig. 1.1). Vertices and edges are sometimes also called nodes and
links, or sites and bonds [4]. The three terms “vertices”, “nodes” and “sites” referring to the
same notion are interchangeable in this thesis, as well as “edges”, “links”, and “bonds”.

1.1.1 The matrix representation of graphs

Mathematically, a graph G(V, E) consists of a non-empty finite set V of vertices and
a finite family E of edges, which are unordered pairs of vertices [5]. In this thesis we
consider only simple graphs, where two special kinds of edges are not allowed: (i) multiedges,
meaning more than one edge joining the same pair of vertices, and (ii) loops that join a
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vertex
edge

loop

multiedgedirected 
edge

(a) (b)

Fig. 1.1 Sketch of two small graphs. (a) a simple graph with seven vertices and eight
edges. (b) a directed graph with ten edges, eight directed edges, one multiedge and one
loop. In directed graphs, the edges connecting the same source vertex and the same
target vertex are referred to as one multiedge.

vertex to itself [4]. In undirected graphs, an edge joining the vertices u and v is denoted
as (u, v) = (v, u); in directed graphs, the involved directed edges with particular orientations
are associated with (u, v) , (v, u). Fig. 1.1 shows examples of (a) a simple graph and (b) a
directed general graph with multiedges, loops and directed edges.

A representation of a simple graph is the adjacency matrix. For a simple graph G(V, E)
with N vertices, the adjacency matrix AAAAAAAA is an N × N square matrix. The element of the
adjacency matrix Ai j is binary and defined as

Ai j :=


1 if there is an edge between node i and node j,
0 otherwise.

(1.1)

For directed graphs Ai j = 1 if there is an edge from j to i. Thus the adjacency matrix
is symmetric for undirected graphs and asymmetric for directed graphs. If each edge
(i, j) is assigned with a weight, the graph is called a weighted graph. The connectivity
information of a weighted graph is encoded in a weighted adjacency matrix, or connectivity
matrix KKKKKKKK which is defined as

Ki j :=


the weight of (i, j) if there is an edge between node i and node j,
0 otherwise.

(1.2)

The degree deg(i) of a vertex i is the number of edges connected to the vertex:

deg(i) :=
N∑

j=1
Ai j (1.3)
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For weighted graphs we define the vertex degree as the sum of the weight of the edges
connected to vertex i.

Another important matrix representation of a graph is the graph Laplacian, or the Laplacian
matrix. For a simple graph G(V, E) with |V | = N vertices, its Laplacian matrixL is defined
as [4]

L := DDDDDDDD − AAAAAAAA, (1.4)

where DDDDDDDD is the degree matrix of G, a diagonal matrix with Di j = δi j deg(i). The Laplacian
matrix can be interpreted as the discrete version of the negative Laplace operator −∇2.
This can be easily shown as follows. Suppose we have a quantity ψi, e.g. concentration
of some substance, assigned to each vertex i in a network. Multiplying the vector of the
quantity ψψψψψψψψ = {ψ1, · · · , ψN} by the Laplacian matrix, we can write the i-th element of
the resulting vector as

(Lψψψψψψψψ)i =
∑

j

Li jψ j =
∑

j

−Ai jψ j +
∑

j

Ai jψi = −
∑

j

Ai j (ψ j − ψi). (1.5)

Recall that the second derivative of a one-dimensional continuous function Ψ(x) over x
is

Ψ′′(x) = lim
h→0

Ψ(x + h) + Ψ(x − h) − 2Ψ(x)
h2 . (1.6)

Comparing Eq. 1.5 and Eq. 1.6, we find that −(Lψψψψψψψψ)i is in fact a deg(i)-dimensional
difference quotient at vertex i if we take a finite difference h = 1. This analog provides
important intuition about the graph Laplacian, which helps the analysis in the later parts
of the thesis.

For weighted graphs, we define the weighted graph Laplacian by replacing the binary
entries of the adjacency matrix by the respective weight of the edges:

Li j :=


−Ki j if i , j,

N∑

ℓ=1
Kiℓ if i = j .

(1.7)

1.1.2 Paths and distances

Intuitively a path between two vertices in a network is a route that runs from vertex to
vertex along the edges. In the language of mathematics, a path1 between vertex i and j

1In this thesis we adopt Newman’s terminology in [4]. We allow the repetition of vertices and edges in
a path. In some books such repetitions are not allowed for paths but allowed for walks.
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1
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Fig. 1.2 Non-uniqueness of the shortest paths. There are two distinct shortest paths
between node 1 and node 5, 1 → 2 → 3 → 5 and 1 → 4 → 6 → 5, indicated by the
orange and the green arrow respectively. The geodesic distance d(1, 5) = 3.

in graph G(E,V ), denoted as Pi→ j , is defined as a sequence of adjacent edges in E which
connect a sequence of vertices in V with the initial vertex i and the final vertex j [4, 5].
The number of edges traversed along the path is called the length of the path.

For unweighted simple graphs, the total number of Pi→ j of length r , denoted as #P (r)
i→ j ,

can be expressed in terms of the adjacency matrix AAAAAAAA [4]:

#P (r)
i→ j =

N∑

k1,··· ,kr−1=1
Aik1 Ak1k2 · · · Akr−1 j =

(
AAAAAAAAr )

i j . (1.8)

Because the product Aik1 Ak1k2 · · · Akr−1 j is 1 only if there exists a path of length r between
i and j, otherwise it is 0. For weighted simple graphs the element of the adjacency matrix
gives the edge weights, therefore (AAAAAAAAr )i j gives the sum of the product of the coupling
strength of the edges along the path over all paths between i and j:

(
AAAAAAAAr )

i j =
∑

P (r )
i→ j

∏

(u,v)∈P (r )
i→ j

Auv . (1.9)

As the name suggests, a shortest path, or a geodesic path between two vertices i and j is the
path with the smallest length among all Pi→ j . Shortest paths are not necessarily unique,
meaning there can be multiple paths with the same shortest length between a vertex
pair (Fig. 1.2). The length of the shortest path is called the geodesic distance or simply
the distance between the vertices in question. Mathematically the distance between the
vertices i and j, d(i, j), is the smallest value of r such that (AAAAAAAAr )i j > 0. The length of the
longest geodesic path between any pair of vertices in a graph, if a path exists, is called the
diameter of the graph.
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Proposition 1. Let i and j be two distinct vertices in graph G(V, E) with distance d(i, j) = r ,
and L the graph Laplacian of G. Then for d ∈ N+,

(
Ld

)
i j
=



0 for d < r

∑

P (r )
i→ j

∏

(u,v)∈P (r )
i→ j

Luv for d = r .
(1.10)

Proof. According to the definition of matrix multiplication, we have

(
Ld

)
i j
=

N∑

k1,··· ,kd−1=1
Lik1Lk1k2 · · · Lkd−1 j .

By the definition of graph Laplacian (Eq. 1.4), Luv = −Auv for all u , v. In the vertex
sequence of any shortest paths between i and j, the vertices must be distinct, so there are
no diagonal elements of L that enter the product Lik1Lk1k2 · · · Lkd−1 j . Therefore

(Lr )
i j = (−1)r (

AAAAAAAAr )
i j =

∑

P (r )
i→ j

∏

(u,v)∈P (r )
i→ j

(−Auv) =
∑

P (r )
i→ j

∏

(u,v)∈P (r )
i→ j

Luv . (1.11)

For d < r , we have (AAAAAAAAr )i j = 0, since there are no paths from i to j with a length smaller
than r . Hence

(
Ld

)
i j
= 0. □

In this thesis, we consider connected networks, meaning there should be at least one path
between every pair of vertices in the graph. Or equivalently, the adjacency matrix of the
graph should be irreducible. The topic of the thesis is the dynamical response of networks,
therefore we naturally require that an initial local perturbation can actually reach every
node of the network through at least one path. The irreducibility of the adjacency matrix
is a direct result of graph connectivity [66]. Assume the adjacency matrix of graph
G(V, E) is reducible, then the vertices V can be partitioned into two nonempty sets V1
and V2 such that there is no edge between any vertex in V1 and any vertex in V2. That
means there are no paths between any node pairs with one node in V1 and the other in V2.
Hence graph G is not connected. For directed networks, we require them to be strongly
connected, meaning there should be at least one directed path from every vertex to every
other vertex.
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1.2 Dynamical systems

While networks, or graphs, provide us a mathematical structure to represent the relation-
ships between a collection of objects, whose properties are fixed in time, the theory of
dynamical systems deals with change, with the state of systems that evolves in time.

In this thesis, we consider dynamical systems with continuous time and follow the
definition in [67–69], where a dynamical system is defined as a tuple (S,T,Φ):

• S = Rd is the state space. The state of the system is given by a d-dimensional vector
xxxxxxxx = (x1, x2, · · · , xd) ∈ S, and the state space is a collection of all possible states of
the system. Here d ∈ N is the order of the dynamical system.

• T = R is the set of time t, or the so-called evolution parameter.

• Φ : S × T → S is the evolution function that dictates the temporal evolution of the
system, and also known as a flow which obeys

i. Φ(xxxxxxxx, 0) = xxxxxxxx;
ii. Φ(Φ(xxxxxxxx, s), t) = Φ(xxxxxxxx, s + t) for s, t ∈ T ;

iii. Φ̇(xxxxxxxx, τ) = ffffffff (xxxxxxxx, τ) for all τ ∈ T , with ffffffff : S × T → S is called the vector field of
the flow Φ.

In the last property Φ̇ denotes the time derivative of Φ, Φ̇ := dΦ
dt . Property (iii) is known

as the differentiability of flow, which is required since T = R. The combination of the
three properties associates the evolution function Φ(xxxxxxxx, t) with a system of d ordinary
differential equations (ODEs)

ẋxxxxxxx = ffffffff (xxxxxxxx, t). (1.12)

If ffffffff does not depend explicitly on t, that is,

ẋxxxxxxx = ffffffff (xxxxxxxx), (1.13)

then the dynamical system is called an autonomous system. Given the initial condition of
the system xxxxxxxx(t = 0) = xxxxxxxx0, the solution of the ODE system (Eq. 1.12) is the flow Φ with
one of the variables being constant xxxxxxxx0:

xxxxxxxx(t) = Φ(xxxxxxxx0, t). (1.14)

The solution xxxxxxxx(t) is also referred to as the trajectory of the dynamical system with initial
condition xxxxxxxx0.
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1.2.1 Fixed Points and Linear Stability Analysis

In this thesis, we focus on autonomous systems2 (Eq. 1.13). If a state xxxxxxxx∗ ∈ S satisfies
Φ(xxxxxxxx∗, t) = xxxxxxxx∗, or equivalently ffffffff (xxxxxxxx∗) = 0 for all t ∈ T , then xxxxxxxx∗ is referred to as a fixed point
of the dynamical system. Fixed points can be classified as stable or unstable, according
to the behavior of the trajectory of points in their vicinity [70, 69]. A fixed point xxxxxxxx∗ is
said to be stable or Liapunov stable if the trajectories that start near to xxxxxxxx∗ remain near to it
for all positive time, that is, for each ε > 0, there is a δ > 0 such that if | |xxxxxxxx(0) − xxxxxxxx∗ | | < δ
then | |xxxxxxxx(t) − xxxxxxxx∗ | | < ε for all t ≥ 0. Here | | · | | denotes some norm in the state space S.
Furthermore, we say xxxxxxxx∗ is attracting if all trajectories that start near to xxxxxxxx∗ are guaranteed
to arrive at xxxxxxxx∗ eventually, that is, there is a δ > 0 such that if | |xxxxxxxx(0) − xxxxxxxx∗ | | < δ then
limt→∞ xxxxxxxx(t) = xxxxxxxx∗. If a fixed point is both stable and attracting, we call it asymptotically
stable. When a fixed point is Liapunov stable but not attracting, it is said to be neutrally
stable or marginally stable. Finally, fixed points that are neither Liapunov stable nor
attracting are unstable.

Moreover, the local behavior of a dynamical system ẋxxxxxxx = ffffffff (xxxxxxxx) near a fixed point xxxxxxxx∗ can
be assessed by the linearization of ẋxxxxxxx = ffffffff (xxxxxxxx) at xxxxxxxx = xxxxxxxx∗ if [71]:

ẊXXXXXXX = J XXXXXXXX, (1.15)

where XXXXXXXX := xxxxxxxx − xxxxxxxx∗ is a small deviation away from the fixed point and J := D ffffffff (xxxxxxxx) |xxxxxxxx=x∗x∗x∗x∗x∗x∗x∗x∗ is
the Jacobian matrix of function ffffffff with respect to xxxxxxxx, namely

Ji j :=
∂ fi

∂x j

�����xxxxxxxx=x∗x∗x∗x∗x∗x∗x∗x∗.
(1.16)

For square matrix J ∈ Rd×d there exists a basis such that J can be represented as a Jordan
canonical form [72]:

J =
*.....,

J1 0
J2

. . .

0 Jk

+/////-
(1.17)

2Here we refer to dynamical systems prior to perturbations. Yet we allow external perturbations that
drives the system to be time-dependent, which makes the perturbed system non-autonomous.
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where Jj are Jordan blocks

Jj =

*.....,

RRRRRRRR[ j] IIIIIIII 0
RRRRRRRR[ j] IIIIIIII

. . . IIIIIIII
0 RRRRRRRR[ j]

+/////-
(1.18)

with

RRRRRRRR[ j] =

(
a[ j] −b[ j]

b[ j] a[ j]

)
, and IIIIIIII =

(
1 0
0 1

)
, (1.19)

∑k
j=1 dimJj = d. Each Jordan block Jj is uniquely associated with an eigenvalue µ[ j] =

a[ j] + ıb[ j] and an the corresponding (general) eigenvectors of the Jacobian matrix wwwwwwww[ j] =

uuuuuuuu[ j] + ıvvvvvvvv[ j] [69]. Then

Es = span
{
uuuuuuuu[ j], vvvvvvvv[ j] ��� a[ j] < 0

}
, (1.20)

Ec = span
{
uuuuuuuu[ j], vvvvvvvv[ j] ��� a[ j] = 0

}
, (1.21)

and Eu = span
{
uuuuuuuu[ j], vvvvvvvv[ j] ��� a[ j] > 0

}
(1.22)

are called the stable, the center and the unstable subspace corresponding to eigenvalues µ[ j]

with negative, zero and positive real parts respectively. All solutions in Es approach the
fixed point xxxxxxxx∗ as t → ∞ and all solutions in Eu approach the fixed point xxxxxxxx∗ as t → −∞.
The Center Manifold Theorem [71, 73] ensures that, there exist stable, center and unstable
manifolds, W s, W c and Wu that are tangent to Es, Ec and Eu at xxxxxxxx∗ respectively, and they
are all invariant manifolds under the flow Φ.

1.3 Dynamical systems on networks

Based on the theory introduced in the last two sections, we are now in the position to
present a mathematical tool to describe and to analyze dynamical processes on networks, or
networks as dynamical systems, in short, network dynamics. That is, the dynamics that occur
on not only one, but a set of discrete entities, which interact with each other. As a whole,
the set of connected dynamical systems can be viewed as a new, more complex dynamical
system, whose behavior relies on the underlying nontrivial connectivity within the
system.

Importantly, we should not confuse the term network dynamics with dynamical networks.
The latter refers to the networks whose structure, i.e. the underlying graph, is changing
with time. It is true not only that the topological structure of a network system can
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affect the dynamics occurring on the network, e.g. Braess Paradox which postulates the
addition of connectivity can lower the network performance, but also that the dynamical
processes can affect the network structure. For example, in a power grid network, power
generating units and power consuming units are nodes and the power transmission lines
connecting them are edges. One of the state variables of the networked dynamical system
is the AC power frequency at each node. When the power frequency, i.e. the rotation
speed, of a power generator surpasses the designed speed limit, the generator would be
shut down for protecting it from overheating and damage. Thus the node is considered to
be“removed” from the network, which affects the collective dynamics of the power grid.
Sometimes, the change in the dynamics such as the redistribution of flows again causes
changes in network structure, thus triggers a cascading failure. The structure-changing
networks are sometimes also called adaptive networks [74]. In this thesis, we assume the
underlying network topologies are time-independent and thus focus on how dynamical
processes occurring on networks are affected by network structure.

We consider a dynamical process on top of a network consisting of N vertices. The
state xxxxxxxxi (t) of vertex i ∈ {1, 2, · · · , N} at time t ∈ R is described by d variables: xxxxxxxxi (t) =
[xi,1(t), xi,2(t), · · · , xi,d (t)] ∈ Rd . The evolution of xxxxxxxxi (t) is governed partially by the local
intrinsic dynamics at node i, ffffffff i (xxxxxxxxi) : Rd → Rd , and partially by the pair-wise interactions
ggggggggi j (xxxxxxxxi, xxxxxxxx j ) : Rd × Rd → Rd with the directly neighboring vertices j satisfying Ai j , 0:

ẋxxxxxxxi (t) = ffffffff i (xxxxxxxxi) +
N∑

j=1
Ai jggggggggi j (xxxxxxxxi, xxxxxxxx j ). (1.23)

For weighted graphs, the network dynamics is the same as (1.23) except Ai j is replaced by
edge weight Ki j . Thus the dynamics of the whole network is described by Nd coupled
equations: d equations for each of the N nodes.

A fixed point xxxxxxxx∗ =
(
xxxxxxxx∗1, xxxxxxxx∗1, · · · , xxxxxxxx∗N

)
∈ Rd×N of the network system (1.23) is given by

the constraints ẋxxxxxxxi (t) = 0 for all i ∈ {1, 2, · · · , N}, thus by the solution of the set of Nd
equations

ffffffff i (xxxxxxxxi) +
N∑

j=1
Ai jggggggggi j (xxxxxxxxi, xxxxxxxx j ) = 00000000 (i = 1, · · · , N ). (1.24)
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The linear stability of the system at xxxxxxxx = xxxxxxxx∗ is determined by the Jacobian matrix J of
(1.24) with

Ji j =
∂

∂xxxxxxxx j
*, ffffffff i (xxxxxxxxi) +

N∑

ℓ=1
Aiℓggggggggiℓ (xxxxxxxxi, xxxxxxxxℓ)+-

������xxxxxxxx=xxxxxxxx∗

= δi j
*.,
∂ ffffffff i

∂xxxxxxxxi
(xxxxxxxxi)

�����xxxxxxxx=xxxxxxxx∗
+

N∑

ℓ=1
Aiℓ

∂ggggggggiℓ

∂xxxxxxxxi
(xxxxxxxxi, xxxxxxxxℓ)

������xxxxxxxx=xxxxxxxx∗

+/- + Ai j
∂ggggggggi j

∂xxxxxxxx j
(xxxxxxxxi, xxxxxxxx j )

�����xxxxxxxx=xxxxxxxx∗
. (1.25)

Technically, the Jacobian matrix J for Eq. 1.23 is a tensor of rank 4. For brevity, here
we express it as “a matrix with matrices as elements”: each element Ji j of the Jacobian
matrix is furthermore a matrix (Eq. 1.25). Alternatively, we can treat the state of the
network system as a vector xxxxxxxx ∈ RNd and thus write the Jacobian matrix as a Nd by Nd
square matrix. In the following chapters we adopt the latter approach for simplicity.



Chapter 2

Dynamics of Network Responses

In this chapter we present some general considerations about the dynamics of the collective
responses of a high dimensional autonomous system under perturbations. As a starting
point, we consider a general dynamical system at its fixed point and ask how it responds
to small disturbances, including small shifts in the system’s state and small external time-
dependent driving signals. We start from the mathematical framework of linearizing
dynamical systems introduced in the last chapter and derive solutions for dynamical system
responses. As a special example, for diffusively coupled first-order dynamical systems, we
establish a relation between the dynamical network responses and the network structures.

The first section is devoted to dynamical systems without external driving signals. Given
small perturbations around a system’s fixed point as the initial condition, we assume linear
network responses to the perturbation and derive the time evolution of network responses
in terms of the spectrum of the network’s Jacobian matrix. In particular we focus on
networks of first-order diffusively coupled systems, where we reveal the direct relation
between the Jacobian matrix and the graph Laplacian. In the second section we discuss
networks’ linear responses to external driving signals, especially to weak sinusoidal signals.
In the last section we give a summary of the network response dynamics in different
scenarios: with symmetric or asymmetric Jacobians, and perturbations as deviations in
initial conditions or as external driving signals.

2.1 Time evolution of small perturbations

Suppose xxxxxxxx∗ ∈ RN is a fixed point of an N dimensional autonomous dynamical system
ẋxxxxxxx = ffffffff (xxxxxxxx). By definition, at the fixed point, the system stays at the fixed point if there are
no perturbations i.e. ẋxxxxxxx = ffffffff (xxxxxxxx∗) = 0.

Now we consider the scenario where the system’s state is perturbed, i.e. is close to
but not exactly at the fixed point. We write the system’s state as xxxxxxxx = xxxxxxxx∗ + XXXXXXXX , where
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XXXXXXXX ∈ RN denotes a small deviation from the fixed point xxxxxxxx∗. Thus the system’s dynamics
ẋxxxxxxx = ẋxxxxxxx∗ + ẊXXXXXXX = ẊXXXXXXX = ffffffff (xxxxxxxx∗ + XXXXXXXX ) is essentially the dynamics of the small deviation XXXXXXXX (t).
Taylor expanding the function ffffffff (xxxxxxxx∗ + XXXXXXXX ) on the right hand side to the first order of XXXXXXXX ,
we obtain the linearization (Eq. 1.15) of the system introduced in Sec. 1.2.1:

ẊXXXXXXX = D ffffffff (xxxxxxxx) |xxxxxxxx=xxxxxxxx∗ = J XXXXXXXX . (2.1)

The Jacobian matrix in the linearized system 2.1 provides information about the stability
of the fixed point through its eigenvalues, and moreover, Eq. 2.1 is solvable thus gives
information about how small perturbations evolve in terms of linear approximation. The
solution reads

XXXXXXXX (t) = eJ t XXXXXXXX0 = *,
∞∑

n=0

J n

n!
tn+- XXXXXXXX0 (2.2)

with XXXXXXXX0 ∈ RN being the initial perturbation vector at t = 0. Particularly, if only one
variable xk is perturbed initially, xk (0) = x∗k + ε, i.e. there is only one non-zero element
in XXXXXXXX0:

XXXXXXXX0 = (0, · · · , ε︸︷︷︸
X0,k

, · · · , 0), (2.3)

then the small deviation at the i-th state variable is determined by the ik-th element of
the powers of the Jacobian matrix:

Xi (t) = ε
∞∑

n=0

(J n)ik

n!
tn. (2.4)

As discussed in Sec. 1.2.1, Jacobian matrix J ∈ RN×N can be written in Jordan canonical
form with respect to a basis of general eigenvectors in C. The eigenvectors of Jacobian
are linearly independent, but not necessarily orthogonal in general. In particular, when
Jacobian J is symmetric, its N eigenvectors are orthogonal if the eigenvalues are non-
degenerate. Even if there are degenerate eigenvalues, it is always possible to find an
orthogonal basis of RN based on the eigenvectors using Gram-Schmidt orthogonalization
[75]. We can thus write the time evolution of the small perturbations in terms of the
eigenvectors {wwwwwwww[1], · · · ,wwwwwwww[N]} of the Jacobian matrix

XXXXXXXX (t) =
N∑

ℓ=1
c[ℓ](t)wwwwwwww[ℓ], (2.5)

where c[ℓ](t) is the time-dependent coefficient associated to the eigenvector wwwwwwww[ℓ]. Insert-
ing this expression Eq. 2.5 into the linearized dynamics Eq. 2.8, we obtain the equation
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for the coefficients

N∑

ℓ=1
ċ[ℓ](t)wwwwwwww[ℓ] =

N∑

ℓ=1
c[ℓ](t)µ[ℓ]wwwwwwww[ℓ]. (2.6)

If the eigenvectors are orthonormal to each other, wwwwwwww[i] · wwwwwwww[ j] = δi j , we determine the
coefficients by multiplying both sides of Eq. 2.6 with the N eigenvectors one by one.
The coefficient ċ[ℓ](t) obeys the dynamics ċ[ℓ](t) = µ[ℓ]c[ℓ](t) with solution

c[ℓ](t) = c[ℓ]
0 eµ

[ℓ]t, (2.7)

where c[ℓ]
0 denotes the initial value of the coefficient at t = 0, i.e. the projection of the

initial perturbation vector XXXXXXXX0 on the respective eigenvector wwwwwwww[ℓ] such that c[ℓ]
0 = XXXXXXXX0 · wwwwwwww[ℓ].

Thus we have the solution

XXXXXXXX (t) =
N∑

ℓ=1

(
XXXXXXXX0 · wwwwwwww[ℓ]

)
eµ

[ℓ]twwwwwwww[ℓ]. (2.8)

For a single-variable initial perturbation (Eq. 2.3), the perturbation evolves as

XXXXXXXX (t) = ε
N∑

ℓ=1

(
w

[ℓ]
k

)
eµ

[ℓ]twwwwwwww[ℓ]. (2.9)

The solution of the system’s small deviations (2.8) describes how an arbitrary-dimensional
dynamical system behaves if it is slightly disturbed at a fixed point. In this sense, we
call the small deviation XXXXXXXX as the linear response, or in short, the response of a dynamical
system to perturbations in this thesis. Expressing the linear response of a high dimensional
nonlinear dynamical system in terms of the Jacobian spectrum, i.e. (2.8), is a well-proven
method and has been applied e.g. in identifying coherent generators in perturbed power
grids [76].

2.1.1 Linear response in networks of first-order dynamical systems

Next we discuss the linear response to a perturbation in networks of diffusively coupled
first-order dynamical systems. As we will show in the following, it is an interesting
example since there is a direct relation between the Jacobian matrix of the dynamical
system and the Laplacian matrix of the underlying graph. The analysis in this section lays
foundation for the main results for networks of second-order oscillator to be presented
in the later parts of the thesis.
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We assume diffusive coupling function gi j (x j − xi) between node pair xi and x j . Every
node i in a network is coupled to its nearest neighbor j (i.e. Ai j , 0) via a coupling
function gi j depending on the state difference of the node pair (x j − xi) [77, 78]. This
kind of coupling function appear in a variety of network models describing the dynamics
of physiological and chemical systems [79–83], among which the most famous one is the
Kuramoto model [65, 84] and its variations [26, 85–87].

As an illustrative example, we consider a network of N identical first-order dynamical
systems with identical couplings. Each node follows the dynamics

ẋi = f (xi) +
N∑

j=1
Ki jg(x j − xi) for i ∈ {1, · · · , N}, (2.10)

where xi is the state variable of node i. The function f : R→ R describes the intrinsic
dynamics and the coupling function g : R→ R describes the diffusive coupling between
node pairs. The matrix KKKKKKKK = (Ki j ) is the connectivity matrix (1.2) describing the interac-
tion structure of the network, i.e. its element measures the coupling strength between
nodes i and j. The solution of the equation system

f (xi) +
N∑

j=1
Ki jg(x j − xi) = 0 for i ∈ {1, · · · , N} (2.11)

gives a fixed point xxxxxxxx∗ = (x∗1, · · · , x∗N ) of the system. The dynamics of network’s linear
response and the stability of the fixed point is determined by the Jacobian matrix with

Ji j = δi j
*.,

d f
dxi

(xi)
�����xi=x∗i

−
N∑

ℓ=1
Kiℓ

dg
d(xℓ − xi)

�����xi,ℓ=x∗
i,ℓ

+/- + Ki j
dg

d(x j − xi)

�����xi, j=x∗i, j

(2.12)

If βi := − d f
dxi

(xi)
����xi=x∗i

≥ 0, αi j := dg
d(x j−xi )

����xi, j=x∗i, j
> 0, and Ki j > 0 if there is an edge

between i and j, then the fixed point of the network system is ensured to be at least
neutrally stable. The Jacobian matrix

Ji j =


−βi −

N∑

ℓ=1
Kiℓαiℓ if i = j,

Ki jαi j otherwise,
(2.13)



2.1 Time evolution of small perturbations 25

is symmetric if the network is undirected (Ki j = K ji), the derivative of the coupling
function is even (αi j = α ji). Additionally J is diagonally dominant:

|Jii | =
������−βi −

N∑

ℓ=1
Kiℓαiℓ

������ = βi +

N∑

ℓ=1
Kiℓαiℓ ≥

N∑

ℓ=1
Kiℓαiℓ =

N∑

ℓ=1
|Kiℓαiℓ | =

N∑

j=1

���Ki jαi j
��� .

The Gershgorin circle theorem states that every eigenvalue of a square matrix B = (bi j ) ∈
CN×N is contained in some disk D j =

{
z : ���z − a j j

��� ≤ r j, z ∈ C
}

with r j =
∑N

k=1,k, j |a j k |
in the complex plane [88]. For the Jacobian matrix (Eq. 2.13) all the discs lie on the left
side of the imaginary axis, i.e. in {z |Re (z) ≤ 0}. In addition, the Jacobian eigenvalues
and eigenvectors are real since the Jacobian is Hermitian. Therefore, all eigenvalues are
non-positive real numbers, and the eigenvalues can be zero only when there exists some
βi = 0. Consequently, the fixed point is stable, and has center subspace, i.e. is neutrally
stable only when there are βi = 0 for some i.

Since the Jacobian matrix is symmetric, its eigenvectors form an orthonormal basis and
hence the linear response of first-order networks (Eq. 2.10) can be written as Eq. 2.8.
Especially, if βi = 0 for all i, then the Jacobian is exactly the negative of the Laplacian
matrix of the underlying graph: J = −L, if we view Ki jαi j as the weight of edge (i, j).
Thus, the Jacobian eigenvectors are identical to the Laplacian eigenvectors with the
respective eigenvalues being opposite. Thus the linear response can also be expressed as

XXXXXXXX (t) =
N∑

ℓ=1

(
XXXXXXXX0 · vvvvvvvv[ℓ]

)
e−λ

[ℓ]tvvvvvvvv[ℓ], (2.14)

where vvvvvvvv[ℓ] denotes the ℓ-th eigenvector of the graph Laplacian and λ[ℓ] ≥ 0 the cor-
responding eigenvalue. For notational simplicity we sort the Laplacian eigenvalues as
0 = λ[0] ≤ λ[1] ≤ · · · ≤ λ[N−1]. The eigenvalue 0 and its corresponding eigenvector
(1, 1, · · · , 1) is a consequence of the construction of the Laplacian matrix.

If only one node k is initially perturbed with ε > 0, the linear response reads

XXXXXXXX (t) = ε
N∑

ℓ=1

(
v

[ℓ]
k

)
e−λ

[ℓ]tvvvvvvvv[ℓ]. (2.15)

For networks of m-order dynamical systems with m ≥ 2, the state of the network system
can be written as xxxxxxxx =

(
xxxxxxxx (0), · · · , xxxxxxxx (m)

)
with xxxxxxxx (i) =

(
x (i)

1 , · · · , x (i)
N

)
being the vector of

the i-th time derivative of (x1, · · · , xN ). The corresponding Jacobian is almost always
asymmetric, thus its eigenvectors are not orthonormal and the solution for linear response
Eq. 2.8 is not valid. In Part II and Part III where we consider the linear response of
networks of second-order phase oscillators, we will present a new way to find the solution,
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i.e. exploiting the Hermitian-ness of other matrices occurring in the equation, such as
the graph Laplacian.

2.2 Network responses to external driving

In last section we have discussed how a small deviation in state variables from a fixed point
evolves under linear approximation. However, in many natural and artificial network
systems, not only small kicks in systems’ state, but also temporal fluctuations in input
signals are present due to the environmental influence. How networks self-organizedly
respond to those external driving signals essentially underlie the robust functioning of
these network systems.

The classical linear response theory (LRT) in statistical mechanics, first formulated by
R. Kubo in 1957 [89], is devoted to reveal the relation between the time-dependent
linear response of a system to a weak external field and the dynamical properties of the
system at equilibrium. Furthermore, LRT was also generalized to nonequilibrium steady
states with necessary modifications [90]. However, the linear response function in LRT
usually characterizes the dependence of an macroscopic observable on an macroscopic
field which influences the whole system.

In this thesis, we solve for the linear response of networked dynamical systems to local
driving signals in the spirit of the LRT in statistical mechanics: we assume the nodal
response in networks is proportional to the driving signal and look for the relation
between the responses and the external signal. However, important differences lie in the
nature of the system in question and in the range of the external influence. We focus
on networked systems where each node can be seen as a discrete entity and the specific
connectivity topology essentially determines the system’s dynamical behavior, unlike
the continuous system where only the averaged quantity, i.e. the observable, is relevant
and interesting. Furthermore, we investigate the system’s response to a local signal
and ask how signals at the different positions generate qualitatively different network
responses, which is a nontrivial question in networked system. In this section we make
first discussions on the linear response of networks to external driving signals. As we will
see in a few moments, a general and explicit answer is extremely difficult to find. In the
later parts of the thesis, we will give answer for a specific model class.

We consider a general dynamical system at a fixed point xxxxxxxx∗, perturbed by a time-
dependent driving vector DDDDDDDD(t). The linear response of the system XXXXXXXX (t) follows

ẊXXXXXXX = J XXXXXXXX + DDDDDDDD(t). (2.16)
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Given the initial condition XXXXXXXX0, the solution of the inhomogeneous matrix ODE reads

XXXXXXXX (t) = eJ t
(
XXXXXXXX0 +

∫
e−J t DDDDDDDD(t)dt −

∫
DDDDDDDD(t)dt

)
. (2.17)

However, for a general DDDDDDDD(t) it is not easy to compute the integrals.

In the following we focus on the case where the perturbation has the form of a sinusoidal
function, which serves as a basis for the characterization of more complicated signals
through Fourier analysis. Let the system be perturbed by a single small sinusoidal signal
at node k with magnitude ε > 0, frequency ω and phase φ, i.e.

DDDDDDDD(t) = (0, · · · , εeı(ωt+φ)
︸    ︷︷    ︸

Dk

, · · · , 0). (2.18)

To further simplify the problem and obtain an explicit analytical solution for the linear
response XXXXXXXX (t), we assume the Jacobian matrix to be symmetric, as in the case where the
network is undirectedly and diffusively coupled. Thus we can express the linear response
in terms of the eigensystem of the Jacobian. Again writing the linear response as a linear
combination of the orthogonal Jacobian eigenvectors with time-dependent coefficients
as in Eq. 2.5, we have

N∑

ℓ=1
ċ[ℓ](t)wwwwwwww[ℓ] =

N∑

ℓ=1
c[ℓ](t)µ[ℓ]wwwwwwww[ℓ] + DDDDDDDD(t). (2.19)

Exploiting the orthogonality of the Jacobian eigenvectors, we determine the coefficients
as the solution of

ċ[ℓ](t) = c[ℓ](t)µ[ℓ] + εw[ℓ]
k eı(ωt+φ), for µ[ℓ] , 0. (2.20)

The general solution of Eq. 2.20 is of the form of the complementary solution to the
homogeneous differential equation Aeµ

[ℓ]t plus a particular solution of the inhomogeneous

solution εw[ℓ]
k

−µ[ℓ]+ıω
eı(ωt+φ). The initial condition of the coefficients c[ℓ]

0 = XXXXXXXX0 · wwwwwwww[ℓ]. Thus,
the solution for the coefficients reads

c[ℓ](t) =
(
XXXXXXXX0 · wwwwwwww[ℓ]

)
eµ

[ℓ]t +
εw[ℓ]

k eıφ

−µ[ℓ] + ıω

(
−eµ

[ℓ]t + eıωt
)

(2.21)

Especially, for µ[ℓ] = 0, the dynamics of the corresponding coefficient follows the
dynamics

ċ[ℓ](t) = εw[ℓ]
k eı(ωt+φ), (2.22)
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which gives the solution

c[ℓ](t) =
(
XXXXXXXX0 · wwwwwwww[ℓ]

)
+
εw[ℓ]

k eıφ

ıω

(
−1 + eıωt

)
. (2.23)

This solution (2.23) coincides with the solution (2.21) with µ[ℓ] = 0. Therefore the linear
response of the network system to an sinusoidal signal can be written unitedly as

XXXXXXXX (t) =
N∑

ℓ=1


(
XXXXXXXX0 · wwwwwwww[ℓ]

)
eµ

[ℓ]t +
εw[ℓ]

k eıφ

−µ[ℓ] + ıω

(
−eµ

[ℓ]t + eıωt
) wwwwwwww

[ℓ]. (2.24)

2.3 Summary

In this chapter we discussed the dynamics of network responses to perturbations in the
linearized regime near a fixed point. Specifically, apart from the solutions for a general
dynamical system, analytical expressions of network linear responses are derived also for
networks with symmetric Jacobians. We established the relation J = −L between the
Jacobian and the graph Laplacian of the underlying network structure for those networks.
A tabular list of the solutions and the corresponding constraints is shown in Tab. 2.1.

no external driving with external driving 

general

first-
order

                     if      symmetric, eigenvectors                            orthogonal

                                    if networks diffusively coupled, 

second-
order

                                                   almost always asymmetric

see Part III see Part II, Part III

XXXXXXXX (t) =
N∑

ℓ=1

(
XXXXXXXX0 · wwwwwwww[ℓ]

)
eµ

[ℓ]twwwwwwww[ℓ]

XXXXXXXX (t) =
N∑

ℓ=1

⎡⎢⎢⎢⎢⎢⎣
(
XXXXXXXX0 · wwwwwwww[ℓ]

)
eµ

[ℓ]t +
εw

[ℓ]

k
eıϕ

−µ[ℓ] + ıω
(
−eµ

[ℓ]t + eıωt
)⎤⎥⎥⎥⎥⎥⎦ wwwwwwww

[ℓ]

{wwwwwwww[1], · · · ,wwwwwwww[N ]}

Di (t) = δik eı (ωt+ϕ)sinusoidal driving:

ẊXXXXXXX = J XXXXXXXX ẊXXXXXXX = J XXXXXXXX + DDDDDDDD(t)

XXXXXXXX (t) = eJ t XXXXXXXX0 XXXXXXXX (t) = eJ t

(
XXXXXXXX0 +

∫
e−J t DDDDDDDD(t)dt −

∫
DDDDDDDD(t)dt

)

J

J = −L
J

Table 2.1 Solutions of networks’ linear responses to perturbations. Listed are solu-
tions of a network system’s linear responses near a fixed point under different conditions.

We considered the time evolution of a initial small deviation XXXXXXXX0 in an arbitrary dimen-
sional dynamical system with and without external driving DDDDDDDD(t). For both cases it is
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possible to write down the general solution (see the first row of Tab. 2.1). However,
computing the linear responses explicitly is not easy since both solutions contain matrix
exponential which implies infinite power series of matrices. Furthermore, the solution
for linear responses under external driving is even more complicated to compute since it
involves also the integral

∫
e−J t DDDDDDDD(t)dt.

In particular, the solutions are more tractable if the system’s Jacobian is symmetric. In
this case the Jacobian eigenvectors form an orthonormal basis, thus we can project the
system’s linear response to the eigenmodes of the Jacobian and determine the projections
using the orthogonality of the eigenvectors. Observing the solutions in terms of the
Jacobian eigensystem (the second row of Tab. 2.1), we see both solutions contain the
term describing the exponential decay of the initial deviation in respective eigenmodes.
The solution for systems with an external sinusoidal driving contains an additional term
describing a sinusoidal response with the same frequency as the driving signal and with a
shift in amplitude and in phase (see Eq. 2.24).

A symmetric Jacobian is a natural result for networks of first-order dynamical systems
with diffusive and undirected coupling. In such networks, it differs from the graph
Laplacian only by a sign, J = −L, thus both matrices share the same set of eigenvectors
and opposite corresponding eigenvalues. As a result, there is a direct relation between
the system’s dynamics and its underlying network topology.

However, for networks of higher-order dynamical systems, the Jacobian matrix is typi-
cally not symmetric. Hence the Jacobian eigenvectors do not consist an orthogonal basis
on which the linear responses can be projected. In Part II and Part III of the thesis, we
will discuss the linear responses of the network of second-order phase oscillators with
diffusive and undirected coupling. The graph Laplacian of this type of networks are
symmetric, and enter naturally into the dynamics of networks’ linear response. Thus the
orthogonality of the Laplacian eigenvectors can be exploited to obtain tractable solutions
of networks’ linear responses. They are related to the structural features of the network
through Laplacian eigenvalues and eigenvectors.





Chapter 3

Phase Oscillator Networks and Power Grids

In the first two chapters we introduced the basic concepts of the networks of dynamical
systems, and discussed the general aspects of network systems’ linear responses to pertur-
bations. However, as concluded in last chapter, networks’ dynamical responses are not
trivial to compute explicitly for systems with non-symmetric Jacobians, which is typically
the case for networks of dynamical systems with order greater than one. From this
chapter on, we focus on an important class of network systems, namely the second-order
phase oscillator networks with diffusive and undirected coupling, and investigate the
linear responses of such network systems.

In this chapter, we first introduce in Sec. 3.1 the basics of phase oscillator networks and
the most important feature of such networks, i.e., synchronization. In particular, we
introduce the oscillator model of power grids in Sec. 3.2 as an important application of
the second-order Kuramoto model with inertia.

3.1 Synchronization and phase oscillator networks

Synchronization is one of the most fascinating cooperative phenomena observed in nature.
Systems across biology, chemistry, physics and social life exhibit the tendency to operate
in synchrony, that is, the rhythmical behavior of individual elements in the system tend
to act coherently [91, 92]. Such synchronizable systems require self-sustained oscillatory1

elements with interactions. The state of each element is determined by both the internal
processes and the external forcing, from other elements or from signals outside the
system. Despite the very different and complex biological or technological origin of the
internal processes, one hopes to find a few basic principles which capture the essence of
synchronization.

1Here “self-sustained oscillation” means the oscillator has a stable closed isolated trajectory, i.e. a limit
cycle, even without external forcing.
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Since first observed in 1665 by Christiaan Huygens, synchronization has been stud-
ied intensively for centuries. Within the framework of modern nonlinear dynamics,
mathematical models of synchronizable systems include relaxation oscillator networks and
phase oscillator networks. The dynamics of a relaxation oscillator is characterized by a
slow growth of some quantity, i.e. a “relaxation period”, and a fast resetting when the
quantity reaches a threshold. The reset of one oscillator produces a pulse, which alters
the current state of the neighboring oscillators by shifting their phases, i.e. the so-called
pulse-coupling. This mechanism is abundant in nature so that the relaxation oscillator
network successfully models e.g. the firing of a neuron [93, 94], the heartbeat [95, 96]
and the flashing of fireflies [12].

Another model class exhibiting synchronization phenomena, the phase oscillator net-
works, deals with a population of nonlinearly coupled oscillators moving coherently in
the attracting limit cycle of constant amplitude. The state of a phase oscillator is only
described by the phase and its time derivatives. In 1967, Winfree pioneered a phase
oscillator model based on the mean-field assumption of oscillators’ interactions. For the
first time it revealed that synchronization is related to a threshold in coupling strength:
oscillators synchronize when the coupling is strong enough [97]. This threshold, i.e.,
the minimal coupling strength required to achieve synchronization is called the critical
coupling. Not long after, in 1975, motivated by the behavior of chemical and biological
oscillators, Kuramoto proposed a simple functional form of the coupling of oscillators: the
sine of the oscillator pair’s phase difference [65, 84]. Kuramoto’s model is mathematically
tractable due to its simplicity, yet is complex enough to exhibit a variety of nontrivial
self-organizing behavior [98–100, 16, 85]. Over several decades, the Kuramoto model
and its variations found widespread applications such as neural networks [101, 102],
Josephson junctions arrays [103] and charge-density waves [104, 105].

Due to the ubiquity and the importance of phase oscillator networks, in this thesis, we
focus on the network dynamics of a phase oscillator model class closely related to the
paradigmatic Kuramoto model. We consider a network of N coupled phase oscillators
i ∈ {1, · · · , N} with dynamics

αi θ̇i + βi θ̈i = Ωi +

N∑

j=1
Ki jg(θ j − θi) + εi Di (t). (3.1)

The state of oscillator i at time t is described by its phase angle θi (t) ∈ [0, 2π) and phase
velocity θ̇i (t). Ωi ∈ R denotes the intrinsic frequency or acceleration of oscillator i,
depending on the order of the dynamics2. The coupling between oscillators adopts a
diffusive form (see Sec. 2.1.1): the interaction between oscillator i and j is described by
a function g(·) depending on only the phase difference θ j − θi of the node pair with a

2If βi , 0, the dynamics is of order 2, Ωi acts as an intrinsic angular acceleration. If βi = 0, αi > 0, then
the dynamics is of order 1 and Ωi is the intrinsic frequency of the oscillator, i.e. the oscillator rotates with
this frequency when it is not connected to other oscillators.
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coupling strength Ki j > 0. The matrix KKKKKKKK = (Ki j ) encodes the weighted connectivity of
the underlying network structure, as defined in Eq. 1.2. Core parameters αi and βi in
this model class set the relative influences of the rates of change of the phase angles and
those of the phase velocities:

• For αi , 0, βi ≡ 0 for all i and g(·) = sin(·), the famous Kuramoto type models
arise, characterizing synchronization, phase locking, desynchronization, chimera
states and other patterns across systems in biology, engineering and physics [65, 98–
100, 16, 85].

• For αi ≡ 0 and βi , 0 we obtain an oscillator network system without damping,
i.e. a Hamiltonian system [106]. As we will see later, the dynamics of the network
response of such systems follows the discrete version of the wave equation.

• Taking generically both αi, βi , 0 and g(·) = sin(·) yields a characteristic AC power
grid model, the swing equation on networks [26, 107], on which we pay special
attention in this thesis. The details of the model will be introduced in Sec. 3.2.

The functions Di (t) represent the driving signal with strength εi at oscillator i and
collectively constitute a high-dimensional, distributed dynamic driving signal to the
network. The core question we try to answer in the thesis is, how does a network
collectively respond to such dynamic signals?

The analysis and computation we present in Part II and Part III of the thesis are based
on taking g(θ j − θi) = sin

(
θ j − θi

)
. However, as we will see, the results can be easily

translated to network systems with an arbitrary diffusive coupling function g(θ j − θi)
with its first order derivative dg

d(θ j−θi ) is even, so that the graph Laplacian is symmetric.

3.2 The oscillator model of power grids

In this section we focus on an important realistic aspect of the second-order Kuramoto
networks with inertia, i.e. model class 3.1 with αi, βi > 0 and g(·) = sin(·). With these
settings, this model captures a simplified dynamics of the alternating current (AC) power
grids [26, 107].

3.2.1 Modeling power grid dynamics

Modern power grids typically consist of thousands of generators linked across thousands
of kilometers [108]. Hence they are probably the largest man-made infrastructure
network ever existed. The stable operation of power grids affects almost every aspect
of the modern life, while it relies on the collective dynamical behavior of the numerous
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elements in the networks. Modeling the dynamics of power grids is thus a task with both
great significance and complexity.

Available power grid models range from the simplest single-node model where the whole
power grid is modeled as a copper plate [109, 110] to detailed component-level models
such as [111] which are typically used by engineers for specific simulations. The so-called
oscillator model of AC power grids proposed by Filatrella et al. [26] captures the essential
dynamical features of power grids, but is still mathematically simple enough to allow
for analytical analysis and hence understanding of the collective power grid dynamics
on a large scale. Fruitful research on power grid dynamics has been stimulated by this
model, e.g. [107, 112, 113, 47]. Filatrella’s power grid model essentially combines the
swing equation of a synchronous machine, which is the standard equation describing rotor
dynamics in engineering, with a few simplifications for AC power transmission in high-
voltage transmission networks, and establishes a relation between the synchronization of
coupled Kuramoto-type oscillators and the stability of AC power grids. In the following
we briefly demonstrate this connection.

The swing equation of synchronous machines Synchronous machines are the most
widely used AC power units. It converts mechanical power to electric power as a generator,
or vice versa, converts electric power from the grid to mechanical power as a motor. It’s
functioning is due to the interaction of the electromagnetic fields of its two parts, the
stator and the rotor (see Fig. 3.1). When operated as a generator, the rotor is driven by
e.g. a turbine and its rotation induces an alternating current voltage in the stator with
a frequency synchronous to the rotation. The process is reversed when a synchronous
machine is operated as a motor.

SN rotor

stator

air gap

Fig. 3.1 A schematic diagram of a six-pole three-phase synchronous machine.
Figure reproduced based on [114].

At steady state, a synchronous machine rotates with a fixed frequency Ωm
0 corresponding

to the nominal operation frequency of the connected power grid Ω0 = 2π × 50 or 2π ×
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60 Hz.3 Any acceleration or deceleration of the rotation is a result of the imbalance of
the torque acting on the rotor, which is governed by Newton’s second law [115, 114]

I θ̈m + Dmθ̇m = Tmech − Tel, (3.2)

where θm(t)[rad] is the rotor angle deviated from the rotating reference frame Ωm
0 t,

I[kg m2] is the moment of inertia of the turbine and the rotor, Dm[N m s] is the coef-
ficient of the damping torque caused by the velocity-dependent friction at the air gap.
Tmech[N m] denotes the net mechanical torque, i.e. the torque produced by the turbine
less the damping torque at the reference frequency DmΩm

0 and Tel[N m] denotes the
counteracting electromagnetic torque.

Expressing the torque on the right hand side of the equation in terms of power and
noticing the rotation speed deviation during a disturbance is usually small such that
(θ̇m +Ωm

0 )−1 ≈ (Ωm
0 )−1, we rewrite equation of motion as

I θ̈m + Dmθ̇m =
1
Ωm

0

(
Pmech − Pel

)
, (3.3)

where Pmech[W] and Pel[W] are the net injected mechanical power and the transmitted
electrical power respectively. If the machine is operated as a generator, Pmech is positive,
and if operated as a motor, Pmech is negative. For a synchronous machine with p poles
per phase, the relation of the mechanical rotor angle θm and the mechanical reference
angular velocity Ωm

0 with their electrical counterparts reads

θm(t) =
θ(t)
p/2

, Ωm
0 =

Ω0

p/2
. (3.4)

Inserting this relation to the equation of motion, we obtain the swing equation describing
the dynamics of the synchronous machine in terms of the electrical load angle θ and the
input- and output-power

M θ̈ + Dθ̇ = Pmech − Pel, (3.5)

where M = (p/2)2Ω0I is the angular momentum of the rotor at the synchronous speed
and D = (p/2)2Ω0Dm is the damping coefficient of the machine. In practice the swing
equation is usually written in per unit form, so that the dynamics of synchronous machines
with diverse sizes become comparable via the normalized parameters of the moment of
inertia and the damping, which we will discuss in detail in Sec. 7.2.

From swing equation to Kuramoto-like oscillators The swing equation of a syn-
chronous machine (Eq. 3.5) relates the dynamics of the load angle θ to the power flowing

3The grid operation frequency Ω0 = 2π × 50 Hz for power grids in Europe and Ω0 = 2π × 60 Hz for
power grids in USA [106].
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into and out of the machine. Thus a direct analogy between the power grids and the
phase oscillator networks can be made: every synchronous machine, generator or con-
sumer, can be viewed as a oscillator, whose state is described by its load angle θ and its
frequency deviation θ̇, while the electrical power transmission lines between the con-
nected machines are viewed as edges. With the following assumptions, we can find an
explicit correspondence between the swing equation and the dynamics of a second-order
Kuramoto oscillator.

The time-dependent voltage at node i of an AC power grid has the form Ũi = Ui sin (Ω0t+
θi) with amplitude Ui, frequency Ω0 and phase angle θi. The effective voltage at this
node, i.e. the voltage value in a direct current circuit that would produce the same power
over a resistive load, is Ui =

1√
2
Uieıθi . The complex power transmission Si j between two

three-phase synchronous machines i and j is conventionally defined as three times the
effective voltage at node i multiplied by the complex conjugate of the effective current on
the transmission line Ii j , i.e. Si j := 3Ui I

∗
i j . In the calculation of the power transmission,

we make the following assumptions:

Assumption 1. The voltage amplitude at each node is identical and constant: Ui ≡ U, ∀i.

Assumption 2. All transmission lines are without Ohmic loss: Yi j ≡ ıBi j, ∀(i, j), with Yi j
being the admittance of the line connecting node pair and Bi j being the susceptance.

Assumption 3. Only the active power transmission Pi j := Re[Si j] is considered.4

Incorporating these assumptions, the (active) power transmission from node i to node j
reads

Pi j = Re[Si j] = Re[3Ui I
∗
i j] =

3
2

U2Bi j sin
(
θi − θ j

)
. (3.6)

Thus, a Kuramoto-type diffusive coupling sin
(
θi − θ j

)
arises. Inserting the expression

of the electrical power transmission term Eq. 3.6 into the swing equation (Eq. 3.5), we
obtain the dynamics for node i as

Mi θ̈i + Di θ̇i = Pmech
i −

N∑

j=1

3
2

U2Bi j sin
(
θi − θ j

)
. (3.7)

4The imaginary part of Si j , the reactive power, is not consumed by the load but converted back and forth
between the energy source and the reactive loads, i.e. inductors and capacitors. Although the reactive
power does no work but only heats up the grid, it is necessary for sustaining the voltage level.
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The simplified oscillatory dynamics of synchronous machines in AC power grids Eq. 3.7
has exactly the same form of the second-order phase oscillator model Eq. 3.1 with
αi, βi > 0 and g(·) = sin(·). We thus obtain the oscillator model of AC power grids

θ̈i = Pi − αi θ̇i +

N∑

j=1
Ki j sin

(
θ j − θi

)
, (i = 1, · · · , N ) (3.8)

with parameter mappings

αi =
Di

Mi
, Pi =

Pmech
i

Mi
, Ki j =

3
2

U2Bi j

Mi
. (3.9)

The coupling strength Ki j = K ji > 0 represents the maximal power that can be transmitted
between node pair (i, j), we thus alternatively call it the transmission capacity of line
(i, j). Furthermore, we define the power flow from node j to node i as the active power
transmission

Fji := Ki j sin
(
θ j − θi

)
. (3.10)

See Fig. 3.2 for an illustrative sketch of the oscillator model of a seven-node power grid
network.

θi

generator

motor

power flow

phase deviation from rotating 
reference frame

1

2
3

4
5

6
7

Fj i := Ki j sin(θ j − θi )F46

θ4

K46

Pi > 0

Pi < 0

P4

Fig. 3.2 A sketch of the oscillator model of a small AC power grid. The power flow
from a generator, node 4, to a motor, node 6, is labeled: F46 = K46 sin(θ6 − θ4). The
green arrows represent the direction of the positive power flows, e.g. F46 > 0. It does
not mean the edges are directed in the oscillator model.

So far we derived the oscillator model of AC power grid based on the swing equation of
synchronous machines and a few simplifying assumptions on power transmission. More
technical details of the model derivation can be found in e.g. [116].
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3.2.2 The steady states of the oscillator model

The normal operation state of a power grid corresponds to a stable fixed point of the
oscillator model (Eq. 3.8): all synchronous machines run with the same nominal grid
frequency Ω0, but with fixed relative phases between each other, i.e. the oscillator
network system is in a phase-locked state [91]. The dynamical properties of such fixed
points essentially determine the stability of the normal operation of power grids. Thus
we briefly review the bifurcation nature and the stability of the fixed points, which lay
the foundation for the further analysis on the network responses of the oscillator model
to perturbations.

The existence of fixed points A fixed point of the oscillator model of power grids
(Eqs. 3.8) θθθθθθθθ∗ = (θ∗1, · · · , θ∗N ) is a solution of the transcendental equations

Pi +

N∑

j=1
Ki j sin

(
θ j − θi

)
= 0, (i = 1, · · · , N ), (3.11)

which come from the oscillator model with θ̈θθθθθθθ = 00000000 and θ̇θθθθθθθ = 00000000. It is shown that the existence
of such fixed points is equivalent to the existence of local extrema or saddle points of the
potential function

V (θθθθθθθθ) = −
N∑

j=1
Pjθ j − 1

2

N∑

i, j=1
Ki j cos

(
θ j − θi

)
, (3.12)

where ∂V
∂θi
= 0 for all i ∈ {1, · · · , N} [106, 117]. In fact, if the damping is zero αi = 0 for

all i, the network system defined by Eqs. 3.8 becomes a Hamiltonian system with the
kinetic energy

T (θ̇θθθθθθθ) =
1
2

N∑

j=1
θ̇2

j (3.13)

and the potential energy defined in Eq. 3.12 [106]. The set of all fixed points of the
oscillator model are identical to the set of fixed points of the corresponding Hamiltonian
system, since the solution of Eq. 3.11 is independent of the damping αi. Furthermore,
the fixed points are also the same as those of the Kuramoto model, which can be viewed
as the over-damped limit of the oscillator model of power grids.

As an illustrative example, we consider an elementary system consisting of two oscillators,
one generator and one motor (consumer) with the same damping α, opposite injected
power P1 = P = −P2 and coupling strength K . For the two-element system, the potential
function V (θθθθθθθθ) = −1

2∆P∆θ − 1
2 K cos(∆θ) with ∆P = P1 − P2 and ∆θ = θ1 − θ2 has a tilted

washboard-like shape [116, 106]. When the coupling strength is greater than the critical
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coupling K > Kc = P, two fixed points exist: ∆θ∗1 = arcsin ∆P
2K and ∆θ∗2 = π − arcsin ∆P

2K .
At K = Kc = P, the two fixed points merge to one. Naturally one would ask, what are
the stability properties of the fixed points? And how do they change when the parameters
P, K and α are varied? We discuss these questions in the following subsections.

Linear stability of steady states The linear stability of a specific fixed point θθθθθθθθ∗ is
determined by the Jacobian eigenvalues of the system at θθθθθθθθ = θθθθθθθθ∗ (see Sec. 1.2.1). A small
deviation of the phase angles from the fixed point under observation ΘΘΘΘΘΘΘΘ := θθθθθθθθ − θθθθθθθθ∗ follows
the linearized dynamics

d
dt

(
ΘΘΘΘΘΘΘΘ

Θ̇ΘΘΘΘΘΘΘ

)
= J

(
ΘΘΘΘΘΘΘΘ

Θ̇ΘΘΘΘΘΘΘ

)
, (3.14)

where the Jacobian matrix is given by

J =
(

00000000N IIIIIIII N
−L −A

)
(3.15)

with 00000000N being an N × N zero matrix, IIIIIIII N an N × N identity matrix and A an N × N
diagonal matrix withAii = αi. The matrix L is the Hesse matrix of the potential function
V (θθθθθθθθ) (Eq. 3.12):

Li j =
∂2V
∂θi∂θ j

=


−Ki j cos

(
θ∗j − θ∗i

)
if i , j,

N∑

ℓ=1
Kiℓ cos

(
θ∗ℓ − θ∗i

)
if i = j .

(3.16)

Remarkably, this Hesse matrix can be interpreted as the weighted graph Laplacian of the
underlying network structure of the system (cf. Eq. 1.7) if we let Ki j cos

(
θ∗j − θ∗i

)
be the

weight of edge (i, j). We thus denote the matrix with the symbol of the graph Laplacian
L5 and its eigenvalues as 0 = |λ[0] | ≤ |λ[1] | ≤ · · · ≤ |λ[N−1] |.
It is proved that the fixed point θθθθθθθθ∗ is at least neutrally stable if all of the Laplacian
eigenvalues are non-negative [106]. Let wwwwwwww = (w1w1w1w1w1w1w1w1,w2w2w2w2w2w2w2w2) ∈ C2N with w1w1w1w1w1w1w1w1,w2w2w2w2w2w2w2w2 ∈ CN be an
eigenvector of J with eigenvalue µ ∈ C. We then have

µw2w2w2w2w2w2w2w2 = −Lw1w1w1w1w1w1w1w1 − Aw2w2w2w2w2w2w2w2 and w2w2w2w2w2w2w2w2 = µw1w1w1w1w1w1w1w1, (3.17)

which combinedly lead to

µ2w1w1w1w1w1w1w1w1 + µAw1w1w1w1w1w1w1w1 + Lw1w1w1w1w1w1w1w1 = 0. (3.18)

5The Laplacian eigenvalues are real since L is Hermitian: Ki j cos
(
θ∗j − θ∗i

)
=K j i cos

(
θ∗i − θ∗j

)
.
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Multiplying both sides with wwwwwwww
†
11111111 , the conjugate transpose of w1w1w1w1w1w1w1w1, we thus obtain an expres-

sion of µ

µ =
−χ2 ±

√
χ2

2 − 4χ1 χ3

2χ1
, (3.19)

where χ1 = wwwwwwww
†
11111111w1w1w1w1w1w1w1w1 ≥ 0, χ2 = wwwwwwww

†
11111111Aw1w1w1w1w1w1w1w1 ≥ 0 and χ3 = wwwwwwww

†
11111111Lw1w1w1w1w1w1w1w1 ≥ 0. χ2 and χ3 are

non-negative since Aii = αi > 0 and L is positive semi-definite. Therefore, we always
have Re(µ) ≤ 0. Additionally, µ = 0 only when Lw1w1w1w1w1w1w1w1 = 0, where w1w1w1w1w1w1w1w1 has to lie in the linear
span of the Laplacian eigenvector vvvvvvvv[0] = (1, 1, · · · , 1) corresponding to λ[0] = 0. Thus,
the fixed point is neutrally stable only for small deviation vectors ΘΘΘΘΘΘΘΘ ∈ span({vvvvvvvv[0]}), and is
asymptotically stable for any other perturbations. In fact, a perturbation ΘΘΘΘΘΘΘΘ ∈ span({vvvvvvvv[0]})
means a uniform global phase shift in the oscillator network, which leads the network
system to a new fixed point θ̃∗θ̃∗θ̃∗θ̃∗θ̃∗θ̃∗θ̃∗θ̃∗ = θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗ + avvvvvvvv[0] with a ∈ R and stay there if no further
perturbation is present.

Stability, overload and bifurcation As discussed, a fixed point of the oscillator model
is ensured to be stable by the non-negativity of the Laplacian eigenvalues. It is a well-
known result [4] and can be easily shown by applying the Gershgorin circle theorem
that the non-negativity of the Laplacian eigenvalues is in fact a consequence of the
non-negativity of the edge weights, i.e.

cos
(
θ∗j − θ∗i

)
≥ 0 for all (i, j). (3.20)

If a power grid is weakly loaded, which is usually the case in real-world power grids
for safety reasons, the phase difference between connected oscillators are typically small
|θ∗i − θ∗j | ≤ π/2, so the condition (3.20) is always satisfied. In further analysis we assume
(3.20) is true for the fixed point under consideration.

We have seen from the example of the two-element toy model that the existence of fixed
points is closely related to the critical coupling Kc = P: a stable operation is possible only
when the transmission capacity of transmission lines is large enough to carry the power
must to be transmitted, i.e. Kc. If the transmission capacity in a grid is greater than
Kc, there are fixed points such that |θ∗i − θ∗j | < π/2 for all (i, j) and thus the fixed points
are stable. If smoothly decreasing the coupling strengths Ki j or cranking up the power
injections Pi, at least one pair of stable fixed points approach to each other and vanish in a
saddle-node bifurcation [116, 106]. At the bifurcation point the grid is critically coupled,
meaning at least one of transmission line becomes fully-loaded: the flow Fi j = Ki j = Kc,
i.e. |θi − θ j | = π/2 and thus Li j = L ji = 0. Beyond the point the stable fixed point is lost
and the grid becomes desynchronized. However, as reported in [106], another scenario
can occur where the loss of stability is not related to overload: if at the fixed point the
condition (3.20) is not satisfied, then the edge weights can be negative thus the above
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results do not apply. In this case the desynchronization of the grid is a collective effect of
the interacting components with no transmission line is overloaded.





Part II. Dynamic Patterns
in Steady Network Responses
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In Part II of the thesis, we investigate the long-term dynamic patterns emerging in
the collective network responses to external driving signals. In comparison to previous
studies which focus on instability-induced long-term patterns [17–19, 30–36], we study
the dynamic response patterns induced by persistent spatiotemporal driving signals. Es-
pecially, we focus on a model class of Kuramoto-like oscillator networks (3.1) introduced
in Chap. 3.

In Chap. 4, we first derive the analytical solutions of the linear network responses close
to a fixed point in the spirit of the linear response theory.

Based on the solutions, in Chap. 5, we identify three frequency regimes of dynamic re-
sponse patterns, which show distinct spatiotemporal features depending on the frequency
of the external driving signal.

Furthermore, in Chap. 6 we explore how the dynamic responses change at the high- and
low-damping limits, where the model approaches the classical Kuramoto model and a
Hamiltonian system respectively.

In the last chapter of Part II, Chap. 7, we turn our attention towards a practical aspect: we
develop a method to accurately predict the dynamic network responses to irregular and
distributed signals. In particular, we discuss the application of the predictive method in
estimating the frequency response in AC power grids to fluctuations in power production
and consumption. Last but not least, we investigate the limit of validity of our theory.



Chapter 4

Steady Network Responses to External
Driving Signals

Starting from this chapter, we present the main results of this thesis. In this chapter,
we present an analytical analysis of the linear dynamic responses to an external driving
signal in second-order Kuramoto-like oscillator networks. In particular, we focus on
the scenario where a single node in the network is driven by a small sinusoidal signal,
since sinusoidal functions are the building blocks of signals with more complex forms in
Fourier analysis. By observing the solution of the total network phase, i.e. the sum of
the oscillator phases over all nodes in the network, we distinguish the transient and the
steady, or long-term (t → ∞) network responses (Sec. 4.1), and then focus on the latter for
investigating the formation of the dynamic pattern across network under perturbation
(Sec. 4.2 and Sec. 4.3). Specifically, we explicitly derive the solution of networks’ nodal
steady responses to a sinusoidal signal (Sec. 4.2) and to a step-function signal as a special
case with the driving frequency being zero (Sec. 4.3). These analytical solutions allow
for theoretical insights into the dynamic network responses near a fixed point, and lay
a solid foundation for the investigation of the dynamic pattern formation in networks,
which will be elaborated in next chapter.

4.1 Total network response to a sinusoidal signal

From now on we focus on the networks of N coupled Kuramoto-like oscillators following
the dynamics

αi θ̇i + βi θ̈i = Ωi +

N∑

j=1
Ki j sin

(
θ j − θi

)
+ εDi (t), for i ∈ {1, · · · , N}, (4.1)
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which is essentially the model class introduced in Sec. 3.1 plus setting g(·) = sin(·). We
first investigate how such a network as a whole responds to a sinusoidal driving signal
at node k starting from t = 0, Di = H (t)δik eı(ωt+φ). Here H (t) is a heaviside function
with value 0 for t < 0 and 1 for t ≥ 0. Throughout the thesis, we assume both the
driving signals and thus the responses start from t = 0, i.e. equal to zero for t < 0,
therefore for notational brevity we drop the heaviside function H (t) for the signals and
the responses in the rest of the thesis. The initial conditions at t = 0 are specified ad hoc.
First intuition about the response can be gained by observing the trajectory of the sum
of the phases of all units, θtot :=

∑N
i=1 θi, which is rigorously solvable. For simplicity we

assume αi ≡ α , 0, βi ≡ β , 0 for all i, and thus obtain an equation for θtot by summing
the N equations for each node:

αθ̇tot + βθ̈tot =

N∑

i=1
Ωi +

N∑

i=1

N∑

j=1
Ki j sin

(
θ j − θi

)
+ εeı(ωt+φ) . (4.2)

Due to the assumption that the considered network system has at least one stable fixed
point, the sum of the natural frequencies/accelerations must add up to zero:

∑N
i=1Ωi = 0.

At the fixed point θθθθθθθθ = θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗, the time derivatives vanish by definition, we thus have

N∑

i=1
Ωi = −

N∑

i=1

N∑

j=1
Ki j sin

(
θ∗j − θ∗i

)
= 0. (4.3)

The double summation
∑N

i=1
∑N

j=1 Ki j sin
(
θ j − θi

)
is zero since sin(−x) = − sin(x) for

x ∈ R and Ki j = K ji for all (i, j). In the context of power grids, Eq. 4.3 implies that the
power generation and power consumption must be balanced to ensure a steady state.
The total network phase θtot thus follows

αθ̇tot + βθ̈tot = εeı(ωt+φ), (4.4)

which is analytically solvable for θtot. In the most general case where β > 0 and α > 0,
Eq. 4.4 is a second order inhomogeneous ODE, which has the solution

θtot(t) = C1 + C2e−
α
β t
+

ε

−βω2 + ıαω
eı(ωt+φ) (4.5)

with the constants being

C1 = θ
tot
0 +

β

α
θ̇tot

0 −
εeıφ

−βω2 + ıαω

(
ıβω

α
+ 1

)

C2 = − β
α
θ̇tot

0 +
β

α

ıεeıφ

−βω + ıα .
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Here θtot
0 := θtot(0) and θ̇tot

0 := θ̇tot(0) are the initial conditions of θtot and θ̇tot at t = 0.
Please note that the solution Eq. 4.5 is general in the sense that it is valid as long as
the parameters Ωi and Ki are chosen such as the system has at least a fixed point. The
validity of the solution does not require the system to be in the neighborhood of the
fixed point. Additionally, we notice that the initial conditions of the system appear only
in the coefficients of the first and the second term, which is respectively a constant and a
term decaying with time. The third term, a sinusoidal response, is independent of the
initial conditions.

In the thesis we focus on a network system’s response near its steady state, thus we let the
initial conditions be a fixed point θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗, i.e. θtot

0 =
∑N

i=1 θ
∗
i ≡ θ∗,tot and θ̇tot

0 = 0. In this case,
the evolution of the total network phase reads

θtot(t) = θ∗,tot +
ıε

αω
eıφ +

ε β

α2 + ıα βω
eıφe−

α
β t
+

ε

−βω2 + ıαω
eı(ωt+φ) . (4.6)

The solution Eq. 4.6 implies that, as a whole, the network responds to a sinusoidal driving
signal with (i) a constant total phase shift ıε

αω eıφ from the fixed point, (ii) an exponentially
decaying transient response with a time constant β

α , and (iii) a persistent sinusoidal
response with the same frequency as the driving signal and a complex amplitude ε

−βω2+ıαω

(See Fig. 4.1 for an example). Interestingly, the complex amplitude is independent of
the initial condition of the system. It also implies a phase shift arctan

(
α
βω

)
between the

periodic behavior of the total network response and the external driving signal.

The scenarios where α , 0, β = 0 and α = 0, β , 0, which are respectively associated
to the high- and low-damping limit of the second-order oscillator networks, will be
discussed in Chap. 6.

4.2 Steady nodal responses to a sinusoidal signal

As revealed by the solution of the total network response (Eq. 4.6), the long-term impact
of a sinusoidal driving (t → ∞) is embodied in a constant total phase shift and a sinusoidal
total response with a complex amplitude. We notice that the strength of both effects are
proportional to the amplitude of the driving signal ε, which suggests a linear response
function. This is noticeable since it means that, the network as a whole responds to
external driving linearly even far from a fixed point.

However, a more intriguing question is, how is the total network response is distributed
across the network, i.e. what are the dynamic network response patterns evoked by a
sinusoidal signal? Taking the hints from the solution of the total phase response (4.6),
which (i) includes linear response, i.e. the response up to the first order of the perturbation
strength, and (ii) contains a phase shift and a sinusoidal function, we assume the phase of
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Fig. 4.1 Total network response to a sinusoidal driving signal. An Illustration for
the transient and the steady response in the total network response given in Eq. 4.6.
The transient stage characterized by an exponential decay is shaded in yellow. The
steady response contains a phase shift (grey dashed line) and a sinusoidal oscillation. The
magnitude of the phase shift and the amplitude of the sinusoidal response is labeled. The
sinusoidal driving signal is plotted in the upper panel and its onset is indicated by a dotted
line. Parameters: α = 0.5 s−1, β = 1, ω = 0.5 × 2π Hz, φ = − π2, ε = 0.1 s−2.

node i responding to a driving signal at node k has a similar form:

θ (k)
i (t) = θ∗i + εη

(k)
i + εΘ

(k)
i (t), (4.7)

where the nodal phase shift η (k)
i satisfies

N∑

i=1
η (k)

i =
ıeıφ

αω
(4.8)

and the nodal sinusoidal response has a harmonic form

Θ
(k)
i (t) = A(k)

i eı
(
ωt+∆(k )

i

)
. (4.9)

The amplitude A(k)
i of the nodal sinusoidal response and the response phase shift ∆(k)

i
with respect to the sinusoidal signal generally depend on the site k of perturbation and
the site i of response.
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Interestingly, the nodal phase shift is identical for each node, i.e. η (k)
i = η. To show this,

we insert Eq. 4.7 into the dynamics of the sinusoidally driven network system (Eq. 4.1),
and Taylor-expand the nonlinear coupling function up to the first order of small phase
deviation θi − θ∗i , we obtain

− βω2Θ(k)
i + ıαωΘ

(k)
i =

N∑

j=1
Ki j cos

(
θ∗j − θ∗i

) (
η (k)

j − η (k)
i + Θ

(k)
j − Θ(k)

i

)
+ δik eı(ωt+φ) .

(4.10)
By defining the response vector ΘΘΘΘΘΘΘΘ(k) :=

(
Θ

(k)
1 ,Θ(k)

2 , ...,Θ(k)
N

)
, the normalized driving vector

DDDDDDDD(k) with D(k)
i = δik eı(ωt+φ), the shift vector HHHHHHHH (k) :=

(
η (k)

1 , η (k)
2 , ..., η (k)

N

)
, we write the

linearized dynamics in a matrix form
(
−βω2 + ıαω + L

)
ΘΘΘΘΘΘΘΘ(k) − DDDDDDDD(k) = −LHHHHHHHH (k), (4.11)

where the Laplacian matrix L as defined in 3.16 arises. If integrated over a period [0, 2π
ω ],

the left hand side of Eq. 4.13 vanishes since both ΘΘΘΘΘΘΘΘ(k) and DDDDDDDD(k) are sinusoidal. Thus on
the right hand side LHHHHHHHH (k) = 00000000. As discussed in Sec. 3.2.2, the weighted graph Laplacian
has only one zero eigenvalue λ[0] with corresponding eigenvector vvvvvvvv[0] = (1, 1, · · · , 1) for
connected networks. This implies that the shift vector HHHHHHHH (k) ∈ span({vvvvvvvv[0]}), meaning the
shift of each node is identical:

η (k)
i = η =

ıeıφ

αωN
. (4.12)

This result can be understood as, for a network system close to the fixed point, the constant
phase shift evoked by a single sinusoidal signal (Eq. 4.5) is distributed homogeneously
across the network as t → ∞.

Hence the dynamics of the steady linear network responses (Eq. 4.11) is essentially
(
−βω2 + ıαω + L

)
ΘΘΘΘΘΘΘΘ(k) = DDDDDDDD(k) . (4.13)

The solution of the steady linear responses ΘΘΘΘΘΘΘΘ(k) can be obtained by utilizing the orthogo-
nality of the Laplacian eigenvectors. L is real and symmetric, so that its eigenvectors
{vvvvvvvv[0], · · · , vvvvvvvv[N−1]} form an orthogonal basis. Expressing the response vector ΘΘΘΘΘΘΘΘ(k) in this
basis, i.e. ΘΘΘΘΘΘΘΘ(k) =

∑N−1
ℓ=0 c[ℓ]vvvvvvvv[ℓ], we obtain

−ω2 β

N−1∑

ℓ=0
c[ℓ]vvvvvvvv[ℓ] + ıωα

N−1∑

ℓ=0
c[ℓ]vvvvvvvv[ℓ] +

N−1∑

ℓ=0
λ[ℓ]c[ℓ]vvvvvvvv[ℓ] = DDDDDDDD(k) . (4.14)
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The coefficient of projection c[m] for the m-th eigenspace is given by multiplying both
sides of the equation by Laplacian eigenvector vvvvvvvv[m]:

c[m] =
v

[m]
k eı(ωt+φ)v

[m]
k

−ω2 β + ıωα + λ[m]
. (4.15)

Thus the solution of the steady linear sinusoidal response vector ΘΘΘΘΘΘΘΘ(k) reads

ΘΘΘΘΘΘΘΘ(k) = eı(ωt+φ)
N−1∑

ℓ=0

v
[ℓ]
k

−βω2 + ıαω + λ[ℓ]
vvvvvvvv[ℓ]. (4.16)

Thus, close to a fixed point, the steady nodal response at node i to a sinusoidal signal at
node k is written as

θ (k)
i (t) = θ∗i +

ıεeıφ

αωN
+

N−1∑

ℓ=0

εeı(ωt+φ)v
[ℓ]
k v

[ℓ]
i

−βω2 + ıαω + λ[ℓ]
. (4.17)

Here all Laplacian eigenvalues are non-negative since in the normal operation state the
phase difference between neighboring units satisfies θ∗j − θ∗i ≤ π/2 for all edges (i, j) (see
Sec. 3.2.2). Thus the eigenvalues and the corresponding eigenvectors v[0], v[1], · · · , v[N−1]

of L are indexed as 0 = λ[0] < λ[1] < · · · < λ[N−1].

Since each node shares the same phase shift, ıεeıϕ
αωN , interesting and nontrivial dynamic

response patterns are essentially encoded in the steady sinusoidal response (Eq. 4.16): in
long term, every node in the network responds sinusoidally, with the same frequency
as the driving signal but with a characteristic complex amplitude, depending on the
parameters α, β, the driving frequency ω and its position in the network. It implies a
change in amplitude and in phase between the sinusoidal driving signal and the sinusoidal
response. Therefore we define the complex amplitude characterizing the nodal response
as the nodal response factor of node i to a sinusoidal perturbation at node k

R(k)
i :=

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i

−βω2 + ıαω + λ[ℓ]
. (4.18)
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The change in amplitude and the phase shift in the nodal response can be expressed as
the absolute value and the complex argument of R(k)

i :

A(k)
i =

���R(k)
i

��� =
√(

Re R(k)
i

)2
+

(
Im R(k)

i

)2
, (4.19)

∆
(k)
i − φ = arg

(
R(k)

i

)
= atan2

(
Im R(k)

i ,Re R(k)
i

)
(4.20)

with

Re
(
R(k)

i

)
=

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i

(
−βω2 + λ[ℓ]

)

(
−βω2 + λ[ℓ]

)2
+ α2ω2

(4.21)

Im
(
R(k)

i

)
=

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i (−αω)

(
−βω2 + λ[ℓ]

)2
+ α2ω2

. (4.22)

We call the amplitude of the sinusoidal response A(k)
i as the nodal response strength and the

phase difference ∆(k)
i − φ as the nodal response phase delay. Here the function atan2(y, x)

gives the principle value of the function arctan
(
y/x

)
in the range (−π, π], i.e. the argu-

ment of the complex number x + ıy.

Remarkably, the nodal response factor is symmetric: R(k)
i = R(i)

k . That means the effect
of a sinusoidal signal at node k on another node i is identical to the effect of a sinusoidal
signal at node i on node k.

In general, the parameters αi and βi can be heterogeneous across the network. For
such systems, the steady nodal response can be estimated by again linearizing the impact
of the heterogeneity. Without loss of generality, we assume βi ≡ 1 for all i, which is
equivalent to rescaling the dynamics of each node by dividing both sides of the equation
with βi. In this way, the heterogeneity in the relation between the change rates of θi
in the nodal dynamics is concentrated in the (rescaled) parameter αi. Treating αi as a
quantity fluctuating around the network average α0 := 1

N
∑

i αi, i.e. αi = α0 + α
′
i with

small α′i, we assume the steady nodal response as

Θ
(k)
i = Θ

(k)
0,i + Θ

′(k)
i , (4.23)

that is, the sum of two parts: the response to the average parameter, Θ(k)
0,i , and the small

correction of response caused by the parameter heterogeneity Θ′(k)
i . The dynamics of

the network response for heterogeneous αi reads

−ω2ΘΘΘΘΘΘΘΘ(k) + ıωαααααααα ◦ ΘΘΘΘΘΘΘΘ(k) + LΘΘΘΘΘΘΘΘ(k) = DDDDDDDD(k), (4.24)
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where “◦” denotes the element-wise (Schur) product of two vectors. Inserting the
assumptions for αααααααα and ΘΘΘΘΘΘΘΘ(k) to the dynamics (4.24), and neglecting the term to the second
order of smallness, we arrive at the matrix equation for the correction response vector

−ω2ΘΘΘΘΘΘΘΘ′(k) + ıωα0ΘΘΘΘΘΘΘΘ
′(k) + LΘΘΘΘΘΘΘΘ′(k) = −ıωαααααααα′ ◦ ΘΘΘΘΘΘΘΘ(k)

0 . (4.25)

Thus ΘΘΘΘΘΘΘΘ′(k) is solved as

ΘΘΘΘΘΘΘΘ′(k) =

N−1∑

ℓ=0

−ıω
(
αααααααα′ ◦ ΘΘΘΘΘΘΘΘ(k)

0

)
· vvvvvvvv[ℓ]

−ω2 + ıωα0 + λ[ℓ]
vvvvvvvv[ℓ], (4.26)

which gives the linear estimate of the steady response vector for a heterogeneous dissipa-
tion parameter

ΘΘΘΘΘΘΘΘ(k) =

N−1∑

ℓ=0

(
DDDDDDDD(k) − ıωαααααααα′ ◦ ΘΘΘΘΘΘΘΘ(k)

0

)
· vvvvvvvv[ℓ]

−ω2 + ıωα0 + λ[ℓ]
vvvvvvvv[ℓ]. (4.27)

4.3 Steady responses to a step-function signal

In this section we discuss the network responses to a step-function signal, which can
be viewed as a special case of sinusoidal signals with ω = 0. Similarly, we first solve for
the total network response which gives us hints for reasonable assumptions of the form
of the nodal responses, then we compute the nodal responses in terms of the Laplacian
eigensystem.

Total response The total phase θtot(t) =
∑N

i θi (t) of a network system (Eq. 4.1) driven
by a step-function signal εDDDDDDDD(k) with Di = δik follows the dynamics

αθ̇tot + βθ̈tot = ε, (4.28)

where we again let αi ≡ α > 0 and βi ≡ β > 0. Given initial conditions θtot(0) = θtot
0 and

θ̇tot(0) = θ̇tot
0 , the solution of the total network phase reads

θtot(t) = C1 + C2e−
α
β t
+
ε

α
t (4.29)

with

C1 = θ
tot
0 +

β

α

(
θ̇tot

0 −
ε

α

)

C2 = − β
α

(
θ̇tot

0 −
ε

α

)
.
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Like in the total network response to a sinusoidal signal (Eq. 4.5), the initial condition of
the system appears only the constant phase shift and the transient response, but not the
third term, a drift with a constant speed. If the system is perturbed at a fixed point, i.e.
θtot(0) = 0 and θ̇tot(0) = 0, the total phase responds to a step-function signal as

θtot(t) = θ∗,tot − ε β
α2 +

ε β

α2 e−
α
β t
+
ε

α
t, (4.30)

which suggests (i) a negative time-independent phase shift − ε β
α2 , (ii) a transient response

exponentially decaying with time constant β
α , and (iii) a drift away from the original fixed

point with a constant speed ε
α . The phase shift, the strength of the transient response and

the drift speed are proportional to the signal magnitude ε. An illustration of the total
response is shown in Fig. 4.2.
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Fig. 4.2 Total network response to a step-function driving signal. An Illustration
for the transient and the steady response in the total network response given in Eq. 4.30.
The transient stage characterized by an exponential decay is shaded in yellow. The steady
response contains a phase shift and a drift with a constant speed ε

α (grey dashed line). The
step-function driving signal is plotted in the upper panel. Parameters: α = 0.5 s−1, β =
1, ε = 0.1 s−2.

Steady nodal response As before, we take the hints given by the total phase response
(4.30), which contains a phase shift and a uniform drift, both are linear with respect to
the perturbation strength, thus assume the nodal linear response contains a nodal phase
shift η (k)

i and a nodal drift with speed u(k)
i . The solution for the steady nodal response

thus reads

θ (k)
i = θ∗i + εη

(k)
i + εu(k)

i t, (4.31)
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with η (k)
i and u(k)

i satisfying
∑N

i=1 η
(k)
i = − β

α2 and
∑N

i=1 u(k)
i = 1

α .

Remarkably, in the response to a step-function perturbation, the nodal drift speed is
identical for each node, but the nodal phase shift is not (see Fig. 4.3), which implies a
redistribution of flow in the network. Inserting the ansatz of the nodal response (Eq. 4.31)
to the driven network dynamics (Eq. 4.1) and linearizing the dynamics yields

−DDDDDDDD(k) + αUUUUUUUU (k) + LHHHHHHHH (k) = −LUUUUUUUU (k)t, (4.32)

where UUUUUUUU (k) :=
(
u(k)

1 , u(k)
2 , · · · , u(k)

N

)
is the vector of the drift speed. The left hand side of

the equation is time independent, hence the right hand side must be too. We thus have
LUUUUUUUU (k) = 00000000, which implies an identical nodal drift speed for every node: u(k)

i = u = 1
Nα, ∀i.

The shift vector is then determined by

LHHHHHHHH (k) = DDDDDDDD(k) − 1
N

11111111, (4.33)

where 11111111 = (1, · · · , 1). Again, writing the shift vector HHHHHHHH (k) in the basis of the orthonormal
Laplacian eigenvectors and computing the coefficients yields

HHHHHHHH (k) =

N−1∑

ℓ=1

1
λ[ℓ]

*,v
[ℓ]
k −

1
N

N∑

i=1
v

[ℓ]
i

+- vvvvvvvv
[ℓ] + H′H′H′H′H′H′H′H′(k) . (4.34)

The projection on the eigenvector vvvvvvvv[0] corresponding to the zero eigenvalue H′H′H′H′H′H′H′H′(k) :=
η′(k)11111111, which describes the homogeneous phase shift across the network, is determined
such that the constraint

∑N
i=1 ηi = − β

α2 is satisfied:

η′(k) =
1
N

−
β

α2 −
N−1∑

ℓ=1

1
λ[ℓ]

*.,v
[ℓ]
k

N∑

i=1
v

[ℓ]
i −

1
N

*,
N∑

i=1
v

[ℓ]
i

+-
2+/-

 . (4.35)

In summary, the steady nodal response to a step-function signal is

θθθθθθθθ (k) (t) = θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗ + εHHHHHHHH (k) +
ε

Nα
t11111111, (4.36)

where the nodal phase shift HHHHHHHH (k) is given by Eq. 4.34 and Eq. 4.35. This solution suggests
that, as a steady response to a step-function driving signal, the phase of each node is
shifted and drifts away from the initial fixed point. Interestingly, the nodal drift speed
ε

Nα is identical for each node, however, the nodal phase shift is not. It is characterized by
the site of perturbation, the site of response, the network topology and the steady state
prior to perturbation (see Fig. 4.3).
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Fig. 4.3 Nodal response to a step-function driving signal. An Illustration for the
steady nodal response given in Eq. 4.35. The steady response contains a topology-
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dashed line). A zoom-in highlighting the topology-dependent phase shift is shown in
the inset. The network parameters are the same as in Fig. 4.2.

4.4 Conclusion

In this chapter we derived analytical solutions of the steady response of a second-order
Kuramoto-like phase oscillator network to external driving signals.

driving 
signal 

           

                                                                    total network response                                

phase shift transient response particular response

(sinusoidal) (sinusoids with 
complex amplitude)

(step-
function) (drift with  

constant speed)

εeı (ωt+ϕ)

ε

(t > 0)

(
− β
α
θ̇tot
0 +

β

α

ıεeıϕ

−βω + ıα
)

e−
α
β tβ

α
θ̇tot
0 −

εeıϕ

−βω2 + ıαω

(
ıβω

α
+ 1

)
ε

−βω2 + ıαω
eı (ωt+ϕ)

β

α

(
θ̇tot
0 −

ε

α

)
− β
α

(
θ̇tot
0 −

ε

α

)
e−

α
β t

(t > 0)

ε

α
t

Table 4.1 Total network responses to an external driving signal.
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For balanced networks with
∑N

i=1Ωi = 0, where the existence of at least one fixed point is
ensured, the time evolution of the total network phase

∑N
i=1 θi (t) can be solved rigorously.

The solution gives information about how the entire network responds to driving signals
as one. If driven by a sinusoidal signal, the network responds with (i) a constant phase
shift, (ii) an exponentially decaying transient response (∝ e−

α
β t), and (iii) a particular

sinusoidal response, with a shift in amplitude and in phase from the driving signal. If
driven by a step-function signal, the particular sinusoidal response is replaced by a drift
away from the initial condition with a constant speed. A tabular summary of results for
the total network response can be found in Tab. 4.1.

For both responses, only the phase shift and the transient response depend on the initial
conditions of θi and θ̇i (the cells shaded in yellow in Tab. 4.1). Remarkably, the particular
response that characterizes the form of the driving signal, i.e. the sinusoidal response
for a sinusoidal signal and the drift for a constant signal, are independent of the initial
conditions (the cells shaded in orange in Tab. 4.1). That means, no matter the system
is close to the fixed point or not, the sum of the oscillators’ phases has always the same
particular responses to driving signals, proportional to the driving strength, even though
the nodal responses can be dramatically different. This result might be interesting for
the studies of the coarse-graining of networks. Particularly, if the network is at a fixed
point prior to perturbations, the total response appears to be linear to the strength of the
driving signal (see Eq. 4.6 and Eq. 4.30). It suggests a linear response theory for network
dynamics.

driving signal 
       at node    

                                                        steady response at node                                       

phase shift particular response

(sinusoidal) (sinusoids with complex amplitude)

(step-function) (drift with constant speed)

i

k

εeı (ωt+ϕ)

ε

ıεeıϕ

αωN

ε

Nα
tN−1∑

ℓ=1

ε

λ[ℓ]
!"v

[ℓ]

k
− 1

N

N∑

i=1

v
[ℓ]
i
#$ v

[ℓ]
i + εη

′(k )

(t > 0)

(t → ∞)

N−1∑

ℓ=0

eı (ωt+ϕ)v
[ℓ]

k

−βω2 + ıαω + λ[ℓ]
v
[ℓ]
i

Table 4.2 Steady nodal responses to an external driving signal.

With the hints provided by the analysis of the total network responses, we find solutions
for the steady nodal responses in the linearized regime, which encode the steady dynamic
response patterns in such networks. We include the constant phase shift and the particular
response in the assumptions for the nodal responses while discarding the transient response.
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Since the weighted graph Laplacian arises in the linearized dynamics of the system, we
express the nodal responses in terms of the projections on the Laplacian eigenvectors and
determine the projection coefficients using the orthogonality of the eigenvectors. The
solutions are summarized in Tab. 4.2.

Interestingly, for a sinusoidal signal, the network has a homogenous phase shift, while
for a step-function signal the drift speed is homogeneous across the network (see the
cells shaded in blue in Tab. 4.2). The particular sinusoidal nodal response to a sinusoidal
signal and the phase shift evoked by a step-function signal are different for each node,
thus characterize the topology of the network (see the cells shaded in orange in Tab. 4.2).
Particularly, if we interpret the network dynamics as the operation of power grids, the
node-specific phase shift implies a redistribution of the power flow caused by the constant
external input, which causes the imbalance of the power generation and consumption.
However, the sinusoidal response with a node-specific amplitude and phase delay forms a
more complex dynamic network response, which exhibit qualitatively different patterns
in three frequency regimes. See next chapter for details.





Chapter 5

Three Frequency Regimes of Steady Response
Patterns

In this chapter we elaborate the frequency dependence of the steady response pattern
induced by a sinusoidal perturbation signal. In particular, based on the analytical solution
of the steady nodal responses derived in Sec. 4.2, we identify three frequency regimes of
steady response patterns with distinct spatial distributions of response strength.

We start from an illustrative example showing the qualitatively different response patterns
in a sample network to the low-, intermediate- and high-frequency Fourier modes of a
noisy perturbation signal (Sec. 5.1). In Sec. 5.2, we focus on the eigenfrequencies of a
network which lead to resonant responses in network and define the three frequency
regimes of steady response patterns in terms of the eigenfrequencies. In Sec. 5.3 and
Sec. 5.4, we mathematically analyze the response pattern for perturbation frequencies
lower and higher than the eigenfrequencies. At the end of the chapter we give a summary
of the features of the steady response patterns in different frequency regimes.

5.1 Frequency: key parameter for pattern formation

The dynamic response of a network described by Eq. 4.1 to a noisy perturbation signal
may look arbitrary and confusing at first sight: no clear correlations in time or in space can
be identified. A node further away from the perturbation can respond more intensively
than a closer node, but not necessarily. However, are there any patterns in the dynamic
network responses that are intuitively simple, and also mathematically clear? If so, what
is the key parameter that defines the network response pattern? As we will show in this
chapter, the perturbation frequency is the key.

An example is shown in Fig. 5.1. At its steady state, a sample network (Fig. 5.1a) is
perturbed at node 1 by a Brownian noise with a broad spectrum of frequency components
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Fig. 5.1 Network response to a Brownian noise. Response time series at 4 nodes (a)
are shown for a Brownian noise at node 1. The original noise and responses are shown
in purple in (c). The nodal acceleration Ωi perturbed by different subsets of the Fourier
components of the noise and the corresponding responses are shown in yellow (for node
1) and green (for node 2–4) in (c). The selected frequencies are highlighted in yellow in
the power spectrum of the original noise (b). The black lines in (c) indicate the linear
nodal response given by Eq. 4.16. Parameters: N = 80, Ki j ≡ K = 100 s−2, α = 1 s−1,
Ω = 30 s−2 for 20 nodes indicated by squares and Ω = −10 s−2 for the rest 60 nodes
indicated by discs in (a).

(Fig. 5.1b). Response time series of θ̇i (t) are shown in Fig. 5.1c for three representative
nodes, node 2, 3, and 4, with different distances to the perturbed node 1. In Fig. 5.1c,
the dependence of response strength on the distance is not clear: the response at node 4
with d(1, 4) = 6 is much stronger than that at node 3 with d(1, 3) = 3. A clear temporal
correlation between responses is not apparent either.

However, if we represent the Brownian noise signal in frequency domain via Fourier
transform and look at the nodal responses to its low-, intermediate- and high- frequency
components (Fig. 5.2), interesting response patterns in the network arise: for lower
frequencies the response at each node look similar (Fig. 5.2a-b), for high frequencies the
response seems to dissipate over distance (Fig. 5.2e-f ), while for intermediate frequencies
the responses collectively exhibit a special pattern which can not be easily interpreted in
terms of the distance (Fig. 5.2c-d). How do we mathematically understand the frequency
dependence of the qualitatively different response patterns?
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Fig. 5.2 Network response patterns depending on perturbation frequency. Net-
work responses to the low-, intermediate-, and high-frequency components in the
Brownian noise are respectively shown in (a-b), (c-d), and (e-f ). The color-coding of
the lines and the network settings are the same as in Fig. 5.2.

5.2 Eigenfrequencies and the resonance regime

The dynamic response pattern across network is encoded in the linear nodal responses
given by Eq. 4.16, which also suggests a frequency dependence. To estimate the response
strength, we focus on the rationalized denominator, i.e. (−βω2 + λ[ℓ])2 + α2ω2, in the
ℓ−th eigenmode in the nodal response factor R(k)

i (see Eq. 4.18-4.22). We notice that the
denominator (−βω2 + λ[ℓ])2 + α2ω2 matches exactly with that of the amplitude of the
steady response of a sinusoidally driven damped harmonic oscillator following dynamics
β ẍ + α ẋ + λ[ℓ]x = eı(ωt+φ). The driven damped harmonic oscillator exhibits resonance
when the driving frequency equals to its natural frequency

ω0 =

√
λ[ℓ]

β
. (5.1)

Thus, we can view the network system as a dynamical system with a spectrum of
frequencies that induce resonances, which characterize the network topology since they
are directly related to the Laplacian eigenvalues. We hence define the resonance frequencies
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of the network system as

ω[ℓ]
res =

√
λ[ℓ]

β
. (5.2)

Remarkably, the resonance frequencies are close to the eigenfrequencies of the linearized
system. For dynamical systems close to a fixed point, the imaginary part of the Jacobian
eigenvalues represent the intrinsic frequencies at which the system tends to oscillate. For
αi ≡ α and βi ≡ β, a relation between the eigenvalues of the Jacobian and the Laplacian
matrix can be found. Let w1w1w1w1w1w1w1w1 in Eq. 3.18 be in turn the Laplacian eigenvectors, we obtain
the Jacobian eigenvalues µ[ℓ] in terms of the corresponding Laplacian eigenvalues λ[ℓ]:

µ[ℓ] = − α

2β
±

√
α2

4β2 −
λ[ℓ]

β
(ℓ = 0, · · · , N − 1). (5.3)

In the low dissipation regime, α2

4β2 − λ[ℓ]

β < 0 for most of the Laplacian eigenvalues. Thus
the eigenfrequencies of the linearized network dynamics are given by

ω[ℓ]
eigen =

√
λ[ℓ]

β
− α2

4β2 , (5.4)

which is very close to the resonance frequency ω[ℓ]
res for βi ≡ β in Eq. 5.2.

If the perturbation frequency is close to one of the eigenfrequencies/resonance frequencies,
the magnitude of the corresponding ℓ-th eigenmode in the nodal response factor R(k)

i
(Eq. 4.18) is maximized, which can be interpreted as the effect of resonance. However,
since the contribution of each eigenmode is complex, the maximization of the magnitude
of one eigenmode does not necessary lead to a salient resonance peak in the magnitude
of the response, especially if the complex contributions from different eigenmodes are
not well aligned. The expected resonance peaks can be observed in the direct numerical
simulations of networks’ frequency response magnitudes for a varying frequency, and
also in the plot of the (normalized) nodal frequency response strength1 as a function of ω
(Fig. 5.3), both of which agree with each other quite well2.

Furthermore, we find that the eigenfrequencies divide the steady response patterns into
three regimes (Fig. 5.3). First, if the frequency of the sinusoidal perturbation signal ω
is comparable to the eigenfrequencies, resonant patterns arise, which characterize the

1The normalized nodal frequency response strength A∗(k )
i is essentially the response factor multiplied

by the perturbation frequency, ωR(k )
i . The definition will be given in Sec. 5.3.

2The agreement can be seen in e.g. Fig. 5.1 and Fig. 5.2. A systematic discussion on the error of the
analytically determined linear responses is presented in Chap. 7.3.
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Fig. 5.3 Frequency Response Strengths in three frequency regimes. (a) Normalized
nodal frequency response strengths are plotted for a broad range of perturbation frequen-
cies, color-coded by the distance to the perturbation. The dependence of nodal response
strengths on distances are plotted for three representative frequencies in (b-d). Black
vertical lines in (a) indicate the eigenfrequencies. Network settings are the same as in
Fig. 5.1.

network topology via the Laplacian eigenvalues and eigenvectors. Thus we call this
regime the resonance regime. if ω is lower than the smallest eigenfrequency corresponding
to the smallest non-zero Laplacian eigenvalue, i.e. the so-called algebraic connectivity,
the frequency response strength of every node in the network appear to converge
to a same value. It suggests that the network responds to slow-changing signals as
a bulk: a homogeneous response pattern arises across the network. We thus name
the low-frequency regime as the bulk regime. At last, if ω is greater than any of the
eigenfrequencies, nodal response strengths decay with increasing ω as a power-law.
Moreover, they split into clusters with respect to the distance: the nodes with the same
distance share the same exponent in the power-law decay. Specifically, the larger the
distance, the faster the decay. That means, for a fixed high-frequency perturbation, the
nodes that are further away from the perturbation respond with weaker strengths. The
impact of the perturbation seems to be localized around the perturbed node. Thus the
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high-frequency regime is referred to as the localized regime. In fact, the range of the
low-, intermediate-, and high-frequency ranges in Fig. 5.2 are chosen according to the
network’s eigenfrequencies. In the following sections, we will discuss in detail networks’
steady response pattern in the bulk regime and in the localized regime.

5.3 Lower frequencies: the bulk regime

As suggested by Fig. 5.3a-b, when the frequency of the sinusoidal perturbation goes to
zero, the steady response strength of each unit in network approaches a same value. This
behavior can be confirmed by an asymptotic analysis of the nodal response factor R(k)

i
which characterizes the amplitude and the phase of the sinusoidal response of each node.
As ω → 0, the real part and the imaginary part of the nodal response factor (Eq. 4.18)
behave as3

Re
(
R(k)

i

)
ω→0∼ − 1

Nα2 +

N−1∑

ℓ=1

v
[ℓ]
k v

[ℓ]
i

λ[ℓ]
(5.5)

Im
(
R(k)

i

)
ω→0∼ − 1

Nαω
. (5.6)

Consequently, the asymptotic behavior of the nodal response strength as ω → 0 is
dominated by the imaginary part, and can be written as

A(k)
i =

���R(k)
i

��� ω→0∼ 1
Nαω

. (5.7)

The relation 5.7 suggests that, no matter which node is perturbed and which node is
responding in a network, the response strength always behaves in the same way as long
as the perturbation frequency is infinitely small.

In this thesis we mainly focus on the nodal response on the phase velocity θ̇i instead of on
the phase θi due to its relevance in the context of power grids network. The response on
the phase velocity is associated with the deviation of the AC frequency which is crucial
for the normal operation of synchronous machines and power grids. We thus observe
the nodal frequency response strength:

���Θ̇(k)
i

��� = ωA(k)
i

ω→0∼ 1
Nα

, (5.8)

which approaches to a node-independent constant 1
Nα as the perturbation frequency goes

to zero. The limit value is however dependent on the network size N and the global

3Without loss of generality, we let β = 1 in the following analysis. Replacing α by α/β would trivially
reintroduce β.
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dissipation α. To compare nodal frequency response strengths among networks, it is thus
convenient to define a normalized nodal frequency response strength A∗(k)

i as

A∗(k)
i :=

ωA(k)
i

lim
ω→0

ωA(k)
i

= NαωA(k)
i , (5.9)

which goes to 1 for all networks as ω → 0.

The steady response pattern is also described by the phase delay of the nodal response
with respect to the perturbation: ∆(k)

i − φ. Inserting the behavior of the real part and
the imaginary part of the nodal response factor (5.5) and (5.6) into the definition of the
phase delay (Eq. 4.20), we obtain

∆
(k)
j − φ = arg

(
R(k)

i

)
ω→0∼ atan2 *.,−α,−ω − ωα

2N
N∑

ℓ=1

v
[ℓ]
k v

[ℓ]
i

λ[ℓ]
+/-

⇒ lim
ω→0

(
∆

(k)
j − φ

)
= −π

2
. (5.10)

The result shows that all nodes in network share the same phase delay in response, −π/2,
with respect to the phase of the sinusoidal perturbation. It is also easy to find that the
phase delay in frequency response

∆
∗(k)
j − φ := arg

(
Θ̇

(k)
i

)
− φ = 0, (5.11)

which is interesting for power grids since it suggests an almost homogeneous in-phase
impact of slow-changing power fluctuations on grid frequency. In short, in the limit
of low perturbation frequency, all nodes in a network responds to perturbations as one:
they all have the same response strength and the same response phase delay.

5.4 Higher frequencies: the localized regime

For perturbation frequencies higher than the largest eigenfrequency ω[N−1]
eigen (Eq. 5.4), the

network exhibit localized response patterns (see Fig. 5.2e-f and Fig. 5.3a,d): the nodal
response strength appears to decay with distance exponentially. This pattern results
from the fact that the response strength decreases with the perturbation frequency as a
power-law, and particularly, the exponent of the power-law decay depends linearly on
the distance to the perturbation.

In this section we derive the localized response pattern from the complex nodal response
factor R(k)

i (Eq. 4.18) with ω > ω[N−1]
eigen . To see the frequency dependence of the nodal
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response strength, i.e. the magnitude of R(k)
i , we first reduce Re

(
R(k)

i

)
and Im

(
R(k)

i

)
to

a common denominator:

Re
(
R(k)

i

)
=

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i

(
−ω2 + λ[ℓ]

) N−1∏

ℓ′=0,
ℓ′,ℓ

[(
−ω2 + λ[ℓ′]

)2
+ α2ω2

]

N−1∏

ℓ=0

[(
−ω2 + λ[ℓ]

)2
+ α2ω2

] (5.12)

Im
(
R(k)

i

)
=

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i (−αω)

N−1∏

ℓ′=0,
ℓ′,ℓ

[(
−ω2 + λ[ℓ′]

)2
+ α2ω2

]

N−1∏

ℓ=0

[(
−ω2 + λ[ℓ]

)2
+ α2ω2

] (5.13)

Both of the numerators and the denominators can be viewed as polynomials of ω. For
large enough ω, the behavior of the polynomials is dominated by their leading terms, i.e.
their monomials with the highest degree and non-zero coefficients. For the denominators,
it is easy to find that the leading term is ω4N , whose coefficient is a constant. However
for the nominators, it is more tricky to find the leading term. The numerators sum over
N eigenmodes with the ℓ-th summand containing the elements of the corresponding
Laplacian eigenvector vvvvvvvv[ℓ] and a polynomial of ω with coefficients depending on all
Laplacian eigenvalues except λ[ℓ].

To find the leading term of the numerators, we first focus on the common product in the
summand of both numerators:

Q(ω) :=
N−1∏

ℓ′=0,
ℓ′,ℓ

[(
−ω2 + λ[ℓ′]

)2
+ α2ω2

]
. (5.14)

Proposition 2. The product Q(ω) defined in (5.14) satisfies

Q(ω) =
2N−2∑

j=0
C[ j]
ℓ
ω4N−4−2 j,

where the coefficients C[ j]
ℓ

can be expressed as a polynomial of λ[ℓ] with degree j .
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This can be shown by considering C[ j]
ℓ

as sums of products of the coefficients of ω

in the multiplicand, i.e. 1,
(
α2 − 2λ[ℓ′]

)
and

(
λ[ℓ′]

)2
with ℓ′ , ℓ. Expressing C[ j]

ℓ
as

combinations of coefficients involving all N eigenvalues minus the ones involving λ[ℓ]

gives the relation between C[ j]
ℓ

and λ[ℓ]. A detailed proof can be found in Appx. A.

Therefore, the numerators NRe
ki and N Im

ki for the real part and the imaginary part of R(k)
i

satisfy

NRe
ki =

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i

2N−1∑

j=0
F[ j]
ℓ
ω4N−2−2 j, N Im

ki =

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i

2N−2∑

j=0
G[ j]
ℓ
ω4N−3−2 j .

The coefficients F[ j]
ℓ

and G[ j]
ℓ

are also polynomials of λ[ℓ] with degree j like C[ j]
ℓ

. Ex-
changing the order of summation in the numerators and writing them compactly in
matrix form, we obtain the numerator matrices

NNNNNNNNRe =

2N−1∑

j=0
ΦΦΦΦΦΦΦΦ[ j]ω4N−2−2 j, NNNNNNNN Im =

2N−2∑

j=0
ΓΓΓΓΓΓΓΓ[ j]ω4N−3−2 j (5.15)

where the coefficient matrices ΦΦΦΦΦΦΦΦ[ j] and ΓΓΓΓΓΓΓΓ[ j] are defined as

ΦΦΦΦΦΦΦΦ[ j] = VVVVVVVV FFFFFFFF[ j] VVVVVVVV T and ΓΓΓΓΓΓΓΓ[ j] = VVVVVVVV GGGGGGGG[ j] VVVVVVVV T. (5.16)

Here VVVVVVVV ∈ RN×N denotes the square matrix with the Laplacian eigenvectors as its columns,
and FFFFFFFF[ j],GGGGGGGG[ j] ∈ RN×N are diagonal matrices with F[ j]

ℓ
and G[ j]

ℓ
being the ℓ-th diagonal

element respectively. Since F[ j]
ℓ

and G[ j]
ℓ

are polynomials of λ[ℓ] with degree j, the
diagonal matrices FFFFFFFF[ j] and GGGGGGGG[ j] are also j-degree polynomials of the N × N diagonal
matrices ΛΛΛΛΛΛΛΛ with Λii = λ

[i−1]. Conveniently, VVVVVVVVΛΛΛΛΛΛΛΛVVVVVVVV T recovers the Laplacian matrix, thus
ΦΦΦΦΦΦΦΦ[ j] and ΓΓΓΓΓΓΓΓ[ j] are in fact polynomials of L with degree j.

Recall Prop. 1 stating that
(
Ld

)
i j

is non-zero for d ≥ d(i, j) and is zero otherwise.

Therefore, given node pair (k, i) with distance d(k, i), Φ[ j]
ki and Γ[ j]

ki are non-zero only for
j ≥ d(k, i). As a result, the leading term in the numerators are Φ[d(k,i)]

ki ω4N−2−2d(k,i) and
Γ

[d(k,i)]
ki ω4N−3−2d(k,i), since higher-order terms of ω all have zero coefficients: Φ[ j]

ki = 0
and Γ[ j]

ki = 0 for j < d(k, i).
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We thus obtain the asymptotic behavior of Re
(
R(k)

i

)
and Im

(
R(k)

i

)

Re
(
R(k)

i

) large ω∼ Φ
[d(k,i)]
ki ω−2−2d(k,i),

Im
(
R(k)

i

) large ω∼ Γ
[d(k,i)]
ki ω−3−2d(k,i), (5.17)

which lead to the asymptotic behavior of the nodal response strength

A(k)
i =

���R(k)
i

��� large ω∼ ����Φ[d(k,i)]
ki

����ω−2−2d(k,i) . (5.18)

Derivatively, for the normalized nodal frequency response strength, we have

A∗(k)
i = Nαω ���R(k)

i
��� large ω∼ Nα

����Φ[d(k,i)]
ki

����ω−1−2d(k,i) . (5.19)

The relation (5.19) reveals the power-law dependence of response strengths on the
perturbation frequency in the localized regime (see Fig. 5.4). For a general complex
network, the coefficient matrices ΦΦΦΦΦΦΦΦ[ j] and ΓΓΓΓΓΓΓΓ[ j] can be determined numerically.
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Fig. 5.4 Asymptotic response behavior in the localized regime. The frequency
dependence of the normalized nodal frequency response strength is plotted for 4 rep-
resentative nodes as shown in Fig. 5.1a. The black dashed lines are high-frequency
approximations given by Eq. 5.19. The network settings are the same as in Fig. 5.1.

In this regime, the phase delay between the nodal sinusoidal response Θ(k)
i and the

sinusoidal perturbation can be written as:

∆
(k)
i − φ = arg

(
R(k)

i

) large ω∼ atan2
(
Γ

[d(k,i)]
ki ,Φ[d(k,i)]

ki ω
)
. (5.20)
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For large ω, the phase delay is close to either 0 or π, depending on the sign of Γ[d(k,i)]
ki

and Φ[d(k,i)]
ki . The phase delay in frequency response

∆
∗(k)
i − φ large ω∼ atan2

(
Φ

[d(k,i)]
ki ω,−Γ[d(k,i)]

ki

)
, (5.21)

thus approaches ± π2 for large ω.

In fact, relations (5.19) and (5.20) are valid for ω → ∞. If the perturbation frequency ω
is much larger than all of the eigenfrequencies (ω ≫ ω[N−1]

eigen ), all Laplacian eigenvalues

λ[ℓ] becomes negligible compared to ω2, since ω ≫
√
λN−1 (cf. Eq. 5.4). As ω → ∞,

Re
(
R(k)

i

)
and Im

(
R(k)

i

)
behave as

Re
(
R(k)

i

)
ω→∞∼

N−1∑

ℓ=0

−v[ℓ]
k v

[ℓ]
i

ω2 = −δkiω
−2, (5.22)

Im
(
R(k)

i

)
ω→∞∼

N−1∑

ℓ=0

−αv[ℓ]
k v

[ℓ]
i

ω3 = δkiαω
−3. (5.23)

The equations in (5.22) and (5.23) come from the orthonormality of the Laplacian
eigenvectors:

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i =

(
VVVVVVVVVVVVVVVV T

)
ki
= δki . (5.24)

Therefore, for the perturbed node k, we have

���A(k)
k

��� ω→∞∼ ω−2 and ∆
(k)
k − φ

ω→∞∼ π, (5.25)

which is consistent with the result given by (5.19) and (5.20) for large ω. For other nodes
in the network, the limit value of the response factor is exactly zero, thus the behavior of
the nodal response at ω → ∞ is still described by relations (5.19) and (5.20).

5.5 Conclusion

In this chapter we discussed the three frequency regimes of the steady response patterns
induced by a single sinusoidal signal, where the patterns show distinct temporal and
spatial features. Illustrative examples of the typical responsive patterns are shown in
Fig. 5.5 and a tabular summary of the three regimes is given in Tab. 5.1. Based on
the analytical solution of the linear network responses given in last chapter, we derived
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the typical response behaviors in three frequency regimes via asymptotic analysis, thus
provide mathematical interpretations of the distinct collective responsive behaviors in
each regime.
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Fig. 5.5 Typical patterns of response strength in three frequency regimes. The
steady response patterns of two sample networks, a random tree and the British high-
voltage power grid network, are illustrated. The nodes are positioned on concentric
circles with the perturbed node at the center and the radii of the circles being proportional
to the topological distance to the perturbation signal. The nodes are color-coded by the
normalized frequency response strength in logarithmical scale.

Resonance patterns that are specific to network topologies arise if the external driving
frequency coincides with one of the eigenfrequencies of the network system. The
eigenfrequencies are defined as the imaginary part of the Jacobian eigenvalues, which
represent the intrinsic oscillation frequencies of the network system near the fixed point.
In the resonance regime, the amplitude and the phase of the nodal sinusoidal response
characterize the Laplacian eigensystem of the network, thus depend on the specific
network topology and the driving frequency through Eq. 4.18-4.20. Remarkably,
nonlocal responses can arise in this regime: strong responses can appear at nodes that are
faraway from the perturbation due to resonances, while the closer nodes may exhibit
weaker responses (Fig. 5.5b, 5.5e).

If the driving frequency is lower than the eigenfrequencies of the system, the responses
at every node are similar. The nodal frequency response strengths approach the same
value 1

Nα as ω → 0, which only depends on the network size and the damping parameter.
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driving 
signal 

perturbation 
frequency 

        steady response pattern 
scale of impact

bulk regime 1 
homogeneous

0 
in phase global 

resonance 
regime topology-specific resonances global

localized 
regime distance-dependent 

power-law decay in phase quadrature
local

εeı (ωt+ϕ)

(t → ∞)

A∗(k )
i ∆

∗(k )
i − ϕ

±π
2

Nα !!!Φ[d(k, i)]
ki

!!!ω−1−2d(k, i)

ω

ω → ∞

ω → 0

ω ∼ ωeigen

Table 5.1 Three frequency regimes of steady response patterns.

Normalized by this constant, nodal response strengths become comparable across net-
works so that the impact of network topology become evident. In this regime, a single
sinusoidal perturbation has almost the same effect on each node, thus has a global effect.
Notably, if ω = 0, the sinusoidal perturbation becomes a step-function thus the nodal
response is described by Eq. 4.36, where the responsive drift speed 1

Nα coincides nicely
with the frequency response strength at low frequency limit. The result is reasonable
since both quantities describe the rate of change the response.

For high driving frequencies larger than the eigenfrequencies, the steady network re-
sponse become increasingly localized at the perturbed node as ω → ∞. Specifically, the
nodal response strength decays with increasing ω as a power-law with its exponent being
linear to the distance. As a consequence, the nodal response strength decays exponentially
with distance, which leads to a localized response pattern in networks. This result become
evident if one notices that the order of the leading term in the response factor as ω → ∞
depends on the distance through its coefficient.

In summary, the steady response pattern to a sinusoidal signal depends crucially on the
signal’s frequency. The pattern for frequencies lower or higher than system’s eigenfre-
quencies does not depend on the specific network topology while the resonance patterns
do (shaded in orange in Tab. 5.1). A single perturbation evokes nonlocal responses if
its frequency is lower or comparable to the eigenfrequencies, while its impact becomes
more and more localized as the frequency goes beyond all eigenfrequencies.





Chapter 6

Response Patterns at High- and
Low-damping Limits

In this chapter we discuss the response patterns for two limit cases of the second-order
Kuramoto-like oscillator networks (4.1). By extending our previously presented results
to high- and low-damping limits, we establish the relations between our theory and the
state-of-the-art works in the field of perturbation-induced pattern formation in oscillatory
networks, especially Zanette’s studies on Kuramoto oscillator networks [39, 40].

If the damping parameter α is much larger than β so that the rates of change of the
oscillators’ phases θ̇̇θ̇θ̇θ̇θ̇θ̇θ̇θ dominate the dynamics, the network dynamics approaches the
dynamics of Kuramoto oscillator networks, where β = 0. The response patterns of
networks at high-damping limits, i.e. with α , 0 and β = 0, are presented in Sec. 6.1.
If the damping parameter α is much smaller than β, i.e. β , 0 and α = 0, the network
system becomes a Hamiltonian system as discussed in Sec. 3.2.2. As we show in Sec. 6.2,
networks at low-damping limits never reach a stage of steady responses, thus steady
response patterns do not exist when α = 0. In the last section we summarize the steady
response patterns in network class (4.1) by comparing the patterns in three cases of
network dynamics: with a general setting α , 0, β , 0, at the high-damping limit
α , 0, β = 0 and at the low-damping limit α = 0, β , 0.

6.1 High-damping limit: Kuramoto oscillator networks

At the high-damping limit, the network system follows

αθ̇i = Ωi +

N∑

j=1
Ki j sin

(
θ j − θi

)
+ εDi (t), (i = 1, · · · , N ), (6.1)
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which are equivalent to the dynamics of a network of Kuramoto oscillators with nodal
perturbation signal εDi (t). Without loss of generality, we let α = 1 in the following
analysis.

6.1.1 Linear network responses

We start with solving for the responses of a network at a fixed point θθθθθθθθ = θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗, including the
total network response θtot and the nodal response, to a small signal such as a sinusoidal
signal εeı(ωt+φ) and a step-function signal ε.

Responses to a sinusoidal signal

Total network response The total network response of a Kuramoto oscillator network
(6.1) is determined by

θ̇tot = εeı(ωt+φ), (6.2)

where the natural frequencies and the flows sum to zero on the right hand side. This is
ensured by the existence of the fixed point as discussed for the general case (see Sec. 4.1).
With initial condition θtot(t = 0) = θtot

0 , Eq. 6.2 gives the solution

θtot(t) = θtot
0 −

ε

ıω
eıφ +

ε

ıω
eı(ωt+φ), (6.3)

which implies a constant phase shift and a sinusoidal response with a complex amplitude,
both are proportional to the perturbation strength ε. The total network response at the
fixed point is obtained by simply substituting the initial condition with θ∗,tot. The total
network response differs from the one for the general case only by a missing transient
decay with time constant β

α (cf. Fig 4.1 and Fig. 6.1). This is reasonable since β = 0 leads
to the time constant being zero, thus the total network response at the high-damping
limit can be interpreted as the transient response phase in the general case is shortened to
zero. Remarkably, the phase shift is the same as the general case (cf. Eq. 4.6)

Nodal response Following the same routine as for the general case, we compute the
steady nodal response in a Kuramoto oscillator network. The nodal response consists of a
constant phase shift εηi and a characteristic sinusoidal response εΘ(k)

i = εA(k)
i eı(ωt+∆(k )

i ).
The phase shift must be identical for each node, which can be shown with the same
argument as in the general case. We thus have ηi ≡ η = ıeıϕ

Nω . The nodal sinusoidal
response follows the dynamics

(ıω + L)ΘΘΘΘΘΘΘΘ(k) = DDDDDDDD(k) . (6.4)
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Fig. 6.1 Kuramoto oscillator network’s total response to a sinusoidal driving sig-
nal. An Illustration for the total network response given in Eq. 6.3, which contains a
phase shift (grey dashed line) and a sinusoidal oscillation. The sinusoidal driving signal is
plotted in the upper panel. The network setting is the same as in Fig. 4.1 except β = 0.

Writing the response vector in the basis of the orthonormal Laplacian eigenvectors, we
obtain

ΘΘΘΘΘΘΘΘ(k) = eı(ωt+φ)
N−1∑

ℓ=0

v
[ℓ]
k

ıω + λ[ℓ]
vvvvvvvv[ℓ]. (6.5)

Thus the steady nodal response to a sinusoidal driving signal reads

θ (k)
i (t) = θ∗i +

ıεeıφ

Nω
+

N−1∑

ℓ=0

εeı(ωt+φ)v
[ℓ]
k

ıω + λ[ℓ]
vvvvvvvv[ℓ]. (6.6)

Notably, the solution is exactly the same as the one for the general case (Eq. 4.17) with
β = 0 and α = 1. Similarly, the nodal response factor for Kuramoto oscillator networks is

R(k)
i :=

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i

ıω + λ[ℓ]
, (6.7)

with its real part and imaginary part being

Re
(
R(k)

i

)
=

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i λ[ℓ]

ω2 +
(
λ[ℓ]

)2 , and Im
(
R(k)

i

)
=

N−1∑

ℓ=0

−v[ℓ]
k v

[ℓ]
i ω

ω2 +
(
λ[ℓ]

)2 . (6.8)
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Responses to a step-function signal

Total network response The total network phase of a Kuramoto oscillator network
responds to a step-function signal as

θtot(t) = θtot
0 + εt. (6.9)

This result implies a simple uniform drift away from the initial condition. Furthermore,
the constant drift speed is exactly the perturbed signal strength ε. The solution Eq. 6.9 is
in fact the same as the result for the general second-order oscillator network (Eq. 4.29)
with β = 0 and α = 1: the phase shift and the transient exponential decay disappear with
β = 0 and the drift speed remains the same (see Fig. 6.2).
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Fig. 6.2 Total network response to a step-function driving signal. An Illustration
for the total network response given in Eq. 6.9, which is essentially a phase drift with a
constant speed ε (yellow dashed line). The step-function driving signal is plotted in the
upper panel. The network setting is the same as in Fig. 4.2 except β = 0.

Nodal response The nodal response to a step-function signal in a Kuramoto oscillator
network can be determined in the same way as presented in Sec. 4.3. Particularly, the
zero phase shift in the total network response does not imply a zero nodal phase shift.
Thus we still assume that the nodal response has the form

θ (k)
i = θ∗i + εη

(k)
i + εu(k)

i t, (6.10)

with
∑N

i=1 η
(k)
i = 0 and

∑N
i=1 u(k)

i = 1. With the same argument it can be shown that
the nodal drift speed is identical, thus u(k)

i = u = 1
N , for all i. The shift vector still

satisfies Eq. 4.33 hence has the same form as in Eq. 4.34. The only difference is that the
contribution of the zeroth eigenmode to the shift vector, H′H′H′H′H′H′H′H′(k), is determined such that
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the constraint
∑N

i=1 η
(k)
i = 0 is satisfied. Thus the homogeneous phase shift is given by

η′(k) = − 1
N

N−1∑

ℓ=1

1
λ[ℓ]

*.,v
[ℓ]
k

N∑

i=1
v

[ℓ]
i −

1
N

*,
N∑

i=1
v

[ℓ]
i

+-
2+/- . (6.11)

To summarize, the nodal response is still given by the solution for the general case, i.e.
Eq. 4.36, Eq. 4.34 and Eq. 4.35 with β = 0, α = 1. Each node in a Kuramoto oscillator
network responds to a step-function signal with a characteristic phase shift and a uniform
drift with a homogeneous drift speed, although the nodal phase shift sums to zero over
the network.

6.1.2 Three frequency regimes

The Laplacian eigenvalues and the transition regime The steady response patterns
in Kuramoto oscillator networks are also governed by three frequency regimes. For
lower and higher frequencies, the response behavior of Kuramoto oscillator networks is
very similar to the behavior of the general second-order oscillator networks. However,
the resonances which appear when the perturbation frequency coincides with the eigen-
frequencies disappear for Kuramoto oscillator networks, and instead, the nodal frequency
response strength experiences a smooth transition from the constant and homogeneous
value in the bulk regime to the distance-dependent power-law decay in the localized
regime.

The reason for this difference lies in the nodal response factor R(k)
i (Eq. 6.7): the ra-

tionalized denominators in the ℓ-th eigenmode ω2 + (λ[ℓ])2 increases monotonously
with ω for ω > 0, thus no resonances can happen. In fact, for networks of Kuramoto
oscillators, eigenfrequencies do not exist either. The Jacobian matrix at the fixed point is
essentially the Laplacian matrix: J = −L, thus all Jacobian eigenvalues are non-positive
real numbers, indicating there are no intrinsic oscillations in the neighborhood of the
fixed point.

However, the driving frequencies which are comparable to the Laplacian eigenvalues
ω ∼ λ[ℓ], (ℓ = 1, · · · , N − 1) indicate a transition regime between the bulk regime and the
localized regime. For driving frequencies that are much smaller than the Laplacian eigen-
values, the ℓ-th Laplacian eigenvalue dominates the denominator of the ℓ-th eigenmode
of the response factor. As the driving frequency increases, it surpasses the non-negative
Laplacian eigenvalues one by one and finally takes over and dominates the denominator
in the localized regime when it is much larger than all Laplacian eigenvalues.
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As the eigenfrequencies for the second-order oscillator networks ωeigen[ℓ] ∼
√
λ[ℓ], the

transition regime for the first-order Kuramoto oscillator networks extends much wider
than the resonance regime (cf. Fig. 5.3 and Fig. 6.3).
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Fig. 6.3 Three frequency regimes of the frequency response patterns in Kuramoto
oscillator networks. Normalized nodal frequency response strengths are plotted for a
broad range of perturbation frequencies, color-coded by the distance to the perturbation.
Black vertical lines indicate the Laplacian eigenvalues. Network settings are the same as
in Fig. 5.1.

The bulk regime At very low perturbation frequencies, i.e. ω → 0, every node in a
Kuramoto oscillator network responds to a small sinusoidal perturbation homogeneously,
as in a second-order oscillator network. Again, asymptotic analysis gives the low-
frequency limit the common frequency response strength

���Θ̇(k)
i

��� = ωA(k)
i = ω

���R(k)
i

��� ω→0∼ 1
N

(6.12)

and the phase delay

∆
(k)
i − φ = arg

(
R(k)

i

)
ω→0∼ atan2 *.,−1, Nω

N−1∑

ℓ=1

v
[ℓ]
k v

[ℓ]
i

λ[ℓ]
+/-

⇒ lim
ω→0

(
∆

(k)
i − φ

)
= −π

2
. (6.13)

The results are consistent with the ones for the second-order oscillator networks (Eq. 5.7
and Eq. 5.10) with α = 1.
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The localized regime When the perturbation frequency is large enough, the nodal
response strengths in the Kuramoto oscillator networks also exhibit a localized pattern:
they decay as a power-law as the driving frequency grows, with a distance-dependent
exponent. However the power-law decay is slower than for second-order oscillator
networks. As before (Sec. 5.4), this behavior is derived from the asymptotic behavior of
the complex nodal response factor.

The real part and the imaginary part of the nodal response factor (Eq. 6.7) reduced to a
common denominator read

Re
(
R(k)

i

)
=

N−1∑

ℓ=0
v

[ℓ]
k v

[ℓ]
i λ[ℓ]
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ℓ′,ℓ

[
ω2 +

(
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)2]

N−1∏
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[
ω2 +

(
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)2] , and (6.14)
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k v
[ℓ]
i ω
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ω2 +

(
λ[ℓ′]

)2]

N−1∏

ℓ=0

[
ω2 +

(
λ[ℓ]

)2] . (6.15)

For sufficiently large ω, the leading term of the shared common denominator is ω2N .
The shared product in the numerators

Q′(ω) :=
N−1∏

ℓ′=0,
ℓ′,ℓ

[
ω2 +

(
λ[ℓ′]

)2]
(6.16)

has the same structure as Q(ω) (Prop. 2). In fact, Q′ is a polynomial with respect to ω

Q′(ω) =
N−1∑

j=0
C[ j]
ℓ
ω2N−2−2 j (6.17)

with the coefficient C[ j]
ℓ

is a polynomial of λ[ℓ] of degree 2 j, which is proved following a
similar idea as in the proof of Prop. 2 (Appx. A): The coefficient C[ j]

ℓ
is in fact the sum of the

products of j times
(
λ[ℓ′]

)2
over all possible choices of j elements in Sℓ = {0, ..., N −1} \ ℓ:

C[ j]
ℓ
=

∑

s j∈(Sℓj )

∏

p∈s j

(
λ[p]

)2
, (6.18)
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which is a polynomial of λ[ℓ] of degree 2 j as proved in step 2 in Appx. A. Thus, the
numerators can be written as elements of the matrices

NNNNNNNNRe =

N−1∑

j=0
ΦΦΦΦΦΦΦΦ[2 j+1]ω2N−2−2 j, NNNNNNNN Im =

N−1∑

j=0
ΓΓΓΓΓΓΓΓ[2 j]ω2N−1−2 j, (6.19)

where the coefficient matrices ΦΦΦΦΦΦΦΦ[2 j+1] and ΓΓΓΓΓΓΓΓ[2 j] defined similarly as in Sec. 5.4 and are
polynomials of the Laplacian matrix L of degree 2 j + 1 and 2 j. For large enough ω so
that the leading term in the numerators are the ones with the highest order of ω and a
nonzero coefficient, we obtain the asymptotic behavior of the response strength for large
ω as

A(k)
i =

���R(k)
i

��� large ω∼

Φ

[d(k,i)]
ki ω−1−d(k,i) if d odd;
Γ

[d(k,i)]
ki ω−1−d(k,i) if d even.

(6.20)

The normalized frequency response strength behaves as

A∗(k)
i = Nω ���R(k)

i
��� large ω∼


NΦ[d(k,i)]

ki ω−d(k,i) if d odd;
NΓ[d(k,i)]

ki ω−d(k,i) if d even.
(6.21)

In the derivation here we use Prop. 1. The above results reveal that, in the localized
regime, the nodal response strength of the Kuramoto oscillators decays slower than that of
the second-order oscillators: the exponent of the power-law decay is −d(k, i) − 1 instead
of −2d(k, i)−2, which essentially comes from the order of the dynamics. Particularly, the
frequency response strength of the perturbed node in Kuramoto oscillator networks does
not decay at all: the exponent is 0 thus it approaches a constant as ω → ∞ (see Fig. 6.3).

The phase delay of the steady sinusoidal response Θ(k)
i approaches 0, π or ± π2 depending
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As ω → ∞, the relations (6.20)-(6.22) still stand. Re
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leading to consistent results for the nodes with d(k, i) = 0 and d(k, i) = 1. For other nodes
with larger distances the limit values are zero, thus their behaviors are still described by
(6.20)-(6.22).

6.2 Low-damping limit: a Hamiltonian system

When the damping parameter α is much smaller than β, the dynamics of the phase
oscillator networks is dominated by the change of rate of the oscillators’ phase velocities
θ̈̈θ̈θ̈θ̈θ̈θ̈θ̈θ. Without loss of generality, we let β = 1 and α = 0:

θ̈i = Ωi +

N∑

j=1
Ki j sin

(
θ j − θi

)
+ εDi (t), (i = 1, · · · , N ). (6.24)

This is a Hamiltonian system with the potential energy and the kinetic energy given
by Eq. 3.12 and Eq. 3.13 [106], where no energy is dissipated in the network system
through damping. That means, if the system is not driven (ε = 0), Liouville’s theorem
[118] applies: a volume element of the 2N-dimensional state space is conserved along
every trajectory of the system.

Network responses to a sinusoidal signal

The total network response of such a hamiltonian system is governed by

θ̈tot = εeı(ωt+φ), (6.25)

which gives the solution

θtot(t) = θtot
0 +

ε

ω2 eıφ +
(
θ̇tot

0 +
ıε

ω
eıφ

)
t − ε

ω2 eı(ωt+φ) . (6.26)

With initial conditions being at the fixed point, θtot
0 = θ

∗,tot and θ̇tot
0 = 0, the total network

response reads

θtot(t) = θ∗,tot +
ε

ω2 eıφ +
ıε

ω
eıφt − ε

ω2 eı(ωt+φ) . (6.27)

Since the characteristic equation of Eq. 6.25 has a root 0 with multiplicity 2, the solution
of the total network response include a linear term with respect to t apart from a constant
phase shift and an sinusoidal response (Fig. 6.4). All responses are proportional to the
perturbation strength ε. This additional term means a uniform drift away from the initial
state, which is particular for the Hamiltonian case. The drift term also implies that, as
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Fig. 6.4 Network’s total response to a sinusoidal driving signal at the low-
damping limit. An Illustration for the total network response given in Eq. 6.27, which
contains a phase shift, a sinusoidal oscillation and a uniform drift. The sinusoidal driving
signal is plotted in the upper panel. The network setting is the same as in Fig. 4.1 except
α = 0.

the total network response grows linearly with time, no steady response patterns exist as
t → ∞ in the networks at the low-damping limit.

At the low-damping limit, solving for the nodal responses to a sinusoidal driving is not
as straightforward as for the general case in Sec. 4.2 and for the high-damping case in
Sec. 6.1. Assuming nodal responses being θ (k)

i (t) = θ∗i + εη
(k)
i + εu(k)

i t + εΘ(k)
i leads to a

matrix equation

−ω2ΘΘΘΘΘΘΘΘ(k) = −LHHHHHHHH (k) − LUUUUUUUUt − LΘΘΘΘΘΘΘΘ(k), (6.28)

which has too many variables to be determined. In fact, as we will see in Part III of
the thesis, the nodal response has a more complicated form, which can be obtained by
expressing the nodal responses as a linear combination of Laplacian eigenvectors with
time-dependent coefficients.

Network response to a step-function signal

The total network response to a step-function signal at the low-damping limit follows

θ̈tot = ε, (6.29)
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Fig. 6.5 Network’s total response to a sinusoidal driving signal at the low-
damping limit. An Illustration for the total network response given in Eq. 6.31, which
is essentially a parabolic drift. The step-function driving signal is plotted in the upper
panel. The network setting is the same as in Fig. 4.1 except α = 0.

which leads to the solution

θtot(t) = θtot
0 + θ̇

tot
0 t +

ε

2
t2. (6.30)

If the system is at a fixed point prior to perturbation,

θtot(t) = θ∗,tot +
ε

2
t2. (6.31)

The result suggests a parabolic drift away from the initial fixed point proportional to the
perturbation strength ε (Fig. 6.5), thus no steady response pattern exist in this case either.
As the nodal response to a sinusoidal signal, the nodal response to a step-function signal
also has a more complicated form than parabolic drift. We discuss these cases in Chap. 10.

6.3 Conclusion

In this chapter we investigated the responses of the phase oscillator networks at the
high- and low-damping limits. We computed the total network response and the nodal
responses to a sinusoidal driving signal and to a step-function signal at the two limits,
which are summarized in Tab. 6.1. Particularly, for the high-damping limit, we identified
three frequency regimes of response patterns, two of which are similar as in the general



84 Response Patterns at High- and Low-damping Limits

intermediate-damping case. An comparison between the frequency regimes in both
cases is given in Tab. 6.2.
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signal 

         total response                                                   nodal response

phase shift particular response phase shift particular response
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see Part III
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Table 6.1 Linear network responses at high- and low-damping limits.

At the high-damping limit (α = 1, β = 0), the first-order derivatives of oscillators’ phases
dominate the system’s dynamics, the network system becomes a network of Kuramoto
oscillators. The total network responses still exhibit the same particular responses to
driving signals: a sinusoidal oscillation with a complex amplitude for a sinusoidal signal,
and a uniform drift to a step-function signal. However, unlike in the general second-order
oscillator networks, the particular responses arise instantaneously in the first-order oscillator
networks, i.e. no transient responses (Tab. 6.1). This can be understood as follows: the
transient response in the general case, which is characterized by a time constant β

α shrinks
to zero as β = 0. This means that the response patterns arise in Kuramoto oscillator
networks immediately after the driving.

The nodal response of the networks of first-order oscillators has the same form as that
of the networks of second-order oscillators with α = 1 and β = 0 (Tab. 6.1, network
topology-specific responses are shaded with orange, non-specific ones with blue). Based
on the nodal responses, we again identified three frequency regimes of response patterns
(Tab. 6.2). Different from the regimes for the general case, the three frequency regimes
for the first-order oscillator networks are divided by the Laplacian eigenvalues instead of
the eigenfrequencies, which are more wide-spreading. For first-order oscillator networks,
no intrinsic oscillation frequency exists since all Jacobian eigenvalues are non-positive
real numbers. Thus, no resonances can appear and the nodal response strengths exhibit
smooth transitions in this regime. For lower frequencies ω → 0, the network responds
to perturbations homogeneously as the second-order networks; for higher frequencies
ω → ∞, the impact of the driving signal is localized. Remarkably, the distance-dependent
power-law decay of the nodal response strength is slower than in second-order networks:
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as ∼ ω−1−d instead of ∼ ω−2−2d . Thus the spatial decay of the response strength is also two
times slower, meaning the impact of the perturbation signal is less localized in Kuramoto
oscillator networks. Additionally, for ω → ∞, the sinusoidal nodal response can appear
as in phase and anti-phase with respect to the sinusoidal driving signal, in addition to the
in quadrature responses in the second-order oscillator networks. That is, the phase delay
can be 0, π,± π2 in first-order oscillator networks while it can only be ± π2 in first-order
oscillator networks.

sinusoidal 
driving 

   Second-order oscillator networks First-order (Kuramoto) oscillator networks

bulk regime 1 0 1 0

 resonance/
transition 
regime

topology-specific 
resonances transitions

localized 
regime

A∗(k )
i ∆

∗(k )
i − ϕω

ω → ∞

ω → 0

A∗(k )
i

∆
∗(k )
i − ϕ

ω → 0

ω → ∞

ω

ω ∼ λ[ℓ]ω ∼
√
λ[ℓ] − α

2

4

∼ ω−1−2d ∼ ω−d

εeıωt+ϕ

±π
2

0, π,±π
2

Table 6.2 Comparison of the frequency regimes for second- and first-order oscil-
lator networks.

Especially, our results of the response patterns in sinusoidally driven Kuramoto oscillator
networks are consistent with and goes beyond Zanette’s results [39, 40]. We find the
same dependence of the response strength on driving frequency and the topological
distance between perturbation and response: (i) For large driving frequency, the response
strength decreases exponentially with distance (Fig. 1 in [39]), and (ii) for small driving
frequency and for nodes with large distance, the response strength A decrease with
driving frequency ω as A ∼ ω−1 (Fig. 2 in [39]). However, our work generalized
Zanette’s results in the sense of

1. For small frequency, we showed that the dependence A ∼ ω−1 is valid for all nodes
while Zanette only showed its validity for the nodes with large distance;

2. Although the adjacency matrix enters Zanette’s analysis and different regimes of
response pattern were observed, an explicit relation between network structure and
regime-specific response pattern was missing. In comparison, our theory gives explicit
definitions of the three frequency regimes in terms of the eigenvalues of the Laplacian
matrix, which characterizes the underlying network topology.
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3. Our results are valid for networks with arbitrary topologies while Zanette’s results are
derived only for regular graphs where each node has the same degree.

At the low-damping limit (α = 0, β = 1), the second-order derivatives of oscillators’
phases dominate the system’s dynamics. The network system at this limit can be viewed as
a network of ideal synchronous machines without dissipation of energy, that is, a Hamil-
tonian system. If without driving, the Hamiltonian of the system is time-independent; if
driven by an external signal, the Hamiltonian becomes time-dependent. In comparison,
in driven dissipative network systems (α , 0, β , 0), the average energy dissipation must
exactly compensates the average energy injection by the driving signal, so that a steady
responding state can be maintained. The time-dependent Hamiltonian leads to com-
pletely different particular responses in the total network response: a sinusoidal oscillation
and a uniform drift for a sinusoidal signal, and a parabolic drift for a step-function signal
(Tab. 6.1). The drifts imply that there are no steady response pattern in network at the
low-damping limit. Furthermore, the nodal response in this case has a more complicated
form than the total network response, thus can not be determined following the same
routine as in the previous analysis. The general solution of the nodal responses will be
given in Part III of the thesis.



Chapter 7

Predicting Network Responses to Irregular
and Distributed Signals

After the mathematical analysis of networks’ dynamic responses presented in the previous
chapters, in this chapter we move on to a more practical topic: the prediction of networks’
responses to noisy signals, which can be irregular in time and distributed in space. That
is, given the time series of arbitrary perturbation signals, how does a network with a
specific topology respond?

We first propose an approach to predict the nodal response time series to irregular and
distributed signals in a network based on the previously developed theory for linear
network responses (Chap. 4 and Chap. 5). In Sec. 7.2, we apply the approach and
make predictions for a sample power grid’s nodal responses to two fluctuation time
series recorded in real-world power supply from renewable energy sources. The sample
power grid exhibits different responsive behaviors under the influence of a wind- and
a solar-power fluctuation, due to the different frequency contents in the signals. In
the last section, we discuss the error in the linear response prediction and explore the
limit of validity of the linear response theory in challenging situations such as strong
perturbations and heavily-loaded networks.

7.1 An approach to predict network responses

In Chap. 4 and Chap. 5 we discussed how a second-order phase oscillator network with a
complex network topology responds to a single driving signal in its steady state, either to
a sinusoidal signal with frequency ω > 0 or to a step-function signal. However, in the real
world, complex networks are usually exposed to noisy signals. Temporally, the signals
can have irregular wave forms; and spatially, they can occur simultaneously at multiple
site in a network. How does a complex network respond to such complex signals?
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A short answer to this question is given by a simple generalization of our linear response
theory. Recall that we build the entire theory on the linearization of the network system,
meaning that the system under consideration can be viewed as a linear operator which
satisfies two properties: additivity and homogeneity. That means, the response to the sum
is the sum of the responses.

Fourier analysis provides a way to represent a general function in the time domain, i.e. a
signal with an irregular waveform, as a sum of sinusoidal signals with different amplitudes
and frequencies. Thus, given the trajectory of an irregular signal, a network’s linear
response equals to the sum of its linear responses to each frequency component of the
irregular signal. Furthermore, if multiple nodes in a network are simultaneously and
independently perturbed, the network response is simply the sum of the responses to
each perturbation signal. Consequently, the linear frequency response of node i in a
network driven by irregular and distributed signals can be expressed as a double sum
over frequency components of one signal and over independent signals at different nodes:

θ̇ (κ)
i (t) =

∑

k∈κ

*.,
ε0k
Nα
+

∑

nk

ıεnkωnk

N−1∑

ℓ=0

v
[ℓ]
k v

[ℓ]
i eı(ωnk

t+φnk )

−βω2
nk + ıαωnk + λ

[ℓ]
+/- . (7.1)

Here κ is the set of the indices of the perturbed nodes, ωnk , εnk and φnk denote the fre-
quency, the amplitude and the phase of the n-th frequency component of the perturbation
signal at node k. Particularly, ε0k denotes the strength of the step-function signal at node
k.

In practice, however, the longer the signal time series, the more frequency components
it contains, and the longer the computation time is required to predict the network
responses via formula (7.1). Specifically, a discrete time series with N data points corre-
sponds to N

2 real frequency components via discrete Fourier transform. The number of
frequency components increases linearly with the length of the time series, and so does the
computation time. Therefore, given limited computation time or limited computational
capacity, effective methods for frequency components selection are needed.

Information about how the power of a signal time series is distributed over frequency is
given by the power spectral density (PSD), S(ω), of the signal [119]. The PSD of frequency
ω is given by the discrete Fourier transform of the signal time series F [F (t)](ω) through
S(ω) = 1

NS

���F [F (t)](ω)���2 with NS being the normalization factor. The frequency com-
ponents with higher PSD values are stronger oscillatory modes of the signal. Therefore,
PSD value serves as an index of the significance of a frequency component. For irregular
signals with arbitrary power spectral distributions, selecting the frequency components
with higher PSD values to represent the original signal yields smaller deviations from
the original signal. For instance, to predict the network response to a recorded power
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fluctuation signal (see Sec. 7.2), we select 50 frequency components with the top 50 PSD
values. However, for noisy signals which are characterized by specific shapes of PSD
function, e.g. pink noise with S(ω) ∝ ω−1, Brownian noise with S(ω) ∝ ω−2 and grey
noise following an equal loudness curve1, this naive frequency selection method has its
drawbacks: wide bands of frequencies in the spectrum would be left unrepresented. This
is undesired, especially when the excluded frequency block overlaps with the resonance
regime where a certain frequency can cause a global resonant pattern across the network
with strong responses at particular nodes.
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Fig. 7.1 An illustration of the frequency sampling method. A time series of Brow-
nian noise (a) and its power spectral density (b) are plotted in purple. 100 selected
frequencies out of 104 are highlighted in yellow in (b). The time series reconstructed by
the 100 selected frequency components is shown with a yellow line in (a).

To avoid this, we propose a frequency sampling method: besides the strongest frequency
components, we additionally select frequency components in the excluded block by
binning the block and picking the strongest frequency component in each bin. An
example of the method is illustrated in Fig. 7.1. We consider the artificial Brownian
noise time series (Fig. 7.1a) with 20000 time steps in the example in Fig. 5.1. The PSD
of the time series (Fig. 7.1b) contains 10000 frequencies up to 500Hz. We first select
50 frequency components with the top 50 PSD values, and the excluded frequencies
form a band at the high-frequency end. Then we divide the frequency band into 50
bins and select the strongest one from each bin. In this way we select 100 frequency
components in total out of 10000. As shown in Fig. 7.1a, the reconstruction of the signal
time series containing only 1% of the frequency components is already very close to the
original signal. It can be seen from the lower panels in Fig. 5.1b that predicted nodal
responses based on the 100 selected frequency components (black lines) are also quite
close to the responses to the original signal from numerical simulation (purple lines).
How the performance of prediction depends on the number of Fourier modes used
for prediction will be discussed in detail in Sec. 7.3. In general, the parameters in the

1An equal loudness curve gives the sound pressure level of pure continuous tones with a specific
frequency which are perceived as equally loud by human listeners [120].
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frequency sampling method, such as the number of dominant frequencies to be selected,
the number of bins in sampling the weaker frequencies, and the number of frequency to
be selected in each bin, need to be tuned ad hoc for individual signals and for individual
systems to deliver satisfying results.

In short, combining formula (7.1) and the frequency sampling method, we proposed
an approach to predict the time-dependent network response to given time series of
perturbation signals. Furthermore, for signals whose time series are unknown but
the PSDs are given, our theory can still provide an upper bound of nodal frequency
response, which is given by the sum of the frequency response strength for each frequency
component:
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∑
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k v

[ℓ]
i

−βω2
nk + ıαωnk + λ

[ℓ]

�������
+/- . (7.2)

This bound can e.g. serve as a guideline in identifying “risky” nodes which exhibit strong
responses to such signals.

7.2 Predicting dynamic responses of power grids to fluc-
tuations

With an increasing share of renewable energy sources with intermittent nature in modern
power grids, the fluctuations in power generation are stronger than ever before: For
instance, in Germany the fraction of renewable energy sources was only 3.4% in 1990;
it increased to 6.2% in 2000 and to 31.7% in 2016 [121]. Such fluctuations result in an
imbalance between power generation and power consumption which endangers the
stable operation of the power supply system. Thus it is essential to understand how a
power grid network, as a collection of interacting units, would respond to potentially
irregular and distributed power fluctuations. In this section, we apply the approach to
predict network responses introduced in last section to make predictions for power grids’
nodal responses to power fluctuations from real-world recordings.

7.2.1 Modeling modern power grids with penetration of renew-
able energy sources

Units with and without inertia in modern power grids In Sec. 3.2 we introduced
the oscillator model of power grids, where each unit in network is assumed to be
synchronous machines and is modeled as a phase oscillator obeying the swing equation
(Eq. 3.5). In practice, it is common to write the swing equation in per-unit form with



7.2 Predicting dynamic responses of power grids to fluctuations 91

normalized parameters about the machine’s technical features, such as the moment of
inertia and the damping:

2Hi

Ω0
θ̈i + D̃i θ̇i = P̃mech

i − P̃el
i . (7.3)

Here P̃mech
i and P̃el

i are respectively the net injected mechanical power and the transmitted
electrical power in per unit form, i.e. Pmech

i and Pel
i divided by the machine rating Prated

i .
D̃i := Di

Prated
i

is the normalized damping constant and H is the normalized inertia constant
of the synchronous machine, proportional to the inertia of the rotor. It is defined as the
stored kinetic energy stored at the synchronous speed Ωm

0 divided by the machine rating
[114, 115]:

Hi :=
1
2 Ii

(
Ωm

0

)2

Prated
i

. (7.4)

In modern power grids with penetration of renewable energy sources, other types of
units are integrated in the networks, i.e. the inertia-less power generators such as wind
turbines and solar panels [122]. Usually there are two ways to model the impact of inertia-
free generators: One is to consider the dynamics of the electronic devices connected to
the renewable power generators, such as inverters and VISMAs [123–125], the other is
to model the power grids in a coarse grained perspective: The power grids are treated
as a large-scale transmission network of coherent sub-grids, which can include both
synchronous machines and inertia-less generators. As we are interested in the large-scale
patterns in networks with complex topologies, we adopt the second approach in the
thesis.

A coarse grained model of power grids In a coarse grained model, we assume that
the power grid network consists of sub-grids, in which the units are strongly coupled,
so that the inter-area dynamics is much slower than the intra-area dynamics. Thus all
machines in a sub-grid can be condensed into one effective unit. The dynamics of the
aggregated machines is then be described by the so-called aggregated swing equation [126]:

2H̄
Ω0

¨̄θ + D̄ ˙̄θ = P̄mech − P̄el (7.5)

with ˙̄θ :=
∑

i HiPrated
i θ̇i∑

i HiPrated
i

being the center of inertia (COI) grid frequency, H̄ :=
∑

i HiPrated
i∑

i Prated
i

the aggregated inertia constant of the sub-grid, and D̄ the normalized damping constant
assumed to be constant and uniform in the sub-grid. P̄mech is the total mechanical power
injected in the sub-grid and P̄el is the total electrical power transmitted from the sub-grid.
H̄, D̄, P̄mech and P̄el are all in per-unit form, i.e. normalized by the total rated power
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of the sub-grid. The aggregated inertia H̄ can be smaller in sub-grids with a high
penetration of renewables and changes on a larger time scale [126].

Modeling the fluctuating power input from renewables In conventional power
grids relying on fossil fuels, the power generation is usually temporally constant in the
time scale of seconds, i.e. P̃mech = 1. However, it becomes highly fluctuating when
power is generated from renewable energy sources. To investigate the impact of a
single fluctuating power input from renewables, we assume all nodes (sub-grids) in the
transmission network consist of only conventional synchronous machines, except one
sub-grid is influenced by a fluctuating power input from the renewables. The effective
inertia of the perturbed sub-grid is provided by the physical inertia of the synchronous
machines and the virtual inertia of the electronic devices connected to the wind turbines
or the solar panels. The total power injection Ptot

i (t) in the sub-grid i is the sum of the
constant mechanical power input from fossil fuels Ps

i and the fluctuating power input
Pr

i (t) from the renewables:

Ptot
i (t) = Ps

i + Pr
i (t). (7.6)

The penetration rate pi of fluctuating renewables in the sub-grid i is defined as

pi :=

〈
Pr

i (t)
〉

t〈
Ptot

i

〉
t

. (7.7)

To compare the impact of different power fluctuation recordings, we fix the penetration
rate pi and obtain per-unit power fluctuation time series by rescaling the recorded time
series of power fluctuation xi (t) as

P̄mech
i (t) =

Ptot
i (t)

〈
Ptot

i (t)
〉

t

=
Ps

i〈
Ptot

i (t)
〉

t

+
Pr

i (t)
〈
Ptot

i (t)
〉

t

= (1 − pi) +
xi (t)
⟨xi (t)⟩pi (7.8)

so that
〈
P̄mech

i (t)
〉

t
= 1.

Comparing the coarse grained model of power grids (Eq. 7.5) and the perturbed second-
order Kuramoto-like oscillator model (Eq. 4.1), we arrive at the following relations:

θi = θ̄i, βi = 1, αi =
Ω0D̄i

2H̄i
, Pi =

Ω0

2H̄i
,

Ki j =
Ω0

2H̄
κi j, εDi (t) =

Ω0

2H̄

(
P̄mech

i (t) − 1
)
.

(7.9)

Here κi j := 3U2Bi j

2Prated
i

denotes the normalized maximal transmission power between i and j

in per-unit form (see Eq. 3.6). In this work, we assume identical node parameters and
typical values for the rated grid frequency, the damping constant and the inertia constant:
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Ω0 = 2π×50 Hz, D̄i = D̄ = 0.02 s2, and H̄i = H̄ = 4 s [127]. The capacity of transmission
lines is set to be twice of the rated power of generators: κi j = κ = 2 p.u.. The penetration
rate of renewables pi = 0.5δik , i.e. is 50% for the node k which is exposed to a fluctuating
power input, and is 0 for other nodes.

7.2.2 Grid responses to a real-world power fluctuation

As the first step of predicting power grid responses to given power fluctuations, we
investigate the frequency response of a sample coarse-grained power grid network2 to
the time series of two real-world power fluctuation recordings, one of wind power and
one of solar power. As we show below, the grid network exhibits prominently different
responsive behavior to the two fluctuation signals due to their different PSDs. It will
be an interesting future task to compute the response to time series generated by e.g.
engineering inspired mathematical random processes to systematically investigate the
impact of different types of power fluctuations with specific PSD characteristics.

For both fluctuation signals, we predict the impact via the approach introduced in Sec. 7.1,
including select dominant frequency components according to the PSD of the signal
and compute the response via linear response theory (Eq. 7.1). The predicted response is
also compared to the results from direct numerical simulation.

Wind power fluctuation The time series of wind power fluctuations we use in this
work is obtained from Ref. [20] of [129]. The data were provided by wpd windmanager
GmbH, Bremen. The sampling rate of the data is 1 Hz, i.e. every data point in the
time series is the time average of the instantaneous power over 1 second. We use a
subset (100 second) of the time series labeled “power 1” in the data set and rescale the
time series according to Eq. 7.2.1 (Fig. 7.2a). For computing the network’s response
via numerical simulation with the 4-th order Runge-Kutta method (time step 0.01 s)
we locally interpolate the time series as a polynomial of degree 2 and resample the
interpolating function. However in the PSD of the signal all frequencies resulting from
artificial interpolation, i.e. the ones larger than 1 Hz, are discarded. For predicting the
network response, we select 50 frequency components with the largest PSD values as the
dominant Fourier modes (Fig. 7.2d). The nodal frequency responses are computed as the
sum of the responses to the 50 selected modes (Eq. 7.1).

The predicted nodal frequency responses are shown in Fig. 7.2b. After a transient stage
of about 5 seconds, our approach well predicts the response time series (see Fig. 7.2c).
Particularly, the slow-changing wind power fluctuation induces similar response time
series at all units in the network. The reason for such a response pattern can be found by
comparing the PSD of the fluctuation time series and the eigenfrequencies of the system

2The topology of the sample power grid is generated according to a random growth model of power
grid networks proposed by P. Schultz et al. [128]. The cost-vs-redundancy trade-off parameter r = 0,
meaning line redundancy is disregarded in the network growth.
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Fig. 7.2 Grid responses to a real-world wind power fluctuation recording. The
wind power fluctuation time series obtained via (7.2.1) and (7.9) is shown in purple in
(a). Its PSD is plotted with purple lines in (d) and 50 dominant frequency components
are highlighted in yellow. The black vertical lines in (d) indicate the eigenfrequencies of
the system. The reconstructed power fluctuation containing only the dominant Fourier
modes is plotted in yellow in (a). The predicted frequency response time series of one
node is plotted as the yellow line in (b), together with the result from numerical simulation
(purple line). The responses of other nodes in the network are shown in light grey in (b).
The difference between the numerical and the predicted response time series is shown
in (c): green for the node highlighted in (b) and grey for other nodes. The network
topology is the same as in Fig. 5.1.

(see Fig. 7.2d): the dominant frequencies are mostly lower than the lowest eigenfrequency,
which means, they are in the bulk regime of perturbation frequencies and thus induce
very similar responses at each node (see analysis in Sec. 5.3).

Solar power fluctuation The time series of a fluctuating solar power, i.e. the output
power recording of a photovoltaic panel, is obtained from the same source (available under
Ref. [20] of [129]). The measurement took place at a platform roof of the University
Oldenburg, Germany (53.152◦N, 8.164◦E). The sampling rate of the recording is also
1 Hz as the wind power time series. The time series in the dataset are the dimensionless
clear sky indices, which is the measured solar irradiance normalized by its theoretical
prediction under clear sky at a given latitude and longitude. For simulations and analysis
we use a part of the time series labeled “sensor 1” with a length of 100 seconds, locally
interpolated as a polynomial of degree 2 and resample the interpolating function. The
time series is also rescaled according to Eq. 7.2.1 (Fig. 7.3a). In the PSD of the time series
(Fig. 7.3d) all interpolation-induced frequencies (> 1 Hz) are discarded.
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Fig. 7.3 Grid responses to a real-world solar power fluctuation recording. The
color coding of the lines and the network settings except the power fluctuation fed into
the network are the same as in Fig. 7.2.

The prediction for the frequency responses to the solar power fluctuation is shown in
Fig. 7.3b. The larger deviation between the numerical and the predicted response time
series than that for the wind power fluctuation comes from the larger perturbation
magnitude (cf. Fig. 7.2a,c and Fig. 7.3a,c). Particularly, among the frequency responses
of different nodes in the network, we observe a larger heterogeneity while they still
share the same trend (cf. Fig. 7.2b). The low frequency components dominating the
fluctuation time series (Fig. 7.2d) locate in the bulk regime, thus induce a common
low-frequency response trend in the network. Meanwhile, the higher contribution of
the frequencies larger than the smallest eigenfrequency, i.e. in the resonance regime (cf.
Fig. 7.2d, Fig. 7.3d) leads to characteristic resonant response patterns in the power grid
network, thus results in higher heterogeneity among the response time series.

7.3 Prediction error and limit of validity

In the last sections we propose an approach to predict dynamic network responses to
irregular and distributed perturbations and present an example of its application on
predicting the nodal frequency response of a sample power grid network to real-world
power fluctuations. As shown in Fig. 7.2 and Fig. 7.3, the predicted responses are very
close to the results from numerical simulation. However, how do our predictions based
on the linearized dynamics deviate from the ones numerically determined from the
nonlinear dynamics? How do the prediction error depend on variables in the prediction
approach, in the perturbation signal and in the network prior to perturbation? In this
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section we investigate the limit of validity of the linear response theory we developed for
dynamic network responses by checking the prediction error in challenging situations,
such as stronger perturbation signals, heavier network load prior to perturbations and
less Fourier modes for prediction.

First we define the prediction error E as the root-mean-square deviations between the
nodal frequency response time series from prediction θ̇LRT

i (t) (cf. Eq. 7.1) and from
numerical simulation θ̇num

i (t):

E =
〈(
θ̇LRT

i (t) − θ̇num
i (t)

)2〉 1
2

t,i
. (7.10)

Here ⟨·⟩t,i denotes the average taken over time and over all nodes in the network. Note that
in time averaging we exclude the transient stage characterized by e−

α
β t . The averaging

starts when e−
α
β t is smaller than a threshold which we set as 10−3. We compare the

state variable θ̇i instead of θi, since for real-world power grids, the grid frequency θ̇i is
measurable while the load angle θi is not. Additionally, the deviation in grid frequency is
of greater practical significance in power grid operation.

Two sources of prediction error can be identified: the intrinsic limitation of the linear
response theory and the artificial exclusion of weaker Fourier modes. First, since the
analytical solution of the network response is derived based on the linearization of system’s
dynamics in the vicinity of the fixed point, the formula for prediction Eq. 7.1 is not
exactly accurate per se. The neglected higher order terms result in the intrinsic error of
prediction. In particular, the linearization of the nonlinear pair-wise interaction between
node i and j, or what we call the load on edge (i, j), Li j , reads

Li j := sin
(
θ j − θi

)
≈ sin

(
θ∗j − θ∗i

)
+ cos

(
θ∗j − θ∗i

) (
θ j − θ∗j − θi + θ

∗
i

)
(7.11)

+O
((
θ j − θ∗j − θi + θ

∗
i

)2)
,

where the nodal response
(
θi − θ∗i

)
is assumed to be small and proportional to the per-

turbation strength ε for each node i = 1, · · · , N . The leading term in the error of the
linearization of Li j :

1
2

sin
(
θ∗j − θ∗i

) (
θ j − θ∗j − θi + θ

∗
i

)2
(7.12)

depends on (i) the initial load on the edge (i, j) at the fixed point sin
(
θ∗j − θ∗i

)
and (ii) the

perturbation strength which is proportional to the nodal response θi − θ∗i .

The second source of error comes from the artificial selection of the Fourier modes in
the signal. We compute the network responses for the dominant frequency components
and neglect the influence of the weaker ones, which reduces the computational cost but
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brings prediction error. Thus, we investigate how these three factors influence the overall
prediction error in the following.

7.3.1 Prediction error vs. perturbation strength

We first test how the prediction error E changes with an increasing perturbation strength.
We consider an 80-unit sample power grid as illustrated in Fig. 5.1 where every unit in
the network is exposed under independent Brownian noises. To observe the system’s
critical behavior close to the bifurcation point, we set Ωg = 3 s−2 for the 20 generators,
Ωc = −1 s−2 for the rest 60 consumers, and a smaller coupling strength Ki j = 8 s−2 for all
links. The damping parameter α = 1.

80 independent 20-second time series of Brownian noise are generated as baseline per-
turbations Di (t). The Brownian noises are produced by Wiener processes with normally
distributed increments following N (0, 0.1). We first measure the prediction error via
Eq. 7.10 for the baseline noise Di (t). In the prediction we select 50 dominant frequency
components for each noise time series. Then we amplify the noises by multiplying the
perturbation time series at each node with the same value ε. Every node is thus perturbed
by εDi (t) where ε is cranked up incrementally. We measure the prediction error E for
increasing ε until the network is overloaded thus the stable fixed point is lost.

The result (Fig. 7.4) shows that, first, the prediction error E increases slowly for ε ≲ 3,
then faster for 3 ≲ ε ≲ 6, and at the end almost explosively when ε reaches a threshold
ε ≳ 6. This behavior can be understood as following. When the noises become stronger,
they drive the system further away from the fixed point θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗. The larger the deviation from
the fixed point |θθθθθθθθ − θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗ |, the larger the error in the linearization (7.12), hence the larger
the prediction error. When ε ≳ 6, as the color coding in Fig. 7.4 indicates, the maximum
load in the network reaches 1, meaning that the supply network is fully-loaded under
such strong perturbation. Microscopically, the load linearization at the fixed point breaks
down when a link goes beyond fully-loaded: the actual load sin

(
θ j − θi

)
with θ j − θi ≥ π

2
and the linearization at the fixed point (7.11) with θ∗j − θ∗i < π

2 wildly diverge from each
other (Fig. 7.5). Recall that we assumed |θ∗i − θ∗j | ≤ π/2 for every edge (i, j) to ensure
the stability of the fixed point. On the network level, when the perturbation is strong
enough to overload at least one of the links, the flow pattern of the whole network is
forced to change: both the direction and the amplitude of the flows can be significantly
different from the fixed point. In fact, if the network dynamic system goes beyond the
fully-loaded point, it reaches a bifurcation point where the stable fixed point annihilates
with another unstable fixed point (see Sec. 3.2.2). The system thus enters an unstable
regime which is rarely the case for real-world power grids.
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Fig. 7.4 Linear response theory’s limit of validity for large noise strengths. The
prediction error E (7.10) is plotted as a function of noise strength ε. The nodal prediction
error, i.e. (7.10) without the average over nodes, is shown with light gray lines for all
nodes. The error bar of E indicates the standard deviation of nodal error across the
network. The prediction error is color coded with the maximum link load over time
and over network at each ε. The purple dashed line helps to identify the increasingly
faster growth of the prediction error. The network structure is the same as in Fig. 5.1.
Parameters: Ωg = 3 s−2 for the 20 generators, Ωc = −1 s−2 for the rest 60 consumers,
Ki j = 8 s−2, α = 1. Every node is perturbed by an independent Brownian noise produced
by Wiener processes with normally distributed increments following N (0, 0.1).

7.3.2 Prediction error vs. prior network load

Next we test the dependence of the prediction error on how heavily the network is
initially loaded at the steady state prior to perturbations. We consider the same network
as in Sec. 7.3.1 and perturb the network with the same Brownian noise Di (t). This time
we crank up the power injections Ωi by multiplying them with a ratio r : Ωi → rΩi, while
fix the coupling strength, so that the network is more and more heavily loaded at the
fixed point. We increase the ratio r incrementally until the steady-state maximum link
load in the network L∗i j := sin

(
θ∗j − θ∗i

)
reaches 1. For each r we measure the prediction

error E.

The result (Fig. 7.6) reveals that the prediction error remains almost the same with an
increasing prior network load until the maximum link load reaches about 0.9. Starting
from this point, the error rises mildly at first, then drastically to about 300 times as before
when the maximum load is close to 1. This behavior can also be explained in terms of the
breakdown of the linearization of the load Li j . When the network becomes more and
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Fig. 7.6 Linear response theory’s limit of validity for priorly heavily-load net-
works. The prediction error E (Eq. 7.10) is plotted as a function of network load at the
fixed point, which is characterized by L∗i j . The nodal prediction error, i.e. Eq. 7.10 minus
the average over nodes, is shown with light gray lines for all nodes. The error bar of E
indicates the standard deviation of nodal error across the network. The prediction error
is color coded with the maximum link load over time and over network at each network
load. Network settings are the same as in Fig. 7.4.



100 Predicting Network Responses to Irregular and Distributed Signals

more heavily loaded at the fixed point, the fixed point moves closer and closer towards
the fully loaded point (blue disc and red disc in Fig. 7.5). The error of linearization does
not increase much since the slope of the linearization (blue dashed line in Fig. 7.5) also
gets flatter. As long as the perturbation is not strong enough to drive the system beyond
the fully-loaded point, the error stays relatively small. However, when the fixed point is
so close to the fully-loaded point that the perturbation finally pushes the system over the
fully-loaded point, the linearization and the actual load diverge and the prediction error
increases explosively.

In the context of power grids, the typical load on transmission lines is about 0.3 [130],
much lower than 0.9. In this regime, the prediction error of our approach is very low
(Fig. 7.6). The error increases almost linearly with the perturbation strength (Fig. 7.4).
Thus, we expect good performances of our approach in predicting the frequency response
of power grids in a normal operation state (cf. Fig. 7.2, 7.3).

7.3.3 Prediction error vs. Fourier modes inclusion

At the end, we test how prediction error is influenced by the number of Fourier modes
included in the prediction. The same network setting is considered as in the last sub-
sections except the coupling strength is increased to Ki j = 20 s−2 so that the system
stays lightly-loaded and does not exhibit a rapid increase of error due being close to the
bifurcation point. We vary the number of included Fourier modes for prediction, and
for each number of modes Nmode we measure the prediction error and the computation
time. The dependence of the prediction error and the computation time on the number
of modes is plotted in Fig. 7.7.

The result (Fig. 7.7) shows that the prediction error decreases exponentially with an
increasing number of frequency modes included in prediction. Meanwhile, the com-
putation time increases linearly as expected, since the time needed for computing the
response for each Fourier mode should be the same. Thus there is a trade-off between
prediction error and computation time in the decision of the number of frequency modes
to be included for prediction. An “optimal” number of frequency modes is determined
ad hoc depending on the tolerance of error and the available capacity of computation
power. For Brownian noise with PSD S ∝ ω−2, the prediction error decreases expo-
nentially, thus accurate predictions can be made with relatively fewer Fourier modes
thus shorter computation time. Of course, how fast the prediction error decays with
the number of modes ultimately depends on the distribution of the signal’s power on
frequency. The sharper the peaks in PSD, the faster the decay of the prediction error
with increasing number of modes, thus the more efficient is our approach to predict the
network responses.
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Fig. 7.7 Trade-off between prediction error and computation time. The prediction
error is plotted over number of included Fourier modes in logarithmic scale in (a) and
the time needed for computing the predictions is plotted in linear scale in (b). The linear
shape of the functions in respective scale is indicated by a linear fit (green dashed lines).
The error bars indicate the standard deviation across 70 realization of noise signals.

7.4 Conclusion

Based on the theory presented in Chap. 4 and Chap. 5, in this chapter, we proposed
an approach to effectively predict the network responses to irregular and distributed
signals, and examined the validity of our theory by testing the prediction errors in
challenging situations. Specifically, our predictive approach employs (i) a Fourier analysis
of the perturbation signals and (ii) a frequency sampling method to select the Fourier
modes in the signals which would produce the strongest responses in the network. The
application of the approach is demonstrated by predicting the response of a sample coarse-
grained power grid network to two real-world power fluctuation recordings. Our
approach accurately predicted the trajectory of the network response and revealed the
significantly different network responsive behavior to the fluctuations in wind and solar
power recordings: the response to the solar power fluctuation is more heterogeneous
across the network, due to the signal’s stronger frequency components in the resonant
regime.

Furthermore, we showed that our theory is valid, in the sense of exhibiting a low level of
prediction error (Fig. 7.4, 7.6), as long as the network system is far from the bifurcation
point, which is associated with the annihilation of the fixed point and an overload in the
context of power grids. At this point, the linearization of the nonlinear coupling function
fails to provide a close approximation.

In short, in this chapter we showed that our theory can be applied to reliably predict the
responses of normally-functioning networks to irregular and distributed signals. Interest-
ingly, for signals characterized by specific power spectra, our theory can potentially serve
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as a guideline in identifying risky nodes exhibiting strong responses by providing an
upper bound of response amplitude (7.2), even the fluctuation time series is unknown. It
would be an exciting future project to systematically investigate the correlation between
the upper bound and the actual network responses induced by an ensemble of random
time series with the same power spectral characteristics.



Part III. Transient Dynamics
of Network Responses
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In this part of the thesis, we study the transient response of the Kuramoto-like oscillator
networks to external perturbations. To answer questions such as “How soon and how
strongly does a perturbation influences other nodes in a complex network?”, we quantita-
tively characterize the transient perturbation spreading processes in terms of the finding
the relation between the arrival time of the perturbation at each node and the distance
the perturbation “travelled” in this time interval.

In Chap. 8, we start with solving for the full nodal response to an external driving signal,
which includes the description of the transient responsive behavior of each node. Focusing
on the transient nodal responses for small t, we derive a one-term approximation of the
transient responses via Taylor expansion at t = 0, which is more mathematically tractable.
The approximation provides insights into the analytical relation between the time when
a node receives considerable influence from the perturbation and the topological features
of the node.

Based on this approximation, we quantitatively characterize the perturbation spreading
process in Chap. 9. We reveal the asymptotic behavior of perturbation spreading at
large distance in homogeneous networks and propose an approach to predict the exact
perturbation arrival time at each node.

In Chap. 10, we explore the possibility of extending the results to a theory on perturbation
spreading in networks. We present the generalization of the previous results to similar
scenarios and two conjectures on the bounds of the true asymptotic perturbation spreading
speed in homogeneous networks of second-order dynamical systems.



Chapter 8

Transient Network Responses to
Perturbations

As the starting point of studying the perturbation spreading behavior in networks, in this
chapter, we present the analytical solution of the transient linear responses of Kuramoto-
like oscillator networks to an external driving signal. In Sec. 8.1, we derive the solution of
the full nodal response to an external driving near the fixed point, including the response
to a sinusoidal signal and to a step-function signal. The solution describes the full time
evolution of the linearized nodal response for t > 0. In Sec. 8.2, we focus on the first
impact of the perturbation on the network, and derive an approximation of the transient
nodal response via Taylor expansion at t = 0. The approximation is more mathematically
tractable, thus allows us to gain insights into the perturbation spreading behavior in
networks: two decisive factors in the nodal responsive behavior are identified (Sec. 8.3).
In the last section we shortly summarize and discuss the results obtained in this chapter.

8.1 Full nodal response to external driving

In Part II of the thesis, we derived the solution of the steady nodal response to external
driving signals for model class (4.1), and discussed the emerging steady response patterns
based on the solution. However, to study the first impact of a perturbation on a network,
or more specifically, to understand how a perturbation spreads in a network, we need
the solution of the full time evolution of the nodal response, i.e. the one including the
transient stage. Thus, in this section, we present the derivation of the general nodal
response to a driving signal for the most general setting of the model class, i.e. for the
second-order networks (α > 0, β > 0).

In the spirit of linear response theory, we assume the full nodal response is linear with
respect to the perturbation strength ε. However, unlike in Chap. 4, we do not make
any assumptions on the form of the linear response, e.g. a sinusoidal response, a uniform
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drift or a phase shift. We leave it undetermined to allow for more complicated forms
of response. Thus, at the fixed point θ∗θ∗θ∗θ∗θ∗θ∗θ∗θ∗, the phase of oscillator i with a general linear
response to the perturbation at oscillator k is written as

θ (k)
i (t) = θ∗i + εΘ

(k)
i (t). (8.1)

In Part III of the thesis, Θ(k)
i denotes the linear nodal response with a general form, not

with a particular sinusoidal form as in Part II. Plugging (8.1) into the dynamics of the
perturbed network (4.1), we obtain a matrix equation

Θ̈ΘΘΘΘΘΘΘ
(k)
+ αΘ̇ΘΘΘΘΘΘΘ

(k)
= −LΘΘΘΘΘΘΘΘ(k) + DDDDDDDD(k) (8.2)

describing the dynamics of the response vector ΘΘΘΘΘΘΘΘ(k). Here we assume identical system
parameters βi ≡ β and αi ≡ α for all i. Furthermore, we assume β = 1 without loss
of generality. In the following we solve for the linear response vector for two kinds of
perturbations, a sinusoidal signal and a step-function signal.

8.1.1 Nodal response to a sinusoidal signal

To solve for the general linear response vector ΘΘΘΘΘΘΘΘ(k) (t), we again resort to the orthonor-
mality of the Laplacian eigenvectors. However, the difference from before is, now we
project the entire time-dependent response in the basis of Laplacian eigenvectors, not
only the time-independent factors in it. Therefore, the projection coefficients c[ℓ] are
time-dependent for the general response vector:

ΘΘΘΘΘΘΘΘ(k) (t) =
N−1∑

ℓ=0
c[ℓ](t)vvvvvvvv[ℓ]. (8.3)

In this way, the dynamics of the response vector is decomposed into the dynamics of the
projection coefficients c[ℓ](t) in the N eigenmodes of the Laplacian matrix.

If the network is driven by a single sinusoidal signal εeı(ωt+φ) at node k, the perturbation
vector DDDDDDDD(k) is written as D(k)

i = δik eı(ωt+φ). The dynamics of c[ℓ](t) reads

c̈[ℓ] +αċ[ℓ] − λ[ℓ]c[ℓ] = v
[ℓ]
k eı(ωt+φ) for ℓ ∈ {0, · · · , N − 1}. (8.4)

Since the system is initially at the fixed point, the response vector ΘΘΘΘΘΘΘΘ(k) (t = 0) = 00000000. Thus
for each projection coefficient we have initial conditions c[ℓ](0) = 0 and ċ[ℓ](0) = 0,
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which lead to the solution of the projection coefficients c[ℓ](t) =



v
[0]
k eıφ

−ω2 + ıωα

(
−1 − ıω

α
+
ıω

α
e−αt + eıωt

)
, ℓ = 0, (8.5)

v
[ℓ]
k eıφ

−ω2 + ıαω + λ[ℓ]


∆

[ℓ]
− − ıω
2ıγ[ℓ]

e∆
[ℓ]
+ t − ∆

[ℓ]
+ − ıω
2ıγ[ℓ]

e∆
[ℓ]
− t + eıωt

 , ℓ ∈ {1, · · · , N − 1}, (8.6)

with

γ[ℓ] :=

√

λ[ℓ] − α
2

4
, ∆

[ℓ]
+ := −α

2
+ ıγ[ℓ], ∆

[ℓ]
− := −α

2
− ıγ[ℓ]. (8.7)

Particularly, we notice that, although determined from a different ODE, the projection
coefficient for ℓ = 0 can be viewed as a special case of the projection coefficient for
ℓ ∈ {1, · · · , N − 1}: replacing the λ[ℓ] in (8.6) with 0 recovers the solution for ℓ = 0 (8.5).
Thus, the solution of the general linear nodal response to a sinusoidal driving is written as

ΘΘΘΘΘΘΘΘ(k) (t) =
N−1∑

ℓ=0

v
[ℓ]
k eıφ

−ω2 + ıαω + λ[ℓ]


∆

[ℓ]
− − ıω
2ıγ[ℓ]

e∆
[ℓ]
+ t − ∆

[ℓ]
+ − ıω
2ıγ[ℓ]

e∆
[ℓ]
− t + eıωt

 vvvvvvvv
[ℓ] (8.8)

In the solution, we find the familiar response factor for the steady nodal responses again,
but additional terms characterizing the transient response arise: the first two terms in the
square bracket of (8.8) representing the oscillations with frequencies γ[ℓ] and an amplitude
decaying as ∼ e−

α
2 t . It is notable that these frequencies equal the eigenfrequencies ω[ℓ]

eigen
of the system (Eq. 5.4). This means, the transient response of every node in the network
includes intrinsic oscillations at the system’s eigenfrequencies, and the amplitudes of these
oscillations decay with the same rate. Additionally, the general solution recovers the
steady nodal response (4.17) for t → ∞, as expected.

8.1.2 Nodal response to a step-function signal

How does the full nodal response to a step-function signal differ from the response to a
sinusoidal signal in the transient stage? Intuitively, the transient impact of a step-function
signal should be the same as that of a sinusoidal signal εeı(ωt+φ) with φ = 0 and ω = 0.
Nevertheless, we verify this intuition by presenting the analytical solution of the full
nodal response to a step-function signal.
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Following the same idea as in last subsection, we express the response vector as a linear
combination of the Laplacian eigenvectors with time-dependent coefficients. These
coefficients obey the same dynamics as Eq. 8.4 if we replace eı(ωt+φ) with 1. Solving for
the coefficients separately for ℓ = 0 and ℓ = 1, · · · , N − 1 gives the solution of the full
nodal response to a step-function signal

ΘΘΘΘΘΘΘΘ(k) =
1
N

(
− 1
α2 +

1
α2 e−αt +

1
α

t
)
+

N−1∑

ℓ=1

v
[ℓ]
k

λ[ℓ]
*,
∆

[ℓ]
−

2ıγ[ℓ]
e∆

[ℓ]
+ t − ∆

[ℓ]
+

2ıγ[ℓ]
e∆

[ℓ]
− t + 1+- vvvvvvvv

[ℓ]. (8.9)

As can be seen by compared to solution (8.8), except uniform drift 1
Nα t in the 0-th

eigenmode, the full nodal response to a step-function signal has the same form as (8.8)
with φ = 0 and ω = 0. In fact, as we will see in the next section, the transient impact of a
step-function signal and that of a sinusoidal signal are essentially identical.

8.2 Approximation of transient nodal response

In the last section, we derived the analytical solution (8.8) which describes the full
time evolution of the nodal responses to a sinusoidal driving. As long as the network
system is not close to the bifurcation point, the linear response solution exhibits good
agreement with the numerically determined network response with high accuracy (see
Sec.7.3). However, it is not easy to gain valuable insights into the transient perturbation
spreading behavior in networks directly from the solution (8.8), simply due to the
nonlinear dependence on the Laplacian eigenvalue λ[ℓ] in each eigenmode.

To obtain a more tractable form of the transient nodal response, we represent (8.8) by
the leading term in the Taylor series of the function at t = 0. The n-th derivative of the
full nodal response at t = 0 reads1

Dn
t Θ

(k)
i (0) =

N−1∑

ℓ=0

v
[ℓ]
i v

[ℓ]
k eıφ

−ω2 + ıαω + λ[ℓ]



(
∆

[ℓ]
+

)n (
∆

[ℓ]
− − ıω

)

2ıγ[ℓ]
−

(
∆

[ℓ]
−

)n (
∆

[ℓ]
+ − ıω

)

2ıγ[ℓ]
+ (ıω)n


,

(8.10)

where the summand from the ℓ-th eigenmode can be viewed as the division of two
polynomials of the ℓ-th Laplacian eigenvalue2. We thus focus on the division of the

1Here we adopt Euler’s notation for differential operator Dn
t := dn

dtn .
2It can be shown that the numerators are polynomials with non-negative integer exponents of λ[ℓ]

(Appx. B), although it includes ∆[ℓ]
+ , ∆[ℓ]

− and γ[ℓ] which are not powers of λ[ℓ].
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polynomials

Fn
(
λ[ℓ]

)
:=

1
−ω2 + ıαω + λ[ℓ]



(
∆

[ℓ]
+

)n (
∆

[ℓ]
− − ıω

)

2ıγ[ℓ]
−

(
∆

[ℓ]
−

)n (
∆

[ℓ]
+ − ıω

)

2ıγ[ℓ]
+ (ıω)n


,

(8.11)

in the ℓ-th summand of the n-th derivative of the full nodal response at t = 0. For brevity,
we denote the term with the highest order of variable x in an algebraic expression P(x)
as LT[P](x) in the following.

Proposition 3. The term with the highest order of λ[ℓ] in Fn
(
λ[ℓ]

)
(n ∈ N, n ≥ 2)3 introduced

in (8.11) is

LT [Fn]
(
λ[ℓ]

)
=


(−1)

n−1
2

(
−ıω + n − 1

2
α

) (
λ[ℓ]

) n−3
2 if n is odd,

(−1)
n−2

2
(
λ[ℓ]

) n−2
2 if n is even.

This result can be proved by e.g. observing the highest order of λ[ℓ] in
(
∆

[ℓ]
+

)n
. A full

proof is given in Appx. B.

Prop. 3 shows that the leading term of Fn
(
λ[ℓ]

)
always has an integer order, no matter

n is odd or even. Therefore, it allow us to express the matrix composed of the leading
term of Dn

t ΘΘΘΘΘΘΘΘ(0), LT [Dn
t ΘΘΘΘΘΘΘΘ(0)] with

(
LT [Dn

t ΘΘΘΘΘΘΘΘ(0)]
)

ki
= LT

[
Dn

t Θ
(k)
i (0)

]
, in terms of

powers of the Laplacian matrix L. Using the matrices VVVVVVVV =
(
vvvvvvvv[0], · · · , vvvvvvvv[N−1]

)
and ΛΛΛΛΛΛΛΛ =

diag
(
λ[0], · · · , λ[N−1]

)
defined in Sec. 5.4, we have

LT [Dn
t ΘΘΘΘΘΘΘΘ(0)] = eıφVVVVVVVV LT [Fn] (ΛΛΛΛΛΛΛΛ) VVVVVVVV T = eıφLT [Fn] (L) , (8.12)

suggesting the n-th derivative of the nodal response at t = 0, Dn
t Θ

(k)
i (0), has a leading

term involving
(
Ld

)
ki

with d = n−3
2 if n is odd and d = n−2

2 if n is even (n ≥ 2). It is
notable that the leading order d increases monotonically with the order of time derivative
n: a higher-order time derivative of the nodal responses is leaded by an element of the
Laplacian matrix to a higher power.

Now we use the result in Prop. 1, stating that
(
Ld

)
ki

is non-zero only for d ≥ d(k, i).
Thus for node pair (k, i) with distance d(k, i), the lowest power of L with a non-zero ki-

3For n = 0 and n = 1, Fn

(
λ[ℓ]

)
≡ 0 due to the initial condition. That is, the nodal response and its first

time derivative are both zero at the time of perturbation: t = 0.



110 Transient Network Responses to Perturbations

th element is d(k, i) which corresponds to the lowest order of a non-zero time derivative
Dn

t Θ
(k)
i (0) being n = 2d(k, i)+2. Note that here the lowest order n is always even, since for

every even n, the order of LT
[
Dn−1

t ΘΘΘΘΘΘΘΘ(0)
]

is d(k, i)−1 and the order of LT
[
Dn+1

t ΘΘΘΘΘΘΘΘ(0)
]

is
d(k, i). The relation between the lowest order n of a non-zero time derivative Dn

t Θ
(k)
i (0)

and the distance d(k, i) for small distance d(k, i) ∈ {1, · · · , 5} is shown in Tab. 8.1.

In fact, for node pair (k, i), the lowest-order non-zero time derivative of the nodal
response equals the leading term with the highest order of L:

D2d(k,i)+2
t Θ

(k)
i (0) = eıφLT [F2d(k,i)+2] (L)ki = eıφ(−1)d(k,i)

(
Ld(k,i)

)
ki
, (8.13)

since all other terms involve
(
Ld

)
ki

with d < d(k, i) are zero. Hence, the series represen-
tation of the full nodal response Θ(k)

i (0) can be written as

Θ
(k)
i (t)���t=0

=

∞∑

n=0

Dn
t Θ

(k)
i (0)
n!

tn =

∞∑

n=2d(k,i)+2

Dn
t Θ

(k)
i (0)
n!

tn

=
D2d(k,i)+2

t Θ
(k)
i (0)

[2d(k, i) + 2]!
t2d(k,i)+2 +O

(
t2d(k,i)+3

)
. (8.14)

                                order of time derivative

2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

zero

non-zero

Dn
t Θ

(k )
i (0)

d
(k
,i

)
di

st
an

ce

n

−eıϕLki

−eıϕ
(
L3
)
ki

eıϕ
(
L2
)
ki

eıϕ
(
L4
)
ki

−eıϕ
(
L5
)
ki

Table 8.1 The distance dependence of the lowest-order non-zero time derivative
of nodal response.

Combining (8.13) and (8.14), we thus obtain an approximation of the nodal responses
for transient responses with small t as the first non-zero term with the lowest order of t
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(i.e. the red boxes in Tab. 8.1):

Θ
(k)
i (t) ≈

eıφ(−1)d(k,i)
(
Ld(k,i)

)
ki

[2d(k, i) + 2]!
t2d(k,i)+2. (8.15)

An illustration of the transient linear nodal responses and the respective one-term approx-
imations is given in Fig. 8.1.
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Fig. 8.1 One-term approximation of transient nodal responses. The transient re-
sponses of three representative nodes in a sample network (a) are plotted with solid
lines in (b). The respective one-term approximation given by Eq. 8.15 are plotted with
dashed lines. Parameters: N = 80, Ki j ≡ K = 20 s−2, α = 1 s−1, Ω = 3 s−2 for 20 nodes
indicated by squares and Ω = −1 s−2 for the rest 60 nodes indicated by discs in (a), ε = 1,
ω = 0.01 × 2π Hz, φ = 0.

In fact, same structures can be found in the series representation of the nodal responses to
a step-function perturbation. The n-th time derivative of the nodal response (8.9) (n ≥ 2)
at t = 0 reads

Dn
t Θ

(k)
i (0) =

N−1∑

ℓ=0
v

[ℓ]
i v

[ℓ]
k

(
∆

[ℓ]
+

)n−1
−

(
∆

[ℓ]
−

)n−1

2ıγ[ℓ]
, (8.16)

which shares the same lowest-order non-zero terms for the same distance as (8.10) (cf.
Appx. B). We thus arrive at the same one-term approximation for the transient nodal
responses to a step-function perturbation.
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8.3 First insights into perturbation spreading

The one-term approximation of the transient nodal response provides strong hints about
the patterns in perturbation spreading behavior in networks. It exhibits explicit de-
pendences on the distance between node pair d(k, i), on the element of the Laplacian
matrix to the power of d(k, i), on the initial relative magnitude of the perturbation eıφ,
and on time t. It is true that neglecting higher-order terms of t in the transient nodal
response causes error, nevertheless, the approximation captures some essential features of
the perturbation spreading behavior in networks: e.g. the strong dependence of the nodal
response on the topological distance and how the number of shortest paths influence
the perturbation spreading process. In this section we present the two key factors in
perturbation spreading qualitatively. Quantitative characterization of the perturbation
spreading behavior in networks will be given and discussed in Chap. 9.

Topological distance Most notably, the one-term approximation of the transient lin-
ear nodal response (Eq. 8.15) reveals the strong dependence of the perturbation spreading
behavior on the topological distance. The distance d(k, i) between the perturbed node k
and the responding node i appears in the factorial, in the power of t, and in the power
of the Laplacian matrix. A strong dependence of transient nodal response on distance
is also found in direct numerical simulations (see Fig. 8.2): the closer the nodes are, the
more promptly they respond to perturbations, and the steeper the slopes of responses
are (Fig. 8.2b). Additionally, the nodes with the same topological distance show similar
transient responses (see the inset of Fig. 8.2b).

Number of shortest paths The dependence of the transient nodal response on the
number of shortest paths between the perturbed node and the responding node is encoded
in the ki-th element of the d(k, i)-th power of the Laplacian matrix. As shown in
Prop. 1, for a node pair (k, i) with distance d(k, i), the element of Laplacian matrix power(
Ld(k,i)

)
ki

is in fact the product of the edge weights of (u, v) along a shortest path between
(k, i) summed over all shortest paths:

(
Ld(k,i)

)
ki
=

∑

Pd(k, i)
k→i

∏

(u,v)∈Pd(k, i)
k→i

Luv . (8.17)

Thus, the transient nodal response depends on the weighted sum of the shortest paths.
Especially, we show that for lightly-loaded homogeneous networks, i.e. the coupling
strength Ki j ≡ K for all (i, j), the weighted sum (8.17) is essentially the number of
shortest paths: when the steady-state network system is far from the bifurcation point,
i.e. lightly-loaded Li j = sin

(
θ∗j − θ∗i

)
≪ 1 for all edges (i, j), all the Laplacian element

becomes identical:

Li j := Ki j cos
(
θ∗j − θ∗i

)
≈ K . (8.18)
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Fig. 8.2 Topological distance and transient network response. The transient nodal
responses to a sinusoidal perturbation in British high-voltage power grid network (a) are
shown in (b). Nodes in (a) and their responses in (b) are color-coded by the respective
topological distance to the perturbed node, which is marked with a black square in (a).
The inset in (b) is a zoom-in of the area in the black rectangular at the lower left corner of
(b). Parameters: N = 120, Ki j ≡ K = 100 s−2, α = 1 s−1, Ω = 11 s−2 for 10 nodes (squares)
and Ω = −1 s−2 for the rest 110 nodes (discs) in (a), ε = 1, ω = 0.1 × 2π Hz, φ = 0.

Hence we arrive at
(
Ld(k,i)

)
ki
=

∑

Pd(k, i)
k→i

∏

(u,v)∈Pd(k, i)
k→i

K ≈ #Pd(k,i)
k→i Kd(k,i), (8.19)

which reveals the approximately linear dependence of the transient nodal response (8.15)
on the number of shortest paths #Pd(k,i)

k→i for a fixed distance and a fixed time.

This positively proportional relationship is confirmed by numerical simulations (see
Fig. 8.3). Among the responses of all 11 nodes which have a distance 9 to the perturbed
node, the red node with 12 shortest paths responds most rapidly, while the dark blue node
with only 1 shortest path responds most slowly. Note that the one-term approximation
is valid only for small t, thus it describes only the first impact of perturbations on the
respective nodes, not the long-term time evolution of the nodal responses.

Specifically, if we divide the nodal responses of these 11 nodes by the respective number
of shortest paths, we observe a collapse of transient responses (Fig. 8.4). However, the
collapse is not exact, because of (i) we neglected the contribution of the higher order terms
in the Taylor series, and (ii) the edge weights are not exactly identical, i.e. cos

(
θ∗j − θ∗i

)
is

not exactly 1 for all (i, j).
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Fig. 8.3 Number of shortest paths and transient network response. The transient
nodal response of the nodes with distance 9 (highlighted nodes in (a)) to the perturbed
node (yellow square in (a)) are shown in (b). There are 12 shortest paths with distance 9
between the red node and the perturbed node, while there is only 1 between the dark
blue node and the perturbed node. The parameter setting is the same as in Fig. 8.2.
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Fig. 8.4 Collapse of transient network response divided by number of shortest
paths. The transient nodal responses of the nodes with distance 9 (blue lines) collapse if
divided by the respective number of shortest paths (purple lines). The responding nodes
and the perturbed node are illustrated in in Fig. 8.3a. The network setting is the same as
in Fig. 8.2.

8.4 Conclusion

In this chapter we present the first steps in understanding the transient network responses
to an external perturbation. First we derive the analytical solution of the general linear
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nodal response to perturbations with different forms by generalizing the linear response
theory developed in Part II and letting the projection coefficients of the response vector
being time-dependent. The solution reveals that the exponentially decaying transient
nodal response contains intrinsic sinusoidal oscillations at system’s eigenfrequencies.

To better understand the transient network responses to a perturbation driving signal, we
provide an approximation of the transient nodal response for small t, which is given by the
first non-zero term in the Taylor series of the nodal response at t = 0. The approximation
shows (i) a strong dependence on the distance between the perturbed node i and the
responding node k, and (ii) an explicit relation to the ki-th element of the Laplacian
matrix to the power of d(k, i). It thus sheds lights on two key factors that determines the
transient nodal response: the topological distance d(k, i) and the weighted sum of the
shortest paths between k and i. For networks with a homogeneous coupling, the latter is
proportional to the number of shortest paths between node pair (k, i). Thus, for nodes
with same distance to the perturbation, the more shortest paths a node has, the stronger
the first impact. Both findings are confirmed by numerical simulations.

Particularly, the one-term approximation of the transient nodal response (8.15) shows
potential of generalization: both responses, the one to a sinusoidal signal and the one
to a step-function signal, share the same form of one-term approximation. That means,
both sinusoidal signal and step-function signal have the identical one-term transient
spreading behavior. Since any perturbation signal with an arbitrary wave form can be
expressed as a linear combination of such functions, we conclude that (8.15) reflects
the general features of the one-term transient responsive behavior of networks under an
arbitrary perturbation. Furthermore, we notice that the approximation (8.15) for the
sinusoidal form of perturbation appears to be independent of the damping parameter α,
which suggests a bigger room for generalization to related networks in the model class
(4.1). We will further discuss the universality of the approximation in Chap. 10.





Chapter 9

Characterizing Perturbation Spreading in
Networks

This chapter is devoted to a quantitative characterization of the perturbation spreading
patterns in networks. Based on the one-term approximation of the transient nodal
responses derived in Chap. 8, we estimate the arrival time of a perturbation at each node
in a network by thresholding the nodal responses. Particularly, the one-term estimate of
the perturbation arrival time implies an interesting asymptotic perturbation spreading
behavior when the distance becomes large: the spreading speed decreases with distance
and approaches a constant as distance goes to infinity (Sec. 9.1). In Sec. 9.2, we focus on
the role of network topology in the spreading behavior. We define the topological factor
to characterize the impact of network topology on the perturbation spreading process in
networks. Based on the developed results, we propose an approach to predict the exact
perturbation arrival time through a numerically determined master curve of perturbation
spreading (Sec. 9.3). A short conclusion of the presented results is provided at the end of
the chapter.

9.1 Asymptotic spreading behavior of perturbation

In last chapter we derived the one-term approximation of the transient nodal response
to a perturbation of any form (Eq. 8.15). The approximation simplifies the analytical
form of the transient nodal response (Eq. 8.8), and more importantly, it trims down its
dependences on parameters, thus reveals the essential patterns in perturbation spreading.
First insights provided by the one-term approximation has been discussed in Sec. 8.3.

In fact, more interesting patterns in perturbation spreading can be revealed by a more
careful analysis of the one-term approximation. In this section, we first provide a quanti-
tative characterization of the perturbation spreading processes in time and in topological
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space based on the one-term approximation, followed by the discovery of an interesting
asymptotic spreading behavior in homogeneous networks for large distances.

9.1.1 Estimating the perturbation arrival time

We start with characterizing the spreading of a perturbation in time, i.e. estimating the
time when a perturbation arrives at a certain node in network. Usual definitions of the
arrival time of a perturbation include (i) the time when the nodal response reaches its
first peak after perturbation, and (ii) the time when it crosses a given threshold. The
first definition makes sense for a delta-function perturbation, which occurs only at a
certain time or lasts very shortly. Its impact on each node grows, reaches a peak at
some point, and then fades in time. However, in our case where the network system
is under a persistent perturbation of any form, this definition becomes pointless, since
the impact of perturbation does not really fades in time. Therefore we adopt the second
definition of arrival time in this thesis. On the verge of being perturbed, the system is at
the fixed point thus all nodal responses are zero. After the time of perturbation (t = 0),
the response grows at every node at its own pace. Once the nodal response reaches a
specified threshold, which can be i.e. a measurable increase in the rotation speed of a
synchronous machine, we say the impact of the perturbation has reached this node.

One-term approximation of arrival time We define the arrival time of a perturbation
εeı(ωt+φ) starting from node k at node i, τ(k)

i , as the time when the absolute value of the
response εΘ(k)

i reaches a threshold ϵ th:

���εΘ(k)
i

(
τ(k)

i

) ��� = ϵ th. (9.1)

Adopting the one-term approximation of the transient linear response Θ(k)
i for small t,

we obtain an estimate of the arrival time by solving Eq. 9.1 for τ(k)
i explicitly:

τ(k)
i,app =

�����
ϵ th(2d + 2)!
εeıφ

(Ld)
ki

�����
1

2d+2

. (9.2)

From now on we denote the topological distance between the perturbed node k and
the responding node i as d for simplicity. The one-term estimate of the arrival time
τ(k)

i (9.2) inherits the strong dependence on the topological distance from the one-term
approximation (see Fig. 9.1). Moreover, it also depends on how the responding node
is connected to the perturbed node, particularly the weighted sum of the shorted paths.
This dependence is reflected by the explicit dependence of (9.2) on

(
Ld

)
ki

, and causes
the different arrival time for the nodes with the same d (Fig. 9.1d). Despite the deviation
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between the estimates and the exact arrival times, apparently they both exhibit the same
essential dependences on d and on

(
Ld

)
ki

(see Fig. 9.1b,d).
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Fig. 9.1 Estimates of perturbation arrival time. The arrival time of a sinusoidal per-
turbation largely depends on the topological distance (d) rather than the geographical
distance (b). In (b) and (d), the purple discs indicate the exact arrival time determined via
numerical simulations and the blue discs indicate the one-term estimates given by (9.2).
The British power grid network is embedded according to the geographical distance in
(a) and according to the topological distance in (b). The concentric circles indicate the
nodes with the same geographical or topological distance to the perturbed node. The
network setting is the same as in Fig. 8.2, plus ϵ th = 10−8.

Additionally, the estimate of arrival time also depends on the choice of the threshold value
ϵ th, or more specifically, on the ratio of ϵ th to the initial magnitude of the perturbation,
εeıφ. The higher the threshold value ϵ th compared to perturbation magnitude, the later
the perturbation arrives at the node. However, this difference of arrival time caused
by the choice of ϵ th decreases with distance and vanishes for nodes very far from the
perturbation: the factor goes to 1 and becomes independent of the ratio ϵ th

εeıϕ as d → ∞.

Error of estimation The error of the estimate (9.2) mainly comes from the neglected
higher-order terms in the series representation of the nodal response (8.14). The estima-
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tion error of the arrival time τ(k)
i defined as

E
τ(k )
i

:=

����τ(k)
i,app − τ(k)

i,num
����

τ(k)
i,num

(9.3)

exhibits a clear dependence on the topological distance d (see Fig. 9.1d and Fig. 9.2a).
It increases as the perturbation travels further. As we will see later, this divergence of
both arrival times comes from their asymptotic behavior for large d. The apparently
high error for small distance (Fig. 9.2a) comes from (i) the finite time step in numerical
simulations and (ii) the very small absolute value of the arrival time for small distances.
Furthermore, as the threshold ϵ th being lowered, the deviation between the one-term
estimate and the exact arrival time decreases. In particular, we find that the error averaged
over the nodes with the largest distance dmax decreases with the threshold as a power-law
(Fig. 9.2b). This dependence is plausible since the leading term in the error has an order
of 2d + 3 with respect to t while the threshold has an order of 2d + 2. Thus the logarithm
of the error and the logarithm of the threshold has a linear dependence. As t → 0, the
higher-order terms in the series becomes much smaller than the first non-zero term, thus
the estimation error approaches zero.
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Fig. 9.2 The error of the one-term estimate of arrival time. (a) The estimation
error defined in 9.3 is plotted over the topological distance (ϵ th = 10−8). The averaged
estimation error over the nodes with the largest distance in the network decreases with a
lowered threshold as a power-law (b). The network setting is the same as in Fig. 9.1.
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9.1.2 The asymptotic spreading speed

Observing the one-term estimate of the arrival time (9.3), one identifies two multiplying
parts: one topology-dependent and one topology-independent:

τ(k)
i,app =

�����
ϵ th(2d + 2)!

εeıφ
�����

1
2d+2 �����

(
Ld

)
ik

�����
− 1

2d+2

. (9.4)

As discussed in Sec. 8.3, the second part including
(
Ld

)
ik

is closely related to the shortest
paths between the node pair (k, i) for homogeneous networks, thus reflects the nodal
responding behavior for a specific network topology. Meanwhile, the first part depends
only on topology-independent parameters: the ratio between the threshold and the
perturbation magnitude, and the topological distance. Thus, the behavior of this part
reflects the general pattern in perturbation spreading across networks. We call this part
as the general spreading function G(d) (9.4).

G(d) :=
�����
ϵ th(2d + 2)!

εeıφ
�����

1
2d+2

(9.5)

As a function of distance d, the general spreading function G(d) grows increasingly
fast for small d and asymptotically approaches a linear function as d grows(Fig. 9.3a).
This behavior implies a general spreading pattern: a perturbation travels very fast at the
beginning, thus very small arrival times for nodes with small d, then the speed drops
and converges to a constant as d → ∞. To find out the asymptotic constant speed of
perturbation spreading, we use Stirling’s formula to rewrite the factorial and obtain

G(d) d→∞∼ 2d
e
. (9.6)

It shows that as d goes to infinity, the slope of the linear increase of G(d) with respect
to d equals to 2

e , which is independent of the choice of the threshold ϵ th. However, the
threshold does have influence on the speed of convergence to the linear function: the
larger the threshold, the faster the convergence (Fig. 9.3b).

For perturbation spreading in networks with nontrivial topologies, the arrival time also
depends on the second factor which involves the (2d + 2)-th root of the Laplacian power
element. As shown in Sec. 8.3, for lightly-loaded homogeneous networks where Ki j = K
and sin

(
θ∗j − θ∗i

)
for all (i, j), this factor is approximately the number of shortest paths

#P times Kd . In the following we denote #Pd(k,i)
k→i as #P for simplicity. Therefore, the

asymptotic behavior of this factor is essentially determined by how the number of shortest
paths depends on the distance. Assuming an exponential growth, i.e. #P (d) ∝ µd (µ > 1)
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Fig. 9.3 The asymptotic behavior of the general spreading function G(d). (a) As
d → ∞ the general spreading function G(d) asymptotically approaches to a linear function
with a slope of 2/e. The deviation decreases with distance as a power law (b). The curves
in (a) and (b) are color-coded by the threshold value ϵ th.

for e.g. a µ-dimensional lattice, we have

���(Ld
)

ik
���−

1
2d+2 ≈

(
#PKd

)− 1
2d+2 ∝

(
µd Kd

)− 1
2d+2 d→∞∼ (

µK
)− 1

2 . (9.7)

Therefore, combining the results for the two factors in the arrival time, (9.6) and (9.7),
we obtain asymptotic behavior of the arrival time as

τ(k)
i,app

d→∞∼ 2d
e
√
µK

, (9.8)

which suggests an asymptotic spreading speed in homogeneous networks with an exponen-
tial shortest path scaling:

Cexp
∞ =

1
2

e
√
µK . (9.9)

In fact, an upper bound of Cd→∞ can be given in terms of the largest degree Dmax in the
network. The number of shortest paths between two nodes is at most Dd

max, thus the
asymptotic spreading speed cannot surpass

Cupper
∞ =

1
2

e
√

DmaxK . (9.10)

For more sparsely connected networks, where the number of shortest paths grows slower
than exponentially with distance, e.g. as a power of the distance #P (d) ∝ dν with
(ν ≥ 0), the impact of the multiplicity of shortest paths disappear as d → ∞, since
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limd→∞ (dν)−
1

2d+2 = 1. Thus the asymptotic spreading speed becomes

Csparse
∞ =

1
2

e
√

K . (9.11)

This asymptotic behavior of the spreading speed is also observed numerically. For the
British power grid network, we measure the instantaneous spreading speed of a perturbation
from node k at distance d as the inverse of the difference between the average arrival
time over nodes with distance d and the average arrival time over nodes with distance
d − 1:

C (k) (d) :=
(〈
τ(k)

i

〉
d
−

〈
τ(k)

i

〉
d−1

)−1
(9.12)

The instantaneous speeds computed based on the estimates and on the exact arrival time
exhibit similar asymptotic behaviors to a constant spreading speed (Fig. 9.4). Since the
British grid network is sparse, the estimated spreading speed converges to Csparse

∞ = 1
2 e
√

K
as expected. The deviation between the instantaneous and the asymptotic spreading
speed drops loosely as a power law with an increasing distance (Fig. 9.4b), such that it
decreases to about 5% at only d = 13. However, this result has large fluctuations and
errorbars at larger distance, due to the small number of nodes at these distances.
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Fig. 9.4 The asymptotic spreading speed for large distance. The instantaneous speed
defined in (9.12) asymptotically approaches a constant speed (black dashed line in (a)). The
relative deviation between the two is plotted in (b). The instantaneous speed determined
based on the estimated arrival time is shown in blue and the one based on exact arrival
time in purple. The errorbars indicate the standard deviation among the nodes with the
same distance. The network setting is the same as in Fig. 9.1.
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9.2 The topological factor

In Sec. 9.1.2, we separate the one-term estimate of the arrival time (9.2) into two factors:
the general spreading function G(d) describing the general spreading pattern across
networks, and one individualizes the nodal arrival times for specific network topologies
through the element of the Laplacian matrix to the power of d. However, we notice that
the one-term estimate show innegligible deviations to the exact arrival time which grows
with distance (Fig. 9.1d, Fig. 9.3). Thus, how accurate is the topological dependence
given by the one-term estimate for the exact arrival time? Does the weighted sum of
the shortest paths between the perturbed node and the responding node (8.17) actually
underlie the exact arrival time of a perturbation?

We name the topological-dependent factor in the one-term estimate of the arrival time
(9.2) as the general topological factor of perturbation spreading:

T̃ (k)
i := ���(Ld

)
ik

���−
1

2d+2 . (9.13)

Particularly, for lightly-loaded homogeneous networks where the Laplacian element
Li j ≈ −K for all edges (i, j), the general topological factor is essentially determined by
the number of shortest paths #P:

T̃ (k)
i ≈

(
#PKd

)− 1
2d+2 =

(
#P)− 1

2d+2 K−
d

2d+2 . (9.14)

Thus, for such networks, we define the topological factor of a node pair (k, i) as

T (k)
i :=

(
#P)− 1

2d+2 , (9.15)

which is a dimensionless quantity purely depending on the network structure. The
topological factor is symmetric in the sense of T (k)

i = T (i)
k . For connected networks, there

are at least one and at most Dd
max paths between node pair (k, i), thus the topological factor

satisfies (Dmax)−
d

2d+2 < T (k)
i ≤ 1. The topological factor of the nodes in four example

networks with various topological structures is shown in Fig. 9.5. In chain networks,
there is only one shortest path between any pair of nodes, thus the topological factor
is trivial: T (k)

i (d) = 1 for all d. For square lattices, the topological factor is diverse: for
node pairs which are strictly vertically or horizontally apart, T (k)

i (d) = 1 as in chain
networks; for node pairs which are diagonally apart, the number of shortest paths grows
exponentially with the respective dimension as the base. Particularly, for node pairs
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Fig. 9.5 Examples of topological factor. The topological factor of each node in example
networks such as a chain network with N = 20, the British power grid network N = 120
(Fig. 9.1a), a 10 × 10 square lattice and a 6 × 6 × 6 cubic lattice. The lines show the
analytical results, (9.16) and (9.17), for diagonally positioned node pairs in square lattices.

diagonally apart in square lattice, the number of shortest paths grows with distance as

#Psquare, diag =

(
d

d/2

)
=

d!

[(d/2)!]2 ≈
√

2
πd

2d . (9.16)

For diagonal node pairs in cubic lattice, the number of shortest paths grows similarly

#Pcubic, diag =

(
d

d/3

) (
2d/3
d/3

)
=

d!

[(d/3)!]3 ≈
33/2

2πd
3d . (9.17)

The approximation in (9.16) and (9.16) results from the application of the Stirling’s
formula. Thus, for lattices the topological factor T (k)

i (d) ranges from 1 to significantly
lower values (Fig. 9.5).

To test the dependence of the exact arrival time on the topological factor, we measure
the nodal arrival time in the four example networks with diverse topologies but the same
homogeneous coupling strength. As shown in Fig. 9.6a, the numerically determined
exact arrival time differ across nodes and across networks. For nodes with distance 15,
the arrival time in cubic lattice is about 35% smaller than the one in chain network. An
intuitive picture of this result is, the more shortest paths there are between a node pair,
the more routes the impact of the perturbation can be carried through between the two
nodes, thus the faster the response at the responding node grows and the earlier it reaches
the threshold. If normalized by the topological factor, the exact arrival times across nodes
and across networks collapse nicely to the same curve (Fig. 9.6b). This result shows
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that the topological factor accurately captures the impact of network topologies on the
perturbation spreading process.
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Fig. 9.6 The collapse of the exact arrival time normalized by the topological factor.
The four example networks are the same as in Fig. 9.5. The numerically determined
arrival time are shown in (a) and the ones normalized by the topological factor are shown
in (b). Common parameters across networks: Ki j ≡ K = 300 s−2, α = 1 s−1, ε = 1,
ω = 0.01 × 2π Hz, φ = 0, ϵ th = 10−10.

9.3 Predicting perturbation arrival time

In this section we propose an approach to predict the exact perturbation arrival time at
each node in a network with an arbitrary but given topology. As shown in last section, if
normalized by the topological factor, the exact nodal arrival times measured in networks
with different topologies collapse onto a universal curve characterizing the perturbation
spreading pattern (Fig. 9.6). Based on this master curve of perturbation spreading, we
are in a position to make predictions for nodal arrival times in networks with arbitrary
network topologies.

The master curve is given by (i) numerically determine the exact nodal arrival times τ(k)
i

in a training data set of diverse network topologies, (ii) normalizing the recorded arrival
times by the respective topological factor T (k)

i , and (iii) averaging over the nodes with
the same distance to the perturbation in the data set, i.e.

M (d) :=
〈
τ(k)

i,num

T (k)
i

〉

d

. (9.18)
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The red line in Fig. 9.7b shows the master curve determined from the arrival time data
collected in perturbing each node in 100 realizations of random Gabriel graph1 with 100
nodes (see Fig. 9.7a for an example), i.e. 106 data points. Note that the master curve is
not the same as the curve of the general spreading function G(d). The general spreading
function (9.4) is directly derived from the one-term approximation of the nodal response.
Meanwhile, the master curve is determined based on the normalization of the numerically
determined nodal arrival times, which includes also the higher-order terms in the nodal
response. It is true that the contribution of the higher-order terms do not depend linearly
on the topological factor, which is why the collapse of the arrival times is not exact
(Fig. 9.6), however, the normalization significantly reduces the standard deviation of
the arrival times among all nodes with the same distance across network (see inset of
Fig. 9.7b).
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Fig. 9.7 The master curve of perturbation spreading. The arrival time averaged over
nodes with the same distance is shown in purple, and the master curve determined based
on the normalized arrival times (9.18) in red (b). The boxes around the data points
indicate the standard deviation of data with the same distance. The standard deviation
is additionally plotted in the inset. The data are collected from the perturbations of
each node in 100 realizations of random Gabriel graph with 100 nodes. An example
of a Gabriel graph is shown in (a). Parameters: N = 100, Ki j ≡ K = 100 s−2, α = 1 s−1,
Ω = 4 s−2 for 20 nodes and Ω = −1 s−2 for the rest 80 nodes, ε = 1, ω = 0.01 × 2π Hz,
φ = 0, ϵ th = 10−10.

Based on the master curve, we are capable of making predictions for nodal arrival time
for networks with arbitrary topologies. Given the network topology and the site of
perturbation, it is computationally inexpensive to evaluate the topological factor. For

1Gabriel graphs are planar graphs where two points p and q in the Euclidean plane are connected by
an edge if and only if the circle with diameter pq does not contain any other nodes in its interior [131].
The random Gabriel graphs are generated by (i) producing 100 nodes with random coordinates in a unit
square, and (ii) producing edges of the Gabriel graph via a variation of the Delaunay triangulation.
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homogeneous networks, computing the topological factor is equivalent to counting the
number of shortest paths, which can be carried out with a modified Breadth-first search
(BFS) in linear time O(|V |). The perturbation arrival time of a node i with distance d is
given by:

τ(k)
i,pred = M (d)T (k)

i . (9.19)

The standard deviation σ for each d in the master curve, which rises from the finite
training data set, gives the prediction interval of the nodal arrival time as ±σ(d)T (k)

i .
Using the master curve shown in Fig. 9.7, we make predictions for nodal arrival times in
a cubic lattice network and in another 100 realizations of random Gabriel graph. The
results show that the prediction error defined as

����τ(k)
i,pred/τ

(k)
i,num − 1

���� is almost always below

1% (Fig. 9.8b). The high errors for small distances come from the finite time step in
numerical simulations. Notably, even for significantly different network topologies,
e.g. for the cubic lattice network, our prediction approach yields good results with
low prediction error. Compared to the prediction error for another 100 realizations
of random Gabriel graph, the error for cubic lattice is even lower for some distances
(Fig. 9.8b).
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Fig. 9.8 Predictions for the exact arrival time. (a) The measured nodal arrival time in
a 6 × 6 × 6 cubic lattice (purple crosses) and the prediction interval (blue boxes) given
by the master curve in Fig. 9.7b. (b) The prediction error for the nodal arrival times in
the cubic lattice and another 100 realizations of random Gabriel graph. The errorbars
indicate the standard deviation among the nodes with the same distance.

Although in the example of the prediction, the “task” networks, i.e. the networks in which
the arrival times are to be predicted, and the “training” networks, i.e. the networks for
determining the master curve, have the same relative threshold of the arrival time ϵ th/εeıφ

and the same coupling strength K , the presented approach can be easily generalized to
predict arrival times in “task” networks with a different threshold and a different coupling
strength. The only extra work is to rescale the master curve by dividing it with the
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factors
(
ϵ th/εeıφ

)1/(2d+2) and K−d/(2d+2) for the training networks and to multiply the
same factors with the new values of ϵ th, εeıφ and K in the task networks. Furthermore,
replacing the topological factor (9.15) in the approach with the general topological factor
(9.13) allows predictions for task networks with inhomogeneous coupling strengths.

9.4 Conclusion

In this chapter we elaborate our study on the perturbation spreading processes in net-
works based on one-term approximation of the linear nodal response close to t = 0.
Specifically, we investigate how the impact of a perturbation spreads in a network by
looking into the relation between the first threshold-crossing time of nodal responses
and the topological distance between the perturbation and the response. The one-term
estimate of the perturbation arrival time suggests two patterns in perturbation spreading:
(i) in homogeneous networks, the instantaneous spreading speed decreases with distance
and converges to a topology-specific constant, and (ii) the (general) topological factor
essentially underlies the nodal arrival times. Very similar patterns are observed for the
numerically determined exact arrival times.

In particular, in homogeneous networks, the asymptotic spreading speed at large distance
depends on how the number of shortest paths grows with distance, i.e. #P (d). The
asymptotic spreading speed is derived explicitly for networks with #P (d) being an
exponential growth and being an sub-exponential growth. However, we remind the
readers that the results about the asymptotic spreading behavior and the asymptotic
spreading speed is valid only for the one-term estimate of the arrival time. For the exact
arrival time, a similar asymptotic behavior is observed, but a rigorous proof is still missing.

Nevertheless, the exact arrival time shows an accurate enough dependence on the topo-
logical factor suggested by the one-term estimate. The exact arrival times recorded in
networks with the same homogeneous coupling but diverse topologies collapse nicely
onto a universal master curve if normalized by the topological factor. Using the master
curve of perturbation spreading, we develop an semi-numerical approach to accurately
predict nodal arrival times in networks with arbitrary topologies. Remarkably, even
if the training networks and the task networks have distinct network topologies, the
prediction error is almost always below 1%.

In short, based on the analytical solution and approximation given in Chap. 8, in this
chapter we quantitatively characterizes the perturbation spreading processes and unveil
the asymptotic spreading behavior in homogeneous networks, which essentially depends
on the network topology. Interestingly, this result is also largely valid for exact arrival
times, which enables us to predict the exact perturbation arrival times for networks with
arbitrary topologies. In fact, these results can be generalized to similar network systems
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and perturbation scenarios to a large extent, which will be discussed in detail in the next
chapter.



Chapter 10

Towards a Theory of Perturbation Spreading
in Networks

In Chap. 9, we discussed the asymptotic spreading behavior in second-order dissipative
oscillator networks based on the one-term approximation. However, how general are
these results and how do we estimate the asymptotic spreading speed for the exact arrival
time, which includes the higher order terms in the series?

In the final chapter of Part III, we present our attempts to develop the previously pre-
sented results to a theory of perturbation spreading in networks. Specifically, in Sec. 10.1,
we generalize the results about the perturbation spreading behavior to similar network
systems in the model class (3.1) by discussing the transient dynamics of perturbed net-
works in different scenarios. In Sec. 10.2, based on the observation of the perturbation
spreading behavior in a chain network, we propose two conjectures on the bounds of the
asymptotic spreading speed of the exact arrival time: a lower bound and an upper bound.

10.1 Universality of perturbation spreading behavior

In the last two chapters, we studied the perturbation spreading behavior in the most
general setting of model class (4.1), i.e. α , 0 and β , 0. Based on the solution of the
linear nodal response and the one-term approximation at the time of perturbation, we
discovered the strong distance-dependence of the threshold-crossing perturbation arrival
time, the asymptotic behavior of the spreading speed, and the topological factor which
characterizes the impact of network topology on perturbation spreading. However, how
universal are these patterns in the perturbation spreading in networks?

Before generalizing the results, we first discuss the essential common properties of the
systems to which the theory can be transferred. First, the underlying network should be
connected so that there is at least one path that the perturbation can pass through and
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reach every node in the network. Second, the system should be at a fixed point prior
to perturbation. The very concept of “perturbation spreading” requires the media of
perturbation spreading to be initially free of perturbation, i.e. to be resting at a steady
state for dynamical systems or to be neutral/susceptible for populations in epidemics.
Therefore, a necessary condition for the considered network systems is that it should
have at least one fixed point, and it is at the fixed point for t ≤ 0.

In the following, we consider if or how the discovered patterns in perturbation spreading
change under varied circumstances, such as (i) at the limit of low- and high-damping,
(ii) under the perturbation of different kinds of signals, (iii) with other forms of coupling
functions, (iv) with a non-zero nodal relaxation in the dynamics and (v) if the responses
in frequency instead of in phase are observed.

10.1.1 Impact of damping

Low-damping limit If the damping is very low, i.e. α ≪ β, we let α = 0 and β = 1
without loss of generality. The response vector ΘΘΘΘΘΘΘΘ(k) (t) to a driving at node k thus follows
the dynamics

Θ̈ΘΘΘΘΘΘΘ
(k)
= −LΘΘΘΘΘΘΘΘ(k) + DDDDDDDD(k), (10.1)

which yields the solution in the basis of Laplacian eigenvectors as

ΘΘΘΘΘΘΘΘ(k) (t) =
eıφ

Nω2

(
−1 − ıωt + eı(ωt+φ)

)
11111111

+

N−1∑

ℓ=1

v
[ℓ]
k eıφ

−ω2 + λ[ℓ]


*,1 +

ω√
λ[ℓ]

+- cos
(√
λ[ℓ]t

)
+ eıωt

 vvvvvvvv
[ℓ]. (10.2)

Analyzing the n-th time derivative of the linear response in a similar way as in Sec. 8.2,
we arrive at the same result: the contribution of each eigenmode in the n-th time
derivative is a polynomial of the respective eigenvalue with degree n−2

2 . Thus, the one-
term approximation of the linear response at the low damping limit is exactly the same
as for the networks with finite damping, and the same perturbation spreading patterns
follow.

In fact, as the damping parameter decreases, the exponential decay of the transient
response in the dissipative second-order phase oscillator network (8.8) slows down and
finally ceases to decay at all. Once triggered by the perturbation, the intrinsic oscillations
keep going with system’s eigenfrequencies. However, the change in the long-term
behavior of the oscillations does not affect the perturbation spreading process close to
t = 0. Interestingly, at the low-damping limit, stronger resonances occur: the response
amplitude of the ℓ-th eigenmode is not only maximized as a finite value, but approaches
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infinity when the perturbation frequency equals the eigenfrequency/resonance frequency:
ω = ω[ℓ]

eigen =
√
λ[ℓ].

High-damping limit With a very high damping parameter α ≫ β, the system
becomes a network of first-order oscillators and thus loses the oscillatory behavior. In
this case the response vector obeys

Θ̇ΘΘΘΘΘΘΘ
(k)
= −LΘΘΘΘΘΘΘΘ(k) + DDDDDDDD(k), (10.3)

if we let α = 1 and β = 0. The linear solution in the basis of Laplacian eigenvectors reads

ΘΘΘΘΘΘΘΘ(k) (t) =
N−1∑

ℓ=0

v
[ℓ]
k eıφ

ıω + λ[ℓ]

(
−eıλ

[ℓ]t + eıωt
)
vvvvvvvv[ℓ]. (10.4)

It is possible to carry out the same procedure as before and determine the one-term
approximation of the linear response, which gives the estimate of the arrival time

τ(k)
i,app =

�����
ϵ th(d + 2)!
εeıφ

(Ld)
ki

�����
1

d+2

. (10.5)

However, although the distance-dependence and the asymptotic behavior still exist for
the networks at the high damping limit (Fig. 10.1), the error of the one-term estimate
is large. This means that the higher order terms have considerable contributions to the
transient response, much more significant than the higher-order terms in the responses
of the second-order oscillators.
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Fig. 10.1 Perturbation spreading in Kuramoto networks. (a) Transient nodal re-
sponses of a network of first-order Kuramoto oscillators, color-coded with the distance
to the perturbation. (b) The numerically measured nodal arrival times (purple) and the
one-term estimates (blue). The underlying network topology is the British power grid
network as illustrated in Fig. 8.2a. Parameters are also set as the same plus ϵ th = 10−8.



134 Towards a Theory of Perturbation Spreading in Networks

The large error is a consequence of the changed relation between the order of the time
derivative of the nodal response and the highest order of the Laplacian matrix it includes.
We have seen in Sec. 8.2 that, in the series representation of the response of second-order
oscillator networks, the order of the first non-zero term n depends on distance d as
n = 2d + 2, and the first non-zero term includes elements of Ld (see Tab. 8.1). In the
time derivatives of the response, the highest order of Laplacian matrix steps up by 1 as
the order of time derivative steps up by 2, meaning that the elements of Ld+1 appears in
time derivatives with order ≥ 2d + 4. However, in the time derivatives of the responses
of first-order oscillator networks, the highest order of Laplacian matrix steps up by 1 as
the order of time derivative steps up by 1. Therefore the elements of Ld+1 appears in
the time derivatives with order ≥ d + 1, so that the error from Ld+1 is significantly less
penalized by the factorial and thus plays a bigger role in the response.

10.1.2 Impact of the form of perturbation

Perturbation as driving In last two chapters we have been focusing on the transient
impact a perturbation on the dynamics of an oscillator. That is, the transient response of
a network system at a steady state to an external driving. We derived the linear network
response to a sinusoidal signal and to a step-function signal in Sec. 8.1 and arrived at the
same transient response pattern.

In fact, we notice that the one-term approximation of the response to a sinusoidal driving
signal is independent of the driving frequency ω and the damping parameter α, and is
linear to the initial magnitude of impact eıφ. This result is plausible since both ω and α
describe system’s longer-term behavior: the driven oscillation frequency and the rate of
the exponential decay of the transient response. Therefore, we arrive at the conclusion
that for driving signals with any form and for any damping parameter α not much larger
than β in the network, the transient network response exhibits the same essential pattern.
The influence of ω and α comes into play only in a larger time scale, or in higher-order
terms in the series representation of the nodal response.

Perturbation on state variables If the network is not driven, but is only perturbed
by a deviation at the state variable θk or θ̇k , do the patterns in transient response change?
The answer is yes, but they change only slightly.

The linear network response ΘΘΘΘΘΘΘΘ(t) to a small deviation

ΘΘΘΘΘΘΘΘ0 =

N−1∑

ℓ=0
c[ℓ]

0 vvvvvvvv[ℓ] and Θ̇ΘΘΘΘΘΘΘ0 =

N−1∑

ℓ=0
ċ[ℓ]

0 vvvvvvvv[ℓ]

at t = 0 follows

Θ̈ΘΘΘΘΘΘΘ + αΘ̇ΘΘΘΘΘΘΘ + LΘΘΘΘΘΘΘΘ = 00000000, (10.6)
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which yields the solution

ΘΘΘΘΘΘΘΘ(t) =
1√
N

*.,c[0]
0 +

ċ[0]
0
α
− ċ[0]

0
α

e−αt+/- 11111111 +
N−1∑

ℓ=1

*.,
−∆[ℓ]
− c[ℓ]

0 + ċ[ℓ]
0

2ıγ[ℓ]
e∆

[ℓ]
+ t +

∆
[ℓ]
+ c[ℓ]

0 − ċ[ℓ]
0

2ıγ[ℓ]
e∆

[ℓ]
− t+/- vvvvvvvv

[ℓ].

(10.7)

Here ∆[ℓ]
+ , ∆[ℓ]

− and γ[ℓ] are defined as in Eq. 8.7. Focusing on the impact of a signal initial
perturbation θi = θ

∗
i + δik , we have the linear nodal response

ΘΘΘΘΘΘΘΘ(k) (t) =
1
N

11111111 +
N−1∑

ℓ=1

v
[ℓ]
k

2ıγ[ℓ]

(
−∆[ℓ]
− e∆

[ℓ]
+ t + ∆

[ℓ]
− e∆

[ℓ]
− t

)
vvvvvvvv[ℓ]. (10.8)

Following a similar procedure as in Sec. 8.2, we obtain the result that the lowest-order
non-zero term in the series representation of the nodal response at t = 0 has order n = 2d.
Thus the one-term approximation of nodal response is given as

τ(k)
i,app =

�����
ϵ th(2d)!

εeıφ
(L2d)

ki

�����
1

2d

. (10.9)

Thus, we can see that the transient response pattern for a perturbation on the phase is
very similar to to the one for a perturbation on the dynamics. The only difference is
that the one-term estimates depend on distance as 2d instead of as 2d + 2. This can be
understood as an earlier arrival of a perturbation: the perturbed phase transfers the impact
immediately to the neighboring nodes, while a perturbation on the second-order time
derivative of the phase needs a bit extra time to affect the phase of the perturbed oscillator.

10.1.3 Impact of the form of coupling

In the previous analysis we assume the form of the coupling function as g(·) = sin(·),
which yields the dynamics of the classical Kuramoto model (α = 1, β = 0) and the
oscillator model of AC power grids (α > 0, β = 1). However, the choice of the specific
form of coupling function does not affect the patterns in perturbation spreading in
networks. As long as (i) the nodes are pairwise diffusively coupled, i.e. the coupling
depends on the difference of the state variable of the neighboring nodes, and (ii) the
coupling function is differentiable, the Laplacian matrix arises in the dynamics of the
linear response vector ΘΘΘΘΘΘΘΘ thus the same results follow. The only difference is that the
Laplacian element is then given by

Li j = Ki jg
′(θ∗j − θ∗i ), (10.10)
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where g′(θ∗j − θ∗i ) denotes the derivative of the coupling function g with respect to the
state difference at the fixed point. However, a network-wide asymptotic spreading speed
requires a same weight of all edges. Otherwise, the spreading speed is heterogeneous
across network. Therefore the coupling function g(·) must satisfy g′(θ∗j − θ∗i ) ≡ g∗ for all
edges (i, j).

10.1.4 Impact of relaxation

If each node has a non-zero relaxation in the dynamics, i.e.

βθ̈i = −αθ̇i − ξθi +

N∑

j=1
Ki j sin

(
θ j − θi

)
, (10.11)

how does the perturbation spreading behavior change? With relaxation, the dynamics of
the linear response vector reads

Θ̈ΘΘΘΘΘΘΘ = −αΘ̇ΘΘΘΘΘΘΘ − ξΘΘΘΘΘΘΘΘ − LΘΘΘΘΘΘΘΘ, (10.12)

which resembles the dynamics without relaxation (10.6) if we absorb the relaxation term
into the Laplacian term. Thus it is easy to see that the solution of the linear response with
relaxation has exactly the same form as before if we replace λ[ℓ] with λ[ℓ] + ξ. Since ξ is
simply a constant, so it has no influence on the results of the one-term estimates and thus
does not affect the perturbation spreading behavior in networks.

10.1.5 Behavior of frequency response

Sometimes the behavior of the frequency responses is more relevant than the behavior of
the phase response, e.g. in the context of the AC power grid dynamics. The magnitude
of the frequency responses is crucial for the safety operation of the synchronous machines
and other components in the grid. Does the frequency response share the same patterns
in perturbation spreading as the phase response?

The solution of the linear frequency response is simply the first time derivative of the
linear phase response (Eq. 8.8). Hence, the lowest-order non-zero term in the Taylor
expansion at t = 0 which includes

(
Ld

)
ki

has the same form as the one for the phase
response, but just one order lower. The estimated arrival time is thus

τ(k)
i,app =

�����
ϵ th[2d + 1]!
εeıφ

(Ld)
ki

�����
1

2d+1

. (10.13)
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This can be interpreted as a very similar perturbation spreading pattern with a little earlier
arrival of the perturbation at the frequency than at the phase: driven by the perturbation
on the second-order derivative of node k, the phase velocity of node k reaches the
threshold first, then the phase of node k.

10.2 Two conjectures on bounds of asymptotic spread-
ing speed

Previously in Chap. 9, we revealed the asymptotic behavior of the one-term estimate
of the arrival time at large distance: regardless of the network topology, the estimated
arrival time approaches a linear function of the topological distance, which suggests
a constant asymptotic perturbation spreading speed C∞. Furthermore, the asymptotic
spreading speed with respect to the one-term estimate does depends on the network
topology, in particular, on how the number of shortest paths between the perturbed node
and the responding node grows with distance: #P (d). A similar asymptotic behavior is
observed for the numerically determined exact arrival time (Fig. 9.4). However, does the
true spreading speed converge to the same constant as we derived from the one-term
estimate? Although rigorous proofs are still absent, we propose two conjectures on the
bounds of the true asymptotic spreading speed in this section.

Conjecture on a lower bound

Let us first consider an elementary example: perturbation spreading in a chain network
of second-order oscillators, i.e. (4.1) with α > 0 and β > 0. We perturb the phase
of the node at one end of the chain with a small deviation θ0(t = 0) = θ∗0 + ε, and let
the perturbation spread through the chain. We measure the exact arrival time of the
perturbation through numerical simulation, and compute the one-term estimate of the
arrival time via Eq. 10.9. Additionally, we measure the time when the nodal response
reaches its first peak. Since there is only one shortest path in the chain network, the first
peak can be considered as the initial and the major impact of the perturbation. We also
computed the instantaneous spreading speed C for the three arrival times.

We obtain intriguing results about the asymptotic spreading behaviors of the estimated
and the exact arrival time (Fig. 10.2). Both arrival times exhibit convergence to a linear
function of d, but the linear functions have different slopes (Fig. 10.2a). Both of the
deviations of the arrival time to the respective linear function of d drop with d as a
power-law (Fig. 10.2b). That means, the true perturbation spreading does approach a
constant spreading speed as expected, but the value of the speed is different from the one
derived from the one-term estimate. The asymptotic spreading speed with respect to
the one-term estimate is 1

2 e
√

K , as expected: there is only one shortest path between
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Fig. 10.2 The asymptotic spreading behavior in a chain network. (a) Three arrival
times, the exact, the estimated, and the peak, asymptotically approach linear functions
of d at large distance, with the respective relative deviations dropping as a power-law
(b). (c) The instantaneous spreading speed computed based on the one-term estimate
approaches 1

2 e
√

K while the ones computed based on the exact and the peak arrival times
approaches

√
K . The relative deviations of the instantaneous speed drops at least as fast

as a power-law (d). Parameter: N = 120, Ki j ≡ K = 100 s−2, α = 1 s−1, Ω = 1 s−2 for 60
nodes alternatively arranged with the rest nodes with Ω = −1 s−2, ε = 1, ϵ th = 10−8.

any node pair in a chain network, #P (d) = 1, so the asymptotic spreading speed in
sparse networks (9.11) fits. Meanwhile, the true asymptotic spreading speed appears to
be smaller than 1

2 e
√

K . In fact, it approaches
√

K , which is the asymptotic spreading
speed with respect to the peak time of nodal response (Fig. 10.2c). The deviations of the
instantaneous spreading speed to the respective speed limit C∗∞ all drops as a power-law,
if not faster (Fig. 10.2d). The steps in the deviations are the consequence of the finite
time step in numerical simulation.

In fact, we notice that if without damping and external driving, the dynamics of the
response vector of a second-order oscillator networks, Eq. 10.1, resembles a discrete
version the standard wave equation. For homogeneously coupled networks, the dynamics
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of the response vector can be written as

Θ̈ΘΘΘΘΘΘΘ = −KL̃ΘΘΘΘΘΘΘΘ. (10.14)

Here L̃ denotes the unweighted Laplacian matrix, whose negative is equivalent to the
discrete Laplace operator. For chain networks, Eq. 10.14 is the discrete version of the
wave equation in classical continuous media, thus suggests a “natural speed of wave
propagation” of

√
K , which fits the asymptotic spreading speed we observe for the peak

arrival time and the true threshold-crossing arrival time. Thus, the transient linear
response of a second-order phase oscillator network at a fixed point can be compared to
wave propagation in N-dimensional space. Especially, we notice that the instantaneous
spreading speed with respect to the exact threshold-crossing arrival time and with respect
to the peak arrival time approach to the same constant speed differently: one from above
and one from below. The decrease of the spreading speed with respect to the threshold-
crossing arrival time is due to the broadening of the first peak, while the increase of the
spreading speed with respect to the peak arrival time is artificial: for small t the first peak
has a very sharp shape while the time step of simulation is finite.

As concluded in Chap. 9, the asymptotic spreading speed is closely related to the topo-
logical factor. For homogeneous networks, it is essentially the inverse of the number of
shortest paths between the perturbed node and the responding node. The more shortest
paths are there, the faster the spreading. Thus, for networks with any other topologies,
the true asymptotic spreading speed should only be larger than the one for chain networks:√

K . We hence propose an lower bound of the true asymptotic spreading speed.

Conjecture 1. Let G(V, E) be a network of second-order dynamical systems θθθθθθθθ(t) ∈ R|V | with
a diffusive coupling function g(θ j − θi) and a homogeneous coupling strength Ki j = K for all
(i, j) ∈ E. Given a fixed point θθθθθθθθ∗ ∈ R|V | , if g′(θ∗j − θ∗i ) = g∗ for all (i, j) ∈ E, then the
asymptotic spreading speed of a perturbation at the fixed point has a lower bound

√
g∗K .

Conjecture on an upper bound

To find an upper bound for the true asymptotic spreading speed, we first review the
one-term approximation of the nodal response. Observing (8.15), we notice that, as
a positive function of t to the power of 2d + 2, it goes rapidly to infinity as t grows.
Although not yet proven mathematically, the one-term approximation appears to be
always greater than the actual nodal response in all of our observations (see Fig. 8.1).
Thus, the threshold-crossing arrival time determined from the one-term approximation
is always smaller than the true threshold-crossing arrival time. As a consequence, the
asymptotic spreading speed derived from the one-term estimate of the arrival time is
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always larger than the true asymptotic spreading speed. We therefore propose an upper
bound of the true asymptotic spreading speed.

Conjecture 2. Let G(V, E) be a network of second-order dynamical systems θθθθθθθθ(t) ∈ R|V | with
a diffusive coupling function g(θ j − θi) and a homogeneous coupling strength Ki j = K for all
(i, j) ∈ E. Given a fixed point θθθθθθθθ∗ ∈ R|V | , if g′(θ∗j − θ∗i ) = g∗ for all (i, j) ∈ E, then the
asymptotic spreading speed of a perturbation at the fixed point has an upper bound 1

2 e
√
µg∗K

with µ ≥ 1. The factor µ is determined by the dependence of the number of shortest paths #P
with the distance d:

µ = lim
d→∞ [#P (d)]

1
d . (10.15)

10.3 Conclusion

In the last chapter, we explored the possibility to generalize our previous results to a
theory of perturbation spreading in networks. First, we discussed the universality of the
discovered patterns in perturbation spreading, essentially the one-term estimate of the
arrival time. The results are summarized as follows:

• At the low-damping limit, our results still holds. However, at the high-damping
limit, the one-term approximation exhibits large error, due to the much less penal-
ized higher order contribution from (Ld+1)ki.

• The perturbation spreading behavior does not depend on the specific form of the
perturbation, but only on the ratio between the threshold and the initial magnitude
of the perturbation. The impact of a perturbation on the state variable of a node
arrives two steps earlier than the impact of a perturbation on the dynamics: the
one-term estimate of the arrival time depends on 2d instead of 2d + 2.

• A general diffusive coupling function g is allowed, as long as it is differentiable so
that the system’s dynamics can be linearized. However, a network-wide asymptotic
spreading speed exist only when its first derivative at the fixed point g∗ for all edges.

• If the dynamics includes a relaxation term −ξθi, the spreading pattern remains the
same.

• If observing the frequency response, the impact of the perturbation arrives one
step earlier: the one-term estimate of the arrival time depends on 2d + 1 instead of
2d + 2.
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In short, the one-term estimate of the threshold-crossing arrival time in second-order
networks (3.1) can be unifiedly expressed as

τ(k)
i,app ≈

������
ϵ∗thδ!

(Ld)
ki

������
1
δ

. (10.16)

Here ϵ∗th denotes the ratio between the threshold ϵ th and the initial magnitude of the
perturbation, ε for a step-function signal and εeıφ for a sinusoidal signal. Additionally,
δ depends on which variable is perturbed: δ = 2d if the state variable is perturbed and
δ = 2d + 2 if the dynamics is perturbed. If one observes the frequency response, δ
should be subtracted by 1. However, no matter how we choose ϵ∗th and δ, the asymptotic
spreading speed remains the same as discussed in Chap. 9. It solely depends on the
topology of the network.

Moreover, we propose two conjectures on the true asymptotic spreading speed. Inspired
by the observations of the asymptotic perturbation spreading behavior in a chain network,
we propose

√
g∗K as a lower bound, which can be seen as the discrete version of the wave

propagation speed. Conjecturing the one-term approximation of the nodal response is
always larger than the actual response, we propose the topology-dependent asymptotic
spreading speed derived from the one-term estimate τ(k)

i,app as an upper bound of the true
asymptotic spreading speed.

As shown in this chapter, our findings in Chap. 9 reveal general patterns in the pertur-
bation spreading processes in diffusively coupled networks of second-order dynamical
systems. Thus, our work serves as a contribution to the study of transient network
dynamics under perturbation and may shed light on the understanding of perturbation
spreading processes in biological and chemical networks with diffusive coupling such as
[79, 83]. Especially, the proposed conjectures on the bounds of the asymptotic spreading
speed may stimulate proofs (or falsifications), which would hopefully bring deeper insight
into the topic, e.g. establishing the relation between the perturbation spreading dynamics
in networks and in continuous media.





Conclusions

In this thesis we studied how networks of diffusively coupled dynamical systems close to a
normal operation state dynamically respond to spatiotemporal perturbation signals. Based
on the well-established methods in mathematics and physics such as linear response theory
and asymptotic analysis, we discovered a way to systematically link the second-order
network dynamics to the network topology, thus obtained analytical insights in the
patterns rising in the dynamic network responses. We analyzed the response patterns in
two timescales: (i) the long-term steady pattern driven by the external signals, and (ii) the
short-term transient pattern in the spreading impact of a single signal. Furthermore, we
explored the boundary of the validity and the generality of our theory. We also proposed
practical schemes to predict network responses in different timescales.

In Part I of the thesis (Chap. 1-3), we reviewed the standard approach to solve for the
response of a high-dimensional dynamical system to a perturbation at its fixed point and
showed its limitations: As soon as the Jacobian matrix of the system is asymmetric, which
is typical for a dynamical system with an order larger than one, an explicit solution for
dynamic response becomes impossible through a conventional approach. Moreover, we
introduced a model class of diffusively coupled phase oscillators (3.1). In particular, we
focused on the most general case in the model class, the second-order Kuramoto-like
oscillator model (3.8), demonstrated its relation to the dynamics of the AC power grids
and its several dynamical features.

In Part II of the thesis (Chap. 4-7), we developed a theory of the steady patterns rising
in normally-operating networks as a response to external driving signals. Inspired by
linear response theory, we derived an analytical solution of the long-term network
responses characterized by the underlying network topology. The solution opens up
paths to a theoretical understanding of dynamic network responses, rendering distinct
spatiotemporal responsive behaviors in three frequency regimes. At the low-damping
limit, our theory appears as a generalization of Zanette’s findings for network of Kuramoto
oscillators [39, 40]. Based on our theory, we proposed an approach to efficiently and
accurately predict the long-term network response to irregular and distributed noises.
Finally, we showed that our theory, which is based on the linearization of system’s
dynamics at a fixed point, holds validity with high accuracy as long as the system does
not reach a bifurcation point where the fixed point annihilates.
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In Part III of the thesis (Chap. 8-10), we investigated the patterns in the transient response
of a network to a single perturbation. We derived the analytical solution of the full
time evolution of network responses to a driving signal, and provided a more tractable
one-term approximation of the transient response. Based on the approximation, we
discovered an asymptotic spreading pattern of perturbations in homogeneous networks:
the instantaneous spreading speed decreases with the topological distance and approaches
a constant speed. We revealed that the network topology, specifically, the number of
shortest paths between perturbation and response, is the decisive factor in the asymptotic
perturbation spreading behavior. Based on these results, we proposed an approach to
accurately predict the perturbation arrival times in a given yet arbitrary network. Finally,
we explored the generality of our results and proposed two conjectures on the bounds
of the exact asymptotic spreading speed, which suggests the potential extension of our
results towards a complete theory of perturbation spreading in networks.

The achievement of the thesis can be condensed into three aspects. In the following, we
discuss each of the three in combination with an outlook to future research.

Analytical solution of dynamic network responses

In contrast to previous studies which rarely provide explicit, deterministic results for
dynamic network responses to a fluctuating signal [31, 58], for the first time, we provided
an analytical formulation describing the full time evolution of the network responses
to irregular and distributed driving signals close to a fixed point (Chap. 4 and Chap. 8).
Although the solutions are derived for phase oscillator networks with a Kuramoto-type
coupling function, they can be easily generalized to other undirected, diffusively-coupled
networks [79, 83] which have a symmetric Laplacian matrix (Chap. 10).

Especially, in the investigation of the transient responsive behavior, we derived an one-
term approximation of the nodal response, which significantly improves the tractableness
of the analytical solution, and allows analytical insights into the transient perturbation
spreading process in networks (Chap. 8).

The derived analytical solutions and approximations, as well as the methodology in the
derivation, can be valuable for physicists, complex network researchers and will hopefully
stimulate novel theoretical insights in study of dynamic network responses and other
related fields.

Response patterns in long and short timescale

Based on the analytical solutions of the network responses, we revealed novel response
patterns in both long and short timescales for networks driven by time-dependent
perturbation signals. In comparison to previous studies which focus on instability-induced
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long-term patterns [17–19, 30–36], we discovered nontrivial spatiotemporal patterns in
complex networks rising from the dynamic interaction between the time-dependent
driving signal and the intrinsic dissipative network dynamics (Chap. 5). Particularly, at
the high-damping limit, our theory not only shows consistency with Zanette’s findings
[39, 40], but provide a generalization of the results to networks with non-identical
nodes and arbitrary topologies. Furthermore, our theory reveals the relation between
the regime shift of the response patterns and the topological features of the underlying
network structure, which is missing in Zanette’s work (Chap. 6).

Our theory opens novel perspectives on dynamic network responses and imply sugges-
tions on regime- and topology-specific principles on the planning and optimization of
real-world networks. For instance, for modern power grids which are exposed to fluctu-
ating power generation from the renewable energy sources, our theory suggests a high
risk from the fluctuations containing strong frequency components in the homogeneous
and resonance regimes.

In short timescale, we revealed the asymptotic spreading behavior of a single perturbation
(Chap. 9), which can be naturally compared to the information propagation process in
various systems. For instance, it would be an interesting interdisciplinary research topic to
relate the asymptotic spreading speed with the Lieb-Robinson bound in non-relativistic
quantum systems [132]. Additionally, it would be exciting to find the connection between
our theory and the theory of effective distance established for stochastic systems [43,
44]. Furthermore, the proposed conjectures on the asymptotic spreading speed would
hopefully stimulate creative proofs (or falsifications) and bring deeper insight into the
topic, e.g. establishing the relation between the perturbation spreading dynamics in
networks and in continuous media.

Predicting networks responses

Another important aspect of this thesis is the approaches to predict the dynamic network
responses (Chap. 7 and Chap. 9). In principle, for given perturbation time series, the
analytical solutions of the linear network responses, i.e. linear combinations of (8.8)
and (8.9), provide accurate predictions for the trajectory of network response within
the range of validity. However, our predictive approach for steady responses (Sec. 7.1)
exhibits its efficiency through the frequency sampling scheme: computing responses only
for dominant frequencies with high amplitudes in signal’s power spectrum and close to
the resonance frequencies yields reduced computation time and high accuracy.

Particularly, for perturbation signals with a characteristic power spectrum, such as the
real-world wind power fluctuation [129], our theory provides an upper bound of the
nodal response (7.2) without knowing the specific perturbation time series. This bound
provides a guideline in identifying the nodes which are “in danger” under such specific
type of perturbations, in the sense of potentially exhibiting strong responses.
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In the field of perturbation spreading, the prediction of the arrival time is of greater
practical relevance than the prediction of the full time-dependent response [44, 59, 61,
62]. Thus, we developed a fast and straightforward approach to directly predict the
perturbation arrival time in a network with a given yet arbitrary topology. We expect
that this approach can be used to predict perturbation arrival times in other diffusively-
coupled networks in biological and chemical systems such as [79, 83]. Although real-
world networks such as power grids involve more complex sub-structures and local
dynamics, our prediction can serve as a fundamental guideline regarding the behavior of
perturbation spreading in high-voltage transmission grids, whose dynamics is essentially
captured by the oscillator model (3.8) [26, 107].

Despite of the low error (< 1%) of this approach, we believe that its accuracy can be
largely improved if a stronger mathematical tool can be found to include the contribution
of the higher-order terms in the transient response, i.e. to provide a reasonable correction
of the one-term approximation. Furthermore, if extended to stochastic systems such as
epidemic spreading, our prediction may provide comparison or even theoretical insights
into the puzzling spreading patterns revealed by the data-driven microsimulation models,
such as [60].

How complex networks dynamically respond to external disturbances has been, and will
continue to be a fascinating research topic in foreseeable future, due to its ubiquity and
fundamental significance in understanding the rise of complexity in complex networks.
This thesis represents our efforts in the analytical interpretation and the quantitative
prediction of the dynamic responses of networks with diffusive coupling. It might
be a tiny step in a long journey, nevertheless, we hope it contributes to the collective
knowledge about complex network dynamics and stimulate more brilliant future work
in this field.



Appendix A

Proof of Proposition 2

Proposition 2. The product Q(ω) defined in (5.14), i.e.

Q(ω) :=
N−1∏

ℓ′=0,
ℓ′,ℓ

[(
−ω2 + λ[ℓ′]

)2
+ α2ω2

]
,

with ω > 0, α > 0, λ[ℓ] ≥ 0, ℓ ∈ {0, · · · N − 1} (A.1)

satisfies

Q(ω) =
2N−2∑

j=0
C[ j]
ℓ
ω4N−4−2 j,

where the coefficients C[ j]
ℓ

can be expressed as a polynomial of λ[ℓ] with degree j .

Proof. We first show that the product Q(ω) can be written as the following polynomial

Q(ω) =
2N−2∑

j=0
C[ j]
ℓ
ω4N−4−2 j, (A.2)

where the coefficient C[ j]
ℓ

involves a multiplication of j Laplacian eigenvalues.

In the expansion of the product

Q(ω) =
N−1∏

ℓ′=0
(ℓ′,ℓ)

[
ω4 +

(
α2 − 2λ[ℓ′]

)
ω2 +

(
λ[ℓ′]

)2]
,
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each term is a product of, say, a times ω4, b times
(
α2 − 2λ[ℓ′]

)
ω2, and c times

(
λ[ℓ′]

)2
,

with a + b + c = N − 1. In each term involves ω to the power of x = 4a + 2b, and a
multiplication of j = b + 2c Laplacian eigenvalues. Thus, for each term, the number of
multiplied Laplacian eigenvalues is related to the order of ω as x = 4N − 4 − 2 j, which
leads to the formulation (A.2).

Then we prove that the coefficient C[ j]
ℓ

can be expressed as a polynomial of λ[ℓ] with de-
gree j. By definition, λ[ℓ] should be the sum of products of a times 1, b times

(
α2 − 2λ[ℓ′]

)
,

and c times
(
λ[ℓ′]

)2
, over all possible choices of (a, b, c) with constraints a + b+ c = N − 1

and b + 2c = j:

C[ℓ]
j =

∑

a+b+c=N−1
b+2c= j

∑

Pℓ (a,b,c)

∏

p∈sb

(
α2 − 2λ[p]

) ∏

q∈sc

(
λ[q]

)2
. (A.3)

Here the second sum goes through all possible partitions Pℓ (a, b, c) of the N−1 eigenmodes
with indices Sℓ := {0, ..., N − 1}\{ℓ} into three subsets sa, sb and sc with a, b and c
elements respectively. In the following, we show the coefficient (A.3) can be expressed
as a polynomial of λ[ℓ] in three steps.

1. First, we prove that ∑

sb∈
(
Sℓ
b

)

∏

p∈sb

(
α2 − 2λ[p]

)

can be expressed by a polynomial of λ[ℓ] with degree b. Here
(
Sℓ
b

)
denotes the set of all

possible b-subset of Sℓ. We show this result via mathematical induction.
1.a For b = 1, we have

∑

s1∈
(
Sℓ
1

)

∏

p∈s1

(
α2 − 2λ[p]

)
=

∑

p∈S

(α2 − 2λ[p]) − (α2 − 2λ[ℓ]),

which s a polynomial of λ[ℓ] with degree 1 since the first term is a sum over S :=
{0, ..., N − 1}, thus it is a constant independent of λ[ℓ].

1.b If the statement holds for b = n − 1, i.e.
∑

sn−1∈
(

Sℓ
n − 1

)

∏

p∈sn−1

(
α2 − 2λ[p]

)
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is a polynomial of λ[ℓ] with degree n − 1, then for b = n we have
∑

sn∈
(
Sℓ
n

)

∏

p∈sn

(
α2 − 2λ[p]

)
=

∑

sn∈
(
S
n

)

∏

p∈sn

(
α2 − 2λ[p]

)

− (α2 − 2λ[ℓ]) ·
∑

sn−1∈
(

Sℓ
n − 1

)

∏

p∈sn−1

(
α2 − 2λ[p]

)
,

which is a polynomial of λ[ℓ] with degree n. The first term goes through all n-subset in
S so is a constant independent of λ[ℓ], and the second term is a polynomial of λ[ℓ] with
degree n. Thus the statement holds for b = n.

2. Similarly, we prove ∑

sc∈
(
Sℓ
c

)

∏

q∈sc

(
λ[q]

)2

is a polynomial of λ[ℓ] with degree 2c by mathematical induction.
2.a For c = 1,

∑

s1∈
(
Sℓ
1

)

∏

q∈s1

(
λ[q]

)2
=

∑

q∈S

(
λ[q]

)2 −
(
λ[ℓ]

)2

is a polynomial of λ[ℓ] with degree 2 since the first term is a constant.
2.b If the statement holds for c = n − 1, i.e.

∑

sn−1∈
(

Sℓ
n − 1

)

∏

q∈sn−1

(
λ[q]

)2
,

is a polynomial of λ[ℓ] with degree 2n − 2, then for c = n we have
∑

sn∈
(
Sℓ
n

)

∏

q∈sn

(
λ[q]

)2
=

∑

sn∈
(
S
n

)

∏

q∈sn

(
λ[q]

)2 −
(
λ[ℓ]

)2 ·
∑

sn−1∈
(

Sℓ
n − 1

)

∏

q∈sn−1

(
λ[q]

)2
,

which is a polynomial of λ[ℓ] with degree 2n with similar arguments as in the last step.
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3. As the final step we prove that
∑

sb∈
(
Sℓ
b

)

sc∈
(
Sℓ\{sb}

c

)

∏

p∈sb

(
α2 − 2λ[p]

) ∏

q∈sc

(
λ[q]

)2

is a polynomial of λ[ℓ] with degree b + 2c. If either b or c is zero, the statement becomes
equivalent to statement proved in former steps 1 or step 2, thus it still holds. In the
following we again use mathematical induction to prove this result with b, c ∈ N.

3.a For b = 1 and c = 1, we have:
∑

s1∈
(
Sℓ
1

)

s1∈
(
Sℓ \ s1

1

)

∏

p∈s1

(
α2 − 2λ[p]

) ∏

q∈s1

(
λ[q]

)2
=

∑

{p,q}∈
(
S
2

)

(
α2 − 2λ[p]

)
·
(
λ[q]

)2

−
(
α2 − 2λ[ℓ]

)
·

∑

q∈
(
Sℓ
1

)

(
λ[q]

)2

−
(
λ[ℓ]

)2 ·
∑

p∈
(
Sℓ
1

)

(
α2 − 2λ[p]

)
,

which is a polynomial of λ[ℓ] with degree 3 since the first term is a λ[ℓ]-independent
constant, the second and the third term are polynomials of λ[ℓ] with degree 3. Here we
use the results from step 1 and step 2.

3.b Then we prove that the statement is true for b = m, c = n if it is for b = m − 1 and
c = n − 1. With the following notations

Y(b,c) :=
∑

sb∈
(
S
b

)

sc∈
(
S \ sb

c

)

∏

p∈sb

(
α2 − 2λ[p]

) ∏

q∈sc

(
λ[q]

)2

Y [ℓ]
(b,c) :=

∑

sb∈
(
Sℓ
b

)

sc∈
(
Sℓ\{sb}

c

)

∏

p∈sb

(
α2 − 2λ[p]

) ∏

q∈sc

(
λ[q]

)2
,
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the statement can be reformulated as: Y [ℓ]
(m,n) is a polynomial of λ[ℓ] with degree of m + 2n

if Y [ℓ]
(m−1,n−1) is a polynomial of λ[ℓ] with degree m + 2n − 3. Similar to the previous proofs,

we write Y [ℓ]
(m,n) as

Y [ℓ]
(m,n) = Y(m,n) −

(
α2 − 2λ[ℓ]

)
Y [ℓ]

(m−1,n) −
(
λ[ℓ]

)2
Y [ℓ]

(m,n−1)

= Y(m,n) −
(
α2 − 2λ[ℓ]

) (
Y(m−1,n) −

(
λ[ℓ]

)2
Y [ℓ]

(m−1,n−1)

)

−
(
λ[ℓ]

)2 (
Y(m,n−1) −

(
α2 − 2λ[ℓ]

)
Y [ℓ]

(m−1,n−1)

)
.

Since Ym,n, Ym−1,n and Ym,n−1 are all λ[ℓ]-independent constants, it is easy to see that Y [ℓ]
(m,n)

is a polynomial of λ[ℓ] with degree m + 2n − 1, given that Y [ℓ]
(m−1,n−1) is a polynomial of

λ[ℓ] with degree m + 2n − 3.

In fact, Y [ℓ]
(b,c) is equivalent to the sum over Pℓ (a, b, c) in the expression of C[ j]

ℓ
(A.3), as

sa = Sℓ \ (sb ∪ sc) by definition. Therefore, the sum in (A.3) is also a polynomial of λ[ℓ]

with degree b + 2c. Finally, the coefficient C[ j]
ℓ

, as the sum of Y [ℓ]
(b,c) over all the possible

combinations of (a, b, c) under constraints a + b + c = N − 1 and b + 2c = j, is also a
polynomial of λ[ℓ] with degree j = b + 2c.

□
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Proof of Proposition 3

Proposition 3. The term with the highest order of λ[ℓ] in Fn
(
λ[ℓ]

)
(n ∈ N, n ≥ 2)1 introduced

in (8.11)

Fn
(
λ[ℓ]

)
=

1
−ω2 + ıαω + λ[ℓ]



(
∆

[ℓ]
+

)n (
∆

[ℓ]
− − ıω

)

2ıγ[ℓ]
−

(
∆

[ℓ]
−

)n (
∆

[ℓ]
+ − ıω

)

2ıγ[ℓ]
+ (ıω)n


with γ[ℓ] =

√

λ[ℓ] − α
2

4
, ∆

[ℓ]
+ = −

α

2
+ ıγ[ℓ], ∆

[ℓ]
− = −

α

2
− ıγ[ℓ]

and ω > 0, α > 0, λ[ℓ] ≥ 0, ℓ ∈ {0, · · · N − 1} (B.1)

is

LT [Fn]
(
λ[ℓ]

)
=


(−1)

n−1
2

(
−ıω + n − 1

2
α

) (
λ[ℓ]

) n−3
2 if n is odd,

(−1)
n−2

2
(
λ[ℓ]

) n−2
2 if n is even.

Proof. To prove Prop. 3, we first define

fn
(
λ[ℓ]

)
:=

(
∆

[ℓ]
+

)n
−

(
∆

[ℓ]
−

)n

2ıγ[ℓ]
, (B.2)

1For n = 0 and n = 1, Fn

(
λ[ℓ]

)
≡ 0 due to the initial condition. That is, the nodal response and its first

time derivative are both zero at the time of perturbation: t = 0.
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so that Fn
(
λ[ℓ]

)
can be simplified as

Fn
(
λ[ℓ]

)
=
λ[ℓ] fn−1

(
λ[ℓ]

)
− ıω fn

(
λ[ℓ]

)
+ (ıω)n

−ω2 + ıαω + λ[ℓ]
. (B.3)

To determine the leading term in Fn
(
λ[ℓ]

)
, which is essentially one order lower than

the the leading term in λ[ℓ] fn−1
(
λ[ℓ]

)
− ıω fn

(
λ[ℓ]

)
, we first observe the leading term in(

∆
[ℓ]
+

)n
which is easier to obtain.

In the following we prove the leading term with respect to λ[ℓ] in
(
∆

[ℓ]
+

)n
is

LT
[
Re

(
∆

[ℓ]
+

)n]
=


(−1)

n+1
2

nα
2

(
λ[ℓ]

) n−1
2 if n is odd,

(
−λ[ℓ]

) n
2 if n is even;

(B.4)

LT
[
Im

(
∆

[ℓ]
+

)n]
=


(−1)

n−1
2

(
λ[ℓ]

) n
2 if n is odd,

(−1)
n
2

nα
2

(
λ[ℓ]

) n−1
2 if n is even.

(B.5)

via mathematical induction.

1. First, by simply inserting the definition

∆
[ℓ]
+ := −α

2
+ ı

√

λ[ℓ] − α
2

4
(B.6)

in to the first and second power of ∆[ℓ]
+ , we easily verify that the statement (B.4) and (B.5)

is true for n = 1 and n = 2. Note that here we assume low dissipation, i.e.

√
λ[ℓ] − α

2

4
≈

(
λ[ℓ]

) 1
2 (for the argumentation of a low damping parameter α see Sec. 5.2).
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2. Then we show the statement is true for n + 1 given it is true for n with n being odd.
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2
, (B.7)

which agree with the statement since n + 1 is even.

3. At the end we show the statement is true for n+ 1 given it is true for n with n being even.
Similarly,

LT
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which agree with the statement since n + 1 is odd.

With the result (B.4) and (B.5) it is easy to find the leading term of fn
(
λ[ℓ]

)
. Since ∆[ℓ]

+

and ∆[ℓ]
− are a complex conjugate pair, we have

(
∆

[ℓ]
−

)n
=

(
∆

[ℓ]
+

)n
. Therefore

fn
(
λ[ℓ]

)
=

Im
(
∆

[ℓ]
+

)n

γ[ℓ]
, (B.9)

from which we obtain the leading term of fn
(
λ[ℓ]

)

LT [ fn]
(
λ[ℓ]

)
=


(−1)

n−1
2

(
λ[ℓ]

) n−1
2 if n is odd,

(−1)
n
2

nα
2

(
λ[ℓ]

) n−2
2 if n is even.

(B.10)
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and the leading term of Fn
(
λ[ℓ]

)


(−1)

n−1
2

(
−ıω + n − 1

2
α

) (
λ[ℓ]

) n−3
2 if n is odd,

(−1)
n−2

2
(
λ[ℓ]

) n−2
2 if n is even.

(B.11)

□
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Collective Dynamics in Drosophila Embryo
(in preparation)

2017d X. Zhang, S. Hallerberg, M. Matthiae, D. Witthaut, and M. Timme.
Dynamic Response Patterns of Complex Oscillator Networks
(submitted)

2017e D. Manik, M. Rohden, H. Ronellenfitsch,X. Zhang, S. Hallerberg, D.Witthaut, andM. Timme.
Network Susceptibilities: Theory and Applications.
Phys. Rev. E 95, 012319.

2016a D. Witthaut, M. Rohden, X. Zhang, S. Hallerberg, and M. Timme.
Critical Links and Nonlocal Rerouting in Complex Supply Networks.
Phys. Rev. Lett. 116(13):138701.

2016b M. Matthiae, B. Schäfer, X. Zhang, M. Rohden, M. Timme, and D. Witthaut.
Escape Routes, Weak Links, and Desynchronization in Fluctuation-driven Networks.
Phys. Rev. E 95, 060203(R).

2015 X. Zhang, C. Kuehn, and S. Hallerberg.
Predictability of Critical Transitions.
Phys. Rev. E 92(5):052905.

2012 X. Zhang, K. Hantke, C. Fischer, and M. Schröter.
Performance of Polarization-based Stereoscopy Screens.
3D Research, 3(4), 1-5.

Conferences
2017a DPG Spring Meeting, Dresden, Germany

talk “Response Patterns for Fluctuations in Complex Oscillator Networks”

2017b Conference “Dynamics in Power Systems – from Science to Industry”, Potsdam, Germany
poster “Perturbation Spreading in Oscillatory Networks and Power Grids”

2016a Lake Como School of Advanced Studies in Complex Systems “Complex Networks: Theory,
Methods and Applications (2nd edition)”, Como, Italy

2



2016b Conference “Complex Networks: from Theory to Interdisciplinary Applications”, Marseille,
France
poster “Dynamic Response Pattern in Oscillatory Networks and Power Grids”

2015a DPG Spring Meeting, Berlin, Germany
talk “Predicting Critical Links in Complex Supply Networks”

2015b Workshop “Energy Scenario and Secure Electricity Supply - Role of Electricity Grid”, Jülich,
Germany
talk “Steady Response Patterns to Perturbations in Power Grids”

2014 Symposium“Future Energy Systems: Collective Dynamics and Self-Organization of Power
Grids”, Göttingen, Germany
talk “From Perturbations to Instabilities in Power Grids”

2013 DPG Spring Meeting, Regensburg, Germany
talk “Statistics, Predictability and Dynamics of Critical Transitions”

3


	Nomenclature
	Introduction
	I. Fundamentals
	1 Networks as Dynamical Systems
	1.1 Networks
	1.2 Dynamical systems
	1.3 Dynamical systems on networks

	2 Dynamics of Network Responses
	2.1 Time evolution of small perturbations
	2.2 Network responses to external driving
	2.3 Summary

	3 Phase Oscillator Networks and Power Grids
	3.1 Synchronization and phase oscillator networks
	3.2 The oscillator model of power grids

	II. Dynamic Patterns in Steady Network Responses
	4 Steady Network Responses to External Driving Signals
	4.1 Total network response to a sinusoidal signal
	4.2 Steady nodal responses to a sinusoidal signal
	4.3 Steady responses to a step-function signal
	4.4 Conclusion

	5 Three Frequency Regimes of Steady Response Patterns
	5.1 Frequency: key parameter for pattern formation
	5.2 Eigenfrequencies and the resonance regime
	5.3 Lower frequencies: the bulk regime
	5.4 Higher frequencies: the localized regime
	5.5 Conclusion

	6 Response Patterns at High- and Low-damping Limits
	6.1 High-damping limit: Kuramoto oscillator networks
	6.2 Low-damping limit: a Hamiltonian system
	6.3 Conclusion

	7 Predicting Network Responses to Irregular and Distributed Signals
	7.1 An approach to predict network responses
	7.2 Predicting dynamic responses of power grids to fluctuations
	7.3 Prediction error and limit of validity
	7.4 Conclusion

	III. Transient Dynamics of Network Responses
	8 Transient Network Responses to Perturbations
	8.1 Full nodal response to external driving
	8.2 Approximation of transient nodal response
	8.3 First insights into perturbation spreading
	8.4 Conclusion

	9 Characterizing Perturbation Spreading in Networks
	9.1 Asymptotic spreading behavior of perturbation
	9.2 The topological factor
	9.3 Predicting perturbation arrival time
	9.4 Conclusion

	10 Towards a Theory of Perturbation Spreading in Networks
	10.1 Universality of perturbation spreading behavior
	10.2 Two conjectures on bounds of asymptotic spreading speed
	10.3 Conclusion

	Conclusion
	Appendix A Proof of Proposition 2
	Appendix B Proof of Proposition 3
	References
	Acknowledgement

