Challenges and New Solutions for Live
Migration of Virtual Machines in Cloud
Computing Environments

Dissertation

for the award of the degree
“Doctor rerum naturalium”
of the Georg-August-Universitit Gottingen

within the doctoral Program in Computer Science (PCS)
of the Georg-August University School of Science (GAUSS)

submitted by
Fei Zhang

from Sichuan, China
Gottingen, 2018

Thesis Committee:

Prof. Dr. Ramin Yahyapour
Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Goéttingen (GWDG)
Institut fiir Informatik, Georg-August-Universitat Gottingen

Prof. Dr. Xiaoming Fu
Institut fiir Informatik, Georg-August-Universitat Gottingen

Members of the Examination Board/Reviewer:

Reviewer:
Prof. Dr. Ramin Yahyapour
Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Goéttingen (GWDG)
Institut fiir Informatik, Georg-August-Universitat Gottingen

Second Reviewer:
Prof. Dr. Xiaoming Fu
Institut fiir Informatik, Georg-August-Universitat Gottingen

Additional Reviewer:
Prof. Dr. Hai Jin
School of Computer Science and Technology, Huazhong University of Science and
Technology

Further members of the Examination Board:
Prof. Dr. Jens Grabowski

Institut fiir Informatik, Georg-August-Universitiat Gottingen

Prof. Dr. Dieter Hogrefe
Institut fiir Informatik, Georg-August-Universitat Gottingen

Jun.-Prof. Dr. Marcus Baum
Institut fiir Informatik, Georg-August-Universitat Gottingen

Date of the oral examination: 03. May 2018

Acknowledgement

During my Ph.D. study, I got a lot of help from so many people. I would say that I could
not finish my study without their help.

I will express my great thanks and gratitude to my supervisor Prof. Dr. Ramin

Yahyapour for his countless advice, the inspiring discussions and his encouragements.

His ample knowledge and experiences give me a deep impression. Many thanks are
also given to Prof. Dr. Xiaoming Fu for his kind supervision and the interesting and
informative discussions. I also owe my gratitude to Prof. Dr. Hai Jin for reviewing my
thesis.

I am grateful to Dr. Philipp Wieder, Martina Briicher, Dr. Kuan Lu, Dr. Edwin Yaqub,
Dr. Song Yang for the help and advice during my study. I also thank my colleagues from
the eScience group of the GWDG for providing the interesting research environment,
especially the guys from the cloud management section, Peter Chronz, Piotr Kasprzak
and Maik Srba.

My study is impossible without the financial support from the “China Scholarship
Council (CSC)". Best wishes to my country and the people. Also, many thanks are given
to the kind Germans and the beautiful German sceneries. They left me many precious
memories and I had a lot of fun during leisure time.

Last but not least, I owe my great thanks to my family and my parents for their
endless love and encouragements which are always the motivations make me go
forward.

Abstract

Live Virtual Machine (VM) migration aims to move a VM between hosts without
interruption to the services running in the VM. It is a cornerstone technology for cloud
management and is critical for decreasing the operating cost of cloud providers and
improving service quality. Many efforts have been made to improve the performance
of live VM migration and a variety of achievements have been gained. But some key
problems still require solutions or improvements. In addition, with the development and
evolution of cloud computing, more and more applications are running in a data center,
and some new cloud computing paradigms (e.g., Mobile Edge Computing (MEC))
are being developed as well. This brings more new problems and meanwhile new
optimization opportunities for live VM migration. The goal of this dissertation is to
identify and qualify the performance bottleneck, and then optimizes the performance
of live VM migration in different deployment scenarios. Firstly, a comprehensive review
of VM migration and optimization technologies is conducted. Then, according to the
lessons learned from the review, a series of optimizations are proposed to solve different
problems with live VM migration.

For the migration in a Local Area Network (LAN) or within a data center, we build
corresponding performance models, and design a new performance control algorithm
which takes users’ requirements into consideration. This algorithm also solves the
convergence problem with pre-copy migration.

For the migration over a Wide Area Network (WAN) or across data centers, several
mechanisms are proposed to improve the migration performance of VM storage data
which is the bottleneck for across-data-center VM migration. Specifically, a three-layer
VM image structure and a central base image repository are designed to increase
data sharing between VMs and data centers. Based on these two structures, several
optimization strategies are proposed for data deduplication and Peer-to-Peer (P2P) file
sharing to further improve VM storage data migration performance.

For the migration in MEC, several algorithms are designed to mitigate the problems
with user mobility-induced VM migration. According to the presented migration en-
vironments, user mobility is divided into two categories. Based on this classification,
two algorithms are designed to improve migration performance, two mechanisms are
designed to reduce the service degradation resulting from VM migration and two algo-

Vi

rithms are designed to lower the network overhead of constant VM migration due to
user mobility.

Contents

1 Introduction 1
1.1 MotivatiOn v v v v e e e e e e e e e e e e e e e e e e e 2
1.1.1 Problems with Migrationin LAN 2
1.1.2 Problems with Migrationover WAN 3
1.1.3 Problems with Migrationin MEC 3

1.2 Contributions 4
1.3 Dissertation StruCture v v v v v v v v et e e e e e 5
2 Background 7
2.1 Resource Management of Cloud DataCenter 7
2.2 The Cornerstone of Cloud Management 9
2.3 HowtoLive Migratea VM? 11
2.3.1 Memory Data Migration 11
2.3.2 Storage Data Migration, 13

2.4 Mobile Edge Computing oo v v i i it 15
2.5 A Taxonomy of Migration Schemes 16
2.6 Performance Metrics and Overheads 18
2.7 VM Migration vs. Container Migration 19
2.8 Chapter SUMMArY v v v v e it i e e e e e e 20
3 Related Work 21
3.1 Memory Data Migration v v v v v vt e 21
3.1.1 Pre-copy o i e e e e e e e 21
3.1.2 POSt-COPY .« « v v e e e e e e e e e e e e e e e 32
3.1.3 Hybridcopy e 33
3.1.4 Summary of Memory Data Migration Technologies 34

3.2 Storage Data Migration. v v v v v v v et e e e e 36
3.2.1 VMware Strategiesot e e e 37
3.2.2 Replication e 38
3.2.3 DataDeduplication 39
3.2.4 Software-based Approach 40
3.2.5 I/O-aware Migration oo 41
3.2.6 Correlated VM Migration. 41
3.2.7 Others e 42

vii

viii

3.2.8 Summary of Storage Data Migration Technologies
3.3 User Mobility-induced VM Migration
3.3.1 Migration Performance Improvement
3.3.2 Migration Performance Analysis
3.3.3 Summary of User Mobility-induced Migration Technologies
3.4 Chapter SUMMATY o v vt v vttt e e e e e e e

VM Migration in LAN—Performance Control

4.1 Performance Analysis for Pre-copy,
4.1.1 Performance Model
4.1.2 Performance Features

4.2 Migration Control Algorithm

4.3 Implementation v v it e e e e e e e e e e e e e
4.3.1 Memory Dirty Rate Adjustment
4.3.2 Migration Bandwidth Adjustment
4.3.3 User Requirement Setting

4.4 Evaluation e e e e e
4.4.1 Experimental Setup.
4.4.2 Efficiency of Migration Performance Control
4.4.3 Service Degradation During Performance Control

4.5 Chapter SUummary i v v i e e e e e

VM Migration over WAN—Storage Data Migration

5.1 Three-layer Image Structure v it
5.1.1 VMImage Structure v v v v v v v v v v v
5.1.2 Space Consumption Analysis
5.1.3 The Trade-off of Data Deduplication
5.1.4 Migration Systemo e
5.1.5 Implementation.,
5.1.6 Evaluation.

5.2 Central Base Image Repository
521 SystemDesign e
5.2.2 Storage Data Migration
523 Evaluation.

5.3 Chapter SUmMmary o v v i i v ittt e

VM Migration in MEC—User Mobility-induced VM Migration

6.1 UEMobility e

6.2 Migration Performance Improvement
6.2.1 Problem Statement
6.2.2 Algorithm Design,
6.2.3 Migration Initialization Mechanism
6.2.4 Algorithm Performance

51
51
51
53
57
58
59
59
60
61
61
62
63
64

67
67
67
70
74
76
79
80
88
88
90
95
104

6.3 Network Overhead Alleviation v v v ... 119

6.3.1 System Formulation 119

6.3.2 Network Overhead of Live VM Migration 121

6.3.3 Problem Statement 123

6.3.4 AlgorithmDesigne.... 125

6.3.5 Algorithm Performance. 137

6.4 Chapter SUMMAry o v v v v vttt e e 140

7 Conclusion 143
7.1 SUMMATY . . v v v v e e e e e e e e e e e 143
7.2 Outlook e e 144

8 Publications 147
Bibliography 149
List of Acronyms 163
List of Figures 165
List of Tables 169

Chapter 1

Introduction

With the support of virtualization technologies, a physical server can be divided into
several isolated execution environments by deploying a layer (i.e., Virtual Machine
Manager (VMM) or hypervisor) on top of hardware resources or operating system (OS).
The execution environments on a server, i.e., Virtual Machines (VMs), run without
mutual interruption on each other. Each VM has its own OS and applications. At the
beginning, virtualization technologies were not widely used due to a variety of reasons.
For example, they will occupy a portion of hardware resources (such as, Central Pro-
cessing Unit (CPU) and memory) [69]. Furthermore, the poor network bandwidth also
hindered vendors to lease their idle resources to clients. As the related technologies
advance, such as the utilization of Fibre Channel (FC) [37], the performance improve-
ment of an individual server [177], the development of security technology [110],
etc., a new service model—cloud computing [18, 180] emerges on the foundation of
virtualization technologies [27]. In cloud computing, big companies can piecemeal
their spare hardware resources and rent them to customers in a pay-as-you-go mannet,
and users can quickly start to work on a VM without the huge expense of hardware
purchase and maintenance.

Because an increasing number of users are choosing cloud data centers to hold their
applications, it has become a very important task to efficiently manage the VMs in a
data center. Users request and use resources from a cloud provider, and leave after their
tasks are finished. Correspondingly, cloud providers will constantly create and destroy
VMs in data centers. Without efficient management, a data center will operate like this:
many servers are running with a small workload, while others are overloaded. Also,
some cloud providers (such as, Amazon and Microsoft) run several data centers around
the world. To provide high-quality services, the collaboration between data centers is
inevitable. For example, it is better to put a VM in a data center which is close to the
user’s current location to reduce the network latency.

All the above problems can be solved by a critical technology—Ilive VM migration.
Live VM migration makes a VM not fixed on the server where it is created anymore. A

2

VM can be moved from one server to another, even from one data center to another data
center, without causing interruptions to the applications running in the VM. Many cloud
management operations become feasible with the application of live VM migration,
such as server consolidation [126], zero-downtime hardware maintenance [18], energy
management [12], and traffic management [77] (more details in Section 2.2).

Improving the performance of live VM migration (such as, decreasing the total
migration time and reducing service interruption during migration) has been a hot topic
since live VM migration was proposed because its performance is closely related to the
level of cloud management and the appearance of new applications of cloud computing.
After more than ten years’ development, many achievements have been gained for live
VM migration. However, there are still some problems waiting for solutions or further
improvements. This dissertation focuses on the problems in the following three types of
VM migrations: migration in Local Area Network (LAN) (i.e., migration within a data
center), migration over Wide Area Network (WAN) (i.e., migration across data centers)
and migration in Mobile Edge Computing (MEC).

1.1 Motivation

1.1.1 Problems with Migration in LAN

Within a data center, live VM migration is an important technology for cloud manage-
ment. For example, VMs in a data center can be consolidated to occupy fewer hosts to
reduce the operating cost. The VMs which frequently communicate with each other can
be migrated to the same host to facilitate the communication efficiency and decrease
the network traffic within a data center.

Due to the good migration environments within a data center (such as high network
bandwidth, shared storage system), the performances of VM migration in LAN have
almost reached the ceiling (e.g., invisible downtime and small total migration time) after
a variety of optimizations. However, there still exist some open issues. 1) Currently, a
migration process is uncontrollable and transparent to cloud managers and users. Once
a migration is started, the only thing we can do is to wait for the message of success or
failure from the migration process. The migration process cannot be tunned to meet
a specific performance. 2) Too much attention has been paid to the improvement of
migration performance while users’ requirements are rarely considered. For example, in
the scenario of Network Function Virtualization (NFV) where a VM is providing one or
several functions of a service chain, the users of this VM have a very high requirement
for migration downtime over total migration time. 3) Pre-copy [29] is extensively used
for VM migration in LAN, but it encounters a migration convergence problem. When
the memory pages of the migrated VM are dirtied faster than the network bandwidth for

Chapter 1 Introduction

migration, a migration process cannot converge to ensure good migration performances
(e.g., small downtime and small total migration time).

1.1.2 Problems with Migration over WAN

Migrating VMs across data centers improves cloud management to a higher level
and makes the cooperation between cloud providers become possible. For example, the
cloud providers which run several data centers can carry out load balancing between
data centers instead of only within one data center. A private cloud data center can
live migrate some VMs which do not run confidential workloads to a public cloud data
center, when facing a sudden peak workload. Therefore, private cloud providers do not
need to maintain so many servers to align with the possible peak workload.

However, the relatively large size of the storage data (i.e., virtual disk) of a VM
and the small network bandwidth between data centers make storage data migration
become the bottleneck of live VM migration over WAN. Regarding this problem, the
existing solutions can be divided into two categories: 1) A network file sharing system
is deployed between the source and the destination data centers to avoid migrating
storage data. This type of solution leads to a high disk I/O latency. Actually, this
structure results in the double transfer of the storage data of a VM during migration,
from the source data center to the shared storage system and from the shared storage
system to the destination data center, which incurs a large amount of network traffic. 2)
Each data center uses a local storage system and storage data migration performance
is optimized by a variety of techniques, such as data deduplication or snapshotting.
However, each optimization faces a trade-off between the newly-introduced overheads
and the benefits to migration performances. For example, data deduplication leverages
the hash fingerprints of storage data to detect the blocks which are already presented
at the target site to reduce migration time. If the deduplication process cannot find
enough duplicated blocks at the target site, it may prolong the total migration time
since the computation overhead of data deduplication exceeds its contribution to data
transfer. Therefore, a systematic rethink is strongly required on storage data migration
for significant performance improvement.

1.1.3 Problems with Migration in MEC

With the popularity of User Equipment (UE) (such as, smartphones and tablets) and
the evolution of the Internet of Thing (IoT), MEC was proposed to provide low-latency
cloud-computing services at the edge of the network for UEs and a variety of sensors.
The proximity of cloud resources to UEs reduces the coverage area of each cloud data
center. Also, the majority of tasks offloaded to edge cloud data centers have a high
requirement for service latency. These conditions together make MEC very sensitive to
UE mobility (i.e., user mobility). When a UE is roaming between the coverage areas of

1.1 Motivation

4

different edge cloud data centers, sometimes its VM has to be migrated along with it to
meet the latency requirement.

For the migration in MEC, we focus on the following problems in this dissertation.
1) Migrating a VM in MEC faces the same environment as the migration over WAN, so
storage data migration is also a big problem for it. However, MEC introduces some
new environment features which can be exploited to design the optimizations for
storage data migration. 2) In addition, the inconsistency between VM migration and UE
mobility (more details in Section 6.2.1) will lead to a big interruption to the running
service. Therefore, a coordination strategy is needed to link UE mobility with VM
migration. 3) Furthermore, user mobility incurs a big network burden to MEC because
VMs are constantly migrated between edge cloud data centers. It is also a vital issue
about how to reduce the network overhead of constant VM migration.

1.2 Contributions

Regarding the aforementioned problems in live VM migration, several strategies
and algorithms are proposed in this dissertation for the migration in different environ-
ments (LAN, WAN and MEC). The contributions of this dissertation are summarized as
follows.

1. To clearly understand the state-of-the-art technologies of live VM migration, a
comprehensive review of the existing solutions is conducted. The lessons learned
from this study are used to guide the designs of the systems and the algorithms in
this dissertation.

2. VM migration in LAN—Performance Control: The performance models of VM
migration in LAN are established, and then a series of relationships between
migration performances and the influence parameters are analyzed based on
Xen platform. It is found that VM migration performances are adjustable by
changing some parameters, such as memory page dirty rate. Based on these
analytical results, a migration control algorithm is designed to tune a migration
process to meet the desired performance. The algorithm not only considers user’s
performance requirements, but also solves the convergence issue of pre-copy
migration.

3. VM migration over WAN—Storage Data Migration: To eliminate the trade-off
of optimization technologies between newly-introduced overheads and achieved
migration performance improvement, rethinks are conducted on VM storage
data migration from a structural perspective. Two optimizations are designed
to improve VM storage data migration performance. 1): A three-layer image
structure is proposed to improve data sharing between VMs. The storage data of a
VM is physically separated and stored in three layers: an Operating System (OS)

Chapter 1 Introduction

layer, a Working Environment (WE) layer and a User Data (UD) layer. Based on
this structure, data deduplication is correspondingly optimized to mitigate its
side effects in improving VM migration performances. 2): A central repository is
employed to deploy and store base images (template images) for different data
centers to improve data reuse between data centers. In further, two technologies
(data deduplication and Peer-to-Peer (P2P) file sharing) are utilized to improve
storage data migration performance.

4. VM migration in MEC—User Mobility-induced VM Migration: To make the
best of the migration environments, UE mobility is broadly classified into two
categories: certain moving trajectory and uncertain moving trajectory. Based
on this classification, two optimizations are proposed to improve VM migration
performance in MEC. 1): Two migration algorithms are designed to improve VM
storage data migration performance by using the new environment features of
MEC. 2): Several algorithms are proposed to make a migration plan for each VM
to reduce the network overhead resulting from constantly migrating it along with
user mobility.

1.3 Dissertation Structure

The contents of this dissertation are organized as follows:

* Chapter 1 introduces the motivations behind our study and the contributions of
this dissertation regarding the targeted problems.

* Chapter 2 gives out the basic knowledge of live VM migration, including its possi-
ble applications, the differences between VM migration and container migration,
performance metrics, etc.

* Chapter 3 presents a comprehensive review of the studies related to our research
topics.

* Chapter 4 shows the performance models for pre-copy migration in LAN environ-
ments, and then a migration performance control algorithm is designed.

* Chapter 5 elaborates on the optimizations for VM storage data migration in WAN
environments.

* Chapter 6 proposes several algorithms to improve VM migration performances in
MEC environments.

* Chapter 7 summarizes the work in this dissertation and give an outlook of future
research topics based on the contents of this dissertation.

1.3 Dissertation Structure

Chapter 2

Background

In this chapter, we present the background knowledge of this dissertation. Firstly, some
basic concepts of hardware virtualization and cloud data center are introduced. Then,
the possible use cases of live VM migration, how to live migrate a VM, the new paradigm
of cloud computing—MEC and a taxonomy of migration schemes are elaborated. At last,
the performance metrics for evaluating a migration strategy, the differences between
VM migration and container migration are presented.

2.1 Resource Management of Cloud Data Center

By using virtualization technologies, the hardware resources (CPU, memory, Network
Interface Card (NIC), etc.) of a server can be abstracted and assigned to several VMs.
This is implemented by deploying a layer (Hypervisor/VMM) on the host OS, as shown
in Figure 2.1 1. Each VM is a complete computer (including OS, applications, etc.), and
also has a full view of hardware resources (like running on bare-metal hardware), such
as, CPU, memory, disk and NIC. The VMs co-locating on the same server are unaware
of each other.

How a hypervisor/VMM manages the physical memory and disk space of the underly-
ing server is highly related to the contents of this dissertation, so next we will give more
details of them. There are three levels of memory for each host after virtualization:
host physical memory, guest physical memory and guest virtual memory, as shown in
Figure 2.2. Host physical memory is the memory of the underlying server, also called
machine memory. Guest physical memory is the memory that is visible for the guest
OS of each VM. Guest virtual memory is the memory presented by the guest OS for the
applications running in the VM. The mapping between guest virtual memory and guest
physical memory is done by the guest OS of each VM. The mapping between guest
physical memory and host physical memory and the mapping between guest virtual

IThere are several types of virtualizations. We only show one of them to elaborate on the relationship
between the underlying host and VMs.

8

A server

Host operating system

|
|
Hypervisor/VMM :
|
|
|

Hardware (CPU, Memory, NIC, etc.)

Figure 2.1: Hardware virtualization.

VM VM
Guest OS

Guest virtual memory | Illlll. .I-I'I.\\
Guest physical memory | { .ll II -f!
P]

A .

Hypervisor

/K\

N
Host physical memory l([-r_II‘-ID“'

Host

Figure 2.2: Memory management.

memory and host physical memory are managed by the hypervisor/VMM. The mapping
between guest virtual memory to host physical memory is implemented by a shadow
page table for each VM. It is to remove the virtualization overhead for VM’s normal
memory access.

The hypervisor/VMM will create a virtual disk for each VM to store all its data. A
virtual disk is a large physical file or a set of files. It can be copied, moved and archived,
like other normal files. Multiple virtual disks also can be configured for a VM. There
are many types of virtual disk formats, such as RAW, QCOW2, VMDK, VDI, etc. Each
VM uses a virtual SCSI controller to access its virtual disk(s). Because a virtual disk
encapsulates the disk data of a VM into a file, it is also called disk image. There are two
types of manners to store the disk images of the VMs on a host. One is to store them
in a storage pool (e.g. Network File System (NFS), Network Attached Storage (NAS),
Storage Area Network (SAN), etc.), as shown in Figure 2.3(a). VMs access their disk
images through a high-speed network. The storage pool is shared by many servers and
can be accessed by multiple servers simultaneously. The other one is to store them in
the local disk of the underlying host, as shown in Figure 2.3(b).

Chapter 2 Background

DT = .
| e T e "
| M |[vm || vm [[vm || vm M I 3
— e 3 3 o e o
\ S VMVM VM || vM
|
{

Hypervisor/VMM

| | Hypervisor’'VMM

Host operating system

[S —

[S ——

|
| J
—=——r |
|> ~———— r —{ | Hardware (CPU, Memory, NIC, etc.)

 — p—— ~———— = | Host operating system
r ~—— =\ | Hardware (CPU, Memory, NIC, etc.)
Storage pool Local disk
(a) Storage pool (b) Local disk

Figure 2.3: The storage system structures of cloud data center.

2.2 The Cornerstone of Cloud Management

Based on the introduction in the last section, let’s move to the data center scale.
There are many servers in a data center, and each server is hosting several VMs. Users
apply for resources from a data center and leave after finishing their tasks. The data
center will correspondingly create and destroy VMs for users. It will be a mess without
a proper management strategy for the VMs in a data center. Also, virtualization is only
resource isolation rather than performance isolation, which means that the VMs on a
server will mutually influence on performance. Hence, if all the VMs on a server are
running resource-eager workloads, all of them will experience performance degradation,
even may Kkill the server. Under this situation, some VMs should be moved to other
servers which are with low loads. These problems are a part of motivations for live VM
migration which allows a VM to be moved between servers without visible interruptions
to the services running in the VM. Many cloud management tasks are carried out based
on live VM migration. In this section, we list out some use cases of live VM migration
for intra- and inter-cloud managements.

¢ Zero-downtime hardware maintenance [173, 189]. The servers in a data center
may have a high possibility of failure after a long-time running or already failed
several times. These servers can be replaced with new ones by moving out all the
VMs located on them and moving back after replacement. This is applicable for
hardware upgrade as well.

* Load balancing [65, 25]. Overloaded state not only shortens the lifespan of a
server, but also degrades the Quality of Service (QoS). Meanwhile, servers running
with underloaded state result in a waste of energy. Live VM migration ensures
that all servers in a data center run evenly under the premise of without QoS
decrease. Load balancing also can be conducted between several geo-distributed
data centers when live VM migration over WAN is enabled.

2.2 The Cornerstone of Cloud Management

10

* Server consolidation [198, 67]. VMs are persistently created and destroyed in a

data center. In addition, some of them may be suspended or idle. The VMs will be
in a mess if the servers in a data center are not properly consolidated. In server
consolidation, VMs are live migrated for either energy purpose (using as fewer
servers as possible) or communication purpose (locating the VMs communicating
heavily with each other on the same server to reduce network traffic).

Across-site management [183]. For the cloud providers with multiple sites,
there are more management options to improve the QoS and lower economical
cost. For example, Follow the sun [173, 183] is a new IT operation strategy which
moves compute resources close to the clients to minimize the network latency.
Conversely, in order to reduce the cooling cost, Google and Microsoft propose
the concept of free cooling, also called follow the moon [169, 161], which moves
VMs and applications to the data center where it is in nighttime or with low
temperature.

Hybrid cloud [155, 103]. Hybrid cloud is featured with a couple of advantages
[130]: (1) highly cost-effective and elastic; (2) better aligned to the business
demands; (3) keeping private services in local. In the hybrid cloud, users can
offload some tasks to a public cloud when encountering peak workload, i.e. cloud
bursting [115].

Cloud federation [23, 21]. The inherent deficiencies of an individual data center
are driving cloud providers to cooperate with each other [20], i.e., cloud federation
[139]. There is still a long way to go for cloud federation in industry, but it is
already making benefits in academia. For example, EGI Federated Cloud [43]
connects more than 22 computing sites across Europe and the world to provide
services to academic researchers. With cloud federation, when the volume of
the processed data is huge, we can choose to move computation environment to
where data are located to avoid transferring a big amount of data.

Breaking vendor lock-in issue [146, 123]. The worry of being locked in by one
vendor is the main obstacle preventing users from choosing cloud computing. The
investigation shows that 62% IT organizations regard moving VMs between data
centers as an invaluable feature when choosing a cloud vendor [115].

Reaction to user mobility. To avoid violating the Service Level Agreement (SLA),
sometimes cloud providers have to migrate VMs to a cloud data center which is
close to users. This is also strongly required in the mobile edge computing alike
scenarios where each edge cloud data center only covers a small region of users.
When a user moves out from the coverage area of an edge cloud data center, the
corresponding VMs have to be migrated to the edge cloud data center where the
user is currently at.

Chapter 2 Background

User O

/Ve’w
~ Yo
< Teo
~ 7’150,
oy,
~Ta,,
~ Coy,
~ Ly,
\y

Memory data migration |

Source host Destination host

Storage data migration

W

Source site Destination site

Figure 2.4: Live VM migration.

2.3 How to Live Migrate a VM?

From the perspective of migration, a VM can be divided into three parts: running
states (including memory data, CPU states, all external device states, etc.), storage data
(i.e., disk data) and the network connections between the VM and its users. Live VM
migration is to hand over the three parts from the source site to the destination site.
Therefore, it consists of three following tasks, as shown in Figure 2.4.

1. Memory data migration. To avoid interrupting the services running in the
migrated VM, all real-time states of a VM must be migrated to the new host. These
data contain CPU states, memory data, the buffer data of external devices, etc.
Generally, the transfer of the running states is called as memory data migration.

2. Storage data migration. It is to migrate the disk image of a VM to the new
location. This task is needed when the source host and the destination host are
not sharing a storage pool.

3. Network connection continuity. After a VM is moved to a new location, a
strategy is required to redirect the network connections of its users to the new
location.

In this dissertation, we focus on improving the performance of memory data migra-
tion and storage data migration. We will give more details on these two tasks in Section
2.3.1 and 2.3.2, respectively.

2.3.1 Memory Data Migration

According to the VM handover time of a migration process, memory data can be
migrated in three patterns: pre-copy, post-copy, and hybrid-copy. Pre-copy [29, 119]
firstly copies all memory data to the destination server. Because the VM is still running

2.3 How to Live Migrate a VM?

11

12

on the source host, some memory pages will be dirtied during this period of data
transmission. These dirtied pages will be logged and transferred in an iterative way,
i.e., the pages transferred in current round are the ones dirtied in the previous round.
When the iteration meets the predefined thresholds (called termination conditions), the
VM is shut down on the source server. The remaining data are copied to resume the
VM on the destination server. For example, the termination conditions for stopping the
iteration phase can be set as: (1) the transfer round reaches a predefined value; (2) the
remaining data size is smaller than a predefined value; (3) the ratio between the size of
transferred data and the allocated size of memory space is bigger than a predefined
value, etc. Because VMs running different workloads have different memory dirtying
features, no termination condition is suitable for all VMs. Therefore, several termination
conditions are often combined to design a comprehensive strategy to adapt to as many
VMs as possible. Pre-copy is widely used in the mainstream VMMs/hypervisors, such as
VMware [119], Xen [29], and KVM [87], because of its robustness. During migration,
at least one site (the source site) has all of the data of the migrated VM. When the
migration breaks up at halfway due to some reasons (such as network outage) or the
VM fails to resume on the destination server, the VM can continue to run on the source
server without data loss. The source server releases the data of the migrated VM until it
is successfully resumed on the destination server. However, it faces one main problem.
When the memory pages of the migrated VM are dirtied (called memory dirty rate)
faster than the available network bandwidth for VM migration, the migration process
cannot be convergent. It means that the iterative copying makes no sense to reduce the
remaining data on the source server. This issue is called migration convergence problem,
which will result in a big migration downtime or a big network traffic.

Contrary to pre-copy, post-copy [59, 62] firstly stops the execution of a VM on the
source host. Boot data are scratched and copied to the destination host to resume
the VM. The rest of memory data can be transferred by different manners, such as
on-demand fetching, active pushing, and prepaging [59]. All memory pages are copied
only once in post-copy, so the total migration time is predictable. However, post-copy
has a fatal issue. The latest data of the migrated VM are separated to the source host
and the destination host, therefore, it may lose data or even destroy the migrated VM
when the migration fails at halfway.

Hybrid-copy [66, 86] is a combination of pre-copy and post-copy. It firstly copies
memory data with a limited round of iterations, and then hands over the execution of
the VM to the destination server. The remaining memory pages are copied in a post-copy
manner. Hybrid-copy inherits the strong points from both pre-copy and post-copy. The
limited pre-copying iteration reduces network traffic. The majority of memory pages
are transferred in the pre-copy phase, which decreases the pages remotely accessed by
the destination host, i.e. minimizes the possibility of page faults at the destination site.

Chapter 2 Background

Push

Pre-copy

Stop-and-copy

3AI|-UON

Hybrid-copy

Post-copy

Pull

Figure 2.5: The classification of memory data migration patterns.

This is helpful for lowering service degradation. However, it also succeeds the main

disadvantage of post-copy, i.e. weak robustness.

For better understanding different memory data migration patterns, Clark et al. [29]

divide memory data migration into three basic phases:

* Push phase: The migrated VM runs on the source server. Its memory data are

iteratively transferred to the destination server.

* Stop-and-Copy phase: The execution of the VM is halted on the source host. All
or a part of the remaining data on the source host are copied to the destination

site to resume the VM.

* Pull phase: When the VM is running on the destination server and page faults
happen, it remotely fetches these pages from the source server. At the same time,
the remaining pages are proactively sent to the destination host to lower the

possibility of page fault.

Different migration patterns are achieved by taking one or several phases of this division,
as shown in Figure 2.5. Pre-copy takes the push and stop-and-copy phases, while post-
copy takes the stop-and-copy and pull phases. But they transfer different data during the
stop-and-copy phase. Pre-copy transfers all the remaining data at the source host, while
post-copy only transfers the data needed for VM resumption. Hybrid-copy experiences
all of these phases. If only the stop-and-copy phase is taken, it is non-live migration.

2.3.2 Storage Data Migration

When both memory data and storage data of a VM will be migrated, according to
the migration sequence between memory data and storage data, storage data migration
can be also classified into three patterns: pre-copy, post-copy, and hybrid-copy. Pre-copy
migrates storage data before memory data, while post-copy transfers storage data after
memory data. Hybrid-copy migrates storage data and memory data simultaneously. By

2.3 How to Live Migrate a VM?

13

14

Data Data Data

Memory > Memory P> . Memory D> .
Storage > TG Coning Storage % — Storage % »Q
(a) Pre-Pre (b) Pre-Post (c) Pre-Hybrid
Data Data Data
Memory P —— Memory z > Memory z ———
Storage I j Storage é — Storage i »
Tim; Tir;le Tirr:e
(d) Post-Pre (e) Post-Post (f) Post-Hybrid
Data Data Data
Memory —Pr;» i Memory Prei ipw Memory Preﬁk - Post
ixi 5
Storage > Q Storage —_— Storage § » O
— Ti;'le Tin:e
(g) Hybrid-Pre (h) Hybrid-Post (i) Hybrid-Hybrid

Figure 2.6: The migration sequences between memory data and storage data. The retransmis-
sion of dirtied disk blocks can be implemented in different manners. For example,
the dirtied blocks can be synchronized to the destination site during migration or
transferred at the end of storage data migration in bulk. In these figures ((a), (c),
(d), (g), (1)), only the second option is shown.

combining different memory data and storage data migration patterns, nine migration
patterns are available when both the memory and storage data of a VM will be migrated:
Pre-Pre, Pre-Post, Pre-Hybrid, Post-Pre, Post-Post, Post-Hybrid, Hybrid-Pre, Hybrid-Post
and Hybrid-Hybrid, as shown in Figure 2.6.

The two patterns in each name denote memory data migration pattern and storage
data migration pattern, respectively. For example, Pre-Hybrid migrates memory data in
a pre-copy manner and storage data in a hybrid-copy manner. In other words, memory
and storage data are concurrently transferred, namely hybrid-copy, and memory data
are migrated with the pre-copy pattern. If the VM is running on the source host during
storage data migration, two additional mechanisms are required: (1) the dirtied blocks
will be logged and retransferred to the destination host for data consistency, such as
Pre-Pre and Pre-Hybrid; (2) a strategy is needed to coordinate the write operations
from the migrated VM and the read operations from the migration process.

As discussed in Section 2.3.1, post-copy and hybrid-copy have a weak robustness for
memory data migration, which is also applicable for storage data migration patterns.
Therefore, from migration pattern names, the pattern containing Post or Hybrid is weak
regarding robustness. They may lose data or destroy the migrated VM if the migration
fails at halfway. Only the Pre-Pre pattern can ensure the migrated VM correct under
different situations, and does not need manual intervention even migration outage
happens. Therefore, it is widely used for VM migration over WAN.

Chapter 2 Background

Backhaul network

‘ ‘ Base station ‘ ‘ Edge cloud data center

9

User equipment

Figure 2.7: The architecture of mobile edge computing.

2.4 Mobile Edge Computing

Mobile devices, such as smart phones and tablets, are becoming more and more
important for our daily lives, both work and entertainment. However, the physical
device size constraint limits the computation and energy capacities of a UE. Also, with
the development of the IoT, a huge amount of sensors are constantly generating data,
and some of these data need to be fast processed to response the potential events or
accidents, such as smart city, smart home and intelligent transport system. The long
distance between sensors and a central remote cloud data center makes it impossible to
meet the low-latency requirement.

To provide a high quality of services to mobile devices, some new computing
paradigms were proposed, such as fog computing [15], MEC [45], cloudlet [144],
etc. All of them have the same structure, i.e., cloud resources (such as compute and
storage) are deployed at the network edge to provide low-latency services for UE. MEC
is used to denote all these paradigms in this dissertation. As shown in Figure 2.7, MEC
moves cloud-computing services to the vicinity of UE, called edge cloud data centers.
Edge cloud data centers can be deployed by utilizing the spare hardware resources of
the base stations of the Radio Access Network (RAN). UE partially or fully offloads
computation tasks to these edge cloud data centers for the purposes of energy saving or
computation capacity expansion, i.e., computation offloading [105, 78].

Some basic concepts of MEC are described as follows.

¢ Base station: where transceivers of the RAN are located.

2.4 Mobile Edge Computing

15

16

* Cell: the signal coverage(service) area of a base station.

* FEdge host: the servers deployed in base stations. VMs are running on them, and
the computation tasks offloaded from UE are executed in these VMs.

* Edge cloud data center: the cloud computing platform deployed in each base
station.

* User Equipment(UE): a mobile device which offloads computation tasks to an edge
cloud data center.

* Mobile application: the application which is running on a UE and its computation
tasks are partially or fully offloaded to an edge cloud data center.

Live VM migration in MEC only involves two concepts: cell and edge cloud data center.
Users and UE are moving between cells, while the corresponding VMs are live migrated
between edge cloud data centers.

2.5 A Taxonomy of Migration Schemes

The migrations with different conditions confront different challenges. We classify
migration schemes from three perspectives: migration manner, migration distance, and
migration granularity.

VM migration can be conducted in two manners: non-live migration and live mi-
gration. Live migration is carried out under the precondition of no interruption to
the running services, while non-live migration does not have this limitation. With
non-live migration, a VM is firstly suspended or shut down before migration depending
on whether it will continue the running services after migration or not. If the VM is
suspended, the running states will be encapsulated and transferred to the target site.
During the migration, no open network connection is kept and all connections are
rebuilt after VM resumption. However, memory data migration and network connection
continuity are the two problems which must be solved for live migration to avoid
service interruption. If the source and the destination sites do not share storage system,
storage data migration must be carried out as well. Non-live migration has a significant
interruption to the service running in the migrated VM. This dramatically restricts
its application field since many applications in a cloud data center are running in a
7 x 24hours manner. Hence, the majority of researches are focusing on live migration.

According to migration distance, VM migration is divided into two categories: mi-
gration in LAN and migration over WAN. Migrating a VM in LAN means the source and
the destination servers are located in the same data center. With the development of
network technologies, the difference and boundary between Metropolitan Area Net-
work (MAN) and WAN disappear [89]. Migration over WAN in this dissertation refers

Chapter 2 Background

O
End
" user@ End user

Host| ‘Host

Shared storage Storage Storage
(a) Live migration in LAN (b) Live migration over WAN

Backhaul network

O
End user m‘.\

Storage Storage

(c) Live migration in MEC (d) Correlated VM migration

Figure 2.8: Classification of migration schemes. The relatively bigger line width for mem-
ory data migration in (a) is to indicate the bigger network bandwidth in LAN
environments in comparison with WAN and MEC environments.

to any migration across data centers. The migration mechanisms for LAN environments
normally has two basic assumptions. (1) Shared storage system, such as SAN and
NAS, is used in a data center. It is accessible from both servers in the migration, which
indicates that storage data migration is unnecessary. (2) The source and the destination
servers are in the same subnet. The migrated VM will keep its network configurations
during the whole migration. Based on these two premises, migrating a VM in LAN only
needs to solve the task of memory data migration, as shown in Figure 2.8(a). However,
migrating a VM in WAN environments does not have these advantages. There is no
shared storage system, and different data centers have different network configurations
as well. Furthermore, the network conditions (such as bandwidth, latency) between
data centers are much worse than those of LAN, as shown in Figure 2.8(b). Therefore,
migrating a VM over WAN not only needs to solve all of the three tasks of live VM
migration, they also become much harder in comparison with the migration in LAN
environments.

2.5 A Taxonomy of Migration Schemes

17

18

VM migration in MEC not only faces the same problems as the migration over WAN,
the proximity of cloud resources to users in MEC also brings both new challenges and
optimization opportunities, as shown in Figure 2.8(c). For example, an edge cloud data
center in MEC only serves the users in its coverage area. When a user roams between
different edge cloud data centers, the corresponding VM has to be migrated to meet the
low-latency requirement of mobile applications. This type of VM migration is called
user mobility-induced migration (more details in Chapter 6).

Nowadays, many applications in a data center consist of a group of VMs [50, 179].
These VMs are closely related to each other and work together to provide a service. For
example, three-tier is a typical application architecture. It is composed of a presentation
tier, an application tier and a database tier. The number of VMs in each tier can be
scaled up or down according to the change of workloads. It is impossible to only
migrate one of the correlated VMs to another data center because the long network
latency between data centers will severely degrade service performance, even destroy
the service, as shown in Figure 2.8(d). Therefore, according to migration granularity,
VM migration contains single migration and correlated VM migration. Single migration
migrates one VM each time and this VM is running independently, while correlated VM
migration simultaneously moves a bunch of VMs which are communicating with each
other.

2.6 Performance Metrics and Overheads

A good migration strategy not only tries to move a VM from one place to another as
fast as possible, but also needs to minimize its side-effects. The performance metrics for
assessing a migration strategy are summarized as follows.

* Total migration time. This refers to the duration between the time when the
migration is initiated and the time when the migrated VM is resumed on the
destination server and no data remains at the source site.

* Downtime. It is the duration that the migrated VM is out of service. This metric
determines how transparent the migration is to the users of the migrated VM. For
non-live migration, total migration time equals to downtime.

* Total network traffic. This metric means the total data transferred during the
migration. It is a critical measurement when the migrated VM is running a
network-intensive service because it will contend for network bandwidth with the
migration process.

* Service degradation. It indicates how the service running in the migrated VM
is affected by the migration. It can be measured by the changes of throughput,
response time, etc.

Chapter 2 Background

Sometimes network bandwidth utilization is also used to evaluate a migration
strategy. This metric can be gained by combining total migration time with total
network traffic. The smaller the total migration time and the less the total network
traffic are for a specific migration, the higher the network utilization is.

However, VM migration is not an only-gain-no-pain operation. It may bring interfer-
ences to all involved roles in the migration. The side effects of live VM migration can
be divided into three categories: computation overhead, network overhead and space
overhead.

Computation overhead. Normally, the migration daemon is running in the VMMs
of the source and destination hosts (i.e., managed-migration). The migration process
will occupy a portion of CPU cycles and memory spaces. This will lead to interferences
to all VMs on these two hosts. If the migration daemon is running in the migrated
VM (i.e., self-migration) [55, 29], some computation resources of the migrated VM
will be occupied. Besides, some migration optimization technologies also introduce
computation overheads, such as data deduplication, data compression.

Network overhead. VM migration is a network-intensive workload. It will compete
for network resources with the VMs running on the source and destination hosts. In
addition, a migration process reads data from the storage system of the source site and
writes them to that of the destination site, which consumes a portion of I/O bandwidth
as well.

Space overhead. Compared to other resources (such as CPU cycles, network band-
width), storage space is less valuable. Inevitably, some optimization technologies will
implement migration or improve migration performances at the expense of storage
space, such as snapshotting [108].

2.7 VM Migration vs. Container Migration

Container is an unavoidable topic whenever VM is involved due to many common
points between them. Meanwhile, there are many differences between them which
make them coexist in the “virtualization world” [39, 148]. In this section, they will be
differentiated from the migration perspective.

Containers are implemented by OS virtualization, while VMs are implemented by
hardware virtualization. The containers on a host are sharing the underlying OS kernel,
but VMs are complete and totally isolated execution environments (each VM installed
with an OS). This difference makes container migration more close to process migration.
Actually, the commonly used migration technology for containers is checkpoint and
restart (CR) [113] which saves the memory state of a process into files and resume the

2.7 VM Migration vs. Container Migration

19

20

process at the destination host from the checkpoint. A project—CRIU [30], based on
CR, has been implemented for container migration.

A container is much more lightweight than a VM, which inherently leads to a smaller
challenge for migrating a container than a VM. For example, for the containers which
are running stateless services (e.g., RESTful web services), the container can be directly
killed on the source host and created again on the destination host. The duration of
this operation is tolerable and only the currently running requests will be affected.

Container migration will consider some problems which do not bother VM migration.
For example, containers are not only sharing the underlying OS, but also some libraries.
Therefore, during container migration, the destination host must prepare these libraries
for the migrated container. However, the hosts at the destination site are also running
other containers. Therefore, the destination host selection should be an important issue
for container migration. In contrast, a VM can run on any host once they are virtualized
and managed by the same type of VMM.

2.8 Chapter Summary

In this chapter, the basic knowledge of live VM migration is introduced. Firstly, the
resource management of cloud data center and live VM migration are elaborated. Then,
the structure of MEC and a taxonomy of different migration schemes are described.
Next, the metrics for evaluating a migration strategy and the side effects of VM migration
are discussed. At last, we present the differences between VM migration and container
migration.

Chapter 2 Background

Chapter 3

Related Work

According to the classification in Section 2.5, we show VM migration schemes and the
tasks of each type of migration in Figure 3.1. We summarize the existing migration
technologies related to the research topics of this dissertation with the following
structure in this chapter.

1. Memory data migration is the main task for live VM migration. Firstly, we review
the technologies and optimizations for memory data migration. Memory data
migration technologies for LAN environments are also suitable for WAN environ-
ments, only facing a slower migration bandwidth, and vice versa. Therefore, we
review all memory data migration technologies together (Section 3.1).

2. Storage data migration is the bottleneck of the migration in WAN environments,
and attracts many attentions from researchers. Like the technologies for memory
data migration, storage data migration technologies for WAN environments are
also applicable for LAN environments. We summarize all of them in Section 3.2.

3. In the new paradigms of cloud computing (e.g., MEC), VM migration is highly
related to user mobility. This type of VM migration will not only solve the same
challenges as WAN migration, but also faces some new issues, so we review the
state-of-the-art technologies for this topic in Section 3.3.

3.1 Memory Data Migration

3.1.1 Pre-copy

Clark et al. [29] implement the pre-copy mechanism on Xen in two manners: man-
aged migration and self migration. Managed migration runs the migration daemon in
the management VM (Dom0), while self migration is conducted by the migrated VM
itself. Self migration is more complex than managed migration in terms of implementa-
tion. Because the migration process is running with other processes on the migrated

21

22

Memory S&C
migration
Storage
"|_migration
Network
"| connection

— LAN

Live
migration | Network
"| connection

S&C

Storage

—* WAN migration

Memory
"|_migration |~

Y

User mobility-

MEC "| induced migration

Figure 3.1: The taxonomy of VM migration. The arrows for memory and storage data mi-
gration technologies mean that they are mutually compatible in LAN and WAN
environments. For both memory and storage data migrations, the technologies
for single migration and correlated VM migration are covered. S and C refer to
single migration and correlated VM migration, respectively. In this chapter, we only
review the technologies related to our research topics, i.e., the gray boxes in the
figure.

VM in self migration, it must solve the migration consistency issue which is out of
consideration for managed migration. They design a two-stage stop-and-copy phase to
guarantee migration consistency. The first stage stops all processes except the migration
process, and scans the dirtied pages. The second stage transfers all dirtied pages in the
final scan. Due to the implementation complexity and intrusive deployment for each
VM, self migration is rarely used for cloud management.

Pre-copy is also used by VMware to carry out its migration system—VMotion [119],
and integrates it into the VirtualCenter management platform. It sets termination
conditions for the iterative copying as: (1) less than 16MB modified pages left; (2)
1MB size decrease of modified pages between two neighbor rounds. They find that
scanning dirtied memory pages during the iterative copying phase takes 20% network
throughput drops to end users. Their results also show that reserving 30% CPU resource
for migrating an idle 512MB Windows 2000 Server VM over a gigabit link minimizes
the total migration time.

Compression

Memory pages have strong regularities and also contain many zero bytes [181, 44].
To reduce the total network traffic during migration, compression technology is the first
one comes to mind. As shown in Figure 3.2, there are two types of compression manners:
normal compression and delta compression. Normal compression takes advantage of
data regularities to encode information with fewer bits. The ratio between the size
of the representation information and the original data is called compression ratio.
Normal compression contains two interleaved phases: modeling and encoding [118].

Chapter 3 Related Work

Compression Network Decompression

I

I

i .

i Original data —>-— -b-—v Original data
I

I

I

I

b

(a) Normal compression

Compression Decompression

New version Network /_\
. Reference

New version
Reference

—>

(b) Delta compression

Figure 3.2: The illustration of normal compression and delta compression.

The modeling phase is to find data regularities, and the encoding phase constructs the
representation information. Delta compression reduces data transfer by only sending
the difference between current version and its previous version. The difference is
called delta, while the previous version is called reference. In decompression phase, the
original data are gained by applying a delta to its reference. After each compression
and decompression, the reference is replaced with the new version of data for the next
round of delta compression. Delta compression needs space to store the references and
introduces additional management efforts for it. Although normal compression does
not encounter these disadvantages, it is compute-intensive.

However, compression has to make a trade-off between computational cost and
migration performance benefits. A compression algorithm with a higher compression

ratio will lead to bigger computational cost and compression time. To this end, Jin et al.

[79, 80] propose a Characteristic-Based Compression (CBC) algorithm which adaptively
chooses compression algorithms according to data regularities. The memory pages with
high similarity are compressed by an algorithm with fast compression speed, such as
WKdm [181], while the pages with low similarity are compressed by an algorithm with
high compression ratio, such as LZO [122]. The threshold between low similarity and
high similarity is also adjustable to adapt to a variety of VMs with different memory dirty
rates. Multi-threaded techniques are employed to accelerate the speed of compression
and decompression as well.

Hacking and Hudzia [54] propose to use delta compression to shorten the migration
duration of a VM running large enterprise applications which are featured by large
memory size (can reach tens of GB) and fast memory dirty rate. They introduce a
warmup phase before migration to transfer the original memory data to the destination
server in the background. During migration, delta compression is conducted to reduce

3.1 Memory Data Migration

23

24

the network traffic of migration. VMM keeps the previous version of recently dirtied
pages in an Adaptive Replacement Cache (ARC) [111]. Before transferring a dirty page,
if its previous version is stored in the ARC, only the difference (delta) between them is
transferred to the target server, and at the same time the ARC is updated to the current
version. Otherwise, the dirty page is directly sent to the target server.

Based on the work in [54], Svird et al. [159] use a two-way associative caching
scheme [57] instead of ARC to store the reference pages. This caching scheme is
lightweight (small CPU occupation) and has a constant lookup time. XORed Binary
Run Length Encoding (XBRLE) compression algorithm [128] is used to compress pages.
Their experimental results indicate that their system outperforms the default KVM
migration algorithm regarding both total migration time and downtime.

Data Deduplication

Many previous works [48, 197, 51] show that a big amount of identical memory
pages exist within a VM or between VMs. These duplicate pages can be eliminated to
speedup VM migration. They are partly zero pages and partly result from using the same
libraries or applications. There are three types of similarities existing in VM memory
pages: intra-VM similarity, inter-VM similarity, inter-site similarity. Intra-VM similarity
denotes the duplicate pages within the migrated VM. Inter-VM similarity refers to the
identical pages between different VMs at the same data center. This similarity can be
used to transfer identical pages only once when multiple VMs are migrated concurrently.
Inter-site similarity explores the identical pages between the migrated VM and the VMs
located at the destination data center. SHA-1 [41] and SuperFastHash [64] are the
two commonly used hashing algorithms to locate duplicate pages. In this section, we
review the studies on exploiting intra-VM similarity and inter-site similarity for VM
migration, and these on inter-VM similarity are described in Section 3.1.1 on correlated
VM migration.

Riteau et al. [137, 138] design a migration system—Shrinker, to improve the
performance of migrating memory data over WAN. It utilizes distributed content-based
addressing to avoid transferring duplicate pages between the migrated VM and the
VMs running at the destination site (i.e. inter-site similarity). However, VM memory
pages change over time, so a dynamic indexing approach is needed. Shrinker solves this
problem with two subsystems: (1) a site-wide Distributed Hash Table (DHT) and (2)
a periodic memory indexer. The intra-VM similarity feature is also exploited by them:
only the first byte of zero pages is sent to the destination site.

Nowadays, cloud providers pre-deploy template VM images for fast VM creation.
Zhang et al. [199] find that many redundant memory blocks are located between the
VMs which are cloned from the same VM template by an extensive experiment. To utilize
this feature and decrease the footprint size of the VMs on the same host, Content Based

Chapter 3 Related Work

Page Share (CBPS) [51] is widely used in virtualization platforms (such as VMware
ESX [175], Xen [112, 88]) to make the VMs on the same physical server share memory
pages [182]. Based on these observations, Zhang et al. design a metadata based
migration system—Mvmotion, which makes the migrated VMs share some redundant
memory pages with the VMs running on the destination host (i.e. inter-site similarity)
by utilizing CBPS technology. The metadata of a VM contain the hashing values and the
block numbers of memory pages. During migration, the metadata of the migrated VM is
sent to the destination data center to find the pages already existing at the destination
host.

Jo et al. [83] accelerate VM migration by utilizing shared disk blocks rather than
memory pages. They observe that many memory pages of a VM are replicas of disk
blocks [127]. They propose to only transfer unique memory pages from the source
server to the destination server. The information of the memory pages which are the
replicas of disk blocks is logged into a list. The destination server gets these memory
pages from the shared storage system instead of from the source server.

Liet al. [94] and Zheng et al. [204] propose a template-based migration mechanism.

If a page appears n times in a data center which is bigger than the preset threshold, it is
called a template page. Similar with [137, 138], the fingerprints of the destination data
center’s template pages are stored in a Distributed Hash Table (DHT). They classify

memory pages into three categories: uniform pages, normal pages, and duplicate pages.

In their migration system, uniform and normal pages are transferred by using the
default migration interface of VMM. Duplicate pages are constructed at the destination
data center by copying its identical template pages.

Zhang et al. [197] observe that at least 30% of non-zero memory pages are identical
or similar, and design a new migration strategy—Migration with Data Deduplication
(MDD) which takes advantage of intra-VM similarity. Both data deduplication and delta
compression are utilized by Wood et al. [183] to accelerate memory data and storage
data migration over WAN. Data deduplication is used to explore the duplicate items for
memory pages and disk blocks, and delta compression aims to reduce the transferred
bites when a page has been copied before.

Many “free” pages (such as zero pages, cache pages) exist in a VM. These pages will
not influence on the correctness after the migrated VM is handed over to the destination
server. Clark et al. [29] do not transfer these pages during the first full-transfer
round by using memory ballooning mechanism [7]. This mechanism is also combined
with QuickAssist Technology (QAT) data compression [131] by Zhang et al. [195] to
accelerate VM migration in the NFV scenario. Akane Koto et al. [90] run a process in
the migrated VM to record the pages which are unnecessary for VM correctness after
migration. These pages will not be transferred during migration and are reproduced
after VM resumption. However, even though these pages are not important for the

3.1 Memory Data Migration

25

26

correctness of VM execution, losing and reconstructing these pages will result in a big
service degradation after migration.

RDMA

Many high-speed interconnect technologies, such as InfiniBand [5], Myrinet [13],
provide the functionality of Remote Direct Memory Access (RDMA). RDMA allows
memory data to be remotely accessed without the involvement of CPU and cache.
Huang et al. [68] take advantage of this feature of InfiniBand to minimize the side
effects of VM migration and improve migration performance.

Ibrahim et al. [70] also utilize InfiniBand RDMA to migrate the VMs with High
Performance Computing (HPC) applications. They comprehensively investigate the
performance relationships between VM migration and the applications running in the
migrated VM. A series of findings are observed in their experimental results. (1) The
monitoring mechanism of migration process introduces a considerable interruption
to the workloads running in the migrated VM. The more cores the VM runs with, the
bigger the interruption is. They observe that parallelism of the monitoring process is
beneficial to migration performance. (2) The memory pages of HPC applications are
easily dirtied faster than the available migration bandwidth. Hence, normal migration
termination conditions (predefined target downtime and iteration limit) will result
in a sub-optimal migration performance. (3) The Writable Working Set (WWS) (the
set of frequently dirtied memory pages) varies significantly when a VM is running
different workloads. They further evaluate the performance of VM migration when a
dedicated network path (InfiniBand RDMA) is employed for migration. They find that:
(1) Migration downtime depends on the start time of the migration over the application
lifetime. A bigger application dataset or more processors used by the migrated VM leads
to a longer downtime. (2) Even though a dedicated migration path is provided, the
migration still severely impacts on the quality of service. (3) correlated VM migration
will experience a longer downtime than single migration. Based on these observations,
they propose an optimized migration termination strategy for HPC VMs (see Section
3.1.1).

Checkpointing/Recovery and Trace/Replay

Normal pre-copy scheme is sensitive to memory dirty rate and also results in a
big network traffic. Considering this issue, Liu et al. [98, 97] design and implement
a novel migration system—CR/TR-Motion, by utilizing Checkpointing/Recovery and
Trace/Replay (CR/TR) technology. It is based on a full system trace and replay system—
Revirt [40]. They record the execution trace of the migrated VM into log files, and
iteratively transfer log files rather than dirty pages to the destination server where log
files are replayed to recover VM states. This can improve migration performance due
to the fact that log file size (growth rate around 0.04GB to 1.2GB per day) is much

Chapter 3 Related Work

smaller than the size of dirty memory pages. Furthermore, migration downtime is also
decreased because fewer data is left in the final stop-and-copy phase.

Cully et al. [31] also utilize checkpointing to migrate VM memory data to another
host by copying the whole system state rather than only replaying deterministic inputs.
They repeat the final stage (the stop-and-copy phase) of pre-copy to transfer the latest
memory states to the destination host. To increase the checkpointing speed, two
optimizations are conducted on the default Xen live migration mechanism: reducing the
number of inter-process requests required to suspend and resume the guest domain and
entirely removing xenstore from the suspend/resume process. With these optimizations,
the checkpoint frequency can reach 40 times per second.

Page Reordering

The memory pages of a VM have different access characteristics. Some pages remain
clear during the whole lifetime of the VM, while some are frequently modified. This
characteristic can be used to improve migration performance by reordering the pages
for transfer in each iteration. Svard et al. [160] design a mechanism—dynamic page
transfer reordering, to lower page retransmission during the iterative copying phase.
They assign a weight for each page according to its update frequency. Pages are
transferred in the order of increasing weight. The most frequently updated pages are
postponed to the final stop-and-copy phase. Similarly, Checconi et al. [26] propose
two page-reordering mechanisms: a Least Recently Used (LRU) based approach and a
frequency-based approach. LRU-based approach prioritizes the transfer of the pages
which are least recently used, while frequency-based approach transfers pages in the
order of increasing access frequency.

Migration Convergence

The main risk for pre-copy is the migration process cannot converge to an optimal
point for the final stop-and-copy phase. This situation happens when the VM dirties
its memory pages faster than the migration bandwidth. A plenty of optimization
strategies are designed to migrate the VM which has a fast memory dirty rate. They
solve the migration convergence problem from two aspects: tuning memory dirty rate
and changing migration termination conditions.

Clark et al. [29] find that some memory pages are dirtied very frequently, i.e., WWS.
It is unnecessary to iteratively copy WWS to the target site during migration. Therefore,
during the iterative copying phase, the dirtied pages transferred in each iteration are
selected like this: only those dirtied in the previous round and not dirtied in the current
round again. The paravirtualization feature of Xen also provides some optimization
opportunities. A monitoring thread is awakened in the migrated VM when migration
begins to stun the rogue processes for migration convergence. It can record the WWS of

3.1 Memory Data Migration

27

28

each process in the migrated VM, and limits the maximum page faults for each process.
In further, to make a trade-off between migration convergence and network bandwidth
saving, a dynamic rate-limiting approach is designed by them to control migration
bandwidth. Because memory dirty rate changes over time, setting a static network
bandwidth for migration is not always optimal. A minimum bandwidth limit and a
maximum bandwidth limit are predefined in their approach. Migration starts with the
minimum bandwidth, and increases it with a constant increment each round. When
the bandwidth reaches the maximum value or the remaining data size is smaller than
256KB, the migration enters the stop-and-copy phase. The upper bandwidth limit is
used for the stop-and-copy phase to lower migration downtime.

Jin et al. [81] find that memory dirty rate approximately has a linear relationship
with VM execution speed, based on several practical experiments. Assuming a VM
runs a specific program, the faster the VCPU frequency is, the faster the I/0 (especially
write operation) speed is. Therefore, they propose to tune memory dirty rate to a
desirable value to lower migration downtime by tuning VCPU execution frequency. Liu
et al. [100] also control the CPU resources assigned to the migrated VM to improve
migration performance by using the Credit algorithm of Linux kernel. Mashtizadeh et
al. [109] design a similar mechanism—Stun During Page Send (SDPS). It does not tune
the frequency of a whole VCPU, and only injects delays to page writes to lower page
dirtying rate.

Ibrahim et al. [70] aim to migrate the VMs with HPC applications. They propose to
switch the iterative copying to the final stop-and-copy phase when no further reduction
in downtime is achievable. They define three memory update patterns: (1) iterative
copying does not reduce the amount of dirtied pages; (2) the number of dirtied page
decreases for a short duration (such as, synchronization and barrier operations) so
that a small downtime can be achieved; (3) most of transmitted pages are duplicate
pages. For the first pattern, when a stable memory modification rate is detected, the
migration will step into the stop-and-copy phase. For the second pattern, the iterative
copying is stopped when the dirtied pages are transferred within a preset interval.
For the third pattern, the retransmission rate is monitored. When it exceeds 90%, the
migration process moves to the stop-and-copy phase. Atif et al. [6] propose a more rigid
termination strategy. According to their statistics on Xen’s default migration mechanism
for HPC applications, iteratively copying the memory data of HPC applications is only a
waste of time and CPU cycles. Therefore, they only iterate the pre-copy phase twice.
The first iteration copies all memory pages, and the second iteration directly enters into
the final stop-and-copy phase. This is to decrease total migration time and total network
traffic at the expense of service degradation. In CloudNet [183], it firstly detects the
point where the amount of transferred pages is equal or bigger than the dirtied pages.
After this point, it stops the execution of the VM when the number of dirtied pages is
smaller than any previous iteration.

Chapter 3 Related Work

Correlated VM Migration

In this section, we review the works on optimizing the performances of correlated
VM migration. Deshpande et al. [36] name the migration of multiple co-located active
VMs (on the same server) as live gang migration. They employ both data deduplication
and delta compression to eliminate the duplicate memory pages exist between the
co-located VMs. At the beginning of migration, all memory pages are transferred to
the destination site. Only one copy of identical pages are transferred. The iterative
copying phase only sends the page identifiers of newly-found duplicate pages to the
destination server. They find that even though two pages are different, they may be
partially identical. Therefore, they continue to use delta compression to reduce total
network traffic. All duplicate pages are acting as reference pages, and unique pages (no
duplicate) are compared with them to generate deltas. When the delta size of a page is
smaller than a threshold, the delta is transferred to the destination site, otherwise, the
entire page is transferred.

Deshpande et al. [35, 34] further propose a new migration mechanism—gang
migration using global (cluster-wide) deduplication (GMGD), by expanding the migration
approach for the VMs on a single host [36] to a server rack which holds many hosts.
The GMGD works as: (1) all duplicate pages between the VMs on a rack are identified
before migration, (2) only one copy of these duplicate pages are transferred to each
target rack, (3) at the target racks, once a server received a duplicate page, it populates
this page to other servers in the same rack which need this page instead of fetching
it from the source rack. Data deduplication is also applied between the VMs on the
source rack and the target rack.

Live VM migration not only imports interferences to both the source server and
the destination server, but also to the VMs running on these two servers. Xu et al.
[185] extensively analyze migration interference and co-location interference during
and after migration. Migration interference refers to the service degradation of the
VMs located on the source and the destination servers during migration, while co-
location interference denotes the performance losses of the VMs on the destination
server after new VMs are migrated in. They created performance models for these two
interferences. Based on these models, they propose an interference-aware migration
strategy—iAware, to minimize both migration interference and co-location interference.
For each migration, iAware firstly chooses the migrated VM(s) with the least migration
interference, and then chooses the target host(s) by estimating the co-location inter-
ference. iAware is lightweight and can be used as a complementary manner for other
migration strategies.

Bari et al. [8] try to solve the similar problem but without the selection phase
of the migrated VMs and the target servers. They aim at the migration sequence
problem to minimize total migration time and downtime when the initial and target VM

3.1 Memory Data Migration

29

30

placements are given. The key insight of their algorithm is to separate the migrated VMs
into Resource Independent Groups (RIGs). The VMs in the same RIG will be migrated
between distinct machines. In other words, at any time a server is only running one
migration process to reduce the network contention and service interruption to other
VMs running on it. Therefore, the VMs in the same RIG can be migrated simultaneously,
and RIGs are migrated sequentially. For each RIG, the VM which has the shortest
migration time will be firstly migrated.

Multi-tier applications are ubiquitous in cloud data centers. The VMs in a multi-
tier application are normally communication-dependent. Some works try to optimize
the migration for multiple correlated VMs from different perspectives. Wang et al.
[176] make efforts on choosing an optimal migration sequence and a proper migration
bandwidth for correlated VM migration. The migration sequence is derived by collecting
a variety of information, such as network topology and traffic matrix of the data center,
memory sizes and memory dirty rates of VMs. Sarker and Tang [143] design a dynamic
bandwidth adaptation strategy to minimize the total migration time for a given number
of VMs. The total migration time is controlled by adaptively choosing sequential and
parallel migration and changing migration bandwidth.

Liu et al. [96] design an adaptive network bandwidth allocation algorithm to reduce
the service interruption of live migrating multi-tier application over WAN. They migrate
the correlated VMs concurrently and design a synchronization algorithm to make
different migration processes finish at an approximate time. Their migration system
consists of a central arbitrator and a migration daemon running in the DomO of Xen.
The arbitrator dynamically tunes the network bandwidth for each migration process by
collecting information from the migration daemon. Moreover, a wait-and-copy phase is
introduced to synchronize different migration processes to start the final stop-and-copy
phase at the same time.

In order to fully utilize network bandwidth to transfer as many VMs as possible in a
given period of time, such as for the disaster recovery scenario, Kang et al. [85, 84]
propose a feedback-based migration system. It adaptively changes the number of VMs
in a migration by drawing experiences from the TCP’s congestion control algorithm
[73]. A controller starts the migration from a slow start (SS) phase where a small
number of VMs (called VM window) are migrated in parallel, and increases the size of
VM window gradually. When network congestion is detected, the migration enters a
congestion avoidance (CA) phase where the VM window is reduced accordingly.

Ye et al. [188] propose to reserve resources (CPU cycles and memory space) for
migration. At the target host, several empty VMs with 100% CPU utilization and
certain memory spaces are created before VM migration. When the migration starts,
these reserved VMs are shut down to leave resources to the migrated VMs. They find
that parallel migration is better than sequential migration when enough resources

Chapter 3 Related Work

are available for migration, otherwise, parallel migration is worse. Based on their
experimental results, several optimizations are designed. For example, they firstly
migrate the VM with small memory size to increase migration efficiency. However, the
resource reservation operation increases the migration interference to the destination
server.

Others

Besides the common problems discussed above, some migrations conditions require
special migration strategies. Liu et al. [99] struggle for the VMM heterogeneity problem,
i.e. implementing VM migration between different VMMs. To smooth the heterogeneity
of different VMMs, they design a common migration protocol and a common virtual
machine abstraction method. The commands and data sent by the source VMM are
transformed into intermediate formats which are then intercepted into the formats
of the VMM at the target site. Based on this proposal, they implement VM migration
between KVM and Xen.

Nathan el al. [117] comprehensively compare the performances of non-adaptive
migration and adaptive migration with different parameter values, such as VM size and
page dirtying rate. Non-adaptive migration technique migrates a VM at the maximum
available bandwidth, while adaptive migration technique changes the migration band-
width according to memory dirty rate. They find that non-adaptive migration is better
than adaptive migration in most scenarios regarding migration performances (such as
total migration time, downtime, total network traffic). However, adaptive migration
utilizes fewer resources (CPU, network bandwidth) than non-adaptive migration. Based
on these benefits of adaptive and non-adaptive migrations, they propose a novel mi-
gration technique—Improved Live Migration (ILM). The key idea behind ILM is to use
non-adaptive migration but with limited resources (network bandwidth and DomO CPU
cycles) for migration.

Raghunath et al. [135] make efforts to lower the overhead of VM migration by
choosing an appropriate migration triggering point. This is implemented by combining
predicted future workloads and migration parameters. The migration-triggering system
consists of two components: one is a centralized controller which runs as a resource
usage collector, and one is running in the DomO of every physical machine. Whenever
the central controller detects hotspot problem, it coordinates VM migration tasks
according to the resource usage statistics (the utilizations of CPU, memory and network
bandwidth) gathered from all individual servers. Baruchi et al. [9] also try to find an
appropriate migration triggering point by exploring application resource consumption
features. The execution history data of the applications on a VM are analysed with Fast
Fourier Transformation (FFT) which is used to identify cyclic patterns in natural events
to estimate the cycle size of the applications. Within each cycle, they then find the

3.1 Memory Data Migration

31

32

moment which is suitable for starting VM migration with the prediction of migration
cost.

Xia et al. [184] firstly use linear programming to formulate the path selection and
bandwidth assignment problem when multiple VMs will be migrated from different
source hosts to different destination hosts in the NFV scenario. Two approaches are
proposed to solve this problem: critical edge pre-allocating approach and backtracking
approach. The critical edge pre-allocating approach assign bandwidth to each migration
process according to the available bandwidth of the edge all migration will pass through.
The backtracking approach is a greedy strategy which initially assigns the network
bandwidth according to the memory size of the migrated VM and decreases it when
network congestion happens.

3.1.2 Post-copy

Post-copy firstly hands over the VM to the destination site. Therefore, the optimiza-
tions for it mainly focus on reducing the possibility of page fault after VM handover.
In other words, they are to avoid remotely accessing memory pages from the source
site when the VM is resumed on the destination host. Hines et al. [59, 58] holistically
describe the process of post-copy. To reduce the page faults at the destination site
and total migration time, they design four optimization mechanisms to accelerate the
transfer of memory pages: demand-paging, active pushing, prepaging, and dynamic
self-ballooning (DSB). With demand-paging, when page faults happen after the VM
is running on the target server, it fetches these pages from the source server over the
network. This access manner will result in a big service degradation. To reduce the
possibility of page fault, memory pages are proactively copied by using active pushing
and prepaging. Active pushing continuously copies memory pages to the target host in
the background. Prepaging is based on the spatial and temporal localities of memory
access. Every time when the source host receives a page fault from the destination host,
it not only transfers this page, but also the pages surrounding it, to the destination site.
DSB aims to avoid transferring free memory pages of the VM. To increase the robustness
of post-copy, a periodic incremental checkpointing is suggested to synchronize the
updated states back to the source host in case of migration failure. However, this not
only neutralizes the advantages of post-copy (such as, transferring all pages only once)
in comparison with pre-copy , but also introduces new overheads to the destination
server.

Sahni and Varma [142] first iteratively scan the page table to identify the WWS of
the migrated VM. The WWS is sent with the running states for VM resumption to the
destination host to reduce the possibility of page faults. On-demand fetching, active
pushing, prepaging and compression are combined to quickly cut down the dependency
on the source host.

Chapter 3 Related Work

Resource overcommitment used to be an attractive point for cloud providers. How-
ever, Hirofuchi [62, 63] find that it is rarely utilized by cloud providers in practice.
One reason is that pre-copy is widely adopted by VMMs for VM migration. To imple-
ment resource overcommitment, the idle and unused VMs in a data center must be
consolidated on as fewer servers as possible to spare resources to accommodate more
VMs. To achieve a high QoS, these VM must be quickly changed to a new location
when they becomes active or are consuming more resources. However, pre-copy cannot
meet this requirement due to its long handover time. Hirofuchi et al. propose to utilize
post-copy for the instantaneous relocation of VMs for the overcommitment purpose.
Two optimizations are used to lower page failures at the destination site: prepaging
and active pushing. In prepaging, the neighbor 128 pages are copied for a page fault.
Their mechanism can relocate a heavily-loaded VM within one second.

To avoid the migration convergence problem of pre-copy, Shribman et al. [151]
propose to employ post-copy to migrate the VM with a high memory dirty rate. They
design several optimizations to lower the service degradation resulting from remotely
accessing memory pages: RDMA, Pre-paging and Linux Memory Management Unit
(MMU) Integration. MMU Integration uses OS management tool to only pause the
threads in the destination host which are waiting for memory pages from the source
server and continue to run other threads.

3.1.3 Hybrid copy

Different hybrid-copy strategies can be gained by combining pre-copy with post-copy
in different manners. Hu et al. [66] firstly transfer all memory data to the destination
server. During this period, the newly dirtied pages are logged in a bitmap. Then the
bitmap and the running states are sent to the destination server to resume the VM. The
dirtied pages are on-demand fetched from the source server according to the bitmap.
They further utilize delta compression to lower network traffic during the transfer of

dirtied memory pages.

Kim et al. [86] list out the weaknesses of both pre-copy and post-copy migration
schemes. To this end, they design a novel migration mechanism—guide-copy. It works
like: firstly, the running states of the VM are copied to the destination server to resume
the VM there; at the same time, the VM continues to run on the source host, and the
memory access patterns are recorded; then, the memory pages are transferred to the
destination server according to the memory access pattern to reduce page faults of the
destination server; when the source server experiences a non-memory-intensive period,
the execution of the VM on the source server is terminated; now the migration becomes
a typical post-copy scheme. The VM context on the source host is called guide context,
and that on the destination host is called migrated context. The guided context is used
to guide the page transfer. However, their method has two problems. (1) When the

3.1 Memory Data Migration

33

34

execution on the source server is slower than that on the destination server due to
some reasons or the network gets stuck, the memory access patterns will not alleviate
the page faults of the destination server. (2) During migration, the migrated VM is
simultaneously running on both the source server and the target server, which results
in a big resource waste.

Deshpande et al. [32] propose a traffic-sensitive technique to migrate co-located VMs.
They believe that when the migration traffic has the same direction with the traffics
of the applications running in the VM, they will contend for the network bandwidth.
When their directions are opposite, there is no competition. Therefore, pre-copy will
contend for network bandwidth with the applications on the source host which have
outbound network traffic, while post-copy competes for network bandwidth with the
applications on the destination host which have inbound network traffic. Based on these
observations, their migration mechanism combines pre-copy with post-copy to lower
the overall network contention for correlated VM migration. Some of the co-located
VMs are migrated by pre-copy, whereas some are migrated by post-copy.

The WWS of a VM is much smaller than the full memory fingerprint. By utilizing
this feature, Deshpande et al. [33] further propose to move non-WWS memory pages
to a portable per-VM swap device before migration. Only the WWS pages are migrated
through the direct TCP connection in pre-copy manner, while the non-WWS pages are
remotely fetched from the swap device by the destination host on demand.

3.1.4 Summary of Memory Data Migration Technologies

The migration technologies for memory data are summarized in Table 3.1. The
majority of optimizations are designed for pre-copy mechanism due to its robustness.
Additionally, almost all optimization technologies are implemented on Xen or KVM
because of the open-source feature. We also conclude the benefits and overheads
of different optimizations according to the criterion discussed in Section 2.6. Total
migration time, downtime, total network traffic and service degradation are denoted
by T, D, N and I, respectively. The computation overhead, network overhead and
space overhead of live VM migration are denoted by ¢, n and s, respectively. This
denotation is applicable for the rest of this chapter. From the table, we can see that total
migration time is the main consideration of migration performance. The improvements
for other three metrics are evenly distributed. Different optimization strategies also
introduce various overheads to the source or the destination hosts. Some optimizations
introduce computation overhead, such as compression, data deduplication, CR/TR,
page reordering, etc. Some bring in network overheads, such as distributed data dedu-
plication, feedback-based migration, heterogeneous migration. Additional spaces are
also required by some strategies, such as storing the reference data of delta compression
and the hash tables of data deduplication.

Chapter 3 Related Work

Table 3.1: The summary of memory data migration technologies.

Metrics Overheads
Pa Reference G Tec. VMM TTD TNTT ¢ nl s
[29] S | BAPWWS | Xen | vV |V | V v
[119] S - VMw v
[195] S FE,NC KVM | v | V v v
[79, 80] S NC Xen |V |V |V v
[54, 159] S DC KVWM | v | vV | V v v
[137, 94, 204] | S KVM | v v VIV VY
[197,199,83] | S DD Xen |V v v
[35, 34] C KVM | v v v
[183] S Xen |V v v v
[36] C DD,DC KVM | v v v v
[68, 70] S RDMA Xen |V |V v
[98, 971 S CR/TR - VIV Vv v v
[31] S CRe Xen |V v
[160, 26] S PR KVM | v VIV |V v
[29, 81, 100] | S Xen |V |V |V v
Pr [109] S MC VMw | v | V v
[70] S KWM |V |V |V |V |V
[96, 185] C IR,BA Xen vV IV Vv
[8,176,143] | C MS - V|V V|V
[85, 84] C FB KVM | v v
[188] C RR Xen | v | V v v
[152] C AN - VIV
KVM
[99] S HM Xen V|V
[117] S RM Xen |V N4
[135, 9] S TP Xen |V |V |V |V |V v
[107] S TS,BA VMw | v vV |V
[59, 58] S - Xen |V ViV |V
Po [142] S PWWS KVM | v v
[62, 63] S RO KVM | v VIV V
[151] S MC KVM | v v v
[66] S DC Xen |V VIV v
Hy [86] S GC KVM | v v |V
[32] C NA KVM | v VIV
[33] S PSD KVM | v v v v

Abbreviations: Pa: migration pattern. Pr: pre-copy. Po: post-copy. Hy: hybrid-copy. VMw: VMware.
G: migration granularity (S: single, C: Correlated). Tec.: techniques. FE: free page elimination. CRe:
checkpointing and replication. PR: page reordering. MC: migration convergence. IR: interference reduction.
BA: bandwidth allocation. TS: target selection. PS: path selection. MS: migration sequence. FB: feedback-
based. RR: resource reservation. DD: data deduplication. DC: delta compression. NC: normal compression.
AN: application and network aware. HM: heterogeneous migration. RM: resource management. TP:
triggering point. PWWS: postponing WWS transfer. RO: resource overcommitment. GC: guide-copy. NA:

network contention alleviation. PSD: using portable swap devices.

As shown in Figure 3.3, for a better summary of memory data migration optimization
mechanisms, we classify them along different points of the migration path: the migrated

3.1 Memory Data Migration

35

36

Optimizations at the source site Optimizations at the destination site

e Compression
« Data deduplication

e CR/TR -

* Ballooning e On-demand fetching

o Soft page elimination ‘_.-""°~~.~~

« Interference reduction a,¢ .* e w o Interference reduction
VM <«+—» VM VM le——» VM

e Application aware

* WWS detection

o Termination condition
* Migration convergence

Bandwidth allocation
Dynamic rate-limiting
Multi-threading
Page reordering

* Prepaging o ,_ Network contention
« Heterogeneous migration release
e

s Active pushing Page clustering e MMU integration
I . roce sarng (caPs
* Migration triggering point
T T‘ o Disk block fetching

Shared storage system

Figure 3.3: The optimizations at different points of memory migration path.

VM(s), other co-located VMs, 1/0 operation, VMM, hardware, network link, storage
system. The optimizations for the migrated VM(s) are to reduce the original data size,
such as compression [79, 80, 54], data deduplication [137, 199, 197], CR/TR [98,
971, ballooning [29, 59, 58, 66], free page elimination [29, 90], etc. For post-copy
and hybrid-copy, the technology on this level is on-demand fetching. Some efforts
aim to lower the impact of migration on the migrated VM and other VMs on the
source and the destination hosts [79, 80, 185]. To decrease the data transferred
in the iterative copying phase and make migration convergent, the I/0 features of
the migrated VM are analyzed and utilized by some migration mechanisms, such as,
application-aware migration [185, 81, 6, 70], WWS detection [29, 160, 142], different
termination conditions [2, 170, 183], migration convergence strategies [81, 6, 70].
The improvements on the VMM level contain active pushing, prepaging, heterogeneous
migration [99], migration triggering point [135], MMU integration [151], and page
sharing [199, 94, 204]. The RDMA functionality of interconnects can be also used
for VM migration [68]. Many efforts are made to increase the utilization of network
bandwidth, such as bandwidth allocation strategies for correlated VM migration [185,
8], dynamic rate-limiting [29, 70], multi-threading [94], page reordering [160, 26],
page clustering [68], network contention alleviation [32]. The destination server also
can directly fetch the clear memory pages (replicas of disk blocks) from the shared
storage system to reduce the data transferred from the source site [83].

3.2 Storage Data Migration

Storage data migration has both similarities and differences with memory data
migration. Both of them are to transfer data between two sites, so some memory data

Chapter 3 Related Work

migration mechanisms are also suitable for storage data migration, such as data dedu-
plication. Storage data migration also faces different challenges. (1) Low migration
bandwidth. Storage data migration normally happens between two data centers where
the network bandwidth is much smaller than the interconnect of a data center. (2)
Big data size. The size of the virtual disk of a VM ranges from several to hundreds of
gigabytes. (3) Memory data have a closer relationship with the QoS of the migrated
VM than storage data. With these conditions, some special optimization technolo-
gies different from those for memory data migration are proposed for storage data
migration.

3.2.1 VMware Strategies

VMware Inc. [174] is the most productive enterprise about virtualization and cloud
management technologies. Snapshotting, Dirty Block Tracking (DBT) and IO Mirroring
are successively proposed for VMware ESX to migrate the storage data of a VM [108].

VM snapshotting works as: when a snapshot is taken for the storage data of a VM,
the snapshot becomes read-only and all new writes are redirected to a new file. Based
on this characteristic of VM snapshotting, snapshots are iteratively created and copied
to the destination data center. DBT is similar with pre-copy memory data migration
mechanism. Firstly the entire disk data are copied to the destination site by a full
transfer phase, concurrently a bitmap is created to track the dirtied blocks. After
finishing a transfer round, the dirtied blocks are transferred again. Until the amount
of dirtied blocks becomes stable or a threshold is reached, the VM is suspended and
the rest of dirtied blocks are copied to the destination site. Different from snapshotting,
DBT operates in a smaller granularity, block level rather than snapshot level, which
provides more optimization possibilities. For example, to lower the efforts of block
tracking, only the blocks already copied to the destination site will be tracked, named
incremental DBT. 10 Mirroring mirrors all new writes from the migrated VM to the
destination data center while the original storage data is copied in bulk. The copying
process is based on VMKernel data mover (DM) [93].

They further integrate I0 Mirroring with pre-copy memory migration mechanism
and implement a live migration system—XvMotion [109]. A variety of optimizations are
designed to improve storage data migration performance. Multiple TCP connections
are created to accelerate data transfer, and a write barrier is used to ensure data
consistency. To lower the impact of IO Mirroring on the running service, the writes are
asynchronously instead of synchronously mirrored to the target site. XvMotion also
supports to migrate a VM with multiple virtual disks which are separated on different
volumes. To smooth the performance disparities of different volumes, it limits each
disk to queue a maximum of 16 MB data into the shared transfer buffer. VMware also
implements storage data migration by utilizing Cisco SAN extension technology [173].

3.2 Storage Data Migration

37

38

They extend the storage system to be shared by the source and the destination data
centers. The FCIP I/0 Acceleration of Cisco switches is enabled to decrease the time of
accessing storage system through data center interconnect.

3.2.2 Replication

Replication consists of two concurrent parts: bulk transfer and I/0 redirection. It is
similar with IO Mirroring. Bulk transfer moves the original disk of the migrated VM,
while I/0 redirection asynchronously or synchronously sends the new writes from the
migrated VM to the destination site. Both synchronous and asynchronous replications
face advantages and disadvantages [136, 141]. Synchronous replication guarantees
data consistency between the source and the destination sites, without the risk of losing
data. Therefore, it is applicable for migrating the VM which is running applications
with a high-security requirement, such as financial system. However, it cannot benefit
from write coalescing to lower network traffic, even though a block is dirtied very
frequently. Also, it leads to a bad service performance due to the long disk write
latency. In contrast, asynchronous replication marks write operations as complete
without the necessity of waiting for the responses from the destination site, therefore,
it does not impact on application performance. It provides more optimization spaces
for the synchronization of newly-dirtied blocks. For example, the frequently-dirtied
blocks can be sent to the destination site periodically to decrease the data transferred
over network. Different write operations can be also batched and pipelined to shorten
synchronization time. Nevertheless, asynchronous replication may lose data (these
have not been synchronized to the destination site) when the source server fails during
migration.

By balancing the benefits and weaknesses of asynchronous and synchronous replica-
tion, Ramakrishnan et al. [136] propose to asynchronously replicate new writes during
transferring the original disk data and change to synchronous replication after finishing
the transfer, to avoid long I/0 latency due to the bandwidth contention between the
copying and the synchronization processes. The replication functionality is also imple-
mented in some software (such as DRBD [38], HAST [56]) for high availability. Directly
using the software to migrate storage data is also an option. For example, Wood et
al. [183] employ DRBD to implement storage data migration in a similar manner as
[136].

Liu et al. [98, 97] utilize Copy-On-Write (COW) technology to store the disk data
of a VM in two layers: base image and COW image. The root file system of a VM are
stored in the base image which remains read-only, and a COW image is used to store
new data from the running VM. They asynchronously copy the base image to the target
server before an anticipated migration, and the COW image is transferred with other
data (memory, VCPU states) during VM migration. However, they assume the size of

Chapter 3 Related Work

insert Insert

iIIIIIIIIIIIIH

L RN T T

Block Blok Block v Blok Blok Block v Blok Block Blok e Block Block Block Block e
(a) Fixed-size chunking (b) Variable-size chunking

Figure 3.4: The bit-shifting problem with file chunking.

COW image is considerably smaller than the basic image which is not the case in current

data centers anymore. Therefore, a huge COW image will lead to a long migration time.

Bradford et al. [19] only utilize asynchronous replication to migrate storage data. The

new writes during migration are intercepted into deltas which are recorded in a queue.

After finishing the bulk transfer of the original disk, these deltas are copied and applied
to the disk image at the destination site. When the growth speed of deltas is bigger
than the network bandwidth, write throttling is taken to slow down the VM execution
speed.

3.2.3 Data Deduplication

Similar with memory data, there are also many duplicate blocks between different
VM images [187, 74, 51]. Therefore, storage data migration can be accelerated by
data deduplication as well. Data deduplication firstly cuts a VM image into blocks,
and calculates a fingerprint for each block. The fingerprints are utilized to locate
duplicate blocks within an image or between different images. These duplicate blocks
are eliminated or transferred only once to reduce data transfer time. Each memory page
is an identification unit in data deduplication for memory data migration. However, for
storage data, data deduplication faces how to cut a big file into small pieces. There
are two options: fixed-size chunking or variable-size chunking. Fixed-size chunking is
simple and has a small computation overhead, but it suffers from bit-shifting problem.
As shown in Figure 3.4(a), inserting one or several bits at the beginning of a block, all
of the following blocks will be changed. Variable-size chunking [134] is not bothered
by this problem. However, it is compute-intensive, which limits its benefits to migration
performance improvement. Hence, fixed-size chunking is more popular for storage data
migration [161, 82, 74]. Same as memory data migration, SHA-1 and SuperFastHash
are still the two popular fingerprint-calculating algorithms [194, 204, 3, 199, 197].

As depicted in Section 3.1.1, data deduplication for storage data migration also
can utilize three types of similarities: intra-image similarity, inter-image similarity, and
inter-site similarity. Intra-image similarity denotes the duplication situation within
the image of the migrated VM. Inter-image similarity is the duplicate blocks located
between the images within a data center, while inter-site similarity is the duplication
condition between the images at the source site and these at the destination site.

3.2 Storage Data Migration

39

40

Different migration mechanisms exploit different types of similarities to facilitate VM
storage data migration according to migration conditions. Bose et al. [17, 16] propose
to decrease migration time at the expense of storage space. They keep several replicas of
a VM image at different cloud data centers, and choose one replica as the primary copy.
The changes from the primary copy are propagated to other replicas periodically. The
selection of data center takes long-term average computation cost and end-user latency
requirements into consideration. The Content Based Redundancy (CBR) technique
with Rabin fingerprints [134] is employed to decrease the data transferred over the
network during propagating changes. With this image distribution structure, they
name the movement of VM storage data in their system (CloudSpider) as hiberwake
(short for hibernate-awake) to differentiate from normal VM migration. In normal
migration, all storage data must be transferred from the source site to the target site,
while in the hiberwake only the new changes of storage data need to be copied to the
target site. However, it is also accompanied with a big management cost and a big
space consumption. The periodical change updates import additional network traffic as
well.

Sometimes, we need to frequently migrate a VM between two or several fixed
locations. For example, a personal VM system is commutatively used between home
and office [156]. In such scenarios, many disk blocks are reusable. Takahashi et al.
[161] combine data deduplication with DBT mechanism to speed up the migration
between two fixed places. When a VM will be migrated back to a location where its
previous version of disk data are located, only the newly dirtied blocks are transferred.

3.2.4 Software-based Approach

Some works carry out storage data migration by directly utilizing existing solutions or
a software implementation. Hirofuchi et al. [61, 60] migrate VM storage data based on
a block-level I/0 protocol—Network Block Device (NBD) [101]. Their migration system
consists of two NBD storage servers through which the source and the destination
hosts access storage data, respectively. Virtual disks of a VM are block device files
(e.g. /dev/nbd0) on a host OS. At the beginning of migration, the memory data of
the migrated VM are firstly transferred to the destination server, and then the storage
data are migrated in a post-copy manner through the NBD connection between the two
storage servers. Disk blocks are directly fetched from the NBD storage server at the
source site, which lowers the interruption to the source host and other VMs on this host.
On-demand fetching and background copying are combined to accelerate storage data
transfer.

Tang [165] designs a new virtual machine image format—Fast Virtual Disk (FVD),
which supports a series of functionalities, such as Copy-On-Read (COR), adaptive
prefetching, Copy-On-Write (COW), internal snapshot. Some of the functionalities

Chapter 3 Related Work

are beneficial to VM migration. For example, COR and adaptive prefetching can be
combined to gradually copy the virtual disk in the background to the target host in a
post-copy manner. COR transfers data blocks on demand, and adaptive prefetching
transfers data during resource idle time. Adaptive prefetching even can be paused and
its transfer rate is adjustable as well.

3.2.5 I/O-aware Migration

Storage data migration encounters the same problem as memory data migration.
If storage data are migrated in post-copy pattern, the I/0 feature of the migrated VM
determines the frequency of remotely accessing disk blocks. If pre-copy is employed,
the dirtying rate of disk blocks is critical for migration performance. Some migration
mechanisms take the I/0 features of the migrated VM into consideration for a better
control of migration process. Zheng et al. [203] design a scheduling algorithm for
storage data migration. Instead of transferring storage data from the beginning to the
end of a disk, their algorithm considers the I/0 characteristics of the workloads running
in the migrated VM to arrange the migration sequence of disk blocks. It records a short
history of the disk I/0 operations to predict the future I/0 characteristics in terms of
temporal locality, spatial locality, and popularity (read/write frequency). According to
their experiments, these I/0 characteristics are predictable. The migration technology
can be used to optimize different migration schemes (pre-copy, post-copy, and hybrid-
copy) and has a strong adaptability for different workloads. It is beneficial to reduce
the data iteratively transferred in the pre-copy migration pattern, to decrease the blocks
remotely accessed in the post-copy migration pattern, and to improve both of these two
aspects in the hybrid-copy migration pattern.

Similarly, Nicolae and Cappello [121] mainly aim at improving the storage data
migration performance of I/O-intensive VMs. By utilizing the spatial and temporal
localities of disk access, they propose a hybrid active push/prioritized prefetch strategy.
They monitor and record how many times a block has been written, and only the blocks
which have been written more than a preset threshold are marked as dirty. During VM
migration, they avoid transferring these frequently written blocks and fetch them in
decreasing order of access frequency from the destination site after VM handover.

3.2.6 Correlated VM Migration

Many VMs in a data center are correlated with several others rather than running
independently [196, 11, 35]. Migrating one of them to another data center will lead to
a severe service degradation due to the big network latency between data centers which
decreases the communication performance between these VMs. Therefore, besides the
three challenges of VM migration, correlated VM migration faces some new problems,
such as migration sequence and the interruption to the inter-VM communication.

3.2 Storage Data Migration

41

42

Al-Kiswany et al. [3] call the VM images belonging to the same application as
a VMFlock. They design a migration system—VMFlockMS, to migrate a VMFlock.
VMFlockMS consists of three components: VM Profiler, VM Migration Appliance, and
VM Launch Pad. VM Profiler logs the blocks which are necessary for VM boot. These
blocks are prioritized to transfer to the destination site. VM Migration Appliance utilizes
distributed data deduplication and transfer approach to migrate storage data. Several
nodes are used to parallelize data deduplication and transfer. Each node deduplicates
and transfers the blocks with hashes in a specified range. Both inter-image and inter-site
similarities are exploited. VM Launch Pad resumes the VMs once all blocks logged by
the VM Profiler are received. The remaining data is migrated in post-copy manner.

A lack of progress management brings many issues to correlated VM migration. For
example, how long will each migration process take?, how is the trade-off between
application performance degradation and migration time?, how do correlated VM
migration processes avoid splitting application components across data centers?, etc.
In order to lower the impacts of migrating multiple correlated VMs over WAN on
application performance, Zheng et al. [202] design a migration progress management
system—Pacer. They firstly design models to predict the dirtying rates of memory and
storage data and total migration time. On the basis of these models, Pacer manages
migration by controlling the migration time of each migration process and coordinating
them to finish at a close time to alleviate the component-split issue.

For the same problem, Zheng et al. [201] propose a communication-impact-driven
coordination algorithm to decrease the service interference of VM migration. They
formulate multi-tier application migration as a problem of minimizing performance
impact. They implement a migration system—COMMA, which consists of a central
controller and a local process in each VM’s hypervisor. It migrates VMs in two steps. In
the first step, it coordinates the migration of all VM’s storage data to make them finish
at the same time. In the second step, they put VMs into different valid groups. The sum
of the dirtying rates of the VMs in a valid group is smaller than the available network
bandwidth. Then inter-group scheduling and intra-group scheduling are combined
to lower the impact of migration on the communications between the migrated VMs
and improve the network utilization, respectively. Regarding the migration sequence
problem, Cerroni [23, 24] compares sequential and parallel migration strategies when a
group of VMs will be migrated in cloud federation. The results illustrate that sequential
migration has fewer influence on network performance and parallel migration results
in a smaller downtime.

3.2.7 Others

Apart from the general issues with storage data migration, many researchers try
to solve some problems in special situations. Luo et al. [104] propose a Three-Phase

Chapter 3 Related Work

Migration (TPM) algorithm which is composed of pre-copy, freeze-and-copy, and post-
copy. In the pre-copy phase, storage data and memory data are iteratively transferred to
the destination site. The dirty information of storage data is recorded in a block-bitmap.
In the freeze-and-copy phase, the VM is suspended and the dirtied memory data and
the block-bitmap are sent to the destination server. In the post-copy phase, the VM
is resumed on the target server, and the modified storage data blocks are moved in a
pull and push manner according to the block-bitmap. They also use write throttling
for the I/0 intensive workloads to ensure migration convergence. After the VM is
moved to the target server, a new block-bitmap is created to record the new changes
of disk data. Because in some scenarios (such as hardware maintenance) the VM will
be migrated back to the original server, they further propose an Incremental Migration
(IM) scheme. When the VM is being migrated back to the original server, only the
blocks are dirtied in the destination server are synchronized to the source site according
to the new block-bitmap.

Nowadays, Solid State Drive (SSD) is widely used in data centers. They have faster
I/0 speed than mechanical Hard Disk Drive (HDD). Zhou et al. [206] try to solve the
I/0 speed disparity problem when migrating VM images between SSD and HDD. They
design three migration strategies for different situations: (1) Low Redundancy (LR)
mechanism. Because all disk data of the migrated VM will be eventually moved to
the destination site, LR mechanism directly writes data to the destination host during
migration. (2) Source-based Low Redundancy (SLR) mechanism. It is based on LR
mechanism, but it keeps the I/0 operations to the to-be-copied region at the source
site while issues write operations to the copied region to the destination site. (3)
Asynchronous I/0 Mirroring (AIO) mechanism. It is derived from 10 Mirroring [109].
The original IO Mirroring writes data to both the source and the destination sites, but
AIO marks the write operation as complete when the faster disk accomplishes the write
operation and the slower disk conducts the write operation in the background. The first
and third strategies are for the migration from a slow disk (HDD) to a fast disk (SSD),
while the second is for the migration from a fast disk (SSD) to a slow disk (HDD).

Normal migration approaches only transfer the memory and storage data of the
migrated VM to the target site, but without moving the host-side cache data. There-
fore, the VM will suffer from a big performance degradation after resumption on the
destination server. Lu et al. [102] design a cache warm-up mechanism-Successor, to
recover the cache data at the destination host during VM migration. They parallelize
the warm-up process with the migration process. Page preloading is utilized to warm up
the cache of the destination host from the storage server when a VM is migrated within
LAN.

Shen et al. [150] design a geo-replicated image file storage to support efficient
migration of VM storage data based on Supercloud [76]. It cuts an image file into
constant size blocks (4KB) and stores several replicas for each block in other cloud data

3.2 Storage Data Migration

43

44

Optimizations at the source site Pl < Seee - Optimizations at the destination site

L4 -

N <
o Interference reduction ,0 ¢ ¥

I
VM <is VM W |
|

,,,,,,,

e 1/Oaware

o Write throttling

* Migration coordination
* Snapshotting

e DBT >
e 10 mirroring
e Replication
* NBD

= Banawidh alocaion | RN
- : ~ Hadware

=7
e
|

Il

i

Disk image

« Data deduplication

* Layered image structure
* New image format >
o Special file system
o Central repository
*_Disk performance smooth Storage pool Storage pool

o Block prefetching

Disk image

Figure 3.5: The optimizations at different points of storage data migration path.

centers. The primary replica (i.e., where the VM is running) propagates block updates
to other replicas according to a transition probability table which is added into the
meta-data of each image file. The transition probability table records the probability
that a VM is migrated from current cloud data center to another. It can be created by
users or trained on the fly. They also assign a priority for each block according the
read/write frequency. During VM migration, the blocks with high priority are firstly
propagated to the destination site and then update other blocks. Besides, many blocks
of a VM image file (e.g., the blocks of base image) remain unmodified during their
whole lifetime, which will be further beneficial to storage data migration.

3.2.8 Summary of Storage Data Migration Technologies

The migration technologies for storage data are summarized in Table 3.2. For the
Pattern column, one pattern denotes the paper only considers storage data migration, a
pattern pair means the paper considers both memory data and storage data migrations,
and All denotes the proposed optimization is suitable for all migration patterns. From
the table, we can find many common phenomena with memory data migration. (1)
Same as memory data migration, data deduplication is still an important optimization
technology for storage data migration. (2) Pre-copy pattern is also widely utilized for
storage data migration due to its robustness, and the majority of optimizations are
designed for it. Combining with pre-copy memory migration pattern, Pre-Pre becomes
the most popular migration pattern for live VM migration over WAN. (3) KVM and Xen
are the two popular experimental platforms. (4) Most of the studies are concentrating
on single migration. Actually, optimizing the performances of correlated VM migration
is strongly desirable as well. (5) The total migration time is still the main concern among
all performance metrics. (6) Computation overhead to the source and the destination
servers are the main side effect. Only a small part of optimization technologies bring in
network and space overheads.

Chapter 3 Related Work

Table 3.2: The summary of storage data migration technologies.

Main Others | Reference | Pa | G | VMM Metrics Overheads
T | N |1 c|n| s
SNT - VIV Vv
DBT | iDBT (1081 | PP | S| VMw v v
oM | M| 08,1001 | RS [vMw | v | v |V
eSAN CIOA [173] P-P VMw | vV | vV | V v
A-S [136] P |S NS
Re BRDB [183] P-P | S Xen v IV
P LIS 98,971 | H | S| - 7 v
AWT [19] PP | S Xen vV IV v
DCBA [138] - S| KVM | v v v
DD HW [17, 16] - S - v v | v
DBT [161] - S| KVWM | vV | V v v
- [3] O | C - NEs v
Xen
SA NBD [61, 60] P-O | S KVM vV IV
FVD [165] - S| KW | v |V
IOA BS [203] All | S - VIV VY v
PPP [121] H | B|KWM |V | V|V |V v
MPM PM [202] P-P | B | KVM vV IV |V
IR PIM [201] P C | KVM vV IV
TPM-IM WT [104] PP | S Xen vV IV v Ve
LC,SLR
HM AIO [206] - S| Xen |V vV |V
PP
CWU PWM [102] P-P | S| KVM VI V|V
ML PPr [4] Al | B - N4 v v
GREFS PBM [150] H B| Xen | V VIivI|iv |V
DHS - [92] All | B | Xen N a R4 v

Abbreviations: Main: main migration strategy. Pa: pattern. P: pre-copy. O: post-copy. H: hybrid-copy.
G: granularity (S: single, C: Correlated, B: both). VMw: VMware. Others: other optimizations. SNT:
snapshotting. DBT: dirty block tracking. iDBT: incremental DBT. IOM: IO Mirroring. eSAN: extended
SAN. Rep: replication. A-S: asynchronous and synchronous replication. A: asynchronous replication.
IOA: I/0-Aware. MPM: migration process management. SA: software-based. IR: interference reduction.
RM: resource management. MS: migration sequence. TPM-IM: Three-Phase Migration and Incremental
Migration. HM: heterogeneous migration. CWU: cache warm-up. BC: buffer congestion control. CIOA:
Cisco FCIP I/0O Acceleration. WT: write throttling. DCBA: distributed content-based addressing. HW:
hiberwake. DD: distributed data deduplication. BS: block scheduling. PPP: push/prioritized prefetch. PM:
performance predict models. MC: migration coordination. PIM: performance impact model. PP: page
preloading. PWM: Piggyback warm-up on migration. ML: machine learning. PPr: performance prediction.
GRFS: geo-replicated file storage system. PBM: priority-based block migration. DHS: device hot-swapping.

We also illustrate different migration technologies and optimizations through the mi-
gration path in Figure 3.5. The majority of migration technologies take the synchronization-
like manner, i.e., the original disk image is copied in bulk and the new disk writes are
recorded and iteratively transferred to the destination site, such as snapshotting, DBT
[108], 10 mirroring [108, 109], replication [183, 136, 98, 97, 19]. Other available

3.2 Storage Data Migration 45

46

Backhaul network

L2
I

L&
@5—»5

N

(@]

Figure 3.6: The comparison between VM migration in cloud computing and MEC. (a) Cloud
computing, (b) No VM migration in MEC, (c) VM migration in MEC. The double-
arrowed lines denote the communication between a UE and its VM.

migration mechanisms include NBD [61, 60], central base image repository [192], etc.
On the basis of these technologies, many optimization strategies are designed to further
improve the migration performance, such as data deduplication [194, 204, 3, 199,
197], write throttling [104], layered image structure [194, 192, 98, 97, 21], new image
format [165], cache warm-up [102], bandwidth allocation [172, 171], etc.

3.3 User Mobility-induced VM Migration

MEC has two basic differences from conventional cloud computing: (1) an edge
cloud data center is close to users (sometimes only one-hop away); (2) users are with
a high mobility. Conventional cloud computing denotes that users offload tasks to
a remote central cloud data center (as shown in Figure 3.6(a)). These differences
introduce new problems for live VM migration in MEC besides solving the three tasks of
live migration in WAN environments. For example, when a user moves out the coverage
area of the current edge cloud data center, two options are available for how to tackle
with the corresponding VM. The first one is that the VM is not migrated and the user
remotely accesses it (as shown in Figure 3.6(b)). The second one is that the VM is
migrated to the edge cloud data center where the user is currently at (as shown in
Figure 3.6(c)). Both options also face a trade-off between migration costs and gains
to decide whether a VM will be migrated or not. In this section, we will review the
works on live VM migration in MEC from two perspectives: migration performance
improvement and migration performance analysis. At last, these studies are summarized
and discussed with the metrics extracted from the literature.

Chapter 3 Related Work

3.3.1 Migration Performance Improvement

Ha et al. [53] create a VM in an edge cloud data center by generating an overlay
which is the compressed binary difference between a base VM image and the launch
VM image (both memory and disk data). Based on this VM provisioning manner, they
only migrate the overlay while migrating a VM with the assumption that the base
image is present at the destination site [52]. In further, a pipeline of processing stages
(delta-encoding, deduplication, compression) are designed to reduce the overlay size.
The settings of these stages are adaptively configured by dynamically monitoring the
migration performance to achieve the shortest total migration time.

Taleb and Ksentini [163, 164] proposed a Follow-Me-Cloud (FMC) concept, which
aims to ensure a UE to always be connected to and served by the optimal data center.
To achieve this goal, they introduce two additional components to the conventional
network architecture, namely FMC controller and data center/gateway (DC/GW) map-
ping entity. The DC/GW mapping entity is to update the network anchor point of a
UE while it is moving from location 1 to location 2. The FMC controller is in charge of
selecting the optimal data center according to a UE’s current location and migrating
the UE’s service to this data center. Based on this architecture, several mechanisms
are designed to guarantee the service continuity during migration, such as replacing
data anchoring at the network layer by service anchoring, replacing IP addressing by
service/data identification, etc.

Teka et al. [166] solve the network connection problem when a UE is moving
between edge cloud data centers by using Multipath TCP (MPTCP) [114]. Each VM in
an edge cloud data center is assigned two network interfaces. One is operated in the
regular VM operation mode, and the other is activated only after the VM is migrated.
Similarly, MPTCP is utilized by Qiu et al. [133] between two edge cloud data centers to
improve the connection fault tolerance and reduce migration time.

To both improve VM migration speed and reduce the cost of improper VM migration
due to the uncertainty of user mobility, Saurez et al. [147] choose the target node
according to the workload running on the node and initialize VM migration according
to the latency between a VM and its user. A VM is migrated in two steps: (1) when
the latency is bigger than a threshold, all persistent data (such as disk data) generated
by the VM is migrated to the target node, called state migration; (2) when the latency
continues to increase and becomes bigger than another bigger threshold, the remaining
data of the VM is migrated, called computation migration.

Secci et al. [149] link VM mobility to user mobility by leveraging one of the following
three options: (1) moving the VM to an edge cloud data center which is closer to the
user; (2) just switching the data-center routing locator to lower the network access
latency; or (3) performing both the previous operations. These operations also must

3.3 User Mobility-induced VM Migration

47

48

be transparently conducted with respect to the underlying network infrastructure. To
these ends, they propose a cloud access overlay protocol architecture based on LISP
protocol. A controller is introduced to adaptively determine the best entry DC and the
best VM location on a per-user basis.

Ottenwalder et al. [125, 124] propose a placement and migration method for the
VMs of a mobile Complex Event Processing system which is running on infrastructures
which contain both cloud and fog resources. They take both the gains and the costs of
VM migration into consideration. By using the predicted future movement of users, they
design a migration plan for each VM in advance from a systematic perspective to lower
the overall network utilization and meet the user-defined latency requirements.

Sun and Ansari [157] propose to place a number of replicas for each VM virtual
disk at several edge cloud data centers which are selected by a LatEncy Aware Replica
placemeNt (LEARN) algorithm. With this manner, only the newly dirtied disk blocks
need to be migrated to the destination site during VM migration. However, it incurs a
big storage space consumption and a big overhead on VM image management. Machen
et al. [106] store VM images in layers (similar to [194, 192]) and use cloning and
incremental synchronization to recreate the missing layers of the migrated VM at the
destination site.

3.3.2 Migration Performance Analysis

Some studies mainly focus on quantitatively analyzing the VM migration procedure
in MEC, especially the costs and the benefits. They are critical for the design of
a better migration strategy. Gkatzikis and Koutsopoulos [49] list the parameters
which may influence on the efficiency of migration mechanisms in MEC, such as
workload uncertainty, unpredictability of multi-tenancy effects, unknown evolution of
accompanying data volume, etc. They propose that migration strategies can be made
at three different levels: cloud-wide migration policy, server-initiated migration policy
and task-initiated migration policy.

Ksentini et al. [91] formulate the migration procedure in FMC as an Markov Decision
Process (MDP). To solve the trade-off between migration costs and gains, a decision
policy is proposed for whether to migrate a service when a UE is at a certain distance
from the source DC. Wang et al. [178] also model the migration procedure as an MDP.
But they only consider the situation where a UE follows a one-dimensional asymmetric
random walk mobility model. Under this situation, the optimal policy for VM migration
is a threshold policy. Then they propose an algorithm for finding the optimal thresholds.
In comparison with [91], they design an optimal threshold policy to find the optimal
action of the MDP. Taleb and Ksentini [162] use Markovian models to analyze the
performance of FMC. The evaluated metrics include the probability of a user to be

Chapter 3 Related Work

always served by the optimal DC, the average distance from the optimal DC and the
cost of VM migration.

Nadembega et al. [116] propose two estimation schemes for live VM migration in
MEC. (1) Data transfer throughput estimation scheme, i.e., the data flow size between
a UE and its VM during VM migration. (2) VM handoff time estimation scheme. With
the support of these two schemes, a VM migration management scheme is further
proposed. Sun and Ansari [158] create models for the gains and costs of VM migration
in MEC, respectively. Based on these two models, they design a VM placement strategy
to maximize the profit of live VM migration which is the difference between migration
gains and costs.

3.3.3 Summary of User Mobility-induced Migration
Technologies

Table 3.3: The summary of user mobility-induced migration technologies.

Per | Reference | Technique Others Metrics Overheads
T | N I c|n|s
[53] VM overlay | DE,DD,DC | v | V' v
[163, 164] FMC DC/GW v v
[166] MPTCP - v v
[133] MPTCP - v v v
PI [147] TSM - v v vV IV
[149] CAOP - v v
[125, 124] MP - v |V v
[157] DR - v VIV |V
[106] LIS - vV |V
Per | Reference | Technique Others CIF PM
WL,DS,BW
[49] TLMS IF MLT,DCC T,I
[91] DP UMF,BW,DCU MG,MC
PA [178] MDP TP UMF MG,MC
[162] - UMF T,ADCU
[116] PES MMS,MDP UMF,DS ILMC
[158] GPM VMP BW,T,DCU MG,MC

Abbreviations: Per: perspective. PI: performance improvement. PA: performance analysis. Others: other
mechanisms proposed in the paper. CIF: considered influence factors. PM: performance metrics. TSM:
two-stage migration. CAOP: cloud access overlay protocol. MP: migration plan. DR: disk replicas. LIS:
layered image structure. TLMS: three-level migration strategy. PES: performance estimation schemes.
GPM: gerneal performance model. DE: delta-encoding. DC/GW: data center/gateway (DC/GW) mapping
entity. IF: influence factors. DD: data deduplication. DP: decision policy. TP: threshold policy. MMS:
migration management scheme. VMP: VM placement strategy. WL: workload type. MLT: multitenancy
effect. DS: data size. BW: network bandwidth. DCC: data center capacity. DCU: the distance between data
center and users. MG: migration gain. MC: migration cost. UMF: user mobility feature. ADCU: average
distance between a user to the optimal DC.

3.3 User Mobility-induced VM Migration

49

50

VM overlay
Two-stage migration
Disk replicas

? ?
Layered image structure Hm lvMm|
Data deduplication - u
Data compression * FMC

Delta-encoding MPTCP
Cloud access overlay protocol

\ 2 Migration plan

Figure 3.7: The summary of migration optimization technologies in MEC.

The studies on user mobility-induced migration technologies are summarized in
Table 3.3. From the perspective of improving migration performance, the optimizations
can be divided into two categories: (1) reducing the data transferred during VM
migration and (2) keeping a smooth connection between the migrated VM and the
moving user, as shown in Figure 3.7. Regarding the first one, the proposed technologies
include VM overlay [53], two-stage migration [147], disk replicas [157], layered image
structure [106], data deduplication, compression, delta-encoding [53]. Those for the
second issue contain FMC [163, 164], MPTCP [166], cloud access overlay protocol
[149], migration plan [125, 124].

As discussed before, the researches on migration performance mainly concentrate
on analyzing the trade-off between migration gains and costs, which is critical for
migration decision making and destination site selection. MDP [91, 178, 162, 116] is
widely used to formulate the procedure of live VM migration in MEC where both users
and VMs may change their locations.

3.4 Chapter Summary

This chapter summarizes the state-of-the-art technologies of memory data migration,
storage data migration and user mobility-induced migration. All the technologies are
compared with each other by using the performance metrics and overheads discussed in
Section 2.6. From the review, we get the following conclusions: (1) some mechanisms
are needed to improve the controllability of memory data migration (such as, solving the
convergence problem of pre-copy); (2) many optimization technologies are available
for storage data migration, but it is difficult to significantly improve the migration
performance with these optimizations because of the physical conditions (the huge
size of storage data and the slow network bandwidth between data centers); (3) many
outstanding problems are with the migration in MEC due to its novelty.

Chapter 3 Related Work

Chapter 4

VM Migration in
LAN—Performance Control

According to the review on memory data migration technologies in Section 3.1, in
this chapter we focus on the problems with VM migration in LAN (as presented in
Section 1.1.1). Regarding these problems, we firstly create performance models for VM
migration in LAN, and then a series of relationships between migration performances
and the influence parameters are analyzed based on Xen platform. We find that the
memory dirty rate of the migrated VM and the network bandwidth for migration are
the two important factors which can be tuned to control the performance of a migration
process. Then, a migration control algorithm is designed by using the analytical
results.

4.1 Performance Analysis for Pre-copy

As discussed in Section 2.3.1, pre-copy [29, 119] is a dominant manner for VM
migration in LAN due to its robustness. It can be divided into three phases: full transfer,
iteration and stop-and-copy, as shown in Figure 4.1. In the full transfer phase, all
memory data are sent to the destination host. In the iteration phase, newly dirtied
memory pages are logged and migrated in rounds. The data transferred in current
round 7 are the pages dirtied during the data transmission of the previous round i — 1.
When the iteration meets one of termination conditions, the VM is suspended on the
source host and all remaining data are copied to the destination host to resume the VM
there, i.e. the stop-and-copy phase.

4.1.1 Performance Model

The notations used in this chapter are listed in Table 4.1. According to the migration
procedure of pre-copy, the performance for each migration phase can be calculated as
follows.

51

wfll B W]

Source site >
Destination site t . ’ ’ ; >
M i Stop-and-
Full-transfer phase Iteration phase op a;]n copy
phase

Figure 4.1: The workflow of pre-copy.

Table 4.1: The notations used in this chapter.

Symbol Description

The allocated memory size

Network bandwidth available for migration

Memory dirty rate

Dirty bandwidth ratio, p = %

The total number of iteration during the iteration phase
Total migration time

Migration downtime

Total migration network traffic

<gNsS>aws

The full-transfer phase: vo = M, tg = %. vg and tg are the transferred data and the
transmission time, respectively.

The iteration phase:

)

vgzd-tl:d‘%p:Mp%tg:%:%pQ;

Mdn n — M
Up=d-tp_1= B :Mpn:tnzv _fpn'

Here, v; and t; are the transferred data and the transmission time of the ith round of
iteration, respectively.

The stop-and-copy phase: This phase consists of three portions: the time of suspending
the VM, the transmission time of the remaining data, and the time of resuming the VM.
The time for suspending and resuming a VM almost is a constant regardless of the VM
memory size [200], denoted by C' and set as 0.1s [29, 119]. The remaining data for the
stop-and-copy phase are the dirtied memory pages in the nth round of iteration. Hence,
the time ¢, and the transferred data v, in the stop-and-copy phase are calculated as
follows:

52 Chapter 4 VM Migration in LAN—Performance Control

vy =d-t, = Mp"t!
ts=%+C=ptl 1 C

If we ignore the time for logging and scanning the dirtied memory pages during
each iteration round, the total migration time 7, downtime D and the total network
traffic V' can be gained.

M(l _ pn+2)

T=t t t o+t ts=——7——-—+4+C N
M
B
M(1 — n-+2
V:vo—l—v1+v2+...+vn+vsz(1_’0p) (4.3)

4.1.2 Performance Features

In this chapter, we base our study on Xen platform. Xen sets three termination
conditions to stop an iteration phase and start the stop-and-copy phase [2]:

* C1: Less than 50 pages are dirtied during the last pre-copy iteration, denoted as
th;

e (C2: 29 iterations have been carried on, denoted as I;.;

* C3: More than 3 times the memory size allocated to the VM has been copied to
the destination host, denoted as V..

From the performance models of pre-copy migration in Section 4.1.1, we can see that
pre-copy performance is highly related to the dirty bandwidth ratio p. To understand
the relationship between p and migration performances, in this section a series of
features are found from the performance models for a specific VM, i.e., the VM memory
size M is fixed.

Feature 1: A bigger p requires more iterations to decrease the remaining data to a
preset threshold Thd (Thd < M).

We assume that the remaining data of a VM are smaller than T'hd after k rounds of
iterations. In other words, the data will be transferred in the (k + 1)th round will be
smaller than Thd. Then, the value of k can be calculated as follows.

Thd

et < Thd, = M - p"*' < Thd, = k = [glg 1] (4.4)

4.1 Performance Analysis for Pre-copy

53

54

When p > 1, it means that memory dirty rate is bigger than migration bandwidth. It will
be a full transfer of the whole memory data in each iteration round, so it is impossible to
reduce the remaining data to T'hd under this situation. We can represent the number of
iteration by co. When p < 1, we have lg p < 0. Therefore, k is monotonically increasing
with p in Equation (4.4). By combining these two situations, Feature 1 is proofed. B

Feature 2: When the migration process of a VM is terminated by C1, C2, and C3,
the corresponding dirty bandwidth ratios are p1, p2 and ps, respectively. Then we have
p1 < p2 < p3.

If an iteration phase is terminated by C1, the total number of iterations must be
smaller than 29. Otherwise, it will be terminated by C2. According to Feature 1, we
can get p1 < pa.

Similarly, the number of iteration for C3 also is smaller than 29, denoted by i. From
Equation 4.3, we have the following relationship: the migration process terminated by
C3 transfers more data than that by C2 with fewer iteration rounds (i < 29), as shown
in inequality (4.5).

M(1 — 31 M(1 — i+2
1—p2 1 —ps (4.5)
— 1+ pat+p+ o+ <14ps+pa2 4. 4 ps

Vo< V3 =

Here, V5 and V3 are the total network traffic when the migration process is stopped
by C2 and C3, respectively. From inequality (4.5), we can easily get po < p3. In
summary, we have the relationship p; < p2 < p3. B

Furthermore, the ranges of pi, p2, and ps can be calculated.

(1) For C1, the total number of iteration n satisfies the relationship 0 < n < 29.
Then, the range of p; can be gained by using the Equation (4.4).

lgth
0< M _11<29=—=0<p1 < ¥/Ri./M (4.6)
(lgpl 1 p1 < {/ Ric/

(2) From the definition of C3, we can get that the data transferred during the
iteration phase is bigger than or equal to 3M and smaller than 4M and the data
transferred during the stop-and-copy phase is at most M. Hence, the total migration

Chapter 4 VM Migration in LAN—Performance Control

traffic when a migration is terminated by C3 is bigger than or equal to 4 and smaller
than 6M. Then we can get the following inequality:

M(1 = n+2
UM <V < 6M — 40 < MO =p"7) _hs
L= ps 4.7)
p3n+2 :
— 4 < <6
1—ps3

It is obvious that p3 > 1 is a solution of inequality (4.7) according to the migration
procedure of pre-copy. The iteration phase will be terminated after 3 rounds of iterations.
According to Feature 2, actually we only need to find the smallest value for p3. Then
all values which are bigger than this value will make the migration process terminated
by C3. According to Feature 1, we can get that the smallest value for ps is the one that
corresponds to 28 rounds of iterations. Then the inequality (4.7) is changed to:

1 — pa28+2
1< (4.8)
1 —p3
Then we can get:
0330 —4ps +3<0 (4.9)
p33) —6p3 +5>0 (4.10)

We represent the left side of inequalities (4.9) and (4.10) with functions and calculate
their derivatives as follows.

=210 -4z, +3 (0<zy <1) (4.11)
Yo =290 — 60 4+5 (0 <2 < 1) (4.12)
' = 30217 — 4 (4.13)
Yo' = 3022 — 6 (4.14)

From the derivative functions, we can get the graphs of Function (4.11) and (4.12)
by using monotonic feature, as shown in Figure 4.2.

By using brute force, we get: a ~ 0.75 and b ~ 0.835. Therefore, according to Figure
4.2, the solutions for inequalities (4.9) and (4.10) are 0.75 < p3 < 1 and p3 < 0.835,
respectively. Then, the solution for inequality (4.8) is 0.75 < p3 < 0.835. From Feature
1 and 2, we can get that the migration process also will be terminated by C3 when

4.1 Performance Analysis for Pre-copy

55

56

Y2
Y1

Figure 4.2: The rough diagram of Function (4.11) and (4.12).

0.835 < p3 < 1, which only corresponds to a smaller number of iteration round. In
summary, a migration process which will be terminated by C3 must satisfy: p3 > 0.75.

(3) For C2, the dirty bandwidth ratio p, should be somewhere between p; and p3
according to Feature 2. Theoretically, ¥/R;./M may be bigger than 0.75. Under this
situation, the migration process will be terminated by both C1 and C3, and never by C2.
In real case, R;. will be a very small value in comparison with M, so %/R;./M won’t
be bigger than 0.75.

Therefore, in conclusion, the relationship between which termination condition will
be met by a migration process and the dirty bandwidth ratio is:

* When 0 < p < "t**/Ry./M, the iteration phase will be terminated by C1;

* When "t“~/R;./M < p < max{0.75, "*/R;./M}, the iteration phase will be
terminated by C2;

* When p > 0.75, the iteration phase will be terminated by C3.

Feature 3: If an iteration phase is stopped by C1, the corresponding migration process
can achieve the best migration performance in comparison with that stopped by C2 or
C3.

Obviously, when a migration process is terminated by C2, it will have the biggest
number of iterations. According to Feature 2 (p; < p2) and the performance model
of v;, we can get that more data will be transferred in each iteration for C2 than C1.
Therefore, a migration process terminated by C2 will result in a longer total migration
time and a bigger network traffic than C1. Similarly, when a migration process is
terminated by C3, it leads to the biggest network traffic, which in turn incurs a bigger
total migration time that C1. For both C2 and C3, the remaining data of the stop-and-
copy phase will be bigger than R;. (otherwise, the iteration phase will be terminated by
C1), so the downtimes of them are bigger than that of C1. B

Chapter 4 VM Migration in LAN—Performance Control

120 7000 12 30
e TT 1 m—n
100 6000 10 25
—a—TN 9 —4—DT
80 5000 8 20
& 400 @ =7
Z 60 s bs 15 ¢
= 3000 & 5
40 4 10
2000 3
20 1000 2 5
1
0 0 0
0.050.1 0.2 0.3 04 05 0.6 0.7 07508 1 0.05 0.1 0.2 0.3 04 05 0.6 0.7 0.75 0.8 1
p p

(a) Total migration time (7"T") and total migration (b) Total number of iterations (n) and downtime
network traffic (T'N). (DT).

Figure 4.3: The effects of p on migration performances.

To clearly show these three features, we illustrate the migration performances with
different p in Figure 4.3. We only show the performances within [0,1]. Because when
p > 1, it has the same performance as that when p = 1. The memory size allocated to
the migrated VM is 1024MB. Hence, we can get: when p € [0,0.736), the migration
process will be terminated by C1; when p € [0.736, 0.75], the migration process will be
terminated by C2; otherwise, it will be terminated by C3. From the figure, we can see
that except the number of iteration round, all migration performances (total migration
time, downtime and total network traffic) decrease with the increase of p. In other
words, for a specific VM, it can achieve a relatively better migration performance when
the iteration phase is terminated by C1.

4.2 Migration Control Algorithm

According to the analysis in Section 4.1, once the termination conditions are fixed,
VM migration performances strongly depend on p. From the opposite perspective, we
can control p to achieve the desired migration performance. In this section, a migration
control algorithm is proposed to find a proper p for a migration process according
to user’s requirements and to solve the convergence issue of pre-copy, as shown in
Algorithm 1.

Before migration, we can calculate the migration performances, called default perfor-
mances, (total migration time 7j, Downtime D and total network traffic ;) by using
the monitored parameters (such as the network bandwidth for migration). We only
consider the situation that user’ requirements of migration performances (denoted by
T., D, and V,) are higher than the default performances (i.e., T, < Ty, Dy, < Do,
Vi < Vp). If the desired performances are worse than the default performances, the
migration is started without adjustment. Otherwise, we check whether the migration
process will be terminated by C2 or C3 or not. If pg > "<~/R;./M, to make a migration
process convergent, we firstly change p to a value smaller than and close to “tc~\/R;./M,

4.2 Migration Control Algorithm

57

58

Algorithm 1 Migration performance control algorithm

1: Calculate Tg,Vp,Do;

2: if Ty < T, and Vp < V,, and Dy < D,, then
3 Return;

4. end if

5: if pg > te/Ry./M then

6: p1 = po— A;

7 n = Itc —].,

8: else

9: n = ng;
10: end if

11: Calculate pq, py, pd;

12: P = min{pla Pty Pus pd}:
13: Return;

denoted by p; = po— A. Meanwhile, the total number of iteration n is set as the biggest
available value by C1 (i.e., I;. — 1) to lower the adjustment to p according to Feature
1. If a migration process will be terminated by C1, we do not adjust the number of

iteration (i.e., n = ng).

After n is fixed, we can gain the corresponding dirty bandwidth ratio (denoted by py,
pa and p,) to meet user’s requirements on each performance metric (7,,, D,, and V) by
using Equation (4.1), (4.2) and (4.3), respectively. Then, according to Feature 1, the
minimal one among the available values is selected as the final dirty bandwidth ratio

py-

The desired value for p (i.e., ps) can be achieved by three manners: only changing
memory dirty rate, only changing migration bandwidth and changing both of them.
The former two manners only introduce one variable (memory dirty rate or migration
bandwidth), hence it is easy to calculate p;, p; and p, by using Equation (4.1), (4.2)
and (4.3), respectively. However, when a cloud provider plans to achieve the desired
migration performances by tuning both of them, it is impossible to solve Equation (4.1),
(4.2) and (4.3) because there are two variables in each equation. Under this situation,
we can firstly tune one parameter (e.g., memory dirty rate) to a value and then calculate
the other one (i.e., migration bandwidth), and vice versa.

4.3 Implementation

In this section, we will elaborate on how to adjust memory dirty rate and migration
bandwidth and how to provide interfaces for users to set performance requirements.

Chapter 4 VM Migration in LAN—Performance Control

Dom 0 VM

Back-end | [VM
Ldmu L]
Bridge <->| Eac_ -enf E e

?aci-en? N front—en?
| VMM

NIC Hardware

\
Internet

Figure 4.4: The network virtualization in Xen.

4.3.1 Memory Dirty Rate Adjustment

The original memory dirty rate of a VM before migration (i.e., dy) can be got by
using the average of a period of logged historical records or analyzing the regularities
of the workloads running in the VM [2].

A VM’s memory dirty rate shows a roughly linear relationship with CPU speed [81],
so we can adjust memory dirty rate by changing the CPU time allocated to the migrated
VM. Xen leverages a Credit scheduler to control the co-located VMs to use the CPU
resources of the underlying host. Each VM on a host has a weight. How many CPU time
can be gained by a VM is determined by its weight. A bigger weight means that the
corresponding VM can get more CPU time. We take the same method in [81] to tune
the migrated VM weight to get the desired dirty bandwidth ratio py.

When the CPU time assigned to the migrated VM decreases, the network bandwidth
occupied by the applications may decrease correspondingly. It then results in more
bandwidth available for the migration process. We do not consider this mutual influence
in our algorithm, because it positively affects the final migration performances.

4.3.2 Migration Bandwidth Adjustment

There are two types of migration networks. One is that a dedicated link is built
between the source and the destination hosts for VM migration. The other is that VM
migration shares the same network link with the applications running in the migrated
VM. For the former situation, it is easy to monitor and control the network bandwidth.

In this section, we mainly depict how to adjust network bandwidth for the latter
situation. Xen implements network virtualization with two components: front-end
driver and back-end driver, as shown in Figure 4.4. Each VM runs a front-end driver, and
a corresponding back-end driver is running in the management domain (i.e., Domain

4.3 Implementation

59

60

0). All back-end drivers connect to the NIC of the host through bridging, routing or
NAT. With this structure, we can log the network utilization in the back-end driver,
and use the average value N, as the network bandwidth occupied by the applications
running in the VM. The difference between the max available network bandwidth N,,
for this VM and N, can be regarded as the original bandwidth (i.e., By = N,,, — N,) for
migration. We change the overall network bandwidth NV, to get the desired migration
performances. However, the applications in the migrated VM will compete for the
network bandwidth with the migration process, so the network bandwidths used by the
applications and the migration process do not follow the relationship (N, : (N, — Ng))
after we changed N,,.

To this end, we adjust the network bandwidth with two steps. In the first step,
the overall network bandwidth is set as the sum of the bandwidth needed by the
applications and the bandwidth needed by the migration process (denoted by B,),
ie., N,,y) = N, + B,. In the second step, VMM tunes the bandwidth to the value
required by migration process with an iterative manner. The VMM monitors the real
bandwidth B, used by the migration process after the first step. If it is smaller than B,
the VMM increases the overall network bandwidth by B,, — B,.. Otherwise, it decreases
by B, — B,,. This operation is repeated until the desired migration bandwidth has been
achieved. To solve the network jitter problem, we assign more network bandwidth
than the required to satisfy the desired migration performances. The margin can be
set according to the variance of the historical bandwidth utilization of the applications
running in the migrated VM.

4.3.3 User Requirement Setting

Users do not know and also do not want to know the values of related parameters for
VM migration (e.g., memory dirty rate, available migration bandwidth, etc.), hence it is
hard for them to provide reasonable migration performance requirements. For example,
a user may think highly of total migration time. Because he/she does not know what
the default migration performances are and how well the migration performance can
be, it is impossible for him/she to set a proper value for the total migration time. To
this regard, cloud platforms can provide a range for each performance metric and
users make their decisions within these ranges, i.e., T, € (Ts, To|, D. € (Ds, Do) and
Vi € (Vs, Vol. Ts, Ds and V; are the best performances the cloud data center can achieve
for total migration time, downtime and total migration traffic, respectively.

It is easy to calculate Ty, Dy and Vj with the performance models in Section 4.1 and
the logged parameters. The smallest values for total migration time and total network
traffic are the ones corresponding to non-live migration which directly suspends a VM
on the source host and sends its memory data to the destination host, so we can get

T, = % and V;, = M. B,, is the maximal bandwidth available for VM migration

Chapter 4 VM Migration in LAN—Performance Control

Table 4.2: The information on the migrated VMs and user’s performance requirements. Total
migration time and downtime are calculated in seconds (s), and total network traffic
is calculated in megabytes (MB). Each requirement follows the structure: (total
migration time, downtime, total network traffic, adjustment manner). “M” and “B”
denote to use memory dirty rate adjustment and migration bandwidth adjustment
to achieve the desired performance, respectively.

M Web server Compilation
Parameter
do(Mbps) 15 53.6
(To,D0, Vo) (21.7,0.15,1347) | (61.8,16.48,5120)
(Ts,Ds,V5) (11.8,0.1,1024) (11.8,0.1,1024)
R1 (13,0.15,1347,B) (30,16,5120,M)
R2 (21.7,0.11,1347,B) (60,1,5120,M)
R3 (21.7,0.15,1030,B) | (60,16,2048,M)
R4 (15,0.15,1200,B) (40,3,3000,M)

between the source host and the destination host. When the remaining data in the
stop-and-copy phase is zero, it will get the smallest downtime. Under this situation,
downtime refers to the time needed by VM suspend and resumption. Therefore, the
lower threshold for downtime is D, = C.

According to the adjustment methods for memory dirty rate and migration bandwidth
in Section 4.3.1 and 4.3.2, lowering memory dirty rate will degrade the quality of the
service running in the migrated VM and increasing migration bandwidth faces to assign
more resources to the migrated VM. The former adjustment is painful for the users
of the VM, and the latter makes cloud providers unpleasant and also may introduce
interruptions to the co-located VMs. This problem can be solved from the commercial
perspective. For example, when users choose to adjust network bandwidth to achieve
the desired migration performance, there will be an additional payment with this
operation, and it is free for the selection of memory dirty rate adjustment.

4.4 Evaluation

4.4.1 Experimental Setup

We test the migration control algorithm in an environment with three DELL Precision
T1700 SFF workstations and a PC. Each workstation is equipped with one Intel 8-Core i7
3.6GHz processor, 16GB RAM and 2TB 7200rpm SATA device. The PC is with one Intel
8-Core i7 3.4GHz processor, 8GB RAM and 250GB disk space. The three workstations
act as the source host, the destination host and the shared storage pool, respectively.
The PC simulates the users of the migrated VM. To eliminate the interruption of other
co-located VMs to the migration performance, we only run the migrated VM on the
source and the destination hosts. All migrated VMs are configured with 1GB RAM and
1 VCPU. The default network bandwidth between the source and the destination hosts

4.4 Evaluation

61

62

35 0.25 2000
User requirement User requirement 1800 User requirement
30 || memmm After adjustment mm— After adjustment mmm After adjustment
— 4= Without adjustment 02 || == Without adjustment 1600 || = = Without adjustment
% 1400

0.15 | y § 5\1200
\
§

TT(s)

21000

=4

= 800
600

0.05 400

\
A

0
R1 R2 R3 R4 R1 R2 R3 R4

200

N
|
N

0

(a) Total migration time (TT) (b) Downtime (DT) (¢) Total network traffic (TN)

Figure 4.5: The migration performance control of a static web server VM by adjusting network
bandwidth.

are configured with 500Mbps by using network interface shaping tool (TC [71]). The
max available migration bandwidth is 1000Mbps. The hosts are installed with Ubuntu
16.04 LTS, and the Xen version is 4.5.0. We do not test the situation where a dedicated
link is deployed for VM migration, because it is a simple version of the situation using
shared network link.

We deploy two types of VMs to evaluate the migration control efficiency. One is
running a static web server, and 100 clients are downloading a variety of 1MB files. The
other one is installed with Ubuntu 14.04, and is compiling Linux kernel 4.13.11. The
parameters and user’s performance requirements for these two VMs are listed in Table
4.2. We define four types of requirements (denoted by R1, R2, R3 and R4). R1, R2
and R3 have a high requirement on total migration time, downtime and total network
traffic, respectively, and R4 pays attentions to all of the three metrics. There is no
big difference between the three adjustment manners, so we randomly use migration
bandwidth adjustment and memory dirty rate adjustment for the static web server
VM and the Linux kernel compilation VM, respectively. We firstly test the efficiency of
our migration control algorithm (Section 4.4.2), and then evaluate the influence of
migration performance control on the services running in the migrated VM (Section
4.4.3).

4.4.2 Efficiency of Migration Performance Control

The controls on migration performances for the static web server VM and the Linux
kernel compilation VM are shown in Figure 4.5 and 4.6. We have the following obser-
vations: (1) Migration performances can be controlled to satisfy user’s requirements.
Due to the fluctuations of memory dirty rate and migration bandwidth, it is impossible
to tune the performances to exactly identical with the desired performances. (2) Even
though a user only cares about one performance metric (e.g., total migration time),
other metrics will be automatically lowered as well because of a smaller p. (3) For
the VM which already has a good migration performance, the improvement space is
small since each migration has upper performance limits (i.e., Ts, D, and V;). For

Chapter 4 VM Migration in LAN—Performance Control

” i 2 i 7000 E==3 User requirement
g0 || === User requirement == User requirement a
m— After adjustment 20 || wemmmm After adjustment 6000 || ™ After adjustment
70 || == Without adjustment 18 || = 4= Without adjustment - &= Without adjustment
5000 --- [S ——
94000 =
) =
Z =
3000 =
2000 E
= 1000 B g
= NE= =
R R R R3 R4
(a) Total migration time (TT) (b) Downtime (DT) (¢) Total network traffic (TN)

Figure 4.6: The migration performance control of a Linux kernel compilation VM by adjusting
memory dirty rate.

100

400
a0 | |SRL BR2 % SRL OR2 =
BR3 @R4 80 BR3 @R4 §E
300 —_ NS
. I NE
‘@ N s 70 §E,
S| = w \2
2 150 [\ > NE
£ \ S 30 NEl
F 100 § " §§‘
\ \E
50 § 10 §E‘
\ . \E

0 d b B

(a) Static web server VM (b) Linux kernel compilation VM

Figure 4.7: Service degradation during migration performance control. “0”, “b”, “d” and “B”
represent without adjustment, only migration bandwidth adjustment, only memory
dirty rate adjustment and adjusting both of them, respectively.

example, the migration process for the static web server VM can converge and results in
a small service downtime. Then the times for VM suspend and resumption become the
bottleneck of downtime. (4) Our algorithm avoids the migration convergence problem
of pre-copy. As shown in Figure 4.6(b), the migration for the Linux kernel compilation
VM without adjustment cannot converge and has a big downtime (16.5s) which is un-
bearable for all kinds of network applications. After adjustment, all migration processes
for this VM have a small downtime regardless of user’s performance requirements.

4.4.3 Service Degradation During Performance Control

In this section, we try to understand how migration performance control will in-
fluence the service running in the migrated VM. Because the static web server VM is
running a network-intensive application and Linux kernel compilation is a compute-
intensive application, we use the throughput observed by clients and the CPU utilization
to reflect the QoS of these two VMs, respectively. All the three adjustment manners are
evaluated with the four performance requirements.

4.4 Evaluation

63

64

From Figure 4.7, we can see that different performance requirements will lead to
different extents of adjustments, which in turn results in different service degradations.
As expected, lowering memory dirty rate results in a big service degradation for the both
VMs. Specifically, the degradation with memory dirty rate adjustment is on average
74% and 48%, respectively. In particular, to satisfy R1 and R4, the migration of the
web server VM almost is close to non-live migration since the VM is allocated very
small CPU time. Therefore, cloud providers or users should take the workload features
into consideration while using memory dirty rate adjustment to control migration
performances.

To achieve these performance goals, migration bandwidth adjustment incurs a
smaller service degradation in comparison with memory dirty rate adjustment. The
average interruption is 22% and 5% for those two VMs, respectively. One of the reasons
why the static web server VM has a bigger QoS decrease in comparison with the Linux
kernel compilation VM is that it is running a network-intensive application and the
migration process competes for the network bandwidth with it. For the requirements
R2 and R4, the Linux kernel compilation VM even sees an increase of CPU utilization.
This is because it is running a compute-intensive application and the network-accessing
tasks of the application get benefits from the increased network bandwidth.

Additionally, we find that sometimes only changing memory dirty rate or migration
bandwidth cannot meet user’s requirements due to the hardware performance con-
straint. Under this situation, we have to adjust both memory dirty rate and network
bandwidth. For example, in the experiments, even though we tune the network band-
width to the max value for the migration of the static web server VM, we still cannot
get the desired p for R4. Hence, we have to simultaneously lower the memory dirty
rate of the VM.

Compared with only adjusting one parameter, changing both memory dirty rate and
migration bandwidth is more gentle. It does not incur a significant decrease of QoS,
and also does not introduce a big network burden to the source and the destination
hosts. With this manner, the static web service and the Linux kernel compilation only
see a degradation of 37% and 21% on average, respectively.

4.5 Chapter Summary

In this chapter, we thoroughly analyze the relationship between migration perfor-
mances of pre-copy and its influence factors and find that p is an important factor
for migration performance. Based on this study, we propose a migration performance
control algorithm by adjusting the memory dirty rate of the migrated VM and the
network bandwidth for migration. The experimental results validate the efficiency
of the migration control algorithm. It not only can tune a migration process to meet

Chapter 4 VM Migration in LAN—Performance Control

the desired performance, but also solves the convergence problem of pre-copy. The
evaluation on the service degradation during performance control can guide users
to choose a proper adjustment manner according to migration environment and the
workloads in the migrated VM.

4.5 Chapter Summary

65

Chapter 5

VM Migration over WAN—Storage
Data Migration

Based on the review on storage data migration technologies in Section 3.2, in this
chapter we target to solve the problems with VM migration over WAN (as presented in
Section 1.1.2). We make two contributions to improve the performance of VM migration
over WAN, precisely, improving the performance of storage data migration which is the
bottleneck part. In the first contribution, to lower the side effects of data deduplication
for migration performance improvement, we propose a three-layer image structure
to physically separate the storage data of a VM into three layers. This structure also
improves data sharing between VMs, which is beneficial to correlated VM migration. To
achieve further performance improvement, a central base image repository is introduced
for data centers in the second contribution. All data centers download base images from
the central repository to deploy VMs. This makes data reuse become possible between
data centers during VM storage data migration. Also, optimized data deduplication and
Peer-to-Peer (P2P) file sharing are utilized to accelerate storage data migration speed
when base images cannot be reused.

5.1 Three-layer Image Structure

5.1.1 VM Image Structure

Fast creating a VM with a basic running environment is an important task for Infras-
tructure as a Service (IaaS) providers. A running environment is a basic installation
of an OS or a combination of an OS and a software stack. A software stack denotes a
couple of applications which work together to provide a specific service. For example,
MEAN (short for MongoDB, Express, AngularJS and Node.js) is a full javascript stack
for web application development.

67

68

VM

VM
VM
vM User data User data
T Uselr da_ta+ User data+
Template emplate image Template image
image Cow
I T T Base image
Cloning
(a) One-layer image structure (b) Two-layer image structure

Figure 5.1: VM image structures.

At the beginning of cloud computing, cloud providers create VMs by cloning a
template image. The user of a VM directly operates with a replica of the template image.
All data from users are stored in the replica, as shown in Figure 5.1(a). We name it
as one-layer image structure (without considering snapshots). However, the cloning
operation is time-consuming. The deployment time span is unbearable when a large
number of VMs are requested by a user. Furthermore, each VM will generate a copy of
a template image, which is space-consuming as well.

To tackle the issues with one-layer image structure, a novel VM deployment approach—
COW—was proposed. With the COW, a new empty image is created on the top of a
template image (also called base image) during VM creation. The base image remains
read-only to the upper image, and all new data and the modifications to the base image
are redirected to the new image file, as shown in Figure 5.2. The storage data of a VM
are split into two image files. We name it as two-layer image structure, as shown in
Figure 5.1(b). This structure dramatically improves VM deployment speed because only
a link between a new empty image and a base image is needed for each VM creation.
Furthermore, a base image can be shared by multiple VMs, which lowers the total space
consumption of a data center. With this structure, a software stack will be installed
in either the base image layer or the upper layer. Installing software stacks in the
base image layer leads to repeatedly storing OS data because many software stacks
are running on the same OS. As shown in Figure 5.3(a), an OS must run with each
software stack despite two software stacks are using the same OS. If a base image only
is installed with an OS, the software stack will be installed in the upper layer by users.
Repeated data store is also unavoidable when two VMs are running the same software
stack, as shown in Figure 5.3(b).

The problems with one-layer and two-layer image structures are due to the fact
that VM images are stored in a coarse granularity which leads to limited data sharing
between VMs. The statistics from Cisco [28] on cloud application workloads show
that compute and collaboration (such as conferencing, content management) are the
two main workloads from enterprise users, while social networking and video/media

Chapter 5 VM Migration over WAN—Storage Data Migration

= VM user = VM user

o« '«

write

Figure 5.2: COW. The modifications from VMs to base images are redirected to the correspond-
ing upper image files.

VM1 VM2

VM1 VM2 VM3 VM4
_—— e~ e
User data User data User data User data

User data
Software stack 1

User data
Software stack 1

—_
Software stack 2

0s1

R—
Software stack 1

0s1

(a) (b)

Figure 5.3: Different software stack placements in two-layer image structure. (a)Software
stacks are installed in the base image layer. (b)Software stacks are installed in the
UD layer.

streaming are the biggest workloads from normal users. Also, another study [42] shows
that 56.4% VMs in Amazon EC2 are running on Ubuntu. Actually, with the support
of COW technology, storing VM images in a finer granularity to achieve a higher data
sharing is possible. To solve the problem with one-layer and two-layer image structures,
we propose a three-layer image structure. As shown in Figure 5.4, the storage data of a
VM are physically separated into three layers: Operating System (OS) layer, Working
Environment (WE) layer and User Data (UD) layer. With this structure, the OS layer
only contains a basic installation of an OS. Each WE image is deployed with a software
stack and runs on the top of an OS image. In other words, OS images run as the base
images of WE images. A cloud provider prepares a variety of combinations of OS images
and WE images as template images. New VMs are created on the top of WE images,
i.e., WE images in turn run as the base images of UD images. Both OS images and WE
images are read-only, and all new data from a VM are stored in the UD layer.

Three-layer image structure enhances data sharing between VMs. Furthermore, in
most cases, the version of an OS is not critical for the software stack running on it.
Therefore, from the perspective of engineering, cloud providers can share an OS image
with WE images as much as possible to decrease the total space consumption of base
images.

5.1 Three-layer Image Structure

69

70

Figure 5.4: Three-layer VM image structure.

5.1.2 Space Consumption Analysis

In this section, we analyze the space consumption when a cloud data center uses
different structures to store VM images, and the space benefits resulting from three-layer
image structure. For a better discussion, we set aliases as follows.

* 1L: One-layer image structure.

* 20: Two-layer image structure, and a base image only contains an OS, as shown
in Figure 5.3(b).

* 20A: Two-layer image structure, and a base image contains an OS and a software
stack, as shown in Figure 5.3(a).

e 3L: Three-layer image structure.

The parameters used in this section are listed in Table 5.1. Meanwhile, we have the

following assumptions:
* A data center only uses one image structure to store VM storage data.

* All users do not have specific requirements for OS distribution and version. It
means that VMs can share an OS base image as much as possible.

* There is no upper limit on the number of VMs sharing a base image.

Ideal Situation

When VM images are deployed in layers, the modifications to base image(s) are
stored in the top layer. Taking three-layer image structure as an example, the changes
to the OS layer and the WE layer are stored in the UD layer, since base images are
read-only. Therefore, layered image structure will lead to a bigger total image size for a
VM, because both the original data of base images and new modifications to them are
kept. The ideal situation is VMs do not modify base image data during their lifetime.
Then for an individual VM, it has the same space consumption when it is stored in

Chapter 5 VM Migration over WAN—Storage Data Migration

Table 5.1: The notations on storing VM images in different structures.

Symbol Description
Si The total storage space consumption of a data center when VM
images are stored in 1L structure.
S20 The total storage space consumption of a data center when VM
images are stored in 20 structure.
S04 The total storage space consumption of a data center when VM
images are stored in 20A structure.
Ssp, The total storage space consumption of a data center when VM
images are stored in 3L structure.
ViL The image size of a VM when it is stored in 1L structure.
Va0, The base image size of a VM when it is stored in 20 structure.
V20, The UD size of a VM when it is stored in 20 structure.
Vooa, The base image size of a VM when it is stored in 20A structure.
V204, The UD size of a VM when it is stored in 20A structure.
Var, The OS image size of a VM when it is stored in 3L structure.
Vs, ~ The WE image size of a VM when it is stored in 3L structure.
Var., The UD image size of a VM when it is stored in 3L structure.
n The total number of VMs in a data center.
k The total type of software stacks in a data center.
R, The size of the OS portion when a VM is stored in 1L structure.
Ry The size of the software stack portion when a VM is stored in 1L
structure.
R, The size of the user data portion when a VM is stored in 1L

structure.

layered or non-layered structure. In this section, we will analyze the storage cost of a

data center under this situation.

Due to without modification to base images, there are some basic relationships

between the three image structures for a specific VM i, as shown in Equation (5.1),
(5.2), (5.3) and (5.4).

ViL, = Veo,, +V20,, = Vooa, + V204, = VL, + VaL,, + VaL,, (5.1
Va04,, = VaL,, + VaL,, (5.2)

V20., = V3L, + V3L, (5.3)

Va0,, = VaL,,, V204., = VaL,, (5.4)

5.1 Three-layer Image Structure 71

72

Table 5.2: The space differences between the 3L structure and others.

Difference Value
n—1 n
St — S3L > Var, + X Var,,
i=1 =kt 1
n
ideal | Syo — Ssr, > Var,,
i=k+1 ‘
=
S204 — Ss1L > VaL,,
=1
n—1 n Zk n n
SiL =831 | > Roy+ > Ru, — Y BiRo, — > iRy, — > 7iRo,
i=1 i—kg1 i=1 i=1 =1
n n n
real S2O - S3L Z Rwi + Z IBiROi - Z aiRwi
ikt 1 ikt 1 i=1
=1
S204 — S3r 21 Ro, — Y1y BiRy,
1=

It is easy to calculate the space consumption of a data center when VM images are
stored in 1L structure, as shown in Equation (5.5).

Sip = ZvlLi (5.5)

i=1

The space consumption for 20 structure and 20A structure are calculated in Equation
(5.6) and (5.7), respectively. With 20 structure, only one OS is needed for all VMs.
However, software stacks are stored n times even though some VMs are running with
the same software stack. With 20A structure, the OS has to be saved for k times with
different software stacks.

S20 = Vao, + Y Veo,, (5.6)
i=1
k n
S04 =) Va04,, + > Vaoa, (5.7)

i=1 =1

The space consumption of 3L structure is shown in Equation (5.8). Only one OS is
needed, and each software stack also is stored only once.

k n

Sar, = Var, + Z Var,, + Z Var,, (5.8)
i1 i1

By using the relationships shown in Equation (5.1), (5.2), (5.3) and (5.4), the space
differences between 3L and others can be calculated, as shown in Table 5.2. Compared
with 1L, 3L can save the space of (n — 1) OS images and (n — k) WE images. It gains
space benefits of (n — k) WE images and (k — 1) OS images in comparison with 20
structure and 20A structure, respectively. The space saved in ideal situation indicates
the upper limit which we can achieve from 3L structure.

Chapter 5 VM Migration over WAN—Storage Data Migration

User data

a —

Software stack Y

B —
oS

Figure 5.5: Modification percentages.

Real Situation

In real cases, when a VM image is stored in layers, the modifications from the top
layer to base image(s) are inevitable. These new data will consume additional space.
We use percentages «, 5 and v to denote how many base image data are modified by
upper image(s), as shown in Figure 5.5. For example, « of the WE image data are
modified by users and stored in the UD image. In addition, layered image structure
will lead to more meta-data because of reference management. They are very small,
compared to the image size of a VM. We do not consider them in our analysis.

We use R,, R, and R, to denote the size of the different parts of a VM when it is
stored in 1L structure, as shown in Table 5.1. Then the total image size of a VM i with
1L structure is calculated in Equation (5.9).

Vir, = Ro;, + Ry, + Ry, (5.9

By using the modification percentages, the image sizes when the VM i is stored with
20, 20A and 3L structures can be calculated according to R,, R,, and R,, as shown in
Equation (5.10), (5.11) and (5.12).

V20, = Ho, (5.10)
VQOui = Rwi + RuZ + (5@ + ’Vi)Roi
\% =R, + Ry,

204, = fog T fluy (5.11)
V-?)Loi = ROZ'
VY3Lwi - Rwi + 572Roi (512)

VESLMZ. = }BuI + aiRwi + 'YiRoi

We substitute the corresponding parameter in Equation (5.5), (5.6), (5.7) and (5.8)
for Equation (5.9), (5.10), (5.11) and (5.12). Then we can get the real space cost of a

5.1 Three-layer Image Structure

73

74

data center when adopting different image structures in Equation (5.13), (5.14), (5.15)
and (5.16).

Si=> Ro,+ Y Ru,+ Y Ry, (5.13)
=1 =1 =1
SQO = Ro + Z Rwi + Z Rul + Z(/Bz + ’Yi)Roi (514)
i=1 i=1 =1
k k n n n
S204 = Z Roi + Z Rwi + Z Ruz + Z aiRwi + Z ’YiRoi (5.15)
=1 =1 =1 =1 =1
k k n n n
SSL = Ro + Z Rwi + Z BiRo,j + Z Rul + Z aiRwi + Z ViRoi (516)
=1 =1 =1 =1 =1

The space benefits achieved from 3L structure are shown in Table 5.2. They are
smaller than the counterparts in the ideal situation because of storing the copies of
modified base image blocks. Compared with 1L structure and 20A structure, smaller
modification to base images will lead to more spaces saved from 3L structure. 3L
structure has a smaller space consumption in comparison with 20A structure when
a bigger percentage of modification to the OS image and a smaller percentage of
modification to the WE image are made.

5.1.3 The Trade-off of Data Deduplication

As discussed in Section 3.2.3, data deduplication is a widely used method for
storage data migration performance improvement. However, data deduplication is a
compute-intensive operation. An improper usage will lead to an even worse migration
performance. For example, existing deduplication approaches [3, 138, 94] optimize VM
migration by eliminating the duplicated blocks for the whole disk image of a VM. This
is vulnerable because a portion of the image data of a VM has high similarity with other
VM images due to using the same or similar libraries, such as OS, while other portions
have rare identical blocks, such as user data. If the size of the user data portion of a
VM disk image is huge, current data deduplication manners may even prolong rather
than shorten VM migration time.

To understand the overheads and benefits of data deduplication to VM storage data
migration, we formulate the migration process with data deduplication. The total
migration time of the storage data of a VM after using data deduplication can be
calculated as Equation (5.17). Herein, S is the total image size of the migrated VM,
S, is the duplicated block size, B is the available network bandwidth for migration,
and Cj is the additional computation time resulting from data deduplication. From
Function (5.17), we can see that data deduplication creates benefits to storage data
migration only when the number of duplicated blocks between the migrated VM image

Chapter 5 VM Migration over WAN—Storage Data Migration

and the image(s) at the target site is big enough to compensate for the computation

overhead. 6 g g g
S A NNCHE SR (5.17)

T
B B B

Additionally, if we do not consider other network transmission data between the
source server and the destination server, such as protocol overhead, and chunk VM
image into fixed-size blocks, the network traffic n; for each data block can be calculated
as Equation (5.18). S; is the size of a fingerprint and Sy, is the block size. If a block
is duplicated, only its fingerprint is transferred through the Internet, otherwise, firstly
the fingerprint and then the block will be transferred. A unique block refers to a block
without replica at both the source data center and the destination data center.

= { Sy, duplicated block; (5.18)

Sy + Sy, unique block.

. . L . S
From the total duplicated data size, we can get the duplication ratio p = 24 Then,
the real network traffic V; for each block is calculated in Equation (5.19).

Ni = pSg+ (1 — p)(Sy + Sb) (5.19)

The total network traffic of migrating an image file is gained in Equation (5.20).
There, n is the total number of blocks of the image file.

N =nN; =n(uSy + (1 — p)(Sy + S)) (5.20)

Data deduplication benefits VM migration on network traffic only when the total

network traffic NV is smaller than the total image size S, i.e. N < S. Then, we can
derive an inequality (5.21) as follows.

S
n(qu+(1—u)(Sf+Sb))<S:>qu+(1—u)(Sf+Sb)<g<Sb
~ o S _ S (5.21)
= Sf <pSy, (WS~ = - —=-"7)

= nSy < Sy

Equation (5.21) indicates that data deduplication improves migration performances
only when the total fingerprint size is smaller than the size of duplicated blocks. In
other words, we can get more benefits when more duplicated blocks are found in an
image file. When the duplicated blocks of an image file is small, data duplication will
transfer more data than that without data deduplication. Also, data deduplication

5.1 Three-layer Image Structure

75

76

will bring in computational overhead to the source and the destination hosts of VM
migration.

5.1.4 Migration System

Three-layer image structure not only reduces space consumption, but also separates
the storage data of a VM with different data features into different image files. According
to previous studies [74, 82], there are many intra- and inter-image duplicated blocks
between OS images. There are also many repeated blocks between WE images due to
using the same libraries and applications (see the test in Section 5.1.6). However, UD
images are tightly related to users. They are different from VM to VM, therefore, the
similarity between them is small.

Based on this separation and data features, we design a migration system—LayerMover,
to improve storage data migration performance by optimizing data deduplication. In or-
der to decrease the side effects of data deduplication, according to the image similarity
features in different layers and the analysis in Section 5.1.3, LayerMover only eliminates
the duplicated blocks for OS images and WE images. UD images are migrated without
data deduplication operation.

LayerMover firstly migrates VM storage data and then memory data (i.e., pre-pre, as
discussed in Section 2.3.2). With this migration sequence, at least one site (the source
site) has all the latest data of the migrated VM without the risk of splitting VM storage
data into the source and the destination sites, which is robust against migration failure.
Furthermore, migrating storage data before memory data avoids remotely-accessing
disk blocks from the source data centers which will result in a big disk I/0 latency or
even destroying the VM, after the VM is resumed at the destination server.

Based on above analysis, LayerMover migrates a VM as follows.

* Base image migration. Before OS image and WE image are transferred to the
destination data center, the blocks which are identical with these at the destination
site are eliminated, i.e. data deduplication. The source host only transfers the
blocks which are not located at the target site to reduce the data transferred over
the Internet.

* UD layer migration. UD image is writable to users, so it is directly synchronized
to the destination site. The three layers of the storage data of the migrated VM
are migrated concurrently.

* Memory data migration. After finishing base image migration and the first
round synchronization of UD image, LayerMover starts to migrate memory data
in a pre-copy manner [29].

Chapter 5 VM Migration over WAN—Storage Data Migration

Source data center Destination data center

® Chunking
Calculate fingerprints

Send fingerprints to the| |
destination data center| [..

N
Find duplicated blocks ‘)

|| Send the similarity information
back to the source data center

Data transfer \

v v

Figure 5.6: The general steps of data deduplication for VM storage data migration. Our
optimizations mainly focus on parts @) chunking and fingerprint calculation and @
duplicated block elimination.

* Handover. The resources of this VM are released at the source site after it is
resumed on the destination host.

As shown in Figure 5.6, data deduplication firstly chunks the images into blocks
and then calculates a fingerprint for each block. The fingerprints are used to find the
blocks which already are located at the destination data center. At last, the source
data center only sends unique blocks to the destination data center. To reduce the side
effects of data deduplication, we design optimizations for the chunking and fingerprint
calculation step and the duplicated block elimination step in the following two sections,
respectively.

Fingerprint Calculation

Since OS image and WE image are unmodified during their whole lifetime, we can
change the chunking and fingerprint calculation step from an inline manner to an
off-line manner, i.e. the fingerprints for all base images are pre-calculated and saved to
avoid repetitive calculation operation. Then, during VM migration, the fingerprints of
base images can be immediately sent to the destination site without the chunking and
fingerprint-calculating operations.

To further improve the efficiency of the next step (duplicated block elimination), we
design two two hashtable structures to store the fingerprints of base images: individual
hashtable and group hashtable, as shown in Figure 5.7. The fingerprints of a base
image are stored in an individual hashtable. At the same time, LayerMover puts the
fingerprints of several similar images into a group hashtable. These two hashtable
structures decrease the total blocks for comparison. An individual hashtable can
eliminate the duplicated blocks located in the image, and a group hashtable eliminates
these located between the images of this group.

5.1 Three-layer Image Structure

77

group group
hashtable hashtable

Pl Y Vall e
\ AN

/ \ , \
Individual % E Individual % E E
hashtable - - hashtable - . -

X 'Y

Figure 5.7: Hashtable structure of base images.

Duplicated Block Elimination

During data deduplication, the main work for the destination data center is to
find duplicated blocks for the source image. This operation faces a trade-off between
computational cost and the amount of duplicated block found by it. Comparing the
source image with more images at the destination site will find more duplicated blocks,
but the comparison time also is longer.

If the destination site uses a deduplication system for its storage system, it is easy to
find the duplicated blocks for the source image during VM migration. This means to
compare the source image with all the data at the destination site. Even though it can
find all duplicated blocks, the comparison time also is long. Another implementation
is to compare the source image with one image which is highly similar to the source
image. The highly similar means this image contains the same or a close version of the
OS or the same software stack as the source image. This reduces the comparison time
with the risk of transferring duplicated blocks to the destination site.

With the support of these two hashtable structures, when LayerMover conducts data
deduplication at the destination site, it takes the following rules to select image(s) for
comparison:

* When there is an image at the destination site which is highly similar to the source
image. The individual hashtable of this image is chosen for data deduplication.
To be precise, for an OS image the highly similar image denotes it is running the
same OS as the source OS image, and for a WE image it refers to an image is
installed with the same software stack and running on the same type of OS image
as the source WE image.

* Otherwise, a group hashtable which contains the most similar OS or applications
to the source image will be selected for comparison.

As the hashtable contents are fixed once they are created, the similarity information
between the base images in a data center can be preserved in advance. Furthermore,

78 Chapter 5 VM Migration over WAN—Storage Data Migration

Source data center Destination data center

VM vM VM VM
Memory migration |
VMM module g VMM
Deduplicater

UD receiver

Hashtable UD migration
constructor module

— —— Migration
Mlgr_atlon > WE migration WE receiver
coordinator module
Hashtable
OS migration ; constructor
Host OS > module OS receiver Host OS
Hardware Hardware

‘11l aw
+ LA A

)

table Group

Individual Neshtable
hashtable

Slmllarlty i .
table Group

hashtablg
Images Individual
hashtable

Storage pool Storage pool

Figure 5.8: The structure of LayerMover.

after each VM migration, the similarity information between the source image and
the image selected for comparison is saved as well. This information can guide next
migration to choose a better hashtable at the destination site for data deduplication.

5.1.5 Implementation

To indicate the feasibility of our proposals, we implement a prototype based on KVM.

LayerMover has no intrusive modification to VMM. Constructing three-layer image
structure is an engineering task. It can be implemented by any VMM which supports
COW technology. Because LayerMover uses data deduplication to optimize VM storage
data migration, in order to achieve a high deduplication efficiency, it is better for both
the source data center and the destination data center to utilize a storage pool (such as
NAS, SAN) to store their own VM images. LayerMover composes of several modules
which are distributed at the source data center and the destination data center, as
shown in Figure 5.8.

Migration coordinator. VM migration starts from the migration coordinators. They
control all migration modules according to the steps presented in Section 5.1.4.

Hashtable constructor. Individual hashtables and group hashtables for base images
are created by the hashtable constructor. When a new base image is deployed, its
individual hashtable is firstly built, and then its similarities with other hashtables are
calculated and stored in the similarity table. Based on the similarity information, it
joins in a group which has the highest similarity with it. At last, hashtable constructor
updates the corresponding group hashtable.

5.1 Three-layer Image Structure

79

80

Similarity table. It stores the information of inter- and intra-image similarities. In
addition, after each VM migration, the similarities between the source image and the
target image(s) also are added into the similarity tables of both the source and the
destination data centers for potential future migration.

Storage data migration modules. The three layers of a VM image are transferred
by three corresponding modules. OS migration module and WE migration module
are same, and the destination server runs a receiver for each layer. Base images are
constructed by collecting unique blocks and duplicated blocks at the destination data
center. UD migration module employs DRBD [38] to asynchronously copy UD image
data to the target site.

Memory migration module. The performance of memory data migration [29] has
reached the ceiling after more than ten years’ development. In this chapter, we do not
design optimizations for memory data migration, therefore, LayerMover directly calls
the memory migration module of KVM to transfer memory data.

Deduplicater. The comparison operation of data deduplication is conducted by a
deduplicater running on the target host. It chooses an individual hashtable or a group
hashtable for comparison according to the previously stored similarity information in
the similarity table.

5.1.6 Evaluation

In this section, we firstly evaluate the performance of three-layer image structure,
and then test the migration performance of LayerMover with different conditions.

I/0 Performance of Three-layer Image Structure

The three-layer image structure increases the I/0 path depth. We explore whether
and how it affects VM I/0 performance in this section. A VM image is deployed in 1L
structure, 20 structure and 3L structure, respectively. Only one of the two types of
two-layer structures is tested because they should have the similar I/0 performance.
We use Iometer [72] to imitate three I/O access models: 100% random read, 100%
random write and a mix of 33% random read and 67% random write (represents a
typical database workload). Average 1/0 speed and response time are tested with
different data sizes per I/0.

As shown in Figure 5.9, we can see that a bigger data size per I/0 leads to a
better I/0 performance. Layered image structures almost have no influence on the
read performance (see Figure 5.9(a)), regarding both access speed and response time.
Compared with 1L structure and 20 structure, 3L structure sees the lowest write speed
and the longest response time, as shown in Figure 5.9(b). Precisely, its speeds are

Chapter 5 VM Migration over WAN—Storage Data Migration

100% random read 100% random write

N
a
o
-
o
3
w
&
S

0.9
08 oo x/u/’(x/kf* 300
e | 07 E 2;0,5 M

[N)
=1
S

@
@ 150 06 2 @ 2
3 Speed 05 £ = 04 Speed 200 £
. D e @
'§ 100 == Response time 0.4 é g 0.3 | =»=Response time 150 g
@ 03g 9o 100 &
50 02 & e
01 0.1 50
0 0 0
L 20 3L 1L 20 3L iL 20 3L L 20 3L 1L 20 3L L 20 3L
4K 16K 32K 4K 16K 32K
Image structure and data size per 1/0 Image structure and data size per 1/0
(@ (b)
33% write, 67% read, random
1.6 120
14 e——X 1 i |

P 80

@

o 1

2 0.8 Speed . 60
3 =#=Response time

40

Response time (ms)

20

1L 20 3L L 20 3L iL 20 3L
4K 16K 32K
Image structure and data size per 1/0
©

Figure 5.9: 1I/0 performance with different image structures.

slower than 1L structure and 20 structure by 4% and 2%, 1.8% and 1.2%, and 1.4%
and 0.8% for 4K, 16K, and 32K data size per I/0O, respectively. The response time
shows a similar trend. However, for the mixed I/0 access model, 3L structure only
slightly lowers the I/0 performance, as shown in Figure 5.9(c). In comparison with 20
structure, it only drags down the I/0 speed by 1%, 0.5% and 0.2% for 4K, 16K and 32K
I/0 request size, respectively. Overall, three-layer image structure will not incur a big
performance degradation to VM I/O operations.

Similarity between WE Images

Jin et al. [82] and Bazarbayev et al. [10] have done experiments for OS image
similarity. According to the results, there are many duplicated blocks between different
OS images. The similarity ratio between two OS images can be more than 60%. In this
section, we further evaluate the similarity feature between WE images.

We deploy two common cloud software stacks (LAMP and MEAN) on different
versions of Fedora and openSUSE base images. LAMP is short for Linux, Apache,
MySQL and PHP, and MEAN is a software bundle of MongoDB, Express, AngularJS and
Node.js. The information of these WE images is shown in Table 5.3. We explore both
individual similarity and group similarity according to the hashtable structure designed
in Section 5.1.4.

5.1 Three-layer Image Structure

81

82

Table 5.3: The size (in MB) of WE images.

Base Image Kerr.lel Size
Version | LAMP | MEAN
Fedora 21(32bit) 3.17.4 424 1,282
Fedora 21(64bit) 3.17.4 470 1,499
Fedora 22(32bit) 4.04 340 922
Fedora 22(64bit) 4.0.4 342 948
Fedora 23(32bit) 4.2.3 366 925
Fedora 23(64bit) 4.2.3 369 971

openSUSE 12.2(32bit) 3.4.6 189 776
openSUSE 12.2(64bit) | 3.4.6 189 746
openSUSE 12.3(32bit) | 3.7.10 235 717
openSUSE 12.3(64bit) | 3.4.6 295 731
openSUSE 13.2(32bit) | 3.4.6 309 929
openSUSE 13.2(32bit) | 3.4.6 384 690

1 1
0.9 0.9
0.8 08
L 07 o 07
S 06 S 06
%‘ 05 %‘ 0.5
© [~
= 04 = 04
£
% 03 E o3
0.2 0.2
0.1 0.1
0 WS) X) X WS WS WS
A N T g Y
HY o Y S o Y S DL (e el »re el »rle DA
DXOT APART WD (D0 (DI (50 NANT AV T DAY A Y
R VR 12 VIO e Y Y (X R B 58
Base image Base image
(a) LAMP (b) MEAN

Figure 5.10: Individual similarity between the WE images based on the same version of OS but
for different architectures. Regarding the denotations on the x-axis, “F” is short
for “Fedora”, and “O” for “openSUSE”. The first number is the version of the OS,
and the second one is the CPU architecture it aims for. For example, “0122-32”
denotes “openSUSE 12.2(32bit)”. Each bar pair indicates a comparison between
these two WE images.

Individual Similarity. Individual similarity means the ratio of duplicated blocks
between two images. When there is a highly similar image located at the destination
site, the source image will compare with it for data deduplication. In this section, we
only test the similarity between the WE images which are based on the same OS version
but for different CPU architectures, such as LAMP on Fedora 21 (32bit) vs. LAMP on
Fedora 21 (64bit).

As shown in Figure 5.10, for each comparison, the two images will get different
final similarity ratios, because they have different total image sizes and also will get a
different amount of duplicated blocks. For example, there is one block A in one image,
but five block As in another. That is why each comparison has two bars in the graphs.

Chapter 5 VM Migration over WAN—Storage Data Migration

1 1

0.9 0.9
0.8 0.8
o 07 o 07 \\ :
€ 06 B 06 "
205 2 05 §
S]
£ 04 E 04 §
903 & 03 §
02 02 %
0.1 0.1 %
P NININININR AN A
RS A S O S N S A S b o o D P P
RCE VI ANl AE SN AT Sy e R PN AN O D AT AP S
QY Q’Q’ Q’ﬂ’(ﬁ" Q’f’ O\”D’O\’Q’O\'ﬁo\’ﬁo\ﬁo\@’ QT Y O\W’O(‘/O\’LO\%O\%O\B’
Base image Base image
(a) LAMP (b) MEAN

Figure 5.11: Group similarity. The x-axis uses the same denotations as Figure 5.10.

We can see that many duplicated blocks exist in these WE image pairs. For both LAMP
and MEAN images, these based on openSUSE show a higher similarity ratio than these
on Fedora, but the similarity between the MEAN images on Fedora also can be around
40%, such as between the two MEAN images on Fedora 21(32bit) and Fedora 21(64bit).
Additionally, for both types of WE images, the similarity ratio can reach approximately
50%.

Group Similarity. Group similarity is the duplicated blocks between one image and
a group of images. As is discussed in Section 5.1.4, a group hashtable is chosen for
data deduplication when no highly similar image exists at the target site. We take the
images in Table 5.3 one by one as the source image, and put the rest of WE images
which are based on the same OS distribution (except the one utilized for individual
comparison) into a group as the counterpart for each comparison. For example, when
the LAMP image on Fedora 21(32bit) is the source image, the target group contains
the LAMP images on Fedora 22(32bit), Fedora 22(64bit), Fedora 23(32bit) and Fedora
23(64bit).

As shown in Figure 5.11, for LAMP images the source image also can discover
more than 30% duplicated blocks from a group hashtable, such as the LAMP image on
Fedora 22(32bit). However, all MEAN images find more duplicated blocks from group
comparison than individual comparison. It indicates that even though no highly similar
image at the destination data center with the source image, group comparison also can
keep deduplication benefits at a relatively high or even better level.

Choosing images at the destination site for data deduplication is an important step,
which is not our main focus of this paper. It is impractical to evaluate the similarities
for all possible combinations. We only test one possibility for individual comparison
and group comparison. It aims to show that VM storage data migration can get benefits
from data deduplication for WE images.

5.1 Three-layer Image Structure

83

84

Migration Performance

Experimental Setup. We evaluate the migration performance of LayerMover on
two DELL Precision T1700 SFF workstations. Each is equipped with one Intel 8-Core i7
3.6GHz processor, 16GB RAM and 2TB 7200rpm SATA device. They are connected with
1Gbit/s HP ProCurve switch. We do not consider the network connection problem of
VM migration for LayerMover, therefore, we evaluate the performances of LayerMover
in LAN by simulating a WAN environment. The source server and the destination server
are in the same subnet and the VM will keep its IP address after migration. The network
performance is shaped as 400Mbit/s and 50ms round-trip latency by using Linux Traffic
Control [71]. All migrated VMs are configured with 1 CPU and 1GB RAM. LayerMover
is compared with the following migration approaches:

* 1L. VM images are deployed in 1L structure. VM storage data are migrated
without data deduplication. This runs as the baseline.

* 20. VM images are deployed in 20 structure. Data deduplication is conducted
on the whole image data during VM migration. Current data deduplication
methods do not take image structure into consideration, so we only test one type
of two-layer image structures.

1L is implemented by directly calling the migration API of KVM, and 20 adds
data deduplication functionality on it. In order to thoroughly evaluate migration
performances under different situations, we adapt the Deduplicater to generate different
percentages of duplicated blocks at the destination site for the source image during
migration. Data deduplication use 4KB fixed block chunking. The hashtable at the
destination data center contains around ten million records (for around 50GB image
data). The similarity conditions for the source base images are denoted as (a,b). a
and b represent the similarity ratio for OS image and WE image of the migrated VM,
respectively. We assume that the same amount of duplicated blocks can be found at
the destination site for a specific VM regardless of how the VM image is deployed (in
1L structure, 20 structure or 3L structure). We test the migration performances of
LayerMover under two similarity conditions, (5%,5%) and (70%,70%).

Single Migration. Single migration refers to migrating one VM for each migration.
The VM works independently without connection with other VMs. The following four
type of VMs are deployed to measure the migration performance. The information on
these four VMs is shown in Table 5.4.

 Idle. This VM is deployed for daily use and in idle status during migration.

e Static web application. The VM runs as a static web server. 100 concurrent
users are downloading a 512KB file from it.

Chapter 5 VM Migration over WAN—Storage Data Migration

A
@
o

1200 = =
450 —— Memory dirty size 7000 —— Memory dirty size
— — —Disk size increment _ — — Disk size increment

6000

IS

I=}

153
IS
1=}
S

w
&
o

ncrement (KB)

w
&
1=}

5000 %

m
2
(=]

t (K

w
8
o

4000 250

N
G
o

200-=

n
S
153

300

S

1ze Incremen

ize

=
@
o

S|

isk

Memory dirty size (KB)
i
&
o

Disk s

2000’2

Di

=
o
153
=
o
S

1000

o
o
o
=]

o

(a) Static web VM (b) Dynamic web VM

70000 = = 600000
——— Memory dirty size
60000 — — Disk size increment

o
550000

500000

40000

]
t (KB)

s
340000
g 300000

ize incremen

=
2‘30000
S

£ 200000
220000

100000

Disk si

10000

0

0

(c) Linux kernel compile VM

Figure 5.12: Memory and storage data dirty features of different applications.

Table 5.4: The image size (in MB) of different workloads with different image structures.

Two-layer Structure Three-layer Structure
VMIyPe 55 TWE+UD | Total | OS5 | WE | UD | Totl
Idle 1,340 158 1,498 | 1,340 | 145 24 | 1,509
Static | 1,340 | 1,368 | 2,708 | 1,340 | 1,138 | 235 | 2,713
Dynamic | 1,340 | 5,068 | 6,408 | 1,340 | 2,528 | 2,563 | 6,431
Compile | 1,340 | 4,287 | 5,627 | 1,340 | 2,356 | 1,945 | 5,641

* Dynamic web application. A transactional web e-Commerce benchmark—TPC-
W [168]—is running on this VM.

* Linux kernel compile. Linux kernel 4.8.1 is compiled in this VM. It is a compute
and I/0 intensive application.

Both UD image data and memory data are migrated in a pre-copy manner, therefore,
dirtied data during migration will be retransferred. To better understand these migrated
VM, the dirty features of memory data and storage data are shown in Figure 5.12.
We test the size of dirtied memory pages and the increase of disk size for a period of
500s with a 5s interval. The increment of disk size is used to approximately show disk
dirty rate. The idle VM has almost no dirty data, and its results are abridged. There are
regular points with a small memory dirty rate for the static web VM and the dynamic
web VM, which is good for migration convergence. The Linux kernel compile VM has

5.1 Three-layer Image Structure

85

86

80 13 140 13
1.2 12
=70 11 =120 11
> 60 1.0 g 100 1.0
£ 09 5 E 09 g
= 50 08 = 2 08 =
80 I
] 40 07 8 8 07 X
< 0.6 g S 60 0.6 g
230 05 5 2 05 5
= 04 Z = 40 04 Z
£20 0.3 g 0.3
=10 0.2 = 20 0.2
0.1 0.1
0 0.0 0 0.0
s 20 LayerMover 1L 20 LayerMover
Migration time for (5%,5%) Migration time for (70%,70%) Migration time for (5%,5%) Migration time for (70%,70%)
—e—Normalization for (5%,5%) ==Normalization for (70%,70%) & Normalization for (5%,5%) ==Normalization for (70%,70%)
(a) Idle VM (b) Static web VM
300 13 300 13
12 12
3 250 11 7 250 11
2 00 5 2 09
£ 200 < & E 200 2§
£ o2 8 ¢ o7 8
= 150 = =150 0. =
s 06 8 & 06 &
=2 (=21
= 05 5 = 05 5
€ 100 04 2 E100 04 =
< o
5 0.3 3 0.3
= 50 02 © 50 02
0.1 0.1
0.0 0 0.0
1L 20 LayerMover 1L 20 LayerMover
Migration time for (5%,5%) Migration time for (70%,70%) Migration time for (5%,5%) Migration time for (70%,70%)
== Normalization for (5%,5%) ==#=Normalization for (70%,70%) —o—Normalization for (5%,5%) ==Normalization for (70%,70%)
(c) Dynamic web VM (d) Linux kernel compile VM

Figure 5.13: Migration performances for different type of VMs under different similarity situa-
tions.

big memory and disk dirty rates, and the memory data also show a complicated dirty
feature.

As shown in Figure 5.13, both 20 and LayerMover result in longer migration times
in comparison with 1L when the similarity ratio is small, at (5%,5%). 20 prolongs
the total migration time by 19%, 19%, 21% and 18% for the four VMs, respectively.
However, LayerMover only experiences 12%, 7%, 4% and 4% longer migration times for
them than 1L due to the optimizations for data deduplication. When the similarity ratio
reaches (70%,70%), both of them reduce the total migration time, but LayerMover shows
a better performance than 20. It achieves 7%, 8%, 17% and 14% of improvements for
the four VMs, respectively, compared with 20. This further proves that LayerMover
lowers the overhead of data deduplication. In other words, the deduplication for the
UD layer of a VM decreases migration performance.

The last round of UD layer data synchronization will compete for the network band-
width with the last iteration of memory data migration (i.e., VM handover). To evaluate
the influence of the final stop-and-copy phase on the running services, the downtime of
LayerMover is tested. As shown in Figure 5.14, all four VMs only experience less than
one second downtime. It is invisible to almost all kinds of applications.

Chapter 5 VM Migration over WAN—Storage Data Migration

1200

1000

800

600

400

Downtime (ms)

200

idle static dynamic compile

Figure 5.14: The downtime of LayerMover for different applications.

Table 5.5: The image size (in MB) of the VMs in a three-tier application with different image
structures. The image sharing structures are also indicated in the table.

Layer | Frontend | Web 1 | Web 2 | Database 1 | Database 2
1L - 2,195 2,224 | 3,229 7,398 8,876
Total 23,922
Base 1,340
20 UD 934 \ 2,018 \ 2,025 \ 6,129 \ 7,630
Total 20,076
Base 2,061 2,907 3,350
20A | UD 199 429 \ 526 4,094 \ 5,616
Total 19,182
(O} 1,340
3L, WE 893 1,934 1,246
UD 68 109 \ 98 4,856 \ 6,415
Total 16,948
1200 12 1100 11
R 11 ’_\1000 1
£ 1000 1 < 900 0.9
3 ‘/\\ v s o 0o
= 80 ¥y 20 07 g
g o 10 F £ o oo B
£ 400 04 £ E 00 0
= 03 © w® 3 S
S 2 Z 5 200 02 Z
F 20 gi F 100 0.1
0 0 0 0
1L 20 20A LayerMover 1L 20 20A LayerMover
(a) Similarity ratio: (5%,5%) (b) Similarity ratio: (70%,70%)

Figure 5.15: Migration performance of multiple VMs under different similarity conditions.

Correlated VM Migration. Three-layer image structure increases the data sharing
between VMs, LayerMover, therefore, should have better performance while migrating
multiple correlated VMs which share base images. To investigate this performance of
LayerMover, a typical three-tier application is deployed. It contains a frontend VM, two
web VMs and two database VMs. They are deployed in 1L structure, 20 structure, 20A
structure and 3L structure, and share base images as much as possible. In this section,
we also consider the 20A structure, because it has a different data sharing model as the
20 structure, which will lead to different migration performances. The image structures

5.1 Three-layer Image Structure

87

88

and sizes are listed in Table 5.5. From this table, we can see that 3L has the smallest
total image size.

We can get from Figure 5.15 that when the similarity ratio is (5%,5%), both 20 and
20A get a longer migration time than 1L, because the deduplication benefits are smaller
than its computational cost. However, at this situation, LayerMover still can benefit
the migration due to significantly reducing the total image size of the migrated VMs
and a smaller deduplication cost. It is faster than 1L, 20 and 20A by 22%, 29% and
25%, respectively. When the similarity ratio is (70%,70%), data deduplication makes
contributions to all migrations. LayerMover sees a shortest total migration time and
improves migration performance by 51%, 27% and 24% in comparison with 1L, 20 and
20A, respectively.

5.2 Central Base Image Repository

5.2.1 System Design

The base images of a VM are read-only during their whole lifetime with three-layer
image structure, so we further advocate an architectural rethink on storing VM storage
data and propose a novel migration system—CBase—to improve VM storage data
migration performance. A central repository is introduced to deploy and store base
images (OS and WE images) based on the three-layer image structure, as shown in
Figure 5.16. Data centers directly download base images from the repository to its
local storage system rather than deploy them locally during VM creation. Because base
images can be shared between VMs, each cloud data center only needs to download
the needed base images once from the central repository. This not only reduces the
workload of deploying base images from n (the number of data centers) to 1 (only
deploy once in the central repository), but also improves base image reusability between
data centers. The reusability denotes that if the base images of a VM are present at
the target data center during VM migration, they can be directly used and do not need
to be transferred from the source data center. We assume that data centers and the
central repository use the same type of VMM and there is no compatibility issue. In
CBase, the roles involved in cloud computing and the service provisioning procedure
are correspondingly changed.

Cloud Roles

Currently, [aaS generally involves three roles [75]: cloud provider, cloud user and
end user, as shown in Figure 5.17(a). A cloud provider maintains a set of hardware
resources and prepares some base images for fast VM deployment. A cloud user leases
resources from a cloud provider to host applications which are then offered to end
users. End users are at the bottom of the service chain. They generate requirements and

Chapter 5 VM Migration over WAN—Storage Data Migration

Base image repository

VM VM VM
ub ub UD

VM VM
ub UD

Cloud data center

Figure 5.16: The architecture of CBase.

Hardware ¢ N Image
CIO_Ud provider provider
Porvider
Cloud
User Cloud
/ —

v \A
o b
@ @
End User End User

(a) (b)

Figure 5.17: Cloud computing roles. (a) Current roles in cloud computing. (b) Roles in CBase.

The double-arrow lines in (b) indicate the functionality of uploading base images
to the central repository.

workloads and get services either directly from a cloud provider or a cloud user. We call
cloud user and end user as user for short in the remaining part of this dissertation.

In CBase the responsibilities of a cloud provider are split into two parts: hardware
maintenance and base image preparation. Now, cloud providers are only in charge
of hardware maintenance, and the task of base image preparation is moved to the
central repository. We name these two roles as hardware provider and image provider,
respectively, as shown in Figure 5.17(b).

Furthermore, the central repository can act as an image-sharing platform as well.
Base images are not only deployed by the image provider, but also can be uploaded from
the other three roles according to the rules set by the image provider (such as image
format, image description, etc.). This feature is valuable for academic researchers.
They can quickly reproduce an experimental environment by directly downloading
the images shared by others. Each image uploader can determine the access model of

5.2 Central Base Image Repository

89

90

Select a hardware provider

Are the required base
images in the central
gpositor

I

I

I

I

I Request image
I provider to deploy
|

I

I

I

l

Private base images
Set access model

Create the base

the base images images locally
Upload to the

central repository

A 4
@ Launch VMs

Figure 5.18: Service provisioning procedure of CBase.

the images he/she uploads: public or private. A public-access image can be used by
everyone, while a private-access image is only available for some nominated users.

Service Provisioning Procedure

Correspondingly, the service provisioning procedure of cloud computing changes
with the new structure of CBase. A user gets services through the following three steps:
@ select a hardware provider, 2) prepare base images and Q) launch VMs, as shown in
Figure 5.18. The detailed procedure is presented as follows.

D Select a hardware provider. Users choose a hardware provider according to
their requirements and reserve the required hardware resources at the selected
data center.

@ Prepare base images. Users check whether the base images they need exist in
the central repository. If not, users can create the necessary base images locally
and upload to the central repository, or pay the image provider to deploy them.

@ Launch VMs. Users offer the information of the required base images to the
selected hardware provider. The hardware provider downloads the base images
which are not present in its local storage system from the central repository and
launches VMs on them.

5.2.2 Storage Data Migration

In CBase the base images of the migrated VM have replicas in the central repository
and may also be used at the destination data center, which provides new optimization
options for storage data migration. If the base images exist at the target site, they
can be used directly without the necessity of transferring them from the source site, a

Chapter 5 VM Migration over WAN—Storage Data Migration

situation called base image reuse. For the three-layer image structure, there are two
types of reuse: OS reuse and WE reuse. We assume that the OS image also is located
at the destination site when WE reuse is possible since the OS image is the backing
file of the WE image. If base images cannot be reused at the destination data center,
two migration mechanisms are designed for CBase to accelerate the transfer speed of
base images by using data deduplication and P2P file sharing technology, respectively.
Additionally, we also devise a strategy for migrating UD image and an orchestration
algorithm for coordinating the migration processes of the central repository and the
source site to improve the robustness of CBase.

Base Image Migration with Data Deduplication

Same as LayerMover, CBase also only make data deduplication for base images.
With the central repository, we further design a mechanism to lower the overheads of
data deduplication besides the optimizations of LayerMover. In CBase, base images
are migrated from the central repository rather than from the source data center.
With this manner, it is unnecessary to transfer the hash table of the migrated image
during VM migration because the central repository has all of the information. Then,
Equation (5.19) and (5.20) are correspondingly changed into Equation (5.22) and
(5.23). Because 1 —pu < 1, there must be N/ < S, which indicates that our optimizations
eliminate the risk of increasing the total network traffic no matter how many duplicated
blocks are found during migration.

N! = (1= p)S, (5.22)

1

N' =nN]=(1-p)nS, = (1—p)S (5.23)

Based on above discussion, base images are migrated by data deduplication as
follows. The migration processes of OS and WE images are identical, so we take the
migration of an OS image as the example. We assume that the Universally Unique
Identifier (UUID) of the migrated OS image is X. The destination data center has a list
(X1, Xa, ..., Xj) which is the UUIDs of all the OS images in its local storage system.

1. The source VMM sends X to the destination VMM.

2. Ifthereis X € (X1, Xo, ..., Xj), the destination VMM informs the source VMM that
the OS image is ready (i.e. OS reuse). Otherwise, it sends X and (X7, Xo, ..., X)
to the central repository.

3. The central repository chooses the base image X; € (X1, X, ..., X;) which has
the highest similarity ratio with X according to the similarity table, and sends the
duplicated block ID list to the destination VMM.

5.2 Central Base Image Repository

91

92

4. Then destination VMM constructs X by receiving the unique blocks from the
central repository and copying the duplicated blocks from the local image X;.

Base Image Migration with P2P File Sharing

As depicted before, base images are not only stored in the central repository, but also
have replicas in different data centers, which provides another migration option for
base images—P2P file sharing. The destination data center can get base image blocks
simultaneously from the central repository and other peer data centers.

Firstly, we elaborate on some basic concepts about P2P file sharing. We take BitTor-
rent as an example, which is the most popular P2P protocol [129]. With BitTorrent,
files are cut into chunks which are the communication unit between peers. All metadata
of a file is saved in a .torrent file. This file is distributed to many .torrent file servers.
Each .torrent file contains the information of a special server, i.e. a tracker, where the
uploader, all downloaders and seeds of this file are registered. Each node in a P2P file
sharing system is both a downloader and an uploader. When a node has downloaded a
file and is willing to upload some chunks of this file to other peers, this node is called a
seed of this file. When a user wants to download a file, he/she firstly gets the .torrent
file of the requested file from a .torrent file server. From the .torrent file, the user is
directed to the tracker where the seeds which the user can connect to are gained. Then
the user assembles the file by receiving chunks from these seeds. P2P file sharing can
be also run in a trackless model with a DHT method, but it is accompanied by a slow
seed-discovering speed.

In CBase, the central repository is an ideal place to run as a .torrent file server and
a tracker because it has all the metadata of base images and the information of the
data centers connecting with it. In particular, with this migration manner, when a data
center deletes a base image from its local storage system, it should inform this operation
to the tracker (i.e. the central repository) to update the seed list of this base image.

A basic characteristic of P2P file sharing is: the more seeds a file has, the faster
the downloading speed is. However, downloading is delightful, while uploading is
painful. Therefore, P2P file sharing faces another issue—free riding [1], which means
that a user only downloads files without uploading chunks for others. There are many
studies to solve this problem [1, 46]. We design an example incentive mechanism for
CBase regarding this issue. The central repository can periodically count the data size
of downloading operation D and uploading operation U for each data center, and then
punishes or rewards each data center based on the value of D — U. If D; — U; > 0, the
data center ¢ should pay money in proportion to the value of D; — U;; otherwise, it gets
money. To reduce the interference of P2P file sharing to the migration of UD image
and memory data, the source data center will be eliminated from the seed list. The
destination data center downloads base image chunks from other peer data centers

Chapter 5 VM Migration over WAN—Storage Data Migration

Source data Destination data Base image Peer data
center center repository centers

Send base image UUID

»

Request .torrent file
Response

<

Connect to the tracker

Respond with a seed list

d

Connect to seeds
Send chunks

<
\ 4 \ 4 ¢ 4

Figure 5.19: Migrating base images with P2P file sharing.

A 4

except for the source data center. Additionally, to take security and privacy issues
into consideration, it is better to apply P2P file sharing for base images in a private
community, such as in the scenario of cloud federation.

In sum, CBase migrates base images by using P2P file sharing with the following
steps, as shown in Figure 5.19.

1. The source VMM sends X to the destination VMM.

2. If there is X € (X1, Xo, ..., Xj), the destination VMM informs the source data
center that the OS image is ready. Otherwise, it sends the request for X to the
base image repository.

3. The base image repository responds with the .torrent file of X to the destination
VMM.

4. After opening the .torrent file, the destination VMM connects to the tracker, which
also is the base image repository.

5. The base image repository replies to the destination VMM with a list of data
centers (DC4, DCy, ..., DC),) which have the replicas of X.

6. The destination VMM connects to these data centers except for the source data
center and downloads chunks from them to assemble X.

UD Layer Migration

The UD layer of the migrated VM is writable to users and is constantly changing
during the whole migration process. CBase migrates this layer in a pre-copy manner,
similar to that for memory data migration. We firstly migrate the whole UD image data
to the destination site. During this period, the dirtied and newly-written blocks are
logged in a bitmap. The next round of transmission migrates these blocks logged in
the bitmap. The operation loops until the VM is suspended at the source server. Then
all remaining dirtied blocks are copied to the destination site to resume the VM. This

5.2 Central Base Image Repository

93

94

New writes
N

Iteratively copying

ub

Transfer
os

Source data center Destination data center

Figure 5.20: UD layer migration.

1
UD writable layer
—

UD snapshot

o
-
-

[(=] [
-
-
-
-
-

ub

[= [f=) R R E=) =)
olo|o|o|o|o|r|o

olr|olr|r|o|o|o

ol|~|olo|o|o|of-
[(=) [(=) [E=1 [(=]
olo|o|r|o|r|o|o
olr|olo|o|o|o|-
[(=)=} [=][=] [[=)[=]
[el e (=) e R (=)

~
[}
—

(b)

Figure 5.21: The comparison between two types of bitmaps for a UD image. (a) A bitmap for
the whole UD image, (b) A bitmap only for the writable layer of a UD image.

migration can efficiently take advantage of I/0 spatial locality. In other words, because
some blocks are frequently dirtied, this approach allows to only transfer the latest write
of a block rather than transfer every write, i.e. enables write coalescing.

To lower the workload of logging dirtied blocks and scanning the bitmap in each
round, snapshotting technology is used to condense newly-dirtied blocks together, as
shown in Figure 5.21. When the UD image migration is initialized, an external snapshot
is taken for the UD image. This will save all original UD image data into a snapshot,
and creates an empty new image file to hold all new data written from the VM. We only
need to build a bitmap for the new image file because the UD snapshot is read-only.
The snapshot is migrated in the first round of transfer, and then the new image file is
migrated in a pre-copy manner with the support of the bitmap.

Migration Orchestration

In CBase, base images are migrated from the central repository or other peer data
centers, the UD image and memory data are migrated from the source data center, as
shown in Figure 5.22. To guarantee the pre-pre migration manner, these two migration
processes are initialized as follows:

* The source data center firstly migrates the UD snapshot, and then migrates
memory data and the writable layer of the UD image.

Chapter 5 VM Migration over WAN—Storage Data Migration

Participants

Destination site Data reception VM running

Central repository

(or peer data centers) 2 (TERR e

.. | UD image snapshot | Memory data migration and
Source site migration new disk write transfer
—» .
Handover Time
(downtime)
@
Participants
Destination site Data reception | VM running
Central repository . ——
(or peer data centers) 2 (HEER) |
Source site UD image Memory data migration and|
snapshot migration new disk write transfer
— N
T T Handover Time
(downtime)
(b)

Figure 5.22: The orchestration of different migration processes. (a) T, < Ty, + T, (b) T} >
T, +1Th,.

* The destination data center initializes the preparation of base images simultane-
ously with the migration process of the source data center.

The two migration processes may finish with different durations. We denote the
time of UD image snapshot migration as 7, the time of memory data migration and
the transfer of new disk writes as 7T,,, and the time of base image migration as 7;. All
of them are predictable by monitoring the critical parameters [2], such as available
migration bandwidth, memory dirty rate, disk dirty rate, etc. When base images can
be reused at the destination site, 7T} ~ 0. There are two possible relationships between
the two migration processes. (1) T, < T, + Tr, i.e. the destination site prepares base
images before the VM is handed over to it, as shown in Figure 5.22(a). (2) T} > T\, + T,
as shown in Figure 5.22(b).

Under the first situation, everything will go well as we expected (migrating storage
data before memory data). However, for the second situation, if memory data migration
is started at 7, in the Figure 5.22(a), it will lead to the problem of remotely-accessing
base image blocks. To this end, CBase initializes memory data migration and new
disk write transfer at 7; to make base image and memory data migrations finish at the
approximate time. From Figure 5.22(b), we can get that 7; = T, + (T — T)n)-

5.2.3 Evaluation

In this section, the performance of CBase is evaluated under a variety of conditions
and compared with existing related migration mechanisms. There are many metrics
used for assessing a migration strategy, such as total migration time, total network

5.2 Central Base Image Repository

95

96

Central repository Peer data

Central repository centers

3 o
‘o, § N
04? v @
'9004? I, 4)
s A
2‘?0;& % /
\r ¢ \) Z00Mbis
4%%'\:12/5 \—J Source 50ms Destination e
Source Destination data center data center
data center data center (9
(a) (b)

Figure 5.23: The experimental testbeds. (a) The testbed for the migration with data deduplica-
tion, (b) the testbed for the migration with P2P file sharing.

traffic, downtime, service degradation level, etc. For storage data migration, total
migration time and total network traffic are the two main performance metrics. Since
our optimizations are focusing on storage data migration, we will evaluate CBase from
these two aspects.

Experimental Setup

We evaluate the performance of CBase in an environment with three DELL Precision
T1700 SFF workstations and 50 virtual servers. Each workstation is equipped with
one Intel 8-core i7 3.6GHz processor, 16GB RAM and 2TB 7200rpm SATA device.
One of them is running as the central repository, and the other two are virtualized
and act as the source and the destination data centers, respectively. The 50 virtual
servers are the peer nodes to test the migration performance of P2P file sharing. As
shown in Figure 5.23, the network performance between data centers is shaped as
400Mb/s bandwidth and 50ms latency. Because each data center gets base images
from the central repository, we assume that there is a high-speed link between the
central repository and the destination data center. The performance is set as 1000Mb/s
bandwidth and 25ms latency. All migrated VMs in our test are configured with 1 CPU
and 1GB RAM. To eliminate the interference of other co-located VMs on migration
performance, the source host and the destination host only run the migrated VM(s).

All tests are conducted 10 times, and the average is set as the final result. Because
the one-layer image structure (storing the storage data of a VM in a single image file) is
rarely used by cloud provider at present, we evaluate our proposals by comparing with
the following migration mechanisms.

* NN2. No data deduplication operation is conducted on VM storage data during
migration. It indicates that the whole virtual disk of the migrated VM will be
transferred to the destination site. There is no central repository for base images.

Chapter 5 VM Migration over WAN—Storage Data Migration

Different data centers deploy and use their own base images. VM images are
stored in the two-layer structure. This is the baseline of our experiment.

* DN2. Data deduplication is conducted on the whole storage data of a VM during
migration. There is no central repository for base images, and VM images are
stored in the two-layer structure.

* DN3. The migration method of LayerMover. Data deduplication is only conducted
on base images during VM migration. The fingerprints and similarities of base
images are pre-treated as discussed in Section 5.2.2. There is no central repository
for base images, and VM images are stored in the three-layer structure.

* DR3. The system designed in this chapter, and base images are migrated with
optimized data deduplication.

e P2P-25. The system designed in this chapter, and base images are migrated with
P2P file sharing. 25 peer nodes (seeds) exist in the P2P file sharing system.

* P2P-50. The system designed in this chapter, and base images are migrated with
P2P file sharing. 50 peer nodes (seeds) exist in the P2P file sharing system.

Data deduplication uses 4KB fixed block size [120, 52]. We assume that for a specific
VM it can find the same amount of duplicated data blocks at the destination site no
matter how its image is stored (in two-layer structure or three-layer structure). The
similarity situation between the migrated VM image and the images at the destination
site is denoted as (a,b). a and b indicate the duplication ratios of the OS image and
the WE image of the migrated VM, respectively, when the image of the migrated VM
is stored in three layers. We assume that there are 1% duplicated blocks located in
the UD portion of the migrated VM image for NN2 and DN2. We generate different
amount of duplicated blocks at the destination site to simulate different image similarity
conditions. For P2P file sharing, the destination site is the only one node which is
downloading, which denotes that it does not need to upload blocks to other peer data
centers.

Single Migration

For the two types of deployment methods for two-layer image structure: applications
are installed with OS image and applications are stored with user data, we only take
the latter one in our experiments. Because existing migration methods with data
deduplication do not take image structure into consideration, different image structures
have no impact on migration performance. The same four types of VMs as Section 5.1.6
are deployed for evaluation (as shown in Table 5.4).

5.2 Central Base Image Repository

97

98

N
a
o
N
a
o

WS-Sto Wis-Sto
S-Mem

S-Mem
ac

n
o
oS
n
o
o

-
o
=}
=
a
=}

-
o
S
=
o
S

Total migration time (s)
Total migration time (s)

a
o
41
o

%
7
1
7
%

® p2p-50

idle static dynamic compile idle static dynamic compil
(a) Similarity ratio=(5%,5%) (b) Similarity ratio=(30%,30%)
250
WSSt

200 S-Mem
) c
[<£)
g
= 150
o
g
£ 100
=
kS

50

RS
S
S

25 (SS9

AN / A
O NNOOMO O NN M o ANNOOMO O NNOMO O
ZZZ2END ZZZEND ZZZEND ZZZEND
Z0O0O0Oaoa Z0O0O0aoa ZOO0Oaoaaoa Z0O0O0aoa
N INENY NN N
aa [alya iy [alya iy oo
idle static dynamic compile

(c) Similarity ratio=(60%,60%)

Figure 5.24: The total migration time with different migration mechanisms and different VMs.
S-Sto is the migration time of the storage data of the migrated VM, and S-Mem is
that of memory data migration. Especially, for DR3, P2P-25, and P2P-50, S-Sto
denotes the migration time of the UD image from the source site, and C is the
migration time of base images from the central repository. This denotation is
applicable for all figures in this chapter.

Three similarity conditions are used to evaluate the migration performance of DN2,
DN3, DR3. According to Figure 5.24, we have the following observations: (1) NN2,
P2P-25 and P2P-50 are not affected by image similarity because of not using data
deduplication. (2) DN2 and DN3 almost show the same trend, but DN3 is better than
DN2. This illustrates that the optimizations to data deduplication proposed in Section
5.2.2 lower the overheads of data deduplication and increases deduplication efficiency.
Both DN2 and DN3 prolong the total migration time when the image similarity is small
(i.e. (5%,5%)). The bigger the VM image size is, the more they will prolong. It indicates
that a big image size and a small amount of duplicated blocks found for it results in a
big overhead and a small benefit to migration performance. When the similarity ratio
reaches (30%,30%) and (60%,60%), DN2 and DN3 get a better migration performance
than NN2. These results show that the optimization of existing data deduplication to
the total migration time is highly related with the image similarity condition, even
though only conducting data deduplication for base images (DN3). (3) DR3 can reduce
the total migration time despite the similarity is small, at (5%,5%). This is because

Chapter 5 VM Migration over WAN—Storage Data Migration

8000 8000

. 7000 | | ®NN2 - 7000 | | mNN2 .
g SDN2 S g SDN2 7
.1_-; 6000 @ DN3 ; 6000 & DN3
g g
£ 5000 ZDR3 £ 5000 % DR3
x k9
5 P2pP-25 5 P2P-25
2 4000 2 4000
@ @P2P-50 @ ©P2P-50
T 3000 T 3000
(s} o
= [
2000 2000
1000 1000 H H
: . : . y . - O - . - . - . -
static dynamic compile idle static dynamic compile
(a) Similarity ratio=(5%,5%) (b) Similarity ratio=(30%,30%)

8000

@ NN2
SDN2
#DN3

7000
6000
5000 7 DR3

P2pP-25
4000

@P2P-50

3000

Total network traffic (MB)

2000

1000

idle static

(c) Similarity ratio=(60%,60%)

compile

Figure 5.25: The total network traffic when migrating different applications with different
migration methods.

the deduplication operation is moved to the central repository, and its side effects
are overlapped by the migration of UD layer data and memory data from the source
data center. Compared to NN2, DR3 improves the migration performance for different
applications on average by 39%, 45%, and 49% under the three similarity situations,
respectively. (4) When the similarity ratio is (5%,5%), P2P-25 and P2P-50 can finish
migrating base images faster than DR3, while DR3 becomes faster than P2P-25 and
P2P-50 as the similarity ratio increases. However, even though when P2P-25 and P2P-50
are better than DR3, they lead to longer total migration times. This is due to the fact
that P2P file sharing takes up too much network bandwidth of the destination host,
which decreases the migration speed of UD image from the source site. This is verified
by the longer migration time for UD image with P2P-25 and P2P-50 in comparison with
DR3. (5) Due to the same reason, P2P-50 exhibits a worse performance than P2P-25.
We assume that there is a value in the number of seeds which will result in a proper
migration speed for base images to achieve a shorter total migration time than DR3.
(6) DR3, P2P-25 and P2P-50 see a small performance improvement as the similarity
ratio increases. This results from the fact that the migration process of the source site
becomes the bottleneck of VM migration. (7) Overall, the separation of base image
migration from the source data center can significantly improve the total migration time,
and migrating base images with data deduplication is better than P2P file sharing.

5.2 Central Base Image Repository

99

100

250 8000
. S-Sto =NN2

2200 | | us-Mem I I ; 7000 N = _
E g g
£ | lec II S50 | | mpng = g
2 £ 5000 | | =DR3 E E
2100 0 III III < 4000 | | EP2P-25 = =
= 5] g g
S 50 m i £ 3000 g E
il I = =
0 anll A AHE Gl g 2000 — =
222283 222883 222283 222BL3 F 000 | E =
Z000dgd Zbooggd Zoooggd zooogg l g g

. . - ! 0 < -

idle static dynamic compile idle static dvnamic compile

(@) (b)

Figure 5.26: The total migration time and total network traffic for OS reuse.

250 8000
@200 Ssto I @ 7000 | | ENN2
g BS-Mem < 6000 DN2
£ 150 I I S mDN3
g £ 5000 CBase
2100 B I I g 4000
—_ o
2 50 |m - nn 2 3000
m | = 2000 |
0332% 2228 2228 2228 F =
zoo§ zooé zoo§ zooé 1000 =
. . . . 0 L=
idle static dynamic compile idle static dynamic compile
(a) (b)

Figure 5.27: The total migration time and total network traffic for WE reuse.

The total network traffic of live VM migration is affected by a variety of factors, such
as memory dirty rate, disk dirty rate and total migration time, etc. It is an important
metric to measure the interruption of VM migration to the services running in the
source data center and the destination data center. The results regarding the total
network traffic of migrating the four types of VMs with different migration methods
are shown in Figure 5.25. Straightforwardly, for all of the four applications, NN2 has
the same network traffic under different similarity ratios. We can see that even though
DN2 increases the total migration time when the similarity ratio is (5%,5%), it still
reduces the network traffic, compared with NN2. It indicates that existing migration
mechanisms with data deduplication can only guarantee lowering network traffic rather
than total migration time. Obviously, the network traffic decreases with the increase
of similarity ratio. DN3 is better than DN2, and in turn DR3 is better than DN3. This
is because a shorter migration time leads to less newly-dirtied data transferred from
the source site. For P2P file sharing, no optimization is observed in comparison with
NN2. In our experiment, the destination host does not upload base image blocks to
other peer data centers. We can predict that when there are other peers which are also
downloading the base image, P2P will result in more network traffic than NN2.

Chapter 5 VM Migration over WAN—Storage Data Migration

Base Image reuse

One advantage of the central base image repository is that base images can be
reused between different data centers. In this section, we explore the performance
gains resulting from reusing base images at the destination site during VM migration.
However, it is impossible to reuse base images for NN2, DN2 and DN3 because base
images are created in individual data centers. Even though there is a base image which
runs the same OS or software stack with the migrated VM at the target site, they still
need to use data deduplication to construct the base images of the migrated VM.

For a fair comparison, when the base images of the migrated VM can be reused at the
destination site for CBase, we generate a high ratio of duplicated blocks for DN2 and
DN3 at the destination site. As is discussed in Section 5.2.2, there are two situations for
base image reuse: OS image reuse and WE image reuse. We set the similarity ratio as
(60%,60%) [10, 194] for DN2 and DN3 under these two reuse situations. For the first
situation, the similarity ratio of the WE image is set as 60% for DR3. For the second
situation, there is no data transferred from the central repository for DR3 because both
OS and WE images exist at the destination site.

For OS image reuse, both the total migration time and the total network traffic see
the similar trend as the results in Figure 5.24 and 5.25, respectively. But because the
OS image will not be migrated in CBase, DR3, P2P-25 and P2P-50 show a further better
performance in comparison with NN2, DN2 and DN3. For WE image reuse, CBase
only transfers data from the source site without base image migration, so DR3, P2P-25
and P2P-50 have the same migration performance. We combine and denote them as
CBase, as shown in Figure 5.27. From the results, we can see that CBase is much better
than other migration mechanisms regarding both the total migration time and the total
network traffic. Furthermore, the migration for the VM which has a bigger base image
size can get more performance benefits from CBase.

UD Image Migration

To evaluate the performance of the optimization to UD image migration in Section
5.2.2, we compare CBase with DN3. The migration of the newly written disk blocks
is overlapped with memory data migration. We can use the total migration time of
these two parts to deduce the performance of the UD image migration, because for a
specific VM which is running a stable workload the migration time of memory data
almost is a constant. As shown in Figure 5.28, we pre-migrate OS and WE images and
the original UD image to the destination site for DN3, and assume OS and WE images
can be reused at the destination site and the snapshot of UD image is also transferred
to the destination site for CBase. Now, both DN3 and CBase only need to iteratively
copy the newly-dirtied disk blocks and simultaneously migrate memory data to the
destination site.

5.2 Central Base Image Repository

101

102

VM VM

Iteratively copying

Iteratively copying

Source site Destination site Source site Destination site

(a) DN3 (b) CBase

Figure 5.28: The experimental environments of DN3 and CBase for testing the performance of
UD image migration.

80

DN3

m CBase |

idle static dynamic compile

~
o

o

N Wb o
o O O

o

Migration time (s)

=
o o

Figure 5.29: The migration time of DN3 and CBase for newly-dirtied disk blocks and memory
data.

From Figure 5.29, we can observe that CBase has a smaller migration time for
the four types of VMs than DN3, which indicates that CBase has a better migration
performance for the new-written disk blocks than DN3. In other words, CBase has a
faster migration speed for UD image than DN3. Furthermore, the bigger the size of the
original UD image is, the better CBase performs compared to DN3. In particular, CBase
increases the migration performance in comparison with DN3 by 0.5%, 3.7%, 18.9%
and 9.4% for these four VMs, respectively.

Correlated VM Migration

In this section, the performance of migrating multiple correlated VMs is explored. We
deploy a popular three-tier web benchmark, the Rice University Bulletin Board System
(RUBBo0S) [140]. The presentation tier, the web tier and the database tier consist
of 1 VM, 2 VMs and 2 VMs, respectively. Because the two types of two-layer image
structures will incur different total storage data size for these VMs, we compare CBase
with the migration performances of these two image structures. For a better description,
we name the two types of two-layer image structures as 21 and 22, respectively. The
image sizes of these VMs and the data sharing structure of them are shown in Table 5.6.
Sequentially or simultaneously migrating multiple VMs is an issue orthogonal to our
focus of this paper. We simultaneously migrate the VMs of RUBBoS. The total migration

Chapter 5 VM Migration over WAN—Storage Data Migration

Table 5.6: The image size (in MB) of the VMs in RUBBoS. The data sharing of base images is
also illustrated in this table. For example, for the second type of two-layer image
structure, the base image of web server is shared by two VMs.

Layer | Frontend | Web1|Web2 | DB1 | DB2
oS 1,340
Two-layer(21) | WE+UD | 5,053 [2,309 | 2,540 | 20,769 | 21,202
Total 53,213
OS+WE | 6,210 3,505 5,889
Two-layer(22) | UD 167 134 | 128 [16,176 | 16,269
Total 48,478
oS 1,340
Three-laver WE 4,908 2,204 4,583
Y UD 156 114 | 123 | 16,195 | 16,258
Total 45,881
1800 AT 65000
1600 § N ﬁTT-(eo%,GO%)
__1400 N\ N \ ——TN-(5%5%) | | 60000 —
jg’ 1200 i ‘- § —#=TN-(60%,60%) %
= o 4 55000 £
S 1000 X 2 : 8
2 = & : 35
g 800 2 _ 1 50000 £
T 600 2N N NE/AE 3
= 00 : = 5 : 4 | 45000 e
= o N o
o0 \NE NE NE N NE N N
N i :EE' N :: N E:- N o NN EE- AN i N :: 40000

NN21 DN21 NN22 DN22 DN3 DR3 P2P-25 P2P-50

Figure 5.30: The total migration time of different approaches for RUBBoS. TT: total migration
time, TN: total network traffic.

time is the duration between migration initialization and the time when all VMs are
handed over to the destination site. The total network traffic is the data received by the
destination site during the entire migration time.

We test the total migration time and total network traffic under two image similarity
conditions ((5%,5%) and (60%,60%)) for data deduplication and two peer conditions
for P2P file sharing (25 seeds and 50 seeds). From Figure 5.30, when the similarity
is (5%,5%), same as the performance of single migration, DN21 and DN22 lead to a
longer migration time in comparison with NN21 and NN22, respectively. The migration
for the VMs with 21 image structure has a worse migration performance than that with
22 image structure. This is because 22 image structure has a smaller total image size
than 21 image structure, as shown in Table 5.6. Under both similarity conditions, DR3
is better than DN3, DN3 is better than DN2, and in turn DN2 is better than NN2 on
both performance metrics. DR3 increases the total migration time by 34%, 40%, 28%,
35% and 19% when the similarity condition is (5%,5%), compared with NN21, DN21,
NN22, DN22 and DN3, respectively. When the similarity condition is (60%,60%), they
are 35%, 28%, 29%,24% and 5%. DR3 also results in a significant decrease in the total

5.2 Central Base Image Repository

103

104

migration network traffic. For example, when the similarity is (60%,60%), it reduces
the network traffic by 27%, 9%, 20%, 4% and 0.3% in comparison with NN21, DN1,
NN22, DN22 and DN3, respectively. Similar to the migration of a single VM, both
P2P-25 and P2P-50 have worse performances than DR3 on total migration time and
total network traffic. However, P2P-50 has a slightly shorter total migration time than
P2P-25, which indicates that P2P file sharing can show its strength when a huge file
will be shared. Both P2P-25 and P2P-50 gain better migration performance than other
migration mechanisms except DR3.

5.3 Chapter Summary

Many issues accompany with live VM migration over WAN. The most difficult one is
how to fast migrate the big storage data of a VM through the Internet. In this chapter,
we propose two optimizations for storage data migration: a three-layer image structure
and a central base image repository.

In the first optimization, the storage data of a VM is physically separated into three
layers. Combining the new image structure and the similarity feature of VM images,
we design a migration system—LayerMover. Several mechanisms are designed for data
deduplication to improve VM storage data migration performance.

In the second optimization, based on the three-layer image structure, a central
repository is introduced to store base images for cloud data centers. With this structure,
two technologies (data deduplication and P2P file sharing) are utilized for storage
data migration. A migration strategy also is proposed to lower the overhead of UD
image migration, and a mechanism is designed to improve the robustness of migration
process.

Chapter 5 VM Migration over WAN—Storage Data Migration

Chapter 6

VM Migration in MEC—User
Mobility-induced VM Migration

According to the review of the migration technologies for MEC environments in Section
3.3, many problems are outstanding for live VM migration in MEC. Regarding the
problems discussed in Section 1.1.3, two contributions are made in this chapter. Specif-
ically, the first one (Section 6.2) is to decrease storage data migration time and the
service degradation during migration when users have high latency requirements. The
second one (Section 6.3) is to make a migration plan to reduce the network overhead
of constant VM migration when users’ latency requirement is not so high (i.e., a VM
can be several hops away from its users).

European Telecommunications Standards Institute (ETSI) only proposed a reference
architecture for MEC [45]. Different deployment variants are possible. Our study is
based on the following deployment structure [105].

* Each UE only offloads computation tasks to one VM. A VM in an edge cloud data
center can be shared by several users [52]. Also, one UE may request several VMs
in an edge cloud data center. We assume that a UE only corresponds to one VM,
and each VM also only provides services to one UE.

* A UE only offloads one type of computation task to an edge cloud data center at any
time. This is based on the users’ habitats of using UE. It is seldom to open two or
more compute-intensive mobile applications simultaneously on a UE. In addition,
some UE, such as sensors, has a very simple and fixed function.

6.1 UE Mobility

According to the presented environments for VM migration, we classify UE mobility
into two categories: certain moving trajectory and uncertain moving trajectory. The
mobility with certain moving trajectory means that the cells which a UE will visit are

105

106

known. For example, the moving trajectory of a UE can be gained from a navigation
application (e.g., Google maps) running on the same UE. Also, some UE may have
a fixed moving trajectory, such as, the sensors on a bus. A trajectory is denoted by
(S1,52, 53, ..., S,), and n is the total number of cells visited by a UE. The corresponding
edge cloud data centers on the path are denoted by (E1, Es, Es, ..., E,,). However,
sometimes only the start point S; of a UE is known before initializing VM migration.
We have no idea about which cell a UE will access next and where its destination is, i.e.,
uncertain moving trajectory. To take full advantage of the environment features, we
design optimization mechanisms for VM migration in MEC based on this classification
of UE mobility in this chapter.

6.2 Migration Performance Improvement

6.2.1 Problem Statement

As discussed in Section 2.5, VM migration in MEC faces the same challenges as the
migration over WAN. However, the new environment features of MEC also bring new
challenges and optimization opportunities for VM migration. VM migration over WAN
is a one-time operation, while the migration in MEC is a constant operation. When a
UE is roaming in the RAN, its VM must be constantly migrated between edge cloud
data centers to meet the latency requirement, which imposes a higher requirement for
migration performance, especially storage data migration. According to this migration
characteristic, a question comes to mind: can we let edge cloud data centers cooperate
with each other to improve VM migration performance?

Another problem with live VM migration in MEC is: when will the migration of a VM
be initialized when its UE is moving between cells. Some mobile applications (such as
online gaming) have a very high requirement on service latency so that the VM must be
located in the edge cloud data center where the UE is located at. In other words, the VM
must be migrated along the movement of the UE. Under this situation, a too-early or
too-late VM migration start-up will hand over a VM to the next edge cloud data center
before and after the UE moves into the corresponding area, which in turn leads to an
increase of latency and a degradation of service quality, a problem called inconsistency
between UE mobility and VM migration. As shown in Figure 6.1(a), when the UE moves
into the service area of edge cloud data center (EC) B and its VM has not been handed
over to EC B, we denote this situation as late VM handover. The other situation is the
VM is handed over to EC B before the UE arrives at the service area of EC B, as shown
in Figure 6.1(b), called early VM handover.

Based on above discussions, we illustrate VM migration steps and the relationship
between VM migration and UE mobility in Figure 6.2. The goals of our first contribution
are twofold.

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

Backhaul network Backhaul network

fa—
'w":"og - ——

(a) Late VM handover (b) Early VM handover

Figure 6.1: The inconsistency problem between VM migration and UE mobility.

A
VM
handover
.VM. Memory data migration :
migration H
Synchronization of disk writes
Transfer of original disk data_| '
UE mobility o :
UE mobility :
i >
Y Ti
T 1. Y ime
Late VM Early VM
handover handover

Figure 6.2: The relationship between VM migration and UE mobility. Both early and late VM
handovers are shown in this figure.

* Firstly, based on the optimizations in Chapter 5, we further try to improve the
storage data migration speed (i.e., Ts in Figure 6.2) between edge cloud data
centers in the MEC environments by taking full advantage of UE mobility features.

* Secondly, the tasks of a VM migration process are carefully orchestrated to
alleviate the service degradation resulting from the inconsistency between UE
mobility and VM migration, i.e., decreasing T in Figure 6.2. In other words, it is
to make VM handover and UE entrance to a new cell close to each other.

6.2 Migration Performance Improvement

107

108

6.2.2 Algorithm Design

We deploy and store VM storage data with three-layer structure. The storage data
of a VM is denoted by (B,, By, W). B,, B, and W represent the OS layer, the WE
layer and the UD layer of a VM, respectively. Base images (OSes and WEs) can be
pre-deployed and stored in a repository which is accessible to a region of edge cloud
data centers, such as, in the place of Base Station Controller (BSC) or a central cloud
data center. All edge cloud data centers download base images from the repository to
their local storage systems to create VMs, like the structure of CBase.

With this deployment structure, we assume that both the OS image and the WE image
(B, By) of the migrated VM exist at the target site for each migration. This assumption
is based on the following facts. In MEC environments, what users mainly care about is
whether an edge cloud data center can return computing results as soon as possible
to meet the low-latency requirement. In most instances, there is no constraint on the
selection of the OS image which the VM is running on [145]. Therefore, an OS image
can be shared by as many WE images as possible to improve the reuse possibility of OS
images between different edge cloud data centers during VM migration. Furthermore,
each edge cloud data center is serving a variety of users within its coverage area. It
is highly possible that the users in different cells are using the same application [14].
Therefore, WE images have a high reuse possibility among edge cloud data centers as
well. In addition, even though the base images of the migrated VM do not exist at the
destination site, the source site can inform it to download them from the base image
repository before or during VM migration. With this assumption, the step transfer of
original disk data in Figure 6.2 only needs to transfer the UD layer W of a VM.

In this section, two migration algorithms are designed for the two types of UE
mobility to improve storage data migration performance, specifically, a Jump and Delta
Migration (JDM) algorithm for the certain moving UE and a Speculation and Snapshot
Migration (SSM) algorithm for the uncertain moving UE. At last, two migration initial-
ization mechanisms corresponding to the two migration algorithms are proposed to
alleviate the inconsistency problem.

Jump and Delta Migration Algorithm

Since the edge cloud data centers the UE will pass are known before migration,
(E1, E9, Es, ..., E,) (n > 2), the core idea behind Jump and Delta Migration (JDM)
algorithm is to let these edge cloud data centers cooperate with each other to improve
migration speed, as shown in Algorithm 2.

We take three successive edge cloud data centers E;, F; 11, Ejro € (E1, E2, Es, ..., Ey)
to elaborate on the migration procedure of the JDM algorithm. The corresponding
cells of the three edge cloud data centers are S;, S;+1, Sit2. When the VM is run-

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

(a) (b)

Figure 6.3: Migration procedure of JDM algorithm. (a) Delta migration or the migration
between the first and the seond edge cloud data centers. (b) Jump migration. (c)
Delta migration.

ning in an edge cloud data center, some disk blocks will be changed and new data
will be constantly written to the UD image. We denote the UD image versions in E;,
E; 11 and F;.o by W;, W; 1 and W, respectively. The extreme situation is that no
new data is written to the UD image in each edge cloud data center, we will have
W; = Wiy1 = Wi4o. Otherwise, W, is the latest version of the UD image. The JDM
algorithm contains two operations: jump migration and delta migration.

* Delta migration: at the beginning, a UE is moving in cell S; and its VM runs in
the corresponding edge cloud data center E;. Once VM migration is initialized, if
a previous version of the UD image W;_; is present at the next edge cloud data
center F; 1, only the difference W; — W;_; between W; and W;_; is synchronized
to F;11, as shown in Figure 6.3(a). Otherwise, it will be a full transfer of W; to
E; 1, which will happen between the first and the second edge cloud data centers
(E1 and EQ).

* Jump migration: after the VM is handed over to E;;, E; continues to migrate
the UD image W; to E; 2, as shown in Figure 6.3(b). Starting this step after VM
handover is to prevent it from competing for the network bandwidth with the
migration process between E; and F; . After this step, the resources of the VM
at F; can be released. When FE;,; starts to migrate the UD image W, which

6.2 Migration Performance Improvement

109

110

Algorithm 2 JDM algorithm
1: if n = 2 then

2 Transfer W from E; to Es;
3: Return;
4: else

for all FE; € <E1, FEs, E3, ..., En—1> do
/*Delta migration*/
Transfer W, from FE; to F;.1; /*If W;_; is not present in F; 1, it will be a
full transfer of W;. Otherwise, only W; — W;_; is synchronized to E;1*/

Nou

8: /*Jump migration*/
9: if ({ <n —2) and (the VM is handed over to E;) then
10: Transfer W; from E; to E;o;
11: end if
12: end for
13: end if

contains some newly-dirtied blocks, a previous version W; is already located in
Eito.

From the procedure of JDM, we can see that when the UE only moves from one
cell to another, i.e. n = 2, UD image migration cannot get benefits from JDM. In
addition, when a UE frequently moves between two cells, such as office and home, we
can keep the copy of its UD image at both these two edge clouds. The copy which is
using by the UE is a primary copy, and another acts as a secondary copy. When the
UE stops computation offloading in the primary site, the changes of the UD image are
synchronized to the secondary site. When the UE moves to the secondary site, a VM
with the latest data can be fast provided.

Speculation and Snapshot Migration Algorithm

When the next cell a UE will arrive at is unknown, JDM is not applicable anymore.
If no optimization technology is adopted, a VM only can be migrated after the corre-
sponding UE moves into the next cell, which will result in the late-handover problem.
Actually, in most cases, the movement of a UE is not stochastic [190], and it is pre-
dictable by combining different information, such as, movement history, living habitats,
road topology, etc. There are many available algorithms to predict the movement of a
UE [154, 95, 191, 153].

The prediction error and computation overhead of a mobility prediction algorithm
increase in proportion to the distance between the predicted location and the UFE’s
current location. Therefore, we only take advantage of the possibilities of a UE moving
in its neighbor cells. By using a mobility prediction algorithm, we denote the achieved
possibilities of a UE moving from its current location to the six neighbor cells as
(Py, Py, P3, Py, P5, Ps).

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

Algorithm 3 SSM algorithm

1: Make an external snapshot for the UD image;
2: while S # 0 or P, = 100% do /*1oop until the UE stops or the next cell is fixed*/

3: while 1 do
4: Update (Pl,PQ,Pg,P4,P5,P6>;
5: Select the two biggest possibilities P; and P;. /*P; > P;*/;
6: if P, > Tdy or (P; + Pj > Tdy and P, — Pj < Td,) then
7: break;
8: end if
9: end while
10: if SL is not at P; or P; then
11: Migrate SL to the selected edge cloud data center(s);
12: end if

13: end while

14: if S = 0 then

15: Return;

16: end if

17: if P, = 100% then

18: Migrate W L to this edge cloud data center;
19: end if

In this section, a Speculation and Snapshot Migration (SSM) algorithm is designed
to improve the migration speed of UD images based on UE mobility prediction. The key
insight of SSM is to migrate a portion of UD image data to the possible next edge cloud
data center(s) as early as possible to reduce the service degradation time resulting from
a late initialization of VM migration.

The procedure of SSM is shown in Algorithm 3. At the beginning, the UE is moving
in the cell S, and its VM is running in the corresponding edge cloud E;. An external
snapshot [132] is taken for the UD image. With this operation, an image file will be
created to save all new disk writes from the VM, and the original disk data becomes
a snapshot file (read-only). Now the UD image is changed into two layers (files): a
snapshot layer and a writable layer, denoted by SL and WL, respectively. We have
(Boy, By, W) = (By, By, SL, WL).

The SSM algorithm contains three steps: selection of the possible next cell(s),
migration of the snapshot layer and migration of the writable layer, as shown in
Figure 6.4. In the first step, a mobility prediction algorithm periodically updates the
possibilities (P, P», Ps, Py, Ps, Ps). After each update, the two cells with the highest
possibility are selected. Their possibilities are denoted by P; and P; (P; > P;). When
the two highest possibilities meet one of the following two conditions: (1) P; > T'd,
(2) P; + P; > Tdg and P; — P; < T'dy, SSM moves into the second step. In the second
step, the snapshot layer is migrated to the corresponding edge cloud data center(s) of
the selected cell(s) if the snapshot layer was not migrated to them before.

6.2 Migration Performance Improvement

111

112

Make an external snapshot |

» Mobility prediction [4—————

v

Select the two highest
possibilities P; and P;

Transfer SL to the
selected edge cloud(s)

Initialize the migration
of the writable layer WL

Figure 6.4: The procedure of SSM algorithm.

However, the possibilities for next cells may vary with the movement of the UE.
The selected cell(s) (P}, or, P, and P;) may be not the one the UE will arrive at next.
Therefore, SSM repeats the above two steps until the next cell is fixed (getting the
possibility of 100%) or the UE stops moving. During the loop, each neighbor edge
cloud data center at most gets one copy of SL. If the UE stops moving (i.e., S = 0),
VM migration will be terminated correspondingly. Otherwise, one of the neighbor cells
must get the possibility of 100% as the UE moves. The extreme situation is that the
next cell is fixed when the UE moves to the border of the current cell. Once the next
cell is fixed, SSM begins to transfer the writable layer W L to the corresponding edge
cloud data center (more details in Section 6.2.3).

During the selection of the possible next cell(s), T'dy and T'd; can be adjusted to
meet different migration requirements. For example, a bigger 7'dy, means migrating
the snapshot layer to the next edge cloud data center with a high confidence. This is
beneficial to save network traffic, but it may result in a late migration initialization. A
smaller T'd; makes the snapshot layer be prepared at two neighbor edge cloud data
centers which have similar possibilities to guarantee a good migration performance.

6.2.3 Migration Initialization Mechanism

Both too-early and too-late migration start-up will prolong the service degradation
time. In this section, we design migration initialization mechanisms for JODM and SSM

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

algorithms to minimize the service degradation time resulting from the inconsistency
between VM migration and UE mobility.

We set the duration that a UE moves from its current location to the cell border and
enters a neighbor cell as Tj, the time the UE has stayed in the current cell as 7}, and
the total migration time of its VM as T,,. If a UE does not stop in the current cell, 7}
will decrease and 7), will increase along with its movement. The sum of 73 and 7, is the
total time 7, a UE stays in a cell (T, = T}, + T3). The key idea behind the initialization
mechanisms is to minimize |7, — 73|, as discussed in Section 6.2.1. We assume that
the sojourn time of a UE in a cell is bigger than the total migration time of its VM, i.e.,
T, > T,,. Because when there is T,, < T},, it indicates that the UE stays in a cell a very
short time or it has a cumbersome VM. Under these situations, the UE can change more
computation tasks to local execution to improve its VM’s mobility.

When the UE’s moving trajectory is certain, 7}, and 7} can be calculated by using
the moving speed of the UE. As discussed in Section 4.1, the migration time 7, can be
calculated with monitored parameters as follows [2, 193].

Sy M(1—pnt?)

u D’m
Tmzi YR = —
BY Ba-, 0 YT B-D.

(6.1)

S, and M are the sizes of the UD image and the allocated memory space of the
migrated VM, respectively. B is the available network bandwidth for VM migration.
p is the ratio between memory dirty rate D,,, and the available migration bandwidth
B — D, for memory data migration. Dy is the dirty rate of storage data. Based on
above analysis, for the UE with a certain moving trajectory, the migration of its VM
is initialized when there is T,,, = T, for each visited cell to alleviate the inconsistency
issue of UE mobility and VM migration.

When the moving trajectory of a UE is uncertain, the snapshot layer of a UD image
is migrated as early as possible once a possible next cell is selected according to the
SSM algorithm. Hence, we separate a migration process into two parts: the migration
of the snapshot layer and the migration of the writable layer and memory data. The
times for these two parts are denoted by 7Ty; and T,,,;, respectively. Ty, and T,,; can be
gained by using Equation (6.2) and (6.3), respectively.

Tsl = (62)

Ty Dg | M(1—p"t?)

T,
v B B(1-p)

(6.3)

Here, T; is the total time of a UE offloading computation tasks to edge cloud data
centers after a snapshot layer has been created for the UD image of its VM.

6.2 Migration Performance Improvement

113

114

L= C

Figure 6.5: The times of a UE moving into its neighbor cells by using mobility prediction.

We represent the times of a UE moving from the current location to a neighbor
cell by (T1,T5,T3,T4,T5,Ts), as shown in Figure 6.5. They can be achieved with the
predicted routes and the moving speed of the UE. Under this situation, 7 is the one
calculated from the route with the biggest possibility, i.e.:

Tb:z_’la 7—‘7, € <T17T27T3aT47T5aT6> (I'I’LdPZ':ma${P1,P2,P3,P4,P5,P6} (64)

As shown in Figure 6.6, we set the time that the next cell is fixed as 7 in the SSM
algorithm. The time that a UE has stayed in this cell until 7 and the time that it needs
to move into the next cell from 7' are denoted by 7, and T}, respectively. There will be
four possible relationships between Tz/v T} and Ty, Ty, as shown in Figure 6.6.

1. Snapshot layer migration finished before 7+ and T, < T} (Figure 6.6(a)).
2. Snapshot layer migration finished after T and T,,; < T}, (Figure 6.6(b)).
3. Snapshot layer migration finished before T and T,,; > T} (Figure 6.6(c)).
4. Snapshot layer migration finished after T and T,,; > T, (Figure 6.6(d)).

To minimize the inconsistency between VM migration and UE mobility, the migration
of the writable layer and memory data is started as follows:

* When T} > T, it is started when T}, = T3
* When T < Ty, it is started at 7.

According to the initialization mechanism, for (a) and (b), the migration of the
writable layer and memory data will be initialized when 7, = T,,;; and for (c) and (d),
it is started at 7y. When the next cell is fixed too late to leave enough time for the
migration of the writable layer and memory data, i.e., the relationships (¢) and (d), it

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

Ty) Tw Ty Twi

VM migration i ’_H VM migration _ ’_H
UEmobiIity—f: > UEmobiIity—f:: _
> Time . - " Time
Ty Ty Ty Ty
(@) (b
Tsi Twi Tl Twi
VM migration —/ "_Aﬁ VM migration| — A
UEmobiIity— UEmobiIity—:'
— T; %—H—’ T;
ime ime
Tp' Tt T Tp' Tt T
© @

Figure 6.6: The possible relationships between VM migration and UE mobility with uncertain
moving trajectory.

will lead to the inconsistency problem between VM migration and UE mobility. This
can be solved from two aspects: shorten the migration time 7),; and reduce the moving
speed of the UE.

T, is determined by two dynamic parameters: the increase rate of newly generated
data (D, and D,,) and the network bandwidth for migration (B), as shown in Equation
(6.3). Therefore, T,; can be shortened by lowering the increase rate of newly generated
data or increasing the network bandwidth, like the performance control algorithm in
Section 4.2. The increase rate of newly generated data can be controlled from both
the UE’s and the cloud data center’s sides. The UE can decrease the number of tasks
offloaded to the edge cloud data center and the edge cloud data center can assign
less CPU time to lower the execution speed of the VM [81]. However, both these two
manners will introduce a big service interruption, which is opposite to our objective
of lowering service degradation. Also, it is impractical and unfriendly to ask a user
to lower his/her moving speed to wait for the handover of his/her VM. In summary,
the optimal solution is to increase the network bandwidth for migration, such as using
MPTCP or assigning more bandwidth to the migration process [167, 109].

6.2.4 Algorithm Performance

In this section, we evaluate the performances of our proposals by numerical studies,
firstly the algorithm for the UE with a certain moving trajectory and then the algorithm
for the UE with an uncertain moving trajectory. The sojourn time of a UE in a cell is
exponentially distributed with an average of 200 seconds. We set three types of VMs,
as shown in Table 6.1. Because only one type of computation task is offloaded to an
edge cloud data center within a period of time by a UE, we assume that the VMs have
a stable memory dirty rate D,,, and disk dirty rate D,. They are configured based on
some previous practical tests [203, 206, 2]. The network bandwidth available for VM

6.2 Migration Performance Improvement

115

116

Table 6.1: The parameters of the migrated VMs.

VM UD | RAM Dy, Dy
(MB) | (MB) | (MB/s) | (MB/s)
VM1 | 500 512 5 1
VM2 | 1000 | 1024 15 6
VM3 | 2000 | 2048 25 10

migration is 100MB/s. The termination conditions of Xen [2] are used to stop the
iteration phase of pre-copy and start the stop-and-copy phase.

We compare our migration algorithms and mechanisms with two simple migration
strategies: M-enter and M-leave. M-enter means to start to migrate a VM from the
current edge cloud data center E; to the next edge cloud data center F;;; once the UE
enters the cell S;, while M-leave initializes the migration when the UE enters the next
cell Si—f—l .

Migration Performance with Certain Moving Trajectory

According to the JDM algorithm, there are two types of conditions for UD image
migration. One is that there is no previous version of the migrated UD image at the
destination edge cloud data center, i.e., the migration between the first and the second
edge cloud data centers, denoted by JDM-1. The other is that a previous version of the
migrated UD image is pre-transferred to the destination site and only newly-dirtied
blocks will be synchronized, denoted by JDM-n.

From Figure 6.7, we can see that M-leave gets the worst performance among these
migration algorithms. This is due to the fact that a late initialization of VM migration
needs to transfer more newly-written disk blocks. Note that migration start time has
no effect on the total migration time of memory data due to the volatility feature of
memory data. Only the memory states during VM migration will be transferred to
the destination site. JDM-1 has longer storage data migration times in comparison
with M-enter for these three VMs due to the same reason for M-leave. JDM-n is better
than both M-enter and M-leave since a previous version of UD image is located at the
destination site except that of VM2. JDM-n gets a longer storage data migration time
than M-enter for VM2, which indicates that the size of newly-dirtied disk blocks exceeds
the size of the original UD image. For these three VMs, JDM-n decreases the storage
data migration time by 21% and 59% on average in comparison with M-enter and
M-leave, respectively. In further, we can get that for JDM, the more cells a UE visits, the
closer the migration benefit is to that of JDM-n, because only the migration between
the first and the second edge clouds is JDM-1 and the rest of migrations are JDM-n.

As shown in Figure 6.8, the migration initialization mechanism for JDM significantly
reduces the service degradation time. Due to a careful orchestration of migration

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

[0}
o

W Storage data migration

-
o

Memory data migration

a o
o O

=N W
o O O

Total migration time (s)
EaN
o

o

& 46 & 4° & 4@‘
LIPS SRy
IS S N
VM1 VM2 VM3

Figure 6.7: Total migration time for the UE with certain moving trajectory.

250
200
150
100

a
o

Service degradation timie (s)

o

Figure 6.8: Service degradation time during VM migration for the UE with certain moving
trajectory.

process, the service degradation time only contains the downtime of memory data
migration which has been optimized to the millisecond level by existing technologies
[29, 119, 17, 81]. However, both M-enter and M-leave have a big service degradation
time because of a remote connection between a UE and its VM, even though M-enter
experiences a shorter storage data migration than JDM for VM2. In further, M-enter
is better than M-leave because less newly-dirtied data will be transferred, as shown in
Figure 6.7.

In summary, JDM is beneficial to reduce the migration time of storage data in most
cases except that the migrated VM has a big disk dirty rate (such as VM2). More
importantly, it can dramatically lower the service degradation duration when a user is
roaming in the cellular network.

Migration Performances with Uncertain Moving Trajectory

Since the next cell a UE will arrive at is unknown, it is impossible to use M-enter to
migrate its VM under this situation. We only compare the performances of SSM with
M-leave. SSM prepares the snapshot layer of a VM to the possible next edge cloud data
center before VM migration, so we use the duration of migrating the writable layer

6.2 Migration Performance Improvement

117

118

@
S

~
o

© M-leave
= SSM

T.Il

VM1 VM2 VM3

t=}

=}

t=}

Total migration time (s)
n w g {2 D

o

=
o o

Figure 6.9: Total migration time for the UE with uncertain moving trajectory.

and memory data as the total migration time of each VM. As shown in Figure 6.9, SSM
greatly decreases the total migration time. Specifically, it is better than M-leave by 56%,
64% and 59% for these three VMs, respectively.

According to the migration start-up mechanism for SSM algorithm (Section 6.2.3),
the service degradation time is determined by two factors: 1) the time 7 when the
next cell is fixed and 2) the remaining data of the snapshot layer when the migration
of the writable layer will be initialized, as shown in Figure 6.6. Therefore, we divide
SSM into two situations: SSM-f and SSM-1. SSM-f denotes that the transmission of the
snapshot layer is finished when the migration of the writable layer will be initialized
(i.e., Figure 6.6(a), 6.6(b) and 6.6(c)), and SSM-I refers to that the snapshot layer is
not fully prepared at the fixed next edge cloud data center at that time (i.e., Figure
6.6(d)). SSM constantly transfers the snapshot layer to the possible next edge cloud
according to the predicted possibilities. We assume that half of the snapshot layer data
are left for SSM-1. Then, we analyze the service degradation time of SSM with different
values of T5.

From Figure 6.10, we can observe that the service degradation time of M-leave is
a constant value for each VM. When the next edge cloud data center is fixed early,
SSM can guarantee a small service degradation time. For example, if the next edge
cloud data center is known before 190s, both SSM-f and SSM-I have a small service
degradation duration for VM1. Furthermore, a VM with a bigger total size (the size
of memory data and disk data), a bigger memory dirty rate or a bigger disk dirty rate
needs a smaller value of T to ensure a small service degradation time, such as 190s
for VM1 while 160s for VM3. This is because these three factors determine the total
migration time of a VM. A migration with a longer migration time must be started
earlier to avoid the inconsistency between UE mobility and VM migration. This is also
applicable between SSM-f and SSM-1. For all these three VMs, SSM-I always sees an
increase of service degradation time before SSM-f. We also can see that even though
the next edge cloud data center is fixed very late (such as 195s), SSM still can get a
smaller service degradation time, compared to M-leave, due to a pre-migration of the
snapshot layer to the next edge cloud data center.

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

[N
~
N
o

o o

12 235
E f<5}
210 £%0
5 —M:-leave < o5 —M-leave
g8 ——SSM-f 2.0 | [ssm
£6 SSM-I 3 SSM-I
N g 10
g 2 S 5
P I —— N R I
160 165 170 175 180 185 190 195 160 165 170 175 180 185 190 195
Tf Tf
(a) VM1 (b) VM2
80
w
=70
£ 60
é 50 —M-leave
230 M-
©
82
g1
(2]

/

_160 165 170 175 180 185 190 195
Ty

(c) VM3

o

Figure 6.10: Service degradation time during VM migration for the UE with uncertain moving
trajectory.

To guarantee a small service degradation time in the situation where the next cell is
fixed too late, the additionally required network bandwidth for migration is shown in
Figure 6.11 according to the discussion in Section 6.2.3. A bigger service degradation
time needs more additional network bandwidth to solve the inconsistency problem
between VM migration and UE mobility.

In conclusion, SSM significantly decreases both the total migration time and the ser-
vice degradation time in comparison with M-leave under different migration conditions.
If required, additional network bandwidth can keep VM migration and UE mobility
consistent.

6.3 Network Overhead Alleviation

6.3.1 System Formulation

A cellular network is composed of many hexagonal cells. Each cell is the signal
coverage area of a base station. For better discussion, cells in the RAN for each UE
are labeled as follows: the start cell of a UE is denoted by Sy, and the other cells
are numbered in rings and clockwise, as shown in Figure 6.12. For each cell S; ;, the

6.3 Network Overhead Alleviation

119

120

60 250
— 2
Dey | [mSSMF =2 = SSM-f
g @ SSM-| S200 || mssMm-l
<40 £
£ 2150
2 8100
820 <
X g 5
o
élo §
Z0 0 -
160 165 170 175 180 185 190 195 160 165 170 175 180 185 190 195
Tf Tf
(a) VM1 (b) VM2
600
200 | [=ssmef
s @ SSM-|
=400
R
2300
&
S 200
X
£100
(5]
z -

160 165 170 175 180 185 190 195
Ty

(c) VM3

Figure 6.11: The required additional network bandwidth to solve the inconsistency problem
between VM migration and UE mobility.

corresponding edge cloud data center is F; ;. The distance between two edge cloud
data centers (E; ; and F,) and that between a UE and its VM are denoted by & and d,
respectively. They are the minimum number of cells transversed while a UE moves from
one to another rather than Euclidean distance. For example, in Figure 6.12, d{3 = 1
and d%3 = 2.

Each UE has a latency requirement [,, for the tasks offloaded to edge cloud data
centers, which is the maximum latency the UE can tolerate. Based on this requirement,
we can calculate the biggest available value for d, denoted by k. Then each edge
cloud data center F; ; has a coverage area A; ;. In other words, when a UE’s VM is
running in the edge cloud data center F; ; and the UE is moving between the edge
cloud data centers of A; ;, there is no necessity to migrate the VM, as shown in Figure
6.12. Otherwise, the VM must be migrated to an edge cloud data center which is closer
to the UE to reduce the latency. The coverage area A; ; of an edge cloud data center
E,; ; is formulated as:

Ai)j = {Em,n’Em,n €F, dg'm < k} (6.5)

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

Figure 6.12: An MEC structure based on a cellular network. Herein, k¥ = 2 and d = 2. The cells
with gray color belong to Ag .

When a UE is roaming in the cellular network, its movement and the migration
of its VM are denoted by sequences I' = {SAg, SA;,SAs,...} (SAg = Sop) and II =
{ECy, ECY,ECy, ...} (ECy = Ey), respectively. EC; is the destination edge cloud data
center of the ith migration. Hence, the total number ¢, of cells visited by a UE equals to
|| " ||, and the total number t,, of migration for its VM is || II || —1. A migration plan is
represented by both IT and #. 7 is a cell sequence and each element in it is the trigger
point of the corresponding migration in II. For example, the ith element in 7 is Sy, »,
and the ith and (i 4 1)th elements in II are F,, and E,,, respectively. It means that
the VM will be migrated from £, , to £, , when the UE is moving in S,, ,. We define
the addition operation between a sequence and an element as appending the element
at the end of the sequence, e.g., {SAp, SA1} + SA2 = {SAg, SA;, SAs}.

6.3.2 Network Overhead of Live VM Migration

To calculate the network overhead of each VM migration, we divide VM migration
into four steps, as shown in Figure 6.13.

e S1: Migrate the original disk data and synchronize the new disk writes to the
destination site.

* S2: Migrate the original memory data.

* S3: Iteratively log and migrate the newly dirtied memory pages to the destination
host. The “iteratively” means that the data transferred in current round are the
pages dirtied in the previous round of data transmission.

6.3 Network Overhead Alleviation

121

122

Step A

S4 VM handover
s3 Iteratively copying
dirtied pages
52 Transfer of original
memory data
Synchronization of disk writes
Transfer of original disk data_ |

S1

_V
Time

Figure 6.13: The schematic graph of VM migration steps.

* S4: When the remaining data is smaller than a preset threshold, the VM is
suspended and the remaining data are copied to the destination host for VM
resumption, i.e., VM handover.

We denote the data transferred in each step by vy, vs, v3 and vy, respectively.
According to the migration sequence, they can be calculated as follows:

Sl:v1 =85+ % x Dg. S and B are the size of the original disk data and the available
network bandwidth for migration, respectively. D; is the disk write rate of the migrated
VM, i.e., disk dirty rate.

S2: vg = M. M is the allocated memory size.

S3: v3 = %DS * T 4+ ﬁ * DV = M(%fppn) [193, 96]. It is calculated by

changing the network bandwidth to B — D; since the synchronization of disk write will

occupy a portion of network bandwidth. D,,, is memory dirty rate and p = Blz - n s

the total number of iterations and can be calculated as follows [193].

lo51 6.6

Here, Thd is the preset threshold for the size of remaining data. We only consider
the situation where the migration process can converge, i.e., the remaining data of the
migrated VM at the source data center can be reduced to smaller than Thd. It means
that the increased speed (Ds + D,;,) of the newly generated data is smaller than the
available network bandwidth (B) for migration.

S4: if we ignore the running states (e.g., CPU registry) due to the relatively small size,
the remaining data for S4 is the memory pages dirtied in the last round of iteration in

S3. Therefore, we can get the data transferred in this step as: vy = 0 Dt =

M
B_DS)nJrl *
M,On+1

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

In summary, the total network traffic V' for a VM migration is:

V=vi+v2a+uvs+wmy

., SDs MOI-pY) o
o SDy M (1-—prt?) D,
-s+ 5+ (- 525)

In MEC, the network bandwidth between the source and the destination edge cloud
data centers decreases with the distance between them. Because the source edge cloud
data center connects to the destination edge cloud data center through the backhaul
network, a bigger distance indicates that more hops will be transversed for each data
transmission. We assume the network resources (i.e., network bandwidth) are evenly
distributed to all base stations and the network bandwidth between two neighbor base
stations is Dy. According to previous studies [47, 186], the network bandwidth between
two edge cloud data centers (F; ; and £, ;) roughly follows the following relationship.

Bl =% By (6.8)

~ is the bandwidth degradation coefficient. It is set as 0.85 according to the practical

measurements in [47, 186]. For a better description, we set p; = BQ o and V}, is the
network overhead when the migration distance is k for the rest of chapter. B; and i are
the network bandwidth and the distance between the source and the destination edge

cloud data centers, respectively.

6.3.3 Problem Statement

When a UE is roaming in a cellular network, the constant migrations of its VM
will incur a huge amount of network overheads, as shown in Figure 6.14(a). The
total network traffic NV resulting from constant migration of a VM can be calculated
as Equation (6.9). i and j are the ith migration and the migration distance of this
migration, respectively.

tm

N=>"V; (6.9)
i=1

When we consider this issue in a wider view, all the VMs in edge cloud data centers
face the same situation, which derives the network overheads of MEC to a further worse
level, as shown in Figure 6.14(b).

Our objective in this section is to minimize the network overhead N without SLA
violation (i.e., meet the latency requirement [/,,). From Equation (6.9), we can see

6.3 Network Overhead Alleviation

123

124

(a) The migration of one VM (b) The VM migrations in MEC

Figure 6.14: The network overheads resulting from VM migrations in MEC.

Table 6.2: The environment settings for understanding the effects of migration distance and
migration frequency on total network overhead.

S(MB) | D;(MB/s) | M(MB) | D, (MB/s) | Bo(MB/s)
4096 2 1024 10 100

that for a specific movement I'; the total network overhead N can be reduced from
two aspects: decreasing the total number of migration ¢,, and lowering the overhead
of each migration V;. To satisfy the first aspect, we should migrate the VM of a UE
as far as possible for each migration, i.e., reducing migration frequency. To satisfy
the second aspect, it is the best to always migrate a VM from one edge cloud data
center to its neighbor edge cloud data center according to Equations (6.7) and (6.8)
because of the biggest network bandwidth, i.e., reducing migration distance. If the
total number of cells ¢4 visited by a UE is fixed, these two aspects are contradictory.
A smaller migration frequency means a relatively bigger migration distance, and a
smaller migration distance indicates that the VM will be frequently migrated. Ideally,
the minimal valve for the total network overhead can be achieved by tuning both these
two factors. However, in real case, it is impossible to calculate this value due to the
uncertainty and the diversity of UE mobility.

To understand the impacts of migration distance and migration frequency on the
total network overhead, we quantitatively analyze the network overheads with different
migration distances (per migration every 1 cell, 2 cells, 4 cells and 6 cells, respectively).
The configuration on the migrated VM and the migration environment is shown in Table
6.2 [29, 2]. The total number ¢, of cells visited by a UE is set as 20, 50, 100, respectively.
From Figure 6.15, we can observe that the network overhead per migration is increasing
with the migration distance. The migrations over 2 cells, 4 cells and 6 cells have 0.7%,
2.6% and 5.7% more network overhead in comparison with the migration to a neighbor
cell, respectively. However, a smaller migration distance does not correspondingly result
in a smaller total network overhead. Specifically, the smaller the migration distance is,
the bigger the total network overhead is. In further, a bigger ¢, can get more benefits
from a smaller migration frequency.

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

700000 6200
S Overhead per migration

600000 —e—Total overhead-20 6000

500000 —4—Total overhead-50 5800

—&—Total overhead-100

5600

w B
o o
o o
o o
o o
o o

5400

200000 5200

Total network overhead (MB)
Network overhead per migration (MB)

100000 5000

4800

Migration distance

Figure 6.15: The network overheads with different migration distances.

ittt T

(a) M-All (b) M-Edge

Figure 6.16: Two simple migration algorithms when &k = 2. The cells with gray color are the
moving trajectory of the UE (I') and those of which are with a rectangle are the
migration trajectory of the corresponding VM (II).

Even though we migrate the VM with a constant distance for each migration, it is
enough for us to understand the significance of these two factors for the total network
overhead. Migration frequency has a bigger influence on the total network overhead
than migration distance. Actually, the additional network overhead resulting from
a bigger migration distance can be easily compensated by a better selection of the
destination edge cloud data center for each migration (e.g., the algorithm in Section
6.3.4). Based on above analysis, we try to decrease the total network overhead IV by
lowering migration frequency.

6.3.4 Algorithm Design

In this section, we firstly discuss two simple migration algorithms (Section 6.3.4).
Then two optimized algorithms are respectively designed to minimize the network
overhead of VM migration for the two types of UE mobility, specifically, a weight-based
algorithm for certain moving UE and a heuristic algorithm for uncertain moving UE.

6.3 Network Overhead Alleviation

125

126

Algorithm 4 M-Edge algorithm

1. I' = {SO,O}y II = {EO,O}a ™=,
2: while a UE moves into a new cell S; ; do
I'=T"+ Si,j;
Calculate d;
if d < k then
Continue to monitor UE movement;
else >d=k.
™=+ SZ'J‘;
II=1I + E@j;
10: d = 0;
11: end if
12: end while

e N hw

Two Simple Migration Algorithms

One naive migration algorithm is to migrate a VM along with the UE. A VM is always
migrated to the cell where the UE is located at, as shown in Figure 6.16(a). We call this
migration strategy as M-All. With this strategy, each migration is conducted between
two neighbor cells, so they have the same migration bandwidth By. According to
Equation (6.7) and (6.8), each migration will result in the same network overhead:

sp, M(1-p1"?)

Vi=D+—=+

(6.10)
By L—p

Then the total network overhead N, of M-All for constantly migrating a VM is:

Ng =ty xV) (6.11)

Another simple migration algorithm is to migrate a VM when its UE moves to the
edge of the coverage area of the edge cloud data center where the VM is running,
called M-Edge. The VM is migrated to the corresponding edge cloud data center of the
cell where the UE is located at, as shown in Algorithm 4. Note that d is not always
increasing with UE movement. It can increase or decrease or remain unchanged as the
UE roams in a cellular network. If it increases, the incremental must be 1. That is why
line 7 in Algorithm 4 only can be d = k rather than d > k.

With this migration algorithm, the migration distance alway is k. According to
Equation (6.8), the network bandwidth for each migration is v*B,. Then, we can get
the total network overhead of M-Edge for constantly migrating a VM as follows.

SD, zw(1—p2”)> 6.12)

|

Ne =1 Vii=t S
cTImE m*(‘+%ﬁo 1—

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

(@ (b)

Figure 6.17: The illustration of the M-Weight algorithm, here k = 1. The cells with color are
the moving trajectory of a UE. (a) The initialization phase. The number on a cell
is its weight. (b) The weight calculation and migration plan making phases. The
cell with a triangle is a migration trigger point and the one with a rectangle with
the same number is the corresponding destination edge cloud data center for this
migration. The migration plan for this UE mobility is: = = {S1,1, 53,3, S4,2} and
I = {Eo,0, E22, E32, E52}

Migration Algorithm for Certain Moving Trajectory

When a UE’s moving trajectory is known, i.e., I' = {S Ay, SA1, SAs, ..., SAs,_1}, this
information can be used to make a migration plan for its VM to minimize the total
network overhead. For each movement SA; = S,,,, € I, we denote the coverage area
of the corresponding edge cloud data center E,, ,, by CA;, i.e., CA; = A, . Then, we
can get the corresponding coverage area sequence © = {C' Ay, CA1,CAs,...,C A, 1}
foraT.

According to the discussion in Section 6.3.2, we get the following conclusions: (1)
For each moving step of a UE, we do not need to migrate the VM correspondingly.
Once the UE is still in the coverage area of the edge cloud data center where the VM is
running at, it is unnecessary to migrate the VM. (2) If an edge cloud data center can
cover more cells in T, it should be preferable to migrating the VM to there to reduce
migration frequency, which in turn can lower the network overhead.

Based on above analysis, we design a migration algorithm (called M-Weight) in this
section, as shown in Algorithm 5. The key idea behind M-Weight is to assign each edge
cloud data center in © a weight according to the moving trajectory of a UE and migrate
the VM to the edge cloud data center with the highest weight for each migration. It

6.3 Network Overhead Alleviation

127

128

Algorithm 5 M-Weight algorithm

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24
25:

26:
27:
28:
29:
30:
31:
32:
33:

1
2
3
4
5t
6
7
8
9

: /*Initialization*/

: I'= {SA(), ey SAtsfl}, II = {E(),()}, T=0,0= {CA(), CAq,..., CAtsfl};
: for each element CA; € © do

for each element £, , € CA4; do

Wm,n = 0;
: end for
: end for
: /*Weight calculation*/
: loc =1; > To mark the searching position

for the locth element C'4; € © do
for each element E,, , € C4; do
Wmn = Wmn + lOC;
end for
loc =loc+1;
end for
/*Migration plan making*/
x =0,y =0; > The current location of the VM
Sel = @; > The possible destination edge cloud data center for each migration.
loc = 1;
while loc < ¢, do
Select the locth element S; ; in T';
if d;;Y = k then
Select the edge cloud data center with the highest weight in 4; ; and put
them into Sel;
procedure EC-SELECTION;
/*If Sel # @, assume the selected edge cloud data center is £, ,, i.e.,
Sel = {Byq}*/
if Sel #@ and p# x and q # y then
T=p,Y=q;
T=T+ S@j;
[MI=1II+FEpq;
end if
end if
loc =loc+1;
end while

consists of three phases: initialization, weight calculation and migration plan making.

In
as

the initialization phase, the weights w of all the edge cloud data centers in © are set
zero, as shown in Figure 6.17(a).

In the weight calculation phase, the ith element of © increases the weights of all

the edge cloud data centers within its coverage area by i, as shown in Figure 6.17(b).

For example, C'Aj increases the weights of its elements by 1, C'A; increases by 2, etc.

The weight incremental is increasing along the moving direction of the UE, which is to

make the migration plan making phase opt to select the edge cloud data center which

is

far away from the current location of the UE in each migration step to potentially

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

Algorithm 6 M-Weight algorithm—edge cloud data center selection

1: procedure EC-SELECTION

2 if £, , € Sel and d,, < k then

3 Sel = @; > Nno migration
4 return;

5: end if
6

7

8

9

if £, , € Sel and d,, > k then
Delete £, , from Sel;

end if
: if | Sel ||> 1 then
10: Only leave the edge cloud data centers in Sel which cover the most un-
scanned SAs in I;
11: if || Sel ||> 1 then
12: Leave the edge cloud data centers which incurs the smallest migration
distance in Sel;
13: if || Sel ||> 1 then
14: Randomly leave one element in Sel.
15: end if
16: end if
17: end if

18: end procedure

reduce migration frequency. For example, if two edge cloud data centers cover the same
number of cells of T, the one which covers more cells in the later part of I" will get a
bigger weight.

The main task of the migration plan making phase is to find the trigger point and
the destination edge cloud data center for each migration. It scans the elements of I in
order. Once a cell S; ; makes d = k, it is a possible migration trigger point. We then
select the edge cloud data centers which have the highest weight among the edge cloud
data center within A; ;. The set of the selected edge cloud data centers is denoted by
Sel. The final destination edge cloud data center for each migration is fixed with the
following steps, as shown in Algorithm 6 and Figure 6.18.

1. If the edge cloud data center where the VM is currently running at is in Sel
(E, € Sel) and the distance between this edge cloud data center and the next
cell the UE will visit is smaller than or equal to k (d,, < k), which means that
this edge cloud data center is still an optimal location for the VM, there is no
migration.

2. If the edge cloud data center where the VM is currently running at is in Sel
(Ez,y € Sel) and the distance between this edge cloud data center and the next
cell the UE will visit is bigger than & (d,, > k), the VM has to be migrated to a
new location. We delete E, , from Sel.

6.3 Network Overhead Alleviation 129

130

| VM is running at E |

v

»| Take an element S;;from T in order |

o>

yes

Select the data centers which
have the biggest weight in A;;

¢ n

Select the data center in Sel which covers|
the most un-scanned elements in I’

n>1 n=1
+ n

Select the data center which has

the smallest migration distance ‘
n>1 n=1

Randomly select a data
center from Sel.

Add the selected data center to [T;
— Add Si,j tox;
Move VM location to the selected data center.

A

Figure 6.18: The procedure of the migration plan making phase. n =|| Sel |.

3. If || Sel |> 1, the edge cloud data center in Sel which covers the most un-scanned
elements of I" will be left.

4. If there is still || Sel ||> 1, the edge cloud data center in Sel which will result in
the smallest migration distance is left.

5. If there is still || Sel ||> 1, an edge cloud data center in Sel is randomly selected.

The above operations shrink the elements of Sel step by step. After these steps, if
Sel = @ or the selected edge cloud data center E, , is same as the one where the VM
is currently running at, we do nothing and continue to make migration plan for the
next element of I'. Otherwise, E, ;, and S; ; are added into II and r, respectively. The
location of the VM is moved to E, .

Different UE moving trajectories present different environments for VM migration.
It is impossible to create a uniform model for the network overhead of M-Weight.
According to the migration procedure of M-Weight, we can calculate the overhead range
once the total number ¢, of cells visited by a UE is known. If the time of a UE staying

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

VM migration

>

k k k Moving trajectory

(a) Move in line (b) Move in circle

Figure 6.19: The two extreme situations of UE movement.

in the coverage area A, ; of an edge cloud data center £, ; is s;, we define the leaving
speed of the UE from A; ; as % A UE will has the biggest leaving speed when it moves
straight away from the edge cloud data center £; ; where the VM is running (as shown
in Figure 6.19(a)) and the smallest leaving speed when it moves around E; ; (as shown
in Figure 6.19(b)). For the first situation, the VM will be migrated once for every 2k
cells. For the second situation, once the UE is moving in A; ;, it is unnecessary to
migrate the VM. Correspondingly, these two situations will result in the biggest and the
smallest network overheads for a specific UE mobility, respectively.

The total number t,,; of migration for the first situation is!:

[t/2K), %2k <K

tm1 = (6.13)
t/(2k) + 1, t,%2k > k;

When ¢,%2k < k, the distance for each migration is 2k. When t,%2k > k, the
distance for all migration except the last one is 2k. The distance of the last migration
is ts%2k — k. To simplify the problem, we assume that the VM is also migrated to the
edge cloud data center which is 2k away from the current edge cloud data center in the
last migration step. Then, the network overhead for the first situation can be gained.

sp, M(1 —031?2))

+ (6.14)

=t * Vo =ty x| S
T ml 2k ml (+’szBO 1— po

1« /” represents modulo operation rather than division operation here.

6.3 Network Overhead Alleviation

131

132

Figure 6.20: The possibility calculation when k > 2.

The overhead for the second situation is zero. Then we can get the network overhead
range of M-Weight as follows.

(6.15)

+

sp, M(1-p3?)
v?*By 1 — pag

Ogngtml*(S‘F

Migration Algorithm for Uncertain Moving Trajectory

Most of the time we do not know about how a UE will move, or users do not want
to share their mobility information with a third party. When the moving trajectory
of a UE is unknown, it is infeasible to make a holistic migration plan for its VM.We
still use a mobility prediction algorithm to predict the future movement of a UE. In
this section, we design a heuristic migration algorithm (called M-Predict) based on UE
mobility prediction to lower the network overhead of VM migration.

Same as the discussion in Section 6.2.2, we only take advantage of the prediction
possibilities of a UE moving from the current cell S; ; to its neighbor cells, denoted by
P, j ={Py, P1, P, P3, Py, P5}, as shown in Figure 6.20. If a UE does not stop in a cell,
thereis Py + P + P> + P3 + Py + Ps = 1, i.e., it must move to a neighbor cell.

If the moving trajectory of a UE is known, we can migrate the VM as far as possible
to reduce migration frequency, like M-Weight. However, we only predict the next cell a
UE will visit. The predicted result also is not fully credible, so migrating the VM too
far from the cell where the UE is located at is risky. When the UE changes its moving
direction or the predicted movement is wrong, an additional migration may be needed
again very soon, which may increase the total network overhead.

To balance the benefits and risks, M-Predict only considers the destination cell within
the following scopes: the edge cloud data center where the UE is at, its neighbor data
centers (the first ring of data centers) and the neighbor neighbor data centers (the

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

(a) The original possibilities (b) The updated possibilities.

Figure 6.21: The possibility calculation of the edge cloud data centers in the first ring.

Algorithm 7 M-Predict algorithm

1: while speed # 0 and d = k do
2 Calculate {Po, Py, P, P3, Py, P5};
3 if k = 1 then
4: procedure SELECT1;
5 else
6 Calculate the possibilities of the edge cloud data center in the second ring;
7 Select the edge cloud data centers in the second ring with the highest
possibility;
8: if r = 1 then
9: Select this edge cloud data center;
10: else
11: if x = 2 and the distance between them is 2 then
12: Select the small edge cloud data center between them;
13: else
14: procedure SELECT1;
15: end if
16: end if
17: end if
18: if d > d then
19: Migrate the VM to the selected edge cloud data center.
20: end if

21: end while

second ring of data centers). The ones in the second ring are further divided into two
categories: big EC and small EC. A big EC is a neighbor of two edge cloud data centers
in the first ring, while a small EC is a neighbor of only one edge cloud data center in
the first ring. The possibilities of the edge cloud data centers in the second ring are
the sum of the possibilities of its neighbor edge cloud data centers in the first ring, as
shown in Figure 6.20. They are used to indicate the moving direction of a UE. We can
see that the possibility of a big EC must be bigger than its two neighbor small ECs. This
is reasonable because a big EC covers more edge cloud data centers in the first ring in
comparison with a small EC, which means that a big EC is more resilient to prediction
error.

6.3 Network Overhead Alleviation 133

Algorithm 8 M-Predict algorithm—edge cloud data center selection (k = 1)

1: procedure SELECT1

2 Select the edge cloud data center in the first ring with the highest possibility;
3 if z = 1 then

4 Select this edge cloud data center;

5: else
6
7
8
9

Update the edge cloud data center possibilities in the first ring;
Select the edge cloud data center in the first ring with the highest possibility;

if r = 1 then
Select this edge cloud data center;
10: else
11: Select the edge cloud data center where the UE is;
12: end if
13: end if

14: end procedure

Select the data centers in the second
ring with the highest possibility

x=2 and the distance
between the two data

Select the data center in the first
ring with the highest possibility

Update the possibilities of the
data centers in the first ring

Select the data center in the first
ring with the highest possibility

g yes

v no v
Select the small data Select the data center j:gi;::';
center between them where the UE is
y
0 G <d yes
[select the data center | [No migration |

Figure 6.22: The destination edge cloud data center selection for each migration in M-Predict.

The core idea behind M-Predict is to migrate a VM as far as possible within these edge
cloud data center scopes along the predicted moving direction. As shown in Algorithm

134 Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

7, M-Predict firstly calculates the possibilities of the edge cloud data centers in the first
and the second rings. Then it selects the destination edge cloud data center for VM
migration from the second ring to where the UE is. During the selection procedure,
possibility comparison is only conducted between the edge cloud data centers in the
same ring. We denote the number of selected edge cloud data centers in each ring by

x.

In the second ring, the big ECs which have the highest possibility are selected. If
x = 1, this edge cloud data center is finally selected. If x = 2 and the distance between
these two edge cloud data centers is 2 (i.e., there is only one small EC between them),
this small EC is finally selected. Otherwise, the algorithm begins to search the first ring.
In the first ring, the edge cloud data centers with the highest possibility are selected. If
x = 1, this edge cloud data center is selected. If x > 1, we update the possibilities of
the first ring as follows: the possibility of each edge cloud data center is updated by
adding the possibilities of its two neighbor edge cloud data centers in the same ring, i.e.,
{Po, P1, P>, P3, Py, Ps} = {Ps + Py + P, Py + PL+ P>, P+ Po+ P35, P3+ Py + P5, Py +
Ps + Py}, as shown in Figure 6.21. Then the edge cloud data centers with the highest
possibility are selected. If x = 1, this edge cloud data center is selected. Otherwise,
it indicates that the mobility prediction algorithm cannot accurately predict the UE’s
moving direction. The edge cloud data center of the cell where the UE is at is selected.
We represent the distance between the finally selected edge cloud data center and the
one where the VM is currently running by d’. If d’ < d, it means that the UE will move
toward the edge cloud data center where the VM currently is in the next step, so there
will be no migration for the VM. Otherwise, the VM is migrated to the finally selected
edge cloud data center.

In particular, when k£ = 1, it is infeasible to migrate the VM to the second ring of
edge cloud data centers. The latency between the VM and the UE will exceed the
latency limit [,,. Therefore, when k& = 1, M-Predict starts to search the edge cloud data
centers in the first ring instead of the ones in the second ring. The selection procedure
of M-Predict is shown in Figure 6.22.

M-Predict has a strong resilience to mobility prediction error. When k > 3, even
though a VM is migrated to an edge cloud data center in the second ring, all the edge
cloud data centers in the first ring are still in the coverage area of the new edge cloud
data center no matter which neighbor cell the UE moves to. For example, in Figure
6.20, if the VM is migrated to F, » based on Algorithm M-Predict, but the UE changes
its moving direction or a mobility predict error happens and the UE finally moves into
Sa.12 or 511, these two edge cloud data centers are still in the coverage area of Ej o
and the latency between the VM and the UE still can meet user’s requirement.

However, when k£ = 1 and the VM is migrated to an edge cloud data center in the
first ring, and when k£ = 2 and the VM is migrated to an edge cloud data center in the

6.3 Network Overhead Alleviation

135

136

Figure 6.23: The method to solve the prediction error when k& = 2. The rectangle with color
represents the previous location of the VM, and the rectangle with lines is the new
location selected by M-Predict. The cells with color are in the coverage area of the
edge cloud data center F .

second ring, the latency between the VM and the UE may exceed the requirement [,
when the above mentioned errors happen. To this end, we do not immediately delete
the VM data at the source edge cloud data center after migration for the above two
situations and delete it only when the VM moves out the coverage area of the source
edge cloud data center. Meanwhile, the predict algorithm constantly monitors the
movement of the UE. Once it moves in an adverse direction from the predicted one, the
VM begins to synchronize VM data back to the source edge cloud data center. When
the UE moves out of the coverage area of the new edge cloud data center, the VM
can be fast handed over to the source edge cloud data center. Taking Figure 6.23 as
an example, where £ = 2 and the selected new edge cloud data center for the VM is
E4 1, we do not delete the VM data at the edge cloud data center E, ¢ after migration.
According to the last step of M-Predict, the finally selected edge cloud data center must
be out of the coverage area of E; . From Figure 6.23, we can see that no matter which
edge cloud data center is selected as the new location of the VM, all the neighbor edge
cloud data centers of E,; are in the coverage areas of the source and the new edge
cloud data centers (A; s and A4 ;). However, when the VM is migrated to Fj 23 and the
UE moves to S3 2, E3 2 will not be in the coverage areas of E; g and E4 3. This also will
happen when k& = 1. Regarding this situation, we change the selected edge cloud data
center to its neighbor edge cloud data center. In the example, if the selected edge cloud
data center is Fy4 23 or F» 3, we change them to F, o4 and Ej 3, respectively.

Same as M-Weight, it is also impossible to build a network overhead model for
M-Predict. The two extreme situations which lead to the biggest and smallest network
overheads for M-Weight are applicable for M-Predict as well. Therefore, the smallest
network overhead of M-Predict also is zero, i.e., when a UE always moves in the coverage
area Ao, of the edge cloud data center Ey where the VM is running.

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

The worst situation for M-Predict is: a UE leaves the coverage area of each edge
cloud data center where its VM runs at with the biggest speed (as shown in Figure
6.19(a)) and the mobility prediction algorithm cannot predict the moving direction
for each migration. According to the edge cloud data center selection procedure, a
VM will alway be migrated to the edge cloud data center where the UE is located at.
VM migration is conducted once every k cells. With this situation, M-Predict becomes
M-Edge. Hence, the biggest network overhead of M-Predict is N,, as shown in Equation
(6.12).

By combining these two situations, the range of the network overhead N, of M-
Predict is:
0< N, <N (6.16)

6.3.5 Algorithm Performance

We evaluate the algorithms by numerical studies in this section. Specifically, the
performances of M-Weight and M-Predict are analyzed by taking M-All and M-Edge
as baselines. As stated in Section 6.3.3, we mainly focus on two performance met-
rics: total network traffic and the number of migrations. We select ten UE moving
trajectories from Microsoft Geolife Trajectories 1.3 [205]. This dataset does not record
the telecommunication provider information of each UE. We assume all the selected
ten UE are using the China Mobile. By combining the base station topology of the
China Mobile in Beijing [22], we can get the corresponding edge cloud data centers
a UE transverses during its movement. We set VM parameters for all the ten UE and
migration bandwidth as shown in Table 6.2. The performances of the algorithms are
also studied with different UE service latency requirements: k = 1, k = 2 and k = 4.

Performances of M-Weight

The performances of M-Weight are evaluated and compared with M-All and M-Edge
in this section. According to the requirements of M-Weight, the moving trajectories
are known before VM migration. As shown in Figure 6.24, we can get the following
results. (1) When k& = 1, M-All and M-Edge have the same migration performances,
because M-Edge becomes M-All under this service latency requirement. Also, M-All has a
constant migration performance for different service latency requirements because this
parameter is not considered in this algorithm. (2) M-Weight significantly outperforms
M-All and M-Edge for all the ten moving trajectories. Specifically, it reduces the total
network traffic on average by 55% and 55% (when k = 1), 77% and 50% (when k = 2)
and 88% and 46% (when k£ = 4), in comparison with M-All and M-Edge, respectively.
From this statistic, it is easy to understand the percentages for M-All are increasing
with k. However, the percentages for M-Edge are decreasing with k. This is due to
two reasons: 1) when k is big, a VM does not need to be frequently migrated because

6.3 Network Overhead Alleviation

137

138

@™ 250000 40 7 250000 40
= 3BE = 35 5
% 200000 30 g g 200000 30 g
S 150000 25 £ 150000 2
< 20 . X 20 «
o o = o
£ 100000 155 g 100000 15 5
E wg & 10 g
= 50000 E £ 50000 £
5 5 =z g 5 =z
= 0 0 = 0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Trajectory Trajectory
mmm NM-M-All mmm NM-M-Edge NM-M-Weight mm NM-M-All mmm NM-M-Edge NM-M-Weight
—8—NT-M-All —#=NT-M-Edge NT-M-Weight —5—NT-M-All —#=NT-M-Edge NT-M-Weight
@ k=1 (b) k=2
@ 250000 40
é 200000 ® '5
£ 150000 25 g
= 20 s
£ 100000 15 5
[<5)
£ 50000 10¢E
g >z
= 0 0
1 2 3 4 5 6 7 8 9 10
Trajectory
= NM-M-All == NM-M-Edge NM-M-Weight
~a—NT-M-All —#=NT-M-Edge NT-M-Weight
© k=4

Figure 6.24: The performances of M-Weight. “NM”: number of migration, “NT”: total network
traffic.

each edge cloud data center has a big coverage area, so the performance improvement
space for M-Weight is small; 2) a bigger k£ means that there will be a bigger migration
distance difference between M-Edge and M-Weight for each migration, which pushes
down the performance improvement of M-Weight. (3) M-Weight lowers migration
frequency, which means that it has a bigger average migration distance compared with
M-All and M-Edge. The total network traffic is correspondingly decreased rather than
increased. This further verifies the result in Section 6.3.3: migration frequency is more
important than migration distance for reducing total network traffic when a VM has to
be constantly migrated.

Performances of M-Predict

M-Predict heuristically migrates a VM to a location in advance based on mobility
prediction. Therefore, we take prediction error into consideration during evaluating
the performances of M-Predict. Three conditions are considered: no prediction error
(i.e., ideal situation), 10% prediction error and 40% prediction error. For each mobility
prediction error, we migrate the VM to the farthest edge cloud data center in the
opposite direction of the real moving direction of the UE. According to the edge cloud
data center selection procedure of M-Predict, the selected one is from the second ring of

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

a
o
a
o

—u—M-All —m—M-All
== M-Edge = M-Edge
M-Predict-ideal M-Predict-ideal
== M-Predict-10% == M-Predict-10%
o M-Predict-40% - M-Predict-40%

N
o
S
o

W
o
w
o

N
o
N
o

Number of migration
Number of migration

=
o

é

o
o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Trajectory Trajectory
@ k=1 (b) k=2
50
—m—M-All
40 = M-Edge
s M-Predict-ideal
® = M-Predict-10%
,530 o M-Predict-40%
k]
520
Ke)
€
=}
Z10
. W

1 2 3 4 5 6 7 8 9 10
Trajectory

() k=4

Figure 6.25: The number of migration of M-All, M-Edge and M-Predict.

edge cloud data centers when k£ > 2 and from the first ring of edge cloud data centers
when k = 1. This is the worst migration decision for each prediction error. We ignore
the data synchronized back to the old edge cloud data center from the new edge cloud
data center when prediction errors happen, because they are small in comparison with
the total network traffic of VM migration.

Regarding the total number of migration, the differences between M-Predict and
M-Edge are decreasing with k. This is due to the fact that a bigger coverage area of
each edge cloud data center reduces the number of migration, which in turn lowers the
performance improvement of M-Predict. The differences between the three conditions
of M-Predict are very small, even though the latency requirement of the UE is high.
Because of the uncertainty of UE moving trajectory, a bad migration decision for current
step may be a good decision for the future movement of the UE. From Figure 6.25, we
also can get that a smaller service latency requirement further strengthens the resilience
of M-Predict to prediction errors. This can be seen from the decrease of the differences
between the three conditions.

Corresponding to the number of migration, M-Predict results in a smaller network
traffic for all the ten moving trajectories, compared to M-All and M-Edge. Ideally, M-
Predict is better than M-All and M-Edge on average by 54% and 54%, 77% and 51%,

6.3 Network Overhead Alleviation

139

140

200000 || =M-All 200000 || =M-All

180000 || ™M-Edge 180000 || ™ M-Edge

160000 || ™ M-Predict-ideal 160000 || ™ M-Predict-ideal
g L0000 || = MPredict-10% 625140000 = M-Predict-10%
b = M-Predict-40% by = M-Predict-40%
& 120000 & 120000
S ©
=100000 100000
< <
g 80000 § 80000
& 60000 € 60000
£ 40000 £ 40000
F P

20000 20000

0 0
1 2 3 4 5 6 7 8 9 10
Trajectory Trajectory
@ k=1 (b) k=2

200000 [[=M-All
180000 || ®M-Edge

= M-Predict-ideal
u M-Predict-10%
= M-Predict-40%

160000
o
= 140000
% 120000
+=100000
80000
60000
40000
20000
0

Total network

1 2 3 4 5 6 7 8 9 10
Trajectory

() k=4

Figure 6.26: The total network traffic of M-All, M-Edge and M-Predict.

85% and 29% under the three types of service latency requirements, respectively. The
decrease of the improvement percentages between M-Predict and M-Edge is due to the
same reasons as those for M-Weight. 10% and 40% mobility prediction errors only
lead to on average 5% and 12%, 3% and 7% and 1% and 2% more network traffic

for the three types of service latency requirements, compared to the ideal situation,
respectively.

6.4 Chapter Summary

In this chapter, two optimizations are designed for VM migration in MEC. Different
UE mobility presents different environments for VM migration. To make the best of
environment features, we broadly divide UE mobility into two categories: certain
moving trajectory and uncertain moving trajectory. Both the optimizations are proposed
based on this classification of UE mobility.

The first optimization is designed for the situation where a UE has a high latency
requirement so that its VM has to be migrated with along its movement (i.e., k£ = 0).
Two algorithms are proposed to improve VM storage data migration performance. To

Chapter 6 VM Migration in MEC—User Mobility-induced VM Migration

decrease the service degradation time resulting from the inconsistency between UE
mobility and VM migration, two migration initialization mechanisms are designed.

The second optimization is to make a migration plan for the UE which does not have
a high latency requirement (i.e., k¥ > 1) to lower the network overhead resulting from
constant VM migration due to UE mobility. We firstly formulate this issue and figure out
the most influential factor for network overhead. Then, two naive migration algorithms
(M-All and M-Edge) are described. Then, two optimized migration algorithms (M-
Weight and M-Predict) are designed to lower the network overhead of VM migration.
Specifically, M-Weight is for the UE with certain moving trajectories, and M-Predict is
for the UE with uncertain moving trajectories based on mobility prediction.

6.4 Chapter Summary

141

Chapter 7

Conclusion

7.1 Summary

In this dissertation, several optimizations are proposed to improve VM migration
performance under different environments. The contributions of this dissertation can
be divided into four parts: literature review, optimization of VM migration in LAN,
optimization of VM migration over WAN and optimization of VM migration in MEC.

In the literature review part, we comprehensively summarize the existing migration
technologies, from single migration to correlated VM migration, from LAN migration
to WAN migration, from normal migration to user mobility-induced migration. These
technologies are compared with each other by the metrics extracted from the literature
as well. From the review, we found a series of problems with live VM migration, which
are the motivations of this dissertation. Also, we draw on many experiences from the
existing technologies of live VM migration for our proposals.

In the optimization of VM migration in LAN part, we mainly focus on the controllabil-
ity of a migration process and the convergence problem with pre-copy migration. Firstly,
performance models are created for the migration procedure and several performance
features are derived. Based on the features, a migration control algorithm is designed.
It not only takes users’ requirements on migration performance into consideration, but
also solves the convergence problem of pre-copy. Controlling a migration process to
meet user’s performance requirement was not considered before. The feasibility was
presented with our algorithm by changing the memory dirty rate of the migrated VM
or/and the network bandwidth for migration. A migration process is not transparent
to cloud managers and users anymore. This is helpful to improve the level of cloud
management. For example, users are clear about what performances they can get before
migrating their VMs. Cloud managers can make a more detailed plan for hardware
maintenance (such as, server replacement).

143

144

In the optimization of VM migration over WAN part, we make two architectural
rethinks on storage data migration. In the first optimization, a three-layer image
structure is designed to increase the data sharing between VMs. The storage data of
a VM is physically stored in three layers: OS layer, WE layer and UD layer, by using
the COW technology. Based on this structure, several optimizations are proposed for
data deduplication to improve VM storage data migration performance. In the second
optimization, a central base image repository is introduced for data centers to increase
the data sharing between data centers. Base images (i.e., OS images and WE images)
are shared by different data centers. With this structure, data deduplication and P2P
file sharing are utilized to accelerate VM storage data migration speed. According to
the experimental results, those two contributions significantly improve storage data
migration performance. Specifically, the first one can decrease the total migration
time up to 14%, and the second one can reach 44%. With the development of cloud
computing, the cooperations between the data centers of a cloud provider and between
the data centers from different cloud providers are becoming more and more frequent,
such as hybrid cloud, cloud federation and across-data-center load balancing. It is
impossible to implement these cooperations without the support of live VM migration
over WAN. Our contributions improve the performance of storage data migration which
is the bottleneck part of live VM migration over WAN. Although we only test them on
KVM in our experiments, they are generic solutions and can be integrated with different
hypervisors/VMMs to migrate a VM across data centers.

In the optimization of VM migration in MEC part, two optimizations are made to
improve the migration performance from different perspectives. In the first optimization,
two algorithms and two migration initialization mechanisms are designed to reduce
the storage data migration time and mitigate the service degradation during migration,
respectively. In the second optimization, two algorithms are proposed to mitigate the
network overhead resulting from constant VM migration due to UE mobility. The two
optimizations for storage data migration (three-layer image structure and central base
image repository) are also utilized for the migration in MEC. Numeric studies validate
the efficiency of our algorithms. MEC is an outcome of the popularity of the IoT and
mobile devices. However, there is still no practical system at present because of many
outstanding problems. How to fast live migrate VMs between edge cloud data centers
is one of these problems because service latency is a vital metric for MEC. MEC also
provides new optimization opportunities for live VM migration. Our contributions are
to utilize the new architectural features of MEC to improve the performance of user
mobility-induced VM migration under the premise of no violation to service latency
requirement, which is a vital aspect for the implementation of MEC.

7.2 Outlook

The work of this dissertation can be extended from the following directions:

Chapter 7 Conclusion

1. The migration performance control algorithm now is only for LAN environments
and also is based on Xen platform. It can be improved and generalized to adapt
to other environments (such as, WAN and MEC) and other platforms (such
as, VMware, KVM). The accuracy of monitoring the related parameters of live
VM migration determines the accuracy of the performance control algorithm.
Therefore, new tools and methods are desired to improve the accuracies of the
monitored parameters and the performance control algorithm.

2. For both LayerMover and CBase, we simply use parallel migration to migrate
multiple VMs. A coordination algorithm is required for correlated VM migration
to lower the service interruption during migration. In addition, because of the
high data sharing of the three-layer image structure and the central base image
repository, further optimizations can be designed based on these two structures
to improve the performance of correlated VM migration.

3. The optimizations to LAN and WAN environments in this dissertation can be
integrated with the algorithms for VM migration in MEC to improve the migration
performance, especially, the optimizations to WAN migration because they face
many common conditions. Our optimizations to user mobility-induced migration
assume that each VM is only used by one user. In real cases, a VM in an edge
cloud data center may be shared by several users and a user also may offload
computation tasks to several VMs, so some optimizations to our algorithms can
be designed by taking these factors into consideration. The SSM algorithm did
not consider the situation when the mobility prediction is wrong. Some strategies
are needed to improve the robustness of the SSM algorithm.

7.2 Outlook 145

Chapter 8

Publications

The work of this dissertation is published in the following conferences/journals.

The study of literature review:
* Fei Zhang, Guangming Liu, Xiaoming Fu, Ramin Yahaypour. “A Survey on Virtual

Machine Migration: Challenges, Techniques and Open Issues.”[J] IEEE Communica-
tions Surveys & Tutorials. 2018. DOI: 10.1109/COMST.2018.2794881.

The study of the optimization to VM migration in LAN:
* Fei Zhang, Bo Zhao, Xiaoming Fu, Ramin Yahyapour. “Controlling Migration

Performance of Virtual Machines According to User’s Requirements.”[C] In Proceed-
ings of CAN’17: Cloud-Assisted Networking Workshop (CAN@CoNEXT 2017).
Incheon, South Korean. December 2017. ACM. DOI: 10.1145/3155921.3160606.

The study of the optimization to VM migration over WAN:
* Fei Zhang, Xiaoming Fu, Ramin Yahaypour. “Layermover: Storage migration

of virtual machine across data centers based on three-layer image structure.”[C]
//Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), 2016 IEEE 24th International Symposium on. IEEE, 2016:
400-405. DOI: 10.1109/MASCOTS.2016.27.

* Fei Zhang, Xiaoming Fu, Ramin Yahaypour. “LayerMover: Fast Virtual Machine
Migration over WAN with Three-Layer Image Structure.”[J] Journal of Future
Generation Computer Systems (FGCS). 2018. Volume: 83, pp. 37-49. DOI:
10.1016/j.future.2018.01.017.

* Fei Zhang, Xiaoming Fu, Ramin Yahyapour. “CBase: A New Paradigm for Fast
Virtual Machine Migration across Data Centers.”[C] //Cluster, Cloud and Grid
Computing (CCGRID), 2017 17th IEEE/ACM International Symposium on. IEEE,
2017: 284-293. DOI: 10.1109/CCGRID.2017.26.

* Fei Zhang, Guangming Liu, Bo Zhao, Piotr Kasprzak, Xiaoming Fu, Ramin
Yahyapour. “CBase: Fast Virtual Machine Storage Data Migration with a New

147

148

Data Center Structure.”[J] Journal of Parallel and Distributed Computing (submit-
ted).

The study of the optimization to VM migration in MEC:
* Fei Zhang, Bo Zhao, Philipp Wieder, Xiaoming Fu, Ramin Yahyapour. “Optimizing

Live Migration of Virtual Machines in Mobile Edge Computing.”[J] Journal of
Network and Computer Applications (submitted).

* Fei Zhang, Guangming Liu, Bo Zhao, Xiaoming Fu, Ramin Yahyapour. “Reducing
the Network Overhead of User Mobility-induced Virtual Machine Migration in Mobile
Edge Computing.”[J] Journal of Software: Practice and Experience (submitted).

Chapter 8 Publications

Bibliography

[1]Eytan Adar and Bernardo A Huberman. “Free riding on Gnutella”. In: First monday 5.10
(2000).

[2]Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W Moore, and Andy Hopper.
“Predicting the performance of virtual machine migration”. In: Modeling, Analysis & Simu-
lation of Computer and Telecommunication Systems (MASCOTS), 2010 IEEE International
Symposium on. IEEE. 2010, pp. 37-46.

[3]Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei Ripeanu. “VMFlock:
virtual machine co-migration for the cloud”. In: Proceedings of the 20th international
symposium on High performance distributed computing. ACM. 2011, pp. 159-170.

[4]Moiz Arif, Adnan K Kiani, and Junaid Qadir. “Machine learning based optimized live
virtual machine migration over WAN links”. In: Telecommunication Systems 64.2 (2017),
pp. 245-257.

[5]InfiniBand Trade Association et al. InfiniBand Architecture Specification: Release 1.0. Infini-
Band Trade Association, 2000.

[6]Muhammad Atif and Peter Strazdins. “Optimizing live migration of virtual machines in
SMP clusters for HPC applications”. In: Network and Parallel Computing, 2009. NPC’09.
Sixth IFIP International Conference on. IEEE. 2009, pp. 51-58.

[7]1Paul Barham, Boris Dragovic, Keir Fraser, etal. “Xen and the art of virtualization”. In:
ACM SIGOPS operating systems review. Vol. 37. 5. ACM. 2003, pp. 164-177.

[8]Md Faizul Bari, Mohamed Faten Zhani, Qi Zhang, Reaz Ahmed, and Raouf Boutaba.
“CQNCR: Optimal VM migration planning in cloud data centers”. In: Networking Confer-
ence, 2014 IFIP. IEEE. 2014, pp. 1-9.

[9]Artur Baruchi, Edson Toshimi Midorikawa, and Marco AS Netto. “Improving Virtual
Machine live migration via application-level workload analysis”. In: Network and Service
Management (CNSM), 2014 10th International Conference on. IEEE. 2014, pp. 163-168.

[10]Sobir Bazarbayev, Matti Hiltunen, Kaustubh Joshi, William H Sanders, and Richard
Schlichting. “Content-based scheduling of virtual machines (VMs) in the cloud”. In:
Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on. IEEE.
2013, pp. 93-101.

[11]Jing Bi, Zhiliang Zhu, Ruixiong Tian, and Qingbo Wang. “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center”. In: Cloud Computing (CLOUD),
2010 IEEE 3rd international conference on. IEEE. 2010, pp. 370-377.

[12]Ricardo Bianchini and Ramakrishnan Rajamony. “Power and energy management for
server systems”. In: Computer 37.11 (2004), pp. 68-76.

[13]Nanette J Boden, Danny Cohen, Robert E Felderman, etal. “Myrinet: A gigabit-per-second
local area network”. In: IEEE micro 15.1 (1995), pp. 29-36.

149

150

[14]Matthias Bohmer, Brent Hecht, Johannes Schoning, Antonio Kriiger, and Gernot Bauer.
“Falling asleep with Angry Birds, Facebook and Kindle: a large scale study on mobile
application usage”. In: Proceedings of the 13th international conference on Human
computer interaction with mobile devices and services. ACM. 2011, pp. 47-56.

[15]Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog computing and its
role in the internet of things”. In: Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM. 2012, pp. 13-16.

[16]Sumit Kumar Bose, Scott Brock, Ronald Skeoch, and Shrisha Rao. “CloudSpider: Combin-
ing replication with scheduling for optimizing live migration of virtual machines across
wide area networks”. In: Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Computer Society. 2011, pp. 13-22.

[17]1Sumit Kumar Bose, Scott Brock, Ronald Skeoch, Nisaruddin Shaikh, and Shrisha Rao.
“Optimizing live migration of virtual machines across wide area networks using integrated
replication and scheduling”. In: Systems Conference (SysCon), 2011 IEEE International.
IEEE. 2011, pp. 97-102.

[18]Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and Harold Hall. “Cloud
computing”. In: IBM white paper 321 (2007), pp. 224-231.

[19]Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schitberg. “Live
wide-area migration of virtual machines including local persistent state”. In: Proceedings
of the 3rd international conference on Virtual execution environments. ACM. 2007, pp. 169-
179.

[20]Rajkumar Buyya, James Broberg, and Andrzej M Goscinski. Cloud computing: Principles
and paradigms. Vol. 87. John Wiley & Sons, 2010.

[21]Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito. “Improving virtual
machine migration in federated cloud environments”. In: Evolving Internet (INTERNET),
2010 Second International Conference on. IEEE. 2010, pp. 61-67.

[22]Cellmapper. Available: https://www.cellmapper.net, Accessed: December 2017.

[23]Walter Cerroni. “Multiple virtual machine live migration in federated cloud systems”. In:
Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on.
IEEE. 2014, pp. 25-30.

[24]Walter Cerroni. “Network performance of multiple virtual machine live migration in cloud
federations”. In: Journal of Internet Services and Applications 6.1 (2015), p. 6.

[25]Zenon Chaczko, Venkatesh Mahadevan, Shahrzad Aslanzadeh, and Christopher Mcdermid.
“Availability and load balancing in cloud computing”. In: International Conference on
Computer and Software Modeling, Singapore. Vol. 14. 2011.

[26]Fabio Checconi, Tommaso Cucinotta, and Manuel Stein. “Real-time issues in live migration
of virtual machines”. In: European Conference on Parallel Processing. Springer. 2009,
PP. 454-466.

[27]Long Cheng, Ilias Tachmazidis, Spyros Kotoulas, and Grigoris Antoniou. “Design and
evaluation of small-large outer joins in cloud computing environments”. In: Journal of
Parallel and Distributed Computing (2017).

[28]Cisco Global Cloud Index: Forecast and Methodology, 2015-2020 (online). www.cisco.com/
c/dam/en/us/solutions/collateral/service-provider/global-cloud- index-—
gci/white-paper-c11-738085.pdf, November.2016.

[29]Christopher Clark, Keir Fraser, Steven Hand, etal. “Live migration of virtual machines”.
In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association. 2005, pp. 273-286.

[30]CRIU. Available: https://criu.org/Main_Page.

Chapter 8 Bibliography

https://www.cellmapper.net
www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://criu.org/Main_Page

[31]Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, etal. “Remus: High availability via
asynchronous virtual machine replication”. In: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation. San Francisco. 2008, pp. 161-174.

[32]Umesh Deshpande and Kate Keahey. “Traffic-sensitive live migration of virtual machines”.
In: Future Generation Computer Systems (2016).

[33]Umesh Deshpande, Danny Chan, Ten-Young Guh, etal. “Agile live migration of virtual
machines”. In: Parallel and Distributed Processing Symposium, 2016 IEEE International.
IEEE. 2016, pp. 1061-1070.

[34]Umesh Deshpande, Brandon Schlinker, Eitan Adler, and Kartik Gopalan. “Gang migra-
tion of virtual machines using cluster-wide deduplication”. In: Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on. IEEE. 2013,
pp. 394-401.

[35]Umesh Deshpande, Unmesh Kulkarni, and Kartik Gopalan. “Inter-rack live migration of
multiple virtual machines”. In: Proceedings of the 6th international workshop on Virtualiza-
tion Technologies in Distributed Computing Date. ACM. 2012, pp. 19-26.

[36]Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. “Live gang migration of virtual
machines”. In: Proceedings of the 20th international symposium on High performance
distributed computing. ACM. 2011, pp. 135-146.

[37]Chris Develder, Marc De Leenheer, Bart Dhoedt, etal. “Optical networks for grid and
cloud computing applications”. In: Proceedings of the IEEE 100.5 (2012), pp. 1149-1167.

[381DRBD. Available: https://docs.linbit.com/, Acessed: Mar. 2017.

[39]Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. “Virtualization vs containerization
to support paas”. In: Cloud Engineering (IC2E), 2014 IEEE International Conference on.
IEEE. 2014, pp. 610-614.

[40]George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M Chen.
“ReVirt: Enabling intrusion analysis through virtual-machine logging and replay”. In: ACM
SIGOPS Operating Systems Review 36.SI (2002), pp. 211-224.

[41]D Eastlake 3rd and Paul Jones. US secure hash algorithm 1 (SHA1). Tech. rep. 2001.

[42]EC2 Statistics. thecloudmarket.com/stats. December.2016.

[43]EGI. Available: https://www.egi.eu, Acessed: Jan. 2017.

[44]Magnus Ekman and Per Stenstrom. “A robust main-memory compression scheme”. In:
ACM SIGARCH Computer Architecture News. Vol. 33. 2. IEEE Computer Society. 2005,
pp- 74-85.

[45]MECISG ETSI. “Mobile Edge Computing (MEC); Framework and reference architecture”.
In: ETSI, DGS MEC 3 (2016).

[46]Michal Feldman and John Chuang. “Overcoming free-riding behavior in peer-to-peer
systems”. In: ACM sigecom exchanges 5.4 (2005), pp. 41-50.

[47]Mario Gerla, Ken Tang, and Rajive Bagrodia. “TCP performance in wireless multi-hop net-
works”. In: Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA99.
Second IEEE Workshop on. IEEE. 1999, pp. 41-50.

[48]Balazs Gerofi, Zoltan Vass, and Yutaka Ishikawa. “Utilizing memory content similarity
for improving the performance of replicated virtual machines”. In: Utility and Cloud
Computing (UCC), 2011 Fourth IEEE International Conference on. IEEE. 2011, pp. 73-80.

[49]Lazaros Gkatzikis and Iordanis Koutsopoulos. “Migrate or not? Exploiting dynamic task

migration in mobile cloud computing systems”. In: IEEE Wireless Communications 20.3
(2013), pp. 24-32.

151

https://docs.linbit.com/
thecloudmarket.com/stats
https://www.egi.eu

152

[50]Nikolay Grozev and Rajkumar Buyya. “Performance modelling and simulation of three-
tier applications in cloud and multi-cloud environments”. In: The Computer Journal 58.1
(2015), pp. 1-22.

[51]Diwaker Gupta, Sangmin Lee, Michael Vrable, etal. “Difference engine: Harnessing
memory redundancy in virtual machines”. In: Communications of the ACM 53.10 (2010),
pp. 85-93.

[52]Kiryong Ha, Yoshihisa Abe, Zhuo Chen, etal. “Adaptive vm handoff across cloudlets”. In:
(2015).

[53]Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev Satya-
narayanan. “Just-in-time provisioning for cyber foraging”. In: Proceeding of the 11th
annual international conference on Mobile systems, applications, and services. ACM. 2013,
pp. 153-166.

[54]Stuart Hacking and Benoit Hudzia. “Improving the live migration process of large enter-
prise applications”. In: Proceedings of the 3rd international workshop on Virtualization
technologies in distributed computing. ACM. 2009, pp. 51-58.

[55]Jacob Gorm Hansen. “Virtual Machine Mobility with Self-Migration”. PhD thesis. Citeseer,
2009.

[56]HAST - Highly Available Storage. Available: https://wiki.freebsd.org/HAST, Acessed:
Mar. 2017.

[571Mark D Hill. Aspects of cache memory and instruction buffer performance. Tech. rep. DTIC
Document, 1987.

[58]Michael R Hines and Kartik Gopalan. “Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning”. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments. ACM. 2009,
pp- 51-60.

[59]Michael R Hines, Umesh Deshpande, and Kartik Gopalan. “Post-copy live migration of
virtual machines”. In: ACM SIGOPS operating systems review 43.3 (2009), pp. 14-26.

[60]Takahiro Hirofuchi, Hidemoto Nakada, Hirotaka Ogawa, Satoshi Itoh, and Satoshi
Sekiguchi. “A live storage migration mechanism over wan and its performance eval-
uation”. In: Proceedings of the 3rd international workshop on Virtualization technologies in
distributed computing. ACM. 2009, pp. 67-74.

[61]Takahiro Hirofuchi, Hirotaka Ogawa, Hidemoto Nakada, Satoshi Itoh, and Satoshi
Sekiguchi. “A live storage migration mechanism over wan for relocatable virtual machine
services on clouds”. In: Proceedings of the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid. IEEE Computer Society. 2009, pp. 460-465.

[62]Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. “Enabling
instantaneous relocation of virtual machines with a lightweight vmm extension”. In:
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing. IEEE Computer Society. 2010, pp. 73-83.

[63]Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. “Reactive
consolidation of virtual machines enabled by postcopy live migration”. In: Proceedings
of the 5th international workshop on Virtualization technologies in distributed computing.
ACM. 2011, pp. 11-18.

[64]1Paul Hsieh. Hash functions. Available: http://www.azillionmonkeys.com/qed/hash.
html.

Chapter 8 Bibliography

https://wiki.freebsd.org/HAST
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html

[65]Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao. “A scheduling strategy on load
balancing of virtual machine resources in cloud computing environment”. In: Parallel
Architectures, Algorithms and Programming (PAAP), 2010 Third International Symposium
on. IEEE. 2010, pp. 89-96.

[66]Liang Hu, Jia Zhao, Gaochao Xu, Yan Ding, and Jianfeng Chu. “HMDC: live virtual
machine migration based on hybrid memory copy and delta compression”. In: Appl. Math
7.2L (2013), pp. 639-646.

[67]Rongdong Hu, Guangming Liu, Jingfei Jiang, and Lixin Wang. “A new resources provi-
sioning method based on QoS differentiation and VM resizing in IaaS”. In: Mathematical
Problems in Engineering 2015 (2015).

[68]Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K Panda. “High performance virtual
machine migration with RDMA over modern interconnects”. In: Cluster Computing, 2007
IEEE International Conference on. IEEE. 2007, pp. 11-20.

[69]Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. “Evaluating and
Modeling Virtualization Performance Overhead for Cloud Environments.” In: CLOSER.
2011, pp. 563-573.

[70]Khaled Z Ibrahim, Steven Hofmeyr, Costin Iancu, and Eric Roman. “Optimized pre-copy
live migration for memory intensive applications”. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. ACM. 2011,
p. 40.

[71]Introduction to Linux Traffic Control. 2006.
[72]Iometer. http://wwu.iometer.org/. December.2016.

[73]Van Jacobson. “Congestion avoidance and control”. In: ACM SIGCOMM computer commu-
nication review. Vol. 18. 4. ACM. 1988, pp. 314-329.

[74]KR Jayaram, Chunyi Peng, Zhe Zhang, et al. “An empirical analysis of similarity in virtual
machine images”. In: Proceedings of the Middleware 2011 Industry Track Workshop. ACM.
2011, p. 6.

[75]Brendan Jennings and Rolf Stadler. “Resource management in clouds: Survey and research
challenges”. In: Journal of Network and Systems Management 23.3 (2015), pp. 567-619.

[76]Qin Jia, Zhiming Shen, Weijia Song, Robbert Van Renesse, and Hakim Weatherspoon.
“Supercloud: Opportunities and challenges”. In: ACM SIGOPS Operating Systems Review
49.1 (2015), pp. 137-141.

[77]1Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. “Joint VM
placement and routing for data center traffic engineering”. In: INFOCOM, 2012 Proceedings
IEEE. IEEE. 2012, pp. 2876-2880.

[78]Lei Jiao, Roy Friedman, Xiaoming Fu, etal. “Cloud-based computation offloading for
mobile devices: State of the art, challenges and opportunities”. In: Future Network and
Mobile Summit (FutureNetworkSummit), 2013. IEEE. 2013, pp. 1-11.

[79]Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. “Live virtual machine
migration with adaptive, memory compression”. In: Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on. IEEE. 2009, pp. 1-10.

[80]Hai Jin, Li Deng, Song Wu, etal. “MECOM: Live migration of virtual machines by adap-
tively compressing memory pages”. In: Future Generation Computer Systems 38 (2014),
pp. 23-35.

[81]Hai Jin, Wei Gao, Song Wu, etal. “Optimizing the live migration of virtual machine
by CPU scheduling”. In: Journal of Network and Computer Applications 34.4 (2011),
pp- 1088-1096.

153

http://www.iometer.org/

154

[82]Keren Jin and Ethan L Miller. “The effectiveness of deduplication on virtual machine disk
images”. In: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference.
ACM. 2009, p. 7.

[83]Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. “Efficient live
migration of virtual machines using shared storage”. In: ACM Sigplan Notices. Vol. 48. 7.
ACM. 2013, pp. 41-50.

[84]Tae Seung Kang, Mauricio Tsugawa, Andréa Matsunaga, Takahiro Hirofuchi, and José AB
Fortes. “Design and implementation of middleware for cloud disaster recovery via virtual
machine migration management”. In: Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing. IEEE Computer Society. 2014, pp. 166-175.

[85]Tae Seung Kang, Mauricio Tsugawa, Jose Fortes, and Takahiro Hirofuchi. “Reducing the
migration times of multiple VMs on WANSs using a feedback controller”. In: Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International. IEEE. 2013, pp. 1480-1489.

[86]Jihun Kim, Dongju Chae, Jangwoo Kim, and Jong Kim. “Guide-copy: fast and silent mi-
gration of virtual machine for datacenters”. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. ACM. 2013, p. 66.

[87]Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. “kvm: the Linux
virtual machine monitor”. In: Proceedings of the Linux symposium. Vol. 1. 2007, pp. 225-
230.

[88]Jacob Faber Kloster, Jesper Kristensen, Arne Mejlholm, and Gerd Behrmann. “On the
feasibility of memory sharing: Content-based page sharing in the xen virtual machine
monitor”. In: (2006).

[89]Panagiotis Kokkinos, Dimitris Kalogeras, Anna Levin, and Emmanouel Varvarigos. “Survey:
Live Migration and Disaster Recovery over Long-Distance Networks”. In: ACM Computing
Surveys (CSUR) 49.2 (2016), p. 26.

[90]Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. “Towards unobtrusive VM live
migration for cloud computing platforms”. In: Proceedings of the Asia-Pacific Workshop on
Systems. ACM. 2012, p. 7.

[91]Adlen Ksentini, Tarik Taleb, and Min Chen. “A Markov decision process-based service
migration procedure for follow me cloud”. In: Communications (ICC), 2014 IEEE Interna-
tional Conference on. IEEE. 2014, pp. 1350-1354.

[92]Sanjay Kumar and Karsten Schwan. “Netchannel: a VMM-level mechanism for continu-
ous, transparentdevice access during VM migration”. In: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments. ACM. 2008,
pp- 31-40.

[93]Nicholas S Lemak. Data mover. US Patent 4,296,465. 1981.
[94]Mingyu Li, Mian Zheng, and Xiaohui Hu. “Template-based memory deduplication method

for inter-data center live migration of virtual machines”. In: Cloud Engineering (IC2E),
2014 IEEE International Conference on. IEEE. 2014, pp. 127-134.

[95]Yi-Bing Lin, Chien-Chun Huang-Fu, and Nabil Alrajeh. “Predicting human movement
based on telecom’s handoff in mobile networks”. In: IEEE Transactions on Mobile Comput-
ing 12.6 (2013), pp. 1236-1241.

[96]Haikun Liu and Bingsheng He. “Vmbuddies: Coordinating live migration of multi-tier
applications in cloud environments”. In: IEEE Transactions on Parallel and Distributed
Systems 26.4 (2015), pp. 1192-1205.

Chapter 8 Bibliography

[97]Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. “Live migration of virtual ma-
chine based on full system trace and replay”. In: Proceedings of the 18th ACM international
symposium on High performance distributed computing. ACM. 2009, pp. 101-110.

[98]Haikun Liu, Hai Jin, Xiaofei Liao, Chen Yu, and Cheng-Zhong Xu. “Live virtual machine
migration via asynchronous replication and state synchronization”. In: IEEE Transactions
on Parallel and Distributed Systems 22.12 (2011), pp. 1986-1999.

[99]Pengcheng Liu, Ziye Yang, Xiang Song, et al. “Heterogeneous live migration of virtual
machines”. In: International Workshop on Virtualization Technology (IWVT’08). 2008.

[100]Zhaobin Liu, Wenyu Qu, Weijiang Liu, and Keqiu Li. “Xen live migration with slow-
down scheduling algorithm”. In: Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2010 International Conference on. IEEE. 2010, pp. 215-221.

[101]Marin Lopez and PTA Arturo Garcia Ares. “The network block device”. In: Linux Journal
2000.73es (2000), p. 40.

[102]Tao Lu, Ping Huang, Morgan Stuart, etal. “Successor: Proactive cache warm-up of
destination hosts in virtual machine migration contexts”. In: Computer Communications,
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE. 2016,
pp- 1-9.

[103]Yugian Lu, Xun Xu, and Jenny Xu. “Development of a hybrid manufacturing cloud”. In:
Journal of Manufacturing Systems 33.4 (2014), pp. 551-566.

[104]Yingwei Luo, Binbin Zhang, Xiaolin Wang, etal. “Live and incremental whole-system
migration of virtual machines using block-bitmap”. In: Cluster Computing, 2008 IEEE
International Conference on. IEEE. 2008, pp. 99-106.

[105]Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on architecture and
computation offloading”. In: IEEE Communications Surveys & Tutorials 19 (3 2017).
[106]Andrew Machen, Shigiang Wang, Kin K Leung, Bong Jun Ko, and Theodoros Salonidis.
“Live Service Migration in Mobile Edge Clouds”. In: arXiv preprint arXiv:1706.04118

(2017).

[107]Vijay Mann, Akanksha Gupta, Partha Dutta, et al. “Remedy: Network-aware steady state
VM management for data centers”. In: NETWORKING 2012 (2012), pp. 190-204.

[108]Ali Mashtizadeh, Emré Celebi, Tal Garfinkel, Min Cai, et al. “The design and evolution of
live storage migration in VMware ESX”. In: Usenix Atc. Vol. 11. 2011, pp. 1-14.

[109]Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, et al. “XvMotion: Unified Virtual
Machine Migration over Long Distance.” In: USENIX Annual Technical Conference. 2014,
pp. 97-108.

[110]Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud security and privacy: an
enterprise perspective on risks and compliance. " O’Reilly Media, Inc.", 2009.

[111]Nimrod Megiddo and Dharmendra S Modha. “ARC: A Self-Tuning, Low Overhead Re-
placement Cache.” In: FAST. Vol. 3. 2003, pp. 115-130.

[112]Grzegorz Milds, Derek G Murray, Steven Hand, and Michael A Fetterman. “Satori: Enlight-
ened page sharing”. In: Proceedings of the 2009 conference on USENIX Annual technical
conference. 2009, pp. 1-1.

[113]Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. “Containers checkpointing and live
migration”. In: Proceedings of the Linux Symposium. Vol. 2. 2008, pp. 85-90.

[114]MPTCP. Available: http://multipath-tcp.org/, Acessed: September. 2017.
[115]Alan Murphy. Enabling long distance live migration with F5 and VMware vMotion. 2011.

155

http://multipath-tcp.org/

156

[116]Apollinaire Nadembega, Abdelhakim Senhaji Hafid, and Ronald Brisebois. “Mobility
prediction model-based service migration procedure for follow me cloud to support QoS
and QoE”. In: Communications (ICC), 2016 IEEE International Conference on. IEEE. 2016,
pp- 1-6.

[117]Senthil Nathan, Purushottam Kulkarni, and Umesh Bellur. “Resource availability based
performance benchmarking of virtual machine migrations”. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering. ACM. 2013, pp. 387-398.

[118]Mark Nelson and Jean-Loup Gailly. The data compression book. Vol. 2. M&t Books New
York, 1996.

[119]Michael Nelson, Beng-Hong Lim, Greg Hutchins, etal. “Fast Transparent Migration for
Virtual Machines.” In: USENIX Annual technical conference, general track. 2005, pp. 391-
394.

[120]Chun-Ho Ng, Mingcao Ma, Tsz-Yeung Wong, Patrick PC Lee, and John Lui. “Live dedu-
plication storage of virtual machine images in an open-source cloud”. In: Proceedings of
the 12th International Middleware Conference. International Federation for Information
Processing. 2011, pp. 80-99.

[121]1Bogdan Nicolae and Franck Cappello. “A hybrid local storage transfer scheme for live
migration of I/O intensive workloads”. In: Proceedings of the 21st international symposium
on High-Performance Parallel and Distributed Computing. ACM. 2012, pp. 85-96.

[122]MFXJ Oberhumer. “LZO real-time data compression library”. In: User manual for LZO
version 0.28, URL: http://www. infosys. tuwien. ac. at/Staff/lux/marco/lzo. html (February
1997) (2005).

[123]Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical review of vendor lock-in
and its impact on adoption of cloud computing”. In: Information Society (i-Society), 2014
International Conference on. IEEE. 2014, pp. 92-97.

[124]Beate Ottenwilder, Boris Koldehofe, Kurt Rothermel, etal. “Mcep: A mobility-aware
complex event processing system”. In: ACM Transactions on Internet Technology (TOIT)
14.1 (2014), p. 6.

[125]Beate Ottenwilder, Boris Koldehofe, Kurt Rothermel, and Umakishore Ramachandran.
“Migcep: Operator migration for mobility driven distributed complex event processing”.
In: Proceedings of the 7th ACM international conference on Distributed event-based systems.
ACM. 2013, pp. 183-194.

[126]Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G Shin, et al. “Perfor-
mance evaluation of virtualization technologies for server consolidation”. In: HP Labs Tec.
Report (2007).

[127]Eunbyung Park, Bernhard Egger, and Jaejin Lee. “Fast and space-efficient virtual machine
checkpointing”. In: ACM SIGPLAN Notices. Vol. 46. 7. ACM. 2011, pp. 75-86.

[128]Dick Pountain. “Run-length encoding.” In: Byte 12.6 (1987), pp. 317-319.

[129]Johan Pouwelse, Pawel Garbacki, Dick Epema, and Henk Sips. “The bittorrent p2p file-
sharing system: Measurements and analysis”. In: International Workshop on Peer-to-Peer
Systems. Springer. 2005, pp. 205-216.

[130]Practical Guide to Hybrid Cloud Computing. Available: http://www.cloud-council.org/
deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-Computing.pdf.

[131]Programming Intel QuickAssist Technology Hardware Accelerators for Optimal Performance.
Available: https://01.org/sites/default/files/page/332125_002_0.pdf. 2015.

[132]QCOW2 backing files & overlays. 2012. URL: https://kashyapc . fedorapeople.org/
virt/1c-2012/snapshots-handout.html.

Chapter 8 Bibliography

http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-Computing.pdf
http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-Computing.pdf
https://01.org/sites/default/files/page/332125_002_0.pdf
https://kashyapc.fedorapeople.org/virt/lc-2012/snapshots-handout.html
https://kashyapc.fedorapeople.org/virt/lc-2012/snapshots-handout.html

[133]Yuqing Qiu, Chung-Horng Lung, Samuel Ajila, and Pradeep Srivastava. “LXC Container
Migration in Cloudlets under Multipath TCP”. In: Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual. Vol. 2. IEEE. 2017, pp. 31-36.

[134]Michael O Rabin et al. Fingerprinting by random polynomials. Center for Research in
Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[135]Bane Raman Raghunath and B Annappa. “Virtual Machine Migration Triggering using
Application Workload Prediction”. In: Procedia Computer Science 54 (2015), pp. 167-176.

[136]KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. “Live data center
migration across WANSs: a robust cooperative context aware approach”. In: Proceedings of
the 2007 SIGCOMM workshop on Internet network management. ACM. 2007, pp. 262-267.

[137]Pierre Riteau, Christine Morin, and Thierry Priol. “Shrinker: Efficient wide-area live
virtual machine migration using distributed content-based addressing”. PhD thesis. INRIA,
2010.

[138]Pierre Riteau, Christine Morin, and Thierry Priol. “Shrinker: Improving live migration
of virtual clusters over wans with distributed data deduplication and content-based
addressing”. In: European Conference on Parallel Processing. Springer. 2011, pp. 431-442.

[139]Benny Rochwerger, David Breitgand, Eliezer Levy, etal. “The reservoir model and archi-
tecture for open federated cloud computing”. In: IBM Journal of Research and Development
53.4 (2009), pp. 4-1.

[140]RUBBoS. http://jmob.ow2.org/rubbos.html, Accessed: March, 2016.

[141]Chris Ruemmler and John Wilkes. UNIX disk access patterns. Hewlett-Packard Laboratories,
1992.

[142]Shashank Sahni and Vasudeva Varma. “A hybrid approach to live migration of virtual
machines”. In: Cloud Computing in Emerging Markets (CCEM), 2012 IEEE International
Conference on. IEEE. 2012, pp. 1-5.

[143]Tusher Kumer Sarker and Maolin Tang. “Performance-driven live migration of multiple
virtual machines in datacenters”. In: Granular Computing (GrC), 2013 IEEE International
Conference on. IEEE. 2013, pp. 253-258.

[144]Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, et al. “Cloudlets: at the leading edge of
mobile-cloud convergence”. In: Mobile Computing, Applications and Services (MobiCASE),
2014 6th International Conference on. IEEE. 2014, pp. 1-9.

[145]Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel Davies. “The case
for vim-based cloudlets in mobile computing”. In: IEEE pervasive Computing 8.4 (2009).

[146]Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and Schahram
Dustdar. “Winds of change: From vendor lock-in to the meta cloud”. In: IEEE internet
computing 17.1 (2013), pp. 69-73.

[147]Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and Beate
Ottenwiélder. “Incremental deployment and migration of geo-distributed situation aware-
ness applications in the fog”. In: Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems. ACM. 2016, pp. 258-269.

[148]Mathijs Jeroen Scheepers. “Virtualization and containerization of application infrastruc-
ture: A comparison”. In: 21st Twente Student Conference on IT. 2014, pp. 1-7.

[149]Stefano Secci, Patrick Raad, and Pascal Gallard. “Linking virtual machine mobility to
user mobility”. In: IEEE Transactions on Network and Service Management 13.4 (2016),
pp. 927-940.

157

http://jmob.ow2.org/rubbos.html

158

[150]Zhiming Shen, Qin Jia, Gur-Eyal Sela, etal. “Follow the Sun through the Clouds: Appli-
cation Migration for Geographically Shifting Workloads”. In: Proceedings of the Seventh
ACM Symposium on Cloud Computing. ACM. 2016, pp. 141-154.

[151]Aidan Shribman and Benoit Hudzia. “Pre-Copy and post-copy VM live migration for
memory intensive applications”. In: European Conference on Parallel Processing. Springer.
2012, pp. 539-547.

[152]Vivek Shrivastava, Petros Zerfos, Kang-Won Lee, et al. “Application-aware virtual machine
migration in data centers”. In: INFOCOM, 2011 Proceedings IEEE. IEEE. 2011, pp. 66-70.

[153]Vasilios A Siris and Dimitrios Kalyvas. “Enhancing mobile data offloading with mobility
prediction and prefetching”. In: ACM SIGMOBILE Mobile Computing and Communications
Review 17.1 (2013), pp. 22-29.

[154]Wee-Seng Soh and Hyong S Kim. “Dynamic bandwidth reservation in cellular networks
using road topology based mobility predictions”. In: vol. 4. Proceedings of INFOCOM
2004. IEEE. 2004, pp. 2766-2777.

[155]Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster. “Virtual infras-
tructure management in private and hybrid clouds”. In: IEEE Internet computing 13.5
(2009).

[156]Shivani Sud, Roy Want, Trevor Pering, etal. “Dynamic migration of computation through
virtualization of the mobile platform”. In: Mobile Networks and Applications 17.2 (2012),
pp. 206-215.

[157]Xiang Sun and Nirwan Ansari. “Avaptive Avatar Handoff in the Cloudlet Network”. In:
IEEE Transactions on Cloud Computing (2017).

[158]Xiang Sun and Nirwan Ansari. “Primal: Profit maximization avatar placement for mobile
edge computing”. In: Communications (ICC), 2016 IEEE International Conference on. IEEE.
2016, pp. 1-6.

[159]Petter Svird, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. “Evaluation of delta
compression techniques for efficient live migration of large virtual machines”. In: ACM
Sigplan Notices 46.7 (2011), pp. 111-120.

[160]Petter Svérd, Johan Tordsson, Benoit Hudzia, and Erik Elmroth. “High performance
live migration through dynamic page transfer reordering and compression”. In: Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference
on. IEEE. 2011, pp. 542-548.

[161]Kazushi Takahashi, Koichi Sasada, and Takahiro Hirofuchi. “A fast virtual machine storage
migration technique using data deduplication”. In: Proceedings of CLOUD COMPUTING
(2012), pp. 57-64.

[162]Tarik Taleb and Adlen Ksentini. “An analytical model for follow me cloud”. In: Global
Communications Conference (GLOBECOM), 2013 IEEE. IEEE. 2013, pp. 1291-1296.

[163]Tarik Taleb and Adlen Ksentini. “Follow me cloud: interworking federated clouds and
distributed mobile networks”. In: IEEE Network 27.5 (2013), pp. 12-19.

[164]Tarik Taleb, Peer Hasselmeyer, and Faisal Ghias Mir. “Follow-me cloud: An OpenFlow-
based implementation”. In: Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing. IEEE. 2013, pp. 240-245.

[165]Chungiang Tang. “FVD: A High-Performance Virtual Machine Image Format for Cloud.”
In: USENIX Annual Technical Conference. 2011, p. 2.

[166]Fikirte Teka, Chung-Horng Lung, and Samuel A Ajila. “Nearby live virtual machine
migration using cloudlets and multipath TCP”. In: Journal of Cloud Computing 5.1 (2016),
p- 12.

Chapter 8 Bibliography

[167]Fikirte Teka, Chung-Horng Lung, and Samuel Ajila. “Seamless Live Virtual Machine
Migration with Cloudlets and Multipath TCP”. In: Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual. Vol. 2. IEEE. 2015, pp. 607-616.

[168]TPC-W. http://www.tpc.org/tpcw/. December.2017.

[169]Franco Travostino, Paul Daspit, Leon Gommans, etal. “Seamless live migration of virtual
machines over the MAN/WAN?”. In: Future Generation Computer Systems 22.8 (2006),
pp. 901-907.

[170]Thomas Treutner and Helmut Hlavacs. “Service level management for iterative pre-copy
live migration”. In: Proceedings of the 8th International Conference on Network and Service
Management. International Federation for Information Processing. 2012, pp. 252-256.

[171]Konstantinos Tsakalozos, Vasilis Verroios, Mema Roussopoulos, and Alex Delis. “Live VM
Migration under Time-Constrains in Share-Nothing IaaS-Clouds”. In: IEEE Transactions
on Parallel and Distributed Systems (2017).

[172]Konstantinos Tsakalozos, Vasilis Verroios, Mema Roussopoulos, and Alex Delis. “Time-
constrained live VM migration in share-nothing IaaS-clouds”. In: Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on. IEEE. 2014, pp. 56-63.

[173]Virtual Machine Mobility with Vmware VMotion and Cisco Data Center Interconnect Tech-
nologies. Available: http://www.cisco.com/c/dam/en/us/solutions/collateral/
data-center-virtualization/data-center-virtualization/white_paper_cll-
557822. pdf.

[174]VMware Inc. Available: http://www.vmware.com/, Acessed: Dec. 2016.

[175]Carl A Waldspurger. “Memory resource management in VMware ESX server”. In: ACM
SIGOPS Operating Systems Review 36.SI (2002), pp. 181-194.

[176]Huandong Wang, Yong Li, Ying Zhang, and Depeng Jin. “Virtual machine migration
planning in software-defined networks”. In: Computer Communications (INFOCOM), 2015
IEEE Conference on. IEEE. 2015, pp. 487-495.

[177]Lizhe Wang, Jie Tao, Marcel Kunze, etal. “Scientific cloud computing: Early definition
and experience”. In: High Performance Computing and Communications, 2008. HPCC’08.
10th IEEE International Conference on. Ieee. 2008, pp. 825-830.

[178]Shigiang Wang, Rahul Urgaonkar, Ting He, etal. “Mobility-induced service migration
in mobile micro-clouds”. In: Military Communications Conference (MILCOM), 2014 IEEE.
IEEE. 2014, pp. 835-840.

[179]Christof Weinhardt, Arun Anandasivam, Benjamin Blau, et al. “Cloud computing-a classi-
fication, business models, and research directions”. In: Business & Information Systems
Engineering 1.5 (2009), pp. 391-399.

[180]Aaron Weiss. “Computing in the clouds”. In: Computing 16 (2007).

[181]Paul R Wilson, Scott F Kaplan, and Yannis Smaragdakis. “The Case for Compressed
Caching in Virtual Memory Systems.” In: USENIX Annual Technical Conference, General
Track. 1999, pp. 101-116.

[182]Timothy Wood. “Improving data center resource management, deployment, and availabil-
ity with virtualization”. PhD thesis. University of Massachusetts Amherst, 2011.

[183]Timothy Wood, KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. “Cloud-
Net: dynamic pooling of cloud resources by live WAN migration of virtual machines”. In:
ACM Sigplan Notices. Vol. 46. 7. ACM. 2011, pp. 121-132.

[184]Jing Xia, Deming Pang, Zhiping Cai, Ming Xu, and Gang Hu. “Reasonably Migrating
Virtual Machine in NFV-Featured Networks”. In: Computer and Information Technology
(CIT), 2016 IEEE International Conference on. IEEE. 2016, pp. 361-366.

159

http://www.tpc.org/tpcw/
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/data-center-virtualization/white_paper_c11-557822.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/data-center-virtualization/white_paper_c11-557822.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/data-center-virtualization/white_paper_c11-557822.pdf
http://www.vmware.com/

[185]Fei Xu, Fangming Liu, Linghui Liu, et al. “laware: Making live migration of virtual machines
interference-aware in the cloud”. In: IEEE Transactions on Computers 63.12 (2014),
pp. 3012-3025.

[186]Shugong Xu and Tarek Saadawi. “Performance evaluation of TCP algorithms in multi-hop
wireless packet networks”. In: Wireless communications and mobile computing 2.1 (2002),
pp. 85-100.

[187]Xiaolin Xu, Hai Jin, Song Wu, and Yihong Wang. “Rethink the storage of virtual machine
images in clouds”. In: Future Generation Computer Systems 50 (2015), pp. 75-86.

[188]Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, and Bei Wang. “Live migration of
multiple virtual machines with resource reservation in cloud computing environments”. In:
Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE. 2011, pp. 267-
274.

[189]Lamia Youseff, Maria Butrico, and Dilma Da Silva. “Toward a unified ontology of cloud
computing”. In: Grid Computing Environments Workshop, 2008. GCE’08. IEEE. 2008,
pp- 1-10.

[190]Zainab R Zaidi and Brian L Mark. “Real-time mobility tracking algorithms for cellular
networks based on Kalman filtering”. In: IEEE Transactions on Mobile Computing 4.2
(2005), pp. 195-208.

[191]Dagiang Zhang, Min Chen, Mohsen Guizani, Haoyi Xiong, and Daqing Zhang. “Mobility
prediction in telecom cloud using mobile calls”. In: IEEE Wireless Communications 21.1
(2014), pp. 26-32.

[192]Fei Zhang, Xiaoming Fu, and Ramin Yahyapour. “CBase: A New Paradigm for Fast Virtual
Machine Migration across Data Centers”. In: Proceedings of the 17th IEEE/ACM Inter-
national Symposium on Cluster; Cloud and Grid Computing. IEEE Press. 2017, pp. 284—
293.

[193]Fei Zhang, Bo Zhao, Xiaoming Fu, and Ramin Yahyapour. “Controlling migration perfor-
mance of virtual machines according to user’s requirements”. In: Proceedings of CAN’17:
Cloud-Assisted Networking Workshop. ACM, 2017.

[194]Fei Zhang, Xiaoming Fu, and Ramin Yahyapour. “LayerMover: Storage Migration of
Virtual Machine across Data Centers Based on Three-Layer Image Structure”. In: Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2016
IEEE 24th International Symposium on. IEEE. 2016, pp. 400-405.

[1951Jinshi Zhang, Liang Li, and Dong Wang. “Optimizing VNF live migration via para-
virtualization driver and QuickAssist technology”. In: Communications (ICC), 2017 IEEE
International Conference on. IEEE. 2017, pp. 1-6.

[196]Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: state-of-the-art and research
challenges”. In: Journal of internet services and applications 1.1 (2010), pp. 7-18.

[197]1Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. “Exploiting data deduplication to
accelerate live virtual machine migration”. In: Cluster Computing (CLUSTER), 2010 IEEE
International Conference on. IEEE. 2010, pp. 88-96.

[198]Zhaoning Zhang, Ziyang Li, Kui Wu, etal. “VMThunder: fast provisioning of large-scale
virtual machine clusters”. In: IEEE Transactions on Parallel and Distributed Systems 25.12
(2014), pp. 3328-3338.

[199]Zhenzhong Zhang, Limin Xiao, Mingfa Zhu, and Li Ruan. “Mvmotion: a metadata based
virtual machine migration in cloud”. In: Cluster Computing 17.2 (2014), pp. 441-452.

[200]Ming Zhao and Renato J Figueiredo. “Experimental study of virtual machine migration in
support of reservation of cluster resources”. In: Virtualization Technology in Distributed
Computing (VIDC), 2007 Second International Workshop on. IEEE. 2007, pp. 1-8.

Chapter 8 Bibliography

[201]Jie Zheng, Tze Sing Eugene Ng, Kunwadee Sripanidkulchai, and Zhaolei Liu. “Comma:
Coordinating the migration of multi-tier applications”. In: ACM SIGPLAN Notices. Vol. 49.
7. ACM. 2014, pp. 153-164.

[202]Jie Zheng, TS Eugene Ng, Kunwadee Sripanidkulchai, and Zhaolei Liu. “Pacer: A progress
management system for live virtual machine migration in cloud computing”. In: IEEE
transactions on network and service management 10.4 (2013), pp. 369-382.

[203]Jie Zheng, Tze Sing Eugene Ng, and Kunwadee Sripanidkulchai. “Workload-aware live
storage migration for clouds”. In: ACM Sigplan Notices. Vol. 46. 7. ACM. 2011, pp. 133~
144.

[204]Mian Zheng and Xiaohui Hu. “Template-based migration between data centers using
distributed hash tables”. In: Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th
International Conference on. IEEE. 2015, pp. 2443-2447.

[205]Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. “Mining interesting locations and
travel sequences from GPS trajectories”. In: Proceedings of the 18th international confer-
ence on World wide web. ACM. 2009, pp. 791-800.

[206]Ruijin Zhou, Fang Liu, Chao Li, and Tao Li. “Optimizing virtual machine live storage
migration in heterogeneous storage environment”. In: ACM SIGPLAN Notices. Vol. 48. 7.
ACM. 2013, pp. 73-84.

161

List of Acronyms

ARC Adaptive Replacement Cache

BSC Base Station Controller

CBC Characteristic-Based Compression

CBPS Content Based Page Share

COR Copy-On-Read

COW Copy-On-Write

CPU Central Processing Unit

CR/TR Checkpointing/Recovery and Trace/Replay
DHT Distributed Hash Table

ETSI European Telecommunications Standards Institute
FC Fibre Channel

HDD Hard Disk Drive

HPC High Performance Computing

laaS Infrastructure as a Service

loT Internet of Thing

LAN Local Area Network

LRU Least Recently Used

MAN Metropolitan Area Network

MDP Markov Decision Process

MEC Mobile Edge Computing

163

MMU Memory Management Unit
MPTCP Multipath TCP

NAS Network Attached Storage
NBD Network Block Device

NFS Network File System

NFV Network Function Virtualization
NIC Network Interface Card

OS Operating System

QAT QuickAssist Technology

QoS Quality of Service

RAN Radio Access Network
RDMA Remote Direct Memory Access
SAN Storage Area Network

SDPS Stun During Page Send
SLA Service Level Agreement
SSD Solid State Drive

UD User Data

UE User Equipment

UUID Universally Unique Identifier
VM Virtual Machine

WAN Wide Area Network

WE Working Environment

WWS Writable Working Set

XBRLE XORed Binary Run Length Encoding

164 Chapter 8 Bibliography

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

3.1

3.2
3.3
3.4
3.5
3.6

3.7

4.1

Hardware virtualization. 8
Memory management.ovove e e e e e e e e e e e e e 8
The storage system structures of cloud datacenter. 9
Live VM migration. ot v i vttt e e e e e 11
The classification of memory data migration patterns. 13

The migration sequences between memory data and storage data. The
retransmission of dirtied disk blocks can be implemented in different
manners. For example, the dirtied blocks can be synchronized to the
destination site during migration or transferred at the end of storage data
migration in bulk. In these figures ((a), (c), (d), (g), (i)), only the second
optionisshown. 14
The architecture of mobile edge computing. 15
Classification of migration schemes. The relatively bigger line width for
memory data migration in (a) is to indicate the bigger network bandwidth
in LAN environments in comparison with WAN and MEC environments. . 17

The taxonomy of VM migration. The arrows for memory and storage data
migration technologies mean that they are mutually compatible in LAN
and WAN environments. For both memory and storage data migrations,
the technologies for single migration and correlated VM migration are
covered. S and C refer to single migration and correlated VM migration,
respectively. In this chapter, we only review the technologies related to our

research topics, i.e., the gray boxes in the figure. 22
The illustration of normal compression and delta compression. 23
The optimizations at different points of memory migration path. 36
The bit-shifting problem with file chunking. 39
The optimizations at different points of storage data migration path. . . . 44

The comparison between VM migration in cloud computing and MEC. (a)
Cloud computing, (b) No VM migration in MEC, (¢) VM migration in MEC.
The double-arrowed lines denote the communication between a UE and

IS VM. . . . o e e e e 46
The summary of migration optimization technologies in MEC. 50
The workflow of pre-copy. 52

165

166

4.2
4.3
4.4
4.5

4.6

4.7

5.1
5.2

5.3

5.4
5.5
5.6

5.7
5.8
5.9
5.10

5.11
5.12
5.13

5.14
5.15
5.16
5.17

The rough diagram of Function (4.11) and (4.12). 56
The effects of p on migration performances. 57
The network virtualizationinXen. 59
The migration performance control of a static web server VM by adjusting
network bandwidth. o o000 ool o oo 62
The migration performance control of a Linux kernel compilation VM by
adjusting memory dirty rate.o 63
Service degradation during migration performance control. “0”, “b”, “d”
and “B” represent without adjustment, only migration bandwidth adjust-
ment, only memory dirty rate adjustment and adjusting both of them,
respectively. L e 63

VM Image StrUCLULES. . . . v v v v v v v e v e e e e e e e e e e e 68
COW. The modifications from VMs to base images are redirected to the
corresponding upper image files. 69
Different software stack placements in two-layer image structure. (a)Software
stacks are installed in the base image layer. (b)Software stacks are installed

intheUDlayer. i e e 69
Three-layer VM image structure. 70
Modification percentages. ot it e e 73

The general steps of data deduplication for VM storage data migration.
Our optimizations mainly focus on parts @ chunking and fingerprint

calculation and @) duplicated block elimination. 77
Hashtable structure of base images. 78
The structure of LayerMover. 79
I/0 performance with different image structures. 81

Individual similarity between the WE images based on the same version of
OS but for different architectures. Regarding the denotations on the x-axis,
“F” is short for “Fedora”, and “O” for “openSUSE”. The first number is the
version of the OS, and the second one is the CPU architecture it aims for.
For example, “0122-32” denotes “openSUSE 12.2(32bit)”. Each bar pair

indicates a comparison between these two WE images. 82
Group similarity. The x-axis uses the same denotations as Figure 5.10. . . 83
Memory and storage data dirty features of different applications. 85
Migration performances for different type of VMs under different similarity

SItUALIONS. e e e e e e e 86
The downtime of LayerMover for different applications. 87

Migration performance of multiple VMs under different similarity conditions. 87
The architecture of CBase. i 89
Cloud computing roles. (a) Current roles in cloud computing. (b) Roles
in CBase. The double-arrow lines in (b) indicate the functionality of
uploading base images to the central repository. 89

List of Figures

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

6.1
6.2

6.3

6.4

6.5

6.6

6.7
6.8

6.9

Service provisioning procedure of CBase. 90

Migrating base images with P2P file sharing. 93
UD layer migration. i i i e 94
The comparison between two types of bitmaps for a UD image. (a) A

bitmap for the whole UD image, (b) A bitmap only for the writable layer

ofaUDimage. i i i i ittt e e e e 94
The orchestration of different migration processes. (a) Ty < T, + T, (b)
[T 95
The experimental testbeds. (a) The testbed for the migration with data
deduplication, (b) the testbed for the migration with P2P file sharing. . . . 96

The total migration time with different migration mechanisms and different
VMs. S-Sto is the migration time of the storage data of the migrated VM,
and S-Mem is that of memory data migration. Especially, for DR3, P2P-25,
and P2P-50, S-Sto denotes the migration time of the UD image from the
source site, and C is the migration time of base images from the central

repository. This denotation is applicable for all figures in this chapter. . . 98
The total network traffic when migrating different applications with differ-

ent migrationmethods. oL oL 99
The total migration time and total network traffic for OS reuse. 100
The total migration time and total network traffic for WE reuse. 100

The experimental environments of DN3 and CBase for testing the perfor-
mance of UD image migration. 102

The migration time of DN3 and CBase for newly-dirtied disk blocks and

memory data. e e e e e e e e e e e e e e 102
The total migration time of different approaches for RUBBoS. TT: total

migration time, TN: total network traffic. 103
The inconsistency problem between VM migration and UE mobility. 107

The relationship between VM migration and UE mobility. Both early and
late VM handovers are shown in this figure. 107
Migration procedure of JDM algorithm. (a) Delta migration or the migra-
tion between the first and the seond edge cloud data centers. (b) Jump
migration. (c) Delta migration., 109
The procedure of SSM algorithm. 112
The times of a UE moving into its neighbor cells by using mobility prediction.114
The possible relationships between VM migration and UE mobility with
uncertain MOVING trajeCtory. . . « v v v v v v v v v e e e e e e e e e 115
Total migration time for the UE with certain moving trajectory. 117

Service degradation time during VM migration for the UE with certain
MOVING tTAJECLOTY. « » « v v v v v v v e i e e e e e e e e e e e e e e 117

Total migration time for the UE with uncertain moving trajectory. 118

List of Figures

167

168

6.10

6.11

6.12

6.13

6.14

6.15
6.16

6.17

6.18
6.19
6.20
6.21
6.22

6.23

6.24

6.25
6.26

Service degradation time during VM migration for the UE with uncertain
MOVING tTAJECLOTY. « .« « v v v v v e v e v e e e e e e e e e e e e e e 119
The required additional network bandwidth to solve the inconsistency
problem between VM migration and UE mobility. 120
An MEC structure based on a cellular network. Herein, k = 2 and d = 2.

The cells with gray color belong to Agpg., 121
The schematic graph of VM migration steps. 122
The network overheads resulting from VM migrations in MEC. 124
The network overheads with different migration distances. 125

Two simple migration algorithms when k& = 2. The cells with gray color
are the moving trajectory of the UE (I') and those of which are with a
rectangle are the migration trajectory of the corresponding VM (II). 125
The illustration of the M-Weight algorithm, here £ = 1. The cells with
color are the moving trajectory of a UE. (a) The initialization phase. The
number on a cell is its weight. (b) The weight calculation and migration
plan making phases. The cell with a triangle is a migration trigger point
and the one with a rectangle with the same number is the corresponding
destination edge cloud data center for this migration. The migration plan
for this UE mobility is: m = {511,533, S42} and Il = {Ey o, Ea 2, E32, E5 2} 127

The procedure of the migration plan making phase. n =|| Sel ||. 130
The two extreme situations of UE movement. 131
The possibility calculationwhen k >2. 132

The possibility calculation of the edge cloud data centers in the first ring. . 133
The destination edge cloud data center selection for each migration in
M-Predict. o o i e 134
The method to solve the prediction error when k& = 2. The rectangle with
color represents the previous location of the VM, and the rectangle with
lines is the new location selected by M-Predict. The cells with color are in

the coverage area of the edge cloud data center Ey6. 136
The performances of M-Weight. “NM”: number of migration, “NT”: total

network traffic. 138
The number of migration of M-All, M-Edge and M-Predict. 139
The total network traffic of M-All, M-Edge and M-Predict. 140

List of Figures

List of Tables

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5

5.6

6.1
6.2

The summary of memory data migration technologies. 35
The summary of storage data migration technologies. 45
The summary of user mobility-induced migration technologies. 49
The notations used in thischapter. 52

The information on the migrated VMs and user’s performance require-
ments. Total migration time and downtime are calculated in seconds (s),
and total network traffic is calculated in megabytes (MB). Each require-
ment follows the structure: (total migration time, downtime, total network
traffic, adjustment manner). “M” and “B” denote to use memory dirty rate
adjustment and migration bandwidth adjustment to achieve the desired

performance, respectively. 61
The notations on storing VM images in different structures.. 71
The space differences between the 3L structure and others. 72
The size (in MB) of WEimages. 82

The image size (in MB) of different workloads with different image structures. 85
The image size (in MB) of the VMs in a three-tier application with different
image structures. The image sharing structures are also indicated in the
table. 87
The image size (in MB) of the VMs in RUBBoS. The data sharing of base
images is also illustrated in this table. For example, for the second type of
two-layer image structure, the base image of web server is shared by two

The parameters of the migrated VMs. 116
The environment settings for understanding the effects of migration dis-
tance and migration frequency on total network overhead. 124

169

	Coverpage
	Acknowledgement
	Abstract
	1 Introduction
	1.1 Motivation
	1.1.1 Problems with Migration in LAN
	1.1.2 Problems with Migration over WAN
	1.1.3 Problems with Migration in MEC

	1.2 Contributions
	1.3 Dissertation Structure

	2 Background
	2.1 Resource Management of Cloud Data Center
	2.2 The Cornerstone of Cloud Management
	2.3 How to Live Migrate a VM?
	2.3.1 Memory Data Migration
	2.3.2 Storage Data Migration

	2.4 Mobile Edge Computing
	2.5 A Taxonomy of Migration Schemes
	2.6 Performance Metrics and Overheads
	2.7 VM Migration vs. Container Migration
	2.8 Chapter Summary

	3 Related Work
	3.1 Memory Data Migration
	3.1.1 Pre-copy
	3.1.2 Post-copy
	3.1.3 Hybrid copy
	3.1.4 Summary of Memory Data Migration Technologies

	3.2 Storage Data Migration
	3.2.1 VMware Strategies
	3.2.2 Replication
	3.2.3 Data Deduplication
	3.2.4 Software-based Approach
	3.2.5 I/O-aware Migration
	3.2.6 Correlated VM Migration
	3.2.7 Others
	3.2.8 Summary of Storage Data Migration Technologies

	3.3 User Mobility-induced VM Migration
	3.3.1 Migration Performance Improvement
	3.3.2 Migration Performance Analysis
	3.3.3 Summary of User Mobility-induced Migration Technologies

	3.4 Chapter Summary

	4 VM Migration in LAN—Performance Control
	4.1 Performance Analysis for Pre-copy
	4.1.1 Performance Model
	4.1.2 Performance Features

	4.2 Migration Control Algorithm
	4.3 Implementation
	4.3.1 Memory Dirty Rate Adjustment
	4.3.2 Migration Bandwidth Adjustment
	4.3.3 User Requirement Setting

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Efficiency of Migration Performance Control
	4.4.3 Service Degradation During Performance Control

	4.5 Chapter Summary

	5 VM Migration over WAN—Storage Data Migration
	5.1 Three-layer Image Structure
	5.1.1 VM Image Structure
	5.1.2 Space Consumption Analysis
	5.1.3 The Trade-off of Data Deduplication
	5.1.4 Migration System
	5.1.5 Implementation
	5.1.6 Evaluation

	5.2 Central Base Image Repository
	5.2.1 System Design
	5.2.2 Storage Data Migration
	5.2.3 Evaluation

	5.3 Chapter Summary

	6 VM Migration in MEC—User Mobility-induced VM Migration
	6.1 UE Mobility
	6.2 Migration Performance Improvement
	6.2.1 Problem Statement
	6.2.2 Algorithm Design
	6.2.3 Migration Initialization Mechanism
	6.2.4 Algorithm Performance

	6.3 Network Overhead Alleviation
	6.3.1 System Formulation
	6.3.2 Network Overhead of Live VM Migration
	6.3.3 Problem Statement
	6.3.4 Algorithm Design
	6.3.5 Algorithm Performance

	6.4 Chapter Summary

	7 Conclusion
	7.1 Summary
	7.2 Outlook

	8 Publications
	Bibliography
	List of Acronyms
	List of Figures
	List of Tables

