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Prof. Dr. Claus Ropers
Viertes Physikalisches Institut,

Georg-August-Universität Göttingen

Dr. Alexander Egner
Laser-Laboratorium Göttingen e.V.

Prof. Dr. Sarah Köster
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1 Introduction

Wilhelm Conrad Röntgen’s discovery of X-rays, published in 1895 [1], became
instantly famous around the world. For the first time, it became possible to obtain
a non-destructive view of a solid object’s interior, demonstrated by a radiogram of a
human hand and its bone structure. This application immediately aroused the interest
of the medical community and in a short time the new field of radiography developed
into an indispensable tool of medical diagnosis, already playing a prominent role in the
presentation speech of the first Nobel Prize in history, which was awarded to Röntgen
in 1901.
However, for many applications, the shade-like X-ray projections are insufficient. In-
stead, knowledge of the entire three-dimensional (3d) structure is necessary. In the
1960s, scientists and engineers such as William H. Oldendorf, Allan M. Cor-
mack and Godfrey Hounsfield were responsible for the development of comput-
erised tomography (CT): Advances in computer technology in particular made it pos-
sible to determine the 3d structure of an object from a large number of X-ray images
taken from different directions. Once again, this development was honoured with the
Nobel Prize in Medicine in 1979.
Owing to the penetration power of hard X-rays, the method is uniquely suitable for the
investigation of bulk structures of unsliced, unstained, and optically opaque specimen.
Due to this weak interaction with matter, however, thin samples, in particular of low
density and light element tissues hardly influence the X-ray beam – at least in the con-
text of traditional radiography which is sensitive only to the amplitude (transmission)
of the X-ray wave. This long-standing limitation has been overcome in revolutionary
ways by the development of phase contrast methods in the last two decades [2–5].
These techniques also take the considerably stronger phase shifting properties of the
objects into account, enabling the visualisation of weakly or non-absorbing samples in
biomedical imaging, as well as nanoscale structures in material science. These types
of samples profit from another important property of X-rays, too: Their wavelength is
much smaller than that of visible light used in a conventional microscope, pushing the
theoretical resolution limit to the sub-nanometre range.
As an alternative to various analyser-based methods [3, 6], phase contrast can be easily
achieved without additional optical elements by free space propagation of (partially)
coherent beams behind the object [7–9]. The development of interference patterns
over the distance between sample and detector encodes the phase information into
measurable brightness variations – a method called (in-line) holography, invented by
Dennis Gabor and awarded with the 1971 Nobel Prize in Physics. Such scanning-
free methods in combination with highly brilliant1 synchrotron sources developed over
the last decades now allow for rapid image acquisition. This opens up the possibility
to measure 3d dynamics in addition to the 3d structure, enabling a new insight into

1 I.e. providing very intense, nearly monochromatic and collimated X-rays.
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Introduction

a large variety of processes not only on the micro-scale. This combination of fastest
phase contrast imaging with tomography is the main topic of this thesis.
A wide range of relevant applications comes to mind: In order to track down turnover
rate, reaction products, or the evolving material structure in chemical reactions like
heterogeneous catalysis, dynamical changes have to be determined within the entire
volume, not only from projections or surface observations. In biology, too, numerous
kinds of processes can be fully understood only in all four dimensions, including the
complex formation of filament networks during cell division, the interplay of muscles at
certain motions, or even the interaction of individuals, from reproduction to flocking
behaviour. Moreover, fundamental technical applications depend on the knowledge of
3d dynamics, for example the flow of granular matter like sand suddenly stalling in a
funnel.
However, the challenges involved in 4d tomography are as numerous as its benefits.
They include practical considerations, e.g. fast sample rotation for rapid acquisition of
projections along different directions, or questions concerning fast data acquisition and
processing as well as handling of large datasets. But there are also many fundamental
questions such as the proper application of a priori knowledge for phase-contrast imag-
ing or considerations regarding the best compensation of motion-related inconsistencies
in tomographic reconstruction, to mention only a few. In this work, several approaches
are presented to overcome these issues.
The standard procedure in evaluating phase contrast tomography data is a two-step
reconstruction procedure. First, the phase retrieval is carried out, i.e. decoding the
complex-valued projections from the detector’s intensity measurements, separately for
each projection angle. Second, all projections are combined to a three dimensional vol-
ume using tomographic reconstruction techniques. Both steps are in general ill-posed
inverse problems with numerous solutions explaining the measured data. Hence, ad-
ditional assumptions are required to select an appropriate result. In this context, the
step of phase retrieval is considered the most challenging. As demonstrated in previous
works [10, 11], a combination of both steps, i.e. utilising the concept of tomographic
consistency as a constraint for phase retrieval, considerably improves the reconstruction
quality. Here, this idea is developed further into a fast and practical iterative method
based on the novel concept of virtual free-space propagation of entire 3d objects: Under
certain conditions, both reconstruction steps can be inverted, allowing for the phase
retrieval to be carried out entirely in 3d rather than in 2d. This yields high-quality
results without the need of additional restrictive constraints by preserving the advan-
tages of tomographic consistency and the execution speed of the conventional scheme.
Moreover, a new class of 3d constraints can be utilised for phase retrieval. In this
context, an accurate method for the numerical propagation of wave fields is presented,
which is free of the artefacts usually affecting this operation and is easily scalable to
higher dimensions.
Addressing dynamical phase-contrast tomography, an experimental examination of the
3d sedimentation dynamics of SiO2 microspheres in a small capillary is presented. Sed-
imentation is one of the oldest methods to separate particles of different densities and
shapes from each other and from fluids. However, it is still far from being completely
understood even in the simplest case of monodisperse spherical particles: Long-range
hydrodynamic interactions cause a complex behaviour of the spheres, including fluc-
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tuations in the sedimentation speeds up to occasional rising of particles against the
direction of sedimentation. Such processes can only be fully investigated with access
to the 3d dynamics which are provided in great detail by the dynamical phase-contrast
tomography introduced here.
Revealing the evolution of an entire 3d structure in time to the fullest potential of this
technique, however, can only be accomplished if recording schemes and reconstruction
algorithms are generalised from the conventional static case to meet the challenges of
dynamic CT. To this end, the method of “backprojection along dynamically curved
paths” is presented. It is based on deriving motion approximated from optical flow
analysis of direct reconstructions and feeding this information into the tomographic
reconstruction geometry. Structure and dynamics are recovered from the continuous
stream of projection data acquired while rapidly rotating the sample, with a consider-
able reduction of artefacts which typically compromise conventional reconstruction. As
a proof of concept, this approach is demonstrated on a burning wooden match with a
spatial and temporal resolution allowing to observe the entire structure but also small
wooden segments breaking down.

This thesis is organised as follows: First, the Fourier transform as the mathemati-
cal basis of many concepts in this work is introduced, along with its most important
properties, the notation and conventions for the subsequent chapters. Second, the the-
oretical foundations of X-ray imaging are briefly summarised, yielding a mathematical
description of the so-called projection approximation, i.e. the radiograms obtained from
X-rays passing through a sample. Subsequently, the main principles of tomography are
introduced, illustrating how the sophisticated combination of projections from different
perspectives can reveal a 3d representation of a sample. Special attention is drawn to
a detailed description of the numerical implementation of these concepts.
The fourth chapter recapitulates the evolution of the projection’s wave field from the
sample to a distant detector with the goal of obtaining phase contrast. As before,
special attention is given to the numerical issues of propagation. A method for ac-
curate propagation of wave fields is presented, considering the discretised sampling.
The section concludes with an extension of the concept of propagation to 3d objects,
combining propagation and tomography, which will prove to be a useful numerical tool
in the following.
Based on the question to which extent information about an object can be measured at
different regions of the downstream wave field, the fifth chapter is dedicated to phase
contrast and phase retrieval, i.e. the reconstruction of the projection from the inten-
sity variations on the detector. In this context, approaches for utilising tomographic
consistency as a constraint are detailed and demonstrated on the first experimental
datasets.
The sixth chapter presents the challenges of dynamical tomography using the example
of sedimenting SiO2 micro-spheres, revealing the 3d dynamics of this process in great
detail. The concept of backprojection along dynamically curved paths, demonstrated
on a match during combustion, is introduced and discussed in the seventh chapter.
Details about the numerical implementation of the methods can be looked up in the
appendix, including extracts from the source code, among other things.
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2 Mathematical foundations of signal
processing

This thesis touches upon topics like wave optics, image processing and analysis as well
as tomographic reconstruction. Common to all of them is the Fourier transform as
an indispensable mathematical tool. In this chapter, the most important concepts
and properties of Fourier theory are briefly introduced, along with the mathematical
notation and the conventions used throughout this work.

2.1 Important properties of the Fourier transform

If a function f : Cnd → Cnd satisfies the Dirichlet conditions in an arbitrary interval,
i.e. only a finite number of jump discontinuities exist (all one-sided limits exist and
are finite), while f is continuous and piecewise monotonic otherwise, and moreover
the integral

∫∞
−∞ |f(~r)| d~r converges, f can be uniquely expessed in the interval as a

superposition of oscillations [12]

f(~r) =
1

(2π)nd

∞∫
−∞

f̂(~ν) exp(i~ν · ~r) d~ν (2.1)

with nd the number of dimensions of ~r. A single oscillation exp(i~ν · ~r) is denoted as
a (frequency) mode in the following and the complex amplitude distribution function
f̂ of the modes is called the spectrum or the Fourier transform of f . Alternatively, f̂
is denoted as the frequency domain, Fourier space or reciprocal space representation
of the original signal. The latter term describes the famous property that the width
of a function is inverted by the transformation between real space and Fourier space
defined by the coordinate sets ~r and ~ν, respectively. The most drastic example is the
transformation of a single oscillation infinitely extended in the frequency domain

1

(2π)nd

∞∫
−∞

exp(−i~ν · ~r0) exp(i~ν · ~r) d~ν = δD(~r − ~r0), (2.2)

resulting in an infinitely sharp Dirac δ-peak, precisely localised at ~r0. This equation
can be considered as the definition of the δ-distribution as introduced by Fourier and
Cauchy. If ~r does not exactly match ~r0, the multiplication in the integral yields a beat
oscillation that is symmetrically positive and negative, cancelling in the integration.

13
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Only an exact match contributes to the integral with an infinite value. As can be
verified easily, the inverse case

1

(2π)nd

∞∫
−∞

δd(~ν − ~ν0) exp(i~ν · ~r) d~ν =
1

(2π)nd
exp(~ν0 · ~r) (2.3)

transforms the localised δ-peak to an infinitely extended mode. This duality motivates
the definition of the Fourier transform1 F : f(~r) ∈ Cnd → f̂(~ν) ∈ Cnd (FT) as

F : f̂(~ν) =

∞∫
−∞

f(~r) exp(−i~ν · ~r) d~r, (2.4)

as well as the scaling factor 1/(2πnd) in the inverse Fourier transform F−1 : f̂(~ν) ∈
Cnd → f(~r) ∈ Cnd already introduced in Eq. (2.1). This factor, ensuring that
f = F−1 [F(f)], is often equally distributed between the forward and backward trans-
formations. Here, however, in order to improve the legibility of most subsequent equa-
tions, only the backtransform is normalised, as is customary in discrete FT and signal
processing. We therefore have to consider that according to Plancherel’s formula,
the signal power of the FT changes during the transformation:

∞∫
−∞

|f(~r)|2 d~r =
1

(2π)n

∞∫
−∞

|f̂(~ν)|2 d~ν. (2.5)

Next to linearity F [a ·f(~r)+ b ·g(~r)] = aF [f(~r)]+ bF [g(~r)], other important properties
of the FT for this work are summarised in the following table.

Operation / property Signal Fourier transform Comment

scaling with a ∈ R f(a~r) 1
|a| f̂(~ν/a) inv. frequency scaling

shifting by ~a ∈ Rnd f(~r − ~a) exp(i~a · ~ν)f̂(~ν) mult. with oscillation

n-th derivative along x ∂n

∂xn
f(~r) (iνx)

nf̂(~ν) multiplication with νnx

complex conjugation f ∗(~r) f̂ ∗(−~ν) conj. and point reflection

real function f(~r) ∈ R f̂(~ν) = f̂ ∗(−~ν) Hermitian function

The Fourier transforms for nd = 1 of special functions and distributions used in this
work are summarised in the next table:

1 Note that both the mathematical transformation F as well as the result f̂ are denoted as a Fourier
transform.

14



2.1 Important properties of the Fourier transform

Description Signal Fourier transform

Gaussian function exp(−ax2)
√
π/a exp(−ν2

x/4a)

Heaviside step function Θ(x) Θ(x) := (1+sgn(x))/2 πδD(νx) + i/νx

window function Π(x) Π(x) := Θ(x+ 1/2)−Θ(x− 1/2) sinc(νx/2)

modulus |x| −2/ν2
x

2.1.1 Fourier filter and the Convolution Theorem

Revealing the spectrum of a signal, the FT offers the possibility to filter a function by
manipulating specific frequency components. Well-known applications are e.g. a low-
pass filter damping high-frequency noise from audio signals, a high-pass filter removing
low spatial-frequency background variations in images or a bandpass filter manipulat-
ing the values in a specific frequency interval. Such filters can simply be applied by
multiplying the signal’s Fourier transform point-wise with an appropriate weighting
function, followed by a backtransform. In this way many other operations can be car-
ried out, notably a shift or a derivation as shown in the above table. As a convention,
we denote all such operations carried out by a multiplication of two functions in Fourier
space as filter operations.
According to the convolution theorem, all filter operations with the weighting function
being Fourier transformable can be equivalently expressed in real space by

F−1
[
f̂(~ν) · ĝ(~ν)

]
= (f ∗ g)(~r), (2.6)

where the convolution of both functions f, g is defined as

(f ∗ g)(~r) :=

∞∫
−∞

f(~τ)g(~r − ~τ) d~τ =

∞∫
−∞

f(~r − ~τ)g(~τ) d~τ . (2.7)

The functions are shifted relative to each other and the overlapping volume is calculated
for each shift. This is similar to the idea of a filter, i.e. one of the functions (' the
signal) gets changed by the so-called convolution kernel (' filter function). A good
example is smoothing a function by convolution with a Gaussian kernel. In many
cases, however, convolution is considered from another point of view: Consider e.g.
the convolution of a distribution of δ-peaks with an image, as exemplified in Fig. 2.1.
The image gets reproduced at each peak’s position, weighted with the pre-factor of
the δ-peak. In this case, the convolution produces a repetition and shift – usually not
associated with a filter. This can be used as a mathematical description of objects with
many identical features, e.g. a distribution of similar spheres in solution or a crystal
where the unit cell is convolved with the crystal lattice. Of course, like the equivalent
filter, a convolution finds numerous applications, including the description of entire
optical systems by convolving the ideal image of a sample with the so-called point-
spread-function (PSF) of the optical system, i.e. the image obtained by excitation with
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Mathematical foundations of signal processing

a δ-peak-like signal. Note that the inverse operation, a deconvolution which obtains the
original signal from the given convolution and kernel is often not possible. It requires
a division by the corresponding filter in Fourier space, often impossible due to zeros in
the filter or extreme enhancement of noise in practical applications.

(a) (b) (c)

(d) (e) (f)

co
n
vo

lu
ti

on
co

rr
el

at
io

n

0 1 0 2

Figure 2.1: Convolution and correlation. The convolution of the “signal” (a) with
the “kernel” (b) yields a superposition of shifted kernels (c). For better visibility, the
delta peaks have been widened and surrounded by a circle in the picture. The original
positions (a) can be retrieved approximately by a correlation of (b) and (c). The result
of a cross-correlation is shown in (d), a normalised cross-correlation, very similar in this
case, is depicted in (e) while (f) shows the result obtained by a phase correlation. Since
the peaks in (f) are very small, they are highlighted by circles, too.

Similar to the convolution, but often used for the inverse purpose is the (cross) corre-
lation of two functions f, g, defined as

(f ? g)(~r) := [f ∗(−~τ) ∗ g(~τ)] (~r) =

∞∫
−∞

f ∗(~τ)g(~τ + ~r) d~τ . (2.8)

Notice the star ? instead of the asterisk ∗ for the convolution, while the superscript
asterisk f ∗ denotes the complex conjugate. When shifting the two functions relative
to each other, the result of the correlation will be maximum when the functions are
most similar, i.e. the maxima meet for best enhancement and the minima match for
minimum damping of each other. With this property, the correlation is commonly
used for image registration but also to retrieve the positions from similar superposed
features, as demonstrated in Fig. 2.1 for the data initially obtained by a convolution.
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2.2 The discrete Fourier transform

Practical formulations robust against noise are e.g. the normalised cross-correlation as
defined in [13] and the so-called phase correlation PC, given by

PC := F−1

[
F(f) · F(g)∗

|F(f) · F(g)∗|

]
. (2.9)

Here, the nature of convolution and correlation can be well observed: Consider g as
a shifted version of f . In that case, the only difference in Fourier space is that g is
multiplied by a ‘shifting’ oscillation. By normalising, only this wave remains and the
backtransfom results in a δ-peak shifted about the same distance from the origin as
both functions are shifted with respect to each other.

2.2 The discrete Fourier transform

Data recording and processing is mostly carried out digitally. Here, a function f is
represented by discretised values fj at a finite number of sampling points xj, j ∈ Z,
usually arranged on a Cartesian grid. In two dimensions (2d), the quadratic arrange-
ment of sample points is commonly referred to as picture elements (pixels) and as cubic
volume elements (voxels) in 3d. For convenience, let us assume an nd = 1 dimensional
(1d) interval divided by an even number N of equidistant sampling points separated by
∆. The inverse 1/∆ is usually referred to as the sampling rate. From the N sampled
points, only N independent output values of a discretised Fourier transform (DFT) can
be expected. Hence, the DFT represents the Fourier transform f̂ as a superposition of
N harmonic modes exp(−ij k2π/N) with k = −N/2...N/2 ∈ Z [14]:

f̂k =
N−1∑
j=0

fj exp(−ij k2π/N) (2.10)

with the inverse transform

fj =
1

N

N−1∑
k=0

f̂k exp(ij k2π/N). (2.11)

Note that in the latter case the summation could be changed from 0 toN−1 because the
function is periodic in both j and k with period N . The multidimensional DFT can be
expressed by an arbitrary consecutive execution of 1d DFTs along each dimension. The
runtime of the DFT, as defined in Eq. (2.10), is proportional to O(N2). However, it can
be rearranged to the extremely efficient Fast Fourier Transform (FFT) with a runtime
proportional to O(N log2N) [14]. Thus, the FFT is used for efficient calculation of
many operations such as discrete convolutions.
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2.2.1 The Sampling Theorem

The most important aspect of discretising a function is to which extent it is captured
by the discrete sampling points and which information is lost. An interesting obser-
vation was made by Shannon [15]: If the spectrum f̂ of the original function f is
(band)limited, i.e. no frequencies ν larger than |ν| ≤ 2πL occur,

f(x) =
1

2π

∞∫
−∞

f̂(ν) exp(iνx) dν (2.12)

=
1

2π

2πL∫
−2πL

f̂(ν) exp(iνx) dν, (2.13)

the function can be reconstructed completely from discrete sampling points, provided
their distance is equal to or smaller than 1/2L:

fj := f

(
j

2L

)
=

1

2π

2πL∫
−2πL

f̂(ν) exp

(
iν

j

2L

)
dν. (2.14)

At this so-called Nyquist sampling rate, the sampling points fj on the left side cor-

respond to the coefficients of the Fourier-series expansion of f̂(ν) as given by the right
side integral with the interval [−L : L] as fundamental period. Since this expansion
uniquely determines f̂ in this interval, and we demanded f̂ to be zero outside of the
interval, the sampling points fj completely determine the spectrum of f – which in
turn means that they allow to exactly reconstruct f(x). Due to the duality of the FT,
this also applies to the inverse case: a spatially limited function can be completely re-
constructed from a sufficiently sampled discrete set of frequencies νj. In [15], Shannon
also specifies a reconstruction formula which is known as the Whittaker-Shannon
interpolation formula:

f(x) =
∞∑

j=−∞

fj · sinc [π (2Lx− j)] . (2.15)

Each sampling point is replaced by a sinc-function defined as sinc(x) := sin(x)/x with
the maximum at the point’s position and with zeros at the positions of all other sam-
pling points. Clearly, in practice the sum cannot be infinite but can still represent the
function within an interval in good approximation. We will look at this interpolation in
more detail below. Note that these results have been generalised to multidimensional
sampling on a discrete lattice of points in the Petersen–Middleton theorem [16].
Notably, many important functions are not band-limited and thus cannot be repre-
sented even by an infinite number of discrete sampling points. A famous example is
the Heaviside step function Θ(x). A reconstruction from discrete sampling points will
show so-called ringing artefacts, i.e. an overshooting particularly at the discontinuity
that is typical for non-adequate sampling.
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2.2.2 Circular convolution

According to the inverse DFT formula in Eq. (2.11), the reconstruction of a signal from
a set of Fourier coefficients f̂k is not limited to the interval of the fundamental period,
but periodically repeated with period N . This is not visible in a direct inverse DFT
evaluated only within one of those periods, but is becomes significant during several
operations. An important example is a discrete convolution carried out according to
Eq. (2.6) by a multiplication in Fourier space. In real space, a convolution can be
interpreted as the integral over the product of two functions with respect to their
relative shift. If these functions are only known on a certain interval, they are usually
interpreted as being compactly supported, i.e. zero everywhere outside the respective
interval. Thus, with increasing relative shift, more and more of the integrand turns
zero. However, when the DFT is used to calculate the convolution, the function values
that leave the interval on the right side when increasing the relative shift re-enter the
interval from the left, as sketched in Fig. 2.2. Because of this behaviour, this type
of discrete convolution is called a circular convolution. In order to obtain the same
results as for the compactly supported functions in real space, both functions have to
be padded with zeros to an interval twice the size, and the resulting convolution has to
be cut to the original interval size. The performance gain from using the FFT is still
tremendous despite these additional steps.

direct convolution circular convolution

Figure 2.2: Usually, images are assumed to be zero-padded in a discrete convolution,
leading to the result on the left side. However, when the convolution is implemented
via the FFT according to the convolution theorem, a so-called circular convolution is
performed, periodically repeating the input images. Explicit zero padding to twice the
original size is required to obtain the same results as in a direct convolution.
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2.2.3 Interpolation in Fourier space

Figure 2.3: Principle of
bilinear interpolation. See
text for details.

Numerous operations on the discretised grid of sampling
points require an interpolation, i.e. the estimation or cal-
culation of function values between the sampling points
from the surrounding known values. In this work, the term
mostly refers to 2d resampling, meaning the challenge of
how to distribute the values of a pixel grid A to the pixels
of grid B, which may be shifted, rotated, scaled or even
arbitrarily deformed with respect to A. While the exact
position of each transformed point can be calculated eas-
ily, the distribution of the sample values is less straight-
forward and many methods exist for this purpose, from
simple nearest-neighbour attribution to high-order poly-
nominal fitting. Many implementations rely on the well-known bilinear interpolation
because it is free from overshooting function values as known from higher order inter-
polation, which can yield negative values from strictly positive input causing problems
in further steps of data processing, for example. A new pixel value is obtained from
the four adjacent source pixels as sketched in Fig. 2.3: Each of two straight lines con-
nects two points along the first coordinate. These two lines are then connected by
a third straight line that is parallel to the second coordinate axis and runs through
the position of the pixel. The value of this third line at the position of the new pixel
gives the interpolated value of the new pixel. With same-sized pixels in A and B, this
corresponds to a weighting with the covered common pixel area.
Although they deliver good results in real space, the interpolation methods mentioned
above are not suitable for an application in the Fourier space. This is illustrated in
Fig. 2.4 on the example of a rotation with respect to the origin, an operation which is
in theory equivalent in real and Fourier space. The interpolation step on the pixel grid
results in clear differences: While the bilinear interpolation in real space yields a result
as expected, the same interpolation carried out in 2d Fourier space results in severe
artefacts which manifest as a kind of repetition of the object in the backtransform to
real space.
To better understand this effect, we consider the most basic transformation of a single
2d mode exp(i(νxnx2π/Nx+νyny2π/Ny)) for νx ∈ [−Nx/2, Nx/2], νy ∈ [−My/2,My/2].
As long as the oscillation is harmonic in the interval (nx, ny ∈ Z), it can be represented
by a single complex pixel value in Fourier space. However, after a rotation (or one
of many other operations), almost all modes are non-harmonic, i.e. their theoretical
peak lies between the grid points. How can such a mode be represented in discrete
Fourier space? The common approach of (bilinear) interpolation depicted in Fig. 2.5
(a), which distributes the peak over four pixels, yields a clearly wrong result in real
space that vanishes at the edges of the interval (see Fig. 2.5 (b)). On the other hand,
the desired mode can easily be drawn in real space (c) and its FT in Fig. 2.5 (d), with
decreasing streaks that spread along the coordinate axes, hints at the solution: The
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Figure 2.4: Interpolation in real- and Fourier space. The real image (a) has a radially
limited spectrum (b). A rotation of (a) with bilinear interpolation in real space yields
(c). The same operation carried out in Fourier space (d) results in the clearly distorted
image depicted in (e). The pixel size of all images is 513 × 513, with the centre of the
FT on a single pixel. The vertical colour bar applies to both Fourier transforms, the
horizontal colour bar to all real-space images.

limited interval – resulting in a discontinuous periodic repetition of the mode – has to
be taken into account. The analytical FT of such a limited mode is given by

N/2∫
−N/2

M/2∫
−M/2

exp(i(pxx+ pyy)) exp(−i~ν · ~r) dy dx (2.16)

=F [exp(i(pxx+ pyy)) · Π(x/N)Π(y/M)] (2.17)

=δD(νx − px, νy − py) ∗ [Nsinc(νx ·N/2) ∗Msinc(νy ·M/2)] . (2.18)

Instead of a single δ-peak, the FT is represented by the original δ-pulse, convolved with
a sinc-function for each dimension, which is one at the origin and zero at νx = j ·2π/N
as well as νy = m · 2π/M for j,m ∈ Z \ 0, the positions of all other points of the
Cartesian grid. Thus, for a harmonic mode with the δ-peak centred on a pixel, the sinc
is invisible, but as soon as the spatial frequency of the mode is off-grid, the sinc becomes
visible as a 1/r decline in discrete sampling. Clearly, this is the Whittaker-Shannon
kernel introduced above as the ideal interpolation kernel in discretised real space for a
band-limited Fourier space. Here, it is applied in Fourier space for a spatially limited
real space and indeed leads to the expected results [17]. However, the convolution with
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the sinc in Fourier space is a slow operation. Therefore, it is advantageous to avoid
interpolations in Fourier space and to carry out the corresponding operation in real
space, if possible.

(a) (b) (c) (d)

Figure 2.5: The attempt to create a non-harmonic mode in real space by a bilinear
interpolation of a peak in Fourier space (a) yields a clearly wrong result (b). Contrarily,
the mode defined in real space (c) Fourier transformed shows additional streaks along the
coordinate axes (d), revealing that each limited mode is represented by a sinc function
in the complementary space.
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3 Looking into things: Fundamental aspects
of X-ray tomography

Despite the title of Röntgen’s first ground-breaking article about X-rays, they are
not “A new kind of radiation” [1], but simply highly energetic electromagnetic waves.
Their photon energy ranges from 100 eV to several hundred keV, corresponding to
wavelengths between 10 nm and a few pm, which is the scale of molecular structures
and atoms. However, the short wavelength results in a different behaviour compared
to “classical” radiation such as light or radio waves. Röntgen found X-rays to be
only weakly absorbed by matter, possessing the ability to transmit even through large
objects and “look” inside them. This immediately caught the attention of the medical
community, promising revolutionary non-destructive diagnostic methods [18]. But it
was precisely this advantageous weak interaction between matter and X-rays that made
it impossible for Röntgen to establish and characterise the radiation in terms of the
properties of electromagnetic waves: Effects such as diffraction, refraction, or reflection
of X-rays were simply too small. As a consequence, the manipulation of this radiation
by optical elements has proven to be a tremendous challenge for experimenters to this
day. Notwithstanding these special properties, many of the characteristics of X-rays
and their interaction with matter can be described by classical electrodynamics.
In the next two sections we will follow this theory to derive the so-called “projection
approximation” describing the images obtained when transmitting X-rays through ob-
jects. These projections then serve as the basis of X-ray tomography, the main topic
of this chapter. Derived from the Ancient Greek words τ óµoσ (tomos) for “slice” and
γράϕειν (graphein) meaning “to write”, this method allows to obtain sections or even
the entire three dimensional structure of a sample from projections along different di-
rections. Since in practice this task can only be performed by a computer, special
attention is drawn to discretisation and its numerical implementation throughout this
chapter.
Historically, tomography is connected with the name of Johann Radon, who devel-
oped its mathematical foundations at the beginning of the 20th century [19]. Unaware
of these findings, Allan M. Cormack developed the mathematics for X-ray based
computerized tomography (CT) and published early tomographic reconstructions from
real data in 1963 [20, 21]. The first commercial CT brain scanner was developed by
Godfrey Hounsfield, first demonstrated on a patient on 1st October 1971. Only
eight years later, about one thousand CT scanners had been installed in hospitals,
proving the large impact of this technique in clinical diagnosis. In the same year,
Hounsfield and Cormack received the Nobel Prize in Medicine1 [24]. The field

1 As often, not all contributions could be honoured this way. Already in 1961, the neurologist W. H.
Oldendorf published the first paper about X-ray tomography and received the earliest patent in
1963. In 1966, he published the first image of a slice through a body obtained by a self-constructed
device. His invention that “would do nothing but make a radiographic cross section of a head”
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has been growing ever since. Today tomographic methods are used for a wide range of
probes in numerous applications, ranging from magnetic resonance tomography (MRT)
over seismic- and muon- to electrical impedance tomography. The range of literature
is correspondingly comprehensive. For the brief introduction given in this chapter, the
textbooks [25–27] have been used predominantly. The wave-optical part follows the
derivations in [3, 28, 29].

3.1 From the wave equation to the projection
approximation

3.1.1 Electromagnetic waves

Classical electrodynamics can be completely described in terms of the Lorentz force
and the four Maxwell equations. In SI units, which are used throughout this work,
the latter are given by the differential equations

~∇ · ~E = %
ε0

, ~∇× ~E = −∂ ~B
∂t

,

~∇ · ~B = 0 , ~∇× ~B = µ0

(
~j + ε0

∂ ~E
∂t

)
.

Here, ~E(~r, t) represents the electric field at the point ~r = (x, y, z) ∈ R3 in three-

dimensional Cartesian space and at time t ∈ R; ~B(~r, t) symbolizes the magnetic field.
~∇ = ~ex∂/∂x+~ey∂/∂y+~ez∂/∂z is the del operator, %(~r, t) describes the charge density

and ~j(~r, t) the current density. The electric and magnetic field constants are given
by ε0 and µ0, respectively. The first equation is Gauss’ law, connecting the electric
field to the distribution of charges, while the non-existence of magnetic monopoles
is expressed by the second equation. The observation that a varying magnetic field
induces an electric field is formulated in Faraday’s law of induction and the last
equation is Ampère’s circuital law with Maxwell’s modification [3].
When applying the curl operator on both sides of the law of induction in the absence of
charges (~j = 0 and % = 0), the linearity of the equations allows to derive the free-space
wave equation (

∂2

∂t2
− c2

0
~∇2

)
~E(~r, t) = 0. (3.1)

The field constants have been summarized as c0 := 1/
√
µ0ε0, the speed of light in vac-

uum. Similarly, the same partial differential equation can be obtained for the magnetic
field ~B(~r, t). Hence, all three components of each vector field have to obey the scalar
wave equation (

∂2

∂t2
− c2

0
~∇2

)
Ψ(~r, t) = 0. (3.2)

(from a declining letter from a company [22]) was ignored by the industry. Even earlier, the Rus-
sian scientist Tetal’baum had published a work about the mathematical foundations of CT, wich
“remained unknown to the English-speaking world until the early 1980s” [23].
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3.1 From the wave equation to the projection approximation

Apart from vector characteristics such as polarisation, this single equation is sufficient
to describe electromagnetic waves in free space if we allow Ψ(~r, t) to be complex [3].

However, for the vector fields ~E and ~B, only the real part of Ψ has a physical meaning.
Important elementary solutions of equation (3.2) are harmonic plane waves

Ψ(~r, t) = A0 exp(iϕ0) exp
(
i
[
~k · ~r − ωt

])
. (3.3)

Amplitude A0 ∈ R and phase shift ϕ0 ∈ R are often combined in a complex-valued
amplitude. The wave vector ~k is oriented in the direction of propagation, perpendic-
ular to the wave-fronts with constant phase. Its length k := |~k| = 2π/λ is inversely
proportional to the wavelength λ and linked to the angular frequency ω by k = ω/c0.
Another important solution is the spherical wave

Ψ(~r, t) = A0 exp(iϕ0)
exp(i|~k||~r| − ωt)

|~r|
êr. (3.4)

Here, êr is a unit vector pointing radially away from the origin of the wave at ~r = 0.
Both solutions cannot exist in the real world – their infinite extent would require an
infinite amount of energy – but the linearity of the wave equation allows to express
more general solutions in terms of such simple functions. Following [3], this motivates
a more general ansatz for equation (3.2), given by the half Fourier integral

Ψ(~r, t) =
1√
2π

∞∫
0

Ψω(~r) exp(−iωt) dω, (3.5)

expressing a general wave field as a temporal superposition of monochromatic harmonic
plane waves. Inserted into the wave equation (3.2), one obtains

1√
2π

∞∫
0

(
ω2 + c2

0
~∇2
)

Ψω(~r)︸ ︷︷ ︸
!
=0

exp(−iωt)︸ ︷︷ ︸
6=0

dω = 0. (3.6)

Since the exponential function cannot be zero but the equation has to hold for all
t ∈ R, the first part [

k2 + ~∇2
]

Ψω(~r) = 0. (3.7)

of the integrand has to vanish everywhere. This result is known as the Helmholtz equa-
tion, describing the shape of static monochromatic waves in free space. Using equation
(3.5), solutions to this partial differential equation can be superposed to general poly-
chromatic wave fields.
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3.1.2 The projection approximation

In the presence of matter, highly complex interactions between X-rays and (mainly)
the electrons occur. Microscopic processes like absorption, inelastic (Compton) and
elastic (Thomson) scattering lead to macroscopic phenomena such as refraction and
(total) reflection [30]. In classical wave-optics, these essentially quantum mechanical
interactions are summarised within a few macroscopic observables. Even though X-
rays are able to ’sense’ the discrete atomic nature of matter in many cases, the classical
theorems can be applied with remarkable accuracy.
In a linear material, Gauss’ and Ampère’s law have to be modified such that ~E is
complemented by the relative electric permittivity εr, which expresses the electric po-
larisability of the material. In Ampère’s law, ~B is supplemented by the inverse relative
magnetic permeability µr, describing the degree of magnetisation. Both dimensionless
parametres εr and µr are generally tensors, however, in an isotropic material they
reduce to scalars.

~∇ · ε0εr ~E = %f (3.8)

~∇×
~B

µ0µr
=

(
~jf +

∂

∂t
ε0εr ~E

)
(3.9)

In a dielectric material, %f = 0 and ~jf = 0 vanish and the assumption of a static
material allows for εr and µr to be independent of time. If the magnetisation can
be neglected (µr = 1) and the properties of the bulk atoms vary slowly2 over length
scales comparable to the wavelength λ, the Maxwell equations can be considered
as uncoupled. Then, a similar derivation as above leads to the Helmholz equation in
matter [3] [

~∇2 + k2n2
ω(~r)

]
Ψω(~r) = 0. (3.10)

Here, the frequency-dependent index of refraction nω = (
√
εrµr)ω summarizes all re-

maining influence of the matter on the wave. For X-rays, nω is slightly smaller than
unity and often expressed in the complex form

nω = 1− δω + iβω. (3.11)

The positive value δω ∈ R+ describes the phase shift, βω ∈ R+ is the positive absorption
decrement. As a consequence, the wave’s phase velocity in matter gets larger than in
empty space. However, the group velocity determining the signal propagation is still
limited by the speed of light. As an example, Fig. 3.1 shows the functional variation
of δω and βω for a model protein over a wide energy range from 30 eV to 30 keV.
Clearly, both δω and βω are very small but especially for hard X-rays above 10 keV,
the absorption decrement βω is about three orders of magnitude smaller than δω. This
small deviation of nω from unity motivates the ansatz

Ψω(~r) = exp(ikz) ·Ψs(~r) (3.12)

2 Since the wavelength is smaller than the diameter of the atoms, tremendous variations occur on
length scales given by λ. Nevertheless, the properties describing the effects of a large number of
atoms usually vary much more slowly.

26



3.1 From the wave equation to the projection approximation

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000

δ ω
,
β
ω

[-
]

photon energy [eV]

δω
βω

Figure 3.1: Phase-shift δω and absorption decrement βω for the model protein [31]
H50C30N9O10S1 with a density of 1.35 g/cm3. In the regime of X-rays above 5 keV, βω
is more than two orders of magnitude smaller than δω. Sudden changes in the lines
originate from material-specific quantum mechanical absorption edges. Data from [32].

for the Helmholz equation in matter. The incident illumination exp(ikz) is given by
a plane wave, which becomes only slightly modified by the well-behaving envelope Ψs

originating from the weak signal of all ’scattering’ atoms. Inserted in equation (3.10),
one obtains [

2ik
∂

∂z
+ k2(n2

ω(~r)− 1)

]
Ψs ≈ 0. (3.13)

Since Ψs varies only slowly in space, the remaining second derivative ∇2Ψs has been
neglected. Then, the so-called exit wave directly behind an object that is situated
between z = −z0 and z = 0 is given by

Ψs(x, y, z = 0) ≈ Ψs(x, y, z = −z0) exp

 k

2i

0∫
−z0

1− n2
ω(~r) dz

 . (3.14)

The exit wave only depends on the values along undisturbed straight ray-paths parallel
to the z-direction through the volume, as sketched in Fig. 3.2. With n2

ω ≈ 1−2(δω−iβω)
one arrives at the projection approximation

Ψs(x, y, z = 0) ≈ Ψs(x, y, z = −z0) exp

−ik 0∫
−z0

δω(~r)− iβω(~r) dz


= Ψs(x, y, z = −z0) exp (−ikP [1− nω(~r)]) . (3.15)
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y

Figure 3.2: In the projection approximation, the incoming wave is represented by
normal rays (‖~k), traversing the object unscattered. The ’exit wave’ directly behind the
object depends only on the absorption and phase shift along each of the rays.

For convenience, the projection operator

P [f (~r)] :=

∫
Ω

f(~r) dz (3.16)

has been introduced, where the integration path is restricted to the support Ω(~r) :=
{~r ∈ R3 | f(~r) 6= 0} of the sample. With this result, the intensity I ∝ |Ψs|2 behind a
homogeneous material of thickness d is given by

I(x, y, 0) = I0 exp(− 2kβω︸ ︷︷ ︸
=:µω

·d). (3.17)

The exponential decay with the object’s thickness is the well-known Lambert-Beer-law
with the absorption coefficient µω.
For negligible non-linear effects in a static object, where the wave-matter interaction
is assumed to be weak and non-magnetic, we finally obtain a description of the process
similar to classical ray-optics, i.e. straight lines traversing the object. This is the
foundation of medical X-ray imaging as well as of many X-ray microscopy techniques
[3, 27] and will be used throughout this work. However, the presented approximations
also point to the limitations of those techniques. As will be shown later, the requirement
for small phase-shifts and weak absorption within the material is crucial for many
applications.
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3.2 Projections from different perspectives

The projection approximation provides a direct “look” through objects but is clearly
not sufficient to reveal their three dimensional structure. In a projection with a parallel
beam (plane wave front, all k-vectors parallel) as defined in Eq. (3.14), all information
about the z-distribution of the sample’s features is lost. Tomography offers a method
to overcome this limitation: The basic idea is to use a set of projections from different
perspectives to reconstruct the three dimensional values of n(~r). As we will see, the
rotation of the object – or the optical path – around one axis is sufficient to obtain
a complete set and is the common strategy in practical applications. Generally, the
principle of tomography is not limited to the case of parallel projections. In fact,
most setups use diverging fan- or cone-beam geometries as produced by conventional
X-ray tubes [27]. In contrast to the parallel beam geometry, this results in a slightly
different magnification of object features close to and far from the source. However,
this effect is usually too small to be exploited for 3d positioning of features. Instead,
the reconstruction relies on the same basic principles as summarised in the following
sections for the most basic case of parallel projecion [25, 27].

3.2.1 The Fourier Slice Theorem

(a)

real space Fourier space

(b)

real space Fourier space

Figure 3.3: The Fourier Slice Theorem in 2d (a) and 3d (b). The FT of a projection can
be identified with a central slice through the FT of the sample with the same orientation.

The principle of tomography can be well understood by considering the projection
operation in Fourier space. Due to the reciprocal character of the FT the global real-
space integration can be expected to be local in Fourier space. Indeed, the (2d) FT of
the projection

F2d (P [f (~r)]) (νx, νy) :=

∞∫∫
−∞

 ∞∫
−∞

f (~r) dz

 exp (−i(νxx+ νyy)) dx dy (3.18)
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can be identified as the central slice (νz = 0) of the object’s (3d) FT

F3d [f (~r)] (νx, νy, νz = 0) :=

∞∫∫∫
−∞

f (~r) exp (−i(νxx+ νyy + νzz)) dx dy dz |νz=0 .

(3.19)
This observation clearly holds for all orientations of the sample and is known as the
Projection-Slice-Theorem or Fourier-Slice-Theorem (FST) [25–27]:

The (n − 1-dimensional) FT of a projection can be identified with a cen-
tral slice through the (n-dimensional) FT of the object, orthogonal to the
direction of projection.

In this context, “orthogonal” means that for a projection along an axis (z-axis here),
the central slice is perpendicular to the corresponding Fourier space direction (νz in
this example). The FT defines the object as a superposition of infinitely extended
frequency modes exp(i~ν · ~r). Every mode whose wave vector ~ν is not exactly perpen-
dicular to the axis of projection oscillates in this direction and therefore vanishes in
the integration. Some consequences of this finding can be seen in the sketch in Fig. 3.3
for the n = 2 and n = 3-dimensional case. Firstly, all slices share the origin in Fourier
space as their central point, which represents the mean value of the function f . This
expresses the physical principle that the overall absorption and phase shift of a sample
is independent of its orientation. More importantly, the FST provides a scheme for the
full reconstruction of the object. The Fourier space can be sampled by central slices
derived from projections along different directions. Then, f can be obtained easily
by an inverse FT. For that purpose, rotation around only one axis orthogonal to the
optical path over a range of 180◦ is sufficient and convenient, but not essential.

3.2.2 The Radon transform

In the following, we choose the y-coordinate as the axis of rotation. A generalised
projection for the projection angle α, i.e. along the path x cosα − z sinα = s, s ∈ R
can be defined as

Pα [f (~r)] (s, y) :=

∞∫
−∞

∞∫
−∞

f (~r) δD (x cosα− z sinα− s) dx dz. (3.20)

δD denotes the Dirac delta distribution, not to be confused with the phase decrement
δω. As illustrated in Fig. 3.4, the discussed case having the axis of rotation perpen-
dicular to the projection axis z reduces to a 2d problem. For convenience, we drop
the y coordinate but keep in mind that the object is represented by a stack of slices
y = const. which can be treated independently. Eq. 3.20 is called the Radon transform
of f(~r) in honour of Johann Radon who introduced it in a 1917 article [19].
There are different ways to represent the set of projections, the so-called Radon space
or projection space. Fig. 3.4 depicts representations in polar coordinates and the more
commonly used Cartesian (α, s) coordinates. Since the Radon transform of a feature
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Figure 3.4: The projections Pα[f(~r)] of the phantom (a) form the Radon space. It can be
depicted in polar coordinates (b) but is commonly presented in Cartesian coordinates as
shown in (c). Since a feature of the phantom describes a sine curve in this representation,
it is called a sinogram.

at ~r = (x, z) results in the sine curve x cosα− z sinα in the Cartesian representation,
the latter is called a sinogram [27].
The analytical radon transformation can be obtained for more complex bodies as well.
In case of an ellipse it is given by [25]

P [ellipse](α, s) =
2%AB

a(α)2

√
a(α)2 − s2

with a(α)2 = A2 sin2 α +B2 cos2 α. (3.21)
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Figure 3.5: Simple shapes like ellipses or squares can be projected analytically.
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Figure 3.6

Here, % denotes the constant function value inside the elliptic re-
gion, as illustrated in Fig. 3.5; A is the semi-major axis while B
denotes the semi-minor axis. If the body is shifted with respect
to origin, the projections in the sinogram are shifted according to
the corresponding sine function. Due to the linearity of the pro-
jection, more complex objects can be composed as a sum of such
primitives and the Radon transform is then given analytically by
the sum of all individual projections. This is used for example
in the Shepp and Logan “head phantom” depicted in Fig. 3.6.
Exclusively consisting of ellipses, it serves as a ground-truth in

simulations. A detailed description can be found in [25].
Even more important for later discretisation in a basis of pixels is the projection of a
single square. As sketched in Fig. 3.5, in general it is given by the symmetric trapezoid

P [square](α, s) = %A ·


(a+ s)/(a2 − b2), if − a ≤ s < −b

1/(a+ b), if − b ≤ s ≤ b

(a− s)/(a2 − b2), if b < s ≤ a

0 else.

(3.22)

with the area A, the function value % within the square, a =
√
A/2 sin(α′), b =√

A/2 cos(α′) and α′ = (α mod π/4) + π/4.

3.3 Direct tomographic reconstruction

Radon showed in [19] that a function can be uniquely reconstructed from its repre-
sentation in projection space. For this inversion, the FST already provides a practical
scheme: First, the projection space is transformed to the object’s Fourier space rep-
resentation. Second, an inverse FT provides the reconstruction in real space. In the
specific case of a sinogram, a Fourier transform along the s-direction has to be fol-
lowed by a conversion to polar coordinates. A detailed mathematical description of
this scheme can be found in all common textbooks on tomography [25–27].
In this section, we will approach the topic guided by the challenges of discretisation.
In real experiments, only a finite number of projections with discrete (band) limited
sampling are available. Moreover, an interpolation from polar coordinates of the cen-
tral slices to discrete Cartesian coordinates is required. These issues will then lead to
a sophisticated numerical reconstruction method to invert the radon transform – the
famous filtered backprojection (FBP).
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3.3 Direct tomographic reconstruction

3.3.1 Discrete sampling

In the most basic case, discrete projections consist of identically sized quadratic pixels
arranged on a Cartesian grid and the reconstruction grid is chosen of similarly sized
pixels, too [25]. By requiring the Fourier space to be sampled in full, a criterion for
the minimum number of projections can be derived. To guarantee that every pixel in
reciprocal space is measured, the distance of neighbouring central slices must not be
larger than one pixel. Thus, if projections with a radial size of ny pixels are acquired
for equidistant angular steps ∆α covering a range of 180◦ with the axis of rotation in
the centre of each image,

Ns = dny
π

2
e (3.23)

projections are necessary for full sampling with dxe =min(n ∈ Z|m ≤ x). In practice,
much fewer angles are tolerable but lead to specific undersampling artefacts. Numer-
ically, projections can be obtained from an object representation as sketched in Fig.
3.7. The value of each object pixel is distributed to a maximum of three projection
pixels. The pixel is projected according to Eq. (3.22) and its value is weighted by the
integral of the resulting trapezoid in the projection pixel interval.

α

a

b

c

d

m

object grid projection grid

object pixel
projection pixel

Figure 3.7: In a discrete projection, the value of each object pixel is weighted by the
integral of its trapezoidal projection (Eq. (3.22)) in the projection pixel interval.

3.3.2 The backprojection

Computationally, graphics are represented in Cartesian coordinates. In addition, soft-
ware and algorithms like the FFT are implemented and optimised for this basis. There-
fore, the central slices have to be transformed from polar coordinates to a Cartesian
basis. As shown in chapter 2.2.3, the required interpolation in discrete Fourier space
is a non-trivial task, involving a convolution with a 2d sinc function considering the
limited real space. Hence, it can be numerically more efficient to implement this step
directly in real space. There, a wide range of interpolation methods are available which
do not introduce too many artefacts. Subsequently, we will rely on bilinear interpola-
tion which shows a higher accuracy compared to the simple nearest-neighbour method
but does not introduce negative values from a strictly positive input as can occur in
bicubic and higher-order interpolation.

33



Looking into things: Fundamental aspects of X-ray tomography

2d real2d Fourier1d Fourier2d real
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α
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Figure 3.8: The analytical inverse FT of a properly oriented central slice in 2d Fourier
space is the original projection “smeared back” to the reconstruction volume along the
same direction it was projected previously.

Since a central slice is infinitely thin in analytical reciprocal space, its equivalent in
real space gets extended infinitely in the appropriate direction. Thus, the inverse FT
of a single central slice properly oriented in 2d Fourier space shows constant values
along the original direction of projection as illustrated in Fig. 3.8. In the orthogonal
direction, by definition, it shows the same course as the projection. Therefore, instead
of adding the central slices to Fourier space, the reconstruction can be carried out
by “smearing back” the projections into real space along the same direction as they
where projected. This procedure is termed “backprojection” (BP), abbreviated by the
operator P−1

α and illustrated in Fig. 3.9 for different numbers of projections. Details
about the implementation can be found in appendix 9.1.
The numerical BP inherently takes into account the limitations of a discretised version
of real space. This becomes obvious when considering the BP of a single projection:
Except for special cases (e.g. α = 0◦), the periodic repetition of the numerical BP
is discontinuous. Thus, in addition to the central slice expected from the analytical
theory, a DFT of the numerical BP reveals further features in Fourier space as detailed
in Chap. 2.2.3. These patterns are equivalent to the signals that are obtained by a
convolution with the interpolation sinc-kernel in Fourier space, as explained in Chap.
2.2.3.
It should be mentioned that methods are available to circumvent the problem of Fourier
space interpolation, such as the linogram algorithm based on the chirp-z-transformation
[27] or equally sloped tomography, which relies on the pseudo-polar FFT [33]. These
schemes require specific sampling of the projections at non-equidistant sampling points
or angles, respectively. Since the problem of interpolation can be accurately solved by
BP in real space, no significant increase in quality can be expected from these tech-
niques. However, efficient implementations of these methods may have an advantage
in reconstruction speed.
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Figure 3.9: Backprojection (BP) for different numbers of projections. A phantom
(512× 512 px) has been projected to N = 805 equidistant angles for full sampling. The
FT of the numerical BP of a single projection (bottom left) shows not only a central
slice but also patterns arising from the limited rectangular extent of the real-space pixel
grid. In the central column, the BP of the first half of the sinogram is depicted while a
complete BP is shown on the right.

3.3.3 Filtered layergram and filtered backprojection

The backprojections shown in Fig. 3.9 are still far from being correct reconstructions.
The reason for this can be studied ideally in terms of the backprojection of a single
point as sketched in Fig. 3.10. The backprojection lines cross at the actual position of
the point, creating the highest signal there. But they are not restricted to this position.
Instead, the signal is spread over the whole reconstruction space, decaying with 1/(2πr)
as the density of lines decreases with distance r from the point’s position. What can
be seen here directly as the Point-spread-function (PSF) of the backprojection is a
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Figure 3.10: Projections of a single point are a single peak (left). The direct back-
projection of such signals results in lines, crossing at the position of the original point
(centre). For a large number of projections, the reconstructed points shows a decay ∝ 1/r
(right) which can be interpreted as the point-spread function of the process.

convolution kernel limiting the reconstruction quality of all samples. In Fourier space,
this convolution can be inverted by a division with the transformed kernel.
In the present case, the Fourier transform of the PSF and the deconvolution can be
obtained easily without explicit calculations, since in Fourier space the problem be-
comes immediately apparent. The sample density of central slices is not uniform but
rises towards the centre, leading to an overweighting of this region. Thus, a weighting
by the inverse sample point density (2π|ν|/N) for N central slices compensates for the
artefacts. This high-pass Fourier filter ∝ |ν| is usually termed ramp filter. Mathe-
matically, it appears as the Jacobian determinant stemming from the change of basis
between polar and Cartesian coordinates [25–27].
If the filter ∝ |~ν| is applied directly in 2d Fourier space after the backprojection step,
the result is called a filtered layergram. Alternatively, according to the FST, each
projection can be filtered by |ν| before the backprojection step, a procedure termed
“filtered backprojection” (FBP) [27]. Both approaches are identical in the analytical
formulation3. However, depending on the order of filtering and interpolation in a nu-
merical implementation discrepancies occur in the additional signals appearing next to
the central slices during discrete BP. Historically, the filtered backprojection has been
the preferred scheme. Advantages are, for example, the smaller memory usage and the
availability of a coarse reconstruction already during the measurement (in particular
when projections are acquired first in coarse angular steps, which are subsequently
refined).
Fig. 3.11 recapitulates the FBP reconstruction strategy. First, the projection (or the
entire sinogram, if already available) is filtered in Fourier space and transformed back
to real space. Second, the filtered projections are backprojected into the reconstruction
volume along the directions they where recorded originally. The line-profile in Fig. 3.11
still shows deviations from the reference known as “cupping” or “dishing” [25]. This
error can be reduced by zero-padding before filtering, i.e. embedding the projections
in a larger grid filled with zero-valued pixels outside the original grid. As we will see,
this only alleviates the negative effects, but does not remove their cause.
By using the analytical ramp filter, the band-limited nature of the projections has

3 The identity is clearly visible e.g. in the Riess-potential introduced on the first pages of [26].
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Figure 3.11: The principle of filtered backprojection (FBP). The projections g(α, s) :=
P[f(y, z)] are transformed to Fourier space, multiplied with a filter function ∝ |ν| and
transformed back to real space (performing a deconvolution). Then, the filtered pro-
jections are backprojected to the reconstruction volume. With the ramp filter derived
analytically (see text) so-called “dishing” artefacts can be observed, leading to a convex
curvature of the reconstructed function. The profiles along the dashed lines in the upper
row allow for a quantitative comparison. Notice that a constant offset of magnitude 2
has been added to the phantom for better visibility of this effect.

been ignored again. The DFT of the discrete projections is limited to a maximum
frequency, which implicitly also limits the filter to the sampled region. However, in
discrete Fourier space this limit cannot be expressed easily, since the signal is consid-
ered to be repeated periodically. Nevertheless, the band-limit can be incorporated in a
convolution kernel by analytically transforming a windowed Fourier filter to real space.
Let the ramp filter in analytical Fourier space be limited by the unit box Π(ν) = 1 for
|ν| ≤ 1/2; 0 otherwise. The corresponding real space convolution kernel is then given
by

fana.(s) = F−1 [Π(ν) · 2π|ν|/N ] (s)
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=
1

N

1/2∫
−1/2

|ν| exp(iνs) dν

=
1

N
·

2 cos
(
s
2

)
+ s sin

(
s
2

)
− 2

s2
. (3.24)

With this, the band-limitation is being considered, and as a second step, the kernel
has to be discretised. According to the DFT, we have to select sampling points corre-
sponding to harmonic modes in Fourier space of the form Mj = mj exp(i · 2πjν) with
j ∈ N full oscillations in the interval |ν| ≤ 1/2. Hence, we find the discrete sample
points at the positions sj = j · 2π for −N/2 ≤ j ≤ N/2. Fig. 3.12 shows the analytical
convolution kernel fana. from Eq. (3.24) next to the discretized version fdis.. At the
sample points sj one obtains the simple scheme [25]

fdis.(j) =
1

N


1
4

if j = 0

0 if j even

− 1
π2j2

if j odd.

(3.25)

For an efficient implementation of the discrete convolution, the band-limited and discre-
tised kernel is transformed to Fourier space again to be applied there as a multiplicative
filter (notice that it has to be padded to a power of 2 for a proper discrete convolution).
In Fig. 3.12 the result is compared to the analytical ramp function, clearly showing a
deviation at the origin. Importantly, the new filter does not force the origin value to
zero, removing the dishing artefacts and preserving the mean value of the reconstruc-
tion. In contrast, zero-padding before filtering only limits the incorrect “analytical”
filter values to a smaller fraction of pixels.
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Figure 3.12: The Ram-Lak filter. Both the analytical and discretised versions of the
convolution kernel that is equivalent to a band-limited ramp filter are shown on the left. If
the discrete kernel is transformed to Fourier space und compared with the ramp-function
(right), a deviation at the origin can be noticed.

The discretised filter is called Ram-Lak after G. N. Ramachandran and A. V.
Lakshminarayanan [27]. It is often combined with additional Fourier-filters like a
von-Hann, Hamming or sinc window to reduce the influence of high frequency noise
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that would otherwise be amplified by the ramp. The most common filter today is the
so-called Shepp-Logan-Filter, combining the ramp-function with a windowed sinc [27].
An overview of discretised filters is given in [27]. A recent development is the attempt
to adapt the filter for non-equidistant or sparse sampling as well as including certain
forms of a priori knowledge [34].
In summary, problems associated with discretisation not only favour a real-space im-
plementation of the backprojection but also require a filter that is adapted specifically
to the sampling. To underline the importance of this concept, the FBP is sometimes
termed convolution backprojection. As we will see again in the next chapters, operations
in Fourier space always have to be carried out with care.

3.4 Algebraic reconstruction techniques

The Fourier-slice theorem suggests that the central slices of an object – and thereby
also the projections – are largely independent of each other. The only exception is
the common central point in Fourier space, representing the mean value of object and
projections. For any other point, an adjustment in Fourier space would only affect
the containing slice and thus only become visible in the corresponding projection. But
this suggestion is deceptive, as already indicated by the interpolation in section 3.3.2.
There, the limited nature of real space leads to additional signals in Fourier space,
coupling a central slice to almost all others. Indeed, this is not just an artefact from
discretisation. If the object f is compactly supported by Ω, the multiplication with
any well behaving function g that equals one everywhere inside Ω and has arbitrary
values outside yields

f(~r) · g(~r) = f(~r) (3.26)

since all arbitrary values from g are multiplied with zeros. In Fourier space, this
translates to the convolution

f̂(~ν) ? ĝ(~ν) = f̂(~ν). (3.27)

For every compact object, an infinite number of such convolution kernels ĝ, whose
application must not change the values of f̂ , can be found. This introduces a strong
dependency between the slices. In order not to violate the support condition, values
of a single central slice cannot be changed arbitrarily but the changes have to be com-
pensated in virtually all other slices according to the convolution kernel.
In real space, such a strong dependency is expected intuitively. If a common ob-
ject is rotated only a little, the projections are expected to be nearly identical as
well. Distinct features can be seen in every projection and form sine curves in the
sinograms. Mathematically, all these dependencies are summarised in the so-called
Helgason-Ludwig consistency condition (HLCC) [35–37] opening extensive possibilities
for data alignment, error compensation and retrieval of lost projections. Moreover, it
is this dependency between projections that enables the use of iterative algebraic re-
construction techniques as a flexible and highly extendable approach for the inversion
of the Radon transform, as we will see in this chapter.
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3.4.1 Consistency conditions
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Figure 3.13: First modes of a sinogram obtained from the Shepp and Logan head-
phantom.

The Helgason-Ludwig consistency condition imposes three rules on a sinogram derived
from a physical object by an undisturbed Radon-transformation. Firstly, Picard’s
condition has to be fulfilled, which implies that the norm of the reconstruction from a
consistent sinogram is finite. Next, the projection-moment theorem has to be obeyed.
Let g(s, α) be the sinogram of a function f(x, z) compactly supported within the unit
circle. Then

am(α) =

1∫
−1

g(s, α)sm ds (3.28)

defines the m-th moment of g(s, α) with respect to s for m ∈ N0. Expressed as a
Fourier series, one obtains

am(α) =
1

2π

∞∑
l=−∞

aml exp(ilα) (3.29)

with the coefficients

aml =

2π∫
0

am(α) exp(−ilα) dα. (3.30)

For a consistent sinogram, there must be

aml = 0 for |l| > m. (3.31)
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Finally, from the symmetry of the sinogram, i.e. g(s, α+ π) = g(−s, α), it also follows
that

aml = 0 for |l|+m odd. (3.32)

Fig. 3.13 visualises the meaning of the last two conditions. The zeroth moment is
the mean value of all projections and has to be constant in α. This is equal to the
observation that the sum of all voxel values is always the same, independent of the order
of summation as carried out by different projections. The first moment is proportional
to the centre of mass of the projections. Since by definition, this point is the projected
centre of mass of the object, it is expected to show a sine function with exactly one
period in the 360◦ of the sinogram. Indeed, for m = 1 the HLCC allows only non-zero
Fourier coefficients for l = ±1. This observation is useful for alignment of real data,
since the centre of mass is often more robust to track than object-specific features
varying from sample to sample. The second moment is required to show exactly two
full oscillations in the sinogram while the third moment is the first represented by more
than two non-zero Fourier coefficients.

P−1

Papply

10 iterations 100 iterations 1000 iterations ground truth

original data first reprojectionconstraints

P−1

Figure 3.14: Sinogram retrieval using an iterative reprojection scheme. The missing
25% of the initial sinogram can be approximated by iteratively reconstructing the object
from the data (FBP) followed by applying some constraints (in this case, positivity) and
reprojecting the missing angles.

Unfortunately, the moment problem, i.e. reconstructing g from the series of moments
am is a non-trivial task. Nevertheless, enforcing the consistency can be exploited to
retrieve non-measured parts of the sinogram. Fig. 3.14 shows results of an iterative
strategy called Iterative Reconstruction-Reprojection (IRR) [38]. The first 25% of the

41



Looking into things: Fundamental aspects of X-ray tomography

sinogram have been deleted and the reconstruction using FBP is appropriately dis-
turbed. However, if the reconstruction is numerically projected to the missing angles
(“reprojection”), the coarse shape of the sinogram can be retrieved because of the
strong dependency between all projections. With this improved sinogram, a better
FBP reconstruction can be obtained and reprojected again. Iteratively, the recon-
structed sinograms approach a true reproduction of the original values.
For faster convergence, a positivity constraint has been applied to the reconstructed
objects in the shown example. Since a negative absorption cannot occur, all non-
physical negative values have been set to zero in each iteration. Additional knowledge
like the support of the object or the used materials can be considered to improve the
reconstruction. This scheme shows that undersampling with respect to the number of
projections as well as non-equal angular steps can be compensated to a certain degree.
In the end, even projections of an object in an experimentally inaccessible direction
can be approached. Importantly, iterative reprojection procedures of this kind make it
possible to not only retrieve missing projections but also reconstruct the object itself.

3.4.2 Iterative reconstruction techniques

While developing the first CT brain scanner, Hounsfield was unaware of previous
direct reconstruction solutions from projection data. He developed an iterative recon-
struction scheme considering the problem as a system of linear equations [39]

P : ~b = A~v. (3.33)

Here, ~v contains the Mx ·Mz pixel values of the object voxels, projected by the matrix
A to obtain the N ·Mx sinogram values ~b. The matrix A is usually too large for a
direct inversion. Additionally, if the projections are distorted by noise or the system
of equations is underdetermined (e.g. N < Mz), only an approximate solution can

be obtained, e.g. by minimizing the difference χ2 := |A~v −~b|2 between reprojections
and measured data. For this purpose, the method of Kaczmarz has been established
[25, 27, 40]:

~vl+1 = ~vl +
bi − (~aTi · ~vl)

(~ai · ~aTi )
~aTi (3.34)

Here, aTi is the transposed i-th row of the matrix A with i = lmod (Mx·N)+1 or chosen
randomly from the Mx · N rows. An initial estimation ~v0 can be chosen arbitrarily
but a good approximation of the solution is obviously preferred. The robustness of
this method is often superior to competing algorithms like the method of conjugated
gradients [41]. Simultaneously with Hounsfield’s solution, Gordon, Bender and
Herman proposed implementations of Kaczmarz’ method for tomography called
Algebraic Reconstruction Techniques (ART). Expressed by the operators P and P−1,
the recorded projections Φα and the reconstruction f are defined as before, their “direct
multiplicative method” is given by

fl+1 = fl · P−1
α

[
Φα

Pα [fl]

]
. (3.35)
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Figure 3.15: Comparison of FBP and ART reconstruction from N = 45 equidistant
projections. ART clearly creates superior results with fewer artefacts. The price is a
much longer run-time of the iterative algorithm. In the Fourier transform of the FBP
result, the central slices are well recognisable. Exploiting consistency, ART is capable to
reconstruct the missing information and fill the gaps to a certain degree.

The “direct additive method” is defined as

fl+1 = fl + max
(
P−1 [Φα − Pα(fl)] /ηα , 0

)
. (3.36)

Here, correct scaling is guaranteed by the function ηα = Pα(fl/fl) providing the number
of projected voxels for each projection pixel. The divisions are point-wise. Numerous
refinements of these schemes are available. They all have in common the basic principle
that the guess fl is projected and compared to the desired values Φα. Subsequently, a
correction factor is derived from the deviations and applied to the reconstruction vol-
ume to obtain an improved approximation fl+1. In Eq. (3.35) and (3.36), the correction
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factors are applied with the help of the backprojection. Instead of the projections, the
correction values are “smeared back” into the volume, adjusting the values of all voxels
“touched” by a backprojected pixel equally. The steps are repeated for all projec-
tions. The choice of order has a large influence on the speed of convergence. Nearby
projections only demand nearly the same correction factors and thus convergence gets
improved for a sequence with large angular steps between successive projections [25].

3d guess
projections

measurement

multiply

P

P−1

2d correction

factors (pixel)

3d correction

factors (voxel)

C1

compare

Figure 3.16: Principle of ART. A guess of the object is projected numerically to the
experimental angles. The projections are compared to the measurement to obtain cor-
rection factors which are subsequently backprojected and applied to the guess. See text
for details.

Due to the dependency of all projections, the volume satisfies the condition Pα [fl] = Φα

only along the latest corrected direction α. Along other directions discrepancies to the
desired values appear even if they have been corrected only a few steps earlier, requiring
the procedure to be applied iteratively. As in IRR, this leads to a reconstruction of
the gaps in an undersampled Fourier space as illustrated in Fig. 3.15 which compares
the result of eq. (3.35) with a FBP of the same data.
Since even a single wrong projection can heavily disturb the reconstruction process in
the above schemes, more robust methods have been developed. A popular example
among these is the Simultaneous Reconstruction Technique (SIRT). It first averages
the correction values from all projections before the object values get adjusted by
one of the above rules. However, the quality improvement requires a considerably
longer reconstruction time compared to the projection-by-projection updates in com-
mon ART [25]. Importantly, all iterative methods allow imposing constraints on the
reconstruction. While positivity is implicitly included in ART, the support, a maximum
absorption, sparsity in the material composition, and so on can be enforced in each
iteration as well. This is not only beneficial for the speed of convergence but may also
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allow reconstructing reasonable objects from poor data like noisy and undersampled
sinograms.
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4 Wave field propagation

While the projection approximation allows describing wave-matter interaction in terms
of geometrical optics, the subsequent propagation is determined by the wave character
of the radiation. For increasing distances between object and detector, the monochro-
matic – and thus coherent – wave field will display interference effects which ultimately
dominate its shape. The origin of their appearance is of great interest. The weak
absorption of hard X-rays by soft matter such as biological tissue only yields small
brightness variations in the exit waves with a weak signal-to-noise ratio. Due to free-
space propagation, not only these small absorption signals develop to well measurable
effects. The intensity pattern at a distant detection plane will instead be dominated by
the much stronger phase-shifting properties of the sample. Free-space propagation can
thus be used as an instrument to gain phase contrast, i.e. encoding previously invisi-
ble phase shifts into well measurable brightness variations. Optimally, large distances
between sample and detector are required.
This chapter presents a summary of the theoretical framework of coherent wave propa-
gation as detailed in [29] and [3]. For a precise description of the development of a wave
field, we first obtain the derivation of the so-called diffraction integral and an equivalent
formulation in Fourier space. Second, a large part of this chapter is dedicated to the
numerical implementation of propagation and its associated problems. In this context,
an instructive method to overcome the most dominant numerical artefacts is presented.
The chapter closes with a description of how to combine tomography and propagation,
opening up further possibilities of data treatment and simulation by introducing a 3d
propagated object.

4.1 The diffraction formula

4.1.1 Fresnel–Kirchhoff theory

The behaviour of monochromatic electromagnetic waves in a volume of free space is
governed by the Helmholtz equation (HE)[

k2 +∇2
]

Ψ(~r) = 0 (4.1)

introduced in Eq. (3.7). In physics, it is often possible to draw conclusions about the
occurrences in a given volume from observations of its closed border. In this respect,
we can solve the problem by rewriting it as an integral over the surface of the volume
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Wave field propagation

of interest. For this purpose, we introduce an additional Green’s function G(~r) next to
the wave field Ψ(~r), both solutions to the same HE. Then,

Ψ ·G−G ·Ψ = 0. (4.2)

By applying the HE k2G = −∇2G and k2Ψ = −∇2Ψ one obtains

Ψ∇2G−G∇2Ψ = 0. (4.3)

The integral of this equation over the volume V must equal zero, too, and allows to
apply Green’s Theorem∫∫∫

V

Ψ∇2G−G∇2Ψ dV =

∫∫
S

Ψ
∂G

∂n
−G∂Ψ

∂n
ds = 0, (4.4)

transforming the expression to an integral over the volume’s surface S. The partial
derivatives ∂/∂n have to be carried out along the direction ~n normal to the surface.
To proceed, the auxiliary function G has to be chosen in a way that the equation can
be solved for Ψ. Kirchhoff proposed a spherical wave

G(~r) =
exp (ik|~r − ~r0|)
|~r − ~r0|

(4.5)

with amplitude 1, originating from ~r0 within the volume V . Due to the singularity
at ~r0, we omit this point in V and modify the surface S = SV + Sε such that Sε is a
concentric sphere around ~r0 with the radius ε, as sketched in Fig. 4.1. Then, for all ~r
on Sε we have

G(~r@Sε) =
exp(ikε)

ε
and

∂G(~r∈Sε)

∂n
=

exp(ikε)

ε

(
1

ε
− ik

)
(4.6)

and in the limit ε→ 0 the surface Sε contributes [29]

lim
ε→0

∫∫
Sε

Ψ
∂G

∂n
−G∂Ψ

∂n
ds

 = 4πΨ(~r0). (4.7)

With this result, the remaining integration over the volume’s outer surface SV can be
written as

Ψ(~r0) =
1

4π

∫∫
SV

∂Ψ

∂n
·
(

exp(ik|~r − ~r0|)
|~r − ~r0|

)
−Ψ · ∂

∂n

(
exp(ik|~r − ~r0|)
|~r − ~r0|

)
ds. (4.8)

This equation is known as the integral theorem of Helmholtz and Kirchhoff [29] and
finally allows to derive Ψ at any point in the volume from its values and normal
derivative at the surface. As shown in chapter 3.1.2, a projection only provides a so-
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V

SV

~n

~n

~n

~r0
ε

Sε
~n

Figure 4.1: Integration surface S = SV + Sε for a Green’s function G given by an
outgoing spherical wave originating from ~r0.

called exit wave Ψ on a plane S1 but not on a closed surface. Again, it is useful to divide
the integration surface SV = S1 +S2 into the known plane S1 and a spherical dome S2

closing the surface as depicted in Fig. 4.2. It can be shown [29] that the contribution of
S2 vanishes if its radius R increases to infinity, provided that Ψ satisfies the Sommerfeld
radiation condition

lim
R→∞

R

(
∂Ψ

∂n
− ikΨ

)
= 0 (4.9)

uniformly with respect to all directions. For this purpose, Ψ has to vanish at least
as fast as an outgoing spherical wave. The radiation condition also prohibits incom-
ing spherical waves originating at infinity and moving towards S1, ensuring a unique
solution [42]. With

∂

∂n

(
exp(ik|~r − ~r0|)
|~r − ~r0|

)
=

exp(ik|~r − ~r0|)
|~r − ~r0|

(
ik − 1

|~r − ~r0|

)
cos (~n, (~r − ~r0)) (4.10)

we find the general equation

Ψ(~r0) =
1

4π

∫∫
S1

exp(ik|~r − ~r0|)
|~r − ~r0|

[
∂Ψ

∂n
−Ψ

(
ik − 1

|~r − ~r0|

)
cos (~n, (~r − ~r0))

]
ds (4.11)

for arbitrarily curved surfaces S1.

~r0

R

S2
S1

~n

~n
V

Figure 4.2: The outer surface SV gets split into the (potentially curved) plane S1 and
a spherical dome around ~r0 closing the surface at R→∞.
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Eq. (4.11) provides a rigorous solution of the wave field if Ψ and ∂Ψ/∂n are known
everywhere on a single infinite plane. Unfortunately, in most cases, only parts of these
values are available, e.g. a projection only provides Ψ and not ∂Ψ/∂n. Thus, often
un-physical and mathematically deceptive boundary conditions are required to be sat-
isfied, leading to inconsistent solutions. Famously, the theorem is used to calculate
the field behind holes in a hypothetic perfectly absorbing screen. Within the holes,
the illumination is considered undisturbed as if the screen would not be present. Di-
rectly behind the absorbing areas of the screen Ψ and ∂Ψ/∂n are required to equal
zero. These are Kichhoff’s boundary conditions for diffraction on a screen, ensuring
convergence of the integrals. However, apertures modelled by step functions or even
delta distributions for small holes do not satisfy the HE. Moreover, the vanishing of
both Ψ and its normal derivative on a finite interval behind the screen imply that the
function is zero everywhere in space [29]. Hence, the field calculated by Eq. (4.11) with
the given boundary conditions has to violate the same conditions on the screen (see
e.g. [43] for a discussion of this problem).

4.1.2 Rayleigh–Sommerfeld theory

~r0

S1

r̃0

~n

|~r − ~r0|
ϑ

~r

|~r − r̃0|

V

Figure 4.3: Method of images: The source point ~r0 of the spherical wave G is mirrored
at the flat screen S1, yielding the origin r̃0 of a second spherical wave. The difference
of both waves is zero on the entire plane while for the sum of both waves the normal
derivative equals zero.

Inconsistencies related to boundary conditions in Eq. (4.4) mainly arise because both Ψ
and the normal derivative ∂Ψ/∂n have to be provided. As introduced by Sommerfeld
in [44], for the special case of a flat plane S1 this requirement can be relaxed by the
choosing an alternative Greens’ function

G−(~r0) =
exp(ik|~r − ~r0|)
|~r − ~r0|

− exp(ik|~r − r̃0|)
|~r − r̃0|

(4.12)

with r̃0 being the point ~r0 mirrored at the screen S1
1. Again, we omit the point ~r0 in

the volume V and the limit ε→ 0 results in a contribution of 4πΨ(~r0) from the surface
Sε. The contribution of S2 vanishes for R→∞ if the Sommerfeld radiation condition

1 Strictly speaking, r̃ “is located on the second sheet of a two-sheeted Riemann surface so it does not
interfere with the illuminated part of the field” [42].
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4.1 The diffraction formula

is satisfied. The crucial property of this choice for G− is that it equals zero everywhere
on the planar screen S1. Thus, the final integration over this plane yields

Ψ(~r0) = − 1

4π

∫∫
S1

Ψ
∂G−
∂n

ds. (4.13)

The normal derivative of G− on S1 is given by

∂G−
∂n

= 2
exp(ik|~r − ~r0|)
|~r − ~r0|

(
ik − 1

|~r − ~r0|

)
cos(~n, (~r − ~r0)), (4.14)

leading to

Ψ(~r0) = − 1

2π

∫∫
S1

Ψ
exp(ik|~r − ~r0|)
|~r − ~r0|

(
ik − 1

|~r − ~r0|

)
cos(~n, (~r − ~r0)) ds. (4.15)

Eq. (4.15) is the first Sommerfeld solution to the diffraction problem. It yields the
wave field for the situation that only Ψ is known everywhere on a single, flat and
infinite plane. A second Sommerfeld solution can be obtained by the function

G+(~r0) =
exp(ik|~r − ~r0|)
|~r − ~r0|

+
exp(ik|~r − r̃0|)
|~r − r̃0|

(4.16)

with the normal derivative ∂G+/∂n equal to zero on the screen. An analogue derivation
as above results in

Ψ(~r0) =
1

2π

∫∫
S1

∂Ψ

∂n

exp(ik|~r − ~r0|)
|~r − ~r0|

ds (4.17)

only depending on the normal derivative of ∂Ψ/∂n on S1.

4.1.3 Comparison of theories

We now have a choice between three expressions for the propagated field. Curved
surfaces can be treated by the Kirchhoff diffraction formula ΨK in Eq. (4.11). In
case of a flat screen the first and second Sommerfeld solutions ΨS1 in Eq. (4.15) and
ΨS2 in Eq. (4.17), respectively, provide the same correct result2 from less boundary
conditions. A comparison reveals that the Kirchhoff formula is the arithmetic mean
of the two Sommerfeld solutions,

ΨK =
1

2
(ΨS1 + ΨS2) . (4.18)

Further similarities can be readily identified: All expressions formulate the propagated
field as a convolution. Each point on the plane S1 can be considered as the source of

2 This can be easily verified e.g. by a numerical comparison of the wave fields obtained from the values
on a plane illuminated by a single spherical wave.
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Wave field propagation

an outbound spherical wave with amplitude equal to the boundary value at its origin.
This is close to the Huygens–Fresnel principle. However, a pure spherical wave only
appears in the convolution with the normal derivative in Eq. (4.17). Without loss of
generality we can chose the plane S1 equal to z = 0 and defined r =

√
x2 + y2 + d2 to

obtain the wave field in a parallel plane z = d with a single operation

ΨSom2(x, y, z = d) =

[
∂

∂z
Ψ(x, y, z = 0)

]
∗
[

1

2π

exp(ikr)

r

]
. (4.19)

In ΨSom1 the spherical wave is shaped by additional terms, including the so-called
inclination or obliquity factor OF [29]

ΨSom1(x, y, z = d) = Ψ(x, y, z = 0) ∗

 1

2π

exp(ikr)

r

(
1

r
− ik

)
d

r︸︷︷︸
OF

 . (4.20)

The cosine has been rewritten as cosϑ = d/r. Physically, the OF prevents backprop-
agation of the wave field in the direction of its origin.

4.2 Fresnel propagation

As indicated by the convolution formula in Eq. (4.20), the problem of propagation can
be formulated equivalently in Fourier space. In this section, a descriptive introduction
is preferred over the rigorous mathematical derivation provided by textbooks, see e.g.
[3, 29].
The inverse Fourier transform expresses the wave field Ψ in a flat plane uniquely as a
sum of infinitely extended oscillations

Ψ(x, y)z=0 =
1

4π2

∞∫∫
−∞

Ψ̂(νx, νy) exp (i(νxx+ νyy)) dνx dνy (4.21)

of the electromagnetic field. Here, the plane z = 0 has been chosen without loss of gen-
erality. If we assume monochromatic radiation with |~k| = 2π/λ = const. propagating
from the negative to the positive half-space z > 0, a physical meaning can be assigned
to these oscillations. The different wavelengths λ⊥ = 2π/|~ν| in the (2d) plane can only
be explained if they are considered as slices through (3d) plane waves with the same
wavelength λ but different orientations. Vice versa, each oscillation in the (2d) plane
can be extended to a (3d) plane wave with complex amplitude Ψ̂ leaving in a unique

direction ~k~ν , as sketched in Fig. 4.4. The sum of these plane waves can be evaluated at
any point in space. This is the basic idea of the Fresnel or angular-spectrum approach
for propagation.
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λ

λ⊥

λ⊥
λ⊥ λ⊥ = λ

~k
~k

~k ~k

~k

ϑ

Figure 4.4: The angular spectrum of a wave field, sketched for a 1d screen. The wave
field on the screen can be expressed as a sum of oscillations with different wavelength λ⊥,
given by a Fourier transform. For monochromatic illumination, these oscillations can be
uniquely identified as slices through plane waves with different orientations, defining the
wave field everywhere in free space behind the screen.

Since we can identify the Fourier space coordinates νx ≡ kx and νy ≡ ky as components

of the wave vector ~k with k2 = k2
x + k2

y + k2
z , the corresponding plane wave is given by

Ψ~ν(~r) =
Ψ̂(νx, νy)

4π2
exp

(
i
[
νxx+ νyy + z

√
k2 − ν2

x − ν2
y

])
. (4.22)

It crosses the plane at an angle

sinϑ =
k⊥
k

=
|~ν|
k

=
λ

λ⊥
⇒ ϑ = asin

(
λ

λ⊥

)
, (4.23)

so that waves corresponding to small wavelengths λ⊥ in the plane get “diffracted” to
large angles. The wave field Ψ behind every plane is an angular spectral decomposition
of Ψ in the plane. The complete propagated wave field is given by

Ψ(x, y, z) =
1

4π2

∞∫∫
−∞

Ψ̂(νx, νy) exp
(
i
[
νxx+ νyy + z

√
k2 − ν2

x − ν2
y

])
dνx dνy. (4.24)

For the special case of propagation to a parallel plane at distance z = d, one obtains

Ψ(x, y)z=d =
1

4π2

∞∫∫
−∞

Ψ̂(νx, νy)z=0︸ ︷︷ ︸
F(Ψ)z=0

exp
(
id
√
k2 − ν2

x − ν2
y

)
︸ ︷︷ ︸

χd(νx,νy)

exp (i(νxx+ νyy)) dνx dνy

= F−1
[
F(Ψ)z=0 · χd

]
. (4.25)
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Hence, in Fourier space the propagation can be expressed by a multiplication with the
so-called chirp function3

χd = exp
(
id
√
k2 − ν2

x − ν2
y

)
, (4.26)

as sketched in Fig. 4.5. It can be shown [46] that the inverse Fourier transform of this
function

F−1
[
χd
]

=
1

4π2

∞∫∫
−∞

χd(νx, νy) exp (i(νxx+ νyy)) dνx dνy

=
1

2π

exp(ikr)

r
· d

r︸︷︷︸
cos(ϑ)

(
1

r
− ik

)
(4.27)

with r =
√
x2 + y2 + d2 equals the first Sommerfeld convolution kernel as derived

in Eq. (4.15) and (4.20) for the same boundary conditions. In [3] equivalence is shown
for the paraxial approximations. The angular spectrum approach hence considers all
features of the wave field, including the obliquity effect and evanescent waves. The lat-
ter can be seen even more directly compared to the real-space formulation: Evanescent
waves appear for k⊥ > k, requiring a forbidden4 angle of radiation of ϑ > 90◦. In this
case, the exponent of the chirp function becomes real, leading to an exponential decay
of the corresponding signal in z.

π

-π

0

ar
g(
χ
d
(ν

))
[r

ad
]

0 1/λ1/(2λ)

ν [m−1]

Figure 4.5: Argument of the chirp-function χd(ν) at a distance of d = 2000λ.

Independently of the precise implementation, in the following we abbreviate the prop-
agation by the operator

Dd [f ] : F−1
[
χdFf

]
. (4.28)

In this formulation it is easy to see that propagation is associative and commutative,
e.g.

Dd1+d2Ψ = Dd1Dd2Ψ = Dd2Dd1Ψ (4.29)

3 Usually, also the real-space convolution kernel is termed a chirp-function [45]. In this work, to avoid
confusion and according to [3] only the Fourier space expression is named like this.

4 We have excluded “backscattering” by allowing propagation only from the negative to the positive
half-space.
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4.3 Numerical propagation

and importantly the inverse (as well as the complex conjugated) operator D−d is given
by a propagation about the negative distance, since

D−dDd[f ] = F−1

χ−dχd︸ ︷︷ ︸
1

Ff

 = f. (4.30)

4.3 Numerical propagation

As we have seen in the previous chapter with respect to the Ram-Lak-filter, discreti-
sation can be a non-trivial task – especially when transformations like the FT are
involved. This section is dedicated to the numerical implementation of propagation
including a close look on occurring artefacts. First, their courses are identified and
illustrated. Subsequently, approaches are presented to overcome limitations and arte-
facts. Finally, examples of propagations in one and two dimensions are presented.

4.3.1 Discretising for different geometries

In the following, we assume that the wave field Ψ at the plane z = 0 is available
as a rectangular matrix of equidistant, equisized pixels, as obtained by a numerical
projection5, for example. Then, as a result of the diffraction formula, the propagated
wave field can be calculated in a straightforward manner by considering each pixel as
the source of the modified spherical wave in Eq. (4.15). The sum of these waves can
be evaluated at any point, which makes this method the most flexible approach for
propagation. However, it is not free of artefacts and computationally very expensive if
the field has to be evaluated at many points. Numerically more advantageous methods
are provided by the convolution formulas in Eq. (4.20) and Eq. (4.25). Note that for
a correct implementation of discrete circular convolution, Ψ has to be zero-padded to
twice its size and the result has to be cut out appropriately, as explained in chapter
2.2.2. Nevertheless, both formulations allow to obtain the field in a parallel plane
at a distance d with high efficiency through a Fast Fourier Transform (FFT). As a
drawback, the geometry of the target plane is restricted to that of the input plane, i.e.
pixel number, pixel size and the aspect ratio are pre-determined6. However, a lateral
x-y-shift can be introduced, allowing to calculate the propagated field at any region
on the target plane. An example is shown in Fig. 4.6. Next to the wave field Ψ in
(a), the propagation kernel g in (b) has been sampled at pixels with the same size
but twice the pixel number in both directions for correct circular convolution yielding
the propagated wave field in (c) with the same pixel geometry as in (a). An arbitrary
shift of g as depicted in (d) results in a propagated field (e) shifted about the same
distance. As an example object, a (sectorised) zone plate has been chosen because of

5 Different geometries are of course possible but have not been used in this work.
6 With inserted zero-padding / regridding / interpolation also the pixel-size and geometry can be

changed, but this requires an additional operation which is not considered here.
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Figure 4.6: Two-dimensional propagation example of a sectorised zone plate. The
binary object Ψ with constant phase in (a) is convolved with a propagation kernel g in
(b) to obtain the propagated wave field depicted in (c). If the kernel is shifted arbitrarily
(d) the propagated field is shifted about the same pixel distance (e) allowing to calculate
Ψ anywhere on the distant plane. In this example, Ψ has a size of 512 × 512 px2, and
represents a sectorised zone plate with a focal length of fz = 1.5 ·105 px. The wavelength
is λ = 0.1 px and the propagation distance d = 105 px. The discrete convolution kernel
g has been sampled at 1025 × 1025 px2 with the same pixel size for correct circular
convolution. All scale bars represent a width of 100 px.

its appealing wave field rich of verifiable features such as different-order focal points in
the near field. See appendix 9.3 for details on binary zone plates.
Another example of propagation by convolution is depicted in Fig. 4.7. Here, the
“1+1d” x-z field obtained from a 1d signal at different distances is calculated, in
contrast to the previous example of a 2d wave field at a parallel x-y plane. Two
methods for this calculation can be utilised as follows: One is the so-called multislice
approach. It is carried out by many 1d convolutions with their results inscribed in
the corresponding column of a 2d pixel matrix. If the field has to be evaluated in
equidistant steps ∆d, the propagation kernel or Fourier filter g has to be calculated
only once. Each new distance can be obtained by the convolution of the last result with
g in an incremental manner. For non-equidistant ∆di, however, g has to be calculated
again in every step. An advantage of the multislice approach is the possibility to model
material properties like absorption and phase shifts in each iteration. This allows to
approximate interaction with matter during propagation through an object exceeding
the limits of the projection approximation [47].
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Figure 4.7: Example for multislice propagation. The 512 px binary signal of a 1d
absorbing zone plate with a focal distance of zzp = 104 px at a wavelength of λ = 0.1 px
(a) served as initial wave field. For obtaining the propagation along the z-axis the initial
signal can either be propagated to different distances sequentially or in an incremental
manner as sketched in (b). Here, the wave field has been calculated for 1024 planes with a
distance of d = 20 px each (c). Propagation has been carried out by the angular-spectrum
approach incrementally.

A second method for “1+1d”-propagation is depicted in Fig. 4.8. The initial wave
field is inserted into the first column of a 2d pixel matrix that equals zero everywhere
else. A 2d convolution with g sampled for all target distances and lateral shifts yields
the same result as the first method. Note that g has the size of the (x-)zero-padded
input field for circular convolution. Although this technique is not capable of modelling
propagation through objects with the same accuracy as the multislice method, it can
be used to calculate at least a first Born approximation of wave-matter interaction
in a single operation: The object features can simply be inserted arbitrarily in the
initial wave field if the padding is extended in z direction. Both methods can be
analogously implemented for 3d convolution allowing a “2+1d” propagation with the
same benefits and restrictions. All approaches can also be formulated in Fourier space
but operations like shifts or the equivalent formulation of the kernel in Fig. 4.8 are
less intuitive. Further details about the numerical implementation are summarised in
appendix 9.2.
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Figure 4.8: Example for 1+1d propagation by 2d convolution. The initial signal is
inserted into the first column of an empty matrix defining the output geometry. A
2d convolution with the propagation kernel sampled at all target distances yields the
propagated wave field. On the right, an offset of z0 = 6000 px and a lateral shift of
x0 = −222 px has been applied to the kernel, resulting in a wave field shifted about the
same distance. See section 4.3.2 for a discussion of the artefacts appearing on the left
side.

4.3.2 Considering band limits

According to Eq. (4.27), the chirp function and the first Sommerfeld diffraction ker-
nel are analytically identical. However, the numerical results reveal eminent differences.
As illustrated in Fig. 4.9, the angular-spectrum formulation creates artefacts at large
propagation distances while in the convolution approach artefacts predominantly occur
at small distances. Both methods allow to find intuitive explanations for their errors.
The convolution approach is flawed by aliasing. According to the sampling-theorem
it occurs when the signal varies faster than half the sampling frequency. Usually, the
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Figure 4.9: Comparison of propagation artefacts. Analytically identical, the sampling
of the propagation kernel in real space (top) creates artefacts at short distances while the
sampling in Fourier space leads to artefacts at large distances. For both approaches the
same conditions have been used, i.e. the angular-spectrum based propagation has been
zero-padded to the same size as necessary for circular convolution.

pixels are much larger than the wavelength. Near the origin plane, quickly oscillating
waves from many directions interfere. Dramatic variations in the field amplitude within
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the area of a pixel occur which cannot be represented properly. At larger distances
from the plane, the k-vectors of all contributing waves become more and more parallel.
Relative variations on the length scale of a pixel decrease and so do the artefacts. This
effect can be well observed at the left kernel in Fig. 4.8, where distinct artefacts occure
at the regions of too fast oscillations.

z

Figure 4.10: For short distances, interfering waves from different directions show fast
variations within the sizes of a pixel resulting in aliasing. For larger distances, the k-
vectors are nearly parallel, yielding only little relative variations.

Using the angular spectrum approach the shape of the artefacts is a result of the peri-
odic repetition inherent to the discrete Fourier transform. The object itself can be con-
sidered as infinitely repeated on the input plane. With increasing propagation distance,
the signals from the repeated objects spread and interfere with each other. This can be
seen particularly well in a (tiled) 1+1d propagation as provided in Fig. 4.11: A signal
“leaving” the area in lateral direction again enters the region at the opposite border.
Consequently, artefacts first occur at the borders of the area, spreading to the whole
wave field for increasing propagation distances. Hence, a common approach of artefact
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Figure 4.11: The shape of artefacts created by angular-spectrum propagation can be
understood by considering periodic repetition immament to the discrete Fourier trans-
form. Spreading signals from repeated objects interfere with the original wave field.
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4.3 Numerical propagation

reduction is to enlarge the distance of the repeated wave fields by zero-padding of the
input wave field [45]. The larger the propagation distance, the more padding is required.
As we have already seen for the dishing artefacts in tomography, padding only reduces
artefacts but does not remove them entirely. A more sophisticated method requires
a closer look at the source of the artefacts. Both techniques, the angular-spectrum
propagation and the convolution approach, are implemented by a (same-sized) FFT,
the only remaining difference is whether the propagation kernel is calculated in real or
Fourier space. A common reason for the artefacts and the differences can be identified
in aliasing. As shown in [45, 48] also angular-spectrum propagation artefacts can be
interpreted as aliasing flaws of the chirp function χd = exp(ikd

√
k2 − ν2

x − ν2
y). For

increasing propagation distances, χd shows faster oscillations. Beginning at the bor-
ders of the sampled Fourier space, they can get faster than the Nyquist sampling
rate which is when the artefacts begin to occur. The solution proposed in [48] is to
limit the chirp function to the properly sampled region by an appropriate window func-
tion. While this indeed removes the artefacts, certain drawbacks have to be taken into
account: While an angular-spectrum-based forward and subsequent backpropagation
exactly recovers the original wave field, the effective low-pass filter by windowing the
chirp-function ultimately removes information during propagation.
Initially unaware of these findings, a similar formulation of propagation in real space
has been developed and used throughout this work. Guided by the question why the
angular-spectrum approach produces artefact-free solutions in the near field where the
convolution method fails, differences in the angular distribution of the radiation attract
attention. In the real-space formulation derived for point sources the signal of a pixel
gets distributed to all directions in the positive half-space. Only backpropagation is
prohibited by the obliquity-factor. In contrast, the angular spectrum approach limits
the maximum angle of radiation. For a pixel size of ∆, the highest frequency oscillation
in the discrete Fourier decomposition has a wavelength of λ⊥,min = 2∆ and we find for
the angle

ϑmax = asin

(
k⊥,max
k

)
= asin

(
λ

2∆

)
, (4.31)

which only depends on the ratio between wavelength λ and the pixel size. Only for a
sampling size equal to or smaller than the Nyquist rate 2∆ = λ, radiation is propa-
gated to all angles7. This observation suggests limiting the convolution kernel to ϑmax
to take the discrete nature of the pixels into account. For this purpose, many window
functions are thinkable. Empirically, good results have been achieved by modifying the
obliquity factor cosϑ to

OF :=

{
cos
(
π
2

ϑ
ϑmax

)
for ϑ < ϑmax

0 else,
(4.32)

approaching the original factor for Nyquist sampling ϑmax = π/2. This effectively
limits the real-space convolution kernel to the region where its phase oscillaton is sam-

7 Sampling smaller than the Nyquist distance requires angles of radiation larger than 90◦. As
mentioned before, this leads to evanescent waves in the angular spectrum.
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pled adequately. Comparisons as provided in Fig. 4.12 reveal excellent reproductions of
the propagated wave field with a complete removal of the artefacts – independent from
the propagation distance. A numerical implementation can be found in the appendix
9.2 with comments on technical details like the treatment of even and odd input pixel
numbers.

−π π −π π −π π

0 1 0 1.7 0 1.7

arg(Ψ(x, y, z = 40 px)) [rad] arg(Ψ(x, y, z = 400 px)) [rad] arg(Ψ(x, y, z = 4000 px)) [rad]

|Ψ(x, y, z = 40 px)| [a.u.] |Ψ(x, y, z = 400 px)| [a.u.] |Ψ(x, y, z = 4000 px)| [a.u.]

new reference new reference new reference

Figure 4.12: 2d propagation examples with limited obliquity factor. At short distances
z where the wave field is utterly flawed by conventional convolution propagation, lim-
iting the angle of radiation clearly removes the artefacts introduced by aliasing. The
comparison with reference simulations obtained by angular-spectrum propagation with
large padding reveals excellent reproductions of the wave field.

We close this section with a remark about perfect sampling. The maximum angle of
radiation still hitting a detector with diameter L = N ·∆ at a distance dp is given by

ϑ′max = atan

(
L

2dp

)
. (4.33)

If ϑmax exeeds this angle, parts of the wave field are not captured by the detector. On
the other hand, if ϑmax < ϑ′max, the detector is not illuminated completely. Thus, with
sin(atan(x)) = x/

√
1 + x2, setting ϑ′max = ϑmax from Eq. (4.31) yields

∆ =
λ

L

√
d2
p + L2/4. (4.34)

The same expression for ∆ has been derived in [45] strictly from the Nyquist-Shannon
sampling criterion for the chirp function in Fourier space. It can be shown that for
a pixel size ∆, the sampling is ideal and matches the analytical propagation kernel.
The chirp function does not suffer from aliasing and the wave field is not oversampled.
Consequently, angular spectrum and convolution based sampling are equal. However,
adjusting this situation is often not possible since it may require too large pixels for
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Figure 4.13: 1+1d propagation with modified obliquity factor. The top row shows
modulus and phase of the convolution kernel in combined pictures, the bottom row
depicts the convolution result with the zone plate signal introduced before. The limited
obliquity factor clearly removes the artefacts shown in Fig. 4.9 (left side). The right
side depicts a more complex situation where the kernel shows both a vertical offset and
an exponential increase of the propagation distance. Hence, both the near field and the
slowly developing field at larger distances are visualised in good detail.

adequate sampling of Ψ or too many pixels for a practical calculation. Alternatively,
the expression resolved to

dp = L

√
∆2

λ2
− 1

4
(4.35)

gives an estimation of which method applies in which region:

for d� dp : angular-spectrum approach accurate

for d� dp : convolution approach accurate.

Hence, simply switching the propagation methods can also be exploited to reduce
artefacts considerably. The main advantage of limiting the obliquity factor is the
conceptual simplicity. The intuitive and consistent model yields good results at all
distances. It enables to implement non-trivial propagation like those shown in Fig.
4.13 in a straightforward manner and easily allows to estimate how and where the
signal from a given source pixel contributes to the result.

63



Wave field propagation

4.4 3D propagation

In the case of a weakly interacting object, Eq. (3.15) already showed that the exit wave
for unit amplitude plane wave illumination is given by

Ψ(x, y, z = 0) = exp (−ikP [δω(~r)− iβω(~r)]) . (4.36)

If the integrated absorption kPβω and phase shifts kPδω remain small too, the expo-
nential function can be linearised to

Ψ(x, y, z = 0) ≈ 1− ikPδω(~r)− kPβω(~r). (4.37)

With this, a subsequent propagation acts directly on the projections and the wave field
at the distance z = d can be expressed as

Ψ(x, y, z = d) ≈ exp(ikd)− ikDdPδω(~r)− kDdPβω(~r). (4.38)

This offers the possibility to change the order of the projection and propagation oper-
ation. With f(~r) a placeholder for either δω(~r) or βω(~r), we can write

D2dPf =F−1
2d

[
χd · F2dPf

]
=

1

4π2

∞∫∫
−∞

exp
(
id
√
k2 − ν2

x − ν2
y

)
︸ ︷︷ ︸

χd

·

 ∞∫∫
−∞

 ∞∫
−∞

f dz

 exp(−i(νxx+ νyy)) dx dy


︸ ︷︷ ︸

F2dPf

exp (i(νxx+ νyy)) dνx dνy

=
1

4π2

∞∫∫
−∞

∞∫
−∞

δD(νz) · exp
(
id
√
k2 − ν2

x − ν2
y − ν2

z

)

·

 ∞∫∫∫
−∞

f exp(−i(νxx+ νyy + νzz)) dx dy dz

 dνz exp (i(νxx+ νyy)) dνx dνy

(4.39)

In the second step, the Fourier slice theorem has been used. The projection is written as
a central slice of the 3d Fourier transform of f , selected by the Dirac delta distribution
δD. Note that δD does not only act on f̂ but also on the chirp function χd, which has
been extended to three dimensions in such a way that all of its central slices are
identical. Figuratively speaking, all central slices of f̂ get multiplied by the same
propagation function and thus all possible projections become propagated about the
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same distance. In the next step, δd is expressed as the inverse Fourier transform of a
one, yielding

D2dPf =
1

8π3

∞∫
−∞

∞∫∫∫
−∞

exp
(
id
√
k2 − ν2

x − ν2
y − ν2

z

)
· F3d [f ] exp (i(νxx+ νyy + νzz)) dνx dνy dνz dz

=PF−1
3d

[
χd3d · F3df

]
=PD3df. (4.40)

This result clearly holds for all orientations of f . Thus, as sketched in Fig 4.14, instead
of propagating a (2d) projection, one can also project from a 3d propagated object
D3df(~r), obtained by a multiplication with a generalised 3d chirp function

χd3d := exp
(
id
√
k2 − ν2

x − ν2
y − ν2

z

)
(4.41)

in Fourier space. Clearly, this 3d propagation can be formulated equivalently as a
convolution in real space and the numerical considerations from the previous section
can be applied as well.
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Figure 4.14: Idea of 3d propagation: (a) A plane wave illuminating a weakly interacting
object results in an exit wave in the x-y plane as given by the projection approximation
followed by free-space propagation to the distant detector. This process can be described
in Fourier space by multiplying the appropriate central slices of the object’s FT with the
radially symmetric propagation chirp function. The propagation of all possible central
slices is identical to the multiplication of the FT of the object with a generalised 3d
chirp function, yielding a 3d propagated object. With a projection from this object, the
propagated wave field can be obtained. Hence, projection P and propagation operation
D can be permuted for weakly interacting objects (b). Image obtained from [49].
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The propagated object itself has no real physical representation but many beneficial
properties. Importantly, it proves that propagated projections are still consistent in
terms of tomography, since they can be considered as projections of this mathematical
object. Hence, alignment procedures, tomographic reconstructions as well as sinogram
retrieval based on consistency can be applied directly to propagated projections of
weakly interacting objects. In addition, the propagated object can be reprojected to
arbitrary directions yielding e.g. edge enhanced projections8 in experimentally inac-
cessible directions. As presented in the next chapter, the concept of 3d propagation
is particularly useful in simulations and phase-retrieval algorithms. It not only sum-
marises many 2d propagations to a single and still very efficient 3d operation, but also
allows to implement previously impossible boundary conditions.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

|D2dPf | |PD3df | |PD3df |
reference simulation 3d propagation central slice

0.77 1.18 0.77 1.18 -0.004 0.005

Figure 4.15: The comparison of a conventional wave field simulation (first project
then propagate) (a) with the 3d propagation (first propagate then project) (b) shows an
excellent agreement. (c) depicts the central x-z slice of the propagated object. With
λ = 0.01 px all scale bars denote a size of 50 px corresponding to 5000 wavelengths. The
object contains 20 spheres and 15 cubes with variable sizes and complex optical indices,
randomly arranged in a 2563 voxel grid.

4.5 The Fresnel-Scaling Theorem

Up to this point, we have assumed a parallel beam illumination for projection and
propagation. However, many real setups use a diverging beam, better described by a
point source. In tomography, divergence can be incorporated by appropriate fan-beam
or cone-beam backprojection algorithms based on similar principles as introduced in the
previous chapter [25, 27]. A small divergence can be safely neglected if the maximum
beam inclination remains smaller than one pixel per diameter of the volume. In case of

8 See the next chapter for details about edge enhancement by free-space propagation.
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4.5 The Fresnel-Scaling Theorem

a cubic N3 volume, the maximum angle then has to be limited by ϑmax < atan(1/N).
For N in the order of a few thousand, angles in the order of a millirad are acceptable.
But even for such small angles, the divergence cannot be neglected during propagation
about distances of several metres to ensure proper magnification and phase contrast.
Fortunately, as shown in e.g. [3], the results of parallel beam propagation can still be
used, but have to be expressed in terms of effective parameters.

Figure 4.16: Fresnel-Scaling-Theorem: The illumination with a divergent spherical
wave can be expressed by an effective parallel beam geometry.

From geometrical observations as sketched in Fig. 4.16, an object at distance s01 behind
a point source appears magnified by a factor

M =
s02

s01

(4.42)

on a plane at s02 = s01 + s12. The effective detector size at the object’s position is then
given by

∆xeff =
∆x

M
(4.43)

compared to the real detector size ∆x at s02. In a paraxial approximation of propa-
gation and the illuminating wave front, the intensity I ∝ |Ψ|2 at distance s02 can be
identified as [3]

I(x, y, s12) =
1

M2
I‖

( x
M
,
y

M
,
s12

M

)
, (4.44)

provided the projection approximation holds. Hence, the intensity at the real propa-
gation distance s12 in a divergent wave field can be expressed as a scaled version of the
intensity I‖ obtained by parallel beam propagation at an effective propagation distance
s12/M .
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To date, most applications of X-ray imaging including clinical radiography and CT, are
based on absorption contrast alone. However, especially for hard X-rays the absorption
of radiation is very small in soft matter like biological tissue. Obtaining projections
with a good signal-to-noise ratio would either require a high intensity of the illumination
possibly destroying the sample or long exposure times, which are not compatible with
the goal of fast image acquisition for dynamic tomography. Thus, we need to enhance
the contrast by utilising the much stronger phase shifting properties of the sample with
δω up to three orders of magnitude larger than βω in the complex index of diffraction
nω = 1 − δω + iβω. In practice, phase contrast makes the measurement of small
biological samples possible in the first place. Among the many different approaches to
visualise phase shifts, only a few are suitable for time-resolved imaging. For example,
many phase contrast techniques require lateral or longitudinal scanning of the object
in the probing beam, notably in ptychography [50], Talbot interferometry [51], edge-
illumination [52, 53] or speckle-based phase contrast techniques [54]. Therefore, we
chose phase contrast by free propagation [8, 9, 55] based on the self-interference of the
wave front behind the object. The phase shift information of a projection is thereby
converted into measurable brightness variations. A single recording without scanning
is sufficient and no additional optical elements are inserted in the optical path behind
the sample, such as in Zernike based phase contrast [56], assuring a high signal and
dose efficiency.
The method was introduced by Dennis Gabor in an exciting paper published in 1948
[57], for which he eventually was awarded with the Nobel Prize in 1971. It is called
(in-line) holography from ancient Greek ŏλoς (holos) meaning “whole” and γράϕειν
(graphein) for “to write” or “to record” as in tomography. The basic idea is to record
the interference pattern of the object signal with a reference wave, encoding not only the
absorption but also the relative phase shifts in brightness variations. Thus, coherence
as provided by synchrotron sources in case of X-rays is a requirement for the method.
For weakly interacting objects the illumination itself can be considered as the reference
wave, being superposed by the weak object signal yielding distinct interference patterns
on a distant detector. Notably, holography implies near-field imaging, in contrast to
coherent diffraction imaging (CDI) where the detection takes place in the optical far
field described by the Fourier transform of the exit wave. While the experimental
setup is similar and in both cases requires no optical components between object and
detector, holography has particular advantages: It is more dose efficient with respect to
the image quality obtainable from a given dose of radiation and more robust in terms
of partial coherence [58, 59], which is helpful for fast imaging. Moreover, tomography
requires a careful alignment of the setup and of the object in the axis of rotation.
In holographic imaging, these steps can be carried out in a straight-forward manner
compared to the Fourier geometry of CDI, even when the details of the object cannot
be seen on the detector but only the rough shape of the sample.
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The main drawback of both techniques is that retrieving the phase information encoded
in the intensity recordings is a non-trivial task. Additional constraints or information
about the sample are required since still only a fraction of the wave field’s information
is captured. Note that both amplitude and phase of the wave field are to be recon-
structed from only a single intensity measurement. But even in this context holography
allows to guess the dimensions and features of the object more easily directly from the
projections, valuable for the determination of support or sparsity information as well
as for predictions about the material composition.
The important task of phase retrieval is the main topic of the present chapter, i.e.
phase contrast is not only used to enhance the detector signal but a quantitative
reconstruction of the wave field is the ultimate goal. In the previous chapter wave
propagation has been considered mainly in mathematical and technical terms. Here,
we will focus on its physical properties. Many wave-optical phenomena, notably the
interference patterns behind slits, can be well understood by the diffraction integral
with its instructive basis of elementary waves. But also the angular spectrum approach
vividly reveals many fundamental wave-optical effects. Here, we will focus on the
latter approach, offering a more intuitive insight in phenomena like contrast formation,
the main topic of the first section of this chapter: By following the evolution of the
wave field’s intensity in free space, first we will investigate which kind of information
about the object can be obtained from different regions of the wave field. In the
second part, mathematical methods are presented to retrieve the information encoded
in the holograms and compensate (at least partially) for lost information by including
a priori knowledge. To this end, one-step methods based on Fourier filters as well
as iterative phase-retrieval procedures are introduced. Addressing the main challenge
of phase retrieval, i.e. the provision and proper application of prior knowledge, the
chapter closes with presenting approaches to combine phase retrieval and tomographic
reconstruction using (tomographic) consistency as a constraint for phase retrieval. To
this end, the first reconstructions of experimental data are shown to illustrate the value
of consistency in iterative holographic phase retrieval.

5.1 Information content of a wave field

To capture all information transported by a wave field, its amplitude and phase have
to be acquired over an infinite plane1 at a sampling resolution smaller than the wave-
length of the radiation. Clearly, this is not possible with any available detector system.
Instead, only the intensity of the wave field is measured at a limited field of view
with a comparatively large pixel size. Therefore, as we will see in this section, the de-
gree of information attainable depends on the geometry of the experiment, i.e. varying
quantities can be measured at different positions of the wave field.

1 Alternatively, the wave field can be acquired for all angles of radiation, but then, as we have seen
in the previous chapter, also the normal derivative has to be measured.
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5.1.1 The diffraction limit

For numerical propagation, limiting the angle of radiation by introducing a modified
obliquity factor as demonstrated in the previous chapter may look arbitrary from a
physical point of view. However, it is based on a physical principle, namely the long
known resolution limit of optical systems. As a reminder, the Nyquist-Shannon
sampling criterion states that equidistant sample values within a distance of λmin/2
are sufficient to exactly reconstruct the signal up to a minimum wavelength (highest
frequency) of λmin. Vice versa, a band-limited signal with a minimum frequency of
λmin can at least reproduce features with the size λmin/2, although even smaller but low
intensity features can appear in the signal, a phenomenon known as super-oscillations
[60].
Let the smallest feature in the x-direction of a wave field have a size of dmin. Then,
the necessary minimum wavelength for proper sampling is λ⊥min ≈ 2dmin. According
to Eq. (4.23), the corresponding plane wave with photon wavelength λ leaves the plane
at an angle of

ϑmax = asin

(
λ

λ⊥min

)
≈ asin

(
λ

2dmin

)
. (5.1)

Resolved for dmin, one obtains

dmin ≈
λ

2 sinϑ
. (5.2)

This expression is known as the resolution limit, stating that no structures smaller than
dmin can be safely resolved if the wave field has been captured up to a maximum angle
of ϑ. Often, the sine in Eq. (5.2) is complemented by the index of refraction n of the
propagation medium, summarised as the numerical aperture NA := n sinϑ. Depending
on the definition of when exactly two diffraction limited points can be considered as
distinguishable, Eq. (5.2) can be found with different pre-factors in the literature.
Consequently, limiting the angle of radiation in numerical propagation restricts the
result to the physically reasonable region. Moreover, the equation shows that the
resolution and thus the information obtainable from an object is practically limited by
the angular acceptance of the detector. In case of X-rays, the wavelength imposing a
fundamental resolution limit is sufficiently small.

5.1.2 Imaging regimes

The angular spectrum, i.e. the connection between object feature size and angle of
radiation, provides insight into the evolution of the wave field on its way downstream
the sample. Except for evanescent waves practically vanishing after a propagation dis-
tance of a few wavelengths, the modulus of the wave fields’ spectrum remains constant
– independent of the propagation distance z. The unit-amplitude chirp function only
multiplies the spectrum by a phase factor, shifting the oscillations in the x-y planes
relative to each other. The smaller the oscillation wavelength λ⊥, the larger is the
angle of radiation of the corresponding wave and the higher is the relative shift during
propagation.
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z

p1 p2

ϑ

d λ/2

a
≈
λ
⊥

λ/2

Figure 5.1: The smaller the wavelength λ⊥ in the plane perpendicular to the incident
radiation, the larger is the corresponding angle of radiation ϑ – and the shorter is the
distance z on the optical axis the wave shows a relative phase shift of π with respect
to the primary undeflected wave. For the red-coloured wave, this relative phase shift is
reached at the red plane p1, while the green-coloured wave with a smaller angle ϑ needs
all the distance to the plane p2 for the the same relative phase shift.

Both situations are sketched in Fig. 5.1. Along the z-direction, the red-coloured wave
has a relative phase shift of π with respect to the non-deflected “primary” wave at the
red plane p1. The green-coloured wave with a smaller angle ϑ needs all the distance
to the plane p2 for the same relative phase shift of π. Hence, the small oscillations are
expected to be the first to show propagation effects. Indeed, this is known as edge-
enhancement, emphasizing the sharp edges in the projections for short propagation
distances. This can be seen in the examples depicted in Fig. 5.2 for small propagation
distances. With higher distances, larger oscillations get shifted significantly, too, lead-
ing to spreading and blurring of the edges. Finally, at very large distances, no structure
can be recognised at all. Only the amount of energy transported by the waves to the
different directions is of importance, approaching the Fourier transform of the original
function. A relative phaseshift of π compared to the non-deflected wave is reached at
the distance

dk
!

= dk cos(ϑ) + π

⇒ d =
λ

2 (1− cosϑ)
=

λ

2
(

1−
√

1− λ2/λ2
⊥

)
≈ λ

2
(

1 + λ2

2λ2⊥
− 1
) =

λ2
⊥
λ
, (5.3)
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since usually λ� λ⊥. Alternatively, as indicated in Fig. 5.1 (b), the situation can be
interpreted as a lateral shift of the wave about its own lateral wavelength λ⊥. With
tan(asin(x)) = x/

√
1− x2 the corresponding distance is found to be

ϑ = asin

(
λ

λ⊥

)
= atan

(
λ⊥
d

)
⇒ d =

λ2
⊥
λ

√
1− λ2/λ2

⊥. (5.4)

If a = λ⊥ is chosen as the characteristic size of the wave field with a� λ, the square
root vanishes, yielding

1 =
a2

dλ
=: Fa. (5.5)

Fa is known as the Fresnel number, a measure for the imaging regime. The “character-
istic oscillation” shifted laterally about its own wavelength (Fa ≈ 1) (or equivalently,
having reached a relative phase shift about π on the z-axis with respect to the unde-
flected wave) defines the so-called holographic regime with distinct interference between
all modes in the order of a. As can be seen in Fig. 5.2, only low-frequency patterns like
the background in the top-left phase quadrant remain invisible. For Fa � 1, the char-
acteristic oscillation is shifted much less than one wavelength in the propagated wave
field and no interference effects appear at all. Only the amplitude variations are visible
in the intensity patterns. This so-called contact regime widely used in radiology can
be described properly by geometrical optics. Decreasing Fresnel numbers allow to first
see the edges of the phase-content (very weak at F10 = 100, clear at F10 = 10 in Fig.
5.2). In contrast, the characteristic oscillation shifted far more than a period (F � 1)
defines the far field or Fraunhofer regime. The original structure is not recognisable
anymore. In this case, for large distances d� λ and small objects, the obliquity factor
and all quadratic terms ∝ r−2 can be neglected in the diffraction integral Eq. (4.15),
resulting in

Ψ(x0, y0, z = d) =
1

iλ

∞∫∫
−∞

Ψ(x, y, z = 0)
exp(ik|~r − ~r0|)
|~r − ~r0|

dx dy. (5.6)

The denominator |~r−~r0| ≈ d can be approximated by the propagation distance, while
in the argument of the oscillating exponential function, the second order of the series
expansion

|~r − ~r0| =
√

(x− x0)2 + (y − y0)2 + d2

≈ d+
(x− x0)2 + (y − y0)2

2d

= d+
x2 + y2

2d
+
x2

0 + y2
0

2d
− xx0 + yy0

d
(5.7)

is also taken into account, resulting in

Ψ(x0, y0, z = d) =
exp(ikd)

iλd
exp

(
ik

2d
(x2

0 + y2
0)

)
×
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Figure 5.2: Simulated intensity patterns for different Fresnel numbers. The top row
shows amplitude and phase of an exit wave containing different structures. The top left
quadrant contains a pure phase variation, marked by a Φ of different sizes, whereas the
bottom right quadrant only persists of purely absorbing features marked by an A. The
two remaining quadrants are marked with an M for a mixed composition, e.g. circles,
projected spheres and an image of a flower representing a natural signal form, all with
varying β/δ ratios. All images have a side length of 512 px. The wavelength has been
chosen to λ = 0.01 px and the characteristic size to a = 10 px, slightly less than the
diameter of the smallest circle.
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∞∫∫
−∞

Ψ(x, y, z = 0) exp

(
ik

2d
(x2 + y2)

)
︸ ︷︷ ︸

exp
(
iπ x

2+y2

λd

)
exp

(
−ik
d

(xx0 + yy0)

)
dx dy.

(5.8)

The argument of the underbraced function is similar to the Fresnel number a2/λd� 1,
which is small in the given regime. Thus, the term can be replaced by 1 for all x, y
where Ψ contributes considerably. With k̃x = kx0/d and k̃y = ky0/d, Eq. (5.8) can be
written as the Fourier transform of the function Ψ in the plane z = 0:

Ψ(x0, y0, z = d) =
exp(ikd)

iλd
exp

(
ik

2d
(x2

0 + y2
0)

)
×

∞∫∫
−∞

Ψ(x, y, z = 0) exp
(
−i(k̃xx+ k̃yy)

)
dx dy. (5.9)

Notably, for the same wavelength λ and the same distance d, differently sized features
a of the object may exhibit different properties. The propagated signal of very small
objects can show far-field characteristics while the interference pattern of larger objects
is limited to the near field.

5.1.3 Contrast transfer

For a more quantitative insight, we need to consider that common detectors measure the
intensity, defined as the time-averaged power input per (pixel) area, up to a remarkable
single-photon energy resolution[3, 61]. As mentioned before, this quantity

I(x, y, z) ∝ |Ψ(x, y, z)|2 (5.10)

is proportional to the modulus of the wave field squared. Hence, only the wave’s
amplitude |Ψ| is measured and all information about its phase has vanished. However,
this does not mean that all information about the object’s phase shifts is lost. As
we will see in more detail later, the initial phase shifts during free-space propagation
crucially contribute to the measurable intensity patterns. At the detector distance d
behind an object, these are given b

I(x, y, z = d) =
∣∣DdΨs(x, y, z = 0)

∣∣2
=
(
DdΨs

) (
DdΨs

)∗
=
(
DdΨs

) (
D−dΨ∗s

)
, (5.11)

which is simply the propagated wave field multiplied with the complex conjugated wave
Ψ∗s propagated about the negative distance – which practically ‘flips’ the wave front.
This leads to an alternative interpretation of the so-called phase problem, which can be
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seen more clearly in an approximation of weakly interacting objects. If the argument
Φ of the exit wave Ψs = Ψ0 exp(Φ) remains sufficiently small, the linearisiation

Ψs(x, y, z = 0) ≈ Ψ0 · (1 + Φ(x, y, z)) (5.12)

allows to express the intensity by

I(x, y, z = d)

|Ψ0|2
≈ Dd [1 + Φ] · D−d [1 + Φ∗]

=
(
eikd +DdΦ

) (
e−ikd +D−dΦ∗

)
= 1 + eikdD−dΦ∗︸ ︷︷ ︸

twin

+e−ikdDdΦ︸︷︷︸
image

+ |DdΦ|2︸ ︷︷ ︸
�1

. (5.13)

The quadratic term can be safely neglected. In this approximation, the intensity is
expressed as the propagated image Φ superposed by its so-called twin image, which is
the complex conjugated image propagated about the negative distance.

z0 d 2d

real object virtual twin object

Ψ Ψ∗

detector |Ψ|2

Figure 5.3: The intensity pattern at z = d can be interpreted as the original wave
superposed by a wave originating from a complex conjugated twin object at z = 2d and
travelling in the inverse direction.

In Fourier space, the propagation operations can be expressed more suitably by a
multiplication with the chirp function χd, yielding

F
[
I(x, y, z = d)

|Ψ0|2

]
≈ 2πδD + eikdχ−dF [Φ∗] + e−ikdχdF [Φ] , (5.14)

with the Dirac delta distribution δD. We recall that the projection approximation of
an object described by the index of refraction n = 1 − δω + iβω and illuminated by a
plane wave with amplitude Ψ0 (see Eq. (3.15) ) is given by

Ψs(x, y, z = 0) = Ψ0 exp (−ikP [δω(x, y, z)− iβω(x, y, z)])︸ ︷︷ ︸
=:Φ

. (5.15)

Inserting in Eq. (5.14), provided that absorption and phase shifts are sufficiently small,
the separation of δ̄ := FPδω from β̄ := FPβω yields

F
[
I(x, y, z = d)

|Ψ0|2

]
≈ 2πδD + eikdχ−d

(
ikδ̄ − kβ̄

)
− e−ikdχd

(
ikδ̄ + kβ̄

)
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= 2πδD + ikδ̄
(
eikdχ−d − e−ikdχd

)︸ ︷︷ ︸
ξ−ξ∗=2iI(ξ)

−kβ̄
(
eikdχ−d + e−ikdχd

)︸ ︷︷ ︸
ξ+ξ∗=2R(ξ)

. (5.16)

The symmetrical phase function

ξ(ν⊥) = eikdχ−d = exp

[
id

(
k −

√
k2 − ν2

⊥

)]
= exp

[
ikd

(
1−

√
1− ν2

⊥/k
2

)]
≈ exp

(
id
ν2
⊥

2k︸ ︷︷ ︸
iϕ

)
(5.17)

introduced in the last step has been approximated using
√

1− x2 ≈ 1 − x2/2 since
ν⊥/k � 1. The real and imaginary part can be written explicitely as sine and cosine
of ϕ, leading to

F
[
I(x, y, z = d)

|Ψ0|2

]
≈ 2πδD − 2kδ̄ sin(ϕ)− 2kβ̄ cos(ϕ). (5.18)

In this form, the equation is known as the Contrast Transfer Function (CTF) describing
the contributions of the object’s amplitude β̄ and phase δ̄ information to the inten-
sity patterns [62–64]. The graph of phase-CTF (pCTF, sin(ϕ)) and absorption-CTF
(aCTF, cos(ϕ)) is plotted in Fig. 5.4 for the reduced spatial frequency

√
λz|ν⊥|. It

reaffirms the qualitative consideration from the previous section but allows to describe
the information contained within the intensity patterns in a quantitative way:

aCTF

pCTF
nf TIE

0

1

-1
0 0.5 1 1.5 2√

λz|ν⊥|

Figure 5.4: Shape of the contrast transfer function in reduced units. Note that the
pCTF as well as its approximation by the near-field transport-of-intensity equation (nf
TIE) are very small for low spatial frequencies.

In the contact regime (ϕ � 1), the intensity pattern is predominantly defined by ab-
sorption since the pCTF is practically zero. For increasing distances, phase information
becomes visible in intensity patterns as the pCTF rises. At first, its shape can be well
approximated by a parabola ∝ ν2

⊥ as indicated in Fig. 5.4. Since the multiplication
with a parabola in Fourier space is the equivalent of a second derivative in real space,
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the curvature of the phase front defines the contribution of δ̄. In particular, the edges
of the projected phase shifts are enhanced in this so-called direct contrast regime while
the low-frequency components are still not present in the images. This situation can
be described alternatively by a near-field approximation of the transport of intensity
equation (TIE) [3] and is sometimes called the TIE regime. At even larger distances, in
the holographic regime, phase contrast transfer affects all frequency ranges until up the
‘deep’ holographic regime where the original structure of the sample is barely recog-
nisable. Low-frequency components of the initial phase shifts become present in the
images, too, with the exception of the origin that always equals zero. Moreover, some
higher frequencies are lost due to the zero-crossings of the CTF. They appear as rings
in the Fourier transform of the intensity images, also known as power spectral density,
as illustrated in Fig. 5.5.

F

I/I0(F1 = 1/512) [-] log10 |F(I/I0)| [-] log10 |F(I/I0)| [-]

0.1 1.6 1.0 3.0 0.5 3.5

Figure 5.5: The lost spatial frequencies due to zeros in the pCTF can be well observed
as rings in the Fourier transform of a hologram (power spectral density, PSD) obtained
from a pure phase object (as depicted in Fig. 5.2 but with the constant amplitude of
one.). The scale bar indicates a width of 100 px.

5.1.4 Numerical imaging constraints

We close this section with some considerations about the ideal imaging regime with
respect to numerical propagation. In the paraxial approximation, propagation can
be described completely in terms of the Fresnel number Fa, i.e. only the ratio of the
characteristic size a to the wavelength λ and the distance d is of importance. As a
characteristic size, it is convenient to choose the pixel size a = ∆ including only the
geometry of the experiment independent from the concrete sample. Hence, for this
choice, we have

F1 =
∆2

λd
. (5.19)
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If d = L
√

∆2/λ2 − 1/4 is chosen as the ideal sampling distance of the chirp function
for a detector with diameter L as derived in Eq. (4.35), we obtain

F1 =
∆

L
√

1− λ2

4∆2

. (5.20)

In the basis of this equation, we again find the resolution limit, since the numerical
aperture precisely corresponds to the pixel size as the resolution element. The (limited)
cone of radiation emanating from each pixel increases to the same diameter as the
detector in the corresponding distance, hence, even from the object pixels at the border,
at least a quarter of the symmetrical signal (the complete radius) is captured. : With
the wavelength λ � ∆ usually being much smaller than the pixel size, the Fresnel
number for ideal sampling can be well approximated by

F1 ≈
∆

L
=

1

N∆

, (5.21)

the inverse of the number of diagonal detector pixels N∆. Since this number is on
the order of 103, ideal sampling requires a Fresnel number F1 corresponding to the
holographic regime. Contrast transfer is high for all ranges of spatial frequencies which
is ideal for phase retrieval. Again, it should be mentioned that even under ideal con-
ditions (no vibration, perfect illumination, etc.) smaller Fresnel numbers limit the
obtainable resolution to a value larger than a pixel.

5.2 Direct phase retrieval: Dealing with lost
information

The previous sections have shown how the information content of a measurement de-
pends on the detector position and how it is encoded in the intensity patterns. The
following sections summarise several methods to retrieve this phase information from
the holograms and complement them to reconstruct the desired object properties. To
this end, first, the so-called single-step inversions are introduced, which yield a recon-
struction obtained directly from the data through the application of a Fourier filter.
If the objects meet a number of restrictive constraints, like negligible absorption or
consistence of a single material, they can be retrieved to a certain degree from a sin-
gle measurement alone. In contrast, iterative algorithms summarised in the following
section alternatingly adapt a guess of the object under different constraints to find
the best match for the data. With the drawback of larger computational effort, this
allows to implement additional a priori constraints comparatively in a straight forward
fashion and thus to obtain reconstructions from a larger class of objects.
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5.2.1 Holographic phase retrieval

In [57], Gabor describes a technique to measure a hologram and retrieve an approxi-
mation of the sample. First, he illuminated a weakly absorbing object, obtaining a wave
field described as a small signal interfering with the virtually undisturbed illumination.
At a distance d behind the sample, he recorded the holographic intensity pattern with
a photographic plate. The photography was developed to yield an absorption mask
subsequently placed at the position of the photographic plate in the setup with the
object removed. Now illuminated only by the reference wave, a reconstruction of the
object at a distance d behind the mask (2d behind the original object position) can be
recorded.

I/I0(F1 = 1/512) [-]
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Figure 5.6: Example of a holographic reconstruction. To satisfy the requirement of a
weak object, real and imaginary part of the linearised exit wave Ψ ≈ 1+Φ vary less than
10%. The backpropagation of the intensity in the object plane yields reconstructions
where the appropriate details can be seen clearly, even the smallest letters can be recog-
nised again. However, the propagated twin image (clearly visible in the originally empty
regions) dramatically lowers the quality of the reconstruction. The scale bar indicates a
width of 100 px, the Fresnel number has been chosen w.r.t. ideal numerical propagation.

In the following, the formation of this reconstruction will be described. The mask
imprints intensity proportional to the original signal on the reference wave. If we
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5.2 Direct phase retrieval: Dealing with lost information

consider the intensity as a superposition of image and twin image as described in Eq.
(5.13)

I

I0

≈ 1 + eikdD−dΦ∗ + e−ikdDdΦ, (5.22)

a second propagation about d and multiplication with exp(−ikd) yields

e−ikdDd
[
I

I0

− 1

]
≈ Φ∗ + e−2ikdD2dΦ. (5.23)

Thus, this experimental reconstruction would focus the twin image, which is super-
posed by the object signal propagated about twice the original distance and spread
out to form a defocused background signal in the ideal case. Equivalently, by a (nu-
merical) propagation of the intensity measurement about −d, the original object can
be focused, superposed by the defocused twin image. Such numerical reconstructions
yield both amplitude and phase of the exit wave but they are usually disturbed by
twin artefacts as illustrated in Fig. 5.6. Nevertheless, this holographic phase retrieval
gives an idea of object size and composition, with the only restricting assumption of a
weakly interacting object.

5.2.2 CTF-based reconstruction

For improved reconstructions with suppressed twin image artefacts, more information
about the objects is required. Several phase-retrieval methods have been developed
based on the free-space contrast transfer function (CTF) [8, 64–67]. If the object
meets certain assumptions, it can be directly reconstructed based on the CTF formula
derived in Eq. (5.18)

F
[
I

I0

− 1

]
≈ −2k

(
δ̄ sin(ϕ) + β̄ cos(ϕ)

)
. (5.24)

One example of useful prior knowledge is a negligible absorption (“pure phase object”),
yielding

β̄ = 0 ⇒ δ̄ ≈ −1

2k sin(ϕ)
F
[
I

I0

− 1

]
, (5.25)

or the assumption of a single material with κ := β/δ, resulting in

β̄ = κδ̄ ⇒ δ̄ =
−1

2k(sin(ϕ) + κ cos(ϕ))
F
[
I

I0

− 1

]
. (5.26)

In both cases, the zeros of the sine and cosine functions prohibit the reconstruction
– which is in fact a deconvolution – by simple division. Common workarounds are
to spare small intervals around the zeros from the division [67] or to regularise the
functions, e.g. by

−1

2k sin(ϕ)
→ − sin(ϕ)

2k sin2(ϕ) + kε(ν⊥)
(5.27)
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with the regularisation

ε(ν⊥) = a1f(ν⊥) + a2(1− f(ν⊥)) with f(ν⊥) =
1

2

(
1− erf

(
ν2
⊥ − νcut
σcut

))
, (5.28)

as proposed in [68]. This function allows to regularise the low spatial frequencies suf-
fering from poor contrast transfer differently than the high frequencies hampered by
many zero crossings of the CTF. The free parameters a1, a2, νcut and σcut have to be
chosen empirically for each experiment. In practice, νcut is set to the first maximum of
the pCTF while σcut = 0.01 periods per pixel yields good results. The reconstruction
of a pure phase object shown in Fig. 5.7 clearly outperforms the holographic recon-
struction but is still affected by artefacts from the missing spatial frequencies in the
hologram. Without further knowledge about the sample, the missing frequencies have
to be measured. A practical method is to modify the Fresnel number by changing the
wavelength or the object-to-detector distance [69–71]. In practice, four different mea-
surements for each projection are sufficient to reconstruct the object with the formula
[71–73]

δ̄ ≈
−
∑

j F [Ij/I0 − 1] sin(φm)

2k
∑

m sin2(φm) + kε(ν⊥)
. (5.29)

However, additional measurements are not compatible with the goal of fast tomo-
graphy unless acquired at the same time with several semi-transparent- or energy-
discriminating detectors, further increasing the necessary peak radiation dose.
For Fresnel numbers in the direct contrast regime where the pCTF can be well approx-
imated by a parabola, complementary reconstruction methods have been developed
based on the transport of intensity equation (TIE). If the exit wave Ψ0 ∝

√
I0 exp(Φ0)

can be expressed by an amplitude
√
I0 ∝ |Ψ0| and phase shift Φ0 =arg(Ψ0), the detector

image is given by [3]

I(x, y, z = d) ∝ I(x, y, z = 0) ·
(

1− d

k

[
∂2
x + ∂2

y

]
Φ0

)
. (5.30)

Reconstruction formulas are based on assumptions like a pure phase object (modified
Bronnikov algorithm [74])

Φ0 ≈ 2πF1F−1

[
F(I/I0 − 1)

ν2
⊥ + ε

]
, (5.31)

or a fixed κ = β/δ ratio of a single material [75] (set the regularisation parametre in
Eq. (5.31) to ε = 4πF1κ). Other methods reduce artefacts in the reconstructions if
the former constraints are not strictly satisfied, notably the Bronnikov aided correction
presented in [76]. In fact, the main challenge is the inversion of the second derivative
of the TIE which can be carried out by a properly regularised multiplication with ν−2

⊥
in Fourier space acting as a low-pass filter. In this work, the function

ũ(ν⊥) =
1− exp [−ε · ν2

⊥]

ν2
⊥

. (5.32)
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has been used, lying in between the widely utilised filter function 1/ν2
⊥ → 1/(ν2

⊥ + ε)
from Eq. (5.31) and the Thikonov regularised CTF in Eq. (5.27).

arg(Ψ) I/I0(F1 = 1/512) [-] arg(Ψr)
-0.1 0.0 0.86 1.05 -0.11 0.0

original intensity CTF reconstruction

Figure 5.7: CTF reconstruction of a pure phase object with the regularisation param-
eters a1 = 0 and a2 = 0.02. All object features are clearly retrieved but still disturbed
by a background originating from the missing spatial frequencies in the hologram. The
scale bar indicates a width of 100 px.

5.3 Iterative phase retrieval: Replacing lost information

In chapter 3.4, the use of iterative procedures has been demonstrated in the context of
tomographic reconstruction and sinogram retrieval. In general, these methods are well
suited to find a solution to an inverse problem, i.e. searching a cause for the measured
result. However, for arbitrary objects, the problem of phase retrieval is ill-posed, the re-
trieved object does not uniquely explain the data. In fact, an infinite number of objects
can be thought to yield the same intensity measurement. Thus, further constraints are
necessary. The main advantage of iterative procedures is that a large variety of such
constraints can be applied to the reconstruction process, which in addition can be in-
spected and optimised during the execution. One example of additional knowledge not
exploited so far is the negativity of the exit wave’s argument. In other words, the phase
in matter can only advance compared to vacuum and the amplitude can only decrease
by energy absorption since we have excluded all interference effects within the object.
The knowledge that f(x, y) ≤ 0 requires the Fourier space representation F [f ] to be
negative semi-definite (Bochner’s theorem) – a condition very difficult to enforce in
Fourier space [77]. A second example is the knowledge of the compact support of the
object f . We have seen in Chap. 3.4 that this corresponds to Ff being invariant under
certain convolutions. This condition is of great value: in [78] it has been shown that
a compact support is sufficient for uniqueness in holographic phase retrieval. As we
will see in this section, both constraints are easy to apply iteratively in real space with
great benefit.
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Ψ(z = 0) Ψ′(z = d)

Ψ′(z = 0) Ψ(z = d)

C2 C1

Dd

D−d

Figure 5.8: Basic scheme of an iterative algorithm for phase retrieval. A guess Ψ of
the wave field cycles between two positions on the optical axis in which the constraints
C1 and C2, respectively, have to be satisfied. See the text for details.

The application of iterative techniques in X-ray optics is based on an approach by
Gerchberg and Saxton, who described a solution to the phase problem in [79].
The original work is based on the premise that the intensity |Ψ|2 is not only known
in the detection plane but also in a second, sufficiently distant plane. This can be
achieved either by a second measurement but also by a priori assumptions like those
of a pure phase object. In the latter case, the intensity in the object plane is known
to equal the illumination, which can be measured or approximated by a constant in
case of a clean, parallel beam illumination. Thus, |Ψ(z = 0)|2 and |Ψ(z = d)|2 are
known. In [79], the detection plane is so far removed from the object plane that they
are connected by the Fourier transform, i.e. Ψ(z = d) = FΨ(z = 0). This special case
is called Pauli-problem after its first formulation in quantum mechanics. However, the
technique can also be applied to near-field experiments with Ψ(z = d) = DdΨ(z = 0)
if the intensity patterns differ sufficiently. The iterative scheme is sketched in Fig. 5.8
and can be described in operator notation by

Ψm+1(z = 0) =
(
C2D−d C1Dd

)
Ψm(z = 0). (5.33)

An initial guess Ψ0 is propagated to the detection plane by Dd. There, a so-called
modulus-constraint

C1 : Ψm(z = d) =
√
I(z = d)Ψ′m(z = d)/|Ψ′m(z = d)| (5.34)

is applied, replacing the amplitude by the measured values
√
I(z = d) while keeping

the phase information. After the backpropagation D−d, a second modulus constraint
C2 restoring the measured or estimated intensity is applied in the object plane. These
steps are repeated iteratively, causing a monotonous convergence of Ψm to the true
value with the number of iterations m. This scheme can be easily extended to include
additional detector distances. In addition to the intensity in one or more planes,
an arbitrary number of further constraints can be incorporated. For the negativity
condition in the object plane mentioned above

β ≥ 0⇒ |Ψm(z = 0)| ≤ |Ψi|,
δ ≥ 0⇒ arg(Ψm(z = 0)) ≤ arg(Ψi), (5.35)
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the amplitude cannot be larger than those of the illumination Ψi and the phase shift has
to be negative. For a unit amplitude plane wave illumination |Ψi| = 1 and arg(Ψi) = 0
with the abbreviation Ψ′m(z = 0) = D−dC1DdΨm(z = 0) this can be ensured e.g. by

Ψm+1(z = 0) = min(1, |Ψ′m(z = 0)|) · exp (imin [0, arg (Ψ′m(z = 0))]) . (5.36)

Even though this constraint can be applied to virtually all samples discussed here, it
is not sufficient for a proper reconstruction. One or several additional assumptions
like negligible absorption, slowly varying phase shifts, known relationships between
phase shift and absorption, or known compact support of the object are required to
compensate the lost information in a hologram. In case of a finite support Ω, the
illumination in the object plane outside Ω is unperturbed, leading to the iteration step

Ψm+1(z = 0) =

 Ψ′m if (x, y) ∈ Ω,

1 else.
(5.37)

Alternatively, the sample can be prepared in such a way that the properties of several
regions are known. For example, by mounting it in a frame absorbing the X-rays
everywhere outside Ω, the wave field can be found by requiring

Ψm+1(z = 0) =

 Ψ′m if (x, y) ∈ Ω,

0 else.
(5.38)

This algorithm is known as Error-Reduction (ER) procedure introduced by Fienup
[80]. Since this algorithm is known to stagnate in a local minimum of the solution
space, often a Hybrid-Input-Output (HIO) scheme is utilised, which may overcome this
problem [3, 80] with

Ψm+1(z = 0) =

 Ψ′m, if (x, y) ∈ Ω,

Ψm − β′Ψ′m else.
(5.39)

Here, β′ is a parameter between 0.5 and 1. A first guess of the phase Ψ0 is often
provided by random numbers. It can be beneficial to repeat the entire process with
different guesses and average the final results, as unlucky choices of initial phase can
still lead to stagnation in local minima [3]. In [81] a similar algorithm with improved
performance, relaxed averaged alternating reflections (RAAR), is presented and anal-
ysed mathematically to obtain a strategy for adjusting β′m during the reconstruction.
An example of iterative phase retrieval is shown in Fig. 5.9 after 1000 iterations. Left,
the same data as in the CTF example (see Fig. 5.7) has been reconstructed with the
assumptions of a pure phase object and a negative phase shift. On the right, the same
data as shown in 5.2 has been reconstructed, clearly exceeding the assumption of a weak
object. With a given rough support identical for phase and amplitude (not shown) and
the negativity constraint, this class of objects can be reconstructed, illustrating the
capabilities of the iterative scheme.
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arg(Ψr) |Ψr| arg(Ψr)
-0.1 0.0 0.0 1.0 -1.1 0.0

phase object, 1000 it. mixed object, 1000 iterations

Figure 5.9: Result of an iterative reconstruction after 1000 iterations. The pure phase
object (left) as well as a strong object (right) could be reconstructed to a degree that
fine details are clearly visible. See text for details about the constraints. The scale bar
indicates a width of 100 px, the Fresnel number F1 = 1/512 has been chosen in accordance
with ideal numerical sampling.

5.4 Phase retrieval in 3d

In this chapter, we bring together tomography and phase retrieval, i.e. the 3d struc-
ture of a sample is to be reconstructed from a set of holograms recorded for different
projection angles. The prototypical setup is sketched in Fig. 5.10. A plane wave Ψ0

illuminates a weakly interacting object resulting in an exit wave in the x-y-plane as
described by the projection approximation. The free-space propagation distance to the
detector is large enough for the formation of holographic intensity patterns with Fa < 1.
The object is rotated around the y-axis and holograms are measured at equidistant an-
gular steps over a range of at least 180◦. In operator notation, the intensity Iαm for
the angle αm can be described by

Iαm =
∣∣DdΨ0 exp (ikPα(1− n))

∣∣2 . (5.40)

The reconstruction usually inverts the order of the experimental steps. First, the com-
plex exit waves are retrieved for all projections individually by an appropriate phase-
retrieval method, followed by the tomographic reconstruction mostly implemented by
a FBP [74, 82–86]. However, the application of Fourier filters for direct (TIE/CTF)
phase retrieval and filtered backprojection are occasionally combined to a single step
for increased performance [82, 87]. As demonstrated above, the main challenge of the
reconstruction is the phase retrieval usually depending on restrictive constraints or on
a priori knowledge not necessarily available. Thus we asked if a combination of both
inverse problems, phase retrieval and tomographic reconstruction, can help to lower
these requirements, meaning if – and to which extent – tomographic consistency as
introduced in Chap. 3.4.1 can be used as a constraint for phase retrieval.
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Figure 5.10: Typical setup for phase-contrast tomography. A plane wave illuminates the
object, the exit wave given by the projection approximation propagates to the detector
in free space yielding a hologram for each projection angle αm.

In the first subsection, a procedure named iterative reprojection phase-retrieval (IRP)
is presented, combining iterative phase retrieval with the algebraic reconstruction tech-
nique for tomography. It is based on a strictly three-dimensional representation of the
object, leading to significantly improved reconstructions with considerably less input
of a priori knowledge on the sample, even in the presence of noise. To complement
the publication of this scheme in [10], the method is introduced here from the perspec-
tive of ART, not iterative phase retrieval like in the original presentation. The gain
in reconstruction quality is illustrated as a function of the number of projections as
well as for experimental data. In the subsequent section, closely based on the related
publication [49], a fast and practical iterative method for the special case of a weakly
interacting object is presented, based on the three-dimensional propagation introduced
in chapter 4.4. Finally, both methods are compared with the result of the common se-
quential approach on an experimental dataset of freeze-dried Deinococcus radiodurans
bacteria.

5.4.1 Consistency as a constraint: Iterative reprojection
phase-retrieval

The basic idea of IRP is sketched in Fig. 5.11 as a modified ART algorithm. As such,
it cycles between the 3d object representation and the projections, both connected
via projection- P and backprojection operator P−1, as well as between object- and
detection plane, expressed by propagation D and backpropagation D−1.
Starting in the object plane, a 3d guess of the sample n is projected numerically to
the same Nα angles αj as measured in the experiment. Then, all projections are prop-
agated to the detection plane, where the modulus constraint C1 is applied. Matching
the measured amplitudes, all projections are back-propagated to the object plane and
a positivity condition C2 for β and δ ensures conformity with the projection approx-
imation. Since the ART in the given implementation only works for strictly positive
(or strictly negative) values, only in the next step the results are compared with the
direct projections to obtain corrected values. In the final step, these corrections are
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Figure 5.11: Principle of iterative reprojection phase-retrieval (IRP) expressed as a
modified ART algorithm. See text for details.

back-projected forming a correction volume which is applied to the guess in 3d. In
operator notation, a single iteration is thus given by

δ(x, y, z)m+1 ≡ <(1− nm+1)

= <(1− nm) · 1

N

N∑
j=1

P−1
αj

<
{
C2 ln

[
D−dC1Dd exp

(
−ikPαj(1− nm)

)]}
<
{
−ikPαj(1− nm)

} ,

(5.41)

and analogously for the imaginary part β(x, y, z)m+1 ≡ =nm+1. This describes a slowly
converging implementation of ART like SIRT, with preference given to quality over
reconstruction speed. Compared to the FBP it has the advantage of introducing fewer
high frequency artefacts, which would otherwise spoil the overall reconstruction [88].
A particular benefit of averaging all projections before updating the guess is a higher
robustness against single flawed projections which could otherwise alter the volume to
a non-converging state. This can happen e.g. by multiplying voxels by zero such that
their value can never be changed again in the multiplicative scheme. To prevent this,
a positivity condition C2 is implemented as

C2 : Ψm(z = 0) = |<Ψ′m(z = 0)|+ i|=Ψ′m(z = 0)| (5.42)

with the abbreviation Ψ′m(z = 0) = ln
[
D−dC1Dd exp (−ikPα(1− nm))

]
. Through this

update step, it is guaranteed that Ψm is closer to the real value (which is ≤ 0) than
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before without setting values to zero. While convergence and properties of similar
iterative algorithms have been well studied and have been continuously adapted and
generalised with respect to the employed constraints, one decisive difference compared
to earlier work on phase retrieval has to be stressed. The object is strictly represented as
a 3d object, intrinsically guaranteeing tomographic consistency of the projection. This
iterative 3d reconstruction scheme which obeys the consistency constraint is denoted
as iterative reprojection phase-retrieval (IRP).
Clearly, the scheme can be modified in many ways to adapt to the problem as well as
possible. For example, the left multiplicative ‘tomography circle’ in Fig. 5.11 can be
replaced by the additive SIRT scheme or improved methods for faster convergence. Fur-
thermore additional constraints can be applied at any step. Importantly, a new class
of 3d constraints lends itself to be enforced on the 3d representation of the object.
Features such as known holes in the sample or shells composed of different materials
in each layer cannot be modelled in projections but can easily be enforced in the 3d
volume. Moreover, the execution order of the algorithm parts may be optimised for
faster convergence or better suitability to certain problems. For example, the tomo-
graphy loop can be carried out several times to improve consistency before the next
modulus update. The right ‘phase-retrieval’-loop with the positivity constraint C2 can
also be iterated several times between consecutive tomography steps to improve agree-
ment with the measured data. As shown in [10], the number of such inner iterations
can be optimised in terms of an error metric, e.g.

σ2 :=
1

Nα

∑
αj ,x,y

(∣∣∣Ψ′n,αj(z = d)
∣∣∣−√Iαj

)2

, (5.43)

comparing the modulus of the propagated projections Ψ′(z = d) with the recorded
detector images Iαj . Monitoring the error is also useful to stop the algorithm either by
falling below a threshold or at stagnating convergence.
As demonstrated in [10], IRP clearly yields superior reconstruction quality compared
to the sequential approach and converges much faster with respect to the number of
phase-retrieval loops. Low spatial frequencies in particular, which are poorly trans-
ferred and only loosely constrained otherwise, can be retrieved better. According to
the Fourier slice theorem, they are most coupled in tomography. Averaging over all
projections makes the scheme robust against noise and the possibility of including new
3d constraints can help to sufficiently reconstruct objects from datasets previously im-
possible to retrieve due to noise, sparsity, or missing projection angles. However, in
the following example, none such optimisations have been used, only the scheme as
sketched and explained above, to demonstrate the benefit gained by requiring consis-
tency alone. For this, a sample consisting of 2563 voxels has been designed containing
spheres and cubes with randomly varying diameter and β/δ ratios from 0 to β/δ = 0.15.
The object has been projected to Nα angles equidistantly distributed over a range of
180◦ and propagated to a detection distance with F1 = 0.01. Fig. 5.12 shows the IRP
result for α = 0◦ after 1000 iterations for different numbers of angles Nα. For Nα = 1
tomography is an empty operation – for an angle of 0◦ not even an interpolation takes
place. This demonstrates the quality of conventional phase retrieval where all projec-
tions are treated separately. For Nα = 2 angles, the background increases without any
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Nα = 64 Nα = 128 ground truth

phase shift P[kδ]0◦
-0.5 0.0

Nα = 8 Nα = 16 Nα = 32

Nα = 1 Nα = 2 Nα = 4

Figure 5.12: IRP results after 1000 iterations for different numbers of projections Nα.
Clearly, an increase in reproduction quality of the ground truth in the last image can be
recognised. This can be attributed only to the consistency constraint. See the text for
details.

improvement in the signal since the projections are orthogonal to each other and their
coupling is minimal. However, the difference to the previous case shows a dependency
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even for this situation. The growing number of projections Nα with increasing coupling
of the projections then clearly enables improved reconstructions with only minor dif-
ferences to the ground truth, mainly in regions with large intensity. This improvement
can only be attributed to the enforced consistency during phase retrieval, showing the
value of this constraint. The final FBP of a conventional scheme decreases the noise
but is not capable to achieve a comparable quality from projections as depicted for
Nα = 1 [10]. Fig. 5.13 depicts reconstructions with the same parameters as before
but with Gaussian noise added to the simulated intensities corresponding to a mean of
6000 photons per pixel. A similar improvement as before is observed. Even the high
intensity regions are well reconstructed.

Nα = 1 Nα = 16 Nα = 128

phase shift P[kδ]0◦
-0.5 0.0

Figure 5.13: IRP results after 1000 iterations for different numbers of projections Nα

with added noise. Again, an increase in reproduction quality can be recognised, which is
attributed to the consistency condition. See the text for details.

5.4.2 3d propagation-based phase retrieval

The gain in quality achieved by IRP and similar schemes [11] goes along with the
drawback of high numerical costs since extensive tomography and re-projection steps
have to be carried out in each iteration. In this section, a method for weak objects is
presented which considerably accelerates the combined reconstruction without sacri-
ficing result quality. It is based on the 3d propagation introduced in chapter 4.4. The
object has to fulfil the same conditions as for the CTF which, in good approximation,
are valid for a large variety of samples. Like IRP, the method is not restricted to small
propagation distances but treats the problem for general Fresnel numbers including the
holographic regime.
As introduced in Eq. 5.13, in the required weak object approximation the detector
intensity images I/|Ψ0|2 ≈ 1 + Φd + Φ∗d can be interpreted as the propagated image
Φd superposed by the twin image Φ∗d. In chapter 4.4 it was demonstrated that the
propagated image can be obtained by a projection from a 3d propagated object in this
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limit. Thus, the intensity measurements can be considered as projections from a prop-
agated 3d object which is superposed by an inversely propagated, complex conjugated
twin-object

Iα(z = d)

|Ψ0|2
− 1 = Pα

[
eikdD−d3d Φ∗3d + e−ikdDd3dΦ3d

]
=: Pα [I3d(z = d)] . (5.44)

This formulation of the twin-image problem in 3d shows that the intensity images Iα
are consistent with respect to tomography and that the 3d intensity volume I3d can
be obtained directly from the normalised measurements Iα/I0− 1 by an inverse Radon
transform. A 3d backpropagation then yields a sharpened object superposed by a
defocused twin, analogous to the holographic reconstruction. In terms of the CTF in
Fourier space, the 3d intensity volume is given by

F [I3d(z = d)] ≈ −2kF3d[δ] sin(ϕ)− 2kF3d[β] cos(ϕ). (5.45)

with ϕ = d(ν2
x + ν2

y + ν2
z )/(2k) generalised to three dimensions. In analogy to the 2d

case, the division by a properly regularised 3d pCTF can be used to retrieve the object
in the case of a pure phase object

δ(x, y, z) ≈ F−1

[
− sin(ϕ)

2k sin2(ϕ) + kε
F [I3d(z = d)]

]
(5.46)

or in case of a fixed κ = β/δ ratio

δ(x, y, z) ≈ F−1

[
− sin(ϕ) + κ cos(ϕ)

2k(sin(ϕ) + κ cos(ϕ))2 + kε
F [I3d(z = d)]

]
. (5.47)

The equations show that the phase problem does not introduce tomographic incon-
sistencies. Hence, the requirement for consistency cannot be used to improve phase
retrieval directly. In particular, only limited improvements for phase retrieval can be
expected by deterministic one-step algorithms like a direct CTF inversion if carried
out in 3d rather than 2d, even if the geometry of the 3d problem is different from 2d
imaging [55, 89]. The 3d CTF with zero values on spherical shells does not contain
all information about the object. Therefore, further constraints have to be applied,
i.e. a priori information such as positivity, range restrictions of the object functions,
or known support of the object – constraints that have been shown to be applied eas-
ily in iterative phase-retrieval procedures. In the previous section it has been shown
that the performance of iterative phase retrieval with constraints such as positivity can
be considerably improved if tomographic consistency is enforced, preventing projec-
tions from losing their initial consistency during individual phase retrieval. Thus, we
expect similar improvements for iterative algorithms like ER, HIO or RAAR if they
are carried out in 3d with the concept of propagating volumes rather than individual
phase retrieval for each projection, followed by a tomographic reconstruction. If the
phase retrieval is carried out in 3d according to the concept presented, consistency is
guaranteed automatically.
The results of a simulation created to validate and to illustrate 3d iterative phase
retrieval, are shown in Fig. 5.14. A sample was designed consisting of 30 spheres with
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a diameter of 30 px each, distributed randomly on a 2563 voxel grid with a fixed ratio
β/δ = 0.04. The maximum phase shift of all projections was chosen to be 1.89 rad,
which clearly exceeds the assumption of a weakly interacting object but demonstrates
that the advantage of 3d reconstruction persists even to larger phase shifts. To simulate
the measured data in the detection plane, the intensities of projections propagated to
the near field at a Fresnel number F1 = 0.05 were computed for 402 equidistant angles
in the range 0◦ ≤ α ≤ 180◦ to satisfy the angular sampling criterion. This choice
corresponds to a relevant experimental setting in X-ray phase contrast tomography
with a photon energy of 12.4 keV, an effective pixel size of 10 nm and an effective
sample-to-detector distance of 20µm. The iterative phase retrieval cycled between
object and detection position. In the detection plane, the common modulus constraint
was applied while in the object plane, positivity was imposed by

Φ′ = 1− |Re(Φ′g)− 1| − i|Im(Φ′g)|. (5.48)

This step was succeeded by a soft coupling 0 ≤ β ≤ 0.1δ of phase shift and absorption,
implemented as follows: First, δ was set to the values of β if β > δ. Then, β was
limited to β = 0.1δ wherever larger values were observed. This again demonstrates
the flexibility of iterative schemes and applies to a wide range of soft matter samples
in the mentioned region of photon energy. 1000 iterations of this scheme were carried
out for the conventional approach with each detector image reconstructed individually
followed by a filtered backprojection (2d reconstruction) and for the 3d volume starting
with a filtered backprojection of the detector images. The results depicted in Fig. 5.14
clearly show the gain in quality of the 3d approach due to enforced consistency.
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Figure 5.14: Comparison of phase shift and absorption results of the conventional
(2d propagation) iterative reconstruction with those of the 3d propagation approach.
Depicted are typical projections of the phantom and the reconstructed volumes, as well as
x-z slices normal to the axis of rotation. The 3d approach obtains a better reconstruction
of the data with the same positivity constraint as the conventional scheme. The scale
bar applies to all images. The figure is adapted from [49].
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5.4.3 Performance on experimental data

The value of consistency as a constraint in phase retrieval has been exploited for the
reconstruction of experimental data in [73, 90]. IRP has been shown to outperform the
results obtained by the conventional procedure, see [73] for details. Both reconstruc-
tions can be compared in Fig. 5.15.
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Figure 5.15: Slice through a BaSO4-labelled macrophage embedded in agarose recon-
structed with conventional CTF-based phase retrieval followed by a filtered backprojec-
tion (left) and IRP (centre). A 3d rendering of the IRP result is depicted in the right
image. The scale bar denotes 5 µm. Data adapted from [73].

To compare the quality of IRP with the 3d propagation method on experimental data,
both algorithms have been tested on a small holographic dataset of bacteria published
previously in [91]. The data has been recorded by tomography in cone beam illu-
mination with geometric magnification and phase contrast formation by free space
propagation. The sample consisted of freeze-dried Deinococcus radiodurans bacteria,
dispersed on an ultra-thin Si3N4 membrane. It was illuminated by 13.8 keV radiation
exiting from an X-ray waveguide acting as a quasi-point source 8 mm in front of the
sample, resulting in an effective pixel size of 83 nm. The tomographic scan comprised
of 83 projection angles distributed over 162◦. See [91] for further experimental details.
A typical holographic intensity image is shown in Fig. 5.16.
In the original publication [91] the data had been treated by a sequential scheme, first
using phase retrieval based on a modified Hybrid-Input-Output algorithm (mHIO)
[91, 92] with a support constraint, followed by FBP of all reconstructed projections. A
major improvement over previous techniques was the automatic support determination
for all projection angles. A slice through the reconstruction volume is shown in Fig.
5.16 for the original sequential reconstruction (mHIO). Note that despite the support
constraint, the mHIO result shows artefacts outside the original support, indicating
tomographic inconsistency of the projections. For IRP, 1000 iterations of the scheme
described above have been carried out, with positivity and consistency as the only
constraints. The result displays a much more homogeneous density distribution com-
pared to mHIO, where the signal is concentrated at the top and bottom regions of the
sample near the axis of rotation. Since there is no reason to assume that these regions
in particular have a higher density than other parts of the sample, we attribute this en-
hancement of signal to inconsistency artefacts of the conventional mHIO method. The
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typical projection mHIO IRP 3d propagation

reconstructed central slice

50 px

intensity I/I0 [-]
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phase shift [rad]
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Figure 5.16: Comparison of different reconstructions from the same experimental data.
Left, a holographic intensity image of the sample (freeze-dried Deinococcus radiodurans
bacteria, dispersed on an ultra-thin Si3N4 membrane) is shown. For the mHIO phase
retrieval, a support has been derived from the data automatically during the iterations,
which is indicated by the red dashed line on the hologram. Slices (1 px depth) through
different reconstructions illustrate the advantage of the 3d approaches. See the text for
details.

3d-propagation-based reconstruction has been implemented as a modified ER scheme
using only the positivity constraint for β and δ also utilised in IRP (without soft cou-
pling as introduced before). The result is of a similar reconstruction quality using only
a fraction of the computation time.

5.4.4 Summary and outlook

In this chapter, two methods combining phase retrieval with tomography have been
presented. The examples shown clearly demonstrate the value of tomographic con-
sistency as a constraint in iterative phase retrieval and the advantage compared to
common reconstruction schemes where phase retrieval is carried out independently for
each hologram. The superior reconstruction quality can be further enhanced by in-
corporating 3d constraints which could not be applied previously. Masking of interior
structures of the object or a sparse distribution of features in 3d are only two of many
possible examples. In general, constraints can not only be formulated in physically
correct and direct terms in 3d, but can possibly also be applied to a higher fraction of
voxels.
The first of the two methods, IRP, comes with the drawback of high numerical costs
compared to more traditional schemes. For the weak-object approximation, a second re-
construction scheme was developed, based on the concept of 3d propagation. It inverts
the usual sequence of first retrieving the phase information of all projections individ-
ually followed by an inverse Radon transform. This results in a tremendous enhance-
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ment in reconstruction speed compared to IRP, reaching a similar level as the classical
schemes. In the case of many propagations, the 3d propagation based approach can
even outperform the classical schemes, since then a 3d propagation (O(nyn

2
x log(nyn

2
x)))

can be computed faster that Nα 2d propagations (O(Nαnxny log(Nαnxny)) with nd the
pixel number in the corresponding dimension). At the same time, the 3d propagation
method preserves the essential advantages of tomographic consistency, which has been
found to stabilise phase retrieval for otherwise under-determined data. Even though
the 3d propagation does not lead to major improvements in the quality of direct CTF
phase retrieval, it can be useful to quickly investigate the influence of regularisation
parameters directly in 3d, since the numerically expensive tomography has to be car-
ried out only once for all parameters. Finally, like IRP, the concept can easily be
generalised to several detection planes and – somewhat less straightforward – also to
more complex illumination wave fields than plane waves.
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6 Dynamic tomography of sedimenting
micro-spheres

Up to this point, we have treated every sample so far as a stable, rigid body during the
measurement. However, not only are three dimensional structures of interest, but three
dimensional dynamics as well. Sedimentation is a perfect example: As one of the oldest
technologically employed processes, it is used for segregating particles from liquids and,
within certain boundaries, also from each other [93]. It is a critical part of a number of
fields, among them chemistry, biology, materials science and manufacturing, as well as
pharmaceutical formulation [94]. On an industrial scale, comprehending the behaviour
of paper and pulp, paints, water purification, combustion and erosion, to mention only
a few, is of great interest. As such, sedimentation is one of the fundamental problems
in non-equilibrium dynamics [95]. Usually, sedimentation is associated with gravity
but can also be driven by electrical or other forces. Enhanced by centrifugation (then
with a position-dependent force-field), it is an integral part of laboratory routine.
However, many aspects of this process are poorly understood, even for the simplest
model system of identical solid spheres settling in a large container [93–99] and lead
to surprising effects such as colloidal inflations and settling disasters [96] or velocity
fluctuations reminiscent of turbulence, even though the Reynolds number is very low
[99]. The investigation of this model system for colloidal dynamics dates back to
at least 1908, when Jean-Baptiste Perrin studied the concentration profile that
settling induces in suspensions of similarly sized particles. He showed sedimentation to
be a powerful investigation tool, allowing, amongst others, for an accurate evaluation of
Avogadro’s number and the confirmation of theoretical predictions concerning diffusion,
i.e. the undirected random motion of particles based on their thermal energy. The main
result of Perrin’s work was the prove that in a sedimentation equilibrium, when the
sedimentation of each material equals the rate of diffusive transport in the opposite
direction, the distribution of monodisperse particles mirrors the barometric law for
ideal gases. For this decisive confirmation of the particle nature of matter, Perrin was
awarded the Nobel Prize in Physics in 1926.
Since then, macroscopic properties of sedimentation such as the mean settling velocity
have been quite well understood. However, less is known about microscopic (“parti-
cle level”) dynamics, like the previously mentioned velocity fluctuations [93, 95]. On
average, a single particle in a fluid will settle according to the Stokes velocity

vS =
2

9

∆%a2g

η
(6.1)

where frictional forces and external forces cancel [93]. Here, ∆% = %p−%fl is the density
difference of particle and fluid, a is the particle radius, η is the fluid viscosity and g the
gravitational acceleration. If the particle density is increased, settling gets affected by
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hydrodynamic interactions: In a uniformly concentrated suspension, Stokes’ velocity
〈vs〉 = f(φ)vS is decelerated by the hindered settling function f(Φ), depending on
the concentration Φ [93]. However, as predicted by Caflisch and Luke [100], small
fluctuations in the particle number density already lead to a large variance in their
speed: Settling spheres replace fluid which flows up, creating a highly complex system
of currents interacting with the particles.
This phenomenon has been investigated in numerous experiments, theoretical as well
as numerical studies (see [95] for a summary of the literature). Good agreement be-
tween theory and experiments was found in the prediction of temporal behaviour: The
long-time sedimentation velocity variance was shown to be characteristic of a diffusion
process [101]. Contrarily, inconsistencies arose with respect to the spatial correla-
tions: Theoretical arguments as well as early simulations predicted a divergence of the
fluctuation magnitude with the container size [95, 96], while experiments suggested
independence from the system size. This could be solved in [97] using particle imaging
velocimetry (PIV) to track a few marked tracer particles in a suspension of large, non-
Brownian spheres in 2d: The fluctuations exhibit characteristic correlated ’swirls’ with
a size of about 20 mean interparticle distances. Only systems smaller than such a swirl
show a dependency on the system’s dimensions, while in larger systems a saturation of
the fluctuations can be observed. Since such effects are not visible in the macroscopic
concentration profile [93, 96] and are “extremely hard to tackle computationally” [95],
the example shows the importance of direct experimental measurements of the particle
dynamics.
In general, the dynamics of particles suspended in a fluid is given by a combination of
sedimentation and diffusive Brownian motion. The specific dynamic regime of a col-
loidal system is characterised by the Péclet number Pe := avS/D which is proportional
to the ratio of ideal Stokes motion vs and the diffusion coefficient as defined by the
Stokes-Einstein equation

D :=
kBT

6πηa
(6.2)

for spherical particles in a liquid with low Reynolds number [94]. Here, kB is the
Boltzmann constant and T the temperature. So far, mainly for practical reasons,
investigations of sedimentation have taken place predominantly in the regime of large
“non-Brownian” particles [98]. The other extreme, i.e. (almost) purely diffusive Brow-
nian motion, has been extensively studied as well, both by a wide range of techniques
such as PIV, dynamic light and acoustic scattering, as well as numerous optical mi-
croscopy techniques (see [94] for a summary). However, the important regime of Pe ≈ 1
is hard to access with common setups, and when neither diffusion, nor sedimentation
can be neglected, the process is intrinsically non-stationary [94]. Recently, a study
based on X-ray photon correlation spectroscopy has been released, helping to over-
come several limitations of optical systems (e.g. the need for optical index-matching
and low particle densities) and allowing to measure regimes with Pe < 1 [98]. However,
a complete characterisation of the dynamics in the capillary, including the evolution
of complex fluid currents, wall effects and processes at the sediment growth interface
carefully avoided in the experiments mentioned so far, is only possible by full access to
the 3d trajectories of a large number of particles.
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As an emerging field, time-resolved (X-ray) computed tomography (CT) holds unique
potential for non-invasive analysis of such processes, combining high spatial with tem-
poral resolution. Novel experimental capabilities have been opened up by highly bril-
liant synchrotron sources, new contrast mechanisms including phase contrast, as well
as faster detectors and advancements in data processing. However, all numerical re-
construction methods mentioned so far depend on the consistency of a static object
which is clearly violated by motion. The importance of this premise can be well ob-
served by the severe artefacts caused by global drifts or vibrations during measurement,
occurring even without any internal changes of the object itself. Fortunately, certain
consistency demands can be used to correct for global motion artefacts, even if this can
be a complicated task covering all degrees of freedom. Methods include registration of
the projections to their similar neighbours or to a 3d guess of the object [102, 103].
However, if the sample structure or density itself changes during the measurement,
tomographic consistency is lost and all methods depending on this property must fail,
from simple alignment procedures to tomographic reconstruction (FBP, ART) and
methods of iterative sinogram retrieval allowing for sparse sampling. Thus, movements
during recording have been identified as a major source of artefacts but cannot be
completely avoided. Examples range from the body motion (heartbeat, breathing) of
patients in clinical CT to radiation-induced structural changes in micro-CT like sample
degradation or the formation of bubbles in embedding media.
The intentional measurement of such dynamics requires improved procedures. In this
context, methods allowing to view the process from multiple perspectives are of sig-
nificant interest. If multiple sources and detectors are available, measurements can be
carried out at the same time, similar to 3d PIV, capturing the motion of a large num-
ber of markers in a current. An alternative is to acquire a rapid series of projections
with large angular increment. This is for example exploited in high speed magnetic
resonance tomography (MRT), where the projection angles can be freely chosen by
selection of the magnetic force gradients [104].
Contrarily, micro-CT is typically based on a single X-ray source, which cannot be
rotated freely (synchrotron). Hence, the object has to be rotated, allowing the recording
of consecutive projections only in comparatively small angular steps as limited by the
rotation speed of the sample. This was the starting point for the development of several
approaches to 4d tomography, including optimised weighting schemes, corrections for
affine motion, local time-stationarity hypothesis, and periodicity hypothesis (see [105]
for a review). Notably, for the special case of cyclic processes such as a beating heart or
a breathing lung, acquisitions can be gated or triggered to cover different phases of the
motion [105–107]. If all the projections are captured at the same state of the motion
or even a whole cycle is recorded for every angle, static solutions can be generated
for the different time points within one cycle. Hardware gating as well as software
gating (a posteriori) have both seen convincing implementations, unravelling complex
spatiotemporal processes such as the muscle movement during an insect flight [108, 109].
For general motions, however, the common approach is to minimise the influence of
sample dynamics by increasing the recording speed and treating the sample as quasi-
static during the acquisition time of each tomographic set. The minimum time required
for a complete scan is influenced by multiple factors: photon flux, camera efficiency
and repetition rate, as well as the rotation speed. Due to radiation damage, even if
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theoretically possible, the flux on the sample cannot be increased without limit in order
to cut down the acquisition time. Furthermore, the rotation speed cannot be increased
arbitrarily, as a single image should not be blurred by rotation. Hence, the recording of
the full 180◦ range will often be too slow to justify the assumption of static conditions
in tomography.
In this chapter, a proof-of-principle experiment is presented recording the fast dynamics
of sedimenting SiO2 micro-spheres in a water-filled capillary at a Péclet number of
14. To this end, we first estimate the errors caused by motion in a reconstruction
derived for the quasi-static assumption and show what can nevertheless be achieved if
the problem is reduced from resolving a complex sample structure to determining the
position of simple markers in space and time, based on a set of tomographic projections.
Subsequently, the experiment is described. The conventional sequential approach of
phase-retrieval followed by tomographic reconstruction is used to obtain the trajectories
of several thousand particles in parallel. It shows the limits but also the possibilities
of fast conventional tomography and offers an exciting insight into otherwise hidden
processes. If the glass spheres are considered as markers, the results can be easily
transferred to other suitable samples. A special feature of the setup is the use of
X-ray waveguide (WG) illumination. This is challenging, since the low photon flux
emanating from the WG prohibits short acquisition times and consequently impedes
a fast rotation and the investigation of rapid processes. On the other hand, this type
of setup offers high resolution X-ray microscopy with geometrical magnification and
high sensitivity due to phase contrast, which is perfectly suited for the investigation of
small and weakly interacting samples.

6.1 Motion artefacts and positioning error

To illustrate the problem of local inconsistency arising in dynamic tomography, Fig. 6.1
shows the most basic kind of motion: In the acquisition time of the sinogram, separated
markers without any inner structure move with constant speed along straight paths.
We additionally assume that the exposure time of each projection is short enough that
no motion blurring occurs in the single projections. Sinograms have been simulated
for different angular ranges, as indicated in the figure. The reconstructions performed
by a filtered backprojection do not show the marker averaged on its actual path but
on arcs and half-circles tangentially touching the original trajectory, as indicated in
the first example where the start and end positions have been highlighted. The paths
have enhanced edges with negative values. This clearly indicates inconsistency since
the projections are strictly positive. Negative values are introduced by the ramp-filter
to compensate for the PSF of static tomography and cannot superpose at the right
positions here. Additionally, streaks occur in the direction of the first and last projec-
tions of the sinograms, which display the largest temporal and structural difference, as
indicated by the red dashed lines in Fig. 6.1. This direction has highest coverage by
the set of all projections. Importantly, the appearance of the artefacts and the curvy
paths of the markers do not depend on the position, i.e. the distance from the centre
of rotation, but only on speed and direction relative to the direction of the projections.
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45◦ − 225◦ 90◦ − 270◦ 135◦ − 315◦

0◦ − 180◦ 30◦ − 210◦

Figure 6.1: Artefacts arising from particles moving along a straight path with constant
velocity during the tomographic measurement. Depending on the angular coverage of the
projections, different sinograms are obtained from the process sketched in the top-left
image. The FBP reconstructions show curved particle traces with emphasised edges and
streaks along the first and last projection direction.

As can clearly be seen in Fig. 6.2 for the same angular coverage as before, a higher
velocity only scales the path but does not result in a change of characteristic with
respect to the artefacts.
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45◦ − 225◦ 90◦ − 270◦ 135◦ − 315◦

0◦ − 180◦ 30◦ − 210◦

Figure 6.2: The shape of the motion artefacts does not depend on the position of the
features but only on their velocity relative to the directions of the projections.

For a more quantitative treatment, below, only the path ~r(t) of a moving particle is
considered, but not the reconstruction of the sample structure. A point moving in a
fixed x-z coordinate system perpendicular to the axis of rotation serves as the most
simple model system. The situation is sketched in Fig. 6.3. Let us first consider the
case of a resting particle positioned at ~r0 = (x, z). The first projection along the z-axis
at time t = 0 yields the value s0. One time step later, at t = ∆t, the coordinate system
has been rotated by α, resulting in the value st for the projection along the z′-axis. In
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Figure 6.3: Sketch of two subsequent projections of a moving feature.

conventional tomography, the position ~r0 can be calculated as the point of intersection
of the backprojected signals s0 and st (dashed lines in Fig. 6.3) as follows. x = s0 was
measured directly, with h = st/ cos(α) one calculates the second coordinate as

s0
!

=
st

cosα
+ z tanα

⇒ z =
s0

tanα
− st

sinα
. (6.3)

However, we are interested in the case of a dynamic particle. If the point moves from
~r0 to ~r′t = ~r0 + ~∆r between the two recordings, the second measurement will yield the
value s′t instead of st. The point of intersection of the backprojected signals s0 and s′t
then is ~rσ, as shown in Fig. 6.3. Thus, if one naively replaces st by s′t in Eq. (6.3), the
calculated z-component belongs to the point ~rσ, resulting in a positioning error

σ = |~r0 − ~rσ| = z − zσ

= z − zσ =
[ s0

tanα
− st

sinα

]
−
[

s0

tanα
− s′t

sinα

]
=
s′t − st
sinα

. (6.4)

In order to relate this positioning error to the initial position ~r0 and the displacement
~∆r = (∆x,∆z), consider that

st = x cosα + z sinα

s′t = (x+ ∆x) cosα + (z + ∆z) sinα

⇒ ∆st ≡ s′t − st = ∆x cosα + ∆z sinα. (6.5)

Thus, we arrive at

σ(~∆r, α) =
∆st

sinα
= ∆z +

∆x

tanα
. (6.6)

Note that σ only depends on the displacement vector ~∆r and the angle increment α,
not on the initial position ~r0, confirming this previous observation. For typical small
α, the deviation depends mainly on ∆x, the motion perpendicular to the direction of
the projection. For a step with length |∆r| in the direction of an arbitrary angle γ

105



Dynamic tomography of sedimenting micro-spheres

with respect to the z-axis, it is σ(α, γ) = |∆r|(cos(γ) + sin(γ)/ tan(α)). For evenly
distributed γ, the mean error 〈σ〉t of the determination of position is given by

〈σ(α)〉 =
|∆r|
2π

∫ 2π

0

∣∣∣∣cos γ +
sin γ

tanα

∣∣∣∣ dγ =
2|∆r|
π

√
1 + tan−2 α

=
2|∆r|
π| sinα|

. (6.7)

Better results can be expected when the motion of the point is taken into account. Let
~r0 = (x, z) be the known initial point of a particle at t = 0. In the simplest case of a
piecewise constant velocity ∆r = (∆x,∆z) = const., the projections

s′t = (x+ ∆x) cosα + (z + ∆z) sinα = st + ∆st

s′2t = (x+ 2∆x) cos 2α + (z + 2∆z) sin 2α = s2t + ∆s2t (6.8)

are measured at the times t = ∆t and 2∆t. Since x, z, and α are known, the system of
equations can be solved for ∆x and ∆z, yielding

∆x = 2 cosα [s′t − st]−
s′2t − s2t

2

∆z = [s′t − st]
1− 2 cos2 α

sinα
− s′2t − s2t

2 tanα
. (6.9)

With this, the desired ~rt = ~r0 + ~∆r can be found. If the true velocity in the time
interval [∆t, 2∆t] is ~∆r + ~∆′r, the mean positioning error is

〈σv(α)〉 =
∆′r

π sinα
, (6.10)

analogous to Eq. (6.6). Since the assumption of a constant velocity (∆′r � 1) in the
time interval 2∆t is usually describing the dynamics much better than the assumption
of a constant position (∆r � 1) in the interval ∆t (de facto excluding dynamics), this
drastically improves the reconstruction quality. However, the initial position has to be
known. It can either be obtained directly from two additional projections (at t = 0 and
t = 3∆t, requiring the assumption of a constant velocity to hold for three time steps)
or it can be derived indirectly by the following procedure: Since the reconstructed
path of a particle tends to converge to the actual path even with an incorrect initial
position1, many reconstructions with varying guesses for ~r0 can be computed. Paths
with the same end-point are then considered as converged, and the required information
has been found (invert time for the reconstruction of the original path from a known
point).
In summary, the accuracy of the reconstructed paths can be improved drastically if the
possibility of motion is included in the reconstruction method. However, the example
discussed here fulfils two requirements: First, the marker can be identified already in
the projections, requiring a small number of markers or known, unique sample features
often not present in tomography which is carried out in order to estimate the sample’s

1 Result from simulations, data not shown.
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Figure 6.4: A discrete random walk with a length of 10 000 steps (red) was captured in
a sinogram with 50 full rotations. The direct reconstruction (see text for details) reveals
the heavily disturbed path drawn in blue. Despite the large systematic errors, the MSD
of the reconstruction shows a line with in the same slope (∝ D) but an offset compared
to the original trajectory.

structure at all. Second, the marker’s positions (or their n-th derivatives) are assumed
to be uniform over the time steps required for measurement. Clearly, incorporating
higher orders of the motion further improves the results but the corrections do not apply
to arbitrary rapid changes in particle speed which occur e.g. in diffusion. But also this
stochastical process can be elucidated by tomography even without any correction. For
random Brownian motion of particles in a fluid, the characteristic diffusion coefficient
D is related to the 3d mean squared displacement (MSD) by

〈|~r(t)− ~r0|2〉 = 6Dt. (6.11)

The MSD can be derived from a sinogram as illustrated in Fig. 6.4 on the example
of a simulated discrete 2d random walk. For each of the 104 time-steps, the next
particle position on a pixel grid was selected randomly from the actual position and
the 8 neighbouring pixels. Each step of the motion was projected along the z-axis
rotating with a velocity of 1.8◦/∆t, covering the process in 50 full rotations. The direct
reconstruction of the marker’s position from the projections with Eq. (6.3) yields the
dramatically disturbed path shown in Fig. 6.4. Nevertheless, the MSD as calculated
from this reconstruction by

MSD(t) ≡ 〈|~r(t)− ~r0|2〉 =
1

N

N∑
n=1

(~r(tn + t)− ~r(tn))2 (6.12)
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with the number of sections N of the path with same length t shows the same slope
∝ D as the ideal path, only with an offset |∆~r|2 due to the large but systematically
positioning errors. In this simulation, again the diffusing marker could be identified
in the projections. In the following sections, an experimental situation is described
where this is not possible anymore since the density of moving particles is too high.
Moreover, the goal was not to obtain a statistical mean describing the overall motion
but the actual path of the particles, considering the described challenges.

6.2 The sedimenting spheres experiment

An experiment demonstrating the possibilities of high (spatial) resolution dynamic X-
ray tomography for randomly moving particles was carried out in May 2016 at the
multi-purpose “Göttingen instrument for nanoscale imaging with X-rays” (GINIX)
setup at the P10 coherence beamline of the PETRA III storage ring at the Deutsches
Elektonen Synchrotron (DESY) in Hamburg [110, 111]. SiO2 micro-spheres sediment-
ing in a small, water filled glass capillary were used as a sample. A unique feature of
the setup is the usage of X-ray waveguides. With the drawback of a drastically reduced
photon flux which is challenging for fast image acquisition and dynamic tomography,
they enable highly sensitive holographic near-field measurements of weak objects like
biological tissue with high resolution. In this chapter, it is shown that time-resolved
tomography with a temporal resolution on the order of considerably less than a second
and a spatial resolution on the order of 0.1µm is possible under such experimental
conditions, opening the path to study dynamic processes in a natural 3d environment.
The most important experimental parameters are summarised in the table below and
explained in detail in the following sections.

Sample 2 µm SiO2 spheres sedimenting in

H2O filled capillary

Photon energy 8 keV

Fresnel number F1 ≈ 2.1 · 10−3

Eff. pixel size ≈ 116 nm

Acquisition frame rate ≤ 143 FPS

Rotation speed ≤ 1 Hz (up to 2 sinograms/s)

Covered process time 39.9 s

6.2.1 P10 beamline setup

The GINIX setup is sketched in Fig. 6.5. An undulator in the storage ring PETRA
III serves as the photon source, followed by a cryogenic cooled double crystal Si(111)
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Figure 6.5: Top: Schematic of the P10 beamline and the GINIX endstation, with un-
dulator (u29), monochromator (mono), slits (g1, g2, skb), fast shutter (fs), attenuators
(att), KB mirrors, focal spot (F) and detection plane (d) with the distances measured
from the undulator. Bottom: Detailed GINIX endstation with aperture (ap), waveguide
(WG), on-axis optical microscopes (mic, oav), optional fluorescence detector (fluo), op-
tional cryojet sample environment (cryo), and the flight tube (ft). Image obtained from
[111].

monochromator with a resolving power of 0.01 %. The energy can be tuned in the
ranges from 3.8 keV to 10.5 keV and 11.4 keV to 25.0 keV. At a distance of about 84 m
behind the undulator, the beam size is defined by horizontal and vertical slits. The
centrepiece of the P10 endstation is a pair of Kirkpatrick-Baez mirrors (KB) installed
in a vacuum chamber located 87.4 m behind the undulator, focusing the beam to a spot
outside the chamber with a size down to 200 nm×200 nm and a total coherent flux of
up to 1011 ph/s. In the focus, a waveguide can be placed, acting as virtual source of a
clean and coherent wave field illuminating the sample placed on a motorised air-bearing
rotation stage. The adjustment is facilitated by remote-controlled optical microscopes,
most importantly the ‘on axis view’ (OAV) with a hole drilled through the optics,
allowing the x-rays to pass largely unperturbed. While waveguide and sample are
freely accessible under ambient pressure, the beam enters an evacuated flight tube
shortly behind the rotation stage to prevent signal absorption and air scattering on
its way to the detector which is placed directly behind the vacuum tube about 5.1 m
downstream of the sample. Due to the GINIX optics, the optimum photon energy
range is 6 keV to 14 keV. See [110, 111] for detailed descriptions of the setup including
attenuators, additional sample stages, apertures, beamstops and the optional cryogenic
sample environment.
Apart from the illumination, which is detailed below, the rotation stage and the detec-
tor are crucial components for fast tomography. GINIX is equipped with an UPR-160
ultraprecision rotation stage (Physik Instrumente (PI) GmbH & Co. KG) with air bear-
ings for improved flatness and a velocity of up to 360◦/s. However, the motor controller
only allowed for a limited travel range of about −3600◦ to 3600◦, corresponding to an
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uninterrupted measurement time of 20 s with highest rotation frequency. The stage
sits on a sample tower which allows to remotely adjust the axis of rotation precisely in
all directions (x, y, z) and to correct for the angle around the (optical-)z-axis (roll) and
around the x-axis. In the conventional setting, a second x-y-z- positioning system sits
above the stage to move the sample into (and relative to) the rotation axis. However,
for many rotations the cables running through a recess in the centre of the rotation
stage would wind up and eventually break, while tensions would move the sample.
Thus, all motors above the rotation stage were replaced by a manually adjustable x-y
dish with micrometre screws.
The most suitable detector available for our purpose was an sCMOS camera based on
model C12849-102U (Hamamatsu Photonics) equipped with a 20 µm thick LuAG:Ce2

scintillator (CRYTUR, spol. s r.o.) instead of the default 20 µm Gadox3 crystal, im-
proving the decay time. All other specifications correspond to those of the C12849-
102U [112]. The effective number of pixels is 2048 × 2048 covering an active area of
13.312×13.312 mm2 with a pixel size of 6.5×6.5 µm2. The readout speed with a depth
of 16 bit/px is 30 frames per second (FPS) in full field and up to 25655 FPS with inter-
nal pixel binning (2× 2 and 4× 4 binning available) and selection of a suitable region
of interest (ROI). The exposure time can be selected in steps of 1 ms from a minimum
of 1 ms up to 30 s. The images were buffered on a high-speed solid-state drive (SSD)
enabling a recording time of up to several hours with highest frame rate.

6.2.2 X-ray waveguide illumination

In the previous chapters, a clean and constant illumination has been assumed, allowing
to divide the detector images by the amplitude I0 ∝ |Ψ0|2 (see e.g. the holographic
or CTF reconstruction formula). However, in practice the illumination shows distinct
artefacts mainly introduced by the KB mirrors due to smallest deviations from the
perfect elliptic shape which become visible due to the gracing incidence of radiation
necessary for total reflection. A typical detector image of a KB illumination is depicted
in Fig. 6.6 (a). The adjacent panel (b) shows an exemplary detector image of a 10 µm
diameter polystyrene sphere sample, still dominated by the illumination shape. The so-
called flat-field correction, i.e. dividing image (b) by the flat field (also termed ‘empty
beam’) depicted in (a), reveals the hologram shown in (c). There, the pattern is much
better recognisable as the typical hologram of a sphere, but remaining artefacts from
the illumination are apparent, spoiling the phase retrieval.
The underlying problem is that for the flat-field correction, intensities in the detection
plane instead of the complex-valued wave-fields in the exit-plane are divided. This
phenomenon has been studied in [113], where a numerical phase-retrieval approach
for the illumination (termed probe in this context) is presented based on the small
differences of flat-fields recorded at different KB-to-detector distances. In contrast, this
work relies on X-ray waveguides (WG) providing a hardware solution to the empty-
beam problem. To this end, Fig. 6.7 shows the detector image at the same distance as
before with a 2d WG adjusted in the KB focus. The illumination artefacts are clearly

2 Lutetium aluminium garnet doped with cerium
3 Gd2O2S
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flat-field I0 hologram I correction I/I0

intensity [a.u.] intensity [a.u.] nomalised intensity [a.u.]
0.1 2.5 0.1 2.5 0.74 1.34

Figure 6.6: Artefacts of the so-called flat field correction. A hologram of a 10 µm
diameter polystyrene sphere serves as an example, recorded at beamline ID22NI (ESRF,
Grenoble) with a photon energy of 20 keV. The division of the hologram with the impure
KB illumination still contains artefacts which have the same shape as the illumination.
The common scale bar is 4 µm. Data obtained from [113]

removed but note that the intensity has been decreased by a factor of 3700 in this
comparison. However, since this clean illumination enables the exploitation of phase
contrast, the loss of photons is compensated to a certain degree. The fabrication of WGs
hinted in the figure is detailed in [114–116]. Here, we used a 1d WG mainly smoothing
the illumination along the narrow, wave-guiding direction with the advantage of much
higher photon flux compared to a 2d WG. A typical flat-field image is depicted in Fig.
6.9.
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Figure 6.7: Waveguide types and cleaning effect. (a) shows an electron micrograph of a
sputtered thin-film sequence Ge/Mo/C/Mo/Ge used for a planar waveguide system (1d
WG). In (b), the relevant coupling region for the beam polished by a focused ion beam
is depicted as seen in the on-axis optical microscope of the GINIX setup. By crossing
two 1d WG slices, a two-dimensional waveguide system (2d WG) can be realised (c).
Alternatively, 2d WGs can be manufactured by lithographic development of a waveguide
channel (air) capped by wafer bonding (d). A corresponding electron micrograph is
shown in (e). The effect of a 2d WG can be seen in (g), smoothening the KB illumination
otherwise resulting in a detector image as depicted in (f). Note, that the signal in (g)
has been enhanced by a factor of about 3700 for this comparison. Images obtained from
[111] (top row) and [90] (bottom row).

6.2.3 Choice of sample

The choice of sample depends on many constraints. The predefined parameters of the
beamline were (i) a photon energy of 8 keV due to other experiments in alternating
shifts, (ii) the rotation stage limited to 36 full rotations with up to 1 Hz, and (iii)
the minimum exposure time, maximum frame rate, sensor area and position of the
detector as summarised above. Contrast and magnification could be adjusted by the
z-position of the sample in the cone-beam geometry. Placed at a region where the
Fresnel number indicates high phase contrast, the lateral size of the sample is limited
by the field-of-view (FOV) of the detector. Additionally, even for the fastest rotation
a feature on the edge of the sample should not be motion-blurred too strongly during
the exposure time of a single image, restricting sample diameter as well as feature
size. The minimum exposure time itself depends on the illumination brightness and
the holographic contrast enhancement, as well as on the hardware acquisition rate for
a given ROI and binning (FOV and resolution, respectively). Moreover, the sample
features are not allowed to move too fast in the direction perpendicular to the rotation
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axis whereas a higher velocity can be accepted along the rotation axis where the position
can be determined more easily. Clearly, the motion should not be too slow, too,
since we want to reach the limits of conventional tomography. As shown before, the
positioning of sparse markers which are already distinguishable in the projections is a
comparatively straight-forward task. In order to exploit the strengths of tomography,
the marker density should be high.
All these constraints are met by glass spheres sedimenting in a capillary, in particular
since concentration, size and velocity can be adjusted in a wide range. We used a
quadratic cross section borosilicate glass capillary with an inner edge length of 50µm
and a wall thickness of 25 µm with tolerances of ±10 % (VitroCom Inc.). The main
advantage of this shape is that the orientation of the capillary is encoded in each holo-
gram. This is necessary since no encoder values for the rotation angle are available as
common in static tomography (detector and rotation were used completely independent
from each other). The maximum diameter of

√
2 · 50µm ≈ 71µm adjusted to fit the

detector FOV yields a minimum effective pixel size of about 35 nm (70 nm with 2× 2
binning for fast detector readout), corresponding to a magnification of 187 and an ef-
fective Fresnel number of F1 ≈ 2.8 ·10−4, close to the numerically ideal F1,opt = 1/2048.
In practise, of course, a lower magnification (≤ 150) is adjusted with error margins
for manual alignment as detailed later, matching the optimum Fresnel number even
better.
The glass capillary absorbs between 23 % and 42 % of the radiation (values from [32] for
SiO2 with a thickness of 50µm and 100µm, respectively), depending on its orientation.
This loss is acceptable for illumination with a 1d WG. We evaluated the practical
minimum exposure time to 5 ms, allowing for a repetition rate of 7 ms corresponding
to a maximum of 142 FPS. With the maximum rotation speed of 1 Hz, a feature in
the corner of the capillary at a radius of 35µm has been moved about 1.1 µm during
this exposure time. If the capillary is not adjusted precisely in the centre of rotation,
the velocity is even higher. To guarantee that such a feature can still be recognised
as such in a single projection, we used SiO2 spheres with a diameter of (2 ± 0.2) µm,
approximately twice the maximum blur, dispersed in water with a solid content of
initially 5 % (Fluka Analytical). The maximum absorption of radiation of such a bead
is less than 0.7 % with respect to the surrounding water while the relative phase shift is
up to 0.3 rad. Thus we can expect a distinct signal of each marker, exceeding the limits
of a weakly interacting object for higher concentrations. But even in that case the net
relative phase shift in a projection is to be expected less than 2π, in principle allowing
for the usage of iterative phase retrieval without the problem of phase-wrapping.
The particle motion is mainly driven by the gravitational force Fg = ∆%Vsph.g with
the density difference ∆% = %SiO2−%H2O, the sphere volume Vsph. and the gravitational
acceleration g, exceeding the highest centrifugal force Fz = ∆%Vsph.rω

2 occurring in
the capillary at a rotation speed of ω = 2π/s by a factor of more than 4 · 104, allowing
to neglect rotation-induced effects. In addition, the water column can be expected to
follow the rotation without a noticeable delay. The sedimentation speed of a single
particle

v =
2

9

∆%a2g

η
(6.13)
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can be approximated by the already mentioned Stokes’ law, equalising Fg with the
frictional force Fd = 6πηav acting on a sphere with radius a in a fluid with viscosity
η at small Reynolds numbers %va/η � 1. For 2 µm diameter SiO2 beads (%SiO2 ≈
2.4 g/cm3) in water (η = 1 mPa·s) at T = 293 K room temperature, we expect

vS ≈ 3 µm/s, (6.14)

corresponding to a negligible motion of 15 nm during the minimum exposure time. De-
pending on the bead concentration, the water displaced by the sinking spheres streams
up and further reduces the mean sedimentation velocity. This motion is superposed by
random Brownian motion. For the present case, the diffusion constant

D =
kBT

6πηa
(6.15)

is D ≈ 0.215 µm2/s, and we can expect a mean displacement ∆rt ≈
√

6Dt of about
∆r1 s ≈ 1.13µm per second and ∆r5 ms ≈ 80 nm during the minimum exposure time.
This meets the requirements of a larger velocity along the rotation axis then perpen-
dicular to it, as well as clear but not too fast motion within the acquisition time of a
sinogram. With this, the Péclet number

Pe = a
vS
D
≈ 14 (6.16)

is in the challenging regime where neither advective nor diffusive motions can be ne-
glected.

6.2.4 Sample preparation and measurement

The samples were prepared on-site, about an hour before each experiment. The capil-
laries were cut to pieces with a length between 15 mm and 25 mm by a scalpel, leaving a
clean cut with only few cracks in the glass wall. One end was dipped in the suspension
of SiO2 particles in water, properly dispersed by a vortex mixer, which filled the com-
partment completely due to capillary forces. Both ends were immediately closed by
sticking them into Haematocrit sealing compound (BRAND GmbH & Co. KG) creat-
ing a plug of 1 mm to 3 mm in the capillary. Importantly, the formation of air bubbles
at both ends had to be avoided, otherwise a heavily moving water-column bouncing on
the lower air buffer would have spoiled the measurement. Since the air stayed fixed at
the ends, a small bubble on the upper side was acceptable. Subsequently, both ends
were sealed air-tight with nail polish to prevent evaporation. The Haematocrit served
as a buffer preventing immediate contact of the water content and the varnish, other-
wise impeding the sealing. So-prepared capillaries were stored upright, with a possible
air-bubble (the later top side) on the low end accumulating the particles there. The
state of sedimentation could be controlled easily by the transparency of the capillary in
a microscope (or even directly by eye). Transparent capillaries with the large majority
of spheres in the lower (later upper) region of the sample were used for the experiment.
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6.2 The sedimenting spheres experiment

However, sample could not be used after too long a period because the spheres would
clump otherwise.
For general alignment of the setup rotation axis, we used a capillary with larger diam-
eter and dirt on the outside. Perfectly aligned, such a feature moves only horizontally
in the projections during a full rotation. A non-horizontal line (tilt between detector
and rotation axis) can be corrected afterwards by numerically rotating the detector
images. In contrast, features moving on an oval-shaped path indicate misalignment
of the (yaw) angle between optical axis and rotation axis, which is difficult to correct
afterwards. Thus, the rotation stage had been adjusted to not see such an oval path
but a horizontal line before the dynamic measurements. To mount the samples in
the setup, a sample holder was filled with Haematocrit and the capillary was stuck
inside as straight as possible with the particle-poor side – up to the level of sealing
compound inside the capillary. Then, the sample was arranged on the rotation stage.
Since the colloids started to sediment to the downward side at this point, the next
steps of tomographic adjustment were carried out as fast as possible.

≈ 20 cm ≈ 5 m

KB WG

detector

Figure 6.8: GINIX setup for fast tomography. At a distance of about 20 cm behind a
1d WG the sample is mounted on a manually adjustable x-y-stage, sitting on a rotation
motor which can be positioned remotely.

For manual alignment of the sample on the rotation axis and of both of them in the
centre of the X-ray beam, the OAV microscope was used where the true beam position
had been marked before. First, the capillary was moved into the field-of view of the
microscope with the micrometre screws above the rotation. Then, the stage was rotated
until the capillary reached the leftmost position in the projection. During this process
(when the capillary left the microscope’s FOV) the entire stage was moved by the x-
motor to keep the sample in the centre of the microscope. After reaching the leftmost
position, the stage was rotated about 180◦ and the capillary, now at the rightmost
edge, was again adjusted in the centre of the microscope by moving the x-motor. The
rotation axis is in the centre of this x-distance. Thus, the x-motor was moved to
the rotation axis and the capillary readjusted to the center of the microscope by the
micrometre screws. For the orthogonal direction, the stage was rotated about 90◦ and
the capillary again adjusted by the micrometre screws. Since usually both screws have
to be moved for this adjustment, this step had to be iterated several times for the
orthogonal positions until the capillary showed no lateral movement during rotation.
This alignment was carried out within a few minutes with remarkable accuracy.
After the hutch was sealed and the X-rays shutter opened, the WG was re-aligned
by a macro optimising the total intensity, and the camera ROI and binning were
adjusted. An interesting region in the capillary, e.g. the upper edge of the already
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sedimented spheres, was selected by moving the z-motor beneath the rotation stage.
When doing so, even a slightly tilted capillary in the Haematocrit-filled holder moves
out of the centre of rotation. Thus we allowed some error margin in the detector FOV
by relaxing the magnification to a value around 100. For fast tomography, the camera
was started in series mode with pre-set exposure time and framerate and the rotation
was started from −3600◦ to 3600◦ (40 rotations), where acceleration and deceleration
took about one full rotation each. After the rotation, the sample was moved out of the
beam to capture several hundred flat-field-images before the acquisition was stopped
manually. Series with different combinations of frame rate, exposure time and rotation
speed (including zero rotation) at promising regions of the sample were recorded.

6.3 Data analysis

This chapter follows the data analysis of a sample measured with the shortest exposure
time of 5 ms and a repetition interval of 7 ms (142.86 FPS). With 2×2 binning (resulting
pixel size of 13 µm), a ROI of 1024 px×512 px (x × y) had been chosen, illuminated
by a 1d WG narrow along the x-direction. 6975 images were recorded, including 5700
projections with constant maximum rotation speed covering a process time of 39.9 s.
The sample shows sedimenting particles in the upper two thirds adding to a slowly
rising region of already sedimented spheres in the lower third. The Fresnel number
F1 ≈ 0.002 clearly indicates the holographic regime. With a magnification of about
112, the effective pixel size is 116 nm.

6.3.1 Data conditioning and alignment

A typical projection is shown in Fig. 6.9 next to the flat-field shaped by the 1d WG.
The result of the flat-field-correction is depicted in (c). Alternatively, each hologram
can be divided by the mean of all holograms, since the moving object structure is
averaged out over all rotations (see (d)). With the drawback of losing quantitation,
this step removes all static features in the images. Here, both corrections were carried
out, i.e. the ‘mean-field correction’ was based on already flat-field corrected data. A
typical result is shown in Fig. 6.9 (e).
Fig. 6.10 shows the sinogram obtained from a central cut through the stack of all
N images. The fluctuating intensities can be attributed to the WG vibrating in the
KB focus which does not impair the structure of the illumination importantly but
influences the brightness. The orientation of the capillary can be easily estimated. Its
square shape leads to four “bumps” in the sinogram with every full turn: At each bump,
it is oriented diagonal with respect to the illumination, whereas at each “kink”, it is
oriented perpendicular to the beam. Since the capillary was not exactly in the centre
of rotation, the whole projections additionally show a lateral displacement according
to a sine wave for each four bumps, which has been used to determine the rotation
velocity. To this end, the j = 1...N rows of the sinogram are shifted according to the
function f(α) = A sin(α0 + jπ/Nα) until amplitude A, phase-offset α0 and the number
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6.3 Data analysis

(a) flat-field (b) typical detector image

(c) flat-field correction (d) mean-field correction (e) both corrections

Figure 6.9: Flat and mean-field correction of the raw detector data. While the flat-field
correction depicted in (c) ((b) divided point-wise by (a)) still contains some artefacts from
the illumination, see e.g. the top left region, the mean-field correction in (d) ((b) divided
point-wise by the mean of all detector images of the moving sample) removes those
artefacts. The mean-field correction of previously flat-field corrected data as depicted
in (e) has been used in the further analysis. The grey values (white is brightest) are in
arbitrary units, the scale bars valid for the corresponding row indicate a width of 25 µm.

of angles per sinogram Nα have been optimised such that the sinogram is aligned
symmetrically as depicted in Fig. 6.10. The correction shows that the rotation was very
stable during the measurement. Neither lateral drift nor an increasing misalignment
is visible, beginning and end of the sinogram are equally well aligned. Here, we found
Nα = 80.35 angles per sinogram, corresponding to a rotation velocity of 320◦/s. The
measured N = 5700 projections thus cover 39.9 s of the sedimentation process in about
35.5 rotations. Note that the corrections shown in the figure do not have to be carried
out in this step, saving an unnecessary interpolation. Only the value of Nα is of
importance.
A second important value to determine is the position of the rotation axis in the images.
For this purpose, a hologram was compared with a hologram recorded from the opposite
side of the sample, flipped horizontally. In a perfectly aligned experiment, the static
parts of the sample, i.e. the capillary, appear identically in both pictures and thus
cancel out in the difference image. In practise, the relative shift and rotation of both
images is optimised to remove the capillary as well as possible in the difference image.
All images were corrected for the rotation only, noting the shift for later correction.
Fig. 6.11 depicts the so-called linogram obtained by integrating the stack of all holo-
grams along the x-direction, smoothened along the time axis for better visibility. It
can be used to investigate axial drifts and vibrations of the sample. For a static ob-
ject, the integrated intensity profile is constant over all projections and only horizontal
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Figure 6.10: The central slice trough the stack of all holograms reveals the sinogram
on top. The orientation of the quadratic cross section capillary can be clearly seen.
The detail indicated by the black bar is enlarged in the center left. With the alignment
explained in the text, the rotation axis is corrected, resulting in the sinogram at the
bottom and detailed in the center right.

α

y

0

Linogram

Figure 6.11: In the so-called linogram, obtained by integrating the stack of holograms
along the x direction, a wobble with the same period as the rotation can be seen (red
line).

lines appear in the linogram. However, in case of dynamic tomography we get a first
preview of the dynamics: one can clearly see the lower region of sedimented particles
slowly rising while matter is sinking down as indicated by the diagonal patterns in
the vertical centre region of the linogram. Nevertheless, the constant region at the
bottom also reveals small oscillations with the same period as the rotation, possibly
originating from an interim misalignment of the rotation axis around the x-axis (yaw
angle), a wobble of the rotation stage, or most likely a vibration of the whole sample
tower induced by the rapidly rotating and not perfectly balanced mass on top. This
wobble was determined analogue to the above case of the sinogram. Additionally, all
holograms were cross-correlated to their 3 precursors and 3 successors to reveal high
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6.3 Data analysis

frequency vibrations. All of the obtained shifts, i.e. both rotation axis offsets, y-axis
wobble, and cross-correlation shift were then corrected with a single interpolation.
At this point, many methods of phase-retrieval and tomographic reconstruction are
possible. The holograms show a very diverse composition, with a strong signal from
the capillary walls dominating the weak and sometimes blurry patterns originating from
its content. However, it can be removed easily either before or after the reconstruc-
tion: By averaging many projections from the same direction blurring the dynamics,
a projection of the static parts of the object can be obtained and subtracted from the
corresponding projections, leaving only the dynamic parts. Thus, we can treat the
remaining object as being weak in good approximation. This allows for a conventional
two step reconstruction with phase retrieval based on the CTF and tomographic re-
construction relying on the FBP. Several different schemes were tested, including a
normalised cross-correlation based position estimation of the beads directly from the
holograms and an iterative 3d-propagation based approach. However, since the dy-
namics of the markers, rather than the quantitative sample structure, are if interest a
considerable benefit of those attempts could not be found. In the opposite, the con-
ventional two-step method performs remarkably well with the sliding-window approach
detailed in the following sections.

hologram projection (CTF recon.)

Figure 6.12: CTF-based phase retrieval of a typical hologram. Note that in the recon-
struction, markers emerge which are not visible in the hologram, as indicated by the red
circles. The scale bar is 25 µm. See text for details about the CTF parameters.

A typical CTF result is shown in Fig. 6.12 for an effective Fresnel number of F1 =
2.1 · 10−3 as well as the parameters a2 = 0.02, σcut = 0.001 and β/δ = 0.1, yielding
better results than the theoretical ratio of β/δ ≈ 0.023 of the relative absorption and
phase shift with respect to the surrounding water (see Eq. (5.27) for the definition of
the parameters). Since the quality of the projection does not seem to be improved at all
on the first look, it is important to note that some markers emerge at positions, where
no such signal is visible in the holograms, as indicated in the figure. Thus, signals that
might look like markers in the hologram do not necessarily indicate the presence of a
real glass bead. Omitting the step of phase retrieval would introduce many artefacts
and inconsistencies during further processing.
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typical reconstruction removed capillary
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Figure 6.13: Orthogonal central slices through a typical FBP reconstruction of the
capillary (left). The original axis of rotation is highlighted by a red cross. Clearly, the
signal gets worse at larger distances from this point. On the right side, the mean of
all time frames was subtracted from the volume, removing static features such as the
capillary and associated artefacts but also the resting spheres in the lower region of the
capillary.
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6.3 Data analysis

For tomographic reconstruction, the data was binned 2 × 2 and a sliding window ap-
proach was used, i.e. the Nα-sized window of projections used for the reconstruction was
shifted in steps of Nα/4 over the entire sinogram, yielding a total of 283 reconstructed
volumes with overlapping process time intervals, denoted as time frames in the follow-
ing. The central slices orthogonal to the x, y, z axis of such a typical reconstruction are
shown in Fig. 6.13. To remove the static portions, all time frames were averaged and
subtracted from each single volume. This safely removes the capillary signal clearly
improving the quality but also the already sedimented spheres are removed, as can
be seen in the figure. In the x-z ‘top’ view, orthogonal to the axis of rotation, the
features at the capillary corners are clearly blurred compared to those in the centre.
This effect can be observed in all time frames and can, for the most part, be attributed
to the rotational blurring of markers distant from the centre of rotation. To this end,
the original axis of rotation has been highlighted, located in the centre of the sharpest
region. Since the blur affects each detector image, it cannot be compensated in the
direct 3d reconstruction, imposing a fundamental limit for the proportion of angular
velocity ω, marker size a, sample diameter r, and exposure time:

ωr <
2a

∆t

. (6.17)

A particle at a distance r to the axis of rotation can only be reconstructed as such, if
it is displaced about less than its diameter 2a in the exposure time interval ∆t.

6.3.2 3d particle tracking

To follow the path of the visible micro-spheres, a two-step particle tracking procedure
was carried out consisting of first locating the particles in each volume individually
followed by a nearest-neighbour connection in time for tracking. For proper localisation,
all volumes were convolved with a model of an ideal sphere, smoothing the signal to
remove outliers due to noise. Then, the voxel with the highest signal was selected as
the most probable position of a marker and symmetrically replaced by a zero valued
sphere with twice the bead radius, since in this volume no second centre of a bead
can occur. This maximum-searching and replacement procedure was repeated until a
signal threshold was reached, resulting in a mean of about 4230 located candidates in
each volume. The threshold was chosen by visual inspection such that the majority of
spheres were correctly identified with only a small number of falsely recognized features.
A typical result of the procedure is shown in Fig. 6.14, with highlighted regions where
motion artefacts lead to false matches. Such false positive positions are removed in
the next step of tracking the particles. For this purpose, each position was connected
to its nearest neighbour in the succeeding volume, provided the distance was smaller
than a bead radius of 4 px. Gaps in the paths were closed by connecting ending and
beginning frames with a distance of less than 6 px over a gap of one time frame. The
minimum accepted path length was 5 time steps, i.e. a bead present over the range of
more than a full sinogram. A number of 51 705 paths were found by this procedure,
as illustrated in Fig. 6.15, the longest amongst them reaching over 192 time frames,
with 156 paths having a length of at least 100 time frames and about 1700 paths with
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x-z slice after 3d convolution localised particles

Figure 6.14: Localisation procedure of particles in a typical x-z slice of a time-frame
(left). The volume is convolved in 3d with a model of an ideal sphere, resulting in the
slice depicted in the centre image. The maxima (black dots) are identified as the most
probable positions of the spheres, as highlighted in the right image. Note that a non-
highlighted dot does not necessarily indicate a missing sphere, since the signal might be
elongated along the y direction and marked in other slices. Artefacts due to blurring of
fast markers are highlighted by red lines. They lead to false positive positions which are
removed in the next step of tracking. The scale bar is 25 µm.

a length of at least 50 time frames. Clearly, many of the paths are broken parts of
the same marker’s trace, but still many individual cases can be studied in great detail.
The N = 1, 10, 102, 103, 104 longest paths are visualised in Fig. 6.16.
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Figure 6.15: Histogram of reconstructed path length with a minimum observed length
of 5 and a maximum of 192 time steps.

Many aspects of the particle behaviour can already be extracted from the longest trace
N = 1. Initially, the sphere sediments predominantly vertically (and with a high
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velocity, not shown) towards the bottom of the capillary. Then, the behaviour changes
drastically: the particle exhibits a much more pronounced horizontal movement, while
the vertical motion is stopped – the sphere even shows a slow ascension. This happens
in the middle of the volume, well above the already settled particles. Such a strong
sideways motion can also be observed for the majority of the other particles at N = 10
and N = 100. An undisturbed diffusion in the plane perpendicular to the direction
of sedimentation would result in compact, “curly” paths in the x-z view of Fig. 6.16.
Especially at N = 100, only very few spheres display this type of behaviour, while
most paths are clearly elongated. However, no preferred direction of this elongation is
immediately obvious.
For N = 1000 particles, the top view reveals a significantly higher concentration of the
longest (i.e. the best detected) paths in the bottom left area. When comparing with
Fig. 6.13, it becomes obvious that this is the periphery of the true rotation axis. In this
region, single spheres are affected less by rotational blurring within the exposure time
of single images, resulting in a better recognition of the spheres and thus the paths. For
N = 10 000, no single traces can be distinguished anymore. However, the side views
show a horizontal area with smaller particle density at the upper edge of the field of
view. Here, the illumination had a very low intensity. As a result, the contents of this
area could not be reconstructed, despite flat- and mean-field correction – the contrast
was simply too weak.
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Figure 6.16: N = 1, 10, 100 longest trajectories showing sedimentation but also occa-
sional upflow and elongated paths in the x-z directions. All values are in pixel, corre-
sponding to about 232 nm.
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Figure 6.17: N = 103, 104 longest trajectories. For N = 103 clearly a region can
be identified where the density of reconstructed trajectories is particularly high. For
N = 104 the entire volume is covered by trajectories revealing a horizontal low-density
region at the upper side of the volume (in x-y and z-y views) where the illumination was
particularly dark, resulting in insufficient contrast. All values are in pixel, corresponding
to about 232 nm.
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6.3.3 Collective behaviour

(a) (b) (c)

(d) (e) (f)

0− 14 s 6.2− 20.2 s 12.5− 26.6 s 18.8− 32.9 s 25.2− 39.2 s

x− z x− y z − y

x− z x− y

temporal mean of moving solid content

mean y velocity [µm/s] mean y velocity [µm/s] mean y velocity [µm/s]
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Figure 6.18: Temporal mean density of moving particles and collective dynamics in the
capillary. The top row depicts a top (a) and two side views (b),(c) of the mean density,
while the central row shows a top (d) and a side view (e) of the mean vertical particle
velocity per voxel. See the text for a more detailed description. Regions of sinking
spheres (red) can be clearly distinguished from regions of rising spheres (blue). Since
these collective dynamics are more pronounced in the top half of the volume, the bottom
row depicts the temporal evolution of the currents only for this region, time-averaged in
the specified intervals. The colour bar of (f) applies for the bottom row, too.

To better investigate the complex particle behaviour during the sedimentation process
with large lateral displacements and even occasionally rising beads, a total of 23 000
paths with a minimum length of 10 time frames were analysed as depicted in Fig.

126



6.3 Data analysis

6.18. First, the temporal mean particle density was calculated by averaging all de-
tected positions of spheres, represented by ideal spheres, of the 23 000 paths over all
time frames. By averaging this volume along one of the coordinate axes, we obtain the
temporal mean fraction of solid content in the corresponding direction as shown in the
top row of Fig. 6.18. Panel (a) displays the already mentioned maximum in the area
surrounding the true axis of rotation in the bottom left corner, while panels (b) and
(c) clearly show a high particle density in the lower part of the capillary, where the
sedimenting particles come to rest. Insight in the collective dynamics can be obtained
by averaging the sedimentation speed as illustrated in Fig. 6.18 (d)-(f). For this fig-
ure, each detected position of the 23 000 longest trajectories was represented by the
ideal sphere weighted with the corresponding velocity in z-direction. The sum of all
those spheres along one of the coordinate axes normalised by the corresponding sum
of the temporal mean particle density reveals the mean velocity per voxel in the voxel
columns. Clearly, a region of high sinking velocity (red) can be distinguished from a
region of slowly rising particles (blue). The sinking spheres displace water which wells
up and impedes the sedimentation of spheres in this area, or can even carry them up-
wards, albeit with smaller climbing rate than sedimentation velocity. In the lower half
of the capillary, the velocities are small, the magnitude of the flow increases towards
the top, as can be seen in the side view (e). This is illustrated further in panel (f),
which displays z-averages of the top and bottom half of the 3d velocity distribution.
Finally, the bottom row of Fig. 6.18 displays the temporal evolution of these currents
in the top half of the capillary (calculated as explained above, but only taking into
account the spheres that were detected in the relevant time interval). The images show
that a complex, slowly varying flow evolved during the measurement.
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Figure 6.19: Mean squared displacement of sedimenting spheres, perpendicular to the
direction of gravity, obtained by including only the 100 longest trajectories and all 23 000
paths with a minimum length of 10 time steps. The increase clearly indicates super-
diffusion.
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Similar currents can be observed along the other directions, albeit at much slower
speeds. The mean particle velocity along the x-direction is v̄x ≈ −102 nm/s with a
standard deviation of σvx ≈ 788 nm/s, while the mean velocity along the z-direction is
v̄z ≈ 112 nm/s with σvz ≈ 787 nm/s. For comparison, the mean particle velocity along
the sedimentation direction is v̄y ≈ 560 nm/s with σvy ≈ 860 nm/s. Minimum and
maximum flow in all directions match the maximum accepted velocity of ±4 vx/time
frame, about ±6.63µm/s. Due to these flows, diffusional movements of particles per-
pendicular to the y direction are superposed by extended drifts. The mean squared
displacement in these directions (x,z), as depicted in Fig. 6.19, clearly shows an increase
and thus indicates a super-diffusive behaviour of the particles. Fig. 6.20 summarises
the velocity fluctuations in all directions.
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Figure 6.20: Histogram of the mean velocities of 23 000 paths with a minimum length
of 10 time frames. The unit of voxels per time frame corresponds to 1.66 µm/s.
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6.4 Summary and conclusion

In this chapter, phase-contrast enabled CT was demonstrated revealing the dynamics
of a complex colloidal system under realistic conditions in the challenging regime of
a Péclet number of Pe = 14. Dynamics on the spatial order of less than the particle
size as well as a temporal resolution less than the sinogram acquisition time (< 0.5 s)
have been reconstructed: The trajectories of thousands of single particles can be well
observed and their collective behaviour reveals “invisible” self-induced complex water
currents in the capillary
In this proof-of-principle demonstration, the system was very small compared to the
size of the sedimenting spheres and the measurement took place at the interface to the
sediment. Thus the process highly depends on wall effects usually avoided in order
to reveal the pure process of settling. However, these boundary effects are of great
relevance [94]. The dynamics at the lower interface seem to be particularly interesting.
We had the impression that a large number of sinking particles lead to an amorphous
deposition, while an almost crystalline arrangement is observed at low particle density.
These phenomena have not been considered here and offer room for future evaluations.
The experiment demonstrates the advantages and limits of time-resolved tomography
for the determination of general motion. Notably, a major source of lost bead trajec-
tories was motion blur during capillary rotation within the detector’s exposure time,
as can be seen in Fig. 6.13, 6.17 and 6.18. The best ways to compensate for this error
would be a shorter exposure time, requiring a more intense illumination leading to
higher radiation damage, or preferably a more efficient detection system. Since very
fast particle motions suffer from the same blur and thus cannot be reconstructed prop-
erly or get excluded in the particle tracking, faster dynamics than observed here might
occur in the sample. Indeed, the slower the motion, the higher is the probability of a
complete detection over many time frames. Hence, the dynamics presented here have
to be considered as a lower boundary of the motions occurring in the sample. However,
since the lateral motion affected by positioning errors is still smaller than the rate of
descent well observable even without rotation, faster dynamics can be considered as
unlikely. The lateral motion with a mean in the sub-micrometre range during the ac-
quisition time of a sinogram also allows neglecting positioning errors as described in
the beginning of this chapter.
The results presented above clearly demonstrate that four-dimensional phase-contrast
tomography can be used to investigate dynamics of weakly interacting specimen with
high sensitivity – even though this high sensitivity enabled by X-ray waveguide illumi-
nation is highly challenging for fast tomography.
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7 Dynamic tomography of a burning match

The previous chapter adresses the 3d motion of particles in a volume, tracked by a com-
bination of phase retrieval and tomography. Localisation of the particles was possible
with sufficient accuracy since their motion during the acquisition time of a sinogram
was smaller than their diameter. However, inconsistencies can be seen to create many
artefacts such as streaks that would make it difficult to elucidate the structure of an
object, whereas they are still acceptable for the mere localisation of markers. As can
be seen in the theoretical error estimations, the reconstruction improves significantly
if motion gets incorporated into the reconstruction process, even in a first order ap-
proximation of constant velocity. However, in order to use this simple approach, the
markers must already be recognisable individually in the projections. Since many sam-
ples lack well-trackable features of this kind, structure and motion have to be recovered
in parallel.
In this chapter, an ansatz for determining motion and correcting for its artefacts in
tomography is presented in the context of deforming matter. The concept is validated
experimentally on data of a burning match, revealing the combustion process of the
wooden structure in four dimensions. The present chapter is largely based on the
publication [117], but notations and figures have been revised and expanded.

7.1 Capturing deformation and dissolving processes

In order to understand and model materials, knowledge about their structure has to
be complemented by knowledge about dynamics and functional processes. In general,
it is necessary to determine the 3d structure as a function of time. Ideally, a four-
dimensional 4d ‘material movie’ would allow to observe the dynamics of the assembly
and disassembly of an object at the desired spatial and temporal resolution. However, a
direct reconstruction of projections from changing samples results in distorted objects
with a considerable amount of artefacts like those shown in Fig. 7.1 for simulated basic
transformations. During the measurement of a sinogram, the phantoms undergo any of
the three affine transformations, namely translation, scaling, and shear. Additionally,
a dissolving process was simulated. The resulting artefacts are similar in character and
appearance to the streaks already observed for particle motion in the previous chapter.
Negative values in a reconstruction from a strictly positive projection input clearly
indicate these kinds of inconsistencies. But for the more complex objects considered
here, non-closed borders and long-range colour gradients can also occur. In combination
with the experimental challenges of high-speed tomography, including stabilisation
during fast rotation and efficient handling of large amounts of data, such artefacts
make it difficult to achieve the desired result quality: 4d movies of a material during a
chemical reaction, even a simple combustion, are almost non-existent.
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Figure 7.1: Illustration of artefacts induced by motion and dynamic processes during
a tomographic measurement. The starting point t = 0 for each simulated measurement
was the image depicted on the left side with a size of 5122 pixels. Notice that the black
frame is a part of the object but only the inner Shepp-Logan phantom and the grey
rectangle were modified while the object was projected from 0◦ to 180◦ at a constant
rate. The inner part was (a) linearly translated, (b) scaled with a linear decrease of
the scaling factor, (c) sheared linearly and (d) ‘dissolved’ by multiplying a mask with
linearly decreasing radius. The images in the upper row show the maximum change at
the end of the tomographic scan. Each of the corresponding sinograms depicted in the
middle row consists of 804 equidistant projections to satisfy angular sampling. Common
filtered backprojections of the sinogram data are depicted in the bottom row. They show
pronounced artefacts originating from the motion like false shapes, missing features and
non-closed circles. Vertical streaks in the 0◦ and 180◦ direction are clearly visible in
each reconstruction, since temporal and thus structural differences are largest for the
corresponding projections.

Consequently, the novel experimental capabilities opened up in the recent years – no-
tably phase contrast – can only be fully exploited if recording schemes and reconstruc-
tion algorithms are generalised from the conventional static case to meet the challenges
of dynamic CT. Sophisticated regularised approaches utilise, among others, sparsity in
the time evolution, but some kind of prior information and/or special sampling are
required [118–120]. As detailed before, projection angle sequences with large angu-
lar increments are best suited to estimate the spatiotemporal evolution [104, 118]. A
guess for the object can then be transformed in a way to best fit a sparse set of projec-
tions. To date, however, reconstruction methods are mostly restricted to global affine
transformations since straight lines remain straight lines after transformation and the
motion can be estimated and corrected on the projections [105, 121]. Unfortunately,
these approaches are not applicable even to the simple examples in Fig. 7.1 (a) to (c),
where the black border remains static during the transformation of its content. How-
ever, the approach hints at an interesting solution: If the motion is known, it can be
possible to reconstruct consistent 3d representations from the inconsistent projections.
Tomographic reconstruction with known motion has been investigated in the literature
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[105, 121–123] and has shown success in the context of medical CT (heart beat, breath-
ing) [124–128]. However, the experimental scenarios were restricted to pre-determined
motion or rather sparse objects and over-sampled images. In such applications, the
resolution is typically much smaller than the voxel size, and image artefacts have a
more deteriorating influence than loss of resolution.
The method presented here addresses the requirements of dynamic CT for phase-
contrast objects with micron-scale structures. It is based on deriving an approximate
motion model from optical flow analysis of direct reconstructions and feeding this infor-
mation into the backprojection geometry, using dynamically deformed reconstruction
grids [127]. Structure and dynamics are reconstructed from the continuous stream of
projection data acquired while rapidly rotating the sample, considerably decreasing
the typical artefacts compromising conventional reconstruction. As a proof of con-
cept demonstration for a 4d movie of a chemical reaction, we apply this approach to
monitor a match in 4d, burning down after laser ignition, with sufficient spatial and
temporal resolution to cover the process. While individual components of the method
have been used in previous work, the combination of reconstruction steps with phase
contrast by free propagation has enabled unprecedented contrast and sensitivity high
enough to uncover the dynamic change in the interior wood structure during the com-
bustion. Note that grating-based phase contrast as already demonstrated for dynamic
tomography [129] does not achieve the high spatial resolution required for the present
application.

7.2 Backprojection along dynamically curved paths

projections

backprojection to
deforming grid

backprojection along
curved paths

Figure 7.2: Achieving local consistency in deforming objects: A moving feature is
projected for different angles (left). The direct backprojections of this signal do not
intersect in a common point, preventing the reconstruction of the feature (red lines in
the centre image). If the voxel grid during reconstruction locally moves along the same
path as the feature during the meaasurement, it collects the signals consistently (centre).
Alternatively, the backprojection paths can be dynamically curved to compensate for the
motion (right).
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The basic idea of the dynamic reconstruction procedure named backprojection along dy-
namically curved paths is sketched in Fig. 7.2. A feature moving in the volume during
projection cannot be reconstructed, since the straight backprojections of the corre-
sponding signal do not have a common point of intersection. But if the reconstruction
grid locally moves along the same path as the feature in the original measurement, it
consistently collects the signal from all projections. To consider all kinds of motion
in the volume, the grid may have to be deformed drastically up to a point where a
steady deformation is impossible. But note that the deformation does not have to
follow the whole measurement over many tomographic rotations but only the recon-
struction of each set of projections covering 180◦, which should be sufficient for a wide
range of samples. Alternatively, as implemented here, instead of deforming the voxel
grid, the backprojection path can be deformed appropriately, crossing the different re-
gions of the grid in the correct position and angle for local consistency. This approach
makes it possible to derive high quality reconstructions from projection data that are
inconsistent in the sense of conventional static tomography based on a motion model
derived from the projections. This allows to compensate for general (almost arbitrary)
deformations.

phantom

deformation projection

sinogram

filtered sinogramindividual backprojections

back

projection

deformation

deformed backprojections

filter

or

sum

phantom

during

deform.

backprojection along dynamically curved paths

reconstruction

sum

case

direct FBP

Figure 7.3: Scheme of the filtered backprojection on dynamically curved paths. The
phantom is deformed as a function of time during the measurement, resulting in an in-
consistent sinogram (upper row). While the conventional filtered backprojection yields
a heavily distorted reconstruction (top left), the bottom row illustrates the new method,
revealing a substantially improved reconstruction quality by incorporating the (known)
temporal deformation. From the filtered sinogram, each individual backprojection is
deformed to a different degree (see text for details). The conventional straight backpro-
jection path is replaced by a dynamically curved path, as indicated by the highlighted red
line. The superposition of all deformed backprojections results in a consistent representa-
tion of the phantom. As we show below, the motion model required for the dynamically
curved paths can be estimated directly from the data.
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Figure 7.3 shows a simulation of the approach. For simplicity, we assume a 2d phan-
tom. Each projection measured at the time 0 ≤ t ≤ T originates from a deformed
object Ω(t) = S(0, t)[Ω0], where the operator S(0, t) describes the transformation from
time 0 to time t. Here, Fig. 7.3 shows an example of a non-affine ‘swirl’ deformation.
For reconstruction, each of the filtered projections is backprojected into the higher
dimensional (2d) reconstruction space and individually transformed by S(t, T ). The
superposition of all deformed backprojections yields a consistent reconstruction of the
object Ω(t = T ) at the end of the recording. If the transformation S(0, t) can be
inverted and the resulting S−1(t, 0) is applied instead of S(t, T ), the reconstruction
results in Ω(t = 0). A combination of S and S−1 allows for the reconstruction of Ω(t)
at any given time. The backprojection and deformation steps can be merged to a single
operation, i.e. a backprojection on paths which change dynamically as a function of
time. In this way, the number of interpolations is reduced to that of conventional back-
projection along straight paths. As illustrated, the proposed scheme enables a dramatic
increase in reconstruction quality with respect to a ‘naive’ backprojection ignoring the
dynamics. To validate this approach, numerical simulations were performed, ranging
from simple motion phantoms of linear displacements to complex non-affine types of
motions and achieving excellent results (data not shown). Note that the conventional
ramp-filter is no longer exactly valid for the proposed scheme of deformed paths. Fu-
ture design of optimised filters could possibly be based directly on the resulting density
of sampling points in Fourier space or could be applied after the backprojection steps,
as known from a filtered layergram reconstruction. We stress, however, that the gain
in reconstruction quality is already considerable for the conventional filter, even for
severe deformations as shown in the example. Notwithstanding future optimisations,
this allows us to already tackle substantial experimental challenges in 4d tomography,
as shown below.
Before we turn to the experiment, we have to address the experimentally relevant
situation that no dynamical model for S(0, t) is known as prior information, but that
the motion model has to be estimated from the data itself. In some special cases,
the dynamical model could be derived from additional measurements, possibly enabled
by traceable markers (fiducials) in the object. However, for the general case of non-
periodic and unknown motion, both structure and motion have to be derived from
the projection data alone. Currently, high speed synchrotron setups are capable of
recording several tomograms per second [130, 131], monitoring dynamics on the same
time scale. The object is then mostly reconstructed using a sliding window approach,
falsely assuming the structure to be static over half a revolution period. It is important
to note that while the reconstruction results suffer from significant motion artefacts
which impede high quality structure analysis, approximate motion models can often
be derived from such directly reconstructed data. The basic idea of the current work is
to use the motion model derived from the sliding window reconstruction to implement
backprojection on dynamically curved paths, as introduced for known S(0, t) above.
This approach provides a significantly higher reconstruction quality, which in turn can
be used to further refine the motion model. In an iterative manner, this leads to a
fundamentally improved reconstruction of the entire 4d process. To demonstrate and
exploit this scheme, we have performed synchrotron-based phase-contrast micro-CT of
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a burning match, with high speed data acquisition in combination with optical-flow-
based motion estimation.

7.3 The burning match experiment

free propagation

α

~k

x
y

z

CCTV laser
detector

Figure 7.4: Illustration of the experiment. Setup of the TOMCAT beamline with
parallel beam illumination of the match positioned at the centre of a fast rotating stage.
The match was ignited by a laser system and observed by a CCTV camera. The detection
system was positioned 228 mm behind the object.

The experiment was carried out at the TOMCAT beamline of the Swiss Light Source
[130]. The setup is sketched in Fig. 7.4. A parallel beam with a photon energy of
Eph = 20 keV and a flux of about 1012 ph/s/mm2 was used to illuminate the object
positioned in the centre of a fast rotating stage. The detection system was positioned
228 mm behind the object. X-rays were converted to optical signals by a 150µm
thick LAG:Ce scintillator, which was magnified by a factor of 3.73 to a high speed
CCD Camera (PCO Dimax), resulting in an effective pixel size of 2.95µm. Matches
made of larch wood and impregnated with paraffin wax were obtained from a local
supermarket. The matches were cut to a length of approx. 8 mm and the wooden
part directly under the phosphorous head was chosen as the region of interest. For
the recordings, the matches were first aligned to fit horizontally into the field of view
of the camera under all angles using position motors above the rotation stage. Then,
the rotation speed was increased until the measuring speed was reached. The matches
were ignited by an IR laser system [132] and observed with an optical CCTV camera.
The acquisition was started manually after the ignition flame appeared on the live
monitoring screen. We did not observe an influence of the rotation on the flame and
burning speed. Several burning processes were recorded with rotation speeds from
1.25 Hz up to 3.5 Hz, resulting in 2.5 up to 7 full tomograms per second. However, the
duration of the measurement was limited by the internal memory of the camera system
of 36 Gb. An acquisition time of 1 ms for each projection allowed the recording of the
entire burning process in 18 800 images (and thus 18.8 s). At the slowest rotation speed
of 1.25 Hz, 401 angles per sinogram were sufficient to reconstruct details and follow the
process. Fewer images per sinogram led to a dramatic decrease of resolution. Thus
faster rotations require shorter acquisition times, resulting in a lower signal to noise
ratio not outweighed by the decrease in motion artefacts. Higher rotation speeds had
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the further drawback that the entire burning process could not be covered, since the
maximum possible number of images was reached more quickly. Most importantly, the
movies recorded at a high rotation speed in the testing phase proved that all processes
observed on the resolution scale of the experiment were slow enough to be well captured
by the slower recordings. Thus, we chose the measurements with a rotation speed of
1.25 Hz for our subsequent data evaluation.

7.4 Data analysis

This section follows the reconstruction of the object and its dynamics from the data.
First, the raw data was corrected for the artefacts induced by the illumination. In a sec-
ond step, the phase retrieval was performed, followed by the independent tomographic
reconstruction with all improvements.

7.4.1 Projection retrieval and alignment

A raw detector image with a size of 1200×1116 px is shown in Fig. 7.5 (a). It is affected
by artefacts originating from a spatially and temporally inhomogeneous illumination.
These artefacts were accounted for by the usual raw data corrections: First, all im-
ages were dark-field corrected and divided by the mean of 200 flat field images of the
empty beam. Due to the short acquisition time, however, flickering of the illumination
was not averaged out. Notably, we observed pronounced vertical shifts and structural
changes in the illumination, most probably originating from vibrations of the beam-
line’s monochromator. They result in horizontal stripe artefacts after the flat-field
correction, as depicted in Fig. 7.5 (b). This type of artefact is usually not visible in
conventional measurements, where the acquisition time is large enough to average out
all vibrations. Since the undesired structures appeared to be ordered predominantly
along the horizontal axis and in a narrow band of spatial frequencies, we were able
to remove them by a Fourier filter derived from the flat-field images as follows: Each
flat-field image was divided by the mean of all 200 flat-field images. Without any vibra-
tion, this would result in homogeneous images, but for the present data, pronounced
horizontal intensity gradients resulting from the vibrations appeared. The images were
Fourier transformed and their modulus was averaged. By applying a threshold, the
resulting average was transformed into a binary mask discriminating between spatial
frequencies from the background artefacts and frequencies that had to be attributed to
the sample. All projections of the match were filtered in Fourier space using this mask,
removing only structures already appearing in the flat-field images due to vibrations.
As a result, the artefacts disappeared almost completely without visually impairing
the match’s projection.
Furthermore, we have observed a degradation of the scintillator screen, possibly due to
the heat during the ignition process. After the ignition, ring-like structures (see Fig.
7.5 (b)) appeared in all projections which were not visible in flat-field images recorded
before. These rings slowly grew during the measurement. They could be removed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.5: Data treatment from the raw detector images to the 3d structure. A
typical detector image with an exposure time of 1 ms is depicted in (a). After the flat-
field correction, horizontal stripes and a ring-structure still impair the data, as shown in
(b). Both artefacts could be removed by Fourier filters to yield the cleaned image in (c).
Contrast was enhanced significantly by TIE-based phase retrieval (d). The sinogram in
the centre of the figure was extracted from all 18800 reconstructed projections at the
position of the red dashed line. A shrinking of the structure and a loss of material can
be observed by a decrease in photon absorption. The bottom row depicts tomographic
reconstructions of the highlighted sinogram segments, each consisting of 401 equidistant
projections. The shape, features of the wooden structure and the stages of the burning
process can be clearly identified. Nevertheless, the reconstructions show motion artefacts
such as streaks and non-closed shapes in detail. The scale bars represent a width of 1 mm.

sufficiently by averaging the projections from -180◦ to 180◦ around each projection. The
ring-structure could then be isolated by an adapted high-pass-filter, and was subtracted
from the corresponding image. The results, as depicted exemplarily in Fig. 7.5 (c),
show very little absorption contrast of the wood cell wall. For the chosen photon
energy range and biomolecular matter such as cellulose, β is on the order of 10−10,
while δ is up to three orders of magnitude larger. Since the parallel beam illumination
provided a sufficiently high degree of coherence, edge enhancement is clearly visible
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in the projection and near-field phase retrieval could be used to improve the image
contrast. To this end, the simple parabolic Fourier filter

ũ(ν⊥) =
1− exp [−ε · (ν2

⊥)]

ν2
⊥

. (7.1)

defined in Eq. (5.32) has been applied with the regularisation parameter ε = 0.001,
preserving a certain degree of edge-enhancement beneficial for motion detection. This
contrast enhancement ultimately enables the fast measurements as reported here.
The outcome of performing all corrections together with the phase retrieval is shown
in Fig. 7.5 (d), next to a sinogram extracted from the stack of all corrected images of a
recording. It clearly shows the shrinking of the structure as well as a decrease of signal
intensity, originating from the loss of mass during burning. Intervals of 401 images
were selected from the sinogram to compute subsequent tomographic reconstructions.
Filtered backprojections of four intervals are shown in the bottom row of Fig. 7.5. To
ensure a well-aligned vertical rotation axis in the centre of the projections, which can
in general not be sufficiently realised in an experiment, all images were rotated by the
misalignment angle (angle between the determined axis of rotation and the detector
columns). Additionally, the distance of the determined axis of rotation to the centre
of all images was corrected for. Both parameters (angle and offset) were determined
by comparing two projections from opposite sides with an angular distance of 180◦.
For static tomography, the automatic determination of both parameters in general
warrants high quality reconstructions without any sign of misalignment. Contrarily,
for dynamic tomography, a further refinement may be required. This is due to the fact
that in a series of subsequent reconstructions, even the smallest deviations from the
original values result in a minute sub-pixel shift of subsequent reconstructions. This
misalignment is sensitively registered by the human eye as a vibration in the time
series, while it would not be detectable in a single reconstruction. Therefore, both
parameters have been refined manually.

7.4.2 Optical flow estimation

As shown in Fig. 7.5, the described combination of corrections applied to each pro-
jection, phase retrieval and corrections of the tomographic axis resulted in a temporal
series which covered the burning process remarkably well already. Upon closer in-
spection, however, many details especially at the moving borders are blurred by the
intrinsic dynamics of the burning process, despite the relatively fast data acquisition.
In the following, this issue is addressed by utilising backprojection on dynamically
curved paths as introduced above. To obtain an estimation of the motion, we per-
formed optical flow (OF) analysis [133]. Since structure and dynamics of the match
vary only slowly parallel to the axis of rotation, it was sufficient to estimate the motion
in the perpendicular dimensions only, considerably reducing the computational effort.
In the time series, each subsequent pair of slices perpendicular to the rotation axis was
compared as illustrated in Fig. 7.6 (a). Generally speaking, the first slice was broken
up into small patches, followed by searching for the best registration within the subse-
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Figure 7.6: Illustration of the motion estimation for the subsequent backprojection
along curved paths. Two successive reconstructions (a) are analysed by an optical flow
algorithm. The depicted result shows the shrinking at the borders of the match. The
colour indicates the direction of motion as shown by the colour wheel, the saturation gives
the motion amplitude with a maximum of 12 px for all images shown. The image series in
(b) gives an overview of the dynamics of the entire burning process, showing the optical
flow result for every third frame. Using the motion information, the reconstruction is
then carried out by backprojection on dynamically curved paths, as illustrated in (c)
with a magnification of the motion amplitude by a factor of 10 for better visibility. A
significantly improved reconstruction quality is observed, as seen for the fine object details
resolved in (e), compared to the result of (d) for a conventional direct FBP reconstruction.

quent image to obtain a map of local displacement vectors. Here, we used the powerful
OF implementation from [133]. To cross-check the correctness of the detected motion,
the second image was geometrically backtransformed to the shape of the preceding
one (warping), using the previously obtained displacement. Computationally, this step
was performed by inverse mapping as implemented in MATLAB’s interp2 function
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[133]. Visual comparison of the difference between original and backtransformed image
showed a good agreement throughout. The motion of the entire burning process in one
slice is summarised in Fig. 7.6 (b). In the beginning, only the thin outer layer shows
shrinking. As the burning horizon moves to the centre of the wooden structure, the
shrinking layer of burned wood becomes thicker until the whole structure is burned.
Because of the flame’s progress from top to bottom, the already burnt structure does
not stay constant but in the end shows large and rapid displacements as tensions in the
match change. This collapse-like situation is the only one whre the motion estimation
failed.

7.4.3 3d reconstruction

Assuming a linear transformation within each tomographic interval (401 images over
180◦) as a first order motion model, a reconstruction was computed as follows: For a
given angle (point in time), a tomographic reconstruction from the previous and from
the following 180◦ range of projections was computed. This is particularly beneficial
for streak-affected data since the orientation of the streak motion artefacts depends on
the selection of the starting angle and is the same in both reconstructions. OF analysis
was then performed to derive a motion model. If, for example, the object undergoes
a theoretical linear global shift from x(t = 0) = −L to x(t = T ) = L during the
360◦ scan, both direct reconstructions would be perturbed in similar ways. The main
difference between both reconstructions would be a shift about L against each other,
which is the same shift magnitude which the object underwent during the recording of
180◦. Hence, the detected magnitude of motion can be used directly without rescal-
ing for the subsequent application of filtered backprojection on dynamically curved
paths, which is used to ‘sharpen’ the reconstruction of the second set of projections
at the given point in time. Fig. 7.6 (c) shows an exemplary backprojection with the
deformation enlarged by a factor of 10 for better visibility. With this approach, the
motion artefacts were suppressed, significantly improving the reconstruction quality
(compare, for example, the slices shown in Fig. 7.6 (d) without correction and (e) with
correction). Both images depict an enlarged region of the object, reconstructed from
the same projections. The direct reconstruction in (d) shows artefacts especially at the
outer border of the match including non-closed disrupted structures and clearly visible
streaks. In the motion based reconstruction, these artefacts are reduced considerably.
New details in the wooden structure become visible as indicated. At this point, the en-
tire process of motion estimation and correction can be iterated with the higher quality
reconstructions. However, for the match presented here, a single iteration appeared to
be sufficient. Based on the proposed dynamic backprojection approach, the dynamics
of the burning process can be investigated with high image quality and at high spatial
and temporal resolution. The 4d nature and amount of data to analyse is illustrated in
Fig. 7.7, showing the rendered 3d structure at five different times during the process.
A high quality movie of the dynamics is available as online material in [117], including
single slices as well as a render of the entire structure.
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Figure 7.7: Rendered 3d structure of the burning match at different times.

7.5 Summary and outlook

In summary, this chapter presents a novel combination of techniques for 4d tomogra-
phy, backprojection along dynamically curved paths in combination with optical flow
analysis. This optimised reconstruction from the projection data stream provides ma-
terial movies with considerably reduced motion artefacts and at spatial and temporal
resolution sufficient to monitor micron scale structural changes during combustion. As
a proof-of-concept, we have studied the burning process of a match in 4d, which after a
hundred years of using matches in everyday life has certainly never before been studied
in 4d. Choosing wood as a sample, and a simple burning as a reaction, the example
also covers one of the first materials and material processes used by mankind.
Several experimental and instrumental aspects were of particular importance for this
work, notably the fast cameras. Regarding detection and data transfer, the GigaFRoST
technology at the Swiss Light Source will provide even higher acquisition speeds at a
rate of up to 8 GB/s [131]. To record the changes of the cellular wood structure (tra-
cheids with cell walls and lumen) during the combustion, phase contrast was essential.
It is much more sensitive to softer materials and smaller structures than absorption
contrast alone. The increase in contrast allows for shorter exposure times and thus
faster measurements which facilitate the optical flow analysis. Furthermore, the raw
data treatment and filtering of illumination artefacts was also a necessary step to reach
the level of data quality where the phase retrieval and optical flow analysis could be
put to the test successfully. The role of empty beam division and aberrations in the
illumination wave front has previously been addressed in [113].
Several improvements to the present schemes can be directly envisioned: (i) Curved
path backprojection and motion estimation can be iterated, as mentioned above. (ii)
The motion estimation can include higher orders of interpolation. For example, the
second order acceleration of the motion can be investigated by starting the calculation
of the optical flow at a slightly different angle and comparing the sets of optical flow
images. (iii) The concept of dynamically curved paths can be easily extended from
2d slices to 3d volumes. (iv) Finally, the concept of backprojection along dynamically
curved paths can be combined with the regularised models for dynamic CT, based on
prior information.
Using this combination of phase contrast recordings, motion estimates based on optical
flow and subsequent backprojection along appropriate dynamically curved paths, it
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should become possible to achieve the spatial and temporal resolution required for the
observation of material processes on the nanoscale. To this end, the parallel beam
illumination used here has to be replaced by a cone beam geometry with nanoscale
secondary focal spot size [58] and intrinsic geometric magnification.
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8 Summary and outlook

This work addresses a variety of aspects of the field of time-resolved X-ray phase-
contrast tomography. First, a combination of static tomography with phase retrieval
is discussed, and a powerful new reconstruction method is presented: In the special
but relevant case of a weak object, phase retrieval can be carried out entirely in 3d,
considerably improving the reconstruction quality. To this end, an artefact-free numer-
ical implementation of wave field propagation is introduced which scales well towards
higher dimensions. Challenges in the treatment of dynamic samples are discussed next
and the deep insight which time resolved tomography offers is demonstrated on the
example of sedimenting SiO2 micro-spheres in a water-filled capillary. An approach to
overcome limitations in spatial and temporal reconstruction quality by incorporating
a motion model into the reconstruction procedure is demonstrated on the example of
a burning wooden matchstick.

Both experiments are based on fast and sensitive high-resolution X-ray tomography.
Without the need for scanning, this is accomplished by propagation based near-field
holography. Therefore, a whole chapter is dedicated to the foundations and implemen-
tation of wave-field propagation, presenting both an angular-spectrum based and a
real-space convolution based approach. This includes some very fundamental notes on
numerical sampling und aliasing problems, with the proposition of an intuitive method
to remove the corresponding artefacts: Usually, the propagation can be implemented
by a real-space convolution with a kernel that corresponds to a slightly modified spheri-
cal wave, thus transporting information from one pixel to the whole positive half-space.
While this is justified for a point source, the angle of radiation originating from a fi-
nite pixel has to be limited. By properly modifying the convolution kernel, sampling
artefacts are completely removed, thus eliminating the need for conventional costly
zero-padding.
An important application of such numerical propagation is the problem of phase-
retrieval. A new approach to address this challenge was presented based on the novel
concept of propagating entire 3d objects, combining phase retrieval with tomography.
The common scheme of first retrieving the phase information of all projections indi-
vidually followed by an inverse Radon transform is reversed. Instead, a 3d “intensity
volume” is computed from the measurements, which then serves as a constraint in an
iterative algorithm working directly on 3d volumes to reconstruct the object structure
from all projections in parallel. A big advantage of this new reconstruction method is
the possibility to enforce a new class of constraints in 3d, both in the object and the de-
tection plane. Since the inverse Radon transform is performed only once, a tremendous
enhancement in reconstruction speed is obtained with respect to previous schemes of
combined iterative phase retrieval and tomographic reconstructions. At the same time,
the 3d propagation method preserves the essential benefits of tomographic consistency,
which is intrinsically enforced by the 3d scheme and was found to stabilise phase re-
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trieval with otherwise under-determined data. In combination with non-negativity, a
requirement for holographic imaging, the constraints can be sufficient to reconstruct
3d objects without any further a priori knowledge.
In addition to revealing static 3d structures with high sensitivity, propagation-based
phase contrast enables high acquisition rates with still sufficient signal to noise ratio to
investigate the 3d dynamics of micro-scale samples. This is demonstrated on sedimen-
tation, one of the oldest technical processes for the separation of particles from each
other and from liquids, which is still far from being completely understood. Following
the trajectories of monodisperse SiO2 microspheres with a diameter of 2µm in a water-
filled rectangular capillary with an edge length of 50µm, both the sedimentation and
Brownian motion of thousands of spheres can be observed in great detail. Complex
paths with large lateral displacements, particles rising against gravity in intertwined
and dynamically changing water currents as well as effects at the interface to the al-
ready settled particles can be observed directly. Notably, the measurement was carried
out in a synchrotron-based micro-CT setup with X-ray waveguide illumination, whose
high sensitivity and resolution are compatible with many interesting biological samples,
demonstrating the possibility to reveal fast dynamics in this challenging environment.
As a result of movement in the sample during recording, characteristic motion-artefacts
occur in conventional reconstructions. While this is shown to be acceptable when de-
termining the positions of identical objects such as spheres, the artefacts significantly
impair the reconstruction of unknown sample structures. The second experiment shows
a way to overcome this long-standing limitation: A novel combination of techniques for
4d tomography, namely backprojection along dynamically curved paths based on a mo-
tion model obtained by optical flow analysis, allows monitoring micron-scale structural
changes with a temporal resolution considerably smaller than the acquisition time of
a sinogram. We have successfully applied this scheme to resolve the combustion of a
wooden matchstick with a level of fidelity unattainable by conventional methods.
The results of this work suggest some further directions of investigation. Since we have
seen the advantages of combining phase retrieval and tomographic reconstruction, an
obvious but non-trivial next step would be the inclusion of motion retrieval in the
reconstruction process. This would allow utilising new kinds of constraints, e.g. the
detection of high accelerations in one area might restrict the local material composition.
At the moment, the handling of such large data sets with tens of thousands of high
resolution projections is still challenging, however, it seems likely that further advances
in data processing will soon enable more complex iterative procedures. One could en-
vision algorithms minimising a global cost function that punishes deviations of a 4d
guess from the measured data with degrees of freedom that allow a dynamic within
certain physically motivated boundaries. On the other hand, sequential schemes as
demonstrated on the SiO2 particles can also be the solution of choice, offering a highly
adaptable approach to the processes. Key components of such a unified algorithm have
already been introduced in this work: from numerical implementations of artefact-free
propagation, even in 3d, to advanced concepts of motion estimation and correction. Be-
sides this algorithmic development, continuous improvements of the instrumentation at
synchrotrons, the development of free electron lasers, and improved data processing are
promising a vibrant and exciting future for time-resolved phase contrast tomography.
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9 Appendix

9.1 Numerical backprojection of 2d images

The main part of the implementation of a backprojection is explained in this section.
The program is optimised for the CPU-based workstation at the Institute for X-ray
Physics, with 20 physical cores and a memory of about 512 MB (ECC RAM). The
routine is based on the parallel (back)projection of single voxels whose edge length is
identical to that of the projection pixels, as explained in Chap. 3.3. To this end, the
function backproject requires pointers to the reconstruction grid grid ptr, the stack
of projections prop ptr and the projection angles thetas (in degrees), as well as the
height nz and the width (and depth) nx of the projections and the volume, the number
of projections angles in the stack and the shift of the rotation axis with respect to the
centre of the volume. The rotation axis is parallel to the nz direction.

1 template <typename T>
void backpro j ec t (T* g r i d p t r , T* pro j p t r , double * thetas , const unsigned i n t nx ,

const unsigned i n t nz , const unsigned i n t angles , const double s h i f t )
{

T* temp = new T[ ( nx+4)*nz ] ;
memset ( temp , 0 . , ( nx+4)*nz* s i z e o f (T) ) ;

6 f o r ( unsigned i n t i =0; i<ang l e s ; i++)
{

memcpy(&(temp [2* nz ] ) , &( p r o j p t r [ i *nx*nz ] ) , nx*nz* s i z e o f (T) ) ;
backpro j ec t3d core<T>( g r i d p t r , temp , nx , nz , the ta s [ i ]*M PI/180 , s h i f t ) ;

}
11 d e l e t e [ ] temp ;
}

Here, each projection is copied into the larger image temp with the additional two pixel
rows each on the left and right side equal zero. This allows the parallelised main routine
backproject3d core to save expensive if-queries. The voxels are distributed equally
to the CPU threads. Each voxel column parallel to the rotation axis is projected onto
a maximum of three projection image columns. The weighting factors are calculated
according to Eq. (3.22) and each voxel adds the values of the corresponding pixels of
the projection images, weighted with these factors to its own value:

template <typename T>
void backpro j e c t3d co r e (T* const g value , T* const p value , const unsigned i n t nx ,

const unsigned i n t nz , double phi , const double s h i f t )
3 {

// f i r s t , c a l c u l a t e the geometry :
const T s inp = s i n ( phi ) ;
const T cosp = cos ( phi ) ;
phi −= ( i n t ) ( phi / (M PI/2) ) * M PI /2 ; // +phi equa l s −phi in p r o j e c t i o n

8 i f ( phi < 0) {phi = −phi ;}
i f ( phi > M PI/4) {phi = M PI/2 − phi ;}
const T a = s i n ( phi + M PI/4) / s q r t ( 2 . ) ; // Outer edge o f the t rapezo id in

p r o j e c t i o n p i x e l s
const T b = cos ( phi + M PI/4) / s q r t ( 2 . ) ; // Inner edge = cosp−a
const T m = 0 . 5/ ( a*a−b*b) ; // norma l i s a t i on f a c t o r

13
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// p a r a l l e l part o f the program
#pragma omp p a r a l l e l
{

i n t threads = omp get num threads ( ) ; // get number o f threads
18 i n t id = omp get thread num ( ) ; // get i n d i v i d u a l number o f t h i s

thread
var64 s t a r t = id * ( ( nx*nx ) / threads ) ; // d i s t r i b u t e the voxe l equa l l y to the

threads
var64 end = ( id==threads −1) ? ( nx*nx ) : ( ( id +1) * ( ( nx*nx ) / threads ) ) ;

23 unsigned i n t e o l = ( s t a r t /nx+1)*nx−1; // index o f the next ’ h o r i z o n t a l ’
end o f l i n e in the volume

T pos0 = 0 . 5* ( (nx−1)*( s inp−cosp ) + nx ) − s h i f t − ( s t a r t /nx ) * s inp ; //
p r o j e c t i o n o f the cen t r e o f the f i r s t voxe l in the s t a r t i n g column

T pos = pos0 + ( s t a r t%nx ) * cosp ; // exact p o s i t i o n o f the cen t r e o f
the f i r s t voxe l in the p r o j e c t i o n

T w1 , w2 , w3 ; // weight ing f a c t o r s f o r the three
columns

i n t lb = ( i n t ) ( pos−a+4096)−4096+2; // d i s k r e t e p o s i t i o n in p r o j e c t i o n
(+2 d i e to padding )

28 T d i s t = lb−pos−1;
var64 index ;
f o r ( var64 i=s t a r t ; i<end ; i++)
{

i f ( lb >= 0 && lb < nx+2) // p r o j e c t voxe l s and c o l l e c t
va lue s from p r o j e c t i o n images

33 {
i f ( d i s t>−b) {

w1 = ( d i s t>b) ? 1−m*( a−d i s t ) *( a−d i s t ) : d i s t /( a+b) +0.5 ;
w2 = 1−w1 ;

38 index = lb *nz ;
f o r ( var64 j=i *nz ; j<i *nz+nz ; j++){

g va lue [ j ] += p va lue [ index ]*w1 + p value [ index+nz ]*w2 ;
index++;

}
43

} e l s e {
w1 = m*( a+d i s t ) *( a+d i s t ) ;

i f ( d i s t+1>a )
48 {

w2 = 1−w1 ;

index = lb *nz ;
f o r ( var64 j=i *nz ; j<i *nz+nz ; j++){

53 g va lue [ j ] += p va lue [ index ]*w1 + p value [ index+nz ]*w2 ;
index++;

}
}
e l s e

58 {
w2 = 1−m*( a−d i s t −1)*( a−d i s t −1)−w1 ;
w3 = 1−w1−w2 ;

index = lb *nz ;
63 f o r ( var64 j=i *nz ; j<i *nz+nz ; j++){

g va lue [ j ] += p va lue [ index ]*w1 + p value [ index+nz ]*w2 +
p value [ index+nz+nz ]*w3 ;

index++;
}

}
68 }

}
i f ( i<e o l ) { // not reached the end o f l i n e ? next voxe l column

d i s t −= cosp ;
i f ( d i s t+a > 1) { lb−−; d i s t −−;}

73 e l s e i f ( d i s t+a <= 0) { lb++; d i s t ++;}
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} e l s e { // s t a r t a new l i n e , r e c a l c u l a t e some va lue s f o r
b e t t e r accuracy
e o l += nx ;
pos0−=sinp ;
lb = ( i n t ) ( pos0−a+4096)−4096+2;

78 d i s t = lb−pos0−1;
}

}
}

}

9.2 Convolution-based numerical propagation

A basic Matlab implementation of the convolution-based 2d propagation with the ker-
nel limited to the well-sampled region according to Chap. 4.3 is presented in the fol-
lowing. As parameters, the function requires an image img to be propagated, the pixel
size px size, wavelength lambda and propagation distance dist in the same arbitrary
units. Optional arguments are a lateral shift of the propagation kernel out shift in
units of pixel, and the amplitude of the illumination wave virtual padd. By default,
the image is assumed to be surrounded by perfectly absorbing material. This can be
changed by the virtual padd value to the signal of an infinitely extended plane wave
with the given (complex) amplitude at the starting distance. The function returns the
propagated image res as well as the propagation kernel pmap in real space:

f unc t i on [ res , pmap ] = prop2d conv ( img , px s i z e , lambda , d i s t , o u t s h i f t ,
v i r tua l padd , ˜)

3
% Have a look on the input and s e t the d e f a u l t va lue s
i f ( narg in < 4)

e r r o r ( ’ c a l l : prop huygens ( img , px s i z e , lambda , d i s t [ , o u t s h i f t , v i r tua l padd ] ) ’
) ;

end
8 i f ( narg in < 5)

o u t s h i f t =0;
end
i f ( narg in < 6)

v i r tua l padd =0;
13 end

% c a l c u l a t e some f a c t o r s in s i z e o f p i x e l s
[ ny , nx ] = s i z e ( img ) ;

18 N=min (nx , ny ) ;
L=lambda / p x s i z e ; % lambda e f f .
d=abs ( d i s t ) / p x s i z e ; % d i s t e f f .
max angle = as in (L/2) ; % maximum wel l−sampled prop . ang le
max range = tan (2*max angle ) *d ;

23 k=2*pi /L ; % e f f . wave number
sampl ing border = N* s q r t (1/Lˆ2−0.25)

% check p l a u s i b i l i t y
28 i f (d == 0) % avoid d i v i s i o n by zero i f prop . d i s t . should be 0 f o r any reason

d=L/100 ;
end
i f (L>2)

e r r o r ( ’ h i g l y oversampled ! Use a common f r e s n e l propagat ion . ’ ) ;
33 end
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% c a l c u l a t e the sample po in t s o f the convo lut ion ke rne l .
border x=nx ;

38 border y=ny ;
s h i f t x = o u t s h i f t (1 ) ;
s h i f t y = 0 ;
i f ( numel ( o u t s h i f t ) > 1)

s h i f t y = o u t s h i f t (2 ) ;
43 end

[X,Y] = meshgrid(−round (nx−s h i f t x ) : round ( nx+s h i f t x ) , −round (ny−s h i f t y ) : round ( ny+
s h i f t y ) ) ;

By default (no lateral shift), the convolution kernel is symmetrical around zero. It
is crucial that the zero itself matches the centre pixel: For very short propagation
distances, the kernel corresponds to a peak with an extension of one (or a few) pixels.
For a correct result, this peak must not be interpolated to several pixels, as otherwise
the propagated wave field is blurred. Therefore, the convolution kernel always has an
odd number of pixels in each dimension. The outgoing spherical wave is calculated
according to the Sommerfeld I solution (Eq. (4.20)) and limited by the “numerical
obliquity factor” as follows:

% r a d i a l d i s t ance squared :
amap = X.ˆ2 + Y. ˆ 2 ;

55

% imaginary d i s t ance from a source p i x e l to a l l p o s s i b l e t a r g e t p i x e l s :
i f (dˆ2 < 1e5*Nˆ2)

pmap = 1 i * s q r t (dˆ2 + amap) ;
60 e l s e

% use a s e r i e s expansion f o r very l a r g e d
pmap = 1 i *(d + amap/(2*d) − amap .ˆ2/(8*dˆ3) ) ; % + O(dˆ−4)

end

65
% c r e a t e s p h e r i c a l wave with the numerica l o b l i q u i t y f a c t o r to l i m i t the d i r e c t i o n o f

the r a d i a t i o n to the we l l sampled r eg i on :
amap = atan2 ( s q r t (amap) ,d) ;
i s c a l e= 1./(1− cos ( max angle ) ) ;
pmap = exp ( k * pmap) . / (L*pmap) .* (1−1./(k*pmap) .* i s c a l e ) .* cos (amap* pi /2 ./

max angle ) ;
70 pmap(amap > max angle ) = 0 ;

% t h i s cut−o f f can int roduce numerica l a r t e f a c t s f o r very smal l d i s tance s , a subpixe l−
accuracy cut−o f f i s needed f o r those r e g i o n s . However , i t i s r ep l aced by Four i e r
sampling in t h i s r eg i on l a t e r .

% normal i se ke rne l
75 i f ( max range < N)

norm = abs (sum(sum(pmap) ) )
pmap = pmap/norm ;

end

80
% f l i p phases f o r negat ive propagat ion d i s t ance
i f ( d i s t < 0)

pmap = conj (pmap) ;
end

85

% subt rac t the i l l u m i n a t i o n amplitude
r e s = ze ro s ( s i z e (pmap) ) ;
r e s ( 1 : ny , 1 : nx ) = img − v i r tua l padd ;

90

% perform the convo lut ion :
f f t i m g = f f t s h i f t ( f f t 2 ( i f f t s h i f t ( r e s ) ) ) ;

150



9.2 Convolution-based numerical propagation

f ftpmap= f f t s h i f t ( f f t 2 ( i f f t s h i f t (pmap) ) ) ;
95

% f o r shor t d i s t a n c e s : modify convo lut ion ke rne l with d i r e c t l y c a l c u l a t e d va lue s
in Four i e r space , i . e .\ use the phase o f a common Fresne l propagat ion whi l e
keeping the amplitude o f the ke rne l

i f (d < sampl ing border )
[ ch irp ny , ch i rp nx ]= s i z e (pmap) ;

100 [X,Y]= meshgrid (−( chirp nx −1) / 2 : ( chirp nx −1)/2 ,−( chirp ny −1) / 2 : ( chirp ny −1)/2) ;
ch i rp = exp (1 i * s i gn ( d i s t ) *d* s q r t ( kˆ2 − (X*2* pi / ch i rp nx ) .ˆ2 − (Y*2* pi / ch i rp ny

) . ˆ 2 ) ) ;
fftpmap = abs ( fftpmap ) .* exp (1 i * ang le ( ch i rp ) ) ;
pmap= f f t s h i f t ( i f f t 2 ( i f f t s h i f t ( fftpmap ) ) ) ; % f o r re turn va lue s
f p r i n t f ( ’%s \n ’ , ’ Note : shor t d i s t ance sampling ’ ) ;

105 end

r e s = f f t s h i f t ( i f f t 2 ( i f f t s h i f t ( fftpmap .* f f t i m g ) ) ) ;

110
% cut to the reques ted output s i z e and add the propagated i l l u m i n a t i o n
r e s = r e s ( 1 : ny , 1 : nx ) + v i r tua l padd *exp (1 i *k*d) ;

end

Code snippets for a qualitative comparison of the propagation methods in “1+1d” are
listed in the following. First, a zone plate (see 9.3 for details) is created as an object
and the output geometry is defined:

% output image s i z e
nx = 1024 ; % propagat ion s t ep s

3 ny = 512 ; % image p i x e l
L = 0 . 1 ; % wavelength in p i x e l
dx = 50 ; % propagat ion step s i z e
k=2*pi /L ; % wavenumber

8 % zone p l a t e parametres
f z = 10000 ;
temp = [ 0 . 5 : ny]−ny /2 ;
temp = temp . ˆ2 / (L* f z ) ;
ob j e c t = mod( f l o o r ( temp ) ,2 ) ;

13 ob j e c t ( 1 : 7 0 ) = 0 ;
ob j e c t ( end−69: end )= 0 ;

% output p o s i t i o n s
[X,Y] = meshgrid ( 0 . 0 0 0 1 : dx : nx*dx , −ny : ny ) ;

The classical convolution-based approach is then obtained by:

% c r e a t e convo lut ion ke rne l
r = s q r t ( X.ˆ2 + Y.ˆ2 ) ;

3 ke rne l = exp (1 i * k .* r ) . / ( 2* pi * s q r t ( r ) ) .* ( 1 . / r − 1 i *k ) .* (X. / r ) ;
r e s u l t = ze ro s ( s i z e ( k e rne l ) ) ;
r e s u l t ( 1 : numel ( ob j e c t ) , 1 ) = ob j e c t ;

% convo lut ion
8 r e s u l t = i f f t 2 ( f f t 2 ( r e s u l t ) .* f f t 2 ( k e rne l ) ) ;

r e s u l t = r e s u l t ( end−ny+1:end , : ) ;

The Fresnel propagation can be achieved by:

1 propagator = exp (1 i * X .* s q r t ( kˆ2 − (Y* pi /ny ) . ˆ2 ) ) ;
r e s u l t = ze ro s ( s i z e ( propagator ) ) ;
r e s u l t ( 1 : numel ( ob j e c t ) , : ) = repmat ( object ’ , [ 1 nx ] ) ;
r e s u l t = f f t s h i f t ( i f f t ( i f f t s h i f t ( propagator .* f f t s h i f t ( f f t ( r e s u l t ) ) ) ) ) ;
r e s u l t = r e s u l t ( end−ny+1:end , : ) ;

And the numerical obliquity factor propagation can be approximated as
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% c r e a t e convo lut ion ke rne l
r = s q r t ( X.ˆ2 + Y.ˆ2 ) ;
k e rne l = exp (1 i * k .* r ) . / ( 2* pi * s q r t ( r ) ) .* (X. / r ) .* ( 1 . / r − 1 i *k ) ;
r e s u l t = ze ro s ( s i z e ( k e rne l ) ) ;

5 r e s u l t ( 1 : numel ( ob j e c t ) , 1 ) = ob j e c t ;

% c a l c u l a t e numerica l o b l i q u i t y f a c t o r
angle max = as in (L/2) ;
o b l i q u i t y = cos ( p i /2* atan2 (Y,X) / angle max ) ;

10 o b l i q u i t y = o b l i q u i t y .* ( h e a v i s i d e ( atan2 (Y,X)+angle max )−h e a v i s i d e ( atan2 (Y,X)−
angle max ) ) ;

k e rne l = ke rne l .* o b l i q u i t y ;

% convo lut ion
r e s u l t = i f f t 2 ( f f t 2 ( r e s u l t ) .* f f t 2 ( k e rne l ) ) ;

15 r e s u l t = r e s u l t ( end−ny+1:end , : ) ;

9.3 Properties of binary zone plates

Figure 9.1: Schematic construction of a zone plate: The zones are defined by their
distance to the focus. See text for details.

The inventor of the zone plate is said to be Lord Rayleigh, who describes the
principle in a diary entry dated 11th April 1871: “The experiment of covering the odd
Huygenian zones to amplify light in the middle was very successful” (see [134], footnote
18 p. 795). In Fig. 9.1 this principle is sketched for an incident plane wave arriving

from the left, which is to be focused at the point ~f . First of all, any reference point
on the plate can be selected that allows the light beam to pass through to the focus
without obstruction (here at (z = 0, y = fy)). Around this point, zones are defined
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which differ in their distance to the focus. The n-th zone consists of all points (0, y) to
which the realtion

n · λ
2
≤ ∆s < (n+ 1) · λ

2
(9.1)

applies. Whenever y becomes so large that the difference in distance between ∆s and
the reference path exceeds a new half-wavelength λ/2, a new zone begins. Due to this
definition, for each beam passing a zone there is a beam from the directly adjacent zones
which is destructively interfering in the focus. In contrast, from each zone after the
next zone a constructively interfering beam reaches the focus. Following Rayleigh’s
idea, every second zone can now be designed to absorb, so that only constructively
interfering portions meet in the focus point and a maximum of intensity is obtained.
Since the efficiency decreases due to absorbing areas, it is advisable not to cover the
zones, but to produce them from a phase shifting material: If the phase in every second
zone changes by π (relative to the reference beam), the proportions of all zones interfere
constructively in the focus. The difference in path length can be calculated using the

Figure 9.2: Zones of a symmetrical zone plate according to the ZP equation (??). Each
transparent zone has the same area and contributes equally (in case of an infinitely thin
zone plate) to the intensity of the focus.

definitions from Fig. 9.1 to

∆s =
√
f 2
z + (y − fy)2 − fz

!
= n · λ

2
. (9.2)

For given fz and fy one obtains

n(y) =
2

λ

(√
f 2
z + (y − fy)2 − fz

)
(9.3)

and

y(n) = fy ±

√(
nλ

2

)2

+ nλfz . (9.4)

In Eq. (9.4) the quadratic term is usually neglected in very good approximation, since

λ for X-rays is very small in comparison to |~f |. For fy = 0 we obtain the Zone Plate
equation

y(n)2 = nλfz . (9.5)
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Figure 9.2 shows a two dimensional symmetrical zone plate calculated in this way. In
addition to the desired focus at fz, there are other foci in places where the distance
difference (Eq. (9.2)) is an odd multiple of half the wavelength, i.e. ∆s = j · n · λ

2
with

j = 3, 5, 7, .... According to Eq. (9.5) (n→ j · n), the n-th order focus is located at

fz,j =
fz,1
j

.

As with all diffraction optics there are also divergent parts of radiation, which seem to
originate from a negative focus j = −1,−3,−5.... For fy 6= 0, the focus is not on the
optical axis and one speaks of an off-axis zone plate. In Fig. 9.1 it becomes obvious
that it corresponds to a section of a normal zone plate. The characteristic zone-plate-
shaped wave field with highly divergent components and easily verifiable focal points
is ideal for testing numerical propagation methods.
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Überhaupt muss ich mich bei allen Mitarbeitern des Instituts für Röntgenphysik be-
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