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4  Summary 

SUMMARY 

Among the known pig breeds, the Göttingen Miniature Pig (GMP) stands out due to its 

special characteristics and history. Its current appearance dates back to the 1960´s when 

animal scientists from Goettingen took the effort to breed a particularly small, white-coated 

pig for laboratory use. For this purpose, a total of three breeds with different characteristics, 

the Minnesota Minipig, the Vietnamese Potbellied Pig and the German Landrace were 

crossed until the new breed met the expectations. With a weight of 35 to 45 kg, adult minipigs 

are considerably smaller than normal sized fattening breeds and pigmentation has almost 

disappeared. Although the breeding of the GMP has been scientifically accompanied from the 

beginning, the exact background of the dwarfism is so far unknown. 

In recent years, more and more molecular genetic techniques have entered into animal 

breeding, and so today's Next Generation Sequencing (NGS) allows the entire genome of an 

individual to be deciphered at an acceptable cost. This technique will now be used in this 

study to further investigate the genetic background of size of the GMP. In addition, the 

breeding of a laboratory animal in very few isolated stocks implies that the danger of 

population stratification, sub-division of the parent population into sub-populations with 

different characteristics, is omnipresent but not desired. In this regard, on the basis of NGS 

data we try to identify possible differentiation between the individual breeding stocks and to 

assess whether breeding countermeasures are necessary. 

In chapters 2 and 3, we use whole genome sequence data from various large-breed pig breeds 

to compare them to full-genome sequence data from ten miniature female Goettingen 

Minipigs and ten MiniLEWE, another miniature pig breed, as well as a DNA pool made up 

from ten other MiniLEWEs. Assuming that selection for a small size favoured similar genes 

in the two miniature swine breeds, we searched for regions in the genome where the genetic 

variability was reduced due to directional selection but at the same time the regions were 

highly differentiated from the respective regions in large breeds. Depending on the thresholds 

used for the three statistics "expected heterozygosity" and FST, as well as the "composite 

likelihood ratio test" (CLR), which is based on the distribution of allele frequencies, different 

genome parts were detected: while 15.7% of the autosomal genome were identified in the first 

approach in chapter 2 as signatures of selection, these were only 2% in the second section in 

chapter 3, using much sharper limits. Already the first approach showed that the expected 

heterozygosity and the CLR test complemented each other by identifying different regions in 
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which various candidate genes for growth, such as TGFβ and DDR2, could be localized. In 

the second part in chapter 3, however, the more specific approach significantly reduced the 

number of regions to be examined. Thus, two possible mechanisms could be identified as a 

basis for short stature: changes in the MAP kinase pathway and a possible insulin resistance. 

Furthermore, by analyzing genotype data from a cross-breeding experiment between GMP 

and large pigs, the inheritance of an exceptionally large swept haplotype on chromosome X 

could be clarified and shown to account for about 3% of body length in the F2 cross-breds. 

In chapters 4 and 5, the population structure of today's GMP, which today is bred in one 

stock each in Relliehausen in Germany, North Rose in the USA, Nisshin in Japan and two 

stocks in Dalmose in Denmark, is examined in more detail. From each of the five independent 

breeding stocks a representative sample of 20 animals was taken. The DNA of every ten of 

these animals was pooled in a "DNA pool" so that a total of ten pools, two per stock, could be 

re-sequenced. In addition, data from all breeds already used in the first study were added. By 

estimating the differentiation between stocks, based on the FST values for each locus, it was 

shown in chapter 4 that GMP is clearly differentiated from other breeds. Nevertheless, there 

are signs of a beginning separation into three groups: Relliehausen, North Rose and a group 

consisting of the two Danish stocks and Japan. On the basis of the functional annotation of the 

SNPs it could be shown that this differentiation takes place mainly in genome regions, which 

probably are not related to the target phenotypes of the GMP. In the extension of these studies 

in chapter 5, a KEGG pathway analysis attempts to better understand complex biological 

relationships between genes. This analysis has shown that the individual stocks are not 

differentiated in most the 316 pathways. However, significant differentiation in the pathway 

"glutamatergic synapse", which could be related to behavioral traits, could be found between 

a Danish population and the unit in North Rose. When looking at the overall remaining 

genetic variability, it became clear that the conservation breeding program in Relliehausen has 

led to this stock today having the greatest genetic diversity and thus to be regarded as the gene 

reserve of the GMP breed. 

Overall, it was shown that the entire genome of the Goettingen miniature pig can be examined 

in much greater detail using NGS technology than was the case with SNP marker arrays. The 

possibility of direct analysis of potentially functional variation, including structural variation, 

appears to be a great benefit. Nevertheless, their use will be limited to relatively small sample 

sizes for the foreseeable future, due to the high costs compared to SNP arrays. 
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ZUSAMMENFASSUNG 

Unter den bekannten Schweinerassen sticht das Göttinger Miniaturschwein (GMP) aufgrund 

seiner besonderen Eigenschaften und Historie heraus. Es geht in seiner heutigen Form auf die 

Bestrebungen Göttinger Tierzüchter in den 1960er Jahren zurück, ein besonders kleines, rein 

weißes Schwein für den Laboreinsatz zu züchten. Dazu wurden insgesamt drei Rassen mit 

unterschiedlichsten Eigenschaften, das Minnesota Minischwein, das Vietnamesische 

Hängebauchschwein und die Deutsche Landrasse gezielt miteinander verpaart, bis die neue 

Rasse den Erwartungen entsprach. Mit einem Gewicht von 35 bis 45 kg sind adulte 

Minischweine erheblich kleiner als normale, zur Nahrungsgewinnung eingesetzte Rassen und 

Pigmentierung kommt nahezu nicht mehr vor. Obwohl die Zucht des GMP seit Anbeginn 

wissenschaftlich begleitet wird, liegen die genauen Hintergründe der Verzwergung bislang im 

Unklaren.  

In den letzten Jahren haben immer mehr molekulargenetische Techniken in die Tierzucht 

Einzug gehalten und so ist es heute durch so genanntes „Next-Generation-Sequencing“ (NGS) 

möglich, das gesamte Genom eines Individuums zu annehmbaren Kosten zu entschlüsseln. 

Diese Technik wird nun in dieser Studie dazu genutzt, um das Größenwachstum beim GMP 

genauer zu untersuchen. Darüber hinaus bringt die Zucht eines Labortieres in sehr wenigen 

isolierten Beständen es mit sich, dass die Gefahr einer Populationsstratifikation, des 

Auseinanderdriftens der Ausgangsrasse in Unterrassen mit unterschiedlichen Eigenschaften, 

allgegenwärtig, jedoch nicht gewünscht ist. Diesbezüglich versuchen wir auf der Basis von 

NGS-Daten, eventuelle Differenzierung zwischen den einzelnen Zuchtbeständen zu finden 

und einzuschätzen, ob züchterische Gegenmaßnahmen nötig sind. 

In Kapitel 2 und 3 verwenden wir Vollgenomsequenzdaten von verschiedenen 

Großschweinerassen, um sie mit Vollgenomsequenzdaten von zehn weiblichen Göttinger 

Miniaturschweinen und zehn MiniLEWE, einer weiteren Miniaturschweinerasse, sowie eines 

DNA-pools aus zehn MiniLEWE zu vergleichen. In der Annahme, dass Selektion auf eine 

geringe Größe in den beiden Minischweinerassen ähnliche Gene favorisiert hat, suchten wir 

dabei nach Regionen im Genom, in denen die genetische Variabilität infolge gerichteter 

Selektion deutlich vermindert ist, welche sich aber gleichzeitig stark von denen der 

Großschweine unterscheiden. Abhängig von den verwendeten Schwellenwerten für die drei 

verwendeten Statistiken „erwartete Heterozygotie“ und FST, sowie dem auf der Verteilung der 

Allelfrequenzen basierenden „Composite likelihood ratio test“ (CLR) wurden 

unterschiedliche Genomanteile detektiert: Während der erste Ansatz in Kapitel 2 in 15.7 % 
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des autosomalen Genoms Spuren von Selektion identifizierte, waren dies im zweiten 

Abschnitt in Kapitel 3, durch die Nutzung deutlich schärferer Grenzwerte, nur 2 %. Bereits 

der erste Ansatz zeigte, dass die erwartete Heterozygotie und der CLR Test sich ergänzten, 

indem sie unterschiedliche Regionen identifizierten, in denen unter anderem diverse 

Kandidatengene für Wachstum, zum Beispiel TGFβ und DDR2, lokalisiert werden konnten. 

In zweiten Ansatz in Kapitel 3 konnte durch das spezifischere Vorgehen dagegen die Anzahl 

der zu untersuchenden Regionen deutlich vermindert werden. So konnten zwei mögliche 

Mechanismen, zum einen Veränderungen im MAP-Kinase-Weg und eine mögliche 

Insulinresistenz als Grundlage des Minderwuchses identifiziert werden. Des Weiteren konnte 

durch die Analyse von Genotyp-Daten aus einem Kreuzungsexperiment zwischen GMP und 

Großschweinen, die Vererbung eines außergewöhnlich großen Haplotyps auf Chromosom X 

geklärt und gezeigt werden, dass dieser etwa 3 % der Körperlänge der Minischweine erklärt. 

In den Kapiteln 4 und 5 wird die Populationsstruktur des heutigen GMP näher untersucht, 

welches in jeweils einem Bestand in Relliehausen in Deutschland, North Rose in den USA, 

Nisshin in Japan und zwei Beständen in Dalmose in Dänemark, gezüchtet wird. Dazu wurde 

aus jedem der fünf unabhängigen Zuchtbestände eine möglichst repräsentative Stichprobe von 

schlussendlich jeweils 20 Tieren genommen. Die DNA von jeweils zehn dieser Tiere wurde 

in einem „DNA-Pool“ zusammengefasst, sodass insgesamt zehn Pools, zwei je Bestand, 

sequenziert werden konnten. Zusätzlich wurden alle bereits in der ersten Studie verwendeten 

Rassen hinzugenommen. Durch Abschätzung der Differenzierung zwischen den Beständen, 

anhand der FST Werte für jeden einzelnen Locus, konnte in Kapitel 4 gezeigt werden, dass 

das GMP eindeutig von anderen Rassen abzugrenzen ist. Trotzdem finden sich Anzeichen für 

eine beginnende Auftrennung in drei Gruppen: Relliehausen, North Rose und eine Gruppe 

bestehend aus den beiden Dänischen Beständen und Japan. Trotzdem konnte auf Basis der 

funktionellen Annotation der SNPs gezeigt werden, dass diese Ausdifferenzierung vor allem 

in Genomregionen stattfindet, welche vermutlich nicht in Verbindung mit den Zielmerkmalen 

stehen. In der Erweiterung dieser Untersuchungen in Kapitel 5 wird in Form einer KEGG-

Pathwayanalyse versucht, komplexe biologische Zusammenhänge zwischen Genen besser zu 

erfassen. Diese Analyse hat gezeigt, dass die einzelnen Bestände in den 316 untersuchten 

Pathways nahezu nie voneinander differenziert sind. Jedoch konnte zwischen einem 

Dänischen Bestand und der Einheit in North Rose signifikante Differenzierung im Pathway 

„Glutamatergic synapse“ gefunden werden, welcher mit Verhaltensmerkmalen in Verbindung 

stehen könnte. Bei der Betrachtung der insgesamt verbleibenden genetischen Variabilität 
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wurde deutlich, dass das Erhaltungszuchtprogramm in Relliehausen dazu geführt hat, dass 

dieser Bestand heute die größte genetische Diversität aufweist und somit als Genreserve des 

GMP zu betrachten ist. 

Insgesamt zeigte sich, dass das gesamte Genom des Göttinger Miniaturschweins mit Hilfe der 

NGS-Technologie deutlich detaillierter untersucht werden kann, als dies noch mit SNP-

Markerarrays der Fall war. Die Möglichkeit der direkten Analyse potentiell funktioneller 

Variation, inklusive struktureller Variation, erscheint als großer Gewinn. Trotzdem wird ihr 

Einsatz auf absehbare Zeit aufgrund der hohen Kosten im Vergleich zu SNP-Arrays, auf 

relativ geringe Stichprobenumfänge begrenzt bleiben. 



 

CHAPTER 1 

 

 

General Introduction 
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A brief history of the Goettingen Minipig 

The Goettingen Minipig (GMP) is a relatively young breed with a diverse genetic background 

(Figure 1.1; Simianer and Köhn 2010). Its roots can be traced back to 1949 when efforts were 

undertaken to establish a breeding program for its ancestor, the Minnesota Minipig, a small-

sized laboratory pig (Dettmers 1956). Feral hogs from Alabama, small, black and likely of 

European descent (Sus scrofa ferus), and another feral hog sampled from Santa Catalina, CA, 

USA, probably of the genus Sus vittatus, were used as foundation. In 1951 and 1953, Piney 

woods pigs from Louisiana were introgressed and eventually in 1957 Ras-n-Lansa pigs, 

originating from Guam were introduced. The resulting Minnesota Minipig, was highly 

variable in colour and weight (Dettmers et al. 1965). Prof. Fritz Haring from the Institute of 

Animal Breeding and Genetics of the Georg-August-University Goettingen, noticed the 

demand for non-primate model animals in Europe and initiated a program to breed the 

Goettingen Minipig based on the Minnesota Minipig. 

 

Figure 1.1: Breed history of the Goettingen Minipigs as described in Literature. 

Five Minnesota Minipigs were imported in 1960 and mated to seven Vietnamese potbellied 

pigs (VPP) from Stuttgart zoological gardens, these pigs were dark coated, small and fertile, 

despite being relatively obese. In 1965, another four VPP individuals were acquired. Albeit 

exhibiting a wide variety of colours, none of the offspring was uniformly white coated, a trait 

highly desired by dermatologists. This goal was eventually achieved by introgressing German 

landrace sires by artificial insemination followed by reciprocal crossing with minipigs and 

strong selection for small body sizes (Glodek and Oldigs 1981), resulting in a coloured and a 
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uniformly white coated line. Since then, the pedigree, growth and fertility phenotypes have 

been completely recorded 

The growth of the Goettingen Minipig 

When the idea to use miniature pigs in laboratory research came up at the Hormel Institute of 

University of Minnesota in the 1940’s (Dettmers et al. 1965) focus was set on reduction of 

body size. The intention was to use the pig, due to physiological similarities to humans, but a 

reduced size would prove advantageous in laboratory and pharmacological testing. This aim 

was attained, when the GMP was established in the 1960’s (Simianer and Köhn 2010) and 

today the Goettingen Minipig is considered to be the smallest pig breed (Figure 1.2) under a 

controlled breeding scheme (Swindle et al. 2012).  

 

Figure 1.2: Growth curve from all non-pregnant GMP from Denmark. Estimated mean 

and standard deviation based on recording in 2015-2017. 

The dwarfism of the GMP is characterized by a proportional miniaturization (Simianer and 

Köhn 2010), and does not involve features such as achondroplasia. Since some of the 

ancestral breeds, selected for their small size, originate from islands, this type is deemed to be 

a form of insular dwarfism (Simianer and Köhn 2010), a mechanism that generally leads to 

diminishment of body size of island based mammals and other isolated species, and is thought 
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to have evolved to cope with restricted nutrition in isolated habitats (Lomolino 2005). Albeit 

not on an island, pygmies were exposed to similar conditions in rainforest, possibly leading to 

short stature (Perry and Dominy 2009). Their physiological background is supposedly a 

deficiency of the pituitary gland, administering IGF 1 (Merimee et al. 1987), and a defect in 

the growth hormone receptor GHR (Merimee et al. 1989).  IGF 1 and IGF 2 play an important 

role in swine growth processes as well (Van Laere et al. 2003; Jeon et al. 1999; Owens et al. 

1990) and one first applications of gene editing on livestock was the knock-out of GHR in 

pigs, resulting in a drastic reduction of size (Cyranoski 2015). Former studies using SNP 

arrays on the GMP (Gaerke et al. 2014) identified additional candidate genes for growth, such 

as SOCS2, TXN, DDR2 and GRB10. To this day, size inheritance remains poorly understood. 

Next generation sequencing 

The advent of molecular biotechnologies in livestock sciences changed the way animal 

breeders elucidate the genetic background of phenotypic traits. Today, SNP arrays are widely 

used, both for active breeding, as implemented in genomic selection, as well as for 

investigatory purposes, as in genome wide association studies (GWAS). While high-

throughput genotyping arrays were still gaining importance in the aforementioned fields, the 

publication of several livestock genomes, beginning with the chicken genome in 2004 (Hillier 

et al. 2004), followed by the horse genome (Assembly 2007, Wade et al. 2009), the cow 

genome (Elsik et al. 2009), and the pig genome (Groenen et al. 2012), enabled the use of  

techniques collectively called ‘next generation sequencing’ (NGS) or ‘massively parallel 

sequencing’ (not to be confused with ‘third generation sequencing’). Different to SNP arrays, 

which rely on already known polymorphic positions and are specifically designed based on a 

predefined discovery set of animal samples, NGS is based on the re-sequencing of a whole 

genome. First sequencing approaches like Maxam-Gilbert- or Sanger-Sequencing were 

expensive and slow (by current standards) and were restricted to short sequences of specific 

loci. Sanger’s dideoxynucleotide sequencing became what is known as ‘first-generation-

sequencing’ (Liu et al. 2012). This technique was used to produce the first de-novo sequence 

of the human genome (Lander et al. 1999) which took about 13 years and USD $100M. 

(NHGRI 2016). Second-generation sequencing or ‘pyrosequencing’ was introduced after a 

new mechanism of measuring pyrophosphate synthesis was discovered (Nyrén and Lundin 

1985), that could visualize DNA synthesis in real-time without using radio- or fluorescently-

labeled dNTPs and electrophoresis (Heather and Chain 2016). Both, Sanger- and 

pyrosequencing require DNA polymerase to synthesize the complement strand to the 
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respective DNA fragment and are therefore classed as ‘sequencing-by-synthesis’ methods. 

The term “next generation sequencing” was first coined, when sequencers reached the 

capacity to process millions of reads in parallel, enabling whole-genome association studies 

and other input demanding approaches (Reis-Filho 2009). Since then, the cost of sequencing 

has consistently dropped (Figure 1.3). 

 

Figure 1.3: Sequencing costs per sequenced nucleotides (based on NHGRI 2016). 

The first commercially successful massively parallel machine was developed by 454 Life 

Sciences and current NGS systems followed its concept, for example the Illumina HiSeq2000 

and HiSeq X10, used in our studies.  

The Illumina sequencing approach 

Current Illumina sequencers use polymerase-based sequencing-by-synthesis with bridge 

amplification, that allows paired-end sequencing of short reads (Mardis 2008) and basic 

understanding of the principles of function is necessary to follow considerations made in this 

thesis. The following pipeline describes the workflow (Illumina 2018). 

Library preparation 

Extracted DNA is fragmented and tagged with adapters using transposons. Reduced cycle 

amplification is then used to add sequence primer binding adaptors, indices and a sequence 



14 Chapter 1 

complementary to the oligonucleotides (oligos) on the sequencers flow cell, to each side of 

the read. Thus, the read can be tagged to the flow cell using the complementary regions, 

identified by the index, and sequencing can be initiated at the primer binding site. 

Cluster Amplification 

The bottom of each channel of the flow cell is covered by lawn of two types of oligos, which 

are complementary to the oligos, tagged to each side of the fragmented DNA. The fragments 

are washed over the channel and adhere to one type of oligos. The flow cell oligo sequence is 

then elongated by a polymerase along the original template. That double strand is denatured 

and the original template is removed. The template folds over to the second type of oligo, 

forming a bridge, during a process called bridge amplification. The complementary strand is 

synthesized along the bridge and the double-stranded bridge is denatured, resulting in single-

stranded forward and reverse strand being hybridized to the oligos. This process is repeated 

over and over to produce millions of clusters of clones of each read. Eventually the reverse 

strands are removed from the flow cell, and the free complementary region of the forward 

strand is blocked to prevent undesired bridge amplification. At the end of clustering, the 

channel contains clusters of single forward strands fixed on the first type of oligos and free 

second type oligos.  

Sequencing 

The sequencing primer is hybridized to the 5’ end. Fluorescently tagged nucleotides are 

provided and the complementary nucleotide is hybridized to the forward strand. The 

hybridized nucleotide emits a light signal which is detected and specific for each of the four 

possible nucleotides. Each Nucleotide is initially blocked to prevent hybridization of more 

than one base, ensuring, so that only one base is read per cycle. After a certain number of 

cycles (Our study: HiSeq2000: 100; HiSeqX10: 150) the double strand is denatured and the 

index primer is amplified. The index of the read is sequenced as the read before. Primer and 

index are denatured and the 5’ oligo region left unprotected, so the read can perform bridge 

amplification to the second type oligo on the flow cell. The second index is read to identify 

the two paired mate reads. The bridge is denatured and the forward read removed. The reverse 

read is sequenced as the forward read before. 
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Raw sequence preparation to variant calling 

The output of the Illumina sequencers is provided in FASTQ format (Cock et al. 2010). The 

excerpt (Scheme 1.1) shows the four lines characterizing each read. For paired end 

sequencing, forward and reverse reads are normally separated into two files. The first line is a 

unique identifier, which enables traceability of every read ever produced by a sequencer. The 

second line is the nucleotide sequence of the read, the third line is always a ‘+’ depicting 

connection of read and qualities, and in the fourth line are the respective Phred-qualities 

(Ewing et al. 1998) encoded as ASCII characters. Due to the sequencing technique, no further 

information about the origin of the read in the genome is provided, although necessary for 

further use in genomic studies. Therefor, reads are aligned to a reference genome of the 

respective species for downstream analysis.  

Scheme 1.1: Excerpt from a fastq-file, produced by an Illumina HiSeqX10. 

 

a Instrument name 1 Identifier 

b Run ID 2 Nucleotide sequence 

c Flow cell ID 3 ‘+’ connector 

d Flow cell lane 4 PHRED-scaled quality scores 

e Tile within flow cell   

f X coordinate of cluster within tile   

g Y coordinate of cluster within tile   

h Pair mate number    

i Read filter indicator   

k Control bit   

l Index sequences   

 

The official reference sequence Sscrofa10.2, lately superceded by 11.1, of the pig was 

assembled from BAC clone sequences and Illumina whole-genome shotgun reads of a female 

Duroc pig, named “TJ Tabasco” (Groenen et al. 2012). Alternatively, among others, a 

sequence assembly of a highly inbred Wuzhishan pig (Fang et al. 2012) was available at 

scaffold level (Access to all porcine assemblies: https://www.ncbi.nlm.nih.gov/ ).  
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Alignment  

Alignment is the process of mapping every read to the reference genome. Since the 

appearance of next-generation sequence data, a range of programs have been developed for 

this purpose (Fonseca et al. 2012; Fonseca 2014). Among the most popular might be BLAST 

(Altschul et al. 1990), Bowtie (Langmead et al. 2009) and BWA (Li and Durbin 2009). The 

latter two are specifically designed to align NGS data. These programs have been constantly 

updated, and shown to be well balanced in terms of sensitivity, false positive rate, 

computation time and memory requirements (Otto et al. 2014; ECSEQ 2014). Both Bowtie 

and BWA rely on the Burrows-Wheeler pattern matching algorithm. 

After alignment, read data is written to a file in sequence-alignment/map format (SAM, or 

BAM, which is the respective binary format; Li et al., 2009). The SAM-file (Scheme 1.2) 

contains mapping information about every read and is the basis for further analyses.  

Scheme 1.2: Sequence-Alignment-Map format excerpt. 

 

a Read  h Position of mate 

b Flag i Template length 

c Chromosome k Sequence 

d Position l Mapping qualities 

e Quality m Restored base qualities 

f CIGAR n Read group identifier 

g Chromosome of mate   

 

The SAM file contains information on the mapping position, mapping quality and the 

mapping of the respective mate pair. Each read can be traced back to the sequencing machine 

by the identifier and the unique read group ID assigned by the analyst, providing traceability 

downstream of the pipeline. 

Aligned reads are initially unordered and further steps were required before variant calling, 

for example sorting of reads, merging, if a sample was sequenced in multiple libraries, 

marking of duplicated reads, and base quality recalibration. Prominent tools for data 
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preparation are for example Samtools (Li et al. 2009), Picard (Picard 2009), or the Genome 

analysis toolkit, GATK (Van der Auwera et al. 2013). 

Variant calling 

Variant calling is the process of identification of polymorphisms in the aligned sequence 

reads compared to the reference sequence. In the simplest case, the absence of sequencing 

errors and high read coverage, a variant would be every deviation from the reference 

sequence, found in the sequence reads, or for heterozygous loci, reads supporting any of two 

different alleles. A variant and genotype could easily be determined by counting alleles. 

Normally, both are done in two steps, where first a variable position is identified and then 

individuals’ genotypes at the respective position are determined (Nielsen et al. 2011). Current 

variant callers, such as Samtools mpileup (Li et al. 2009), FreeBayes (Garrison and Marth 

2012), or GATK haplotype caller rely on Bayesian methods, rather than simple allele 

counting. The output of variant callers is standardized in the Variant call format VCF 

(Scheme 1.3; Danecek et al. 2011)  

Scheme 1.3: Example of three variants in the Variant-Call-Format (VCF). 

 

a Chromosome  f quality 

b Position g Filter 

c SNP ID h Info field 

d Reference allele i Format 

e Alternative allele k Individual record 

 

Variants can be filtered upon the attributes provided in the information field (h), to gain a 

reliable set for analysis. Filtering can either be based on independent thresholds for multiple 

attributes, such as mapping quality, strand bias or minimum call rate, or a machine learning 

algorithm can be trained on positions known as truly variable (Broad Institute 2017). 

Signatures of selection 

Interest in the genetic background of a trait, for example body size in pigs, leads to the 

question, if selection for the respective trait has shaped the underlying genomic region and 
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how this can be detected? The arrival of the NGS techniques described above, facilitated 

gathering information on the (almost) whole genome of an individual, enabling assessment of 

total genetic variation.  

The theory of neo-darwinian selection states that a large proportion of variation has 

consequences for the fitness of the organism and most variants are therefore subjected to 

selective pressures (Nei 2005). In contrast, the neutral theory of selection (Kimura 1969) 

states that most of the variation in the genome is neutral and changes in allele frequency, or 

fixation, are in the most part due to genetic drift rather than selection. 

In both theories, variable loci with effects on fitness, captured as the probability of an allele to 

be conveyed into the next generation, are prone to selective pressures, resulting in frequency 

changes of the favourable allele. In animal breeding scenarios, the chance to reproduce is 

highly dependent on an individual carrying a desired phenotype, and therefore being chosen 

for mating. The selection coefficient (Gillespie 2004), describes difference in fitness for two 

alleles by estimating the relative selective pressure against an undesired allele/genotype. 

While the selection coefficient can be relatively minor, as in the case of lactose tolerance 

(Bersaglieri et al. 2004), long term evolutionary pressures will eventually lead to fixation of 

the causative variant at the beneficial allele. This holds also if in the biallelic case the 

homozygous genotype is preferable. Dependent on whether the mutant allele or the ancestral 

allele are desired, selection is positive or negative, respectively, but both categories are 

counted as directional selection. In the case of over-dominance, the heterozygous genotype is 

favoured, and both alleles are maintained at intermediate frequencies, which is then called 

balancing selection. (Nielsen 2005). 

Under directional selection, not only will the variant itself be fixed, but also the variant alleles 

in the vicinity of the selected allele will be co-selected due to genetic linkage. This is the so-

called ‘hitch-hiking effect’ of the favourable gene (Smith and Haigh 1974). In the case of 

directional selection, this results in diminished variability around the selected locus. Such a 

region is called a ‘selective sweep’ (Pritchard et al. 2010) and is one case of a signature of 

past selection. 

The selective sweep facilitates the identification of the location of the causative variant since 

neighboring variants exhibit similar genetic features as the causative variant. These features 

can be classified in the following categories: 
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Decrease in variability 

Selection pressure will fix the favorable allele in the directional case, resulting in decreased 

nucleotide diversity (Nei and Li 1979) or decreased expected heterozygosity within the 

selective sweep (Smith and Haigh 1974). 

Differentiation 

When selection favours different alleles in different populations, allele frequencies at such a 

locus will diverge. The classic measure of differentiation between subpopulations is Wright’s 

FST, introduced by Wright (1950). It is based on the inbreeding coefficient, which is defined 

as the probability of both alleles carried by an individual being identical by descent (Falconer 

and Mackay 1996) and its effect of shrinking heterozygosity. In the absence of inbreeding, the 

number of heterozygotes would be expected to be 2𝑝(1 − 𝑝) with 𝑝 being the allele 

frequency of one allele (Weir 1996), but with inbreeding it is 2𝑝(1 − 𝑝) − 2𝐹𝑝(1 − 𝑝) with 

𝐹 being the inbreeding coefficient (Wright 1950). Another way to interpret 𝐹 is as being the 

correlation between the two gametes of an individual (Holsinger and Weir 2009). Faced with 

the problem of inbreeding in sub-populations, Wright (1950) split the inbreeding coefficient 𝐹 

into three components 𝐹𝐼𝑇 (1), 𝐹𝑆𝑇 (2) and 𝐹𝐼𝑆 (3), which can be interpreted as co- ancestries 

(Holsinger and Weir 2009): (1) co-ancestry of the alleles of an individual in relation to the 

entire population (‘inbreeding’), (2), co-ancestry of two randomly chosen alleles in a 

subpopulation in comparison to the entire population and (3), the co-ancestry of an 

individual’s alleles relative to its sub-population. Even more simple, Hudson et al. (1992) 

define 𝐹𝑆𝑇 as 1 −
𝐻𝑤

𝐻𝑏
, with 𝐻𝑤 being the average number of differences between two 

sequences randomly sampled from the same sub-population and 𝐻𝑏 being the average number 

of differences between sequences sampled from two sub-populations. The three F-values are 

interrelated as 𝐹𝑆𝑇 =
𝐹𝐼𝑇−𝐹𝐼𝑆

1−𝐹𝐼𝑆
 (Wright 1950) which is equal to (1 − 𝐹𝐼𝑇) = (1 − 𝐹𝑆𝑇)(1 − 𝐹𝐼𝑆) 

(Weir and Cockerham 1984). 𝐹𝑆𝑇 is therefore a measure of differentiation between sub-

populations. As a result, 𝐹𝑆𝑇 can also be used to detect diversifying or balancing selection 

between two subpopulations (Bowcock et al. 1991).  

Since sequencing provides genome wide sets of variants, the 𝐹𝑆𝑇 distribution under neutrality 

no longer needs to be assumed or modeled, but can simply be quantified, and outliers in 

extreme tails of this distribution can be considered as candidate loci under selection (Akey et 

al. 2002). Also, neighboring 𝐹𝑆𝑇 values in regions under selection appear to be highly 

correlated and 𝐹𝑆𝑇 in coding SNPs has been found to be lower than at non-coding loci, which 
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may explain a functional constraint of these variant classes (Akey et al. 2002). 𝐹𝑆𝑇 is widely 

used in studies of selection in livestock (Leno-Colorado et al. 2017; Rubin et al. 2012; 

Wilkinson et al. 2013). 

Linkage disequilibrium decay and number of haplotypes  

In a finite population, favourable mutations are contained in a limited number of haplotypes. 

When selective pressure promotes a favourable allele, the respective haplotype or haplotypes 

are co-selected due to linkage which results in an increased level of linkage disequilibrium 

(LD; Barton 2000) that can be used to identify a selective sweep (Pérez O’Brien et al. 2014; 

Gholami et al. 2015). Prominent tests are EHH (extended haplotype homozygosity, Sabeti et 

al. 2002), which aims to identify highly frequent haplotypes that are longer than expected 

under normal recombination, or iHS (integrated haplotype score; Voight et al. 2006), which 

identifies loci where the derived allele is preferred and the respective haplotype is 

unexpectedly long. The latter is considered optimal to identify ongoing positive selection. 

Both measures have been extensively used to identify selective sweeps (Qanbari et al. 2011; 

Bomba et al. 2015).  

Allele frequency spectrum 

Under the neutral theory (Kimura 1991), it is expected that the number of polymorphisms at a 

site are in a relation to the number of pairwise differences between individual sequences at 

that site (Tajima 1989). This means, that if in a region with many segregating loci individuals 

differ at a relatively low number of these loci, this might be interpreted as a preference for 

certain haplotypes and therefore a sign of selection. The derived test, Tajima’s D, provides a 

statistic that compares the mean number of differences to the number of segregating sites. It is 

scaled, so under neutrality the D-value is expected to be zero. A value below zero indicates 

less differences than expected, i.e. rare alleles at high numbers, which can be interpreted as a 

sign of positive selection, whereas a value higher than zero indicates unexpectedly high 

number of differences, i.e. an excess of common variants, being a sign of balancing selection.  

Selection also shapes the allele frequency spectrum in a characteristic way (Figure 1.4) and 

modern tests aim to identify differences in the allele frequency distribution (Bustamante et al. 

2001). 
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Figure 1.4: Allele frequency spectra in genomic regions under different types of selection 

(modified from Nielsen 2005).  

A method based on composite likelihood (Kim and Stephan 2002), which compares the 

maximum composite likelihood estimated under a model of no selection against the 

composite likelihood under a model allowing selection, became prominent when detecting 

sweeps in the upcoming DNA data (Nielsen et al. 2005). This model was improved by 

replacing the composite likelihood of a model without selective sweeps by the composite 

likelihood estimated from the dataset itself (Nielsen et al. 2005). This approach also accounts 

for the ubiquitous problems of uncertainty in assumptions, such as recombination rates or 

population history when modeling and also ascertainment bias in the SNP data 

McDonald- Kreitman-tests 

The McDonald-Kreitman test evaluates the abundance of mutations in coding regions of 

genes (McDonald and Kreitman 1991). In principle, mutations in coding regions can be 

categorized into protein-changing non-synonymous mutations, and neutral synonymous 

mutations (Nielsen 2005). The assumption is that the ratio of substitutions of these two 

mutation types between species and the ratio of polymorphic mutations of both types within 

species should be balanced. Selection can alter those ratios since it is expected to affect the 

non-synonymous rather than the synonymous mutations. Depending on the type of selection, 
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positive or negative, the relative number of non-synonymous substitutions will either increase 

or decrease. This test can be enhanced by applying it to multiple sub-populations and 

comparing the ratios within a subpopulation and between the contrasts, to find genes under 

selection. 

The statistics presented here, were chosen to give a notion of the basic principles of the 

detection of signatures of selection. Most scenarios hold for a hard sweep, a hitchhiking 

signature following to beneficial allele being swept through the population by selective 

pressure. But it should be mentioned, that there are also soft sweeps, not necessarily 

accompanied by a hitchhiking signature or polygenic adaptation (Pritchard et al. 2010). 

Additionally, numerous sophisticated statistics have been developed, sometimes by extending 

aforementioned methods by cross-population testing, e.g. XP-EHH or XP-CLR (Sabeti et al. 

2007; Chen et al. 2010), sometimes combining known approaches (Grossman et al. 2010; Ma 

et al. 2015). 

Functional annotation 

Approaches, like the aforementioned McDonald-Kreitman test require precise knowledge if a 

mutant allele is synonymous or non-synonymous. On the other hand NGS studies produce 

vast amounts of data, with millions of variants being discovered, normally in the form of 

SNPs or short insertions or deletions (InDels). Obviously, an individual evaluation of each 

variant is impossible and more efficient approaches are needed (Wang et al. 2010a). 

Approximately only 1.2 % of mammalian genomes represent coding regions (Human Genome 

Sequencing Consortium 2004). Common annotation tools, e.g. ANNOVAR (Wang et al. 

2010a), use gene databases such as Ensembl (Aken et al. 2016) to determine if a variant is 

located in a coding region or, for example, in between of genes. They also incorporate 

annotated mRNA sequences and known variants, and can be used for analyses involving 

livestock, although this information is mostly derived for model organisms, such as humans 

or mice. It is well understood which amino-acid a codon-triplet of respective mRNA is 

translated in protein-biosynthesis (Matthaei and Nirenberg 1961; Nirenberg and Matthaei 

1961), but this does not predict if the replacement of an certain amino acid has functional 

constraint on the resulting protein. Therefore, approaches such as SIFT (Sorting-Intolerant-

From-Tolerant; Ng and Henikoff 2003) and GERP (Genomic Evolutionary Rate Profiling; 

Cooper et al. 2005) have been developed. Both assume that an amino acid change is more 

likely to have functional consequence when it is highly conserved in homologous sequences, 

derived from related protein sequences (SIFT; Ng and Henikoff 2001) or multiple sequence 
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alignment of a set of related species from the same class, e.g. mammals (GERP; Cooper et al. 

2005). Besides relatively easily identifiable coding mutations, as described before, it is known 

that there are various other mutations with functional consequence. Initiatives such as 

FAANG aim at further characterizing these variations in livestock (Andersson et al. 2015). 

Objective and aim 

Marker based approaches, microsatellites and SNP-arrays, have been utilized in research in 

livestock for many years (Womack 2005). The arrival of affordable massively parallel 

sequencing offers new opportunities to reveal the genetic basis of interesting traits. Thus, in 

theory causal variants can be identified directly, rather than just via their hitchhiking effect on 

surrounding markers, especially employing recent developments such as reverse genetics. 

Recent studies have proven that analysis of NGS data is a powerful means to elucidate the 

genetic background of phenotypically complex traits. Prominent examples are gait patterns in 

the horse (Andersson et al. 2012), comb morphology in the chicken (Imsland et al. 2012) and 

coat colour in the swine (Rubin et al. 2012). Another feature of NGS variant sets is that they 

are relatively less affected by ascertainment bias than SNP-arrays, which are suited for a 

specific set of discovery populations (Malomane et al. 2018), and could therefore be used to 

calculate unbiased estimates of variation and differentiation in breeds not in the discovery set. 

The Goettingen Minipig as a highly controlled breed of exceptionally small body size, is a 

highly promising candidate to eluciade the genetics behind miniaturization in pigs. For 

several reasons, it has been bred in separated stocks. While the breeding programme focuses 

on the management of inbreeding and minimisation of population divergence, the processes 

that have influenced the genome as a result of the separation of the breeding units are of 

particular interest to the breeders. 

This study aims to use whole-genome re-sequencing to characterize the following 

fundamental aspects relating to the Goettingen Minipig genome:  

 

1. What is the genetic background of the body size difference between conventional 

fattening pigs and two breeds of minipigs, the GMP and the MiniLEWE? 

 

2. Is there stratification between isolated GMP breeding stocks, and could the high 

resolution and low ascertainment bias of NGS data enhance its assessment?  
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Abstract 

The whole genome resequencing (WGS) data of 46 normal sized pigs, either domestic or 

wild, was compared to WGS from 11 Göttingen Minipigs, 2 Berlin Minipigs, 2 Xiang pigs 

and one DNA pool comprising 10 Berlin Minipigs. Expected heterozygosity in the minipigs 

and fixation between both groups where used as a measure to find selective sweeps 

introduced during the selection for low body size in the minipig. 166 such candidate regions 

were defined and further annotated. Gene Ontology overrepresentation analysis revealed 

significant enrichment of terms related to growth. A large set of contained genes has been 

found, which have influence on i.e. growth and bone development. TGFβ and plenty of its 

altering genes were identified.  

Keywords: minipig, sequencing, growth 

Introduction 

The Göttingen Minipig (GMP) is one of the smallest pig breeds in the world. It was bred at 

the University of Göttingen, Germany, in the 1960´s to fulfill the rising needs for laboratory 

animals (Simianer and Köhn 2010). The Vietnamese Potbellied Pig, the Minnesota Minipig 

and the German Landrace were used as founder breeds. Intense selection led to a white-coated 

animal with less than 45 kg at an age of two years. This constitution makes it a promising 

candidate to reveal the genetic basis of growth and body size when compared to normal sized 

pig breeds. 

A previous study (Gaerke et al. 2014) using 60 k SNP data revealed that alleles from all 

founder breeds can still be found in the genome of the GMP, but the proportions deviated 

significantly from the composition expected from the pedigree. Extreme differences between 

expected and observed breed composition in some genomic regions can be attributed to 

selection for low body weight and white skin color. These signatures of selection occur in 

regions where genes with known relevance for growth (e.g. SOCS2, TXN, DDR2 and 

GRB10) are located. Another finding was that information derived from the 60 k SNP 

markers is not sufficient to make a reliable statement on the genetic background of small body 

size in miniature pigs. 

Next Generation Sequencing (NGS) technology provides the possibility to obtain whole 

genome data from many individuals at a reasonable price. The porcine reference genome was 

published in 2012 (Groenen et al. 2012) and first studies (Rubin et al. 2012) suggested that 

whole genome resequencing is a viable approach to identify regions under anthropogenic 

selection, since this method provides a much more comprehensive insight into genomic 
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variability based on SNPs and other types of variation such as structural variants than do SNP 

arrays. Even causal mutations have been derived from this data directly (Andersson et al. 

2012; Imsland et al. 2012). However, minipigs have not been included in any of these studies 

so far. 

Materials and Methods 

 

Public Data. From the European Nucleotide Archive (ENA) sequence data from 37 domestic 

pigs, 11 wild boars from Asia and Europe, respectively, underlying the study of Rubin et al. 

(2012) and a Göttingen Minipig (Vamathevan et al. 2013) were downloaded. 

Minipig Sampling. Blood samples were obtained from 10 individuals from the University 

owned stock and 2 individuals from the Berlin Minipig housed at the University of Veterinary 

Medicine, Hannover. A DNA pool from 10 Berlin Minipigs was added. All samples were 

sequenced with 10X coverage on the NGS-Platform at Uppsala University. 

Basic Data Preparation. Raw sequence data was aligned to the Sus Scrofa 10.2 reference 

genome (Groenen et al. 2012) using BWA (Li and Durbin 2009), were sorted by Samtools (Li 

et al. 2009) and duplicates were marked with Picard tools (Picard 2009). Finally SNPs were 

called using the GATK (DePristo et al. 2011; McKenna et al. 2010).  

Filtering. First indels and non biallelic SNV were discarded. In the second step SNP sets 

were filtered to remove unreliable SNP calls. Therefore SNPs in clusters with >5 SNPs in 20 

basepairs, with BaseQualityRankSum <-5.5 or >5.5, MappingQualityRankSum <-11 or >11, 

ReadPosRankSum <-6, FisherStrand values >45, a Mapping Quality <30, and a Depth of 

Coverage <90X or >840X were discarded. To pass subsequent genotype filtering an 

individual needed a genotyping quality >20 and a pool needed a coverage >4 reads at this 

position. 

In silico pooling. To avoid an over-influence of highly represented breeds, animals of these 

breeds were pooled. For each locus, the mean reference allele frequency was calculated, and 

only loci with at least a 50% genotyping rate were included. Afterwards, two contrasting 

groups (minipig vs. normal sized pigs) were formed. The in-silico pooled minipig group 

contained the information of 11 Göttingen Minipigs, 2 Berlin Minipigs, the Berlin Minipig 

pool and two Xiang pigs from China, which turned out to actually be minipigs (Zhang et al. 

2005)  
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Genome wide scans. To determine regions where minipigs are differentiated from the normal 

sized pigs, 𝐹𝑆𝑇   values (Weir 1996)were calculated between the two groups. In order to find 

regions in the minipig genome where selective pressure for low body size massively shrunk 

the variability of many loci, expected heterozygosity 𝐻𝑒𝑥𝑝   in the minipig pool was calculated 

and normalized via a z-transformation. Both measures were subsequently summarized in 20 

kb windows with an overlap of 50 %. Stringent criteria were used to define clear borders of 

regions with a certain pattern of an excessive overrepresentation of high 𝐹𝑆𝑇 values or low 

𝐻𝑒𝑥𝑝, in order not to rely on a simple extreme value approach. Every region with low 𝐻𝑒𝑥𝑝   

which overlapped with a region of high 𝐹𝑆𝑇 was considered to be a selective sweep and 

intersected with the Ensembl Biomart Pig Gene set (Flicek et al. 2014). Gene enrichment 

analysis with Fisher’s exact test and a 𝜒2 − test was performed on all GO terms found in the 

defined regions. The aberrant site frequency spectrum method (Nielsen et al. 2005), 

implemented in Sweepfinder was performed to add support to our custom approach. 

Results and Discussion 

Variant and sweep discovery. After variant calling and filtering, 35 million SNPs on the 18 

autosomes and the X-chromosome formed the basis for later analyses. In the minipig a total of 

20 million SNPs were found. Combining reduced heterozygosity and high differentiation 

between minipigs and normal-sized pigs revealed 166 candidate selection regions, summing 

up to 15.7 % of the pig genome. Figure 2.1 shows two sweep regions on chromosome 9 and 

6, respectively. It can be clearly observed, that both a relatively high 𝐹𝑆𝑇 and a low 

heterozygosity value are needed to define a sweep Nearly every sweep detected by 

Sweepfinder could be confirmed by this method, but in turn only a part of our candidate 

regions were detected by Sweepfinder. Such an example is the presented sweep on 

chromosome 9, where Sweepfinder produces just a weak signal, but a clear pattern can be 

observed from the other measures. Gene overrepresentation analysis for these regions gave 

181 significant GO-Terms at a p-value <5 %. The best hits regarding the search term ‘growth’ 

are listed in Table 2.1. It should be mentioned, that the first hit was ‘hormone activity’ 

followed by ‘response to glucose stimulus’.Genes connected to these pathways and found in a 

sweep region were for example TGFβ, which seems to play a key role for growth, as 

described by Enayati and Rahimi-mianji (2009) who detected an influence on the growth of 

hens. SMAD7 (Nakao et al. 1997), LEMD3 (Lin et al. 2005), BAMBI (Sekiya et al. 2004), 

SKIL (Tecalco-Cruz et al. 2012), and MSTN (Hickford et al. 2010) are known to assist TGF. 
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Stratil et al. (2006) found a growth QTL in the ASPN gene and (Labrador et al. 2001) found, 

that an elimination in the DDR2 gene leads to dwarfism in mice.  

 

Figure 2.1: Fixation index FST and z-transformed heterozygosity values with underlying 

identified sweep regions and Sweepfinder composite likelihood ratio in 20 kb 

windows, overlapping by 50% in two regions on chromosome 9 and 6. 
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Table 2.1: Growth linked GO terms. 

GO P GO Description 

0071363 0.018 cellular response to growth factor stimulus 

0001832 0.027 blastocyst growth 

0035264 0.053 multicellular organism growth 

0003416 0.072 endochondral bone growth 

0036120 0.072 cellular response to platelet-derived growth factor stimulus 

0045927 0.072 positive regulation of growth 

0008083 0.079 growth factor activity 

0030512 0.087 negative regulation of transforming growth factor beta receptor signaling 

pathway 

GO: Biomart GO-Term accession, P: Fisher´s exact test p-value  
 

Conclusion 

By using variation data from whole genome resequencing even narrow sweep regions can be 

detected, just by the right combination of simple measures. The contrast of several normal 

sized and several minipig breeds increased the chance of finding differentiation associated 

with growth and size only. Annotation with Ensembl Genes and enrichment analysis revealed 

a sensible set of genes related to growth. TGFβ and Genes which are known to have influence 

on it seem to play an important role in the search for the genetic basis of low body size in 

pigs. 
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Abstract 

Background: Domestication has led to substantial phenotypic and genetic variation in 

domestic animals. In pigs, the size of so called minipigs differs by one order of magnitude 

compared to breeds of normally sized pigs. We used biallelic SNPs identified from re-

sequencing data to compare various publicly available wild and domestic populations against 

two minipig breeds to gain better understanding of the genetic background of the extensive 

body size variation. We combined two complementary measures, expected heterozygosity and 

the composite likelihood ratio test implemented in “SweepFinder”, to identify signatures of 

selection in Minipigs. We intersected these sweep regions with a measure of differentiation, 

namely 𝐹𝑆𝑇, to remove regions of low variation across pigs. An extraordinary large sweep 

between 52 and 61 Mb on chromosome X was separately analyzed based on SNP-array data 

of F2 individuals from a cross of Goettingen Minipigs and large pigs. 

Results: Selective sweep analysis identified putative sweep regions for growth and 

subsequent gene annotation provided a comprehensive set of putative candidate genes, 

including MAPK1 and PPARG.  A long swept haplotype on chromosome X, descending from 

the Goettingen Minipig founders was associated with a reduction of adult body length by 3 % 

in F2 cross-breds.  

Conclusion: The resulting set of genes in putative sweep regions implies that the genetic 

background of body size variation in pigs is polygenic rather than mono- or oligogenic. 

Identified genes suggest involvement of the MAPK pathway and a possible insulin resistance 

to play a key role in miniaturization. A size QTL located within the sweep on chromosome X 

is, with an estimated effect of 3 % on body length, comparable to the largest known in pigs or 

other species. The androgen receptor AR, previously known to influence pig performance and 

carcass traits, is the most obvious potential candidate gene within this region. 

Keywords: Goettingen Minipig, whole genome resequencing, body size, X -

chromosomal QTL 

Background 

The livestock species of today display vast phenotypic variation. Domestication has shaped 

these species by increasing the variation in traits related to, performance, fitness, morphology 

and appearance, thereby changing the - phenotypically rather uniform - wild ancestors to the 

illustrious collection of our modern breeds. Focusing on body size, Haldane (1927) discussed 

a general principle why the horse is larger than the rabbit, or the cow is larger than the pig, 
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and suggested that there must be a right size for a certain form of a body and a change in size 

must be accompanied with a change in form. In contradiction to that, we see a wide range of 

body size or weight in just one species. Taking the example of pigs (Sus scrofa), the process 

of domestication of the wild boar led to animals that span from large fattening pigs to the so 

called ‘miniature pigs’ or simplified ‘minipigs’. Their sizes differ by up to one order of 

magnitude. Among the minipigs the Goettingen Minipig (GMP) is one of the smallest breeds 

under a stringent breeding scheme (Simianer and Köhn 2010; Swindle et al. 2012). The 

Goettingen Minipig is a composite breed developed in the 1960’s at the former Institute of 

Animal Breeding and Genetics at the Georg-August-University Göttingen in Germany. It was 

founded by crossing Minnesota Minipigs (MMP) with Vietnamese Potbellied Pigs (VPP). 

Later German Landrace pigs (LAR) were introduced to produce uniformly white animals 

(Glodek and Oldigs 1981). This pig breed shows a form of miniaturization called 

“proportional dwarfism” and Simianer and Köhn (2010) suggested that this is a form of 

pituitary dwarfism, caused by lower secretion of growth hormones from the pituitary gland, 

leading to a decreased secretion of the insulin-like growth factor 1 (IGF1).  

The availability of porcine SNP chips offers the possibility to screen the genome for regions 

carrying genetic variants associated with the reduced size of minipigs. Gaerke et al. (2014) 

conducted a study on signatures of selection in GMP, MMP, VPP and LAR, using a 60k SNP 

chip. They found that alleles from all founder breeds were still segregating in the GMP and 

identified numerous putatively positively selected regions in the GMP. They suggested that a 

pathway connecting SOCS2 and GRB10 with IGF1 could exist that plays an important role in 

the dwarfism of the GMP. Due to the limited marker density of the SNP array it was not 

possible to reveal causal mutations. 

The current reference genome is based on the sequence of a Duroc pig and the first studies, 

using this reference to provide insight into the porcine demography and evolution (Groenen et 

al. 2012) and into the patterns that domestication and anthropogenic selection have left in the 

porcine genome (Rubin et al. 2012), were published in 2012. While these studies used diverse 

sets of pig breeds from all over the world, minipigs were not included. The very same month, 

the genome of a highly inbred Chinese Wuzhishan minipig was published (Fang et al. 2012) 

as an additional reference genome for Asian pigs, which have been domesticated 

independently from the European pigs (Giuffra et al. 2000). The present study aims at 

comparing WGS data of a diverse set of pig breeds to unveil the genetic mechanisms behind 

body size variation, and more specifically the miniaturization in pigs. Towards this aim, we 
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compared a group of miniature pig breeds to a group of large pig breeds by screening for 

highly differentiated regions under selection in the minipigs. Such candidate regions were 

subsequently screened for candidate genes with a putative effect on growth or body size, and 

the postulated effects on body-size of one of the identified candidate region was confirmed 

with data of an independent crossbreeding experiment. 

Results 

Number of SNPs 

Biallelic SNPs are the most common class of variants used in genetic studies of animal 

genomes. Due to the explorative nature of SNP calling from WGS data, the number of SNPs 

is an indicator of variability in the analysed dataset, but also of strictness of the variant 

discovery and filtering. SNP calling from the DNA sequencing data revealed 46 × 10
6
 

biallelic SNPs genome-wide, of which 29 × 10
6
 were polymorphic or fixed for the alternative 

allele in the minipigs. After filtering, 35 × 10
6
 loci remained for all samples and 19.8 × 10

6
 for 

the minipigs, respectively, 19 × 10
6
 in the European domestics, 9.4 × 10

6
 in the European wild 

boars, 19.5 × 10
6
 in the Asian domestics and 19.2 × 10

6
 in the Asian wild boars. Subsequent 

in-silico pooling left 27.6 × 10
6
 loci with sufficient information to compare minipigs against 

large pigs.  

Phylogeny 

When comparing large pig breeds to minipigs, it is important to account for stratification 

within each contrasting group to ensure, that no breed specific signals will be identified. 

Therefore each group should be made up from phylogenetically different breeds, which in an 

optimal case share just the small or large body size, respectively. The analysis of genetic 

distances between sampled breeds revealed a clear division of European and Asian large pigs, 

with minipigs clustering closer to the Asian pigs (Figure 3.1). Estimation of 𝐹𝑆𝑇 also showed 

that the minipigs were closer to the Asian breeds than to the European breeds (𝐹𝑆𝑇 = 0.08 and 

0.12, respectively), while both minipig breeds were marginally closer to the domestic groups 

of both continents than to the respective wild boars. This effect is smaller for the GMP (GMP 

to European domestic/ wild: 0.14, 0.16; GMP to Asian domestic/ wild: 0.10, 0.11), whereas 

there is clear distinction for the BMP, which is much closer to both domestic groups than to 

the wild boars (BMP to European domestic/ wild: 0.07, 0.14; BMP to Asian domestic/ wild: 

0.08, 0.11). The 𝐹𝑆𝑇 value between both minipig groups is 0.09. The highest differentiation 
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overall has been estimated between European and Asian wild boars (additional information in 

Supplementary table 3.1 and Supplementary table 3.2).  

 

Figure 3.1: Neighbor-joining tree computed from pairwise IBS distances. Based on SNP 

data of the randomly selected chromosomes 1, 8 and 13 for all individuals (due to 

computational limitations). Asian wild boars in dark blue, Asian domestics in light 

blue, European wild boars in dark green, European domestics in light green, Mini-

LEWE in orange and Goettingen Minipigs in red. 

Selective sweeps 

We searched for genomic regions under selective pressure for body size using a so-called 

selective sweep analysis and subsequently identified candidate genes within these regions. 

Further, the Gene Ontologies (GO´s), which represent functional categories, linked to every 

detected gene were checked for over-representation of certain GOs within sweeps compared 
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to the unselected background, to identify functional categories rather than single candidates. 

The selective sweep analysis revealed considerable parts of the genome as putatively being 

targeted by selection for growth. Not every chromosome was affected equally. Most of the 49 

identified signals extended between 1 Mb and 2.5 Mb, but one on chromosome 14 reached 

nearly 10 Mb. The other large signals were located on chromosomes 5 (2.8 and 4.3 Mb), 8 

(4.6 Mb), 13 (5.2 and 2.9 Mb), 14 (3.6 Mb) (Figure 3.2) and chromosome X (48 Mb; not 

shown). SweepFinder detected fewer, but larger regions, whereas the regions detected by 

decreased heterozygosity were more numerous but smaller. The exceptionally large region on 

chromosome 14 consists of an accumulation of many small signals reflecting reduced 

heterozygosity and two large signals from SweepFinder. The union of both signals gives a 

nearly uninterrupted huge selective sweep signal.  

Genes in Sweeps and their functions 

The Ensembl porcine gene set 79 annotation within sweep regions on the autosomes revealed 

524 genes (Supplementary table 3.3). 

Gene ontology over-representation 

In total, we analyzed 2006 unique GO terms linked with genes located in putative sweep 

regions. 55 of these gene ontologies were found to be significantly overrepresented within 

sweeps by using a Fisher´s exact test P-value lower than the 5 % quantile threshold of the 

empirical distribution function for the respective ontology. Table 3.1 shows a selection of 

gene ontologies over-represented in putative sweeps (see also Supplementary table 3.4). 

A literature review for all genes belonging to statistically significant GO terms with a focus 

on properties characterizing minipigs revealed a comprehensive set of genes with interesting 

putative functions (Table 3.2). Among them are genes like COMT and PATZ1with direct 

effects on growth or size in other organisms, ACOT4 and PKP2, which are involved in growth 

factor signaling, or genes directly linked to growth in swine, for example PPARG that is 

suspected to be a key factor in porcine growth, conformation and fatness. Additionally, we 

found a considerable number of genes with links to the MAPK signaling cascade, e.g. 

MAPK1 and PTPRR, involved in glucose and lipid metabolism, or putatively responsible for 

insulin resistance or diabetes type II or obesity. 
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Figure 3.2: CLR test and normalized expected heterozygosity within minipigs and FST 

between large pigs and minipigs.  Regions on chromosomes 2, 5, 8 and 14 identified 

as putative selective sweeps are highlighted; Blue rectangles underlie detected putative 

sweeps. 
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Table 3.1: Selected gene ontologies over-represented in putative sweeps. 

No. Fisher-

P 

Empi-

rical  

p-value 

Num-

ber of 

genes in 

term 

and 

sweep 

Fold 

Enr. 

GO Term Name 

1 0.0017 0.0002 7 3.94 Z disc 

2 0.0012 0.0014 4 0.26 negative regulation of transcription from 

RNA polymerase II promoter 

3 0.0050 0.0040 5 4.38 protein tyrosine/serine/threonine 

phosphatase activity 

4 0.0172 0.0059 4 3.94 Microvillus 

5 0.0060 

 

0.0063 4 5.25 regulation of alternative mRNA splicing, 

via spliceosome 

6 0.0149 0.0067 13 1.99 mitochondrial inner membrane 

7 0.0033 0.0067 10 2.75 protein dephosphorylation 

8 0.0024 0.0078 54 1.52 Mitochondrion 

9 0.0096 0.0081 3 6.44 leukocyte tethering or rolling 

10 0.0125 0.012 3 5.91 ventricular cardiac muscle cell action 

potential 

22 0.0272 0.0222 10 2.13 actin cytoskeleton 

25 0.0101 0.0239 2 11.81 mitochondrial electron transport, 

ubiquinol to cytochrome c 

27 0.0101 0.0248 2 11.81 positive regulation of growth 

31 0.006 0.0286 4 5.25 social behavior 
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Table 3.2: Candidate genes from significant ontologies with putative functional link to 

minipigs. 

Gene name Function Reference 

ACACB Downregulated by TGFB1; influencing 

type-II-diabetes; obesity and lipid 

metabolism 

Zhou et al. 2005; Ma et al. 2013 

ACOT4 Linked to FGF21 in mice Muise et al. 2013 

ADAMTS12 Blocks Ras/ MAPK pathway Llamazares et al. 2007 

COMT Reduced birth weight in humans Sata et al. 2006 

DUSP28 Activator of MAPK pathway Wang et al. 2014 

HYAL1, 

HYAL2 

Overexpressed in the placenta of the 

smallest pig fetuses  

Vallet et al. 2010 

LTBP1 TGFB signaling, role in the regulation of 

human height 

Lango Allen et al. 2010 

MAGOH Influences MAPK Roignant and Treisman 2010 

MAPK1 Coding central proteins ERK2 in the Ras/ 

MAPK 

Reviewed by Cobb et al. 1991 

NDUFB9 Severe growth-hormone deficiency Riedl et al. 2004 

OSM Diabetes type II Sanchez-Infantes et al. 2014 

PATZ1 PATZ1-null mice were retarded in growth, 

Homozygote animals were 10 to 20 % 

smaller, than their litter mates of the same 

sex 

Valentino et al. 2013 

PKP2 Associated to EGF Kazlauskas 2014 

PPARG Muscle specific expression; deletion causes 

insulin resistance in mice; key role in pig 

growth; reduced size in pre-pubertal 

children 

Crooks et al. 2014; Hevener et al. 

2003; Puig-Oliveras et al. 2014; 

Cecil et al. 2005 

PRKAR2A Obesity and lipid metabolism Park et al. 2012 

PTPRR Member of the MAPK pathway  Hendriks et al. 2009 

SOD1 Depressor of the MAPK pathway central 

genes ERK1/2 

Juarez et al. 2008 
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Strong selective sweep on chromosome X 

The major selective sweep on chr. X known from the studies of Rubin et al. (2012) and Ai et 

al. (2015) is also found in the minipigs. It is known that this sweep consists of two majorly 

un-recombining haplotypes of about 9 and 39 Mb, respectively. Figure 3.3A shows a 

substantial decrease of the expected heterozygosity within the minipigs in a 48 Mb region in 

the middle of chromosome X between 52 Mb and 100 Mb. The fixation index shows that this 

region consists of two separate sub-regions. The first part, approximately inside the interval 

52 Mb to 61 Mb, appears to be unique to the minipigs, whereas the moderate level of 

differentiation in the second part implies that the minipigs are similar to some breeds of the 

large pig group. We postulated that this genomic region might have an effect on body size and 

therefore utilized data of a former cross-breeding experiment, to estimate QTL effects for 

each existent haplotype. 

The phylogenetic tree of all sequenced animals based on all markers inside the first region 

(Figure 3.4) shows that the haplotype carried by the minipigs is shared with only the Xiang 

pigs and two wild boars from South China. The sub-tree for the second region clusters the 

samples into two main groups, the first comprising the minipigs, the Xiang, the Meishan, the 

Jiangquhai and the South Chinese wild boars, and the second all European breeds and the 

wild boars from North China and Japan.  

Analysis of SNP chip data 

Since the haplotype carried in the region chrX:52- 61 Mb appears to be typical for minipigs, 

we used genotyping data from two former studies (Gaerke et al. 2014; Pant et al. 2015) to 

determine the haplotypic state of animals with recorded phenotypes in order to enable the 

estimation of the effect of the minipig haplotype on size. The Illumina PorcineSNP60 

BeadChip contains 23 SNPs located on chromosome X between 52 and 61 Mb according to 

the current map based on the genome build 10.2. Filtering removed 7 individuals for poor 

genotyping (call rate < 10 %), 3 SNPs that were missing and 13 SNPs, which had a low minor 

allele frequency. 8 SNPs (Supplementary table 3.5) passed the filtering, three of them in the 

beginning of the region around 53 Mb (MARC0056564, MARC0046345, H3GA0051807), 

three in the center around 57 Mb (INRA0056742, H3GA0051810, MARC0013223) and two 

at the end around 60 Mb (INRA0056744, H3GA0051814). At the first three loci, all minipigs 

carry a guanine, a cytosine and a guanine, respectively, but also two Duroc females from the 

Danish study are heterozygous and convey this allele to the subsequent generations of cross- 
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Figure 3.3: Large X-chromosomal sweep region, linkage decay and co-located genotypes 

in cross-bred animals. A: Normalized expected heterozygosity and fixation index 

between minipigs and large pigs across in the critical region of Chromosome X; B: 

Haplotype breakdown within the major sweep region in all large pig breeds and in the 

minipig breed respectively, positions in Mb, centered at 56’716’179 Mb; C: Allelic 

state at 8 analyzed SNPs in the sweep region between 50 and 62 Mb (red = 

homozygous for minipig allele, orange = hemi-/ heterozygous, beige = homozygous 

for opposite allele), positions in bp. Red dot and blue and grey triangles indicate SNP 

positions. 



54 Chapter 3 

 

Figure 3.4: Neighbor-joining tree for all markers between 52 and 61 Mb on chromosome 

X. Asian wild boars in dark blue, Asian domestics in light blue, European wild boars 

in dark green, European domestics in light green, Mini-LEWE in orange and 

Goettingen Minipigs in red. 

bred animals. The genotypes at the 3 center loci perfectly coincide with the affiliation of a pig 

to the large pigs or the minipigs, respectively (Figure 3C). We only observed heterozygous 

genotypes in animals from the cross-breeding experiment. Thus, these markers are fully 

informative to decide whether a cross-bred animal carries the large pig haplotype or the 

Minipig (South Asian) haplotype. The two markers at the end of the interval are homozygous 

in most European wild boars. Omitting the markers in the beginning of the interval, there are 

only three clearly distinguishable haplotypes within the sampled breeds in the first region of 

the selective sweep. Figure 3B shows the LD decay, depicted as a bifurcation diagram 

centered at position 56’716’179 for both, the large pig haplotype, based on all SNP array 

genotypes of all large pigs without wild boars and the minipig derived haplotype without 

Minnesota Minipigs. The minipig derived haplotype is stable over the whole first part of the 

selective sweep and is barely variable in the second part. The large pig haplotype is less stable 

and it splits up within the borders of the first sweep region and in the beginning of the second 

sweep region. The distribution of the haplotypes can be found in Supplementary table 3.6. 
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Inheritance of the haplotypes in cross-bred animals 

Under the assumption of no recombination within the selective sweep region on X and the 

cross-breeding scheme of Pant et al. (2015), we expected a certain distribution of 

combinations of these haplotypes in animals of the F1 and F2 generation. Using the 

aforementioned SNP loci, we determined which haplotypes were inherited. As shown in 

Table 3.3, all F1 females should be heterozygous and all males hemizygous for the large pig 

haplotype. In the F2, half of the females are expected to be homozygous for the large pig 

haplotype, the other half heterozygous. The F2 males should be hemizygous, one half for the 

minipig haplotype, the other half for the large pig haplotype. The observed haplotypes match 

the expected Mendelian proportions. 

Table 3.3: Theoretical inheritance of the two segregating haplotypes on the X- 

chromosomes in the cross-bred pigs. Capital and low case letters indicate whether a 

haplotype is originating from a large pig or a minipig founder animal, respectively. 

Numbers of animals with the respective haplotype constellation are shown in columns 

right of each haplotype. 

F1 ♂x n ♂y n F2 ♂X n ♂y n 

♀X ♀Xx 

28 

♂Xy 

55 

♀x ♀xX 90 ♂xy 114 

♀X ♀Xx ♂Xy ♀X  ♀XX  129 ♂Xy 114 

 

Effect estimators of linear models 

The distribution of phenotypic values of the analyzed traits height and length at the ages of 

scanning and slaughtering are displayed in Table 3.4. 

Table 3.4: Sample size, average age, means and standard deviations for the analyzed 

traits in F2 cross-breds. 

Trait N Age [days] Mean [cm] SD [cm] 

Height at scanning 432 63 (45-166) 39.93 ± 0.21 4.39 

Height at slaughter 263 242 (166-439) 65.30 ± 0.31 5.05 

Length at scanning 432 63 (45-166) 48.56 ± 0.28 5.91 

Length at slaughter 410 242 (166-439) 84.16 ± 0.31 6.21 

 



56 Chapter 3 

Table 3.5 shows the covariates considered in the final models for the analysis of the different 

traits. All non-significant higher interactions were removed from the model. We could not 

find a significant influence of the haplotype on the length at age of scanning and height at age 

of scanning, although in the latter, the p-value was 0.0718 and the subsequent conservative 

LSD test showed significant differences between the haplotypes. Only the sex and the age 

were important for length at age of scanning. The breed of the mother in the P0 did not 

influence the size traits of young animals at age of scanning. Figure 3.5 shows the estimated 

effects of the inherited X-chromosomal haplotype on the traits “height at slaughter” and 

“length at slaughter”.  

Table 3.5: Factors with significant influence on growth traits. 
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Length at age 

of scanning 
 0.003 0.016 <0.0001     

Height at age 

of scanning 
 0.29 0.057 <0.0001 0.072    

Length at age 

of slaughter 
0.102 0.004 0.008  0.0004 0.003 0.060  

Height at age 

of slaughter 
0.038 0.005 0.593 0.543 0.0014  0.031 0.025 

 

For the two traits, where the haplotype effect was significant, males carrying an X-

chromosome copy inherited from the minipig ancestor were significantly smaller than the 

ones carrying the large pig copy, while there was no significant size difference between 

homozygous females of large pig origin and the heterozygous females. 

The respective violin plots of the linear predictors, which can be interpreted as corrected 

phenotypes for the four haplotype*sex classes, show a clear distinction of the males by 

haplotype origin. 
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Figure 3.5: Estimated effects of the X-chromosomal haplotype state on body size. A/B: 

Least-square means for the significant effects for traits length and height at slaughter. 

C/D: Violin plots of phenotypes, corrected for all significant covariates, apart from 

haplotype/ sex for the respective traits. 

Genes inside the Sweep 

We found 18 known genes lying within the first sweep region on chromosome X 

(Supplementary table 3.7). One of those is the androgen receptor gene AR, which has 

several functions in physiological processes related to growth, body conformation and 

reproduction. Besides its crucial role in spermatogenesis and male fertility (Chang et al. 2004; 

reviewed by Wang et al. 2009), it is involved in spinal muscle atrophy (La Spada et al. 1991), 

bone growth (Ornoy et al. 1994) and in the determination of body size in humans, where a 
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mild supply of testosterone to boys of under-average size stimulated growth and sexual 

development without compromising final height (Richman and Kirsch 1988). Mice with a 

knock-out of the AR suffer a late onset of obesity while being normally sensitive to insulin 

(Fan et al. 2005). Additionally AR is activated by the growth factors IGF, KGF and EGF in 

tumors (Culig et al. 1994). 

Discussion 

This is the first study using whole genome resequencing to discover signatures of selection for 

body size comparing minipigs against individual and pool data of various pig breeds. Direct 

comparison of contrast, made up from various pig breeds each, mainly differentiated in body 

size only, appeared as a powerful approach to determine the genetic background of growth 

and size in minipigs. The high informational density of the next-generation-sequencing data 

promised deeper insights as the array based approaches before. 

SNP Calling 

One of the often discussed issues for the quality of WGS studies is the quality of the 

alignment and the depth at which samples have been sequenced. The proportion of aligned 

reads to the current reference genome of a Duroc (Groenen et al. 2012) was roughly 90 % for 

GMP and 87 % for BMP, similar to the proportion we find in European and Asian domestics 

and confirms Frantz et al. (2013) findings when mapping the WGS data of Asian wild boars 

(Sus verrucosus) against the Duroc reference . When the de novo assembled GMP genome 

with a length of 2.44 Gb (Vamathevan et al. 2013) was mapped against the Duroc reference of 

2.3 Gb, about 96 % could be placed on chromosomes. Therefore, using the Duroc reference 

genome to evaluate minipig genomes appears appropriate, although there is an inherent risk of 

missing out important parts of the genome. 

The number of discovered SNPs in a genome depends on the sequence identity between the 

reference genome and the examined samples, which is in turn dependent on the phylogenetic 

distance, the variation inside the breeds and the number of individuals. Additionally, the 

reliability of calling SNPs and determining genotypes from WGS data is also dependent on 

the sequencing depth, where for example reliable calling of a homozygous (heterozygous) 

SNP requires 15X (30X) coverage (Sims et al. 2014). From this point of view, the coverage of 

all minipigs was sufficient for SNP detection, but proper genotype assignment could be 

improved by resequencing at higher depth. 
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Phylogeny 

Analysis of the genetic distance and FST of the sequenced animals showed a clear 

differentiation between European and Asian pig breeds. This result is in agreement with the 

current scientific consensus, that domestication occurred independently in Europe and Asia 

around 9000 years ago (Giuffra et al. 2000). In contrast to European breeds which evolved 

straight from the wild boar (Scandura et al. 2008), the history of Asian pigs is more complex: 

After dispersal into the islands and Oceania, interrupted by feral states, pigs were eventually 

transferred to the Asian mainland (Larson et al. 2007). Later, the Chinese populations 

diverged into a northern and a southern strain (Ai et al. 2015). Our results confirm the gap 

between south Chinese (Xiang, Wuzhishan) and north Chinese domestic breeds (Jiangquhai, 

Meishan) but appear less clear than in Ai et al. (2015). 

In the phylogenetic tree, the Goettingen and the Mini-LEWE are located between the Asian 

and the European cluster. Looking at the breed histories, both breeds are synthetic crosses of 

the Vietnamese Potbellied Pig with European breeds. In the case of the Mini-LEWE, the 

crossing partner was the Saddleback pig and “Deutsches veredeltes Landschwein” 

(comparable to Large White) (Leucht et al. 1982). The GMP was established using German 

Landrace and the Minnesota Minipig (Glodek and Oldigs 1981), itself a cross bred of five 

breeds of not completely resolved but mostly north American feral, possibly Asian origin 

(Dettmers 1956). This might be the reason for the BMP being closer to the European cluster 

than the GMP. 

Signatures of selection 

Polygenic effect of autosomal genes on growth 

This study compares two contrasting groups in order to reveal the genetic background of the 

reduced body size: various large pig breeds from all over the world versus a group of two 

minipig breeds. Such a study design has been proven efficient before in detecting regions of 

differentiating selection before in chicken (Rubin et al. 2010) and pigs (Rubin et al. 2012) and 

has revealed comprehensive sets of candidate genes in both studies. Although it is known that 

low recombination rates in combination with inbreeding have the potential to produce 

signatures similar to selective sweeps (Bosse et al. 2012), the inclusion of two genetically 

distinct minipig breeds should attenuate this problem. We discovered numerous putative 

sweep regions containing a comprehensive gene set and a first conclusion could, therefore, be 

that the genetic background of size differentiation is rather polygenic than mono- or oligo 
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genic. This is not surprising, since it is known for other vertebrate species like humans (Lango 

Allen et al. 2010) and chicken (Jacobsson et al. 2005) that growth has a polygenic 

background. The consecutive analysis of over-representation for the respective gene 

ontologies provided a similar picture. A variety of ontologies reached significance, 

comprising ontologies with functions related to growth traits and energy metabolism, like 

“mitochondrion” and “positive regulation of growth”. The most significantly enriched 

ontology was ‘Z disc’, referring to a structural element of the muscle. The overrepresentation 

of genes related to mitochondria suggests that the energy metabolism might be a key element 

for growth restriction in minipigs. Some of the genes in significantly enriched ontologies are 

known to have direct effects on growth and size development or even dwarfism: A COMT 

variant increases the risk of having children with reduced birth weight (Sata et al. 2006), 

knock out of TPST2 or PATZ1 leads to growth retardation in mice (Sasaki et al. 2007; 

Valentino et al. 2013).  

A former study by Gaerke et al. (2014) on the same GMP stock using a 60k SNP array came 

to similar results. They also discovered numerous regions under putative selection comprising 

several genes with known effect on growth and suggested a pathway connecting SOCS2, 

GRB10 and IGF1 as potential cause of small body size in minipigs. This finding supported the 

hypothesis of Simianer and Köhn (2010), that the minipig experiences a form of pituitary 

dwarfism, comparable to Shetland pony and Dexter cattle, supposedly caused by a deficiency 

of IGF1. This hypotheses seems natural, since the effect of IGF1 on growth in, for example, 

Pygmies (Merimee et al. 1981) is known for long. In case of a mutation in an IGF gene, a 

signature of selection would be expected around the respective gene as it was found in dogs, 

where small breeds carry a unique coding sequence of IGF1 (Sutter et al. 2007). However, 

using WGS data, we did not observe striking signals of selection near any of the known IGF 

genes or receptor loci. This coincides with findings of Zenobi et al. (Zenobi et al. 1988) who 

concluded that the size difference between normal sized and minipigs is neither related to 

serum levels of IGF1 or IGF2, nor to a missing response to or reduced secretion of growth 

hormones. Reduced transcription, manifested in low transcription levels of the IGF genes or 

other growth hormones, could be ruled out and alterations in the underlying genes seem 

unlikely. But still the insulin growth factor signaling cascade is a widely considered key 

mechanism for growth. Our results suggest an alternative function: A possible mechanism 

behind the dwarf phenotype could be a resistance of the target tissues to insulin. Symptoms of 

this, i.e. a hampered blood glucose clearance after insulin stimulation, which could be 
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facilitated by a disordered lipid metabolism (Savage et al. 2007) or an intrauterine growth 

restriction (Jaquet et al. 2000) have been found in a feeding trial with Goettingen Minipigs 

(Larsen et al. 2006). Focusing on the breeds used in the cross-breeding for GMPs, the 

Vietnamese Potbellied Pig was the smallest, but also the most obese one (Glodek and Oldigs 

1981). Even after generations of closed breeding, the major part of the GMP genome can be 

attributed to the VPP (Gaerke et al. 2014), suspected to be the origin for the genetically 

determined tendency to obesity of current GMPs. The detected signatures of selection 

contained genes either directly influencing insulin resistance or traits such as obesity or 

muscle fiber composition. Among these genes PPARG is an outstanding candidate, having 

direct effects on insulin resistance (Hevener et al. 2003) and muscle fibers (Crooks et al. 

2014). Furthermore its effect on growth has been proven before in humans and pigs (Puig-

Oliveras et al. 2014; Cecil et al. 2005) 

Another kind of proportional dwarfism is caused by growth hormone (GH) deficiency 

(Baumann 1999) which resembles the phenotype of the “Laron dwarfism”, that is 

accompanied by severe growth retardation and obesity (Laron et al. 1992). GH is also 

secreted in the pituitary gland and it was recently communicated that a knock-out of the 

growth hormone receptor gene GHR using genome editing technology led to further 

miniaturization of a bama minipig at 15 kg maturity weight (Cyranoski 2015). However, 

focusing on genes belonging to GH or its receptor genes, we find only the CLR test to show 

increased evidence of selection about 1 Mb away from GHR, but no sign of differentiation 

between the large and the minipig group. Therefore our results do not support the hypothesis 

that selection on one of the GH genes is underlying the minipig dwarfism. 

Several genes within signatures of selection that were also comprised in significant GO terms 

influence TGFB and FGF, which have a known influence on growth (Stuhlmeier and 

Pollaschek 2004; Eguchi et al. 2001). Both are known to be involved in the mitogen activated 

protein kinase pathway (MAPK) that controls cell proliferation and differentiation. 

Klingseisen and Jackson (Klingseisen and Jackson 2011) report that this pathway plays a 

prominent role in growth processes and in the primordial dwarfism. This form of dwarfism 

leads to a proportional growth restriction causing a phenotype similar to the pituitary 

dwarfism. We found the central gene MAPK1 of the Ras/ MAPK pathway in one of the 

largest sweep regions and other pathway genes, i.e. PTPRR and MAGOH, which hamper the 

MAPK signaling cascade, to lie inside strong selective sweeps. Other genes found to be under 

putative selection, i.e. ACOT4, ATG7, COL7A1 and ACACB, interact or are directly 



62 Chapter 3 

influenced by TGFB and FGF. The MAPK pathway gene MAPKAPK3, located in a large 

sweep on chromosome 13, is known to be involved in the mediation of growth inhibiting 

signals (Mayer et al. 2001) and has been found differentially expressed in the pituitary gland 

between the large and miniature strain of the Diannan pig (Yonggang 2010). Hence, these 

genes are likely to be involved in the minipig growth processes and make the MAPK-pathway 

a strong candidate contributing to the growth restriction in minipigs. 

Major effect of the X chromosomal sweep 

The porcine X-chromosome carries a selective sweep of outstanding extent (Rubin et al. 

2012). Using the Chinese Wuzhishan genome reference, Ai et al. (2015) located this region of 

48 Mb within the borders of 44 to 91.5 Mb, which corresponds to the region 52 to 100 Mb on 

the Duroc reference that we identified as a selective sweep exhibiting low expected 

heterozygosity in minipigs. We conclude from the same size of the region, the inclusion of 

partly the same samples in both studies and the nearly completely conserved haplotypes in our 

SNP chip analysis, that these two regions are analogous to each other. A sweep of comparable 

physical size was not found in recent selection signature studies in horse (Petersen et al. 

2013), sheep (Kijas et al. 2012), chicken (Rubin et al. 2010), dogs (Axelsson et al. 2013) or 

rabbits (Carneiro et al. 2014), suggesting that this region might carry vital genetic variations 

kept together due to haplotype effects or that recombination in the region is suppressed. Ai et 

al. (2015) found a recombination breakpoint between a 14 Mb and a 34 Mb stretch, leading to 

three major groups of haplotypes, a European, a Southern Chinese and a Northern Chinese 

recombined haplotype. They explained the high differentiation of these three haplotypes with 

an introgression from a common ancestor even before domestication followed by a strong 

selective pressure for habitats in high altitudes. They concluded that this large region 

remained consistent over long time, since the estimated low recombination rate in this region 

could facilitate larger sweeps (Nachman 2001). They speculated that the reason for decreased 

variation was an enrichment of poly(T) sequences leading to a reduced recombination rate as 

known from human genomes (Kong et al. 2002). Using the Duroc reference for the analysis 

of our resequencing data, we find that the minipigs might carry a recombined haplotype 

different from the Asian and European samples we employed. This haplotype could be 

identified as the southern Chinese haplotype, based on the Wuzhishan samples considered in 

both studies. The SNP chip data within the first sweep region (52-61 Mb) shows that the 

founder breeds must have provided both the European and the South Asian haplotype into the 

GMP during breed establishment: The Vietnamese Potbellied Pig carries the South Chinese 
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haplotype, while the Landrace carries the haplotype found in European wild boars and the 

Minnesota Minipigs carries both haplotypes. Thus it is surprising that we can solely detect the 

South Chinese haplotype in our current GMP stock, suggesting that the European haplotype 

must have disappeared during breed consolidation. Since the GMP was always selected for 

small size and high fertility, these two traits might underlie the selection against the European 

haplotype. 

The subsequent evaluation of an F2 generation from a GMP x Yorkshire and a GMP x Duroc 

cross for four body size traits showed that males inheriting the GMP haplotype were 

significantly smaller than a male carrying the European haplotype for three of the four traits, 

while there was no significant effect on the fourth trait (Length at scanning). These results 

confirm that the analyzed region carries an allele influencing body size. Due to the cross-

breeding scheme no females carrying only the minipig haplotypes on both chromosomes were 

available. The lack of a significant differentiation between females carrying the large pig 

haplotype on both copies of the chromosome X and heterozygous females indicates that the 

large pig haplotype could carry an allele that is dominant over the allele of the minipig 

haplotype covering the effect of the GMP allele, even though another study (Trakooljul 2004) 

found that the respective minipig allele of the androgen receptor AR, located in this 

haplotype, was dominant over a Duroc derived copy. It also could be due to the mosaic nature 

of the X-chromosomal activation pattern in female eutherians (Payer and Lee 2008). At the 

single cell level, half of the body cells are deemed to carry either an active copy of the large 

haplotype or the GMP haplotype. Therefore, cells carrying the large pig haplotype might 

attenuate the size decreasing effect of the cells carrying the GMP copy. 

The differences of 3.5 % (3 cm) in body length at the age of slaughtering and 4.4 % (3 cm) in 

height at age of slaughtering are QTL effects of considerable magnitude. Reviewing other 

QTL studies on size, height and growth shows that the underlying QTL architecture can be 

highly different dependent on trait or organism. Whereas, in humans, height is a highly 

heritable trait, influenced by at minimum 180 genetic loci (Lango Allen et al. 2010) and SNP 

effects explain up to 45 % of the phenotypic variance (Yang et al. 2010), only a small portion 

could be attributed to QTLs. Gudbjartsson et al. (2008) identified 27 QTL explaining only 

3.7 % of the population variance in height, composed of single effects of about 0.3 to 0.6 cm, 

which was confirmed by other studies (Visscher 2008: 0.4 to 0.8 cm average effect size for a 

QTL; Hirschhorn and Lettre 2009: 0.3 to 0.6 cm effect on adult height). In domestic animals, 

larger QTL effects have been found. Signer-Hasler et al. (2012) reported that two QTL 
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together explain 18.2 % of the heritable genetic variation in horses (~0.5 cm and ~1 cm for 

height at withers, respectively). They suggest the higher efficiency of QTL studies in 

domestic animals compared to humans to be due to the existence of isolated populations with 

reduced heterogeneity. In a cattle cross breeding scheme, a QTL next to PLAG1, CHCHD7 

and MOS was found with an allele substitution effect of 2 cm height at withers (Karim et al. 

2011). Rubin et al. (2012) found that genotype combinations at two loci, LCORL and PLAG1, 

together explained a difference of 5.3 cm in body length in domestic pigs. Since we could not 

find signals of selection neither at LCORL nor PLAG1 in our study, it is noticeable that the 

effect size of the chrX locus described herein has a similar effect size. Among the genes 

located in this region, the androgen receptor appears to be the most prominent candidate for a 

gene underlying the growth differences between pigs carrying opposite haplotypes, since AR 

is influenced by several growth factors (Culig et al. 1994), has known function in growth 

processes (Ornoy et al. 1994; Richman and Kirsch 1988) and underlies the obesity phenotype 

that is commonly found in minipigs (Fan et al. 2005; Johansen et al. 2001). Another study on 

the effect of the AR (Trakooljul et al. 2004) on performance and carcass traits based on a 

cross-breeding experiment made up with Duroc and MiniLEWE also found that Duroc and 

MiniLEWE carry different copies of the AR. It could be shown that the MiniLEWE allele led 

to higher expression of the AR in several tissues including the uterus, and had effect on 

several performance and carcass traits. The haplotype that contains AR carried by all studied 

GMP was most likely identical to the aforementioned MiniLEWE allele and introduced by the 

Vietnamese Potbellied Pig during breed foundation. This pig breed was originally not only 

chosen for its small size, but also for the much higher litter size compared to the Minnesota 

Minipig (Glodek and Oldigs 1981). Since there is a correlation between body size and litter 

size in mammals (Tuomi 1980), which Ferguson et al. (1984) estimated to be r = 0.2 in pigs, 

the current breeding scheme for low body weight and high fertility might have favored the 

Asian haplotype and AR could be one of the underlying causal genes. 

Conclusion 

Comparison of WGS data of minipigs against data of various large pig breeds is a logical 

approach in order to reveal the genetic background of body size in pigs. Signature of selection 

analysis with multiple complementary methods provided a comprehensive set of putative 

sweep regions, spanning approximately 2 % of the autosomal genome. The set of associated 

genes and the consecutive GO term overrepresentation analysis suggest that energy 

metabolism, alterations in the MAPK pathway, and a possible insulin resistance might be key 
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elements in body size inheritance of miniature pigs. Additionally, the density of resequencing 

data proved to be especially useful to analyze a large sweep region on chromosome X, since 

the SNP chip available so far holds just few SNPs of limited information in that region. We 

identified three SNPs on the genotyping chip, serving as perfect markers to determine the 

respective haplotypic state of an individual in future studies. The effect size of the QTL of 

3 cm in body length and height underlying this selective sweep is comparable to the largest 

QTL for body size traits known from other studies in mammals. It, therefore promises 

interesting implications even for practical breeding. 

Methods 

Analysis of whole genome resequencing data 

Samples and raw data preparation 

We extracted DNA from 10 representative contemporary GMP sows from the experimental 

herd of the University of Goettingen. DNA from 2 Mini-LEWE (BMP) sows, a miniature 

breed developed in Berlin, Germany and a DNA-pool of 10 female BMPs from the University 

of Veterinary Medicine Hannover was also prepared. Whole genome re-sequencing was 

performed at the Science for Life laboratory at Uppsala University, Sweden on an Illumina 

HighSeq2000 as paired end sequencing with an aim average sequencing depth of 12X. The 

raw sequencing data is deposited in ENA under project accession (to be added). 

We added Publicly available re-sequencing data underlying the studies of Rubin et al. (2012), 

Fang et al. (2012) and Vamathevan et al. (2013). These samples contained breeds of Asian and 

European origin, both domestic and wild, and comprised animals of the breeds Duroc (DUR), 

Hampshire (HAM), Jiangquhai (JQH), Large White (LW), Landrace (LAR), Meishan (MEI), 

Pietrain (PIE), Xiang (XIA), European wild boars (WB FR, WB NL, WB SW), Asian wild 

boars (WB SC, WB NC, WB JA), a Wuzhishan (WUS) and one Goettingen Minipig (GMP) 

(Supplementary table 3.8).  

We aligned all sequence reads to the reference genome susScrofa3 (build 10.2;Groenen et al. 

2012) using the Burrows-Wheeler algorithm as implemented in the software bwa (Li and 

Durbin 2009). The read trimming parameter was set to q=5. We then sorted the alignments 

with Samtools (Li et al. 2009) and used Picard tools (Picard 2009) to mark duplicates without 

removal, to down-sample the data of the single Goettingen Minipig to a coverage comparable 

to the other minipig individuals and to construct indices for the alignments. Single Nucleotide 
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Polymorphisms (SNPs) were called with GATKs Unified Genotyper (DePristo et al. 2011; 

McKenna et al. 2010).  

In order to obtain a reliable dataset for the selective sweep analysis, we applied a stringent 

filtering process on the variant call set, by first removing InDels and multi-allelic SNPs and 

filtering with GATK for a comprehensive set of quality criteria described in the methods 

section. The filters for chromosome X were adjusted separately taking into account the 

reduced depth of this chromosome in males. In addition, to keep a sample record a minimum 

genotype quality (GQ) of 20 was required for sequenced individuals and a minimum depth of 

coverage of 4 was required for pools. 

In-silico pooling 

For further analyses we constructed two contrasting in-silico pools: the large pig virtual pool 

(LPP) made up of Duroc, Hampshire, Jiangquhai, Large White, Landrace, Meishan, Pietrain, 

the European wild boars and the Asian wild boars. The minipig in-silico pool (MPP) 

comprised the Goettingen Minipigs, the Mini-LEWE and the Mini-LEWE-pool. For this, we 

calculated the reference allele frequency per breed for each locus. For each called SNP, the 

reference allele frequency in each in-silico pool was then calculated as the unweighted 

average of the respective breed reference allele frequencies. SNP loci for which less than 

50 % of the breeds in one of the two groups had a record were excluded. 

Selection signature detection 

For the detection of genomic regions with influence on the small size of the minipigs, we 

calculated heterozygosity and FST with custom R scripts (R Core Team 2015) and combined it 

with the composite likelihood ratio (CLR) test, implemented in SweepFinder (Nielsen et al. 

2005). 

We calculated expected heterozygosity per locus as 𝐻𝑒𝑥𝑝 = 2𝑝(1 − 𝑝) where 𝑝 is the 

reference allele frequency in the MPP and afterwards averaged it in sliding windows of 

100 kb with 80 % overlap. We then normalized the 𝐻𝑒𝑥𝑝values of individual windows into Z-

scores by adjusting the value using the mean and standard deviation derived from all 100 kb 

windows along autosomes and the X-chromosome independently. We defined candidate 

selective sweeps using an outlier approach whereby a window that fell below a value of -2.34 

(lowest 1 %) was required to initially call a sweep, such sweeps were then extended to each 

side until values exceeded -1.64 (lowest 5 %). 
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The CLR test (Nielsen et al. 2005), implemented in SweepFinder was applied to the same 

100 kb windows of the filtered SNP data of all individuals belonging to the Goettingen 

Minipigs and the Mini-LEWE. We excluded invariable loci across both groups and took the 

highest 1 % of the signals further analysis. 

 

 

The differentiation between the LPP and the MPP was determined by the fixation index  

𝐹𝑆𝑇 =
∑ 𝑛𝑖(𝑝𝑖−�̅�)2/(2𝑛)̅̅ ̅

�̅�(1−�̅�)
  

altered after Weir (1996), where 𝑝𝑖 is the frequency of the reference allele in group i, �̅� is the 

weighted mean frequency of the first allele in both groups, 𝑛𝑖 is the number of samples within 

a group i, and �̅� is the average group size. We averaged the values across the same windows 

of 100 kb with 80% overlap as for heterozygosity and detected regions of increased 

differentiation by the same method as used for expected heterozygosity, with the highest 1 % 

and 5 % of the actual values taken as thresholds. 

A selective sweep was assumed, when regions showing decreased expected heterozygosity in 

the minipig or by the composite likelihood ratio test overlapped with signals of high 

differentiation between the two groups. We required a minimum width of 200 kb and 

extended the final regions by 0.5 Mb to each side. Figure 3.6 shows the proportions of the 

autosomes detected to be under putative selective pressure. The CLR test detected 1 % of the 

genome as putative sweeps of which 59 % intersected with outstanding FST signals. The 

heterozygosity signature method found 5.3 % of the genome to be under selection, ~30 % 

thereof (1.6 % of the genome) intersecting with extreme FST signals. 0.3 % of the whole 

genome was shared between CLR and heterozygosity signature. Finally, we used the union of 

CLR and expected Heterozygosity signals intersecting with FST for further analysis.  
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Figure 3.6: Overlaps between selection signature detection methods. 

Phylogeny 

We constructed phylogenetic trees from biallelic SNPs, extracted from filtered VCF-files with 

VCFtools (Danecek et al. 2011) and from array data with customized R-code. We calculated 

the pairwise distance with Plink (Purcell et al. 2007) as 1 - similarity between samples, where 

similarity was the proportion of a genome of an individual being identical by state (IBS) with 

another animal’s genome. We constructed the neighbor joining tree using PHYLIP 

(Felsenstein 1989), calculated Pairwise 𝐹𝑆𝑇 values from all autosomal SNP loci with 90 % or 

more animals with genotypes that passed filters, in each contrasting combination of the 

individual data of European breeds, Asian breeds and minipigs and for the subgroups 

European domestic breeds, European wild boars, Asian domestics, Asian wild boars, 

Goettingen Minipigs and Mini-LEWE, respectively (additional information on the groups can 

be found in Supplementary table 3.1 and Supplementary table 3.2). Subsequently, we 

averaged values at all loci to gain a genome wide 𝐹𝑆𝑇 value. 

Gene annotation and gene overrepresentation analysis 

We annotated genes within regions of interest using the Ensembl Pig Gene set 79 

(Cunningham et al. 2014) and, subsequently, conducted a gene ontology (GO) 

overrepresentation analysis by using Fisher´s exact test (Sachs and Hedderich 2006). We 

calculated fold enrichment  as  FE
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, 

with being the number of genes within a sweep and the respective gene ontology, being 

the number of genes within a sweep but outside the respective gene ontology,  being the 

number of genes in a respective gene ontology but outside a sweep and being the number of 

genes outside a sweep and outside the respective gene ontology (Cramér 1945; Gene 

Ontology Consortium 2015). All statistics were applied on all GO terms for which genes had 

been found within a putative selective sweep. To account for possible bias resulting from 

assumption violations of the Fisher´s exact test (e.g. independency of the genes) as well as the 

multiple testing problem, we conducted a permutation analysis to construct empirical 

significance thresholds for the calculated p-values. To this end, we shifted the set of sweep 

regions along the genome by a random number of base pairs between 1 and the genome 

length, while retaining sweep sizes. Genes were then annotated to the shifted set of sweep 

regions and Fisher´s exact test p-value was re-estimated for each ontology term found in our 

original annotation. This random shifting should assure the resulting p-values to reflect the 

case when the null hypothesis is true. Based on 5000 replications, the 5 % quantile threshold 

was taken to determine the significance threshold for each gene ontology term. 

Independent validation of a major sweep on the X-chromosome 

For a large sweep region in the middle of chromosome X, we used additional SNP array 

genotype data and phenotypic data from two other studies (Gaerke et al. 2014; Pant et al. 

2015) for a more comprehensive examination of this region and its effect on growth. 

The samples from Gaerke et al. (2014) comprised 154 GMP, 11 MMP, 4 VPP, 16 European 

WB and 11 LAR. Pant et al. (2015) conducted an F2 cross-breeding experiment in which 

Duroc and Yorkshire females, respectively, were crossed with Goettingen Minipig males. 

This study provided X-chromosomal genotypes of 21 GMP males, 6 Duroc and 7 Yorkshire 

females, 83 F1 animals and 454 F2 animals. All samples were genotyped with the Illumina 

PorcineSNP60 BeadChip. Size phenotypes for the F2 animals were also provided. 

SNPs within the region of interest, 52 to 61 Mb on the X-chromosome were identified. We 

used Plink (Purcell et al. 2007) to filter out individuals with more than 90 % missing 

genotypes and SNPs with less than 90 % genotyping rate or a minor allele frequency of less 

than 1 %. Under the assumption of no recombination between the haplotypes of the European, 

Asian and minipig breeds we searched for loci being fixed within a group but showing 
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different states between groups. We then used such informative SNPs to determine the origin 

of the two haplotypes in the F2 animals.  

Based on the results of the sequence-based analysis, we hypothesized that the origin of the 

haplotype in the considered region should affect the body size of F2 animals. We therefore 

classified F2 animals in three groups: Homozygous females or hemizygous males carrying the 

Duroc/ Yorckshire haplotype as first class, heterozygous females as the second class and 

hemizygous males carrying the minipig haplotype as the third class. These classes were 

subsequently modeled as a fixed effect nested within sex. 

Effects of the minipig haplotype on the four phenotypical traits “shoulder height at slaughter”, 

“body length at slaughter”, “shoulder height at age of scanning” and “body length at age of 

scanning” were estimated using proc “mixed” from SAS 9.4 (SAS 2017). The full model was

 

where  is the dependent variable,  is the fixed effect of the breed of the female ancestor 

in the founder generation (𝑖 = 1,2),  is the sex,  is the animal’s age at measurement in 

days,  is the haplotype, either 1 for homozygous females and hemizygous males carrying 

the large pig haplotype, 2 for heterozygous females and 3 for hemizygous males carrying the 

minipig haplotype. Each depicts the linear regression coefficient of the age or 

the respective interaction of a factor with age.  is the residual error. The full model was 

reduced by stepwise backward selection of factors with the highest p-values until only 

significant factors remained. 

We employed the R package “rehh” (Gautier and Vitalis 2012) to estimate the extension of 

the two haplotypes and the decay of linkage disequilibrium around the central position of SNP 

‘H3GA0051810’ (56’716’179 bp). Genes within this region were annotated with the Ensembl 

Pig Gene set 79 (Cunningham et al. 2014). Finally, QTL known from former studies located 

in this region were retrieved from the Pig QTL database (Hu et al. 2013, Results not shown). 

List of abbreviations 

BMP: Mini-LEWE; Minischwein Lehnitz-Wendefeld 

Chr: Chromosome 

CLR: Composite likelihood ratio test 
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DNA: Deoxyribonucleic acid 

DUR: Duroc 

ENA: European Nucleotide Archive 

GATK: Genome Analysis Toolkit 

GMP: Goettingen Minipig 

GO: Gene ontology 

GQ: Genotype quality 

HAM: Hampshire 

IBS: Identical by state 

JQH: Jiangquhai 

LAR: Landrace 

LD: Linkage disequilibrium 

LPP: Large pig pool 

LSD: least significant difference 

LW: Large White  

MEI: Meishan 

Mb: Mega base pairs, 10^6 base pairs 

MMP: Minnesota Minipig 

MPP: Minipig pool 

PIE: Pietrain 

QTL: Quantitative trait loci 

SNP: Single nucleotide polymorphism 

VCF: Variant call format 

VPP: Vietnamese Potbellied Pig 

WB FR: Wild boar France 

WB JA: Wild boar Japan 
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WB NL: Wild boar Netherlands 

WB NC: Wild boar North China 

WB SC: Wild boar South China 

WB SW: Wild boar Switzerland 

WGS: Whole genome sequencing 

WUS: Wuzhishan 

XIA: Xiang 
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Summary 

The Goettingen Minipig (GMP), one of the smallest pig breeds, is an established animal 

model in medical research. The GMP is bred in five isolated stocks and it is of foremost 

importance to ensure the integrity of the different strains. We sequenced two DNA-pools from 

every stock and added samples from a diverse set of pig breeds from an earlier study. We 

estimated the pairwise fixation index for all pools, conducted principal component analyses 

(PCA) and functionally annotated all loci. The PCA revealed, that the GMP is easy to 

discriminate from all other breeds, but that there also is a certain level of differentiation 

between the five stocks. Annotation of all loci showed that critical functional classes, such as 

stop codons, were relatively underrepresented and rarely located in genes important in 

minipig breeding. We conclude that there is a certain level of stratification within the GMP, 

which might not be compromising breed integrity yet. 

Keywords: Goettingen Minipig, pool sequencing, differentiation  

Introduction 

The Goettingen Minipig (GMP), one of the smallest pig breeds in the world, was established 

by crossing Minnesota Minipigs, Vietnamese Potbellied Pigs and German Landrace at the 

former Institute of Animal Breeding and Genetics of the University of Goettingen in the 

1960s (Simianer and Köhn 2010). The university owned stock is kept at the research farm 

Relliehausen (RE). In 1992, a collaboration with Ellegaard Göttingen Minipigs A/S from 

Dalmose, DK, was started by opening unit DA1. In 2006, animals from DA2 (descendent 

from DA1) were brought to North Rose, NY, as foundation for a North American population. 

DA1 was closed down. The next separation happened in 2009 with the opening of a second 

barrier in Dalmose (DA3). Since the opening of the first Asian facility in Nisshin, Japan (NI) 

in 2013, branched off from DA3, there are now five active breeding stocks in service 

worldwide without exchange of animals. Even though all stocks underlie a fully documented 

and centrally controlled breeding scheme and are bred for the same breeding goal, the genetic 

isolation might harbor the risk of stratification. As the GMP is today one of the standard non-

rodent animal models in medical research, its uniformity and clear characterization are of 

foremost importance (Bollen and Ellegaard 1997). 

This study aims at identifying the traces that separation might have left in the genomes of the 

different populations, predict their consequences and form the base for a decision-making 

process as to when interchange of animals is inevitable to maintain the breed integrity. 
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Material and Methods 

30 females representative for the respective stock were chosen for DNA sampling from every 

unit based on measures of pedigree-based relationship. The technically best 20 DNA extracts 

were randomly assigned to two groups of 10 individuals each and equimolarly pooled. Pools 

were sequenced at a depth of aimed 30X as paired reads on an Illumina X10. All reads were 

aligned to the reference genome susScr3 (build 10.2; Groenen et al. 2012) with BWA 0.7.2. 

(Li and Durbin 2009). The subsequent bam file preparation and variant calling followed the 

“GATK Best Practice” protocol (Broad Institute 2017). Due to unavailability of a high 

confidence learning SNP set, the 5 % SNPs with highest quality, that were also contained in 

dbSNP, were chosen for variant recalibration from the raw callset. Corresponding variants of 

various pig breeds from an earlier study (Reimer et al. 2014) were added. Individual data was 

virtually pooled by summation of all reference and alternative reads, respectively. 

Monomorphic loci were discarded, also, when a subset was used. 

Reference allele frequency 𝑝𝑖 was calculated for every pool as number of reads supporting the 

reference allele, divided by the total coverage at the respective locus. Wright´s fixation index 

was estimated pairwise (eq.1; Eding and Bennewitz 2007). A UPGMA tree, based on 100 

subsamples of 50’000 SNPs ('phangorn 2.2.0'; Schliep 2011) and a principal component 

analysis were computed with R (R Core Team 2015). All loci were annotated with Ensembl´s 

variant effect predictor (McLaren et al. 2016). 

𝐹𝑆𝑇 =
𝐻𝑇 − 𝐻𝑆

𝐻𝑇
=

𝑝∗(1−𝑝) − 
𝑝1∗(1−𝑝1)+𝑝2∗(1−𝑝2)

2

𝑝∗(1−𝑝)
, with 𝑝 =

𝑝1 + 𝑝2

2
        (1) 

 

Results and Discussion 

The UPGMA tree (Figure 4.1) shows that the GMP can still be considered a very distinct 

breed when compared to other pig breeds. Resampling shows a high robustness of the 

estimated tree, even when subsets of 50’000 SNPs were used. 

In the PCA (Figure 4.2), the first principal component (PC) explains 78 % and the second 

8 %. The first PC explains the variation between the GMP and all other breeds, while the 

second discriminates GMP from European and Asian (including Mini-LEWE) populations. It 

is remarkable, that the first component does not explain the difference between large pigs and 

minipigs, since the Mini-LEWE is also a minipig, but has a different genetic background than 

the GMP. 
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Figure 4.1:  UPGMA tree of all analyzed breeds based on FST. 

The PCA for the GMP pools only revealed that the DA units and the recently separated NI 

unit cluster together genetically. RE appears most distant from the other units, which may be 

explained by the long time since separation. To clarify if this led to critical functional 

differences, all highly differentiated SNPs were functionally annotated. In Figure 4.3 it is 

shown how the relative abundance of the functional SNP classes alters along the level of 

differentiation. 

While, for example the upstream and downstream gene variants show a steady increase 

towards higher FST levels, intron variants and intergenic variants remain stable throughout the 

entire FST spectrum. Interestingly critical classes were not represented at high differentiation, 

e.g. ‘stop_lost’ and ‘start_lost’, or were relatively underrepresented e.g. ‘stop_gained’ and 

‘missense variants’. 

Revisiting all deleterious SNP with FST ≥ 0.9 (Table 4.1), seven loci were found when NR 

was contrasted against another pool and one comparing RE to DA3. Among the underlying 

genes are annotation artefacts and novel genes, but also TMEM63A, a membrane protein 

gene, and PHLDA2, which has been linked to intrauterine growth restriction in humans. 

ZNF428, which contains the SNP differentiated between DA3 and RE has no obvious 

functional link to the GMP breeding goals. 
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Figure 4.2: PCA based on FST of all breeds (left) and on the GMP pools only (right). 

 

 

Figure 4.3: Relative abundance of selected functional classes in dependence from FST, 

based on the FST class 0 – 0.1. 

Our results support that the GMP is still clearly distinct from all other pig breeds, but inside 

the GMP, differentiation between RE, NR and a cluster of NI and DA2/3 can be detected. 

This is sensible, since the split of NI from DA3 was just four years ago and optimal 

representatives of DA3 were chosen as founders of NI. The functional annotation shows that 

differentiation happens rather in neutral than in critical genomic regions, and differences 

found might rather be due to drift than to selection. The few highly differentiated deleterious 

SNPs are located in genes without obvious functional relation to the typical attributes of the 
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GMP and it seems unlikely, that they might compromise the functional integrity of the GMP. 

Even though genetic drift drives apart the different units genetically, the centralized breeding 

scheme has ensured breed integrity of the GMP so far and an exchange of animals between 

units does not yet appear to be necessary. 

Table 4.1: Missense alleles with deleterious consequence exhibiting FST =1. 

Chr Pos Pop1 Pop2 Ens-ID Gene name 

2 429‘370 DA2 NR ENSSSCG00000021597 PHLDA2 

2 15‘249‘414 DA2 NR ENSSSCG00000029368 - 

6 46‘206‘421 DA3 RE ENSSSCG00000003059 ZNF428 

10 16‘012‘840 DA2 NR ENSSSCG00000010854 TMEM63A 

14 7‘880‘409 DA3 NR ENSSSCG00000025094 - 

14 7‘880‘409 NR NI ENSSSCG00000025094 - 

16 86‘466‘849 NR NI ENSSSCG00000020913 - 

17 29‘494‘436 NR RE ENSSSCG00000024692 - 
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Abstract 

The Goettingen Minipig (GMP) is the smallest pig breed under a controlled breeding scheme 

and is bred in five isolated stocks. The genetic isolation harbors the risk of stratification which 

might compromise the identity of the breed and its usability as an animal model. We 

conducted whole genome sequencing of two DNA-pools per stock to assess genomic 

differentiation within and between stocks. FST and Reynolds distance as measures of 

differentiation and genetic distance were estimated for about 13M biallelic autosomal SNP 

loci. These data were complemented with sequence data from 13 other pig breeds from public 

data repositories. Based on FST, a phylogenetic tree, principal component analysis (PCA) and 

evaluation of functional SNP classes was conducted. An F-test was performed to reveal 

significantly differentiated allele frequencies between stocks, further a pathway analysis was 

conducted. Variation per stock was quantified as expected heterozygosity. Phylogeny and 

PCA showed that the GMP is easily discriminable from all other breads, but that there is also 

differentiation between the GMP stocks. Dependent on the contrast between GMP stocks, 4 to 

14 % of all loci have significantly different allele frequencies. Functional annotation revealed 

that functionally non-neutral loci are less prone to differentiation which suggests, that the 

underlying mechanism is rather drift than selection. The pathway analysis detected 

differentiation between two stocks in pathway ‘Glutamatergic synapse’ with putative effect 

on behaviour. The Relliehausen stock appears to be the genetically most variable and could be 

a valuable resource if animal exchange is required to maintain uniformity of the GMP. 

Introduction 

The Goettingen Minipig (GMP) is a model organism with growing importance (Swindle et al. 

2012). Bred in the 1960´s by crossing Minnesota Minipigs, Vietnamese Potbellied pigs and 

German Landrace, the breed is under a fully documented, closed breeding scheme ever since. 

The first unit was founded at the research farm of the University of Göttingen in Friedland 

and later resettled to the Relliehausen research farm. Due to the growing interest of customers 

in GMPs, this facility could not satisfy the demand anymore and therefor collaboration with 

Ellegaard Göttingen Minipigs A/S in Dalmose, Denmark was established in 1992. In 2003 

animals from this stock were brought to Marshall BioResources, North Rose, New York as 

the basis of a North American GMP breeding scheme. In 2009 a second barrier was 

established in Dalmose, based on breeders from the first barrier, to increase the production 

and improve the housing conditions. With the latest transfer, animals from Dalmose were 

brought to a breeding unit in Nisshin, Japan in 2013. After the initial animal transfer, stocks 
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remained under closed breeding without any genetic exchange, albeit being under a common 

breeding scheme, coordinated by the animal breeding and genetics group at the University of 

Göttingen, Germany.  

Managing the GMP in independent stocks is beneficial from a hygienic point of view. 

Additionally a production unit close to the main sales market minimizes negative effects on 

animal welfare through long transports and prevents import regulations. On the other hand 

splitting a population reduces the effective population size of each sub-population, which 

increases the risk of genetic drift or the manifestation of recessive disorders (Fitzpatrick and 

Evans 2009). Two concepts to counter these risks are purging of deleterious variants (Hedrick 

1994) or maintenance of genetic diversity (Bosse et al. 2015). Lacy (1987) argues that drift is 

the most important factor in loss of genetic variance when effective population sizes are low, 

as in case of the GMP (Gaerke et al. 2014), and the only effective measure to mitigate adverse 

effects would be animal exchange. 

In this study we try to assess whether the genetic management was able to maintain the 

uniformity of the breed GMP, or if the isolated production units are already genetically 

diversified such that an exchange of breeders is inevitable. This was done by re-sequencing 

two representative DNA pools from each unit: candidates were sampled for low average 

relationship within a pool, but elevated relationship towards the remaining stock, allowing an 

assessment of the diversity within and between units. 

Material and Methods 

Samples 

A joint pedigree was created from the pedigrees of all five separated facilities (Relliehausen 

(RE); Dalmose barrier 2 and 3 (DA2, DA3); North Rose (NR); Nisshin (NI)). Numerator 

relationship matrices were constructed with Wrights coefficient of relationship (Wright 1922) 

for each stock and all animals alive within a stock in November 2015. A set of 30 individuals 

was selected for blood sampling with the following procedure in each facility, respectively: 

all candidates available for blood sampling consisting of only non-pregnant, healthy sows 

without genetic disorders were identified. A subset of 30 animals was randomly sampled from 

this list and the relationship within the set ( a ) and between the animals in the set and all 

remaining animals in the stock ( b ) calculated. Both values were combined in an index 

baI *2.0*8.0  , to minimize relationship within the samples while maximizing 

relationship with the sample and the remaining stock. This sampling was repeated up to 
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25’000 times and restarted every time a new index value went below the previously recorded 

one. The procedure was stopped after 25’000 rounds without improvement. 

DNA of two times ten animals per stock, randomly chosen from the available samples from 

the previously selected 30 candidates, was pooled using equimolar amounts of the individual 

DNA. 150 bp paired-end sequencing was done on an Illumina HiSeq X Ten with an aim 

coverage of 30X and an insertsize of about 420 bp. Raw data was aligned to the reference 

genome susScr3 (build 10.2, Groenen et al. 2012) with BWA 0.7.12 (Li and Durbin 2009), 

sorting, merging of different libraries and marking duplicates were done with Picard tools 

2.0.1 (Picard 2009), base qualities were recalibrated with GATKs BQSR (McKenna et al. 

2010; Van der Auwera et al. 2013) using the available SNPs from dbSNP as validation 

(Sherry et al. 2001). Biallelic SNPs were called with the Haplotype Caller from GATK 3.4-

46. SNPs were filtered with the VariantScoreRecalibration tool of GATK that uses machine 

learning to assess the validity of a SNP. Since there was no high quality reference set 

available, the 5 % SNPs with highest quality from our callset, which were also represented in 

the dbSNP database, were used to train the model incorporating the variant attributes 

QualitybyDepth (QD), MappingQuality (MQ), MQRankSumTest, 

ReadPositionRankSumTest, FisherStrand (FS), StrandOddsRatio(SOR) and depth (DP). A 

truth sensitivity filter level of 99.9 was applied. 

For all loci, also represented in the study of Reimer et al. (2014, Table 5.1), biallelic SNP 

data of 13 various pig breeds (Rubin et al. 2012; Fang et al. 2012; Vamathevan et al. 2013) 

were added to allow inter-breed comparisons. Monomorphic loci and loci without records 

were removed.  

Fixation index and Reynolds distance 

Fixation index (FST) and Reynolds distance (DR) were estimated between breed pools. 

Therefore read information of individuals was virtually pooled by breed-wise summation of 

reads supporting the reference and the alternative allele, respectively. 

Reference allele frequency in each breed 𝑘 per locus was estimated as 𝑝𝑘 =
𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓 +𝑅𝑎𝑙𝑡
, with 

𝑅𝑟𝑒𝑓/𝑎𝑙𝑡  depicting the number of reads supporting either the reference or alternative allele, 

and 𝐹𝑆𝑇 calculated per locus as 𝐹𝑆𝑇 =
𝐻𝑇 − 𝐻𝑆

𝐻𝑇
=

𝑝∗(1−𝑝) − 
𝑝1∗(1−𝑝1)+𝑝2∗(1−𝑝2)

2

𝑝∗(1−𝑝)
, with 𝑝 =

𝑝1 + 𝑝2

2
. 

Reynolds distance was estimated as 𝐷𝑅 =
1

2
∗

∑ (𝑝1𝑖−𝑝2𝑖)²2
𝑖=1

1−∑ 𝑝1𝑖𝑝𝑝2𝑖
2
𝑖=1

, where 𝑖 reflects the 𝑖𝑡ℎ allele at a 
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biallelic locus, namely the reference allele or the alternative allele, respectively (Eding and 

Bennewitz 2007). Both measures were averaged over all pairwise complete loci to gain 

genome-wide values.  

Table 5.1: Additional porcine samples used in Reimer et al. (2014).  

Breed Number of Samples Average Depth Class Subclass 

Duroc 4 5.98 European Domestic 

Hampshire 2 6.49 European Domestic 

Jiangquhai 1 8.20 Asian Domestic 

Large White 14 6.46 European Domestic 

Landrace 5 6.36 European Domestic 

Meishan 4 6.83 Asian Domestic 

Pietrain 5 5.61 European Domestic 

Xiang 2 6.27 Asian Domestic 

European wild boar 6 6.44 European Wild 

Asian wild boar 5 6.27 Asian Wild 

Goettingen Minipig 

external 1 12.76 Minipig Goettingen 

Goettingen Minipig 10 13.01 Minipig Goettingen 

Mini-LEWE 2 13.93 Minipig Berlin 

Mini-LEWE pool 10 13.14 Minipig Berlin 

Wuzhishan 1 11.02 Asian Domestic 

 

Phylogeny 

A phylogenetic tree was constructed from genome-wide 𝐹𝑆𝑇 values from all autosomal loci, 

using the clustering algorithm UPGMA as implemented in the package “phangorn” (Schliep 

2011). The resulting tree reliability was determined by comparison to 100 trees constructed 

from 100 randomly sampled loci each.  

Test of allele frequency differences between pools 

We employed an F-test based statistic to determine statistically significant variation patterns 

between pools for every locus (eq. 1).  

𝐹 =
𝑉𝐼

𝑉𝑂
, (1) 
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where 𝑉𝐼 is the pooled variance within a unit, e.g. RE1 and RE2, estimated as 𝑉𝐼 =

𝑝𝑅𝐸1+𝑝𝑅𝐸2

2
∗ (1 −

𝑝𝑅𝐸1+𝑝𝑅𝐸2

2
) ∗

2

10
, and where 𝑉𝑂 represents the variance between the 

aforementioned unit and a remote pool, e.g. NI1 estimated as 
𝑝𝑅𝐸1+𝑝𝑁𝐼2

2
∗ (1 −

𝑝𝑅𝐸1+𝑝𝑁𝐼2

2
) ∗

2

10
. Degrees of freedom where assumed nine, for every pool was made up from ten animals. 

Heterozygosity, fixed alleles and private polymorphisms 

Expected heterozygosity at locus 𝑖 was estimated from original pools and the virtual pool for 

each stock as 𝐻𝑒𝑥𝑝𝑖
= 2 ∗ 𝑝𝑖 ∗ (1 − 𝑝𝑖), where 𝑝𝑖 is the reference allele frequency. It was 

further assessed whether a single stock was fixed for one allele, while the others were fixed 

for the other allele. To assess variability remaining in only one stock, loci where all stocks 

apart from one were fixed, were identified. This was done both for the subset of loci without 

missing information and for loci where single stocks had missing information. 

Annotation 

Loci identified in the aforementioned tests were functionally annotated with the Ensemble 

Genes database (version 89; Sscrofa 10.2; Aken et al. 2016). 

Gene and pathway analyses  

For each comparison, we used the SNP-wise FST-values to identify genes and pathways that 

are enriched with highly differentiated SNPs between the contrasts. To this end, we first 

created a SNP to gene annotation based on the Ensembl Genes database (version 89; Sscrofa 

10.2). We then performed a Kolmogorov-Smirnov test to test whether the distribution of the 

FST-values within each gene significantly differs from the distribution of all the FST-values on 

the respective chromosome. To correct for multiple testing we permuted the gene positions 

and repeated the analyses with the permuted set of genes. We then used the p-values of the 

permutation test to obtain a genome-wide significance threshold for our p-values. Using the 

KEGG database (Kanehisa and Goto 2000), we subsequently annotated the Ensembl genes to 

KEGG pathways. In a similar fashion to the gene analyses, we performed a Kolmogorov-

Smirnov test to compare the p-values of the genes in each annotated pathway to the p-values 

of all genes. 

Results 

Sampling of the optimally representative candidates for pooling based on relationship 

measures resulted in candidate sets which exhibited lower inner-set mean relationship 
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coefficients (a) compared to the mean relationship of the candidate set with the remaining 

stock mates (b). Both, the absolute level of relationship and the difference between a and b 

were lowest for RE and highest for NR, while DA2 and 3 and NI were at the same level and 

exhibited similar difference between a and b (Table 5.2). 

Variant calling discovered 21’779’266 raw SNPs, with 3’185’086 SNP thereof not 

documented in dbSNP. After variant quality score recalibration 16’000’684 total SNPs and 

937’592 novel SNPs were retained. Intersection with the data set of various pig breeds and 

discarding of monomorphic loci provided a set of 15’022’059 analysis ready SNPs on 

chromosomes 1 to 18 and X. 

Table 5.2: Mean coefficients of relationship within a stock sample and between the 

sample and the remaining stock, including number of successfully extracted 

probes. 

  RE DA2 DA3 NR NI 

Relationship within sample 0.357 0.396 0.396 0.403 0.387 

Relationship Sample/ Remaining Stock 0.376 0.404 0.402 0.410 0.397 

Successful DNA extractions 28 24 23 28 24 

 

Differentiation and distance measures 

As measures of differentiation and genetic distance between the different breeds FST and 

Reynolds genetic distance (DR) were estimated. When applied on the variable set of large 

breeds and minipig pools, both measures provided a similar picture of three strongly 

differentiated groups (Figure 5.1). In principle, these three groups were the minipigs, the 

European breeds and the Asian breeds, respectively, with the exception, that the Mini-LEWE 

pools clustered with the Asian group. Comparing FST against DR, the latter showed generally 

higher estimates, relatively inflated at moderate levels of differentiation/ distance 

(Figure 5.2), but provided in general a very similar picture. Therefore, only FST was used for 

later purposes, such as the functional annotation. Focusing on the differentiation within the 

three groups, the GMP exhibited the lowest average differentiation (FST: 0.05; DR: 0.09; see 

also Supplementary table 5.1), the European (FST: 0.17; DR: 0.26) the second lowest and the 

Asian the highest (FST: 0.27; DR: 0.36) (Table 5.3). The average differentiation to other 

groups was higher than the differentiation within the own group, clearly so for minipigs and 

for European breeds, but not as clear for the Asian breeds. These exposed an even lower 
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average DR (0.34 vs 0.36) and FST (0.25 vs. 0.27) to the GMP than within the group of Asian 

breeds.  

 

Figure 5.1: PCA of pairwise genome-wide FST including all pools (top) and GMP DNA 

pools only (bottom); Variance explained by PC in brackets. Distribution of PC´s 

on the right. 

Principal component analysis of DR and FST resembled each other with only marginal 

deviations (r > 0.99). The first component accounts for 78 % of the variation in FST values and 

discriminates between the GMP and the other breeds, while the second component, explaining 

eight percent, separates the GMP, Asian and European breeds. Analyzing the GMP 
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separately, the first component explains already 96 % of the variation among the GMP pools 

and separates the RE pools from the other stocks. The second component (1 %) explains 

differences between RE, NR and a group consisting of the DA and NI pools. 

 

Figure 5.2: Genome wide FST vs. Reynolds distances for all pairwise comparisons. 

Comparisons within breed types in the respective colors, comparisons between 

breed types in grey. 

Table 5.3: Mean FST and DR between European and Asian breeds and GMP. 

 

 

GMP Asian European 

 GMP 0.049 0.245 0.335 

FST Asian  0.267 0.348 

 European   0.175 

 GMP 0.086 0.337 0.427 

DR Asian 

 

0.363 0.448 

 European 

  

0.260 
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Phylogeny 

The UPGMA tree (Figure 5.3) produced from FST values calculated with genome wide SNP 

data shows a clear clustering of the GMP from the other breeds. The next level clusters 

contain (in that order) Xiang, Meishan, South Chinese wild boars, the Mini-LEWE and the 

North Chinese wild boars. The European breeds form their own cluster. For all 100 

samplings, the GMP cluster, the Mini-LEWE cluster and European cluster are rediscovered in 

every iteration, while the nodes connected to the Asian breeds seem unstable with resampling 

probability between 9 and 8 %, with the exception of the Japanese Wild boar, that behaves 

like an outgroup sample. Even though, the European and the GMP clusters are distinct, the 

order within the clusters is variable. The node support within the European cluster spans from 

62 to 69 %, and between 20 to 72 % in the GMP cluster. The most stable structure with 72 % 

contains the RE pools and the least stable (20 %) contains the DA and NI herds. 

 

Figure 5.3: UPGMA tree based on genome-wide FST values; resampling frequency 

based on 100 random samples of 100 loci in rectangles. 

Stratification within the GMP 

The genetic differences within the GMP were determined by comparing pools in terms of 

allele frequency differences, such as oppositely fixed alleles, extreme FST values between 

stocks, differences in the average expected heterozygosity within pools by a variation based 
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approach employing an F-test statistic. Resulting loci detected by the aforementioned 

statistics were functionally annotated and imbalances between the various classes were 

checked for potential biases towards differentiated loci. Finally, stocks were compared by 

gene based and pathway based approaches. 

Significance test of pool allele frequencies between and within stocks 

The F-test compared the variation between the two pools with the variation between one of 

the pools against one foreign pool and could, in contrast to FST, add probabilistic evidence on 

differentiation between pools. On average, the NI stock had the lowest proportion of 

significantly (p=0.05, Bonferroni corrected) differentiated loci, overall 4.9 %, second lowest 

was RE with 6.1 % followed by DA3 and 2 with 6.9 and 7.3 %, respectively. With 9.4 %, NR 

had the highest proportion of differentiated loci (Table 5.4). Focusing on the stocks 

separately (Figure 5.4), only RE had comparable amounts of differentiated loci with all 

others. From the perspective of DA, NI, and NR, the level of differentiation to RE was clearly 

highest throughout all comparisons.  

Table 5.4: Proportion of SNP significantly different between stock and remote pool in F-

test at 5 %. 

 
RE_1 RE_2 DA2_1 DA2_2 DA3_1 DA3_2 NR_1 NR_2 NI_1 NI_2 

RE 0 0 0.08 0.08 0.07 0.08 0.07 0.07 0.08 0.09 

DA2 0.13 0.13 0 0 0.08 0.08 0.07 0.08 0.08 0.08 

DA3 0.12 0.12 0.08 0.08 0 0 0.08 0.08 0.06 0.07 

NR 0.14 0.15 0.10 0.10 0.11 0.11 0 0 0.10 0.12 

NI 0.10 0.09 0.05 0.05 0.04 0.04 0.06 0.05 0 0 

 

Also, the number of evaluated loci ranged between 3.4 and 4.6 M, where the highest numbers 

occurred, when RE or NI were involved. Mostly both tested pools of a stock showed a similar 

amount of differentiation with the exception of NR versus the two NI pools. The highest 

proportion of differentiated loci was found, when NR was tested against the two RE pools. 

Expected heterozygosity 

Expected heterozygosity, as measure of variation within a pool, revealed that RE and NI are 

systematically more heterozygous than DA 2, DA 3 and NR (Table 5.5). When estimated for 

single pools expected heterozygosity was between 0.21 and 0.22 for DA 2 and DA 3 and NR 
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and between 0.24 and 0.25 in NI and RE. Estimated from the virtual union of both pools per 

stock, the values were about 0.03 higher, but systematic differences remained (Table 5.6). 

 

Figure 5.4: Proportion of significantly different loci at 5 % Bonferroni corrected F-test 

level against No. of tested loci. 

Table 5.5: Expected Heterozygosity within pools. 

 

RE_1 RE_2 DA2_1 DA2_2 DA3_1 DA3_2 NR_1 NR_2 NI_1 NI_2 

Hexp 0.24 0.25 0.21 0.21 0.22 0.22 0.21 0.21 0.24 0.25 

SD 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

Nloci [M] 8.2 8.4 7.1 7.1 7.0 7.5 7.7 7.7 8.7 8.5 

NNA [M] 4.5 4.3 5.6 5.6 5‘8 5.2 5.0 5.0 4.1 4.2 
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Table 5.6: Expected Heterozygosity estimated from the virtual union of both unit pools. 

 

RE DA2 DA3 NR NI 

Hexp 0.27 0.24 0.24 0.24 0.27 

SD 0.17 0.17 0.17 0.18 0.17 

Nloci [M] 10.7 9.5 9.7 10.1 11.0 

NNA [M] 2.0 3.2 3.1 2.6 1.8 

 

Fixed alleles and private polymorphisms 

Table 5.7 depicts the correlation of allele frequencies of loci that had complete recordings 

and where each stock was fixed for either the reference or the alternative allele. Only 554 loci 

fulfilled this criterion. The correlation between the stocks based on these loci was negative for 

pairs where RE was involved. Negative correlations ranged from -0.12 with NI to -0.30 with 

NR. For all other combinations correlations were positive and ranged from 0.26 (DA 2 to 

MA) to 0.51 (DA2 to NI). On the other hand, RE held by far the largest number of still 

variable loci while the other pools were fixed at one allele. Out of the 560’855 loci fulfilling 

the criterion of one variable stock while all others were fixed, 275’295 belonged to RE (Table 

5.8). NR (88’580) and NI (83’402) with about 80’000 loci carried more than the DA units 

(59’319 and 54’259). Including loci with missing information increased the total number to 

1’194’559 loci. The predominance of RE was with 461’177 loci less distinct than before. 

Notably NI still carried more such loci than NR (296’485 vs. 198’062).  

Table 5.7: Correlation between genotypes for loci that were completely fixed within each 

unit. 

 

RE DA2 DA3 NR NI 

RE 1 -0.22 -0.19 -0.30 -0.12 

DA2 -0.22 1 0.45 0.26 0.51 

DA3 -0.19 0.45 1 0.30 0.51 

NR -0.30 0.26 0.30 1 0.36 

NI -0.12 0.51 0.51 0.36 1 
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Table 5.8: Number of private polymorphism; left: completely recorded loci; right: 

missing information (NA) allowed. 

 

Without NA with NA 

RE 275,295 461,177 

DA2 59,319 104,128 

DA3 54,259 134,707 

NR 88,580 198,062 

NI 83,402 296,485 

 

Annotation 

Functional annotation of loci significant in F-test, showing oppositely fixed alleles and 

exhibiting extreme fixation index values reveled that most loci were in intergenic or intronic 

regions (compare Table 5.9, i.e. F-test: 62 % intergenic and 27 % intron) followed by 10 % 

upstream and downstream variants. Exonic variants were present to an extent of less than 

1 %. Potential protein changing variants like start or stop codons were barely present at a 5 % 

significance level in the F-test and absent among loci with oppositely fixed alleles. Compared 

to the unselected background, intergenic, intron, up –and downstream variants were similarly 

represented in both, the 5 % F-test level and for the oppositely fixed loci, while missense 

variants were about 20 % less frequent in oppositely fixed loci and stop codons were not 

present at all. 

Annotating SNPs in different levels of FST differentiation supported these findings. Start and 

stop losses could not be found at higher FST levels, missense mutations and especially stop 

gains showed a decline in frequency towards high FST values, while up- and downstream, 

intron and intergenic variants were unaffected or increased in frequency (Figure 5.5). In the 

highest FST class with values > 0.9 there were 60 missense variants in all pairwise 

comparisons (Supplementary table 5.4), 8 of which had a predicted deleterious function 

(Table 5.10). While some annotations pointed to artefacts or novel genes, 3 of them were 

located in genes known by name, among them Pleckstrin homology-like domain family A 

member 2(PHLDA2, DA2 vs NR), Zinc Finger Protein 428 (ZNF428, DA3 vs RE) and 

Transmembrane protein 63A (TMEM63A, DA2 vs NR). 
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Table 5.9: Relative amount of significantly differentiated and oppositely fixed loci per 

functional class and relative abundance of loci in differentiated classes in 

comparison to all background loci. 

 

Relative amount of loci 

per class 

Relative abundance 

compared to background 

 

5 % bonf Opp. Fixed 5 % bonf Opp. fixed 

3_prime_UTR_variant 0.3916 0.5342 1.0168 1.3002 

5_prime_UTR_variant 0.0721 0.0981 1.0081 2.0146 

coding_sequence_variant 0.0001 0 0.3129 0 

downstream_gene_variant 5.0820 5.7021 0.9992 1.0587 

intergenic_variant 61.6988 62.1784 0.9999 1.0083 

intron_variant 26.9416 26.3410 0.9974 0.9898 

missense_variant 0.2786 0.2617 0.9992 0.8039 

start_lost 0.0006 0 1.0470 0 

stop_gained 0.0030 0 0.9434 0 

stop_gained,splice_region_variant 0.0001 0 0.5743 0 

stop_gained,start_lost 0.0000 0 0 0 

stop_lost 0.0001 0 0.9208 0 

synonymous_variant 0.4815 0.3707 0.9977 0.8098 

upstream_gene_variant 5.0498 4.5137 1.0169 0.8840 

 

Table 5.10: Annotation of deleterious missense variants with pairwise FST of 1. 

Chr Pos [bp] Pool 1 Pool 2 Ensembl ID RS ID SIFT Gene name 

2 429‘370 DA_2 NR_4 ENSSSCG00000021597 rs320902190 0.03 PHLDA2 

2 15‘249‘414 DA_2 NR_4 ENSSSCG00000029368 - 0 - 

6 46‘206‘421 DA_3 RE_1 ENSSSCG00000003059 - 0.02 ZNF428 

10 16‘012‘840 DA_2 NR_4 ENSSSCG00000010854 rs792023778 0.01 TMEM63A 

14 7‘880‘409 DA_3 NR_4 ENSSSCG00000025094 - 0.01 - 

14 7‘880‘409 NR_4 NI_5 ENSSSCG00000025094 - 0.01 - 

16 86‘466‘849 NR_4 NI_5 ENSSSCG00000020913 rs711954795 0.04 - 

17 29‘494‘436 NR_4 RE_1 ENSSSCG00000024692 rs344262225 0.03 - 
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Figure 5.5: Relative abundance of functional SNP classes in dependence from pairwise 

FST bewteen units. 
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Annotation of loci with variability in only one stock, while all other stocks were fixed, 

resembled the fractions of functional classes already known from the F-test and FST 

annotations (Table 5.11), but due the higher number of private variable loci in RE, the 

absolute numbers of loci annotated to potentially protein changing classes, such as missense 

mutations, was therefore higher in RE (1’499) than in all other stocks. Both DA stocks carried 

the lowest number of missense mutations (356 and 325). Still, every stock carried at least one 

stop codon gain or loss, RE even 11.  

Gene based and pathway tests 

The Kolmogorov-Smirnov based on pairwise testing of 316 annotated KEGG pathways 

detected only the pathway “Glutamatergic synapse” to be differentiated between DA3 and NR 

at the 5 % Bonferroni corrected level. Glutamatergic synapses are involved in signal 

transduction, specifically neuronal excitability, in the nervous system (Bergles et al. 2000) 

and are vital for brain function (Siddoway et al. 2011). No single gene was found to be 

significantly differentiated.  
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Table 5.11: Relative amount (in per cent) of private polymorphism loci per functional 

class (absolute number of loci in brackets). 

 

RE DA2 DA3 NR NI 

3_prime_UTR_variant 0.3968 

(1,085) 

0.3702  

(218) 

0.3451 

(186) 

0.3863 

(340) 

0.4227 

(350) 

5_prime_UTR_variant 0.0914 

(250) 

0.1206  

(71) 

0.0853  

(46) 

0.1159 

(102) 

0.1123  

(93) 

coding_sequence_variant NA 

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

downstream_gene_variant 4.3245 

(11,824) 

4.791 

(2,821) 

4.4469 

(2,397) 

4.0784 

(3,590) 

5.0805 

(4,207) 

intergenic_variant 65.1176 

(178,042) 

63.968 

(37,665) 

65.1318 

(35,108) 

65.4871 

(57,645) 

62.6211 

(51,854) 

intron_variant 23.8819 

(65,297) 

24.0111 

(14,138) 

23.8039 

(12,831) 

23.5092 

(20,694) 

24.5936 

(20,365) 

missense_variant 0.5482 

(1,499) 

0.6046 

(356) 

0.6029 

(325) 

0.6169 

(543) 

0.698  

(578) 

start_lost 0.0004  

(1) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

0.0012  

(1) 

stop_gained 0.0037  

(10) 

0.0034  

(2) 

0.0037  

(2) 

0.0023  

(2) 

NA  

(NA) 

stop_gained,splice_region_variant NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

0.0012  

(1) 

stop_gained,start_lost NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

stop_lost NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

NA  

(NA) 

synonymous_variant 1.3682 

(3,741) 

1.6372 

(964) 

1.4545 

(784) 

1.4791 

(1,302) 

1.6533 

(1,369) 

upstream_gene_variant 4.2671 

(11,667) 

4.4938 

(2,646) 

4.1259 

(2,224) 

4.3249 

(3,807) 

4.8161 

(3,988) 
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Discussion 

The aim of our study was to identify, if the integrity of the breed Goettingen Minipig was 

compromised by the current production and genetic management system that relies on genetic 

isolation of production units. First, the classification of the GMP samples in the context of 

various pig breeds representing worldwide porcine genetic variation was evaluated with 

phylogenetic and population genetic methods. Second, genetic identity within the breed was 

assessed by multiple approaches describing variability within and differentiation between the 

separated stocks. 

Discriminability of the Goettingen Minipig from other pig breeds 

Our PCA results based on Reynolds distance and FST show clearly distinct groups of 

European pigs, Asian pigs and Goettingen Minipigs. The distance between the European and 

Asian breeds reflects the current scientific consensus that domestication happened 

independently in Europe and Asia about 9000 year ago (Giuffra et al. 2000). The European 

breeds appear generally closer to each other, which might be explained, through the different 

domestication processes in both centers: while the European breeds emerged more or less 

directly from relatively uniform wild boar strains (Scandura et al. 2008), the Asian 

domestication history is characterized by complex human driven dispersal of domesticated 

pigs in the south east Asian archipelagos, sometimes interrupted by feral states, before pigs 

eventually reached the Asian mainland (Larson et al. 2007). This might explain why the 

European group clusters closely together in the UPGMA tree with higher resampling support 

than the Asian group. The tree based on genome wide SNP, clusters on one hand Xiang, 

Meishan and the South Chinese wild boars and on the other hand Jiangquhai and the North 

Chinese wild boars together, interrupted by the Mini-LEWE. This is in contradiction to Ai et 

al. (2015)  where Meishan clustered together with the North Chinese wild boars and could 

also  support the low resampling probabilities found among the Asian breeds. The Mini-

LEWE, a composite miniature breed, developed by crossing Vietnamese potbellied pigs, 

Saddlebacks and German Landrace, is in our study represented by a DNA pool of 10 females 

and a virtual pool made up from two sequenced individuals. Although it appears, that 

individual sequences are not fully comparable to pools, since we found that mixing of 

individual and pool sequences leads to clustering of the respective sample types (Results not 

shown). Still, the virtual and the DNA Mini-LEWE pools are clearly identified as one breed. 

Therefore the virtual pooling seems to be a suitable measure to make different types of data 

comparable. In the case of the GMP, both types were mixed and each analysis, PCA and the 
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UPGMA tree shows, that it is easily discriminable from all other breeds. The phylogenetic 

tree supports a GMP clade with 100 % resampling support, which is located among the Asian 

pig breeds. This can be explained by the cross-breeding history in which Vietnamese 

potbellied pigs, Minnesota Minipigs and German Landrace were involved (Glodek and Oldigs 

1981). An earlier study (Gaerke et al. 2014) estimated that about 70 % of the GMP genome 

are of Asian origin. In the PCA, the first component identifies the difference between the 

GMP and all others as the main source of variation, accounting for 78 % of the genetic 

variability. Following the interpretation of Kim et al. (2005), the average FST between the 

three groups lying between 0.25 and 0.35 suggests, that still a major part of the total 

variability can be assigned to differences among individuals. Anyway, albeit using 

microsatellite data, they encountered similar estimates for FST values in a set of breeds 

comparable to this study. Therefore we conclude that the GMP is still a distinct breed that can 

be easily distinguished from other breeds. 

Variation and Differentiation within and between the GMP pools 

While it seems particularly easy to distinguish the GMP from other pig breeds, it is more 

difficult, but relevant from a breeders’ point of view, to determine, if genetic isolation of the 

five breeding units has led to differentiated subpopulations. Applying PCA on the 

differentiation and distance measures (FST and DR) between the ten GMP pools, we were able 

to see a trend to three subgroups consisting of NR, RE, and a cluster comprising NI and DA, 

respectively. The presence of a certain level of stratification is expected and has been 

observed before, i.e. in studies in dogs (Quignon et al. 2007) or sheep (Kijas et al. 2009). In 

the latter study, several breeds with heterogeneous breeding background split into sub 

clusters, for example dependent on their origin (American Suffolk vs British Suffolk, FST ~ 

0.058 - 0.064; African vs American Dorpers, FST = 0.053) or phenotypic differences 

(Australian Poll Dorset vs American Dorset, FST = 0.082), while New Zealand and American 

Texel appeared indistinguishable (FST = 0.025). Studies comparing clearly distinct pig and 

cattle breeds, respectively, found FST values between 0.06 and 0.40 (Ai et al. 2013; McKay et 

al. 2008). FST of ~ 0.1 was found between relatively similar breeds, for example Large White 

and Landrace, while values higher 0.3 indicated major differentiation, such as between 

Nellore and Holstein cattle or Asian and European pig breeds. These values matched our 

findings between the European, Asian and GMP groups. Within the GMP, even two randomly 

composed pools from the same unit had a minimum differentiation of about 0.035. Between 

the aforementioned clusters FST was about 0.05 and therefore close to the differentiation 
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observed between the sheep breeds from separate origins. We explain this by genetic drift and 

slight differences in the actual breeding management, since the three clusters also belong to 

the three partners in GMP breeding, even though all follow generally the same breeding goal. 

Comparing our results with the FST levels found in the aforementioned studies implicates that 

our stocks might be at the edge of splitting into sub-populations, and, when focusing on 

individual loci, we expected that not all genomic regions between all pairwise combinations 

of the five units to be similarly differentiated. The F-test (Table 5.4) identified about 4 to 

14.5 % of the genome to be objected by differentiation which covers the range found in a 

comparable study by Amaral et al. (2011). We hypothesize that genetic differentiation should 

be attributed to drift rather than to selection, if it affects neutral loci relatively more than loci 

with putative harmful consequences on protein translation, such as stop codon gains or 

deleterious missense mutations. This was supported by an underrepresentation of detrimental 

variation among highly differentiated loci. The eight loci representing deleterious missense 

mutations with maximum FST were located in genes without known sensible relation to traits 

important in the GMP. Seven of these SNPs are identified when the NR subpopulation is 

involved in a pairwise comparison, indicating that NR might have drifted apart from the 

remaining populations relative more than the others. When focusing on the subset of loci 

where all units are fixed for either allele, it is striking, that RE more often seems to be fixed 

for the opposite allele compared to the other stocks, as reflected by the negative pairwise 

correlation of the frequencies with the other units.  

While the analysis of single crucial mutations could be misleading due to the complex nature 

of many traits of interest, integration of systems biology approaches, specifically pathway 

annotations, might be beneficial (Stranger et al. 2011). The only pathway found differentiated 

between stocks, DA3 and NR, was ‘Glutamatergic synapse’, regulating the neuronal 

excitability (Niswender and Conn 2010), which could lead to differences of the neuronal 

signal transduction. Besides being involved in disorders such as schizophrenia and depression 

(Sanacora et al. 2008; Meador-Woodruff et al. 2003), constraints in signal transduction are 

also known to alter the locomotion and behavior of the respective organism (Chiel and Beer 

1997; Picetti et al. 1997) and could be explained by hidden selection due to different handling 

strategies. Anyway, no additional differentiation could be found between one of the two 

aforementioned stocks and another stock in this pathway. Therefore, differentiation is rather 

likely to be incidental, than systematic, since handling or phenotype selection on behaviour is 

the same in DA2 and DA3. When we looked at expected heterozygosity as a measure of 
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variability, RE and NI exhibit the highest values. It is even more notable, that RE holds more 

private polymorphisms than all other units together, making it an indispensable resource of 

genetic variability. We explain this with the consequent implementation of the mating scheme 

based on the optimum genetic contribution concept (Meuwissen 1997) in RE. 

Not only is the preservation of a common genetic identity for all stocks of the GMP important 

(Bollen and Ellegaard 1997), but also the risk of inbreeding depression and loss of variation 

due to drift is increased in the artificially reduced subpopulations (Lacy 1987). To counter this 

in future, two strategies appear feasible: First, the exchange of genetic material, e.g. via 

artificial insemination, and second, selection of a most diverse set of breeders as basis for 

future breeding. The first strategy, commonly used by dog breeders, would harbor various 

risks of spreading diseases and disorders between units. In this scenario, semen from RE, the 

major reservoir of remaining variability, should be used to inseminate breeders in the other 

units. The second option of selecting a most diverse set of breeders from the respective unit 

also has the potential to increase heterozygosity, as can be observed in NI whose founding 

population was established in that very way. It can be taken as an example of the Bulmer 

effect  (Bulmer 1971) that genetic variation in the relatively large stock of DA3 wasn’t lost 

while selection and assortative mating was conducted, and could be largely recovered when 

the NI founders were chosen for maximum diversity. 

Conclusion 

Our study based on assessment of differentiation between the genetically isolated breeding 

units of the GMP found evidence for stratification, even though it appears less than in other 

breeds, and the whole GMP breed is still easily discriminable from other pig breeds. 

Functional annotation revealed, that loci with functional consequences are less differentiated 

than neutral loci, which implies that the forces differentiating the units appear to be rather 

drift than selective pressures. The pathway analyses, used to analyze more complex 

inheritance of traits, could identify just one pathway with possible link to behavior as being 

differentiated between two stocks. 

Albeit animal exchange seems not yet necessary, the RE subpopulation harbors the highest 

amount of genetic variation and seems to be most similar to the other units in pathways 

related to human diseases and appears therefore as the potential source for exchange animals. 
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General discussion 

This thesis aimed to evaluate the potential of next-generation sequencing in the Goettingen 

Minipig for discovery of the genetic background of miniaturization and to elucidate the effect 

of population subdivision on the genome. It has taken place during a period of massive 

progress in the field of sequencing studies on livestock. In retrospect, some decisions 

naturally would have been taken differently, if the technological progress was foreseeable 

right from the start. This chapter discusses the important role of the chosen reference genome 

Sscrofa 10.2 and possible alternatives, as well as the chosen sequencing strategy including 

sample selection. It addresses what the possible role of highly differentiated functional SNPs 

might be and how results can be interpreted. The second study focused only on 

differentiation, so in turn, one section tries to elucidate if our stocks are not only non-

differentiated, but if selection is actually targeting the same genes in all stocks. Finally, we 

present some initial results of a preliminary study on structural variation and its potential 

impact on the GMP.  

The role of the reference genome 

Application of next generation sequencing techniques in livestock have provided detailed 

knowledge about the inheritance and genetic background of relevant traits (Andersson et al. 

2012; Imsland et al. 2012; Herrero-Medrano et al. 2014). Nevertheless, few of these studies, 

even though the term is regularly used, revealed true whole genome sequencing (WGS), 

which can be understood as the de-novo assembly of a complete genome, in the narrow sense. 

Most of these approaches should rather be considered as what is named whole-genome re-

sequencing (WGR, Bentley 2006). In contrast to WGS, WGR relies on a reference genome, 

which must be assembled beforehand. The samples, mostly sequenced in short reads, can then 

be mapped against the known reference genome to identify genetic dissimilarities.  

The quality of WGR studies is of course dependent on the representation of the regions of 

interest, which are unknown prior to the analysis, in the chosen reference sequence. An 

interesting example to illustrate this is coat colour in the swine. Rubin et al. (2012) found that 

a combination of duplications and a splice mutation underlie the belted and uniformly white 

coat phenotypes, using the reference sequence of a Duroc pig (Archibald et al. 2010), which 

itself is of wild-type coat colour. However, if for example, a landrace sow had been chosen as 

the reference animal, that duplicated structure would not have been identified easily. 

Therefore, the choice of an appropriate reference genome is of foremost importance for the 
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success of a re-sequencing study, aiming to elucidate the genetic background of a phenotypic 

trait, such as growth or body size. 

Our analyses relied on the reference genome Sscrofa 10.2 (Groenen et al. 2012) of the 

aforementioned Duroc sow. Alternatively, the sequence of a highly inbred Wuzhishan pig 

(WZSP, Fang et al. 2012) was published at the same time. Since the current GMP is a 

composite breed, expected to have a hybrid genome of Asian-European descent, both 

genomes would have been a reasonable choice, respecting phylogenetic considerations. 

Eventually the Duroc was chosen for being the ‘official’ genome, supported by Ensembl 

(Yates et al. 2016) and other databases, which provided a convenient infrastructure for 

analysis beyond variant calling. Unfortunately the GMP reference sequence project, 

conducted by Glaxo Smith Kline, using an Ellegaard GMP (Vamathevan et al. 2013), was 

halted before the assembly reached the scaffold or chromosome level, similarly as for the 

sequence of a Tibetan pig (Li et al. 2013). The build Sscrofa 10.2 was recently replaced by the 

improved build Sscrofa 11.1 (NCBI 2018). While the build 10.2 was widely used and enabled 

numerous important discoveries (Groenen 2016), doubts about quality and completeness were 

inherent. For example, the crucial IGF2 gene sequence was not contained and Warr et al. 

(2015) found that about 14 % of the genome was of low quality and 26.6 % of low coverage, 

which together suggest 33 % of low confidence regions, where variant calling is expected to 

be compromised. The question arising is, if another reference genome might have been a 

better choice, or if employing the new reference build would promise drastically new 

insights? And in the case that no available reference genome would fit the GMP, would it be 

necessary to assemble a GMP reference genome? 

One measure to assess this would be resemblance of the reference genomes against each 

other. We aligned the existing GMP reference contigs against the two Duroc builds and 

assessed the proportion of mapped reads (BWA mem alignment, Li and Durbin 2009; Picard 

sorting, Picard 2009; Samtools flagstat, Li et al. 2009). The same was done, for 200 bp long 

fragments of the contigs, so called 200mers, in order to mimic the structure of short read data 

(Table 6.1). 

Mapping contigs led to a higher number of secondary alignments against both reference 

genomes, than using the 200mers. Considering only primary alignments of the 200mers, a 

notable part of the GMP genome, ~4.4 %, could not be mapped against the 10.2, but only to 

the 11.1 build. Just half a percent could not be mapped at all. Repeating this with our 150 bp 

paired end sequencing data of a Dalmose DNA pool provided similar results (Table 6.2).  
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This indicates that repeating the experiment with the new reference genome, probably 

including more samples, could lead to substantially improved results, since we must assume, 

that about 5 % of the GMP genome are not represented in the 10.2 reference, including 

important genes, i.e. IGF2, and further 30 % of the represented regions are of low confidence. 

At this point it seems that the new reference genome 11.1 is suitable enough for the GMP and 

there is no need to develop a GMP reference genome. 

Table 6.1: Statistics of mapping the GMP reference against Duroc builds 10.2 and 11.1. 

SscrofaMinipig Contigs 200mers 

 

10.2 11.1 10.2 11.1 

Raw reads 231.585 231.585 11.908.496 11.908.496 

reads total 515.052 320.704 12.309.864 12.072.650 

Mapped 507.762 319.889 11.713.065 12.013.643 

secondary 283.467 89.119 401.368 164.154 

unmapped 7.290 815 596.799 59.007 

Mapped 96.85% 99.65% 94.99% 99.50% 

mapped [%], incl. Secondary 98.58% 99.75% 95.15% 99.51% 

Secondary of mapped reads [%] 55.83% 27.86% 3.43% 1.37% 

 

Table 6.2: Statistics of mapping a Dalmose pool against Duroc reference. 

Da_21 10.2 11.1 

Raw reads 467.844.016 467.844.016 

Reads total 479.698.361 474.464.862 

mapped 457.643.218 471.766.607 

properly paired 391.281.350 421.321.004 

secondary 11.854.345 6.620.846 

unmapped 22.055.143 2.698.255 

mapped [%] 95.29% 99.42% 

mapped [%], incl. Secondary 95.40% 99.43% 

Secondary of mapped reads [%] 2.59% 1.40% 
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Sample selection and sequencing strategy 

The costs of sequencing are constantly decreasing (NHGRI 2016) which we experienced in 

majorly different prices for our two projects, where sequencing was conducted with a time 

difference of just three years. A mammalian genome at a decent coverage of ~15X would cost 

about 1,500€ today, which is 10 to 15 times more expensive than array genotyping. This 

effectively limits the number of samples in a study. A cost effective approach chosen in other 

studies (Zhu et al. 2012) is to sequence DNA pools instead of individual samples. In pool-seq, 

equimolar amounts of DNA from individuals are pooled and sequenced as one sample, which 

makes it impossible to determine the origin of each read or construct long haplotypes from 

short reads, without further methods, such as barcoding. It has been shown that allele 

frequencies, estimated from reads counts, are sufficiently reliable (Anand et al. 2016; Zhu et 

al. 2012). Still, there are some disadvantages: Pool-seq is inherently afflicted with a bias 

introduced by pooling and sequencing errors (Kofler et al. 2011), which is particularly due to 

a problem of differentiating between these error types and real rare variants. Rare variants are 

defined as variants with a minor allele frequency less than 1 % (Anand et al. 2016) to less 

than 5 % (Kim et al. 2010) and are assumed to explain a major part of genetic variation 

(Anand et al. 2016). Furthermore, many current statistical approaches to identify rare variants 

were initially not designed for pool-seq data (Wang et al. 2010b). In addition, 𝐹𝑆𝑇 estimates 

from pooled and individual sequences seem to be differently distributed (Bersaglieri et al. 

2004; Akey et al. 2002), a finding we also noticed in chapter 5. A possible explanation is a 

high number of falsely positive detected differentiations, when either coverage or sample size 

are too low. Lynch et al. (2014) estimated that at minimum of both 100 samples and 100X 

coverage are necessary to reliably asses differentiation and reduce the number of false 

positives. On the other hand, sequencing much deeper is not seen as an improvement. 

Approximately 1X coverage per animal per sample in a pool should be optimal in terms of 

cost-efficiency (Lynch et al. 2014). While we sequenced our pools in chapters 4 and 5 to 

sufficient depth according to that study, our sample sizes were far below those suggested, 

implying that a significant proportion of the differentiated variants observed may be false 

positives. Another strategy that we took in chapters 2 and 3, is to estimate allele frequencies 

from genotypes based on individual sequencing. Kim et al. (2011) outlined that this should be 

done with caution when individual samples were sequenced at low to medium coverage 

(< 15X), since again, rare allele estimates are expected to be biased. If it was necessary, 

genotypes should not be filtered on genotype confidence, which we actually performed, albeit 
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in a relatively lenient manner. Despite all these possible disadvantages, pool sequencing has 

frequently proven to be especially useful to enlighten the background of interesting traits, 

albeit often violating the aforementioned rules (Carneiro et al. 2014; Rubin et al. 2010; 

Lamichhaney et al. 2012).  

The major strategical advantage of preferring pool-seq over individual sequencing is the 

larger number of samples to be included at the same cost, which facilitates incorporation of 

multiple breeds or multiple strains of the same breed. This in turn is expected to improve the 

power of differentiation studies by eradicating artefacts based on stratification (Schlötterer 

2002; Zhu et al. 2012). We tried to incorporate this by including a second miniature breed, the 

MiniLEWE in chapters 2 and 3, and by sequencing two pools per stock as described in 

chapters 4 and 5. With a focus on body size, breeds to be involved in future could be Bama 

pigs from China (Liu et al. 2008) or the pygmy hog Sus salvanius/ Porcula salvania (Funk et 

al. 2007). One point that should be mentioned is, that all these analyses including multiple 

miniature breeds, are based on the hypothesis that their miniaturization has a common genetic 

background, which is debatable with respect to the situation in humans (Merimee et al. 1989; 

Klingseisen and Jackson 2011; Mayer et al. 2001). 

Figure 6.1 shows expected heterozygosity, estimated from the GMP pools from the second 

study (chapters 4 and 5) and the MiniLEWE and GMP samples from the first study 

(chapters 2 and 3). Chromosome 5 carries a region we identified as a major selective sweep 

between 40 to 46 Mb in the first study, which could serve as an example for different results 

due to different experimental setting as they were mentioned before. Revisiting the same 

region in the pool data, the strong signature is not observed. Possible explanations could be 

different variant calling algorithms, different filtering strategies, the aforementioned 

differences between pool and individual sequencing or simply a sampling error due to a low 

number of GMP samples. However, in both types of data, this region shows irregular 

behavior, elevated heterozygosity in the pools and diminished heterozygosity in the old 

samples, which also incorporated a MiniLEWE pool of ten sows. Both datasets show 

concordance in the remaining genome, but we feel that this issue cannot be resolved based on 

the current analyses and requires further research.  
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Figure 6.1: Expected heterozygosity, averaged in 250 SNP windows along chromosome 

5. Respective sweep region highlighted in green.  
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Differentiation 

Single nucleotide mutations can have a tremendous effect on the functionality of proteins and 

subsequent phenotypes (Amorim et al. 2017). Studies aiming at identification of nonsense 

alleles underlying genetic diseases were fairly successful in associating, for example, stop 

codons with dementia (Vidal et al. 1999), legionnaires disease (Hawn et al. 2003) or stickler 

syndrome (Ahmad et al. 1991). Conte et al. (2017) found that deleterious mutations were 

effectively under selection in spruce and therefore reduced in allele frequency compared to 

non-deleterious mutations. 𝐹𝑆𝑇 has been successfully used to efficiently map regions of 

divergent selection in the herring (Lamichhaney et al. 2012). Therefore, applying combined 

𝐹𝑆𝑇 analysis and functional annotation using WGS data is a promising approach to identify 

loci undergoing divergent selection, or having been fixed by it. The most representative 

example of such a locus might be gait pattern in horses (Andersson et al. 2012), where a 

premature stop codon mutation in DMRT3 determines if a horse has four or five, instead of 

three gaits. Breeds able to do pacing or trotting, like the Icelandic horse, were found to carry 

the mutation at high allele frequencies or even show fixation for the mutation.  

We used similar approaches in our studies aiming to identify the background of growth and 

evaluating the effects of differentiation in the GMP stocks. In the first study, we identified 

autosomal loci with high 𝐹𝑆𝑇 values, which will include oppositely fixed loci, and annotated 

them using the Ensembl variant effect predictor (McLaren et al. 2016). As shown in 

Figure 6.2, only 1,331 SNPs at 𝐹𝑆𝑇 > 0.95 and 804 SNPs thereof at 𝐹𝑆𝑇 = 1 were detected, 

respectively. Few were annotated to multiple functional classes.   

The majority of these loci are located in intergenic regions, where mechanisms of possible 

functional constraint remain poorly understood. No missense mutations were identified. The 

coding sequence variants were located in DNAJC28, involved in Golgi vesicle transports 

(Yates et al. 2016), ITGB2 underlying leukocyte adhesion deficiency in cattle and dogs 

(Daetwyler et al. 2014; Kijas et al. 1999), CHD6, involved in gene regulation (Lathrop et al. 

2010) and a novel gene. No obvious relations to GMP phenotypes were evident. Similarly, a 

study on domestication of rabbits found that few loci go towards fixation and none of them 

were located in coding regions (Carneiro et al. 2014). Rafati et al. (2016) located the few high 

𝐹𝑆𝑇-SNPs they identified in a case-control study on skeletal atavism in horses, only on 

unassigned scaffolds. 
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Figure 6.2: Functional annotation of high 𝑭𝑺𝑻 values. Left: 𝑭𝑺𝑻 >  0.95; Right: 𝑭𝑺𝑻 = 1. 

This might imply, single highly differentiated SNPs may have limited relevance in the 

genetics of complex traits, such as growth or fertility, which we focused on. Conversely, 

using highly differentiated missense mutations as indicators for functional divergence of the 

GMP stocks, as we did in chapter 4 and 5, might fall short and critically underestimate real 

divergence. Christe et al. (2017) showed that despite generally high differentiation, no fixed 

polymorphisms appeared in a certain region. Additionally, if deleterious mutations were 

beneficial for a desired phenotype, these could interact through genetic complementation 

without single loci necessarily being fixed (Conte et al. 2017). Sohail et al. (2017) also found 

that deleterious mutations seem to function synergistically rather than independently, which 

would imply that multiple deleterious mutations may have a stronger effect than a single 

locus. This leads to negative linkage disequilibrium between deleterious mutations and would 

support the hypothesis of complementation. In any case, it appears that, apart from qualitative 

traits and few examples, highly differentiated deleterious mutations do not play a major role 

in complex traits in livestock. 
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Not differentiated, but selected for the right aim? 

Chapters 4 and 5 focused on differentiation between the five GMP production stocks, due to 

the interest surrounding if the stocks had diverged in traits important for the functionality of 

the GMP as a model animal. Conversely, reduced differentiation in genomic regions 

underlying the goal traits, fertility and growth could be interpreted as evidence that the current 

breeding scheme affects the same genes in all stocks similarly. As the study on growth 

demonstrated, the genetic background of growth is polygenic rather than oligogenic, and 

fertility is already a multifactorial (probably highly polygenic) and not easy to define trait. An 

important measure of fertility in pigs is litter size, which is influenced by various parameters 

(Clark et al. 1988); among others male fertility (Lawlor and Lynch 2007), prenatal mortality 

(Spötter and Distl 2006) and ovulation rate (Rothschild et al. 1997). It is known from sheep 

that single genes with major effect exist, e.g. the Booroola gene (Fogarty 2009; Davis 2004), 

and the estrogen receptor ESR is associated with a major QTL for litter size in pigs 

(Rothschild et al. 1997), although this seems to be highly variable between different 

populations (Drogemuller et al. 2001; Wu et al. 2006). Otherwise, most fertility traits in 

common populations presumably have a polygenic background (Ferlin et al. 2007; Chen et al. 

2001; Davis 2004). In such case, pathway analysis is expected to outperform approaches 

focusing on single loci (Torkamani et al. 2008). Using the KEGG based pathway analyses 

described in chapter 5, but focusing on pathways that were especially undifferentiated, 

resulted in 83 out of the 316 total pathways identified. The majority of these pathways belong 

to the functional classes ‘Metabolism’, ‘Organismal Systems’ and ‘Human Diseases’. The 

stocks with the highest number of undifferentiated pathways were NI in ‘Metabolism’ and 

‘Environmental Information Processing’ (EIP), NR in ‘Organismal Systems’, ‘Human 

Diseases’ and ‘Cellular Processes’ (together with NI) and DA2 in ‘Genetic Information 

Processing’ (GIP). Lowest frequencies were seen for DA3 in ‘Metabolism’, for RE in 

‘Organismal Systems’, ‘Human Diseases’ and ‘Cellular Processes’, for DA3 in ‘GIP’ and 

‘EIP’ (Figure 6.3). Pathways were rarely ever undifferentiated between all units in all 

contrasts (Figure 6.4). The only example for this is “Olfactory transduction”, but mostly, a 

unit was only significantly indifferent against one or two other units. Higher numbers were, 

for example, seen in ‘Steroid hormone biosynthesis’ (NR vs RE and DA3), ‘Retinol 

metabolism’ (DA2 vs RE, DA3 and NR), or ‘Fluid shear stress and artherosclerosis’ (NI vs 

DA2, DA3 and NR). 
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Figure 6.3: Number of pairwise significantly undifferentiated pathways by stock and 

functional category of pathway. Grey shading indicates number of pathways per 

class showing any significant similarity. GIP/ EIP = Genetic/ Environmental 

information processing. 

‘Olfactory transduction’, the only pathway undifferentiated between all stocks has been found 

to be associated with highly conserved genomic regions, putatively under balancing selection, 

in an earlier study on domestic and wild pigs (Amaral et al. 2011). Olfactory perception as 

one of the basic sensory functions is important in many species and similarly organized (Ache 

and Young 2005). The underlying gene family is one of the largest, with a notable proportion 

of pseudogenes (Ache and Young 2005; Gilad et al. 2003), and genes exhibiting higher 

heterozygosity than expected (Alonso et al. 2008). ‘Steroid hormone biosynthesis’ is directly 

linked to reproductive performance (Penning et al. 2000; Dohle et al. 2003) and has been 

found to be differentiated between Asian and European pigs (Leno-Colorado et al. 2017). 

This might imply that selection for reproduction in the GMP might have favoured alleles from 
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one of the two origins, likely before the population was divided into multiple breeding units. 

‘Retinol metabolism’, important for visual function (Blomhoff and Blomhoff 2006), ‘Fluid 

shear stress and atherosclerosis’ and ‘Chemical carcinogenesis’ are important in respective 

medical studies and missing differentiation between the units might have positive 

implications for similar testing behavior of the animal model. In conclusion, general 

similarities were rare, but it seems that at least selection for reproductive performance might 

have left particular traces in the genome and the relatively high number of metabolic 

pathways could be evidence for selection on growth. 

 

Figure 6.4: P-values of Kolmogorov-Smirnov based pathway test. Low values indicate 

no differentiation. 
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Structural variation 

All analyses presented in this thesis ignore other types of variation than biallelic SNPs, such 

as short InDels and all forms of larger structural variation, as well as multi-allelic SNPs. 

Nonetheless, it is undisputed that structural variation plays a significant role in genetics, while 

there are different opinions regarding the amount of genetic variation they explain: According 

to Tattini et al. (2015) they account for about 1 % of genetic variation, while Stankiewicz and 

Lupski (2010) argue they might have higher impact than biallelic SNPs.  

Famous examples of livestock phenotypes related to structural variation are muffs and beard 

in chicken, based on multiple duplications (Guo et al. 2016), an inversion underlying comb 

morphology (Imsland et al. 2012) and colour patterns in swine, also regulated by duplications 

(Rubin et al. 2012). Structural variation (SV), such as inversion or deletions is also likely to 

have deleterious effect on gene function, as demonstrated by Imsland et al. (2012), where 

disruption of  CCDC108 located at an inversional breakpoint impairs sperm motility in cocks.  

We used DELLY (Rausch et al. 2012) to call autosomal inversions, deletions and duplications 

from the individually sequenced GMP samples (Chapters 2 and 3) and restricted calls to a 

minimum length of 500 bp and maximum length of 25 Mb. We annotated genes (Yates et al. 

2016) in all deletions (DEL) and inversions (INV), where at least 80 % of the samples were 

heterozygous or homozygous for the SV compared to the reference genome and all 

duplications (DUP) which were exhibited by all samples. These were in total 2,929 DEL 

(median length 1,257 bp), 5,065 DUP (median length 43 kb) and 2,149 INV (median length 

61 kb). Figure 6.5 shows the length of the genome covered by SVs, in total about 11.6 % of 

the Duroc reference length. As a proof of principle for the method, the duplicated structures at 

the KIT locus were detected as they would have been expected in a uniformly white coated 

pig (Rubin et al. 2012). Additionally SVs were co-located with several candidate genes for 

growth (Figure 6.6), such as TGFβ2 and TGFβRAP1, and a large inversion spans the position 

of the growth hormone receptor GHR, a gene known to maintain regular size in pigs and 

leading to miniaturization when impaired (Cyranoski 2015). These first results indicate that 

structural variation is inherent in the GMP and is likely to play an important role in its 

genome, but further research is needed to validate these initial findings. Additional 

information can be found in Reimer and Simianer (2016).  
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Figure 6.5:  Total length of deletions, inversions and duplications in GMP samples. 

 

Figure 6.6: Genome wide distribution of duplications (DUP), inversions (INV) and 

deletions (DEL) and three selected regions around the KIT locus, TGFB2 and 

GHR. 
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General conclusion 

This study demonstrates the capability of NGS to detect signatures of selection from small 

numbers of miniature pigs and to assess population structure among sub-populations of the 

same breed. It was conducted during a period of major advancements in genome research on 

livestock, using whole genome re-sequencing. Here we would like to emphasize some of the 

findings which could be a help to future projects. Despite ongoing decreases in sequencing 

costs, NGS is still a relatively expensive technique, limiting sample sizes. If the aim of a 

study is to analyze the genetic background of a trait by comparison between two groups 

expressing the trait of interesting differently, using pool-sequencing could be beneficial 

through inclusion of more samples from different strains or breeds. In any case, multiple 

reference genomes are available, the best suited should be identified beforehand, to ensure 

high mapping rates of the re-sequenced genomes. We found that, even though deleterious 

mutations are an obvious candidate to underlie traits of interest or to explain differences 

between different sub-populations, the prevalence of highly differentiated deleterious 

mutations seems to be low and they might rarely be of high relevance for our analyzed traits. 

Alternatively pathway analyses seem to be a particularly powerful tool to integrate biological 

information into quantitative analysis and appear well suited to characterize the genetics 

behind quantitative traits such as fertility. Also, the importance of structural variation seems 

to be widely underestimated and we suggest, its incorporation in similar future studies should 

be strongly considered. 
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