# Increase of seed oil content in winter oilseed rape (*Brassica napus L.*) by using Chinese genetic resources

Dissertation to obtain the Ph.D. degree in the Ph.D. Program for Agricultural Sciences in Göttingen (PAG) at the Faculty of Agricultural Sciences, Georg-August-Universität Göttingen, Germany

presented by Nina Behnke born in Bad Gandersheim

Göttingen, December 2015



D7

Name of supervisor: Dr. Christian Möllers

Name of co-supervisor: Prof. Dr. Gunter Backes

Date of dissertation: 18.02.2016

To my beloved family

# Table of contents

| Та | ble ( | of cont  | tents                                                                 | IV         |
|----|-------|----------|-----------------------------------------------------------------------|------------|
| Li | st of | Figure   | S                                                                     | VIII       |
| Li | st of | Tables   | 5                                                                     | XII        |
| Li | st of | Abbre    | viations                                                              | XVI        |
| 1  | Ger   | neral Ir | ntroduction                                                           | 14         |
| 2  | Lite  | rature   | review                                                                | 16         |
|    | 2.1   | The oi   | il crop <i>Brassica napus</i>                                         | 16         |
|    | 2.2   | The m    | ature seed                                                            | 18         |
|    | 2.3   | The oi   | II                                                                    | 19         |
|    | 2.4   | Biosyn   | nthesis of storage lipids                                             | 20         |
|    |       | 2.4.1    | Fatty acid synthesis                                                  |            |
|    |       | 2.4.2    | Modifications of fatty acids                                          |            |
|    |       | 2.4.3    | Triacylglycerol synthesis                                             |            |
|    |       | 2.4.4    | Candidate genes of oil biosynthesis                                   |            |
|    | 2.5   | Illumir  | na's SNP beadchip technology                                          | 25         |
|    | 2.6   | QTL m    | happing for oil content in <i>Brassica napus</i>                      | 27         |
|    | 2.7   | Condit   | tional mapping                                                        | 32         |
| 3  | Ger   | netic va | ariation and inheritance of oil content and relevant seed quality tra | its of the |
|    | SGE   | DH po    | pulation cultivated in Europe                                         | 34         |
|    | 3.1   | Abstra   | act                                                                   | 35         |
|    | 3.2   | Introd   | luction                                                               | 35         |
|    | 3.3   | Mater    | ials and methods                                                      | 37         |
|    |       | 3.3.1    | Plant material                                                        |            |
|    |       | 3.3.2    | Field experiments                                                     |            |
|    |       | 3.3.3    | Phenotypic analysis                                                   |            |
|    |       |          | 3.3.3.1 Near-Infrared Reflectance Spectroscopy                        |            |
|    |       |          | 3.3.3.2 Gas Chromatography                                            |            |

|     |                                                                         | 3.3.3.3  | Adjustment of NIRS predicted erucic acid contents                    | 39 |
|-----|-------------------------------------------------------------------------|----------|----------------------------------------------------------------------|----|
|     |                                                                         | 3.3.3.4  | Thousand kernel weight                                               | 40 |
|     |                                                                         | 3.3.3.5  | Protein content and Glucosinolate content in the defatted meal       | 40 |
|     |                                                                         | 3.3.3.6  | Correction of oil content considering erucic acid content            | 40 |
|     |                                                                         |          | Correction by regression                                             | 42 |
|     |                                                                         |          | Correction by molecular weight                                       | 42 |
|     |                                                                         |          | Correction by conditioning                                           | 42 |
|     | 3.3.4                                                                   | Statisti | cal analysis                                                         | 43 |
|     | 3.3.5                                                                   | Molecu   | lar markers                                                          | 44 |
|     |                                                                         | 3.3.5.1  | DNA extraction and measurement                                       | 44 |
|     |                                                                         | 3.3.5.2  | AFLP markers                                                         | 45 |
|     |                                                                         | 3.3.5.3  | DArT markers                                                         | 45 |
|     |                                                                         | 3.3.5.4  | SNP markers                                                          | 46 |
|     | 3.3.6                                                                   | Linkage  | e mapping                                                            | 46 |
|     | 3.3.7                                                                   | QTL ma   | apping                                                               | 47 |
|     | 3.3.8                                                                   | Physica  | ll mapping                                                           | 47 |
| 3.4 | Result                                                                  | S        |                                                                      | 48 |
|     | 3.4.1                                                                   | Phenot   | ypic analysis                                                        | 48 |
|     |                                                                         | 3.4.1.1  | Group of erucic acid free genotypes                                  | 55 |
|     |                                                                         |          | Phenotypic analysis                                                  | 55 |
|     | 3.4.2                                                                   | Marker   | screening                                                            | 58 |
|     | 3.4.3                                                                   | Genetic  | map construction of SGEDH population                                 | 60 |
|     | 3.4.4                                                                   | QTL ma   | apping                                                               | 60 |
|     |                                                                         | 3.4.4.1  | QTL for oil content using original data                              | 62 |
|     |                                                                         | 3.4.4.2  | QTL for oil content corrected for the effect of erucic acid content  | 63 |
|     |                                                                         | 3.4.4.3  | QTL for seed protein content                                         | 65 |
|     |                                                                         | 3.4.4.4  | QTL for protein content in defatted meal                             | 65 |
|     |                                                                         | 3.4.4.5  | QTL for glucosinolate content                                        | 66 |
|     |                                                                         | 3.4.4.6  | QTL for glucosinolate content in defatted meal                       | 67 |
|     |                                                                         | 3.4.4.7  | QTL for fatty acid                                                   | 67 |
|     |                                                                         | 3.4.4.8  | Thousand kernel weight                                               | 71 |
|     |                                                                         | 3.4.4.9  | Phenological traits                                                  | 74 |
|     | 3.4.4.10 Comparison between QTL detected with erucic acid content deter |          |                                                                      |    |
|     |                                                                         | by gas o | chromatography and NIRS predicted                                    | 77 |
|     | 3.4.5                                                                   | Physica  | ll mapping of the SGEDH population and QTL intervals for oil content | 79 |
| 3.5 | Discus                                                                  | sion     |                                                                      | 83 |

|   |     | 3.5.1    | Phenotypic variation                                                        |        |
|---|-----|----------|-----------------------------------------------------------------------------|--------|
|   |     | 3.5.2    | Molecular marker polymorphisms                                              |        |
|   |     | 3.5.3    | Linkage map                                                                 |        |
|   |     | 3.5.4    | Genetic and physical mapping                                                |        |
|   |     | 3.5.5    | Correction of oil content for the effect of erucic acid                     |        |
|   |     | 3.5.6    | Comparison of NIRS prediction and gas chromatography to determine eruci     | c acid |
|   |     | conte    | nt                                                                          |        |
|   |     | 3.5.7    | Application in practical breeding                                           |        |
|   | 3.6 | Conclu   | usion                                                                       |        |
| ^ | Co  | <b>.</b> | eviation and inheritance of all content and value at and such that the iter | £ 16 a |
| 4 |     |          | ariation and inheritance of oil content and relevant seed quality traits o  |        |
|   |     | -        | opulation cultivated in East China                                          |        |
|   |     |          | act                                                                         |        |
|   |     |          | luction                                                                     |        |
|   | 4.3 |          | rials and methods                                                           |        |
|   |     | 4.3.1    | Plant material                                                              |        |
|   |     | 4.3.2    | Field experiments                                                           |        |
|   |     | 4.3.3    | Phenotypic analysis                                                         |        |
|   |     |          | 4.3.3.1 Near-Infrared Reflectance Spectroscopy                              |        |
|   |     |          | 4.3.3.2 Adjustment of NIRS predicted erucic acid contents                   |        |
|   |     |          | 4.3.3.3 Other traits                                                        |        |
|   |     | 4.3.4    | Statistical analysis                                                        |        |
|   |     | 4.3.5    | QTL mapping                                                                 |        |
|   |     |          | Physical mapping                                                            |        |
|   | 4.4 |          |                                                                             |        |
|   |     | 4.4.1    | Phenotypic analysis                                                         |        |
|   |     | 4.4.2    | QTL mapping<br>4.4.2.1 QTL for oil content using original data              |        |
|   |     |          | 4.4.2.2 QTL for oil content corrected for the effect of erucic acid content |        |
|   |     |          | 4.4.2.3 QTL for seed protein content                                        |        |
|   |     |          | 4.4.2.4 QTL for protein content in defatted meal                            |        |
|   |     |          | 4.4.2.5 QTL for glucosinolate content                                       |        |
|   |     |          | 4.4.2.6 QTL for glucosinolate content in defatted meal                      |        |
|   |     |          | 4.4.2.7 QTL for erucic acid                                                 |        |
|   |     |          | 4.4.2.8 Phenological traits                                                 |        |
|   |     | 4.4.3    | Physical mapping of QTL intervals for oil content                           |        |

|    | 4.5    | 117 Discussion |                                                                                   |     |
|----|--------|----------------|-----------------------------------------------------------------------------------|-----|
|    |        | 4.5.1          | Phenotypic analysis1                                                              | 17  |
|    |        | 4.5.2          | Genetic and physical mapping1                                                     | 18  |
|    |        |                | 4.5.2.1 Applications in breeding programs1                                        | 23  |
| 5  | Ger    | neral di       | scussion1                                                                         | 24  |
|    | 5.1    | Compa          | rison of QTL mapping results calculated by QTLNetwork and WinQTL Cartographer 1   | .24 |
|    | 5.2    | Marke          | r genotypes of best SGEDH lines and comparison to established breeding material 1 | .25 |
|    | 5.3    | Oil-QT         | L on C05, fibre content and candidate genes1                                      | .32 |
|    | 5.4    | Compa          | rison of oil-QTL in different populations1                                        | .36 |
|    | 5.5    | Future         | perspectives of breeding for increased oil content1                               | .39 |
| 6  | Sun    | nmary.         | 1                                                                                 | 41  |
| Bi | bliog  | graphy         | 1                                                                                 | 44  |
| Ac | kno    | wledge         | ment1                                                                             | 54  |
| Сι | ırricı | ulum v         | tae1                                                                              | 56  |
| Ap | open   | dix            | 1                                                                                 | 57  |

# List of Figures

| Figure 3.1: xy plots of erucic acid contents determined by gas chromatography and NIRS within      |
|----------------------------------------------------------------------------------------------------|
| the SGEDH population                                                                               |
| Figure 3.2: Frequency distribution of (a) oil content and (b) regression corrected oil content in  |
| the SGEDH population                                                                               |
| Figure 3.3: Correlation between seed erucic acid content and (a) oil content, (b) regression       |
| corrected oil content, (c) molecular corrected oil content, and (d) conditioned oil content in the |
| SGEDH population                                                                                   |
| Figure 3.4: Correlation between seed erucic acid content and (a) protein content in defatted       |
| meal (Prot.idM), and (b) regression corrected Prot.idM55                                           |
| Figure 3.5: Framework map marker segregation in the SGEDH population. (a) Pattern of marker        |
| segregation over linkage groups; (b) marker segregation tendency                                   |
| Figure 3.6: Genetic and physical map positions of markers within the QTL genomic region of         |
| E_Oil-1 on A08                                                                                     |
| Figure 3.7: Genetic and physical map positions of markers within the QTL genomic region of         |
| E_Oil-2 on CO3                                                                                     |
| Figure 3.8: Genetic and physical map positions of markers within the genomic region of QTL for     |
| corrected oil contents on CO4                                                                      |
| Figure 3.9: xy plot of erucic acid and eicosenoic acid content determined by gas chromatography 89 |
| Figure 4.1: Correlation between corrected NIRS predicted seed erucic acid content and (a) NIRS     |
| predicted oil content, and (b) regression corrected NIRS predicted oil content in the SGEDH        |
| population                                                                                         |
| Figure 4.2: Genetic and physical map positions of markers within the QTL genomic region of         |
| C_Oil-1 on A06116                                                                                  |
| Figure 4.3: Genetic and physical map positions of markers within the QTL genomic region of         |
| C_Oil-3 on A08                                                                                     |
| Figure 5.1: Genetic and physical map positions of markers within the QTL genomic region of         |
| corrected oil contents, fibre content and seed hull on C05136                                      |

# List of Tables

| Table 3.1: Environments of field experiments of SGEDH population                                    | 38   |
|-----------------------------------------------------------------------------------------------------|------|
| Table 3.2: Components of variance and heritabilities for the different traits of the SGEDH          | I    |
| population                                                                                          | 49   |
| Table 3.3: Minimum, maximum and mean values for the different traits of the SGEDH population.       | . 50 |
| Table 3.4: Spearman's rank correlation for seed oil content and other quality traits                | . 53 |
| Table 3.5: Components of variance and heritabilities for the different traits of the 70 erucic acid | L    |
| free genotypes in the SGEDH population                                                              | . 56 |
| Table 3.6: Minimum, maximum and mean values for the different traits of the 70 erucic acid free     | :    |
| genotypes in the SGEDH population                                                                   | . 57 |
| Table 3.7: Spearman's rank correlation of the 70 erucic acid free genotypes in the SGEDH            |      |
| population for seed oil content and other quality traits                                            | 60   |
| Table 3.8: Marker distribution, size, density and mean distance between markers of each linkage     | !    |
| group in the linkage map of the SGEDH population                                                    | 62   |
| Table 3.9: QTL detected for seed oil content and corrected oil contents in the SGEDH population     | 65   |
| Table 3.10: QTL detected for contents of seed protein and glucosinolate traits in the SGEDH         |      |
| population                                                                                          | 69   |
| Table 3.11: QTL detected for seed fatty acid contents in the SGEDH population                       | 73   |
| Table 3.12: QTL detected for seed thousand kernel weight and phenological traits in the SGEDH       |      |
| population                                                                                          | 76   |
| Table 3.13: Comparison between QTL detected with gas chromatographically determined and             | L    |
| NIRS predicted erucic acid content                                                                  | 79   |
| Table 4.1: Components of variance and heritabilities for the different traits of the SGEDH          |      |
| population                                                                                          | 105  |
| Table 4.2: Minimum, maximum and mean values for the different traits of the SGEDH population $1$    | 106  |
| Table 4.3: Spearman's rank correlation for seed oil content and other quality traits                | 106  |
| Table 4.4: QTL detected for the different traits of the SGEDH population                            | 112  |
| Table 4.5: QTL repeatedly identified on the same linkage groups in both environments, Europe        | ;    |
| and China1                                                                                          | 122  |
| Table 5.1: Marker genotypes of the parental lines of the SGEDH population, SGE DH lines with        |      |
| highest oil content (SGEDH172) and highest regression corrected oil content (SGEDH175,              | 1    |
| SGEDH13) in European trials, and the parental lines of SGDH14, Sollux and Gaoyou, for oil-QTL       | ı    |
| of European trials                                                                                  | 128  |

| Table 5.2: Marker genotypes of the parental lines of the SGEDH population, SGE DH lines with          |
|-------------------------------------------------------------------------------------------------------|
| highest oil content (SGEDH172) and highest regression corrected oil content (SGEDH210,                |
| SGEDH145) in Chinese trials, and the parental lines of SGDH14, Sollux and Gaoyou, for oil-QTL of      |
| Chinese trials129                                                                                     |
| Table 5.3: Mean values of EU trials for the different traits of SGE DH lines with highest oil content |
| (SGEDH172) and highest regression corrected oil content (SGEDH175, SGEDH13), SGEDH                    |
| parental lines and cultivars131                                                                       |
| Table 5.4: Mean values of Chinese trials for the different traits of SGE DH lines with highest oil    |
| content (SGEDH172) and highest regression corrected oil content (SGEDH210, SGEDH145),                 |
| SGEDH parental lines and cultivars132                                                                 |
| Table 5.5: QTL detected for fiber content in the SGEDH population134                                  |
| Table 5.6: QTL detected for selected traits in the Express617 x R53 population                        |

| Appendix 1: Alignment of SGEDH map with the physical map of B. napus Darmor-bzh genome         |
|------------------------------------------------------------------------------------------------|
| assembly (A genome)157                                                                         |
| Appendix 2: Alignment of SGEDH map with the physical map of B. napus Darmor-bzh genome         |
| assembly (C genome)                                                                            |
| Appendix 3: Critical F-values calculated by a 1000-permutation test in QTLNetwork software.    |
| Critical <i>F</i> -values were applied to determine QTL in the SGEDH population                |
| Appendix 4: List of candidate genes involved in fatty acid synthesis, modification or TAG      |
| synthesis                                                                                      |
| Appendix 5: A. thaliana protein matches in the genomic region ranging from 53910kbp to         |
| 54170kbp on chromosome C03 of the Brassica napus Darmor-bzh reference genome (Chalhoub         |
| et al. 2014, http://www.genoscope.cns.fr/brassicanapus/)163                                    |
| Appendix 6: QTL detected for seed oil content (%) in the SGEDH population using MIM            |
| (WinQTLCart) in Europe165                                                                      |
| Appendix 7: QTL detected for regression corrected seed oil content (%) in the SGEDH population |
| using MIM (WinQTLCart) in Europe165                                                            |
| Appendix 8: QTL detected for protein content (%) in the SGEDH population using MIM             |
| (WinQTLCart) in Europe166                                                                      |
| Appendix 9: QTL detected for GC determined erucic acid content (%) in the SGEDH population     |
| using MIM (WinQTLCart) in Europe166                                                            |
| Appendix 10: QTL detected for oil content (%) in the SGEDH population using MIM                |
| (WinQTLCart) in China                                                                          |

| Appendix 11: QTL detected for protein content (%) in the SGEDH population using MIM             |
|-------------------------------------------------------------------------------------------------|
| (WinQTLCart) in China                                                                           |
| Appendix 12: QTL detected for seed oil, regression corrected oil and erucic acid contents (%)in |
| the SGEDH population (QTLNetwork configuration modification: window size 5cM)168                |
| Appendix 13: Marker distribution, size, density and mean distance between non-co-segregation    |
| markers of each linkage group in the linkage map of the SGEDH population                        |
| Appendix 14: Linkage map of SGEDH population showing all 1693 individual marker positions;      |
| DArT (brPb) and AFLP (E) markers are indicated in italics, framework map markers are            |
| highlighted in grey                                                                             |

# List of Abbreviations

| 16:0     | Palmitic acid                                 |
|----------|-----------------------------------------------|
| 16:1     | Palmitoleic                                   |
| 16:2     | Hexadecadienoic                               |
| 18:0     | Stearic acid                                  |
| 18:1     | Oleic acid                                    |
| 18:2     | Linoleic acid                                 |
| 18:3     | Linolenic acid                                |
| 20:0     | Arachidic acid                                |
| 20:1     | Eicosenoic acid                               |
| 22:0     | Behenic acid                                  |
| 22:1     | Erucic acid                                   |
| ACC      | Acetyl-CoA carboxylase                        |
| ACP      | Acyl carrier protein                          |
| AFLP     | Amplified fragment length polymorphism        |
| ANOVA    | Analysis of variance                          |
| ASPE     | Array-based allele-specific primer elongation |
| ВС       | Biotin carboxylase                            |
| BCCP     | Biotin carboxyl carrier protein               |
| BLAST    | Basic Local Alignment Search Tool             |
| BOF      | Begin of flowering                            |
| bp       | Base pair                                     |
| BRAD     | Brassica database                             |
| Cart     | Cartographer                                  |
| CI       | Confidence interval                           |
| CIM      | Composite interval mapping                    |
| CoA      | Coenzyme-A                                    |
| cond     | Conditional phenotypic values                 |
| СТ       | Carboxyltransferase                           |
| DAG      | Diacylglycerol                                |
| DAGTA    | Diacylglycerol:diacylglycerol transacylase    |
| DArT     | Diversity array technology                    |
| DGAT     | Diacylglycerol acyltransferase                |
| DH       | Doubled haploid                               |
| DM       | Dry matter                                    |
| DNA      | Deoxyribonucleic acid                         |
| DY       | Darmor- <i>bzh</i> x Yusal                    |
| ENR      | Enoyl-ACP reductase                           |
| EOF      | End of flowering                              |
| F1       | First offspring generation                    |
| FA       | Fatty acid                                    |
| FAD      | Fatty acid desaturase                         |
| FAE      | Fatty acid elongase                           |
| FAS      | Fatty acid synthase                           |
| FAT      | Acyl-ACP/fatty acid thioesterase              |
| FP       | Flowering period                              |
| G        | 01                                            |
| G<br>G3P | Gaoyou<br>Glycerol-3-phosphate                |
| GC       | Gas chromatography                            |
| gDNA     |                                               |
| GPAT     | Genomic deoxyribonucleic acid                 |
| UFAI     | Glycerol-3-phosphate acyltransferase          |

| GSL     | Glucosinolate                                               |
|---------|-------------------------------------------------------------|
| HAD     | Hydroxyacyl-ACP dehydratase                                 |
| HEAR    | High erucic acid oilseed rape                               |
| НО      | High oleic                                                  |
| HOLLi   | High oleic low linolenic                                    |
| idM     | In defatted meal                                            |
| KAR     | 3-ketoacyl-ACP reductase                                    |
| KAS     | 3-ketoacyl-ACP synthase                                     |
| kb      | Kilo bases                                                  |
| KCS     | β-ketoacyl-CoA synthase                                     |
| LACS    | Long-chain acyl-CoA synthetase                              |
| LEAR    | Low erucic acid oilseed rape                                |
| LG      |                                                             |
|         | Linkage group<br>Low linolenic                              |
| LLi     |                                                             |
| LPAAT   | 2-lysophosphatidic acid acyltransferase                     |
| LPCAT   | Lysophosphatidylcholine acyltransferase                     |
| LUFA    | Long-chain unsaturated fatty acid                           |
| Mbp     | Mega base pairs                                             |
| MCMT    | Malonyl-CoA:ACP malonyltransferase                          |
| MDA     | multiple displacement amplification                         |
| MIM     | Multiple interval mapping                                   |
| NAD(P)H | Reduced form of nicotinamide adenine dinucleotide phosphate |
| NIRS    | Near-infrared reflectance spectroscopy                      |
| PC      | Phosphatidylcholine                                         |
| PCR     | Polymerase chain reaction                                   |
| PDAT    | Phospholipid:diacylglycerol acyltransferase                 |
| PH_EOF  | Plant height at end of flowering                            |
| PP      | Phosphatidate phosphatase                                   |
| PR      | Peoples republic                                            |
| QTL     | Quantitative trait locus/loci                               |
| RIL     | recombinant inbred line                                     |
| RNSL    | Rapid x NSL96/25                                            |
| S       | Sollux                                                      |
| SAD     | Stearoyl-ACP desaturase                                     |
| SGDH14  | DH line 14 derived from Sollux x Gaoyou                     |
| SGEDH   | SGDH14 x Express617 doubled haploid                         |
| SNP     | Single nucleotide polymorphism                              |
| SSR     | Single sequence repeat/microsatellite                       |
| STS     | Sequence tagged site                                        |
| TAG     | Triacylglycerol                                             |
| TAIR    | The Arabidopsis Information Resource                        |
| TILLING | Targeting induced local lesions in genomes                  |
| TKW     | Thousand kernel weight                                      |
| Win     | Windows                                                     |
| WRI1    | WRINKLED1 transcription factor                              |
|         |                                                             |

# 1 General Introduction

Brassica napus L. (B. napus; 2n = 38, AACC) commonly known as oilseed rape is one of the world's most important oil crops. Oilseed rape oil is used not only for human consumption but is also applied as primary source of industrial products. The seed oil of B. napus consists almost entirely of triacylglycerol (TAG) esters containing three fatty acids (FAs) varying in chain lengths from C16 to C22. The major fatty acid component of traditional oilseed rape oil is erucic acid (22:1), accounting for approximately 50 per cent of the total fatty acids. However, detrimental effects caused by the consumption of large amounts of erucic acid shown in animal experiments in the 1960s made erucic acid a possible risk for human health (Rocquelin et al. 1971, Abdellatif 1972). Hence breeders started to search for germplasm with reduced erucic acid content in the seed oil. This led to the development of oilseed rape containing essentially no erucic acid in seed oil during the 1970s (Stefansson et al. 1961, Kramer et al. 1983). In these new types loss of erucic acid led to an increase of oleic acid (18:1) in the seed oil (from around 15% to approximately 60%). Since the development of the first erucic acid free cultivars, further breeding attempts aimed at improving oil quality resulted in the development of so called HOLLi quality oilseed rape types with a high oleic acid (HO) and low linolenic acid (LLi) content. In parallel, an enormous reduction in seed glucosinolate (GSL) content was achieved, which enabled the use of defatted oilseed rape meal in animal feeding. This further increased the economic value of oilseed rape. Nowadays conventional B. napus cultivars, except for some HEAR (high erucic acid oilseed rape) varieties bred for industrial purposes, are of "00" (double low) quality. In Germany, this means <2% erucic acid in the oil and <25µmol/g glucosinolates in the seeds (Bundessortenamt 2015). The balanced fatty acid profile with beneficial healthy effects and an increasing demand for vegetable oil as renewable resource has turned increasing seed oil content into an important breeding aim in oilseed rape (Delourme et al. 2006). As a quantitative trait the genetic control of seed oil content is complex, and involved genes are expected to have only minor effects. However, intense scientific work during the last decades identified a number of quantitative trait loci (QTL) and putative candidate genes for seed oil content and breeding efforts already led to higher oil contents of current breeding material. But genetic diversity in *B. napus* is limited since it is a relatively young crop compared to other cultivated species like wheat (Triticum aestivum L.). Evaluations to discover new genetic resources to overcome this limitation revealed considerable genetic variation between Chinese and European oilseed rape germplasm (Shengwu et al. 2003). Based on this result and the fact that oilseed rape has been bred independently for high oil content in both China and Europe for decades, Zhao et al. (2005) investigated a DH population derived from a European x Chinese

#### **1** General Introduction

characterized with the following objectives:

cross of two high oil cultivars to develop genotypes with increased oil contents. Since erucic acid is positively correlated with oil content, two cultivars with high erucic acid content were crossed to each other, to avoid segregation of erucic acid alleles and confounding effects on oil content. The old European cultivar Sollux (S) and the Chinese cultivar Gaoyou (G) were chosen as parental lines, both of them also having high glucosinolate content in the seeds. In the study of Zhao *et al.* (2005) the DH population of 284 lines were tested in field experiments in one year at two locations each in Europe and in China. Results revealed DH line 14 (SGDH14) to be among those with the highest oil content and a combination of all favourable QTL alleles with additive main effects for oil content from both parental cultivars. These results made SGDH14 a promising candidate to further increase oil content in modern oilseed rape breeding material. For the present study SGDH14 (++) was crossed to the inbred line 617 of the well-established winter oilseed rape cultivar Express (00) and a DH population of 212 DH lines segregating for erucic acid and glucosinolate content was generated from F1 plants. This SGEDH population was

- to analyse the genetic variation and inheritance for seed oil content and fatty acid composition as well as other relevant traits of the SGEDH population
- to construct a molecular marker map to identify quantitative trait loci (QTL) associated with seed oil content and fatty acid composition as well as other relevant seed quality traits of the SGEDH population
- to compare methods to correct for the effects of erucic acid on seed oil content including the conditional approach of Zhu (1995)
- to compare QTL for seed oil content of the SGEDH population with QTL for seed oil content of other related DH populations
- to compare evaluations from field trials conducted in Europe to field trials conducted in East China

# 2 Literature review

### 2.1 The oil crop Brassica napus

The allotetraploid *Brassica napus* L. (*B. napus*, oilseed rape; genome AACC, 2n = 38) is a member of the Brassicaceae (Cruciferae) family. It derived from a spontaneous interspecific hybridisation of the diploid species *Brassica rapa* L. (*B. rapa* syn. *campestris*; turnip rape; genome AA, 2n = 20) and *Brassica oleracea* L. (*B. oleracea*; cabbage; genome CC, 2n = 18) less than 10000 years ago (Parkin et al. 1995, Parkin et al. 2003). The family of Brassicaceae with more than 340 genera containing more than 3350 species (Price et al. 1994) is not only including the model plant Arabidopsis thaliana (L.) HEYNH. (A. thaliana), but also some of the worldwide most economically important crops for food production. Especially the species of the genus Brassica include a unique variety of agricultural and horticultural crops compared to any other plant genus (Wu and Raven 2001). Interspecific crosses and cytological analysis of chromosome conjugation in the progeny in the early 1930s, conducted by Morinaga, revealed the relationship between B. napus and its closest relatives (Prakash and Hinata 1980). U 1935 showed that B. napus, B. juncea and B. carinata, were amphidiploids derived from the monogenomic species B. nigra, B. rapa and B. oleracea. The latter themselves cytologically seemed to be secondary polyploids originating from a common ancestor with five to six chromosomes in the haploid stage (Prakash and Hinata 1980). Genetic mapping experiments confirmed the relationships of the Brassica species (Parkin et al. 1995, Axelsson et al. 2000) and revealed a conserved gene repertoire and a collinear order of chromosomal segments (not including translocations and insertions) within the genomes of B. rapa, B. nigra and B. oleracea indicating a common hexaploid ancestor (Lagercrantz and Lydiate 1996). Further comparative genetic analyses between Brassicas and their close relative A. thaliana proved the theory of the triplication of the genome of an original line of the diploid Brassicas (Lagercrantz et al. 1996, Scheffler et al. 1997, Cavell et al. 1998, Lagercrantz 1998, Parkin et al. 2002, Parkin et al. 2005). Through physical comparison it was possible to show that gene sequences of *Brassica* and *A. thaliana* were 80 – 88% identical (Bach 2007) considering *B. napus* as an ideal model crop in transferring information from the model species (Snowdon and Friedt 2004).

As a predominantly self-pollinating crop *B. napus* is producing 70 to 80% of the seeds by self-pollination (Olsson 1960). It does not need pollinating agents like wind and insects but it is very attractive to bees. The cross-pollination caused by bees does not have much effect on yield but research has reported that bees cause seed set to occur earlier, resulting in shorter, more

compact plants that ripen more uniformly (Williams 1978, Williams *et al.* 1987, Canola Council of Canada 2014). Besides, outcrossing rates of 5 - 55% have been identified (Timmons *et al.* 1995) and Becker *et al.* (1992) found that the rate of outcrossing can greatly be influenced by environmental conditions.

There are two crop forms of oilseed rape existing, a winter and a summer type. These are differentiated by a genetic mechanism controlling the requirement for vernalization (Snowdon *et al.* 2007). The winter type is predominately grown in North Europe and some countries of South America (the temperate zone) with a growing season from August to July, since this biennial type needs a vernalization period at temperatures near freezing to induce bolting and flowering (Kramer *et al.* 1983). The summer form does not need vernalization (growing season April to September) and is more sensitive to low temperatures. Thus, it is mostly grown in Asia but also in Canada and parts of Europe.

There has been evidence that a vegetable crucifer was widely cultivated as early as 10000 years ago but the production of oil from Brassica only started in northern Europe around the 13th century. Within the following 300 years oilseed rape became the major source of lamp oil in Europe and since the 18<sup>th</sup> century it started to capture significant cultivation areas (Kroll 1995, Kimber and McGregor 1995). From the end of the 19<sup>th</sup> century on oilseed rape oil was used as lubricant for industrial purposes, because of its quality and high quantity (up to 50%) of erucic acid. Beside a bitter taste, erucic acid was identified to lead to cardiac damage and related health problems in animal experiments, thus oilseed rape oil was rarely used as food oil. But in the 1970s this situation changed by the development of the first 0 and 00 oilseed rape varieties (Stefansson in Kramer and Sauer 1983, Röbbelen and Downey 1989, Downey 1990). First, the identification of a spontaneous mutant of the German summer cultivar Liho, containing less than 1% erucic acid, enabled the breeding of 0-quality oilseed rape (Stefansson and Hougen 1964). But the value of oilseed rape was still suppressed due to a high quantity of glucosinolates within its seeds, which limited the use of oilseed rape meal as feed for livestock. However, 1969 a low glucosinolate variety was found, the Polish summer oilseed rape cultivar Bronowski, which was used in an international backcross program to introduce this polygenic trait into high-yielding erucic acid-free material. As a result Tower, the first spring oilseed rape variety without erucic acid and low glucosinolate content (00-quality), was released in 1974 (Snowdon et al. 2007). After the successful introduction of the so called double low or canola cultivars, further breeding efforts aimed at the development of new varieties to increase the nutritional value of oilseed rape seed oil. As a result a magnitude of cultivars was developed with variation in the fatty acid composition of oilseed rape oil, focusing on the proportions of the polyunsaturated fatty acids (PUFA), linoleic and linolenic acid. A major objective of oilseed rape breeding in recent years has been the production of hybrids, due to the observed advantages of heterosis in terms of yield and vigour (Gunstone 2009). Today oilseed rape is one of the leading oil crops in the world due to the diverse applications of oilseed rape seed oil, ranging from highly nutritional food oil to biodiesel, industrial lubricants, tensides for detergent and soap production as well as biodegradable plastics (Snowdon *et al.* 2007, Becker 2011). Efforts to increase seed yield of oilseed rape during the past two decades was more successful compared to increases in oil content, with seed oil contents between 40 to 50% for the majority of commercial cultivars. But still, an overall elevation in seed oil content by even a few per cent would enable a remarkable improvement in levels of oil production, since the worldwide oilseed rape production is constantly growing (Jiang *et al.* 2014).

### 2.2 The mature seed

The seeds of *B. napus* are round with an average diameter of 2.0 to 3.2mm and a weight between 3.5 and 5.5mg at maturity (Kimber and McGregor 1995, Dimov et al. 2012). The seed coat in this developmental stage is usually black, sometimes brown and in rare cases yellow and accounts for 10.5 to 20% of the seed weight of black seeded types. It consists of an outer epidermis, a palisade layer of thick-walled columnar-shaped cells, and a layer of crushed parenchyma (Beweley and Black 1984, Naczk et al. 1998). The larger part of the seed however is represented by the light yellow embryo, which makes up 84 to 88% of the seed. It is covered by a layer of crushed parenchyma and the endosperm, which consists of a single row of aleuron cells, together separating the embryo from the seed coat. The embryo itself consists of two cotyledons, an inner one, which is enclosed by a larger outer one. Both are attached to the short hypocotyl. Above the hypocotyl the epicotyl is located, from which the first true leaves and meristem will emerge. Below the hypocotyl the radicle is located, the root part of the embryo. The cotyledons are predominantly composed of cells with a wide lumen containing mainly storage particles for oil (oleosoms) and protein (aleuron bodies). The water content of oilseed rape seeds normally averages between 6 and 8%, which is due to their high oil content, varying between 39 and 45% depending on the cultivar and the environmental conditions, with contents of phosphor- and glycolipids accounting only for 0.5 to 1.5%. The protein content of the mature seed is ranging from 20 to 27% (Appelqvist et al. 1972, Theander et al. 1977, Anjou et al. 1977, Sosulski and Zadernowski 1981, Przybylski and Eskin 1991, Bell 1993). Seeds of yellow colour have a significantly thinner seed coat, decreasing the level of fibre and allowing a higher proportion of embryo, which is increasing the oil and protein content of these seeds (Jonsson and Bengtsson 1970, Stringam *et al.* 1974, Suprianto 2014).

### 2.3 The oil

The most valuable component of the seed is its oil content. About 80% of the seed oil is located in the cells of the cotyledons, where it is stored in lipid droplets, the oleosoms. The hypocotyl and the root contain lower levels of oil, while in the seed hull and endosperm 7 – 12% of the total seed oil is found (Fowler and Downey 1970, Stringam *et al.* 1974). Temperature and moisture during seed development, nitrogen fertilisation and other factors are influencing the oil content. Usually cool and moist growing conditions favour high oil contents, while increasing rates of nitrogen fertilization reduce oil percentage per seed, but increase oil yield per acre. In general, seeds with highest oil content are harvested from winter types (Kramer and Sauer 1983, Kimber and McGregor 1995). More than 90% of the seed oil consists of triacylglycerols which are composed of three variable fatty acid chains bound to a glycerol-backbone. Fatty acids consequently being the major constituents of seed oil which makes fatty acid composition one of its most important properties.

In general, the fatty acid profile of oilseed rape consists of palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acid. The traditional *B. napus* seed oil additionally contains the long-chain fatty acids arachidic (20:0), cis-11-eicosenoic (20:1), behenic (22:0) and a significant proportion of erucic (22:1) acid. The fatty acid composition is influenced by environmental conditions, resulting in a higher degree of unsaturated acyl groups with cooler climate and higher latitude, but it is mainly genetically determined (Kimber and McGregor 1995). Conventional breeding made use of this genetic variation and modified the fatty acid composition for various food, feed and industrial purposes. After first concerns about the nutritional intake of erucic acid in the mid-1950s (Kramer and Sauer 1983), with around 40 to 50% the main component of the *B. napus* seed oil, breeding efforts aimed on the development of low erucic acid varieties. A lot of research work and the restriction of the level of erucic acid content in oilseed rape oil for human consumption at the beginning of the 1970s finally lead to the introduction of low erucic acid oilseed rape (LEAR). Starting with a maximum of 5% the limit for erucic acid was lowered to a maximum of 2% in the early 1980s and industrial standards nowadays even aim to reach levels below 1% of erucic acid (Daun and Adolphe 1997, Gunstone 2009). Spotting oilseed rape oil as a highly valuable source of vegetable oil, further breeding attempts in the 1970s additionally reduced the level of another anti-nutritional component, the

20

glucosinolates, introducing the so called canola or double low quality oilseed rape (Daun 1984). This enormously increased the value of the by-product of oil extraction, the oilseed rape meal (Suprianto 2014). With a very similar fatty acid composition compared to LEAR oil, canola quality oil also had a high nutritional value. Its fatty acid composition is characterized by a high level of the monounsaturated oleic acid with up to 60% and a significant amount of linoleic (20%) and  $\alpha$ -linolenic (10%) acid as well as a low proportion of saturated fatty acids of 6 – 7%. This breakthrough in modifying the fatty acid composition of *B. napus* seed oil initiated further alteration of the fatty acid composition to address specific industrial and nutritional needs. One of the following breeding challenges was to increase the amount of erucic acid in order to increase the value of oil used for industrial purposes, resulting in high erucic acid oilseed rape (HEAR) cultivars of summer type with over 50% of erucic acid in their oil (Latta 1990, Murphy and Sonntag 1991, Scarth et al. 1991). The challenge in breeding the high erucic acid oilseed rape (HEAR) is based on the inability of *B. napus* to place long-chain fatty acids in the sn-2position of triacylglycerols, limiting the erucic acid content to a maximum of theoretically 66% (Taylor et al. 1992). Although several strategies were applied (Taylor et al. 1992), to date the limitation was only overcome in one line of *B. oleracea* (Taylor *et al.* 1994). Polyunsaturated fatty acids decrease the heat stability of oil, making it susceptible to oxidative changes during refining, storage and frying (Sasongko et al. 2003). With 8 to 10%, LEAR and canola oil contains a relatively high level of  $\alpha$ -linolenic acid that may have some nutritional advantages, but is rapidly oxidized at higher temperatures and produces off flavours. Therefore, an additional breeding objective has been the reduction of  $\alpha$ -linolenic acid to less than 3%, while maintaining or increasing the level of linoleic acid, an essential fatty acid in the human diet. An initial work of Rakow in 1973, who developed mutants with half the normal amount of linolenic acid, enabled the breeding of the *B. napus* cultivar Stellar with less than 3% linolenic acid and as much as 20% linoleic acid (Rakow and McGregor in 1973, Scarth et al. 1988).

## 2.4 Biosynthesis of storage lipids

Lipids are one of the most important groups of biological macromolecules in living cells. They have many important biological functions, including storing energy, signalling and acting as structural components of cell membranes (Fahy *et al.* 2009, Subramaniam *et al.* 2011). Thus they occur in many different forms, including fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, triglycerides, phospholipids and glycolipids. Beside surface lipids (1%) and membrane lipids (5%), most of the lipids in the seed, as the storage organ, are storage lipids (94%), which almost entirely consist of triacylglycerols

(TAGs) and are collected in oil bodies (Harwood 1996, Li-Beisson *et al.* 2013, Chen *et al.* 2015). Triacylglycerols are composed of three fatty acids connected to a glycerol backbone. The formation of TAG can be divided into three stages. Initially fatty acids are newly built in the plastid. Subsequently these are exported in the form of acyl-CoA thioesters to the cytoplasmic endomembrane system, where the modification of fatty acids and finally the assembly of storage lipids occurs (Roscoe 2005).

#### 2.4.1 Fatty acid synthesis

Fatty acids are built *de novo* in every cell of a plant. The synthesis takes place in the plastids, therefore it is referred to as the prokaryotic part of lipid synthesis (Roughan and Slack 1982). Fatty acids are produced by the enzymes of the fatty acid synthase (FAS) complex. Using acetylcoenzyme A (CoA) as precursor, a fatty acid carbon chain is elongated through sequential addition of two-carbon units. Each elongation process consists of four reactions: condensation, reduction, dehydration and reduction, with the acyl carrier protein (ACP) as cofactor of all reactions. Acetyl-CoA, as the major building unit of fatty acids, is mainly produced by the plastidial pyruvate dehydrogenase complex. The two carbon donor molecule necessary for fatty acid elongation is malonyl-ACP. In an ATP dependent two-step reaction acetyl-CoA and hydrogen carbonate are assembled to malonyl-CoA. This reaction is catalysed by a multisubunit heteromeric enzyme complex of prokaryotic type, the acetyl-CoA carboxylase (ACC) (Harwood 1996, Konishi *et al.* 1996). The first step of this reaction is catalysed by the biotin carboxylase (BC) domain of ACC, transferring  $CO_2$  from bicarbonate to a biotin prosthetic group attached to a conserved lysine residue of the biotin carboxyl carrier protein (BCCP) domain of ACC. In a second step, the carboxyl group from carboxy-biotin is transferred to acetyl-CoA to form malonyl-CoA, catalysed by the carboxyltransferase (CT) domain of ACC. Two different subunits are forming the CT domain,  $\alpha$ -CT and  $\beta$ -CT.  $\beta$ -CT being the only component in plant lipid metabolism encoded by the plastid genome (Ohlrogge and Browse 1995). Thus, implying a coordinated production of cytosolic and plastid subunits to build a functioning ACC. To finally enter the fatty acid synthesis cycle malonyl-CoA assembled by ACC is transferred to ACP by malonyl-CoA:ACP malonyltransferase (MCMT), forming malonyl-ACP. The initial elongation cycle is assembling acetyl-CoA and malonyl-ACP, starting with a condensation reaction yielding the four-carbon product 3-ketobutyryl-ACP. The condensing enzymes of fatty acid synthesis are 3-ketoacyl-ACP synthases (KAS), while the first condensation is catalysed by KAS III, the condensation reactions of following elongation cycles are catalysed by KAS I. Elongation from palmitoyl-ACP (C16) to stearoyl-ACP (C18) is catalysed by a third isoform, namely KASII (Pidkowich *et al.* 2007). After condensation 3-ketobutyryl-ACP is reduced to 3-hydroxyacyl-ACP by 3-ketoacyl-ACP reductase (KAR). Hydroxyacyl-ACP dehydratase (HAD) then is dehydrating 3-hydroxyacyl-ACP leading to enoyl-ACP, which is finally reduced to C4 saturated fatty acid-ACP, the precursor for the next elongation cycle, by enoyl-ACP reductase (ENR) (Mou *et al.* 2000). Assembling of the C4 acyl-ACP with another malonyl-ACP initiates the next elongation cycle. The serial addition of two-carbon units to the growing fatty acid chain catalysed by the enzymes of the FAS complex is finally terminated by hydrolysation of 16:0-ACP and 18:0-ACP. Hydrolysation is catalysed by two different acyl-ACP thioesterases and results in free fatty acids. Fatty acid thioesterase B (FATB) produces palmitic acid by the hydrolysation of 16:0-ACP, while fatty acid thioesterase A (FATA) hydrolyses 18:0-ACP, which was produced by an additional cycle in the FAS machinery utilising KASII for condensation, releasing the 18:0 free fatty acid, stearic acid. Alternatively, 18:0-ACP can first be desaturated by  $\Delta^9$  stearoyl-ACP desaturase (SAD) producing 18:1-ACP, which is then hydrolysed by FATA to oleic acid. All free long-chain fatty acids produced are esterified with CoA by a long chain acyl-CoA synthetase (LACS) and exported from the plastid to the endoplasmic reticulum, where they are used to build storage lipids.

DNA microarray data indicated co-regulation of core enzymes of fatty acid synthesis at the transcriptional level (Mentzen *et al.* 2008) and further investigations identified the transcription factor WRINKLED1 (WRI1) directly activating the fatty acid biosynthesis pathway (Cernac and Benning 2004, Baud *et al.* 2007; Maeo *et al.* 2009). However, not only transcriptional control but also optimization of enzyme activity is regulating fatty acid biosynthesis (Buckhout and Thimm 2003).

#### 2.4.2 Modifications of fatty acids

In *B. napus* two types of modification of fatty acids can be distinguished, the desaturation and the sequential elongation of oleic acid (18:1). Desaturation of 18:1 is conducted by two specialized microsomal membrane-associated desaturases, FAD2 ( $\Delta^{12}$ ) and FAD3 ( $\Delta^{15}$ ), which form 18:2 and 18:3, respectively. However, the elongation of 18:1 leads to the production of the long chain unsaturated fatty acids (LUFAs), eicosenoic (20:1) and erucic acid (22:1). The elongation from 18:1 to 22:1 takes place in the cytoplasm and is catalysed by the membrane-bound oleoyl-CoA elongation complex. Four successive reactions are included in the elongation process. In a first step  $\beta$ -ketoacyl-CoA synthase (KCS) is catalysing the condensation of malonyl-CoA with the long chain (18:1 or 20:1) acyl-CoA, resulting in the formation of  $\beta$ -ketoacyl-CoA. The second step comprises the reduction of  $\beta$ -ketoacyl-CoA by  $\beta$ -ketoacyl-CoA reductase using NAD(P)H as

reductant. The reduction leads to  $\beta$ -hydroxyacyl-CoA which in a third step is dehydrated to an enoyl-CoA by  $\beta$ -OH-acyl-CoA dehydratase. Enoyl-CoA finally undergoes a second reduction, which is mediated by trans-2,3-enoyl-CoA reductase also using NAD(P)H as reductant. The second reduction forms the long chain (20:1 or 22:1) acyl-CoA (Fehling and Mukherjee 1991, Harwood 1996). This elongation process is adding a two-carbon fragment to the carboxyl end of oleic acid forming eicosenoic acid in a first cycle and erucic acid after a second two-carbon addition (Downey and Craig 1964, Jönsson 1977, Sasongko *et al.* 2003). The erucic acid biosynthesis has been well characterized in *A. thaliana* identifying *fatty acid elongase 1* (FAE1), encoding the condensing enzyme KCS, as key-regulator (Lemieux *et al.* 1990, Kunst *et al.* 1992, Rahman *et al.* 2008).

#### 2.4.3 Triacylglycerol synthesis

After fatty acids have been synthesised they are exported from the plastid to the ER were they enter the so called Kennedy pathway or glycerol phosphate pathway to form triacylglycerols (TAGs). Beside fatty acid chains the main component of these storage lipids is glycerol-3phosphate (G3P). The first reaction of the glycerol phosphate pathway is the acylation of G3P at its *sn*-1 position, which is catalysed by glycerol-3-phosphate acyltransferase (GPAT). In a second acylation step 2-lysophosphatidic acid acyltransferase (LPAAT) is transferring a second fatty acid from the acyl-CoA pool to the *sn*-2 position. The resulting phosphatidic acid afterwards is dephosphorylated by phosphatidate phosphatase (PP) forming diacylglycerol (DAG). A particular characteristic of the *Brassica* LPAAT is its specificity, making the utilization of erucoyl-CoA as an acyl donor incapable (Bernerth and Frentzen 1990, Taylor et al. 1992). Thus, erucoyl moieties are typically excluded from the central sn-2 position of the triacylglycerol molecule in B. napus (Nath et al. 2008). The resulting DAGs are representing important intermediates not only for storage but also for membrane lipid synthesis. Therefore, the final acylation of the sn-3 position of the glycerol backbone is the unique and specific reaction in TAG biosynthesis. Depending on the acyl donor source three different mechanisms have been identified contributing to this step. Using a fatty acyl-CoA molecule acetylation of the sn-3 position of DAG is catalysed by diacylglycerol acyltransferase (DGAT). There have been two classes of DGAT identified, DGAT1 and DGAT2 respectively, which are differing in their sequence and membrane topology as well as their substrate discrimination. Up to now only DGAT1 has been shown to play a role in seed oil accumulation, while the role of DGAT2 remains to be confirmed. A second way of DAG acylation is catalysed by a phospholipid:diacylglycerol acyltransferase (PDAT) that is utilizing phosphatidylcholine (PC) as acyl source. PC is generated from lyso-PC by lysophosphatidylcholine acyltransferase (LPCAT). Hence, TAG formation by PDAT depends on LPCAT activity. Dahlqvist et al. (2000) detected PDAT activity in plants and the gene encoding PDAT was identified in A. thaliana by Ståhl et al. (2004). Examination of mutants by Zhang et al. (2009) indicated that PDAT1 is capable of compensating absence of DGAT1, because double mutants of PDAT1 and DGAT1 were lethal, and RNAi suppression of either gene in a mutant background lacking the other gene resulted in severe defects in pollen and seed development, including greatly reduced oil bodies and oil content, but *dgat1* mutants only showed a minor reduction of oil content. Diacylglycerol:diacylglycerol transacylase (DAGTA) is catalysing the third reaction mechanism synthesising TAG by transferring a acyl group from one DAG to another (Roscoe 2005). Synthesised TAGs converge and are released from the ER enclosed by a phospholipid monolayer as the so called oil bodies or lipid droplets. The phospholipid monolayer is also containing different types of proteins, including oleosins, caleosins and steroleosins (Jolivet *et al.* 2004). Oleosins, which build the most abundant group, are regulating the size of oil bodies and thus enabling the mobilization of the TAG storage during seed germination by maximizing the surface-to-volume ratio of the oil bodies (Siloto et al. 2006, Shimada et al. 2008). While Caleosins also seem to play a role in TAG mobilisation during germination through mediating interactions with vacuoles (Poxleitner et al. 2006), steroleosins

#### 2.4.4 Candidate genes of oil biosynthesis

appear to play a role in signal transduction (Lin *et al.* 2002).

To reveal the mechanisms and characterize the genes involved in plant lipid biosynthesis a number of different genetic, molecular and biochemical studies were performed on the model plant and close relative of *B. napus*, *A. thaliana* (Ohlrogge *et al.* 2000). Information on the genes found to be involved in the lipid biosynthesis was thereupon collected in the *Arabidopsis* Lipid Gene Database (Beisson *et al.* 2003, http://aralip.plantbiology.msu.edu/pathways/pathways). The comparison of the *A. thaliana* wild type to collections of *A. thaliana* mutants identified the *tag1*-mutant (Zou *et al.* 1999) and the *wrinkled1*-mutant (Focks and Benning 1998) with reduced seed oil content. The *tag1*-mutant which additionally showed an altered fatty acid composition (Katavic *et al.* 1995) was traced back to the DGAT-gene. Seed-specific overexpression of the DGAT-gene increased the oil content (Jako *et al.* 2001). However, the decreased oil content in the *wrinkled1*-mutant of about 80% was caused by the mutation of the *wri1*-locus, presumably encoding a transcription factor (Cernac and Benning 2004b, Bach 2007). Microarray experiments of Ruuska *et al.* (2002) allowed the simultaneous investigation of >100 genes involved in lipid metabolism, enabling a broad overview of the transcriptional regulation

of the pathway. The researchers identified an expression cascade for specific groups of genes involved in oil biosynthesis during seed maturation. The comparison of wild type expression to the expression of the *wri1*-mutant identified 45 genes showing clear differences in their expression patterns. Most of these genes appeared to encode key regulators of fatty acid synthesis or carbon metabolism like BCCP2, KASI, enoyl-ACP reductase (ENR), two ACP isoforms, FAD2 (Ruuska *et al.* 2002). Thelen and Ohlrogge (2002) also realized the important role of the BCCP2-gene, since overexpression as well as antisense mediated reduction inactivated the plastid acetyl-CoA-carboxylase, which led to decreased oil content and changed fatty acid composition. Voelker and Kinney (2001) reviewing the "Variation in the Biosynthesis of Seed-storage Lipids" demonstrated that nearly every modification of the enzymes involved in oil biosynthesis, including fatty acid synthesis, modification and elongation as well as TAG formation, changes seed oil production.

### 2.5 Illumina's SNP beadchip technology

The Illumina SNP beadchip technology is an array-based whole-genome genotyping assay with single-tube sample preparation, which allows for accurate and robust genotyping in the context of full genomic complexity in a single array experiment (Gunderson et al. 2005). The bead-array method generally consists of four steps, (i) a whole-genome amplification, (ii) an array-based hybridization capture, (iii) an 'on array' enzymatic allele-specific primer extension and (iv) a signal detection step. The first generation of bead-arrays initially used a single-tube wholegenome amplification to generate a sufficient amount of the complex genomic DNA for hybridisation (Gunderson *et al.* 2005). The amplification of the genomic DNA was conducted by a method described by Dean *et al.* (2002) termed multiple displacement amplification (MDA). Compared to the commonly used random or degenerate oligonucleotide-primed PCR approaches to amplify genomic DNA and at the same time reduce its complexity, the MDA showed a lot of advantages. By the use of  $\varphi$ 29 DNA polymerase and random exonucleaseresistant primers MDA became an isothermal, strand-displacing process yielding a highly uniform representation across the genome with product lengths of >10 kb and about 20 – 30  $\mu$ g product from as few as 1 - 10 copies of human genomic DNA. MDA was even applicable to biological samples including crude whole blood and tissue culture cells. With high genome coverage of >95%, reproducibility of 98% and high concentration products the MDA was perfectly meeting the demands of the bead-array system. For hybridisation, amplified DNA was denatured and incubated together with bead-bound capture probes on the array. Hybridisation capture probes were composed of 75 base long oligonucleotides including 25 bases used for

decoding and 50 bases as target sequence for hybridisation. They were immobilized on activated beads of 3µm in diameter using a 5'-amino group. One bead loaded with multiple copies of one target sequence which was carrying a selective nucleotide at the 3'-terminal. After hybridisation an allele-specific primer elongation assay with high allelic discrimination was conducted to query the SNP. The use of two different bead-types (A and B) enabled the identification of all variants of the SNPs, since sequences were only extended and labelled if perfectly matching the target. To read the incorporated labels the allele specific primer elongation reaction is followed by a sensitive detection and signal amplification. Finally, intensity ratios between the two corresponding bead-types were captured by a custom imaging system and analysed to determine the genotype state of a given SNP locus (AA, AB or BB) using an appended software. By comparison of intensities between A and B allele probes the software assigns membership to archetypal clusters created by comparison of a large numbers of samples using a probabilistic model (Gunderson et al. 2004; Gunderson et al. 2005). Initially designed to genotype human DNA at thousands of SNPs simultaneously across the genome the Illumina SNP beadchip technology today is also available for a lot of animal and plant species due to enormous progresses in molecular biological techniques like "next-generation" DNA sequencing and computational methodology, as well as their dramatically reduction of costs (LaFramboise 2009, Edwards et al. 2013). The latest feature for SNP bead-chips is the individual and customised SNP selection, e.g. increases the power of association studies relative to random SNPs. In 2012 an international Brassica-SNP-consortium, established in collaboration with Illumina Inc. (San Diego, CA, USA) in 2011, produced a 60000 (60k) SNP genotyping array for B. napus. This introduced a very low-cost and efficient method for high-density, sequence-based, genome-wide polymorphism screening in *B. napus* populations (Liu *et al.* 2013). The consortium array contains 58464 SNPs designed to function well in *Brassica* A (28044 SNPs) or C (30420 SNPs) genome species (Sharpe 2012). The SNP content was derived from DNA sequence contributions by academic and commercial partners from Australia, China, Europe, North and South America, using preferentially single-locus SNPs identified from genomic and transcriptomic sequencing in genetically diverse Brassica germplasm (Snowdon and Iniguez Luy 2012, Liu et al. 2013). The recent publication of a first *B. napus* sequence (Chalhoub et al. 2014) finally enabled the use of these SNP marker information to navigate directly from genetic map positions to the genome sequence.

### 2.6 QTL mapping for oil content in Brassica napus

The genetic information of higher organisms is organised on chromosomes which carry genes in a fixed linear order. The specific position of a gene on the chromosome is called a locus. A gene can be represented by alternative forms, its alleles. To investigate the genetic control of a measurable phenotypic trait, a mapping population is used derived from a cross between parental lines which differ in the trait of interest. Within this mapping population recombination events between alleles of different loci are determined to estimate linkage values as a measure of genetic distance. The linkage relations among all chromosomes are used to create a genetic map of an organism. Combining genetic and phenotypic information, genetic regions influencing the phenotypic trait are identified. Depending on the mating type of the investigated species a suitable type of mapping population needs to be chosen (Meksem and Kahl 2006).

The seed-oil content varies quantitatively among germplasm of *B. napus*. This variation is attributed to the complex regulation of multiple genes that are involved in various aspects of seed-storage-oil metabolism (Ohlrogge and Browse 1995, Mekhedov *et al.* 2000, Barker *et al.* 2007). Thus, mapping the genetic loci that control the quantitative variation is a preliminary step to disclose the complex regulation of this trait (Jiang *et al.* 2014).

The initial study to identify QTL for seed oil content in *B. napus* was conducted by Ecke *et al.* (1995) using a RFLP (restriction fragment length polymorphism) map of a F1 microsporederived DH population derived from a cross of Mansholt's Hamburger Raps and Samourai. Although the parental lines did not show significant difference in seed oil content, they detected three discrete loci for oil content within the transgressively segregating DH population. These QTL identified with MAPMAKER/QTL (Lincoln and Lander 1992) were located on linkage groups 6, 10 and 12 and together explained 51% of the total phenotypic variation for oil content. Their additive effects sum up to 4.8% of oil content for homozygous genotypes. Mansholt alleles increased seed oil content for QTL on linkage groups 6 and 12, while Samourai was contributing the positive allele increasing seed oil content on linkage group 10. Comparing the positions of QTL for oil content with estimated positions of the two erucic acid genes, Ecke *et al.* (1995) found a close association of QTL for both traits on linkage groups 6 and 12.

Butruille *et al.* (1999) were analysing canola quality inbred backcross lines of the German winter-type cultivar Ceres with the summer-type recurrent parent Marnoo (Australian) and Westar (Canadian) to map genomic regions of the donor parent that affect agronomic traits, identifying only one putative QTL affecting seed oil content on linkage group N1.

In 2003 Burns *et al.* investigated the inheritance of seed oil content and its fatty acid composition in a set of substitution lines formed from a cross between the winter oilseed rape varieties Tapidor and Victor. Like in Ecke *et al.* (1995) the parents of the substitution lines showed a similar seed oil content but differed in erucic acid content. With a model-fitting approach a total number of 13 QTL was identified distributed among ten linkage groups. While all QTL affected fatty acid composition, only seven of these QTL, which were located on the linkage groups N3, 6, 8, 13, 14, 18 and 19, influenced total seed oil content. And Burns *et al.* (2003) also suggested one of their seed oil-QTL located on linkage group N8 to be synonymous with a QTL for erucic acid, supporting the hypothesis of Ecke *et al.* (1995).

Studying an F1 derived doubled haploid population derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, Zhao et al. (2005) detected eight QTL for seed oil content with additive main effects located on linkage groups N1, 7, 9, 11, 12, 14, 18, 19. The alleles increasing oil content for QTL on linkage group N7, 11 and 18 were derived from Gaoyou. QTL with additive main effects explained about 40% of the phenotypic variation and were summing up to 5.4% maximum difference in oil content between homozygous genotypes. Additionally, nine pairs of loci with additive x additive epistasis were identified which sum up to 5% maximum difference in oil content between homozygous genotypes, very similar to the results of QTL with additive main effects. All together the QTL with additive and epistatic main effects accounted for 80% of the phenotypic variation. Parental lines were chosen because of their high oil contents but they also contained high erucic acid contents. QTL were calculated by a mixed model approach of the mapping software QTLMapper (Wang et al. 1999) using microsatellite markers. Furthermore investigating the effect of additive x environment interaction, Zhao et al. (2005) identified five out of the eight seed oil-QTL with additive effects that showed significant interaction. And additional ten QTL with additive x environment interaction were observed showing no significant additive main effect. Since the alleles increasing oil content were dispersed between the parents, the authors suggested a marker assisted selection, considering epistatic effects and genotype x environment interactions, to recombine the positive alleles from both parental lines to further increase oil content in *B. napus*. Although the results of Zhao et al. (2005) indicated that the Chinese and European alleles identified were often more positive at their respective location, the authors also found four QTL where the allele from the German parent increased oil content in China and vice versa. In a subsequent publication including conditional mapping Zhao et al. (2006) identified six QTL and nine epistatic interaction pairs showing pleiotropic effects on oil and protein content, demonstrating the strong genetic relationship between these traits. In this study two additional QTL were identified which control oil content independently.

At the same time Delourme et al. (2006), who analysed two DH populations derived from the crosses Darmor-bzh x Yudal (DY) and Rapid x NSL96/25 (RNSL), investigated the 'Genetic control of oil content in oilseed rape'. Using composite interval mapping (CIM) with QTL Cartographer (Basten 2005), the authors found a total of fourteen and ten genomic regions involved in seed oil content in DY and RNSL populations, respectively. One of these QTL located on linkage group N3 was potentially common to both populations. While Darmor-bzh and Yudal had a quite similar oil content but carried different alleles at many QTL, causing a large distribution for oil content in the DY DH population, the oil content between Rapid and NSL96/25 differed more but alleles increasing oil content were mainly derived from the parent with higher oil content, and the derived DH population included only a few transgressive lines. These results showed that a combination of favourable alleles at different QTL positions can efficiently increase seed oil content. The authors also confirmed a significant environmental effect on average oil content beside the additive effects as main contributors, confirming the results of Zhao et al. (2005). But only little epistasis was observed. Furthermore, Delourme et al. (2006) recommended utilizing the available Arabidopsis genomic data to develop markers for B. napus and to identify candidate genes and the establishment of a consolidated map of QTL of different segregation populations to improve the investigation of traits of interest.

Qiu et al. (2006) developed a DH mapping population by crossing the genetically diverse oilseed rape lines Ningyou 7 and Tapidor, and constructed a linkage map based on a variety of different markers including sequence tagged site (STS), simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers to enable the integration with existing *Brassica* linkage maps and with the *A. thaliana* genome. The parental lines again showed similar oil contents but different erucic acid contents. Using MapQTL (Van Ooijen 2004) the authors identified seven QTL for seed oil content, located on N1, 3, 4, 8, 12, 13 and 17, in total accounting for 54.6% of the phenotypic variation. The alleles increasing oil content on N1, 4 and 12 were contributed by Tapidor, while increasing alleles of N 3, 8 and 13 were contributed by Ningyou 7. Also analysing the genetic control of erucic acid, four QTL were detected which were found on linkage groups N1, 2, 8 and 13, all together explaining 87.9% of the variation within the population. The two major QTL for erucic acid on linkage groups N8 and N13 accounted for about 45 and 30% of the phenotypic variation, respectively. And QTL on linkage groups N1, 8 and 13 were co-located with QTL for seed oil content. Alignment of the QTL regions of these three loci to the genome sequence of A. thaliana, the fatty acid elongase 1 (fae1) was identified as candidate gene regulating erucic acid biosynthesis and influencing oil content.

Three years later Yan *et al.* (2009) presented their results analysing seed oil content, seed hull content and seed coat colour in a recombinant inbred lines (RIL) population of *B. napus*, developed through successive selfing up to six generations from a cross between yellow-seeded female parent GH06 and black-seeded male parent P174 by single seed descent. Utilizing again different types of markers (AFLP, sequence related amplified polymorphism (SRAP), SSR and target region amplified polymorphism (TRAP)) and conducting composite interval mapping (CIM) by WinQTL Cartographer software version 2.5 (WinQTLCart 2.5; Wang *et al.* 2012a), eleven QTL controlling oil content were detected, accounting for 5.19 - 13.57% of the phenotypic variation. Alleles increasing seed oil content came from GH06 (N3, N4, N5, N7, N8 and N13) and P174 (N1 and LG14), respectively. Comparison of QTL of all three traits revealed the first common QTL region on N8. Like Zhao *et al.* (2005), the investigations of Yan *et al.* (2009) also showed a significant effect of the environment on seed oil variation.

Studying the genetic control of seed oil content, seed yield and days to flowering Chen *et al.* (2010) identified 27 QTL for oil content in six environments in Canada, distributed among 14 linkage groups (LG1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 16, and 18). The individual QTL for oil content explained 4.2–30.2% of the total phenotypic variance. WinQTLCart 2.5 was used to map QTL for all traits using its composite interval mapping method (CIM). The plant material of this experiments was consisting of a recombinant doubled haploid (DH) population derived from the cross of a high-oil content line and a low-oil content line. On LG7 a QTL for oil content, a QTL for seed yield, and a QTL for days to flowering were found coincidently located. The additive effects of these QTL were negative for both oil content and days to flowering, while a positive additive effect was detected for yield. And another QTL for oil content with a positive additive effect on LG2 was closely positioned with a QTL for days to flowering with negative additive effect.

In 2012, Zhao *et al.* presented a comparative mapping approach between *B. napus* and *A. thaliana* to identify potential candidate genes of the seed oil metabolism. On a refined version of their previous SSR map (Zhao *et al.* 2005) based on informative markers derived from *Brassica* sequences, which included orthologous genes of *A. thaliana* and were mostly related to genes of the acyl lipid metabolism, composite interval mapping of WinQTLCart 2.5 (Wang *et al.* 2012a) was conducted. This identified nine significant QTL for seed oil content on the linkage groups A1, A5, A7, A9, C2, C3, C6 and C8, together explaining 57.79% of the total phenotypic variation. Within the confidence intervals of six of these QTL a total number of 14 lipid related candidate gene loci were found, not including the prevailing transcription factors WRI1 (Cernac and Benning 2004b), LEC1 (Mu *et al.* 2008) and their homologous genes in *B. napus*, BnWRI1, BnLEC1 and LEC1-like gene BnL1L. Seven of the nine detected QTL were consistent to findings

of Zhao *et al.* (2005), and comparison with other populations (Burns *et al.* 2003, Delourme *et al.* 2006, Qiu *et al.* 2006, Chen *et al.* 2010) through alignment of common SSR markers also identified seven of the detected QTL in same or similar regions.

To make former seed oil-QTL results in *B. napus* more comparable, Jiang *et al.* (2014) constructed a high-density map of more than 700 markers using the DH population of Qiu *et al.* (2006) to align QTL among different populations. And since previous QTL analyses of seed oil content in *B. napus* were manly using DH populations or inbred lines which allow multiple repetitions of experiments, but revealed only additive effects and some epistatic effects of the seed oil-QTL, Jiang *et al.* (2014) additionally used a Tapidor and Ningyou 7 reconstructed-F2 population (TN; Shi *et al.* 2009) to enable determination of the dominance effects for QTL. Using composite interval mapping with WinQTLCart 2.5 (Wang *et al.* 2012a) and QTLMapper 2.0 software (Wang *et al.* 1999), 41 QTL including 20 QTL with dominance effects and 20 pairs of epistatic interaction loci were detected in the two populations, respectively. And the alignment of and comparison with selected genetic maps in total identified a number of 46 distinct QTL regions that control seed oil content on 16 of the 19 linkage groups of the *B. napus* genome represented by the genetic map of the TN population. 18 of these QTL regions were detected in different populations including a previous association study panel of breeding lines (Zou *et al.* 2009).

QTL analysis of seed oil content of the past two decades reflected the continuous development of molecular technologies and progress of research in understanding the mechanisms regulating seed oil content in *B. napus*. Now, the recent publication of the *B. napus* genome sequence by Chalhoub *et al.* (2014) represents a promising milestone to reveal detailed insides in the genetic control of oil content.

Recently, Teh (2015) mapped QTL for oil content and fatty acid content in a DH population derived from the two canola quality winter oilseed rape varieties Sansibar and Oase (SODH), investigating the two mega-environments Europe and China. Using AFLP, candidate-gene based, Diversity Array Technology (DArT), Silico-DArT, SSR, and SNP markers Teh identified five QTL for oil content in the European trial on linkage groups A01, A02, A07, C03 and C08 (Teh and Möllers 2015), and seven in the Chinese trial on linkage groups A04, A07, A09, C01, C03 (2) and C06 by applying the multiple interval mapping (MIM) of WinQTL Cartographer software. Two of these QTL were found consistent in both environments. Physical mapping based on the *B. rapa* genome allowed revealing the co-localisation of candidate genes of oil biosynthesis with QTL for different fatty acids.

# 2.7 Conditional mapping

The phenotypic variation of a lot of quantitative traits, like seed oil content, are affected not only by environmental conditions but also by genetic effects caused by gene action during specific plant developmental periods, making the evaluation of data from different points in time difficult. To solve this problem and allow the analysis of quantitative traits taking these effects into consideration, Zhu (1995) proposed a statistical procedure to analyse conditional genetic effects and conditional genetic variance components based on genetic models with timedependent measures. This statistical method was not only suitable for additive-dominance models, but also applicable for other genetic models expressed in mixed linear models. For some genetic models with correlated genetic factors, such as seed or endosperm models, minimum norm quadratic unbiased estimation (MINQUE; Rao 1971) was recommended to estimate the variance and covariance components (Zhu and Weir 1994a, Zhu and Weir 1994b). In 1998 Yan et al. used the Zhu method in rice and combined it with a mapping program to identify conditional QTL for tiller number in different time intervals, while Yan et al. (1999) and Cao et al. (2001) used the software supplementation to map QTL with additive and/or additive by environment interaction effects for the developmental behaviour of plant height. Benmoussa (1998) further extended the conditional QTL mapping approach by analysing not time dependency anymore but the interrelationship of traits. Dissecting yield and yield components in rice molecularly, the contribution of each component to yield was revealed on QTL level. By combining the statistical procedures of Zhu (1995) and the new QTL mapping method based on mixed linear model approaches in QTLMapper version 1.0 of Wang et al. (1999), Cao et al. (2001) were able to analyse the dynamic behaviour of plant height at different stages of rice, and detect QTL not only with additive but also with epistatic effects as well as their QTL x environment interaction effects. Zhao et al. (2006) again used the mixed model approach of Zhu (1995) in combination with the QTL mapping software of Wang *et al.* (1999) to study the genetic interrelationship between QTL for oil content and the negatively correlated protein content as well as other plant developmental and yield related traits influencing oil content in *B. napus*. These investigations detected QTL that reflect the effects of oil content under exclusion of variation in a second potentially influencing factor. The conditional oil content was estimated for the situation of no variation for the secondary trait, a method very similar to the estimation of adjusted values in a covariance analysis, and analysed by QTL mapping in the same way as the original oil content. The comparison of unconditioned and conditioned oil-QTL revealed additional QTL with small effects which were undetectable in unconditioned mapping. Thus,

Zhao *et al.* (2006) suggested that for significantly correlated traits, the conditional QTL mapping method generally could be used to dissect the genetic interrelationship between traits at the level of individual QTL and reveal additional QTL undetected by unconditional mapping. This conclusion later on was confirmed by Li *et al.* (2007), who investigated the genetic relationship between popping expansion volume and two yield components in popcorn. Till today the conditional approach of Zhu (1995) is a prevalently utilized method to map conditional QTL in many crops like rice (Ye *et al.* 2009), wheat (Wang *et al.* 2012), soybean (Han *et al.* 2015) and oilseed rape (Wang *et al.* 2015)

3 Genetic variation and inheritance of oil content and relevant seed quality traits of the SGEDH population cultivated in Europe

### 3.1 Abstract

Breeding for increased oil content in oilseed rape (Brassica napus L.) has been pursued independently for many decades in Europe and in China. In previous work, the old German cultivar Sollux was crossed to the Chinese cultivar Gaoyou. Both cultivars have high oil content but have also high contents of erucic acid and glucosinolates ('++'-quality). A doubled haploid (DH) population was developed from this cross and tested in field experiments. From this population, line SGDH14 was identified as having the highest oil content under north-western German growing conditions and a combination of all QTL alleles increasing oil content from both parents. The objective of this work was to further investigate the inheritance of seed oil content and other seed quality traits in a new DH population derived from the cross of SGDH14 and the inbred line 617 of the German cultivar Express ('00'-quality), which is also known for its high oil content. The population (n=212) was tested in field experiments during three consecutive years in 14 environments in North Germany and South Sweden. Seed quality traits as well as phenological traits were determined. A framework map consisting of 19 linkage groups with 379 SNP, DArT and AFLP markers and covering 2651cM was developed. Mean trait values over the environments were used to map QTL. Analysis of variance revealed highly significant genotypic effects for all traits and heritabilities ranged from 0.76 to 1.00. Following the correction of oil content considering the effects of the erucic acid genes, three minor and one major QTL for oil content were detected on linkage groups A10, C03, C04 and C05, respectively. The direction of the additive effects showed that both parents contributed two alleles that increased oil content. Alignment of the genetic positions of the oil-QTL confidence intervals to their physical position on the B. napus Darmor-bzh reference genome allowed identification of lipid related candidate genes. However, only one candidate gene explaining the observed QTL effects on C04 was detected. The presented results contribute to on-going efforts to increasing oil content, and they delimit physically relevant genome regions in oilseed rape.

### 3.2 Introduction

Oilseed rape (*Brassica napus* L.; genome AACC, 2n = 38) is worldwide the second most important oil crop, with the European Union being its number one producer (USDA, <u>http://apps.fas.usda.gov/psdonline/psdHome.aspx</u>, date: 11.10.2015). Since the global oil consumption is forecast to continue to grow (FAO, <u>http://www.fao.org/economic/est/est-commodities/oilcrops/en/</u>, date: October 2015), one major breeding aim in oilseed rape is to continuously increase the seed oil content. As a quantitative trait, the variation in seed oil

content is attributed to the complex regulation of multiple genes (Jiang et al. 2014). To gain insight into the complex genetic control of oil content, a first molecular marker map was developed by Ecke et al. (1995) to identify QTL influencing seed oil content. Despite a limited number of RFLP markers, three QTL controlling seed oil content were detected. Two of these QTL were found closely associated with qualitative variation in erucic acid content. In subsequent studies mapping QTL combined parental lines with different seed oil content and quality type, and through developmental progress not only the marker systems but also computational methods evolved. Using microsatellite (SSR) markers Zhao et al. (2005) reported eight QTL in a DH population generated from a cross between a German and a Chinese cultivar, both of high oil, erucic acid and glucosinolate content. In following studies different types of markers were combined to improve genome coverage and to enable comparison with other genetic maps. Between seven and fourteen QTL for oil content were identified in a number of studies (Delourme et al. 2006, Qiu et al. 2006, Yan et al. 2009). Using a refined version of their previous map Zhao *et al.* (2012) presented a comparative mapping approach between *B. napus* and A. thaliana to identify candidate genes of seed oil metabolism. The availability of common SSR markers in the study of Zhao et al. (2012) additionally allowed the comparison of the nine detected QTL for seed oil content to QTL of different populations (Burns et al. 2003, Delourme et al. 2006, Qiu et al. 2006, Chen et al. 2010), which identified seven QTL mapped to the same or similar genetic regions. Although the study of Zhao et al. (2012) showed that the alignment of different populations of *B. napus* is possible, the lack of sufficient common markers usually prevented direct comparison between genetic maps. Those obstacles were overcome by the development of high throughput sequence-informative marker systems like DArT and SNP arrays. Another limitation for increasing seed oil content in *B. napus* is the restricted variation within the relatively young species compared to other crops (Hasan et al. 2005). Although breeding efforts to increase oil content in current European cultivars have been successful, the selection further narrowed the genetic basis. Alternative genetic resources could be useful to further increase seed oil content. In this regard Chinese oilseed rape material appears interesting, because it has been bred independently for high yield and oil content during the last decades. In previous work, the old German cultivar Sollux was crossed to the Chinese cultivar Gaoyou. Both cultivars have high oil content but have also high contents of erucic acid and glucosinolates ('++'-quality). A doubled haploid (DH) population was developed from this cross and tested in field experiments. From this population, line SGDH14 was identified as having the highest oil content under north-western German growing conditions and a combination of all QTL alleles increasing oil content from both parental lines (Zhao et al. 2005). The objective of this work was to further investigate the inheritance of seed oil content and other seed quality traits in a new DH population derived from the cross of SGDH14 and the inbred line 617 of the

German cultivar Express ('00'-quality), which is also known for its high oil content. Sequence informative SNP and DArT markers were used for genotyping the population to allow for identification of candidate genes for oil content using the *B. napus* genome sequence (Chalhoub *et al.* 2014).

# 3.3 Materials and methods

## 3.3.1 Plant material

The plant material consisted of 212 DH lines developed from F1 plants of the cross SGDH14 x Express617 by microspore culture (Georg-August-Universität Göttingen, Department of Crop Sciences, Division of Plant Breeding, Göttingen, Germany), further referred to as SGEDH population. SGDH14 is a DH line derived from the cross Sollux x Gaoyou (SG) analysed by Zhao *et al.* (2005). Sollux is an old German cultivar, whereas Gaoyou is an old Chinese cultivar. Both lines are characterised by high erucic acid and high glucosinolate content ('++'-quality) as well as high seed oil content. SGDH14 was chosen as parental line since it showed highest oil content at the German locations tested, and characterization by molecular markers revealed SGDH14 to combine all favourable QTL alleles for oil content from Sollux and Gaoyou (Zhao *et al.* 2005). Marker genotype distribution of SGDH14 was generally balanced, showing 52.4% Sollux and 47.6% Gaoyou alleles in a set of 473 markers (Prof. Jianyi Zhao, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China, personal communication). Like its parental lines, SGDH14 has high erucic acid and high glucosinolate content. Express617 is an inbred line of the German winter oilseed rape cultivar Express. It was chosen as parental line due to its low erucic acid and low glucosinolate content (canola-/'00'-quality) and high oil content.

## 3.3.2 Field experiments

The plant material was tested in the three consecutive growing seasons 2009/10, 2010/11 and 2011/12 in 14 environments located in northwest Germany and south Sweden (Table 3.1).

| Year     | 2010                                | 2011                                  | 2012                                  |
|----------|-------------------------------------|---------------------------------------|---------------------------------------|
| Location | Göttingen, Germany                  | Göttingen, Germany                    | Göttingen, Germany                    |
|          | Biehmsen, Germany<br>Thüle, Germany | Asendorf, Germany<br>Einbeck, Germany | Svalöv, Sweden<br>Hovedissen, Germany |
|          | Nienstädt, Germany                  | Bad Salzuflen, Germany                | Nienstädt, Germany                    |
|          | Rosenthal, Germany                  |                                       | Rosenthal, Germany                    |

Table 3.1: Environments of field experiments of SGEDH population

Field experiments were conducted as group-wise randomized block design in small plots without replications. The three different groups within the experiment represented genotypes with low (L; <10%), medium (M; 10-35%) and high (H; >35%) erucic acid content predetermined by a half seed analysis for fatty acid composition using gas chromatography. For each genotype seed samples were harvested at maturity from the main raceme of ten open pollinated plants. Seeds were bulked and seed quality traits were analysed by near-infrared reflectance spectroscopy (NIRS) and gas chromatography (GC). During growing seasons begin of flowering (BOF) and end of flowering (EOF) were scored, plant height at end of flowering (PH\_EOF) was measured and flowering period (FP) was calculated. BOF and EOF were measured as days from 1<sup>st</sup> of January to BOF and EOF, respectively. BOF was scored when 10% of the plants within the plot had at least one open flower. EOF was scored when at least 10% of the plants within the plot finished flowering. FP was calculated from the difference between EOF and BOF. Plant height was measured from the soil surface to the shoot tip at EOF of each plot.

# 3.3.3 Phenotypic analysis

## 3.3.3.1 Near-Infrared Reflectance Spectroscopy

To determine seed quality traits about 3g of bulked seeds were scanned between 400 to 2498nm by a NIRS monochromator (FOSS NIR Systems model 6500, NIRSystems, Inc., Silversprings, MD, USA). Absorbance values log at 2nm intervals were recorded to create a NIR spectrum for each sample. With WinISI II software (version 1.50) seed quality traits were determined using the calibration raps2012.eqa provided by VDLUFA Qualitätssicherung NIRS GmbH (Teichstr. 35, 34130 Kassel, Germany, http://h1976726.stratoserver.net/cms/). Oil (Oil) and protein (Protein) content were determined in per cent at 91% seed dry matter. Glucosinolate content (GSL) was measured in µmol/g at 91% seed dry matter. Fatty acid content (18:1, 18:3 and 22:1) was determined in per cent of the total fatty acid content.

#### 3.3.3.2 Gas Chromatography

Fatty acid profile analysis was performed by gas chromatography according to the method of Thies (1971) as described by Rücker and Röbbelen (1996) with modifications as follows: Two 4mm stainless steel metal balls and 200mg seeds per genotype were filled into a 3ml polypropylene tube. 1000µl of Na-methylate in methanol (0.5mol/l) were added to each tube and tubes were tightly closed with a screw cap. To extract and transmethylate fatty acids seeds were milled by 2min shaking using a custom-built vertical homogenizer (Institute of Applied Plant Nutrition, Georg-August-Universität Göttingen, Göttingen, Germany). Grounded seeds were then incubated for 15min at room temperature while shaking every 5min. 300µl 5% NaHSO<sub>4</sub> as well as 500µl isooctane were added and tubes were vortexed for salt precipitation and extraction of fatty acid methyl ester in isooctane followed by 1min centrifugation at 1000rpm (150 x g). 200µl of the upper phase were pipetted into septum vials and closed with crimp caps. 2µl of the extract were injected into a gas chromatograph (Trace GC ultra, Thermo Electron corporation) with a 25m x 0.25mm I.D. FFAP column (Macherey & Nagel, 0.25µm film thickness, 210°C, split injection 1:70, carrier gas: 150kPa H<sub>2</sub>, injection/detector: temperature 230°C). Palmitic (16:0), palmitoleic (16:1), hexadecadienoic (16:2), stearic (18:0), oleic (18:1), linoleic (18:2), linolenic (18:3), arachidic (20:0), eicosenoic (20:1), behenic (22:0) and erucic (22:1) acid were determined by the GC chromatogram of each sample. Fatty acids were expressed as per cent of the sum of all fatty acids.

## 3.3.3.3 Adjustment of NIRS predicted erucic acid contents

Comparing NIRS predictions and GC measures of erucic acid content within the SGEDH population a conspicuous underestimation of erucic acids contents of NIRS data was identified (cf. Figure 3.1a). Comparing the differences between GC and NIRS values, different deviations were observed within the group of genotypes with no or low erucic acid, determined as erucic acid free, and the one of genotypes with medium and high erucic acid. Because of the different deviations both groups were adjusted individually. Erucic acid free genotypes, showing generally negative NIRS predictions, were adjusted by subtracting a group specific correction factor of -6.35%. This factor was calculated as the mean difference between GC and NIRS erucic acid content of means over 14 locations of 70 genotypes with medium and high GC erucic acid content determined by GC. NIRS erucic acid content of genotypes with medium and high GC erucic acid content were adjusted using the regression equation of this group, y = 1.50x - 5.05 (Figure 3.1b).

The comparison of adjusted NIRS predicted erucic acid contents and GC erucic acid contents (Figure 3.1c) showed a high coefficient of determination with  $R^2 = 0.99$ .

# 3.3.3.4 Thousand kernel weight

Thousand kernel weight (TKW) was obtained from weight conversion of 500 seed. Seeds were counted using a Contador seed counter (Pfeuffer GmbH, D-97318 Kitzingen, <u>http://www.pfeuffer.com</u>).

# 3.3.3.5 Protein content and glucosinolate content in the defatted meal

Protein content in the defatted meal (Prot.idM) was calculated by using NIRS predicted seed oil and seed protein content (both at 91% dry matter) as:

% protein in the defatted meal (Prot.idM) = [% protein / (100 - % oil)] \* 100

Glucosinolate content in the defatted meal (GSLidM) was calculated by using NIRS predicted seed oil and seed glucosinolate content (both at 91% dry matter) as:

µmol/g glucosinolates in the defatted meal (GSLidM) =
[µmol/g glucosinolates / (100 - % oil)] \* 100

# 3.3.3.6 Correction of oil content considering erucic acid content

SGEDH population segregated for erucic acid content, furthermore erucic acid and oil content showed a strong positive correlation. Thus, to be able to compare the oil content of genotypes with varying erucic acid contents, oil contents were corrected by eliminating the effect of erucic acid on oil content in three different ways.

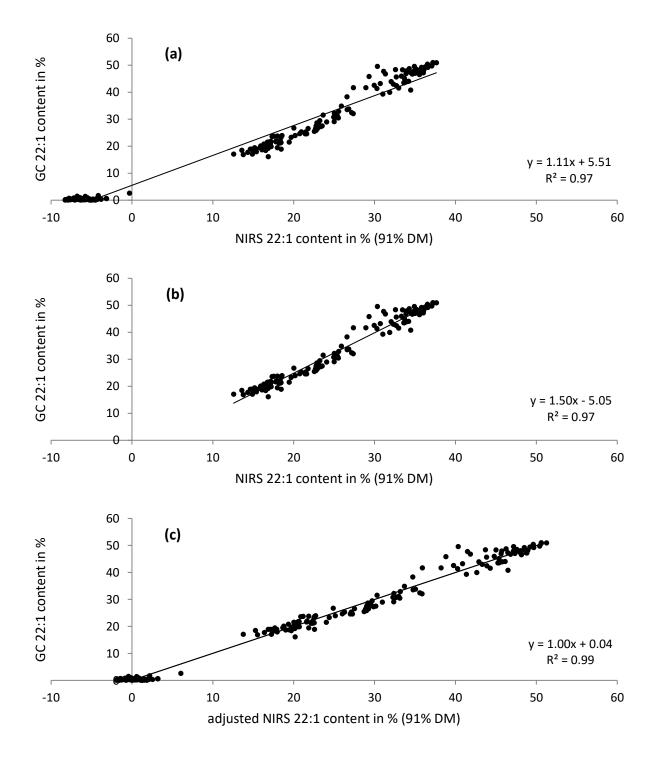



Figure 3.1: xy plots of (a) erucic acid content measured by gas chromatography and NIRS predicted erucic acid content for whole SGEDH population, (b) for genotypes with medium and high erucic acid contents, and (c) erucic acid content measured by gas chromatography and adjusted NIRS values of the SGEDH population. Data are presented as means over 14 environments

#### Correction by regression

For the correction of oil content by regression information, the linear regression between GC erucic acid content and NIRS oil content from trait means over 14 locations was calculated. The slope of this regression was used to calculate the regression corrected oil content the following way:

NIRS oil content – (slope of linear regression between GC erucic acid content and NIRS oil content \* GC erucic acid content)

#### Correction by molecular weight

*De novo* fatty acid biosynthesis until oleoyl-CoA takes place in the chloroplasts. However, oleoyl-CoA elongation to erucoyl-CoA via eicosenoyl-CoA and triacylglycerol (TAG) assembly takes place in the cytoplasm. If one molecule oleoyl-CoA is elongated to eicosenoyl-CoA and subsequently to erucoyl-CoA, this leads to an increase of molecular weight of 10 and 19%, respectively. Therefore, if the number of fatty acid molecules produced by the *de novo* fatty acid biosynthesis remains the same an increase in erucic acid content in the seed oil should results in a proportional increase in seed oil content. Following this simplified theoretical assumption, the molecular weight of eicosenoic acid and erucic acid can be reduced on the basis of oleic acid by 9 and 16.6% to eliminate their effects on oil content. Hence the molecular correction of oil content was calculated from trait means over 14 locations as:

NIRS oil content – [0.09 \* (GC eicosenoic acid content \* NIRS oil content / 100) + 0.166 \* (GC erucic acid content \* NIRS oil content / 100)]

## Correction by conditioning

The mixed model approach for the conditional analysis of quantitative traits described by Zhu (1995) was applied to calculate oil content independent of erucic acid contents. The conditioning allows analysis of correlated traits independently of variation in the secondary trait. This method is very similar to the estimation of adjusted values in a covariance analysis. Required software tools were provided by Prof. Jianyi Zhao (Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China). The software was used to calculate the conditional phenotypic

values (cond) from trait means over 14 locations of NIRS predicted oil content at 91% seed dry matter conditioned by erucic acid content determined by gas chromatography.

# 3.3.3.7 Correction of protein content in defatted meal considering erucic acid content

The SGEDH population showed a strong positive correlation between erucic acid and protein content in defatted meal. To investigate protein content in defatted meal independent of the effect caused by erucic acid, regression and conditional correction of protein content in defatted meal was conducted (cf. section 3.3.3.6).

### Correction by regression

For the correction of protein content in defatted meal by regression information, the linear regression between GC erucic acid content and protein content in defatted meal was calculated. The slope of this regression was used to calculate the regression corrected protein content in defatted meal the following way:

Protein content in defatted meal – (slope of linear regression between GC erucic acid content and protein content in defatted meal \* GC erucic acid content)

#### Correction by conditioning

Conditional correction of protein content in defatted meal was conducted using the method of Zhu (1995) as explained in section 3.3.3.6.

# 3.3.4 Statistical analysis

PLABSTAT software version 3A (Utz 2011) was used to perform analysis of variance (ANOVA) applying the following general model:

$$Y_{ij} = \mu + g_i + e_j + ge_{ij}$$

where  $Y_{ij}$  is the trait value of genotype *i* in environment *j*,  $\mu$  is the general mean,  $g_i$  is the effect of *i*th genotype,  $e_j$  is the effect of *j*th environment, and  $ge_{ij}$  is the interaction between *i*th genotype

and *j*th environment. Genotypes were considered fixed in the analysis, whereas environments were treated as random variables. The data were tested for outliers by a modification of the Anscombe and Tukey method (1963) based on the detection of extreme residuals. After examining the list of detected outliers, the measured values of the outliers with highest standardized residual were checked for errors and the ANOVA was repeated considering missing values for extreme outliers. The adjusted results were used in the subsequent analyses. Heritability ( $h^2$ ) was calculated as:

$$h^2 = \frac{\sigma_g^2}{(\sigma_g^2 + \frac{\sigma_g^2 e}{F})}$$

where  $\sigma_{g}^{2}$  and  $\sigma_{ge}^{2}$  are variance components for *g* and *e*. *E* refers to number of environments.

Spearman's rank correlation coefficients between traits mean values of the genotypes across the environments were calculated using PLABSTAT's BASIC command. The partial correlation coefficient ( $r_{s\_partial}$ ) between a trait X and Y both correlated to a trait Z was calculated using the equation of Fuente *et al.* (2004):

$$r_{(X,Y)/Z} = \frac{r_{XY} - r_{XZ} * r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

The BASIC command was used to calculate the skewness and kurtosis of the distribution of each trait analysed.

# 3.3.5 Molecular markers

## 3.3.5.1 DNA extraction and measurement

For DNA extraction 90 – 110mg of leaf material was collected from 3 – 4 weeks old plantlets grown in the greenhouse. After weighing, leaf tissue was directly frozen in liquid nitrogen and stored at -20°C until further processing. Genomic DNA for AFLP analyses was extracted using illustra<sup>™</sup> Nucleon Phytopure Genomic DNA Extraction Kit (GE Healthcare) following the manufacturers protocol for small samples (RPN8510). For DArT and SNP analyses was extracted using innuPREP Plant DNA Kit (Analytik Jena, Germany) following the manufactures user manual. DNA concentration was measured with a Bio-Rad Versa Fluor<sup>™</sup> Fluorometer

(<u>http://www.bio-rad.com/en-us/product/versafluor-fluorometer</u>) using Bio-Rad Fluorescent DNA Quantification Kit (Bio-Rad Laboratories CA, USA).

## 3.3.5.2 AFLP markers

Amplified fragment length polymorphism (AFLP) analyses were performed following the method of Vos *et al.* (1995), described in Radoev (2007) with minor changes as follows: In preamplification 0.45mM dNTPs were used for the respective polymerase chain reaction (PCR) and the elongation time in the thermo profile was extended to 2min at 72°C. For the main amplification 0.36mM dNTPs were applied and a multiplex reaction was performed using *Eco*RI-Primer + 3 nucleotides with four different fluorescence labels in the following concentrations: 2pmol FAM labelled primer, 2pmol VIC labelled primer, 4pmol NED labelled primer and 6pmol PET labelled primer. The thermo profile of the main amplification reaction was modified by not decreasing the annealing temperature for 0.7°C/cycle in the first 12 reaction cycles and not increasing the elongation for 1 sec/cycle in the second 25 reaction cycles. The following 12 primer combinations were used:

| E32M47 | E32M49 | E35M62 |
|--------|--------|--------|
| E33M47 | E33M49 | E37M62 |
| E34M47 | E34M49 | E39M62 |
| E35M47 | E45M49 | E44M62 |

To analyse AFLP fragments 2µl of PCR main amplification product were diluted 1:5 with 8µl of a Hi-Di formamide + GeneScan LIZ500 (Applied Biosystems) mix (prepared from 940µl Hi-Di formamide + 60µl LIZ500), denatured for 2min at 95°C in a thermocycler and separated on a ABI PRISM 3100 genetic analyser (Applied Biosystems) using 36cm-capillary arrays. The results were analysed with GeneScan software version 3.7 (Applied Biosystems) and scored using the program GenMapper version 3.7 (Applied Biosystems).

#### 3.3.5.3 DArT markers

The SGEDH population as well as the parental lines were genotyped with the *Brassica napus* v1.0 Diversity Arrays Technology (DArT) microarray including a set of 3072 markers. DArT marker analysis was performed by Diversity Array Technology Pty Ltd, Yarralumla, Australia. Marker

names are carrying the prefix "brPb" and marker sequences are available at <u>http://www.diversityarrays.com/dart-map-sequences</u>.

## 3.3.5.4 SNP markers

The Illumina Infinium Brassica 60k SNP array (Illumina, Inc., <u>http://www.illumina.com</u>) with a total number of 58464 markers was used to genotype the SGEDH population and its parental lines at TraitGenetics GmbH, Gatersleben, Germany (<u>http://www.traitgenetics.com</u>). The assay data was analysed with Illumina's GenomeStudio® Software v2011 (Illumina, Inc.) applying proprietary cluster files. Heterotic genotype calls were manually set to missing values. SNP marker sequences were provided by Isobel Parkin (AAFC, Saskatoon, Canada).

# 3.3.6 Linkage mapping

A SNP linkage map was constructed with JoinMap® 4.1, Kyazma® (Stam 1993, Van Ooijen 2011), by TraitGenetics GmbH, Gatersleben, Germany (http://www.traitgenetics.com). Using a set of about 6000 selected markers from the polymorphic markers (15474) identified for the SGEDH population, an anchor marker map was built. In a second step remaining polymorphic markers were added to this anchor marker map to create a map including all SNP markers. Anchor marker selection and map construction were reviewed by comparing results with a *B*. *napus* consensus map property of TraitGenetics GmbH. The reviewed SNP map (15474 markers) was extended by AFLP (159) and DArT (546) markers polymorphic for SGDH14 and Express617. AFLP and DArT markers were subsequently placed at their most likely position using JoinMap® 4.1. Placed AFLP and DArT marker haplotypes were compared to adjacent SNP marker haplotypes and conspicuous marker genotypes were set to missing data points manually. In the refined full map 94 SNP, 232 DArT and 43 AFLP markers could not be mapped or were excluded from the map because of too many missing data points. Final marker distances were calculated with Map Manager QTX Version 0.30 (provided by Dr. Jörg Plieske, TraitGenetics GmbH, Gatersleben, Germany) applying Kosambi map function, resulting in the full map of the SGEDH population with 15810 markers. The segregation of each marker was tested by  $\chi^2$  test (p=0.05) to verify the consistency of the expected DH population marker segregation ratio (1:1). Markers significantly deviating from 1:1 segregation ratio were defined as skewed segregating markers. For QTL mapping a framework map was developed from the full map. To construct the framework map one representative marker with lowest possible number of missing data was chosen for each locus, eliminating all other co-segregating marker if present. From this set of markers, in a second step, marker with mean distance of 5 - 10cM between each other were selected to obtain a framework map with even marker distribution. The framework map consisted of a selected subset of 379 full map markers.

# 3.3.7 QTL mapping

QTL computation was conducted by QTL Network software version 2.1 (Yang *et al.* 2008) using a systematic mapping strategy to search for QTL with and/or without epistatic effects in a mixed linear model introduced by Yang *et al.* (2007). At first a one-dimensional genome scan is performed by a composite interval mapping (CIM) approach proposed by Zeng (1994) to identify putative QTL with the help of selected candidate marker intervals as cofactors (Piepho and Gauch 2001). In a second step epistatic effects for QTL with additive main effects are detected by a two-dimensional genome scan. *F*-test based on Henderson method III is performed to adjust for the critical threshold value to control the experiment-wise false positive rate. A permutation testing (Doerge and Churchill 1996) with 1000 permutations is employed to determine an empirical threshold value of the *F*-statistic (Appendix 3). QTL names were defined as sting of "E\_" for the environment Europe, "trait\_name" or an abbreviation explaining the trait and a continuous "QTL-number". QTL explaining  $\geq 25\%$  of the phenotypic variance were considered as major QTL.

# 3.3.8 Physical mapping

To determine physical positions of sequence-informative SNP and DArT markers and candidate genes *Brassica Database* (BRAD; <u>http://brassicadb.org/brad/index.php</u>) BLAST search was used. All sequences were aligned against the Darmor-*bzh B. napus* reference genome v4.1 (Chalhoub *et al.* 2014). Most likely positions were selected from the BLAST hits considering best matching and highest possible E-value as well as genetic map data information correspondence. *A. thaliana* candidate gene sequences were chosen from *The Arabidopsis Information Resource* (TAIR; <u>https://www.arabidopsis.org/index.jsp</u>) using the gene search. *B. napus* homologs were identified with the annotations search function of BRAD.

# 3.4 Results

## 3.4.1 Phenotypic analysis

Highly significant effects for the genotype and the environment were detected for all traits in the SGEDH population. Since the population was segregating for canola quality large variance components were found for glucosinolate and fatty acid contents (Table 3.2.). No significant effect could be detected for the genotype x environment interactions because field experiments were performed without replications. Heritability estimates were high for all traits, ranging from 0.76 for end of flowering to 1.00 for the fatty acids 18:1, 20:1 and 22:1. In the DH population the oil and protein content ranged from 43 to 51% and from 17 to 20%, respectively (Table 3.3). Transgressive segregation was observed for most of the traits in the DH population. The lowest genotype had a 2.6% lower oil content compared to Express617, the lower parent. The best genotype had a 2.2% higher oil content compared to SGDH14. A large difference of 11 days for begin of flowering was observed in the population compared to a one day only difference between the parental lines. At end of flowering plant height varied from 115 to 156 cm in the population. Frequency distribution of oil content showed a significant kurtosis of -0.67\* (platykurtic), whereas skewness was positive, but not significant (0.23<sup>ns</sup>; Figure 3.2a). Following correction by regression of the effect of the erucic acid content on oil content, the frequency distribution improved to a skewness of zero  $(0.00^{ns})$  and to a kurtosis of  $-0.44^{ns}$  (Figure 3.2b). The mean value (46.3%) and the standard deviation (1.92%) of uncorrected oil contents were both reduced by correction. Corrected oil contents showed a mean value of 44.4%, and a standard deviation of 1.09%.

| Table 3.2: Components of variance and heritabilities for contents of seed oil (%), protein (%), protein |
|---------------------------------------------------------------------------------------------------------|
| in defatted meal (Prot.idM in %), glucosinolates (GSL in $\mu$ mol/g), glucosinolates in defatted meal  |
| (GSLidM in µmol/g), fatty acids (%), and for thousand kernel weight (TKW in g), begin of flowering      |
| (BOF), end of flowering (EOF), flowering period (FP in days) and plant height at end of flowering       |
| (PH_EOF in cm) in the SGEDH population                                                                  |

| Trait            |              | Variance components |                   | Heritability |
|------------------|--------------|---------------------|-------------------|--------------|
|                  | $\sigma^2_g$ | $\sigma^2_e$        | $\sigma^{2}_{ge}$ | h²           |
| DF               | 211          | 13                  | 2603              |              |
| Oil              | 3.53**       | 6.54**              | 2.09              | 0.96         |
| Protein          | 0.36**       | 3.75**              | 1.12              | 0.82         |
| Prot.idM         | 2.56**       | 4.63**              | 1.80              | 0.95         |
| Oil+Protein      | 3.83**       | 0.82**              | 0.67              | 0.99         |
| GSL              | 160.60**     | 70.77**             | 60.89             | 0.97         |
| GSLidM           | 562.48**     | 176.78**            | 203.08            | 0.97         |
| 16:0             | 0.29**       | 0.10**              | 0.10              | 0.98         |
| 18:0             | 0.06**       | 0.01**              | 0.02              | 0.97         |
| 18:1             | 377.94**     | 4.51**              | 10.64             | 1.00         |
| 18:2             | 6.82**       | 0.28**              | 1.02              | 0.99         |
| 18:3             | 0.68**       | 0.45**              | 0.42              | 0.96         |
| 20:1             | 47.98**      | 0.31**              | 2.33              | 1.00         |
| 22:1             | 327.87**     | 2.90**              | 12.57             | 1.00         |
| ТКШ              | 0.09**       | 0.23**              | 0.21              | 0.85         |
| BOF <sup>a</sup> | 8.26**       | 24.40**             | 4.89              | 0.95         |
| EOF <sup>a</sup> | 0.73**       | 48.34**             | 1.85              | 0.76         |
| FP               | 4.40**       | 35.47**             | 4.83              | 0.88         |
| PH_EOF           | 62.52**      | 352.43**            | 81.68             | 0.91         |

 $\sigma_g^2$  = genetic variance;  $\sigma_e^2$  = environmental variance;  $\sigma_{ge}^2$  = variance of genotype x environment interaction; DF = degrees of freedom; \*\* denotes significance at *P* < 1%

a days counted from  $1^{st}$  of January

Correlation analysis revealed significant close positive correlations between oil content and the long chain fatty acids 20:1 and 22:1, whereas negative correlations were found between palmitic acid (16:0) and all C18 fatty acids (Table 3.4 and Figure 3.3a). Close correlations were determined among the C18 fatty acids. No correlation was found between oil and protein content. While oil content was instead positively correlated with protein content in defatted meal, which itself was also positively correlated with erucic acid content. Calculation of partial correlations for these three traits indicated no direct effect of oil content on protein content in defatted meal (if 22:1 is kept constant, then  $r_{s_partial} = -0.013$ ). This was affirmed by the detection of no more correlation ( $r_s = -0.03$ ) between oil content and regression corrected protein content in defatted meal. Correlation between begin of flowering and end of flowering was close and both traits were negatively correlated to flowering period, but positively correlated to plant

height. Plotting oil content against erucic acid content showed segregation of the DH population for erucic acid into three groups (Figure 3.3a).

Table 3.3: Minimum, maximum and mean values for contents of seed oil (%), protein (%), protein in defatted meal (Prot.idM in %), glucosinolates (GSL in  $\mu$ mol/g), glucosinolates in defatted meal (GSLidM in  $\mu$ mol/g), fatty acids (%), and for thousand kernel weight (TKW in g), begin of flowering (BOF), end of flowering (EOF), flowering period (FP in days) and plant height at end of flowering (PH\_EOF in cm) in the SGEDH population

| Traits           | Min   | Max   | Mean  | F-value | LSD 5% | Pa     | irents     |
|------------------|-------|-------|-------|---------|--------|--------|------------|
|                  |       |       |       |         |        | SGDH14 | Express617 |
| Oil              | 42.5  | 50.9  | 46.3  | 24.6**  | 1.1    | 48.7   | 45.1       |
| Protein          | 16.6  | 20.0  | 18.0  | 5.5**   | 0.8    | 18.1   | 17.8       |
| Prot.idM         | 30.0  | 37.0  | 33.4  | 20.9**  | 1.0    | 35.1   | 32.4       |
| Oil+Protein      | 60.3  | 68.4  | 64.3  | 81.6**  | 0.6    | 66.8   | 62.9       |
| GSL              | 18.2  | 74.6  | 51.5  | 37.9**  | 5.8    | 65.8   | 26.0       |
| GSLidM           | 32.7  | 141.8 | 95.6  | 39.78** | 10.56  | 128.0  | 46.9       |
| 16:0             | 3.3   | 5.4   | 4.4   | 40.5**  | 0.2    | 3.6    | 4.9        |
| 18:0             | 0.7   | 1.7   | 1.2   | 39.6**  | 0.1    | 0.8    | 1.4        |
| 18:1             | 12.7  | 65.5  | 34.5  | 498.3** | 2.4    | 14.7   | 61.2       |
| 18:2             | 11.7  | 23.3  | 16.5  | 94.2**  | 0.8    | 14.0   | 18.3       |
| 18:3             | 7.5   | 11.6  | 9.3   | 23.8**  | 0.5    | 9.4    | 9.8        |
| 20:1             | 1.2   | 22.3  | 10.2  | 289.8** | 1.1    | 11.7   | 1.8        |
| 22:1             | 0.0   | 51.0  | 22.1  | 366.3** | 2.6    | 43.3   | 1.0        |
| TKW              | 4.1   | 6.0   | 5.1   | 6.9**   | 0.3    | 5.3    | 5.4        |
| BOF <sup>a</sup> | 107.6 | 120.9 | 114.9 | 19.6**  | 1.9    | 116.1  | 114.7      |
| EOF <sup>a</sup> | 141.9 | 146.9 | 144.5 | 4.2**   | 1.3    | 144.5  | 143.6      |
| FP               | 25.0  | 35.9  | 29.9  | 8.3**   | 2.2    | 29.0   | 29.3       |
| PH_EOF           | 115.0 | 156.2 | 132.1 | 11.0**  | 7.0    | 138.9  | 130.0      |

LSD 5% = least significant difference at P < 5%; \*\* denotes significance at P < 1%*a* days counted from 1<sup>st</sup> of January

One group of 70 genotypes with 0 to 2.6% erucic acid showed oil contents of 42.5 to 46.5%, a second group including 84 genotypes with an erucic acid content of 16.1 to 34.8% had oil contents between 44.2 and 49.1% and in a third group of 58 genotypes with 38.3 to 51.0% erucic acid, oil content ranged from 45.6 to 50.9%. Within the group of genotypes with no or low erucic acid content the DH line 172 (SGEDH172) was identified with highest oil content (46.5%). Regression and molecular correction of oil contents (Figure 3.3b+c) both nearly eliminated the effect of erucic acid on oil content, reducing the correlation coefficient to -0.00017 and -0.035, respectively.

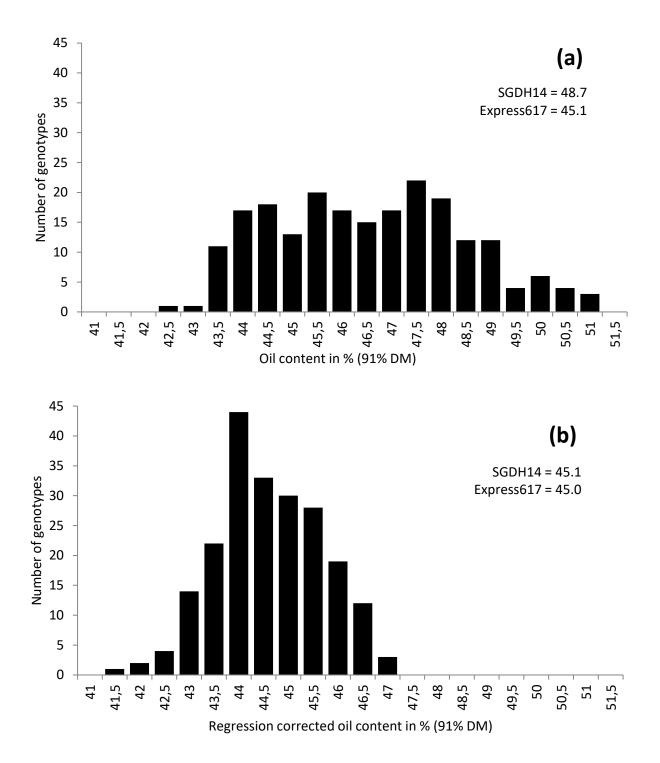



Figure 3.2: Frequency distribution of (a) oil content and (b) oil content corrected for the influence of erucic acid by regression in the SGEDH population; DM = dry matter

Conditional correction of oil contents in the SGEDH population (Figure 3.3d) calculated the smallest correlation coefficient compared to regression and molecular correction. Although conditional correction showed the best results for the elimination of the effect of erucic acid on oil content, it did not allow a direct comparison of oil contents of genotypes containing erucic

acid to the ones without erucic acid on the level of real measurements. As regression and the molecular correction are subtracting the proportion of oil caused by erucic acid and the sum of eicosenoic and erucic acid, respectively, from the oil content measured in total, corrected oil contents of these methods present the theoretical approximation of the erucic acid free oil content of each genotype. Considering the results of regression correction as the second best correction method, the theoretical erucic acid free oil content of SGDH14 was 45.1%. Comparing the oil contents of all genotypes of the SGEDH population applying the regression correction DH line 175 (SGEDH175) and 13 (SGEDH13) were identified as genotypes with highest oil contents, with 47.0% and 46.8% oil, respectively. Since protein content in the defatted meal was as well highly correlated ( $r_s = 0.81$ ) to erucic acid this trait was also regression corrected to calculate its theoretical erucic acid free values. After regression correction still DH line 11 an erucic acid free line showed the highest protein content in the defatted meal with 34.8%. No superior line was identified in the groups with medium or high erucic acid contents. SGDH14 and Express617 showed a regression corrected protein content in the defatted meal of 31.9% and 32.3%, respectively, DH line 195 and 216 showed the lowest erucic acid free protein content in the defatted meal both with 29.5%.

|                       | Oil       | Oil-<br>reg_corr | Oil-<br>mol cori | Oil-<br>cond | Protein   | Prot.<br>idM | Prot.idM-<br>reg corr | Prot.idM<br>cond | - Oil+<br>Protein | GSL    | GSLidM |
|-----------------------|-----------|------------------|------------------|--------------|-----------|--------------|-----------------------|------------------|-------------------|--------|--------|
| Oil-reg_corr          | 0.57**    |                  |                  |              |           |              |                       |                  |                   |        |        |
| Oil-mol_corr          | 0.53**    | 0.98**           |                  |              |           |              |                       |                  |                   |        |        |
| Oil-cond              | 0.57**    | 1.00**           | 0.98**           |              |           |              |                       |                  |                   |        |        |
| Protein               | -0.09     | -0.58**          | -0.58**          | -0.58**      | k         |              |                       |                  |                   |        |        |
| Prot.idM<br>Prot.idM- | 0.66**    | -0.03            | -0.04            | -0.03        | 0.69**    |              |                       |                  |                   |        |        |
| reg_corr<br>Prot.idM- | -0.03     | -0.04            | -0.04            | -0.04        | 0.79**    | 0.58**       | :                     |                  |                   |        |        |
| cond                  | -0.03     | -0.04            | -0.04            | -0.04        | 0.79**    | 0.58**       | 1.00**                |                  |                   |        |        |
| Oil+Protein           | 0.94**    | 0.36**           | 0.33**           | 0.36**       | * 0.25**  | 0.87**       | 0.24**                | 0.24**           |                   |        |        |
| GSL                   | -0.13     | -0.06            | -0.11            | -0.06        | -0.01     | -0.11        | -0.02                 | -0.02            | -0.13             |        |        |
| GSLidM                | 0.00      | 0.02             | -0.04            | 0.02         | -0.02     | -0.02        | -0.02                 | -0.02            | 0.00              | 0.99** |        |
| 16:0                  | -0.71**   | 0.04             | 0.02             | 0.04         | -0.31**   | -0.75**      | -0.06                 | -0.06            | -0.79**           | 0.13   | 0.04   |
| 18:0                  | -0.76**   | -0.07            | -0.09            | -0.07        | -0.25**   | -0.74**      | -0.06                 | -0.06            | -0.82**           | 0.17*  | 0.07   |
| 18:1                  | -0.82**   | -0.05            | 0.03             | -0.05        | -0.24**   | -0.77**      | 0.01                  | 0.01             | -0.88**           | 0.03   | -0.08  |
| 18:2                  | -0.72**   | 0.01             | 0.06             | 0.01         | -0.29**   | -0.74**      | -0.04                 | -0.04            | -0.80**           | 0.07   | -0.03  |
| 18:3                  | -0.38**   | 0.04             | 0.11             | 0.04         | -0.11 ·   | -0.35**      | 0.09                  | 0.09             | -0.41**           | 0.11   | 0.06   |
| 20:1                  | 0.49**    | 0.15*            | -0.05            | 0.15*        | 0.07      | 0.39**       | -0.02                 | -0.02            | 0.50**            | 0.17*  | 0.24** |
| 22:1                  | 0.82**    | 0.00             | -0.02            | 0.00         | 0.29**    | 0.81**       | 0.01                  | 0.01             | 0.90**            | -0.12  | -0.02  |
| 20:1+22:1             | 0.82**    | 0.05             | -0.04            | 0.05         | 0.25**    | 0.78**       | -0.01                 | -0.01            | 0.88**            | -0.04  | 0.07   |
| TKG                   | 0.08      | -0.10            | -0.06            | -0.10        | 0.22**    | 0.23**       | 0.16*                 | 0.16*            | 0.16*             | -0.17* | -0.16* |
| BOF                   | 0.19**    | 0.24**           | 0.16*            | 0.24**       | *-0.29**· | -0.09        | -0.26**               | -0.26**          | 0.09              | 0.01   | 0.04   |
| EOF                   | 0.31**    | 0.26**           | 0.17*            | 0.26**       | *-0.16*   | 0.10         | -0.11                 | -0.11            | 0.25**            | -0.08  | -0.03  |
| FP                    | -0.09     | -0.19**          | -0.13            | -0.19**      | * 0.31**  | 0.18**       | 0.28**                | 0.28**           | 0.02              | -0.05  | -0.07  |
| PH_EOF                | 0.50**    | 0.43**           | 0.36**           | 0.43**       | *-0.34**  | 0.10         | -0.27**               | -0.27**          | 0.37**            | -0.07  | -0.01  |
| *, ** denotes sigi    | nificance | at <i>P</i> < 5% | 6 and 1%         |              |           |              |                       |                  |                   |        |        |

| Table 3.4: Spearman's rank correlation for seed oil content and other quality traits |
|--------------------------------------------------------------------------------------|
| Table 5.4. Spearman's rank correlation for seed on content and other quality traits  |

\*, \*\* denotes sign

|           | 16:0    | 18:0    | 18:1    | 18:2    | 18:3                 | 20:1    | 22:1    | 20:1+22:1 | TKG     | BOF     | EOF      | FT     |
|-----------|---------|---------|---------|---------|----------------------|---------|---------|-----------|---------|---------|----------|--------|
| 16:0      |         |         |         |         |                      |         |         |           |         |         |          |        |
| 18:0      | 0.79**  |         |         |         |                      |         |         |           |         |         |          |        |
| 18:1      | 0.77**  | 0.80**  |         |         |                      |         |         |           |         |         |          |        |
| 18:2      | 0.82**  | 0.62**  | 0.84**  |         |                      |         |         |           |         |         |          |        |
| 18:3      | 0.49**  | 0.21**  | 0.50**  | 0.53**  | :                    |         |         |           |         |         |          |        |
| 20:1      | -0.27** | -0.27** | -0.73** | -0.54** | <sup>•</sup> -0.44*' | k       |         |           |         |         |          |        |
| 22:1      | -0.88** | -0.87** | -0.95** | -0.89** | '-0.49*'             | * 0.48* | *       |           |         |         |          |        |
| 20:1+22:1 | -0.80** | -0.79** | -1.00** | -0.88** | '-0.54*'             | * 0.71* | *0.96** |           |         |         |          |        |
| TKG       | -0.25** | -0.36** | -0.11   | 0.01    | -0.01                | -0.11   | 0.17*   | 0.10      |         |         |          |        |
| BOF       | 0.08    | -0.01   | -0.18** | -0.06   | -0.15*               | 0.35*   | *0.07   | 0.16*     | -0.18** |         |          |        |
| EOF       | 0.00    | -0.16*  | -0.33** | -0.13   | -0.10                | 0.45*   | *0.19** | 0.30**    | -0.13   | 0.69**  |          |        |
| FP        | -0.11   | -0.08   | 0.07    | 0.01    | 0.15*                | -0.25*  | *0.03   | -0.06     | 0.19**  | -0.94** | -0.44**  |        |
| PH_EOF    | -0.17*  | -0.26** | -0.40** | -0.27** | <sup>•</sup> -0.11   | 0.43*   | *0.30** | 0.38**    | -0.03   | 0.61**  | 0.57**-0 | ).52** |

\*, \*\* denotes significance at P < 5% and 1%

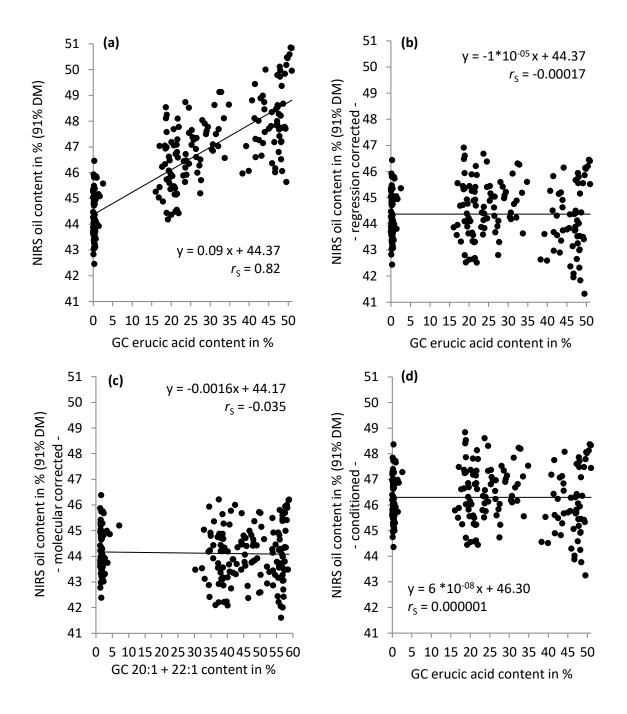



Figure 3.3: Correlation between seed erucic acid content and (a) oil content in the SGEDH population, (b) oil content corrected for the influence of erucic acid by regression (regression corrected oil content = oil content – (0.09 \* erucic acid content)), (c) oil content corrected for the influence of erucic acid considering the molecular weight of eicosenoic and erucic acid compared to oleic acid (molecular weight corrected oil content = oil content – (0.09 \* (GC eicosenoic acid content \* NIRS oil content / 100) + 0.166 \*(erucic acid content \* oil content / 100))), (d) oil content corrected for the influence of erucic acid by the mixed model approach for the conditional analysis of quantitative traits described by Zhu (1995); The  $r_s$  value represents Spearman's rank correlation between seed erucic acid and oil content; NIRS = near infrared reflectance spectroscopy, GC = gas chromatography, DM = dry matter; data represent mean values over 14 locations.

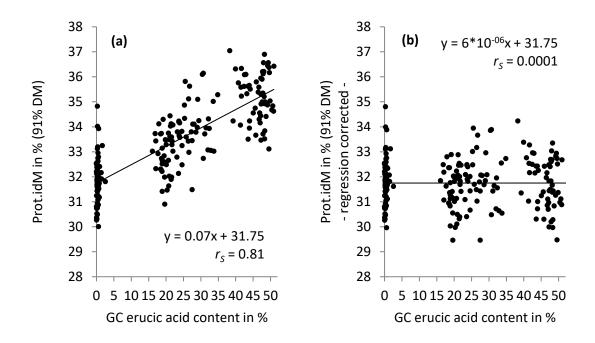



Figure 3.4: seed erucic acid and protein content in defatted meal; NIRS = near infrared reflectance spectroscopy, GC = gas chromatography, DM = dry matter; data represent mean values over 14 locations.

## 3.4.1.1 Group of erucic acid free genotypes

Since varying erucic acid contents may influence the variation of and the correlation to other traits in the SGEDH population, as e.g. shown by the partial correlation between oil and protein content in the defatted meal (section 3.4.1), statistical analysis was separately performed for the group of seventy erucic acid free genotypes.

#### Phenotypic analysis

In the group of erucic acid free genotypes of the SGEDH population highly significant effects for the genotype and the environment were found for all traits (Table 3.5). The effects of the genotype were mostly lower than the effect of the environment, while for glucosinolate content as well as for C18 fatty acids and eicosenoic acid the effects of the genotype were higher. Heritabilities were in general high ranging from 0.81 to 0.98, except for eicosenoic acid, erucic acid and end of flowering for which only moderate heritabilities were found.

Table 3.5: Components of variance and heritabilities for contents of seed oil (%), protein (%), protein in defatted meal (Prot.idM in %), glucosinolates (GSL in  $\mu$ mol/g), glucosinolates in defatted meal (GSLidM in  $\mu$ mol/g), fatty acids (%) and thousand kernel weight (TKW in g), begin of flowering (BOF), end of flowering (EOF), flowering period (FP in days) and plant height at end of flowering (PH\_EOF in cm) of the 70 erucic acid free genotypes in the SGEDH population

| Trait            |                    | Variance compone | ents              | Heritability |
|------------------|--------------------|------------------|-------------------|--------------|
|                  | $\sigma^{2}{}_{g}$ | $\sigma^2_e$     | $\sigma^{2}_{ge}$ | h²           |
| D                | F 69               | 13               | 861               |              |
| Oil              | 0.62**             | 5.23**           | 1.40              | 0.86         |
| Protein          | 0.27**             | 3.50**           | 0.90              | 0.81         |
| Prot.idM         | 0.73**             | 4.61**           | 1.44              | 0.88         |
| Oil+Protein      | 0.54**             | 0.50**           | 0.39              | 0.95         |
| GSL              | 95.14**            | 69.48**          | 43.06             | 0.97         |
| GSLidM           | 314.6**            | 170.9**          | 132.7             | 0.97         |
| 16:0             | 0.08**             | 0.08**           | 0.06              | 0.95         |
| 18:0             | 0.02**             | 0.03**           | 0.02              | 0.93         |
| 18:1             | 5.07**             | 2.38**           | 4.92              | 0.94         |
| 18:2             | 2.80**             | 0.90**           | 0.88              | 0.98         |
| 18:3             | 0.72**             | 0.64**           | 0.43              | 0.96         |
| 20:1             | 0.12**             | 0.05**           | 1.01              | 0.63         |
| 22:1             | 0.09**             | 0.15**           | 1.16              | 0.51         |
| TKW              | 0.09**             | 0.24**           | 0.20              | 0.87         |
| BOF <sup>a</sup> | 6.70**             | 25.77**          | 4.85              | 0.94         |
| EOF <sup>a</sup> | 0.58**             | 47.83**          | 2.00              | 0.70         |
| FP               | 3.85**             | 36.32**          | 5.09              | 0.86         |
| PH_EOF           | 46.15**            | 355.01**         | 78.40             | 0.88         |

 $\sigma_g^2$  = genetic variance;  $\sigma_e^2$  = environmental variance;  $\sigma_{ge}^2$  = variance of genotype x environment interaction; DF = degrees of freedom; \*\* denotes significance at *P* < 1% *a* days counted from 1<sup>st</sup> of January

The oil content of the erucic acid free genotypes ranged from 42.5 to 46.5%. Interestingly, the maximum oil content of the SGEDH population exceeded the oil content of Express617 by 1.5% and the regression corrected oil content of SGDH14 by 1.4%. And the maximum protein content in defatted meal was 2.5% higher than for Express617 and 2.9% higher than for the regression corrected protein content in defatted meal of SGDH14. For protein, glucosinolate and linolenic acid contents as well as for thousand kernel weight, flowering traits and plant height genotypes exceeding the values of the parental lines were identified, underlining transgressive segregation (Table 3.6), which was already observed in the complete SGEDH population (cf. Table 3.3).

| Table 3.6: Minimum, maximum and mean values for contents of seed oil (%), protein (%), protein in |
|---------------------------------------------------------------------------------------------------|
| defatted meal (Prot.idM in %), glucosinolates (GSL in µmol/g), glucosinolates in defatted meal    |
| (GSLidM in µmol/g), fatty acids (%) and for thousand kernel weight (TKW in g), begin of flowering |
| (BOF), end of flowering (EOF), flowering time (FP in days) and plant height at end of flowering   |
| (PH_EOF in cm) of the 70 erucic acid free genotypes in the SGEDH population                       |

| Traits           | Min   | Max   | Mean  | F-value | LSD 5% | Par                      | ents                     |
|------------------|-------|-------|-------|---------|--------|--------------------------|--------------------------|
|                  |       |       |       |         |        | SGDH14                   | Express617               |
| Oil              | 42.5  | 46.5  | 44.3  | 7.2**   | 0.9    | 48.7 (45.1) <sup>b</sup> | 45.1 (45.0) <sup>b</sup> |
| Protein          | 16.6  | 19.5  | 17.8  | 5.2**   | 0.7    | 18.1                     | 17.8                     |
| Prot.idM         | 30.0  | 34.8  | 31.8  | 8.1**   | 0.9    | 35.1 (31.9) <sup>b</sup> | 32.4 (32.3) <sup>b</sup> |
| Oil+Protein      | 60.3  | 63.7  | 62.1  | 20.2**  | 0.5    | 66.8                     | 62.9                     |
| GSL              | 18.7  | 69.1  | 51.1  | 31.9**  | 4.9    | 65.8                     | 26.0                     |
| GSLidM           | 32.8  | 125.3 | 91.6  | 34.2**  | 8.6    | 128.0                    | 46.9                     |
| 16:0             | 4.2   | 5.4   | 4.9   | 19.2**  | 0.2    | 3.6                      | 4.9                      |
| 18:0             | 1.2   | 1.7   | 1.4   | 15.3**  | 0.1    | 0.8                      | 1.4                      |
| 18:1             | 56.4  | 65.3  | 60.9  | 15.4**  | 1.6    | 14.7                     | 61.2                     |
| 18:2             | 15.7  | 23.3  | 19.5  | 45.3**  | 0.7    | 14.0                     | 18.3                     |
| 18:3             | 8.0   | 11.6  | 9.9   | 24.3**  | 0.5    | 9.4                      | 9.8                      |
| 20:1             | 1.2   | 4.5   | 1.6   | 2.7**   | 0.7    | 11.7                     | 1.8                      |
| 22:1             | 0.0   | 2.6   | 0.5   | 2.0**   | 0.8    | 43.3                     | 1.0                      |
| TKW              | 4.1   | 6.0   | 5.1   | 7.7**   | 0.3    | 5.3                      | 5.4                      |
| BOF <sup>a</sup> | 109.0 | 119.8 | 113.9 | 16.2**  | 1.8    | 116.1                    | 114.7                    |
| EOF <sup>a</sup> | 142.1 | 146.6 | 144.0 | 3.3**   | 1.4    | 144.5                    | 143.6                    |
| FP               | 25.0  | 34.1  | 30.3  | 7.1**   | 2.2    | 29.0                     | 29.3                     |
| PH_EOF           | 115.0 | 144.2 | 127.2 | 8.7**   | 6.8    | 138.9                    | 130.0                    |

LSD 5% = least significant difference at P < 5%; \*\* denotes significance at P < 1%

Compared to the correlations of the complete SGEDH population, the seventy erucic acid free genotypes showed a highly significant negative correlation between oil and protein content, while neither a significant correlation between oil content and protein in defatted meal, nor with any fatty acid (except for eicosenoic acid) or any flowering trait was identified (Table 3.7). Only a significant positive correlation between oil content and plant height was found in both populations. Protein content was strongly positive correlated with protein content in the defatted meal and negatively correlated with linoleic acid content, begin of flowering, end of flowering and plant height. Protein content in the defatted meal showed negative correlation with linoleic acid content, end of flowering and plant height, but almost no correlation was found with erucic acid ( $r_s = 0.09$ ) for the erucic acid free genotypes, according to the partial correlation calculated in section 3.4.1 ( $r_{s,partial} = -0.013$ ). Stearic and oleic acid content were positively correlated while both were negatively correlated to linoleic and linolenic acid as well as to thousand kernel weight and to end of flowering. In contrast palmitic acid was negatively

*a* days counted from 1<sup>st</sup> of January

*b* regression corrected values

correlated with oleic acid but positively correlated with linoleic and linolenic acid as well as with end of flowering. Positive correlation was found between linoleic acid and linolenic acid, thousand kernel weight, end of flowering and plant height. Linolenic acid only showed a significant but low correlation with plant height. A strong positive correlation was identified between eicosenoic and erucic acid content. Begin of flowering and end of flowering showed positive correlation while both were negatively correlated with flowering period and positively correlated to plant height which was found negatively correlated to flowering period.

# 3.4.2 Marker screening

To create a molecular marker map for the SGEDH population AFLP, DArT and SNP markers were used. 11 AFLP primer combinations out of 12 tested primer pairs showed unambiguously scorable banding patterns and identified 159 putative markers polymorphic for the parental lines of the SGEDH population. 777 out of 3072 available DArT markers (25.3%) were polymorphic within SGEDH population. 231 (29.7%) of these markers included more than 25.1% missing data and therefore were not considered for molecular map construction. Of the remaining 546 (70.3%) DArT markers 323 showed less than 10% missing data. SNP marker screening with the Illumina 60k chip identified 15474/58464 markers (26.5%) polymorphic between SGDH14 and Express617, including 82 markers with more than 10% missing data points.

| Table 3.7                                       | : Spearr  | man's ra       | ank coi          | rrelatio        | n of th     | ie 70 erucio                            | acid fr      | ee gen  | otypes   | in the                             | SGEDF   | ndod F      | lation f     | or see( | Table 3.7: Spearman's rank correlation of the 70 erucic acid free genotypes in the SGEDH population for seed oil content and other quality | l other qu | uality |
|-------------------------------------------------|-----------|----------------|------------------|-----------------|-------------|-----------------------------------------|--------------|---------|----------|------------------------------------|---------|-------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| רו מורא                                         |           |                |                  |                 |             |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| Trait                                           | Oil       | Protein        | Prot.<br>idM     | Oil+<br>Protein | GSL         | GSL 16:0<br>idM 16:0                    | 16:1         | 18:0    | 18:1     | 18:2                               | 18:3    | 20:0        | 20:1         | 22:0    | 22:1 TKW BOF                                                                                                                               | EOF        | FР     |
| Protein                                         | -0.50**   |                |                  |                 |             |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| Prot.idM                                        | -0.04     | 0.89**         |                  |                 |             |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| Oil+Protein 0.75**                              | ۱ 0.75**  | * 0.21         | 0.63**           | ×               |             |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| GSL                                             | 0.15      | 0.09           | 0.18             | 0.23            |             |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| GSLidM                                          | 0.23      | 0.05           | 0.17             | 0.29*           | $1.00^{**}$ | *                                       |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 16:0                                            | 0.10      | -0.14          | -0.12            | 0.00            | -0.03       | -0.02                                   |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 16:1                                            | -0.10     | 0.11           | 0.07             | -0.03           | 0.04        | 0.03 0.31**                             | *            |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 18:0                                            | -0.18     | 0.14           | 0.07             | -0.10           | 0.09        | 0.07-0.11                               | 0.18         |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 18:1                                            | -0.22     | 0.24*          | 0.17             | -0.06           | -0.06       | -0.07-0.49** -0.08 0.69**               | * -0.08 0    | .69**   |          |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 18:2                                            | 0.14      | -0.31**.       | -0.30*           | -0.08           | -0.09       | -0.08 0.40** 0.01-0.74** -0.87**        | * 0.01-0     | .74** - | 0.87**   |                                    |         |             |              |         |                                                                                                                                            |            |        |
| 18:3                                            | 0.20      | -0.03          | 0.07             | 0.20            | 0.17        | 0.19 0.31** -0.11-0.53** -0.69** 0.46** | * -0.11-0    | .53** - | 0.69**   | 0.46**                             |         |             |              |         |                                                                                                                                            |            |        |
| 20:0                                            | -0.30*    | 0.15           | 0.02             | -0.22           | 0.03        | 0.01-0.07                               | 0.11 0       | .71**   | 0.47** - | 0.11 0.71** 0.47** -0.56** -0.42** | -0.42** |             |              |         |                                                                                                                                            |            |        |
| 20:1                                            | 0.10      | 0.01           | 0.08             | 0.13            | 0.10        | 0.10-0.10                               | 0.13-0.01    |         | -0.25* - | - 60.0-                            | -0.08   | 0.14        |              |         |                                                                                                                                            |            |        |
| 22:0                                            | -0.10     | -0.14          | -0.21            | -0.21           | -0.03       | -0.04 0.36**                            | * 0.01 0.13  |         | -0.11    | 0.06                               | 0.09    | 0.25* -0.13 | -0.13        |         |                                                                                                                                            |            |        |
| 22:1                                            | 0.19      | -0.01          | 0.09             | 0.21            | 0.19        | 0.20-0.17                               | 0.17-0.09    |         | -0.28* - | - 90.0-                            | -0.02   | 0.06        | 0.91** -0.13 | -0.13   |                                                                                                                                            |            |        |
| TKW                                             | -0.06     | 0.05           | 0.02             | -0.03           | -0.15       | -0.16-0.21                              | -0.08-0      | .56** - | 0.34**   | -0.08-0.56** -0.34** 0.43** 0.12   |         | -0.29*      | 0.13         | -0.09   | 0.18                                                                                                                                       |            |        |
| BOF                                             | 0.17      | -0.27*         | -0.21            | -0.01           | -0.12       | -0.10 0.14                              | 0.03 0.04    |         | -0.06    | 0.14 -                             | -0.09   | 0.00        | -0.07        | 0.07    | -0.07-0.10                                                                                                                                 |            |        |
| EOF                                             | 0.13      | -0.26*         | -0.24*           | -0.06           | -0.12       | -0.11 0.43**                            | * 0.13-0.24* |         | 0.43**   | -0.43** 0.39** 0.18                |         | -0.15       | 0.11         | 0.27*   | 0.07-0.16 0.63**                                                                                                                           |            |        |
| FР                                              | -0.14     | 0.22           | 0.17             | 0.01            | 0.10        | 0.09 0.02                               | 0.00-0.19    |         | -0.15    | 0.02                               | 0.23    | -0.07       | 0.15         | 0.01    | 0.13 0.08-0.93** -0.33**                                                                                                                   | -0.33**    |        |
| PH_EOF                                          | 0.29*     | -0.34** -0.24* | -0.24*           | 0.07            | 0.02        | 0.05 0.18                               | 0.00-0.20    |         | -0.34**  | 0.38**                             | 0.25* . | -0.18       | -0.09        | 0.08    | $-0.11 \ 0.11 \ 0.54^{**} \ 0.40^{**} \ -0.48^{**}$                                                                                        | 0.40** -0. | 48**   |
| *, $**$ denotes significance at $P$ < 5% and 1% | tes signi | ificance a     | at <i>P</i> < 59 | % and 19        | %           |                                         |              |         |          |                                    |         |             |              |         |                                                                                                                                            |            |        |

Genetic map construction for the SGEDH population resulted in a molecular marker map consisting of 15380 SNP, 116 AFLP and 314 DArT markers covering 2650.6cM (Table 3.8). Markers were assigned to 19 linkage groups corresponding to the *B. napus* chromosomes. Remaining markers (94 SNP, 43 AFLP and 232 DArT) previously screened polymorphic within SGEDH population either could not be mapped or were excluded from the map because of too many missing values. The number of markers of individual linkage groups varied between 203 and 1614 markers and the length of the linkage groups ranged from 75.2 to 229.2cM. The 15810 markers included in the genetic full map showed a mean distance of 0.2cM with a marker density of six markers per cM. The A genome was covered with 7843 markers (49.6%) and the C genome comprised 7967 markers (50.4%) resulting in a marker density of 5.5 and 6.5 markers per cM, respectively. Choosing only one representative marker for a group of co-segregating markers reduced the total marker number to 1693 with 979 (57.8%) positions on the Agenome and 714 (42.2%) on the C genome. Considering these non-redundant individual marker positions, a mean distance of 1.6cM between adjacent markers was calculated. 7768 of all markers (49%) showed significant deviation (P < 0.05) from the expected 1:1 segregation ratio (cf. Appendix 14). 60% of these markers (4642) favoured the Express617 allele. The majority of skewed segregating markers favouring the Express617 allele were clustered on linkage groups A05, A07 and C01, while markers with disturbed segregation favouring the SGDH14 allele were mainly found on linkage groups A02, A03, A09 and A10 (cf. Figure 3.5).

# 3.4.4 QTL mapping

QTLNetwork 2.1 was used to identify quantitative trait loci within the SGEDH population and to determine epistatic interaction effects of these detected QTL with additive main effects. QTL results were calculated with a framework map consisting of 379 markers selected from the full map (cf. section 3.3.6) and mean values of phenotypic data obtained from 14 environments.

| Linkage group | No. q | No. of markers per linkage group | ver linkage | group | Size (cM) | Marker density<br>(cM <sup>-1</sup> ) | Mean distance<br>between markers<br>(cM) | Mean distance<br>btw. non-co-seg.<br>markers (cM) |
|---------------|-------|----------------------------------|-------------|-------|-----------|---------------------------------------|------------------------------------------|---------------------------------------------------|
| I             | SNP   | AFLP                             | DArT        | Total |           |                                       |                                          |                                                   |
| A01           | 350   | I                                | 7           | 357   | 115.6     | 3.09                                  | 0.32                                     | 1.58                                              |
| 02            | 665   | 7                                | 21          | 693   | 152.8     | 4.54                                  | 0.22                                     | 1.74                                              |
| 03            | 848   | 17                               | 25          | 890   | 171.4     | 5.19                                  | 0.19                                     | 1.49                                              |
| A04           | 855   | 4                                | 29          | 888   | 130.3     | 6.82                                  | 0.15                                     | 1.33                                              |
| 05            | 948   | 14                               | 18          | 980   | 172.7     | 5.68                                  | 0.18                                     | 1.74                                              |
| 06            | 729   | ß                                | 19          | 753   | 167.9     | 4.48                                  | 0.22                                     | 1.37                                              |
| 07            | 1282  | ъ                                | 24          | 1311  | 122.4     | 10.71                                 | 0.09                                     | 1.00                                              |
| 08            | 821   | 4                                | 17          | 842   | 92.9      | 9.06                                  | 0.11                                     | 1.18                                              |
| 60            | 474   | 9                                | 11          | 491   | 184.7     | 2.66                                  | 0.38                                     | 2.40                                              |
| 10            | 610   | 7                                | 21          | 638   | 122.3     | 5.22                                  | 0.19                                     | 1.29                                              |
| 01            | 1574  | 4                                | 36          | 1614  | 75.2      | 21.47                                 | 0.05                                     | 1.42                                              |
| 202           | 697   | ß                                | 10          | 712   | 149.1     | 4.78                                  | 0.21                                     | 2.10                                              |
| 03            | 1525  | ∞                                | 18          | 1551  | 229.2     | 6.77                                  | 0.15                                     | 1.34                                              |
| 04            | 1389  | ∞                                | 13          | 1410  | 164.7     | 8.56                                  | 0.12                                     | 1.65                                              |
| 05            | 195   | 1                                | 7           | 203   | 100.6     | 2.02                                  | 0.50                                     | 2.34                                              |
| 306           | 832   | ß                                | 12          | 849   | 133.5     | 6.36                                  | 0.16                                     | 1.65                                              |
| C07           | 445   | ŝ                                | 7           | 455   | 122.3     | 3.72                                  | 0.27                                     | 1.85                                              |
| C08           | 661   | 4                                | 9           | 671   | 125.6     | 5.34                                  | 0.19                                     | 2.28                                              |
| 60 <b>0</b>   | 480   | 6                                | 13          | 502   | 117.5     | 4.27                                  | 0.23                                     | 1.81                                              |
| A genome      | 7582  | 69                               | 192         | 7843  | 1432.9    | 5.47                                  | 0.18                                     | 1.48                                              |
| C genome      | 7798  | 47                               | 122         | 7967  | 1217.7    | 6.54                                  | 0.15                                     | 1.73                                              |
| Whole genome  | 15380 | 116                              | 314         | 15810 | 2650.6    | 5 96                                  | 0 17                                     | 1 58                                              |

Table 3.8: Marker distribution, size, density and mean distance between markers of each linkage group in the linkage map of the SGEDH

nonulation

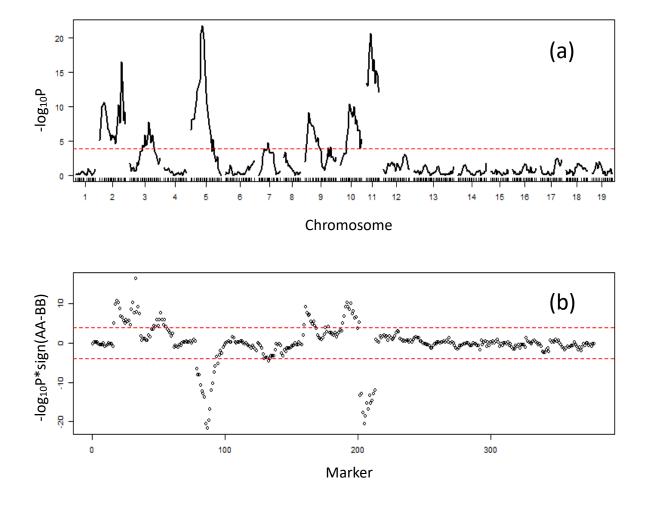



Figure 3.5: Framework map marker segregation in the SGEDH population. (a) Pattern of marker segregation over linkage groups, segregation is represented as  $-\log_{10}$  of p-value from Chi-square test for Mendelian segregation, numbers from 1-19 represent linkage groups A01 to C09; (b) marker segregation tendency calculated by directed Chi-square test for Mendelian segregation, positive values represent AA>BB, negative values represent BB>AA, with A = SGDH14 and B = Express617; red lines indicate a Bonferroni corrected threshold at a *P*-value of 5%

## 3.4.4.1 QTL for oil content using original data

The four QTL for oil content were distributed on the four linkage groups A08, C03, C05 and C07 (Table 3.9). Individual QTL explained between 10 and 50.5% of the phenotypic variance and collectively accounted for 76.2% of the total phenotypic variance. Except QTL E\_Oil-4 on linkage group C07 all QTL showed positive additive effects, indicating that the alleles increasing oil content were mainly derived from SGDH14. The QTL E\_Oil-1, accounting for the largest phenotypic effect with 50.5%, was located on linkage group A08. E\_Oil-2 and E\_Oil-3 showed

comparable additive effects, 0.63 and 0.60, respectively, but E\_Oil-2 explained 31.2% of the phenotypic variance compared to only 13.8% of E\_Oil-3. No epistasis was identified between QTL for oil content.

## 3.4.4.2 QTL for oil content corrected for the effect of erucic acid content

Corrected oil contents were used in QTL analysis to reveal QTL with small effects that may have remained undetected because of the pleiotropic effect of the erucic acid genes on the oil content. Regression corrected and conditioned oil content each detected four QTL on linkage groups A10, C04, C05 and C07 with identical positions and almost the same confidence intervals of the corresponding QTL (Table 3.9). Additive effects of these QTL pairs also showed identical values and directions and they explained almost the same phenotypic variances. Only E\_Oil-cond-3 explained a 0.1% higher phenotypic variance compared to E\_Oil-reg\_corr-3 on linkage group C05 and the confidence interval of E\_Oil-cond-4 on linkage group C07 was 0.6cM larger than the interval of E\_Oil-reg\_corr-4. Individual QTL of each of these two sets explained between 7.2 and 34.7% of the phenotypic variance and together they explained 54.8% of the total phenotypic variance including epistatic effects. In total five QTL were identified for molecular corrected oil content which were located on A10, C03, C04, C05 and C07. Each QTL of molecular corrected oil content accounted for a phenotypic variance between 1.1 and 33.6% and all QTL together explained 53.4% of the total phenotypic variance. Three of the five QTL for molecular corrected oil content (E\_Oil-mol\_corr-1, -3 and -4) showed identical positions or overlapping confidence intervals with the QTL identified for regression corrected and conditioned oil content. QTL E\_Oil-mol\_corr-2 and -5 were only detected following the molecular correction procedure. The QTL of corrected oil contents on linkage groups A10, C03 and C07 all showed negative additive effects, indicating that the alleles increasing oil contents were derived from Express617, whereas QTL on linkage groups C04 and C05 showed positive additive effects. Confidence intervals of QTL for regression corrected, molecular corrected and conditioned oil content on linkage group C07 overlapped with the confidence intervals of QTL E\_Oil-4, all showing a negative additive effect, indicating that Express617 is contributing the allele increasing oil content. 18.2cM apart from E\_Oil-2 on CO3 with a positive additive effect, an additional oil-QTL for molecular correction (E\_Oil-mol\_corr-2) with a negative additive effect was located.

|                                                                                                                                                                                    | Linkage                              | Position                            | Confidence                       |                |              |                        |                        |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|----------------|--------------|------------------------|------------------------|------------------------|
| QTL                                                                                                                                                                                | Group                                | [cM]                                | Interval [cM]                    | Aa             | $R^{2b}$     | V(A)/V(P) <sup>c</sup> | ۸(I)/۷(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| E_Oil-1                                                                                                                                                                            | A08                                  | 24.5                                | 20.5-27.1                        | 1.12           | 50.5         |                        |                        |                        |
| E_Oil-2                                                                                                                                                                            | C03                                  | 190.4                               | 187.6-195.4                      | 0.63           | 31.2         |                        |                        | C 9E                   |
| E_Oil-3                                                                                                                                                                            | C05                                  | 9.3                                 | 7.0-13.3                         | 0.60           | 13.8         | 10.2                   | ı                      | 10.2                   |
| E_Oil-4                                                                                                                                                                            | C07                                  | 49.5                                | 32.7-55.2                        | -0.39          | 10           |                        |                        |                        |
| F Oil-reg corr-1                                                                                                                                                                   | A10                                  | 17.8                                | 10.6-24.9                        | 70-0-          | 11.2         |                        |                        |                        |
| E Oil-reg corr-2                                                                                                                                                                   | C04                                  | 51.4                                | 43.3-55.6                        | 0.23           | 3.2          | 1                      |                        |                        |
| E_Oil-reg_corr-3                                                                                                                                                                   | C05                                  | 39.7                                | 35.7-43.7                        | 0.64           | 34.6         | 51.5                   | 3.3<br>2               | 54.8                   |
| E_Oil-reg_corr-4                                                                                                                                                                   | C07                                  | 38.9                                | 32.7-44.9                        | -0.26          | 7.2          |                        |                        |                        |
|                                                                                                                                                                                    |                                      |                                     |                                  |                |              |                        |                        |                        |
| E_Oil-mol_corr-1                                                                                                                                                                   | A10                                  | 17.8                                | 9.6-24.9                         | -0.23          | 10.1         |                        |                        |                        |
| E_Oil-mol_corr-2                                                                                                                                                                   | C03                                  | 208.6                               | 201.2-214.3                      | -0.21          | 1.1          |                        |                        |                        |
| E_Oil-mol_corr-3                                                                                                                                                                   | C04                                  | 32.3                                | 27.8-55.6                        | 0.19           | 10.1         | 53.4                   | 1.0                    | 54.5                   |
| E_Oil-mol_corr-4                                                                                                                                                                   | C05                                  | 38.7                                | 34.7-42.7                        | 0.55           | 33.6         |                        |                        |                        |
| E_Oil-mol_corr-5                                                                                                                                                                   | C07                                  | 53.2                                | 45.5-67.3                        | -0.30          | 10.0         |                        |                        |                        |
| E_Oil-cond-1                                                                                                                                                                       | A10                                  | 17.8                                | 10.6-24.9                        | -0.27          | 11.2         |                        |                        |                        |
| E_Oil-cond-2                                                                                                                                                                       | C04                                  | 51.4                                | 43.3-55.6                        | 0.23           | 3.2          | L<br>T                 | r<br>r                 | 0                      |
| E_Oil-cond-3                                                                                                                                                                       | C05                                  | 39.7                                | 35.7-43.7                        | 0.64           | 34.7         | C.LC                   | n.n                    | 0 <del>4</del> .8      |
| E_Oil-cond-4                                                                                                                                                                       | C07                                  | 38.9                                | 32.7-45.5                        | -0.26          | 7.2          |                        |                        |                        |
| a additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14<br>b percentage of phenotypic variance explained by each QTL | tive additive eff<br>otvpic variance | ect indicating t<br>explained by ea | hat the alleles incre<br>ach QTL | easing the tra | ait were dei | ived from SGDH         | 14                     |                        |

Table 3.9: QTL detected for seed oil content (%) and corrected oil contents in the SGEDH population

b percentage of phenotypic variance explained by each QTL cvariance of additive effect QTL in %

e variance of genetic main effects/phenotypic variance in % d variance of epistatic effects/phenotypic variance in %

#### 3.4.4.3 QTL for seed protein content

Seven QTL for protein content were detected on linkage groups A04, A07, A08, A09, A10, C04 and C06 (Table 3.10). Individual QTL explained between 5.6 to 12.8% of the phenotypic variance. Together these accounted for 56.6% of the total phenotypic variance. QTL on linkage groups A07, A08 and A10 showed positive additive effects, indicating that the alleles increasing protein content were derived from SGDH14, while the QTL on linkage groups A04, A09, C04 and C06 showed negative additive effects. Confidence intervals of E\_Protein-5 on A10 and E\_Protein-6 on C04 overlapped with those of QTL for corrected oil contents, showing opposite direction of additive effects.

## 3.4.4.4 QTL for protein content in defatted meal

For protein content in the defatted meal seven QTL were detected on the linkage groups A07 (2), A08, C03, C06 (2) and C08 (Table 3.10). Individual QTL explained between 0.7 to 50.6% of the phenotypic variance and collectively accounted for 71.3% of the total phenotypic variance with additional 5.9% explained by epistatic interactions. QTL E\_Prot.idM-3 located on A08 and QTL E\_Prot.idM-4 located on CO3 were identified as the two major QTL ( $R^2 \ge 25\%$ ) of protein content in the defatted meal explaining 50.6 and 25.6% of the phenotypic variation, respectively. QTL on A07, A08 and C03 showed positive additive effects, indicating that the alleles increasing protein content in defatted meal were derived from SGDH14. On linkage group A08 the confidence interval of QTL E\_Prot.idM-3 overlapped with the confidence interval of E\_Oil-1, both being major QTL and showing positive additive effects. On linkage group C03 the confidence interval of QTL E\_Prot.idM-4 was located 7.8cM apart from the confidence interval of QTL E\_Oil-2 for oil content, but again with the same direction of additive effects, indicating that the erucic acid genes in this case did not only increased oil content but also the protein content in the defatted meal. QTL E\_Prot.idM-1 on linkage group A07 and QTL E\_Prot.idM-6 on linkage group C06 colocalized with QTL E\_Protein-2 and E\_Protein-7, respectively, both overlapping pairs showing the same directions of additive effects. On A08 E\_Prot.idM-3 was located 9.6cM downstream of E\_Protein-3, both QTL with positive additive effect.

## 3.4.4.5 QTL for regression corrected protein content in defatted meal

QTL mapping of regression corrected protein content in defatted meal detected six QTL on linkage groups A07, A09, A10, C05, C06 and C08 (Table 3.10), all representing minor QTL with

individual QTL explaining between 5.0 and 14.6% of the phenotypic variance. Together the six QTL accounted for 50% of the total phenotypic variance. Parental lines are equally contributing positive alleles, SGDH14 is contributing the positive alleles for E\_Prot.idM-reg\_corr-1, -3 and -4, while Express617 contributed the positive alleles of E\_Prot.idM-reg\_corr-2, -5 and -6. Confidence intervals of QTL for regression corrected protein content in defatted meal (E\_Prot.idM-reg\_corr-1, -2, -3 and -5) overlapped with those of QTL for protein content (E\_Protein-2, -4, -5 and -7) on A07, A09, A10 and C06 with same directions of additive effects, and on A10 and C05 (E\_Prot.idM-reg\_corr-3 and -5) with those of corrected oil contents with same direction of additive effects on C05. QTL analysis of protein content in defatted meal corrected for the effect of erucic acid by conditioning applying the method of Zhu (1995) showed exactly same results (data not shown).

## 3.4.4.6 QTL for the sum of oil and protein content

Four QTL were detected for the sum of oil and protein content located on A08, C03, C05 and C07 (Table 3.10). The major QTL E\_Oil+Protein-1 and E\_Oil+Protein-2 explained 60.4 and 38.2% of the phenotypic variance, while E\_Oil+Protein-3 and E\_Oil+Protein-4 explained 20.5 and 3.9%, respectively. All together the QTL accounted for 85.2% of the total phenotypic variance. Only E\_Oil+Protein-4 on C07 showed a negative additive effect. Confidence intervals of each QTL for E\_Oil+Protein was found co-located for oil content and/or corrected oil contents showing same direction of additive effects. On A08 the confidence interval of E\_Oil+Protein-1 overlapped with the one of E\_Prot.idM-3, and on C05 the confidence interval of E\_Oil+Protein-3 was co-located with that of E\_Prot.idM-reg\_corr-4.

## 3.4.4.7 QTL for glucosinolate content

The five QTL identified for glucosinolate content were located on linkage groups A09 (2), C02, C07, and C09 (Table 3.10). Individual QTL explained between 5.4 and 52.4% of the phenotypic variance with E\_GSL-1 on A09 and E\_GSL-5 on C09 being the major QTL. Together the five QTL accounted for 77.4% of the total phenotypic variance with additional 7.2% explained by epistatic effects. All QTL showed positive additive effects, indicating that the alleles increasing glucosinolate content are as expected derived from the high glucosinolate parent SGDH14. On C07 the confidence interval of QTL E\_GSL-4 overlapped with the confidence intervals of E\_Oil-4, E\_Oil-reg\_corr-4 and E\_Oil-cond-4, all with additive effects of opposite direction.

## 3.4.4.8 QTL for glucosinolate content in defatted meal

Four QTL for glucosinolate content in defatted meal were detected on linkage groups A09, C02, C07 and C09 (Table 3.10). Individual QTL explained between 4.2 to 50.6% of the phenotypic variance. Together these accounted for 73.6% of the total phenotypic variance. All four QTL for glucosinolate content in defatted meal were highly comparable to a QTL for glucosinolate content. This proved the high positive correlation between both traits (cf. Table 3.4).

## 3.4.4.9 QTL for fatty acids

Twenty-six QTL for fatty acids were identified, which were distributed over the entire A genome and over linkage groups C03, C04, C05 and C06 (Table 3.11).

Six QTL for palmitic acid (16:0) were detected on the linkage groups A03, A07 (2), A08, A09 and C03. Individual QTL explained between 1.1 and 55.9% of the phenotypic variance and collectively accounted for 79% of the total phenotypic variance. QTL E\_GC16:0-4 on linkage group A08 and QTL E\_GC16:0-6 on linkage group C03 were identified as major QTL. These two QTL as well as the minor QTL E\_ GC16:0-1 on A03 showed negative additive effects, indicating that the alleles increasing palmitic acid are derived from Express617. The major QTL E\_GC16:0-4 on A08 overlapped with the confidence interval of the QTL E\_Protein-3 for protein content with opposite sign for the additive effect. On linkage group C03 the major QTL E\_GC16:0-6 was colocalized with QTL E\_Oil-2, which explained the second highest individual phenotypic variance for oil content. These two QTL showed opposite additive effects. Two QTL were detected for oleic acid content located on A08 and C03 while for linoleic and linolenic acid contents six QTL each were found. The two QTL for oleic acid explained 54.9 and 48.6% of the phenotypic variance, respectively, and together accounted for 80.9% of the total phenotypic variance with additional 8.8% determined by epistatic interactions. Both QTL showed a negative additive effect with -12.72% for QTL E\_GC18:1-1 and -9.4% for QTL E\_GC18:1-2, respectively, indicating that the alleles increasing oil content were derived from Express617. QTL for linoleic acid were located on linkage groups A05, A08, A10, C03, C05 and C06 and explained between 0.6 and 49.5% of the phenotypic variance, collectively accounting for 81% of the total phenotypic variance and additional 4.3% explained by epistasis. Major QTL were located on linkage group A08 (E\_GC18:2-2) and C03 (E\_GC18:2-4) showing negative additive effects, like the minor QTL E\_GC18:2-1 on A05. The QTL for linolenic acid content were detected on linkage groups A01, A05, A06, A08, C03 and C05. Individual QTL explained between 1.1 and 27.8% of the phenotypic

|                                  |       | Docition | Confidence    |       |          |                        |                      |                        |
|----------------------------------|-------|----------|---------------|-------|----------|------------------------|----------------------|------------------------|
| rotein-1<br>rotein-2<br>rotein-3 | Group | [cM]     | lnterval [cM] | ٩a    | $R^{2b}$ | V(A)/V(P) <sup>c</sup> | م)//(I)/<br>(I)//(D) | V(G)/V(P) <sup>e</sup> |
| _<br>E_Protein-2<br>E_Protein-3  | A04   | 45.9     | 38.6-50.9     | -0.11 | 8.5      |                        |                      |                        |
| E_Protein-3                      | A07   | 10.7     | 0.0-25.7      | 0.24  | 12.8     |                        |                      |                        |
|                                  | A08   | 1        | 0.0-6.9       | 0.17  | 8.5      |                        |                      |                        |
| E_Protein-4                      | A09   | 55.6     | 44.5-66.6     | -0.2  | 5.6      | 56.6                   | 1                    | 57.7                   |
| E_Protein-5                      | A10   | 19.9     | 13.8-26.9     | 0.19  | 12.4     |                        |                      |                        |
| E_Protein-6                      | C04   | 29.8     | 21.1-47.4     | -0.17 | 10.1     |                        |                      |                        |
| E_Protein-7                      | C06   | 94.4     | 87.2-112.6    | -0.18 | 6        |                        |                      |                        |
|                                  |       |          |               |       |          |                        |                      |                        |
| E_Prot.idM-1                     | A07   | 12.8     | 0.0-22.0      | 0.15  | 5.2      |                        |                      |                        |
| E_Prot.idM-2                     | A07   | 63.2     | 57.8-71.2     | 0.14  | 0.7      |                        |                      |                        |
| E_Prot.idM-3                     | A08   | 20.5     | 16.5-25.1     | 1.03  | 50.6     |                        |                      |                        |
| E_Prot.idM-4                     | C03   | 176.8    | 176.2-179.8   | 0.68  | 25.6     | 71.3                   | 5.9                  | 77.2                   |
| E_Prot.idM-5                     | C06   | 69       | 64.4-74.0     | -0.19 | 1.3      |                        |                      |                        |
| E_Prot.idM-6                     | C06   | 110.4    | 84.2-119.6    | -0.21 | 1.5      |                        |                      |                        |
| E_Prot.idM-7                     | C08   | 46.9     | 31.1-53.1     | -0.23 | 1.5      |                        |                      |                        |
|                                  |       |          |               |       |          |                        |                      |                        |
| E_Prot.idM-reg_corr-1            | A07   | 21.0     | 8.7-27.7      | 0.35  | 14.6     |                        |                      |                        |
| E_Prot.idM-reg_corr-2            | A09   | 58.6     | 38.3-68.6     | -0.25 | 5.0      |                        |                      |                        |
| E_Prot.idM-reg_corr-3            | A10   | 33.6     | 16.8-46.5     | 0.19  | 5.5      | ED D                   | 5 7                  | 55 7                   |
| E_Prot.idM-reg_corr-4            | C05   | 36.7     | 29.2-64.8     | 0.30  | 5.8      | 0.00                   |                      |                        |
| E_Prot.idM-reg_corr-5            | C06   | 112.4    | 101.4-112.6   | -0.36 | 7.3      |                        |                      |                        |
| E_Prot.idM-reg_corr-6            | C08   | 38.8     | 32.1-47.9     | -0.21 | 9.6      |                        |                      |                        |

Table 3.10: QTL detected for contents of seed protein (%), protein in defatted meal (Prot.idM in %), regression corrected protein in defatted

| Table 3.10: continued from previous page                      | ed from previou  | abad sr          |                                                                                                                       |                |              |                        |                        |                        |
|---------------------------------------------------------------|------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|--------------|------------------------|------------------------|------------------------|
|                                                               | Linkage          | Position         | Confidence                                                                                                            |                |              |                        |                        |                        |
| QTL                                                           | Group            | [cM]             | Interval [cM]                                                                                                         | $A^a$          | $R^{2b}$     | V(A)/V(P) <sup>c</sup> | V(I)/V(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| E_Oil+Protein-1                                               | A08              | 23.5             | 20.5-27.1                                                                                                             | 1.21           | 60.4         |                        |                        |                        |
| E_Oil+Protein-2                                               | C03              | 193.4            | 190.4-197.2                                                                                                           | 0.77           | 38.2         | C LO                   | c<br>t                 |                        |
| E_Oil+Protein-3                                               | C05              | 37.7             | 33.7-41.7                                                                                                             | 0.58           | 20.5         | 7.00                   | T.U                    | CT.00                  |
| E_Oil+Protein-4                                               | C07              | 36.6             | 25.7-47.5                                                                                                             | -0.22          | 3.9          |                        |                        |                        |
|                                                               |                  |                  |                                                                                                                       |                |              |                        |                        |                        |
| E_GSL-1                                                       | 409              | 20.9             | 13.9-24.1                                                                                                             | 4.28           | 27.1         |                        |                        |                        |
| E_GSL-2                                                       | 409              | 95.1             | 82.5-101.3                                                                                                            | 0.94           | 11.2         |                        |                        |                        |
| E_GSL-3                                                       | C02              | 0                | 0.0-4.0                                                                                                               | 3.74           | 9.8          | 77.4                   | 7.2                    | 84.6                   |
| E_GSL-4                                                       | C07              | 52.2             | 44.9-57.2                                                                                                             | 3.48           | 5.4          |                        |                        |                        |
| E_GSL-5                                                       | 600              | 116.7            | 113.7-116.7                                                                                                           | 8.63           | 52.4         |                        |                        |                        |
|                                                               |                  |                  |                                                                                                                       |                |              |                        |                        |                        |
| E_GSLidM-1                                                    | 409              | 21.9             | 13.9-24.1                                                                                                             | 8.021          | 25.7         |                        |                        |                        |
| E_GSLidM-2                                                    | C02              | 0                | 0.0-4.0                                                                                                               | 6.722          | 9.92         | 2 64                   | с<br>Ц                 | L 0L                   |
| E_GSLidM-3                                                    | C07              | 53.2             | 43.9-64.3                                                                                                             | 5.026          | 4.18         | 0.07                   | 7.C                    | 10.1                   |
| E_GSLidM-4                                                    | 600              | 116.7            | 113.7-116.7                                                                                                           | 16.23          | 50.6         |                        |                        |                        |
| a additive effect; pc                                         | ositive additive | effect indicatin | a additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14 | reasing the tr | ait were de  | rived from SGDH        | 114                    |                        |
| b percentage of phenotypic variance explained by each QTL     | enotypic varian  | ce explained by  | r each QTL                                                                                                            |                |              |                        |                        |                        |
| c variance of additiv                                         | ve effects/pher  | otypic variance  | c variance of additive effects/phenotypic variance – total contribution of additive effect QTL in $%$                 | of additive e  | ffect QTL in | %                      |                        |                        |
| d variance of epistatic effects/phenotypic variance in %      | tic effects/phe  | notypic variance | e in %                                                                                                                |                |              |                        |                        |                        |
| e variance of genetic main effects/phenotypic variance in $%$ | ic main effects/ | phenotypic var/  | iance in %                                                                                                            |                |              |                        |                        |                        |

3.4 Results

variance. All together these six QTL accounted for 67.7% of the total phenotypic variance with additional 6.9% determined by epistatic effects. QTL on A06, A08 and C03 showed negative additive effects, indicating that the alleles increasing linolenic acid were derived from Express617. QTL E\_GC18:3-5 on C03 was identified as major QTL for linolenic acid content. Confidence intervals of QTL E\_GC18:1-1, E\_GC18:2-2 and QTL E\_GC18:3-4 on A08 were co-localized and all three QTL showed a negative additive effect. Confidence intervals of these QTL also overlapped with the confidence intervals of QTL E\_GC18:3-5 overlapped with confidence intervals of QTL E\_GC18:1-2, E\_GC18:2-4 and E\_Oil-1 and E\_Prot.idM-3, showing opposite sign of additive effects. On C03 the major QTL E\_GC18:3-5 overlapped with confidence intervals of QTL E\_GC18:1-2, E\_GC18:2-4 and E\_Oil-mol\_corr-2, showing the same sign of additive effect, as well as QTL E\_Oil-2 with opposite sign of additive effects. Confidence intervals of C05 was co-localized with QTL for corrected oil contents, all QTL showing positive additive effects. On A10 the confidence intervals of E\_GC18:2-3 overlapped with the confidence intervals of E\_Protein-5, both QTL showing a positive additive effect. Whereas on C06 overlapping confidence intervals of E\_GC18:2-6, E\_Protein-7 and E\_Prot.idM-6 showed opposite direction of additive effects.

Two QTL for eicosenoic acid were detected on linkage groups A02 and C03 explaining 5.6 and 22.5% of the phenotypic variance, respectively. Collectively these two QTL explained 32.3% of the total phenotypic variance within the SGEDH population. While epistatic effects additionally accounted for 47.1% of the total phenotypic variance. 46% of the epistatic effects were explained by an epistatic pair of loci corresponding to the QTL for erucic acid, E\_GC22:1-2 (A08) and E\_GC22:1-3 (C03), respectively. E\_GC20:1-2 on C03 explaining the highest phenotypic variance for eicosenoic acid showed a positive additive effect, indicating that the alleles increasing eicosenoic acid content are derived from SGDH14. The confidence interval of E\_GC20:1-2 overlapped with the confidence interval of E\_Oil-2, showing additive effects of same direction, and with those of E\_GC16:0-6, E\_GC18:2-4 and E\_GC18:3-5, which showed additive effects of opposite direction. For erucic acid content four QTL were detected on A08 (2), C03 and C04. These QTL individually explained between 8 and 64.1% of the phenotypic variance and together accounted for 88.1% of the total phenotypic variance. All QTL except E\_GC22:1-4 on C04 were identified as major QTL and showed positive additive effects, as expected indicating the high erucic acid parent SGDH14 to contribute the alleles increasing erucic acid content. On A08 the confidence interval of E\_GC22:1-2 overlapped with confidence intervals of E\_Oil-1 and E\_Prot.idM-3, all three QTL showing a positive additive effect, corresponding to the correlation of these traits found in the phenotypic analysis (Table 3.4). While the confidence intervals of E\_GC22:1-2 also overlapped with those of E\_GC18:1-1, E\_GC18:2-2 and E\_GC18:3-4, which showed opposite direction of additive effect. The confidence interval of E\_GC22:1-3 on linkage

group C03 overlapped with those of E\_GC18:1-2, E\_GC18:3-5 and E\_Oil-mol\_corr-2, all three showing opposite directions of additive effects.

For the sum of eicosenoic and erucic acid three QTL were found on A08, A10 and C03 (Table 3.11). E\_20:1+22:1-1 and E\_20:1+22:1-3 both were identified as major QTL explaining 56.6 and 49.0% of the phenotypic variance, respectively, and a positive additive effect. E\_20:1+22:1-2 on A10 explained only 1.4% of the phenotypic variance and showed a negative additive effect. Confidence intervals of the major QTL for E\_20:1+22:1-1 and E\_20:1+22:1-3 overlapped with those of E\_22:1-2 and E\_22:1-3, respectively. While the confidence interval of E\_20:1+22:1-1 overlapped with those of E\_0il-1, E\_Prto.idM-3 and E\_0il+Protein-1, all showing positive additive effects, the confidence interval of E\_20:1+22:1-3 was found co-located with those of E\_0il-mol\_corr-2, E\_18:1-2 and E\_18:3-5, which showed opposite additive effects.

## 3.4.4.10 Thousand kernel weight

Three QTL for thousand kernel weight were detected on linkage groups A09, A10 and C01 individually explaining 9.3, 7.2 and 13.8% of the phenotypic variance, respectively (Table 3.12). Collectively they accounted for 31.8% of the total phenotypic variance. QTL E\_TKW-1 on A09 showed a negative additive effect, whereas QTL E\_TKW-2 on A10 and E\_TKW-3 on C01 showed positive additive effects. Confidence intervals of QTL E\_TKW-1 and QTL E\_GC16:0-5 on linkage group A09 overlapped with opposite direction of additive effects.

|            | Linkage | Position | Confidence    |                |                 |                        |                        |                        |
|------------|---------|----------|---------------|----------------|-----------------|------------------------|------------------------|------------------------|
| QTL        | Group   | [cM]     | Interval [cM] | Α <sup>α</sup> | R <sup>2b</sup> | V(A)/V(P) <sup>c</sup> | V(I)/V(D) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| GC16:0-1   | A03     | 58.7     | 52.4-100.1    | -0.09          | 1.1             |                        |                        |                        |
| E_GC16:0-2 | A07     | 80.7     | 74.2-85.7     | 0.06           | 9.9             |                        |                        |                        |
| E_GC16:0-3 | A07     | 120.5    | 111.5-120.5   | 0.07           | 4.6             |                        | r<br>C                 | 7 OF                   |
| E_GC16:0-4 | A08     | 4.9      | 4.0-6.9       | -0.34          | 55.9            | 0.67                   |                        | 13.1                   |
| E_GC16:0-5 | 409     | 106      | 100.3-115.5   | 0.07           | 6.8             |                        |                        |                        |
| GC16:0-6   | C03     | 191.4    | 185.6-195.4   | -0.24          | 30.4            |                        |                        |                        |
| E_GC18:1-1 | A08     | 23.5     | 20.5-27.1     | -12.72         | 54.9            | 000                    | 0                      | C 00                   |
| E_GC18:1-2 | C03     | 202.2    | 199.2-206.6   | -9.40          | 48.6            | 6.00                   | 0.00                   | 1.60                   |
| E_GC18:2-1 | A05     | 111.7    | 111.7-114.7   | -0.47          | 13.4            |                        |                        |                        |
| E_GC18:2-2 | A08     | 23.5     | 19.5-27.1     | -1.49          | 49.5            |                        |                        |                        |
| E_GC18:2-3 | A10     | 28.6     | 24.9-34.6     | 0.37           | 3.0             | 010                    | 0<br>7                 | 05 0                   |
| E_GC18:2-4 | C03     | 191.4    | 186.6-195.4   | -1.20          | 38.3            | 0.10                   | t<br>Ü                 | C.CO                   |
| E_GC18:2-5 | C05     | 57.7     | 50.7-62.7     | 0.46           | 1.6             |                        |                        |                        |
| E_GC18:2-6 | C06     | 111.4    | 104.1-118.6   | 0.28           | 0.6             |                        |                        |                        |
| E_GC18:3-1 | A01     | 92.1     | 74.9-98.3     | 0.13           | 7.0             |                        |                        |                        |
| E_GC18:3-2 | A05     | 92.1     | 82.7-102.7    | 0.18           | 1.1             |                        |                        |                        |
| E_GC18:3-3 | A06     | 102.3    | 97.7-112.0    | -0.13          | 8.5             | 7 73                   | 5                      | 716                    |
| E_GC18:3-4 | A08     | 24.5     | 17.5-36.0     | -0.37          | 13.3            |                        | 0                      | 0.1                    |
| E_GC18:3-5 | C03     | 201.2    | 193.4-206.6   | -0.39          | 27.8            |                        |                        |                        |
| E GC18:3-6 | C05     | 33.7     | 27.2-43.7     | 0.44           | 13.1            |                        |                        |                        |

Table 3.11: QTL detected for seed fatty acid contents (%) in the SGEDH population

3.4 Results

| Table 3.11: continued from previous page                  | ied from previou | abad sr           |                                                                                                                       |                 |              |                        |                        |                        |
|-----------------------------------------------------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------|------------------------|------------------------|
|                                                           | Linkage          | Position          | Confidence                                                                                                            |                 |              |                        |                        |                        |
| QTL                                                       | Group            | [cM]              | Interval [cM]                                                                                                         | Aa              | $R^{2b}$     | V(A)/V(P) <sup>c</sup> | ۸(۱)/۸(P) <sup>م</sup> | V(G)/V(P) <sup>e</sup> |
| E_GC20:1-1                                                | A02              | 109               | 101.0-117.9                                                                                                           | -0.58           | 5.6          | c .c                   | 5 C V                  | 7 02                   |
| E_GC20:1-2                                                | C03              | 190.4             | 184.6-197.2                                                                                                           | 2.12            | 22.5         | C.2C                   | 4/.L                   | 19.4                   |
| E_GC22:1-1                                                | A08              | 14.9              | 13.9-15.5                                                                                                             | 2.92            | 53.8         |                        |                        |                        |
| E_GC22:1-2                                                | A08              | 25.1              | 23.5-41.6                                                                                                             | 9.47            | 64.1         | 00                     | Ċ                      | 00 E                   |
| E_GC22:1-3                                                | C03              | 201.2             | 199.2-203.2                                                                                                           | 9.07            | 46.9         | 1.00                   | 5<br>4                 | C.00                   |
| E_GC22:1-4                                                | C04              | 75.6              | 70.0-87.3                                                                                                             | -1.49           | 8.0          |                        |                        |                        |
| E_20:1+22:1-1                                             | A08              | 23.5              | 20.5-27.1                                                                                                             | 14.76           | 56.6         |                        |                        |                        |
| E_20:1+22:1-2                                             | A10              | 28.6              | 21.9-35.9                                                                                                             | -1.04           | 1.4          | 83.2                   | 7.1                    | 90.3                   |
| E_20:1+22:1-3                                             | C03              | 202.2             | 199.2-205.6                                                                                                           | 10.94           | 49.0         |                        |                        |                        |
| a additive effect; p                                      | ositive additive | effect indicating | a additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14 | reasing the tr  | ait were de  | rived from SGDH        | 14                     |                        |
| b percentage of phenotypic variance explained by each QTL | enotypic varian  | ce explained by   | each QTL                                                                                                              |                 |              |                        |                        |                        |
| c variance of additi                                      | ive effects/phen | otypic variance   | c variance of additive effects/phenotypic variance – total contribution of additive effect QTL in $%$                 | i of additive e | ffect QTL in | %                      |                        |                        |

Ş

ע אמוומווכב טו מטעונועב בוובינוצ/ אוובווטנאאוכ עמוומונים – נסנמ d variance of epistatic effects/phenotypic variance in %

e variance of genetic main effects/phenotypic variance in %

#### 3.4.4.11 Phenological traits

The twenty QTL detected for four different phenological traits were located on the nine linkage groups A02, A03, A04, A07, A08, A10, C05, C06 and C08 (Table 3.12). From three to eight QTL were identified for each trait explaining collectively between 47.6 and 70.2% of the total phenotypic variance. A major QTL was found for begin of flowering (E\_BOF-3) on linkage group C06, which explained 50.4% of the phenotypic variance with a positive additive effect. A second major QTL was detected for flowering period (E\_FP-3) located on linkage group C06, which explained 49.6% of the phenotypic variance with a negative additive effect, indicating that the increasing alleles are derived from Express617. Both major QTL showed the same confidence interval. For end of flowering (EOF) and plant height at end of flowering (PH\_EOF) only minor QTL were identified. QTL explaining the highest individual phenotypic variance for end of flowering and plant height were found on C06, E\_EOF-4 (17.2%) and E\_PH\_EOF-7 (20.7%). The confidence intervals of these two QTL overlapped with the confidence interval of the major QTL E\_BOF-3 and E\_FP-3. The confidence interval of E\_BOF-1 on linkage map A04 on the one hand was co-located with the confidence interval of E\_Protein-1, both showing a negative additive effect, and on the other hand overlapped with the confidence interval of E\_FP-2 showing a positive additive effect. On linkage group A07 E-EOF-1 was co-located with E\_PH\_EOF-4, showing the same direction of the additive effect, and with E\_Protein-2 and E\_Prot.idM-1, showing opposite direction of additive effect. The confidence interval of QTL E\_BOF-2 on linkage group C05 overlapped with those of QTL E\_PH\_EOF-6, E\_Oil-3 and another QTL for molecular corrected oil content (E\_Oil-mol\_corr-5), all showing positive additive effects. Whereas the confidence interval of E\_EOF-3 on C05 overlapped with the ones of E\_GC18:3-6, E\_Oil-reg\_corr-3, E\_Oil-mol\_corr-5 and E\_Oil-cond-3, all QTL with additive effects. On C06 confidence intervals of E\_BOF-3 and E\_EOF-4 overlapped with E\_PH\_EOF-7, all three QTL with positive additive effects, and with the confidence intervals of E\_FP-3, E\_Protein-7 as well as Prot.idM-6, showing opposite additive effects. On C08 QTL intervals for E\_BOF-4, E\_EOF-5 and E\_PH\_EOF-8 were found colocated, all three QTL showing negative additive effects. Additive effects of overlapping QTL for BOF, EOF and PH\_EOF showed the same direction, while QTL for FP showed opposite additive effects compared to the other phenological traits. These findings corresponded to the significant positive correlations between BOF, EOF and PH\_EOF and the negative correlations of these traits with FP (Table 3.4).

|         | Linkage | Position | Confidence    |       |          |                        |                        |                        |
|---------|---------|----------|---------------|-------|----------|------------------------|------------------------|------------------------|
| QTL     | Group   | [cM]     | Interval [cM] | Aa    | $R^{2b}$ | V(A)/V(P) <sup>c</sup> | v(I)/v(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| E_TKW-1 | 409     | 110.9    | 104.0-120.7   | -0.09 | 9.3      | 31.8                   | 2.4                    | 34.2                   |
| E_TKW-2 | A10     | 44.5     | 36.9-49.6     | 0.15  | 7.2      |                        |                        |                        |
| E_TKW-3 | C01     | 49.3     | 37.6-55.5     | 0.14  | 13.8     |                        |                        |                        |
| E_BOF-1 | A04     | 37.6     | 32.1-50.9     | -0.74 | 7.8      | 63.4                   | 6.8                    | 70.2                   |
| E_BOF-2 | C05     | 7.3      | 7.0-14.4      | 0.51  | 1.7      |                        |                        |                        |
| E_BOF-3 | C06     | 93.4     | 91.4-96.4     | 2.04  | 50.4     |                        |                        |                        |
| E_BOF-4 | C08     | 123.5    | 119.5-123.5   | -0.63 | 8.7      |                        |                        |                        |
| E_EOF-1 | A07     | 7.7      | 0.0-30.7      | -0.27 | 3.2      | 47.6                   | 2.4                    | 50.0                   |
| E_EOF-2 | A10     | 77.2     | 74.1-82.2     | -0.35 | 15.2     |                        |                        |                        |
| E_EOF-3 | C05     | 42.7     | 34.7-43.7     | 0.26  | 7.3      |                        |                        |                        |
| E_EOF-4 | C06     | 97.4     | 91.4-102.1    | 0.34  | 17.2     |                        |                        |                        |
| E_EOF-5 | C08     | 123.5    | 116.3-123.5   | -0.30 | 12.0     |                        |                        |                        |
| E_FP-1  | A03     | 0        | 0.0-10.8      | 0.41  | 1.0      | 57.1                   | 2.5                    | 59.6                   |
| E_FP-2  | A04     | 42.6     | 30.1-51.9     | 0.42  | 7.3      |                        |                        |                        |
| F FD-3  | COG     | 94.4     | 91.4 - 96.4   | -1.64 | 49.6     |                        |                        |                        |

Table 3.12: QTL detected for seed thousand kernel weight (TKW in g), begin of flowering (BOF), end of flowering (EOF), flowering period (FP)

| Table 3.12: continued from previous page                  | ed from previou  | s page            |                                                                                                                       |               |                 |                        |                        |                        |
|-----------------------------------------------------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|-----------------|------------------------|------------------------|------------------------|
|                                                           | Linkage          | Position          | Confidence                                                                                                            |               |                 |                        |                        |                        |
| QTL                                                       | Group            | [cM]              | Interval [cM]                                                                                                         | Aª            | R <sup>2b</sup> | V(A)/V(P) <sup>c</sup> | V(I)/V(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
|                                                           |                  |                   |                                                                                                                       |               |                 |                        |                        |                        |
| E_PH_EOF-1                                                | A02              | 24.9              | 15.7-31.9                                                                                                             | -1.72         | 4.8             | 56.6                   | 2.4                    | 59.0                   |
| E_PH_EOF-2                                                | A02              | 135.8             | 124.9-149.2                                                                                                           | -2.09         | 8.1             |                        |                        |                        |
| E_PH_EOF-3                                                | A04              | 113.1             | 108.1-129.4                                                                                                           | 1.14          | 5.2             |                        |                        |                        |
| E_PH_EOF-4                                                | A07              | 18                | 4.0-37.4                                                                                                              | -1.19         | 3.5             |                        |                        |                        |
| E_PH_EOF-5                                                | A08              | 35                | 31.8-41.0                                                                                                             | 2.53          | 0.6             |                        |                        |                        |
| E_PH_EOF-6                                                | C05              | 8.3               | 7.0-16.4                                                                                                              | 1.60          | 5.0             |                        |                        |                        |
| E_PH_EOF-7                                                | C06              | 90.4              | 85.2-96.4                                                                                                             | 4.41          | 20.7            |                        |                        |                        |
| E_PH_EOF-8                                                | C08              | 123.5             | 118.5-123.5                                                                                                           | -1.99         | 13.0            |                        |                        |                        |
| a additive effect; pc                                     | sitive additive  | effect indicating | a additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14 | easing the tr | ait were de     | rived from SGDH        | 114                    |                        |
| b percentage of phenotypic variance explained by each QTL | enotypic variand | ce explained by   | each QTL                                                                                                              |               |                 |                        |                        |                        |
| c variance of additiv                                     | /e effects/phen  | otypic variance   | c variance of additive effects/phenotypic variance – total contribution of additive effect QTL in $%$                 | of additive e | ffect QTL in    | %                      |                        |                        |

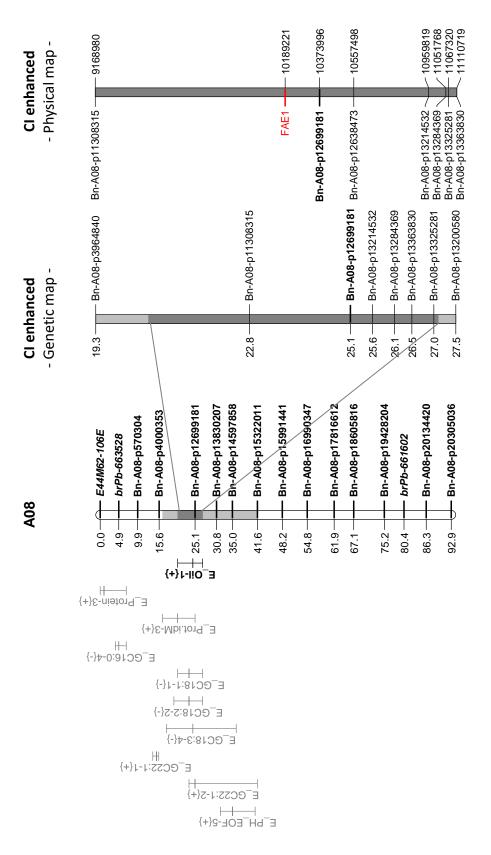
*d* variance of epistatic effects/phenotypic variance in % *e* variance of genetic main effects/phenotypic variance in %

## 3.4.4.12 Comparison between QTL detected with erucic acid content determined by gas chromatography and NIRS predicted

Gas chromatography is an accurate technique to determine fatty acid composition but it is destructive and to prepare and analyse samples takes time. In some cases, the investigated material is scarce or the time for analytical approaches is limited. Hence a non-destructive, fast and adequate analytical method is preferred. One of these methods commonly used is near infrared spectroscopy (NIRS). With already well proven calibrations NIRS is used to predict various seed quality traits. However, prediction of erucic acid content is not very accurate and biased. Thus, NIRS predictions for erucic acid were corrected based on gas chromatographic results (cf. section 3.3.3.3). In this section QTL from GC and NIRS data are therefore compared for erucic acid content as well as for regression corrected and conditioned oil content (Table 3.13).

Four QTL were identified for erucic acid content determined by gas chromatography (GC) located on linkage groups A08 (2), C03 and C04. Likewise, four QTL were detected for NIRS predicted erucic acid content, located on the same linkage groups. The confidence intervals of the four QTL as determined by gas chromatography were overlapping with those of the corresponding QTL as determined by NIRS. Additive effects of these four corresponding QTL pairs showed the same direction, and phenotypic variances were similar. The comparison of the total phenotypic variance of GC22:1 QTL (88.5%) and NIRS predicted erucic acid content (89.5%) showed a difference of only 1%. Summarized, QTL based on GC22:1 and NIRS predicted values revealed only small differences. Results of regression correction and conditioning of oil content using GC and NIRS predicted erucic acid contents showed a comparable concordance.

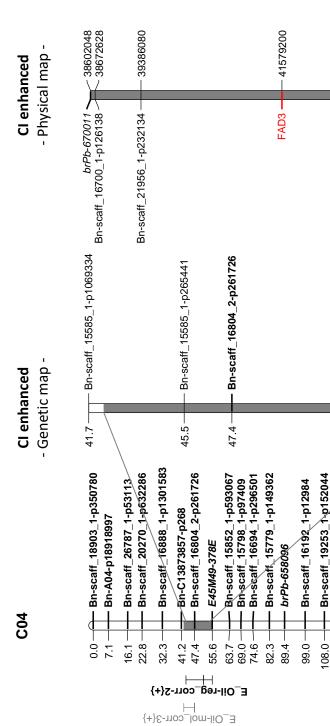
|          |     |     | 22:1 determined by | ied by g    | as chron        | gas chromatography | ٨Ļ                |                   |     |     | 22:1 F      | predicte | 22:1 predicted by NIRS | RS                |                   |                   |
|----------|-----|-----|--------------------|-------------|-----------------|--------------------|-------------------|-------------------|-----|-----|-------------|----------|------------------------|-------------------|-------------------|-------------------|
|          |     |     |                    |             |                 | V(A)/              | /(I)/             | V(G)/             |     |     |             |          |                        | V(A)/             | /(I)/             | V(G)/             |
| Trait    | QTL | ۲Gª | Range [cM]         | Чb          | R <sup>2c</sup> | V(P) <sup>d</sup>  | V(P) <sup>e</sup> | V(P) <sup>f</sup> | QTL | ۲Gª | Range [cM]  | ٩b       | R <sup>2c</sup>        | V(P) <sup>d</sup> | V(P) <sup>e</sup> | V(P) <sup>f</sup> |
| E_22:1   | 1   | A08 | 13.9-15.5          | 2.9         | 53.8            | 88.1               | 0.4               | 88.5              | Н   | A08 | 13.9-15.5   | 3.2      | 55.4                   | 89.0              | 0.5               | 89.5              |
|          | 2   | A08 | 23.5-41.6          | 9.5         | 64.1            |                    |                   |                   | 2   | A08 | 23.5-41.0   | 9.5      | 67.3                   |                   |                   |                   |
|          | £   | C03 | 199.2-203.2        | 9.1         | 46.9            |                    |                   |                   | ñ   | C03 | 198.2-203.2 | 8.4      | 45.4                   |                   |                   |                   |
|          | 4   | C04 | 70.0-87.3          | -1.5        | 8.0             |                    |                   |                   | 4   | C04 | 69.0-87.3   | -1.7     | 7.2                    |                   |                   |                   |
|          |     |     |                    |             |                 |                    |                   |                   |     |     |             |          |                        |                   |                   |                   |
| E_Oil-   | 1   | A10 | 10.6-24.9          | -0.3        | 11.2            | 51.5               | 3.3               | 54.8              | Ч   | A10 | 9.6-25.9    | -0.3     | 10.8                   | 52.9              | 2.9               | 55.9              |
| reg_corr | 2   | C04 | 43.3-55.6          | 0.2         | 3.2             |                    |                   |                   | 2   | C04 | 45.3-55.6   | 0.2      | 2.4                    |                   |                   |                   |
|          | ŝ   | C05 | 35.7-43.7          | 0.6         | 34.6            |                    |                   |                   | ŝ   | C05 | 33.7-41.7   | 0.7      | 35.8                   |                   |                   |                   |
|          | 4   | C07 | 32.7-44.9          | -0.3        | 7.2             |                    |                   |                   | 4   | C07 | 32.7-45.5   | -0.3     | 8.7                    |                   |                   |                   |
|          |     |     |                    |             |                 |                    |                   |                   |     |     |             |          |                        |                   |                   |                   |
| E_Oil-   | 1   | A10 | 10.6-24.9          | -0.3        | 11.2            | 51.5               | 3.3               | 54.8              | Ч   | A10 | 9.6-25.9    | -0.3     | 10.8                   | 53.0              | 2.9               | 55.9              |
| condmap  | 2   | C04 | 43.3-55.6          | 0.2         | 3.2             |                    |                   |                   | 2   | C04 | 45.3-55.6   | 0.2      | 2.4                    |                   |                   |                   |
|          | ŝ   | C05 | 35.7-43.7          | 0.6         | 34.7            |                    |                   |                   | £   | C05 | 33.7-41.7   | 0.7      | 35.8                   |                   |                   |                   |
|          | 4   | C07 | 32.7-45.5          | -0.3        | 7.2             |                    |                   |                   | 4   | C07 | 32.7-45.5   | -0.3     | 8.7                    |                   |                   |                   |
|          | t   | 3   | 0.04-1.20          | -<br>-<br>- | 1.1             |                    |                   |                   | t   | 2   | 0.04-1.20   | °.'<br>- | 0.'                    |                   |                   |                   |


d variance of additive effects/phenotypic variance – total contribution of additive effect QTL in %

e variance of epistatic effects/phenotypic variance in % f variance of genetic main effects/phenotypic variance in %

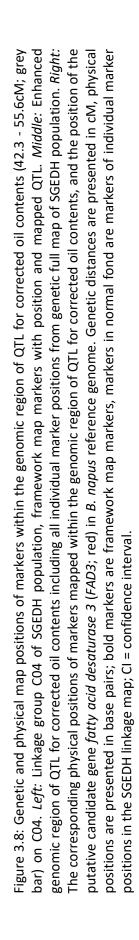
# 3.4.5 Physical mapping of the SGEDH population and QTL intervals for oil content

Sequences of 1289 SNP and 94 DArT markers from the set of 1693 individual full map marker positions were blasted against the *B. napus* Darmor-*bzh* reference genome. The marker sequence BLAST hit with the lowest E-value, located on the chromosome corresponding to the linkage group of the marker, was chosen as the physical position of the marker. These physical marker positions were aligned to the genetic position to investigate the congruence of marker orders (Appendix 1 and Appendix 2). Physical marker positions predominantly showed a linear correlation to the genetic position on the linkage groups of the SGEDH population, with linkage group C09 showing the highest number of scattered marker positions.


To identify possible candidate genes influencing oil biosynthesis in the SGEDH population, homologues of A. thaliana genes involved in fatty acid synthesis and modification and TAG synthesis (cf. section 2.4; Appendix 4) were searched for on the *B. napus* Darmor-bzh reference genome. Through comparison of the physical positions of the candidate genes on the *B. napus* genome with the confidence intervals of oil-QTL identified on the SGEDH population, FAE1 (AT4G34520) was found within the confidence interval of QTL E\_Oil-1 (20.5 - 27.1cM) on A08 (Figure 3.6) and FAD3 (AT2G29980) was found within the confidence interval of E\_Oil-reg\_corr-2 (43.3 - 55.6cM) on C04 (Figure 3.8). FAE1, which is involved in the elongation of oleic acid to erucic acid, was located approximately 185kbp apart from the closest SNP marker Bn-A08p12699181 on A08. This marker was also located within the marker intervals of QTL for erucic acid (E GC22:1-2), C18 unsaturated fatty acids (E GC18:1-1, E GC18:2-2, E GC18:3-4) and protein in defatted meal (E\_Prot.idM-3). On C04 FAD3, encoding for the enzyme linoleic acid desaturase, was located approximately 1.17Mbp apart from the closest SNP marker Bnscaff\_16804\_2-p261726. On linkage group C03 no candidate gene was located within the confidence interval of the oil-QTL E Oil-2 (187.6 – 195.4cM) (Figure 3.7). But a second FAE1 copy was found 268kbp apart from the SNP marker Bn-scaff\_22466\_1-p1371888. This marker with the genetic position 201.4cM was positioned in the confidence interval of the erucic acid-QTL E\_22:1-3 (199.2 – 203.2cM).



confidence intervals of QTL overlapping E\_Oil-1 are represented as light grey bar. Middle: Enhanced confidence interval of E\_Oil-1 including within the E\_Oil-1 confidence interval, and the position of the putative candidate gene fatty acid elongase 1 (FAE1; red), a ketoacyl-CoA synthase, in B. napus reference genome. Genetic distances are presented in cM, physical positions are presented in base pairs; bold markers are framework map markers, markers in normal fond are markers of individual marker positions in the SGEDH linkage map; CI = confidence *Left*: Linkage group A08 of SGEDH population, framework map markers with position and mapped QTL; non-overlapping regions of all individual marker positions from genetic full map of SGEDH population. *Right:* The corresponding physical positions of markers mapped -igure 3.6: Genetic and physical map positions of markers within the QTL genomic region of E\_Oil-1 (20.5 – 27.1cM; dark grey bar) on A08 nterval


| Cl enhanced | al map -<br>52863596                      | - 53172808<br>- 53306240<br>- 53438348                                                   |                                                            |                                                                                                                             |                                                                   |                          |                                                                  |                                                                      |                                |                                |       |                                                 |                     | 56649416                         |                                     |
|-------------|-------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------------------------------|-------|-------------------------------------------------|---------------------|----------------------------------|-------------------------------------|
| Cl enh      | - Physical map<br>Bn-scaff_18669_1-p41786 | <i>brPb</i> -660636<br>Bn-scaff_17042_1-p180246<br>Bn-scaff_17042_1-p296096              | Bn-scaff_17042_1-p319410 -><br>Bn-scaff_17042_1-p361073 -> |                                                                                                                             | brPb-839425                                                       | Bn-scaff_16394_2-p207187 |                                                                  |                                                                      | Bn-scaff_22466_1-p1371888 —    |                                | FAE1  |                                                 |                     | Bn-scaff 17592 1-p386456         |                                     |
| Cl enhanced | - Genetic map<br>184.5                    |                                                                                          | 188.4 <b>E32M47-199D</b><br>188.9 <b>b</b> rPb-660636      | 192.3 — brPb-839425                                                                                                         |                                                                   |                          | 195.8 Bn-scaff_16394_2-p207187<br>196.3 Bn-scaff_17042_1-p418599 | 197.2 — Bn-scaff_17042_1-p319410<br>198.1 — Bn-scaff_17042_1-p361073 | 199.6 Bn-scaff_15794_1-p310593 | 200.5 Bn-scaff_15794_1-p157188 | 201.4 | 203.6 <u> </u>                                  | 204.6               | 207 0 Bn-scaff 17119 1-p148890   |                                     |
| C03         | À                                         | 12.8 Bn-scaff_18936_1-p277517<br>21.6 Bn-A03-p2737190<br>28.3 2 Bn-scaff_15877_1-p718090 |                                                            | 58.3 - Bn-scaff 18322_1-p677584<br>64.9 - brPb-838972<br>70.2 - Bn-scaff_21312_1-p694502<br>75.4 - Bn-scaff_23954_1-p865303 | 81.6 <b>brPb-663720</b><br>89.7 <b> Bn-scaff_16002_1-p1154894</b> | ĪŢ                       | "((                                                              | {((                                                                  | 141.3                          | 162.6                          | -6{-} | HH<br><b>−Oil-2{</b><br>orr-2{-]<br>E_Pro<br>HH |                     | 215.0<br>223.0<br>223.0<br>223.0 | 6706774-1-T66101-T11296-110 - 77877 |
|             |                                           |                                                                                          |                                                            |                                                                                                                             |                                                                   |                          |                                                                  |                                                                      |                                |                                | {+}2- | €C18:5<br>                                      | H<br>⊧⊃9∃<br>∃<br>₩ |                                  |                                     |

Linkage group CO3 of SGEDH population, framework map markers with position and mapped QTL; non-overlapping regions of confidence intervals of QTL overlapping E\_Oil-2 are represented as light grey bar. Middle: Enhanced confidence interval of E\_Oil-2 and non-overlapping regions of confidence intervals of QTL overlapping E\_Oil-2, including all individual marker positions from genetic full map of SGEDH population. Right: The corresponding physical positions of markers mapped within confidence interval of E\_Oil-2 and non-overlapping regions of confidence intervals of QTL overlapping Figure 3.7: Genetic and physical map positions of markers within the QTL genomic region of E\_Oil-2 (187.6 – 195.4cM; dark grey bar) on CO3. Left: E\_Oil-2, and the position of the putative candidate gene fatty acid elongase 1 (FAE1; red), a ketoacyl-CoA synthase, in B. napus reference genome. Genetic distances are presented in cM, physical positions are presented in base pairs; bold markers are framework map markers, markers in normal fond are markers of individual marker positions in the SGEDH linkage map; Cl = confidence interval.



Oil-condmap-2{+}

E\_Protein-6{-}



44202300

Bn-scaff\_15585\_1-p265441 —

brPb-670011
 E45M49-378E
 E32M47-122E

55.1 55.6 56.1

Bn-scaff\_27469\_1-p101056

148.2 154.8 161.0 164.7

Bn-scaff\_24859\_1-p44428 Bn-scaff\_22933\_1-p70880

Bn-scaff\_16534\_1-p551394

Bn-scaff\_15908\_1-p1114490 Bn-scaff\_16534\_1-p1901223

128.7 -133.6 --138.8 --

Bn-scaff\_23907\_1-p3780

Bn-scaff\_17869\_1-p115797

117.2 —

42745424

Bn-scaff\_16804\_2-p261726 —

## 3.5 Discussion

#### 3.5.1 Phenotypic variation

Increasing oil content is one of the most important aims of oilseed rape breeding nowadays. The results of the present study show a relatively large phenotypic variation for oil content. With a range from 42.5 to 50.9%, the oil content of the SGEDH population is equivalent to the oil content of commercial double low cultivars, which ranges from 40 to 50%. However, the discovered range was higher compared to a F1 derived DH population segregating for erucic acid, which ranged from 37.0 to 46.4% (Ecke et al. 1995). In comparison to observations of the DH population derived from the cross of the two high erucic acid and high glucosinolate cultivars Sollux and Gaoyou, including SGDH14, which showed a range of 37.8 to 57.0% and 40.7 to 56.0% at two German locations (Zhao 2002, Zhao et al. 2005), the range of oil content within the present study was lower. Comparing the oil contents of the SGEDH population to those ranging from 41.2 to 48.6% of a double low DH population derived from a cross between the two winter oilseed rape cultivars Sansibar and Oase, which showed contrasting seed oil contents (Teh and Möllers 2015), SGEDH oil contents were higher. Considering the parental lines of the SGEDH population, the oil content of SGDH14 with 48.7% (Table 3.3) was lower compared to the oil contents reported by Zhao (2002) of 56.9 and 56.0%. While the oil content of Express617 at 45.1% (Table 3.3) was comparable to previous observations by Basunanda et al. (2009) and Schatzki et al. (2013) of 43.6% and 45.7% oil, respectively. Differences in oil content between populations might be caused by different alleles from the different parental lines influencing oil content, which is not only a reason for different ranges of oil content in populations with a common parent but is also a reason for transgressive segregation within one population. Besides, oil content is depending on environmental effects mainly during seed development, which can cause differences in oil contents in different experiments.

In the SGEDH population a very strong positive correlation ( $r_s = 0.82^{**}$ ) between oil and erucic acid content was observed. This strong interrelation can be explained by the biosynthesis of erucic acid. To produce erucic acid, the plastid derived 18:1 is successively elongated by two C2 molecules at the endoplasmic reticulum. This is leading to a remarkable increase in molecular mass of the erucic acid acyl-chain. Incorporation of erucic acid into TAG consequently leads to the increase of the molecular mass of the storage lipid molecule. Assuming an identical number of storage lipid molecules, this implies an increase in oil content. Erucic acid content in *B. napus* is inherited by two genes which act in an additive manner (Dorrell and Downey 1964, Ecke *et al.* 1995, Sasongko *et al.* 2003). According to the expected segregation of these genes in the SGEDH population, genotypes could be assigned to three classes with low, medium and high contents of erucic acid (Figure 3.3). As previously described in Ecke et al. (1995) and Sasongko et al. (2003), in the SGEDH population the class of erucic acid free genotypes was clearly separated from erucic acid containing classes. Separation of the classes containing medium or high erucic acid contents in the SGEDH population was not as clear as for the low erucic acid class. Difficulties in separating these two classes was also reported by Albrecht et al. (1995), Ecke et al. (1995) and Sasongko et al. (2003), and are probably caused by environmental effects on erucic acid content (Harvey and Downey 1964). Since medium and high erucic acid genotypes were not clearly separated, the SGEDH population was partitioned only into two classes, one erucic acid free and erucic acid containing class. Thus, the expected segregation ratio of two genes with equal effects in a DH population is 1:3. With 70 erucic acid free genotypes, more than the expected 53 genotypes were detected, and with 142 erucic acid containing genotype, less genotypes than expected were found, a significant difference of the segregation for erucic acid content within the SGEDH population was detected ( $\chi^2$ -test:  $p_{1/3} = 0.007$ ). This indicated a skewed segregation at least for one of the erucic acid genes. Skewed segregation for erucic acid content was also found earlier by Ecke *et al.* (1995). In agreement with this, confidence intervals of the major QTL for erucic acid on linkage groups A08 and C03 showed a high number of markers with disturbed segregation in favour of Express617 and SGDH14, respectively, explaining the deviated number of genotypes within the different classes. The reason for the skewed segregation of the erucic acid content may be the linkage to a genetic factor causing disturbed segregation in this part of the oilseed rape genome (Ecke et al. 1995). Additionally, erucic acid content was strongly negatively correlated to oleic acid ( $r_s = -0.95^{**}$ ) in the SGEDH population, which was previously reported by other authors (e.g. Siebel and Pauls 1989; Sasongko et al. 2003). This result is according to the biosynthetic dependency of these two fatty acids, since oleic acid is the direct precursor for the elongation to eicosenoic and erucic acid, and the preferred substrate for the elongation enzyme  $\beta$ -ketoacyl-CoA-synthase (KCS; Millar and Kunst 1997). The close relationship between oleic acid and erucic acid is probably also the reason for the strong negative correlation between oil content and oleic acid content in the SGEDH population. In contrast Dimov and Möllers (2010) as well as Teh (2015) reported a strong positive correlation between oleic acid and oil content. Dimov and Möllers (2010) investigated two sets of double low quality winter oilseed rape cultivars and found correlations of  $r_s = 0.73^{**}$  and  $r_s = 0.66^{**}$ between oil and oleic acid content, respectively. Teh (2015) detected a correlation of  $r_s = 0.48^{**}$ in a DH population derived from a cross between two canola quality lines with contrasting oil contents. Therefore, a separated investigation of the seventy erucic acid free genotypes of the SGEDH population was conducted. But a positive correlation between oil content and oleic acid content for these lines was not detected ( $r_s = -0.21$ ; Table 3.7). On the other hand, the close association between oleic acid and erucic acid is probably also the reason for the significant negative correlations between linoleic acid and oil content as well as linolenic acid and oil content. Since the elongation to erucic acid takes up oleic acid, less oleic acid is available to further be desaturated to linoleic and linolenic acid. Thus, the two polyunsaturated C18 fatty acids contribute less to oil content.

The second strongest positive correlation with oil content was observed for protein content in defatted meal ( $r_s = 0.66^{**}$ ;Table 3.4), indicating a simultaneous increase of oil and protein content in defatted meal. But the calculation of partial correlations for oil, protein in defatted meal and erucic acid content, which showed the highest positive correlation with protein in defatted meal ( $r_s = 0.81^{**}$ ), identified no direct effect of oil content on protein content in defatted meal. However, the partial correlation indicated that erucic acid content may be causative for the positive correlation between oil and protein content in defatted meal. Using the same SGEDH population, (Suprianto 2014) found a strong negative correlation between oil content and neutral detergent fibre content (NDF;  $r_s = -0.81^{**}$ ). NDF represents the total cell wall, comprising cellulose, hemicellulose and lignin. These findings suggest that a simultaneous increase in seed oil and defatted meal protein content caused by erucic acid occurs at the expense of fibre content, which was reported before by Si *et al.* (2003). This is also confirming the assumption of Zhao *et al.* (2006) that an increase in oil content independently from protein content.

The relatively close positive correlation between the phenological traits begin of flowering (BOF) and end of flowering (EOF; rs= 0.69\*\*,Table 3.4) indicates that flowering period (FP) is not much influenced by those two traits. However, the strong negative correlation between BOF, EOF and FP revealed that the later BOF and EOF is, the shorter FP tends to be, and vice versa. With a correlation coefficient of  $r_s = -0.94^{**}$  BOF seems to have the highest influence on FP ( $r_s = -0.44^{**}$  for EOF). A retarded BOF is also positively related to plant height at EOF ( $r_s = 0.61$ ), which could be explained by the chronology of plant growth, whereat full plant height is reached at peak of flowering (Kimber and McGregor 1995). So the later the plant starts to flower the longer it can grow.

#### 3.5.2 Molecular marker polymorphisms

AFLP analysis of 11 primer pairs created 159 polymorphic marker loci for the SGEDH population. With an average of 14 to 15 markers per primer pair, the detected number of

polymorphisms within the SGEDH population was lower compared to Radoev (2007), who identified 24 polymorphic markers per primer pair in a DH population derived from a cross between Express617 and the resynthesized line R53. The lower number of polymorphisms detected in the SGEDH population may either be caused by the individual potential of the selected primer pairs or explained by the degree of polymorphism within the population. Since resynthesized oilseed rape generally is a valuable source for broadening the genetic variation (Becker et al. 1995), the DH population of Radoev (2007) may have a higher degree of polymorphism compared to the SGEDH population. However, AFLP markers generate only anonymous loci. This is why sequence informative DArT markers were used to supplement the number of polymorphic markers. But only 10% of the screened DArT markers (323/3072) showed an adequate quality for map construction, which might be caused by difficulties in the interpretation of microarray expression data. This was previously reported by Edwards (2012) for *Brassica* and wheat, due to a general inability to distinguish between different homologous copies of specific expressed genes using oligonucleotide-based hybridisation methods. Therefore, a SNP marker screening with the Illumina 60k chip (58464 markers) was conducted additionally, resulting in 15392 polymorphic markers (26.3%) suitable for linkage mapping with less than 10% missing data points.

## 3.5.3 Linkage map

The linkage analysis of the 212 SGE doubled haploid lines in this study assembled 15380 SNP, 116 AFLP and 314 DArT markers in 19 linkage groups, each representing one of the *B. napus* chromosomes. The linkage map covered a length of 2651cM, which is comparable to a consensus linkage map constructed by Piquemal *et al.* (2005) with 2619cM, but beyond the size of the oilseed rape genome estimated by Lombard and Delourme (2001) also applying a consensus approach with a range from 2127cM to 2480cM. Beside these consensus maps a number of different linkage maps have previously been constructed for *B. napus*. All these maps are smaller compared to the SGEDH full map, although the size of linkage maps in general increased. Parkin *et al.* (1995) and Sharpe *et al.* (1995) e.g. published three maps which ranged from 1606cM to 1741cM which were considered as rather complete (Lombard and Delourme 2001, Radoev 2007). Other linkage maps of oilseed rape were developed by Cheung *et al.* (1997), covering 1955cM, and by Zhao *et al.* (2012) with a length of 1949cM. While a map constructed by Teh and Möllers (2015) reached a length of 2350cM. Nevertheless, a direct comparison of map sizes is difficult, since they are dependent on the degree of genome coverage by marker loci, on the size and the type of the mapping population, on the mapping function applied, and on the

recombination frequencies, which are influenced by the genetic diversity of the parents and/or environmental effects on meiosis (Ferreira *et al.* 1994, Radoev 2007).

With about 50% a large proportion of markers showed a distorted segregation in the SGEDH population. The phenomenon of skewed segregation ratios has often been reported on androgenic plant material in various species (Foisset and Delourme 1996), and maps of microspore derived DH populations of *B. napus* have previously been published (Ecke *et al.* 1995; Teh 2015 and references within). Whereas these populations are ideal to perform mapping analyses because they have no residual heterozygosity, in vitro culture conditions are reducing their genetic variability by selection interfering with androgenesis or the subsequent embryo regeneration in microspore culture (Uzunova *et al.* 1995, Foisset and Delourme 1996, Meksem and Kahl 2006, Ferrie and Möllers 2011, Ecke *et al.* 2015).

Most of the markers polymorphic within the SGEDH population showed redundant information, since the total number of 15810 markers only accounted for 1693 (11%) individual marker positions. Co-segregating markers form haplotype blocks, which prevent genetic mapping of individual markers. The main source of polymorphic markers in this study was the 60k SNP Illumina Infinium chip. To reduce the redundancy of marker information this array has meanwhile been optimized. Today a 15K array developed from four different data sets is available, including different haplotypes from winter oilseed rape, summer oilseed rape, *B. rapa* and *B. oleracea*. The reduced number of polymorphic markers of high quality (meaning a clear cluster separation) still guarantees the construction of a proper map and simultaneously lowers the costs of the analysis (Dr. Jörg Plieske, TraitGenetics GmbH, Gatersleben, Germany, personal communication).

Furthermore, the redundancy of marker information at co-segregating positions is influencing the map coverage and marker density. While the total marker number of the A genome (7843) and the C genome (7967) seems similar (Table 3.8), a larger number of individual markers were mapped on the A genome (979) compared to the C genome (714). A larger number of individual markers on the A compared to the C genome has also been reported before (Teh 2015, and references within). But also, the distribution of the markers is affected when comparing total number of markers to the number of non-co-segregating markers. While there are 2 to 21 markers per cM identified on the different linkage groups, with mean distances ranging from 0.05 to 0.5cM between markers considering all markers (Figure 3.8), there are only 0.4 to 1 markers per cM and mean distances of 1 to 2.4 cM identified for non-co-segregating markers (Appendix 13).

Despite the available high marker density of the SGEDH population, due to computational reasons the number of markers for QTL mapping was reduced. The constructed framework map, which was applied for QTL mapping, consisted of a set of 379 evenly distributed markers with a common distance of 5 to 10cM. According to Visscher *et al.* (1996) a change in marker spacing showed only small effect on the average empirical confidence interval of detected QTL. While it was additionally reported, that the size of an average confidence interval depended heavily on the population size and the effect of the QTL.

## 3.5.4 Genetic and physical mapping

In this study, QTL analysis identified four main QTL for seed oil content on linkage groups A08, C03, C05 and C07. This number of QTL is comparable to the three distinct QTL detected by Ecke et al. (1995), but generally lower compared to other reports in which QTL for oil content were mapped (see section 2.6). With 31.2 and 50.2% of the phenotypic variance, QTL E\_Oil-1 and E\_Oil-2 on linkage groups A08 and C03, respectively, were identified as the major QTL for seed oil content in the SGEDH population. The major QTL on A08 overlapped with a major QTL for erucic acid (E\_GC22:1-2). While the major QTL on CO3 was co-located with one of two QTL for eicosenoic acid (E\_GC20:1-2) which explained the highest phenotypic variation of this trait. In agreement with this finding the segregation of erucic acid and its intermediate eicosenoic acid in the SGEDH population shows high eicosenoic acid contents for genotypes with medium erucic acid contents carrying one positive erucic acid gene (Figure 3.9). Ranging from 16.1 to 34.8% the variation of the group of genotypes with medium erucic acid contents is relatively large. In this group genotypes are expected to either carry the positive allele for erucic acid content on A08 or C03, which suggests that this group can be divided into two subgroups. In accordance the marker genotype segregation of the DH lines within this group identified two main groups. One group carried the positive allele for erucic acid content on C03 and a negative allele on A08 (Figure 3.9; red dots), while the other group carried the positive allele for erucic acid content on A08 and a negative allele on C03 (Figure 3.9; grey dots). Furthermore, the presence of the major QTL for eicosenoic acid on C03 assumed that the positive erucic acid allele of this locus has a higher affinity to oleoyl-CoA as substrate, producing predominantly eicosenoic acid. Thus, genotypes carrying only the positive allele of C03 showed relatively low erucic acid contents. While the allele of A08 seemed to be less selective for its substrates oleoyl-CoA and eicosenoyl-CoA, which results in high eicosenoic acid and higher erucic acid contents for genotypes carrying only the positive allele on A08.

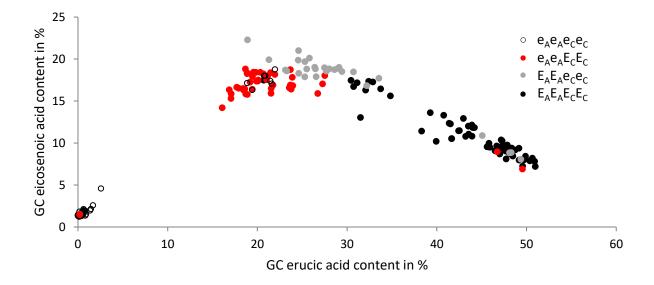



Figure 3.9: xy plot of erucic acid and eicosenoic acid content determined by gas chromatography; dots represent groups of marker genotypes  $e_Ae_Ae_Ce_C$  (circles),  $e_Ae_AE_CE_C$  (red dots),  $E_AE_Ae_Ce_C$  (grey dots) and  $E_AE_AE_CE_C$  (black dots); e represents a negative allele for erucic acid, E represents a positive allele for erucic acid content; A indicates the erucic acid locus of the A genome of *B. napus* on A08, C indicates the erucic acid locus of the C genome on C03

In accordance with these results, two of the oil-QTL identified by Ecke et al. (1995) showed a strong association to estimated positions of the two erucic acid genes and other subsequent studies, not only identified two major QTL for erucic acid, but also located these QTL on linkage groups N8 (A08) and N13 (C03) (Howell et al. 1996, Thormann et al. 1996, Qiu et al. 2006). For example, Qiu et al. (2006) detected two major QTL for erucic acid co-located with QTL for oil content on N8 and N13, investigating a DH population from a cross between a double low and '++'-quality parent independently at four locations. While Radoev (2007), investigating a DH population segregating for only one erucic acid gene, detected major QTL for oil content on N8 and N13, and found one major QTL for erucic acid on linkage group N8 co-located with the oil-QTL on N8. Furthermore, Teh and Möllers (2015) detected a minor QTL for oil content on C03, analysing a DH population of two double low quality cultivars. The SNP marker closest to the peak of this QTL (Bn-scaff\_18936\_1-p277517) was also found in the SGEDH population, but at the position 12.8cM, while the oil-QTL in the SGEDH population was located at 190.4cM, indicating that the oil-QTL identified in both populations represent different loci. The regulation of erucic acid content in *B. napus* by the additive action of two genes was already reported previously (Harvey and Downey 1964, Stefansson and Hougen 1964, Siebel and Pauls 1989), and matches the established biosynthesis path, in which oleic acid is first elongated to eicosenoic acid, which in a second step is elongated to erucic acid, by subsequent addition of C2 units. Both elongation cycles are catalysed by the cytoplasmic/ER-bound oleoyl-CoA elongation complex,

comprising a four enzyme system analogous to the fatty acid synthase complex of the plastid (section 2.4). The four enzymes include the ketoacyl-CoA synthase (KCS) FAE1 which catalyses the rate-limiting step of oleic acid elongation to erucic acid (Millar and Kunst 1997, Fourmann et al. 1998). A comparison of the physical position of the FAE1 candidate genes and confidence intervals of QTL for oil content and fatty acids showed that FAE1 was co-located not only with major QTL for erucic acid on linkage groups A08 and C03 (E\_GC22:1-2 and E\_GC22:1-3), but also with the major oil-QTL on A08, E\_Oil-1. On linkage group C03 the confidence interval of the major QTL E\_Oil-2 did not overlap with the confidence interval of E\_ GC22:1-3 (peak to peak distance of 10.8cM), but with that of E\_GC20:1-2, the major QTL for eicosenoic acid, the elongation intermediate, which might be explained by a higher affinity to oleoyl-CoA of the FAE1 on C03 as discussed before (cf. Figure 3.9). However, these findings suggested, that the addition of carbon units to oleic acid to produce erucic acid, and the consequent increase of molecular mass of the fatty acid chain, might explain the association found for seed oil content and erucic acid content. Besides, identifying FAE1 as the most likely candidate gene, since the number of stored fatty acid chains remains unaffected but the increase in molecular mass is causing an increase of oil content (Ecke et al. 1995). Although this effect is most probably caused by a pleiotropic effect of FAE1, a close linkage between the erucic acid genes and other independent QTL for seed oil content cannot be excluded (Ecke et al. 1995).

Referring to Price (2006) there is evidence that the position of a QTL obtained from a primary mapping population can identify a candidate gene with less than 1cM around the QTL peak for a major QTL, which explains more than 25% of the trait's variation. Since none of the selected lipid related candidate genes (Appendix 4) were identified for the major oil-QTL E\_Oil-2 on linkage groups C03 (cf. Table 3.9), a 1cM region around the E\_Oil-2 peak (190.4cM) was scanned for *A. thaliana* protein matches on the *B. napus* Darmor-*bzh* reference genome (Chalhoub *et al.* 2014, http://www.genoscope.cns.fr/brassicanapus/). Using the genetic and physical marker information of Figure 3.7, 1cM in proximity of E\_Oil-2 equals about 130kbp. As closest marker to the QTL-peak, br-Pb839425 (192.3cM/54303404bp) was used to estimate the +/-1cM-region of E\_Oil-2. The scanned region reached from 53910 to 54170kbp on the *B. napus* genome. In this region 27 *A. thaliana* protein matches were found (Appendix 5), but none of the proteins was related to lipid metabolism according to the *A. thaliana* lipid metabolism database (Beisson *et al.* 2003, http://aralip.plantbiology.msu.edu/locations).

QTL E\_Oil-3 on C05 indicating SGDH14 as source of the increasing allele, and E\_Oil-4 on C07 indicating Express617 as source of the increasing allele, showed only minor effects and the comparison to physical positions of putative candidate genes to their confidence intervals

remained without results. However, Zhao *et al.* (2005) identified QTL for oil content with additive x environment interaction effects at a German location on equal linkage groups in the Sollux x Gaoyou DH population, both indicating the Chinese parent Gaoyou as the source of the increasing allele. Delourme *et al.* (2006) also detected oil-QTL on both linkage groups from field trials conducted in France. While Qiu *et al.* (2006) in contrast detected a QTL for oil content on N17 (C07), but no QTL on N15 (C05). Referring to Price (2006) also for minor QTL an accuracy of less than 3cM around the QTL peak was detected to identify putative candidate genes. If possible, accuracy to identify a candidate gene for minor QTL was even improved by averaging peak positions from different screens or by combining multiple data sets to increase the heritability of the trait of interest (Price 2006). Hence, a scan with a wider scan region might also be used to identify putative candidate genes for the minor QTL E\_Oil-3 and E\_Oil-4.

The three independent correction approaches applied to eliminate the effect of erucic acid from oil content revealed a consistent major QTL for oil content, represented by E\_Oil-reg\_corr-3, E\_Oil-mol\_corr-5 and E\_Oil-cond-3, which was located on C05 at 39.7cM (cf. Table 3.9; confidence interval 35.7 – 43.7), about 30cM apart from E\_Oil-3. Comparison of the physical positions of lipid related candidate genes with the confidence interval of this QTL for oil content identified no co-localisation. Therefore, as described for E\_Oil-2, a scan for A. thaliana protein matches on the *B. napus* Darmor-*bzh* reference genome (Chalhoub *et al.* 2014, http://www.genoscope.cns.fr/brassicanapus/) was conducted around the peak of the major QTL for corrected oil contents on C05. The closest marker to the QTL peak (39.7cM) was Bn-A05-p22111286 at 39.9cM with physical position at 39985396bp on C05. 1cM in the confidence interval of the QTL for corrected oil contents equalled around 82kbp, therefore a region between 39.9Mbp to 40.1Mbp on C05 was scanned for suitable *A. thaliana* protein matches, resulting in more than 40 matches. Closest to the position of Bn-A05-p22111286 two protein matches were identified, AT3G10320.1 a Glycosyltransferase family 61 protein (MUCILAGE-RELATED21) ranging from 39982337 to 39983989bp, and AT3G10310.1 a P-loop nucleoside triphosphate hydrolases superfamily protein with CH (Calponin Homology) domain ranging from 39984486 to 39988842bp. For both proteins an overlapping B. napus gene prediction was identified, GSBRNA2T00110924001 BnaC05g42790D alias and BnaC05g42800D alias GSBRNA2T00110923001, respectively. While AT3G10320.1 is involved in the mucilage biosynthetic process in seed coat development of A. thaliana, AT3G10310 is involved in microtubule-based movement. None of these genes seemed to be directly related to seed oil biosynthesis. Both genes were also not listed in the Arabidopsis acyl-lipid metabolism database (Beisson et al. 2003). More distant to the QTL peak of the major QTL for corrected oil contents, two protein matches were found with entry in the Arabidopsis acyl-lipid metabolism database

(Beisson et al. 2003), AT3G10370.1 the FAD-dependent oxidoreductase family protein (SDP6) ranging from 39950760 to 39953567bp, and AT3G14270.1 a phosphatidylinositol-4-phosphate 5-kinase family protein (FAB1B) ranging from 39908061 to 39910664bp. For both proteins an overlapping В. napus gene prediction was identified, BnaC05g42730D alias GSBRNA2T00110930001 and BnaC05g42630D alias GSBRNA2T00110943001, respectively. AT3G10370.1 is involved in the mitochondrial phospholipid synthesis and AT3G14270.1 in phospholipid signalling. Thus, a direct relationship to seed oil biosynthesis could not be observed. Regarding position and function no other suitable protein matches were identified.

In total this study identified eight QTL for oil content in the SGEDH population using original and corrected oil contents. This number in general is compared to the number of oil-QTL of previous studies (Zhao et al. 2005, Qiu et al. 2006, Zhao et al. 2012, Teh and Möllers 2015), identifying six to nine QTL. Comparison of QTL for oil content in the SGEDH population to QTL results from other populations indeed identified QTL on same linkage groups, but due to lack of common markers between populations or the use of none sequence-informative markers in previous studies, in most cases it is still unclear if QTL on same linkage groups are identical or not. Physical mapping in general showed a good correspondence of genetic and physical positions. Nevertheless, a number of markers showed an incorrect genetic order according to their physical position. This lack of consensus might be one reason for relatively large confidence intervals of some QTL or might even cause errors in QTL detection. Thus, it is recommended to reorder or delete markers with extremely deviating order in the genetic and physical map. Likewise, sequence informative markers without or with no suitable physical position were detected. To improve the information content of the SGEDH map of individual marker positions and to improve QTL mapping and the search for candidate genes, these markers should also be replaced if a co-segregating marker is available with matching sequence information regarding the physical position. On the other hand using the *B. napus* reference genome to physically map marker positions as well as candidate genes, it needs to be considered that the reference genome order is not yet fixed, especially the position and orientation of scaffolds only represents a most likely order/anchoring due to the high complexity of the allotetraploid B. napus genome, including multiple homoeologous gene copies, chromosomal rearrangements and amplification of repetitive DNA (Edwards et al. 2012).

To test if the putative candidate genes identified are responsible for changes in oil content in a next step expression analyses could be used to investigate transcriptional differences of the parental lines and other genotypes, or the allelic diversity could be tested by sequencing. Furthermore, to demonstrate a functional relationship between a candidate gene and its

93

corresponding QTL a knock-down or knock-out mutants could be produced. Alternatively, a transgenic approach to overexpress a candidate gene or an antisense RNA approach to inhibit or silence a candidate gene post-transcriptionally could shed light on the role of this candidate gene to influence oil content.

#### 3.5.5 Correction of oil content for the effect of erucic acid

Due to the relation between oil and erucic acid content, genotypes with erucic acid content showed higher oil contents compared to genotypes without erucic acid. To be able to compare oil contents of genotypes of the SGEDH population, two different methods of considering the effects of erucic acid on oil content were applied. One method was using the regression equation based on oil and erucic acid contents of the SGEDH population. The other method based on the molecular relationship of the main fatty acids of *B. napus*, oleic and erucic acid. During the elongation of oleic acid to erucic acid the molecular mass of the individual fatty acid molecule is increased by about 19%, assuming that all other parameters of fatty acid synthesis and storage, especially the number of stored fatty acid chains, remain unaffected by the elongation process (Ecke et al. 1995). This 19% difference was used to adjust the oil content of erucic acid containing genotypes of the SGEDH population. Since both correction methods aimed at the elimination of the effect of erucic acid, no correlation between oil content and erucic acid content was to be expected. Comparison of both correction methods (Figure 3.3b and c) showed that the correlation coefficient of the regression correction was smaller than that of the molecular correction, and the slope of the regression correction equation was closer to zero than the slope of the molecular correction equation. These results are indicating that regression correction is more accurate than molecular correction. The negative slope of the molecular correction method seems to overestimate the effect of erucic acid on oil content. This might be explained by the intermediate product of the elongation from oleic acid to erucic acid, eicosenoic acid (20:1), which on average accounts for 10% of the fatty acid composition in genotypes with erucic acid. Applying the molecular correction method in the present study, the effect of eicosenoic acid content on oil content was not considered. Therefore, it is suggested to modify the molecular correction method including the effect of eicosenoic acid content, and compare the results of the recalculated molecular correction to the results of regression correction again. But the correction of oil content was not only conducted to make oil contents of genotypes with varying erucic acid contents comparable, but also to perform QTL mapping for oil content uncoupled form the effect of erucic acid to identify additional minor QTL shaded by the effect of erucic acid. For this purpose a third correction method for oil content was included in this study,

the conditional correction, which was previously used by Zhao et al. (2006). The conditional corrected oil content showed the lowest correlation coefficient and a slope closest to zero compared to the other two correction methods, indicating the highest accuracy of correction, but the conditional correction is not based on zero erucic acid content. It is based instead on a method very similar to the estimation of adjusted values in a covariance analysis using the mean oil content of the SGEDH population as fixed point. Hence, the oil content values shown in Figure 3.3d are higher compared to those of Figure 3.3b+c. A parallel shift of the conditioned values by changing the y-intercept to the mean oil content of the erucic acid free genotypes might enable the comparison of all three correction methods. Nevertheless, QTL results of regression and conditional corrected oil contents were identical, except for a difference of 0.6cM of the confidence intervals of QTL on C07. In contrast, QTL for molecular correction showed differences not only in positions and confidence intervals of QTL comparable to these of regression and conditional correction, but also two additional QTL were identified with molecular correction. In comparison, these findings repeatedly identified the highest deviation for molecular correction. This shows that QTL results for molecular correction should also be recalculated and compared again after improving the method. From these results it is suggested to use the regression correction method for further experiments to have a reliable correction and to be able to compare oil contents of genotypes with and without erucic acid contents on the basis of zero erucic acid content. For QTL mapping regression or conditional correction can equally be used, since the results from both methods suggest that they are appropriate to calculate identical QTL. Another advantage of the regression and conditional correction is that these approaches can easily be applied to other traits.

## 3.5.6 Comparison of NIRS prediction and gas chromatography to determine erucic acid content

Near-infrared reflectance spectroscopy (NIRS) is a technique that uses the radiation absorbed by a set of samples to determine its properties. This technique has several advantages when compared to chemical-based analysis because it is non-destructive, rapid, and cost effective, does not require labour intensive sample processing, is environmentally safe and allows the simultaneous estimation of several traits in one sample (Stuth *et al.* 2003, Suprianto 2014). Comparing NIRS predictions and GC measures of erucic acid content within the SGEDH population a conspicuous underestimation of erucic acids contents of NIRS data was identified (Figure 3.1a). Especially the occurrence of negative values for potentially erucic acid free genotypes was striking, since negative values for erucic acid are not possible. Therefore, NIRS predictions were adjusted as described in section 3.3.3.3. This was done to test if QTL results from adjusted NIRS data were comparable to results from GC for erucic acid content as well as for regression corrected and conditioned oil content (Table 3.13). Since with adjusted NIRS data the same QTL were detected as with the GC method, NIRS predicted values can be used for QTL mapping instead of using results from the more laborious and cost intensive GC analysis.

The quality of NIRS prediction depends on the quality of its calibration equation. To develop a significant calibration equation a representative set of samples needs to be analysed by precise reference laboratory methods. Although well proven calibrations for NIRS are used to predict various seed quality traits like oil or protein content, the calibration used in this study should be improved for erucic acid prediction. In a previous study (Radoev 2007) also analysed erucic acid content by NIRS in a DH population derived from a cross of a low and medium erucic acid containing parent, and did not observe negative values for potentially erucic acid free genotypes. Concluding that although results achieved with adjusted NIRS predictions of erucic acid were matching GC results, in the long term an improvement of the calibration for erucic acid containing material seems appropriate.

#### 3.5.7 Application in practical breeding

In practical breeding individual QTL controlling a trait of interest can be used for marker assisted selection. Different loci from different material or different genomic regions in this way can be pyramided into an elite germplasm. This process is a time consuming challenge in plant breeding, therefore pleiotropic QTL regions controlling different traits of interest simultaneously in a favourable manner are of high value.

In the present study four QTL controlling oil content were identified on A08, C03, C05 and C07. Following correction of oil content for the effect of erucic acid using three different approaches three additional loci influencing oil content on A10, C04 and C05 were consistently identified. Major QTL for original oil content were located on A08 and C03 within QTL hot spot regions, either overlapping with or in close proximity to QTL for fatty acids and protein traits. In both hot spot regions a *FAE1* gene was identified as underlying candidate gene, causing a decrease of palmitic acid and C18 fatty acids, while increasing erucic acid and oil content. These regions were additionally showing a simultaneous increase in protein and or protein content in defatted meal. This suggests that these regions can be utilized in practical breeding to increase oil and protein content in defatted meal at once, which is meeting the increasing demand of oil as

foodstuff and renewable resource, and oilseed meal as feedstuff for animal diets. Due to the close linkage and positive correlation between QTL for oil and erucic acid content at these loci and the fact that current oilseed rape breeding focuses on canola quality breeding, their use is restricted to high erucic acid breeding programs. Therefore, original oil-OTL on C05 and C07 might be of higher interest. E\_Oil-4 on C07, which was approved not to be linked to erucic acid since QTL for corrected oil content were found co-located, might also be a promising candidate locus to further increase oil content in current breeding material by marker assisted selection. Since this locus not only increases oil content but simultaneously seems to decrease unfavourable glucosinolate content. E\_Oil-3 on C05 was found linked to QTL simultaneously increasing plant height delaying begin of flowering. This relation might be explained by the hypothesis that the later the plant starts to flower the longer it can grow, and the longer the growing period the taller the plant resulting in a higher biomass which provides a higher biosynthetic activity enabling the increased production of seed storage lipids, and might be useful for further breeding approaches. Besides, a second QTL was identified for corrected oil content about 30cM apart from this original oil-QTL, explaining the highest amount of the phenotypic variation. This QTL overlapped with QTL for linolenic acid and end of flowering, which should be considered when breeding for low linolenic acid content. Corrected oil-QTL on A10 and C04 overlapped with QTL for protein content with additive effects of opposite directions, thus increasing oil content at the expense of protein content.

To increase seed protein content in current breeding material individual QTL for seed protein content on A04 and A09 might be used for marker assisted selection. But since the protein content in oilseed meal after oil extraction is of higher interest compared to the protein content in total seed, marker assisted selection might preferably take advantage of QTL individually controlling protein content in defatted meal on linkage groups A07, C06 and C08 or QTL controlling both protein traits as found on A07 (co-located with QTL for end of flowering and plant height with opposite additive effects) and C06 (overlapping phenological traits). If deciding on the locus on C06 to increase protein content in defatted meal, it needs to be considered that due to an overlapping QTL linoleic acid content might be decreased. In general, in the SGEDH population a significant positive correlation between seed protein and protein content in defatted meal ( $r_s = 0.69^{**}$ ) indicates, that a selection for one or the other traits are sharing only 50% (R<sup>2</sup>) of their genetic basis, which is confirming previous results of (Zhao 2002), and shows the potential to increase both traits independently.

In contrast, breeding in favour of increased linoleic acid content might cause a decrease in protein content of defatted meal, when utilizing the locus identified for these traits on C06. Thus, the individual QTL identified for linoleic acid on A05 might be used preferably. To influence linolenic acid individual QTL on A01, A05 and A06 might be of interest for marker assisted selection. And palmitic acid might be modified by using the individual QTL identified on A03.

Beside increasing oil content, the improvement of yield performance is a major breeding aim in oilseed rape. Seed yield is a complex trait that includes various components, including number of pods per plant, the number of seeds per pod and the individual seed weight as the most important once (Diepenbrock 2000). Seed weight was determined as thousand kernel weight in the SGEDH population, and identified a QTL explaining the highest phenotypic variation (13.8%) on linkage group C01, indicating that the alleles increasing oil content were derived from SGDH14. A previous study of Basunanda *et al.* (2009) also identified a QTL for thousand seed weight on C01 in a DH population derived from a cross between Express617 x R53. For this QTL alleles increasing oil content were derived from Express617. Assuming that the locus identified in both populations is the same, the reported results indicate that although the Express617 allele was identified as the better allele in the cross Express617 x R53, the SGDH14 allele was identified to be even better in the SGEDH population. These findings illustrate a general weakness of QTL analysis, which enables to identify the parental line contributing the better alleles within the population analysed, but this need not be the better allele compared to other material.

QTL for phenological traits were in most cases linked to QTL for oil, fatty acid and or protein content, or to each other. But individual QTL were found for end of flowering on A10, flowering period on A03, and plant height on A02 (2) and A04, which might be of interest for further breeding approaches.

## 3.6 Conclusion

The present study identified eight QTL for seed oil content. Previously detected major QTL on A08 and C03 for erucic acid content were confirmed, and a promising major QTL for oil content was found on C05, revealing SGDH14 as source of positive alleles. Furthermore, physical mapping utilizing the *B. napus* Darmor-*bzh* reference genome not only enabled to determine the physical positions of sequence-informative SNP and DArT markers, but also the screening of putative candidate genes of oil biosynthesis within the confidence intervals of oil-QTL. While the

genomic regions of major QTL on A08 and C03 showed co-localisation with alleles of the candidate gene *FAE1*, no candidate gene was identified within the genomic region of the major oil-QTL on C05 so far. However, the candidate gene *FAD3* was found co-located with the minor QTL on C04. Further investigations are necessary to identify potential candidate genes for the remaining five oil-QTL.

4 Genetic variation and inheritance of oil content and relevant seed quality traits of the SGEDH population cultivated in East China

## 4.1 Abstract

Oilseed rape (Brassica napus L.) is one of the most important oil cops in the world. Therefore, increasing oil content represents a major breeding aim. Chinese and European cultivars of B. *napus* represent two distinct gene pools, providing independent sources of variation to each other. In previous work, the old German cultivar Sollux was crossed to the Chinese cultivar Gaoyou. Both cultivars are known for their high oil content but also contain high contents of erucic acid and glucosinolates ('++'-quality). From this cross a doubled haploid (DH) population was developed and tested in field experiments. Following field testing under north-western German growing conditions DH line SGDH14 had the highest oil content and a combination of all QTL alleles increasing oil content from both parents. The present study further investigates the inheritance of seed oil content and other seed quality traits in a new DH population derived from the cross of SGDH14 and the inbred line 617 of the German cultivar Express ('00'- or canola quality), which also shows a high oil content. This population (n=212) was tested during two consecutive years at one location in replicated field trials in East China. Seed quality traits as well as phenological traits were determined. A framework map consisting of 19 linkage groups with 379 SNP, DArT and AFLP markers was developed, covering 2651cM. Mean trait values were used to map QTL. Analysis of variance revealed highly significant genotypic effects for most traits and heritabilities varied from 0.55 to 0.96. QTL mapping identified six QTL for oil content including four QTL for oil content not linked to erucic acid content on A06, A07, A10 and C05. Although the comparison of physical positions of QTL for oil content to the *B. napus* Darmor-*bzh* reference genome enabled the screening for potential candidate genes, only one genomic region co-located with a lipid related candidate gene. Three of the oil-QTL detected in China corresponded to QTL previously found in European field trials. Identifying environment-stable and environment-sensitive QTL for oil content by comparison of European and Chinese experiment, the current study discloses new potential to further increase oil content in both mega-environments by marker assisted selection.

## 4.2 Introduction

Increasing oil content is one of the most important breeding aims of oilseed rape (*Brassica napus* L.). Originally comprising high levels of erucic acid, which in animal experiments appeared to have a negative effect on the heart, oilseed rape oil was primarily used for industrial purposes. This changed with the development of the so called canola- or double low quality oilseed rape in

the 1970s. In the seeds of double low quality oilseed rape not only erucic acid was nearly completely eliminated, but also another anti-nutritional seed component was remarkably reduced, the glucosinolates. Thus, oil as well as protein quality in oilseed rape seeds were improved at once, and gained an important role for food and feed supply. Oilseed rape is an important oil crop in Europe as well as in China. Therefore, breeding independently focused on the increase of seed oil content. Due to different growing conditions, different oilseed rape varieties are grown in Europe and in China. In Europe, predominantly the winter or biennial form of oilseed rape is grown, whereas in China, both winter and spring varieties are grown depending on the climatic conditions. On average daily temperature from sowing to flowering is about 1 to 4°C and from flowering to maturity 3 to 4°C lower in Europe, and the total growth period is about 84 d longer including a 14 to 17 days longer growth period from flowering to maturity (Zhao et al. 2005). Because of a longer growing period and lower mean temperatures winter type oilseed rape out-yields the summer type (Kramer and Sauer 1983). Selection for high oil content in both environments already showed success, and investigations of the genetic diversity detected an increase from 1950 to 1980, but then it remained at a similar level in China and Europe (Wang et al. 2014). Today, the demand for plant oil as food and renewable resource is worldwide growing, which makes the further increase of seed oil content in oilseed rape necessary. And the limited genetic variation of the relatively young crop *B. napus*, initiated the search for new genetic resources. One approach to broaden the genetic basis in oilseed rape was using the combination of two cultivars from the distinct European and Chinese gene pools (Zhao et al. 2005). A cross of the old German cultivar Sollux to the Chinese cultivar Gaoyou was conducted. Both cultivars have high oil contents, but also a high erucic acid and glucosinolate content. A DH population was derived from this cross and investigated in Germany and China to test whether these gene pools contain different alleles for high seed oil content. By QTL mapping eight QTL for oil content were detected with additive main effects, five of these QTL showed significant additive x environment effects. Positive alleles were found in both parental lines. Alleles of Sollux and Gaoyou were more often positive in their respective environment. However, at few loci alleles from the Chinese parent were positive in the German environment. The results of Zhao et al. (2005) indicated that a combination of positive alleles of Chinese and European material is a promising approach for increasing oil content in both mega-environments. The present study continues these investigations. In the experiments with the Sollux x Gaoyou DH population of Zhao et al. (2005), DH line SGDH14 was identified as one of the lines with the highest oil content and a combination of all positive QTL alleles under north-western German growing conditions. This line SGDH14 was crossed to the inbred line 617 of the German winter oilseed rape cultivar Express, and a new DH population termed SGEDH was developed. This population was tested in field experiments under north-western European conditions and QTL

for oil content and other traits were mapped (cf. chapter 3). The objective of this study was to investigate the inheritance of seed oil content and other seed quality traits of the SGEDH population in field experiments performed in the Hangzhou area of the Zhejiang region in the PR of China and to compare the results with previous ones obtained from European trials.

## 4.3 Materials and methods

#### 4.3.1 Plant material

Plant material was the SGEDH population described previously in section 3.3.1.

### 4.3.2 Field experiments

DH lines were tested by Prof. Jianyi Zhao (Zhejiang Academy of Agricultural Sciences, Hangzhou) in the two consecutive years 2010/11 and 2011/12 at Hangzhou located in East China. Field experiments were conducted as group wise randomized block design in small plots with two replications. The three different groups within the experiment were defined as described in section 3.3.2. For each genotype seed samples were harvested at maturity from the main raceme of ten open pollinated plants. Seeds were bulked and seed quality traits were analysed by near-infrared reflectance spectroscopy (NIRS). During growing season begin of flowering (BOF) and end of flowering (EOF) were scored, plant height at end of flowering (PH\_EOF) was measured and flowering period (FP) was calculated. Phenological traits were determined as described in section 3.3.2.

## 4.3.3 Phenotypic analysis

#### 4.3.3.1 Near-Infrared Reflectance Spectroscopy

NIRS was performed as described in section 3.3.3.1. Since NIRS calibration is not predicting oleic and linolenic acid contents accurately for seed samples containing erucic acid only erucic acid content was analysed for Chinese field trials.

#### 4.3.3.2 Adjustment of NIRS predicted erucic acid contents

NIRS was performed as described in section 3.3.3.1. NIRS predicted erucic acid contents were adjusted corresponding to section 3.3.3.3. Erucic acid free genotypes were corrected by subtracting the group specific correction factor of -6.35%. Genotypes with medium and high NIRS erucic acid content were adjusted using the regression equation of this group, y = 1.50x - 5.05 (Figure 3.1b). The comparison of NIRS predicted erucic acid contents with adjusted erucic acid contents for Chinese experiments showed a high coefficient of determination with  $R^2 = 0.96$ .

#### 4.3.3.3 Other traits

Thousand kernel weight (TKW), protein content in the defatted meal (Prot.idM), glucosinolate content in defatted meal (GSLidM) and the correction of oil content considering erucic acid content were determined according to section 3.3.3.

#### 4.3.4 Statistical analysis

PLABSTAT software version 3A (Utz 2011) was used to perform analysis of variance (ANOVA) applying the following general model:

$$Y_{ij} = \mu + g_i + e_j + r_{jk} + ge_{ij} + \varepsilon_{ijk}$$

where  $Y_{ij}$  is the trait value of genotype *i* in environment *j* in replication *k*;  $\mu$  is the general mean;  $g_i$  is the effect of *i*th genotype,  $e_j$  is the effect of *j*th environment,  $r_{jk}$  is the effect of replicate k in the environment j;  $ge_{ij}$  is the interaction between *i*th genotype and *j*th environment; and  $\varepsilon_{ijk}$  is the within environment error associated with genotype *i*, environment *j* and replicate *k*. Genotypes were considered fixed in the analysis, whereas environment and replicate were treated as random variables. Years were treated as environments. The data were tested for outliers by a modification of the Anscombe and Tukey method (1963) based on the detection of extreme residuals. After examining the list of detected outliers the measured values of the outliers with highest standardized residual were checked for errors and the ANOVA was repeated considering missing values for extreme outliers. The adjusted results were used in the subsequent analyses.

Heritability  $(h^2)$  was calculated as:

$$h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \frac{\sigma_{ge}^{2}}{E} + \frac{\sigma_{\varepsilon}^{2}}{ER}}$$

where  $\sigma_{g}^{2}$ ,  $\sigma_{ge}^{2}$  and  $\sigma_{\varepsilon}^{2}$  are variance components for *g*, *e* and  $\varepsilon$ , respectively. *E* and *R* refer to number of environments and number of replicates (Hill and Weir 1988). Spearman's rank correlation coefficients between traits mean values of the genotypes across the environments were calculated using PLABSTAT's BASIC command.

#### 4.3.5 QTL mapping

QTL detection was performed as described in section 3.3.7.

#### 4.3.6 Physical mapping

Physical mapping was conducted according to section 3.3.8.

## 4.4 Results

### 4.4.1 Phenotypic analysis

Variance analysis revealed highly significant effects of the genotypes for all traits investigated, except for flowering period (Table 4.1). In contrast, a highly significant effect of the environment was observed only for FP and for end of flowering. Glucosinolate and erucic acid content also showed significant effects of the environment. Genotype x environment interactions were significant for all traits except for protein content in the defatted meal. Effects of the genotypes showed high values for glucosinolate and erucic acid contents while highest effects of the environment were observed for end of flowering and flowering period. The highest residual error was detected for plant height. Heritability of flowering period was low with only 0.1 and heritability of end of flowering was moderate (0.55), while all other traits showed high heritabilities ranging from 0.70 for protein content to 0.99 for erucic acid content.

Table 4.1: Components of variance and heritabilities for contents of seed oil (%), protein (%), protein in defatted meal (Prot.idM in %), glucosinolates (GSL in  $\mu$ mol/g), glucosinolates in defatted meal (GSLidM in  $\mu$ mol/g), erucic acids (determined by NIRS; %) and begin of flowering (BOF), end of flowering (EOF), flowering period (FP) and plant height at end of flowering (PH\_EOF in cm) in the SGEDH population

| Trait            |    |                    | Variance compo | onents            |                       | Heritability |
|------------------|----|--------------------|----------------|-------------------|-----------------------|--------------|
|                  | _  | $\sigma^{2}{}_{g}$ | $\sigma^2_e$   | $\sigma^{2}_{ge}$ | $\sigma^2_{\epsilon}$ | h²           |
|                  | DF | 211                | 1              | 210               | 413                   |              |
| Oil              |    | 3.83**             | 0.04           | 0.16**            | 0.73                  | 0.94         |
| Protein          |    | 0.43**             | -0.02          | 0.07*             | 0.61                  | 0.70         |
| Prot.idM         |    | 2.31**             | -0.02          | 0.08              | 1.11                  | 0.88         |
| GSL              |    | 211.64**           | 16.50*         | 10.78**           | 14.81                 | 0.96         |
| GSLidM           |    | 689.14**           | 60.79*         | 6.05**            | 3.52                  | 0.96         |
| NIRS22:1         |    | 266.26**           | 2.53*          | 2.88**            | 5.72                  | 0.99         |
| BOF <sup>a</sup> |    | 4.48**             | 0.00           | 0.73**            | 1.36                  | 0.86         |
| EOF <sup>a</sup> |    | 1.93**             | 33.20**        | 1.76**            | 2.72                  | 0.55         |
| FP               |    | 0.20               | 35.10**        | 2.05**            | 2.90                  | 0.10         |
| PH_EOF           |    | 89.50**            | -0.03          | 8.23*             | 64.39                 | 0.82         |

 $\sigma_g^2$  = genetic variance;  $\sigma_e^2$  = variance of the environment;  $\sigma_{ge}^2$  = variance of genotype x environment interaction;  $\sigma_{\varepsilon}^2$  = residual error; DF = degrees of freedom; \*, \*\* denotes significance at *P* < 5% and 1% *a* days counted from 1<sup>st</sup> of January

Transgressive segregation was observed for all traits (Table 4.2). Oil content ranged from 39.4 to 49.8%, with a mean value of 44.5%. For contents of oil, glucosinolates, glucosinolates in defatted meal and erucic acid as well as plant height SGDH14 showed higher values compared to Express617, while for protein, protein in defatted meal, end of flowering and flowering period Express617 exceeded SGDH14. The parental lines showed similar values for begin of flowering, differing only 0.2 days.

| Table 4.2: Minimum, maximum and mean values for contents of seed oil (%), protein (%), protein in   |
|-----------------------------------------------------------------------------------------------------|
| defatted meal (Prot.idM in %), glucosinolates (GSL in $\mu$ mol/g), glucosinolates in defatted meal |
| (GSLidM in µmol/g), fatty acids (determined by NIRS; %) and begin of flowering (BOF), end of        |
| flowering (EOF), flowering period (FP) and plant height at end of flowering (PH_EOF in cm) in the   |
| SGEDH population                                                                                    |

| Trait    | Min   | Max   | Mean  | <i>F</i> -value | LSD 5% | Pa     | arents     |
|----------|-------|-------|-------|-----------------|--------|--------|------------|
|          |       |       |       |                 |        | SGDH14 | Express617 |
| Oil      | 39.4  | 49.8  | 44.5  | 15.7**          | 1.4    | 47.8   | 42.5       |
| Protein  | 17.2  | 22.0  | 19.0  | 3.3**           | 1.2    | 17.9   | 20.3       |
| Prot.idM | 30.5  | 38.4  | 34.3  | 8.4**           | 1.6    | 34.4   | 35.3       |
| GSL      | 12.2  | 75.4  | 46.3  | 24.3**          | 8.4    | 61.9   | 20.6       |
| GSLidM   | 22.1  | 135.9 | 83.3  | 24.2**          | 15.2   | 118.6  | 35.8       |
| C22:1    | -5.8  | 46.1  | 17.3  | 93.7**          | 4.7    | 37.4   | -0.5       |
| BOF      | 89.5  | 100.5 | 95.5  | 7.3**           | 2.4    | 96.1   | 95.9       |
| EOF      | 113.3 | 124.8 | 120.4 | 2.2**           | 3.5    | 119.3  | 121.5      |
| FP       | 20.3  | 29.3  | 24.9  | 1.1             | 3.7    | 23.1   | 25.6       |
| PH_EOF   | 136.0 | 189.0 | 167.0 | 5.4**           | 12.5   | 177.8  | 166.3      |

LSD 5% = least significant difference at P < 5%; \*\* denotes significance at P < 1%

Oil content showed highly significant positive correlation to erucic acid (0.57) and protein in defatted meal (0.54) as well as to plant height (0.37) and end of flowering (0.28) (Table 4.3). A highly significant negative correlation was found for oil content and protein content. Protein content was positively correlated to protein content in defatted meal, while protein content in defatted meal was positively correlated to erucic acid content. A close correlation was also observed between begin of flowering and end of flowering as well as plant height, but a negative correlation was found with the flowering period. End of flowering and plant height showed highly significant positive correlation.

|  | Table 4.3: Spearman's rank | correlation for seed oil | l content and other quality traits |
|--|----------------------------|--------------------------|------------------------------------|
|--|----------------------------|--------------------------|------------------------------------|

| Traits   | Oil        | Protein    | Prot.idM               | GSL     | GSLidM  | C22:1  | BOF     | EOF    | FP    |
|----------|------------|------------|------------------------|---------|---------|--------|---------|--------|-------|
| Protein  | -0.26**    |            |                        |         |         |        |         |        |       |
| Prot.idM | 0.54**     | 0.67**     |                        |         |         |        |         |        |       |
| GSL      | -0.12      | -0.12      | -0.20**                |         |         |        |         |        |       |
| GSLidM   | -0.02      | -0.15*     | -0.15*                 | 0.99**  |         |        |         |        |       |
| C22:1    | 0.57**     | 0.17*      | 0.55**                 | -0.20*  | -0.14   |        |         |        |       |
| BOF      | 0.18*      | 0.00       | 0.13                   | 0.06    | 0.08    | -0.18* |         |        |       |
| EOF      | 0.28**     | 0.06       | 0.27**                 | -0.08   | -0.05   | -0.09  | 0.79**  |        |       |
| FP       | 0.09       | 0.09       | 0.15*                  | -0.20** | -0.20** | 0.19*  | -0.57** | 0.05   |       |
| PH_EOF   | 0.37**     | -0.17*     | 0.13                   | 0.04    | 0.08    | -0.06  | 0.53**  | 0.56** | -0.12 |
| * **     | atos signi | inon on ot | $D < \Gamma 0 / and /$ | 1.0/    |         |        |         |        |       |

\*, \*\* denotes significance at P < 5% and 1%

The linear relation between oil content and erucic acid content showed a segregation of the DH population for erucic acid (Figure 4.1a). One group of low erucic acid content comprising 70 genotypes showed erucic acid contents ranging from -5.8 to 2.3%, and oil contents of 39.4 to 45.4%. Medium and high erucic acid genotypes did not show a clear separation. According to the grouping of the European trials (section 3.4.1) the group of genotypes (84) with medium erucic acid content showed erucic acid contents between 6.8 to 29.3%, and had oil contents between 42.7 and 48.1%. The group of genotypes (58) with high erucic acid content showed erucic acid contents between 30.2 to 46.1% erucic acid in which oil content ranged from 41.9 to 49.8%. Within the group of low erucic acid genotypes SGEDH172 was detected as the genotype with highest oil content (45.4%). Regression correction of oil contents (Figure 4.1b) nearly eliminated the effect of erucic acid on oil content, reducing the coefficient of determination to 0.0000002. Regression correction calculated the theoretical erucic acid free oil content of SGDH14 to 44.1%. Comparing the oil contents of all genotypes of the SGEDH population applying the regression correction DH line 210 (SGEDH210) and 145 (SGEDH145) were identified as genotypes with highest oil contents, with 45.9% and 45.8% oil, respectively.

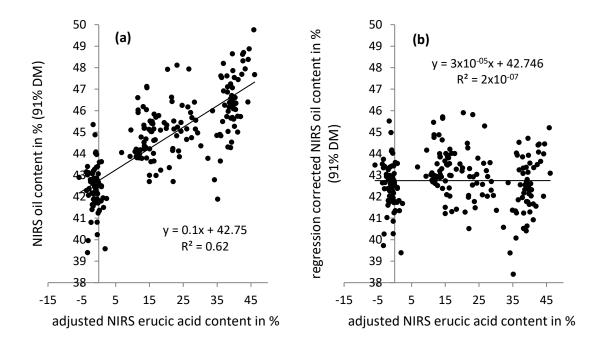



Figure 4.1: Correlation between corrected NIRS predicted seed erucic acid content and (a) NIRS predicted oil content, and (b) NIRS predicted oil content corrected for the influence of erucic acid by regression information (regression corrected oil content = oil content – (0.1 \* erucic acid content)) in the SGEDH population; NIRS = near infrared reflectance spectroscopy; DM = dry matter

## 4.4.2 QTL mapping

#### 4.4.2.1 QTL for oil content using original data

QTL mapping identified six QTL for oil content on the linkage groups A06, A07, A08, A10, C03 and C05. These QTL individually explained between 3.3 and 46.5% of the phenotypic variance and collectively accounted for 75.8% of the total phenotypic variance. The major QTL C\_Oil-3 on A08 and C\_Oil-5 on C03 explained 46.5 and 29.4% of the phenotypic variance, respectively. Except C\_Oil-4 on linkage group A10, all QTL showed positive additive effects, indicating that the alleles increasing oil content are derived from SGDH14. On linkage group A06 C\_Oil-1 overlapped with C\_PH\_EOF-2 both showing a positive additive effect according to their positive correlation. On linkage group A08 major QTL C\_NIRS22:1-2 and C\_Prot.idM-2 overlapped with C\_Oil-3. All three QTL showed positive additive effects, indicating that alleles derived from SGDH14 increased oil content by 1.06%, erucic acid content by 8.7% and protein content in the defatted meal by 0.91%, respectively. C\_Oil-5 on C03, the second major QTL for oil content was co-located with the major QTL C\_NIRS22:1-3 for erucic acid content, both showing a positive additive effect, indicating alleles derived from SGDH14 were increasing oil content by 0.73% and erucic acid by 7.58%, respectively. C\_Oil-4 located on A10 showed an individual position.

#### 4.4.2.2 QTL for oil content corrected for the effect of erucic acid content

Three QTL were detected for regression corrected and for conditioned oil content located on linkage groups A06, A07 and C05 with identical positions and almost identical confidence intervals. Individual QTL explained 6.7% (A06), 12.7% (A07) and 17.2% (C05) of the phenotypic variance and all three QTL accounted for 33.9% of the total phenotypic variance. All three QTL showed positive additive effects, indicating that alleles derived from SGDH14 were increasing corrected oil contents by 0.32%, 0.43% and 0.46%, respectively. QTL for corrected oil contents all overlapped with QTL for oil content on respective linkage groups.

#### 4.4.2.3 QTL for seed protein content

Two QTL for protein content were detected on the linkage groups A09 and C08 explaining 9.6% and 7.2% of the phenotypic variance respectively and together accounting for 16.5% of the total phenotypic variance. Both QTL showed negative additive effects, indicating that alleles derived from Express617 were increasing protein content.

## 4.4.2.4 QTL for protein content in defatted meal

The five QTL for seed protein content in the defatted meal were detected on linkage groups A07, A08, C01, C03 and C04. Individual QTL explained between 0.7 and 39.8% of the phenotypic variance and collectively explained 56% of the total phenotypic variance. 4.9% of the total phenotypic variance (60.9%) was explained by epistatic interactions. C\_Prot.idM-3 and C\_Prot.idM-5 showed negative additive effects, indicating that alleles increasing protein content in the defatted meal were derived from Express617. While the other three QTL showed positive additive effects including the major QTL C\_Prot.idM-2, which increased protein content in defatted meal by 0.91%.

## 4.4.2.5 QTL for glucosinolate content

Five QTL for glucosinolate content were detected on linkage groups A09, C02 (2), C07 and C09, each explaining between 0 and 58% of the phenotypic variance. All QTL together accounted for 81% of the total phenotypic variance. QTL C\_GSL-5 was identified as the major QTL explaining 58% of the phenotypic variance. The additive effect of C\_GSL-5 was positive, indicating that an allele derived from SGDH14 was increasing glucosinolate content by 11.4µmol/g. QTL C\_GSL-1, C\_GSL-2 and C\_GSL-4 also showed positive additive effects. Only C\_GSL-3 on C02 explaining 0% of the phenotypic variance showed a negative additive effect.

## 4.4.2.6 QTL for glucosinolate content in defatted meal

Seven QTL for glucosinolate content were detected on linkage groups A04, A09, C02 (2), C07 and C09 (2) each explaining between 0 and 55.6% of the phenotypic variance. All QTL together accounted for 81% of the total phenotypic variance. Additional 7.3% of the total phenotypic variance was explained by epistatic interactions. Among the seven QTL, C\_GSLidM-6 and C\_GSLidM-7 were identified as major QTL explaining 55.2% and 55.6% of the phenotypic variance, respectively. The additive effect of C\_GSLidM-1 and C\_GSLidM-4 were negative, indicating that an allele derived from Express617 was increasing glucosinolate content by 2.4µmol/g and 3.6µmol/g, respectively. Except C\_GSLidM-1 on A04 and C\_GSLidM-6 on C09, all other QTL for glucosinolate content in defatted meal were co-located with QTL for glucosinolate content.

### 4.4.2.7 QTL for erucic acid

For erucic acid content four QTL were located on the linkage groups A08 (2), C03 and C04. C\_NIRS22:1-4 on C04 explained only 7.6% of the phenotypic variance, the other three QTL however showed major effects explaining between 44.6 and 67.2% of the phenotypic variance. All four QTL together accounted for 89.2% of the total phenotypic variance. Major QTL showed positive additive effects, indicating that the alleles increasing erucic acid content were derived from SGDH14, while C\_NIRS22:1-4 on C04 showed a negative additive effect.

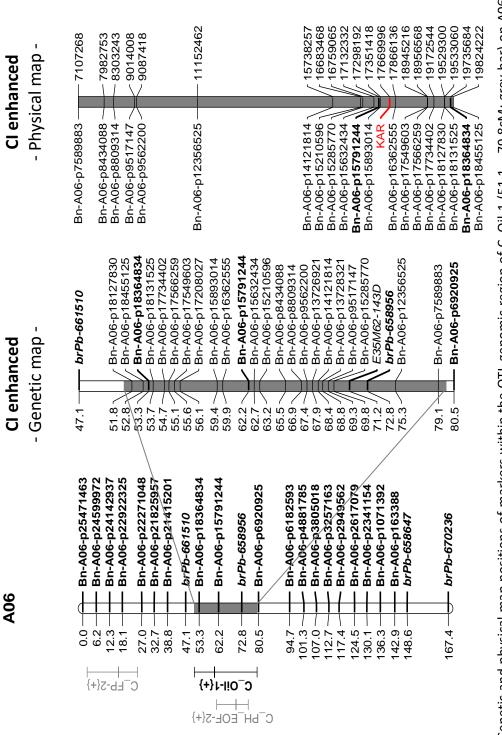
### 4.4.2.8 Phenological traits

Nineteen QTL were detected for the four phenological traits begin of flowering (BOF), end of flowering (EOF), flowering period (FP) and plant height at end of flowering (PH\_EOF) which were located on the linkage groups A02, A03, A04, A06, C02, C03, C06 and C08. Five QTL each were detected for BOF, EOF and PH\_EOF while four QTL were detected for FP. These QTL collectively explained between 33.7 and 60.9% of the total phenotypic variance. Major QTL were identified for BOF (C\_BOF-4) explaining 39.8% of the phenotypic variance and for EOF (C\_EOF-5) which explained 29.9% of the traits phenotypic variance. For FP the QTL which had the largest effect (21.8% of the phenotypic variance) was C\_FP-3 found on C06. The QTL explaining the largest effect (20.2% of the phenotypic variance) for plant height was C\_PH\_EOF-4 which was located on C06. QTL for BOF all showed negative additive effects except the major QTL C\_BOF-4 on linkage group C06 which showed a positive additive effect. QTL for plant height instead all showed positive additive effects except C\_PH\_EOF-5 which showed a negative additive effect. QTL for phenological traits were mostly found either as separate individual QTL or overlapping with other phenological QTL. On C06 C\_BOF-4, C\_EOF-4 and C\_FP-3 were found co-located, with C\_BOF-4 and C\_EOF-4 both having a positive and C\_FP-3 having a negative additive effect. On linkage group C08 QTL for all four phenological traits overlapped (C\_BOF-5, C\_EOF-5, C\_FP-4 and C\_PH\_EOF-5), all showing negative additive effects (although there was a negative correlation found between BOF and FP). Overlapping with these QTL for EOF and FP and close to the QTL for BOF and PH\_EOF with only 3.2 and 1.2cM distance, respectively, the QTL C\_Protein-2 with negative additive effect was located.

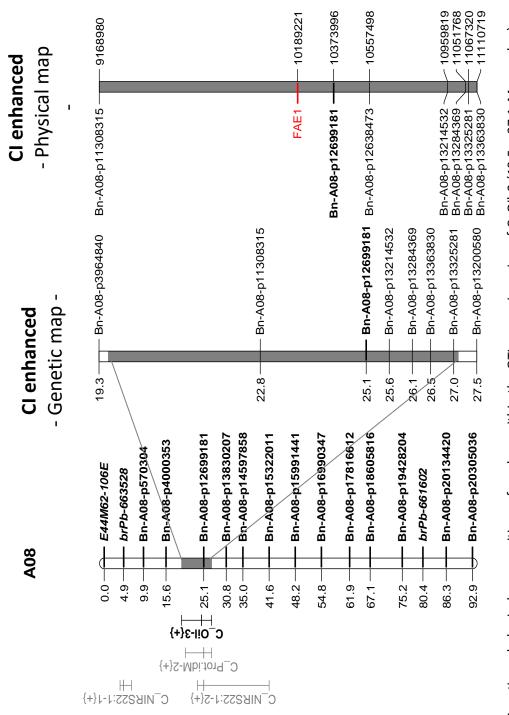
| Linkage Position      | Linkage | Position |                    |       |          |                        |                        | -                      |
|-----------------------|---------|----------|--------------------|-------|----------|------------------------|------------------------|------------------------|
| QTL                   | Group   | [cM]     | Range [cM]         | A۵    | $R^{2b}$ | V(A)/V(P) <sup>c</sup> | V(I)/V(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| c_oil-1               | A06     | 60.3     | 51.1-79.8          | 0.33  | 8.0      |                        |                        |                        |
| c_oil-2               | A07     | 95.2     | 88.7-102.7         | 0.39  | 3.3      |                        |                        |                        |
| c_oil-3               | A08     | 24.5     | 19.5-27.1          | 1.06  | 46.5     | 75 0                   | -                      | 76.0                   |
| c_oil-4               | A10     | 28.6     | 27.9-36.9          | -0.34 | 5.3      | 0.07                   | <b>T</b> • • •         | 0.07                   |
| c_oil-5               | C03     | 188.4    | 185.6-194.4        | 0.73  | 29.4     |                        |                        |                        |
| c_oil-6               | C05     | 7.3      | 7.0-12.3           | 0.41  | 11.4     |                        |                        |                        |
| C_Oil-reg_corr_NIRS-1 | A06     | 69.2     | 56.3-80.5          | 0.32  | 6.7      |                        |                        |                        |
| C_Oil-reg_corr_NIRS-2 | A07     | 89.2     | 83.7-96.2          | 0.43  | 12.7     | 33.9                   | I                      | 33.9                   |
| C_Oil-reg_corr_NIRS-3 | C05     | 8.3      | 3.0-13.3           | 0.46  | 17.2     |                        |                        |                        |
| C_Oil-cond_NIRS-1     | 906     | 69.2     | 56.3-80.5          | 0.32  | 6.7      |                        |                        |                        |
| C_Oil-cond_NIRS-2     | A07     | 89.2     | 83.7-96.2          | 0.43  | 12.7     | 33.9                   | ı                      | 33.9                   |
| C_Oil-cond_NIRS-3     | C05     | 8.3      | 3.0-13.3           | 0.46  | 17.2     |                        |                        |                        |
| C_Protein-1           | 409     | 54.6     | 33.1-65.6          | -0.26 | 9.6      | 16 E                   |                        | 16 F                   |
| C_Protein-2           | C08     | 111.7    | 106.2-117.3        | -0.21 | 7.2      | C.01                   | ·                      | C.OT                   |
| C_Prot.idM-1          | A07     | 52.1     | 46.3-57.1          | 0.23  | 0.9      |                        |                        |                        |
| C_Prot.idM-2          | A08     | 25.1     | 20.5-27.1          | 0.91  | 39.8     |                        |                        |                        |
| C_Prot.idM-3          | C01     | 67.2     | 54.5-74.4          | -0.33 | 0.7      | 56.0                   | 4.9                    | 60.9                   |
| C_Prot.idM-4          | C03     | 176.8    | 176.2-179.8        | 0.31  | 14.2     |                        |                        |                        |
| C Drot idM_E          |         | 78.6     | 71 0 <u>-</u> 86 3 | -0.43 | 11 2     |                        |                        |                        |

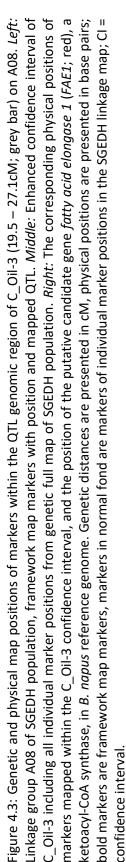
|              | Linkage | Position |             |                |          |                        |                        |                        |
|--------------|---------|----------|-------------|----------------|----------|------------------------|------------------------|------------------------|
| QTL          | Group   | [cM]     | Range [cM]  | A <sup>a</sup> | $R^{2b}$ | V(A)/V(P) <sup>c</sup> | v(I)/v(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| c_GSL-1      | A09     | 57.6     | 51.6-65.6   | 4.73           | 20.3     |                        |                        |                        |
| c_GSL-2      | C02     | 0        | 0.0-4.0     | 5.51           | 9.7      |                        |                        |                        |
| c_GSL-3      | C02     | 61.7     | 45.9-61.9   | -1.52          | 0.0      | 81.0                   | 6.8                    | 87.8                   |
| c_GSL-4      | C07     | 68.1     | 59.3-71.1   | 2.53           | 6.1      |                        |                        |                        |
| C_GSL-5      | C09     | 116.7    | 113.7-116.7 | 11.40          | 58.0     |                        |                        |                        |
| c_GSLidM-1   | A04     | 129.4    | 122.4-129.4 | -2.43          | 2.5      |                        |                        |                        |
| C_GSLidM-2   | 409     | 57.6     | 44.5-70.0   | 7.11           | 20.1     |                        |                        |                        |
| c_GSLidM-3   | C02     | 0        | 0.0-3.0     | 9.56           | 10.0     |                        |                        |                        |
| C_GSLidM-4   | C02     | 60.7     | 43.9-61.9   | -3.58          | 0.0      | 80.7                   | 7.3                    | 88.0                   |
| C_GSLidM-5   | C07     | 68.1     | 61.3-71.1   | 4.44           | 5.5      |                        |                        |                        |
| c_GSLidM-6   | C09     | 100.6    | 100.0-103.6 | 8.48           | 55.2     |                        |                        |                        |
| C_GSLidM-7   | C09     | 114.7    | 112.8-116.7 | 11.23          | 55.6     |                        |                        |                        |
| C_NIRS22:1-1 | A08     | 4.9      | 4.0-6.9     | 2.98           | 55.9     |                        |                        |                        |
| C_NIRS22:1-2 | A08     | 25.1     | 23.5-41.6   | 8.74           | 67.2     | 6 00                   | ц<br>С                 | 7 00                   |
| C_NIRS22:1-3 | C03     | 193.4    | 190.4-195.4 | 7.51           | 44.6     | 7.60                   | 0.0                    | 1.00                   |
| C_NIRS22:1-4 | C04     | 74.6     | 70.0-83.3   | -1.28          | 7.6      |                        |                        |                        |
| C_BOF-1      | A02     | 118.9    | 113.0-132.8 | -0.39          | 5.8      |                        |                        |                        |
| C_BOF-2      | A04     | 45.9     | 35.1-51.9   | -0.40          | 7.6      |                        |                        |                        |
| C_BOF-3      | C02     | 111.3    | 107.7-127.9 | -0.42          | 6.0      | 60.9                   | 3.8                    | 64.7                   |
| C_BOF-4      | C06     | 93.4     | 90.4-96.4   | 1.33           | 39.8     |                        |                        |                        |
| C ROF-5      | C08     | 123.5    | 120.5-123.5 | -0.57          | 13.9     |                        |                        |                        |

Table 4.4: continued from previous page


4.4 Results

| Table 4.4: continued from previous page                                                                                                                                                                                                                                                                                                                                   | om previous p                                                        | age                                                                  |                                                                      |                               |              |                         |                        |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--------------|-------------------------|------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                           | Linkage                                                              | Position                                                             |                                                                      |                               |              |                         |                        |                        |
| QTL                                                                                                                                                                                                                                                                                                                                                                       | Group                                                                | [cM]                                                                 | Range [cM]                                                           | Aa                            | $R^{2b}$     | V(A)/V(P) <sup>c</sup>  | V(I)/V(P) <sup>d</sup> | V(G)/V(P) <sup>∉</sup> |
| C_EOF-1                                                                                                                                                                                                                                                                                                                                                                   | A02                                                                  | 40.8                                                                 | 25.9-59.7                                                            | -0.29                         | 6.7          |                         |                        |                        |
| C_EOF-2                                                                                                                                                                                                                                                                                                                                                                   | A02                                                                  | 116                                                                  | 86.5-123.9                                                           | -0.35                         | 5.3          |                         |                        |                        |
| C_EOF-3                                                                                                                                                                                                                                                                                                                                                                   | C03                                                                  | 200.2                                                                | 196.4-211.3                                                          | 0.51                          | 7.3          | 55.2                    | ı                      | 55.2                   |
| C_EOF-4                                                                                                                                                                                                                                                                                                                                                                   | C06                                                                  | 96.4                                                                 | 90.4-101.4                                                           | 0.61                          | 17.1         |                         |                        |                        |
| C_EOF-5                                                                                                                                                                                                                                                                                                                                                                   | C08                                                                  | 121.5                                                                | 115.3-123.5                                                          | -0.94                         | 29.9         |                         |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                      |                                                                      |                               |              |                         |                        |                        |
| C_FP-1                                                                                                                                                                                                                                                                                                                                                                    | A03                                                                  | 6                                                                    | 0.0-14.8                                                             | 0.24                          | 2.3          |                         |                        |                        |
| C_FP-2                                                                                                                                                                                                                                                                                                                                                                    | A06                                                                  | 16.3                                                                 | 2.0-25.1                                                             | 0.25                          | 1.1          | 7 5 5                   | I                      | 7 60                   |
| C_FP-3                                                                                                                                                                                                                                                                                                                                                                    | C06                                                                  | 98.4                                                                 | 92.4-102.1                                                           | -0.80                         | 21.8         | 1.00                    | ı                      | 1.00                   |
| C_FP-4                                                                                                                                                                                                                                                                                                                                                                    | C08                                                                  | 118.5                                                                | 113.3-122.5                                                          | -0.27                         | 2.8          |                         |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                      |                                                                      |                               |              |                         |                        |                        |
| C_PH_EOF-1                                                                                                                                                                                                                                                                                                                                                                | A04                                                                  | 129.4                                                                | 118.4-129.4                                                          | 1.91                          | 3.3          |                         |                        |                        |
| C_PH_EOF-2                                                                                                                                                                                                                                                                                                                                                                | A06                                                                  | 70.2                                                                 | 61.3-75.8                                                            | 1.93                          | 4.5          |                         |                        |                        |
| C_PH_EOF-3                                                                                                                                                                                                                                                                                                                                                                | C03                                                                  | 197.2                                                                | 196.4-208.6                                                          | 3.55                          | 15.4         | 45.2                    | 5.6                    | 50.8                   |
| C_PH_EOF-4                                                                                                                                                                                                                                                                                                                                                                | C06                                                                  | 80.6                                                                 | 69.0-86.2                                                            | 4.10                          | 20.2         |                         |                        |                        |
| C_PH_EOF-5                                                                                                                                                                                                                                                                                                                                                                | C08                                                                  | 123.5                                                                | 118.5-123.5                                                          | -2.81                         | 10.1         |                         |                        |                        |
| <i>a</i> additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14 <i>b</i> percentage of phenotypic variation explained by each QTL <i>c</i> variance of additive effects/phenotypic variance – total contribution of additive effect QTL in % <i>d</i> variance of epistatic effects/phenotypic variance in % | ive additive ef<br>typic variatior<br>ffects/phenoi<br>effects/pheno | fect indicating<br>rexplained by<br>typic variance<br>typic variance | g that the alleles inc<br>each QTL<br>– total contributior<br>: in % | creasing the t<br>of additive | rrait were d | erived from SGDH<br>n % | 114                    |                        |
| e variance of genetic main effects/phenotypic variance in %                                                                                                                                                                                                                                                                                                               | าain effects/pl                                                      | nenotypic vari                                                       | ance in %                                                            |                               |              |                         |                        |                        |


4.4 Results


## 4.4.3 Physical mapping of QTL intervals for oil content

Physical confidence interval regions of oil-QTL were compared to the physical positions of selected homologues of *A. thaliana* genes involved in fatty acid synthesis and modification and TAG synthesis to identify putative candidate genes related to oil-QTL in the SGEDH population (cf. section 2.4 and 3.4.5). The alignment of oil-QTL confidence interval regions and selected gene homologues of *A. thaliana* identified two matches on linkage groups A06 and A08. On linkage group A06 *ketoacyl-ACP reductase* (*KAR*; AT1G62610) was detected within the confidence interval of C\_Oil-1 (51.1 - 79.8cM) (Figure 4.2). *KAR*, which is part of the fatty acid synthase complex and catalyses the first reduction of the repeated reaction cycle needed to produce fatty acids, was located approximately 196kbp apart from the SNP marker Bn-A06-p16362555 (59.9cM), which is the closest marker to the QTL peak of C\_Oil-1 at 60.3cM. On A08 *fatty acid elongase 1 (FAE1*; AT4G34520) was found within the confidence interval of QTL C\_Oil-3 (19.5 - 27.1cM) (Figure 4.3). FAE1, which is involved in the elongation of oleic acid to erucic acid, was located approximately 185kbp apart from the SNP marker Bn-A08-p12699181 which represents the closest marker to the QTL peak of C\_Oil-3 at 24.5cM. This marker was also located within the marker intervals of C\_Prot.idM-2 and C\_NIRS22:1-2.



-inkage group A06 of SGEDH population, framework map markers with position and mapped QTL. Middle: Enhanced confidence interval of C\_Oil-1 including all individual marker positions from genetic full map of SGEDH population. Right: The corresponding physical positions of markers mapped within the C\_Oil-1 confidence interval, and the position of the putative candidate gene ketoacyl-ACP reductase (KAR; red) in B. napus reference genome. Genetic distances are presented in cM, physical positions are presented in base pairs; bold markers are framework map markers, markers in normal fond are markers of individual marker positions in the SGEDH linkage map; Cl = confidence Figure 4.2: Genetic and physical map positions of markers within the QTL genomic region of C\_Oil-1 (51.1 – 79.8cM; grey bar) on A06. Left: interval





# 4.5 Discussion

## 4.5.1 Phenotypic analysis

In comparison to the previous results from European trials (EU trials), oil content of the SGEDH population showed a larger variation in Chinese trials ranging from 39.4 to 49.8%, but the range of the EU trials was higher with oil contents between 42.5 to 50.9%. Experiments of Zhao *et al.* (2005) tested the DH population derived from a cross of the '++'-quality cultivars Sollux x Gaoyou, including SGDH14, in Germany and China at two locations each. Ranges for oil content of Zhao *et al.* (2005) at German locations were higher compared to the SGEDH population (section 3.5.1). While oil contents of Chinese locations ranging from 40.4 to 49.2% (Xiang; West China) and from 38.3 to 49.5% (Hangzhou; East China), were comparable to the oil contents of the SGEDH population in Chinese trials. In comparison, a study of Teh (2015) investigating a DH population derived from a cross of the double low quality cultivars Sansibar and Oase in Europe and in China, identified lower oil contents in both environments with ranges from 41.2 to 48.6% and 39.9 to 45.8%, respectively.

Oil content in Chinese trials showed highly significant positive correlation with erucic acid ( $r_s$  = 0.57\*\*) and protein in defatted meal ( $r_s = 0.54^{**}$ ). These results confirmed the correlations previously found in EU trials, although correlations in EU trials were higher which might be explained by the higher number of experiments in EU trials. Besides, a highly significant positive correlation between erucic acid and protein content in defatted meal was found in Chinese trials with  $r_s = 0.55^{**}$ , comparatively lower than in EU trials ( $r_s = 0.81^{**}$ ). Calculation of partial correlations for oil, protein in defatted meal and erucic acid content reduced the effect of oil content on protein content in defatted meal, but still showed a positive correlation coefficient (rs = 0.33). For the correlation between oil content and protein content in defatted meal contrasting results were reported in previous studies. Suprianto (2014) found a significant negative correlation ( $r_s = -0.53^{**}$ ) in the DH population derived from Sollux x Gaoyou (Zhao *et al.* 2005), but no correlation ( $r_s = -0.04$ ) in a DH population derived from a cross between Express617 and the resynthesized line R53 (Radoev 2007). Teh and Möllers (2015) also found a significant negative correlation between oil and protein content in defatted meal ( $r_s = -0.43^{**}$ ). Oil and protein share the basic sources of energy in the metabolic pathway, which usually results in a significant negative correlation between oil and protein content in seeds (Stefansson and Kondra 1975, Grami and Stefansson 1977, Röbbelen and Thies 1980, Zhao 2002). The positive correlation found in the SGEDH population seems to differ from this explanation, suggesting the influence of other factors on oil and protein content in the SGEDH population.

Heritabilities of oil, glucosinolate and erucic acid content in Chinese trials with 0.94, 0.96 and 0.99 remained comparable to heritabilities determined in EU trials with 0.96, 0.97 and 1.00, respectively, although C trails were conducted at only one location in only two years, while EU trials included three years of field testing at several different locations. Usually the heritability stays low if field testing is conducted at only one location, even if experiments include replications. Furthermore, it seems that two years of field trails for oil, glucosinolate and erucic acid content are sufficient to achieve almost the maximum attainable heritability. Comparable results were observed previously by Teh (2015), who identified a heritability of 0.83 for oil content and 0.80 for protein content in defatted meal by investigating European field data of different locations over three years, and heritabilities for protein, protein content in defatted meal, begin of flowering and plant height remained high in the SGEDH population, but decreased by 0.07 to 0.15. In contrast, the reduction of locations and years showed the highest effect on heritabilities for end of flowering and for flowering period, which were reduced by 0.21 and 0.78, respectively.

## 4.5.2 Genetic and physical mapping

In Chinese trials a total number of 54 QTL were detected for 12 traits (Table 4.4). The comparison of these QTL to the 59 QTL detected in EU trials (section 3.4.4) identified 23 common QTL for the same traits across both experiments (Table 4.5). While 16 environment-stable QTL showed comparable peak positions, either with same positions or differing only 1 to 2cM, seven of the stable QTL identified QTL peaks that differed 4 to 16.3cM. In Chinese trials six QTL for oil content were found, whereas only four QTL were detected in EU trials. Three of these oil-QTL were identified in both trials and therefore were considered as environmentally stable. The consistently detected oil-QTL were located on linkage groups A08, C03 and C05 and explained the highest individual phenotypic variances in both mega-environments. For all three QTL SGDH14 was identified as source for the allele increasing oil content. Furthermore, on A08 physical mapping identified a *fatty acid elongase 1 (FAE1)* gene within the confidence interval of the oil-QTL. In both trials QTL for erucic acid and protein content in defatted meal were found overlapping with the consistent oil-QTL, matching the significant positive correlations between oil content, erucic acid content and protein content in defatted meal. The environment-stable oil-

QTL on CO3 was co-located with a QTL for erucic acid content only in Chinese trials. However, in the EU trials the confidence interval of the stable oil-QTL on CO3 overlapped with a QTL for eicosenoic acid content. In EU trials a QTL for erucic acid content was found 9.8cM apart from the stable oil-QTL on C03. However, no candidate gene was detected within the confidence interval of the stable QTL for oil content on C03 in both environments. But in the EU trials a FAE1 gene was detected within the confidence interval of the adjacent QTL for erucic acid content. Teh (2015) also found an environmentally stable QTL for oil content on C03 in the '00'-DH population derived from the cross of the two winter cultivars Sansibar x Oase, which colocated with a stable QTL for protein content in defatted meal, both showing additive effects of same direction. These QTL were located at another position on linkage group C03, not linked to a QTL for erucic acid, therefore this QTL might be of even higher interest to increase oil and protein content in defatted meal simultaneously. Since the loci of these QTL do not show differences in the SGEDH population, thus detecting no QTL, it needs to be tested if the loci in Sansibar x Oase and SGEDH population are the same or not, and if they differ which one carries the more favourable allele. No lipid related candidate gene was found to be co-located with the environmentally stable major oil-QTL on C05. However, using the same SGEDH population and the seed quality data from the same Chinese field experiments, but a marker map based on lipid related candidate genes, two QTL for oil content on C05 were identified, each explaining 21% of the phenotypic variance (Prof. Jianyi Zhao, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China, personal communication). A second QTL position for oil content on C05 was also identified in EU trials of this study using oil contents corrected for the effect of erucic acid. This QTL position explained about 35% of the phenotypic variance. This demonstrates the relevance of oil-QTL on C05, but results need to be further investigated and approved. In Chinese trials three environment-specific minor QTL for oil content were found on linkage groups A06 (C\_Oil-1), A07 (C\_Oil-2) and A10 (C\_Oil-4) which explained 8.0, 3.3 and 5.3% of the phenotypic variance, respectively. Whereas the minor QTL E\_Oil-4 on linkage group C07 was only identified in EU trials. In both environments only one QTL for oil content was identified showing that alleles increasing oil content were derived from the double low quality parent Express617, E\_Oil-4 on C07 and C\_Oil-4 on A10, respectively. Regression correction and conditioning of oil content was applied in both environments to eliminate the effect of erucic acid and thereby to identify additional minor QTL for oil content independent of the influence of erucic acid. Regression corrected and conditioned oil content allowed to identify four QTL on A10, C04, C05 and C07 in EU trials, and three QTL on A06, A07 and C05 in Chinese trials. Both, the regression and conditional correction led to the identification of identical QTL in both environments. This shows that both methods are appropriate. However, none of the QTL for corrected oil contents was stable over the two mega-environments. This might be explained due to the fact that almost

all QTL for oil content represented only minor QTL, and major QTL are more likely to be stable across different environments (Tanksley 1993, Teh 2015). On the other hand, oil content is a complex quantitative trait which is known to be strongly influenced by environmental effects (Zhao *et al.* 2006, Delourme *et al.* 2006, Teh 2015), which may result in the detection of environment specific minor QTL. However, the major QTL for corrected oil content on C05 was only detected in EU trials and hence to be regarded as environment specific. All three QTL for corrected oil contents in Chinese trials corresponded to QTL for oil content without correction.

EU trials identified seven QTL for protein content. Four of these QTL showed that the positive alleles were derived from Express617. In contrast, in Chinese trials only two QTL were detected for protein content, both showing that the positive alleles were derived from SGDH14. Neither in EU nor in Chinese trials a major QTL for protein content was detected, reflecting the quantitative character of protein content. However, one QTL for protein content was identified in both environments, which was located on A09 showing a negative additive effect. This QTL might be of interest for breeding programs that aim at increasing protein content independently of other seed quality traits. In Chinese trials the stable protein-QTL overlapped with a QTL for glucosinolates showing opposite additive effects. This could even increase the value of this QTL for high protein breeding at least in China, since by increasing protein content anti-nutritional glucosinolates would be decreased in the seed and in the defatted meal. In comparison, protein content in defatted meal detected seven QTL in EU trials, three of these QTL showing a negative additive effect. While five QTL for protein content in defatted meal were identified in Chinese trials, with two QTL showing negative additive effects. QTL detected on linkage groups A08 and C03 were found in both environments showing positive additive effects and explaining the highest phenotypic variances for protein content in defatted meal in both trials.

For glucosinolate content in EU as well as in Chinese trials five QTL were detected. All of these QTL showed that the alleles increasing glucosinolate content were derived from SGDH14, except QTL C\_GSL-3 on C02 which showed a negative additive effect, but accounted for a not measurable phenotypic variation in this trait. Three QTL in each environment showed individual positions, while two QTL were commonly detected in both trials. Individual QTL of EU trials were located on A09 (2) and C07, and individual QTL of Chinese trials were located on A09, C02 and C07. Environment-stable QTL for glucosinolates were located on C02 and C09. The stable QTL on C09 was also detected as the major QTL for glucosinolate content in both trials. In comparison, QTL mapping identified four QTL for glucosinolate content in defatted meal in EU trials and seven in Chinese trials. In both trials each QTL for glucosinolate content in defatted meal in each and seven in Chinese trials. In both trials each QTL for glucosinolate content in defatted meal overlapped with a QTL for glucosinolate content. QTL E\_GSLidM-1 on A09 was identified

environment-specific in EU trials, and QTL on A04, A09, C02 and C09 were specific in Chinese trials. For glucosinolate content in defatted meal QTL on C02, C07 and C09 showed stable positions. Except C\_ GSLidM-1 on A04 and C\_ GSLidM-4 on C02, all QTL identified SGDH14 as source for increasing alleles.

Erucic acid content in both trials identified four QTL on A08 (2), C03 and C04. QTL on A08 and C04 were identified stable in both trials with identical QTL positions and only small differences in confidence intervals, additive effects and phenotypic variance. Peaks of the additionally identified QTL on linkage group A08 were located 10cM apart from each other showing no overlap of confidence intervals, and QTL on C03 of EU and Chinese trials showed a difference of 7.8cM between QTL peaks and likewise did not have overlapping confidence intervals. All QTL for erucic acid were identified as major QTL and showed positive additive effects, except QTL on C04 which only showed minor contribution to the phenotypic variance and had negative additive effects.

In EU trial three to eight QTL were detected for phenological traits, while four to five QTL were found in Chinese trials. Begin of flowering identified three environment-stable QTL on A04, C06 and C08, end of flowering identified two on C06 and C08, flowering period two on A03 and C06 and plant height at end of flowering three on A04, C06 and C08. Confidence intervals of stable phenological QTL on C06 and C08 not only overlapped across environments within one trait, but also overlapped among traits for QTL on same linkage groups. The stable QTL on C06 was identified as the major QTL for begin of flowering and flowering period, and likewise QTL on C06 of the other phenological traits showed the highest contribution to the phenotypic variance. According to the correlations found for phenological traits within the SGEDH population flowering period was generally showing opposite additive effect, while all other phenological traits showed same direction of additive effect compared to overlapping QTL of the other phenological traits, showing an exceptional high phenotypic variance for end of flowering at this locus.

|          |                 |              | Europe      |                |              | China       |       |
|----------|-----------------|--------------|-------------|----------------|--------------|-------------|-------|
|          |                 |              | Range       |                |              | Range       |       |
| Trait    | LG <sup>a</sup> | QTL          | [cM]        | A <sup>b</sup> | QTL          | [cM]        | $A^b$ |
| Oil      | A08             | E_Oil-1      | 20.5-27.1   | 1.12           | C_Oil-3      | 19.5-27.1   | 1.06  |
|          | C03             | E_Oil-2      | 187.6-195.4 | 0.63           | C_Oil-5      | 185.6-194.4 | 0.73  |
|          | C05             | E_Oil-3      | 7.0-13.3    | 0.60           | C_Oil-6      | 7.0-12.3    | 0.41  |
| Protein  | A09             | E_Protein-4  | 44.5-66.6   | -0.20          | C_Protein-1  | 33.1-65.6   | -0.26 |
| Prot.idM | A08             | E_Prot.idM-3 | 16.5-25.1   | 1.03           | C_Prot.idM-2 | 20.5-27.1   | 0.91  |
|          | C03             | E_Prot.idM-4 | 176.2-179.8 | 0.68           | C_Prot.idM-4 | 176.2-179.8 | 0.31  |
| GSL      | C02             | E_GSL-3      | 0.0-4.0     | 3.74           | C_GSL-2      | 0.0-4.0     | 5.51  |
|          | C09             | E_GSL-5      | 113.7-116.7 | 8.63           | C_GSL-5      | 113.7-116.7 | 11.40 |
| GSLidM   | C02             | E_GSLidM-2   | 0.0-4.0     | 6.72           | C_GSLidM-3   | 0.0-3.0     | 9.56  |
|          | C07             | E_GSLidM-3   | 43.9-64.3   | 5.03           | C_GSLidM-5   | 61.3-71.1   | 4.44  |
|          | C09             | E_GSLidM-4   | 113.7-116.7 | 16.23          | C_GSLidM-7   | 112.8-116.7 | 11.23 |
| C22:1    | A08             | E_GC22:1-2   | 23.5-41.6   | 9.47           | C_NIRS22:1-2 | 23.5-41.6   | 8.74  |
|          | C04             | E_GC22:1-4   | 70.0-87.3   | -1.49          | C_NIRS22:1-4 | 70.0-83.3   | -1.28 |
| BOF      | A04             | E_BOF-1      | 32.1-50.9   | -0.74          | C_BOF-2      | 35.1-51.9   | -0.40 |
|          | C06             | E_BOF-3      | 91.4-96.4   | 2.04           | C_BOF-4      | 90.4-96.4   | 1.33  |
|          | C08             | E_BOF-4      | 119.5-123.5 | -0.63          | C_BOF-5      | 120.5-123.5 | -0.57 |
| EOF      | C06             | E_EOF-4      | 91.4-102.1  | 0.34           | C_EOF-4      | 90.4-101.4  | 0.61  |
|          | C08             | E_EOF-5      | 116.3-123.5 | -0.30          | C_EOF-5      | 115.3-123.5 | -0.94 |
| FP       | A03             | E_FP-1       | 0.0-10.8    | 0.41           | C_FP-1       | 0.0-14.8    | 0.24  |
|          | C06             | E_FP-3       | 91.4-96.4   | -1.64          | C_FP-3       | 92.4-102.1  | -0.80 |
| PH_EOF   | A04             | E_PH_EOF-3   | 108.1-129.4 | 1.14           | C_PH_EOF-1   | 118.4-129.4 | 1.91  |
|          | C06             | E_PH_EOF-7   | 85.2-96.4   | 4.41           | C_PH_EOF-4   | 69.0-86.2   | 4.10  |
|          | C08             | E_PH_EOF-8   | 118.5-123.5 | -1.99          | C_PH_EOF-5   | 118.5-123.5 | -2.81 |

Table 4.5: QTL repeatedly identified on the same linkage groups in both environments, Europe (E) and China (C)

*a* Linkage group

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

### 4.5.2.1 Applications in breeding programs

Generally, environmental stable QTL are of higher value to breeding programs, since those QTL are effective in many different environments, enabling their broader use in breeding material. Almost half of the QTL were consistently identified in Chinese and EU trials. In the present study three environment-stable main QTL for oil content were found within the SGEDH population. But two of these oil-QTL on A08 and C03 showed close linkage to QTL for erucic acid content. These loci are of little interest, since breeding is focused on '00'-quality. However, an environmentally stable QTL not linked to the erucic acid genes was identified on C05. In EU trials this QTL co-located with two QTL, one simultaneously delaying begin of flowering and the other increasing plant height. Thus, this stable QTL might be used in marker assisted selection to further increase the oil content in current breeding material in both environments. Beside this environmentally stable QTL also the mega-environment-specific QTL might be of interest to further increase oil content in current breeding material in the respective region. In Europe E\_Oil-4 on C07, and a second QTL on C05 detected for corrected oil content might be of interest (compare section 3.5.6). Whereas in China the oil-QTL on A06, which was co-located with a ketoacyl-ACP reductase (KAR) gene, encoding an important enzyme of the fatty acid synthase complex, and a QTL for plant height with additive effect of same direction, might be considered in local breeding programs. In addition, individual QTL on A07, which was found 40cM apart from a QTL increasing protein content in defatted meal, and A10 might be used in marker assisted selection to increase oil content in oilseed rape in China.

# 5 General discussion

# 5.1 Comparison of QTL mapping results calculated by QTLNetwork and WinQTL Cartographer

To detect QTL different mapping programs are available. Due to different significance thresholds and mapping approaches QTL mapping programs may lead to the detection of different QTL (McElroy *et al.* 2006, Mackay and Powell 2007). Hence, the stability of QTL detection might be enhanced by using more than one mapping software (Ravi *et al.* 2011). Two of the frequently used programs are QTLNetwork (Yang *et al.* 2008) and WinQTL Cartographer (Wang *et al.* 2012a). Thus, WinQTL Cartographer was applied additionally in this study, to verify the QTL detected within the SGEDH population by QTLNetwork. The same framework map (cf. section 3.3.6, Appendix 14) was used in both QTL mapping programs.

Applying composite interval mapping (CIM) QTLNetwork detected seven individual QTL positions influencing oil content (considering both, original and regression corrected data; Table 3.9) in European experiments. Meanwhile, the multiple interval mapping (MIM) approach of WinQTL Cartographer identified eight individual oil-QTL (Appendix 6, Appendix 7). In comparison, six oil-QTL positions were consistently detected with both programs on linkage groups A08, A10, C03, C05 (2) and C07. However, positions of QTL differed between 0 to 10.6cM, and confidence intervals were overlapping but showed variation in ranges. Additive effects of the matching QTL pairs had same direction, while the fraction of explained phenotypic variance of WinQTL Cartographer were generally lower than those of QTLNetwork, indicating that either QTLNetwork tends to overestimate or WinQTL Cartographer tends to underestimate the fraction of explained phenotypic variance. When comparing the size of the additive effect with its fraction of explained phenotypic variance in both programs, it was observed that in QTLNetwork these were often not collinear, while in WinQTL Cartographer a better collinearity was found. Beside common QTL positions, QTLNetwork additionally identified one individual minor QTL for oil content on C04, while WinQTL Cartographer detected two additional minor QTL on CO3 and CO4, although the LOD threshold value of WinQTL Cartographer was 0.2 higher compared to QTLNetwork. QTL obtained from both programs analysing Chinese data also revealed comparable results (Appendix 10). Both programs detected five QTL controlling oil content in common, while QTLNetwork found one more individual minor QTL on C05 and WinQTL Cartographer found two more on A02 and C05. Similar observations

were found comparing QTL results for protein as well as GC determined erucic acid content of both programs (Appendix 8, Appendix 9, Appendix 11). This suggests that consistently detected QTL can be considered as reliable, while minor QTL that were detected individually by one or the other program might need additional validation by other approaches, like association studies. In general these results were in accordance with observations of Ravi *et al.* (2011) who used both programs to prove the reliability of QTL for drought tolerance identified in groundnut. In conclusion the application of an additional QTL program seems to complement QTL data detected with only one program. Therefore, it is recommended to use a second QTL program to increase the reliability of QTL results. And within the programs different configurations should be considered since a change of the testing window size from 10 (default) to 5cM in QTLNetwork for example resulted in the detection of one QTL for erucic acid content on A08 (Appendix 12) instead of two adjacent ones which in this case would be more likely because there is only one *FAE1* gene reported on A08 regulating erucic acid synthesis (Fourmann *et al.* 1998). This suggests one of the two erucic acid QTL detected in both programs under default settings could be a false positive QTL.

# 5.2 Marker genotypes of best SGEDH lines and comparison to established breeding material

Current breeding programs to increase oil content in oilseed rape, which are mainly focused on canola-quality, are seeking new resources. As discussed previously (section 3.5 and 4.5) individual loci controlling oil content identified in this study represent promising candidates and might be of use for marker assisted selection. Of highest interest in this case are genotypes combining as many positive alleles influencing oil content as possible. Phenotypic analyses of the SGEDH population in Europe and in China both identified DH lines exceeding the oil content of both parental genotypes. In the group of erucic acid free lines, which are of highest interest for practical breeding, SGEDH172 was identified with highest oil content in both environments. In addition, the application of a regression correction of oil content to eliminate the effect of erucic acid on oil content enabled the comparison of oil contents between erucic acid free and erucic acid containing genotypes in the SGEDH population. This correction identified SGEDH175 and SGEDH13 in European experiments, and SGEDH210 and SGEDH145 in Chinese experiments, with highest oil contents of all lines.

To confirm the potential of the lines with highest oil content as basic material for further increasing oil content in their respective environment, the marker genotypes of these lines were investigated at the positions of oil-QTL (Table 5.1 and Table 5.2). In Europe SGEDH175 exhibited five (71%) favourable marker alleles out of seven, while SGEDH13 and SGEDH172 included four (57%) out of the seven (Table 5.1). As expected, at the two oil-QTL positions linked to erucic acid content on A08 and C03, SGEDH172 exhibited no favourable marker allele, since it does not contain erucic acid, while SGEDH13 and SGEDH175 both showed the favourable marker allele for the oil-QTL on C03. At the remaining five positions which did not show linkage to erucic acid, SGEDH172 exhibited a non-favourable marker allele at the oil-locus on C07, and SGEDH175 lacked a favourable allele at the oil-locus on A10, indicating that the higher oil content of SGEDH175 was mainly caused by its favourable allele on C03. Whereas SGEDH13 missed two favourable alleles of the remaining five oil-QTL positions, explaining the lower oil content compared to SGEDH175. However, none of the top oil genotypes incorporated all favourable marker alleles of the five oil-loci not related to erucic acid content. These results show the potential to further increasing the oil content in these lines incorporating the missing favourable alleles. Additionally, Sollux and Gaoyou, the parental lines of SGDH14, were genotyped together with the SGEDH population. Comparing the favourable marker allele constitution of the oil-QTL loci identified in the SGEDH population to the marker alleles occurring in Sollux and Gaoyou, indicated that none of the favourable alleles identified for oil-QTL in the SGEDH population in European experiments was due to an allele contributed by Gaoyou, although most of the favourable marker alleles were contributed by SGDH14. Instead, Sollux was identified as the original contributor of the favourable marker allele of the oil-locus at C04, and showed the favourable allele of A10 in common with Express617, which was not present in SGDH14 and Gaoyou.

In Chinese trials comparable results were found (Table 5.2). Regarding the two oil-QTL loci associated with erucic acid, SGEDH172 carried no favourable allele, but SGEDH210 and SGEDH145 did. But SGEDH172 and SGEDH210 both showed the favourable marker genotypes at all four remaining oil-loci independent of erucic acid content. Nevertheless, due to the relatively small effect of these QTL, in SGEDH145 the favourable allele of the oil-locus on C03 compensated the absence of two minor favourable alleles, leading to a higher total oil content of this line compared to SGEDH172.

| Table 5.1: Marker genotypes of the parental lines of the SGEDH population, SGE DH lines with highest oil content (SGEDH172) and highest         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| regression corrected oil content (SGEDH175, SGEDH13) in European trials, and the parental lines of SGDH14, Sollux and Gaoyou, for oil-QTL       |
| of European trials (environment-stable QTL are presented in bold; grey label indicates oil-QTL linked to erucic acid; favourable marker alleles |
| are represented as capital letters)                                                                                                             |

| re represented as capital letters) | capital | letters) |                           |         |                      |                                        |                          |                                        |                      |                                                      |
|------------------------------------|---------|----------|---------------------------|---------|----------------------|----------------------------------------|--------------------------|----------------------------------------|----------------------|------------------------------------------------------|
|                                    |         | I        | PI                        | A08     | A10                  | C03                                    | C04                      | C05                                    | C05                  | C07                                                  |
|                                    |         |          | QTL                       | E_Oil-1 | E_Oil-<br>reg_corr-1 | E_Oil-2                                | E_Oil-<br>reg_corr-2     | E_Oil-3                                | E_Oil-<br>reg_corr-3 | E_Oil-4                                              |
|                                    |         |          | Additive<br>effect        | 1.12    | -0.27                | 0.63                                   | 0.23                     | 0.6                                    | 0.64                 | -0.39                                                |
|                                    |         |          | R <sup>2</sup>            | 50.5    | 11.2                 | 31.2                                   | 3.2                      | 13.8                                   | 34.6                 | 10                                                   |
|                                    |         |          | QTL<br>position [cM]      | 24.5    | 17.8                 | 190.4                                  | 51.4                     | 9.3                                    | 39.7                 | 49.5                                                 |
|                                    |         | I        | Marker<br>position [cM]   | 25.1    | 17.5                 | 195.8                                  | 47.4                     | 7.3                                    | 39.9                 | 50.2                                                 |
|                                    |         | Oil-     |                           | -80A-   | 579255<br>-A10-      | 28720<br>194 <sup>–</sup> 2-<br>-scaff | 927126<br>2_4_2<br>_1728 | 5623<br>634 <sup>—</sup> 1-<br>-scaff_ | -20A-                | 20 <del>4</del> 733<br>202 <sup>–</sup> ۲-<br>scatt_ |
| Genotype                           | Oil     | reg_corr | Marker locus              |         |                      | :9T                                    | 39T                      | 9TZ                                    |                      | St                                                   |
| SGDH14 4                           | 48.7    | 45.1     |                           | A       | в                    | A                                      | A                        | A                                      | A                    | в                                                    |
| Express617 4                       | 45.1    | 45       |                           | q       | В                    | q                                      | þ                        | q                                      | þ                    | В                                                    |
|                                    | Fa      | vourable | Favourable marker alleles | A       | В                    | A                                      | А                        | Α                                      | А                    | В                                                    |
| SGEDH172 4                         | 46.5    | 46.4     |                           | q       | В                    | q                                      | A                        | A                                      | A                    | в                                                    |
| SGEDH175 4                         | 48.5    | 46.9     |                           | q       | ŋ                    | A                                      | ٩                        | A                                      | ۷                    | в                                                    |
| SGEDH13 4                          | 48.7    | 46.7     |                           | q       | а                    | A                                      | q                        | А                                      | А                    | В                                                    |
| Sollux 4                           | 48.6    | 44.9     |                           | A       | В                    | A                                      | A                        | A                                      | A                    | а                                                    |
| Gaoyou                             | 46      | 42.8     |                           | ٨       | а                    | A                                      | q                        | A                                      | A                    | ø                                                    |

| Table 5.2: Marker genotypes of the parental lines of the SGEDH population, SGE DH lines with highest oil content (SGEDH172) and highest       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| regression corrected oil content (SGEDH210, SGEDH145) in Chinese trials, and the parental lines of SGDH14, Sollux and Gaoyou, for oil-QTL of  |
| Chinese trials (environment-stable QTL are represented in bold; grey label indicates oil-QTL linked to erucic acid; favourable marker alleles |
| are represented as capital letters)                                                                                                           |

| ented as capital lett | ters) |            |                           |                  |         |                  |                  |                                         |                           |
|-----------------------|-------|------------|---------------------------|------------------|---------|------------------|------------------|-----------------------------------------|---------------------------|
|                       |       |            | PJ                        | A06              | A07     | A08              | A10              | C03                                     | C05                       |
|                       |       |            | QTL                       | C_Oil-1          | C_Oil-2 | c_oil-3          | C_Oil-4          | c_0il-5                                 | c_oil-6                   |
|                       |       |            | Additive<br>effect        | 0.33             | 0.39    | 1.06             | -0.34            | 0.73                                    | 0.41                      |
|                       |       |            | R <sup>2</sup>            | 8                | 3.3     | 46.5             | 5.3              | 29.4                                    | 11.4                      |
|                       |       |            | QTL<br>position [cM]      | 60.3             | 95.2    | 24.5             | 28.6             | 190.4                                   | 9.3                       |
|                       |       |            | Marker<br>position [cM]   | 62.2             | 94.9    | 25.1             | 33.5             | 195.8                                   | 7.3                       |
|                       |       | -iio       |                           | 5791244<br>-A06- | -70A-   | 1816692<br>-80A- | 6285282<br>-A10- | 23182<br>367 <sup>–</sup> 2-<br>3185–2- | 2623<br>634_1-<br>-scaff_ |
| Genotype              | lio   | reg_corr   | Marker locus              |                  |         |                  |                  | 9T                                      | τz                        |
| SGDH14                | 47.8  | 44.4       |                           | ٩                | ٩       | A                | a                | A                                       | ٩                         |
| Express617            | 42.5  | 42.6       |                           | q                | q       | q                | В                | q                                       | q                         |
|                       | ч     | -avourable | Favourable marker alleles | A                | A       | A                | В                | А                                       | A                         |
| SGEDH172              | 45.4  | 45.5       |                           | ٩                | A       | q                | В                | q                                       | ٩                         |
| SGEDH210              | 47.9  | 45.9       |                           | ٩                | ٩       | A                | 8                | q                                       | ٩                         |
| SGEDH145              | 48.1  | 45.8       |                           | A                | A       | A                | a                | q                                       | q                         |
| Sollux                | 46.4  | 43.1       |                           | ۷                | q       | A                | a                | A                                       | A                         |
| Gaoyou                | 43.8  | 42.1       |                           | A                | A       | A                | a                | A                                       | A                         |

Additionally, the lines identified with highest oil content in European and Chinese experiments were compared to a set of established and well-known cultivars mainly of European origin, but also including the Chinese cultivar Gaoyou. This comparison showed that the oil content of SGEDH172 not only exceeded the oil content of its parental line Express617 in Europe and in China, but also the oil content of most of the simultaneously tested cultivars. Only Oase showed 0.3% higher oil content in European trials, and NKBeauty showed 0.1% higher oil content in Chinese trials. Protein content and protein content in defatted meal were comparable to those of tested cultivars, but glucosinolate content was higher. While cultivars showed glucosinolate contents ranging from 15.9 to 26µmol/g in Europe and from 12.9 to 20.6µmol/g in China, SGEDH172 showed more than  $60\mu$ mol/g in both environments. And also the thousand kernel weight of SGEDH172 was 0.4 to 1.4g lower compared to the cultivars. Whereas, the lines with highest corrected oil content exceeded the oil contents of all cultivars in their respective environment, and not only showed comparable contents of protein and protein in defatted meal, but also showed equal thousand kernel weights. Even more convincing except of SGEDH145 with 58µmol/g, the lines of highest corrected oil contents showed substantially lower glucosinolate contents. While SGEDH175 showed around 45µmol/g and SGEDH210 40µmol/g, SGEDH13 even reached a comparable amount of only 24µmol/g. However, due to the production of erucic acid in these lines their oleic acid content is drastically reduced. In further attempts towards increasing oil content in oilseed rape at the Department of Crop Sciences at the University of Göttingen line SGEDH13, due to its relatively high corrected oil content and low glucosinolate content, was used as parent in a cross with the high oil double low cultivar Adriana. From this cross a new DH population was developed which is currently characterized in field experiments.

In parallel to the development and investigation of the SGEDH population in Europe, a sister DH population was developed and is currently analysed in China, derived from a cross of a sister line of SGDH14 which performed best under Chinese conditions, and a Chinese high oil cultivar (Prof. Jianyi Zhao, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China, personal communication). Comparison of the SGEDH population and its sister population might confirm the present results, and allow further insights into the control and regulation of oil content.

| Interfere         Model         GSL         16:0         18:1         18:2         18:3         20:1         72:1         TKW         BOF         EOF         FT           17.2         32.1         61.7         5.0         60.1         19.7         10.9         1.3         0.3         4.6         116.7         144.9         28.1           17.2         32.4         26.0         4.9         61.2         18.3         9.8         1.8         1.0         5.4         114.7         143.6         28.1           16.2         30.3         195         4.3         64.2         18.3         8.5         1.5         0.1         19.7         144.1         144.3         29.4           16.3         30.2         197         4.6         63.0         18.9         9.5         114.0         144.1         30.6           16.3         30.4         196         4.5         63.0         18.9         9.2         114.0         144.1         30.6           16.4         32.0         197         4.6         63.0         18.9         9.2         114.0         144.1         30.6           17.4         32.0         19.2         1.4         0.0                                                                                                                                                                                                                                                                                    |      |          |      | liC      |         | Drot |      |      |      |      |      |      |      |     |       |       |      | ЫЧ    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|----------|---------|------|------|------|------|------|------|------|------|-----|-------|-------|------|-------|
| De         Oil         reg_ corr         Protein         idM         GSL         16:0         18:1         18:2         18:3         20:1         22:1         TKW         BOF         EOF         FT           7.7         46.5         46.4         17.2         32.1         61.7         5.0         60.1         19.7         10.9         1.3         0.3         4.6         114.7         143.6         28.1           45.1         45.0         17.8         32.4         26.0         4.9         61.2         18.3         8.5         1.5         0.3         40.3         10.3         19.5         4.3         64.2         18.3         8.5         1.5         0.1         5.6         114.9         141.3         30.9           46.3         46.3         16.7         31.1         15.9         4.5         62.3         19.7         9.5         114.0         141.1         30.6           45.7         45.7         17.4         32.0         19.7         4.6         63.0         18.9         9.9         1.4         0.0         6.0         114.1         30.6           45.7         45.7         15.5         30.4         19.6         4.6         63.0                                                                                                                                                                                                                                                                  |      |          |      | 5        |         |      |      |      |      |      |      |      |      |     |       |       |      |       |
| 72         46.5         46.4         17.2         32.1         61.7         5.0         60.1         19.7         10.9         1.3         0.3         4.6         116.7         144.9         28.1           45.1         45.0         17.8         32.4         26.0         4.9         61.2         18.3         9.8         1.8         1.0         5.4         114.7         143.6         29.3           46.8         46.4         16.7         31.1         15.9         4.5         62.3         19.7         9.5         113.9         143.1         30.9           46.3         46.3         16.7         31.1         15.9         4.5         62.3         19.7         9.5         113.9         143.9         30.9           45.7         45.7         16.7         31.1         15.9         4.5         13.4         0.0         6.0         113.9         139.5         27.9           45.1         45.7         45.7         16.6         30.4         19.6         14.4         0.0         5.6         114.1         14.1         30.5           45.1         45.1         17.4         32.0         19.2         19.2         9.8         1.4         0.0 </td <td></td> <td>Genotype</td> <td>Ö</td> <td>reg_corr</td> <td>Protein</td> <td>idM</td> <td>GSL</td> <td>16:0</td> <td>18:1</td> <td>18:2</td> <td>18:3</td> <td>20:1</td> <td>22:1</td> <td>TKW</td> <td>BOF</td> <td>EOF</td> <td>뵤</td> <td>EOF</td>            |      | Genotype | Ö    | reg_corr | Protein | idM  | GSL  | 16:0 | 18:1 | 18:2 | 18:3 | 20:1 | 22:1 | TKW | BOF   | EOF   | 뵤    | EOF   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | SGEDH172 | 46.5 | 46.4     | 17.2    | 32.1 | 61.7 | 5.0  | 60.1 | 19.7 | 10.9 | 1.3  | 0.3  | 4.6 | 116.7 | 144.9 | 28.1 | 134.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Express  |      |          |         |      |      |      |      |      |      |      |      |     |       |       |      |       |
| 46.8         46.8         16.2         30.3         19.5         4.3         64.2         18.3         8.5         1.5         0.2         5.5         113.8         143.3         30.9           ty         46.4         16.7         31.1         15.9         4.5         62.3         19.7         9.5         1.2         0.1         5.0         114.9         144.3         29.4           46.3         46.3         16.3         30.2         17.9         4.7         63.8         19.7         9.5         114.0         144.1         30.6           45.7         45.7         16.3         30.2         19.7         4.6         63.0         18.9         9.9         1.4         0.0         6.0         113.9         139.5         25.7           45.1         45.1         17.4         32.0         19.7         4.6         63.0         18.9         9.9         1.4         0.0         6.0         113.9         144.1         30.6           45.1         45.1         17.4         32.1         14.6         61.7         19.8         9.9         1.4         0.1         14.1         14.2         29.1           45.1         45.0         17.1                                                                                                                                                                                                                                                                             |      | 617      | 45.1 | 45.0     | 17.8    | 32.4 | 26.0 | 4.9  | 61.2 | 18.3 | 9.8  | 1.8  | 1.0  | 5.4 | 114.7 | 143.6 | 29.3 | 130.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Oase     | 46.8 | 46.8     | 16.2    | 30.3 | 19.5 | 4.3  | 64.2 | 18.3 | 8.5  | 1.5  | 0.2  | 5.5 | 113.8 | 143.9 | 30.9 | 130.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :77  | NKBeauty | 46.4 | 46.4     | 16.7    | 31.1 | 15.9 | 4.5  | 62.3 | 19.7 | 9.5  | 1.2  | 0.1  | 5.0 | 114.9 | 144.3 | 29.4 | 136.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Adriana  | 46.3 | 46.3     | 16.3    | 30.2 | 17.9 | 4.7  | 63.8 | 19.2 | 9.0  | 1.4  | 0.0  | 6.0 | 113.9 | 139.5 | 25.7 | 135.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Billy    | 45.7 | 45.7     | 17.4    | 32.0 | 19.7 | 4.6  | 63.0 | 18.9 | 8.9  | 1.5  | 0.3  | 5.6 | 114.0 | 144.1 | 30.6 | 126.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Komando  | 45.7 | 45.7     | 16.5    | 30.4 | 19.6 | 4.6  | 63.9 | 18.9 | 9.2  | 1.4  | 0.0  | 5.8 | 115.1 | 142.6 | 27.9 | 131.9 |
| 45.1         45.0         17.2         31.1         21.7         4.6         61.7         19.8         9.9         1.4         0.1         5.7         115.9         144.4         29.1           *         43.8         43.8         18.2         32.4         17.2         4.8         61.3         19.1         10.1         1.6         0.4         5.6         114.7         142.8         28.6           .75         48.5         46.9         17.4         33.7         45.5         4.4         29.4         16.8         9.1         18.8         5.6         117.6         146.5         28.6           .3         48.7         46.7         17.6         33.7         45.5         4.4         29.4         16.8         9.1         18.8         23.7         5.0         118.3         146.5         28.6           .3         48.7         46.7         17.6         34.2         24.1         4.8         25.3         14.8         10.0         18.8         23.7         5.0         118.3         146.5         28.6           .4         48.7         45.1         18.1         35.1         14.1.7         43.3         5.3         116.7         145.4         25.9 </td <td></td> <td>Express</td> <td>45.1</td> <td>45.1</td> <td>17.8</td> <td>32.3</td> <td>23.8</td> <td>4.9</td> <td>61.5</td> <td>19.3</td> <td>9.8</td> <td>1.5</td> <td>0.2</td> <td>5.3</td> <td>113.7</td> <td>143.5</td> <td>30.2</td> <td>127.7</td> |      | Express  | 45.1 | 45.1     | 17.8    | 32.3 | 23.8 | 4.9  | 61.5 | 19.3 | 9.8  | 1.5  | 0.2  | 5.3 | 113.7 | 143.5 | 30.2 | 127.7 |
| (7)         (43.8)         (43.8)         (43.8)         (43.8)         (43.8)         (43.8)         (13.7)         (14.7)         (14.7)         (142.8)         (28.6)           (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)                                                                                                                                                                                                                                                    |      | Krypton  | 45.1 | 45.0     | 17.2    | 31.1 | 21.7 | 4.6  | 61.7 | 19.8 | 9.9  | 1.4  | 0.1  | 5.7 | 115.9 | 144.4 | 29.1 | 131.2 |
| 75       48.5       46.9       17.4       33.7       45.5       4.4       29.4       16.8       9.1       18.7       5.1       117.6       146.3       28.6         .3       48.7       46.7       17.6       34.2       24.1       4.8       25.3       14.8       10.0       18.8       23.7       5.0       118.3       146.5       28.6         4       48.7       45.1       18.1       35.1       65.8       3.6       14.7       14.0       9.4       11.7       43.3       5.3       116.1       144.5       29.0         4       48.6       44.9       18.2       35.4       77.8       3.6       14.0       14.6       8.8       11.7       43.3       5.3       116.7       145.4       29.0         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       145.4       25.9         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       143.6       30.1                                                                                                                                                                                                                                                                                                                                                                                                    |      | Favorite | 43.8 | 43.8     | 18.2    | 32.4 | 17.2 | 4.8  | 61.3 | 19.1 | 10.1 | 1.6  | 0.4  | 5.6 | 114.7 | 142.8 | 28.6 | 130.8 |
| .75       48.5       46.9       17.4       33.7       45.5       4.4       29.4       16.8       9.1       18.8       18.7       5.1       117.6       146.3       28.6         .3       48.7       46.7       17.6       34.2       24.1       4.8       25.3       14.8       10.0       18.8       23.7       5.0       118.3       146.5       28.6         4       48.7       45.1       18.1       35.1       65.8       3.6       14.7       14.0       9.4       11.7       43.3       5.3       116.1       144.5       29.0         4       48.6       44.9       18.2       35.4       77.8       3.6       14.0       14.6       8.8       11.7       43.3       5.3       116.7       144.5       29.0         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       143.6       30.1         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       143.6       30.1                                                                                                                                                                                                                                                                                                                                                                                        |      |          |      |          |         |      |      |      |      |      |      |      |      |     |       |       |      |       |
| .3       48.7       46.7       17.6       34.2       24.1       4.8       25.3       14.8       10.0       18.8       23.7       5.0       118.3       146.5       28.6         4       48.7       45.1       18.1       35.1       65.8       3.6       14.7       14.0       9.4       11.7       43.3       5.3       116.1       144.5       29.0         48.6       44.9       18.2       35.4       77.8       3.6       14.0       14.6       8.8       11.7       43.3       5.3       116.1       144.5       29.0         48.6       44.9       18.2       35.4       77.8       3.6       14.0       14.6       8.8       11.3       44.5       5.3       119.7       145.4       25.9         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       143.6       30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | SGEDH175 | 48.5 | 46.9     | 17.4    | 33.7 | 45.5 | 4.4  | 29.4 | 16.8 | 9.1  | 18.8 | 18.7 | 5.1 | 117.6 | 146.3 | 28.6 | 148.9 |
| 4         48.7         45.1         18.1         35.1         65.8         3.6         14.7         14.0         9.4         11.7         43.3         5.3         116.1         144.5         29.0           48.6         44.9         18.2         35.4         77.8         3.6         14.0         14.6         8.8         11.3         44.5         5.3         119.7         145.4         25.9           46.0         42.8         17.7         32.6         60.8         3.6         19.7         13.2         9.1         13.0         37.7         5.5         113.7         143.6         30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | SGEDH13  | 48.7 | 46.7     | 17.6    | 34.2 | 24.1 | 4.8  | 25.3 | 14.8 | 10.0 | 18.8 | 23.7 | 5.0 | 118.3 | 146.5 | 28.6 | 143.9 |
| 48.6       44.9       18.2       35.4       77.8       3.6       14.0       14.6       8.8       11.3       44.5       5.3       119.7       145.4       25.9         46.0       42.8       17.7       32.6       60.8       3.6       19.7       13.2       9.1       13.0       37.7       5.5       113.7       143.6       30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z ya | SG DH14  | 48.7 | 45.1     |         | 35.1 | 65.8 | 3.6  | 14.7 | 14.0 | 9.4  | 11.7 | 43.3 | 5.3 | 116.1 | 144.5 | 29.0 | 138.9 |
| 46.0 42.8 17.7 32.6 60.8 3.6 19.7 13.2 9.1 13.0 37.7 5.5 113.7 143.6 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Sollux   | 48.6 | 44.9     | 18.2    | 35.4 | 77.8 | 3.6  | 14.0 | 14.6 | 8.8  | 11.3 | 44.5 | 5.3 | 119.7 | 145.4 | 25.9 | 143.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Gaoyou   | 46.0 | 42.8     | 17.7    | 32.6 | 60.8 | 3.6  | 19.7 | 13.2 | 9.1  | 13.0 | 37.7 | 5.5 | 113.7 | 143.6 | 30.1 | 139.6 |

| Table 5.4: Mean values of Chinese trials for contents of seed oil (%), regression corrected seed oil (%), protein (%), protein in defatted meal |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| (Prot.idM in %), glucosinolates (GSL in µmol/g), erucic acid (%) and begin of flowering (BOF), end of flowering (EOF), flowering period (FP in  |
| days) and plant height at end of flowering (PH_EOF in cm) of SGE DH lines with highest oil content (SGEDH172) and highest regression            |
| corrected oil content (SGEDH210, SGEDH145), SGEDH parental lines and cultivars                                                                  |

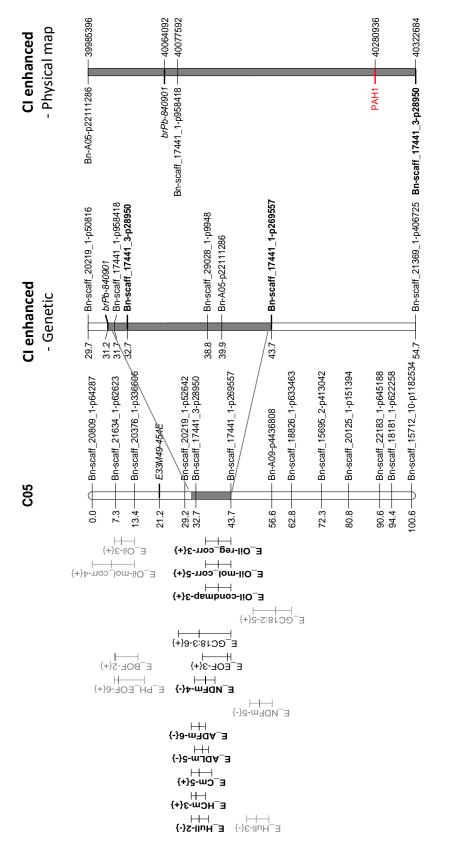
| Genotype         Oil           SGEDH172         45.4           Express 617         42.5           NKBeauty         44.5           Krypton         43.8           Billy         43.2           Komando         43.2           Solution         43.8 |          | Protein | Drot idNA |             |          |         |       |       |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----------|-------------|----------|---------|-------|-------|--------|
| 72<br>517<br>V                                                                                                                                                                                                                                     | 1 C2_CUI |         |           | <u>es</u> r | NIRS22:1 | BOF     | EOF   | Ð     | PH_EOF |
| 517<br>V                                                                                                                                                                                                                                           | 45.5     | 18.4    | 33.7      | 60.3        | -1.6     | 142.8   | 165.8 | 23.0  | 173.3  |
| > 0                                                                                                                                                                                                                                                | 42.6     | 20.3    | 35.3      | 20.6        | -0.5     | 141.9   | 167.5 | 25.6  | 166.3  |
| opu                                                                                                                                                                                                                                                | 45.0     | 18.1    | 32.5      | 12.9        | -4.7     | 140.0   | 165.3 | 25.3  | 166.0  |
| 0                                                                                                                                                                                                                                                  | 44.3     | 18.6    | 33.1      | 17.1        | -5.0     | 143.0   | 167.3 | 24.3  | 166.5  |
| Komando 43.2<br>Oase 42.7                                                                                                                                                                                                                          |          | 18.0    | 32.0      | 13.6        | -1.1     | 140.8   | 165.3 | 24.5  | 164.0  |
|                                                                                                                                                                                                                                                    | 43.6     | 18.6    | 32.7      | 17.6        | -3.4     | 142.8   | 168.3 | 25.5  | 170.3  |
|                                                                                                                                                                                                                                                    |          | 18.8    | 32.8      | 16.5        | -4.7     | 140.8   | 167.3 | 26.5  | 154.8  |
| Adriana 42.6                                                                                                                                                                                                                                       |          | 18.3    | 31.9      | 15.5        | -4.6     | 141.3   | 165.0 | 23.8  | 161.0  |
| Favorite 42.7                                                                                                                                                                                                                                      |          | 19.5    | 34.0      | 13.6        | -2.8     | 141.8   | 166.5 | 24.8  | 155.8  |
| Express 42.5                                                                                                                                                                                                                                       |          | 19.8    | 34.4      | 17.9        | -0.3     | 140.3   | 166.3 | 25.9  | 158.6  |
| SGEDH210 47 0                                                                                                                                                                                                                                      |          | 181     | 31 8      | C 07        | 5 00     | 0 1 1 1 | 168.8 | 8 V C | 175 3  |
|                                                                                                                                                                                                                                                    |          |         | 0. t      |             | C.0.4    |         |       |       |        |
| ņ                                                                                                                                                                                                                                                  |          | 18.2    | 35.I      | 58.U        | 23.2     | 138.3   | 164.3 | 26.0  | C.261  |
| SGDH14 47.8                                                                                                                                                                                                                                        | 44.4     | 17.9    | 34.4      | 61.9        | 34.7     | 142.1   | 165.3 | 23.1  | 177.8  |
| Sollux 46.4                                                                                                                                                                                                                                        |          | 19.6    | 36.6      | 69.6        | 33.6     | 148.3   | 170.3 | 22.0  | 158.0  |
| Gaoyou 43.8                                                                                                                                                                                                                                        | 42.1     | 17.9    | 31.9      | 56.4        | 17.6     | 140.6   | 166.3 | 25.6  | 165.4  |

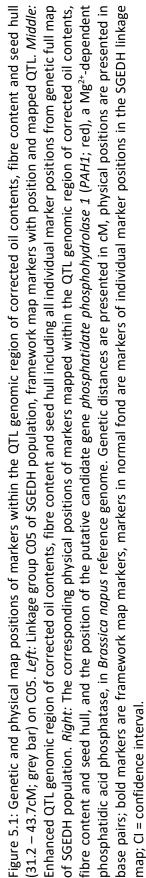
# 5.3 Oil-QTL on C05, fibre content and candidate genes

A subset of SGEDH population data was previously investigated by Suprianto (2014), analysing fibre content and seed hull proportion. The observed trait data of fibre content and seed hull proportion by Suprianto (2014) were used to recalculate QTL of these traits using the optimized framework map of the SGEDH population described in this study. Results of the recalculated QTL for fibre content and seed hull proportion are presented in Table 3.14. Compared to the results of Suprianto (2014) noticeable differences were observed for minor QTL positions of each trait, but major QTL remained in comparable marker intervals. Corresponding to the previous results of Suprianto (2014) a common major QTL for fibre content and seed hull proportion, was detected on linkage group C05. Major QTL for hemicellulose and cellulose showed positive additive effects, while major QTL of all other fibre contents and seed hull showed negative additive effects. All these QTL showed overlapping confidence intervals with the major QTL for corrected oil contents (E\_Oil-reg\_corr-3, E\_Oil-mol\_corr-5 and E\_Oil-cond-3; confidence interval 35.7 - 43.7cM) as well as with a QTL for linolenic acid (E\_GC18:3-6; confidence interval 27.2 -43.7) content and EOF (E\_EOF-3; confidence interval 34.7 - 43.7). The overlapping QTL for corrected oil contents, linolenic acid and EOF all showed positive additive effects. The QTL results were in accordance with the negative correlation between oil and fibre content (Suprianto 2014). Thus, an additional investigation of candidate genes for fibre content was conducted for the major QTL on linkage group C05. Individual peak positions of the major QTL for fibre content and seed hull varied between 32.7 and 36.7cM, therefore a physical region ranging from 40000 to 40320kbp was scanned, which was approximately covering the peaks' region. Within this region about 90 protein matches were found. The screening of this region identified an interesting A. thaliana protein match, related to storage lipid biosynthesis. This match, the AT3G09560.2, represented the lipin family protein phosphatidate phosphohydrolase 1 (PAH1), a Mg<sup>2+</sup>-dependent phosphatidic acid phosphatase (PAP), ranging from 40279609 to 40282919bp. The gene prediction for BnaC05g43390D alias GSBRNA2T00073250001 was overlapping with the PAH1 A. thaliana protein match. By catalysing the conversion of phosphatidic acid (PA) to diacylglycerol (DAG) this enzyme plays a central role in lipid metabolism by governing the supply of substrates not only for storage but also for membrane lipids (Han et al. 2006, Carman and Han 2009). Eastmond et al. (2011) reported that PAH1 is capable of repressing phospholipid biosynthesis at the endoplasmic reticulum in A. thaliana. These results suggest that an increase in oil content might be explained by a tendency of PAH1 to channel the DAG supply in favour of the storage lipid production by repressing phospholipid synthesis. This limitation of phospholipids might indirectly have a negative influence on fibre components and seed hull. The QTL for EOF also co-localised with PAH1, showed same direction of the additive effect with the overlapping major QTL for corrected oil content, indicating the later the EOF the higher the oil content. This might indicate some time dependency, suggesting a relation to a growth stage which generally might regulate the selective activity of PAH1 and in parallel influence the production of fibre components and seed hull. But the precise mechanism of the PAH1 repression is not yet known (Eastmond *et al.* 2011) and the proposed relation between oil content and fibre content and seed hull need to be further investigated.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Ŷ       | ,        | , , , , , , , , , , , , , , , , , , , |                |                 |                   |                   |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|----------|---------------------------------------|----------------|-----------------|-------------------|-------------------|-------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Linkage | Position | Confidence                            |                |                 | V(A)/             | V(I)/             | V(G)/             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QTL       | Group   | [cM]     | Interval [cM]                         | A <sup>a</sup> | R <sup>2b</sup> | V(P) <sup>c</sup> | V(P) <sup>d</sup> | V(P) <sup>e</sup> |
| E_NDFm-3       C03       23.6       0.0-28.3       0.3       1.3       62.1       5.5       67.6         E_NDFm-4       C05       35.7       32.2-38.7       -0.55       45.9       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                               | E_ NDFm-1 | A08     | 4.9      | 0.0-7.9                               | -0.39          | 9               |                   |                   |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E_NDFm-2  | A09     | 113.9    | 106.0-123.7                           | -0.23          | 1.6             |                   |                   |                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_NDFm-3  | C03     | 23.6     | 0.0-28.3                              | 0.3            | 1.3             | 62.1              | 5.5               | 67.6              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_NDFm-4  | C05     | 35.7     | 32.2-38.7                             | -0.55          | 45.9            |                   |                   |                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_NDFm-5  | C05     | 52.7     | 49.7-56.7                             | -0.42          | 45.7            |                   |                   |                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_ADFm-1  | A04     | 98.9     | 96.2-100.9                            | 0.21           | 3.4             |                   |                   |                   |
| E_ADFm-4         A10         25.9         11.6-35.9         -0.26         1         81.7         -         81.7           E_ADFm-5         C02         71         66.9-75.0         -0.21         3.1         -         -         81.7           E_ADFm-6         C05         33.7         31.2-35.7         -1.61         71.8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         11.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         1.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                        | E_ADFm-2  | A07     | 120.5    | 93.2-120.5                            | 0.16           | 0               |                   |                   |                   |
| E_ADFm-5       C02       71       66.975.0       -0.21       3.1         E_ADFm-6       C05       33.7       31.235.7       -1.61       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.8       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71.7       71. | E_ADFm-3  | A08     | 4.9      | 1.0-7.9                               | -0.2           | 5.9             |                   |                   |                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E_ADFm-4  | A10     | 25.9     | 11.6-35.9                             | -0.26          | 1               | 81.7              | -                 | 81.7              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_ADFm-5  | C02     | 71       | 66.9-75.0                             | -0.21          | 3.1             |                   |                   |                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_ADFm-6  | C05     | 33.7     | 31.2-35.7                             | -1.61          | 71.8            |                   |                   |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADFm-7  | C08     | 34.8     | 32.1-40.8                             | 0.2            | 4.7             |                   |                   |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADLm-1  | A02     | 84.5     | 80.3-91.5                             | 0.24           | 1.3             |                   |                   |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADLm-2  | A04     | 63.8     | 58.4-68.8                             | 0.18           | 0.6             |                   |                   |                   |
| E_ADLm-4C027166.9-75.0-0.252.6E_ADLm-5C0534.732.2-36.7-1.9578.2E_ADLm-6C0834.832.1-41.80.143E_HCm-1A0498.994.2-101.9-0.173.4E_HCm-2C03212.3201.2-222.0-0.183.869.20.669.8E_HCm-3C0532.731.2-35.70.73636369.20.669.8E_Cm-1A05155.9151.1-163.9-0.079.79.763.510.574E_Cm-2A0700.0-5.0-0.12.463.510.574E_Cm-3C0200.0-5.0-0.12.463.510.574E_Cm-4C03188.4175.2-195.4-0.041.663.510.574E_Cm-5C0533.731.2-37.70.3141.163.510.574E_Hull-1A0819.514.9-33.8-0.3413.113.113.113.1E_Hull-1A0819.514.9-33.8-0.3413.113.113.113.113.1E_Hull-1A0819.514.9-33.8-0.3413.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.113.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_ADLm-3  | A10     | 0        | 0.0-4.0                               | -0.24          | 0               | 01 C              | 0.2               | 84.0              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADLm-4  | C02     | 71       | 66.9-75.0                             | -0.25          | 2.6             | 04.0              | 0.5               | 04.9              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADLm-5  | C05     | 34.7     | 32.2-36.7                             | -1.95          | 78.2            |                   |                   |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_ADLm-6  | C08     | 34.8     | 32.1-41.8                             | 0.14           | 3               |                   |                   |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_HCm-1   | A04     | 98.9     | 94.2-101.9                            | -0.17          | 3.4             |                   |                   |                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_HCm-2   | C03     | 212.3    | 201.2-222.0                           | -0.18          | 3.8             | 69.2              | 0.6               | 69.8              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_HCm-3   | C05     | 32.7     | 31.2-35.7                             | 0.73           | 63              |                   |                   |                   |
| E_Cm-3       C02       0       0.0-5.0       -0.1       2.4       63.5       10.5       74         E_Cm-4       C03       188.4       175.2-195.4       -0.04       1.6       63.5       10.5       74         E_Cm-5       C05       33.7       31.2-37.7       0.31       41.1       41.1       41.1       41.1       41.1         E_Cm-6       C09       86.7       80.5-105.6       -0.09       5.2       5.2       5.2       5.2       5.2         E_Hull-1       A08       19.5       14.9-33.8       -0.34       13.1       5.3       61.9       3.3       65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_Cm-1    | A05     | 155.9    | 151.1-163.9                           | -0.07          | 9.7             |                   |                   |                   |
| E_Cm-4       C03       188.4       175.2-195.4       -0.04       1.6         E_Cm-5       C05       33.7       31.2-37.7       0.31       41.1         E_Cm-6       C09       86.7       80.5-105.6       -0.09       5.2         E_Hull-1       A08       19.5       14.9-33.8       -0.34       13.1         E_Hull-2       C05       33.7       31.2-36.7       -0.76       55.7       61.9       3.3       65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_Cm-2    | A07     | 0        | 0.0-5.7                               | -0.08          | 8.1             |                   |                   |                   |
| E_Cm-4       C03       188.4       175.2-195.4       -0.04       1.6         E_Cm-5       C05       33.7       31.2-37.7       0.31       41.1         E_Cm-6       C09       86.7       80.5-105.6       -0.09       5.2         E_Hull-1       A08       19.5       14.9-33.8       -0.34       13.1         E_Hull-2       C05       33.7       31.2-36.7       -0.76       55.7       61.9       3.3       65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_Cm-3    | C02     | 0        | 0.0-5.0                               | -0.1           | 2.4             | 62 5              | 10 5              | 74                |
| E_Cm-6       C09       86.7       80.5-105.6       -0.09       5.2         E_Hull-1       A08       19.5       14.9-33.8       -0.34       13.1         E_Hull-2       C05       33.7       31.2-36.7       -0.76       55.7       61.9       3.3       65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E_Cm-4    | C03     | 188.4    | 175.2-195.4                           | -0.04          | 1.6             | 03.5              | 10.5              | /4                |
| E_Hull-1A0819.514.9-33.8-0.3413.1E_Hull-2C0533.731.2-36.7-0.7655.761.93.365.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E_Cm-5    | C05     | 33.7     | 31.2-37.7                             | 0.31           | 41.1            |                   |                   |                   |
| E_Hull-2 C05 33.7 31.2-36.7 -0.76 55.7 61.9 3.3 65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E_Cm-6    | C09     | 86.7     | 80.5-105.6                            | -0.09          | 5.2             |                   |                   |                   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E_Hull-1  | A08     | 19.5     | 14.9-33.8                             | -0.34          | 13.1            |                   |                   |                   |
| E_Hull-3 C05 51.7 48.7-55.7 -0.33 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E_Hull-2  | C05     | 33.7     | 31.2-36.7                             | -0.76          | 55.7            | 61.9              | 3.3               | 65.2              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E_Hull-3  | C05     | 51.7     | 48.7-55.7                             | -0.33          | 47.1            |                   |                   |                   |

Table 5.5: QTL detected for NDF, ADF, ADL, hemicellulose (HC) and cellulose (C) content (%) on the basis of defatted meal (suffix m) and seeds (suffix s) in the SGEDH population


*a* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14


*b* percentage of phenotypic variation explained by each QTL

c variance of additive effects/phenotypic variance – total contribution of additive effect QTL in %

d variance of epistatic effects/phenotypic variance in %

e variance of genetic main effects/phenotypic variance in %





# 5.4 Comparison of oil-QTL in different populations

In a previous study, Radoev (2007) was investigating a DH population derived from a cross of Express617 and the resynthesized line R53. Radoev (2007) identified one major QTL for glucosinolate content on linkage group N19 (C09) explaining 23.5% of the phenotypic variance. Co-located in the same marker interval of this QTL, a minor QTL for oil content was detected. To confirm these results and to compare QTL positions of the Express617 x R53 population (ExR) to the SGEDH population, QTL of the ExR population were recalculated using a set of 725 DArT markers mapped in a GABI-OIL project (data provided by Dr. W. Ecke, Universität Göttingen, Göttingen, Germany). QTL were calculated applying composite interval mapping of QTLNetwork. QTL results from recalculated data (Table 5.6) showed a reduced number of QTL for all traits. While original data showed between two to nine QTL per trait, the recalculation only identified one to four QTL. Besides, linkage groups of detected QTL in some cases differed from previous results. Since R53 has medium erucic acid content, one QTL for erucic acid is expected within the ExR population, representing one of the erucic acid genes. Radoev (2007) identified a major QTL for erucic acid on N08 (A08), while with recalculated data a major QTL was found on N13 (C03). Nevertheless, as previously reported a major QTL for glucosinolate content ExR\_GSL-3 was detected on N19 (C09) explaining 62.4% of the phenotypic variance, but a co-located QTL for oil content was not detected anymore. Physical mapping for the ExR\_GSL-3 was conducted using the closest marker to the QTL peak (34.3cM), brPb660902 at 31.6cM. The physical position of the marker was identified at 1958690bp on B. napus Darmor-bzh reference genome, and a region from 1.9 to 2.5Mbp was scanned for glucosinolate candidate gene matches, resulting in no suitable matches. In comparison, within the SGEDH population the major QTL GSL-5 on CO9 which was detected stable in Europe and in China, was found at position 116.7cM (confidence interval 113.7 - 116.7cM). As closest marker to the QTL peak the SNP Bn-A09-p2730673 of position 117.5cM was identified. The physical position of this marker was found at 2894200bp. Due to a striking marker disorder comparing genetic and physical marker positions on C09 a region from 2.5 to 3.1Mbp around Bn-A09-p2730673 was scanned for glucosinolate candidate gene matches. This screen identified 115 A. thaliana protein matches including four matches involved in the regulation of the glucosinolate biosynthetic process. 32.7kbp apart from Bn-A09p2730673, AT1G18570.1 the myb domain protein 51 (MYB51; 2926900-2927542bp) and AT5G60890.1 the myb domain protein 34 (MYB34; 2926900 - 2927977bp) were found, which overlapped the *B. napus* gene prediction BnaC09g05060D alias GSBRNA2T00146117001. About 205kbp apart from Bn-A09-p2730673 in the region from 3099235-3100634bp, AT5G07700.1 the myb domain protein 76 (MYB76) and AT5G61420.2 the myb domain protein 28 (MYB28)

were identified, overlapping gene predictions BnaC09g05290D alias GSBRNA2T00146147001 and BnaC09g05300D alias GSBRNA2T00146148001, respectively.

Most of the increasing alleles for oil content in the SGEDH population are contributed by SGDH14 which was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou both showing high oil contents, but also high erucic acid and glucosinolate contents (Zhao et al. 2005). Five out of seven QTL for oil content in EU trials and five out of six QTL in Chinese trials identified SGDH14 to contribute the increasing alleles for oil content. In the Sollux x Gaoyou DH population Zhao et al. (2005) previously detected eight oil-QTL on A01, A07, A09, C01, C02, C04, C08 and C09. Comparison of these oil-QTL to those of the SGEDH population showed the detection of oil-QTL on A07 and C04 (cf. section 5.2) in both populations. QTL positions on these linkage groups were supposed to be the same, although no common marker or sequence information was available to prove this assumption. Since no more oil-QTL were detected on common linkage groups, it was suggested that alleles of Express617 and SGDH14 showed equal effects at the other QTL positions previously detected in the Sollux x Gaoyou DH population, thus detecting no significant differences at these positions anymore in the SGEDH population. But Zhao et al. (2006) not only investigated the genetic basis of oil content, but also evaluated the genetic interrelationship between oil content and phenological traits, specifically begin of flowering and flowering period, by applying conditional mapping. Results of the evaluation of a possible genetic relation between oil content and phenological traits indicated that although begin of flowering and flowering period still showed significant genetic correlations to oil content, only three of the eight oil-QTL of the Sollux x Gaoyou DH population failed to show significant effects after conditioning on phenological traits, but these QTL showed the smallest effects. Therefore, it was assumed, that most of the variation in oil content occurred independent from the variation in phenological traits (Zhao et al. 2006). Nevertheless, in the SGEDH population significant positive correlations between oil content and begin of flowering  $(r_s = 0.2^{**})$ , end of flowering  $(r_s = 0.3^{**})$ , as well as plant height at end of flowering  $(r_s = 0.5^{**})$ EU/  $r_s = 0.4^{**}$  China) were observed. Furthermore, in EU experiments the oil-QTL E\_Oil-3 on C05, which explained 13.8% of the phenotypic variance for oil content, was found co-located with QTL for phenological traits with same sign for the additive effects, however indicating a genetic interrelation of oil content and phenological traits.

| אכופוור (וואא ווו 3/ מווח אומוור ווכופוור מרכווח או ו           | וות מומות ווכופוו |                  | וסאבווווס (ו וו_בטו / ווו נווכ באטובשטעד א ווש אטאממוטוו (באוו)      |                  | ואים הטהמומנוי |                        |                        |                        |
|-----------------------------------------------------------------|-------------------|------------------|----------------------------------------------------------------------|------------------|----------------|------------------------|------------------------|------------------------|
|                                                                 | Linkage           | Position         | Confidence                                                           |                  |                |                        |                        |                        |
| QTL                                                             | Group             | [cM]             | Interval [cM]                                                        | Aa               | $R^{2b}$       | V(A)/V(P) <sup>c</sup> | v(I)/v(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| ExR_Oil-1                                                       | C02               | 90.3             | 88.4-94.5                                                            | 0.48             | 9.6            | 36.4                   |                        | 36.4                   |
| ExR_Oil-2                                                       | C03               | 4.0              | 0.0-10.0                                                             | -0.85            | 18.1           |                        |                        |                        |
| ExR_Oil-3                                                       | C03               | 124.4            | 109.4-138.3                                                          | 0.51             | 7.4            |                        |                        |                        |
| ExR_Protein-1                                                   | A02               | 50.0             | 38.6-67.6                                                            | 0.30             | 9.1            | 9.1                    | ı                      | 9.1                    |
| ExR_GSL-1                                                       | A02               | 48.0             | 36.6-58.6                                                            | 2.43             | 5.4            | 69.6                   | 6.3                    | 75.9                   |
| ExR_GSL-2                                                       | C02               | 88.8             | 88.6-90.3                                                            | -2.79            | 8.4            |                        |                        |                        |
| ExR_GSL-3                                                       | 60J               | 34.3             | 30.3-38.3                                                            | -12.00           | 62.4           |                        |                        |                        |
| ExR_NIRS22:1-1                                                  | C03               | 4.0              | 0.0-7.0                                                              | -8.63            | 67.8           | 67.8                   | ı                      | 67.8                   |
| ExR_TKW-1                                                       | A05               | 32.0             | 28.7-55.1                                                            | 0.07             | 5.7            | 33.0                   |                        | 33.0                   |
| ExR_TKW-2                                                       | A07               | 89.0             | 79.3-96.3                                                            | -0.10            | 8.5            |                        |                        |                        |
| ExR_TKW-3                                                       | C01               | 89.4             | 87.2-89.5                                                            | 0.10             | 9.5            |                        |                        |                        |
| ExR_TKW-4                                                       | C02               | 81.0             | 79.7-88.4                                                            | -0.10            | 10.7           |                        |                        |                        |
| ExR_PH_EOF-1                                                    | C03               | 137.9            | 137.9-137.9                                                          | 3.06             | 12.2           | 19.9                   |                        | 19.9                   |
| EXR_PH_EOF-2                                                    | C05               | 26.0             | 16.0-33.4                                                            | 2.44             | 7.7            |                        |                        |                        |
| a additive effect; positive additive effect indic               | ositive additive  | effect indicatin | ating that the alleles increasing the trait were derived from SGDH14 | reasing the trai | t were derive  | d from SGDH14          |                        |                        |
| $m{b}$ percentage of phenotypic variation explained by each QTL | enotypic variat   | ion explained b  | y each QTL                                                           |                  |                |                        |                        |                        |

5.4 Comparison of oil-QTL in different populations

c variance of additive effects/phenotypic variance – total contribution of additive effect QTL in %

*d* variance of epistatic effects/phenotypic variance in % *e* variance of genetic main effects/phenotypic variance in %

## 5.5 Future perspectives of breeding for increased oil content

Classical breeding efforts of the past 50 years facilitated an impressive steady improvement of increasing oil content in *B. napus*. And through its unique variety of oil qualities, especially the launch of double low quality, oilseed rape became one of the world's leading oil crops.

Nevertheless, today classical approaches to further increase the already high oil content in oilseed rape suffers from the relatively narrow genetic basis of the comparably young crop, which is leading to the search for new genetic resources. One attempt is to use foreign germplasm to broaden the genetic basis, as presented in this study. While another attempt focuses on the utilisation of the wide variation of the *B. napus* progenitors *B. rapa* and *B. oleracea* by investigating exotic and resynthesized germplasm (Girke et al. 2011, Jesske et al. 2011, Weis 2014). And also induced mutagenesis was already successfully used to create new variability (Xu et al. 2012). Promising new resources to further increase oil content in oilseed rape, like the quantitative locus on C05 identified in this study (E-Oil\_reg\_corr-3), can subsequently be transferred into elite material (cf. section 3.5.7 and section 4.5.2.1). However, conventional breeding for increased seed oil content in *B. napus* necessarily involves generation and detailed phenotyping of large populations in which only few individuals can be expected to carry all positive allelic combinations for the large number of loci contributing to all desired traits (Becker 2011, Snowdon and Iniguez Luy 2012). This makes breeding for high oil content timeconsuming and labour intensive due to the quantitative nature of oil content, and the complexity of the allopolyploid structure of oilseed rape.

Enormous progress in new molecular technologies during the last decades developed new prospects to substantially improve breeding processes in oilseed rape. High-throughput technologies are available which provide large numbers of sequence informative markers, thus improving QTL mapping. Substantial improvement of sequencing technologies enabled the decoding of the *B. napus* genome (Chalhoub *et al.* 2014), a mile stone for *B. napus* breeding. Using both high-throughput marker technologies and the *B. napus* reference genome information in this study proved the potential of these new prospects. Furthermore, new tools for genome editing are promising to allow fast and targeted genome modifications by the use of engineered nucleases (Puchta and Fauser 2013) or targeting induced local lesions in genomes (TILLING) (McCallum *et al.* 2000). But these technologies still need to be established in *B. napus*, and it is not yet clear if the organisms produced by these methods will be considered genetically modified or not.

Breeding for high oil content in oilseed rape additionally might benefit from experiences from animal breeding which demonstrated the possibility to replace expensive and time-consuming phenotyping in breeding populations through implementation of statistical models to calculate genomic estimated breeding values (GEBVs). The GEBV can directly be used to predict the expected performance of a non-phenotyped individual (Meuwissen *et al.* 2001). Besides, continuously decreasing costs for genotyping and sequencing, genomic selection, which is also playing an important role in animal breeding (Hayes *et al.* 2009, Bagnato and Rosati 2012), will most likely as well gain importance in plant breeding (Jannink *et al.* 2010, Snowdon and Iniguez Luy 2012).

Although traditional and new breeding approaches will facilitate the further increase of seed oil content in *B. napus*, still time and effort will be needed to reveal and understand the complex regulation of oil biosynthesis.

# 6 Summary

Oilseed rape (*Brassica napus* L.) is one of the world's most important oil crops, and due to a growing demand of vegetable oil for nutritional as well as industrial purposes increasing seed oil content is a major aim for oilseed rape breeding.

Compared to other field crops oilseed rape is a rather young species and therefore its genetic variation is limited. However, breeding efforts of the last decades increased seed oil content substantially in European breeding material. But the intensive selection process further decreased genetic diversity, thus the need for a new source of genetic variation rose. As a candidate of high potential to lead to a rapid breeding success, Chinese breeding material, which independently underwent an intensive selection for high yield and oil content during the last decades, was chosen in a previous study. Within this, a quantitative genetic analysis was conducted on a DH population derived by a cross between the Chinese cultivar Gaoyou and the European cultivar Sollux, both with high oil content, but also high erucic acid and glucosinolate content. Thereby, the DH line 14 (SGDH14) was identified as best performing line under European conditions with highest oil contents and a combination of all favourable QTL alleles for oil content from both parental cultivars. Thereupon SGDH14 was crossed to Express617, an inbred line of Express, a European high oil cultivar of canola quality, since erucic acid and glucosinolates are undesirable traits in modern breeding material. And a F1 derived DH population (SGEDH) consisting of 212 genotypes was developed segregating for erucic acid and glucosinolate content.

In the present study, the SGEDH population was analysed to find out more about the genetic variation and inheritance of seed oil content, the underlying fatty acid composition and other seed quality traits, and to identify new QTL responsible to further increase oil content. Thus, field experiments of the SGEDH population were conducted in the two mega-environments, Europe (North Germany and South Sweden; EU trials) in three consecutive growing seasons 2009/10, 2010/11 and 2011/12, and East China (Hangzhou; Chinese trials) in two consecutive growing seasons 2010/11 and 2011/12. And a genetic map was constructed including 15380 SNP, 314 DArT and 116 AFLP markers, organized in 19 linkage groups and covering 2651cM. This map comprised 1693 individual marker positions. QTL mapping was conducted using a framework map consisting of a subset of 379 markers selected form the full map, and applying the composite interval mapping (CIM) approach of QTLNetwork software version 2.1. Mega-environments were investigated separately, and results subsequently compared.

Summary

Analysis of variances of the SGEDH population revealed highly significant genotypic effects for all traits in both environments, except for flowering period in the Chinese trials. The phenotypic variation was moderate to high depending on the trait considered. Seed oil content in the SGEDH population ranged from42.5 to 50.9% in the EU trials, and from 39.4 to 49.8% in the Chinese trials, showing a slightly broader range for seed oil in the Chinese trials, but in total higher oil contents in the EU trials. Heritability for oil content was high as well for the EU trials with 0.96 as for the Chinese trials with 0.94. Heritabilities for all other traits investigated in the EU tails were high ranging from 0.76 to 1.00. High heritabilities ranging from 0.70 to 0.99 were also found for most other traits in the Chinese tails, except for end of flowering (0.55) and flowering period (0.1). High significant positive correlations (P = 0.01) were consistently observed in both trials between oil content and erucic acid content, protein content in defatted meal and plant height.

Since a strong association between oil content and erucic acid was reported previously and confirmed by a high positive correlation between these two traits in this study, corrections of oil content were conducted to eliminate the effect of erucic acid on oil content. This enabled a comparison of the oil contents of genotypes with varying erucic acid contents, and identified SGEDH175 and 13, originally of medium erucic acid content, as the genotypes with highest oil contents in the EU trials, and SGEDH210 and 145 in Chinese trials. Corrected oil contents were subsequently used to identify additional QTL for oil content independent of erucic acid content. In the group of erucic acid free genotypes SGEDH172 was identified with highest oil content in both mega-environments.

QTL mapping applying the CIM method identified four QTL for oil content in the EU trials and six in the Chinese trials. Individual QTL explained between 10 and 50.5% of the phenotypic variance in the EU trials and between 3.3 and 46.5% in the Chinese trials. Four additional oil-QTL were found for corrected oil contents in the EU trials. Comparison of all QTL results for oil content from both mega-environments, including QTL for corrected oil contents, revealed that three QTL were constantly detected. These three environmentally stable QTL were located in overlapping genetic regions on linkage groups A08, C03 and C05. Furthermore, four environmental-specific QTL for oil content were identified in EU trials, located on A10, C03, C04 and C05, while three individual oil-QTL were found in Chinese trials on A06, A07 and A10. For other traits, between two and eight QTL were identified in the EU trials, and between two to five QTL were identified in the Chinese trials. Individual QTL explained between 0.6 and 64.1% of the phenotypic variance in the EU trials and 0.0 and 63.8% in the Chinese trials. Comparison of QTL results

#### Summary

revealed that between one and three QTL were repeatedly identified for other traits across the two trials.

BLAST search of SNP and DArT marker sequences to the *B. napus* Darmor-*bzh* reference genome enabled the identification of the physical position of 1289 SNP and 94 DArT markers from the set of 1693 individual full map marker positions. Alignment of genetic and physical map positions of markers showed a good collinearity for all linkage groups, except for linkage group C09. Physical positions of putative candidate genes involved in storage oil biosynthesis were compared to the physical positions of markers within QTL confidence intervals for seed oil content. This identified two genes co-located with QTL for oil content in the EU trials and two genes co-located in the Chinese trials. *FAD3*, encoding the linoleic acid desaturase, was located within the confidence interval of the oil-QTL on C04 in EU trials, and *KAR*, encoding the ketoacyl-ACP reductase an enzyme of the fatty acid synthase complex, was located within the confidence interval of the oil-QTL on A06 in Chinese trials. In both trials *FAE1*, encoding a ketoacyl-CoA synthase involved in the elongation of oleic acid to erucic acid, was found co-located with the stable oil-QTL identified on A08. Of highest interest for further breeding the major oil-QTL for corrected oil content E\_Oil-reg\_corr-3 on C05 was identified in the present study.

# Bibliography

- Abdellatif AMM (1972) Cardiopathogenic Effects of Dietary Rapeseed Oil. Nutr Rev 30:2–6. doi: 10.1111/j.1753-4887.1972.tb03965.x
- Albrecht S, Möllers C, Röbbelen G (1995) Selection in vitro for erucic-acid content in segregating populations of microspore-derived embryoids of Brassica napus. Plant Breed 114:210–214. doi: 10.1111/j.1439-0523.1995.tb00795.x
- Anjou K, Lonnerdal B, Uppstrom B, Aman P (1977) Composition of seeds from some Brassica cultivars. Swedish journal of agricultural research.
- Anscombe FJ, Tukey JW (1963) The Examination and Analysis of Residuals. Technometrics 5:141–160. doi: 10.1080/00401706.1963.10490071
- Appelqvist L-A, Ohlson R (1972) Rapeseed: cultivation, composition, processing and utilization. No. 633.42 A6
- Axelsson T, Bowman CM, Sharpe AG, et al. (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688. doi: 10.1139/g00-026
- Bach K (2007) Duplizierte Gene in Brassica napus genetische Vielfalt in Kandidatengenen für Ölgehalt. Potsdam
- Bagnato A, Rosati A (2012) From the Editors—Animal selection: The genomics revolution. Anim Front 2:1–2. doi: 10.2527/af.2011-0033
- Barker GC, Larson TR, Graham IA, et al. (2007) Novel Insights into Seed Fatty Acid Synthesis and Modification Pathways from Genetic Diversity and Quantitative Trait Loci Analysis of the Brassica C Genome. Plant Physiol 144:1827–1842. doi: 10.1104/pp.107.096172
- Basten CJ, Weir BS, Zeng Z B (2004) QTL Cartographer, version 1.17. Department of Statistics, North Carolina State University, Raleigh, NC.
- Basunanda P, Radoev M, Ecke W, et al. (2009) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281. doi: 10.1007/s00122-009-1133-z
- Baud S, Mendoza MS, To A, et al. (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis: Oil synthesis regulatory network in seeds. Plant J 50:825–838. doi: 10.1111/j.1365-313X.2007.03092.x
- Becker HC (2011) Pflanzenzüchtung. Ulmer
- Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor Appl Genet 84:303–306. doi: 10.1007/BF00229487
- Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67. doi: 10.1007/BF00220859
- Beisson F, Koo AJK, Ruuska S, et al. (2003) Arabidopsis Genes Involved in Acyl Lipid Metabolism. A 2003 Census of the Candidates, a Study of the Distribution of Expressed Sequence Tags in Organs, and a Web-Based Database. Plant Physiol 132:681–697. doi: 10.1104/pp.103.022988
- Bell JM (1993) Factors affecting the nutritional value of canola meal: A review. Can J Anim Sci 73:689–697. doi: 10.4141/cjas93-075
- Benmoussa M (1998) Molecular dissection of yield and yield components in rice (Oryza sativa L.) by using genotype x environment interaction models. Ph.D Dissertation, Zhejiang Agricultural University
- Bernerth R, Frentzen M (1990) Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis. Plant Sci 67:21–28. doi: 10.1016/0168-9452(90)90046-Q
- Beweley JD, Black M (1984) Physiology and biochemistry of seeds in relation to germination. Plant Ecology 57:71–74.

- Buckhout TJ, Thimm O (2003) Insights into metabolism obtained from microarray analysis. Curr Opin Plant Biol 6:288–296. doi: 10.1016/S1369-5266(03)00040-2
- Bundessortenamt (2015) bsl\_getreide\_2015.pdf. http://www.bundessortenamt.de/internet30/fileadmin/Files/PDF/bsl\_getreide\_2015.p df. Accessed 18 Nov 2015
- Burns MJ, Barnes SR, Bowman JG, et al. (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39– 48. doi: 10.1038/sj.hdy.6800176
- Butruille DV, Guries RP, Osborn TC (1999) Linkage Analysis of Molecular Markers and Quantitative Trait Loci in Populations of Inbred Backcross Lines of Brassica napus L. Genetics 153:949–964.
- Canola Council of Canada (2014) Canola Grower's Manual Contents Canola Council of Canada.http://www.canolacouncil.org/crop-production/canola-grower's-manualcontents/. Accessed 18 Nov 2015
- Cao G, Zhu J, He C, et al. (2001) Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160. doi: 10.1007/s001220100536
- Carman GM, Han G-S (2009) Phosphatidic Acid Phosphatase, a Key Enzyme in the Regulation of Lipid Synthesis. J Biol Chem 284:2593–2597. doi: 10.1074/jbc.R800059200
- Cavell AC, Lydiate DJ, Parkin I, et al. (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69. doi: 10.1139/g97-097
- Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585. doi: 10.1111/j.1365-313X.2004.02235.x
- Chalhoub B, Denoeud F, Liu S, et al. (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. doi: 10.1126/science.1253435
- Chen G, Geng J, Rahman M, et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174. doi: 10.1007/s10681-010-0144-9
- Chen J, Tan R-K, Guo X-J, et al. (2015) Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS ONE. doi: 10.1371/journal.pone.0126250
- Cheung WY, Champagne G, Hubert N, Landry BS (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94:569–582. doi: 10.1007/s001220050453
- Dahlqvist A, Ståhl U, Lenman M, et al. (2000) Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci 97:6487–6492. doi: 10.1073/pnas.120067297

Daun JK (1984) Composition and use of canola seed, oil, and meal. Cereal Foods World, USA.

- Daun JK, Adolphe D (1997) A revision to the canola definition. GCIRC Bulletin 134–141.
- Dean FB, Hosono S, Fang L, et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci 99:5261–5266. doi: 10.1073/pnas.082089499
- Delourme R, Falentin C, Huteau V, et al. (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345. doi: 10.1007/s00122-006-0386-z
- Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67:35–49. doi: 10.1016/S0378-4290(00)00082-4
- Dimov Z, Möllers C (2010) Genetic variation for saturated fatty acid content in a collection of European winter oilseed rape material (Brassica napus). Plant Breed 129:82–86. doi: 10.1111/j.1439-0523.2009.01652.x
- Dimov Z, Suprianto E, Hermann F, Möllers C (2012) Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and

development of NIRS calibrations. Plant Breed 131:361–368. doi: 10.1111/j.1439-0523.2012.01951.x

- Doerge RW, Churchill GA (1996) Permutation Tests for Multiple Loci Affecting a Quantitative Character. Genetics 142:285–294.
- Dorrell DG, Downey RK (1964) The inheritance of erucic acid content in rapeseed (brassica campestris). Can J Plant Sci 44:499–504. doi: 10.4141/cjps64-099

Downey RK (1990) Canola: a quality brassica oilseed. Timber Press, pp 211–215

- Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475–478. doi: 10.1007/BF02670026
- Eastmond PJ, Quettier A-L, Kroon JT, et al. (2011) A phosphatidate phosphatase double mutant provides a new insight into plant membrane lipid homeostasis. Plant Signal Behav 6:526–527. doi: 10.4161/psb.6.4.14748
- Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet. doi: 10.1007/BF00223908
- Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11. doi: 10.1007/s00122-012-1964-x
- Fahy E, Subramaniam S, Murphy RC, et al. (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14. doi: 10.1194/jlr.R800095-JLR200
- Fehling E, Mukherjee KD (1991) Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta BBA - Lipids Lipid Metab 1082:239–246. doi: 10.1016/0005-2760(91)90198-Q
- Ferreira PC, Hemerly AS, Engler JD, et al. (1994) Developmental expression of the arabidopsis cyclin gene cyc1At. Plant Cell 6:1763–1774. doi: 10.1105/tpc.6.12.1763
- Focks N, Benning C (1998) wrinkled1: A Novel, Low-Seed-Oil Mutant of Arabidopsis with a Deficiency in the Seed-Specific Regulation of Carbohydrate Metabolism. Plant Physiol 118:91–101. doi: 10.1104/pp.118.1.91
- Foisset N, Delourme R (1996) Segregation distortion in androgenic plants. In: Jain SM, Sopory SK, Veilleux RE (eds) In Vitro Haploid Production in Higher Plants. Springer Netherlands, pp 189–201
- Fourmann M, Barret P, Renard M, et al. (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858. doi: 10.1007/s001220050812
- Fowler DB, Downey RK (1970) Lipid and morphological changes in developing rapeseed, brassica napus. Can J Plant Sci 50:233–247. doi: 10.4141/cjps70-047
- Fuente A de la, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574. doi: 10.1093/bioinformatics/bth445
- Girke A, Schierholt A, Becker HC (2011) Extending the rapeseed genepool with resynthesized Brassica napus L. I: Genetic diversity. Genet Resour Crop Evol 59:1441–1447. doi: 10.1007/s10722-011-9772-8
- Grami B, Stefansson BR (1977) Gene action for protein and oil content in summer rape. Can J Plant Sci 57:625–631. doi: 10.4141/cjps77-092
- Gunderson KL, Kruglyak S, Graige MS, et al. (2004) Decoding Randomly Ordered DNA Arrays. Genome Res 14:870–877. doi: 10.1101/gr.2255804
- Gunderson KL, Steemers FJ, Lee G, et al. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554. doi: 10.1038/ng1547
- Gunstone F (2009) Rapeseed and Canola Oil: Production, Processing, Properties and Uses. John Wiley & Sons
- Han G-S, Wu W-I, Carman GM (2006) The Saccharomyces cerevisiae Lipin Homolog Is a Mg2+dependent Phosphatidate Phosphatase Enzyme. J Biol Chem 281:9210–9218. doi: 10.1074/jbc.M600425200

- Han Y, Teng W, Wang Y, et al. (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed 134:300–309. doi: 10.1111/pbr.12259
- Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (brassica napus). Can J Plant Sci 44:104–111. doi: 10.4141/cjps64-019
- Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta BBA - Lipids Lipid Metab 1301:7–56. doi: 10.1016/0005-2760(95)00242-1
- Hasan M, Seyis F, Badani AG, et al. (2005) Analysis of Genetic Diversity in the Brassica napus L. Gene Pool Using SSR Markers. Genet Resour Crop Evol 53:793–802. doi: 10.1007/s10722-004-5541-2
- Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 92:433–443. doi: 10.3168/jds.2008-1646
- Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78. doi: 10.1016/0040-5809(88)90004-4
- Howell PM, Lydiate DJ, Marshall DF (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358. doi: 10.1139/g96-045
- Jako C, Kumar A, Wei Y, et al. (2001) Seed-Specific Over-Expression of an Arabidopsis cDNA Encoding a Diacylglycerol Acyltransferase Enhances Seed Oil Content and Seed Weight. Plant Physiol 126:861–874. doi: 10.1104/pp.126.2.861
- Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177. doi: 10.1093/bfgp/elq001
- Jesske T, Olberg B, Becker HC (2011) Brassica-Wildarten als neue genetische Ressource für die Rapszüchtung. Niedersächsische Staats-und Universitätsbibliothek Göttingen
- Jiang C, Shi J, Li R, et al. (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968. doi: 10.1007/s00122-014-2271-5
- Jolivet P, Roux E, d'Andrea S, et al. (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509. doi: 10.1016/j.plaphy.2004.04.006
- Jönsson R (1977) Erucic-acid heredity in rapeseed:(Brassica napus L. and Brassica campestris L.). Hereditas 86:159–170. doi: 10.1111/j.1601-5223.1977.tb01226.x
- Jonsson R, Bengtsson L (1970) Yellow-seeded rape and turnip rape. 1. Influence of breeding for yellow seeds upon yield and quality properties. Sver Utsadesforenings Tidskr 80:149–55.
- Katavic V, Reed DW, Taylor DC, et al. (1995) Alteration of Seed Fatty Acid Composition by an Ethyl Methanesulfonate-Induced Mutation in Arabidopsis thaliana Affecting Diacylglycerol Acyltransferase Activity. Plant Physiol 108:399–409. doi: 10.1104/pp.108.1.399
- Kimber DS, McGregor DI (1995) Brassica oilseeds: production and utilization.
- Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA Carboxylase in Higher Plants: Most Plants Other Than Gramineae Have Both the Prokaryotic and the Eukaryotic Forms of This Enzyme. Plant Cell Physiol 37:117–122.
- Kramer JKG, Sauer FD (1983) High and Low Erucic Acid in Rapeseed Oils. Academic Press
- Kroll H (1995) Literature on archaeological remains of cultivated plants (1992/1993). Veg Hist Archaeobotany 4:51–66. doi: 10.1007/BF00198615
- Kunst L, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem 30:425–434.
- LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193. doi: 10.1093/nar/gkp552
- Lagercrantz U (1998) Comparative Mapping Between Arabidopsis thaliana and Brassica nigra Indicates That Brassica Genomes Have Evolved Through Extensive Genome Replication

Accompanied by Chromosome Fusions and Frequent Rearrangements. Genetics 150:1217–1228.

- Lagercrantz U, Lydiate DJ (1996) Comparative Genome Mapping in Brassica. Genetics 144:1903–1910.
- Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20. doi: 10.1046/j.1365-313X.1996.09010013.x
- Latta S (1990) New industrial uses of vegetable oils. International news on fats, oils and related materials, USA.
- Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240. doi: 10.1007/BF00224392
- Li-Beisson Y, Shorrosh B, Beisson F, et al. (2013) Acyl-Lipid Metabolism. Arab Book e0161. doi: 10.1199/tab.0161
- Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610. doi: 10.1016/S0888-7543(05)80158-2
- Lin L-J, Tai SSK, Peng C-C, Tzen JTC (2002) Steroleosin, a Sterol-Binding Dehydrogenase in Seed Oil Bodies. Plant Physiol 128:1200–1211. doi: 10.1104/pp.010982
- Liu L, Qu C, Wittkop B, et al. (2013) A High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L. PLoS ONE. doi: 10.1371/journal.pone.0083052
- Li YL, Dong YB, Cui DQ, et al. (2007) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351. doi: 10.1007/s10681-007-9513-4
- Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507. doi: 10.1007/s001220100560
- Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63. doi: 10.1016/j.tplants.2006.12.001
- Maeo K, Tokuda T, Ayame A, et al. (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487. doi: 10.1111/j.1365-313X.2009.03967.x
- McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442.
- McElroy JP, Zhang W, Koehler KJ, et al. (2006) Comparison of methods for analysis of selective genotyping survival data. Genet Sel Evol 38:637–655. doi: 10.1051/gse:200626
- Mekhedov S, Ilárduya OM de, Ohlrogge J (2000) Toward a Functional Catalog of the Plant Genome. A Survey of Genes for Lipid Biosynthesis. Plant Physiol 122:389–402. doi: 10.1104/pp.122.2.389
- Meksem K, Kahl G (2006) The Handbook of Plant Genome Mapping: Genetic and Physical Mapping. John Wiley & Sons
- Mentzen WI, Peng J, Ransom N, et al. (2008) Articulation of three core metabolic processes in Arabidopsis: Fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biol 8:76. doi: 10.1186/1471-2229-8-76
- Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157:1819–1829.
- Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131. doi: 10.1046/j.1365-313X.1997.12010121.x
- Mou Z, He Y, Dai Y, et al. (2000) Deficiency in Fatty Acid Synthase Leads to Premature Cell Death and Dramatic Alterations in Plant Morphology. Plant Cell 12:405–417. doi: 10.1105/tpc.12.3.405
- Mu J, Tan H, Zheng Q, et al. (2008) LEAFY COTYLEDON1 Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054. doi: 10.1104/pp.108.126342

Murphy IS, Sonntag JG (1991) Erucic, behenic: feedstocks of the 21st century. 885-896.

- Naczk M, Amarowicz R, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62:489–502. doi: 10.1016/S0308-8146(97)00198-2
- Nath UK, Wilmer JA, Wallington EJ, et al. (2008) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet 118:765–773. doi: 10.1007/s00122-008-0936-7
- Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970. doi: 10.1105/tpc.7.7.957
- Ohlrogge J, Pollard M, Bao X, et al. (2000) Fatty acid synthesis: from CO2 to functional genomics. Biochem Soc Trans 28:567–574. doi: 10.1042/bst0280567
- Olsson G (1960) Species Crosses Within the Genus Brassica. Hereditas 46:171–223. doi: 10.1111/j.1601-5223.1960.tb03082.x
- Parkin IA, Lydiate DJ, Trick M (2002) Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome 45:356–366. doi: 10.1139/g01-160
- Parkin IAP, Gulden SM, Sharpe AG, et al. (2005) Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana. Genetics 171:765– 781. doi: 10.1534/genetics.105.042093
- Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131. doi: 10.1139/g95-149
- Parkin IA., Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303. doi: 10.1139/g03-006
- Pidkowich MS, Nguyen HT, Heilmann I, et al. (2007) Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci 104:4742–4747. doi: 10.1073/pnas.0611141104
- Piepho H-P, Gauch HG (2001) Marker Pair Selection for Mapping Quantitative Trait Loci. Genetics 157:433–444.
- Piquemal J, Cinquin E, Couton F, et al. (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523. doi: 10.1007/s00122-005-0080-6
- Poxleitner M, Rogers SW, Lacey Samuels A, et al. (2006) A role for caleosin in degradation of oilbody storage lipid during seed germination. Plant J 47:917–933. doi: 10.1111/j.1365-313X.2006.02845.x
- Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop brassicas, a review. Opera Bot 57 pp.
- Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216. doi: 10.1016/j.tplants.2006.03.006
- Price RA, Palmer JD, Al-Shehbaz IA (1994) Price: 1 Systematic Relationships of Arabidopsis: A Molecular and Morphological Perspective. Cold Spring Harbor Monograph Archive 27:7–19.
- Przybylski R, Eskin NAM (1991) Phospholipid composition of canola oils during the early stages of processing as measured by TLC with flame lonization detector. J Am Oil Chem Soc 68:241–245. doi: 10.1007/BF02657617
- Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637. doi: 10.1387/ijdb.130194hp
- Qiu D, Morgan C, Shi J, et al. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80. doi: 10.1007/s00122-006-0411-2
- Radoev M (2007) Genetic Analysis of Heterosis in Rapeseed (B. napus L.) by QTL Mapping.
- Rahman M, Sun Z, McVetty PBE, Li G (2008) High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted

selection in plant breeding. Theor Appl Genet 117:895–904. doi: 10.1007/s00122-008-0829-9

- Rakow G, McGregor DI (1973) Opportunities and problems in modification of levels of rapeseed C18 unsaturated fatty acids. J Am Oil Chem Soc 50:400–403. doi: 10.1007/BF02641817
- Rao CR (1971) Estimation of variance and covariance components—MINQUE theory. J Multivar Anal 1:257–275. doi: 10.1016/0047-259X(71)90001-7
- Ravi K, Vadez V, Isobe S, et al. (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132. doi: 10.1007/s00122-010-1517-0
- Röbbelen G, Thies W (1980) Biosynthesis of seed oil and breeding for improved meal quality. Brassica crops and wild allies: biology and breeding. Japan Scientific Societies Press, Tokyo 285–299.
- Röbbelen S, Downey RK (1989) Oilcrops of the world: their breeding and utilization. No. 633.85 R62.
- Rocquelin G, Sergiel JP, Martin B, et al. (1971) The nutritive value of refined rapeseed oils: A review. J Am Oil Chem Soc 48:728–732. doi: 10.1007/BF02638530
- Roscoe TJ (2005) Identification of acyltransferases controlling triacylglycerol biosynthesis in oilseeds using a genomics-based approach. Eur J Lipid Sci Technol 107:256–262. doi: 10.1002/ejlt.200590023
- Roughan PG, Slack CR (1982) Cellular Organization of Glycerolipid Metabolism. Annu Rev Plant Physiol 33:97–132. doi: 10.1146/annurev.pp.33.060182.000525
- Rücker B, Röbbelen G (1996) Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breed 115:226–230. doi: 10.1111/j.1439-0523.1996.tb00908.x
- Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal Networks of Gene Expression during Arabidopsis Seed Filling. Plant Cell 14:1191–1206. doi: 10.1105/tpc.000877
- Sasongko ND, Möllers C (2005) Toward increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. Journal of the American Oil Chemists' Society 82.6:445-449.
- Scarth R, McVetty PBE, Rimmer SR, Stefansson BR (1991) Hero summer rape. Can J Plant Sci 71:865–866. doi: 10.4141/cjps91-124
- Scarth R, McVetty PBE, Rimmer SR, Stefansson BR (1988) Stellar low linolenic-high linoleic acid summer rape. Can J Plant Sci 68:509–511. doi: 10.4141/cjps88-061
- Schatzki J, Schoo B, Ecke W, et al. (2013) Mapping of QTL for seed dormancy in a winter oilseed rape doubled haploid population. Theor Appl Genet 126:2405–2415. doi: 10.1007/s00122-013-2144-3
- Scheffler JA, Sharpe AG, Schmidt H, et al. (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591. doi: 10.1007/s001220050454
- Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121. doi: 10.1139/g95-148
- Shengwu HU, Ovesna J, Kucera L, et al. (2003) Evaluation of genetic diversity of Brassica napus germplasm from China and Europe assessed by RAPD markers. Plant Soil Environ 49:106–113.
- Shi J, Li R, Qiu D, et al. (2009) Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics 182:851–861. doi: 10.1534/genetics.109.101642
- Shimada TL, Shimada T, Takahashi H, et al. (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. The Plant Journal 55.5:798–809.
- Siebel J, Pauls KP (1989) Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theor Appl Genet 77:489–494. doi: 10.1007/BF00274268

- Siloto RMP, Findlay K, Lopez-Villalobos A, et al. (2006) The Accumulation of Oleosins Determines the Size of Seed Oilbodies in Arabidopsis. Plant Cell 18:1961–1974. doi: 10.1105/tpc.106.041269
- Si P, Mailer RJ, Galwey N, Turner DW (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res 54:397–407.
- Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8. doi: 10.1111/j.1439-0523.2003.00968.x
- Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131:351–360. doi: 10.1111/j.1439-0523.2012.01976.x
- Snowdon R, Lühs W, Friedt W (2007) Oilseed Rape. In: Kole C (ed) Oilseeds. Springer Berlin Heidelberg, pp 55–114
- Sosulski F, Zadernowski R (1981) Fractionation of rapeseed meal into hour and hull components. J Am Oil Chem Soc 58:96–98. doi: 10.1007/BF02672189
- Ståhl U, Carlsson AS, Lenman M, et al. (2004) Cloning and Functional Characterization of a Phospholipid:Diacylglycerol Acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335. doi: 10.1104/pp.104.044354
- Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744. doi: 10.1111/j.1365-313X.1993.00739.x
- Stefansson BR, Hougen FW (1964) Selection of rape plants (brassica napus) with seed oil practically free from erucic acid. Can J Plant Sci 44:359–364. doi: 10.4141/cjps64-069
- Stefansson BR, Hougen FW, Downey RK (1961) Note on the isolation of rape plants with seed oil free from erucic acid. Can J Plant Sci 41:218–219.
- Stefansson BR, Kondra ZP (1975) Tower summer rape. Canadian Journal of Plant Science 55:343-344.
- Stringam GR, McGregor DI, Pawlowsk S (1974) Chemical and morphological characteristics associated with seedcoat color in rapeseed. Fette Seifen Anstrichmittel 76:302–303.
- Stuth J, Jama A, Tolleson D (2003) Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Res 84:45–56. doi: 10.1016/S0378-4290(03)00140-0
- Subramaniam S, Fahy E, Gupta S, et al. (2011) Bioinformatics and Systems Biology of the Lipidome. Chem Rev 111:6452–6490. doi: 10.1021/cr200295k
- Suprianto E (2014) Genetic variation and inheritance of seed fibre content in winter oilseed rape (Brassica napus L.). Diss. Niedersächsische Staats-und Universitätsbibliothek Göttingen.
- Tanksley SD (1993) Mapping Polygenes. Annu Rev Genet 27:205–233. doi: 10.1146/annurev.ge.27.120193.001225
- Taylor DC, MacKenzie SL, McCurdy AR, et al. (1994) Stereospecific analyses of seed triacylglycerols from high-erucic acid brassicaceae: Detection of erucic acid at the sn-2 position in Brassica oleracea L. Genotypes. J Am Oil Chem Soc 71:163–167. doi: 10.1007/BF02541551
- Taylor DC, Magus JR, Resham Bhella, et al. (1992) Biosynthesis of triacylglycerols in Brassica napus L. cv. Reston; target: trierucin. Seed Oils for the Future 77–102.
- Teh L, Möllers C (2015) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 1–19. doi: 10.1007/s00122-015-2621-y
- Teh LS (2015) Genetic variation and inheritance of phytosterol and oil content in winter oilseed rape (Brassica napus L.). Diss. Niedersächsische Staats-und Universitätsbibliothek Göttingen.
- Theander O, Aman P, Miksche GE, Yasuda S (1977) Carbohydrates, polyphenols, and lignin in seed hulls of different colors from turnip rapeseed. J Agric Food Chem 25:270–273. doi: 10.1021/jf60210a042
- Thelen JJ, Ohlrogge JB (2002) Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metab Eng 4:12–21. doi: 10.1006/mben.2001.0204

- Thies W (1971) Schnelle und einfache Analysen der Fettsaurezusammensetzung in einzelnen Raps-Kotyledonen. I. Gaschromatographische und papierchromatographische Methoden.
- Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286. doi: 10.1007/BF00225758
- Timmons AM, O'Brien ET, Charters YM, et al. (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica 85:417–423. doi: 10.1007/BF00023975
- Utz HF (2005) PLABSTAT: A computer program for statistical analysis of plant breeding experiments Version 3A. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany.
- Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204. doi: 10.1007/BF00222202
- Van Ooijen JW (2004) MapQTL® 5. Software for the mapping of quantitative trait loci in experimental populations. Wageningen, The Netherlands.
- Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349. doi: 10.1017/S0016672311000279
- Visscher PM, Thompson R, Haley CS (1996) Confidence Intervals in QTL Mapping by Bootstrapping. Genetics 143:1013–1020.
- Voelker T, Kinney AJ (2001) Variations in the Biosynthesis of Seed-Storage Lipids. Annu Rev Plant Physiol Plant Mol Biol 52:335–361. doi: 10.1146/annurev.arplant.52.1.335
- Vos P, Hogers R, Bleeker M, et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi: 10.1093/nar/23.21.4407
- Wang DL, Zhu J, Li ZKL, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264. doi: 10.1007/s001220051331
- Wang L, Cui F, Wang J, et al. (2012) Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J Genet 91:303–312.
- Wang N, Li F, Chen B, et al. (2014) Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet 127:1817–1829. doi: 10.1007/s00122-014-2343-6
- Wang S, Basten J, Zeng ZB (2012a) Windows QTL Cartographer 2.5. http://statgen.ncsu. edu/qtlcart/WQTLCart.html.
- Wang X, Wang H, Long Y, et al. (2015) Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet 128:1175–1192. doi: 10.1007/s00122-015-2498-9
- Weis DK (2014) Genotypic and phenotypic analysis of the allelic diversity in candidate genes for oil content in exotic plant materials of rapeseed (Brassica napus L.). Niedersächsische Staats-und Universitätsbibliothek Göttingen
- Williams IH (1978) The pollination requirements of swede rape (Brassica napus L.) and of turnip rape (Brassica campestris L.). J Agric Sci 91:343–348. doi: 10.1017/S0021859600046438
- Williams IH, Martin AP, White RP (1987) The effect Of insect pollination on plant development and seed production in winter oil-seed rape (Brassica napus L.). J Agric Sci 109:135–139. doi: 10.1017/S0021859600081077
- Wu ZY, Raven PH (2001) Flora of China, Vol. 8: Brassicaceae through Saxifragaceae. Science Press, Beijing
- Xu L, Najeeb U, Naeem MS, et al. (2012) In Vitro Mutagenesis and Genetic Improvement. In: Gupta SK (ed) Technological Innovations in Major World Oil Crops, Volume 2. Springer New York, pp 151–173
- Yang J, Hu C, Hu H, et al. (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723. doi: 10.1093/bioinformatics/btm494

- Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536. doi: 10.1093/bioinformatics/btm143
- Yan JQ, Zhu J, He CX, et al. (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274. doi: 10.1007/s001220050895
- Yan J, Zhu J, He C, et al. (1999) Molecular Marker-Assisted Dissection of Genotype × Environment Interaction for Plant Type Traits in Rice (Oryza sativa L.). Crop Sci 39:538. doi: 10.2135/cropsci1999.0011183X003900020039x
- Yan XY, Li JN, Fu FY, et al. (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364. doi: 10.1007/s10681-009-0006-5
- Ye Z, Wang J, Liu Q, et al. (2009) Genetic Relationships Among Panicle Characteristics of Rice (Oryza sativa L.) Using Unconditional and Conditional QTL Analyses. J Plant Biol 52:259– 267. doi: 10.1007/s12374-009-9026-x
- Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468.
- Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development. Plant Cell 21:3885–3901. doi: 10.1105/tpc.109.071795
- Zhao J (2002) QTLs for oil content and their relationships to other agronomic traits in an European × Chinese oilseed rape population. Diss. Georg-August University of Goettingen, Germany.
- Zhao J, Becker HC, Zhang D, et al. (2005) Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59.
- Zhao J, Becker HC, Zhang D, et al. (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38. doi: 10.1007/s00122-006-0267-5
- Zhao J, Huang J, Chen F, et al. (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421. doi: 10.1007/s00122-011-1716-3
- Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639.
- Zhu J, Weir BS (1994a) Analysis of cytoplasmic and maternal effects I. A genetic model for diploid plant seeds and animals. Theor Appl Genet 89:153–159. doi: 10.1007/BF00225135
- Zhu J, Weir BS (1994b) Analysis of cytoplasmic and maternal effects. II. Genetic models for triploid endosperms. Theor Appl Genet 89:160–166. doi: 10.1007/BF00225136
- Zou J, Wei Y, Jako C, et al. (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653. doi: 10.1046/j.1365-313x.1999.00555.x
- Zou J, Zhu J, Huang S, et al. (2009) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290. doi: 10.1007/s00122-009-1201-4

## Acknowledgement

First of all I would like to thank my supervisor, Dr. Christian Möllers, for accepting me as PhD student, being a patient supervisor with his door open at any time, helping and supporting me throughout the whole time of my PhD. I also want to thank Prof. Heiko Becker sharing his knowledge with us, taking his time to think about my work and give helpful comments as well as reminding us of our curiosity and encouraging us to always investigate new things. And I want to thank the team of outstanding scientists at the Division of Plant Breeding in Göttingen: at first Sabine von Witzke-Ehbrecht for her kindness making all this possible, and Antje Schierholt for encouraging me especially in the final stage, as well as Wolfgang Link, Wolfgang Ecke and Bernd Horneburg for taking time to explain, comment and think about my work.

I also would like to express my words of gratitude to Prof. Gunter Backes and Prof. Elke Pawelzik for kindly consenting to be my examiners.

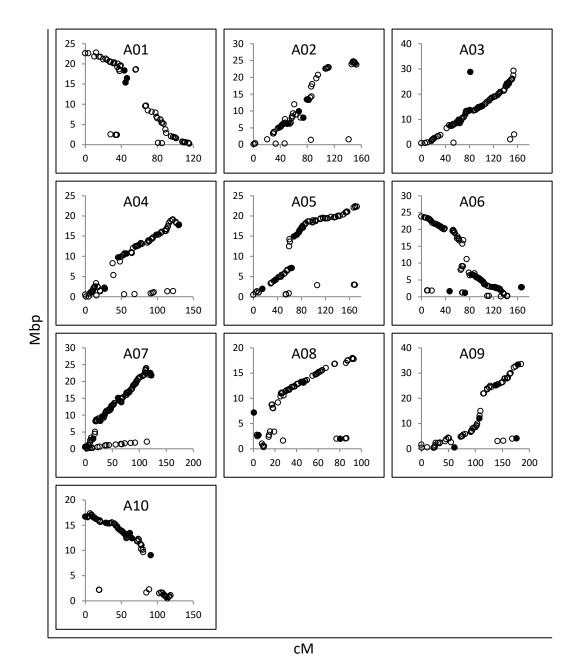
This study was funded by the Fachagentur Nachwachsende Rohstoffe e.V. (FNR). I would like to thank all members of the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V. (GFP) for supporting this project. I would like to thank Prof. Jianyi Zhao at the Academy of Agricultural Sciences, Hangzhou, PR China, for conducting additional field trails and for collaboration. And thanks a lot to Dr. Jörg Plieske from TraitGenetics for helping me with map construction and for an excellent support.

My sincere gratitude goes to Gunda Asselmeyer for helping so much in the field and in the green house, for providing us with 'Motivase', talking and also sharing her free time with us. Thanks a lot to Rosi Clemens our great guardian of the lab taking care of us at any time and to Uwe Ammermann for technical support of GC and PC. For patiently taking his time to explain technical things to me and making me laugh all the time. And thanks to Andreas Henn the man with the green hands for nursing and curing my plants in the green house. Not to forget, thanks also to all the other helpful hands, my wonderful field workers team: Carmen Mensch, Blazenka, Reinhold, Lothar, Albert, Alfons, Reimund, Peter and Christian.

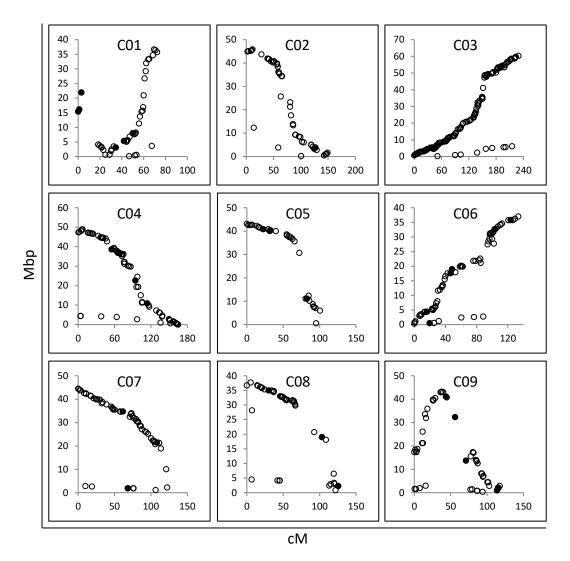
A special thanks additionally goes to Sabine Hippe always having an open door for any office concern.

A big thanks from the heart to the loveliest colleague I could ever wish for, my dear friend, Lishia Teh, not only sharing an office with me but also an exciting part of life. A big thanks likewise goes to my beloved international colleagues and friends Edy Suprianto, my second office mate and happiest and orange loving person I ever met, Mareile Stever, best PhD mom in the world, Ariana Istar Valdés, the Mexican sweetheart, Sebastian Miersch, Ha-iko Brandes, 'Makis' Anthimos Kampouridis – our Greek guy – who frequently took us out for a coffee having inspiring discussions, Siyang Liu, Julia Rudloff, Christopher Hoppe and the unrivalled Gregor Welna, all of you always being helpful and caring.

Thanks also to Parastoo and Ershad my hard working master students, and good luck to our new PhDs Winda, Sasanti, Mohammad, Lisa and little sunshine Luisa.


Ein herzliches Danke an meine Freunde außerhalb der Uni, besonders an Nadine Luneke und Jessica Olschewski, die immer an mich glauben und die Daumen gedrückt haben. Und ein besonderer Dank an den Mann an meiner Seite, Marvin Augustin, der mich liebt wie ich bin, mich unterstützt, wo er kann und sein Leben mit mir teilt.

Von ganzem Herzen Danke sagen möchte ich zu guter Letzt meiner Familie, die immer hinter mir steht mit vollstem Vertrauen und immer für mich da ist. Vielen Dank für eure Liebe und Unterstützung!


## Curriculum vitae

#### PERSONAL DETAILS

| Name                 | Nina Behnke                                                       |
|----------------------|-------------------------------------------------------------------|
| Place, date of birth | Bad Gandersheim – Germany, 26 <sup>th</sup> October 1981          |
| Address              | Bismarckstr. 10                                                   |
|                      | 37581 Bad Gandersheim, Germany                                    |
| Email                | nina.behnke2@gmail.com                                            |
| Nationality          | German                                                            |
| Marital status       | Single                                                            |
| EDUCATION BACKGRC    | DUND                                                              |
| Dec 2010 – Feb 2016  | PhD Program for Agricultural Science (PAG)                        |
|                      | Faculty of Agricultural Sciences                                  |
|                      | Georg-August-Universität Göttingen, Germany                       |
| Oct 2001 – Jul 2007  | Degree Programme Biology (Diploma)                                |
|                      | Faculty of Biology                                                |
|                      | Georg-August-Universität Göttingen, Germany                       |
| WORK EXPERIENCE      |                                                                   |
| Oct 2007 – May 2009  | Laboratory Executive in Molecular Research Laboratory,            |
|                      | Veterinary Institute                                              |
|                      | Georg-August-Universität Göttingen, Germany                       |
| TRAINING COURSE      |                                                                   |
| 28 - 31 Oct 2013     | SSP 1529 Workshop - Population Genomic Analysis (ADAPTOMICS).     |
|                      | University of Hohenheim, Hohenheim, Germany                       |
| 17 - 19 Jan 2012     | Workshop on Advance Methods in Crop Breeding – NUE Crops Project. |
|                      | Newcastle University, Newcastle upon Tyne, UK                     |
|                      |                                                                   |



Appendix 1: Alignment of SGEDH map with the physical map of *B. napus* Darmor-*bzh* genome assembly (A genome)



Appendix 2: Alignment of SGEDH map with the physical map of *B. napus* Darmor-*bzh* genome assembly (C genome)

| -                 |          |         |
|-------------------|----------|---------|
|                   | critical | F-value |
| Trait             | EU       | China   |
| Oil               | 13.57    | 14.02   |
| Oil-reg_corr      | 13.30    | -       |
| Oil-mol_corr      | 13.33    | -       |
| Oil-cond          | 13.32    | -       |
| Oil-reg_corr_NIRS | 13.33    | 13.67   |
| Oil-mol_corr_NIRS | 13.57    | -       |
| Oil-cond_NIRS     | 13.29    | 13.66   |
| Protein           | 13.21    | 14.23   |
| Prot.idM          | 14.00    | 13.86   |
| GSL               | 13.48    | 13.13   |
| GSLidM            | 13.64    | 13.64   |
| GC16:0            | 13.68    | -       |
| GC18:1            | 13.23    | -       |
| GC18:2            | 12.98    | -       |
| GC18:3            | 13.51    | -       |
| GC20:1            | 13.96    | -       |
| GC22:1            | 13.18    | -       |
| NIRS22:1          | 13.20    | 13.27   |
| TKW               | 13.65    | -       |
| BOF               | 13.88    | 14.45   |
| EOF               | 13.25    | 13.26   |
| FT                | 13.56    | 13.25   |
| PH_EOF            | 13.76    | 14.12   |

Appendix 3: Critical *F*-values calculated by a 1000-permutation test in QTLNetwork software. Critical *F*-values were applied to determine QTL in the SGEDH population

Appendix 4: List of candidate genes involved in fatty acid synthesis, modification or TAG synthesis. BLAST search was performed with *A. thaliana* gene sequence against *B. napus* Darmor-*bzh* reference genome (in BRAD); hits on *B. napus* pseudochoromosomes are not presented; Chr. = Chromosome

| Gene                               | <b>.</b> .  |                     | Sequence |      | - ·     |
|------------------------------------|-------------|---------------------|----------|------|---------|
| annotation                         | Species     | Gene ID             | length   | Chr. | E-value |
| ABI3                               | A. thaliana | AT3G24650           | 3694     | 3    |         |
| B3 domain-containing               | B. napus    | GSBRNA2T00154921001 | 692      | A03  | e-165   |
| transcription factor ABI3          | B. napus    | GSBRNA2T00085286001 | 946      | C03  | 0       |
| BCCP2                              | A. thaliana | AT5G15530           | 2090     | 5    |         |
| Biotin carboxyl carrier protein 2  | B. napus    | GSBRNA2T00130052001 | 336      | A03  | 6e-80   |
|                                    | B. napus    | GSBRNA2T00135518001 | 337      | A10  | 7e-52   |
|                                    | B. napus    | GSBRNA2T00140460001 | 330      | C03  | 9e-70   |
|                                    | B. napus    | GSBRNA2T00035217001 | 118      | C09  | 5e-28   |
| ENR1                               | A. thaliana | AT2G05990           | 2925     | 2    |         |
| Enoyl-ACP reductase (MOD1)         | B. napus    | GSBRNA2T00155011001 | 145      | A03  | 2e-46   |
|                                    | B. napus    | GSBRNA2T00054284001 | 212      | A07  | 9e-49   |
|                                    | B. napus    | GSBRNA2T00002461001 | 310      | C07  | 6e-50   |
| FAD2                               | A. thaliana | AT3G12120           | 2766     | 3    |         |
| Fatty acid desaturase 2 (omega-6)/ | B. napus    | GSBRNA2T00000221001 | 910      | A05  | 0       |
| Oleate desaturase                  | B. napus    | GSBRNA2T00111154001 | 914      | C05  | 0       |
| FAD3                               | A. thaliana | AT2G29980           | 3463     | 2    |         |
| Fatty acid desaturase 3 (omega-3)/ | B. napus    | GSBRNA2T00142192001 | 204      | A03  | 5e-91   |
| Linoleate desaturase               | B. napus    | GSBRNA2T00043495001 | 199      | A04  | 8e-93   |
|                                    | B. napus    | GSBRNA2T00048486001 | 311      | A05  | 3e-80   |
|                                    | B. napus    | GSBRNA2T00082771001 | 204      | C03  | 7e-84   |
|                                    | B. napus    | GSBRNA2T00105195001 | 206      | C04  | 5e-97   |
| FAE1                               | A. thaliana | AT4G34520           | 1638     | 4    |         |
| Fatty acid elongase 1/             | B. napus    | GSBRNA2T00113693001 | 447      | A03  | e-99    |
| 3-ketoacyl-CoA synthase (KAS)      | B. napus    | GSBRNA2T00126652001 | 1525     | A08  | 0       |
|                                    | B. napus    | GSBRNA2T00150105001 | 1525     | C03  | 0       |
| FATA                               | A. thaliana | AT3G25110           | 2216     | 3    |         |
| Acyl-ACP thioesterase              | B. napus    | GSBRNA2T00154948001 | 135      | A03  | 2e-40   |
|                                    | B. napus    | GSBRNA2T00128191001 | 277      | A07  | 1e-96   |

| GPAT4                        | A. thaliana | AT1G01610           | 2650 | 1   |       |
|------------------------------|-------------|---------------------|------|-----|-------|
| sn-glycerol-3-phosphate      | B. napus    | GSBRNA2T00150548001 | 484  | A10 | e-170 |
| acyltransferase 4 isoform C1 | B. napus    | GSBRNA2T00085343001 | 483  | C05 | e-169 |

| Gene<br>annotation                    | Species     | Gene ID             | Sequence<br>length | Chr. | E-value |
|---------------------------------------|-------------|---------------------|--------------------|------|---------|
|                                       |             |                     |                    |      |         |
| HAD                                   | A. thaliana | AT5G10160           | 1567               | 5    |         |
| 3-hydroxyacyl-                        | B. napus    | GSBRNA2T00143533001 | 267                | A02  | e-102   |
| acyl-carrier-protein dehydratase      | B. napus    | GSBRNA2T00129742001 | 256                | A03  | 9e-94   |
|                                       | B. napus    | GSBRNA2T00068993001 | 271                | C02  | e-105   |
|                                       | B. napus    | GSBRNA2T00134621001 | 255                | C03  | 8e-91   |
| KAR                                   | A. thaliana | AT1G62610           | 975                | 1    |         |
| ketoacyl-ACP reductase                | B. napus    | GSBRNA2T00042116001 | 836                | A06  | e-171   |
|                                       | B. napus    | GSBRNA2T00124954001 | 641                | C03  | e-124   |
|                                       | B. napus    | GSBRNA2T00151927001 | 277                | C02  | 4e-42   |
| KASI                                  | A. thaliana | AT5G46290           | 2657               | 5    |         |
| 3-ketoacyl-                           | B. napus    | GSBRNA2T00079347001 | 440                | A02  | e-134   |
| acyl carrier protein synthase I       | B. napus    | GSBRNA2T00054708001 | 444                | A06  | e-141   |
| -                                     | B. napus    | GSBRNA2T00058043001 | 439                | A09  | e-112   |
|                                       | B. napus    | GSBRNA2T00146768001 | 447                | C02  | e-124   |
|                                       | B. napus    | GSBRNA2T00128588001 | 461                | C07  | e-144   |
|                                       | B. napus    | GSBRNA2T00115742001 | 439                | C09  | e-109   |
| KASII                                 | A. thaliana | AT1G74960           | 4282               | 1    |         |
| 3-ketoacyl-                           | B. napus    | GSBRNA2T00083137001 | 187                | A02  | 1e-64   |
| acyl carrier protein synthase II      | B. napus    | GSBRNA2T00099408001 | 246                | A07  | 7e-69   |
|                                       | B. napus    | GSBRNA2T00143662001 | 229                | C06  | 2e-84   |
| KASIII                                | A. thaliana | AT1G62640           | 2876               | 1    |         |
| 3-ketoacyl-                           | B. napus    | GSBRNA2T00068613001 | 239                | A09  | 2e-71   |
| acyl carrier protein synthase III     | B. napus    | GSBRNA2T00115818001 | 236                | C09  | 5e-72   |
| LEC1                                  | A. thaliana | AT1G21970           | 2041               | 1    |         |
| Leafy cotyledon 1                     | B. napus    | GSBRNA2T00112245001 | 311                | A07  | e-119   |
|                                       | B. napus    | GSBRNA2T00102756001 | 353                | A08  | 5e-25   |
|                                       | B. napus    | GSBRNA2T00110047001 | 311                | C07  | e-117   |
|                                       | B. napus    | GSBRNA2T00066656001 | 239                | C08  | 3e-14   |
| LPAAT1                                | A. thaliana | AT4G30580           | 2195               | 4    |         |
| lysophosphatidic acid acyltransferase | B. napus    | GSBRNA2T00067440001 | 458                | A03  | e-130   |
| 1/1-acyl-sn-glycerol-3-phosphate      | B. napus    | GSBRNA2T00099722001 | 458                | C07  | e-130   |
| acyltransferase 1 (chloroplastic)     |             | 172000500           |                    | -    |         |
| PAH1                                  | A. thaliana | AT3G09560           | 4840               | 3    |         |
| phosphatidic acid                     |             | GSBRNA2T00073250001 | 639                | C05  | e-140   |
| Phosphohydrolase 1                    |             | GSBRNA2T00080692001 | 639                | A05  | e-138   |
|                                       |             | GSBRNA2T00072843001 | 343                | A01  | 1e-73   |

| Gene                        |             |                     | Sequence |      |         |
|-----------------------------|-------------|---------------------|----------|------|---------|
| annotation                  | Species     | Gene ID             | length   | Chr. | E-value |
| PDAT1                       | A. thaliana | AT5G13640           | 4480     | 5    |         |
| phospholipid:diacylglycerol | B. napus    | GSBRNA2T00143366001 | 525      | A02  | e-158   |
| acyltransferase 1           | B. napus    | GSBRNA2T00151889001 | 531      | C02  | e-171   |
|                             | B. napus    | GSBRNA2T00031534001 | 508      | C09  | e-162   |
| PDH (E1 alpha)              | A. thaliana | At1g01090           | 1802     | 1    |         |
| Pyruvate Dehydrogenase      | B. napus    | GSBRNA2T00052412001 | 787      | A09  | 0       |
| (alpha subunit)             | B. napus    | GSBRNA2T00150508001 | 784      | A10  | 0       |
|                             | B. napus    | GSBRNA2T00085388001 | 789      | C05  | 0       |
| WRI1                        | A. thaliana | AT3G54320           | 3944     | 3    |         |
| AP2/EREBP                   | B. napus    | GSBRNA2T00098740001 | 186      | A07  | 3e-49   |
| Transcription Factors       | B. napus    | GSBRNA2T00129553001 | 194      | A09  | 8e-47   |
|                             | B. napus    | GSBRNA2T00109003001 | 194      | C08  | 8e-47   |

| Appendix 5: <i>A. thaliana</i> protein matches in<br><i>napus</i> Darmor- <i>bzh</i> reference genome (Chalh | protein matche:<br>ence genome (Ch | Appendix 5: <i>A. thaliana</i> protein matches in the genomic region ranging from 53910kbp to 54170kbp on chromosome CO3 of the <i>Brassica</i><br><i>napus</i> Darmor- <i>bzh</i> reference genome (Chalhoub <i>et al.</i> 2014, <u>http://www.genoscope.cns.fr/brassicanapus/</u> ) | i chromosome CO3 of the<br>) | : Brassica |
|--------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| A. thaliana                                                                                                  |                                    |                                                                                                                                                                                                                                                                                       | Position on                  | Length     |
| Protein match                                                                                                | Gene ID                            | Symbols/description                                                                                                                                                                                                                                                                   | <i>B. napus</i> genome       | [dq]       |
| GWSAtT00047376001                                                                                            | <u>AT2G27550.1</u>                 | ATC, centroradialis-like                                                                                                                                                                                                                                                              | (chrC03:53893876             | 1707       |
| GWSAtT00047343001                                                                                            | <u>AT4G21750.1</u>                 | ATML1, Homeobox-leucine zipper family protein/                                                                                                                                                                                                                                        | <u>(chrC03:53907918</u>      | 4032       |
|                                                                                                              |                                    | lipid-binding START domain-containing protein                                                                                                                                                                                                                                         | <u>53911949)</u>             |            |
| GWSAt2T00030191001                                                                                           | <u>AT4G21800.1</u>                 | QQT2, P-loop containing nucleoside triphosphate                                                                                                                                                                                                                                       | (chrC03:53915017             | 1415       |
|                                                                                                              |                                    | hydrolases superfamily protein                                                                                                                                                                                                                                                        | <u>53916431)</u>             |            |
| GWSAtT00047344001                                                                                            | <u>AT4G04860.1</u>                 | DER2.2, DERLIN-2.2                                                                                                                                                                                                                                                                    | (chrC03:53916862             | 1473       |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53918334)</u>             |            |
| GWSAtT00047345001                                                                                            | <u>AT4G21810.1</u>                 | DER2.1, DERLIN-2.1                                                                                                                                                                                                                                                                    | (chrC03:53916862             | 1473       |
|                                                                                                              | ATAG21840 1                        | ATMSP88\ MSB88 methionine sulfovide reductase B8                                                                                                                                                                                                                                      | /rhrCN2.530380/17            | 785        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53938831)</u>             |            |
| GWSAtT00047348001                                                                                            | <u>AT4G21850.1</u>                 | ATMSRB9\ MSRB9, methionine sulfoxide reductase B9                                                                                                                                                                                                                                     | (chrC03:53938062             | 770        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53938831)</u>             |            |
| GWSAtT00047346001                                                                                            | <u>AT4G21830.1</u>                 | ATMSRB7\ MSRB7, methionine sulfoxide reductase B7                                                                                                                                                                                                                                     | (chrC03:53938047             | 782        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | 53938828)                    |            |
| GWSAt2T00030193001                                                                                           | <u>AT1G48970.1</u>                 | NagB/RpiA/CoA transferase-like superfamily protein                                                                                                                                                                                                                                    | (chrC03:53978654             | 548        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53979201)</u>             |            |
| GWSAt2T00030194001                                                                                           | <u>AT2G44070.1</u>                 | NagB/RpiA/CoA transferase-like superfamily protein                                                                                                                                                                                                                                    | (chrC03:53979058             | 147        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53979204)</u>             |            |
| GWSAtT00047349001                                                                                            | <u>AT4G21865.1</u>                 | unknown protein                                                                                                                                                                                                                                                                       | (chrC03:53985423             | 508        |
|                                                                                                              |                                    |                                                                                                                                                                                                                                                                                       | <u>53985930)</u>             |            |
| GWSAtT00047350001                                                                                            | <u>AT4G21870.1</u>                 | HSP20-like chaperones superfamily protein                                                                                                                                                                                                                                             | (chrC03:53991611             | 492        |

continued on next page

705

(chrC03:53993386..

DNA binding

AT4G21895.1

GWSAtT00047351001

53994090)

53992102)

| A. thaliana        |                    |                                                                      | Position on                                 | Length    |
|--------------------|--------------------|----------------------------------------------------------------------|---------------------------------------------|-----------|
| Protein match      | Gene ID            | Symbols/description                                                  | <i>B. napus</i> genome                      | [dq]      |
| GWSAt2T00030197001 | <u>AT1G16560.1</u> | Per1-like family protein                                             | (chrC03:54019269                            | 813       |
| GWSAtT00047352001  | AT4G21903.2        | MATE efflux family protein                                           | <u>54020081)</u><br>(chrC03:54040692        | 17096     |
|                    |                    | :                                                                    | 54057787)                                   |           |
| GWSAtT00047353001  | <u>AT4G21910.4</u> | MATE efflux family protein                                           | <u>(chrC03:54053483</u><br>54057787)        | 4305      |
| GWSAt2T00030205001 | <u>AT3G44480.1</u> | RPP1\ cog1, Disease resistance protein (TIR-NBS-LRR class)<br>family | (chrC03:54090305<br>54093415)               | 3111      |
| GWSAt2T00030203001 | <u>AT3G44630.3</u> | Disease resistance protein (TIR-NBS-LRR class) family                | (chrC03:54090317<br>54093415)               | 3099      |
| GWSAt2T00030200001 | AT5G38340.1        | Disease resistance protein (TIR-NBS-LRR class) family                | (chrC03:54090323<br>54093424)               | 3102      |
| GWSAt2T00030207001 | <u>AT5G38350.1</u> | Disease resistance protein (NBS-LRR class) family                    | <u>(chrC03:54090323</u><br>54093403)        | 3081      |
| GWSAt2T00030202001 | AT3G44400.1        | Disease resistance protein (TIR-NBS-LRR class) family                | <u>(chrC03:54090332</u><br><u>54093415)</u> | 3084      |
| GWSAt2T00030208001 | <u>AT3G44670.1</u> | Disease resistance protein (TIR-NBS-LRR class) family                | ı                                           |           |
| GWSAt2T00030211001 | <u>AT3G25510.1</u> | disease resistance protein (TIR-NBS-LRR class)                       | -<br>1.chrC03.54158307                      | -<br>1286 |
| GWSAt2T00030213001 | <u>AT3G52900.1</u> | Family of unknown function (DUF662)                                  | <u>54159677)</u>                            |           |
|                    |                    | F-box family protein with a domain of unknown function               | (chrC03:54163083<br>54164160)               | 1078      |
| GWSAtT00047356001  | AT4G22090.1        | Pectin lyase-like superfamily protein                                |                                             | '         |
| GW/SA+T00017358001 |                    | BHC1A root bair specific 1A                                          |                                             | ı         |

| Appendix 6: QTL detected for seed oil content (%) in the SGEDH population using MIM (Wind | (TLCart) |
|-------------------------------------------------------------------------------------------|----------|
| in Europe                                                                                 |          |

|         | Linkage | Position | Confidence                 |       |       |          |        |
|---------|---------|----------|----------------------------|-------|-------|----------|--------|
| QTL     | Group   | [cM]     | Interval [cM] <sup>a</sup> | LOD   | $A^b$ | $R^{2c}$ | $TR^d$ |
| E_Oil-1 | A08     | 25.1     | 22.6 - 27.1                | 40.14 | 1.04  | 38.4     | 83.9   |
| E_Oil-2 | A10     | 16.8     | 9.7 - 38.9                 | 7.51  | -0.36 | 3.4      |        |
| E_Oil-3 | C03     | 193.4    | 190.4 - 195.4              | 21.12 | 0.71  | 21.1     |        |
| E_Oil-4 | C03     | 37.7     | 34.7 - 41.7                | 18.03 | 0.63  | 16.4     |        |
| E_Oil-5 | C05     | 50.2     | 38.9 - 55.2                | 4.43  | -0.27 | 4.6      |        |

*a* LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

d percentage of phenotypic variance explained by all QTL

Appendix 7: QTL detected for regression corrected seed oil content (%) in the SGEDH population using MIM (WinQTLCart) in Europe

|                  | Linkage | Position | Confidence                 |      |       |                |        |
|------------------|---------|----------|----------------------------|------|-------|----------------|--------|
| QTL              | Group   | [cM]     | Interval [cM] <sup>a</sup> | LOD  | $A^b$ | R <sup>2</sup> | $TR^d$ |
| E_Oil-reg_corr-1 | A10     | 19.8     | 9.7 - 26.9                 | 4.06 | -0.23 | 6.80           | 58.5   |
| E_Oil-reg_corr-2 | C04     | 32.3     | 29.8 - 39.3                | 6.90 | 0.29  | 8.80           |        |
| E_Oil-reg_corr-3 | C05     | 6.0      | 0.0 - 16.4                 | 3.86 | 0.29  | 14.10          |        |
| E_Oil-reg_corr-4 | C05     | 40.7     | 34.7 - 49.7                | 7.34 | 0.41  | 23.10          |        |
| E_Oil-reg_corr-5 | C07     | 38.9     | 20.7 - 65.3                | 4.54 | -0.23 | 5.70           |        |

*a* LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

d percentage of phenotypic variance explained by all QTL

|             | Linkage | Position | Confidence                 |       |       |          |        |
|-------------|---------|----------|----------------------------|-------|-------|----------|--------|
| QTL         | Group   | [cM]     | Interval [cM] <sup>a</sup> | LOD   | $A^b$ | $R^{2c}$ | $TR^d$ |
| E_Protein-1 | A04     | 66.8     | 54.4 - 91.5                | 4.53  | -0.14 | 6.8      | 62.4   |
| E_Protein-2 | A07     | 23.7     | 7.7 - 27.7                 | 10.89 | 0.23  | 9.9      |        |
| E_Protein-3 | A08     | 3.0      | 0.0 - 6.9                  | 6.00  | 0.16  | 7.1      |        |
| E_Protein-4 | A09     | 55.7     | 47.5 - 64.7                | 8.36  | -0.21 | 7.4      |        |
| E_Protein-5 | A10     | 18.8     | 14.8 - 24.9                | 9.38  | 0.21  | 10.9     |        |
| E_Protein-6 | C04     | 51.4     | 26.8 - 62.6                | 8.04  | -0.20 | 9.5      |        |
| E_Protein-7 | C06     | 105.1    | 86.2 - 114.6               | 7.12  | -0.18 | 6.0      |        |
| E_Protein-8 | C07     | 63.3     | 50.2 - 76.3                | 4.85  | 0.15  | 4.7      |        |

Appendix 8: QTL detected for protein content (%) in the SGEDH population using MIM (WinQTLCart) in Europe

*a* LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

d percentage of phenotypic variance explained by all QTL

Appendix 9: QTL detected for GC determined erucic acid content (%) in the SGEDH population using MIM (WinQTLCart) in Europe

| QTL                      | Linkage<br>Group | Position<br>[cM] | Confidence<br>Interval [cM] <sup>a</sup> | LOD   | A <sup>b</sup> | R <sup>2c</sup> | TR <sup>d</sup> |
|--------------------------|------------------|------------------|------------------------------------------|-------|----------------|-----------------|-----------------|
| E GC22:1-1               | A08              | 0.0              | 0.0 - 1.0                                | 31.03 | 5.23           | 21.3            | 97.1            |
| E_GC22:1-1<br>E_GC22:1-2 | A08              | 0.0<br>25.1      | 25.1 - 27.1                              | 47.37 | 5.25<br>7.73   | 21.5<br>33.9    | 97.1            |
|                          | C03              | 201.2            | 199.2 - 202.2                            | 97.12 | 10.22          | 41.5            |                 |

a LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

d percentage of phenotypic variance explained by all QTL

|          | Linkage | Position | Confidence                 |       |       |          |        |
|----------|---------|----------|----------------------------|-------|-------|----------|--------|
| QTL      | Group   | [cM]     | Interval [cM] <sup>a</sup> | LOD   | $A^b$ | $R^{2c}$ | $TR^d$ |
| C_Oil9-1 | A02     | 138.5    | 130.8 - 142.5              | 3.57  | -0.29 | 2        | 80.5   |
| C_Oil9-2 | A06     | 72.2     | 51.1 - 78.8                | 4.37  | 0.30  | 4.6      |        |
| C_Oil9-3 | A07     | 89.2     | 84.7 - 99.7                | 7.35  | 0.39  | 3.2      |        |
| C_Oil9-4 | A08     | 25.1     | 21.6 - 27.1                | 31.6  | 1.01  | 33.8     |        |
| C_Oil9-5 | A10     | 26.9     | 14.8 - 39.9                | 5.49  | -0.35 | 3.8      |        |
| C_Oil9-6 | C03     | 194.4    | 191.4 - 200.2              | 22.95 | 0.80  | 23.4     |        |
| C_Oil9-7 | C05     | 40.7     | 35.7 - 46.7                | 8.72  | 0.46  | 9.6      |        |

Appendix 10: QTL detected for oil content (%) in the SGEDH population using MIM (WinQTLCart) in China

*a* LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

d percentage of phenotypic variance explained by all QTL

Appendix 11: QTL detected for protein content (%) in the SGEDH population using MIM (WinQTLCart) in China

|             | Linkage | Position | Confidence                 |      |       |          |        |
|-------------|---------|----------|----------------------------|------|-------|----------|--------|
| QTL         | Group   | [cM]     | Interval [cM] <sup>a</sup> | LOD  | $A^b$ | $R^{2c}$ | $TR^d$ |
| C_Protein-1 | A05     | 133.6    | 90.4 - 161.9               | 3.29 | 0.18  | 6        | 38.5   |
| C_Protein-2 | A09     | 54.7     | 35.3 - 65.7                | 7.2  | -0.28 | 10.9     |        |
| C_Protein-3 | C03     | 124.0    | 116.9 - 143.3              | 4.44 | -0.21 | 8.3      |        |
| C_Protein-4 | C04     | 39.3     | 28.8 - 45.3                | 4.11 | -0.20 | 6        |        |
| C_Protein-5 | C08     | 113.3    | 95.7 - 117.3               | 5.2  | -0.22 | 7.3      |        |

*a* LOD-1.5 support interval which has a confidence level close to 95%

*b* additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14

c percentage of phenotypic variance explained by each QTL

*d* percentage of phenotypic variance explained by all QTL

| Appendix 12: QTL detected for seed oil, re configuration modification: window size 5cM) | detected foi<br>fication: winc | r seed oil, ré<br>Jow size 5cM | regression corrected oil and erucic acid contents (%) in the SGEDH population (QTLNetwork<br>VI)                      | d oil and er   | ucic acid co      | ntents (%) in the      | SGEDH populati         | on (QTLNetwork         |
|-----------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|-------------------|------------------------|------------------------|------------------------|
|                                                                                         | Linkage                        | Position                       | Confidence                                                                                                            |                |                   |                        |                        |                        |
| <b>ΔΤ</b> L                                                                             | Group                          | [cM]                           | Interval [cM]                                                                                                         | ٩a             | $\mathbb{R}^{2b}$ | V(A)/V(P) <sup>c</sup> | ۸(I)/۸(P) <sup>d</sup> | V(G)/V(P) <sup>e</sup> |
| E_Oil-1                                                                                 | A08                            | 24.5                           | 20.5-27.1                                                                                                             | 1.21           | 50.5              |                        |                        |                        |
| E_Oil-2                                                                                 | C03                            | 200.2                          | 196.4-204.6                                                                                                           | 0.61           | 33.0              | 67.9                   | 1.0                    | 68.9                   |
| E_Oil-3                                                                                 | C07                            | 49.5                           | 38.6-55.2                                                                                                             | -0.37          | 10.0              |                        |                        |                        |
|                                                                                         |                                |                                |                                                                                                                       |                |                   |                        |                        |                        |
| E_Oil-reg_corr-1                                                                        | A10                            | 17.8                           | 12.6-24.9                                                                                                             | -0.26          | 11.2              |                        |                        |                        |
| E_Oil-reg_corr-2                                                                        | C04                            | 47.3                           | 42.3-47.4                                                                                                             | 0.24           | 4.1               | <u>г</u> 1 о           | 0 0                    | <b>FC</b> 7            |
| E_Oil-reg_corr-3                                                                        | C05                            | 39.7                           | 35.7-43.7                                                                                                             | 0.64           | 34.6              | 0.10                   | с.<br>С                | 1.00                   |
| E_Oil-reg_corr-4                                                                        | C07                            | 38.9                           | 38.6-44.9                                                                                                             | -0.26          | 7.2               |                        |                        |                        |
|                                                                                         |                                |                                |                                                                                                                       |                |                   |                        |                        |                        |
| E_GC22:1-1                                                                              | A08                            | 25.1                           | 23.5-30.8                                                                                                             | 11.82          | 64.1              |                        |                        |                        |
| E_GC22:1-2                                                                              | C03                            | 201.2                          | 199.2-203.2                                                                                                           | 8.83           | 46.9              | 87.2                   | 0.6                    | 87.8                   |
| E_GC22:1-3                                                                              | C04                            | 75.6                           | 70.0-87.3                                                                                                             | -1.90          | 8.0               |                        |                        |                        |
| <i>α</i> additive effect;                                                               | ositive additi                 | ive effect indi                | a additive effect; positive additive effect indicating that the alleles increasing the trait were derived from SGDH14 | eles increasin | g the trait w     | ere derived from S     | GDH14                  |                        |

 $\boldsymbol{b}$  percentage of phenotypic variance explained by each QTL

*c* variance of additive effects/phenotypic variance – total contribution of additive effect QTL in % *d* variance of epistatic effects/phenotypic variance in %

e variance of genetic main effects/phenotypic variance in %

|               | No. of markers per |           | Marker                      | Mean distance       |
|---------------|--------------------|-----------|-----------------------------|---------------------|
| Linkage group | linkage group      | Size (cM) | density (cM <sup>-1</sup> ) | between markers (cM |
| A01           | 74                 | 115.6     | 0.64                        | 1.58                |
| A02           | 89                 | 152.8     | 0.58                        | 1.74                |
| A03           | 116                | 171.4     | 0.68                        | 1.49                |
| A04           | 99                 | 130.3     | 0.76                        | 1.33                |
| A05           | 100                | 172.7     | 0.58                        | 1.74                |
| A06           | 124                | 167.9     | 0.74                        | 1.37                |
| A07           | 123                | 122.4     | 1.00                        | 1.00                |
| A08           | 80                 | 92.9      | 0.86                        | 1.18                |
| A09           | 78                 | 184.7     | 0.42                        | 2.40                |
| A10           | 96                 | 122.3     | 0.79                        | 1.29                |
| C01           | 54                 | 75.2      | 0.72                        | 1.42                |
| C02           | 72                 | 149.1     | 0.48                        | 2.10                |
| C03           | 172                | 229.2     | 0.75                        | 1.34                |
| C04           | 101                | 164.7     | 0.61                        | 1.65                |
| C05           | 44                 | 100.6     | 0.44                        | 2.34                |
| C06           | 82                 | 133.5     | 0.61                        | 1.65                |
| C07           | 67                 | 122.3     | 0.55                        | 1.85                |
| C08           | 56                 | 125.6     | 0.45                        | 2.28                |
| C09           | 66                 | 117.5     | 0.56                        | 1.81                |
| A genome      | 979.0              | 1432.9    | 0.68                        | 1.46                |
| Cgenome       | 714.0              | 1217.7    | 0.59                        | 1.71                |
| Whole genome  | 1693.0             | 2650.6    | 0.64                        | 1.58                |

Appendix 13: Marker distribution, size, density and mean distance between non-co-segregation markers of each linkage group in the linkage map of the SGEDH population

Appendix 14: Linkage map of SGEDH population showing all 1693 individual marker positions; DArT (*brPb*) and AFLP (*E*) markers are indicated in italics, framework map markers are highlighted in grey

|                           | Marker |     | Position | <i>B. napus</i><br>physical | Chi² 1:1           | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|-----|----------|-----------------------------|--------------------|----------------------|
| Marker                    | type   | LG  | (cM)     | position                    | ( <i>p</i> -value) | Significance         |
| Bn-A01-p28380414          | SNP    | A01 | 0.0      | 22637901                    | 0.7307             |                      |
| Bn-scaff_18621_1-p183795  | SNP    | A01 | 3.4      | 22642039                    | 0.1675             |                      |
| Bn-A01-p28278192          | SNP    | A01 | 4.3      |                             | 0.2695             |                      |
| Bn-A01-p27907422          | SNP    | A01 | 9.1      |                             | 0.6788             |                      |
| Bn-A01-p27988223          | SNP    | A01 | 10.1     | 21842399                    | 0.8340             |                      |
| Bn-A01-p28497900          | SNP    | A01 | 12.1     | 22791037                    | 0.7307             |                      |
| Bn-A01-p28161207          | SNP    | A01 | 13.5     |                             | 1.0000             |                      |
| Bn-A01-p27954294          | SNP    | A01 | 15.0     | 21800046                    | 0.9443             |                      |
| Bn-A01-p27796877          | SNP    | A01 | 15.5     |                             | 0.8332             |                      |
| Bn-A01-p27722989          | SNP    | A01 | 16.9     | 21730776                    | 0.4902             |                      |
| Bn-A01-p27125649          | SNP    | A01 | 19.8     | 21118808                    | 0.2673             |                      |
| Bn-scaff_16691_1-p1350013 | SNP    | A01 | 22.7     | 21281386                    | 0.7307             |                      |
| Bn-scaff_21884_1-p720411  | SNP    | A01 | 24.1     | 21006073                    | 0.6282             |                      |
| Bn-Scaffold000164-p232469 | SNP    | A01 | 27.0     | 20622303                    | 0.6788             |                      |
| Bn-A01-p24697185          | SNP    | A01 | 27.5     | 20465114                    | 0.5809             |                      |
| Bn-A01-p24921355          | SNP    | A01 | 28.0     | 2519349                     | 0.7815             |                      |
| Bn-A01-p24707425          | SNP    | A01 | 28.5     | 20475451                    | 0.6282             |                      |
| Bn-A01-p24575577          | SNP    | A01 | 30.4     |                             | 0.4467             |                      |
| Bn-A01-p24369455          | SNP    | A01 | 31.3     | 20147030                    | 0.6774             |                      |
| Bn-A01-p24504495          | SNP    | A01 | 31.8     | 20308678                    | 0.7825             |                      |
| Bn-A01-p24526982          | SNP    | A01 | 32.3     | 20331886                    | 0.5809             |                      |
| Bn-A01-p23095567          | SNP    | A01 | 33.7     | 2392685                     | 0.3018             |                      |
| Bn-A01-p23087707          | SNP    | A01 | 34.7     | 2401294                     | 0.4902             |                      |
| Bn-A01-p23080525          | SNP    | A01 | 35.2     | 2410168                     | 0.3708             |                      |
| Bn-A01-p23321507          | SNP    | A01 | 35.6     | 19192316                    | 0.4902             |                      |
| Bn-A01-p23905191          | SNP    | A01 | 36.1     | 20068435                    | 0.4881             |                      |
| Bn-A01-p22051502          | SNP    | A01 | 37.6     | 18668714                    | 0.3018             |                      |
| Bn-A01-p21633202          | SNP    | A01 | 38.0     | 18220392                    | 0.2419             |                      |
| Bn-A01-p22948925          | SNP    | A01 | 38.5     | 19438818                    | 0.3018             |                      |
| Bn-A06-p9371495           | SNP    | A01 | 39.5     | 19610782                    | 0.4489             |                      |
| brPb-662426               | DArT   | A01 | 43.6     | 18351862                    | 0.1736             |                      |
| brPb-839314               | DArT   | A01 | 44.7     | 15377075                    | 0.2876             |                      |
| brPb-807746               | DArT   | A01 | 46.4     | 16460419                    | 0.5214             |                      |
| brPb-808818               | DArT   | A01 | 50.7     |                             | 0.3914             |                      |
| Bn-A01-p21931622          | SNP    | A01 | 55.9     | 18540246                    | 0.2695             |                      |
| Bn-A01-p22051510          | SNP    | A01 | 56.4     | 18668722                    | 0.3340             |                      |
| Bn-A01-p10640881          | SNP    | A01 | 66.7     | 9554078                     | 0.8897             |                      |
| Bn-A01-p10720611          | SNP    | A01 | 67.2     | 9633899                     | 1.0000             |                      |
| Bn-A01-p10740084          | SNP    | A01 | 67.7     | 9654037                     | 0.8897             |                      |
| Bn-A01-p10297732          | SNP    | A01 | 68.6     |                             | 0.7307             |                      |
| Bn-A01-p9996458           | SNP    | A01 | 69.1     |                             | 0.6299             |                      |

|                 |        |     |          | B. napus |                      |                      |
|-----------------|--------|-----|----------|----------|----------------------|----------------------|
|                 | Marker |     | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker          | type   | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A01-p9853365 | SNP    | A01 | 69.6     | 8480102  | 0.5355               |                      |
| Bn-A01-p9999485 | SNP    | A01 | 70.0     |          | 0.6299               |                      |
| Bn-A01-p9476520 | SNP    | A01 | 73.8     | 8110180  | 0.1133               |                      |
| Bn-A01-p9369257 | SNP    | A01 | 77.2     |          | 0.5355               |                      |
| Bn-A01-p9254925 | SNP    | A01 | 78.1     | 7912126  | 0.5355               |                      |
| Bn-A01-p7560785 | SNP    | A01 | 79.1     | 6901073  | 0.3708               |                      |
| Bn-A01-p7137897 | SNP    | A01 | 80.0     | 6517900  | 0.2419               |                      |
| Bn-A01-p7834871 | SNP    | A01 | 81.0     | 429124   | 0.3708               |                      |
| Bn-A01-p6787930 | SNP    | A01 | 83.3     | 6219488  | 0.3018               |                      |
| Bn-A01-p6687839 | SNP    | A01 | 83.8     | 6129214  | 0.3708               |                      |
| Bn-A01-p5943392 | SNP    | A01 | 84.8     | 5433257  | 0.5355               |                      |
| Bn-A01-p5730640 | SNP    | A01 | 85.2     | 352104   | 0.4489               |                      |
| Bn-A01-p5944398 | SNP    | A01 | 85.7     | 5434227  | 0.5355               |                      |
| Bn-A01-p5635471 | SNP    | A01 | 87.1     | 5145028  | 0.3018               |                      |
| Bn-A01-p4084366 | SNP    | A01 | 89.0     | 3747936  | 0.1909               |                      |
| Bn-A01-p3183888 | SNP    | A01 | 90.0     | 2894111  | 0.1133               |                      |
| Bn-A01-p2538180 | SNP    | A01 | 95.3     | 2035020  | 0.9449               |                      |
| Bn-A01-p2453758 | SNP    | A01 | 97.7     | 1939461  | 0.7295               |                      |
| Bn-A01-p2340048 | SNP    | A01 | 98.2     |          | 0.8356               |                      |
| Bn-A01-p2318972 | SNP    | A01 | 99.1     | 1792893  | 0.9449               |                      |
| Bn-A01-p2245780 | SNP    | A01 | 100.1    | 1729866  | 0.7295               |                      |
| Bn-A01-p2069488 | SNP    | A01 | 101.0    | 1561728  | 0.5336               |                      |
| Bn-A01-p1990755 | SNP    | A01 | 101.5    |          | 0.6282               |                      |
| Bn-A01-p1890102 | SNP    | A01 | 102.0    |          | 0.7295               |                      |
| Bn-A01-p1149351 | SNP    | A01 | 107.8    | 752932   | 0.6266               |                      |
| Bn-A01-p1062520 | SNP    | A01 | 108.3    | 647588   | 0.7282               |                      |
| Bn-A01-p941792  | SNP    | A01 | 109.8    | 557682   | 0.6266               |                      |
| Bn-A01-p974934  | SNP    | A01 | 110.2    | 591531   | 0.5316               |                      |
| Bn-A01-p1012990 | SNP    | A01 | 110.7    | 631908   | 0.6266               |                      |
| Bn-A01-p951341  | SNP    | A01 | 111.2    | 566890   | 0.5316               |                      |
| Bn-A01-p820317  | SNP    | A01 | 114.6    | 448979   | 0.1099               |                      |
| Bn-A01-p713562  | SNP    | A01 | 115.1    | 327077   | 0.1444               |                      |
| Bn-A01-p644410  | SNP    | A01 | 115.6    | 235132   | 0.1866               |                      |
| Bn-A02-p2643078 | SNP    | A02 | 0.0      |          | 0.0000               | ***                  |
| Bn-A02-p1232964 | SNP    | A02 | 0.5      | 148050   | 0.0000               | ***                  |
| Bn-A02-p2785185 | SNP    | A02 | 2.4      | 337265   | 0.0000               | ***                  |
| Bn-A02-p2799146 | SNP    | A02 | 2.8      | 349083   | 0.0000               | ***                  |
| E37M62-99E      | AFLP   | A02 | 18.5     |          | 0.0000               | ***                  |
| Bn-A02-p4183553 | SNP    | A02 | 20.6     | 1558970  | 0.0000               | ***                  |
| Bn-A02-p4259381 | SNP    | A02 | 21.6     |          | 0.0000               | ***                  |
| Bn-A02-p6039769 | SNP    | A02 | 27.8     |          | 0.0000               | ***                  |
| Bn-A02-p6099790 | SNP    | A02 | 29.2     | 3292685  | 0.0000               | ***                  |
| Bn-A02-p6147730 | SNP    | A02 | 30.1     | 3316092  | 0.0000               | ***                  |
| -               |        |     |          |          |                      |                      |

|                  |        |      |          | B. napus                                |                      |                      |
|------------------|--------|------|----------|-----------------------------------------|----------------------|----------------------|
|                  | Marker |      | Position | physical                                | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker           | type   | LG   | (cM)     | position                                | (p-value)            | Significance         |
| Bn-A02-p6523609  | SNP    | A02  | 30.6     | 3735650                                 | 0.0000               | ***                  |
| Bn-A02-p6555729  | SNP    | A02  | 31.1     | 3775620                                 | 0.0000               | ***                  |
| brPb-840545      | DArT   | A02  | 31.6     |                                         | 0.0000               | ***                  |
| Bn-A02-p7350064  | SNP    | A02  | 32.1     |                                         | 0.0000               | ***                  |
| Bn-A02-p23491463 | SNP    | A02  | 33.0     | 257220                                  | 0.0000               | ***                  |
| Bn-A02-p7371108  | SNP    | A02  | 33.5     |                                         | 0.0000               | ***                  |
| Bn-A02-p7848143  | SNP    | A02  | 35.9     |                                         | 0.0000               | ***                  |
| Bn-A02-p7882027  | SNP    | A02  | 36.4     | 4867464                                 | 0.0000               | ***                  |
| Bn-A02-p8111245  | SNP    | A02  | 38.3     | 5094851                                 | 0.0000               | ***                  |
| Bn-A02-p8199891  | SNP    | A02  | 38.7     | 5191279                                 | 0.0000               | ***                  |
| Bn-A02-p8215285  | SNP    | A02  | 40.2     | 5196181                                 | 0.0000               | ***                  |
| Bn-A02-p8412911  | SNP    | A02  | 40.6     | 5364573                                 | 0.0000               | ***                  |
| Bn-A02-p8549373  | SNP    | A02  | 41.1     | 5516531                                 | 0.0000               | ***                  |
| Bn-A02-p8702373  | SNP    | A02  | 41.6     | 5669465                                 | 0.0000               | ***                  |
| Bn-A02-p8849037  | SNP    | A02  | 42.1     | 5806608                                 | 0.0000               | ***                  |
| Bn-A02-p9195997  | SNP    | A02  | 43.0     | 6002614                                 | 0.0000               | ***                  |
| Bn-A02-p9229113  | SNP    | A02  | 44.0     | 6032547                                 | 0.0000               | ***                  |
| Bn-A02-p9339514  | SNP    | A02  | 44.4     | 6144906                                 | 0.0000               | ***                  |
| Bn-A02-p9465668  | SNP    | A02  | 44.9     | 6272697                                 | 0.0000               | ***                  |
| Bn-A02-p9846691  | SNP    | A02  | 46.3     | 306194                                  | 0.0000               | ***                  |
| Bn-A02-p10700544 | SNP    | A02  | 46.8     | 7568848                                 | 0.0000               | ***                  |
| Bn-A02-p9684927  | SNP    | A02  | 47.3     | 6491491                                 | 0.0000               | ***                  |
| brPb-661469      | DArT   | A02  | 49.8     | 6207621                                 | 0.0000               | ***                  |
| Bn-A02-p9371363  | SNP    | A02  | 50.7     | 6192352                                 | 0.0000               | ***                  |
| Bn-A02-p9480465  | SNP    | A02  | 52.2     | 6286841                                 | 0.0000               | ***                  |
| Bn-A02-p9526960  | SNP    | A02  | 52.6     |                                         | 0.0000               | ***                  |
| Bn-A02-p9420837  | SNP    | A02  | 54.0     | 6240291                                 | 0.0000               | ***                  |
| Bn-A02-p9707309  | SNP    | A02  | 55.5     | 6512051                                 | 0.0000               | ***                  |
| Bn-A02-p10587170 | SNP    | A02  | 56.0     |                                         | 0.0000               | ***                  |
| Bn-A02-p11086855 | SNP    | A02  | 56.9     | 7845560                                 | 0.0000               | ***                  |
| Bn-A02-p11320789 | SNP    | A02  | 57.4     | 8327442                                 | 0.0000               | ***                  |
| Bn-A02-p11682974 | SNP    | A02  | 58.4     | 8405396                                 | 0.0000               | ***                  |
| Bn-A02-p12552323 | SNP    | A02  | 58.8     | 9278837                                 | 0.0000               | ***                  |
| Bn-A02-p15569271 | SNP    | A02  | 60.8     | 11995042                                | 0.0000               | ***                  |
| Bn-A02-p12220436 | SNP    | A02  | 62.7     | 8930059                                 | 0.0000               | ***                  |
| brPb-839048      | DArT   | A02  | 64.2     |                                         | 0.0000               | ***                  |
| E33M49-213D      | AFLP   | A02  | 64.7     |                                         | 0.0001               | ***                  |
| brPb-670777      | DArT   | A02  | 66.7     |                                         | 0.0000               | ***                  |
| brPb-660621      | DArT   | A02  | 67.6     | 9900773                                 | 0.0000               | ***                  |
| Bn-A02-p13197154 | SNP    | A02  | 69.6     |                                         | 0.0000               | ***                  |
| Bn-A02-p11365167 | SNP    | A02  | 70.0     | 8025075                                 | 0.0000               | ***                  |
| brPb-657868      | DArT   | A02  | 74.3     | 7959492                                 | 0.0000               | ***                  |
| E44M62-172D      | AFLP   | A02  | 75.3     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.0000               | ***                  |
|                  |        | 1102 | 75.5     |                                         | 0.0000               |                      |

|                          |        |      |          | B. napus |                      |                      |
|--------------------------|--------|------|----------|----------|----------------------|----------------------|
|                          | Marker |      | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                   | type   | LG   | (cM)     | position | (p-value)            | Significance         |
| brPb-662889              | DArT   | A02  | 79.5     | 13408492 | 0.0009               | ***                  |
| E34M49-091D              | AFLP   | A02  | 80.6     |          | 0.0000               | ***                  |
| brPb-838519              | DArT   | A02  | 81.1     | 13408492 | 0.0000               | ***                  |
| E33M47-104D              | AFLP   | A02  | 81.6     |          | 0.0000               | ***                  |
| brPb-840119              | DArT   | A02  | 82.1     | 13246920 | 0.0000               | ***                  |
| Bn-scaff_23401_1-p317800 | SNP    | A02  | 84.5     | 13968963 | 0.0000               | ***                  |
| Bn-A02-p18917772         | SNP    | A02  | 85.4     | 1427623  | 0.0000               | ***                  |
| Bn-A02-p18101171         | SNP    | A02  | 85.9     | 17261389 | 0.0000               | ***                  |
| Bn-A02-p17156661         | SNP    | A02  | 86.4     | 14324675 | 0.0000               | ***                  |
| Bn-A02-p18989840         | SNP    | A02  | 87.3     | 17993227 | 0.0000               | ***                  |
| Bn-A02-p20363776         | SNP    | A02  | 93.0     |          | 0.0000               | ***                  |
| Bn-scaff_15712_6-p623654 | SNP    | A02  | 93.5     | 19660126 | 0.0000               | ***                  |
| Bn-A02-p22433753         | SNP    | A02  | 95.9     | 20736961 | 0.0000               | ***                  |
| Bn-A02-p24462762         | SNP    | A02  | 107.0    | 22582345 | 0.0000               | ***                  |
| Bn-scaff_17623_1-p648231 | SNP    | A02  | 108.0    | 22605615 | 0.0000               | ***                  |
| Bn-scaff_17623_1-p472440 | SNP    | A02  | 109.4    | 22716435 | 0.0000               | ***                  |
| Bn-A02-p24909771         | SNP    | A02  | 110.8    | 23001097 | 0.0000               | ***                  |
| Bn-A02-p24731379         | SNP    | A02  | 111.3    | 22820799 | 0.0000               | ***                  |
| Bn-A02-p24851624         | SNP    | A02  | 111.8    | 22942112 | 0.0000               | ***                  |
| brPb-657639              | DArT   | A02  | 119.7    |          | 0.0000               | ***                  |
| brPb-808824              | DArT   | A02  | 128.6    |          | 0.0000               | ***                  |
| Bn-A02-p25456985         | SNP    | A02  | 141.3    | 1543353  | 0.0000               | ***                  |
| Bn-A02-p25827208         | SNP    | A02  | 142.7    |          | 0.0000               | ***                  |
| Bn-A02-p26013503         | SNP    | A02  | 143.2    |          | 0.0000               | ***                  |
| Bn-A02-p26193572         | SNP    | A02  | 145.6    | 23874264 | 0.0000               | ***                  |
| Bn-A02-p27055844         | SNP    | A02  | 147.0    | 24377602 | 0.0000               | ***                  |
| Bn-A02-p27755843         | SNP    | A02  | 147.5    |          | 0.0000               | ***                  |
| Bn-A02-p27743910         | SNP    | A02  | 148.0    | 24724585 | 0.0000               | ***                  |
| Bn-A02-p27288011         | SNP    | A02  | 148.5    | 24605342 | 0.0000               | ***                  |
| Bn-A02-p27336483         | SNP    | A02  | 148.9    | 24633245 | 0.0000               | ***                  |
| Bn-A02-p27504018         | SNP    | A02  | 149.4    |          | 0.0000               | ***                  |
| Bn-A02-p27203061         | SNP    | A02  | 149.9    | 24526336 | 0.0000               | ***                  |
| Bn-A02-p27052742         | SNP    | A02  | 150.4    | 24374540 | 0.0000               | ***                  |
| Bn-A02-p26398002         | SNP    | A02  | 151.3    | 24112871 | 0.0000               | ***                  |
| Bn-A02-p26322916         | SNP    | A02  | 151.8    |          | 0.0000               | ***                  |
| Bn-A02-p26154951         | SNP    | A02  | 152.8    | 23778913 | 0.0000               | ***                  |
| Bn-A03-p766322           | SNP    | A03  | 0.0      | 634722   | 0.0195               | *                    |
| brPb-661557              | DArT   | A03  | 2.9      |          | 0.0375               | *                    |
| Bn-A03-p731558           | SNP    | A03  | 6.0      | 596896   | 0.0195               | *                    |
| Bn-A03-p1046864          | SNP    | A03  | 9.8      | 879430   | 0.2164               |                      |
| Bn-A03-p1899032          | SNP    | A03  | 16.0     | 5. 7100  | 0.0993               |                      |
| Bn-A03-p1755651          | SNP    | A03  | 16.4     | 1354935  | 0.0741               |                      |
| Bn-A03-p2271873          | SNP    | A03  | 17.4     | 1838499  | 0.0741               |                      |
| 511 1105 p=27 1075       | 5111   | 1105 | 1/.1     | 1050177  | 0.0711               |                      |

|                          | Marker |     | Position | <i>B. napus</i><br>physical | Chi² 1:1           | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|----------|-----------------------------|--------------------|----------------------|
| Marker                   | type   | LG  | (cM)     | position                    | ( <i>p</i> -value) | Significance         |
| Bn-A03-p2412263          | SNP    | A03 | 18.3     | 1971847                     | 0.0741             | 0                    |
| Bn-A03-p2532699          | SNP    | A03 | 18.8     | 2086254                     | 0.0993             |                      |
| Bn-A03-p2666271          | SNP    | A03 | 19.8     | 2218691                     | 0.0852             |                      |
| Bn-A03-p2695311          | SNP    | A03 | 20.2     | 2247567                     | 0.0631             |                      |
| Bn-A03-p3099901          | SNP    | A03 | 21.7     | 2665882                     | 0.0714             |                      |
| E33M49-206E              | AFLP   | A03 | 26.2     |                             | 0.2900             |                      |
| Bn-A03-p3692048          | SNP    | A03 | 26.8     | 3249527                     | 0.2673             |                      |
| Bn-A03-p3799804          | SNP    | A03 | 28.2     | 3354699                     | 0.1116             |                      |
| Bn-A03-p4235658          | SNP    | A03 | 31.6     | 3773246                     | 0.0838             |                      |
| E32M47-252D              | AFLP   | A03 | 33.1     |                             | 0.2282             |                      |
| Bn-A03-p6849607          | SNP    | A03 | 41.2     |                             | 0.0134             | *                    |
| Bn-A03-p7218582          | SNP    | A03 | 42.1     | 6493920                     | 0.0449             | *                    |
| Bn-A03-p7434488          | SNP    | A03 | 43.1     |                             | 0.1308             |                      |
| Bn-scaff_19248_1-p357191 | SNP    | A03 | 46.4     | 7720293                     | 0.0280             | *                    |
| brPb-659931              | DArT   | A03 | 48.8     | 7399131                     | 0.0459             | *                    |
| Bn-A03-p8152842          | SNP    | A03 | 51.1     | 7448758                     | 0.0280             | *                    |
| Bn-A03-p8833016          | SNP    | A03 | 53.0     | 8137329                     | 0.0134             | *                    |
| Bn-A03-p9115020          | SNP    | A03 | 53.5     | 740194                      | 0.0195             | *                    |
| Bn-A03-p8637914          | SNP    | A03 | 54.0     | 7927482                     | 0.0134             | *                    |
| Bn-A03-p9567767          | SNP    | A03 | 58.7     | 8832086                     | 0.0004             | ***                  |
| Bn-scaff_23954_1-p141044 | SNP    | A03 | 59.6     | 8480166                     | 0.0010             | ***                  |
| Bn-A03-p10342088         | SNP    | A03 | 61.5     | 9513101                     | 0.0004             | ***                  |
| Bn-A03-p10714724         | SNP    | A03 | 62.0     | 9868260                     | 0.0002             | ***                  |
| Bn-A03-p10010569         | SNP    | A03 | 62.5     | 9204974                     | 0.0004             | ***                  |
| Bn-A03-p9537155          | SNP    | A03 | 63.4     | 8807126                     | 0.0004             | ***                  |
| Bn-A03-p9179896          | SNP    | A03 | 64.4     | 8462796                     | 0.0010             | ***                  |
| Bn-A03-p10293071         | SNP    | A03 | 66.3     | 9464740                     | 0.0004             | ***                  |
| Bn-A03-p11053758         | SNP    | A03 | 67.2     | 10172103                    | 0.0004             | ***                  |
| Bn-A03-p11534030         | SNP    | A03 | 68.6     | 10666214                    | 0.0016             | **                   |
| Bn-A03-p11751694         | SNP    | A03 | 71.0     | 10886976                    | 0.0001             | ***                  |
| Bn-A03-p12826949         | SNP    | A03 | 73.3     | 11964387                    | 0.0000             | ***                  |
| Bn-A03-p13451851         | SNP    | A03 | 73.8     | 12570127                    | 0.0000             | ***                  |
| Bn-A03-p13863828         | SNP    | A03 | 74.3     | 12967579                    | 0.0000             | ***                  |
| Bn-A03-p14112910         | SNP    | A03 | 74.7     | 13297228                    | 0.0000             | ***                  |
| Bn-scaff_18482_1-p677287 | SNP    | A03 | 76.2     | 13349463                    | 0.0000             | ***                  |
| brPb-662736              | DArT   | A03 | 79.1     | 13336975                    | 0.0000             | ***                  |
| brPb-809799              | DArT   | A03 | 80.7     | 13663262                    | 0.0001             | ***                  |
| brPb-662347              | DArT   | A03 | 81.7     | 28782432                    | 0.0000             | ***                  |
| E33M49-285D              | AFLP   | A03 | 82.2     |                             | 0.0000             | ***                  |
| E34M49-274D              | AFLP   | A03 | 83.7     |                             | 0.0000             | ***                  |
| Bn-A03-p14306440         | SNP    | A03 | 87.0     | 13490998                    | 0.0000             | ***                  |
| Bn-A03-p14434665         | SNP    | A03 | 88.5     | 13603423                    | 0.0000             | ***                  |
| Bn-A03-p14585799         | SNP    | A03 | 90.3     | 13757171                    | 0.0001             | ***                  |

|                  |        |     |          | B. napus |                      |                      |
|------------------|--------|-----|----------|----------|----------------------|----------------------|
|                  | Marker |     | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker           | type   | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A03-p14962288 | SNP    | A03 | 90.8     |          | 0.0002               | ***                  |
| Bn-A03-p15103575 | SNP    | A03 | 92.2     | 14214995 | 0.0000               | ***                  |
| Bn-A03-p15141821 | SNP    | A03 | 92.7     | 14250283 | 0.0001               | ***                  |
| Bn-A03-p15351982 | SNP    | A03 | 94.1     | 14389227 | 0.0000               | ***                  |
| Bn-A03-p15749083 | SNP    | A03 | 95.1     | 14820911 | 0.0000               | ***                  |
| Bn-A03-p15768536 | SNP    | A03 | 96.0     | 14841143 | 0.0000               | ***                  |
| Bn-A03-p15811901 | SNP    | A03 | 97.4     | 14886171 | 0.0000               | ***                  |
| Bn-A03-p15871284 | SNP    | A03 | 97.9     | 14957225 | 0.0000               | ***                  |
| Bn-A03-p15954297 | SNP    | A03 | 98.4     | 15032281 | 0.0000               | ***                  |
| Bn-A03-p15852439 | SNP    | A03 | 98.8     | 14936605 | 0.0000               | ***                  |
| Bn-A03-p16103891 | SNP    | A03 | 99.8     | 15205946 | 0.0000               | ***                  |
| Bn-A03-p16158248 | SNP    | A03 | 100.2    | 15252905 | 0.0000               | ***                  |
| brPb-671327      | DArT   | A03 | 101.7    | 15254628 | 0.0000               | ***                  |
| E34M49-436E      | AFLP   | A03 | 103.2    |          | 0.0000               | ***                  |
| Bn-A03-p16811562 | SNP    | A03 | 105.2    | 15967232 | 0.0000               | ***                  |
| Bn-A03-p17019251 | SNP    | A03 | 106.6    | 16173130 | 0.0000               | ***                  |
| Bn-A03-p17139931 | SNP    | A03 | 107.0    | 16286197 | 0.0000               | ***                  |
| Bn-A03-p17985410 | SNP    | A03 | 109.4    | 16992492 | 0.0000               | ***                  |
| Bn-A03-p18405869 | SNP    | A03 | 113.2    | 17402430 | 0.0000               | ***                  |
| Bn-A03-p18455932 | SNP    | A03 | 113.7    |          | 0.0000               | ***                  |
| Bn-A03-p18855689 | SNP    | A03 | 114.1    | 17870241 | 0.0000               | ***                  |
| Bn-A03-p19065774 | SNP    | A03 | 114.6    | 18006758 | 0.0000               | ***                  |
| Bn-A03-p19441544 | SNP    | A03 | 117.0    | 18420261 | 0.0000               | ***                  |
| Bn-A03-p19573902 | SNP    | A03 | 117.4    | 18536283 | 0.0001               | ***                  |
| Bn-A03-p20000930 | SNP    | A03 | 120.7    | 18872657 | 0.0000               | ***                  |
| Bn-A03-p20151244 | SNP    | A03 | 121.2    | 19014872 | 0.0000               | ***                  |
| E33M49-239E      | AFLP   | A03 | 122.2    |          | 0.0000               | ***                  |
| Bn-A03-p20114910 | SNP    | A03 | 122.7    | 18984085 | 0.0000               | ***                  |
| Bn-A03-p20358050 | SNP    | A03 | 124.1    | 19224899 | 0.0000               | ***                  |
| Bn-A03-p20786060 | SNP    | A03 | 127.0    | 19597629 | 0.0000               | ***                  |
| Bn-A03-p21237671 | SNP    | A03 | 128.4    | 20003067 | 0.0000               | ***                  |
| Bn-A03-p21478889 | SNP    | A03 | 129.3    | 20250542 | 0.0000               | ***                  |
| Bn-A03-p21820847 | SNP    | A03 | 130.7    | 20604665 | 0.0000               | ***                  |
| Bn-A03-p22065637 | SNP    | A03 | 131.2    | 20881836 | 0.0000               | ***                  |
| brPb-661458      | DArT   | A03 | 133.3    |          | 0.0003               | ***                  |
| Bn-A03-p22574983 | SNP    | A03 | 137.3    | 21347046 | 0.0001               | ***                  |
| Bn-A03-p22590442 | SNP    | A03 | 137.7    | 21368434 | 0.0001               | ***                  |
| Bn-A03-p22882585 | SNP    | A03 | 138.2    |          | 0.0001               | ***                  |
| Bn-A03-p23023607 | SNP    | A03 | 138.7    | 21810591 | 0.0001               | ***                  |
| Bn-A03-p24046452 | SNP    | A03 | 140.1    |          | 0.0004               | ***                  |
| Bn-A03-p24753667 | SNP    | A03 | 140.6    | 23207312 | 0.0006               | ***                  |
| Bn-A03-p24971360 | SNP    | A03 | 141.5    | 23385684 | 0.0002               | ***                  |
| Bn-A03-p25801783 | SNP    | A03 | 142.5    | 24182990 | 0.0002               | ***                  |
| 1                |        |     |          |          |                      |                      |

|                         |        |     |          | B. napus |                      |                      |
|-------------------------|--------|-----|----------|----------|----------------------|----------------------|
|                         | Marker |     | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                  | type   | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A03-p25591818        | SNP    | A03 | 143.0    | 23956740 | 0.0004               | ***                  |
| Bn-A03-p24971161        | SNP    | A03 | 143.4    | 23385485 | 0.0002               | ***                  |
| Bn-A03-p25393494        | SNP    | A03 | 143.9    |          | 0.0004               | ***                  |
| Bn-A03-p25851789        | SNP    | A03 | 144.4    | 24222908 | 0.0002               | ***                  |
| Bn-A03-p26311193        | SNP    | A03 | 145.8    | 24704852 | 0.0004               | ***                  |
| Bn-A03-p25868537        | SNP    | A03 | 146.3    | 24234827 | 0.0006               | ***                  |
| Bn-A03-p26132481        | SNP    | A03 | 146.7    |          | 0.0004               | ***                  |
| Bn-A03-p26740723        | SNP    | A03 | 147.7    | 25162708 | 0.0010               | ***                  |
| Bn-A03-p27066000        | SNP    | A03 | 148.2    | 2079613  | 0.0006               | ***                  |
| Bn-A03-p27398352        | SNP    | A03 | 149.1    |          | 0.0016               | **                   |
| Bn-A03-p27445819        | SNP    | A03 | 149.6    | 25729522 | 0.0010               | ***                  |
| Bn-A03-p27720045        | SNP    | A03 | 151.0    | 25945974 | 0.0006               | ***                  |
| Bn-A03-p27906760        | SNP    | A03 | 151.5    | 26134324 | 0.0010               | ***                  |
| Bn-A03-p28977058        | SNP    | A03 | 153.3    | 27387270 | 0.0010               | ***                  |
| Bn-A03-p31327366        | SNP    | A03 | 153.8    | 29263757 | 0.0016               | **                   |
| Bn-A01-p22363809        | SNP    | A03 | 154.3    |          | 0.0048               | **                   |
| Bn-scaff_16923_1-p34465 | SNP    | A03 | 154.8    | 4033619  | 0.0025               | **                   |
| E32M49-083D             | AFLP   | A03 | 157.4    |          | 0.0031               | **                   |
| E34M49-254D             | AFLP   | A03 | 158.8    |          | 0.0258               | *                    |
| E34M49-412D             | AFLP   | A03 | 162.7    |          | 0.0231               | *                    |
| E32M49-284D             | AFLP   | A03 | 166.1    |          | 0.0184               | *                    |
| E39M62-138E             | AFLP   | A03 | 168.2    |          | 0.0408               | *                    |
| E32M49-213E             | AFLP   | A03 | 171.4    |          | 0.0034               | **                   |
| Bn-A04-p669182          | SNP    | A04 | 0.0      | 545915   | 0.0741               |                      |
| Bn-A04-p1032336         | SNP    | A04 | 0.5      |          | 0.0993               |                      |
| Bn-A04-p1043111         | SNP    | A04 | 0.9      | 36679    | 0.0741               |                      |
| Bn-A04-p1048288         | SNP    | A04 | 4.7      | 30423    | 0.1308               |                      |
| Bn-A04-p1062119         | SNP    | A04 | 6.1      | 808616   | 0.2718               |                      |
| Bn-A04-p1417481         | SNP    | A04 | 8.0      | 1172772  | 0.1696               |                      |
| Bn-A04-p1231047         | SNP    | A04 | 8.5      | 980412   | 0.1308               |                      |
| Bn-A04-p1330321         | SNP    | A04 | 9.0      | 1094802  | 0.1696               |                      |
| Bn-A04-p1623151         | SNP    | A04 | 9.4      | 1349461  | 0.2164               |                      |
| Bn-A04-p1745832         | SNP    | A04 | 9.9      | 1471426  | 0.2718               |                      |
| Bn-A04-p1815404         | SNP    | A04 | 10.9     | 1540065  | 0.1696               |                      |
| Bn-A04-p2048587         | SNP    | A04 | 11.3     | 1932984  | 0.1308               |                      |
| Bn-A04-p2498254         | SNP    | A04 | 11.8     | 2211909  | 0.0993               |                      |
| Bn-A04-p2669971         | SNP    | A04 | 12.7     | 2374354  | 0.0545               |                      |
| Bn-A04-p2841305         | SNP    | A04 | 13.2     | 2529785  | 0.0741               |                      |
| Bn-A04-p3631563         | SNP    | A04 | 15.1     | 3299941  | 0.0394               | *                    |
| Bn-A04-p3283282         | SNP    | A04 | 15.6     | 289605   | 0.0280               | *                    |
| Bn-A04-p2780974         | SNP    | A04 | 17.0     | 2480917  | 0.0741               |                      |
| Bn-A04-p2657695         | SNP    | A04 | 17.5     | 2361541  | 0.0545               |                      |
| Bn-A04-p2104072         | SNP    | A04 | 18.9     |          | 0.1308               |                      |

|                          | Marker |     | Position | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|----------|--------------------------|----------------------|----------------------|
| Marker                   | type   | LG  | (cM)     | position                 | (p-value)            | Significance         |
| Bn-A04-p1774031          | SNP    | A04 | 20.3     | 1510202                  | 0.2718               |                      |
| Bn-A04-p1589006          | SNP    | A04 | 20.8     | 1341378                  | 0.2164               |                      |
| brPb-657687              | DArT   | A04 | 24.1     |                          | 0.0993               |                      |
| brPb-658988              | DArT   | A04 | 26.6     | 2211621                  | 0.1531               |                      |
| brPb-839945              | DArT   | A04 | 27.2     | 1986738                  | 0.2531               |                      |
| E45M49-436E              | AFLP   | A04 | 36.6     |                          | 0.3685               |                      |
| Bn-A04-p6968899          | SNP    | A04 | 38.1     | 8255363                  | 0.2164               |                      |
| Bn-A04-p5183306          | SNP    | A04 | 39.0     | 5349887                  | 0.1308               |                      |
| Bn-A04-p7616574          | SNP    | A04 | 40.9     |                          | 0.3363               |                      |
| brPb-842031              | DArT   | A04 | 43.9     |                          | 0.2626               |                      |
| brPb-660920              | DArT   | A04 | 45.9     | 9698384                  | 0.2718               |                      |
| Bn-A04-p8299391          | SNP    | A04 | 47.8     |                          | 0.4098               |                      |
| Bn-A04-p7373248          | SNP    | A04 | 48.2     | 8697322                  | 0.3363               |                      |
| Bn-A04-p8473768          | SNP    | A04 | 49.2     | 9809154                  | 0.3363               |                      |
| Bn-A04-p8587019          | SNP    | A04 | 49.7     | 9899845                  | 0.2718               |                      |
| Bn-A04-p8575908          | SNP    | A04 | 51.5     |                          | 0.5827               |                      |
| Bn-A04-p9119079          | SNP    | A04 | 52.5     | 10211790                 | 0.7835               |                      |
| Bn-A04-p9309213          | SNP    | A04 | 53.4     | 10427628                 | 1.0000               |                      |
| Bn-A04-p9484747          | SNP    | A04 | 53.9     | 586309                   | 0.8907               |                      |
| Bn-A04-p9623505          | SNP    | A04 | 54.8     | 10751182                 | 0.8907               |                      |
| brPb-841683              | DArT   | A04 | 57.4     | 10637420                 | 0.4401               |                      |
| Bn-A04-p9878192          | SNP    | A04 | 63.8     | 11017412                 | 0.7835               |                      |
| Bn-A04-p9808875          | SNP    | A04 | 64.3     | 10937173                 | 0.6803               |                      |
| Bn-A04-p9658559          | SNP    | A04 | 64.7     | 10803206                 | 0.7835               |                      |
| Bn-A04-p10841936         | SNP    | A04 | 66.2     | 12001712                 | 0.6803               |                      |
| Bn-A04-p11243983         | SNP    | A04 | 68.5     | 629314                   | 1.0000               |                      |
| Bn-A04-p11420466         | SNP    | A04 | 69.5     | 12471774                 | 0.7835               |                      |
| Bn-scaff_24979_1-p134759 | SNP    | A04 | 69.9     | 12405205                 | 0.6803               |                      |
| Bn-A04-p11449464         | SNP    | A04 | 70.9     | 12506260                 | 0.4922               |                      |
| Bn-A04-p11503303         | SNP    | A04 | 72.3     | 12559435                 | 0.2718               |                      |
| Bn-A04-p11595428         | SNP    | A04 | 73.7     | 12652738                 | 0.4922               |                      |
| Bn-A04-p11795779         | SNP    | A04 | 74.2     | 12796786                 | 0.4098               |                      |
| Bn-A04-p11923310         | SNP    | A04 | 74.7     |                          | 0.4922               |                      |
| Bn-A04-p11818064         | SNP    | A04 | 75.2     |                          | 0.4098               |                      |
| Bn-A04-p11957518         | SNP    | A04 | 76.1     | 12923125                 | 0.4098               |                      |
| Bn-A04-p12259499         | SNP    | A04 | 77.1     | 13248139                 | 0.5827               |                      |
| Bn-A04-p12283561         | SNP    | A04 | 77.5     | 13272510                 | 0.4922               |                      |
| Bn-A04-p12087644         | SNP    | A04 | 78.9     | 13065298                 | 0.4098               |                      |
| E32M47-129E              | AFLP   | A04 | 81.4     |                          | 0.2649               |                      |
| E39M62-369D              | AFLP   | A04 | 83.5     |                          | 0.7740               |                      |
| Bn-A04-p12670129         | SNP    | A04 | 86.6     | 13394741                 | 0.5827               |                      |
| Bn-A04-p13140266         | SNP    | A04 | 87.5     | 13904971                 | 0.6788               |                      |
| Bn-A04-p12959668         | SNP    | A04 | 88.5     | 13648348                 | 0.5827               |                      |
| -                        |        |     |          |                          |                      |                      |

|                          |        |     |          | B. napus |                      |                      |
|--------------------------|--------|-----|----------|----------|----------------------|----------------------|
|                          | Marker |     | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                   | type   | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A04-p13122589         | SNP    | A04 | 89.4     | 13880694 | 0.5827               |                      |
| Bn-A04-p13293545         | SNP    | A04 | 90.8     | 834704   | 0.8907               |                      |
| Bn-A04-p13370433         | SNP    | A04 | 91.3     |          | 0.7835               |                      |
| Bn-A04-p13583325         | SNP    | A04 | 91.8     | 14254994 | 0.8907               |                      |
| Bn-A04-p13645293         | SNP    | A04 | 92.2     | 14288651 | 0.7835               |                      |
| Bn-A04-p13738279         | SNP    | A04 | 93.2     | 14381023 | 0.5827               |                      |
| Bn-A04-p13866861         | SNP    | A04 | 93.6     | 956098   | 0.4922               |                      |
| Bn-A04-p14156506         | SNP    | A04 | 94.6     | 14687848 | 0.4922               |                      |
| Bn-A04-p14332759         | SNP    | A04 | 95.1     | 1083056  | 0.5827               |                      |
| brPb-662662              | DArT   | A04 | 98.9     | 15331393 | 0.3708               |                      |
| Bn-A04-p14923168         | SNP    | A04 | 101.8    | 15369184 | 0.7835               |                      |
| Bn-A04-p14986920         | SNP    | A04 | 102.3    | 15435680 | 0.6803               |                      |
| Bn-A04-p15399118         | SNP    | A04 | 105.1    | 15791837 | 0.8907               |                      |
| Bn-A04-p15530059         | SNP    | A04 | 105.6    | 15952175 | 0.8902               |                      |
| Bn-A04-p15631388         | SNP    | A04 | 106.5    | 16069820 | 1.0000               |                      |
| Bn-A04-p15939956         | SNP    | A04 | 108.9    |          | 0.8907               |                      |
| Bn-A04-p16090875         | SNP    | A04 | 110.8    | 16283217 | 0.6803               |                      |
| Bn-A04-p16104213         | SNP    | A04 | 112.2    | 16299441 | 0.4098               |                      |
| Bn-A04-p16584084         | SNP    | A04 | 112.7    | 16747317 | 0.4922               |                      |
| Bn-A04-p16514488         | SNP    | A04 | 113.1    | 16678079 | 0.4098               |                      |
| Bn-A04-p16751677         | SNP    | A04 | 113.6    |          | 0.4922               |                      |
| Bn-A04-p17170974         | SNP    | A04 | 114.1    | 1335605  | 0.4098               |                      |
| Bn-scaff_20270_1-p138318 | SNP    | A04 | 114.6    | 17363975 | 0.3363               |                      |
| Bn-A04-p17312041         | SNP    | A04 | 115.0    | 17436928 | 0.2718               |                      |
| Bn-A04-p18065896         | SNP    | A04 | 116.0    | 18147068 | 0.4098               |                      |
| Bn-A04-p18595858         | SNP    | A04 | 118.4    | 18723702 | 0.1308               |                      |
| Bn-A01-p25429100         | SNP    | A04 | 120.7    | 19025100 | 0.0993               |                      |
| Bn-scaff_27676_1-p33891  | SNP    | A04 | 121.7    | 19140278 | 0.1696               |                      |
| Bn-A01-p25175675         | SNP    | A04 | 122.1    | 1379378  | 0.0993               |                      |
| Bn-A04-p18530009         | SNP    | A04 | 124.5    |          | 0.1308               |                      |
| Bn-A04-p18457550         | SNP    | A04 | 125.5    | 18546486 | 0.2164               |                      |
| Bn-A04-p18390795         | SNP    | A04 | 126.4    |          | 0.3363               |                      |
| Bn-A04-p18112711         | SNP    | A04 | 126.9    | 18198401 | 0.4098               |                      |
| E45M49-111E              | AFLP   | A04 | 128.8    |          | 0.1888               |                      |
| brPb-660337              | DArT   | A04 | 129.8    | 17697052 | 0.4098               |                      |
| brPb-809834              | DArT   | A04 | 130.3    | 17835073 | 0.5256               |                      |
| Bn-Scaffold000403-p12455 | SNP    | A05 | 0.0      | 461334   | 0.0000               | ***                  |
| Bn-A05-p917769           | SNP    | A05 | 3.8      | 1050679  | 0.0000               | ***                  |
| Bn-A05-p1237296          | SNP    | A05 | 6.1      | 1353802  | 0.0000               | ***                  |
| Bn-A05-p895522           | SNP    | A05 | 8.5      | 1028820  | 0.0000               | ***                  |
| Bn-A05-p895276           | SNP    | A05 | 9.0      | 1028587  | 0.0000               | ***                  |
| brPb-660860              | DArT   | A05 | 10.9     | 2020007  | 0.0000               | ***                  |
| brPb-842067              | DArT   | A05 | 15.2     | 1912098  | 0.0000               | ***                  |
|                          | 21111  |     | 2018     |          | 0.0000               |                      |

|                          |                |     | D                | B. napus             |                                            |                                      |
|--------------------------|----------------|-----|------------------|----------------------|--------------------------------------------|--------------------------------------|
| Marker                   | Marker<br>type | LG  | Position<br>(cM) | physical<br>position | Chi <sup>2</sup> 1:1<br>( <i>p</i> -value) | Chi <sup>2</sup> 1:1<br>Significance |
| Bn-A05-p3246311          | SNP            | A05 | 29.1             | 3275313              | 0.0000                                     | ***                                  |
| Bn-A05-p3275289          | SNP            | A05 | 29.6             | 3298294              | 0.0000                                     | ***                                  |
| Bn-A05-p3548736          | SNP            | A05 | 30.5             | 3465096              | 0.0000                                     | ***                                  |
| Bn-A05-p3649985          | SNP            | A05 | 31.0             | 5105070              | 0.0000                                     | ***                                  |
| Bn-A05-p4333409          | SNP            | A05 | 33.4             |                      | 0.0000                                     | ***                                  |
| Bn-A05-p3988958          | SNP            | A05 | 34.3             | 3854713              | 0.0000                                     | ***                                  |
| E33M47-155E              | AFLP           | A05 | 36.2             | 5051715              | 0.0000                                     | ***                                  |
| brPb-660062              | DArT           | A05 | 37.3             | 4177128              | 0.0000                                     | ***                                  |
| Bn-A05-p4525705          | SNP            | A05 | 39.4             | 11//120              | 0.0000                                     | ***                                  |
| Bn-scaff_23907_1-p261237 | SNP            | A05 | 41.7             | 4834543              | 0.0000                                     | ***                                  |
| Bn-A05-p5038148          | SNP            | A05 | 43.6             | 4859009              | 0.0000                                     | ***                                  |
| Bn-A05-p5100352          | SNP            | A05 | 44.6             | 4920049              | 0.0000                                     | ***                                  |
| Bn-A05-p5133417          | SNP            | A05 | 46.0             | 4948094              | 0.0000                                     | ***                                  |
| Bn-A05-p5251613          | SNP            | A05 | 46.5             | 5036043              | 0.0000                                     | ***                                  |
| Bn-A05-p5627413          | SNP            | A05 | 46.9             | 5375973              | 0.0000                                     | ***                                  |
| Bn-A05-p5926631          | SNP            | A05 | 51.2             | 5664379              | 0.0000                                     | ***                                  |
| Bn-A05-p6055523          | SNP            | A05 | 52.6             | 5805343              | 0.0000                                     | ***                                  |
| Bn-A05-p6154871          | SNP            | A05 | 54.0             | 545467               | 0.0000                                     | ***                                  |
| Bn-A05-p6494313          | SNP            | A05 | 54.5             | 610568               | 0.0000                                     | ***                                  |
| Bn-A05-p6984362          | SNP            | A05 | 55.4             | 6411896              | 0.0000                                     | ***                                  |
| Bn-A05-p7031053          | SNP            | A05 | 56.4             | 6456989              | 0.0000                                     | ***                                  |
| Bn-A05-p7246705          | SNP            | A05 | 57.4             | 6671048              | 0.0000                                     | ***                                  |
| Bn-A05-p7741244          | SNP            | A05 | 58.8             |                      | 0.0000                                     | ***                                  |
| Bn-A05-p7778186          | SNP            | A05 | 59.2             | 833212               | 0.0000                                     | ***                                  |
| Bn-A05-p12457173         | SNP            | A05 | 59.7             | 12459849             | 0.0000                                     | ***                                  |
| Bn-A05-p17262653         | SNP            | A05 | 60.2             | 14220462             | 0.0000                                     | ***                                  |
| Bn-A05-p13907424         | SNP            | A05 | 61.2             | 13641790             | 0.0000                                     | ***                                  |
| Bn-A05-p7552614          | SNP            | A05 | 62.1             | 7060706              | 0.0000                                     | ***                                  |
| brPb-662191              | DArT           | A05 | 64.0             | 7093245              | 0.0000                                     | ***                                  |
| E39M62-254D              | AFLP           | A05 | 65.1             |                      | 0.0000                                     | ***                                  |
| brPb-662228              | DArT           | A05 | 67.8             | 14893104             | 0.0000                                     | ***                                  |
| E35M47-199E              | AFLP           | A05 | 69.3             |                      | 0.0000                                     | ***                                  |
| E32M47-132D              | AFLP           | A05 | 71.4             |                      | 0.0000                                     | ***                                  |
| brPb-839815              | DArT           | A05 | 72.4             | 15322345             | 0.0000                                     | ***                                  |
| brPb-670950              | DArT           | A05 | 73.4             |                      | 0.0000                                     | ***                                  |
| brPb-661887              | DArT           | A05 | 75.9             | 15945685             | 0.0000                                     | ***                                  |
| Bn-A05-p18101769         | SNP            | A05 | 76.9             | 16381082             | 0.0000                                     | ***                                  |
| Bn-A05-p18137410         | SNP            | A05 | 77.8             | 16423714             | 0.0000                                     | ***                                  |
| Bn-A05-p18391581         | SNP            | A05 | 78.3             | 16659608             | 0.0000                                     | ***                                  |
| Bn-A05-p18543933         | SNP            | A05 | 79.2             |                      | 0.0000                                     | ***                                  |
| Bn-A05-p18730286         | SNP            | A05 | 79.7             | 16983395             | 0.0000                                     | ***                                  |
| Bn-A05-p18820057         | SNP            | A05 | 81.1             | 17078598             | 0.0000                                     | ***                                  |
| Bn-A05-p19267100         | SNP            | A05 | 82.1             | 17501969             | 0.0000                                     | ***                                  |
| •                        |                |     |                  |                      |                                            |                                      |

|                          | Marker |     | Position | <i>B. napus</i><br>physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|----------|-----------------------------|----------------------|----------------------|
| Marker                   | type   | LG  | (cM)     | position                    | (p-value)            | Significance         |
| Bn-A05-p18807426         | SNP    | A05 | 83.0     | 17065968                    | 0.0000               | ***                  |
| Bn-A05-p19622826         | SNP    | A05 | 85.0     | 17822505                    | 0.0000               | ***                  |
| Bn-A05-p19728614         | SNP    | A05 | 86.4     | 17930801                    | 0.0000               | ***                  |
| Bn-A05-p19919111         | SNP    | A05 | 86.9     | 18142185                    | 0.0000               | ***                  |
| Bn-A05-p19973413         | SNP    | A05 | 87.4     | 18188757                    | 0.0000               | ***                  |
| Bn-A05-p20422081         | SNP    | A05 | 90.7     | 18633417                    | 0.0000               | ***                  |
| Bn-A05-p20020286         | SNP    | A05 | 92.1     |                             | 0.0000               | ***                  |
| Bn-A05-p20425648         | SNP    | A05 | 93.5     | 18636346                    | 0.0000               | ***                  |
| Bn-A05-p20747913         | SNP    | A05 | 95.9     |                             | 0.0000               | ***                  |
| Bn-A05-p20178007         | SNP    | A05 | 98.7     | 18381573                    | 0.0000               | ***                  |
| Bn-A05-p20712388         | SNP    | A05 | 99.2     | 18915544                    | 0.0000               | ***                  |
| Bn-Scaffold002092-p583   | SNP    | A05 | 99.7     | 18521878                    | 0.0000               | ***                  |
| E44M62-280D              | AFLP   | A05 | 102.2    |                             | 0.0000               | ***                  |
| Bn-A05-p20563653         | SNP    | A05 | 102.7    | 18763414                    | 0.0000               | ***                  |
| Bn-A05-p20697473         | SNP    | A05 | 103.2    |                             | 0.0000               | ***                  |
| Bn-A05-p20714302         | SNP    | A05 | 103.7    | 18917433                    | 0.0000               | ***                  |
| Bn-A05-p20485998         | SNP    | A05 | 104.1    | 18685808                    | 0.0000               | ***                  |
| Bn-A05-p20825280         | SNP    | A05 | 106.5    | 2840496                     | 0.0000               | ***                  |
| Bn-A05-p20972649         | SNP    | A05 | 110.8    |                             | 0.0000               | ***                  |
| Bn-A05-p21057936         | SNP    | A05 | 111.7    | 19215707                    | 0.0000               | ***                  |
| Bn-scaff_21369_1-p239290 | SNP    | A05 | 112.2    | 19371525                    | 0.0000               | ***                  |
| brPb-660131              | DArT   | A05 | 113.6    |                             | 0.0000               | ***                  |
| E33M47-150E              | AFLP   | A05 | 114.6    |                             | 0.0000               | ***                  |
| Bn-A05-p21375513         | SNP    | A05 | 116.2    | 19544199                    | 0.0000               | ***                  |
| Bn-scaff_21369_1-p108745 | SNP    | A05 | 116.6    | 19436624                    | 0.0000               | ***                  |
| Bn-A05-p21221296         | SNP    | A05 | 119.5    | 19386916                    | 0.0004               | ***                  |
| Bn-A05-p21240761         | SNP    | A05 | 122.3    | 19399758                    | 0.0000               | ***                  |
| Bn-A05-p21267598         | SNP    | A05 | 124.2    | 19427934                    | 0.0002               | ***                  |
| Bn-A05-p21375514         | SNP    | A05 | 126.6    |                             | 0.0000               | ***                  |
| Bn-A05-p21579642         | SNP    | A05 | 129.5    | 19765824                    | 0.0000               | ***                  |
| Bn-A05-p21480994         | SNP    | A05 | 134.7    | 19658445                    | 0.0010               | ***                  |
| Bn-A05-p21484113         | SNP    | A05 | 135.2    | 19661558                    | 0.0001               | ***                  |
| Bn-A05-p21538700         | SNP    | A05 | 137.1    | 19721966                    | 0.0002               | ***                  |
| Bn-scaff_17441_1-p388434 | SNP    | A05 | 140.9    | 19936494                    | 0.0073               | **                   |
| Bn-A05-p21889289         | SNP    | A05 | 141.4    | 20036310                    | 0.0109               | *                    |
| Bn-A05-p21853739         | SNP    | A05 | 144.3    | 19995465                    | 0.0006               | ***                  |
| Bn-A05-p22182628         | SNP    | A05 | 147.2    |                             | 0.0145               | *                    |
| Bn-A05-p22282814         | SNP    | A05 | 150.1    | 20349428                    | 0.0019               | **                   |
| Bn-A05-p22780670         | SNP    | A05 | 154.0    | 20854886                    | 0.1099               |                      |
| Bn-A05-p22797664         | SNP    | A05 | 155.0    | 20872117                    | 0.3018               |                      |
| Bn-A05-p22911906         | CND    | A05 | 155.5    | 21027776                    | 0.2374               |                      |
| Dii 1105 p22711700       | SNP    | A05 | 155.5    | 2102///0                    | 0.2371               |                      |
| Bn-A05-p22943215         | SNP    | A05 | 155.9    | 21054060                    | 0.0993               |                      |

|                          | Marker |     | Position | <i>B. napus</i><br>physical | Chi² 1:1           | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|----------|-----------------------------|--------------------|----------------------|
| Marker                   | type   | LG  | (cM)     | position                    | ( <i>p</i> -value) | Significance         |
| E35M62-252E              | AFLP   | A05 | 163.9    | position                    | 0.4445             | eiginiteuriee        |
| Bn-A05-p23512396         | SNP    | A05 | 167.4    | 22090281                    | 0.6266             |                      |
| Bn-A02-p26921384         | SNP    | A05 | 167.9    | 2953115                     | 0.5316             |                      |
| Bn-A08-p16956285         | SNP    | A05 | 169.3    | 2911175                     | 0.8348             |                      |
| Bn-A02-p26854880         | SNP    | A05 | 169.8    | 22381796                    | 0.7282             |                      |
| Bn-A02-p26640222         | SNP    | A05 | 170.3    | 22133099                    | 0.8897             |                      |
| Bn-A02-p26710300         | SNP    | A05 | 172.7    | 22302346                    | 0.9451             |                      |
| Bn-A06-p25471463         | SNP    | A06 | 0.0      | 23837637                    | 0.6803             |                      |
| Bn-A06-p24695860         | SNP    | A06 | 5.2      | 23595271                    | 0.4922             |                      |
| Bn-A06-p24599972         | SNP    | A06 | 6.2      |                             | 0.3363             |                      |
| Bn-A06-p24557108         | SNP    | A06 | 6.6      | 23504740                    | 0.4098             |                      |
| Bn-A06-p24496051         | SNP    | A06 | 7.6      | 23440008                    | 0.2718             |                      |
| Bn-A06-p24340830         | SNP    | A06 | 9.5      | 1859635                     | 0.4922             |                      |
| Bn-scaff_15754_1-p496098 | SNP    | A06 | 10.0     | 1850507                     | 0.3708             |                      |
| Bn-A06-p24327317         | SNP    | A06 | 10.4     | 1845400                     | 0.3018             |                      |
| Bn-A06-p24297216         | SNP    | A06 | 10.9     | 23296226                    | 0.2718             |                      |
| Bn-A06-p24142937         | SNP    | A06 | 12.3     | 23133507                    | 0.5355             |                      |
| Bn-A06-p24045825         | SNP    | A06 | 12.8     | 23045817                    | 0.4922             |                      |
| Bn-A06-p24076443         | SNP    | A06 | 13.3     |                             | 0.4098             |                      |
| Bn-A06-p23983648         | SNP    | A06 | 13.7     | 22967491                    | 0.4922             |                      |
| Bn-A06-p23968879         | SNP    | A06 | 14.2     |                             | 0.4922             |                      |
| Bn-A06-p23795599         | SNP    | A06 | 14.7     | 22776542                    | 0.6299             |                      |
| Bn-A06-p23542209         | SNP    | A06 | 16.1     | 22518900                    | 0.7307             |                      |
| E32M47-241D              | AFLP   | A06 | 16.6     |                             | 0.6666             |                      |
| Bn-A06-p23341715         | SNP    | A06 | 17.1     | 1782506                     | 0.6803             |                      |
| Bn-A06-p22922325         | SNP    | A06 | 18.1     | 21972047                    | 0.4922             |                      |
| Bn-A06-p22647955         | SNP    | A06 | 21.9     | 21689171                    | 0.0741             |                      |
| Bn-A06-p22605217         | SNP    | A06 | 23.7     | 21643954                    | 0.1308             |                      |
| Bn-A06-p22555168         | SNP    | A06 | 24.2     | 21597560                    | 0.0993             |                      |
| Bn-A06-p22505664         | SNP    | A06 | 24.7     | 21528638                    | 0.0741             |                      |
| Bn-A06-p22271048         | SNP    | A06 | 27.0     | 21304697                    | 0.0280             | *                    |
| Bn-A06-p22268128         | SNP    | A06 | 28.0     | 21301737                    | 0.0280             | *                    |
| Bn-A06-p22074841         | SNP    | A06 | 28.5     | 21111173                    | 0.0394             | *                    |
| Bn-A06-p21926982         | SNP    | A06 | 29.9     | 20949452                    | 0.0993             |                      |
| Bn-A06-p21917612         | SNP    | A06 | 30.3     | 20939334                    | 0.0741             |                      |
| Bn-A06-p21884761         | SNP    | A06 | 30.8     |                             | 0.0993             |                      |
| Bn-A06-p21848747         | SNP    | A06 | 31.3     | 20865884                    | 0.0741             |                      |
| Bn-A06-p21825957         | SNP    | A06 | 32.7     | 20842565                    | 0.0545             |                      |
| Bn-scaff_18520_1-p486046 | SNP    | A06 | 33.2     | 20531364                    | 0.0741             |                      |
| Bn-A06-p21224575         | SNP    | A06 | 34.1     | 20468466                    | 0.1308             |                      |
| Bn-A06-p21318925         | SNP    | A06 | 34.6     | 20363781                    | 0.1696             |                      |
| Bn-A06-p18717323         | SNP    | A06 | 37.0     | 20070622                    | 0.4922             |                      |
| Bn-A06-p18706102         | SNP    | A06 | 37.9     | 20059090                    | 0.6803             |                      |

| Markor                     | Marker       |            | Position     | <i>B. napus</i> physical | $Chi^2 1:1$        | Chi <sup>2</sup> 1:1 |
|----------------------------|--------------|------------|--------------|--------------------------|--------------------|----------------------|
| Marker                     | type<br>CND  | LG         | (cM)         | position                 | ( <i>p</i> -value) | Significance         |
| Bn-A06-p21415201           | SNP          | A06        | 38.8         | 20298214                 | 0.4922             |                      |
| E39M62-193E<br>brPb-661510 | AFLP<br>DArT | A06<br>A06 | 42.2<br>47.1 | 1604474                  | 0.4860<br>0.8907   |                      |
| Bn-A06-p18127830           | SNP          | A06        | 47.1<br>51.8 | 19529301                 | 0.6803             |                      |
| Bn-A06-p18455125           | SNP          | A06        | 52.8         | 19329301                 | 0.6803             |                      |
| Bn-A06-p18364834           | SNP          | A06        | 53.3         | 19824222                 | 0.5827             |                      |
| Bn-A06-p18131525           | SNP          | A00        | 53.7         | 19733063                 | 0.6803             |                      |
| Bn-A06-p17734402           | SNP          | A00        | 54.7         | 19172543                 | 0.4922             |                      |
| Bn-A06-p17566259           | SNP          | A00        | 55.1         | 18956568                 | 0.5827             |                      |
| Bn-A06-p17549603           | SNP          | A06        | 55.6         | 18945217                 | 0.4922             |                      |
| Bn-A06-p17208027           | SNP          | A06        | 56.1         | 10745217                 | 0.4098             |                      |
| Bn-A06-p15893014           | SNP          | A06        | 59.4         | 17351418                 | 0.8907             |                      |
| Bn-A06-p16362555           | SNP          | A06        | 59.9         | 17866136                 | 0.7835             |                      |
| Bn-A06-p15791244           | SNP          | A06        | 62.2         | 17298191                 | 0.6803             |                      |
| Bn-A06-p15632434           | SNP          | A06        | 62.7         | 17132332                 | 0.7835             |                      |
| Bn-A06-p15210596           | SNP          | A06        | 63.2         | 16683468                 | 0.6803             |                      |
| Bn-A06-p8434088            | SNP          | A06        | 65.5         | 7982753                  | 0.4098             |                      |
| Bn-A06-p8809314            | SNP          | A06        | 66.9         | 8303243                  | 0.6803             |                      |
| Bn-A06-p9562200            | SNP          | A06        | 67.4         | 9087418                  | 0.5827             |                      |
| Bn-A06-p13726921           | SNP          | A06        | 67.9         | 1199271                  | 0.4922             |                      |
| Bn-A06-p14121814           | SNP          | A06        | 68.4         | 15738257                 | 0.5827             |                      |
| Bn-A06-p13728321           | SNP          | A06        | 68.8         | 1200459                  | 0.4922             |                      |
| Bn-A06-p9517147            | SNP          | A06        | 69.3         | 9014008                  | 0.5827             |                      |
| Bn-A06-p15285770           | SNP          | A06        | 69.8         | 16759065                 | 0.6803             |                      |
| E35M62-143D                | AFLP         | A06        | 71.2         |                          | 0.7269             |                      |
| brPb-658956                | DArT         | A06        | 72.8         | 1143152                  | 0.3363             |                      |
| Bn-A06-p12356525           | SNP          | A06        | 75.3         | 11152462                 | 0.4922             |                      |
| Bn-A06-p7589883            | SNP          | A06        | 79.1         | 7107268                  | 0.2164             |                      |
| Bn-A06-p6920925            | SNP          | A06        | 80.5         | 6375006                  | 0.4098             |                      |
| brPb-808961                | DArT         | A06        | 83.8         | 6528626                  | 0.4922             |                      |
| Bn-A06-p6955437            | SNP          | A06        | 87.2         | 6410107                  | 0.4098             |                      |
| Bn-A06-p7437586            | SNP          | A06        | 88.6         | 6943260                  | 0.2164             |                      |
| Bn-A06-p6744737            | SNP          | A06        | 90.0         | 6131668                  | 0.4098             |                      |
| Bn-A06-p6636202            | SNP          | A06        | 90.5         | 6031166                  | 0.4922             |                      |
| Bn-A06-p6458266            | SNP          | A06        | 90.9         | 5897495                  | 0.5827             |                      |
| Bn-A06-p6341389            | SNP          | A06        | 91.4         | 5792303                  | 0.4922             |                      |
| Bn-A06-p6204652            | SNP          | A06        | 92.8         | 5639597                  | 0.7307             |                      |
| Bn-A06-p6198128            | SNP          | A06        | 93.8         | 5627992                  | 1.0000             |                      |
| Bn-A06-p6182593            | SNP          | A06        | 94.7         | 5603682                  | 0.7835             |                      |
| Bn-A06-p6091453            | SNP          | A06        | 95.2         | 5536979                  | 0.8907             |                      |
| Bn-A06-p5930501            | SNP          | A06        | 96.1         | 5364528                  | 0.8907             |                      |
| Bn-A06-p5878990            | SNP          | A06        | 97.6         | 5300722                  | 0.7835             |                      |
| Bn-A06-p5669960            | SNP          | A06        | 98.0         | 5119657                  | 0.8907             |                      |

|                            |        |     |          | B. napus |                    |                      |
|----------------------------|--------|-----|----------|----------|--------------------|----------------------|
|                            | Marker | LC  | Position | physical | $Chi^2 1:1$        | Chi <sup>2</sup> 1:1 |
| Marker                     | type   | LG  | (cM)     | position | ( <i>p</i> -value) | Significance         |
| Bn-A06-p5593050            | SNP    | A06 | 98.5     | 5044622  | 1.0000             |                      |
| Bn-A06-p4901091            | SNP    | A06 | 99.9     | 4796382  | 0.8907             |                      |
| Bn-A06-p4881785            | SNP    | A06 | 101.3    | 4755815  | 0.5827             |                      |
| Bn-A06-p4597746            | SNP    | A06 | 102.8    | 4414849  | 0.8907             |                      |
| Bn-A06-p4436168            | SNP    | A06 | 103.7    | 4266437  | 0.8907             |                      |
| Bn-A06-p4179318            | SNP    | A06 | 104.2    | 3979080  | 0.7835             |                      |
| Bn-A06-p3953661            | SNP    | A06 | 104.6    | 3743186  | 0.6803             |                      |
| Bn-A06-p3867353            | SNP    | A06 | 105.6    | 3634902  | 0.4922             |                      |
| Bn-A06-p3805018            | SNP    | A06 | 107.0    | 3565565  | 0.7835             |                      |
| Bn-A06-p3587032            | SNP    | A06 | 107.5    | 222244   | 0.6803             |                      |
| Bn-A06-p3491241            | SNP    | A06 | 109.8    | 232344   | 1.0000             |                      |
| Bn-A06-p3414128            | SNP    | A06 | 110.3    | 3231109  | 0.8907             |                      |
| Bn-A06-p3361377            | SNP    | A06 | 111.2    | 3179145  | 0.6803             |                      |
| Bn-A06-p3257163            | SNP    | A06 | 112.7    | 201651   | 0.4098             |                      |
| Bn-A06-p3167411            | SNP    | A06 | 113.1    | 3042973  | 0.3363             |                      |
| Bn-A06-p3093741            | SNP    | A06 | 115.5    | 0045000  | 0.2718             |                      |
| Bn-A06-p2949562            | SNP    | A06 | 117.4    | 2847938  | 0.2718             | 4                    |
| Bn-A06-p2940743            | SNP    | A06 | 120.7    | 2840356  | 0.0394             | *                    |
| Bn-A06-p2938890            | SNP    | A06 | 121.6    | 2838485  | 0.0741             |                      |
| Bn-A06-p2883231            | SNP    | A06 | 122.1    | 2781094  | 0.0993             |                      |
| Bn-A06-p2870413            | SNP    | A06 | 123.0    | 2768252  | 0.1696             |                      |
| Bn-A06-p2851834            | SNP    | A06 | 123.5    | 2753135  | 0.2164             |                      |
| Bn-A06-p2617079            | SNP    | A06 | 124.5    | 2574090  | 0.1308             |                      |
| Bn-A06-p2599150            | SNP    | A06 | 124.9    | 2555169  | 0.1696             |                      |
| Bn-A06-p2756792            | SNP    | A06 | 125.4    | 2679399  | 0.1308             |                      |
| Bn-A06-p2586825            | SNP    | A06 | 126.3    | 2547287  | 0.0741             |                      |
| Bn-A06-p2437284            | SNP    | A06 | 127.3    | 2448753  | 0.0394             | *                    |
| Bn-A06-p2300342            | SNP    | A06 | 129.2    | 2313720  | 0.0394             | *                    |
| Bn-A06-p2412998            | SNP    | A06 | 129.6    | 2425890  | 0.0280             | *                    |
| Bn-A06-p2341154            | SNP    | A06 | 130.1    | 2356210  | 0.0394             | *                    |
| Bn-A06-p2292578            | SNP    | A06 | 130.6    | 2299465  | 0.0280             | *                    |
| Bn-A06-p2274318            | SNP    | A06 | 131.1    | 2280545  | 0.0394             | *                    |
| Bn-A06-p1777127            | SNP    | A06 | 132.5    | 91400    | 0.0134             | *                    |
| Bn-A06-p1636449            | SNP    | A06 | 133.0    | 1690832  | 0.0195             | *                    |
| Bn-A06-p1615726            | SNP    | A06 | 133.4    |          | 0.0280             | *                    |
| Bn-A06-p1345642            | SNP    | A06 | 134.8    |          | 0.0741             |                      |
| Bn-A06-p1071392            | SNP    | A06 | 136.3    | 1142318  | 0.1696             |                      |
| Bn-A06-p1016417            | SNP    | A06 | 136.7    | 1005504  | 0.2164             |                      |
| Bn-A06-p781674             | SNP    | A06 | 137.7    | 787768   | 0.2164             |                      |
| Bn-A06-p163388             | SNP    | A06 | 142.9    | 132977   | 0.0993             |                      |
| $D_{n} \wedge 06 = 207/26$ | SNP    | A06 | 143.4    | 266475   | 0.0741             |                      |
| Bn-A06-p307436             | 5111   |     |          |          |                    |                      |
| brPb-658647                | DArT   | A06 | 148.6    |          | 0.0304             | *                    |

|                          | Marker |     | Position | <i>B. napus</i><br>physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|----------|-----------------------------|----------------------|----------------------|
| Marker                   | type   | LG  | (cM)     | position                    | (p-value)            | Significance         |
| brPb-670236              | DArT   | A06 | 167.4    | 2792764                     | 0.0084               | **                   |
| E32M49-205D              | AFLP   | A06 | 167.9    |                             | 0.0101               | *                    |
| brPb-842247              | DArT   | A07 | 0.0      | 561912                      | 0.8907               |                      |
| Bn-Scaffold000996-p195   | SNP    | A07 | 2.4      | 586344                      | 0.5827               |                      |
| Bn-A07-p885219           | SNP    | A07 | 2.8      | 45191                       | 0.4922               |                      |
| Bn-A07-p178437           | SNP    | A07 | 3.3      | 279606                      | 0.5827               |                      |
| Bn-A07-p959523           | SNP    | A07 | 5.7      | 1110210                     | 0.4922               |                      |
| Bn-A07-p1135440          | SNP    | A07 | 7.1      | 963684                      | 0.5827               |                      |
| Bn-A07-p1210412          | SNP    | A07 | 7.6      | 874286                      | 0.4922               |                      |
| Bn-A07-p1437386          | SNP    | A07 | 8.5      | 201778                      | 0.3363               |                      |
| Bn-A07-p1800556          | SNP    | A07 | 9.0      | 1897346                     | 0.2718               |                      |
| Bn-A10-p11607526         | SNP    | A07 | 9.4      | 2569273                     | 0.2164               |                      |
| Bn-A10-p12331294         | SNP    | A07 | 9.9      |                             | 0.1696               |                      |
| Bn-A10-p12574115         | SNP    | A07 | 10.9     | 3247984                     | 0.0993               |                      |
| Bn-A10-p11918400         | SNP    | A07 | 11.8     | 232813                      | 0.1696               |                      |
| Bn-scaff_17084_1-p341281 | SNP    | A07 | 12.3     | 2643808                     | 0.2419               |                      |
| Bn-A07-p1443503          | SNP    | A07 | 13.2     | 208437                      | 0.3363               |                      |
| brPb-670852              | DArT   | A07 | 14.7     | 2984918                     | 0.1845               |                      |
| Bn-A10-p12491298         | SNP    | A07 | 15.7     |                             | 0.0993               |                      |
| Bn-A07-p5291077          | SNP    | A07 | 17.1     |                             | 0.0394               | *                    |
| Bn-A10-p3266570          | SNP    | A07 | 17.5     | 4388073                     | 0.0545               |                      |
| Bn-A08-p9536971          | SNP    | A07 | 18.0     | 5034412                     | 0.0394               | *                    |
| Bn-A07-p6244683          | SNP    | A07 | 19.0     | 8173788                     | 0.0195               | *                    |
| Bn-A07-p6297941          | SNP    | A07 | 19.9     | 8218562                     | 0.0091               | **                   |
| Bn-A07-p6735264          | SNP    | A07 | 20.4     | 8665683                     | 0.0060               | **                   |
| Bn-A07-p6283126          | SNP    | A07 | 20.8     | 8203354                     | 0.0091               | **                   |
| Bn-A07-p6523973          | SNP    | A07 | 21.8     | 8460249                     | 0.0091               | **                   |
| Bn-A07-p6460270          | SNP    | A07 | 22.7     | 464575                      | 0.0091               | **                   |
| Bn-A07-p6878338          | SNP    | A07 | 23.2     |                             | 0.0025               | **                   |
| Bn-A07-p6981435          | SNP    | A07 | 23.7     | 8884037                     | 0.0016               | **                   |
| Bn-scaff_16541_1-p263947 | SNP    | A07 | 24.6     | 8975277                     | 0.0004               | ***                  |
| Bn-A07-p7200963          | SNP    | A07 | 25.6     |                             | 0.0016               | **                   |
| Bn-A07-p6976405          | SNP    | A07 | 26.5     | 605755                      | 0.0039               | **                   |
| brPb-660097              | DArT   | A07 | 28.0     | 8247016                     | 0.0038               | **                   |
| E34M49-146E              | AFLP   | A07 | 29.4     |                             | 0.0022               | **                   |
| brPb-663295              | DArT   | A07 | 31.4     | 9571178                     | 0.0001               | ***                  |
| Bn-A07-p7584364          | SNP    | A07 | 34.3     | 9190911                     | 0.0010               | ***                  |
| Bn-A07-p8128951          | SNP    | A07 | 35.2     | 9573861                     | 0.0004               | ***                  |
| Bn-A07-p8696690          | SNP    | A07 | 36.2     | 10121431                    | 0.0001               | ***                  |
| Bn-A07-p8852716          | SNP    | A07 | 36.7     | 975622                      | 0.0001               | ***                  |
| Bn-A07-p9079474          | SNP    | A07 | 37.1     | 10541888                    | 0.0001               | ***                  |
| Bn-A07-p9402974          | SNP    | A07 | 37.6     | 10780972                    | 0.0002               | ***                  |
| Bn-A07-p9565657          | SNP    | A07 | 38.1     | 10901610                    | 0.0001               | ***                  |
| -                        |        |     |          |                             |                      |                      |

| MarkerPositionphysicalChi2 1:1Chi2MarkertypeLG(cM)position(p-value)SignifiBn-A07-p9921856SNPA0739.0112053790.0004***Bn-A07-p9632473SNPA0739.510424900.0002***Bn-A07-p10209154SNPA0742.0113746910.0000***Bn-A07-p9923514SNPA0742.4112069470.0001***Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0746.3117731600.0002***Bn-A07-p10554944SNPA0747.3117343360.0001*** |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Bn-A07-p9921856SNPA0739.0112053790.0004***Bn-A07-p9632473SNPA0739.510424900.0002***Bn-A07-p10209154SNPA0742.0113746910.0000***Bn-A07-p9923514SNPA0742.4112069470.0001***Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0744.8113321220.0000***brPb-661422DArTA0746.3117731600.0002***                                                                               |        |
| Bn-A07-p9632473SNPA0739.510424900.0002***Bn-A07-p10209154SNPA0742.0113746910.0000***Bn-A07-p9923514SNPA0742.4112069470.0001***Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0744.8113321220.0000***                                                                                                                                                                | curree |
| Bn-A07-p10209154SNPA0742.0113746910.0000***Bn-A07-p9923514SNPA0742.4112069470.0001***Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0744.8113321220.0000***brPb-661422DArTA0746.3117731600.0002***                                                                                                                                                                  |        |
| Bn-A07-p9923514SNPA0742.4112069470.0001***Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0744.8113321220.0000***brPb-661422DArTA0746.3117731600.0002***                                                                                                                                                                                                             |        |
| Bn-A07-p10455192SNPA0743.4116475290.0000***Bn-A07-p10004245SNPA0743.810660950.0000***brPb-661786DArTA0744.8113321220.0000***brPb-661422DArTA0746.3117731600.0002***                                                                                                                                                                                                                                                       |        |
| Bn-A07-p10004245       SNP       A07       43.8       1066095       0.0000       ***         brPb-661786       DArT       A07       44.8       11332122       0.0000       ***         brPb-661422       DArT       A07       46.3       11773160       0.0002       ***                                                                                                                                                  |        |
| brPb-661786         DArT         A07         44.8         11332122         0.0000         ***           brPb-661422         DArT         A07         46.3         11773160         0.0002         ***                                                                                                                                                                                                                     |        |
| DATE ACT TO.5 11775100 0.0002                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Bn-A07-p10554944 SNP A07 47.3 11734336 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p11044717 SNP A07 47.7 12267076 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-Scaffold000317-p23246 SNP A07 48.2 12629937 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                 |        |
| Bn-A02-p126006 SNP A07 48.7 12758954 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p212959 SNP A07 49.2 12833976 0.0002 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p300727 SNP A07 51.2 12926340 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p459981 SNP A07 51.6 13077219 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p500418 SNP A07 52.1 13125319 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p551481 SNP A07 52.6 13173662 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p918384 SNP A07 53.5 13543711 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                           |        |
| Bn-A02-p972896 SNP A07 54.0 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Bn-A07-p11572985 SNP A07 56.4 1213131 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                          |        |
| E32M49-188D AFLP A07 57.8 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                                      |        |
| E32M49-193E AFLP A07 58.3 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                      |        |
| E35M62-318D AFLP A07 60.3 0.0002 ***                                                                                                                                                                                                                                                                                                                                                                                      |        |
| brPb-671124 DArT A07 60.8 15074931 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                             |        |
| brPb-659002 DArT A07 63.2 14326004 0.0004 ***                                                                                                                                                                                                                                                                                                                                                                             |        |
| Bn-A07-p11979910 SNP A07 65.1 14097304 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p12921727 SNP A07 65.6 15026946 0.0002 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p12546889 SNP A07 66.1 1400519 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                          |        |
| Bn-A07-p11870301 SNP A07 66.5 14028105 0.0002 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p11629852 SNP A07 67.0 13778172 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p11943948 SNP A07 67.5 1306060 0.0002 ***                                                                                                                                                                                                                                                                                                                                                                          |        |
| Bn-A07-p12734895 SNP A07 67.9 14831219 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p13167844 SNP A07 69.8 15251749 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p13787534 SNP A07 73.2 1591548 0.0006 ***                                                                                                                                                                                                                                                                                                                                                                          |        |
| Bn-A07-p13963849 SNP A07 74.6 15890459 0.0001 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p14046607 SNP A07 76.0 15965574 0.0006 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p14759961 SNP A07 76.5 16644393 0.0004 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p14225642 SNP A07 77.0 16093010 0.0006 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p14645683 SNP A07 77.4 16540846 0.0004 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p14780968 SNP A07 78.4 0.0004 ***                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Bn-scaff_15746_1-p1299 SNP A07 79.3 16524094 0.0004 ***                                                                                                                                                                                                                                                                                                                                                                   |        |
| Bn-A07-p14922137 SNP A07 80.7 16794612 0.0006 ***                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bn-A07-p15162837 SNP A07 81.2 17075670 0.0010 ***                                                                                                                                                                                                                                                                                                                                                                         |        |

|                          | _      |     |          | B. napus |                      |                      |
|--------------------------|--------|-----|----------|----------|----------------------|----------------------|
| Marilana                 | Marker | ιc  | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                   | type   | LG  | (cM)     | position | (p-value)            | Significance<br>***  |
| Bn-A07-p14895551         | SNP    | A07 | 81.7     | 16764376 | 0.0006               | ***                  |
| Bn-scaff_16064_1-p816197 | SNP    | A07 | 82.1     | 16990844 | 0.0010               | **                   |
| Bn-A07-p15441391         | SNP    | A07 | 84.0     | 1677737  | 0.0060               | *                    |
| Bn-A07-p15771342         | SNP    | A07 | 85.0     | 17677086 | 0.0134               | *                    |
| Bn-A07-p15801291         | SNP    | A07 | 85.9     | 17724570 | 0.0280               | *                    |
| Bn-A07-p15829285         | SNP    | A07 | 86.4     | 17734570 | 0.0195               | **                   |
| Bn-A07-p16167393         | SNP    | A07 | 87.8     | 10526250 | 0.0060               | **                   |
| Bn-A07-p16557893         | SNP    | A07 | 88.3     | 18536350 | 0.0091               |                      |
| Bn-A07-p16931589         | SNP    | A07 | 89.2     | 18852096 | 0.0195               | *                    |
| Bn-A07-p17017277         | SNP    | A07 | 90.6     | 18931037 | 0.0545               |                      |
| Bn-A07-p17186393         | SNP    | A07 | 91.1     | 19103647 | 0.0741               |                      |
| Bn-A07-p17434468         | SNP    | A07 | 92.1     | 1807582  | 0.1308               |                      |
| Bn-A07-p17477080         | SNP    | A07 | 92.5     | 19366860 | 0.0993               |                      |
| Bn-A07-p17409328         | SNP    | A07 | 93.0     | 19306687 | 0.1308               |                      |
| Bn-A07-p17587315         | SNP    | A07 | 93.9     | 19464629 | 0.1308               |                      |
| Bn-A07-p18201301         | SNP    | A07 | 94.9     | 20094052 | 0.2164               |                      |
| Bn-A07-p18308378         | SNP    | A07 | 96.3     | 20209920 | 0.4098               |                      |
| Bn-A07-p18957162         | SNP    | A07 | 98.2     | 20769036 | 0.7835               |                      |
| Bn-A07-p19118066         | SNP    | A07 | 98.7     | 20923897 | 0.6803               |                      |
| Bn-A07-p19352007         | SNP    | A07 | 100.5    | 21142560 | 0.8907               |                      |
| Bn-scaff_25466_1-p192846 | SNP    | A07 | 101.0    | 21223186 | 0.7835               |                      |
| Bn-scaff_19937_1-p20028  | SNP    | A07 | 102.0    | 21340844 | 0.7835               |                      |
| Bn-A07-p19795126         | SNP    | A07 | 105.7    | 21608240 | 0.4098               |                      |
| Bn-A07-p19865996         | SNP    | A07 | 107.2    | 21681393 | 0.3363               |                      |
| Bn-A07-p19912379         | SNP    | A07 | 107.6    |          | 0.4098               |                      |
| Bn-A07-p20611621         | SNP    | A07 | 108.6    |          | 0.5827               |                      |
| Bn-A07-p20230189         | SNP    | A07 | 109.1    | 21986831 | 0.4922               |                      |
| Bn-A07-p21078249         | SNP    | A07 | 110.5    | 22624570 | 0.5827               |                      |
| Bn-A07-p21678440         | SNP    | A07 | 111.4    | 23223777 | 0.5827               |                      |
| Bn-A07-p21994050         | SNP    | A07 | 111.9    | 23385746 | 0.6803               |                      |
| Bn-A07-p22382675         | SNP    | A07 | 112.4    | 23779520 | 0.8907               |                      |
| Bn-A07-p22542288         | SNP    | A07 | 112.8    | 23956661 | 1.0000               |                      |
| Bn-A07-p21871055         | SNP    | A07 | 114.2    | 2058120  | 0.6803               |                      |
| Bn-A07-p20986876         | SNP    | A07 | 115.7    | 22540038 | 0.5827               |                      |
| Bn-A07-p20894218         | SNP    | A07 | 116.1    |          | 0.4922               |                      |
| Bn-A07-p20248654         | SNP    | A07 | 117.1    | 21998627 | 0.4922               |                      |
| brPb-660246              | DArT   | A07 | 119.0    |          | 0.4031               |                      |
| brPb-657676              | DArT   | A07 | 120.5    | 22509387 | 0.2419               |                      |
| brPb-663103              | DArT   | A07 | 122.4    | 21795193 | 0.2971               |                      |
| E44M62-106E              | AFLP   | A08 | 0.0      |          | 0.0024               | **                   |
| brPb-663594              | DArT   | A08 | 0.5      | 7145468  | 0.0031               | **                   |
| Bn-A08-p7260514          | SNP    | A08 | 2.4      |          | 0.0060               | **                   |
| Bn-A08-p3284482          | SNP    | A08 | 3.3      | 2761770  | 0.0025               | **                   |
|                          |        |     |          |          |                      |                      |

| Maalaas                  | Marker |     | Position     | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|--------------------------|--------|-----|--------------|--------------------------|----------------------|----------------------|
| Marker                   | type   | LG  | (cM)         | position                 | (p-value)            | Significance         |
| Bn-A08-p2995827          | SNP    | A08 | 3.8          | 2476740                  | 0.0016               | **                   |
| brPb-663528              | DArT   | A08 | 4.9          | 2700177                  | 0.0004               | **                   |
| E33M47-82E               | AFLP   | A08 | 5.9          | 4040000                  | 0.0094               |                      |
| Bn-A08-p1123899          | SNP    | A08 | 8.0          | 1013089                  | 0.0134               | *                    |
| Bn-A08-p694721           | SNP    | A08 | 8.9          | 633910                   | 0.0060               | **                   |
| Bn-A08-p372048           | SNP    | A08 | 9.4          | 313830                   | 0.0091               | **                   |
| Bn-A08-p570304           | SNP    | A08 | 9.9          | 518503                   | 0.0134               | *                    |
| Bn-A08-p2922263          | SNP    | A08 | 14.1         | 2377343                  | 0.0016               | **                   |
| Bn-A08-p3270600          | SNP    | A08 | 14.6         | 2747756                  | 0.0025               | **                   |
| Bn-A08-p4000353          | SNP    | A08 | 15.6         | 3400709                  | 0.0060               | **                   |
| Bn-A08-p6066021          | SNP    | A08 | 16.0         |                          | 0.0091               | **                   |
| Bn-A08-p10795996         | SNP    | A08 | 17.0         | 8702053                  | 0.0091               | **                   |
| Bn-A08-p10844808         | SNP    | A08 | 17.4         | 8746377                  | 0.0060               | **                   |
| Bn-A08-p10067927         | SNP    | A08 | 17.9         | 8069051                  | 0.0091               | **                   |
| Bn-A08-p10026421         | SNP    | A08 | 18.4         | 8026173                  | 0.0060               | **                   |
| Bn-A08-p6101880          | SNP    | A08 | 18.9         |                          | 0.0091               | **                   |
| Bn-A08-p3964840          | SNP    | A08 | 19.3         | 3386722                  | 0.0060               | **                   |
| Bn-A08-p11308315         | SNP    | A08 | 22.8         | 9168980                  | 0.0280               | *                    |
| Bn-A08-p12699181         | SNP    | A08 | 25.1         | 10373996                 | 0.0394               | *                    |
| Bn-A08-p13214532         | SNP    | A08 | 25.6         | 10959819                 | 0.0280               | *                    |
| Bn-A08-p13284369         | SNP    | A08 | 26.1         | 11051768                 | 0.0195               | *                    |
| Bn-A08-p13363830         | SNP    | A08 | 26.5         | 11110719                 | 0.0134               | *                    |
| Bn-A08-p13325281         | SNP    | A08 | 27.0         | 11067320                 | 0.0195               | *                    |
| Bn-A08-p13200580         | SNP    | A08 | 27.5         | 1606733                  | 0.0280               | *                    |
| Bn-A08-p12638473         | SNP    | A08 | 28.0         | 10557498                 | 0.0394               | *                    |
| Bn-A08-p13616733         | SNP    | A08 | 29.8         | 11367526                 | 0.0195               | *                    |
| Bn-A08-p13830207         | SNP    | A08 | 30.8         | 11563063                 | 0.0394               | *                    |
| Bn-scaff_18559_1-p248231 | SNP    | A08 | 32.2         | 11635179                 | 0.0134               | *                    |
| Bn-A08-p14045962         | SNP    | A08 | 32.7         | 11749118                 | 0.0195               | *                    |
| Bn-A08-p13932634         | SNP    | A08 | 33.1         | 11662900                 | 0.0134               | *                    |
| Bn-A08-p14117791         | SNP    | A08 | 33.6         | 11815421                 | 0.0195               | *                    |
| Bn-A08-p14597858         | SNP    | A08 | 35.0         |                          | 0.0545               |                      |
| Bn-A08-p14538807         | SNP    | A08 | 35.5         | 12242058                 | 0.0394               | *                    |
| Bn-A08-p14493385         | SNP    | A08 | 36.0         | 12192650                 | 0.0280               | *                    |
| Bn-A08-p14813540         | SNP    | A08 | 37.9         | 12376779                 | 0.0993               |                      |
| Bn-A08-p14759185         | SNP    | A08 | 38.3         | 12320936                 | 0.0741               |                      |
| Bn-A08-p15053710         | SNP    | A08 | 39.8         |                          | 0.1696               |                      |
| Bn-A08-p15231480         | SNP    | A08 | 40.2         | 12789541                 | 0.1308               |                      |
| Bn-A08-p15243115         | SNP    | A08 | 40.7         | 12801818                 | 0.0993               |                      |
| Bn-A08-p15239295         | SNP    | A08 | 41.2         | 12797960                 | 0.1308               |                      |
| Bn-A08-p15322011         | SNP    | A08 | 41.6         | 12889609                 | 0.0993               |                      |
| brPb-659418              | DArT   | A08 | 42.7         | 12007007                 | 0.0016               | **                   |
| brPb-658031              | DATT   | A08 | 42.7<br>44.3 | 13214891                 | 0.0010               | ***                  |
| 0110-030031              | DALI   | л00 | 77.5         | 15214071                 | 0.0005               |                      |

|                           | Marker |     | Position | <i>B. napus</i><br>physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|-----|----------|-----------------------------|----------------------|----------------------|
| Marker                    | type   | LG  | (cM)     | position                    | (p-value)            | Significance         |
| brPb-809516               | DArT   | A08 | 44.9     | 13214891                    | 0.1425               |                      |
| Bn-A08-p15710460          | SNP    | A08 | 45.8     | 13216541                    | 0.2164               |                      |
| Bn-A08-p15489686          | SNP    | A08 | 46.3     | 13061411                    | 0.1696               |                      |
| Bn-A08-p15614498          | SNP    | A08 | 46.8     | 13145012                    | 0.2164               |                      |
| Bn-A08-p15945454          | SNP    | A08 | 47.7     | 13407152                    | 0.3363               |                      |
| Bn-A08-p15991441          | SNP    | A08 | 48.2     | 13450684                    | 0.2718               |                      |
| Bn-A08-p16132462          | SNP    | A08 | 49.6     | 13593811                    | 0.3363               |                      |
| Bn-A08-p16514789          | SNP    | A08 | 52.0     |                             | 0.5827               |                      |
| Bn-A08-p16990347          | SNP    | A08 | 54.8     | 14465850                    | 0.2718               |                      |
| Bn-A08-p17291598          | SNP    | A08 | 57.6     | 14720820                    | 0.7835               |                      |
| Bn-A08-p17327135          | SNP    | A08 | 58.1     | 14773111                    | 0.8907               |                      |
| Bn-A08-p17393046          | SNP    | A08 | 59.1     | 14852028                    | 0.8907               |                      |
| Bn-A08-p17449410          | SNP    | A08 | 59.5     |                             | 1.0000               |                      |
| Bn-A08-p17586676          | SNP    | A08 | 60.0     | 15039202                    | 0.8907               |                      |
| Bn-A08-p17735673          | SNP    | A08 | 60.5     | 15175604                    | 1.0000               |                      |
| Bn-A08-p17816612          | SNP    | A08 | 61.9     | 15264416                    | 0.8907               |                      |
| Bn-A08-p17932590          | SNP    | A08 | 62.4     | 15372403                    | 1.0000               |                      |
| Bn-A08-p18112619          | SNP    | A08 | 63.8     | 15559843                    | 0.6803               |                      |
| Bn-A08-p18605816          | SNP    | A08 | 67.1     | 16019728                    | 0.4098               |                      |
| Bn-A08-p18720560          | SNP    | A08 | 68.1     |                             | 0.5827               |                      |
| Bn-A08-p19428204          | SNP    | A08 | 75.2     | 16803479                    | 0.3363               |                      |
| Bn-A08-p19454590          | SNP    | A08 | 75.7     | 16825035                    | 0.4098               |                      |
| Bn-A08-p19553756          | SNP    | A08 | 77.1     | 2001776                     | 0.4922               |                      |
| brPb-661602               | DArT   | A08 | 80.4     | 1962473                     | 0.7835               |                      |
| Bn-A08-p19573947          | SNP    | A08 | 85.3     | 2026256                     | 0.4922               |                      |
| Bn-A08-p19676751          | SNP    | A08 | 85.8     | 17007110                    | 0.5827               |                      |
| Bn-A08-p20134420          | SNP    | A08 | 86.3     | 2075051                     | 0.4922               |                      |
| Bn-A08-p20216535          | SNP    | A08 | 87.2     | 17422359                    | 0.6803               |                      |
| Bn-A05-p8120997           | SNP    | A08 | 87.7     | 17544012                    | 0.5827               |                      |
| Bn-A08-p20373400          | SNP    | A08 | 91.5     | 17834189                    | 0.2718               |                      |
| Bn-A08-p20490539          | SNP    | A08 | 92.0     | 17971842                    | 0.2164               |                      |
| Bn-A08-p20306567          | SNP    | A08 | 92.4     | 17778164                    | 0.2718               |                      |
| Bn-A08-p20305036          | SNP    | A08 | 92.9     | 17775526                    | 0.3363               |                      |
| Bn-A09-p616919            | SNP    | A09 | 0.0      | 1637190                     | 0.1142               |                      |
| Bn-A09-p297029            | SNP    | A09 | 0.5      | 394410                      | 0.0091               | **                   |
| Bn-scaff_15783_1-p273092  | SNP    | A09 | 10.4     | 565946                      | 0.0000               | ***                  |
| Bn-scaff_22749_1-p202280  | SNP    | A09 | 22.7     | 389015                      | 0.0000               | ***                  |
| Bn-scaff_17526_1-p2206429 | SNP    | A09 | 24.1     | 837094                      | 0.0000               | ***                  |
| Bn-scaff_15783_1-p350376  | SNP    | A09 | 24.6     | 524248                      | 0.0000               | ***                  |
| Bn-A09-p2208929           | SNP    | A09 | 25.7     | 1382721                     | 0.0000               | ***                  |
| Bn-A09-p1603989           | SNP    | A09 | 26.2     | 2323846                     | 0.0000               | ***                  |
| Bn-A09-p1634652           | SNP    | A09 | 30.5     | 2292134                     | 0.0000               | ***                  |
| Bn-scaff_17526_1-p221576  | SNP    | A09 | 33.8     | 2208477                     | 0.0000               | ***                  |

|                         | Marker |       | Position | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|-------------------------|--------|-------|----------|--------------------------|----------------------|----------------------|
| Marker                  | type   | LG    | (cM)     | position                 | (p-value)            | Significance         |
| Bn-scaff_19783_1-p71479 | SNP    | A09   | 34.4     | 2448273                  | 0.0000               | ***                  |
| Bn-A09-p3047090         | SNP    | A09   | 44.0     | 2966543                  | 0.0000               | ***                  |
| Bn-A09-p4300103         | SNP    | A09   | 45.9     | 3765540                  | 0.0000               | ***                  |
| Bn-A09-p4447029         | SNP    | A09   | 49.7     | 4358752                  | 0.0000               | ***                  |
| Bn-A09-p3908310         | SNP    | A09   | 51.2     | 4095068                  | 0.0000               | ***                  |
| Bn-A01-p9004629         | SNP    | A09   | 54.9     | 2580895                  | 0.0000               | ***                  |
| brPb-661324             | DArT   | A09   | 61.2     | 504924                   | 0.0000               | ***                  |
| E32M47-231D             | AFLP   | A09   | 69.5     |                          | 0.0000               | ***                  |
| Bn-A09-p4831706         | SNP    | A09   | 72.9     | 4740301                  | 0.0000               | ***                  |
| Bn-A09-p5255753         | SNP    | A09   | 74.4     | 4931273                  | 0.0000               | ***                  |
| Bn-A09-p5455608         | SNP    | A09   | 75.8     | 5015175                  | 0.0000               | ***                  |
| Bn-A09-p7329993         | SNP    | A09   | 77.7     | 5542420                  | 0.0000               | ***                  |
| Bn-A09-p7047022         | SNP    | A09   | 81.0     | 5815858                  | 0.0000               | ***                  |
| E35M62-368E             | AFLP   | A09   | 84.6     |                          | 0.0014               | **                   |
| Bn-A09-p6010593         | SNP    | A09   | 91.7     | 6668908                  | 0.0002               | ***                  |
| Bn-A09-p7454442         | SNP    | A09   | 92.1     | 6949288                  | 0.0004               | ***                  |
| Bn-A09-p7560188         | SNP    | A09   | 93.5     | 7077469                  | 0.0016               | **                   |
| Bn-A09-p8591730         | SNP    | A09   | 95.0     | 8020106                  | 0.0025               | **                   |
| Bn-A09-p9098267         | SNP    | A09   | 96.9     | 8279745                  | 0.0134               | *                    |
| Bn-A09-p9379347         | SNP    | A09   | 100.2    | 8460797                  | 0.1308               |                      |
| Bn-A09-p10064024        | SNP    | A09   | 102.0    | 9050884                  | 0.0394               | *                    |
| Bn-A09-p10172534        | SNP    | A09   | 102.5    | 9249533                  | 0.0280               | *                    |
| Bn-A09-p13827633        | SNP    | A09   | 103.5    | 9946476                  | 0.0545               |                      |
| Bn-A09-p13251498        | SNP    | A09   | 104.4    |                          | 0.0280               | *                    |
| brPb-663436             | DArT   | A09   | 107.5    | 12020749                 | 0.0993               |                      |
| Bn-A09-p17342092        | SNP    | A09   | 108.0    | 13123322                 | 0.1483               |                      |
| Bn-A09-p11727553        | SNP    | A09   | 109.4    | 14981748                 | 0.0993               |                      |
| Bn-A09-p23515910        | SNP    | A09   | 114.6    | 21894307                 | 0.3363               |                      |
| Bn-A09-p23552530        | SNP    | A09   | 116.0    | 21931881                 | 0.1696               |                      |
| Bn-A05-p15797839        | SNP    | A09   | 119.8    |                          | 0.0545               |                      |
| Bn-A09-p24854950        | SNP    | A09   | 120.3    |                          | 0.0741               |                      |
| Bn-A09-p24921401        | SNP    | A09   | 120.7    |                          | 0.0545               |                      |
| Bn-A09-p24942194        | SNP    | A09   | 121.2    |                          | 0.0394               | *                    |
| Bn-A09-p25738255        | SNP    | A09   | 121.7    | 23823204                 | 0.0545               |                      |
| Bn-A09-p25372544        | SNP    | A09   | 122.2    | 23516972                 | 0.0394               | *                    |
| Bn-A09-p25493173        | SNP    | A09   | 122.6    |                          | 0.0545               |                      |
| Bn-A09-p26244223        | SNP    | A09   | 125.5    | 24365261                 | 0.0060               | **                   |
| Bn-A09-p26864664        | SNP    | A09   | 127.4    | 24929899                 | 0.0010               | ***                  |
| Bn-A09-p26301343        | SNP    | A09   | 129.2    | 24386373                 | 0.0060               | **                   |
| E44M62-99D              | AFLP   | A09   | 130.7    |                          | 0.0251               | *                    |
| E33M47-385E             | AFLP   | A09   | 136.7    |                          | 0.0004               | ***                  |
| brPb-808599             | DArT   | A09   | 137.2    | 25119502                 | 0.0001               | ***                  |
| Bn-A09-p27103683        | SNP    | A09   | 137.2    | 25104229                 | 0.0000               | ***                  |
| 5. 1107 p=/ 100000      | 0111   | 110 ) | 100.2    |                          | 5.0000               |                      |

|                          |        |     |          | B. napus |                      |                      |
|--------------------------|--------|-----|----------|----------|----------------------|----------------------|
|                          | Marker | 1.0 | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                   | type   | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A09-p27351028         | SNP    | A09 | 140.5    | 25392191 | 0.0006               | ***                  |
| Bn-A09-p27436536         | SNP    | A09 | 141.0    | 2994306  | 0.0004               | **                   |
| Bn-A09-p27628825         | SNP    | A09 | 142.4    | 25547079 | 0.0016               |                      |
| Bn-A09-p28212233         | SNP    | A09 | 148.1    | 26138085 | 0.0001               | ***                  |
| Bn-A09-p28266331         | SNP    | A09 | 148.6    | 044000   | 0.0001               | ***                  |
| Bn-A09-p28518619         | SNP    | A09 | 150.5    | 26412035 | 0.0010               | ***                  |
| Bn-A09-p29134207         | SNP    | A09 | 151.9    | 3164770  | 0.0006               | ***                  |
| Bn-A09-p30002747         | SNP    | A09 | 154.2    | 27828143 | 0.0010               | ***                  |
| Bn-A09-p30010889         | SNP    | A09 | 155.2    | 27836342 | 0.0025               | **                   |
| Bn-A09-p30108430         | SNP    | A09 | 158.5    | 27923796 | 0.0001               | ***                  |
| Bn-A09-p30119978         | SNP    | A09 | 159.4    | 27937900 | 0.0002               | ***                  |
| Bn-A09-p30280052         | SNP    | A09 | 159.9    | 28059010 | 0.0004               | ***                  |
| Bn-A09-p25899239         | SNP    | A09 | 160.4    | 28210312 | 0.0006               | ***                  |
| Bn-A09-p5040112          | SNP    | A09 | 163.7    | 29637725 | 0.0025               | **                   |
| Bn-A09-p5157169          | SNP    | A09 | 164.2    | 29733948 | 0.0039               | **                   |
| Bn-A09-p31884693         | SNP    | A09 | 164.6    |          | 0.0025               | **                   |
| Bn-A09-p31905309         | SNP    | A09 | 165.1    |          | 0.0016               | **                   |
| Bn-A09-p32104974         | SNP    | A09 | 165.6    | 29995410 | 0.0025               | **                   |
| Bn-A09-p33875531         | SNP    | A09 | 168.4    | 3977457  | 0.0060               | **                   |
| Bn-A09-p34995048         | SNP    | A09 | 171.2    | 32205427 | 0.0280               | *                    |
| Bn-A09-p35508720         | SNP    | A09 | 174.5    | 32655355 | 0.0091               | **                   |
| brPb-840102              | DArT   | A09 | 176.5    | 4089451  | 0.0098               | **                   |
| brPb-661730              | DArT   | A09 | 179.0    | 33364165 | 0.0016               | **                   |
| Bn-A09-p36402581         | SNP    | A09 | 182.3    |          | 0.0025               | **                   |
| Bn-A09-p36551108         | SNP    | A09 | 184.7    | 33561792 | 0.0039               | **                   |
| brPb-809539              | DArT   | A10 | 0.0      | 16674875 | 0.0280               | *                    |
| Bn-scaff_21636_1-p137494 | SNP    | A10 | 2.8      | 16670308 | 0.0025               | **                   |
| Bn-A10-p16737974         | SNP    | A10 | 3.3      | 16535774 | 0.0019               | **                   |
| Bn-A10-p16924111         | SNP    | A10 | 4.7      | 16729401 | 0.0091               | **                   |
| Bn-A10-p17500897         | SNP    | A10 | 6.6      | 17299341 | 0.0060               | **                   |
| Bn-A10-p17470876         | SNP    | A10 | 8.1      |          | 0.0039               | **                   |
| Bn-A10-p17262954         | SNP    | A10 | 8.5      | 17087915 | 0.0048               | **                   |
| Bn-A10-p17148313         | SNP    | A10 | 9.0      | 16960203 | 0.0031               | **                   |
| Bn-A10-p16918661         | SNP    | A10 | 10.0     | 16723858 | 0.0073               | **                   |
| Bn-A10-p16824950         | SNP    | A10 | 10.9     | 16627400 | 0.0031               | **                   |
| Bn-A10-p16718558         | SNP    | A10 | 11.4     | 16510586 | 0.0016               | **                   |
| Bn-A10-p16703268         | SNP    | A10 | 12.8     | 16493815 | 0.0025               | **                   |
| Bn-A10-p16522658         | SNP    | A10 | 13.7     | 16316296 | 0.0016               | **                   |
| Bn-A10-p15254551         | SNP    | A10 | 14.7     | 16234650 | 0.0012               | **                   |
| Bn-A10-p15265878         | SNP    | A10 | 15.6     |          | 0.0004               | ***                  |
| Bn-A10-p15442975         | SNP    | A10 | 17.5     | 16049634 | 0.0025               | **                   |
| Bn-A10-p15591443         | SNP    | A10 | 18.9     | 2182756  | 0.0006               | ***                  |
| Bn-A10-p15606935         | SNP    | A10 | 19.4     | 2137016  | 0.0004               | ***                  |
| *                        |        |     |          |          |                      |                      |

|                                      |              |     |          | B. napus |                      |                      |
|--------------------------------------|--------------|-----|----------|----------|----------------------|----------------------|
|                                      | Marker       |     | Position | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                               | type         | LG  | (cM)     | position | (p-value)            | Significance         |
| Bn-A10-p15863143                     | SNP          | A10 | 19.9     | 15695789 | 0.0006               | ***                  |
| Bn-A10-p15651383                     | SNP          | A10 | 20.4     | 15915998 | 0.0004               | ***                  |
| Bn-A10-p15894309                     | SNP          | A10 | 20.8     | 15670009 | 0.0006               | ***                  |
| Bn-A10-p15948040                     | SNP          | A10 | 21.3     | 15618261 | 0.0010               | ***                  |
| E45M49-297E                          | AFLP         | A10 | 24.8     |          | 0.0057               | **                   |
| brPb-670588                          | DArT         | A10 | 28.6     | 15444463 | 0.0007               | ***                  |
| brPb-809027                          | DArT         | A10 | 30.5     | 15343574 | 0.0002               | ***                  |
| Bn-A10-p16285282                     | SNP          | A10 | 33.5     | 15306586 | 0.0000               | ***                  |
| Bn-A10-p16215165                     | SNP          | A10 | 34.0     | 15363433 | 0.0000               | ***                  |
| Bn-A10-p16190708                     | SNP          | A10 | 34.9     | 15381939 | 0.0000               | ***                  |
| Bn-A10-p16021831                     | SNP          | A10 | 36.8     | 15545593 | 0.0001               | ***                  |
| Bn-scaff_17750_1-p1692483            | SNP          | A10 | 40.1     | 15301191 | 0.0000               | ***                  |
| Bn-A10-p16317798                     | SNP          | A10 | 40.6     | 15273770 | 0.0000               | ***                  |
| Bn-A10-p16424917                     | SNP          | A10 | 41.5     | 15164117 | 0.0000               | ***                  |
| Bn-A10-p14962307                     | SNP          | A10 | 42.5     | 14897418 | 0.0000               | ***                  |
| Bn-A10-p14809502                     | SNP          | A10 | 43.9     | 14762080 | 0.0000               | ***                  |
| Bn-A10-p14728923                     | SNP          | A10 | 44.3     | 14684577 | 0.0000               | ***                  |
| Bn-A10-p14472446                     | SNP          | A10 | 45.3     | 14409444 | 0.0000               | ***                  |
| Bn-A10-p14354612                     | SNP          | A10 | 45.8     | 14295891 | 0.0000               | ***                  |
| Bn-A10-p14103279                     | SNP          | A10 | 47.6     | 14101620 | 0.0000               | ***                  |
| Bn-A10-p13913564                     | SNP          | A10 | 48.6     |          | 0.0000               | ***                  |
| Bn-A10-p13875041                     | SNP          | A10 | 49.1     | 13907075 | 0.0000               | ***                  |
| Bn-A10-p13815263                     | SNP          | A10 | 50.5     | 13851859 | 0.0000               | ***                  |
| Bn-A10-p13798602                     | SNP          | A10 | 50.9     | 13834339 | 0.0000               | ***                  |
| Bn-A10-p13677412                     | SNP          | A10 | 51.4     | 13718053 | 0.0000               | ***                  |
| Bn-A10-p13638489                     | SNP          | A10 | 51.9     | 13678934 | 0.0000               | ***                  |
| Bn-A10-p13455391                     | SNP          | A10 | 52.8     | 13502402 | 0.0000               | ***                  |
| Bn-A10-p13375342                     | SNP          | A10 | 53.3     | 13415791 | 0.0000               | ***                  |
| Bn-A10-p13393956                     | SNP          | A10 | 53.8     | 13436702 | 0.0000               | ***                  |
| Bn-A10-p13142215                     | SNP          | A10 | 55.2     | 13181101 | 0.0000               | ***                  |
| Bn-A08-p4902282                      | SNP          | A10 | 56.6     | 12841613 | 0.0000               | ***                  |
| Bn-A10-p11042627                     | SNP          | A10 | 57.1     | 12401828 | 0.0000               | ***                  |
| Bn-A10-p11311425                     | SNP          | A10 | 57.6     | 12610338 | 0.0000               | ***                  |
| Bn-A10-p12996989                     | SNP          | A10 | 58.0     | 13029666 | 0.0000               | ***                  |
| Bn-A10-p13139635                     | SNP          | A10 | 59.0     | 13178585 | 0.0000               | ***                  |
| Bn-A10-p13318061                     | SNP          | A10 | 59.4     | 10170000 | 0.0000               | ***                  |
| E44M62-288D                          | AFLP         | A10 | 61.0     |          | 0.0000               | ***                  |
| brPb-663056                          | DArT         | A10 | 62.0     | 13419646 | 0.0000               | ***                  |
| brPb-663284                          | DAIT         | A10 | 64.8     | 12406226 | 0.0000               | ***                  |
| brPb-661264                          | DAIT<br>DArT | A10 | 68.7     | 12100220 | 0.0000               | ***                  |
| E33M47-178E                          | AFLP         | A10 | 69.1     |          | 0.0000               | ***                  |
| Bn-A10-p10395990                     | SNP          | A10 | 72.0     | 11786976 | 0.0000               | ***                  |
| Bn-A10-p10595990<br>Bn-A10-p10562649 | SNP          |     |          | 11938280 | 0.0000               | ***                  |
| DII-ATO-PT0202043                    | SINK         | A10 | 72.5     | 11320790 | 0.0000               |                      |

|                    |        |     |            | B. napus      |           |                      |
|--------------------|--------|-----|------------|---------------|-----------|----------------------|
|                    | Marker |     | Position   | physical      | Chi² 1:1  | Chi <sup>2</sup> 1:1 |
| Marker             | type   | LG  | (cM)       | position      | (p-value) | Significance         |
| Bn-A10-p10866946   | SNP    | A10 | 73.5       | 12249791      | 0.0000    | ***                  |
| Bn-A10-p10777142   | SNP    | A10 | 74.4       | 12136830      | 0.0000    | ***                  |
| Bn-A10-p9846287    | SNP    | A10 | 76.8       | 11292790      | 0.0000    | ***                  |
| Bn-A10-p9615362    | SNP    | A10 | 77.2       | 11034012      | 0.0000    | ***                  |
| Bn-A10-p8834914    | SNP    | A10 | 77.7       | 10246833      | 0.0000    | ***                  |
| Bn-A10-p9558311    | SNP    | A10 | 78.2       | 11004371      | 0.0000    | ***                  |
| Bn-A10-p9887525    | SNP    | A10 | 78.7       |               | 0.0000    | ***                  |
| Bn-A10-p8723171    | SNP    | A10 | 80.1       | 10123624      | 0.0000    | ***                  |
| Bn-A10-p7988223    | SNP    | A10 | 80.5       | 9647659       | 0.0000    | ***                  |
| Bn-A10-p2065917    | SNP    | A10 | 84.8       | 1648732       | 0.0000    | ***                  |
| Bn-A10-p634822     | SNP    | A10 | 88.1       |               | 0.0000    | ***                  |
| Bn-A10-p1354965    | SNP    | A10 | 88.6       | 2246432       | 0.0000    | ***                  |
| Bn-A10-p7454604    | SNP    | A10 | 89.1       |               | 0.0000    | ***                  |
| brPb-658735        | DArT   | A10 | 91.0       | 9034334       | 0.0000    | ***                  |
| brPb-660669        | DArT   | A10 | 92.5       |               | 0.0000    | ***                  |
| E33M47-227D        | AFLP   | A10 | 100.6      |               | 0.0000    | ***                  |
| Bn-A10-p2374648    | SNP    | A10 | 102.7      | 1488746       | 0.0000    | ***                  |
| Bn-A10-p2171166    | SNP    | A10 | 103.1      |               | 0.0000    | ***                  |
| Bn-A10-p2096482    | SNP    | A10 | 105.1      | 1624221       | 0.0000    | ***                  |
| Bn-A10-p2260170    | SNP    | A10 | 107.4      | 1577525       | 0.0000    | ***                  |
| Bn-A10-p2687844    | SNP    | A10 | 108.9      | 1222375       | 0.0000    | ***                  |
| Bn-A10-p2804340    | SNP    | A10 | 109.4      | 1140201       | 0.0000    | ***                  |
| Bn-A10-p2819947    | SNP    | A10 | 109.8      | 1123105       | 0.0000    | ***                  |
| Bn-A10-p3809773    | SNP    | A10 | 110.8      | 1010599       | 0.0000    | ***                  |
| Bn-A10-p3903845    | SNP    | A10 | 111.3      | 918947        | 0.0000    | ***                  |
| Bn-A10-p4104015    | SNP    | A10 | 112.7      | 760137        | 0.0001    | ***                  |
| Bn-A10-p4076884    | SNP    | A10 | 113.2      | 784818        | 0.0002    | ***                  |
| Bn-A10-p4212056    | SNP    | A10 | 113.7      |               | 0.0000    | ***                  |
| Bn-A10-p4356450    | SNP    | A10 | 114.1      | 474901        | 0.0000    | ***                  |
| Bn-A10-p4311291    | SNP    | A10 | 115.1      |               | 0.0002    | ***                  |
| Bn-A10-p4118433    | SNP    | A10 | 116.0      | 747781        | 0.0002    | ***                  |
| Bn-A10-p3905100    | SNP    | A10 | 117.0      | 917471        | 0.0000    | ***                  |
| Bn-A10-p2833336    | SNP    | A10 | 118.4      | 1106811       | 0.0000    | ***                  |
| brPb-659419        | DArT   | A10 | 120.8      | 1100011       | 0.0000    | ***                  |
| brPb-658597        | DArT   | A10 | 122.3      |               | 0.0000    | ***                  |
| brPb-657840        | DArT   | C01 | 0.0        | 15392292      | 0.0000    | ***                  |
| brPb-661486        | DArT   | C01 | 1.0        | 16137582      | 0.0000    | ***                  |
| brPb-663378        | DArT   | C01 | 2.9        | 21932884      | 0.0000    | ***                  |
| E32M47-123D        | AFLP   | C01 | 3.4        | <b></b> ///// | 0.0000    | ***                  |
| E39M62-103D        | AFLP   | C01 | 5.4<br>7.8 |               | 0.0000    | ***                  |
| E39M62-111E        | AFLP   | C01 | 8.3        |               | 0.0000    | ***                  |
| E32M47-175D        | AFLP   | C01 | 10.9       |               | 0.0000    | ***                  |
| Bn-C13838053-p225  | SNP    | C01 | 18.3       | 4135768       | 0.0000    | ***                  |
| DII-G13030033-P223 | SINE   | C01 | 10.5       | 4155/08       | 0.0000    |                      |

| B. napus         B. napus           Marker         Position         physical         Chi² 1:1         Chi² 1:1           Marker         LG         (cM)         position         (p-value)         Significance           Bn-scaff_15838_5-p929569         SNP         C01         19.7         375950         0.0000         ***           Bn-scaff_15838_5-p478688         SNP         C01         21.1         3326131         0.0000         ***           Bn-scaff_15838_5-p227630         SNP         C01         21.6         3078855         0.0000         ***           Bn-scaff_15838_1-p1917196         SNP         C01         23.0         2273565         0.0000         ***           Bn-scaff_19244_1-p693772         SNP         C01         25.0         628240         0.0000         ***           Bn-scaff_19244_1-p693718         SNP         C01         28.8         633739         0.0000         ***           Bn-scaff_15838_1-p1572850         SNP         C01         30.7         2411780         0.0000         ***           Bn-scaff_15838_5-p625786         SNP         C01         34.5         3056412         0.0000         ***           brPb-60268         DArT         C01         44.5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MarkertypeLG(cM)position(p-value)SignificanceBn-scaff_15838_5-p929569SNPC0119.737595600.0000***Bn-scaff_15838_5-p478688SNPC0121.133261310.0000***Bn-scaff_15838_5-p227630SNPC0121.630788550.0000***Bn-scaff_15838_1-p1917196SNPC0123.022735650.0000***Bn-scaff_19244_1-p693772SNPC0125.06282400.0000***Bn-scaff_19244_1-p69318SNPC0126.90.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***bn-be60268DArTC0144.550264120.0000***brPb-670827DArTC0144.350573050.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p150152SNPC0144.350573050.0000***Bn-scaff_19193_1-p6802SNPC0145.356104970.0000***Bn-scaff_17731_1-p659481SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***                                                                                                                                                                                                                                                                                                                                                                                       |
| Bn-scaff_15838_5-p478688SNPC0121.133261310.0000***Bn-scaff_15838_5-p227630SNPC0121.630788550.0000***Bn-scaff_15838_1-p1917196SNPC0123.022735650.0000***Bn-scaff_19244_1-p693772SNPC0125.06282400.0000***Bn-scaff_20809_1-p163800SNPC0126.90.0000***Bn-scaff_19244_1-p69318SNPC0128.86337390.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0144.530564120.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_1919_1-p27967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***                                                                                                                                                                                                                                                                                                                                                                                 |
| Bin-scaff_15838_5-p227630SNPC0121.133261310.0000Bn-scaff_15838_5-p227630SNPC0121.630788550.0000***Bn-scaff_15838_1-p1917196SNPC0123.022735650.0000***Bn-scaff_19244_1-p693772SNPC0126.90.0000***Bn-scaff_19244_1-p699318SNPC0128.86337390.0000***Bn-scaff_19244_1-p699318SNPC0130.219426440.0000***Bn-scaff_15838_1-p1572850SNPC0130.724117800.0000***Bn-scaff_15838_1-p2039607SNPC0132.634503880.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0144.530564120.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0145.356104970.0000***Bn-scaff_19193_1-p704672SNPC0146.71161300.0000***Bn-scaff_17731_1-p165802SNPC0147.267980700.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***                                                                                                                                                                                                                                                                                                                                                                               |
| Bn-scaff_15838_1-p1917196SNPC0123.022735650.0000***Bn-scaff_19244_1-p693772SNPC0125.06282400.0000***Bn-scaff_20809_1-p163800SNPC0126.90.0000***Bn-scaff_19244_1-p699318SNPC0128.86337390.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0143.854094790.0000***Bn-scaff_19193_1-p927967SNPC0144.350573050.0000***Bn-scaff_19193_1-p1520152SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bn-scaff_19244_1-p693772SNPC0125.06282400.0000****Bn-scaff_20809_1-p163800SNPC0126.90.0000***Bn-scaff_19244_1-p699318SNPC0128.86337390.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000Bn-scaff_19193_1-p704672SNPC0145.356104970.0000Bn-scaff_17731_1-p165802SNPC0147.267980700.0000brPb-808002DArTC0150.079740680.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bin-scaff_17244_1p075772SixiCo125.060262406.0000Bn-scaff_20809_1-p163800SNPC0126.90.0000***Bn-scaff_19244_1-p699318SNPC0128.86337390.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0143.854094790.0000***Bn-scaff_19193_1-p927967SNPC0144.350573050.0000***Bn-scaff_19193_1-p1250152SNPC0144.854958670.0000***Bn-scaff_19193_1-p632198SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin-scaff_19244_1-p699318SNPC0128.86337390.0000***Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0143.854094790.0000***Bn-scaff_19193_1-p927967SNPC0144.350573050.0000***Bn-scaff_19193_1-p1250152SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bn-scaff_15838_1-p1572850SNPC0130.219426440.0000***Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_1-p2039607SNPC0132.634503880.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bn-scaff_15838_1-p2039607SNPC0130.724117800.0000***Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bn-scaff_15838_5-p625786SNPC0132.634503880.0000***brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| bir scall_13030_3*p023700SMC0132.034303000.0000brPb-660268DArTC0134.530564120.0000***brPb-670827DArTC0140.50.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| br/b-000200DATTC0134.350304120.0000brPb-670827DArTC0140.50.0000***brPb-838658DArTC0142.053248900.0000***Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bit b-070027bit ic0140.3c.0000brPb-838658DArTC0142.053248900.0000Bn-scaff_19193_1-p927967SNPC0143.854094790.0000Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000Bn-scaff_19193_1-p832198SNPC0144.854958670.0000Bn-scaff_19193_1-p704672SNPC0145.356104970.0000Bn-scaff_17731_1-p165802SNPC0146.71161300.0000Bn-scaff_17731_1-p569481SNPC0147.267980700.0000brPb-808002DArTC0150.079740680.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bn-scaff_19193_1-p927967SNPC0143.854094790.0000***Bn-scaff_19193_1-p1250152SNPC0144.350573050.0000***Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bn-scaff_19193_1-p1250152       SNP       C01       44.3       5057305       0.0000       ***         Bn-scaff_19193_1-p832198       SNP       C01       44.8       5495867       0.0000       ***         Bn-scaff_19193_1-p704672       SNP       C01       45.3       5610497       0.0000       ***         Bn-scaff_17731_1-p165802       SNP       C01       46.7       116130       0.0000       ***         Bn-scaff_17731_1-p569481       SNP       C01       47.2       6798070       0.0000       ***         brPb-808002       DArT       C01       50.0       7974068       0.0000       ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-scaff_19193_1-p832198SNPC0144.854958670.0000***Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bn-scaff_19193_1-p704672SNPC0145.356104970.0000***Bn-scaff_17731_1-p165802SNPC0146.71161300.0000***Bn-scaff_17731_1-p569481SNPC0147.267980700.0000***brPb-808002DArTC0150.079740680.0000***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bn-scaff_17731_1-p165802       SNP       C01       46.7       116130       0.0000       ***         Bn-scaff_17731_1-p569481       SNP       C01       47.2       6798070       0.0000       ***         brPb-808002       DArT       C01       50.0       7974068       0.0000       ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-scaff_17731_1-p569481       SNP       C01       47.2       6798070       0.0000       ***         brPb-808002       DArT       C01       50.0       7974068       0.0000       ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| brPb-808002 DArT C01 50.0 7974068 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| brPb-808002 DArT C01 50.0 7974068 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bn-scaff_17827_1-p817715 SNP C01 51.4 7628573 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bn-scaff_20210_1-p267408 SNP C01 51.9 396159 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bn-scaff_17827_1-p963588 SNP C01 52.4 7866709 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bn-scaff_20210_1-p171615 SNP C01 52.9 8211890 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bn-scaff_16443_1-p1306 SNP C01 53.3 563170 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bn-scaff_17369_1-p1041740 SNP C01 55.7 11298284 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bn-scaff_27129_1-p103216 SNP C01 56.6 13683268 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-A01-p11249993 SNP C01 58.1 15394740 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bn-scaff_20126_1-p457 SNP C01 58.5 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bn-A01-p11471489 SNP C01 59.0 15689357 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bn-scaff_20250_1-p164979 SNP C01 59.5 16850781 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-scaff_25373_1-p399 SNP C01 59.9 20911383 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bn-scaff_19564_1-p17934 SNP C01 60.9 26746237 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bn-scaff_20452_1-p146457 SNP C01 61.4 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bn-scaff_16055_1-p785275 SNP C01 61.8 29173129 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-A01-p21277841 SNP C01 62.3 31948919 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bn-scaff_16055_1-p409784 SNP C01 62.8 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bn-scaff_15844_1-p6065 SNP C01 64.2 33233101 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bn-scaff_15844_1-p184165 SNP C01 65.2 33411621 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-A01-p23120368 SNP C01 66.1 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bn-scaff_24466_1-p76815 SNP C01 67.5 3614103 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bn-scaff_17515_1-p220339 SNP C01 68.5 34651059 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bn-A01-p24915384 SNP C01 69.4 36655396 0.0000 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                           |        |     |              | B. napus   |                      |                      |
|---------------------------|--------|-----|--------------|------------|----------------------|----------------------|
|                           | Marker |     | Position     | physical   | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                    | type   | LG  | (cM)         | position   | (p-value)            | Significance         |
| Bn-scaff_15936_1-p226371  | SNP    | C01 | 70.9         | 36365924   | 0.0000               | ***                  |
| Bn-scaff_22115_1-p155376  | SNP    | C01 | 72.3         | 35743933   | 0.0000               | ***                  |
| Bn-A01-p26518304          | SNP    | C01 | 75.2         |            | 0.0000               | ***                  |
| brPb-670980               | DArT   | С02 | 0.0          |            | 0.1308               |                      |
| Bn-scaff_26086_1-p11779   | SNP    | C02 | 2.4          | 44930141   | 0.0533               |                      |
| Bn-scaff_16139_1-p1393867 | SNP    | C02 | 4.3          | 45156052   | 0.0852               |                      |
| Bn-scaff_16139_1-p1337221 | SNP    | C02 | 8.6          | 45207812   | 0.4489               |                      |
| Bn-scaff_16139_1-p1027358 | SNP    | C02 | 10.0         | 45482093   | 0.6803               |                      |
| Bn-scaff_16139_1-p721705  | SNP    | C02 | 11.4         | 45788397   | 0.8907               |                      |
| Bn-scaff_16139_1-p435514  | SNP    | C02 | 13.8         | 12309438   | 0.4076               |                      |
| Bn-scaff_16139_1-p260488  | SNP    | C02 | 14.8         |            | 0.5809               |                      |
| Bn-scaff_17721_1-p49987   | SNP    | C02 | 27.5         |            | 0.0190               | *                    |
| Bn-scaff_17721_1-p638632  | SNP    | C02 | 28.0         | 43688864   | 0.0272               | *                    |
| Bn-scaff_15918_1-p161116  | SNP    | C02 | 36.6         |            | 0.0394               | *                    |
| Bn-scaff_15712_12-p21418  | SNP    | C02 | 39.0         | 41940070   | 0.1290               |                      |
| Bn-scaff_17109_1-p593012  | SNP    | C02 | 40.0         | 41769868   | 0.0728               |                      |
| Bn-scaff_17109_1-p626573  | SNP    | C02 | 40.9         | 41712928   | 0.0384               | *                    |
| Bn-scaff_17109_1-p683105  | SNP    | C02 | 41.9         | 41639026   | 0.0160               | *                    |
| Bn-scaff_17109_4-p114755  | SNP    | C02 | 45.2         | 40738569   | 0.0130               | *                    |
| Bn-scaff_17831_1-p219290  | SNP    | C02 | 47.1         |            | 0.0130               | *                    |
| Bn-scaff_17088_1-p4312    | SNP    | C02 | 48.1         |            | 0.0130               | *                    |
| Bn-scaff_17831_1-p215355  | SNP    | C02 | 49.1         | 40284877   | 0.0091               | **                   |
| Bn-scaff_17109_4-p159217  | SNP    | C02 | 50.0         | 40699432   | 0.0058               | **                   |
| Bn-scaff_17109_4-p101748  | SNP    | C02 | 51.0         | 40753783   | 0.0130               | *                    |
| Bn-scaff_15712_9-p660357  | SNP    | C02 | 55.7         |            | 0.0272               | *                    |
| Bn-scaff_22144_1-p193415  | SNP    | C02 | 56.2         | 39783146   | 0.0384               | *                    |
| Bn-scaff_15712_9-p618165  | SNP    | C02 | 56.7         | 39345051   | 0.0328               | *                    |
| Bn-scaff_15712_2-p321760  | SNP    | C02 | 57.6         | 38436073   | 0.0272               | *                    |
| Bn-scaff_18360_1-p873769  | SNP    | C02 | 58.6         | 3849294    | 0.0545               |                      |
| Bn-scaff_18360_1-p360342  | SNP    | C02 | 59.1         | 36165181   | 0.0394               | *                    |
| Bn-scaff_18360_1-p31167   | SNP    | C02 | 60.0         | 35859321   | 0.0160               | *                    |
| Bn-scaff_17289_1-p655703  | SNP    | C02 | 61.0         | 35396803   | 0.0195               | *                    |
| Bn-scaff_21131_1-p49530   | SNP    | C02 | 61.9         |            | 0.0195               | *                    |
| Bn-scaff_22451_2-p166198  | SNP    | C02 | 63.3         | 25649403   | 0.0134               | *                    |
| Bn-scaff_16449_1-p248131  | SNP    | C02 | 64.8         | 34353013   | 0.0191               | *                    |
| Bn-scaff_16449_1-p181175  | SNP    | C02 | 65.2         | 34425302   | 0.0231               | *                    |
| Bn-scaff_16449_1-p244840  | SNP    | C02 | 65.7         | 34356264   | 0.0195               | *                    |
| brPb-841932               | DArT   | C02 | 71.0         | 5 155020 F | 0.2718               |                      |
| E35M62-185D               | AFLP   | C02 | 75.9         |            | 0.2098               |                      |
| Bn-scaff_20735_1-p44052   | SNP    | C02 | 79.8         |            | 0.0160               | *                    |
| Bn-scaff_16903_1-p398198  | SNP    | C02 | 80.3         | 21324474   | 0.0100               | *                    |
| Bn-scaff_16300_1-p614082  | SNP    | C02 | 80.3<br>80.8 | 23190745   | 0.0280               | *                    |
| Bn-scaff_17077_1-p199562  | SNP    | C02 | 80.8<br>82.2 | 17610189   | 0.0195               | *                    |
| DII-SCAII_1/0//_1-p199502 | SINP   | UU2 | 04.4         | 1/010103   | 0.0280               |                      |

|                           | Marker |            | Position | <i>B. napus</i><br>physical | Chi² 1:1           | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|------------|----------|-----------------------------|--------------------|----------------------|
| Marker                    | type   | LG         | (cM)     | position                    | ( <i>p</i> -value) | Significance         |
| Bn-scaff_20979_1-p153226  | SNP    | C02        | 84.1     |                             | 0.0459             | *                    |
| Bn-A02-p10775283          | SNP    | C02        | 85.5     | 13931225                    | 0.0394             | *                    |
| Bn-scaff_27039_1-p73433   | SNP    | C02        | 86.0     | 13363912                    | 0.0280             | *                    |
| Bn-scaff_21224_1-p99003   | SNP    | C02        | 89.8     | 9296310                     | 0.0134             | *                    |
| Bn-scaff_20461_1-p314199  | SNP    | C02        | 90.3     | 9353770                     | 0.0195             | *                    |
| Bn-scaff_15712_5-p649917  | SNP    | C02        | 95.5     |                             | 0.1696             |                      |
| Bn-scaff_15712_5-p941560  | SNP    | C02        | 96.4     | 8561569                     | 0.2718             |                      |
| Bn-scaff_15712_13-p33062  | SNP    | C02        | 99.3     | 8297230                     | 0.1696             |                      |
| Bn-scaff_19467_1-p26963   | SNP    | C02        | 100.7    | 199921                      | 0.0728             |                      |
| Bn-scaff_16269_1-p296261  | SNP    | C02        | 102.1    | 6303237                     | 0.1133             |                      |
| Bn-scaff_16269_1-p533948  | SNP    | C02        | 105.4    | 6059666                     | 0.0091             | **                   |
| Bn-scaff_17522_1-p224957  | SNP    | C02        | 106.4    |                             | 0.0231             | *                    |
| Bn-scaff_17522_1-p746125  | SNP    | C02        | 108.3    |                             | 0.0195             | *                    |
| E33M49-186D               | AFLP   | <i>C02</i> | 111.3    |                             | 0.0136             | *                    |
| E33M49-185E               | AFLP   | <i>C02</i> | 112.3    |                             | 0.0223             | *                    |
| brPb-839257               | DArT   | <i>C02</i> | 115.5    |                             | 0.0027             | **                   |
| Bn-scaff_17522_1-p1607150 | SNP    | C02        | 118.5    |                             | 0.0016             | **                   |
| Bn-scaff_22527_1-p155460  | SNP    | C02        | 119.0    | 5070252                     | 0.0025             | **                   |
| Bn-scaff_22527_1-p276311  | SNP    | C02        | 119.5    | 4942588                     | 0.0039             | **                   |
| Bn-scaff_15714_1-p210487  | SNP    | C02        | 121.9    | 4145857                     | 0.0010             | ***                  |
| Bn-scaff_15714_1-p785730  | SNP    | C02        | 124.2    |                             | 0.0006             | ***                  |
| Bn-scaff_15714_1-p1026389 | SNP    | C02        | 124.7    | 3274964                     | 0.0012             | **                   |
| Bn-scaff_15714_1-p727914  | SNP    | C02        | 125.2    | 3599776                     | 0.0006             | ***                  |
| Bn-scaff_15714_1-p489734  | SNP    | C02        | 126.1    | 3840813                     | 0.0006             | ***                  |
| brPb-838939               | DArT   | <i>C02</i> | 126.6    | 3859213                     | 0.0066             | **                   |
| Bn-scaff_15714_1-p1210756 | SNP    | C02        | 128.2    |                             | 0.0025             | **                   |
| Bn-A02-p3493190           | SNP    | C02        | 129.1    | 2790204                     | 0.0019             | **                   |
| Bn-scaff_15714_1-p3001398 | SNP    | C02        | 142.4    | 518239                      | 0.0993             |                      |
| Bn-scaff_22970_1-p335296  | SNP    | C02        | 145.3    | 966861                      | 0.3708             |                      |
| Bn-scaff_22970_1-p242460  | SNP    | C02        | 145.7    | 1032250                     | 0.1909             |                      |
| Bn-scaff_22970_1-p32371   | SNP    | C02        | 147.2    | 1188795                     | 0.0741             |                      |
| Bn-A02-p1705187           | SNP    | C02        | 149.1    | 1667077                     | 0.1483             |                      |
| Bn-A03-p623390            | SNP    | C03        | 0.0      | 688444                      | 0.3363             |                      |
| Bn-scaff_16614_1-p1250990 | SNP    | C03        | 0.9      |                             | 0.5355             |                      |
| Bn-scaff_16614_1-p889881  | SNP    | C03        | 1.9      | 1188743                     | 0.4098             |                      |
| Bn-scaff_16614_1-p846820  | SNP    | C03        | 2.4      | 1242591                     | 0.3708             |                      |
| Bn-scaff_16614_1-p571357  | SNP    | C03        | 4.3      | 1538331                     | 0.1483             |                      |
| Bn-scaff_16614_1-p424532  | SNP    | C03        | 5.2      | 1665521                     | 0.2419             |                      |
| Bn-scaff_16614_1-p233213  | SNP    | C03        | 6.2      | 1872289                     | 0.1483             |                      |
| Bn-scaff_16614_1-p226165  | SNP    | C03        | 7.6      | 1879242                     | 0.0631             |                      |
| Bn-scaff_15844_1-p159209  | SNP    | C03        | 8.1      | 2282310                     | 0.0852             |                      |
| Bn-scaff_27198_1-p300707  | SNP    | C03        | 11.4     | 2356068                     | 0.4489             |                      |
| Bn-scaff_18936_1-p97644   | SNP    | C03        | 12.3     | 2740202                     | 0.4902             |                      |

|                           | Marker |     | Position | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|-----|----------|--------------------------|----------------------|----------------------|
| Marker                    | type   | LG  | (cM)     | position                 | (p-value)            | Significance         |
| Bn-scaff_18936_1-p277517  | SNP    | C03 | 12.8     | 2886860                  | 0.4076               |                      |
| Bn-scaff_18936_1-p384730  | SNP    | C03 | 13.8     | 2978046                  | 0.4076               |                      |
| E35M47-107E               | AFLP   | С03 | 16.2     |                          | 0.2649               |                      |
| Bn-scaff_18936_1-p439378  | SNP    | C03 | 17.8     | 3021607                  | 0.2695               |                      |
| Bn-A03-p2737190           | SNP    | C03 | 21.6     | 3151758                  | 0.2695               |                      |
| Bn-scaff_18936_1-p890286  | SNP    | C03 | 23.0     | 3419605                  | 0.0993               |                      |
| Bn-scaff_18936_1-p981056  | SNP    | C03 | 23.5     | 3513253                  | 0.0741               |                      |
| Bn-scaff_15877_1-p105023  | SNP    | C03 | 24.0     | 3725020                  | 0.1866               |                      |
| Bn-scaff_15877_1-p122377  | SNP    | C03 | 25.4     | 3741371                  | 0.2374               |                      |
| Bn-scaff_15877_1-p143213  | SNP    | C03 | 25.9     | 3766805                  | 0.2971               |                      |
| Bn-scaff_15877_1-p273957  | SNP    | C03 | 26.9     | 3921452                  | 0.3685               |                      |
| Bn-scaff_15877_1-p454328  | SNP    | C03 | 27.4     | 4099146                  | 0.3662               |                      |
| Bn-scaff_15877_1-p718090  | SNP    | C03 | 28.3     | 4415333                  | 0.2164               |                      |
| Bn-scaff_15877_1-p744560  | SNP    | C03 | 29.3     | 4441977                  | 0.1308               |                      |
| brPb-670046               | DArT   | С03 | 32.9     |                          | 0.6162               |                      |
| brPb-659783               | DArT   | С03 | 33.4     |                          | 0.7762               |                      |
| brPb-670934               | DArT   | С03 | 35.1     | 5310826                  | 0.8852               |                      |
| E44M62-73E                | AFLP   | С03 | 35.6     |                          | 0.8864               |                      |
| Bn-scaff_22728_1-p1363526 | SNP    | C03 | 38.7     | 5304614                  | 0.1655               |                      |
| Bn-scaff_22728_1-p1267084 | SNP    | C03 | 39.7     | 5435942                  | 0.2718               |                      |
| Bn-scaff_22728_1-p1393497 | SNP    | C03 | 40.2     | 5264572                  | 0.4881               |                      |
| Bn-scaff_21778_1-p184325  | SNP    | C03 | 40.7     | 4984948                  | 0.2718               |                      |
| Bn-scaff_15877_1-p908058  | SNP    | C03 | 41.6     | 4638640                  | 0.1696               |                      |
| Bn-scaff_21778_1-p287475  | SNP    | C03 | 42.6     | 5080193                  | 0.2718               |                      |
| Bn-scaff_15877_1-p985222  | SNP    | C03 | 43.1     | 4717091                  | 0.2164               |                      |
| Bn-scaff_15877_1-p1022276 | SNP    | C03 | 43.5     | 4747486                  | 0.2718               |                      |
| Bn-scaff_21778_1-p211639  | SNP    | C03 | 45.4     | 5007377                  | 0.5827               |                      |
| Bn-scaff_22728_1-p1080976 | SNP    | C03 | 46.4     | 5611091                  | 0.2718               |                      |
| Bn-scaff_22728_1-p938985  | SNP    | C03 | 48.3     | 5736222                  | 0.0993               |                      |
| Bn-scaff_18322_1-p2560823 | SNP    | C03 | 48.8     | 6665525                  | 0.1308               |                      |
| Bn-scaff_18322_1-p2149073 | SNP    | C03 | 49.7     | 6947278                  | 0.1696               |                      |
| Bn-scaff_18322_1-p2385043 | SNP    | C03 | 50.2     | 6837185                  | 0.2164               |                      |
| Bn-scaff_18322_1-p2378816 | SNP    | C03 | 50.7     | 6843416                  | 0.1290               |                      |
| Bn-scaff_18322_1-p2266068 | SNP    | C03 | 51.2     | 240911                   | 0.0741               |                      |
| Bn-scaff_18322_1-p2028484 | SNP    | C03 | 52.6     | 7083075                  | 0.1696               |                      |
| Bn-scaff_18322_1-p1794782 | SNP    | C03 | 53.0     | 7327999                  | 0.2164               |                      |
| Bn-scaff_18322_1-p881842  | SNP    | C03 | 54.0     | 8149532                  | 0.1463               |                      |
| Bn-scaff_18322_1-p826786  | SNP    | C03 | 55.9     | 8204548                  | 0.0838               |                      |
| Bn-scaff_18322_1-p803101  | SNP    | C03 | 57.4     | 8234764                  | 0.0545               |                      |
| Bn-scaff_18322_1-p677584  | SNP    | C03 | 58.3     |                          | 0.0545               |                      |
| Bn-scaff_18322_1-p679268  | SNP    | C03 | 59.3     | 8383959                  | 0.0231               | *                    |
| Bn-scaff_18322_1-p361468  | SNP    | C03 | 60.7     |                          | 0.0394               | *                    |
| brPb-838972               | DArT   | С03 | 64.9     | 8968623                  | 0.0280               | *                    |

|                           |        |            |          | B. napus           |                      |                      |
|---------------------------|--------|------------|----------|--------------------|----------------------|----------------------|
| Marilaan                  | Marker |            | Position | physical           | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                    | type   | LG         | (cM)     | position           | ( <i>p</i> -value)   | Significance<br>*    |
| Bn-scaff_21312_1-p1376602 | SNP    | C03        | 68.8     | 9075214            | 0.0280               | -1-                  |
| Bn-scaff_21312_1-p1306149 | SNP    | C03        | 69.7     | 9149335            | 0.0545               | *                    |
| Bn-scaff_21312_1-p694502  | SNP    | C03        | 70.2     | 9753350<br>9862898 | 0.0394               |                      |
| Bn-scaff_21312_1-p546514  | SNP    | C03        | 70.7     |                    | 0.0545               |                      |
| Bn-scaff_21312_1-p169902  | SNP    | C03        | 71.6     | 10156097           | 0.0993               |                      |
| Bn-scaff_21312_1-p313911  | SNP    | C03        | 72.1     | 10005760           | 0.0741               |                      |
| Bn-scaff_21312_1-p90644   | SNP    | C03        | 72.6     | 10233936           | 0.0993               |                      |
| Bn-scaff_23954_1-p971859  | SNP    | C03        | 73.5     | 10948613           | 0.0545               |                      |
| Bn-scaff_23954_1-p635109  | SNP    | C03        | 74.5     | 11205263           | 0.0993               |                      |
| Bn-scaff_23954_1-p865303  | SNP    | C03        | 75.4     | 11057063           | 0.0545               |                      |
| Bn-scaff_23954_1-p768646  | SNP    | C03        | 76.3     | 11135002           | 0.0993               |                      |
| Bn-scaff_23954_1-p72433   | SNP    | C03        | 77.8     | 11751541           | 0.2164               |                      |
| brPb-659157               | DArT   | С03        | 80.2     |                    | 0.2396               |                      |
| brPb-663720               | DArT   | <i>C03</i> | 81.6     |                    | 0.3363               |                      |
| E33M49-268D               | AFLP   | С03        | 82.6     | 1055(000           | 0.2948               |                      |
| Bn-scaff_16002_1-p1800806 | SNP    | C03        | 85.5     | 12576009           | 0.2164               |                      |
| Bn-scaff_16002_1-p2144304 | SNP    | C03        | 86.0     | 12251622           | 0.2718               |                      |
| Bn-scaff_16002_1-p2298646 | SNP    | C03        | 86.9     | 12092818           | 0.4098               |                      |
| Bn-scaff_16002_1-p2010458 | SNP    | C03        | 87.9     | 12400523           | 0.2718               |                      |
| Bn-scaff_16002_1-p1676442 | SNP    | C03        | 88.8     | 12709584           | 0.2718               |                      |
| Bn-scaff_16002_1-p1154894 | SNP    | C03        | 89.7     | 920502             | 0.4098               |                      |
| Bn-scaff_16002_1-p734704  | SNP    | C03        | 90.2     | 13588111           | 0.3363               |                      |
| Bn-scaff_16002_1-p482742  | SNP    | C03        | 90.7     | 13828655           | 0.2718               |                      |
| Bn-scaff_16002_1-p176561  | SNP    | C03        | 91.2     | 14102902           | 0.2164               |                      |
| Bn-scaff_16352_1-p1097366 | SNP    | C03        | 95.9     | 16291033           | 0.8907               |                      |
| Bn-scaff_16352_1-p1287850 | SNP    | C03        | 99.2     | 16502913           | 0.7835               |                      |
| Bn-scaff_15782_1-p172469  | SNP    | C03        | 99.7     | 16639919           | 0.8364               |                      |
| Bn-scaff_15782_1-p135470  | SNP    | C03        | 100.6    | 16670883           | 0.6299               |                      |
| Bn-scaff_20646_1-p1254998 | SNP    | C03        | 101.1    | 16841780           | 0.6803               |                      |
| Bn-scaff_20646_1-p744773  | SNP    | C03        | 101.6    | 17322217           | 0.5827               |                      |
| Bn-scaff_20646_1-p290576  | SNP    | C03        | 102.0    | 1140696            | 0.4922               |                      |
| Bn-scaff_20646_1-p498394  | SNP    | C03        | 102.5    | 17526837           | 0.4098               |                      |
| Bn-scaff_20646_1-p182686  | SNP    | C03        | 103.0    |                    | 0.4922               |                      |
| Bn-scaff_19523_1-p261625  | SNP    | C03        | 103.5    |                    | 0.4098               |                      |
| Bn-scaff_18482_1-p699135  | SNP    | C03        | 106.3    |                    | 0.5827               |                      |
| Bn-scaff_18482_1-p680661  | SNP    | C03        | 106.8    | 19686048           | 0.4922               |                      |
| Bn-scaff_18482_1-p268565  | SNP    | C03        | 108.2    | 20084717           | 0.2718               |                      |
| Bn-scaff_22067_1-p139587  | SNP    | C03        | 112.9    | 20725718           | 0.4098               |                      |
| Bn-scaff_17521_1-p1385225 | SNP    | C03        | 116.7    | 20865512           | 1.0000               |                      |
| Bn-scaff_17521_1-p842968  | SNP    | C03        | 120.9    | 21372098           | 0.3363               |                      |
| Bn-scaff_17521_1-p353123  | SNP    | C03        | 123.3    | 21872048           | 0.1696               |                      |
| Bn-scaff_17521_1-p193675  | SNP    | C03        | 124.3    | 22023262           | 0.2718               |                      |
| Bn-scaff_17298_1-p13882   | SNP    | C03        | 124.7    |                    | 0.2164               |                      |
|                           |        |            |          |                    |                      |                      |

|                           | Marker |     | Position | <i>B. napus</i><br>physical | Chi <sup>2</sup> 1:1 | Chi² 1:1     |
|---------------------------|--------|-----|----------|-----------------------------|----------------------|--------------|
| Marker                    | type   | LG  | (cM)     | position                    | (p-value)            | Significance |
| Bn-scaff_17298_1-p1181494 | SNP    | C03 | 130.0    | 23299456                    | 0.1696               |              |
| Bn-scaff_17298_1-p1218613 | SNP    | C03 | 130.4    | 23339513                    | 0.1308               |              |
| Bn-scaff_17298_1-p2096293 | SNP    | C03 | 130.9    | 24097476                    | 0.0993               |              |
| Bn-scaff_23350_1-p765525  | SNP    | C03 | 132.3    | 24937585                    | 0.1308               |              |
| Bn-scaff_16310_1-p45097   | SNP    | C03 | 133.8    | 25952943                    | 0.0993               |              |
| Bn-scaff_20103_1-p133338  | SNP    | C03 | 134.2    | 25352453                    | 0.0741               |              |
| Bn-scaff_16310_1-p46451   | SNP    | C03 | 134.7    |                             | 0.0993               |              |
| Bn-scaff_20079_1-p21999   | SNP    | C03 | 135.6    | 26814745                    | 0.0545               |              |
| Bn-scaff_16092_1-p845686  | SNP    | C03 | 136.6    | 28543961                    | 0.0993               |              |
| Bn-scaff_18917_1-p433571  | SNP    | C03 | 137.5    |                             | 0.1696               |              |
| Bn-scaff_16130_2-p707487  | SNP    | C03 | 138.5    | 2346818                     | 0.0993               |              |
| Bn-scaff_15695_1-p564807  | SNP    | C03 | 138.9    | 30660549                    | 0.0741               |              |
| Bn-scaff_17869_1-p661079  | SNP    | C03 | 139.4    | 32376712                    | 0.0545               |              |
| Bn-scaff_15695_1-p776379  | SNP    | C03 | 140.4    | 30383742                    | 0.0993               |              |
| Bn-scaff_18855_1-p405082  | SNP    | C03 | 141.3    | 31763661                    | 0.0545               |              |
| Bn-scaff_17044_1-p531625  | SNP    | C03 | 143.7    | 33528101                    | 0.0394               | *            |
| Bn-scaff_18356_1-p292961  | SNP    | C03 | 148.9    | 34607781                    | 0.2718               |              |
| Bn-scaff_25323_1-p6946    | SNP    | C03 | 149.3    | 35725920                    | 0.3363               |              |
| Bn-scaff_18356_1-p272201  | SNP    | C03 | 149.8    | 34629778                    | 0.2718               |              |
| Bn-scaff_19310_1-p432772  | SNP    | C03 | 150.3    | 35229125                    | 0.3363               |              |
| Bn-scaff_21330_1-p291816  | SNP    | C03 | 151.2    | 41016905                    | 0.3363               |              |
| Bn-A08-p17190098          | SNP    | C03 | 154.1    | 47241633                    | 0.4922               |              |
| Bn-scaff_16372_1-p94487   | SNP    | C03 | 155.0    | 48587680                    | 0.6803               |              |
| Bn-scaff_16665_1-p20050   | SNP    | C03 | 155.5    | 48779387                    | 0.5827               |              |
| Bn-scaff_17440_1-p659691  | SNP    | C03 | 156.4    |                             | 0.5827               |              |
| Bn-scaff_19740_1-p203934  | SNP    | C03 | 157.4    | 4617696                     | 0.5827               |              |
| Bn-A08-p16966023          | SNP    | C03 | 158.3    | 47771339                    | 0.5827               |              |
| Bn-scaff_17440_1-p25854   | SNP    | C03 | 158.8    | 48460619                    | 0.6803               |              |
| Bn-C13868303-p376         | SNP    | C03 | 159.3    | 48754940                    | 0.5827               |              |
| Bn-scaff_17440_1-p20595   | SNP    | C03 | 159.7    |                             | 0.6803               |              |
| Bn-scaff_24631_1-p338156  | SNP    | C03 | 161.1    | 49195016                    | 0.4098               |              |
| Bn-scaff_24631_1-p415987  | SNP    | C03 | 161.6    | 49299796                    | 0.4922               |              |
| Bn-scaff_24631_1-p422231  | SNP    | C03 | 162.6    | 49305933                    | 0.6803               |              |
| Bn-scaff_16394_2-p1431681 | SNP    | C03 | 170.2    | 49774450                    | 0.6803               |              |
| Bn-scaff_24631_1-p738703  | SNP    | C03 | 170.6    | 49659645                    | 0.5827               |              |
| Bn-scaff_16394_2-p1373926 | SNP    | C03 | 171.6    | 5068962                     | 0.7835               |              |
| Bn-scaff_16394_2-p1264969 | SNP    | C03 | 172.0    | 49972081                    | 0.6803               |              |
| Bn-scaff_16394_2-p1075976 | SNP    | C03 | 172.5    | 50176349                    | 0.7835               |              |
| Bn-scaff_16394_2-p1023437 | SNP    | C03 | 173.0    |                             | 0.8907               |              |
| Bn-scaffold19029-p392     | SNP    | C03 | 173.5    | 50495268                    | 1.0000               |              |
| brPb-809548               | DArT   | С03 | 176.8    |                             | 0.6788               |              |
| Bn-scaff_16394_2-p883473  | SNP    | C03 | 179.8    | 50360672                    | 0.8907               |              |
| Bn-scaff_16394_2-p992866  | SNP    | C03 | 180.2    |                             | 1.0000               |              |

| Marker                    | Marker<br>type | LG  | Position<br>(cM) | <i>B. napus</i> physical position | Chi² 1:1<br>(p-value) | Chi <sup>2</sup> 1:1<br>Significance |
|---------------------------|----------------|-----|------------------|-----------------------------------|-----------------------|--------------------------------------|
| Bn-scaff_16182_1-p319123  | SNP            | C03 | 181.7            | 51969264                          | 0.6803                | Significance                         |
| Bn-scaff_26846_1-p30953   | SNP            | C03 | 182.6            | 52628184                          | 0.8907                |                                      |
| Bn-scaff_26846_1-p38699   | SNP            | C03 | 183.6            | 52632098                          | 0.8907                |                                      |
| Bn-scaff_17042_1-p180246  | SNP            | C03 | 184.0            | 53306239                          | 1.0000                |                                      |
| Bn-scaff_17042_1-p296096  | SNP            | C03 | 184.5            | 53438349                          | 0.8907                |                                      |
| Bn-scaff_18669_1-p41786   | SNP            | C03 | 185.0            | 52863596                          | 1.0000                |                                      |
| <i>E32M47-199D</i>        | AFLP           | C03 | 188.4            | 52005570                          | 0.5754                |                                      |
| brPb-660636               | DArT           | C03 | 188.9            | 53172809                          | 0.8364                |                                      |
| brPb-839425               | DArT           | C03 | 192.3            | 54303404                          | 0.2971                |                                      |
| Bn-scaff_16394_2-p207187  | SNP            | C03 | 195.8            | 54518639                          | 0.4098                |                                      |
| Bn-scaff_17042_1-p418599  | SNP            | C03 | 196.3            | 5575682                           | 0.4922                |                                      |
| Bn-scaff_17042_1-p319410  | SNP            | C03 | 197.2            | 53459665                          | 0.6803                |                                      |
| Bn-scaff_17042_1-p361073  | SNP            | C03 | 198.1            | 53504427                          | 0.4922                |                                      |
| Bn-scaff_15794_1-p310593  | SNP            | C03 | 199.6            | 55501127                          | 0.2718                |                                      |
| Bn-scaff_15794_1-p157188  | SNP            | C03 | 200.5            | 5677670                           | 0.4098                |                                      |
| Bn-scaff_22466_1-p1371888 | SNP            | C03 | 200.5            | 55417714                          | 0.2142                |                                      |
| E35M62-223E               | AFLP           | C03 | 201.4            | 55417714                          | 0.1939                |                                      |
| Bn-scaff_17592_1-p386456  | SNP            | C03 | 203.6            | 56649414                          | 0.4098                |                                      |
| Bn-scaff_17119_1-p148890  | SNP            | C03 | 207.0            | 56814530                          | 0.6803                |                                      |
| Bn-scaff_17821_1-p138457  | SNP            | C03 | 207.0            | 56881371                          | 0.7835                |                                      |
| Bn-scaff_17119_1-p349622  | SNP            | C03 | 207.9            | 50001571                          | 0.6803                |                                      |
| Bn-scaff_23761_1-p249628  | SNP            | C03 | 210.3            | 57481852                          | 0.7835                |                                      |
| Bn-scaff_18559_1-p161529  | SNP            | C03 | 210.5            | 58097259                          | 0.5827                |                                      |
| Bn-scaff_18559_1-p157785  | SNP            | C03 | 212.1            | 58101018                          | 0.4098                |                                      |
| Bn-scaff_19047_1-p114228  | SNP            | C03 | 212.1            | 58602934                          | 0.4922                |                                      |
| Bn-scaff_19047_1-p12619   | SNP            | C03 | 215.0            | 6115326                           | 0.1722                |                                      |
| Bn-scaff_16148_1-p159973  | SNP            | C03 | 210.0            | 58686028                          | 0.3363                |                                      |
| Bn-scaff_23098_1-p232984  | SNP            | C03 | 220.2            | 58743735                          | 0.4098                |                                      |
| Bn-scaff_16755_1-p1426914 | SNP            | C03 | 220.7            | 59368600                          | 0.5827                |                                      |
| Bn-scaff_16755_1-p1208174 | SNP            | C03 | 223.0            | 59584485                          | 0.4922                |                                      |
| Bn-scaff_16755_1-p1184581 | SNP            | C03 | 223.5            | 59606751                          | 0.4098                |                                      |
| Bn-scaff_16755_1-p223829  | SNP            | C03 | 229.2            | 60330444                          | 0.0545                |                                      |
| Bn-scaff_18903_1-p350780  | SNP            | C04 | 0.0              | 00550111                          | 1.0000                |                                      |
| Bn-scaff_18903_1-p127936  | SNP            | C04 | 0.5              | 47289390                          | 0.9451                |                                      |
| Bn-scaff_18903_1-p371596  | SNP            | C04 | 1.9              | 47531616                          | 0.7835                |                                      |
| Bn-scaff_18903_1-p568442  | SNP            | C04 | 3.3              | 17551010                          | 0.5355                |                                      |
| Bn-scaff_18903_1-p735820  | SNP            | C04 | 3.8              | 4385147                           | 0.4922                |                                      |
| Bn-scaff_18903_1-p757633  | SNP            | C04 | 5.0<br>4.3       | 4413426                           | 0.5827                |                                      |
| Bn-scaff_18903_1-p848057  | SNP            | C04 | 4.7              | 48065045                          | 0.6803                |                                      |
| Bn-scaff_20817_1-p15523   | SNP            | C04 | 5.7              | 48734471                          | 0.4922                |                                      |
| Bn-scaff_20817_1-p17196   | SNP            | C04 | 6.1              | 48732787                          | 0.4922                |                                      |
| Bn-A04-p18918997          | SNP            | C04 | 7.1              | 48844133                          | 0.5827                |                                      |
| Bn-scaff_26787_1-p53113   | SNP            | C04 | 16.1             | 47140908                          | 1.0000                |                                      |
| bir scari_20707_1-p55115  | 5111           | CUT | 10.1             | 1/11/0/00                         | 1.0000                |                                      |

|                           |        |            |              | B. napus |                      |                      |
|---------------------------|--------|------------|--------------|----------|----------------------|----------------------|
|                           | Marker |            | Position     | physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Marker                    | type   | LG         | (cM)         | position | (p-value)            | Significance         |
| Bn-scaff_26787_1-p54705   | SNP    | C04        | 16.6         | 47142500 | 0.8364               |                      |
| Bn-scaff_20270_1-p1006352 | SNP    | C04        | 17.1         | 47079845 | 0.9451               |                      |
| Bn-A04-p17766173          | SNP    | C04        | 19.5         | 46950993 | 0.7835               |                      |
| Bn-scaff_19523_1-p545907  | SNP    | C04        | 21.8         | 46810706 | 0.3363               |                      |
| Bn-scaff_20270_1-p632286  | SNP    | C04        | 22.8         | 46752815 | 0.2164               |                      |
| Bn-scaff_20270_1-p456204  | SNP    | C04        | 24.7         | 46573131 | 0.0852               |                      |
| Bn-scaff_16888_1-p1301583 | SNP    | C04        | 32.3         |          | 0.0394               | *                    |
| Bn-scaff_16888_1-p1168071 | SNP    | C04        | 32.7         |          | 0.0545               |                      |
| Bn-scaff_16888_1-p1347380 | SNP    | C04        | 33.2         | 45497676 | 0.0394               | *                    |
| Bn-scaff_20804_1-p9294    | SNP    | C04        | 37.0         | 44770385 | 0.0091               | **                   |
| Bn-scaff_20804_1-p84419   | SNP    | C04        | 37.5         | 44693180 | 0.0134               | *                    |
| Bn-scaff_20804_1-p111983  | SNP    | C04        | 37.9         | 4159111  | 0.0195               | *                    |
| Bn-scaff_15585_1-p1089867 | SNP    | C04        | 38.4         | 44500183 | 0.0280               | *                    |
| Bn-scaff_20804_1-p85446   | SNP    | C04        | 39.4         | 44692157 | 0.0134               | *                    |
| Bn-scaff_20804_1-p43582   | SNP    | C04        | 39.8         | 44735690 | 0.0091               | **                   |
| Bn-C13873857-p268         | SNP    | C04        | 41.2         | 44543739 | 0.0280               | *                    |
| Bn-scaff_15585_1-p1069334 | SNP    | C04        | 41.7         | 44478300 | 0.0195               | *                    |
| Bn-scaff_15585_1-p265441  | SNP    | C04        | 45.5         | 44202300 | 0.1308               |                      |
| Bn-scaff_16804_2-p261726  | SNP    | C04        | 47.4         | 42745422 | 0.0394               | *                    |
| brPb-670011               | DArT   | <i>C04</i> | 55.1         | 38602046 | 0.3685               |                      |
| E45M49-378E               | AFLP   | <i>C04</i> | 55.6         |          | 0.2396               |                      |
| E32M47-122E               | AFLP   | <i>C04</i> | 56.1         |          | 0.4445               |                      |
| Bn-scaff_21956_1-p232134  | SNP    | C04        | 59.0         | 39386078 | 0.0993               |                      |
| Bn-scaff_16700_1-p126138  | SNP    | C04        | 59.5         | 38672627 | 0.0741               |                      |
| Bn-scaff_16700_1-p25306   | SNP    | C04        | 60.4         |          | 0.1308               |                      |
| Bn-scaff_15852_1-p103172  | SNP    | C04        | 62.8         | 37802520 | 0.4098               |                      |
| Bn-scaff_15852_1-p257905  | SNP    | C04        | 63.2         | 37963134 | 0.3363               |                      |
| Bn-scaff_15852_1-p593067  | SNP    | C04        | 63.7         | 3848161  | 0.2718               |                      |
| Bn-C13715031-p207         | SNP    | C04        | 64.6         |          | 0.4098               |                      |
| Bn-scaff_15798_1-p699844  | SNP    | C04        | 65.1         | 37397803 | 0.3363               |                      |
| Bn-scaff_15798_1-p202558  | SNP    | C04        | 65.6         | 36817160 | 0.2718               |                      |
| Bn-scaff_15798_1-p104278  | SNP    | C04        | 66.1         | 36720494 | 0.3363               |                      |
| Bn-scaff_15798_1-p11929   | SNP    | C04        | 67.5         | 36638464 | 0.5827               |                      |
| Bn-scaff_15798_1-p97409   | SNP    | C04        | 69.0         | 36717240 | 0.3363               |                      |
| Bn-scaff_19043_1-p440830  | SNP    | C04        | 71.3         | 36165731 | 0.7835               |                      |
| Bn-scaff_19208_1-p527194  | SNP    | C04        | 72.3         | 35156307 | 1.0000               |                      |
| Bn-scaff_16694_1-p236039  | SNP    | C04        | 72.8         | 36069917 | 0.8907               |                      |
| Bn-scaff_16694_1-p296501  | SNP    | C04        | 74.6         | 36135111 | 0.6803               |                      |
| Bn-scaff_17525_1-p117065  | SNP    | C04        | 75.1         | 50105111 | 0.5827               |                      |
| Bn-scaff_16394_1-p842382  | SNP    | C04        | 75.6         | 32137244 | 0.6803               |                      |
| Bn-scaff_18062_1-p114555  | SNP    | C04        | 75.0<br>76.1 | 31237430 | 0.5827               |                      |
| Bn-scaff_16394_1-p847636  | SNP    | C04        | 76.5         | 32142501 | 0.6803               |                      |
| E44M62-208E               | AFLP   | C04<br>C04 | 76.5<br>77.0 | 52142301 | 0.8803               |                      |
| LTTINUZ-ZUOE              | ΑΓLΥ   | UU4        | //.0         |          | 0.009/               |                      |

| Marker                    | Marker<br>type | LG         | Position<br>(cM) | <i>B. napus</i><br>physical<br>position | Chi² 1:1<br>(p-value) | Chi <sup>2</sup> 1:1<br>Significance |
|---------------------------|----------------|------------|------------------|-----------------------------------------|-----------------------|--------------------------------------|
| Bn-scaff_27173_1-p1097    | SNP            | C04        | 81.9             | 30270712                                | 0.5827                |                                      |
| Bn-scaff_15779_1-p149362  | SNP            | C04        | 82.3             |                                         | 0.4922                |                                      |
| Bn-scaff_18776_1-p508763  | SNP            | C04        | 84.2             | 29899107                                | 0.8907                |                                      |
| Bn-scaff_18776_1-p263330  | SNP            | C04        | 86.6             | 29710854                                | 0.5827                |                                      |
| Bn-scaff_27914_1-p9919    | SNP            | C04        | 87.5             |                                         | 0.7835                |                                      |
| brPb-658096               | DArT           | <i>C04</i> | 89.4             |                                         | 0.9451                |                                      |
| brPb-671298               | DArT           | <i>C04</i> | <i>94.2</i>      | 22567802                                | 0.9449                |                                      |
| E35M62-273E               | AFLP           | <i>C04</i> | 94.7             |                                         | 0.7256                |                                      |
| Bn-scaff_16192_1-p12662   | SNP            | C04        | 96.2             | 19291400                                | 0.7835                |                                      |
| Bn-scaff_16309_1-p144811  | SNP            | C04        | 97.1             | 2686938                                 | 1.0000                |                                      |
| Bn-A04-p1472739           | SNP            | C04        | 97.6             | 24597648                                | 0.8907                |                                      |
| Bn-scaff_16309_1-p215682  | SNP            | C04        | 98.5             |                                         | 0.8907                |                                      |
| Bn-scaff_16192_1-p12984   | SNP            | C04        | 99.0             | 19291078                                | 0.7835                |                                      |
| Bn-scaff_19253_1-p56432   | SNP            | C04        | 103.2            | 15027977                                | 0.3363                |                                      |
| Bn-scaff_27513_1-p93870   | SNP            | C04        | 103.7            |                                         | 0.2718                |                                      |
| Bn-scaff_19821_1-p399685  | SNP            | C04        | 105.1            | 11297665                                | 0.3363                |                                      |
| Bn-scaff_15607_1-p7680    | SNP            | C04        | 105.6            | 11473214                                | 0.2718                |                                      |
| Bn-C13765949-p42          | SNP            | C04        | 106.1            | 11340589                                | 0.3363                |                                      |
| Bn-scaff_19253_1-p152044  | SNP            | C04        | 108.0            |                                         | 0.3363                |                                      |
| E33M47-160E               | AFLP           | <i>C04</i> | 110.6            |                                         | 0.7175                |                                      |
| brPb-660503               | DArT           | <i>C04</i> | 113.9            | 10855937                                | 0.3639                |                                      |
| Bn-scaff_23699_1-p169605  | SNP            | C04        | 115.8            |                                         | 0.2718                |                                      |
| Bn-scaff_16095_1-p30079   | SNP            | C04        | 116.3            | 9983172                                 | 0.2164                |                                      |
| Bn-scaff_17869_1-p115797  | SNP            | C04        | 117.2            | 9134841                                 | 0.2164                |                                      |
| Bn-scaff_23907_1-p3780    | SNP            | C04        | 128.7            | 7268917                                 | 0.2164                |                                      |
| Bn-scaff_21369_1-p190637  | SNP            | C04        | 132.6            |                                         | 0.8907                |                                      |
| Bn-scaff_15908_1-p1114490 | SNP            | C04        | 133.6            | 6260753                                 | 0.8907                |                                      |
| Bn-scaff_15908_1-p885163  | SNP            | C04        | 135.0            | 6031843                                 | 0.7835                |                                      |
| Bn-scaff_16534_1-p2435936 | SNP            | C04        | 136.0            | 995885                                  | 0.5827                |                                      |
| Bn-scaff_16534_1-p1510638 | SNP            | C04        | 138.3            | 4153883                                 | 0.6803                |                                      |
| Bn-scaff_16534_1-p1901223 | SNP            | C04        | 138.8            | 4551279                                 | 0.5827                |                                      |
| brPb-660050               | DArT           | <i>C04</i> | 141.4            |                                         | 0.8282                |                                      |
| E32M49-110D               | AFLP           | С04        | 143.7            |                                         | 0.2555                |                                      |
| Bn-scaff_16534_1-p551394  | SNP            | C04        | 148.2            |                                         | 0.5827                |                                      |
| Bn-scaff_16534_1-p22373   | SNP            | C04        | 149.6            | 2791744                                 | 0.4922                |                                      |
| Bn-scaff_16214_1-p263853  | SNP            | C04        | 150.6            | 2412721                                 | 0.3363                |                                      |
| Bn-scaff_28382_1-p131432  | SNP            | C04        | 151.5            | 2093733                                 | 0.2164                |                                      |
| Bn-scaff_16356_1-p78632   | SNP            | C04        | 152.0            | 630111                                  | 0.2718                |                                      |
| Bn-scaff_27469_1-p101056  | SNP            | C04        | 154.8            |                                         | 0.2718                |                                      |
| Bn-scaff_25686_1-p9156    | SNP            | C04        | 157.2            | 1637404                                 | 0.3363                |                                      |
| Bn-scaff_16027_1-p386406  | SNP            | C04        | 157.7            | 1269444                                 | 0.4098                |                                      |
| Bn-scaff_24859_1-p44428   | SNP            | C04        | 161.0            | 818510                                  | 0.2164                |                                      |
| Bn-A05-p458357            | SNP            | C04        | 161.4            | 467061                                  | 0.1696                |                                      |

|                           |             |            | D             | B. napus           |                    |                      |
|---------------------------|-------------|------------|---------------|--------------------|--------------------|----------------------|
| Marker                    | Marker      | IC         | Position      | physical           | $Chi^2 1:1$        | Chi <sup>2</sup> 1:1 |
|                           | type<br>SNP | LG         | (cM)<br>162.4 | position<br>378647 | ( <i>p</i> -value) | Significance         |
| Bn-scaff_15832_1-p52737   |             | C04        |               |                    | 0.0993             | *                    |
| Bn-scaff_19673_1-p11357   | SNP         | C04        | 163.8         | 175337             | 0.0394             | *                    |
| Bn-scaff_23534_1-p36688   | SNP         | C04        | 164.3         | 79235              | 0.0280             | *                    |
| Bn-scaff_22933_1-p70880   | SNP         | C04        | 164.7         | 39554              | 0.0195             | 4                    |
| Bn-scaff_20809_1-p64287   | SNP         | C05        | 0.0           | 43092413           | 0.2164             |                      |
| Bn-scaff_21634_1-p20207   | SNP         | C05        | 1.9           | 42609111           | 0.2164<br>0.7230   |                      |
| Bn-scaff_15676_1-p341508  | SNP         | C05        | 2.9           | 42600700           |                    |                      |
| Bn-scaff_21634_1-p19901   | SNP         | C05        | 3.9           | 42608798           | 0.7230             |                      |
| Bn-scaff_21634_1-p61428   | SNP         | C05        | 5.9           | 42644580           | 0.5827             |                      |
| Bn-scaff_21634_1-p62623   | SNP         | C05        | 7.3           | 42645558           | 0.3363             |                      |
| Bn-scaff_20376_1-p336606  | SNP         | C05        | 13.4          | 42240817           | 0.6197             |                      |
| Bn-scaff_20270_1-p1434329 | SNP         | C05        | 14.9          |                    | 0.5235             |                      |
| Bn-scaff_20270_1-p1323200 | SNP         | C05        | 15.9          | 41750615           | 0.7230             |                      |
| Bn-scaff_16526_1-p42180   | SNP         | C05        | 16.9          | 41465761           | 0.9435             |                      |
| Bn-scaff_20270_1-p1070285 | SNP         | C05        | 17.4          | 41549696           | 0.8316             |                      |
| E33M49-454E               | AFLP        | <i>C05</i> | 21.2          |                    | 0.3961             |                      |
| brPb-838927               | DArT        | <i>C05</i> | 21.7          | 40851858           | 0.3317             |                      |
| Bn-scaff_20219_1-p152816  | SNP         | C05        | 22.7          | 40792867           | 0.9435             |                      |
| Bn-scaff_20219_1-p128114  | SNP         | C05        | 24.2          |                    | 0.7230             |                      |
| Bn-scaff_20219_1-p52642   | SNP         | C05        | 29.2          | 40731490           | 0.1290             |                      |
| Bn-scaff_20219_1-p50816   | SNP         | C05        | 29.7          | 40729821           | 0.5235             |                      |
| brPb-840901               | DArT        | C05        | 31.2          | 40064093           | 0.8356             |                      |
| Bn-scaff_17441_1-p958418  | SNP         | C05        | 31.7          | 40077590           | 0.8907             |                      |
| Bn-scaff_17441_3-p28950   | SNP         | C05        | 32.7          | 40322684           | 0.6803             |                      |
| Bn-scaff_29028_1-p9948    | SNP         | C05        | 38.8          |                    | 0.1696             |                      |
| Bn-A05-p22111286          | SNP         | C05        | 39.9          | 39985396           | 0.0993             |                      |
| Bn-scaff_17441_1-p269557  | SNP         | C05        | 43.7          |                    | 0.2419             |                      |
| Bn-scaff_21369_1-p406725  | SNP         | C05        | 54.7          | 38540195           | 0.6803             |                      |
| Bn-scaff_21369_1-p871257  | SNP         | C05        | 55.2          | 38057288           | 0.7835             |                      |
| Bn-A09-p4436808           | SNP         | C05        | 56.6          |                    | 0.4922             |                      |
| Bn-scaff_23408_1-p96806   | SNP         | C05        | 57.6          | 37805451           | 0.3363             |                      |
| Bn-scaff_18826_1-p17445   | SNP         | C05        | 58.5          | 37349567           | 0.3363             |                      |
| Bn-scaff_18826_1-p97796   | SNP         | C05        | 60.4          | 37280327           | 0.6803             |                      |
| Bn-A05-p19943528          | SNP         | C05        | 61.8          |                    | 1.0000             |                      |
| Bn-scaff_18826_1-p633463  | SNP         | C05        | 62.8          | 36604519           | 1.0000             |                      |
| Bn-scaff_16770_1-p317634  | SNP         | C05        | 65.6          | 35621473           | 0.7835             |                      |
| Bn-scaff_15695_2-p413042  | SNP         | C05        | 72.3          | 30679776           | 0.4098             |                      |
| Bn-scaff_15969_1-p200804  | SNP         | C05        | 74.6          |                    | 0.4922             |                      |
| Bn-scaff_20125_1-p151394  | SNP         | C05        | 80.8          | 11066535           | 0.7835             |                      |
| brPb-808840               | DArT        | C05        | 82.8          | 11071733           | 0.6299             |                      |
| Bn-scaff_21338_1-p782134  | SNP         | C05        | 84.9          | 12304517           | 0.7835             |                      |
| Bn-C13793433-p23          | SNP         | C05        | 85.8          | 10190075           | 1.0000             |                      |
| Bn-scaff_22183_1-p645188  | SNP         | C05        | 90.6          | 8734997            | 0.4098             |                      |
|                           |             |            |               |                    |                    |                      |

| Marilan                                              | Marker      |            | Position     | <i>B. napus</i> physical  | Chi <sup>2</sup> 1:1    | Chi <sup>2</sup> 1:1 |
|------------------------------------------------------|-------------|------------|--------------|---------------------------|-------------------------|----------------------|
| Marker                                               | type        | LG         | (cM)         | position                  | ( <i>p</i> -value)      | Significance         |
| Bn-scaff_16045_1-p147607                             | SNP         | C05        | 91.5         | 7747845                   | 0.4489                  |                      |
| Bn-scaff_18181_1-p195543                             | SNP         | C05        | 92.5         | 7443681                   | 0.3363                  |                      |
| Bn-scaff_18181_1-p622258                             | SNP         | C05        | 94.4         | 7039846                   | 0.1308                  |                      |
| Bn-scaff_18181_1-p814209                             | SNP         | C05        | 95.3         | 570629                    | 0.1133                  |                      |
| Bn-scaff_15712_10-p1182534                           | SNP         | C05        | 100.6        | 5938847                   | 0.5355                  |                      |
| Bn-scaff_16670_1-p167090                             | SNP         | C06        | 0.0<br>0.5   | 309233                    | 0.1308<br>0.1696        |                      |
| Bn-scaff_18362_1-p90481                              | SNP         | C06        |              | 779381                    |                         |                      |
| Bn-scaff_18549_1-p451733                             | SNP         | C06        | 1.4<br>5.2   | 1072771                   | 0.1696                  |                      |
| Bn-scaff_16984_1-p340898                             | SNP         | C06        | 5.2          | 2026027                   | 0.2718                  |                      |
| Bn-scaff_16984_1-p204543                             | SNP         | C06        | 6.6          | 3026037<br>3030033        | 0.4922 0.3363           |                      |
| Bn-scaff_16984_1-p200546                             | SNP         | C06        | 7.6          |                           |                         |                      |
| Bn-scaff_16485_1-p557881                             | SNP         | C06<br>C06 | 8.0<br>9.4   | 3468110                   | 0.4098<br>0.4922        |                      |
| Bn-scaff_16485_1-p587862                             | SNP         |            |              | 3496623                   | 0.4922                  |                      |
| Bn-scaff_16485_1-p668116                             | SNP<br>SNP  | C06        | 11.8<br>12.7 |                           | 0.1696                  |                      |
| Bn-scaff_18344_1-p119313<br>Bn-scaff_18344_1-p291478 | SNP         | C06        | 12.7         | 4304541                   | 0.2718                  |                      |
| •                                                    |             | C06        | 13.2<br>13.7 |                           |                         |                      |
| Bn-scaff_18344_1-p341615<br>brPb-660333              | SNP<br>DArT | C06        | 13.7<br>16.1 | 4365263<br><i>4369658</i> | 0.2718<br><i>0.2649</i> |                      |
| brPb-840224                                          | DAIT        | C06        | 10.1         | 4309038                   | 0.2049                  |                      |
| Bn-scaff_20773_1-p340868                             | SNP         | C06        | 22.9         | 5384872                   | 0.7835                  |                      |
| Bn-scaff_27421_1-p16736                              | SNP         | C06        | 23.3         | 5077391                   | 0.6803                  |                      |
| Bn-scaff_27421_1-p10730                              | SNP         | C06        | 23.3         | 5002061                   | 0.5827                  |                      |
| Bn-scaff_27421_1-p32784                              | SNP         | C06        | 23.8<br>24.3 | 5065268                   | 0.6803                  |                      |
| Bn-scaff_20773_1-p123341                             | SNP         | C06        | 24.7         | 5669221                   | 0.7835                  |                      |
| Bn-scaff_16647_1-p239957                             | SNP         | C06        | 25.2         | 559889                    | 0.6803                  |                      |
| Bn-scaff_16647_1-p162647                             | SNP         | C06        | 26.6         | 5963420                   | 0.4098                  |                      |
| Bn-scaff_16647_1-p1229                               | SNP         | C06        | 20.0<br>27.1 | 6153639                   | 0.4098                  |                      |
| Bn-scaff_23199_1-p39784                              | SNP         | C06        | 27.1         | 7267152                   | 0.3363                  |                      |
| Bn-scaff_17917_1-p67000                              | SNP         | C06        | 29.5         | 7975448                   | 0.2718                  |                      |
| Bn-scaff_18002_1-p240843                             | SNP         | C06        | 30.4         | 11595721                  | 0.4098                  |                      |
| Bn-scaff_24402_1-p8022                               | SNP         | C06        | 31.4         | 1194966                   | 0.5827                  |                      |
| Bn-scaff_17088_3-p61230                              | SNP         | C06        | 32.8         | 11905621                  | 0.8907                  |                      |
| Bn-scaff_18439_1-p706567                             | SNP         | C06        | 35.1         | 12826352                  | 0.7835                  |                      |
| Bn-scaff_18439_1-p953290                             | SNP         | C06        | 36.1         | 13080622                  | 1.0000                  |                      |
| Bn-scaff_16510_1-p714006                             | SNP         | C06        | 36.5         | 13547313                  | 0.8907                  |                      |
| Bn-scaff_16903_1-p230137                             | SNP         | C06        | 38.0         | 10011010                  | 0.7835                  |                      |
| Bn-scaff_15818_1-p237481                             | SNP         | C06        | 38.9         | 15527980                  | 1.0000                  |                      |
| Bn-scaff_17461_1-p1185821                            | SNP         | C06        | 39.4         |                           | 0.8907                  |                      |
| Bn-scaff_15818_2-p128759                             | SNP         | C06        | 39.8         | 16553661                  | 0.7835                  |                      |
| Bn-scaff_15818_2-p1169445                            | SNP         | C06        | 42.7         | 17546819                  | 0.2718                  |                      |
| brPb-840227                                          | DArT        | C06        | 46.5         | 17587065                  | 0.3685                  |                      |
| brPb-670643                                          | DArT        | <i>C06</i> | 48.4         | 18977707                  | 0.5827                  |                      |
| Bn-scaff_18206_3-p99826                              | SNP         | C06        | 52.2         |                           | 0.5827                  |                      |
|                                                      | 2111        | 200        |              |                           | 0.002/                  |                      |

| Malaa                     | Marker |            | Position     | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|------------|--------------|--------------------------|----------------------|----------------------|
| Marker                    | type   | LG         | (cM)         | position                 | (p-value)            | Significance         |
| Bn-scaff_15818_2-p1554832 | SNP    | C06        | 52.7         | 17917307                 | 0.4922               |                      |
| Bn-scaff_15763_1-p233999  | SNP    | C06        | 58.4         | 19830472                 | 0.0631               |                      |
| Bn-scaff_15763_1-p514953  | SNP    | C06        | 59.8         | 20087711                 | 0.0545               | *                    |
| Bn-scaff_15763_1-p1401447 | SNP    | C06        | 60.3         | 2420591                  | 0.0394               | <u>ተ</u>             |
| Bn-scaff_15763_1-p553985  | SNP    | C06        | 60.8         | 20129667                 | 0.0545               |                      |
| Bn-scaff_15763_1-p342625  | SNP    | C06        | 61.7         | 19910325                 | 0.0993               |                      |
| Bn-scaff_15763_1-p233149  | SNP    | C06        | 62.2         | 19829412                 | 0.0741               |                      |
| Bn-scaff_15763_1-p342497  | SNP    | C06        | 62.7         |                          | 0.0993               |                      |
| E32M47-156D               | AFLP   | C06        | 66.1         |                          | 0.1866               | *                    |
| E34M49-073D               | AFLP   | <i>C06</i> | 69.0<br>70 5 |                          | 0.0272               | 7                    |
| E44M62-183D               | AFLP   | C06        | 70.5         |                          | 0.0511               |                      |
| E32M49-391D               | AFLP   | C06        | 72.0         | 2488666                  | 0.3148               |                      |
| Bn-scaff_15818_1-p2371026 | SNP    | C06        | 75.7         | 21776563                 | 0.0545               | *                    |
| Bn-scaff_15818_1-p2022143 | SNP    | C06        | 76.6         | 2593048                  | 0.0280               | *                    |
| Bn-scaff_15818_1-p2355639 | SNP    | C06        | 77.5         | 21005025                 | 0.0545               | *                    |
| Bn-scaff_15818_1-p2404767 | SNP    | C06        | 78.5         | 21807925                 | 0.0280               | <u></u>              |
| Bn-scaff_15818_1-p2532249 | SNP    | C06        | 83.2         | 21940179                 | 0.1696               |                      |
| Bn-scaff_15818_1-p3172268 | SNP    | C06        | 84.6         | 22566552                 | 0.3363               |                      |
| Bn-scaff_15746_1-p101764  | SNP    | C06        | 85.1         | 21073990                 | 0.2718               |                      |
| Bn-scaff_16064_1-p233751  | SNP    | C06        | 88.4         | 2717990                  | 0.1308               |                      |
| Bn-A07-p16406072          | SNP    | C06        | 94.1         | 27462139                 | 0.6803               |                      |
| Bn-scaff_16116_1-p605377  | SNP    | C06        | 95.0         | 28471832                 | 0.6803               |                      |
| Bn-scaff_16547_1-p59615   | SNP    | C06        | 96.5         | 29440247                 | 0.4098               |                      |
| Bn-scaff_23957_1-p250533  | SNP    | C06        | 96.9         | 30781603                 | 0.3363               |                      |
| Bn-scaff_23957_1-p346986  | SNP    | C06        | 97.4         | 31207117                 | 0.2718               |                      |
| Bn-scaff_23957_1-p417072  | SNP    | C06        | 98.3         | 31276700                 | 0.1696               |                      |
| Bn-scaff_23957_1-p665858  | SNP    | C06        | 99.8         | 29320337                 | 0.1308               |                      |
| Bn-scaff_23957_1-p432810  | SNP    | C06        | 100.2        | 31297823                 | 0.0993               |                      |
| Bn-scaff_16874_1-p172867  | SNP    | C06        | 100.7        | 31535621                 | 0.1308               |                      |
| Bn-scaff_16874_1-p292060  | SNP    | C06        | 101.2        | 31673815                 | 0.0993               |                      |
| Bn-scaff_16874_1-p411591  | SNP    | C06        | 101.6        | 31817471                 | 0.0741               |                      |
| Bn-scaff_20741_1-p40404   | SNP    | C06        | 102.1        | 27738141                 | 0.0545               |                      |
| Bn-scaff_16397_1-p360292  | SNP    | C06        | 102.6        | 32556251                 | 0.0394               | *                    |
| brPb-660426               | DArT   | С06        | 103.1        | 32559920                 | 0.0418               | *                    |
| Bn-scaff_16397_1-p101309  | SNP    | C06        | 104.6        | 32808365                 | 0.0993               |                      |
| Bn-scaff_20294_1-p378164  | SNP    | C06        | 107.4        | 33582719                 | 0.4098               |                      |
| Bn-scaff_17799_1-p2456101 | SNP    | C06        | 110.2        | 34051804                 | 0.5827               |                      |
| Bn-scaff_17799_1-p2278557 | SNP    | C06        | 110.7        | 34227921                 | 0.4922               |                      |
| Bn-scaff_17799_1-p1999577 | SNP    | C06        | 112.6        | 34569614                 | 0.3363               |                      |
| Bn-scaff_17799_1-p853567  | SNP    | C06        | 120.7        | 35737936                 | 0.4098               |                      |
| brPb-838794               | DArT   | С06        | 123.5        | 35778345                 | 0.4098               |                      |
| Bn-scaff_17799_1-p859347  | SNP    | C06        | 126.4        | 35732971                 | 0.4098               |                      |
| Bn-scaff_17799_1-p458187  | SNP    | C06        | 129.2        | 36178610                 | 0.2718               |                      |
|                           |        |            |              |                          |                      |                      |

|                                                        |                    |                   |              | B. napus                   |                    |                      |
|--------------------------------------------------------|--------------------|-------------------|--------------|----------------------------|--------------------|----------------------|
| Maylean                                                | Marker             | IC                | Position     | physical                   | $Chi^2 1:1$        | Chi <sup>2</sup> 1:1 |
| Marker                                                 | type               | LG                | (cM)         | position                   | ( <i>p</i> -value) | Significance         |
| Bn-scaff_24104_1-p65405                                | SNP                | C06               | 133.5        | 36993917                   | 0.0993             | *                    |
| Bn-scaff_16110_1-p469361                               | SNP                | C07               | 0.0          | 44433003                   | 0.0394             | 1                    |
| Bn-scaff_16110_1-p575479                               | SNP                | C07               | 0.9          | 44315051                   | 0.0741             |                      |
| Bn-scaff_16110_1-p1181825                              | SNP                | C07               | 2.4          | 43764295                   | 0.0993             |                      |
| Bn-scaff_16110_1-p1204999                              | SNP                | C07               | 3.3          | 43743748<br>42597493       | 0.1696             |                      |
| Bn-scaff_16110_1-p2275269<br>Bn-A03-p28265602          | SNP<br>SNP         | C07<br>C07        | 8.0<br>10.0  | 42597493 2804600           | 0.4098<br>0.5355   |                      |
| Bn-scaff_16110_1-p2432728                              | SNP                | C07               | 10.0         | 42465135                   | 0.5555             |                      |
| -                                                      | SNP                | C07               | 10.5         | 42405155                   | 0.6803             |                      |
| Bn-scaff_16110_1-p2655836                              |                    | C07               | 10.9<br>11.4 | 42223309                   |                    |                      |
| Bn-scaff_16110_1-p2489509                              | SNP<br>SNP         | C07               | 11.4         | 41488455                   | 0.4489<br>0.5827   |                      |
| Bn-scaff_16110_1-p3437348<br>Bn-scaff_16110_1-p3660759 | SNP                | C07               | 17.6         |                            | 0.3827             |                      |
| <b>I</b>                                               |                    | C07               |              | 41278008                   |                    |                      |
| Bn-scaff_16069_1-p4814525                              | SNP                |                   | 18.5         | 2610022                    | 0.4098             |                      |
| Bn-scaff_16069_1-p4819823                              | SNP                | C07               | 19.0         | 2618033                    | 0.4922             |                      |
| Bn-scaff_16069_1-p4228211                              | SNP                | C07               | 20.0         | 40202214                   | 0.2718             |                      |
| Bn-scaff_16069_1-p3882959                              | SNP                | C07               | 21.4         | 40293214                   | 0.4922             |                      |
| Bn-scaff_16069_1-p3596469                              | SNP                | C07               | 24.7         | 40010148                   | 0.7835             |                      |
| Bn-scaff_16069_1-p3470600                              | SNP                | C07               | 25.2         | 39887479                   | 0.6803             |                      |
| Bn-scaff_16069_1-p3417121                              | SNP                | C07               | 25.6         | 39838720                   | 0.5827             |                      |
| Bn-scaff_16069_1-p3392606                              | SNP                | C07               | 28.0         | 39809008                   | 0.8907             |                      |
| Bn-scaff_16069_1-p2867813                              | SNP                | C07               | 29.9         | 39690395                   | 0.4922             |                      |
| Bn-scaff_16069_1-p1789002                              | SNP                | C07               | 32.2         | 38196399                   | 1.0000             |                      |
| Bn-scaff_16069_1-p2323317                              | SNP                | C07               | 33.7         | 38695286                   | 0.6803             |                      |
| Bn-scaff_16069_1-p1268741                              | SNP                | C07               | 38.9         | 37716443                   | 0.4098             |                      |
| Bn-scaff_16069_1-p556940                               | SNP                | C07               | 43.6         | 26701122                   | 0.0993             |                      |
| Bn-scaff_16069_1-p439239                               | SNP                | C07               | 45.5         | 36781133                   | 0.2718             |                      |
| Bn-scaff_15705_3-p436841                               | SNP                | C07               | 46.9         | 36219257                   | 0.2164             |                      |
| Bn-scaff_15705_3-p129321                               | SNP                | C07               | 47.4         | 35900328                   | 0.2718             |                      |
| Bn-scaff_15705_1-p2590289                              | SNP                | C07               | 48.3         | 35531515                   | 0.2718             |                      |
| Bn-scaff_15705_1-p2504173                              | SNP                | C07               | 50.2         | 35449116                   | 0.5827             |                      |
| Bn-scaff_15705_1-p1403790                              | SNP                | C07               | 57.3         | 34707905                   | 0.6803             |                      |
| Bn-scaff_15705_1-p1214538                              | SNP<br>D A #T      | C07               | 58.3         | 34553319                   | 0.8907             |                      |
| brPb-841894                                            | DArT               | C07               | 61.3         | 34694123                   | 0.7230             |                      |
| E35M47-165D<br>E34M49-118D                             | AFLP               | C07               | 65.1         |                            | 0.4355             |                      |
|                                                        | AFLP               | <i>C07</i>        | 66.6         | 1017510                    | 0.3270             |                      |
| <i>brPb-670555</i>                                     | <i>DArT</i><br>SNP | <i>C07</i><br>C07 | 68.1<br>70.9 | <i>1817519</i><br>32469059 | 0.3708             |                      |
| Bn-scaff_18520_1-p612557                               |                    |                   |              |                            | 0.2718             |                      |
| Bn-scaff_15705_1-p108561                               | SNP<br>SNP         | C07<br>C07        | 72.4<br>73.3 | 33515009<br>33974318       | 0.4922 0.6803      |                      |
| Bn-scaff_15705_1-p577327<br>Bn-scaff_18520_1-p817618   | SNP                | C07               | 73.3         | 33974318                   | 0.6803             |                      |
| Bn-scaff_18520_1-p817618                               |                    | C07               | 74.7<br>75.7 | 32644625<br>1818299        | 0.4098             |                      |
| Bn-scaff_18520_1-p414565                               | SNP                | C07               | 75.7<br>76.1 | 1818299                    |                    |                      |
| -                                                      | SNP                |                   |              |                            | 0.2164             |                      |
| Bn-scaff_21711_1-p12893                                | SNP                | C07               | 76.6         | 31806671                   | 0.2718             |                      |

|                           | Marker |            | Position | <i>B. napus</i><br>physical | Chi² 1:1           | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|------------|----------|-----------------------------|--------------------|----------------------|
| Marker                    | type   | LG         | (cM)     | position                    | ( <i>p</i> -value) | Significance         |
| Bn-scaff_17972_1-p146234  | SNP    | C07        | 79.4     | 31461693                    | 0.4098             |                      |
| Bn-scaff_16514_1-p133007  | SNP    | C07        | 79.9     |                             | 0.3363             |                      |
| Bn-scaff_17740_1-p555272  | SNP    | C07        | 80.4     | 30601151                    | 0.2718             |                      |
| Bn-scaff_17740_1-p834125  | SNP    | C07        | 81.8     | 30371629                    | 0.1308             |                      |
| Bn-scaff_17740_1-p844883  | SNP    | C07        | 82.3     | 30360966                    | 0.0741             |                      |
| Bn-scaff_16130_1-p2433175 | SNP    | C07        | 82.8     | 30054699                    | 0.0545             |                      |
| Bn-scaff_16130_1-p916846  | SNP    | C07        | 84.7     | 28627933                    | 0.0134             | *                    |
| Bn-scaff_16130_1-p910136  | SNP    | C07        | 85.6     | 28605819                    | 0.0280             | *                    |
| Bn-scaff_16130_1-p800124  | SNP    | C07        | 86.1     | 28502186                    | 0.0195             | *                    |
| Bn-scaff_15754_1-p651840  | SNP    | C07        | 87.5     | 27102046                    | 0.0060             | **                   |
| Bn-scaff_19724_1-p166186  | SNP    | C07        | 91.7     | 26237295                    | 0.0091             | **                   |
| Bn-scaff_19724_1-p557617  | SNP    | C07        | 93.6     | 25823754                    | 0.0039             | **                   |
| Bn-scaff_21268_1-p102415  | SNP    | C07        | 96.0     | 25181707                    | 0.0280             | *                    |
| Bn-scaff_18202_1-p379677  | SNP    | C07        | 100.2    | 23217609                    | 0.0039             | **                   |
| Bn-scaff_18202_1-p1568783 | SNP    | C07        | 102.6    | 22250104                    | 0.0280             | *                    |
| Bn-scaff_18202_1-p1683343 | SNP    | C07        | 104.0    | 22118953                    | 0.0091             | **                   |
| Bn-scaff_18501_1-p995878  | SNP    | C07        | 105.4    | 21670927                    | 0.0134             | *                    |
| Bn-scaff_18501_1-p426392  | SNP    | C07        | 105.9    | 20741594                    | 0.0091             | **                   |
| Bn-scaff_18501_1-p850558  | SNP    | C07        | 106.4    | 1105056                     | 0.0134             | *                    |
| brPb-662975               | DArT   | <i>C07</i> | 108.3    | 21440197                    | 0.0218             | *                    |
| Bn-scaff_18501_1-p264708  | SNP    | C07        | 111.3    | 21322269                    | 0.0091             | **                   |
| Bn-scaff_19106_1-p176043  | SNP    | C07        | 113.6    | 18902919                    | 0.0545             |                      |
| E39M62-177E               | AFLP   | <i>C07</i> | 114.1    |                             | 0.0375             | *                    |
| Bn-scaff_17461_1-p1193733 | SNP    | C07        | 120.9    | 9960996                     | 0.0195             | *                    |
| Bn-scaff_15762_1-p717223  | SNP    | C07        | 122.3    | 2201365                     | 0.0060             | **                   |
| Bn-scaff_20947_1-p137826  | SNP    | C08        | 0.0      | 36705377                    | 0.3018             |                      |
| Bn-scaff_21269_1-p309569  | SNP    | C08        | 1.9      |                             | 0.1909             |                      |
| Bn-scaff_20901_1-p2019548 | SNP    | C08        | 5.2      | 37694422                    | 0.4922             |                      |
| Bn-scaff_16389_1-p688011  | SNP    | C08        | 6.6      | 4498088                     | 0.6299             |                      |
| Bn-scaff_16389_1-p907642  | SNP    | C08        | 7.1      | 28127520                    | 0.6803             |                      |
| Bn-scaff_20947_1-p93326   | SNP    | C08        | 14.3     | 36745442                    | 0.3018             |                      |
| Bn-scaff_16445_1-p307890  | SNP    | C08        | 15.2     | 36515197                    | 0.2718             |                      |
| Bn-scaff_16445_1-p591427  | SNP    | C08        | 18.6     | 36217699                    | 0.3363             |                      |
| Bn-scaff_16445_1-p895858  | SNP    | C08        | 19.5     | 35905726                    | 0.4922             |                      |
| Bn-scaff_16445_1-p933254  | SNP    | C08        | 20.5     | 35852130                    | 0.4922             |                      |
| Bn-scaff_16445_1-p925530  | SNP    | C08        | 20.9     | 35858936                    | 0.6299             |                      |
| Bn-scaff_16445_1-p1443287 | SNP    | C08        | 24.3     | 35331835                    | 0.1483             |                      |
| Bn-scaff_16445_1-p1639969 | SNP    | C08        | 25.7     |                             | 0.1483             |                      |
| brPb-670302               | DArT   | <i>C08</i> | 30.0     | 34952631                    | 0.3018             |                      |
| Bn-A09-p33660289          | SNP    | C08        | 33.8     | 34965592                    | 0.1133             |                      |
| Bn-scaff_16445_1-p2125574 | SNP    | C08        | 36.2     | 34737240                    | 0.2419             |                      |
| Bn-scaff_16445_1-p2523413 | SNP    | C08        | 36.7     | 34371263                    | 0.2718             |                      |
| Bn-scaff_16445_1-p2119017 | SNP    | C08        | 37.1     | 34743849                    | 0.2419             |                      |
| - •                       |        |            |          |                             |                    |                      |

| MarkerPositionphysical<br>positionChi² 1.1<br>(p²value)SignificanceMarkertypeLGC(M)NpecialSignificanceBn-scaff.16197.1-p135491SNPC0842.041/279320.8907Bn-scaff.16197.1-p137119SNPC0845.341674960.7835Bn-scaff.16197.1-p1166542SNPC0847.2329292791.0000Bn-scaff.16197.1-p1348777SNPC0847.7327675250.8907Bn-scaff.16197.1-p1382140SNPC0845.3327537070.4922Bn-scaff.16197.1-p1382140SNPC0850.0-0.4098-Bn-scaff.16197.1-p1382140SNPC0851.4323116540.2164Bn-scaff.16197.1-p2405266SNPC0852.9319040790.0993Bn-scaff.16197.1-p2405266SNPC0855.2318287850.1308Bn-scaff.16197.1-p2405266SNPC0856.70.0687-E37M62-271EAFLPC0862.0313847920.0208*Bn-scaff.16197.1-p2872732SNPC0862.3312306550.0135-Bn-scaff.16197.1-p286407SNPC0862.3313847920.0240*Bn-scaff.16197.1-p286407SNPC0862.3313847920.0134*Bn-scaff.16197.1-p286407SNPC0862.3313847920.0134*Bn-scaff.16197.1-p286407SNPC0863.330800720.0134* <th></th> <th></th> <th></th> <th></th> <th>B. napus</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                         |                           |        |            |          | B. napus |                      |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|------------|----------|----------|----------------------|----------------------|
| Bn-scaff 16197_1-p135491         SNP         C08         42.0         4172989         0.4922           Bn-scaff 16197_1-p724640         SNP         C08         44.8         4127932         0.8907           Bn-scaff 16197_1-p1137119         SNP         C08         45.3         4167496         0.7835           Bn-scaff 16197_1-p1137119         SNP         C08         45.3         2958180         0.6803           Bn-scaff 16197_1-p1367016         SNP         C08         47.7         32767525         0.8907           Bn-scaff 16197_1-p1367016         SNP         C08         48.6         3275070         0.6803           Bn-scaff 16197_1-p1382140         SNP         C08         50.0         0.4098         0.9993           Bn-scaff 16197_1-p230244         SNP         C08         51.4         32311654         0.2164           Bn-scaff 16197_1-p2405266         SNP         C08         55.2         3182785         0.1308           Bn-scaff 16197_1-p2405266         SNP         C08         62.0         31384792         0.0280 *           Bn-scaff 16197_1-p236739         SNP         C08         62.0         31384792         0.0280 *           Bn-scaff 16197_1-p236709         SNP         C08         62.0                                                                                                                         |                           | Marker |            | Position |          | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
| Bn-scaff 16197_1-p689617         SNP         C08         44.8         4127932         0.8907           Bn-scaff_16197_1-p1137119         SNP         C08         45.3         32958180         0.6803           Bn-scaff_16197_1-p116542         SNP         C08         47.2         32929279         1.0000           Bn-scaff_16197_1-p1348777         SNP         C08         47.7         32767525         0.8907           Bn-scaff_16197_1-p1348777         SNP         C08         48.6         32753070         0.6803           Bn-scaff_16197_1-p1348777         SNP         C08         49.5         32737137         0.4922           Bn-scaff_16197_1-p1413767         SNP         C08         50.0         0.4098         0.4098           Bn-scaff_16197_1-p2405266         SNP         C08         53.8         31605425         0.1308           Bn-scaff_16197_1-p26576         SNP         C08         56.7         0.0667         2.339462950         AFLP         C08         56.7         0.0687           E37M62-271E         AFLP         C08         64.4         3136166         0.0208         *           Bn-scaff_16197_1-p258698         SNP         C08         64.3         31326965         0.0195         *                                                                                                                                   | Marker                    | type   | LG         | (cM)     | position | (p-value)            | Significance         |
| Bn-scaff_16197_1-p1724640         SNP         C08         45.3         4167496         0.7835           Bn-scaff_16197_1-p1137119         SNP         C08         45.8         32958180         0.6803           Bn-scaff_16197_1-p1136777         SNP         C08         47.7         32767525         0.8907           Bn-scaff_16197_1-p1382140         SNP         C08         49.5         32737137         0.4922           Bn-scaff_16197_1-p1382140         SNP         C08         51.4         32311654         0.2164           Bn-scaff_16197_1-p1382140         SNP         C08         51.4         32311654         0.2164           Bn-scaff_16197_1-p2405266         SNP         C08         53.8         31790087         0.1696           Bn-scaff_16197_1-p2405266         SNP         C08         55.2         31824792         0.0280         *           Bn-scaff_16197_1-p260576         SNP         C08         66.4         0.0064         *           Bn-scaff_16197_1-p2872732         SNP         C08         66.2         31384792         0.0280         *           Bn-scaff_16197_1-p28626407         SNP         C08         66.2         30180072         0.0195         *           Bn-scaff_16361_1-p355395                                                                                                                                | Bn-scaff_16197_1-p135491  | SNP    | C08        | 42.0     | 4172989  | 0.4922               |                      |
| Bn-scaff_16197_1-p1137119         SNP         C08         45.8         32958180         0.6803           Bn-scaff_16197_1-p136571         SNP         C08         47.2         32292729         1.000           Bn-scaff_16197_1-p1367016         SNP         C08         47.7         32767525         0.8907           Bn-scaff_16197_1-p1367016         SNP         C08         48.6         32753070         0.4922           Bn-scaff_16197_1-p1382140         SNP         C08         51.4         32311654         0.2164           Bn-scaff_16197_1-p143077         SNP         C08         52.9         3190407         0.0993           Bn-scaff_16197_1-p2405266         SNP         C08         53.8         3179087         0.1696           Bn-scaff_16197_1-p2405266         SNP         C08         56.7         0.0687           E37M62-271E         AFLP         C08         60.4         0.0064         **           Bn-scaff_16197_1-p2872732         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff_16197_1-p2872732         SNP         C08         64.3         3136166         0.2208         *           Bn-scaff_16197_1-p285698         SNP         C08         64.2                                                                                                                                       | Bn-scaff_16197_1-p689617  | SNP    | C08        | 44.8     | 4127932  | 0.8907               |                      |
| Bn-scaff_16197_1-p1166542       SNP       C08       47.2       32929279       1.0000         Bn-scaff_16197_1-p1348777       SNP       C08       47.7       32767525       0.8907         Bn-scaff_16197_1-p1382140       SNP       C08       48.6       3273137       0.4922         Bn-scaff_16197_1-p1832140       SNP       C08       51.4       32311654       0.2164         Bn-scaff_16197_1-p230244       SNP       C08       51.4       32311654       0.2164         Bn-scaff_16197_1-p2405266       SNP       C08       53.8       31790087       0.1696         Bn-scaff_16197_1-p2605576       SNP       C08       54.3       31605425       0.1308         Bn-scaff_16197_1-p263670       SNP       C08       55.2       31828785       0.1308         E37M62-95D       AFLP       C08       62.0       31384792       0.0280       *         Bn-scaff_16197_1-p2872732       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16361_1-p2363072       SNP       C08       65.3       30830072       0.0195       *         Bn-scaff_16361_1-p250642       SNP       C08       65.4       31316166       0.0280       *         <                                                                                                                                                                                                      | Bn-scaff_16197_1-p724640  | SNP    | C08        | 45.3     | 4167496  | 0.7835               |                      |
| Bn-scaff_16197_1-p1348777         SNP         C08         47.7         32767525         0.8907           Bn-scaff_16197_1-p137016         SNP         C08         48.6         3273070         0.6803           Bn-scaff_16197_1-p1382140         SNP         C08         49.5         3273173         0.4922           Bn-scaff_16197_1-p1382140         SNP         C08         51.4         32311654         0.2164           Bn-scaff_16197_1-p2310244         SNP         C08         53.8         31790087         0.1696           Bn-scaff_16197_1-p2405266         SNP         C08         53.8         31790087         0.1696           Bn-scaff_16197_1-p2405276         SNP         C08         55.2         31828785         0.1308           Bn-scaff_16197_1-p260576         SNP         C08         60.4         0.0064         **           Bn-scaff_16197_1-p2872732         SNP         C08         62.9         31578417         0.0545           Bn-scaff_16197_1-p2856407         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff_16361_P2750581         SNP         C08         66.2         30245443         0.0195         *           Bn-scaff_16361_P2750581         SNP <td< td=""><td>Bn-scaff_16197_1-p1137119</td><td>SNP</td><td>C08</td><td>45.8</td><td>32958180</td><td>0.6803</td><td></td></td<> | Bn-scaff_16197_1-p1137119 | SNP    | C08        | 45.8     | 32958180 | 0.6803               |                      |
| Bn-scaff 16197_1-p1367016         SNP         C08         48.6         32753070         0.6803           Bn-scaff 16197_1-p1382140         SNP         C08         49.5         32737137         0.4922           Bn-scaff 16197_1-p1413767         SNP         C08         50.0         0.4992           Bn-scaff 16197_1-p2310244         SNP         C08         51.4         3231164         0.2164           Bn-scaff 16197_1-p2405266         SNP         C08         53.8         31790087         0.1696           Bn-scaff 16197_1-p2605576         SNP         C08         55.2         3182785         0.1308           Bn-scaff 16197_1-p2636709         SNP         C08         66.4         0.0064         **           Bn-scaff 16197_1-p2636707         SNP         C08         66.2         31384792         0.0280         *           Bn-scaff 16197_1-p2626407         SNP         C08         66.4         31236965         0.0195         *           Bn-scaff 16197_1-p2061092         SNP         C08         66.3         3184792         0.0280         *           Bn-scaff 16361_1-p258098         SNP         C08         66.3         3080072         0.0195         *           Bn-scaff 16361_1-p2750581         SNP </td <td>Bn-scaff_16197_1-p1166542</td> <td>SNP</td> <td>C08</td> <td>47.2</td> <td>32929279</td> <td>1.0000</td> <td></td> | Bn-scaff_16197_1-p1166542 | SNP    | C08        | 47.2     | 32929279 | 1.0000               |                      |
| Bn-scaff_16197_1-p1382140         SNP         C08         49.5         32737137         0.4922           Bn-scaff_16197_1-p1413767         SNP         C08         50.0         0.4098           Bn-scaff_16197_1-p1830408         SNP         C08         51.4         32311654         0.2164           Bn-scaff_16197_1-p2405266         SNP         C08         53.8         31790087         0.1696           Bn-scaff_16197_1-p2405266         SNP         C08         55.2         31828785         0.1308           Bn-scaff_16197_1-p2405266         SNP         C08         55.2         31828785         0.1308           Bn-scaff_16197_1-p2405260         SNP         C08         60.4         0.0064         **           Bn-scaff_16197_1-p2872732         SNP         C08         62.9         31384792         0.0280         *           Bn-scaff_16197_1-p205069         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff_16361_1-p258042         SNP         C08         66.3         3083072         0.0195         *           Bn-scaff_16361_1-p275042         SNP         C08         66.7         2980595         0.0134         *           Bn-scaff_16361_1-p2750581         SNP </td <td>Bn-scaff_16197_1-p1348777</td> <td>SNP</td> <td>C08</td> <td>47.7</td> <td>32767525</td> <td>0.8907</td> <td></td> | Bn-scaff_16197_1-p1348777 | SNP    | C08        | 47.7     | 32767525 | 0.8907               |                      |
| Bn-scaff 16197 1-p1413767         SNP         C08         50.0         0.4098           Bn-scaff 16197 1-p1830408         SNP         C08         51.4         32311654         0.2164           Bn-scaff 16197 1-p2310244         SNP         C08         52.9         31904079         0.0993           Bn-scaff 16197 1-p2405266         SNP         C08         53.8         31605425         0.1308           Bn-scaff 16197 1-p2605576         SNP         C08         55.2         31828785         0.1308 <i>E39M62-95D         AFLP         C08         56.7         0.0687           <i>E37M62-271E</i>         AFLP         C08         60.4         0.0064         **           Bn-scaff 16197 1-p2626407         SNP         C08         62.9         31578417         0.0545           Bn-scaff 16197 1-p206407         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff 16197 1-p286698         SNP         C08         66.2         30245443         0.0195         *           Bn-scaff 16361 1-p275042         SNP         C08         66.2         30245443         0.0195         *           Bn-scaff 16361 1-p2750581         SNP         C08         66.7         29800595</i>                                                                                                                                   | Bn-scaff_16197_1-p1367016 | SNP    | C08        | 48.6     | 32753070 | 0.6803               |                      |
| Bn-scaff_16197_1-p1830408       SNP       C08       51.4       32311654       0.2164         Bn-scaff_16197_1-p2310244       SNP       C08       52.9       31904079       0.0993         Bn-scaff_16197_1-p2405266       SNP       C08       53.8       31790087       0.1696         Bn-scaff_16197_1-p2605576       SNP       C08       54.3       313065425       0.1308 <i>Bn-scaff_16197_1-p2367309</i> SNP       C08       56.7       0.0687 <i>E37M62-271E</i> AFLP       C08       60.4       0.0064       **         Bn-scaff_16197_1-p2872732       SNP       C08       62.9       31578417       0.0545         Bn-scaff_16197_1-p206407       SNP       C08       64.3       3126965       0.0195       *         Bn-scaff_16197_1-p3061092       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16361_1-p256089       SNP       C08       65.3       30830072       0.0195       *         Bn-scaff_16361_1-p275042       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16231_1-p1750581       DArT       C08       68.6       0.0167       *         Bn-scaff_16231_1-p176976 <td>Bn-scaff_16197_1-p1382140</td> <td>SNP</td> <td>C08</td> <td>49.5</td> <td>32737137</td> <td>0.4922</td> <td></td>                                                                                               | Bn-scaff_16197_1-p1382140 | SNP    | C08        | 49.5     | 32737137 | 0.4922               |                      |
| Bn-scaff_16197_1-p2310244       SNP       C08       52.9       31904079       0.0993         Bn-scaff_16197_1-p2405266       SNP       C08       53.8       31790087       0.1696         Bn-scaff_16197_1-p2605576       SNP       C08       54.3       31605425       0.1308         Bn-scaff_16197_1-p2367309       SNP       C08       55.2       31828785       0.1308         E39M62-95D       AFLP       C08       56.7       0.0664       **         Bn-scaff_16197_1-p2872732       SNP       C08       62.0       31384792       0.0280       *         Bn-scaff_16197_1-p3061092       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16361_1-p2750642       SNP       C08       64.8       31316166       0.0280       *         Bn-scaff_16361_1-p275042       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p275042       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p2750581       SNP       C08       66.7       29800595       0.0144       *         Bn-scaff_16231_1-p17676       SNP       C08       103.1       19013385       0.1216 <td>Bn-scaff_16197_1-p1413767</td> <td>SNP</td> <td>C08</td> <td>50.0</td> <td></td> <td>0.4098</td> <td></td>                                                                                      | Bn-scaff_16197_1-p1413767 | SNP    | C08        | 50.0     |          | 0.4098               |                      |
| Bn-scaff_16197_1-p2405266       SNP       C08       53.8       31790087       0.1696         Bn-scaff_16197_1-p2605576       SNP       C08       54.3       31605425       0.1308         Bn-scaff_16197_1-p2673709       SNP       C08       55.2       31828785       0.1308         E37M62-95D       AFLP       C08       60.4       0.0064       **         Bn-scaff_16197_1-p2872732       SNP       C08       62.0       31384792       0.0280       *         Bn-scaff_16197_1-p20626407       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16197_1-p2058698       SNP       C08       64.3       31316166       0.0280       *         Bn-scaff_16361_1-p3355395       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p2263072       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16231_1-p1750581       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16231_1-p176976       SNP       C08       103.1       19913385       0.2164       *         Bn-scaff_16231_1-p176976       SNP       C08       113.3       2405829                                                                                                                                                                                                       | Bn-scaff_16197_1-p1830408 | SNP    | C08        | 51.4     | 32311654 | 0.2164               |                      |
| Bn-scaff_16197_1-p2605576       SNP       C08       54.3       31605425       0.1308         Bn-scaff_16197_1-p2367309       SNP       C08       55.2       31828785       0.1308 <i>E39M62-95D</i> AFLP       C08       66.4       0.06687         Bn-scaff_16197_1-p2872732       SNP       C08       62.0       31384792       0.0280       *         Bn-scaff_16197_1-p2626407       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16197_1-p263698       SNP       C08       64.3       31316166       0.0280       *         Bn-scaff_16361_1-p355395       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16361_1-p2750042       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p2750581       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16231_1-p1176976       SNP       C08       66.7       29800595       0.0147       *         Bn-scaff_16231_1-p176976       SNP       C08       103.1       19013385       0.1216       *         Bn-scaff_16231_1-p176976       SNP       C08       113.3       2405829                                                                                                                                                                                                                 | Bn-scaff_16197_1-p2310244 | SNP    | C08        | 52.9     | 31904079 | 0.0993               |                      |
| Bn-scaff_16197_1-p2367309         SNP         C08         55.2         31828785         0.1308           E39M62-95D         AFLP         C08         56.7         0.0687           E37M62-271E         AFLP         C08         60.4         0.0064         **           Bn-scaff_16197_1-p2872732         SNP         C08         62.0         31384792         0.0280         *           Bn-scaff_16197_1-p2626407         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff_16197_1-p258698         SNP         C08         64.3         31316166         0.0280         *           Bn-scaff_16361_1-p355395         SNP         C08         66.2         3024543         0.0195         *           Bn-scaff_16361_1-p275042         SNP         C08         66.7         2980595         0.0134         *           Bn-scaff_16361_1-p2750581         SNP         C08         66.7         2980595         0.0134         *           Bn-scaff_16361_1-p2750581         SNP         C08         66.7         2980595         0.0134         *           brbb-660785         DArT         C08         103.1         19013385         0.1216           Bn-scaff_19242_1-p390109                                                                                                                                                     | Bn-scaff_16197_1-p2405266 | SNP    | C08        | 53.8     | 31790087 | 0.1696               |                      |
| E39M62-95DAFLPC0856.70.0687E37M62-271EAFLPC0860.40.0064**Bn-scaff_16197_1-p2872732SNPC0862.0313847920.0280*Bn-scaff_16197_1-p2626407SNPC0864.3312369650.0195*Bn-scaff_16197_1-p2080192SNPC0864.3312161660.0280*Bn-scaff_16197_1-p2958698SNPC0864.3313161660.0280*Bn-scaff_16361_1-p3355395SNPC0866.2302454430.0195*Bn-scaff_16361_1-p226072SNPC0866.7298005950.0134*Bn-scaff_16361_1-p2750581SNPC0866.7298005950.0195*brPb-660785DArTC0868.60.0167*Bn-scaff_16231_1-p1176976SNPC08103.1190133850.1216Bn-scaff_16245_1-p1067723SNPC08113.324058290.0741Bn-scaff_16273_1-p30109SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08113.324058290.0741Bn-scaff_16273_1-p360866SNPC08119.933576430.1696Bn-scaff_17807_1-p364572SNPC08119.90.2164Bn-scaff_17807_1-p687815SNPC08112.430245270.2164Bn-scaff_15650_1-p74363SNPC08122.622718Bn-scaff_15650_1-p74363SNPC08<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bn-scaff_16197_1-p2605576 | SNP    | C08        | 54.3     | 31605425 | 0.1308               |                      |
| E37M62-271EAFLPC08 $60.4$ $0.0064$ **Bn-scaff_16197_1-p2872732SNPC08 $62.0$ $31384792$ $0.0280$ *Bn-scaff_16197_1-p2626407SNPC08 $62.9$ $31578417$ $0.0545$ Bn-scaff_16197_1-p268698SNPC08 $64.3$ $31236965$ $0.0195$ *Bn-scaff_16361_1-p3355395SNPC08 $65.3$ $30830072$ $0.0195$ *Bn-scaff_16361_1-p250042SNPC08 $66.2$ $30245443$ $0.0195$ *Bn-scaff_16361_1-p263072SNPC08 $66.7$ $2980595$ $0.0134$ *Bn-scaff_16361_1-p2750581SNPC08 $66.7$ $2980595$ $0.0144$ *Bn-scaff_16321_1-p2750581SNPC08 $66.7$ $2980595$ $0.0144$ *brPb-660785DArTC08 $68.6$ $0.0167$ *Bn-scaff_16231_1-p1176976SNPC08 $103.1$ $19013385$ $0.1216$ Bn-scaff_16242_1-p390109SNPC08 $103.1$ $1901385$ $0.1216$ Bn-scaff_16245_1-p172608SNPC08 $113.3$ $2405829$ $0.741$ Bn-scaff_16273_1-p360866SNPC08 $119.0$ $0.2164$ Bn-scaff_16273_1-p360866SNPC08 $119.9$ $0.2718$ Bn-scaff_17807_1-p364572SNPC08 $120.4$ $3024527$ $0.264$ Bn-scaff_17807_1-p687815SNPC08 $120.4$ $3024527$ $0.2718$ Bn-scaff_15650_1-p714363SNP                                                                                                                                                                                                                                                                                                                                                                                  | Bn-scaff_16197_1-p2367309 | SNP    | C08        | 55.2     | 31828785 | 0.1308               |                      |
| Bn-scaff_16197_1-p2872732       SNP       C08       62.0       31384792       0.0280       *         Bn-scaff_16197_1-p2626407       SNP       C08       62.9       31578417       0.0545         Bn-scaff_16197_1-p2858698       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16361_1-p2558698       SNP       C08       64.8       31316166       0.0280       *         Bn-scaff_16361_1-p255042       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p275042       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p2750581       SNP       C08       66.7       29800595       0.0195       *         Bn-scaff_16231_1-p1176976       SNP       C08       66.7       20727271       0.0394       *         br/be-663376       DArT       C08       103.1       19013385       0.1216       *         Bn-scaff_16231_1-p1176976       SNP       C08       111.4       0.0741       *         Bn-scaff_16245_1-p390109       SNP       C08       111.4       0.0741       *         Bn-scaff_16245_1-p172608       SNP       C08       111.4       0.                                                                                                                                                                                                           | E39M62-95D                | AFLP   | <i>C08</i> | 56.7     |          | 0.0687               |                      |
| Bn-scaff_16197_1.p2626407         SNP         C08         62.9         31578417         0.0545           Bn-scaff_16197_1.p2061092         SNP         C08         64.3         31236965         0.0195         *           Bn-scaff_16197_1.p2958698         SNP         C08         64.8         31316166         0.0280         *           Bn-scaff_16361_1.p255395         SNP         C08         65.3         30830072         0.0195         *           Bn-scaff_16361_1.p2750042         SNP         C08         66.2         30245443         0.0195         *           Bn-scaff_16361_1.p2263072         SNP         C08         66.7         29800595         0.0134         *           Bn-scaff_16361_1.p2750581         SNP         C08         67.1         0.0195         *           brPb-660785         DArT         C08         68.6         0.0167         *           Bn-scaff_16231_1.p1176976         SNP         C08         103.1         19013385         0.1216           Bn-scaff_16235_1.p1090109         SNP         C08         113.3         2405829         0.0741           Bn-scaff_16245_1.p172608         SNP         C08         113.3         2405829         0.0741           Bn-scaff_18310_1.p33                                                                                                                                    | E37M62-271E               | AFLP   | <i>C08</i> | 60.4     |          | 0.0064               | **                   |
| Bn-scaff_16197_1-p3061092       SNP       C08       64.3       31236965       0.0195       *         Bn-scaff_16197_1-p2958698       SNP       C08       64.8       31316166       0.0280       *         Bn-scaff_16361_1-p3355395       SNP       C08       65.3       30830072       0.0195       *         Bn-scaff_16361_1-p2750042       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p2750581       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p2750581       SNP       C08       67.1       0.0195       *         brPb-660785       DArT       C08       68.6       0.0167       *         Bn-scaff_16231_1-p1176976       SNP       C08       103.1       19013385       0.1216         Bn-scaff_19242_1-p390109       SNP       C08       103.1       19013385       0.1216         Bn-scaff_16273_1-p30848       SNP       C08       111.4       0.0741       1114         Bn-scaff_16273_1-p1067723       SNP       C08       111.2       288744       0.1308       1114         Bn-scaff_16273_1-p360866       SNP       C08       119.9       332643       0.1696                                                                                                                                                                                                             | Bn-scaff_16197_1-p2872732 | SNP    | C08        | 62.0     | 31384792 | 0.0280               | *                    |
| Bn-scaff_16197_1-p2958698       SNP       C08       64.8       31316166       0.0280       *         Bn-scaff_16361_1-p3355395       SNP       C08       65.3       30830072       0.0195       *         Bn-scaff_16361_1-p2750042       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p263072       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p2750581       SNP       C08       67.1       0.0195       *         brPb-660785       DArT       C08       68.6       0.0167       *         Bn-scaff_16231_1-p1176976       SNP       C08       103.1       19013385       0.1216         brPb-660376       DArT       C08       108.6       18065063       0.0741       -         Bn-scaff_19242_1-p390109       SNP       C08       111.4       0.0741       -       -         Bn-scaff_16545_1-p172608       SNP       C08       113.3       2405829       0.0741       -         Bn-scaff_18275_1-p1067723       SNP       C08       119.0       0.2164       -       -       -         Bn-scaff_17807_1-p364866       SNP       C08       119.9       3357643                                                                                                                                                                                                                         | Bn-scaff_16197_1-p2626407 | SNP    | C08        | 62.9     | 31578417 | 0.0545               |                      |
| Bn-scaff_16361_1-p3355395       SNP       C08       65.3       30830072       0.0195       *         Bn-scaff_16361_1-p2750042       SNP       C08       66.2       30245443       0.0195       *         Bn-scaff_16361_1-p263072       SNP       C08       66.7       29800595       0.0134       *         Bn-scaff_16361_1-p2750581       SNP       C08       67.1       0.0195       *         brPb-660785       DArT       C08       68.6       0.0167       *         Bn-scaff_16231_1-p1176976       SNP       C08       92.6       20727271       0.0394       *         brPb-660376       DArT       C08       103.1       19013385       0.1216       *         Bn-scaff_19242_1-p390109       SNP       C08       111.4       0.0741       *         Bn-scaff_16545_1-p172608       SNP       C08       113.3       2405829       0.0741       *         Bn-scaff_18275_1-p1067723       SNP       C08       113.3       2405829       0.0741       *         Bn-scaff_18275_1-p360866       SNP       C08       119.9       3357643       0.1696       *         Bn-scaff_17807_1-p364572       SNP       C08       119.9       3357643       0.                                                                                                                                                                                                                    | Bn-scaff_16197_1-p3061092 | SNP    | C08        | 64.3     | 31236965 | 0.0195               | *                    |
| Bn-scaff_16361_1-p2750042SNPC0866.2302454430.0195*Bn-scaff_16361_1-p2263072SNPC0866.7298005950.0134*Bn-scaff_16361_1-p2750581SNPC0867.10.0195*brPb-660785DArTC0868.60.0167*Bn-scaff_16231_1-p1176976SNPC0892.6207272710.0394*brPb-663376DArTC08103.1190133850.1216*Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741*Bn-scaff_16545_1-p172608SNPC08111.40.0741*Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_18275_1-p360866SNPC08119.00.2164Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_17807_1-p687815SNPC08120.430245270.2164Bn-scaff_18607_1-p283263SNPC08120.430245270.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_15650_1-p368565SNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bn-scaff_16197_1-p2958698 | SNP    | C08        | 64.8     | 31316166 | 0.0280               | *                    |
| Bn-scaff_16361_1-p2263072       SNP       C08       66.7       29800595       0.0134 *         Bn-scaff_16361_1-p2750581       SNP       C08       67.1       0.0195 *         brPb-660785       DArT       C08       68.6       0.0167 *         Bn-scaff_16231_1-p1176976       SNP       C08       92.6       20727271       0.0394 *         brPb-663376       DArT       C08       103.1       19013385       0.1216         Bn-scaff_19242_1-p390109       SNP       C08       108.6       1806503       0.0741         Bn-scaff_16545_1-p172608       SNP       C08       111.4       0.0741       0.2164         Bn-scaff_16545_1-p172608       SNP       C08       115.2       2888744       0.1308         Bn-scaff_18275_1-p1067723       SNP       C08       119.0       0.2164         Bn-scaff_18275_1-p30866       SNP       C08       119.0       0.2164         Bn-scaff_17807_1-p364572       SNP       C08       119.9       3357643       0.1696         Bn-scaff_17807_1-p687815       SNP       C08       120.4       3024527       0.2164         Bn-scaff_18607_1-p283263       SNP       C08       121.8       801987       0.2718         Bn-s                                                                                                                                                                                                         | Bn-scaff_16361_1-p3355395 | SNP    | C08        | 65.3     | 30830072 | 0.0195               | *                    |
| Bn-scaff_16361_1-p2750581SNPC0867.10.0195*brPb-660785DArTC0868.60.0167*Bn-scaff_16231_1-p1176976SNPC0892.6207272710.0394*brPb-663376DArTC08103.1190133850.1216Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741Bn-scaff_22350_1-p80848SNPC08113.324058290.0741Bn-scaff_16545_1-p172608SNPC08115.228887440.1308Bn-scaff_18275_1-p1067723SNPC08119.00.2164Bn-scaff_18310_1-p32839SNPC08119.933576430.1696Bn-scaff_17807_1-p364572SNPC08120.90.2718Bn-scaff_17765_1-p53066SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_15650_1-p45061SNPC091.4183685610.8907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bn-scaff_16361_1-p2750042 | SNP    | C08        | 66.2     | 30245443 | 0.0195               | *                    |
| brPb-660785DArTC0868.60.0167*Bn-scaff_16231_1-p1176976SNPC0892.6207272710.0394*brPb-663376DArTC08103.1190133850.1216Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741Bn-scaff_22350_1-p80848SNPC08111.40.0741Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p32839SNPC08119.933576430.1696Bn-scaff_17807_1-p364572SNPC08120.430245270.2164Bn-scaff_1765_1-p53066SNPC08120.90.2718Bn-scaff_18607_1-p87815SNPC08121.88019870.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_15650_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bn-scaff_16361_1-p2263072 | SNP    | C08        | 66.7     | 29800595 | 0.0134               | *                    |
| Bn-scaff_16231_1-p1176976SNPC0892.6207272710.0394*brPb-663376DArTC08103.1190133850.1216Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741Bn-scaff_22350_1-p80848SNPC08111.40.0741Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_17367_1-p64575SNPC08120.430245270.2164Bn-scaff_18607_1-p283263SNPC08120.430245270.2718Bn-scaff_15650_1-p714363SNPC091.21.88019870.2718Bn-scaff_15650_1-p308565SNPC090.0173128030.5827Bn-scaff_15650_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.4183685610.8907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bn-scaff_16361_1-p2750581 | SNP    | C08        | 67.1     |          | 0.0195               | *                    |
| brPb-663376DArTC08103.1190133850.1216Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741Bn-scaff_22350_1-p80848SNPC08111.40.0741Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p32839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_17367_1-p687815SNPC08120.430245270.2164Bn-scaff_18607_1-p283263SNPC08120.90.2718Bn-scaff_15650_1-p714363SNPC091.21.88019870.2718Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17307_1-p687815SNPC090.515806960.6803Bn-scaff_15650_1-p714363SNPC090.515806960.6803Bn-scaff_15650_1-p368565SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | brPb-660785               | DArT   | <i>C08</i> | 68.6     |          | 0.0167               | *                    |
| Bn-scaff_19242_1-p390109SNPC08108.6180650630.0741Bn-scaff_22350_1-p80848SNPC08111.40.0741Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p32839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_18607_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bn-scaff_16231_1-p1176976 | SNP    | C08        | 92.6     | 20727271 | 0.0394               | *                    |
| Bn-scaff_22350_1-p80848SNPC08111.40.0741Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_18607_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | brPb-663376               | DArT   | <i>C08</i> | 103.1    | 19013385 | 0.1216               |                      |
| Bn-scaff_16545_1-p172608SNPC08113.324058290.0741Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bn-scaff_19242_1-p390109  | SNP    | C08        | 108.6    | 18065063 | 0.0741               |                      |
| Bn-scaff_18275_1-p1067723SNPC08115.228887440.1308Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bn-scaff_22350_1-p80848   | SNP    | C08        | 111.4    |          | 0.0741               |                      |
| Bn-scaff_16273_1-p360866SNPC08119.00.2164Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bn-scaff_16545_1-p172608  | SNP    | C08        | 113.3    | 2405829  | 0.0741               |                      |
| Bn-scaff_18310_1-p332839SNPC08119.564352270.1696Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bn-scaff_18275_1-p1067723 | SNP    | C08        | 115.2    | 2888744  | 0.1308               |                      |
| Bn-scaff_17807_1-p364572SNPC08119.933576430.1696Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bn-scaff_16273_1-p360866  | SNP    | C08        | 119.0    |          | 0.2164               |                      |
| Bn-scaff_27765_1-p53066SNPC08120.430245270.2164Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bn-scaff_18310_1-p332839  | SNP    | C08        | 119.5    | 6435227  | 0.1696               |                      |
| Bn-scaff_17367_1-p687815SNPC08120.90.2718Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bn-scaff_17807_1-p364572  | SNP    | C08        | 119.9    | 3357643  | 0.1696               |                      |
| Bn-scaff_18607_1-p283263SNPC08121.88019870.2718brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bn-scaff_27765_1-p53066   | SNP    | C08        | 120.4    | 3024527  | 0.2164               |                      |
| brPb-660345DArTC08125.622619230.2718Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bn-scaff_17367_1-p687815  | SNP    | C08        | 120.9    |          | 0.2718               |                      |
| Bn-scaff_15650_1-p714363SNPC090.0173128030.5827Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bn-scaff_18607_1-p283263  | SNP    | C08        | 121.8    | 801987   | 0.2718               |                      |
| Bn-scaff_15650_1-p368565SNPC090.515806960.6803Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | brPb-660345               | DArT   | <i>C08</i> | 125.6    | 2261923  | 0.2718               |                      |
| Bn-scaff_17109_1-p373778SNPC091.4183685610.8907Bn-scaff_15650_1-p45061SNPC091.90.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bn-scaff_15650_1-p714363  | SNP    | C09        | 0.0      | 17312803 | 0.5827               |                      |
| Bn-scaff_15650_1-p45061 SNP C09 1.9 0.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bn-scaff_15650_1-p368565  | SNP    | C09        | 0.5      | 1580696  | 0.6803               |                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bn-scaff_17109_1-p373778  | SNP    | C09        | 1.4      | 18368561 | 0.8907               |                      |
| Bn-scaff_15650_1-p321251 SNP C09 2.4 1493349 0.6803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bn-scaff_15650_1-p45061   | SNP    | C09        | 1.9      |          | 0.7835               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bn-scaff_15650_1-p321251  | SNP    | C09        | 2.4      | 1493349  | 0.6803               |                      |

|                           | Marker |            | Position | <i>B. napus</i> physical | Chi <sup>2</sup> 1:1 | Chi <sup>2</sup> 1:1 |
|---------------------------|--------|------------|----------|--------------------------|----------------------|----------------------|
| Marker                    | type   | LG         | (cM)     | position                 | (p-value)            | Significance         |
| Bn-scaff_15650_1-p683404  | SNP    | C09        | 2.8      | 17345389                 | 0.5827               |                      |
| Bn-scaff_22835_1-p309344  | SNP    | C09        | 3.3      | 17583602                 | 0.6803               |                      |
| Bn-scaff_17109_1-p59759   | SNP    | C09        | 4.2      | 18705902                 | 0.8907               |                      |
| Bn-scaff_18424_1-p878895  | SNP    | C09        | 7.6      | 1891589                  | 0.4098               |                      |
| Bn-scaff_17339_1-p262780  | SNP    | C09        | 10.9     | 21144841                 | 0.3363               |                      |
| Bn-scaff_18326_1-p1144589 | SNP    | C09        | 11.3     | 26086220                 | 0.2718               |                      |
| Bn-scaff_17339_1-p292992  | SNP    | C09        | 11.8     | 21120874                 | 0.3363               |                      |
| Bn-scaff_17910_1-p126780  | SNP    | C09        | 14.6     | 33576423                 | 0.1308               |                      |
| Bn-scaff_17367_1-p9887    | SNP    | C09        | 15.1     |                          | 0.0993               |                      |
| Bn-scaff_20619_1-p306931  | SNP    | C09        | 15.6     | 2972845                  | 0.1308               |                      |
| Bn-scaff_16246_2-p75351   | SNP    | C09        | 16.1     | 31883285                 | 0.0993               |                      |
| Bn-scaff_19483_1-p121870  | SNP    | C09        | 16.5     |                          | 0.1308               |                      |
| Bn-scaff_15838_2-p186362  | SNP    | C09        | 17.0     |                          | 0.1696               |                      |
| Bn-scaff_21276_1-p345081  | SNP    | C09        | 17.9     | 35841715                 | 0.0993               |                      |
| Bn-scaff_17799_1-p2937790 | SNP    | C09        | 25.5     | 39679168                 | 0.0134               | *                    |
| Bn-scaff_15881_1-p118945  | SNP    | C09        | 26.0     | 39330784                 | 0.0091               | **                   |
| Bn-scaff_17554_1-p19888   | SNP    | C09        | 26.5     | 39720917                 | 0.0134               | *                    |
| Bn-scaff_19899_1-p651590  | SNP    | C09        | 28.8     | 40474372                 | 0.0195               | *                    |
| Bn-scaff_17028_1-p450579  | SNP    | C09        | 36.0     | 42936669                 | 0.0993               |                      |
| Bn-scaff_21841_1-p144151  | SNP    | C09        | 37.4     | 43109282                 | 0.0741               |                      |
| Bn-scaff_21841_1-p174651  | SNP    | C09        | 37.9     | 43128718                 | 0.1463               |                      |
| Bn-A10-p12810049          | SNP    | C09        | 39.8     | 42966699                 | 0.0728               |                      |
| Bn-scaff_15576_1-p225938  | SNP    | C09        | 43.1     |                          | 0.0394               | *                    |
| brPb-808246               | DArT   | С09        | 43.6     | 41099048                 | 0.0216               | *                    |
| Bn-scaff_19899_1-p356624  | SNP    | C09        | 44.7     | 40719229                 | 0.0091               | **                   |
| brPb-839212               | DArT   | <i>C09</i> | 56.0     | 32331167                 | 0.0741               |                      |
| E33M47-146D               | AFLP   | <i>C09</i> | 66.1     |                          | 0.6215               |                      |
| brPb-660506               | DArT   | <i>C09</i> | 71.1     | 13660845                 | 0.6803               |                      |
| E35M47-80D                | AFLP   | <i>C09</i> | 72.6     |                          | 0.4378               |                      |
| E32M47-285E               | AFLP   | <i>C09</i> | 74.7     |                          | 0.4261               |                      |
| E44M62-167E               | AFLP   | <i>C09</i> | 75.3     |                          | 0.2673               |                      |
| E35M62-167D               | AFLP   | <i>C09</i> | 75.8     |                          | 0.3293               |                      |
| Bn-scaff_20202_1-p179338  | SNP    | C09        | 77.2     | 1271394                  | 0.5827               |                      |
| Bn-scaff_17888_1-p437754  | SNP    | C09        | 77.7     | 15529668                 | 0.4922               |                      |
| Bn-A09-p15852129          | SNP    | C09        | 79.6     | 1452810                  | 0.8907               |                      |
| Bn-scaff_15650_1-p750450  | SNP    | C09        | 80.5     | 17284661                 | 0.8907               |                      |
| Bn-scaff_15650_1-p924603  | SNP    | C09        | 81.5     | 17078535                 | 0.8907               |                      |
| Bn-scaff_18100_1-p344652  | SNP    | C09        | 84.8     | 13975500                 | 0.5827               |                      |
| Bn-scaff_18100_1-p96955   | SNP    | C09        | 85.3     | 13737502                 | 0.6803               |                      |
| Bn-scaff_17174_1-p114224  | SNP    | C09        | 85.7     | 13322851                 | 0.7835               |                      |
| Bn-scaff_17174_1-p258626  | SNP    | C09        | 86.2     | 732717                   | 0.8907               |                      |
| Bn-scaff_17174_1-p272081  | SNP    | C09        | 86.7     | 727617                   | 0.7835               |                      |
| Bn-scaff_18839_1-p1092979 | SNP    | C09        | 87.2     | 12521285                 | 0.6803               |                      |

| Marker                    | Marker       | LG         | Position            | <i>B. napus</i> physical | $Chi^2 1:1$                | Chi <sup>2</sup> 1:1<br>Significance |
|---------------------------|--------------|------------|---------------------|--------------------------|----------------------------|--------------------------------------|
| E33M47-132D               | type<br>AFLP | <u> </u>   | <u>(cM)</u><br>91.1 | position                 | <u>(p-value)</u><br>0.1065 | Significance                         |
|                           |              |            |                     | 0195509                  |                            |                                      |
| Bn-scaff_17487_1-p1890044 | SNP          | C09        | 92.1                | 8175527                  | 0.2164                     |                                      |
| Bn-scaff_17487_1-p1909011 | SNP          | C09        | 92.6                | 8186841                  | 0.1696                     |                                      |
| Bn-scaff_17487_1-p1782018 | SNP          | C09        | 93.0                | 8067659                  | 0.2164                     |                                      |
| Bn-scaff_17487_1-p1258245 | SNP          | C09        | 94.0                | 336971                   | 0.1308                     |                                      |
| Bn-scaff_17487_1-p527387  | SNP          | C09        | 94.4                | 6790708                  | 0.1696                     |                                      |
| Bn-scaff_17487_1-p781216  | SNP          | C09        | 94.9                | 7096622                  | 0.1308                     |                                      |
| Bn-scaff_17190_1-p1119408 | SNP          | C09        | 100.6               | 4482056                  | 0.3363                     |                                      |
| Bn-scaff_17190_1-p1116406 | SNP          | C09        | 101.5               | 4479050                  | 0.4922                     |                                      |
| Bn-scaff_19783_1-p384442  | SNP          | C09        | 103.0               | 2854636                  | 0.6299                     |                                      |
| Bn-A09-p2419287           | SNP          | C09        | 103.4               |                          | 0.5355                     |                                      |
| Bn-scaff_16486_1-p88236   | SNP          | C09        | 107.8               |                          | 0.1133                     |                                      |
| E45M49-173E               | AFLP         | <i>C09</i> | 112.2               |                          | 0.6299                     |                                      |
| E35M62-233E               | AFLP         | <i>C09</i> | 113.2               |                          | 0.8886                     |                                      |
| brPb-671034               | DArT         | <i>C09</i> | 113.7               | 985076                   | 0.6299                     |                                      |
| brPb-660449               | DArT         | <i>C09</i> | 115.1               | 2058650                  | 0.5336                     |                                      |
| brPb-663692               | DArT         | <i>C09</i> | 115.6               | 2041777                  | 0.6788                     |                                      |
| Bn-A09-p2730673           | SNP          | C09        | 117.5               | 2894200                  | 0.5827                     |                                      |