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A B S T R A C T

In this thesis I present simulation-based studies of systems of self-
propelled particles in heterogeneous media. I consider the interaction
of particles with planar walls, single spherical obstacles or arrays of
randomly distributed obstacles. Active particles with different propul-
sion mechanisms and different interactions with each other and the
environment have been known to exhibit interesting universal phe-
nomena; however, in conducting a generic theory explaining such
phenomena we still require further investigation of different types of
active systems. The aim of our studies in this thesis is to shed some
light on the emergent behavior of individual or large collections of
active particles with repulsive excluded volume interactions and lin-
ear propulsion in the presence of environmental heterogeneities.

First, I describe the behavior of single active particles in the vicinity
of a simple environmental constraint: a planar wall. It is shown how
the activity increases the tendency of the particles to move along the
wall and spend long times in its vicinity. These results are consistent
with the behavior of a large class of biological and synthetic active
particles, reported previously. The distribution of the residence time
on the wall is found and its dependence on different parameters is
explored numerically.
Then I introduce spherical large obstacles to the system and extend
our observations to this case. It is illustrated how active particles tend
to reside longer on the obstacles as they flatten, and also how the res-
idence times are affected by our model parameters, as compared to
the case of a planar wall.

Next, I go on to study the collective behavior of active particles in
the presence of large obstacles. The accumulation and crystallization
of active particles around the obstacles are characterized: an interest-
ing phenomenon that has been previously found in different active
systems with repulsive interactions only.
I further describe a particular phenomenon of collective rotation of
active particles around the obstacles. Given the purely repulsive in-
teractions of particles with themselves and the obstacle, the absence
of any active torque on the particles, and the lack of any aligning or
synchronizing mechanism between the particles, such huge rotating
aggregates of particles is not a trivial state of the system. I explore
the origin of such rotations and using simple arguments explain why
they occur. Our suggested mechanism for driving the rotations also
describes some of their important properties such as the increase of
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their angular velocity as the rotations build up, and the scaling of the
total torque driving the rotating crystals by their mass.

Finally, I present some results on the behavior of active systems in
crowded environments. Increasing the crowdedness, the diffusion be-
comes non-Gaussian and slow. The decrease of the diffusion constant
with the obstacle density is a function of the activity. The effect of
activity on the particle’s exploration of the cages, made by the many
obstacles, is further investigated in this thesis.
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By mixing what they know and what they don’t know.

Then when they see vaguely in their fog something they recognize,
they think “Ah, I know that." And then it’s just one more step to “Ah, I

know the whole thing."
And their mind thrusts forward into the unknown

and they begin to recognize what they didn’t know before
and they increase their powers of understanding.

— Picasso, in Life with Picasso by Francoise Gilot and Carlton Lake
(Nelson, London, 1965)
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1
I N T R O D U C T I O N

1.1 active particles

What are we talking about, when we talk about active particles?
The notion “active", used by physicists, is introduced to contrast “pas-
sive" which refers to particles with no motion of their own. A float-
ing dust speck in water moves passively around, solely affected by
the solvent’s properties. The Brownian motion of the speck, run by
random collisions with the surrounding molecules, is an equilibrium
phenomenon well studied ever since it was first reported by Brown in
1827 and later theorized by Einstein (1905), Smoluchowski (1906), and
Langevin (1908). An active particle, in contrast to the floating dust
speck, owes its motion to self-propulsion: it extracts energy from the
environment to move in a dissipative medium. With this basic defi-
nition, living systems provide an excellent example of active matter:
They all consist of components that convert ambient or stored energy
into systematic motion. In fact the study of active systems is built
on the early attempts of the physicists to understand the motion of
living systems. Maybe one of the earliest steps (if not the earliest) to-
wards this understanding is the introduction of the notion of “persis-
tent random walk" by Fürth [2] in describing the motion of biological
agents in a fluid, based on his experiments. Later, the invention of the
tracking microscope by Howard C. Berg and his prominent works on
modeling the motion of Escherichia coli with the random walk the-
ory [3] built an important part of the theoretical basis of this new
field of study. He described the trajectories of E. coli (see Fig. 1.1) as
long straight runs (persistent motion of the bacterium along the same
direction) separated by tumbles (change of the direction) [4]. Purcell’s
inspiring paper[5] on the importance of shape and swimming mech-
anisms of microswimmers, is also certainly considered an insightful
piece of work which has, together with other works, further enriched
the groundwork of our today’s knowledge of active matter.
Living systems, as the examples of active matter, are not limited to
microorganisms. In fact many of the early models presented to study
self propelled particles, aimed at simulating the motion of macro-
scopic animals [6, 7]. Fish in the ocean, birds in the sky, and animal
herds on land are examples of such self-propelling systems. All these
systems are different in shape, size, propulsion mechanism, interac-
tion with each other and with their environments, but are similar with
respect to some characteristics which distinguish them from passive
systems.

1
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Most importantly, they are all out of equilibrium systems. The con-

Figure 1.1: Run-and-tumble motion of a wild type E. coli. The plotted trajec-
tory is a projection of the bacterium’s track in three dimensions.
According to [4] the cell swims along straight lines for long times,
then stops and tumbles, and then runs again. The tumbling time
is much smaller than the run time. Reprinted by permission from
[Springer Nature]: [Bacterial behaviour, H. C. Berg], Copyright
(1975).

stant uptake and dissipation of energy in such systems drives them
out of equilibrium and hence even in the absence of any interactions
with each other or the medium, they exhibit non-trivial behavior [8,
9]. Novel states of matter arise in interacting active systems, which are
absent in their equilibrium counterparts. Take a simple dense suspen-
sion of bacteria for example: the fluid can exhibit unusual rheological
properties [10], exhibit turbulent motion [11], the bacteria can self-
organize in complex patterns [12], swim in circles near surfaces [13]
and form a solid-like biofilm [14]. These are only some of such emerg-
ing collective effects in active systems that can not be predicted from
the dynamics of the individual particles.
Another important property shared by all self-propelled particles is
the persistence of their trajectories, as mentioned earlier. There is a
correlation between successive steps of an active particle. In other
words the particle remembers its orientation for some time, during
which it travels a finite distance (the persistence length) along its ori-
entation.

Active particles have attracted increasing attention in the last few
decades as they allow physicists to explore the involved physical pro-
cesses in evolutionary biology. Transport (diffusion or mixing), loco-
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motion, and taxis (interaction with chemicals, light, etc.) are some
basic features of life a general theoretical description of which is hard
to achieve, given the overall complexity of living matter. However,
the development of new technologies and the theoretical efforts on
quantifying the stochastic trajectories of animals have improved our
understanding of their dynamics, which not only increases our con-
trol over the biological processes in the body or our environment, but
also may shed some light on more fundamental questions regarding
life.

In the following sections, I introduce different types of active parti-
cles and their motility mechanisms. Then different models that have
successfully described distinct aspects of active systems will be ex-
plained. I will then move on from the individual dynamics of iso-
lated particles, and introduce the studies on the interaction of an ac-
tive particle with its environment. We will learn about the history of
the research on interacting active particles with different realizations
of heterogeneities in their media. Eventually the case of many active
particles and the emergent phenomena that arise from their collective
behavior will be discussed. In the last section I give an overview of
the contents of this thesis.

1.2 biological and artifitial examples

Active particles are ubiquitous in nature. Bacteria [15, 16], protozoa [17,
18], sperm cells [19, 20], and algae [21, 22] are some examples of mi-
croswimmers. Their self-propulsion is generated by flagella or cilia,
flexible lash-like appendages to cell bodies composed of several mi-
crotubules. The flagella have rotary, snake-like, or stroke-like mo-
tion in different animals. The helical motion of the flagella on Es-
cherichia coli for example, generates a thrust that pushes the cell from
the rear (pushers). Whereas a Chlamydomonas, with its two flagella
on the front, pulls itself forward through a breaststroke-like motion
(“pullers"). Pushers and pullers generate different flow fields around
them which need to be carefully calculated when the hydrodynamic
interactions between them is the subject of study.
How does a sperm cell find the egg in its journey through the female
cervix? How do bacteria find food? How does a dental plaque form?
How does a C. elegance move in a porous medium like soil? How do
parasites like Trypanosoma manage to swim in the bloodstream and
adapt their motion to the density of cells in blood [23]? Why does
flagella beating in algae cells like Chlamydomonas synchronize? Or
on the macroscopic scale, how do the fish or birds communicate in
order to form fish schools or bird flocks, where they move collectively
and aligned (see Fig. 1.2)? Can we describe the physical properties of
social interactions in real world swarms and flocks?
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These are some of the questions that physical scientists have been

Figure 1.2: An exhibition of polar order in a school of fish. Photo is taken by
the author.

trying to answer in the last few decades. To this end, minimal math-
ematical models that capture some of the emergent behavior in the
real systems are presented. Some of these models will be introduced
in the next section.
Furthermore, to realize some of the models suggested for the dynam-
ics of active particles and reproduce the behavior of motile biologi-
cal organisms, various types of artificial self propelled particles have
been designed in laboratories. A famous example for such systems in
the micro scale is synthetic Janus colloids (named after the two-faced
Roman god), where dielectric colloids are coated with two different
thin layers of catalytic materials on the two halves [24]. Immersing
these colloids in a H2O2 solution, the two halves decompose H2O2
into H2O and O2 differently and thus generate a local concentration
gradient that eventually leads to self-diffusiophoresis. The colloid is
hence self propelled along its orientation (the vector connecting the
two caps) which itself is subject to thermal rotational diffusion.
Some other examples of artificial active systems are active water droplets
(see [25, 26]), semi-flexible rods in a rotating magnetic field (see [27,
28]), and vibrated polar granular disks [29] or rods [30].
Synthetic self propelled particles not only facilitate our understand-
ing of real active systems, but also serve as a playground to enhance
our general knowledge of out of equilibrium systems. Besides, they
have direct valuable applications in health care and environment [31–
33].
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1.3 modeling of active motion

As briefly mentioned in the previous section, since the end of the
twentieth century different models have successfully described or
even predicted the observed phenomena in active systems. Among
all active particles in nature or laboratories microswimmers, small
objects that swim in viscous fluids, generate flow fields around them
and exhibit an explicit hydrodynamic coupling with the fluid. Mod-
els that consider only the observable effects of net motion, and not
the explicit hydrodynamic interactions, may not then be as successful
in describing the systems of microswimmers. Nevertheless, there are
numerous cases where hydrodynamics interactions do not play an
important role: Some of the examples are dry active systems [34], or
highly crowded media [35] where steric collisions may dominate long-
range hydrodynamic effects. Below I will introduce some of these
models which ignore the details of the swimming in the microscopic
level and yet are found to be considerably powerful in describing a
wide range of active systems.

Inspired by the Brownian motion of passive particles, an “active
Brownian particle" (ABP) moves with a constant velocity v along its
“orientation", n = (cosφ, sinφ), which is subject to rotational diffu-
sion. The dynamics, in the absence of interactions, is run by the fol-
lowing stochastic differential equations:

ẋ = v cosφ+
√
2DTζx

ẏ = v sinφ+
√
2DTζy

φ̇ =
√
2DRζφ,

(1.1)

where ζx, ζy, and ζφ are white Gaussian noise with zero mean and
correlation δ(t). DT and DR represent the translational and rotational
diffusion coefficient of a passive particle respectively; they are func-
tions of the temperature of the fluid and particle’s geometry only and
are obtained for a passive particle. Collisions between such particles
is usually assumed to be repulsive. By increasing the self-propelling
speed v, the particle performs a persistent motion along its orienta-
tion at small times. At long times the motion is diffusive due to the
rotational diffusion, with a systematic enhancement of the effective
translational diffusion coefficient with increasing v [36]. Active Brow-
nian particles can describe the dynamics of Janus particles fairly well.

The “run-and-tumble" dynamics, describing the motion of some
bacteria and certain types of algae [37] which move in a sequence
of “runs" interrupted by Poisson-distributed “tumbles" (rapid change
of direction), is another extensively used model in active matter. It
has been shown that the long-time diffusion properties of run-and-



6 introduction

tumble particle (RTP) are equivalent to those of active Brownian par-
ticles, albeit their short-time dynamics are different [38, 39].

There are several more general models that consider underdamped
dynamics, finite-time correlations in the orientational dynamics, ac-
tive torque [40, 41], or many other scenarios for the one-particle mo-
tion in active systems. For example the dynamics of colloidal parti-
cles in a bacterial bath has been regarded as an Ornstein-Uhlenbeck
process, where the magnitude of the colloid’s velocity is no more con-
stant, but multiple collisions with the bacteria gradually change its
direction and amplitude [42]. Or if instead, the dynamics of the orien-
tation is regarded as an Ornstein-Uhlenbeck process, the finite-time
correlations in the orientational dynamics can affect the particle’s dif-
fusivity relative to the cases of memoryless change of orientation in
ABP and RTP [43].

In the presence of other particles, the mutual interaction of parti-
cles can not only change the single particle motion, but also give rise
to unexpected collective dynamics. That makes the adjustment of the
particle-particle interaction, an important part of a model.
Various types of interactions, mainly hydrodynamic and steric (excluded-
volume or soft), have been worked out in the computational study
of active systems. A particularly widespread phenomena in active
systems is the alignment of neighboring particles, which can lead to
flocking or swarming. This suggests the introduction of aligning inter-
actions between particles. Hydrodynamic interactions [44, 45], steric
interaction between self propelled rods [46] or even disks [47], or an
explicit adaptation of the orientation to the average direction of mo-
tion of the particles in their local neighborhood [7] are some known
possibilities to induce particle-particle alignment and describe the col-
lective behavior of different classes of active systems to a very good
extent.

1.4 interaction with environmental geometry

Active particles, biological or synthetic, hardly ever live in homoge-
neous environments; they rather move in the presence of physical
boundaries. Can we describe the interaction of single active particles
with walls or obstacles using simple physical rules? Can we simulate
the natural phenomena arising from the collective behavior of active
particles near physical boundaries? Have motile biological systems
developed certain moving mechanisms to navigate better in complex
environments like highly crowded cytoplasm or porous structure of
soil?
These are some of the primary questions regarding the motion of self
propelled particles in heterogeneous media. As a short first step in
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answering some of these questions, below I focus on the history of
studies on the role of heterogeneity in active systems and show how
the interplay of activity and interactions with boundaries can give
rise to phenomena that are absent in passive systems.

1.4.1 Interaction with walls

The study of interaction of active particles with walls can be traced
back to 1963, when Rothschild observed the accumulation of sperm
cells near the walls of a container. A similar effect was observed later
with bacteria [48] and algae [49]. This was a peculiar phenomena ex-
clusively observed in active systems. Passive systems at equilibrium
require large attraction strength to reproduce somehow similar ef-
fects.
There have been two main explanations for these effects. One takes
long-range hydrodynamic interactions into account [48]: the far-field
flows generated by pusher microswimmers induce an effective attrac-
tion to the wall and a torque that tends to turn the orientation toward
parallelism.
The other approach rationalizes the observed behavior based on con-
tact interactions with the wall[50, 51]. In this picture an elongated
microswimmer travels along the wall after hitting it, due to steric
forces and torques exerted by the wall, until the rotational diffusion
runs it away. Spherical particles have also been shown, through this
approach, to exhibit long residence times traveling on flat walls due
to the persistence in their motion. The gist of this mechanism is that in
collisions with a wall the orientation does not change: Although the
normal component of the velocity is reflected, the active force along
the orientation brings it back towards the wall. Simulations based on
this approach have reproduced the experimental results for E. coli
and bull spermatozoa swimming near walls [50].
Several analysis and investigation of these two explanations suggest
that hydrodynamics plays a minor role and contact interactions are
more dominant [22] in cell-cell interactions in dilute systems and also
in cell-surface interactions.

1.4.2 Capture of active particles by obstacles

Obstacles, being a pile of dead non-motile cells in a bacterial colony,
heavy passive particles or polymers in blood, or an apparatus imple-
mented into artificial active systems in order to guide/sort/rectify
the particles’ motion, can have more complex geometries than a flat
wall and hence may give rise to unexpected single-particle or collec-
tive behavior.
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Similar to flat walls, active particles are expected to experience long
residence times on large spherical obstacles. This has been observed
in bacterial [52] and synthetic active systems [53] and the trapping
times have been shown to increase with the obstacle’s size and the
inverse of particle’s rotational diffusion constant.
In contrast to passive particles, the persistence in active particles’ mo-
tion opens up the possibility of controlling their motion and harness-
ing their power. In the simulations done by Kaiser et al. [54] the in-
teraction of active rods with a stationary large wedge is studied. It
is found that particles can be best trapped in the wedge for an in-
termediate range of the wedge angle. Such trapping of self-propelled
rods is also experimentally observed in systems of sperms cells [55]
and artificial rod swimmers [56]. Furthermore Leonardo et al. [57]
have exploited the bacterial motion to drive a microdevice: They have
reported a rotation of their designed micro ratchet immersed in a
bath of bacteria (Fig. 1.3). The asymmetry of the gear together with
the persistence of the self propelled rods are the key points in run-
ning the rotations; the bacteria sliding towards the concave corners
get trapped there and insert local torque on the gear until a tumbling
event reorient and free them, whereas those orienting towards the
peaks of the gear slide along the wall and escape it when they get to
the top. Fig. 1.4 illustrates these two cases.

Figure 1.3: The rotation of an asymmetric microgear immersed in a bacterial
solution. The yellow circle is to help tracking the rotation. Figure
is from [57].

Figure 1.4: Demonstration of the mechanism through which the asymmetric
shape of the gear results in the trapping of self-propelled parti-
cles in the concave corner and induces a finite torque. Figure is
from [57].
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1.4.3 Extended landscape of obstacles

The motion of active particles may also be highly influenced by the
presence of many obstacles. Such problems are studied experimen-
tally [58–61] and also numerically for run-and-tumble particles [62,
63], particles with aligning interactions [64] and chiral particles [65].
Below I go over some examples revealing peculiar results of the inter-
play of activity, inter-particle interactions, and heterogeneity.

In ref. [62] a system of run-and-tumble particles (RTP) subject to
a drift force is simulated in the presence of stationary randomly dis-
tributed obstacles (Fig. 1.5). It has been shown in [62] that the trans-
port is maximized at an optimum value of activity (the run length
in RTP). For very small run length, corresponding to small activity,
particles get clogged by the obstacles and the net transport is very
small. As the activity is raised, the clusters behind the obstacles tend
to break and let particles flow along the drift force. However at ex-
tremely long run lengths, corresponding to large activities, the trans-
port is reduced again, due to the formation of large living crystals
which facilitates the pinning of large number of particles by only a
few obstacles. Cluster formation and phase separation of the system
into a crystalline solid and a dilute gas is a widespread phenomenon
observed in active systems and will be discussed in the next section.

Figure 1.5: System of active particles in the presence of pinned obstacles,
simulated in [62]. Blue and red disks correspond to obstacles
and particles respectively. The gray lines show the trajectories
over a period of time. Reprinted figure with permission from [C.
Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 90, 012701,
2014.] Copyright (2014) by the American Physical Society.

Chepizhko et al. have considered in [64] a model with aligning in-
teractions between active particles in a heterogeneous environment of
obstacles. They have modeled the obstacles as series of force centers
in the system which deflect the velocity vector of the approaching
particles and have considered a noise term in the particle alignment
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direction. They have observed that maximal coherent motion is found
for an optimum value of the noise term. Although in the absence of
obstacles increasing the noise randomizes the motion and moves the
system away from the state with coherent motion, the presence of
obstacles hinders any coherent motion when the noise term is small.
Increasing the noise to some intermediate value then facilitates parti-
cles escape from the traps and induces ordering of particles. Further
increase of the noise diminishes the collective motion as expected
from the obstacle-free case.

Random energy landscapes for active particles have been generated
in the lab by using speckle patterns [58], or fabricated micro struc-
tures as obstacles [59–61]. In systems with purely repulsive particle-
obstacle interactions, the obstacles are observed to induce a slow
down of motion and result in anomalous diffusion (subdiffusion) at
intermediate times. Ref. [60], realizing a random Lorentz gas that
undergoes a localization transition at the void percolation threshold,
provides a playground to answer questions similar to those raised in
chapter 5.

1.5 collective behaviour and pattern formation

Active systems, from the scale of bacterial colonies to the scale of an-
imal groups, exhibit similar collective phenomena such as swarming,
pattern formation, turbulence, or order-disorder transitions. Ignoring
the possibly psychological messages that they may transfer, a physi-
cist’s approach for understanding such collective behavior is to con-
sider a minimal model for particles’ interactions. We have reviewed
in previous sections that particles with explicit or implicit aligning in-
teractions tend to form large bundles of coherently moving particles.
This is the case in Viscek-like models [7] (describing e.g. swarming
of bird flocks) or the result of the combination of persistence and
hard-core repulsion in active rods [30, 66] (describing e.g. swarming
in elongated bacterial colonies). However such collective behavior is
observed in numerical and experimental studies of systems of spher-
ical particles with no alignment rule as well. In this section I explain
the out of equilibrium collective effects in several active systems and
the proposed mechanisms to describe them.

1.5.1 Phase separation and crystallization

Spontaneous formation of clusters in the presence of attractive inter-
particle interactions is an old observation in systems in equilibrium.
However, active systems exhibit clustering at moderate densities even
when the interactions are purely repulsive. This phenomena in sys-
tems with no alignment between particles was only recently predicted
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theoretically [67–70] and realized in laboratories [71–73].
Such systems are found to exhibit an athermal clustering instability
to a phase-separated regime, which can be understood in terms of a
mean-field model with the propulsion velocity decreasing with the
local density. In this model if the velocity decreases fast enough with
the density, the homogeneous phase turns out to be unstable [67].
Such a phase separation can alternatively be explained based on the
“self-trapping" of particles: Two colliding active particles, block each
other for a while, due to the persistence of their motion. Collision of
other particles with this small cluster leads to its growth. A particle
on the edge of such a cluster needs a time ∼ 1/Dr to re-orient and es-
cape the cluster (see Fig. 1.6). Therefore depending on the ratio of the
collision rate and the rotational diffusion Dr, the stable steady state
corresponds to a homogeneous solution with small dynamical clus-
ters, or growing clusters until the systems is separated into a large
solid cluster and a dilute gas[70].
The solid phase is not static and is constantly changing its shape
through exchanging particles with the diluted phase [71].
One may naively expect that activity destabilizes and ruptures the ag-
gregates, just like thermal fluctuations do. But on the contrary, such
motility-induced clustering is enhanced by increasing the activity[69]
which indicates that an “effective temperature" in an equilibrium sys-
tem cannot describe this effect.

Figure 1.6: (a) Cluster formation in a suspension of colloidal Janus parti-
cles [71]. The indicated particle by the black arrow leaves the clus-
ter as its orientation points away from it (left), and gets replaced
by another particle (right). (b) Demonstration of self-trapping:
An active particle on the cluster’s boundary is trapped until its
orientation changes due to rotational diffusion and points out-
wards. Reprinted figure with permission from [Ivo Buttinoni, et
al.,Phys. Rev. Lett. 110, 238301, 2013.] Copyright (2013) by the
American Physical Society.
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The dense phase in the phase-separated active systems mentioned
above, is susceptible to crystallization [74], as expected from dense ag-
gregates of monodisperse spheres. The sixfold-symmetry of the static
structure factor of the active clusters in two-dimensional systems, in-
dicating the hexagonal order, has been observed in computational [69,
74] (see Fig. 1.7) and experimental [71, 73, 75] studies of such systems.
Such active crystals are unique, as they are held together by active
forces alone, and exhibit differences from equilibrium crystals; e.g.
their melting differs from their passive counterpart [74, 76]. There are
also observations of honeycomb-like clusters for flagellated marine
bacteria [77] which was later explained through the generic analysis
of active crystals by Löwen et al. [76, 78].
The active crystals, also known as “living crystals", are not static: They
form, translate, rotate, and split constantly. Below I introduce a spe-
cial dynamics exclusively observed in such active crystalline cluster.

Figure 1.7: The static structure factor, S(k) = 1
N 〈Σije

ik.rij〉, of a large cluster
in simulations of [69]. By increasing the activity (Péclet number
Pe), the liquid-like isotropy changes to a sixfold-symmetry, indi-
cating the establishment of crystalline order within the cluster.
Reprinted figure with permission from [G. S. Redner, et al.,Phys.
Rev. Lett. 110, 055701, 2013.] Copyright (2013) by the American
Physical Society.

1.5.2 Collective rotation of active particles

Since the observation of single sperm cells’ entrapment at surfaces [19],
a great number of researches have been devoted to understanding
the collective behavior of such cells near surfaces. A particular be-
havior is the organization of sperm cells into arrays of vortices near
planar surfaces at high densities [20]. Such a collective rotation of
several cells in a cluster around a common center has been explained
based on the hydrodynamic coupling of the sperm tails [20] and re-
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produced computationally assuming inter-particle attractive and re-
pulsive forces [79].
The study of rotating aggregates of active particles have attracted
much attention ever since, and several mechanisms have been pro-
posed to run the rotations, depending on the single particle propul-
sion mechanism and inter-particle forces.
Self-assembled microrotors are formed in systems of mutually attract-
ing motile bacteria [80] due to the residual net torque exerted by the
bacteria’s flagella located on the surface of the cluster. Schwarz-Linek
et al. [80] claim that if each of the N bacteria on the surface exerts a
torque of magnitude T0 on the cluster, assuming that these torques
are randomly oriented, the total torque rotating the cluster is given
by Ttot ≈

√
NT0. Their analytical calculations, ignoring the effects of

hydrodynamics, compares well with the result of their experiments.
A more drastic measurement of the rotation of active clusters sug-
gests that in the presence of repulsive inter-particle interactions and
linear self-propulsion only, dumbbellar active particles (in contrast to
spherical ones) can form rotating aggregates [81, 82]. The dumbbell’s
orientations are essentially quenched in dense clusters due to steric
interactions in the form of spirals and hence the sum of individual
torques exerted by each particle in the cluster gives rise to a finite net
torque.
Rotating crystals of active particles have also been observed in sys-
tems with internal torques. Experiments on T. majus bacteria [83]
that rotate upon striking surfaces (see Fig. 1.8) and Janus magnetic
particles that rotate in the presence of rotating magnetic fields [84] re-
veal collective rotation of crystalline clusters of such particles, which
arises from the hydrodynamic effects leading to the synchronization
of neighboring particle’s rotations. Simulations of rationally driven
spinners of concave shape also exhibit rotating crystals at large enough
packing fraction and large active torque [41]. The gear-like shape
of the particles together with the self-propelling torque gives rise
to this phenomenon in [41], explaining the rotating aggregates of
rotationally-driven active particles in the absence of hydrodynamic
effects.

A particular form of rotating crystals is the one we observe [85]. I
will show in chapter 4 that spherical particles with repulsive interac-
tions and linear propulsion only, can exhibit spontaneous collective
rotations in the presence of large obstacles.

1.6 thesis overview

This thesis is arranged in the following chapters. In chapter 2 I intro-
duce the model we use for active particles and through some exact
calculations point out the importance of different model parameters. I
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Figure 1.8: Rotation of a crystal composed of eight T. Majus bacteria [83].
(a)-(b)-(c) are separated by 0.17 s. (d)-(f) is the result of analytical
calculations which governs the dynamics of particles assuming
an effective inter-particle force. Reprinted figure with permission
from [A. P. Petroff, et al.,Phys. Rev. Lett. 114, 158102, 2015.] Copy-
right (2015) by the American Physical Society.

further explain the details of our simulation techniques and show the
comparison of simulation results and exact solution of some quanti-
ties in dilute systems. In chapter 3 I explore the effect of boundaries,
planar walls or large spherical obstacles, on the single particle dynam-
ics in our active system. Active particles are found to experience long
residence times on the obstacles (as predicted by the literature), the
dependence of which on our model parameters and collision proper-
ties are discussed. The collective behavior of particles in the presence
of large obstacles is studied in chapter 4, where I present the crystal-
lization of active particles on the obstacles and the new phenomenon
of the crystal’s systematic rotations. We develop a minimal argument
to describe the rotations and find an estimation for the onset of ro-
tations, as well as the crystal’s rotating velocity. Chapter 5 focuses
on the dynamics of particles in highly crowded environments. Given
the tendency of active particles to linger at the surfaces, the effect
of activity on the transport in such systems is not trivial. This ques-
tion, or in other words the role of activity in escaping from the local
cages surrounded by obstacles, is investigated in this chapter. Finally
in chapter 6 I conclude and introduce part of our studies that are yet
to be pursued.



2
M O D E L A N D M E T H O D S

In this chapter we describe how we model active particles analytically.
We further explain the implementation of our model through com-
puter simulations. Different simulation techniques and tools that we
have utilized are discussed and detailed calculation of several quanti-
ties that will be measured in this work, is given.

2.1 model

We consider the particles in our system as hard spheres of mass m,
moment of inertia I and radius Rp moving in a fluid in 2D. Self-
propulsion of a particle is achieved through an active force, madr,
along its “orientation". The orientation of a particle,

n = (cosφ, sinφ), (2.1)

is specified by an angle φ that is initially chosen arbitrarily and is sub-
jected to changing due to its rotational diffusion. The motion in the
fluid is both rotationally and translationally damped with drag coef-
ficients α and γ respectively. Particles undergo hard-core collisions
which reflect the normal component of velocities and leave the mag-
nitude of the translational and rotational velocity unchanged (elastic
non-dissipative collisions). The orientations are untouched in the col-
lisions as well. One can then describe our rotational dynamics as

Iω̇(t) = −αω(t) +
√
νrζ(t), (2.2)

where ζ(t) is a white Gaussian noise (〈ζ〉 = 0, 〈ζ(t)ζ(t′)〉 = δ(t− t′)).
For a disk with uniform distribution of mass, I can be written in
terms of the mass and radius as I = 1

2mR
2
p. However we keep I as

an independent parameter to allow for non-uniform distribution of
mass which provides us with the opportunity of studying the under-
damped regime as well as the overdamped (with I→ 0) regime.
Translational motion can similarly be described as

mv̇(t) = −γv(t) +madrn(t) +m
∆v
∆t

|coll. (2.3)

Choosing the radius of particles (Rp = 1) and their mass (m = 1) as
the unit of length and mass respectively, we pursue de-dimensionalization
of our equations of motion. Throughout this work, we take I = 1

unless said otherwise. Given all the parameters, α,γ,νr, and adr de-
termining our timescale is not trivial at this point. One should note
that the initial energy of the system does not set the timescale in our

15
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simulation, and is relaxed to the steady-state energy after adequate
number of collisions.
We consider 1/α as our unit of time and define dimensionless velocity
and angular velocity as functions of the dimensionless time t̃ = αt:
ṽ(t̃) =

v(t)
αRp

and ω̃(t̃) =
ω(t)
α . With this definition, the derivatives

with respect to the dimensionless time of these quantities are

d

dt̃
ṽ(t̃) =

1

α2Rp

dv(t)
dt

, (2.4)

d

dt̃
ω̃(t̃) =

1

α2
dω(t)

dt
. (2.5)

We furthermore define a noise term as a function of the dimension-
less time, ζ̃(t̃) =

ζ(t)√
α

, which is a white Gaussian noise with delta
correlation in the dimensionless time:

〈ζ̃(t̃1)ζ̃(t̃2)〉 =
1

α
〈ζ(t1)ζ(t2)〉

=
1

α
δ(t1 − t2)

= δ(t̃1 − t̃2).

(2.6)

Now considering the fact that γ and α both are functions of the vis-
cosity and the geometry of particles only, we can assume that γ = cα

(where c is a function of the radius of particles only 1). The above
equations of motion can then be rewritten as

∂

∂t̃
ṽ(t̃) = −

c

m
ṽ(t̃) +

√
x̃n(t̃) +

∆ṽ
∆t̃

|coll, (2.7)

I
∂

∂t̃
ω̃(t̃) = −ω̃(t̃) +

√
ỹζ̃(t̃), (2.8)

where x̃ = a2dr
α4R2p

and ỹ = νr
α3

.
We can now remove the tildes and rename the dimensionless quanti-
ties to eye-friendlier ones, considering that we takem = 1 and Rp = 1:

v̇(t) = −cv(t) +
√
xn(t) +

∆v
∆t

|coll

Iω̇(t) = −ω(t) +
√
yζ(t)

(2.9a)

(2.9b)

with x =
a2dr
α4

and y = νr
α3

. Hence we have shown that our model can
be described by just the two parameters x and y. This is confirmed
by our simulation results. Fig. 2.1 compares quantities in several dif-
ferent systems with similar x,y. By de-dimensionalizing the x-axis
(dividing it by our unit of time) all the curves in each figure fall on
the top of each other. Detailed explanation of the simulations we used
for plotting the figures below, will come in the next section.

1 Calculation of c in 2D is not viable through Stokes equations and one may instead
consider particles as spheres bounded to move on a plane in a thin sheet. This as-
sumption allows a finite estimation for c (function of the thickness and viscosity of
the sheet [86]). We take c = 1 for simplicity.
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Figure 2.1: Comparison of (top) the mean square displacement and (bottom)
〈v(t+τ).n(t)〉
〈v(t).n(t)〉 , which measures the fidelity of the velocity to the

initial orientation, in different systems with x = y = 10.

2.2 angular correlations

The Langevin equation for rotational motion, Eq. 2.9b, has a well
known solution and predicts the observables regarding particles’ ori-
entations exactly. Namely an observable, which is essential in obtain-
ing the velocity, translational energy or other quantities related to
the displacement of particles, is the autocorrelation of the noise in
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Eq. 2.9a: 〈n(t)n(t′)〉. In order to calculate it, the first step is to find the
mean square angular displacement (MSAD):

〈(φ(t) −φ(0))2〉 = 〈
∫t
0

ω(t1)dt1

∫t
0

ω(t2)dt2〉

=

∫t
0

∫t
0

〈ω(t1)ω(t2)〉dt1dt2,
(2.10)

where ω(t) = ω(0)e−t/I +
∫t
0

√
y

I ζ(t1)e
−
t−t1
I dt1. Therefore we need

to calculate 〈ω(t1)ω(t2)〉 first. In the steady state, when the initial
velocities are not important any more:

〈ω(t1)ω(t2)〉 =
y

I2
e−

t1+t2
I

∫t1
0

∫t2
0

δ(t′1 − t
′
2)e

t′
1
+t′
2

I dt′1dt
′
2

=
y

2I
(e−

|t1−t2|
I − e−

t1+t2
I ).

(2.11)

Using the calculated value of 〈ω(t1)ω(t2)〉 in Eq. 2.10 and noting that
the second term in Eq. 2.11 vanishes in the steady state, we find that

〈(φ(t) −φ(0))2〉 = y

2I

∫t
0

∫t
0

e−
|t1−t2|
I dt1dt2

= y
[
t− I(1− e−t/I)

]
.

(2.12)

The autocorrelation of the x component of the noise in Eq. 2.9a is

〈cosφ(t) cosφ(0)〉 = 1

4
〈(eiφ(t) + e−iφ(t))(eiφ(0) + e−iφ(0))〉

≈ 1
2
〈ei(φ(t)−φ(0))〉

(2.13)

at large time t. Since φ has a Gaussian distribution,

〈ei(φ(t)−φ(0))〉 = e−
1
2 〈(φ(t)−φ(0))2〉. (2.14)

Consequently we have

〈cosφ(t) cosφ(0)〉 = 1

2
e−

1
2 〈(φ(t)−φ(0))2〉

≈ 1
2
exp

(
−
y

2

[
t− I(1− e−t/I)

])
.

(2.15)

In the absence of collisions, having the exact value for the autocorre-
lation of the noise in the equation for translational motion, calculation
of observables like

〈vx(t) cosφ(t)〉 =
∫t
0

√
xe−(t−t1)〈cosφ(t1) cosφ(t)〉dt1 (2.16)
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seems plausible. However, given the complicated form of 〈cosφ(t1) cosφ(t)〉
in Eq. 2.15, carrying out the integration in e.g. Eq. 2.16 is not straight-
forward and demands increasingly more effort for more complicated
integrals. Therefore we make the following approximation:

〈(φ(t) −φ(0))2〉 =

0 t < I,

yt− yI t > I
(2.17)

A comparison of the exact value and our approximation for 〈cosφ(t) cosφ(0)〉
is illustrated Fig. 2.2 for I = 1 and y = 1 (left) and y = 0.1 (right). The
approximation improves by decreasing y.
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Figure 2.2: Comparison of the exact value for 〈cosφ(t) cosφ(0)〉 derived
from Eq. 2.15 (blue) and our approximation based on Eq. 2.17

(red). In the top figure y = 1 and in the bottom one y = 0.1.

2.3 analytical approximations

In Dilute systems, where the collisions can be neglected in the equa-
tions of motion (Eq. 2.9a), we use the above approximation (Eq. 2.17)
to find

〈vx(t) cosφ(t)〉 =
√
x

2
e−t

[∫t−I
0

et1e−y
t−t1
2 eyI/2dt1 +

∫t
t−I

et1dt1

]

=

√
x

2
e−t

[
eyI/2e−yt/2

e(1+y/2)(t−I) − 1

1+ y/2
+ et − et−I

]
(2.18)
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Hence as t→∞
〈v.n〉 =

√
x

1+ y/2

[
e−I + (1+ y/2)(1− e−I)

]
, (2.19)

Similarly 〈v2〉 can be analytically estimated:

〈v2x〉 = x
∫t
0

∫t
0

dt1dt2e
−(t−t1)e−(t−t2)〈cosφ(t1) cosφ(t2)〉

= 2x

∫t
0

dt1e
−(t−t1)

∫t1
0

dt2e
−(t−t2)〈cosφ(t1) cosφ(t2)〉

=
2x

2

∫t
0

dt1e
−(t−t1)

[∫t1−I
0

dt2e
−(t−t2)e−y

t1−t2
2 eyI/2 +

∫t1
t1−I

dt2e
−(t−t2)

]

= xe−2t
∫t
0

dt1

[
eyI/2(e2t1−I(1+y/2) − et1(1−y/2))

1+ y/2
+ (e2t1 − e2t1−I)

]

= xe−2t

eyI/2−I(1+y/2) 12(e2t − 1) − eyI/2 e(1−y/2)t−11−y/2

1+ y/2
+
1

2
(e2t − e2t−I)


=

x

1− y2/4

[
e−I

1

2
(1− y/2)(1− e−2t) − eyI/2(e−(1+y/2)t + e−2t)

+
1

2
(1− y2/4)(1− e−I)].

(2.20)

Hence at large t

〈v2〉 = x

1+ y/2

[y
2
(1− e−I) + 1

]
. (2.21)

Carrying out similar calculations enables us to approximate quanti-
ties like rotational and translational diffusion coefficient, energy, and
fidelity of velocity to the orientation of a particle. In the limit of I→ 0,
when

〈cosφ(t) cosφ(0)〉 = 1

2
e−

y
2 t, (2.22)

the result of such calculations are presented below:

Dr =
y

2
, (2.23)

Dt =
x

c2y
, (2.24)

〈ω2〉 = y

2
(2.25)

〈v2〉 = x

c(c+ y
2 )

, (2.26)

C = 〈v.n〉/
√
〈v2〉 =

√
1

1+ 1
2cy

, (2.27)
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where the translational and rotational diffusion constants are defined
as Dt = limt→∞ ∆r2

4∆t and Dr = limt→∞ ∆φ2

2∆t respectively. The latter in
the list above, is the quantity which we call the “activity parameter".
1/y is a measure of the activity, such that the correlation between ve-
locity and orientation approaches its maximum value of 1 as y → 0.
The other control parameter, x , is the analogue of the temperature in
a passive system.
The limit of a passive particle is obtained by taking y → ∞ while
keeping 〈v2〉 fixed. In that limit, the persistence time of the noise
(
√
xn) in Eq.2.9a goes to zero, while the amplitude increases corre-

spondingly, resulting in white noise:

lim
x,y→∞ xe−y|t−t′| ∼ δ(t− t′), (2.28)

where δ(t) is the Dirac delta function.

2.4 simulation

In this section I elaborate on the implementation of our model in com-
puter simulations. Designing the heterogeneity of the medium and
technical detail in carrying out measurements are further discussed
in this section.

We simulate Eq. 2.2 and 2.3 through an event driven algorithm,
described in [87] in a periodic square box of size L with Np parti-
cles at a packing fraction φp. The active acceleration, adrn, is imple-
mented by kicks at regular time intervals τdr = 0.1α, which changes
particle’s velocity by an amount adrτdr along its momentary orienta-
tion. Simultaneously the rotational velocity is changed by a random
amount, ωdr, drawn from a Gaussian with zero mean and variance
〈ω2dr〉 = νrτdr. Two particle collisions are hard core elastic with no
change of the orientation or angular velocity.
Our simulations in chapter 4.3, were done on graphical processing
units (GPUs) with the HOOMD-blue software package [88, 89], with
the kicks being substituted by a constant active force. Particles in
these MD simulations experience soft interactions, namely through
the conservative part of a DPD potential. The corresponding spring
constant, Ks, is chosen large compared to the parameter x (first de-
fined in Eq. 2.9a) in order to keep the overlap of particles in collisions
small (∆x

2

R2p
=
〈v2〉
R2p

m
Ks
� 1) and be consistent with our assumption of

hard particles. Equivalent systems are realizable by a proper choice
of the corresponding parameters in the two programs. Fig. 2.3 com-
pares the mean square displacement of two similar systems simulated
by our event-driven program and HOOMD. The agreement is almost
perfect and the later is considerably faster as it runs in parallel and
on GPU.
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Figure 2.3: A comparison of the results produced by our own program,
“Kugeln", and HOOMD. As we can see in this figure a proper
choice of corresponding parameters can generate equivalent sys-
tems, while HOOMD is much faster specially in dense systems
due to its parallel computing.

2.4.1 Implementation of obstacles

We implement the heterogeneity by means of immobile spherical ob-
stacles of radius Ro. Particles experience the same interaction with
obstacles as with the other particles. In chapter 5 an active Lorentz
model is discussed thoroughly in the first section. The obstacles in
this section are initially inserted randomly in the system with the
only constraint that they do not overlap. Different scenarios for the
geometry of the obstructions leads to various collective behavior of
active particles and our goal in the next chapters is to try to shed
some light on this issue.

2.4.2 Measurements

Before proceeding to studying the dynamics of active particles in dif-
ferent heterogeneous media, it is instructive to compare some predic-
tions of our theory model to the simulation results in dilute systems
(where collisions that are ignored in the analytical approach are rare).
The results presented below, also develop our intuition about the sig-
nificance of different model parameters.
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2.4.2.1 Velocity along the initial orientation

Starting from Eq. 2.22 our analytical calculations suggest that in the
steady state (t→∞),

〈v(t+ τ) · n(t)〉 =
√
x[
e−

y
2τ

c− y
2

−
y

c2 − y2

4

e−cτ]. (2.29)

Hence, we can write the quantity plotted in Fig. 2.4 as

VCF(τ) =
〈v(t+ τ) · n(t)〉
〈v(t) · n(t)〉

=
(c+ y

2 )e
−y
2τ − ye−cτ

c− y
2

. (2.30)

The averaging in numerical analysis is over the particles as well as
time. In other words,

〈v(t+ τ) · n(t)〉 = 1

T
ΣtTt=t1,t2,...

1

Np
Σ
Np
i=1vi(t+ τ) · ni(t). (2.31)

VCF(τ) measures the average alignment of particle’s orientation with
its velocity at a later time and hence vanishes at large times, when the
velocity completely loses its correlation with the previous orientation.
At small times however, as long as the orientation has not changed
much, driving leads to the increase of velocity along n(t). The time

when the slope of this quantity changes sign ( ddτVCF(τ)
∣∣∣∣
τ0

= 0) can

be exactly calculated:

τ0 =
1

y
2 − c

ln(
y/2+ c

2c
), (2.32)

as well as the height of the corresponding maximum in VCF(τ):

VCF(τ0) = 2e
−cτ0 = 2(

c+ y/2

2c
)

c

c−
y
2 . (2.33)

Equations 2.32, 2.33 confirm that the peaks in this quantity occur at
smaller times and with larger height as y increases, as one can see
in Fig 2.4. Differences between the theoretical (dashed lines) and sim-
ulation arguments in this figure are due to collisions and have been
seen to vanish in very dilute systems.
We have defined activity as the parameter that measures the align-
ment of velocity and orientation of a particle (Eq. 2.27) and have pre-
dicted it to decrease with y, the rotational diffusion constant (Eq. 2.23).
Fig. 2.4 confirms that such a definition leads to the emergence of per-
sistence of the motion in active particle, which is a key aspect in such
systems.

2.4.2.2 Displacement along the initial orientation

An answer to the question of how long particles “remember" their ini-
tial orientation can be delivered by investigating 〈v(t+τ) ·n(t)〉, given
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Figure 2.4: Comparison of theory with simulation results for different val-
ues of y. The packing fraction is 0.01 to reduce the rate of col-
lisions and hence have a better agreement between theory and
simulations.

by the previous part. To answer how far a particle can travel before
it deflects from its initial orientation, we need to look at 〈∆r||(τ)〉 =
〈(r(t+ τ) − r(t)) · n(t)〉. This quantity can be analytically derived by
integrating eq. 2.29:

〈∆r||(τ)〉 =
√
x[−

2

(c− y/2)y
e−yτ/2+

y

c(c2 − y2/4)
e−cτ+

2c(c+ y/2) − y2

cy(c2 − y2/4)
],

(2.34)
which reveals that 〈∆r||(τ)〉 grows linearly for small τ and saturates
at large times. The saturating begins when particles’ displacements
lose correlation with their initial orientations, namely when the first
term on the RHS of the equation below vanishes:

〈∆r||(τ+ 2∆τ)〉 = 〈(r(τ+ 2∆τ) − r(τ+∆τ)) · n(0)〉+ 〈∆r||(τ+∆τ)〉,
(2.35)

Saturation is expected to occur at around the time when 〈v(t+τ).n(t)〉
drops to a small value. One can define the “correlation time", τcorr, as
the time when 〈v(t+ τ).n(t)〉 drops to half of its initial value. From
Fig. 2.4, τcorr ∼ 1500, 15, 3, 2, 1.5 for y = 0.001 to 1000 respectively.
These values compare relatively well with the beginning of the satu-
ration in Fig. 2.5
The saturation value predicted by Eq. 2.34,

〈∆r||(∞)〉 ∼
√
x

y
, (2.36)

puts emphasis on the fact that the more active, the longer particles
move along their initial orientation.
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Figure 2.5: Mean displacement along the initial orientation. This quantity
converges to a constant value as the displacement in future times
loses correlation with the initial orientation.

2.4.2.3 Mean square displacement

The mean square displacement (MSD) of particles in systems with
different magnitude of activity is plotted in Fig. 2.6. Activity increases
the translational diffusion coefficient as expected from Eq. 2.24. More
specifically, since we adapt x to the increase of y (explained in the last
paragraph before Eq. 2.28) the diffusion coefficient in our simulations
is expected to be

Dt =
2Et

c

c+ y/2

y
, (2.37)

where Et is the translational kinetic energy of the system which we
keep constant throughout all simulations. Hence Dt diverges as ac-
tivity is increased (y → 0) and saturates to a value specified by Et in
the passive limit. Fig. 2.7 compares the result of simulations with the
analytical estimation for Dt.
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Figure 2.6: MSD for packing fraction φ = 0.01 and different activities. The
more active a system is, the longer the initial ballistic regime lasts
and the larger the translational diffusion coefficient becomes.
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Figure 2.7: Translational diffusion coefficient in systems with Et = 0.05, and
different y. The solid line represents our theoretical prediction
for Dt (Eq. 2.37) and the bullets represent our simulation results.
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S E L F - P R O P E L L E D PA RT I C L E S N E A R S U R FA C E S

In real environments, active particles move in the presence of walls
and soft or solid obstacles. The examples range from microorgan-
isms in confined physiological environments, to larger swimmers in
the ocean. A wide range of experiments reveal the tendency of mi-
croswimmers to traverse along the boundaries of an obstacle for a
prolonged time [52, 90–92]. Bacteria for example have been observed
to be trapped at surfaces [48], swim in circles [13] or experience sup-
pressed tumbling near them [93]. Such long “residence times" near
walls and obstacles have been recognized to build the early stages of
the formation of complex aggregates such as biofilms [94–96], hence
studying them facilitates the design of systems where the formation
of such aggregates can be controlled. Several mechanisms have been
proposed to explain the long residence times and therefore accumu-
lation of active particles at surfaces, among them hydrodynamic in-
teractions was initially suggested to play the central role. However, it
is known now that the particle-obstacle dynamics results from an in-
terplay of particle’s shape, noise and direct collisions [97]. It has been
particularly shown that the combination of Brownian motion and self-
propulsion can already give rise to the observed accumulation, in the
absence of any explicit hydrodynamic interaction between particles
and the wall [51].
In this chapter we investigate the interaction of a single particle with
a hard planar wall and then spherical immobile obstacles. Active par-
ticles in our model tend to experience successive collisions with the
wall after they first hit it, consequently one can define a residence
time during which the particle moves close and along the surface.
Here we study some general aspects of the residence time.

3.1 residence on a flat wall

An important distinction between active and passive particles is their
orientational persistence. Particles keep pushing in the same direc-
tion for some time comparable to the inverse of the rotational diffu-
sion coefficient. It is evident from eq. 2.23 that in our model this time
decreases as y is increased, e.g. as the activity is reduced. In the case
of collisions with an infinite planar wall, the self-propelling force re-
turns an active particle to the wall after it bounced back in the first
contact. This procedure repeats and the tangent component of par-
ticle’s velocity to the wall, slides it on the wall until its orientation
points away from the wall. Hence we define the residence time, τres,

27
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as the time from the first contact with the wall until the orientation is
for the first time parallel to the wall.
All we need to know about the residence times, can be extracted from
its distribution, P(τres), and hence we try to find this function either
analytically or computationaly below. We expect P(τres) to depend on
particle’s orientation when it first collides the wall and its rotational
diffusion. Consider the two following cases: a particle striking the
wall perpendicularly and a particle that hits the wall almost parallel
to it. The particle in the former case is expected to wander along the
wall for a longer time, as compared to the latter which only briefly
touches the wall. Similarly a particle with smaller rotational diffusion
is expected to linger at the wall for a longer time in average, as com-
pared to a particle that requires smaller time to reorient and leave the
wall. The dependence of the residence time on other parameters is
less intuitive and will be discussed below.

The residence time on the wall can possibly be calculated through
the approach of first passage time problems. In principle τres in our
model can be considered as the first passage time of the angle θ(t) =
θi+

∫t
0ω(t′)dt′ from the incident angle θi (namely the angle between

particle’s orientation and normal to the wall when it first hits the wall,
demonstrated in Fig. 3.1) at time 0 to ±π/2 at time t, where ω is the
Ornstein-Uhlenbeck process defined by Eq. 2.9b. The distribution of
the first passage time for the Ornstein–Uhlenbeck process has been a
research topic of its own [98–100].

Figure 3.1: Demonstration of the incident angle, θi, in collisions with a wall.

In [101], the related problem of residence times of active microswim-
mers against a wall was solved, neglecting inertial terms. One of the
results of that paper is that the distribution depends on the incident
angle , θi, and shows a peak at a finite typical residence time which
shifts towards smaller values for larger θi. The average residence time
in ref. [101] is analytically derived and found to decrease with parti-
cle’s rotational diffusivity and θi. Similar observations are qualita-
tively found by our simulations (see Fig. 3.2) and will be thoroughly
discussed below. However a quantitative comparison of our simu-
lation results to this work is not viable since the inertial terms are
known to make a difference [102]. The inertial term in the equation
for rotational motion changes the order of the differential equation
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and introduces an extra dependence of τres on the initial angular ve-
locity, ωi.
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Figure 3.2: Distribution of the residence time of a particle on a wall, given
different ranges of the incident angle. The measurement is over
roughly 1000 residence events in 1000 systems with y = 0.1.

In order to compute τres, I run several simulations for a single par-
ticle with wall boundary. The system size is chosen very large com-
pared to the particle radius in order to represent an infinite wall. I
consider a fixed time window in my simulation time during which
the particle in all my systems experiences in average 1000 ”residence
events". I define residence event as the succession of collisions with
the wall within a residence time. I compute τres for such events, to-
gether with θi, and ωi.
Plotting the distribution of τres for all the possible incident angles
(Fig. 3.3) and a given range of ωi, reveals that there is a very small
probability for the occurrence of very large τres. We are going to ig-
nore those irrelevant residence times in the following.
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Figure 3.3: Distribution of the residence time of a particle with y = 0.1 and
|ωi| < 0.2 on a wall.
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Fig. 3.4 illustrates P(τres) for different number of simulation runs. The
statistics for 100 simulation runs seems to be good enough and we
may stick to that for the rest of our analysis in this section.
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Figure 3.4: Distribution of the residence time of a particle with y = 0.1 and
|ωi| < 0.2 on a wall, measured for Nf systems.

The residence time is expected to depend on ωi. Fig. 3.5 demon-
strates P(τres) for different ranges of ωi: we observe a faster decay of
the mean residence time by the increase of ωi. Rapid change of the
orientation from almost normal incidents to θ(t) = ±π/2 due to a
large ωi, can explain this observation.
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Figure 3.5: Distribution of the residence time of a particle with y = 0.1 on a
wall for different ranges of |ωi|. Note that according to Eq. 2.25,
the average magnitude of ωi is about 0.224 when y = 0.1. This
explains why we have poor statistics as ωi > 0.5.
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Dependence of P(τres) on the incident angle is illustrated in Fig. 3.6.
Given the discussion above, it is no surprise that 〈τres〉 decreases as θi
approaches π/2 (Fig. 3.7). The dashed line in Fig. 3.7 is the estimation
for 〈τres〉 in the overdamped model of Schaar et al.[101] for similar
parameters as our model.
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Figure 3.6: Distribution of the residence time of a particle with y = 0.1 on
a wall for different ranges of the incident angle θi. The long
exponential tail of the distribution shifts vertically downwards
as the angle between the incident orientation and the normal to
the wall increases.
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Figure 3.7: Average of the residence time on a flat wall, given the incident
angle θi. The average is over 500 systems with y = 0.1.

The above plots are all only for a givenωi or a given θi and provide
us with e.g. no information about the dependence of 〈τres〉 on ωi at a
specific θi. We need to plot our quantities of interest versus both ωi
and θi. Fig. 3.8 shows 〈τres〉 versus ωi and θi in an active and passive
system. The value of 〈τres〉 is quite different in these two systems (the
range of the investigated ωi is different in passive and active systems
as explained above). One can also infer from this figure that 〈τres〉



32 self-propelled particles near surfaces

does not appear to change strongly with ωi.
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Figure 3.8: 〈τres〉 as a function of θi and ωi for y = 0.1 (top) and y = 10

(bottom). In active systems, this quantity changes only subtly
with the initial angular velocity, but decreases considerably as
the incident angle approaches 90◦.

Other than the initial angular velocity and orientation, the depen-
dence of the residence time on our model parameters, x and y needs
to be investigated as well. For a given y one expects τres on an infinite
wall to be indifferent to the particle’s speed, i.e. x. This is confirmed
by Fig. 3.9. Activity on the other hand has a strong effect on τres: in
the limit of zero y particles stay close to the wall for an infinitely long
time (Fig. 3.10).
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Figure 3.9: Distribution of the residence time of a particle with y = 0.1 and
different x on a wall. The residence times on a planar wall are
independent of x and determined by the dynamics of the angle
only.
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Figure 3.10: The average residence time on a wall as a function of y. This
quantity diverges at zero y (high activity) in the form of a
power-law.

P(τres) drops as exp(−τres/τ0) at intermediate to long times with a
characteristic time, τ0, that is a function of y. We have fitted an ex-
ponential to P(τres) for different y and plotted τ0 as a function of y
(Fig. 3.11).

Furthermore we compute the distance the particle moves along a
wall (in other words the distance between the two furthest points on
the wall, touched by the particle) during one residence event, dres. The
distribution of this quantity is shown in Fig. 3.12 for two different θi.
The average of dres in an active system is larger than in a passive one
and its overall dependence on θi and ωi is roughly similar to τres

(Fig 3.13). 〈dres〉 can roughly be estimated as the mean displacement
of the particle during a residence event and is then expected to have
a value close to

√
2Dtτres. Calculating Dt for the system in Fig. 3.13

and extracting 〈τres〉 for small angles from Fig. 3.8, the estimation
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Figure 3.11: The characteristic time scale τ0, computed by fitting an expo-
nential exp(−τres/τ0) to P(τres), as a function of y.

(〈dres〉 ≈
√
2Dtτres ' 6) is found to be similar to the value observed

in Fig. 3.12 at small angles: 〈dres〉 ' 4. The agreement is of course not
expected to be exact as τres may not be long enough to assume the
motion is diffusive.
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Figure 3.12: Distribution of the distance between two furthest points
touched by an active particle on the wall during a residence
event, for two different ranges of incident angle.

3.2 interaction with obstacles

Active particles in real environments interact not only with planar
walls, but also with obstacles of different geometries. Immersed pas-
sive colloids in a fluid, large aggregate of dead cells, biological poly-
mers are some examples of real obstacles an active particle may in-
teract with. Convex obstacles have been realized in several exper-
iments [52, 92, 103] and shown to trap active particles when their
size is sufficiently larger than the particle. The capture of active parti-
cles by such obstacles is often associated with hydrodynamic interac-
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Figure 3.13: 〈dres〉 as a function of θi and ωi for y = 0.1 (left) and y =

10 (right). In active systems this quantity changes only subtly
by the initial angular velocity, but decreases considerably by
enlarging the incident angle, similar to the average residence
time (Fig. 3.8).

tions [52, 53, 92], but steric forces are also known to play a major role
for some types of active particles [103].
In this section we study the motion of a single particle in the vicin-
ity of a stationary spherical obstacle. Analytical calculation of p(τres)

and 〈τres〉 is even more demanding than the case of a wall due to
the non-zero curvature and a more complex boundary condition. We
compare the result of our simulations for the residence time to the
case of a flat wall and learn how this time is influenced by our model
parameters.

Fig. 3.14 reveals that the residence time on an obstacle 10 times
larger than the particle still has an exponential distribution but its av-
erage is smaller than in the case of a wall. Obstacles with Ro/Rp = 30

or larger, reproduce almost the same results as a flat wall. One can
make sense of these results by considering a particle with normal in-
cident that moves along an arc of magnitude ∆θ around an obstacle
before its orientation leads it away from it. The distance that this par-
ticle travels on the obstacle is expected to be comparable to the value
of 〈dres〉 found for a flat wall; in other word (Ro + Rp)∆θ = 〈dres〉.
On the other hand, the particle’s change of orientation, π/2−∆θ, is
expected to satisfy 〈(π/2−∆θ(t))2〉 = yt, and the time of the travel-
ing on the obstacle is expected to be comparable with the residence
time on a flat wall: t = 〈τres〉. We conclude that the threshold obsta-
cle radius, R∗o, which reproduces the same results as the wall can be
roughly estimated as

R∗o + Rp =
〈dres〉

|π/2−
√
y〈τres〉|

, (3.1)

which gives R∗o ≈ 30 for x = y = 0.1 and the values for 〈τres〉
and 〈dres〉 that our simulation results suggest (〈τres〉θi=0 ≈ 29 and
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〈dres〉θi=0 ≈ 4). From here on, we keep Ro/Rp = 10 and study the
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Figure 3.14: Comparison of the distribution of the residence time on a wall
and on disk-like obstacles of different radii in systems with
y = 0.1.

dependence of the distribution and average of the residence time on
x, y, and the incident angle θi.

Fig. 3.15 and 3.16 illustrate the distribution of residence times of an
active particle with different y and different x on an obstacle.
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Figure 3.15: Distribution of the residence time on an obstacle with radius
Ro/Rp = 10 in systems with different y. Number of bins vary
between 20 to 5 for y = 0.001 to y = 1000, and there are in
average 400 points in each bin.
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Figure 3.16: Distribution of the residence time on an obstacle with radius
Ro/Rp = 10 in systems with different x. The distribution
changes with x, unlike the case of a flat wall.

According to these results, the average residence time grows as y de-
creases, e.g. as particle’s activity increases. This is in fact what we
have learned from the wall case. However unlike residence on a wall,
the distribution of τres here converges to a certain function (and its
mean to a certain value) as y → 0. The limited size of an obstacle
prohibits infinitely long residence times.
Furthermore, unlike the wall case, increasing x (and hence the speed)
decreases the residence time on an obstacle, because it increases the
distance particles bounce off the obstacle and therefore decreases the
number of successive collisions with the obstacle. As a result the par-
ticle with a larger x leaves the obstacle sooner and has a smaller τres

and dres. One can see this in Fig. 3.17.

Figure 3.17: Trajectory of an active particle with x = 100 (left) and x = 0.1
(right). Speedy particles (associated with large x) cover longer
distances tangent to the obstacle’s circumference in bouncing
off the surface and hence slip off the obstacle quicker as com-
pared to slower particles.
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The decrease of the number of successive collisions with an obstacle
(within a residence event) by an increase of x is shown in Fig. 3.18.
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Figure 3.18: Distribution of the number of successive collisions with an ob-
stacle that a particle experiences during its residence on the
obstacle. For systems with y = 0.1 and Ro/Rp = 10, the aver-
age number of successive collisions decreases dramatically by
increasing x.

The longest residence times correspond to collisions with a very small
initial angle between the orientation and the connecting vector be-
tween the obstacle and particle. As one would expect from the case
of the wall, the average residence time decreases by increasing this
angle θi (Fig. 3.19).
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Figure 3.19: Average residence time of particles with y = 0.1 on an obstacle
with Ro/Rp = 10 versus different incident angles. Normal inci-
dents correspond to the longest residence times, similar to the
case of a flat wall (Fig. 3.7).
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C O L L E C T I V E R O TAT I O N S

We have learned in the previous chapter that single active particles
spend long times in the vicinity of large spherical obstacles and are
effectively attracted to them. It is therefore not surprising that increas-
ing the number of particles gives rise to accumulation around the ob-
stacle. In this chapter we study the accumulation and crystallization
of particles around large stationary obstacles and later report a pecu-
liar observation: collective rotation of the crystals of particles around
the obstacle. We explain the existence and important properties of
such rotating crystals through some simple arguments.

4.1 accumulation

Given the attraction of individual active particles to surfaces, it is no
surprise that particles accumulate at surfaces and form large clusters.
The small residence times of passive particles (Fig. 3.15) provokes no
accumulation of such particles around obstacles (see Fig. 4.1).

Figure 4.1: Snapshot of the system with φp = 0.08,Rp/Ro = 0.1 and
y = 0.001 (left), y = 10 (right). Active particles, in contrast to
passive ones, form living aggregates around the obstacles.

This accumulation is reflected in the sharp peaks of the pair cor-
relation of the obstacles with the surrounding particles (Figure 4.2),
defined as

g(r) =
L2

2πr∆

1

Ns
Σs

1

No
ΣNoi=1

1

Np
Σ
Np
j=1θ(r+∆− (ri − rj))θ((ri − rj) − r),

(4.1)
where θ is the Heaviside step function and ∆ is bin size. Σs is the
average overNs snapshots, to improve the statistics. g(r) is computed
by counting the number of particles within a shell of thickness ∆ at a
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distance r from an obstacle. The prefactor is chosen so that g(r) → 1

at large r. The first peak corresponds to the first layer of particles
at distance Rp + Ro from the center of the obstacle. The next peaks
correspond to the outer layers of particles. Figure 4.3 reveals that the
height of the first peak increases with activity and the accumulation
is absent for passive particles (y > 1).
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Figure 4.2: Pair correlation function (∆ = 0.5) of systems with φo =

φp = 0.08 and different levels of activity. The first, second
and third peaks correspond to different layers of particles ac-
cumulated around obstacles at distances approximately equal to
Ro + Rp,Ro + 3Rp, and Ro + 5Rp from the obstacles.
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Figure 4.3: Height of the first peak of the pair correlation function versus y
for systems in Fig. 4.2. This quantity shows a crossover from the
maximum number of particles that can be placed on the circum-
ference of an obstacle in the active regime, to the value expected
in a homogeneous fluid in the passive regime.
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The accumulation is further enhanced by increasing the particle

density φp =
NpπR

2
p

L2
; more layers form around obstacles. Fig. 4.4

illustrates this speculation. Note that the height of the peaks depend
on the total number of particles in the system and hence decreases as
φp increases. What reveals the large accumulation around obstacles
is the number of layers around them which is reflected in the number
of successive peaks in g(r).
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Figure 4.4: Obstacle-particle pair correlation function in systems with y =

0.001,Rp/Ro = 0.1,φo = 0.08 and φp = 0.2 (top), φp = 0.4 (bot-
tom). Increasingly more layers of particles accumulate around
the obstacle by increasing the packing fraction.

As mentioned in chapter 1, not only activity, but also the radius of
the convex obstacles has been found to affect the particle trapping by
the obstacles in systems where hydrodynamic interactions are domi-
nant [53]. We also observe an increase of the residence times and the
accumulation by enlarging the obstacle size (Fig. 4.5), simply because
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Figure 4.5: Obstacle-particle pair correlation function in systems with y =

0.001,φp = 0.3,Rp = 1 and different obstacle radius Ro. The x-
axis is divided by Rp + Ro to compare the first peaks of the two
curves. The accumulation is enhanced by enlarging the obstacle.

in active systems (small rotational diffusion) the residence events are
bounded by the finite size of the obstacle.

4.2 crystallization

Systems in equilibrium (no self-propulsion) with short-range attrac-
tive and long-range repulsive interactions can exhibit clustering. Small
clusters coarsen to form large ones and the system phase separates [104–
106]. While the details of such equilibrium clustering is known for
more than a decade now, study of clustering in systems out of equi-
librium is still in progress. Particularly systems with self-propulsion,
which constantly uptake and dissipate energy and are hence out of
equilibrium, have been explored by experiments, simulations and the-
ory and shown to also exhibit clustering if the activity is sufficiently
high [34, 69–71, 73]. The important distinction between this purely
kinetic clustering and the analogue in equilibrium systems is the ab-
sence of attractive interactions in active systems. In other words, ac-
tive systems with only repulsive interactions, can still exhibit clus-
tering once the activity and density is sufficiently high. These clus-
ters have been initially observed in elongated active particles where
steric interactions can lead to mutual aligning of particles and thereby
block their motion. However we know now that even purely repulsive
spherical active systems with no aligning mechanism exhibit similar
clustering.
At large densities the clusters show crystalline order. Experimental ex-
amples are hexagonal structures observed in catalytically-driven col-
loids [72] or vibrated monolayers of polar discs [75], and honeycomb-
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like clusters in colonies of flagellated marine bacteria [77]. Computer
simulations have confirmed crystallization [69, 74] and theories have
been proposed to describe this phenomenon [76, 78].

It is shown in the last section that in spite of no explicit attrac-
tion, particles tend to accumulate around obstacles below y ≈ 1 (see
Fig. 4.3) and form multiple layers as their density increases (Fig. 4.4).
In fact for φp as large as 0.4 in a system with φo = 0.08,Rp/Ro = 0.1
this effect is so strong that the system becomes heterogeneous, with
dense clusters of particles around obstacles and a dilute gas of parti-
cles elsewhere (Fig. 4.6).

Figure 4.6: Development of crystals around the obstacles in a system with
φo = 0.08,φp = 0.3,Rp/Ro = 0.1, x = 0.1,y = 0.001: figure in
the left exhibits the initial configuration and figure in the right
shows the configuration at some time in the steady state.

Our simulation results reveal that the formed clusters of particles
are in fact hexagonal crystalline patches separated by grain bound-
aries. The structure factor,

S(q) =
1

N
ΣNi=1Σ

N
j=1e

−iq.(ri−rj), (4.2)

for the N particles in a crystalline cluster around one of the obstacles
(Fig. 4.7) is plotted in Fig. 4.8. This figure clearly reveals Bragg peaks
of the hexagonal lattice. The magnitude of this reciprocal lattice vec-
tors are found to be |a∗| = |b∗| ≈ 3.6, which is in agreement with
the real-space lattice vectors of magnitude |a| = |b| = 2Rp = 2 (in a
hexagonal lattice |a∗| = 2π

a

√
4/3).
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Figure 4.7: A snapshot of a system with φo = 0.08,φp = 0.4,Rp/Ro =

0.1, x = 0.1,y = 0.001. The aggregates on the obstacle exhibit
crystallization with hexagonal patches separated by grain bound-
aries.
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Figure 4.8: The structure factor calculated for particles in the crystal of
Fig. 4.7.

I have used a Delaunay triangulation to determine the boundaries
of the crystalline cluster. Particles whose connecting edges are all
smaller than some threshold, taken to be 2.1Rp, are considered in-
side the crystal and marked with red in the bottom part of Fig. 4.9.
The bottom part of this figure illustrates a snapshot of the system un-
der triangulation.

Particles with different orientations collide with the crystal and be-
fore they could turn around and escape it, they get trapped inside by
other incoming particles. The orientation of particles in the crystalline
state is therefore disordered and in general misaligned with their ve-
locity. All the particles experience the same orienting force and try
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Figure 4.9: Snapshot of a system exhibiting a crystalline cluster around an
obstacle (top) and the corresponding Delaunay triangulation of
the system (bottom). Red particles in the triangulated picture, are
vertices with all edges smaller than 2.1Rp.
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Figure 4.10: A crystalline cluster of particles formed around an obstacle
(Ro = 10Rp). Particles are color-coded according to their activ-
ity given by Eq. 2.27 from red (c = 1, or perfect alignment of
velocity and orientation) to blue (c = −1, or anti-alignment).

to align their velocity and orientation; however many collisions with
nearby particles constantly randomize the velocity, while the orien-
tation remains approximately fixed. We can conclude then that al-
though high activity gives rise to accumulation and crystallization,
the activity (alignment of velocity and orientation of particles, thanks
to Eq. 2.27) is strongly suppressed in high density states. Fig. 4.10

illustrates the activity of individual particles inside a crystal around
an obstacle in a system with y = 0.02 and φp = 0.3. The crystalline
state is also disordered with respect to the angular velocity for the
same reason.

Crystallization occurs in active systems once the packing fraction of
particles is sufficiently high. For a dilute system, even though active
particles tend to be attracted to the obstacle, there is no large crowd of
particles to give rise to accumulation and formation of crystals. As the
activity is decreased, the effective attraction to the obstacle fades out
and equilibrium crystallization occurs all over the system at dramat-
ically larger density of particles. The range of parameters for which
crystallization is observed, will be discussed in the next section.

The crystalline clusters around obstacles are not stationary: they
form and grow, they may rotate or be frozen for a long time (this
issue will be discussed in the next section), but they always dissolve
and form again over the course of time. In order to study the stability
of the crystalline clusters around obstacles, I have plotted the number
of particles that are at the distance r (±Rp) from an obstacle versus
simulation time: Fig. 4.11. Our results in Fig. 4.11 are averaged over
all the obstacles, and show that the first layers around obstacles will
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Figure 4.11: Number of the particles within shells of radius r and thickness
Rp around an obstacle, averaged over all obstacles, for a system
with φo = 0.08,φp = 0.4,Rp/Ro = 0.1, x = 0.1,y = 0.001.

stay around the maximum they can get (Nr ≈ 2πr
2Rp

= πr) over time.
The ascending gr(t) for larger r indicates the formation of more lay-
ers with time. Our simulation times in this figure are still not long
enough to determine the stability of crystalline clusters.
However, longer times can be achieved by using the software, HOOMD
(which I have shown to reproduce similar results as our program
in chapter 2). Simulation results with HOOMD reveal that the crys-
talline structure can grow, dissolve, and re-grow again. In other words,
once the system is active and crowded enough, it phase-separates
into a crystalline solid and an active gas, with non-stationary bound-
aries. Fig. 4.12 shows a typical growth-dissolution cycle in an active
crowded system.

4.3 spontaneous rotations

In the following section we show that active particles not only accu-
mulate and crystallize around obstacles, but also the crystalline clus-
ters perform collective rigid body rotations around them. Rotating
aggregates of active particles have been previously observed in exper-
iments [80, 83, 84] and simulations [41, 81, 82]. In all these observa-
tions individual particles are either elongated or experience internal
or external torque. In the former case, due to the steric interactions
of aspherical particles, the spiral-like polarization field is quenched
and hence the cluster may coherently rotate [81]. In the latter case,
the rotation of individual particles is synchronized through hydrody-
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a b

c d

Figure 4.12: Growth, dissolution, and re-growth of the crystalline structure
around the obstacle for a system with φp = 0.3,y = 0.001. (a)
to (d) represent the system’s configuration at different times
during a single run.

namic interactions and hence particles at the edge of the cluster give
rise to a net rotation of the whole cluster [84]. Rotating clusters were
claimed to be absent in systems of active spherical particles with re-
pulsive pair potential [81].
Therefore the emergence of spontaneous rotations in systems of ac-
tive spherical particles with linear propulsion only, is an interesting
phenomenon which will be described and explained below.

4.3.1 Observation

Fig. 4.13 illustrates the formation and motion of a rotating crystal.
Particles in this figure are color-coded according to the direction of
the component of their velocity along eφ, where eφ is the tangential
vector to the connecting line of the particle and obstacle. For a clock-
wise (CW) rotating crystal I take

eφ = (−∆y,∆x)
1√

∆x2 +∆y2
, (4.3)

where (∆x,∆y) refers to the vector connecting the particle to the ob-
stacle (∆x = xo − xp). For a CCW rotating crystal, the direction of eφ
is the opposite of the above expression. This figure demonstrates the
onset of rotation of a crystal: the velocity of all particles in the crystal
has a positive component tangent to the direction of rotation of the
whole crystal and the crystal begins to rotate as a whole.
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a b

c d

Figure 4.13: Formation of a CW rotating crystal from (a) to (d). Particles
are color-coded according to the orientation of their velocities:
red corresponds to CW, and blue corresponds to CCW motion
around the obstacle.

The angular velocity and orientation of individual particles do not
exhibit the same uniform collective behavior as vφ (Fig. 4.14) as par-
ticles do not exchange information about their orientation or angular
velocity through their collisions. This however, does not necessarily
imply a uniform distribution of the orientation of particles in a ro-
tating crystal: we can address this issue by studying the activity of
individual particles trapped in a rotating crystal.
Particles in Fig. 4.15 are color-coded according to their instantaneous

activity (see our definition of activity in eq. 2.27),

c =
v.n
|v|

, (4.4)

from blue (c = −1) to red (c = 1). This figure exhibit the CW rotation
of a growing crystal around the obstacle. One can divide the whole
crystal into many slices and measure the average activity of particles,
c(φ), in each of these slices, located roughly at an angle φ relative to
the obstacle. I further average c(φ) over many snapshots that capture
the same rotation of the crystal around the obstacle (note that in order
to add the results of different snapshots together, I choose the point
of reference in measuring the angle φ always at the “back" of the
rotating crystal in different snapshots, so that φ = 0 refers to the
back and the largest φ refers to the front of the crystal). Fig. 4.16

reveals that this quantity has a gradient along the direction of rotation,
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Figure 4.14: The direction of angular velocity is color-coded. There is no
particular order in this quantity in the rotating crystals. This is
expected, as collisions do not affect ω.

whereas no such gradient can be observed in a non-rotating crystal
(Fig. 4.17 and 4.18).

The rigid-body rotation is more clearly illustrated in Fig. 4.19. The
color coding is based on vφ = v.eφ. The initially formed crystal in
Fig. 4.19a) starts to rotate while growing and soon all the particles in
the cluster acquire a positive vφ. Comparing Fig. 4.19c) to Fig. 4.19b)
reveals that the rotating velocity of the crystal is enhanced in time
(particles get more red). The increase of the rotational velocity is
widespread in all our rotating clusters and will be explained below.
Eventually in Fig. 4.19d) the crystal starts to dissolve and the rota-
tion decays. The marked chain of particles in dark green illustrates
a rigid-body rotation of the cluster by about π/2. The cluster is sta-
ble as long as its opposite sides “push towards each other". Since
the rotating crystals are observed in the limit of high activity, where
the persistence time of particle’s orientation is long, this implies that
the crystal is stable for a rotation by roughly π/2; above this value
different ends of the crystal move in different directions and it dis-
solves. This is also a reason for why rotations are only observed at
large activities: the persistence time of orientations (∝ 1/y) has to be
larger than the lifetime of a crystal, in order to observe the full rota-
tion. The hexagonal crystals around obstacles can grow surprisingly
large while they rotate, for instance the cluster in Fig. 4.19 consists of
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Figure 4.15: A CW rotating growing crystal of particles around an obstacle
of size Ro = 10Rp. The activity of particles is color-coded: red
and blue correspond to c = 1 and −1 respectively. Particles on
the back of the rotating crystal tend to move almost along their
orientations, whereas particles on the front are mostly pushed
by the crystal opposite to their orientations.
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Figure 4.16: Gradient of local activity in two different rotating crystals, aver-
aged over 80 snapshots. y = 0.001 and φ is in radians.

N ≈ 3000 particles at its largest stage.

4.3.2 Derivation of the rotations

Now I present a simple argument to explain our observations of ro-
tating crystals. We aim to understand the mechanism that gives rise
to the buildup of systematic rotations once a spontaneous fluctuation
has occurred. A simple model of a rough, moving wall is presented
below. I show that particles with different velocities (relative to the ve-
locity of the wall) have different chances of being attracted to the wall.
The wall acquires increasingly more particles with velocities along the
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Figure 4.17: Demonstration of a non-rotating crystal in a system with
φp = 0.3,y = 0.01. Color-coding is based on the activity
of particles.
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Figure 4.18: Gradient of activity in the crystal shown in Fig. 4.17. The local
activity is homogeneous through the entire non-rotating crystal.

wall’s velocity as compared to particles with opposite velocities.
We consider the rough moving wall with velocity v0 as a flat wall
adorned with triangular spikes to simulate roughness (Fig. 4.20). A
particle that collides with the wall at time t = 0 is elastically reflected
and its velocity will be v′ = vs − 2nw(nw.(vs − v0)), where nw is the
normal to the wall at the point of collision and vs is the velocity of
the particle in the stationary state.
Since rotations occur for highly active systems only, where rotational
diffusion is slow on the timescales under consideration, we assume
that the equations of motion (Eq.2.9a and 2.9b) can be simplified to

d

dt
v = −v +

√
xn, (4.5)
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a b

c d

Figure 4.19: Formation of a CW rotating crystal. Particles are color-coding
according to their vφ: the spectrum from red to blue corre-
sponds to CW to CCW motion around the obstacle respectively.
Particles marked in green are to help visualizing the rigid body
rotation of the cluster from snapshot a to d.

giving rise to a stationary velocity vs = n
√
x. Now the above equation

can be solved to find the distance to the base of the wall in the next
collision with the wall at time t1:

y(t1; v0) = y(t1; 0) + (ey · nw)(nw · v0)t1. (4.6)

The above equation reveals that if the wall is moving with a velocity
parallel to the particle’s velocity, then the particle will hit the mov-
ing wall deeper inside in its next collision, as compared to the case
where the wall moves anti-parallel to the particle’s velocity. ey ·nw >
0 for all collisions, but in the former case nw · v0 < 0 and hence
y(t1; v0) < y(t1; 0); in other word the particle moves closer to the
baseline. Whereas for the latter case y(t1; v0) > y(t1; 0) and the parti-
cle may slip away from the wall.

This argument is given for a flat wall but is expected to hold for a
curved wall as well, if the curvature is sufficiently small, or in other
words if the cluster’s extension is large compared to the radius of the
particles. For our case of crystallization on obstacles, v0 is approxi-
mated by Ω×R where Ω is the cluster’s rotational velocity and R is
the connecting vector from a particle on the edge of the cluster to the
center of the obstacle (magnitude of R denotes the radius of the clus-
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Figure 4.20: Sketch of a sample trajectory of a particle in two successive col-
lisions with a model rough moving wall.

ter). For a particle approaching a rotating cluster then, the probability
of attaching to it given that it has a velocity parallel to Ω×R at that
point (p+) is larger than the anti-parallel alternative (p−). Since the
alignment between velocity and orientation of active particles is al-
most perfect, we can consider the orientation of particles that join the
cluster, instead of their velocity. Now we introduce the quantity N+

and N− which measure the number of particles in the cluster with
orientation parallel or antiparallel to Ω×R respectively. The rate of
change of this quantity is given by

dN±
dt

= p±j2πR with p+ > p− (4.7)

where j is the flux along the contour of 2πR. To find N± as a function
of time, note that the area of the cluster is approximately given by
πR2 = Vo + Vp(N+ +N−), where Vo and Vp are the volume of the
obstacle and a single particle respectively. Hence

2πR
dR

dt
= Vp(

dN+

dt
+
dN−

dt
) = Vp2πRj(p+ + p−). (4.8)

Therefore at the beginning of the growth of the cluster, when p±
can still be assumed constant, the radius grows linearly with time:
R(t) = R(0) + Vpj(p+ + p−)t and as a result of that and Eq. 4.9,

N±(t) = N±(0) + p±j2πR(0)t+O(t2). (4.9)

The linear growth of N+ and N− at small times is indeed observed
for small times in our simulations (see the left column of Fig. 4.21).
At larger times, once the cluster acquires a substantial rotating veloc-
ity, we expect p+ − p− to increase with time: Our arguments for the
rough moving wall above suggest that p+ and p− depend on the rela-
tive velocity of the approaching particle and the cluster, and we have
observed in our simulations that Ω grows in time. The relative veloc-
ity of the particle with anti-parallel orientation to the cluster’s rotat-
ing direction then increases in the course of time (and decreases for a
particle with parallel orientation), yielding an increase in p+−p− as a
function of time. Hence N+ increases more strongly as the time goes
by, while counterrotating particle hardly have a chance to be captured.
In other words N− keeps increasing with a smaller and smaller rate,
until it almost saturates. These predictions that are based on a simple
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model for the rough moving wall are confirmed by our simulations,
presented in the left column of Fig. 4.21. N+ and N− grow similarly
due to finite and initially equal values of p+ and p− (see Eq. 4.9).
However they spread at some time (this time coincides well with the
beginning of the rotation of the cluster and will be explained below):
N+ increases more dramatically until the cluster dissolves and the
rotation ceases, while the rate of increase of N− decreases and it sat-
urates.

Figure 4.21: Left: N± versus time in several clusters. Red arrows indicate
the time when N+−N−

N > 0.03; we mark the onset of rotation
by this time. Right: Rotational velocity of the clusters, Ω× 103,
corresponding to the left columns. Data from simulations are
compared to the result of integration of Eq. 4.10 (dashed lines).

We have so far only observed the increase of the cluster’s angular
velocity in the simulations. But can we also track that down to our
equations of motion? I answer this question in the following.
We assume the cluster performs a rigid-body rotation so that the ve-
locity of the ith particle is vi =Ω× ri, where ri is the vector connect-
ing the center of the obstacle to the ith particle. Now in the limit of
high activity we may use Eq. 4.5 for the cross-product of vi and ri
and sum over all particles in the cluster to find

Icl
d

dt
Ω = −IclΩ+

√
x
∑
i

ri × ni. (4.10)

Here Icl =
∑
i r
2
i is the moment of inertia of the cluster. This equa-

tion shows that the imbalance between N+ and N− causes a torque
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M =
√
x
∑
i ri × ni which has to overcome the damping for spon-

taneous rotations to emerge. One the rotation starts, the torque in-
creases due to increasing imbalance of the number of particles with
positive and negative ri × ni. Numerical integration of Eq. 4.10 re-
veals an increase of Ω which compares well with our simulations
(right column of Fig. 4.21).
To summarize the few lines above, we have leaned that the sponta-
neous rotations of active crystals around a large static obstacle can
be regarded as a rigid body rotation, whose onset is well indicated
by the excess of N+ over N−. This imbalance is further enhanced by
an increasing Ω, providing a feedback mechanism for the observed
systematic rotations.

Now before moving on to investigating the range of parameters
for which rotating crystals may appear, an important distinction be-
tween our observation and other rotating active aggregates needs to
be pointed out. In [80] for example, single particles are added ran-
domly to the cluster and hence the summation of the individual
torques they insert on the cluster scales as the square root of their
total number. On the contrary we observe a linear dependence of the
total torque on the number of particles in the cluster (Fig. 4.22A). This
can be understood through approximating M =

√
x
∑N
i=1 ri × ni by

M =
√
x(
∑N+

i=1 ri −
∑N−

i=1 ri). It is clear now that M ∼ N+ −N− and
since N− saturates soon after the rotation is established, one can con-
clude that M ∼ N. It is also shown in Fig. 4.22C how the rotational
velocity of the cluster initially fluctuates, before it starts to grow sys-
tematically and N+ −N− scales like N.

4.3.3 Phase diagram

Here I raise the following question: How does the existence of the
rotating crystals depend on our model parameters? Particularly how
active and dense does a system need to be in order to observe the
rotating crystals? How does the system look like for other values of
activity and packing fraction?
We quantify the rotation of a crystal by the angular velocity of parti-
cles around the obstacle,

ωci =
vi.eφ
ri

. (4.11)

Distribution of this quantity is plotted in Fig. 4.23 for different values
of y for a system with one obstacle and particle density φp = 0.4.
The positive and negative values of ωφ correspond to CW and CCW
rotation respectively.
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Figure 4.22: A: N+ −N− versus total number of particles N in a cluster as
it grows, observed in a system with y = 0.001,φp = 0.3; inset:
the torque M as a function of N; B: growth of N+ and N− with
time; C: Change of Ω with time; both (B and C) for the same
cluster as in A. The onset of the rotation is marked by the red
arrow.
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Figure 4.23: Distribution of angular velocity of particles around the obstacle.
φp = 0.4. The dashed line fits a Gaussian to the red curve.

Consulting our simulation videos, rotating crystals only appear for
very active systems and at some intermediate densities, above which
the system-spanning crystal does not allow any rotation, and below
which the number of accumulated particles around the obstacle does
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Figure 4.24: Average magnitude of the angular velocity of the crystal around
the obstacle, Ω, as a function of particle activity and packing
fraction.

not suffice to form a stable-enough crystal. Fig. 4.24 illustrates the
magnitude of average angular velocity of particles (what we call the
cluster’s rotational velocity) around the crystal,

Ω = |
1

N
ΣNi=1ω

c
i |, (4.12)

for different values of particle activity and packing fraction. HereN is
the number of particles in the crystal around the obstacle. The statis-
tics are improved by averaging this quantity over different snapshots.
The activity of particles is tuned with y. Note that the average parti-

cle’s activity can be estimated as C =
√

1
1+y/2 according to eq. 2.27.

This figure meets our expectations: crystals have the largest angular
velocity around the obstacle at some moderate packing fraction and
large activity. As the activity decreases and packing fraction increases
the rotation gradually diminishes.

Now if we define a threshold in Ω as the minimum angular ve-
locity of a crystal to be considered rotating, we can assign a bound-
ary between the region with rotating crystals and non-rotating ones.
Crystallization itself of course can only be observed at dense and ac-
tive enough systems. As the activity decreases, a dramatically larger
density of particles is required to form a hexagonal crystal around
the obstacle (Fig. 4.25 and 4.26). We summarize all this information
in the phase diagram of our system, Fig. 4.27. Here the points on the
line that separates the disordered region from the rest are obtained by
finding the minimum packing fraction that allows for crystallization
around the obstacle for different values of activity. In the disordered
phase, no particular crystal forms and the system is more or less
homogeneous at different distances to the obstacle. The crystalline
phase is not a stationary state either; crystals form, grow, dissolve
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Figure 4.25: Snapshot of a system at
φp = 0.7 and y = 0.0001,
which corresponds to
1 − c = 2.5 × 10−5. At
such high φp collective ro-
tations are hampered by
other clusters.

Figure 4.26: Snapshot of a system at
φp = 0.7 and y = 0.1,
which corresponds to
1 − c = 2.5 × 10−2. No
crystalline cluster forms
around the obstacle.
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Figure 4.27: Demonstration of possible phases at different values of activ-
ity and packing fraction. Explanation about the boundaries be-
tween different phases can be found in the main text.

and re-grow around the obstacle all the time. There can be moving
crystals far from the obstacle at this region, yet the crystals around
the obstacle do not rotate. We take Ω∗ = 9× 10−4 against which the
phase diagram is relatively robust.
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C R O W D E D E N V I R O N M E N T

Motion of self propelling creatures in natural habitats like organelles
within the cell, bacteria in soils, microorganisms in blood flow, or
fish in the ocean are some examples of the interaction of active par-
ticles with crowded environments. Understanding the transport of
such particles in heterogeneous media is therefore essential and yet
in its early stages. Although the transport of passive ballistic or Brow-
nian particles in heterogeneous environments has been extensively
discussed [107–110], theoretical [111] and experimental [112] studies
have just started to shed some light on understanding the transport
of active particles in such environments.
In this chapter I present the model we use for implementing the het-
erogeneity and discuss our findings.

5.1 active lorentz model

For the case of passive particles, it has been shown that simplified
model systems such as Lorentz model can already explain the generic
features of transport. In this model hard disks (obstacles) are ran-
domly distributed into the system and a point tracer explores the void
space between the obstacles. The obstacles are uncorrelated and may
overlap in the simplest variant of this model. By increasing the num-
ber of obstacles, the void space that is accessible for the tracer reduces
more and more until the point where it stops percolating through the
system. The tracers at larger densities of obstacles cease to diffuse
throughout the system and localize at finite cages surrounded by ob-
stacles. The transition between the diffusing and the localizing phase
has a geometric origin, and occurs at a certain density of obstacles
φc. This “percolation transition" of the continuum is accompanied by
a series of power-laws. Namely the diffusion coefficient of a passive
tracer is known to scale like D ∼ |ε|µ by approaching the critical den-
sity. Here ε = (φc−φ)/φc measures the distance to the critical point.
µ, being called the conductivity exponent for historical reasons, is a
function of the dimensionality and dynamics of the tracer [109] and
acquires the value µ = 1.310 for a two-dimensional Lorentz model
with passive Brownian tracers [113].
We implement the crowdedness similarly with the Lorentz model and
study the motion of active tracers of the same size of obstacles (Rp =

Ro) with a small packing fraction φp ≈ 0.001 (to minimize particle-
particle interactions) in such a medium. Np = 100,No = 10000 in our
simulations unless said otherwise. We distribute the obstacles one by

61
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one and randomly in our simulation systems with the only constraint
that they do not overlap. The percolation transition in our variant of
the Lorentz model occurs at φc = 0.22 [110] above which the void
space does not percolate and is separated into finite isolated clusters.

5.2 transport characterization

We begin the analysis of particles’ trajectories by plotting their dis-
tribution of displacements. In the absence of any obstacles the dis-
placements (say in x direction) of a particle during a time window
τ starting from an initial time t0, ∆x(τ) = x(t0 + τ) − x(t0), are in-
dependent of t0 at large τ and the central limit theorem predicts a
Gaussian distribution for them. However, the spatial heterogeneity of
the environment renders the motion non-Gaussian through encoding
information in higher cumulants of the displacement, so that 〈∆x2〉 is
no longer sufficient for describing the statistics of the displacement.
The deviation of P(∆x) from Gaussian by increasing the obstacle den-
sity can be observed in Fig. 5.1. The distribution at small to moderate
φ is a Gaussian, with the exception of an extra peak at zero displace-
ments which refers to unlucky tracers trapped in small cages at all
times. At large φ however, P(∆x) deviates considerably from a Gaus-
sian.
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Figure 5.1: Distribution of the displacement of active tracers during a time
interval τ = 10000 at different density of obstacles. The markers
correspond to the simulation data points and the solid lines rep-
resent the fitted curves to the data points. Distributions are nor-
malized and the fitted functions are normal distributions with
standard deviation of the corresponding data points.
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A proper quantity to illustrate the differences to a Gaussian distri-
bution of displacements is the non-Gaussian parameter defined as

α2(τ) =
1

2

〈∆r4(τ)〉
〈∆r2(τ)〉2

− 1. (5.1)

Here brackets 〈〉 denote an average over tracers, a moving time av-
erage, as well as an average over different realizations of the hetero-
geneity. This quantity vanishes for two-dimensional Gaussian trans-
port. Fig. 5.2 illustrates α2(τ) versus τ. Large time displacements at
small obstacle density obey Gaussian statistics and yield a vanishing
α2 (not shown). At moderate densities, where few particles may be
trapped in small cages at all times, this quantity decays to a finite
value close to zero, as suggested by Fig. 5.2. The growth of the non-
Gaussian parameter at intermediate times is due to the presence of
obstacles. At the critical point, φ = φc = 0.22, this quantity diverges
for large τ as predicted by [114].
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Figure 5.2: The non-Gaussian parameter versus time for different obstacle
density. This quantity diverges at the critical point φ = 0.22.

Furthermore we plot the mean square displacement (MSD) of ac-
tive tracers at different obstacle densities in Figure 5.3. At short times
the data for all densities collapse on a single line which reflects the
ballistic motion before the tracers encounter any obstacles. The short-
time ballistic regime is followed by a crossover to a long-time diffu-
sive regime where the MSD grows linearly with time. At intermediate
densities, the presence of obstacles, induces anticorrelations in the ve-
locity autocorrelations which appears in the form of a transient subd-
iffusive regime at long times. There is an increasingly larger crossover
time to the diffusive regime as the critical point is approached, so that
at φc the subdiffusive regime lasts for the whole window of the sim-
ulation time (almost four decades). Increasing the obstacle density
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Figure 5.3: Mean square displacement of active tracers (y = 0.1) in systems
with different obstacle density φ. The minimum system size cor-
responds to φ = 0.16 and is L = 450. The dashed line (∼ τ0.65)
is to compare the growth of the MSD at the critical point with
ref. [113].

above φc, the MSD saturates, implying that all particles are localized.
Close to the critical point at φc = 0.22 the system is quite dense and

the number of collisions is high. This makes our event driven simu-
lations run slower and require increasingly longer times to reach the
diffusive regime. Specifically one trajectory for several decades up to
the point when it becomes diffusive at φ = 0.21 takes about 1 month
on a 3.30GHz Intel Core i3-3220 machine. The extreme slow down
of the computational time impedes the calculation of asymptotic val-
ues of quantities like the translatoinal diffusion coefficient. Below, we
pursue the calculation of some quantities which are accessible in our
simulation time window and may provide indirect information about
the scaling behavior close to the critical point.

5.3 scaling behavior

We are interested in finding out how the tracers’ transport properties
depend on the distance to the point of the percolation transition (ε =

(φc−φ)/φc). Namely how their translational diffusion coefficientDt,
or the time they require to translate in average by a certain amount,
scales with ε. The former, as discussed above, is hard to achieve given
the slow down of simulations near criticality. The latter however, can
be investigated by introducing the quantity

Q(τ,d) = 〈θ(d− |r(t0 + τ) − r(t0)|)〉. (5.2)



5.3 scaling behavior 65

Here θ is the Heaviside function. Q(τ,d) measures the fraction of
particles that have moved less than d during the time interval τ. The
average is over particles as well as different t0. This quantity is illus-
trated in Fig. 5.4 for an active system with different packing fractions.
For all densities, Q(τ,d) = 1 at small times and gradually vanishes;
as long as the continuum percolates, particles can move unboundedly.
In assigning a value to d we note the following points: i) A value of
d smaller than a typical cage size is not helpful since we demand that
above the percolation transition no particles translate by larger than
d. ii) An extremely large value of d provides us with no helpful infor-
mation either sinceQ(τ,d) would not vanish at large τ for any φ then.
We have plotted Q(τ,d) for d = 100Ro and d = 50Ro for systems with
10000 obstacles and different φ: see Fig. 5.4 and 5.6.
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Figure 5.4: Fraction of active particles (y = 0.1) that have moved less than
d = 100Ro in time interval τ, for different packing fractions.

We expect this quantity to be connected to the diffusion coefficient.
To investigate this issue, we extract the diffusion coefficients from
the MSD plot (Fig. 5.3). Close to the critical point the values of Dt
we find, are only approximates, found by extrapolating the curves in
Fig. 5.3 into the diffusive regime. We rescale the time by these values
of Dt and observe that almost all the curves collapse on a single one
at large times (Fig. 5.5). We are aware of the fact that the values of Dt
we used for rescaling the time, are only approximates and Fig. 5.5 is
just to indicate that the time, τ∗, that Q(τ,d) relaxes to a small value,
Q∗, and the diffusion coefficient are closely connected. Therefore we
investigate the dependence of τ∗ to the distance to the critical point
and assume that the scaling of Dt can be found accordingly.

The relaxation time τ∗, the time that Q(τ,d) (for d = 50Ro) drops
to Q∗ = 0.6, is obtained from Fig. 5.6 and 5.7 for active and passive
systems respectively and illustrated in Fig. 5.8. It appears to us that
τ∗ grows in the form of a power-law by decreasing ε, although the
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Figure 5.5: Similar curves as the ones in Fig. 5.4, with the x-axis being re-
scaled by the diffusion coefficient of the corresponding system.
All the curves collapse on the top of each other.

statistics require further improvement for a better judgment. This is
not surprising, noting the previous works on the dynamics of passive
tracers in the Lorentz model with overlapping obstacles where Dt ∼
ε1.310 [113].
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Figure 5.6: Fraction of particle that
have moved less than
d = 50Ro in active systems
(y = 0.1) with different
obstacle density.
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Figure 5.7: Fraction of particle that
have moved less than
d = 50Ro in passive sys-
tems (y = 10) with differ-
ent obstacle density.

We have tried to carry out finite size scaling at this point, the result
of which is summarized in appendix A.

5.4 exploration of cages

We have learned so far that above the percolation transition (φ > φc)
tracers are trapped in finite cages surrounded by obstacles. The mean
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Figure 5.8: τ∗, the time that Q(τ,d) (given in Fig. 5.6 and 5.7) drops to 0.6,
as a function of the distance to the critical point for an active and
passive system. τ∗ appears to diverge in the form of a power-law
at the critical density for both passive and active systems. The
dashed line corresponds to τ∗ ∼ ε−0.9.

square displacement of particles in this case is limited by the size
of such cages and converges to a constant value at large times. At
intermediate times, activity gives rise to the enhancement of the MSD:
Fig. 5.9 suggests that increasing y from y = 0.1 to y = 10 increases the
MSD by about one order of magnitude at around 100 < τ < 1000. The
saturation value of the MSD at large times is however independent
of the dynamics and is only a function of cage sizes. A question of
interest, which I will pursue below, is where and how activity plays
an important role with respect to the motion of these caged particles?
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101
102
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Figure 5.9: The mean square displacement of tracers with different activities
in obstructed systems above the percolation transition (φ = 0.26).

Observing the trajectory of particles (Fig. 5.10), active tracers seem
to move along the inner wall of the cages for a long distance com-
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paring to passive tracers, before they change their direction. This is
no surprising observation as we have already discussed the motion
of a single particle around an obstacle in chapter 3 and have learned
active particles tend to stick to the walls.

Figure 5.10: Trajectory of particles for ∆t ∼ 300 in systems with φ = 0.26
and y = 10 (top), y = 0.1 (bottom). Passive particles’ trajecto-
ries are rather coiled as compared to active particles’ extended
trajectories which pass by several obstacles before re-orienting.
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We try to pinpoint this distinction between active and passive sys-
tems by comparing the distribution of square displacements at some
time interval t = 500. Distribution of the squared displacement of all
particles during time t starting from different initial times is plotted
in Fig. 5.11.
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Figure 5.11: Comparison of the distribution of square displacements at a
time interval t = 500 above the percolation threshold in two
active and passive systems: φ = 0.26,L = 350.

From Fig. 5.9 it is expected to see larger displacements at this inter-
val in active systems. When we rescale the two distributions by their
mean value, they collapse on a single curve: Fig. 5.12. This implies
that the only important quantity regarding the displacements of par-
ticles is the MSD.
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Figure 5.12: Distribution of square displacements of particles divided by
their mean square displacement (∆̄) in two active and passive
systems.
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In order to compare the extension of trajectories of passive and
active tracers, we compute the radius of gyration, RG, of their trajec-
tories in the two systems. We consider the trajectories of our random
walkers as long polymers, where each monomer i is located at rti .
The square radius of gyration is then

R2G(τ) = 〈
1

2N2
ΣNi=1Σ

N
j=1(rt0+ti − rt0+tj)

2〉, (5.3)

where τ = tN and the average is over the tracer particles, different
obstacle configurations, and t0. The result is plotted in Fig. 5.13 for
active and passive systems. Rg(τ) vanishes at small τ and grows faster
for active particles. It does not appear, at least in our window of sim-
ulation time, that the two curves corresponding to two activities will
converge onto a single curve at large τ. We conclude then that the tra-
jectories of active tracers in cages are more extended than the passive
ones, which are rather coiled. This is in agreement with the preference
of active particles to stick to and move along the walls, discussed in
chapter 3.
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Figure 5.13: Squared radius of gyration of the trajectories of tracer particles
during a time interval τ for systems with φ = 0.26 and L = 350.

We proceed with investigating the role of tracer’s activity in their
exploration of cages in slightly modified systems. We demand our
particles to be smaller than the obstacles to make our results in this
section comparable to our results in previous chapters. The percola-
tion transition in our model with Rp/Ro < 1 is studied in [115]: for
an obstacle density of φo = 0.4 the maximum particle radius that can
diffuse throughout the whole void space is Rp/Ro = 0.4. From here
on, we investigate the systems with this density and size of obstacles.
Fig. 5.14 demonstrates the trajectories of some active particles in such
a medium.
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Figure 5.14: Sample trajectories of particles in a system with y = 0.1,φ =

0.4,Np/No = 100/5000,Rp/Ro = 0.4. For a particle to obstacle
size ratio of Rp/Ro = 0.4, the critical density is about φ = 0.4.

Now we introduce the pair correlation function of obstacles and
particles, g(r), to further improve our understanding of the differ-
ences between trajectories of active and passive particles in this regime.
This quantity is plotted in Fig. 5.15. Height of the first peak according
to the definition can be found from

g(Rp + Ro) =
M

Np

L2

2π∆(Rp + Ro)No
, (5.4)

where M
Np

is the fraction of particles that are immediately next to an
obstacle. For our set of parameters that is indicated in Fig. 5.15 one
expects to see a very small first peak in passive systems, where most
of particle are deep in the bulk (in the middle of cages) or equiva-
lently M/Np ≈ 0. On the other hand our active particles move along
obstacles for a long time and M/Np ≈ 1 results in the height of the
first peak to be about 18. This value in Fig. 5.15 is even larger because
some of the particles are immediately next to more than one obstacle
at the same time and are counted more than ones.
Equivalently the number of collisions with obstacles reveals how close
particles move relative to obstacles. This quantity also increases dra-
matically with activity (Fig. 5.16).

In order to demonstrate the motion of active particles close to the
inner wall of cages we can explicitly calculate the distance of particles
to their closest obstacle, d. I define d for each particle at an instance of
time as the shortest of the two distances that the particle has from the
obstacle that it hit previously and the obstacle it will hit next. This is
not necessarily the closest obstacle, but it captures the behavior that
we are interested in, and since we use an event-driven algorithm this
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Figure 5.15: Obstacle-particle pair correlation function in systems with
different activities above the percolation transition. φ =

0.4,Np/No = 100/5000,Rp/Ro = 0.4,L = 198.166. Active parti-
cles rather move in the vicinity of the obstacles, whereas passive
ones are indifferent about them.
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Figure 5.16: Number of collisions with obstacles in systems above the per-
colation transition versus y. This number is per particle and
during one unit of time. Each marker corresponds to a system
similar to Fig. 5.15 with different y.

quantity is easy to calculate. Fig. 5.17 shows this quantity for similar
geometries but different activities, just after the simulation starts, be-
fore the system reaches the steady state. In this case d is independent
of activity and depends only on the initial configuration. As the simu-
lations run longer, the difference between active and passive particles
become apparent: Active particles maintain a very small distance to
obstacles (Fig. 5.18).
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Figure 5.17: Distribution of the distance to the closest obstacle, in a
time window before reaching the steady state. Np/No =

100/5000,Rp/Ro = 0.4,φ = 0.4,L = 198.166.
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Figure 5.18: Distribution of the distance to the closest obstacle, in a time
window in the steady state. System parameters are similar to
Fig. 5.17.

The average of d is plotted as a function of y in Fig. 5.19. This quantity
clearly reveals the role of activity in the exploration of cages: Highly
active tracers move along the walls of the cages, while being almost
stuck to it (d̄ ≈ Rp + Ro). Whereas passive ones swim in average
somewhere in the middle of the cages (d̄ for them is a function of the
average cage size only).
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Figure 5.19: Average distance of particles to the closest obstacle, versus y in
systems above the percolation threshold. This quantity reveals a
crossover from moving almost tangent to the obstacles in active
systems, to wandering in the middle of the cages in passive
ones.
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C O N C L U S I O N

6.1 summary

The motion of self-propelled particles in homogeneous environments,
isolated from any other object, is an exception rather than a rule. Bi-
ological active particles, whether microorganisms in human organ-
s/blood/soil/etc., or fish in the ocean, experience frequent interac-
tions with the walls and obstacles. Unlike systems in equilibrium,
the heterogeneity in active systems can do more than just confining
the particles (like walls in passive systems) or slowing down of their
motion (like steric interactions of passive particles with many im-
mobile obstacles). Phenomena like circular motion of bacteria close
to the container planar walls [13], accumulation of sperm cells on
solid surfaces [19], formation of biofilms [95], and enhancement of
Trypanosome’s propagation in crowded media [23], are some of the
examples that reveal the surprising interplay of heterogeneity and ac-
tivity. Despite the ubiquity in nature, a major part of the studies on
active particle’s behavior has been devoted to homogeneous systems.
In order to make a contribution to the understanding of active parti-
cle’s respond to environmental heterogeneities, in this work we have
employed a minimal model for active particles to investigate their in-
dividual dynamics and the emergent collective behavior in the pres-
ence of obstacles.

We have found out that the residence time of a particle on a flat wall
depends not only on its incident angle and angular velocity, but also
on its activity: The more active, the longer the particle resides on the
wall. The average residence time increases in the form of a power-law
with activity in active systems, diverging at zero rotational diffusion.
Interaction of active particles with spherical obstacles is found to be
qualitatively similar, with the two main differences: The average resi-
dence time no longer diverges at large activities, it is rather bounded
by the finite size of the obstacle. Also raising the magnitude of the
active force decreases the average residence time on such obstacles,
unlike the case of a planar wall.
We have shown that at moderately dense and highly active systems,
the crystalline cluster formed around the obstacle performs system-
atic spontaneous rotations. The rotations can be understood based
on a simple argument to model collisions with moving rough walls,
mimicking the periphery of the rotating crystal. The feedback mecha-
nism producing the rotations, distinguishes our rotating crystals from

75
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the previously observed rotating aggregates of active particles: In our
system, the onset is due to spontaneous fluctuations of the angular ve-
locity of the whole crystal which get enhanced through the selective
attachment of particles to the crystal with respect to their orientation
and equivalently through a total torque that scales linearly with the
number of particles in the crystal.
Regarding the dynamics of active particles in a crowded medium,
we have illustrated that by increasing the obstacle packing fraction
towards the percolation transition, the distribution of particle’s dis-
placements deviates from the Gaussian, the mean square displace-
ment saturates to a value specified by the average cage size, and the
relaxation time (the time a particle requires for moving a considerable
length) diverges. Increasing the activity is found to enhance the trans-
port (the translational diffusion constant) below the critical packing
fraction. Above the critical point, activity induces extended trajecto-
ries along the cage’s interior wall which results in a larger radius of
gyration and faster transport at intermediate times.

6.2 outlook

The projects that I have covered in this thesis have various avenues
for further exploration. Below, I introduce some of these side projects
that we have started but there is still work to be done analyzing/un-
derstanding our results.

Motivated by the motion of Chlamydomonas and other puller mi-
croswimmers, a simple reversing of the normal component of the ve-
locity and preserving the orientation in collisions with surfaces, may
not be realistic in some cases. The flow fields generated by a puller
microswimmer in the vicinity of a flat wall gives rise to the reorien-
tation of the particle perpendicular to the wall upon hitting it. As a
result, the cell leaves the surface immediately after the collision, un-
like pusher particles which gradually reorient parallel with the wall
and move along it for long times [97].
Inspired by [49] we consider the following scenario for the reorien-
tation of the particles upon collisions with obstacles: The outgoing
angle is derived from an empirical distribution with a peak at an
angle between 0 and π/2. The velocity is accordingly updated after
each collision to lie along the new orientation. Such a collision rule
may give rise to intrinsically different observations: Does the accumu-
lation around the obstacles survive? Can we define an effective long
range repulsive force between the obstacles and particles in contrary
to the effective attraction of particles to the obstacles in the previous
case? There are many other open questions in this regard that may be
worth exploring.
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We have considered hard-core collisions between the particles all
over this thesis. However, natural or synthetic active particles may ex-
perience short range attractive inter-particle forces as well. This can
be e.g. through hydrodynamic interactions [48], depletion potential
due to the presence of non-adsorbing polymers in the solvent [80],
or diffusiophoretic interactions [73]. Concerning the clustering phe-
nomenon in active systems, attractive forces are expected to enhance
this effect. In order to investigate the phase diagram of an active
system in the presence of attraction, we have substituted the repul-
sive inter-particle potential with a Lennard-Jones (as a side project
together with Marko Detmers). In the absence of any obstacles, the
system exhibits clustering at intermediate densities. The small clus-
ters scattered all over the system, are not stationary and perform no
similar rotations as the ones reported in chapter 4. They only coarsen
into large ones at large densities or attractive strength, where the
system quickly becomes frozen: The potential energy dominates the
kinetic energy. We have learned in chapter 4 that the effective particle-
obstacle attraction is a key element in the formation of the rotating
crystals and now we know that an explicit inter-particle attraction ap-
parently fails to induce similar systematic rotations in the presence of
no obstacles. There are of course many other interesting issues in this
regard which require further investigations.

Obstacles in natural habitats are not necessarily immobile. Think
of the crowded array of red blood cells, through which a parasite
needs to find its way escaping from a white blood cell, or the dead or
flagella-less bacteria, with which a mobile bacterium in a biofilm suc-
cessively encounters. There has been a number of interesting studies
on the mixture of active particles and heavy passive particles [116] or
polymers [117, 118]. The effect of the active bath on the transport of
the passive particles or the swelling of the passive chain is not trivial
and would be interesting to further explore.

Throughout this thesis the particles have been assumed to be spher-
ical. This is only a minimal model and usually different from real
systems. As a new direction for our studies we have simulated ac-
tive flexible polymers, representing active elongated particles such
as Cyanobacteria, in a homogeneous medium. We have implemented
such a polymer as a chain of passive particles interconnected through
a harmonic potential and subjected to thermal noise, with the first
particle in the chain being active following Eq. 2.9a and 2.9b. We have
observed temporarily shaped polar bundles of the particles (Fig. 6.1),
which is a common behavior in elongated active systems. Other than
the abundant biological examples, the new techniques and progress
in chaining the artificial colloids [119, 120] has also opened the pos-
sibility of realizing active chains artificially. We would like to explore
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the behavior of such systems under the variation of activity, density,
flexibility, and environmental geometries.

Figure 6.1: A snapshot of our simulation results for active polymers. The
red and green beads are the passive and active monomers re-
spectively. Two colliding chains tend to parallelize and gradually
form large bundles of aligned chains upon colliding with other
chains. The bundles eventually dissolve due to the collisions with
other bundles or the rotational diffusion of the active heads, and
form again later.
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A P P E N D I X

a.1 finite size scaling

Regarding the percolation transition introduced in chapter 5, in this
section I explain our attempts to do finite size scaling in order to find
out how our findings in section 5.3 depend on the system size. The
results in this section require further improvements, but we did not
proceed with that.
Before carrying out the analysis, I introduce another power-law be-
havior in the Lorentz model, which is the scaling of the correlation
length ξ with the distance to the critical point: ξ ∼ |φ− φc|

−ν. The
correlation length is a measure of the size of the largest finite cluster
of the void space. Hence it is expected to have a finite value above
the critical point where the void space is separated into several finite
pieces and increase by approaching the critical point (decreasing φ
toward φc). With respect to static properties, continuum percolation
in the Lorentz model shares the same universality class as lattice per-
colation for which the exact value of ν in two dimensions is known:
ν = 4/3 [107, 108].
Now in very small systems (L� ξ) the correlation length, ξ, becomes
unimportant, the motion will be limited only by the size of the system,
and the main length scale will be given by the box size. In very large
systems (L � ξ) on the other hand, size of the box will be the irrele-
vant length scale. Therefore observables in general will be a function
of both ε and L. The dynamic scaling ansatz for the relaxation time
reads [108]

τ∗(ε,L) = ξµ/ντ̃∗(L/ξ) ∼

{
Lµ/ν forL� ξ

|ε|−µ forL� ξ

Fig. A.1demonstrates τ∗εµ as a function of L/ε−ν for different val-
ues of µ and ν. Fig. A.2 demonstrates the same quantity with more
resolution around µ = 0.5,ν = 1.5 which seem to obey the above
equation. Looking into Fig. A.2 we infer that the subplot with ν ≈
1.25 and µ ≈ 0.75 shows the closest behavior to the above equation:
τ∗εµ saturates at large L (or τ∗ scales as ε−µ when L/ε−ν � 1) and
follows a power-law with respect to L/ε−ν at small L (or τ∗ scales as
Lµ/ν when L/ε−ν � 1).
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