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Abstract 

 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that leads to 

progressive memory loss and impairment of other cognitive functions. It is the most 

prevalent form of dementia in the elderly and is estimated to affect 20 to 45 million people 

worldwide. The incidences are expected to rise sharply over the coming decades with no 

effective therapeutics available to combat the disease. Recent advances in AD research 

uncovered many important aspects of the disorder. Nevertheless, the AD progression at the 

molecular level, particularly at its early stage, remains elusive.  

In this thesis I investigated the changes in the brain proteome and phosphoproteome over 

the course of neurodegeneration in a triple transgenic mouse model of AD (3×Tg-AD). 

Bioinformatic analysis of stage-specific alterations in protein expression and 

phosphorylation allowed to determine the affected biological functions along the progression 

of the disorder. Notably, proteins related to apoptotic response, mitochondria function and 

synaptic transmission were among the most affected groups in the early stages of AD. 

Several proteins in the dataset exhibited strong expression change before the AD onset in 

3×Tg-AD mice. These proteins can be considered as putative presymptomatic brain markers 

of AD and pose a special interest for their potential in early diagnosis and treatment of AD. 

Closer investigation of one such marker, heme-binding protein 1 (Hebp1), revealed its 

increased expression in the brains of patients affected by rapidly-progressing forms of AD. 

Furthermore, Hebp1 is found to be expressed predominantly in neurons where it exhibits a 

perimitochondrial localization and interacts with the mitochondrial contact site and cristae 

organizing system (MICOS) complex. Remarkably, genetic depletion of Hebp1 reduces 

apoptosis induced by excessive levels of heme. Importantly, abnormalities in heme 

metabolism and disturbance of brain vasculature were previously reported in AD. 

Collectively, my findings suggest that the increase in Hebp1 expression early in AD 

progression can be linked to impaired heme metabolism and neuronal loss. 
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1 Introduction 

 Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that gradually impairs 

memory, cognition and ability to perform simple daily tasks. AD is the most prevalent form 

of dementia in elderly, with its incidence increasing exponentially with age1. Estimates have 

indicated that 20 to 45 million people are currently affected by AD worldwide2,3. These 

numbers are expected to triple by 20503. None of the available therapeutics have been able 

to stop and reverse AD. Aside from detrimental impact on the health of afflicted individuals, 

AD also poses a heavy economic burden. The aggregate cost of AD-related health care in 2017 

in the USA alone has reached $259 billion and is projected to grow to one trillion dollars per 

annum over the next three decades. Collectively, these statistics portray AD as one of the 

biggest socioeconomic challenges of the 21st century. Deeper understanding of the 

mechanisms contributing to the disease and its progression is therefore vital for developing 

successful therapeutics that will contribute to a solution to this problem. 

 Brief history of AD research 

Alzheimer’s disease was first described in 1901 by the German physician Alois Alzheimer, 

who followed the case of a fifty-year-old female patient affected by rapidly progressive 

cognitive deficiency4. For many decades afterwards, AD was regarded only as a presenile 

form of dementia occurring exclusively in middle-aged population (45 – 65 years), while 

cases of dementia in elderly (> 65 years) were commonly attributed to physiological aging. It 

was not until the late 1970s that pathological findings in senile dementias were recognized 

to closely resemble the original findings of Alois Alzheimer5,6. The last three decades have 

seen an immense progress in fundamental and clinical research related to AD. These efforts 

have unraveled many important aspects of AD pathogenesis and helped to establish better 

methods for its diagnosis. Despite all these efforts, the origin and precise mechanism of the 

disease remain elusive.  

 Neuropathological hallmarks of AD 

Original study of Alois Alzheimer revealed the presence of unusual fibrillary tangled 

structures in the postmortem brain of the first AD patient4. These structures are now 

recognized as hallmarks of AD pathology. We now know that these are two types of protein 
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aggregates known as amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) (Figure1-

1).  

 

Figure 1-1. Neuropathological features of AD.  

Coronal slices of fixed brain from two different patients, one without dementia (A) and one with (B); slices are 

at comparable coronal levels (near the head of the caudate nucleus). Arrows indicate a relatively normal lateral 

ventricle in the control case (A) versus a markedly enlarged lateral ventricle in the Alzheimer’s disease subject 

(B). Cortical thinning is less prominent. 

(C, D) Senile plaques. Hematoxylin and eosin-stained sections show a neuritic plaque without a 

prominent amyloid core (C, arrows) and two plaques with prominent amyloid cores (Aβ plaques) (D, arrows). 

(E, F) Neurofibrillary tangles. Sections were immunostained with primary antibody against phospho-tau and 

visualized at low (E) and high (F) magnification. Arrows in panel F highlight immunoreactive neurons with 

classic flame-shaped NFT morphology.  

Adapted from Vinters, 20157. 

 

1.1.2.1 Amyloid beta plaques 

Aβ plaques are composed of aggregated Aβ peptides (36-43 amino acids) that are produced 

by proteolytic processing of amyloid precursor protein (APP)8. APP is a transmembrane 

protein, which in neurons is presumably responsible for cell growth and synaptogenesis9,10. 

Nevertheless, the exact role of APP in brain development and function is not fully understood. 



Introduction | 10 
 

APP is produced in neurons in large quantities and undergoes rapid turnover11. The 

proteolytic degradation of APP can occur through amyloidogenic or nonamyloidogenic 

pathway12. During nonamyloidogenic processing, APP is sequentially cleaved by the plasma 

membrane proteases α- and γ-secretase. These cleavages result in generation of a long 

soluble N-terminal fragment (APPsα), a cytosolic C-terminal AICD fragment and a short 

soluble P3 peptide (Figure 1-2). In amyloidogenic pathway, APP is processed first by β-

secretase in the endosomal compartment followed by γ-secretase cleavage typically at the 

plasma membrane. As a result, short Aβ peptides are produced and released into the 

extracellular space (Figure 1-2). An alternative route for Aβ trafficking to trans-Golgi 

network and subsequent intracellular accumulation of the peptide has been proposed as 

well13,14. 

Strong hydrophobicity of Aβ peptide makes it highly prone to aggregation15. With aging, Aβ 

accumulates in brain, both intracellularly and extracellularly16. Extracellular accumulation of 

Aβ deposits results in formation of characteristic plaques that have been long believed to be 

the main source of neurotoxicity in AD17. However, recent evidence suggest that oligomeric 

forms of Aβ can be even more toxic than plaques18. 

 

Figure 1-2. Proteolytic processing of amyloid precursor protein.  

Sequential cleavage of the amyloid precursor protein (APP) occurs by two pathways. (A) Nonamyloidogenic 

processing of APP involving α-secretase followed by γ-secretase is shown. (B) Amyloidogenic processing of APP 

involving BACE1 followed by γ-secretase is shown. Both processes generate soluble ectodomains (sAPPsα and 

sAPPsβ) and identical intracellular C-terminal fragments (AICD). 

Reproduced from O’Brien and Wong, 201412. 
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1.1.2.2 Neurofibrillary tangles 

The second distinctive neuropathological feature of AD are neurofibrillary tangles. NFTs 

consist primarily of hyperphosphorylated tau protein that under physiological conditions 

binds axonal microtubules and regulates their stability19. The density of tau tangles in the 

brain correlates strongly with the extent of dementia in individuals afflicted by AD20. Six 

isoforms of tau protein are expressed in human brain21 (Figure 1-3). Each tau isoform 

consists of an acidic N-terminal region followed by a proline-rich motif (this forms the  

projection domain) and three or four tubulin-binding domains at the C-terminus22. Projection 

domain contains an internally disorganized structure that can interact with various cytosolic 

and membrane proteins23. This domain also determines distances between tightly packed 

axonal microtubules and therefore impacts axon diameter24. Tau binds microtubules via 

repeated domains (R1-R4) that consist of eighteen highly conserved amino acids. Binding of 

tau to microtubules increases the rate of microtubule polymerization and stabilizes their 

structure25,26.  

The proper organization of microtubular network in axon is critical for intracellular protein 

trafficking and maintenance of synaptic activity27. These processes get strongly affected in 

AD largely due to conformational modifications of tau and hence inefficient maintenance of 

microtubule cytoskeleton28. The conformational changes of tau are caused predominantly by 

altered profile of post-translational modifications, mainly phosphorylation. The longest tau 

isoform (441 aa) contains almost 80 potential serine and threonine phosphosites. Most of 

them are located in proline-rich region and C-terminus of the protein. Few phosphosites also 

localize to microtubule binding repeats where they are a part of KXGS motif22. Under 

physiological conditions, a moderate level of tau phosphorylation is required for its efficient 

interaction with microtubules29. However, in AD tau gets heavily hyperphosphorylated30. 

Abnormal activity of protein kinases and phosphatases is a key contributor to the altered 

phosphorylation profile of tau in AD. Glycogen synthase kinase 3 beta (GSK-3β), cAMP-

dependent protein kinase (PKA), cyclin-dependent kinase 5 (Cdk5) and other kinases have 

been demonstrated to be involved in hyperphosphorylation of tau31,32. Hyperphosphorylated 

tau loses its affinity to tubulin, leading to breakdown of microtubule networks33. Moreover, 

it facilitates detachment properly phosphorylated tau molecules and other microtubule 

associated proteins (MAPs) from microtubules further exacerbating the damage34,35. 
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Hyperphosphorylated tau is prone to aggregation and after initial accumulation forms 

neurofibrillary tangles in the neurons of AD patients. As in case of Aβ accumulation, it takes 

long time (presumably years or decades) for aggregated tau to provoke a cytotoxic 

response21.  

 

Figure 1-3. Structure and phosphorylation of tau protein.  

(A) Schematic representation of the six tau isoforms in human brain. 

(B) Schematic representation of phosphorylation sites on the longest tau isoform. SP/TP motifs (represented 

in blue), KXGS motifs (represented in yellow), and other sites (represented in gray) can be phosphorylated by 

proline-directed kinases (represented in blue) and non-proline directed Ser/Thr kinases (represented in 

green). AT8, AT100, AT180 and PHF-1 are classical antibody epitopes used for detection of 

hyperphosphorylated tau. 

Compiled and adapted from Buée et al., 201021 and Tenreiro et al., 201432. 

 

 Progression and early diagnosis. 

According to the latest recommendations of Alzheimer’s society, the progression of AD in 

humans can be subdivided into three stages: preclinical AD, mild cognitive impairment (MCI) 

due to AD and dementia due to AD36. In AD, pathophysiological transformations occur long 
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before manifestation of clinical symptoms (Figure1-4). Many scientists argue that 

therapeutic intervention at presymptomatic stage can considerably slow down or stop the 

progression of AD. While MCI and dementia stages can be determined based on symptomatic 

development, diagnosis of AD at presymptomatic phase is not trivial and relies on brain 

imaging techniques and identification of biomarkers in cerebrospinal fluid (CSF) and blood.  

Advancement in brain imaging techniques have allowed for comprehensive assessment of Aβ 

aggregation in the brain of living individuals. Positron emission tomography (PET) scanning 

using (11)C-labelled Pittsburgh Compound-B ligand ((11C)PIB), a radiolabeled chemical 

capable of binding to Aβ fibrils, could successfully detect accumulation of Aβ aggregates in 

the cortex of AD patients but not age-matched controls or healthy young individuals37. 

Further application of PET scanning revealed that Aβ deposits can already be detected even 

before the onset of clinical symptoms, prior to the emergence of MCI38,39. Brain imaging 

studies and autopsy experiments demonstrate that development of plaque pathology roughly 

precedes AD diagnosis by about 10 years40–42. However, it remains to be determined whether 

Aβ aggregation in cognitively healthy individuals is predictive of developing AD later in life.  

Reduction of glucose metabolism is also related to AD43. Uptake of radio-labeled glucose 

(fluorodeoxyglucose 18F) can be assessed by PET scanning and serve as an early indication 

of the disease44. Another brain imaging technique that is implemented for early identification 

of AD is volumetric MRI scanning45. This method is based on the detection of abnormalities 

in brain structure and can identify early signs of neurodegeneration. 

The analysis of molecular biomarkers from CSF or blood can also be a useful tool in AD 

diagnosis. A recent study of plasma biomarkers revealed a strong correlation between Aβ 

levels in blood and CSF and amyloid burden of brain determined by PET46. Surprisingly, lower 

levels of Aβ1-42 in CSF are associated with AD47. In contrast, elevated total and phospho-tau 

can be detected in CSF of AD patients47. Interestingly, increase in CSF phospho-tau coincides 

with the symptomatic onset of AD but altered level of Aβ1-42 precedes symptomatic 

development of the disease by few years48. This observation supports amyloid cascade 

hypothesis putting changes in Aβ production upstream of tau hyperphosphorylation in AD 

progression. 
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Although statistically significant, the differences in CSF Aβ and tau obtained in large cohort 

studies are rather small, limiting the usefulness of these biomarkers in routine diagnosis. 

There is thus a need to identify alternative biomarkers capable of detecting AD at the 

presymptomatic stage that are able to clearly discriminate between healthy and diseased 

individuals. 

 

Figure 1-4. Progression of AD and available biomarkers.  

(A) Model of the clinical trajectory of AD. 

(B) Hypothetical model of dynamic biomarkers (description in the text). 

(C) Graphic representation of the proposed staging framework for preclinical AD. 

Taken and compiled from Sperling et al., 201136. 
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 Risk factors 

Amyloid cascade hypothesis has been at the center of current understanding of AD49 

(Figure1- 5). According to this theory, increased generation of toxic Aβ peptides in the brain 

is a primary cause of AD that leads to hyperphosphorylation and aggregation of tau, synaptic 

loss, neurodegeneration and finally cognitive decline.  

 

Figure 1-5. The sequence of major pathogenic events leading to AD proposed by the amyloid cascade 

hypothesis. 

Taken from Selkoe and Hardy, 201618. 

 

Amyloid cascade hypothesis was proposed in 1992, and since then many evidence were 

published in its support18. Nevertheless, amyloid cascade hypothesis cannot fully explain 
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several aspects of AD pathogenesis and has often been challenged in the scientific 

community50–52. Aβ accumulation is necessary but not sufficient to produce the clinical 

symptoms of MCI and dementia53. That is why it is important to understand the factors (both 

related and unrelated to Aβ) that can bring about pathological changes in AD. 

1.1.4.1 Genetic risk factors 

The mutations in genes involved in APP processing result in inherited early-onset AD that 

typically affect individuals under the age of 65. These cases are known as familial Alzheimer’s 

disease or FAD and make up around 1% of all AD cases54. Mutations in the following three 

genes have causative relationship with FAD: APP, PSEN1 and PSEN2. PSEN1 and PSEN2 

encode two components of the γ-secretase complex, presenilin-1 and 2, respectively. Thirty-

two mutations for APP, 179 for PSEN1 and 14 for PSEN2 have been identified so far (Figure 

1-6).  

 

Figure 1-6. Most common mutations in FAD. 

(A) Most common APP mutations and their locations. Numbering refers to the longest APP isoform (APP770). 

Schematic representation of PSEN1 (B) and PSEN2 (C) with the mutations occurring in FAD labeled in red. 

Compiled and adapted from Esquerda-Canals et al., 201755 and Meraz-Ríos et al., 201456. 
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Mutations of APP were named after the geographical region where they were first discovered. 

The most famous Swedish mutation of APP occurs in proximity of β-secretase site, while 

other known mutations cluster around γ-secretase point of cleavage. Interestingly, 

individuals with trisomy of chromosome 21 (Down syndrome), possess additional copy of 

APP gene and are more susceptible to develop AD at a young age57. The AD-related mutations 

in presenilins occur predominantly in their transmembrane domains. Typically, these 

mutations lead to increased activity of γ-secretase complex or shift of the cleavage site by a 

few amino acids that results in production of longer, more toxic forms of Aβ56. 

The vast majority of AD cases are sporadic (SAD) and according to the current knowledge are 

not predetermined by the presence of any fully penetrant variant of a single gene. 

Nevertheless, genetic risk factors of SAD do exist. Almost 700 different genes demonstrate 

some degree of association with AD54. APOE ε4 allele is the strongest genetic risk factor for 

SAD. In humans, APOE can be expressed from three different alleles ε2, ε3 and ε4. The 

estimated prevalence of ε4 allele in general population is about 13.7%, while its frequency is 

almost tripled in AD patients (36.7%)58. APOE is a primary cholesterol carrier in the brain 

that is involved in lipid metabolism and injury repair59. Expression of APOE from ε4 allele has 

been linked to reduced clearance of Aβ in the brain60,61. Remarkably, APOE ε4 also affects AD 

pathogenesis through Aβ-independent pathways that impact synaptic plasticity62,63, 

inflammatory response64 and glucose metabolism65. Interestingly, polymorphism in other 

genes involved in regulation of these processes is associated with AD. Few examples include: 

ACE (angiotensin 1)66, CHRNB2 (cholinergic receptor nicotinic beta 2 subunit)67 and GAPDHS 

(Glyceraldehyde-3-Phosphate Dehydrogenase)68. The full list of genes and polymorphisms 

associated with AD can be found on publicly available Alzgene web resource 

(http://www.alzgene.org/). 

1.1.4.2 Non-genetic risk factors 

The strongest non-genetic risk factor for AD is age3. Apart from aging, lifestyle also impacts 

predisposition to AD. Regular physical activity is associated with reduced risk of developing 

AD in old age69. Higher levels of cognitive and social activity during life also postpones the 

age of AD onset. For example, people with higher number of years spent on education are at 

lower risk for developing AD70.  
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Several pathophysiological conditions have been linked to AD as well. For instance, a history 

of traumatic brain injury puts individuals under increased risk of acquiring AD71. Prevalence 

of AD in patients with type II diabetes is twice as high in comparison to individuals without 

the disease72. Many factors that worsen cardiovascular pathology such as smoking, obesity 

in midlife, high cholesterol and hypertension are also reported risk factors for AD73–76. These 

associations highlight that dysregulation of general metabolism creates a fertile environment 

for AD to blossom.  

 Biological processes related to AD progression 

Over the last three decades, we have gotten a little closer towards understanding the AD at 

the molecular level. But how do the changes in individual genes and proteins contribute to 

the progression of the disease? To find the answer to this question, it is important to put the 

knowledge of molecular pathways in the context of brain physiology. In this section, major 

biological processes altered in AD will be reviewed, demonstrating that coordinated 

interplay between different molecular, cellular and systemic factors contributes to the 

development of the disease. 

1.1.5.1 Mitochondria dysfunction and oxidative stress 

Mitochondria are essential organelles that regulate neuronal metabolism, protein turnover, 

oxidative stress and cell death response. They are directly involved in progression of many 

neurodegenerative disorders77. Several aspects of mitochondria biology have been linked to 

AD. 

One of them is mitochondria dynamics. Mitochondria occur not as stand-alone organelles but 

rather as a dynamically interchangeable moiety78. The dynamics of such mitochondrial 

network is regulated by the balance between mitochondrial fusion and fission79. This balance 

is disturbed in AD as indicated by altered expression of proteins regulating fusion/fission 

events80. Stability of inner mitochondrial membrane is also important for mitochondria 

dynamics81. Proper positioning of mitochondria within the cells depends on the interaction 

of mitochondria with ER79. Communication between mitochondria and ER is particularly 

important for lipid metabolism, apoptosis and intracellular Ca2+-signaling. The ER-

mitochondria communication occurs through specialized membrane patches called 

mitochondria-associated ER membranes (MAM)82. Interestingly, components of γ-secretase 
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(presenilins) are enriched on MAMs83. Moreover, the number of MAMs is upregulated in 

fibroblasts isolated from both FAD and SAD patients causing elevated Ca2+ concentrations in 

mitochondria, which may have a positive effect on the regulation of apoptotic response83,84. 

Mitochondrial proteostasis is another mitochondria-related process that is associated with 

neurodegenerative pathologies. Recently, decreased expression of proteins involved in 

mitochondrial unfolded protein response was reported in a large cohort of AD patients85. 

Remarkably, pharmacological enhancement of proteostasis led to significant amelioration of 

pathology in various animal models of AD85. This indicates that counterbalancing the 

degradation of mitochondrial proteins might be a viable therapeutic strategy to combat AD. 

On the other hand, inefficient removal of damaged mitochondria can exacerbate the 

neurodegenerative process. An important player in this process is PTEN-induced putative 

kinase (PINK1) which initiates degradation of mitochondria by induction of mitophagy86. A 

recent study demonstrates that overexpression of active PINK1 in mouse model of AD 

reduces Aβ levels, oxidative stress and synaptic dysfunction87. 

Remarkably, the relationship between mitochondria and Aβ is directly related to 

mitochondria dynamics and protein degradation. As mentioned above, active γ-secretase can 

be found on MAMs suggesting potential cleavage of APP in proximity of the mitochondrial 

surface. Indeed, peri-mitochondrial Aβ1-42 peptides were shown to inhibit import of 

mitochondrial proteins via co-aggregation88. Aβ can also inhibit import and maturation of 

mitochondrial proteins by interference with mitochondrial peptidasome Cym1/PreP leading 

to perturbation of mitochondrial proteostasis89. 

Mitochondria are the major intracellular source of reactive oxidative species (ROS). At the 

same time, antioxidative systems of mitochondria keep ROS levels in check and protect cells 

from oxidative stress90. Multiple studies have demonstrated that oxidative stress precedes 

Aβ pathology in AD patients and mouse models of the disease91,92. Dysregulation of 

glutathione (a key molecule involved in antioxidative response) metabolism was reported in 

AD and other neurodegenerative disorders93. Interestingly, reduced mitochondrial function 

and increased oxidative stress led to elevation of Aβ and phospho-tau levels in AD mice94,95. 

Combining these data with the knowledge of environmental risk factors, metabolic 
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dysfunction can be seen as a potential trigger of AD rather than just a consequence of Aβ or 

tau accumulation. 

Mitochondria are also essential for regulation of another biological process crucial in AD, 

namely apoptosis, which will be discussed in the next section. 

1.1.5.2 Cell death 

Cell death of neurons is a key event in AD. Early studies reported the loss of 10-30% of 

neurons in entorhinal cortex and hippocampus of AD patients already at the MCI stage96,97. A 

recent report has demonstrated that the rate of neuronal loss increases with the disease 

progression and correlates well with the Braak classification of AD staging98.  

Cell death can happen by distinct mechanisms. The most studied pathways in 

neurodegeneration include apoptosis (programmed cell death), necrosis, excitotoxicity and 

autophagic cell death99. Examining mechanisms of cell death in brain in vivo has been 

challenging. Although the exact mechanism of neuronal cell death in AD is still debatable, 

most of the evidence indicate towards apoptosis being the prevailing pathway100. 

Oxidative stress has a direct impact on apoptosis. The positive correlation was found 

between production of hydrogen peroxide and amyloid load of the brain101. This effect is 

caused by Aβ itself as it is capable of reaching mitochondria where it can induce ROS 

production and cause cytotoxicity102,103. Localization of Aβ to mitochondria induces cell 

death through apoptotic pathway as it increases expression of the pro-apoptotic protein Bax 

and reduces the levels of the anti-apoptotic Bcl-2104. Aβ was also shown to interact with 

Cyclophilin-D, a component of mitochondria transition pore and a positive regulator of 

apoptosis105. Remarkably, depletion of Cyclophilin-D rescues impairment of mitochondria in 

AD mice and leads to improvement of learning memory. Increased expression of truncated 

scaffolding protein RanBP9 was reported in AD106. RanBP9 can activate cofilin (an activator 

of apoptotic response) through dephosphorylation suggesting a potential role of RanBP9 in 

initiation of the apoptotic response in AD106,107. 

Neurons are not the only cells exhibiting higher rates of cell death in AD brain. Endothelial 

cells are particularly susceptible to apoptosis that results in disintegration of blood vessel, 

ischemia and inflammation108. Treatment of cultured endothelial cells with Aβ1-42 peptides 
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induced apoptosis via activation of death receptors DR4 and DR5109. This suggests that Aβ-

mediated apoptosis follows different pathways in neurons and endothelial cells. 

Inhibition of apoptotic cell death can be a viable path to reduce neurodegeneration. 

Overexpression of the anti-apoptotic protein Bcl-2 in triple transgenic mouse model reversed 

AD pathology, though it is still to be determined whether the observed effects were achieved 

exclusively due to interference with apoptosis110. Inhibition of oxidative stress and 

inflammation by pharmacological treatment can also reduce apoptosis and is considered as 

a potential therapeutic strategy to combat AD111,112.  

1.1.5.3 Inflammation 

Inflammation accompanies AD progression113. Innate immune response in the brain is 

mediated primarily by microglia, brain resident macrophages114. Microglia is recruited to Aβ 

plaques in transgenic mice and has been shown to uptake and process Aβ in lysosomes115. 

PET scanning of human brains revealed higher number of activated microglial cells in the 

brain of AD patients in comparison to age-matched controls116,117. Remarkably, the load of 

active microglia correlates positively with the cognitive decline but not amyloid burden of 

the brain in AD patients117. Role of other brain cell types in inflammation should not be 

overlooked. Astrocytes serve as a trophic support for neurons, maintain ion homeostasis and 

fine tune synaptic transmission118. Like microglia, astrocytes can be activated in response to 

changes in environment. Previous studies proposed that activation of astrocytes in response 

to inflammation leads to reduction of their neuro-supportive function and thus negatively 

impacts brain health in AD119. At the same time, reactive astrocytes can help clearing brain 

from Aβ deposits and may be critical to reduce progression of neurodegeneration120. 

Although not studied extensively in this regard, oligodendrocytes and neurons may also 

contribute to neuroinflammation121,122. 

Experiments in vitro have demonstrated that Aβ is capable of inducing the production of a 

wide range of proinflammatory cytokines through direct or indirect interactions with 

microglia123. For example, Aβ is capable of binding Receptor for advanced glycation products 

(RAGE) on the surface of glia cells. This interaction exaggerates neuronal stress, 

accumulation of Aβ, memory impairments and inflammation124. Upregulation of pro-

inflammatory cytokines such as TNF-α, TGF-β and IL-6 also strongly promotes gliosis and 
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oxidative stress, but at the same time reduces amyloidosis in the mouse models of AD125,126. 

The complement system is a centerpiece of innate immune response capable of recognizing 

molecular signatures of pathogens and injured tissues. Complement proteins are upregulated 

in the brains of AD patients where they can also be found in Aβ plaques127. Opposing roles of 

the complement system with regard to AD pathogenesis have been proposed. Activation of 

complement can ameliorate toxic AD environment, for example, by clearing up apoptotic cells 

in the brain128. On the other hand, complement system has been shown to mediate synapse 

elimination in central nervous system (CNS)129. Toll-like receptors (TLR)130, cyclooxygenase 

2 (COX2)131 and nitric oxide synthase (NOS)132 are important mediators of immune response 

and have also been linked to AD. Recent studies indicate a strong association between risk 

for developing AD and a gene variant of TREM2, an immunoglobulin domain-containing 

transmembrane receptor that is expressed on the surface of microglia133. 

Despite extensive studies, it is still not fully clear whether inflammation is a primary driver 

of AD or is just a secondary process activated in response to other factors. Both pro- and anti-

pathogenic effects of inflammatory response were reported in AD. Based on the available 

data, it can be speculated that glia is activated in response to the pro-inflammatory stimulus 

to combat AD, while neurons get caught up in collateral damage of inflammatory 

environment.  

1.1.5.4 Cerebral amyloid angiopathy  

Cerebral amyloid angiopathy (CAA) is a pathological process characterized by accumulation 

of amyloid fibrils around brain vasculature, typically within the outer basement 

membrane134. CAA accompanies AD progression with about 80-90% of AD patients affected 

by this disorder135. CAA leads to increased permeability of blood brain barrier (BBB) and 

local disruption of vasculature136. Microbleeds, which are a consequence of CAA, are more 

prevalent in AD than in the general population and are associated with increased 

mortality137,138. Leakage of vasculature was proposed as one of the major factors that links 

neurodegeneration to aging139. Leaky BBB allows systemic factors of aged individuals to 

penetrate the brain environment easier where they can induce inflammation and exacerbate 

AD-related damage. 
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1.1.5.5 Metal ions and heme metabolism 

Metal ions contribute strongly to protein misfolding and related neurodegenerative 

diseases140. Cu2+ and Zn2+ were seen to be concentrated in Aβ plaques of AD patients141. 

Extensive structural studies have demonstrated that Cu2+, Zn2+ and Fe3+ ions can form 

coordinate bonds between Aβ peptides and increase their aggregation propensity140. 

Interestingly, Aβ fibers assembled in the presence of sub-stoichiometric concentration of 

Cu2+ possess increased cytotoxicity in comparison to aggregates generated in the absence of 

Cu2+ ions142. High cytotoxicity of Cu-Aβ complex is likely due to its strong potential to 

generate ROS143. Involvement of other metals in AD, such as aluminum, has been debated144.  

Metals can serve as cofactors for various proteins to complement their functions. For 

example, Fe is incorporated into the protoporphyrin ring to form heme. Heme is a prosthetic 

group of hemoglobin that is responsible for the distribution of oxygen throughout the body. 

But it is also present in every metabolically active cell where it is an essential component of 

complex II, III and IV of mitochondrial electron transfer chain145. Heme metabolism, cell 

death response and AD are tightly interconnected. Proteins that are linked to heme 

metabolism have been reported to be dysregulated in AD146,147. As discussed in the previous 

section, microbleeds provoked by extended CAA can cause heme leakage from blood vessels 

into brain. High concentration of free heme is toxic and leads to lipid peroxidation and 

increased production of ROS148,149. Moreover, amyloid-β can form a complex with heme that 

possess strong peroxidase and superoxide activity that can contribute largely to cytotoxicity 

during AD150–152.  

1.1.5.6 Other processes 

AD pathogenesis is not restricted to alterations in the biological pathways mentioned above. 

Processes such as protein glycation153, autophagy154, synaptic transmission155 and others are 

also affected in AD. Despite our knowledge of the pathways involved in the disease, the 

relationships between them remain enigmatic. Further research efforts in the field will be 

required to identify the missing connections between affected processes and pathways in 

order to better decipher the progression of Alzheimer’s disease. 
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 Therapeutic strategies 

Since few decades, research community and pharmaceutical industry have been in search of 

effective anti-AD therapeutics. Several strategies have been followed along this path.  

1.1.6.1 Acetylcholine esterase inhibitors and NMDA antagonists 

The levels of neurotransmitter acetylcholine are significantly reduced in the brains of AD 

patients. According to cholinergic hypothesis, synapses that use acetylcholine as a 

neurotransmitter degenerate first in AD156. For this reason, inhibition of acetylcholine 

esterase, an enzyme that is responsible for acetylcholine degradation in the synapse, seemed 

to a promising therapeutic strategy. The drugs targeting this enzyme were the first to get FDA 

approval for treatment of AD. Nevertheless, administration of acetylcholine esterase 

inhibitors has a very modest impact of AD symptoms and does not stop or slow down the 

progression of the disease157,158. 

Glutamate is another neurotransmitter directly related to AD. Increased release of glutamate 

in AD was proposed to cause cell death due to excitotoxicity159. Memantine, the antagonist of 

NMDA receptor (ionotropic glutamate receptor), was developed to treat AD. Memantine was 

approved by FDA and EMA but was not effective in stopping the progression of the disease160. 

It also remains controversial whether memantine produces any significant symptomatic 

relief in AD patients161,162. 

1.1.6.2 Therapeutic targeting of Aβ 

Discovery of the central role of Aβ in AD pathology made it an attractive therapeutic target. 

One potential route to reduce the levels of Aβ is to interfere with its production by β- and γ-

secretases. The problem with such treatment is the fact that these proteases have other 

substrates apart from APP (e.g. Notch, voltage-gated sodium channels)163. Recently, γ-

secretase inhibitor was withdrawn from stage III clinical trial for worsening cognitive 

parameters in treated AD patients potentially due to inhibition of other physiologically 

important functions of γ-secretase164. Other therapeutic strategies have aimed at generation 

of shorter, less toxic Aβ peptides by altering γ-secretase activity. Nevertheless, the clinical 

trial utilizing this strategy was not successful165. Currently, few more selective β- and γ-

secretase inhibitors are in clinical trials. 
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Other strategies are focusing on direct removal of Aβ by immune system. To this end, several 

anti Aβ vaccines have been developed. This strategy was successful in transgenic mice 

overexpressing APP166. However, Aβ immunization in humans led to unwanted 

immunopathological effects and clinical trials utilizing this method had to be stopped167. 

Application of passive immunization by injection of humanized monoclonal anti-Aβ 

antibodies is also being tested. One of the first drugs in this category, bapineuzumab, was 

successful in reducing perivascular accumulation of amyloid in mouse model of AD168. In 

clinical trials, bapineuzumab engaged Aβ in patient’s brain, however, it failed to evoke any 

beneficial response169. Small molecule drugs that neutralize toxic Aβ oligomers are also 

under development. One such drug, ELND005 (scyllo-inositol), has been already tested in 

clinical trials but did not demonstrate the desired outcome with regard to symptoms and 

progression of the disease170. As mentioned before, Aβ aggregation is positively regulated by 

metal ions that can form coordinate bonds between Aβ monomers consequently speeding up 

the nucleation of aggregates. Use of molecules chelating such metal ions provided promising 

results in mouse models of AD171. Clinical trials for this type of therapeutics are ongoing and 

will assess whether this strategy can lead to beneficial outcome in patients. 

1.1.6.3 Anti-tau therapeutics 

The interest in tau as a therapeutic target for AD has been growing over the last decade172. 

The first group of anti-tau therapeutics revolve around methylene blue, a small molecule 

capable of inhibiting tau aggregation173. Methylene blue was the first fully synthetic drug 

applied in medicine and was originally used to combat malaria174. Ever since, its analogs have 

been frequently used in clinics as a placebo control before its positive psychotropic effects 

were discovered175. Stage II clinical trials for Rember TM (commercial name of methylene 

blue, TauRx Therapeutics) delivered somewhat promising results176. However, due to the 

poor pharmacokinetics of the drug, the trial was discontinued. Stabilized analog of methylene 

blue (LMTM) is now being tested in stage III clinical trial for the treatment of AD and 

frontotemporal dementia. Clinical trials for several tau vaccines and anti-tau monoclonal 

antibodies are currently ongoing. However, no information is available regarding their 

efficiency so far. Since hyperphosphorylation of tau was shown to increase its aggregation 

potential, therapeutic strategies targeting tau kinases have also been considered177. One 

caveat of such approach is the high off-target effect of kinase inhibition as most of the tau 
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kinases have hundreds of other substrates important for various physiological processes. 

Few small molecule drugs that stabilize microtubules and counteract tau pathology are now 

being tested for the treatment of AD178,179.  

1.1.6.4 Other therapeutic strategies and perspectives 

Increasing relevance of APOE in AD progression also attracted attention to this protein as a 

putative therapeutic target. Specific targeting of APOE4 isoform by disruption of its domain 

interaction is being studied now as a potential path for therapeutic intervention180. In line 

with APOE function in AD, other therapeutics that revolve around cholesterol metabolism 

have been designed181,182. Several new strategies focus on inflammation and oxidative stress 

as primary processes involved in AD183,184.  

Over the last three decades, active preclinical research brought almost 200 different 

therapeutic candidates into clinical studies. Despite being promising in the preclinical phase, 

none of them were effective in stopping the progression of AD in patients. There are several 

reasons that could explain such a poor outcome. Low penetration of BBB, especially by 

antibody-based therapeutics, can be the cause for reduced therapeutic efficiency. Most 

clinical studies involved AD patients at moderate or severe symptomatic stages of AD. The 

failure to stop the disease in such individuals might be explained by the fact that the 

treatment was administered simply too late after the full onset of the disease. Successful 

results in preclinical development and the failure to reproduce the outcome in patients was 

often blamed on imperfect modeling of AD in animals185. But perhaps the most concerning 

reason could be the choice of wrong targets. Although the roles of Aβ, tau and APOE in AD 

have been studied extensively, we still do not fully understand the mechanisms behind the 

origin of the disease and the exact contribution of these proteins to it. Clearly, new strategies 

that will consider the lessons from the failed trials are required for successful development 

of effective AD therapeutics in the future. 

 

 Animal models of Alzheimer’s disease 

Animal models contribute profoundly to uncovering new concepts and mechanisms in 

fundamental biology and the understanding of human diseases. Due to the complexity of AD, 

the establishment of adequate models that can mimic all aspects of the disease is very 
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challenging. Current animal models of AD can be classified into three major categories based 

on the way AD pathology is invoked: spontaneous, interventional and genetic models. 

 Spontaneous and interventional models 

Spontaneous models of AD are based on detection and observation of AD-like pathology in 

aging animals. Some non-human primates develop certain features of AD with aging. For 

instance, baboons develop NFT pathology but do not exhibit Aβ plaques186. In contrast, 

macaques can form plaques but demonstrate no signs of tau tangles187. Other mammalian 

species such as dogs188, cats189, bears190, goats and sheep191 exhibit age-dependent 

accumulation of Aβ or neurofibrillary tangles. However, unpredictable development of the 

disease onset and thus maintenance of large animal colonies makes the use of spontaneous 

models rather impractical. 

Interventional models rely on administration of chemical substances or formation of lesions 

in specific brain regions192. The first generation of interventional models was developed 

based on the cholinergic hypothesis of AD progression. Degeneration of cholinergic neurons 

in nucleus basalis (Meynert, Ch4) is one of the early events in AD progression156 and thus 

targeting these neurons seemed to be a viable option to model the disease. Administration of 

scopolamine, an antagonist of muscarinic receptor, in rodents invokes amnesia and impacts 

various cognitive functions typically affected in AD193,194. Induction of lesions in cholinergic 

centers either mechanically or electrochemically has led to generation of another subset of 

interventional models that recapitulated similar phenotypes195,196. Targeted degeneration of 

hippocampus, striatum or cortical regions allowed to partially mimic AD symptoms related 

to memory loss197–199. Some other approaches focused on induction of specific aspects of AD 

pathology such as inflammation or impaired glucose metabolism200,201. Although all these 

models mimic some symptoms related to AD, they do not develop plaques or tangles and in 

most of the cases lack further progressive amelioration of cognitive functions after the lesion 

is established or the effect of a drug is gone. 

According to the amyloid cascade hypothesis, accumulation of insoluble Aβ peptides is the 

main driver of AD pathogenesis. In line with this theory, interventional animal models were 

developed based on intracerebral or intracerebroventricular infusion of Aβ peptides. These 

models recapitulated several key phenotypes observed in AD such as memory and learning 
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impairments and behavioral alterations202,203. Advantage of Aβ infusion models lays in the 

direct effect of Aβ on the brain. Additionally, repetitive administration of Aβ allows to study 

progressive aggravation of AD-related pathology. Aβ infusion models are also devoid of 

artifacts related to overexpression of full length APP in genetic models of AD204. On the other 

hand, these models do not consider aging which is an important factor in AD development in 

human. Moreover, the concentration of Aβ used to invoke pathology is typically higher by 

several orders of magnitude in comparison to those occurring in the brain of patients205. 

Finally, infusion of Aβ is an invasive procedure which causes brain injury and may lead to 

unwanted side effects (e.g. inflammation) and due to its complexity can reduce 

reproducibility of experimental findings.  

 Genetic models 

1.2.2.1 General considerations 

With the rapid development of gene transfer technologies, establishing of genetic animal 

models for various diseases have become a routine. 139 different genetic mouse models of 

AD have been developed over the last three decades (complete list of genetic mouse models 

is available on Alzforum: http://www.alzforum.org/research-models). These models can be 

differentiated by three key aspects: the transgenes used to simulate the disease, promoter 

controlling the expression of these transgenes and the method by which they were 

incorporated into genome. 

Two common strategies are used to introduce transgenes. The first strategy is based on the 

pronuclear injection of a transgene (including exogenous promoter) into a zygote and 

subsequent implantation of embryo into pseudopregnant female mouse. In this way, the 

transgene is inserted randomly into the mouse genome and overexpressed under control of 

introduced promoter. In the second approach, an endogenous mouse gene is modified by 

homologues recombination with a DNA vector injected into embryonic stem cells. Modified 

cells are then injected into blastocysts and mice homozygous for the introduced mutation are 

selected. As a result, the targeted gene will be expressed under control of the endogenous 

promoter at physiological level (knock-in mice). 

Although the knock-in approach enables “clean” insertion of a transgene into its native locus, 

historically most of the transgenes in mouse models of AD were introduced by pronuclear 

http://www.alzforum.org/research-models
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injection due to relatively simpler procedures. The use of an adequate promoter in such 

system is thus crucial to ensure expression of the gene at a desired place and at an adequate 

level. Typically, promoters of platelet-derived growth factor β-chain (PDGF-β), the thymocyte 

differentiation antigen 1 (Thy1) or prion protein (PrP) are utilized for overexpression of FAD 

genes55. PDGF-β and Thy1 promoters restrict expression of transgenes to neurons, while PrP 

is expressed in a broader range of neural cells. Mouse models utilizing ApoE4 most commonly 

express the gene under NSE or GFAP promoters specific to glia cells.  

Table 1-1. The most common promoters in mouse models of AD.  

The relative level of expression is indicated as +, ++, and +++. E# indicates embryonic day number; P# indicates 

postnatal day number. Adapted from Esquerda-Canals et al., 201755. 

Promoter Spatial pattern Level Beginning 

Highly used for FAD-associated transgenes 

PDGF-β Neuron-specific: dendrites, axons, and terminals. + E15 

Brain, dorsal horn of the spinal cord, and posterior 

pituitary. 

 
 
 

 
 

Thy-1 Neuron-specific.  ++ P6-10 

Long-projection neurons from both the CNS and PNS.  
  

Human Thy1 is also expressed in neuroglia.  
  

PrP Neurons, astrocytes, oligodendrocytes, and microglia.  +++ E12.5 

Also expressed in extraneural tissues.  
  

Highly used for apoE transgenes 

NSE Mature neurons and neuroendocrine cells.  ++ 
 

GFAP Astrocytes.  +++ E12.5-13.5 

 

1.2.2.2 APP overexpression models 

Most of the genetic models of AD revolve around the genes involved in FAD (APP, PSEN1 and 

PSEN2). Rodent Aβ differs from the human variant by three amino acids. This fact  potentially 

explains why rodents do not develop plaque pathology in the first place206. Initial attempts 

to overexpress human APP in mice resulted in the moderate accumulation of extracellular Aβ 

deposits207,208. However, no significant behavioral or cognitive alterations could be detected.  

To overcome this problem, the human APP gene with Indiana mutation was introduced into 

mice under control of PDGF promoter (PDAPP mice)209. These mice exhibited considerable 

number of Aβ plaques at 9 months of age and manifested synaptic loss and gliosis. Successful 
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generation of PDAPP mice encouraged the development of further genetic models based on 

other FAD-related mutations in APP gene. For example, Tg2576 and APP23 mouse models 

harbored APP with Swedish mutation210,211. These models differ by the isoform of expressed 

APP. The 751 amino acid long isoform of APP (APP751) which is more prone to cleavage by γ-

secretase212 was introduced into APP23 mice, while shorter APP695 gene was expressed in 

Tg2576 model. Interestingly, the difference in the length of APP leads to the later onset of Aβ 

plaque formation in Tg2576 mice (11 months versus 6 months in APP23 model). Mice models 

overexpressing APP with combination of several FAD-related mutations demonstrated even 

more severe phenotypes and earlier onset of Aβ pathology213–215. 

1.2.2.3 APP/PSEN double transgenic models 

Although it might seem more intuitive that mutated APP is the main contributor to inherited 

forms of AD, most of FAD cases are caused by mutations in PSEN1216. Substitution of 

methionine at position 146 to valine or leucine is the most common mutation of PSEN1 in 

FAD and has been shown to alter activity of γ-secretase resulting in increased production of 

highly toxic Aβ1-42 species217. The first genetic models involving γ-secretase were based on 

the knocked-in PSEN1 harboring mutation at M146. As expected, these mice demonstrated 

elevated Aβ1-42 production and increased susceptibility of hippocampal neurons to 

excitotoxic necrosis218. Nevertheless, models based on mutations in PSEN1 or 2 alone did not 

display most of the characteristic features of AD pathology219,220. 

Combination of mutated APP and PSEN1 transgenes was a logical next step in modeling of 

AD. Generally, such bigenic models demonstrate faster and more severe progression of the 

disease. Crossing of Tg2576 line with mouse overexpressing mutated PSEN1 gave origin to 

APPSwe×PS1M146L mice also known as PSAPP221. The double transgenic mice developed plaque 

pathology faster than their monogenic Tg2576 counterparts. Interestingly, these transgenic 

mice exhibited memory deficits prior to extracellular Aβ deposition supporting the role of 

soluble/oligomeric Aβ as primary toxic agent during AD. Another step forward in genetic 

modeling of AD was the generation of double APPSwe/PSEN1P264L knock-in mice (2×KI)222. 

The age of onset for Aβ plaque pathology in 2×KI line was the same as in mice overexpressing 

identical transgenes. However, the amyloid load of brain in 2×KI mice was growing linearly 

over the course of aging in comparison to exponential growth in the corresponding 

overexpression model. 
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To maximize the AD-like pathology in mice, the group of Robert Vassar generated a so-called 

5×FAD line, double transgenic APP/PSEN1 mice that incorporated five different mutations 

occurring in FAD (Swe, Lon and Fl mutations of APP and M146L and L286V mutations in 

PSEN1)223. These mice display extremely aggressive pathology characterized by very early 

accumulation of intraneuronal Aβ deposits (1.5 months) and extracellular Aβ plaque 

formation (2 months). 5×FAD mice also exhibit early gliosis, loss of synaptic proteins and 

neuronal death. Significant memory deficits could be also detected in 5×FAD. Although 

5×FAD mice display very apparent AD-like pathology, this model has been criticized for the 

extreme overexpression of transgenes and very early onset of the disease which makes it less 

comparable to AD in human224. 

1.2.2.4 Mouse models utilizing non-FAD transgenes 

Since FAD accounts for only about 1% of all AD cases, genetic models aiming to mimic SAD 

were developed. The strongest genetic risk factor for sporadic forms of AD is APOE ε4 allele59. 

The role of human APOE was studied by overexpression of ε3 and ε4 alleles in mice devoid of 

endogenous APOE gene225. Remarkably, mice expressing human APOE ε4 demonstrate 

impairments in learning and exploratory behavior that are dependent on age and gender. 

Female mice are more affected by ε4 allele than age-matched males which correlates with the 

higher prevalence of AD among women in human. More recent models combining mutations 

in FAD genes with expression of human APOE variants demonstrated an important role of 

APOE in Aβ clearance, regulation of gliosis and inflammation226,227.  

Additionally, the role of other human genes in AD was probed using mouse models. For 

example, concomitant expression of mutated APP with a double-negative receptor for 

advanced glycation products (RAGE) construct diminished neuropathologic changes, 

indicating the role of RAGE as an important cofactor for Aβ pathology228. Knockout of TREM2 

in 5×FAD mice has been shown to augment Aβ aggregation due to inefficient microglia 

response229. A mouse model based on the knock-in of human β-secretase demonstrates an 

increase in APP cleavage and reiterates some features of AD pathology230. Crossing already 

existing APP models with mice deficient in NOS2 and PDGFR allowed to uncover the role of 

such processes as oxidative stress and neurovascular dysfunction in AD231,232. 
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1.2.2.5 Triple-transgenic mouse model of AD 

The monogenic or bigenic mouse models based on human APP and/or PSEN could 

successfully recapitulate many aspects of Aβ-related pathology. However, none of them 

displayed another characteristic feature of AD, namely tau tangles. To address this problem 

Oddo and colleagues introduced triple-transgenic mouse model (3×Tg-AD) that harbors 

knocked-in PSENM146V, overexpressed APPSwe and mutated variant of human tau (MAPTP301L, 

4R isoform)233. The mutation in tau at position P301 was initially identified in frontotemporal 

dementia234. It reduces affinity of tau to microtubules and increases its aggregation 

propensity.  

 

Figure 1-7. Neuropathology in 3×Tg-AD mouse model 

Low-magnification view of neocortex (A) and hippocampus (B) from 18-month-old 3×Tg-AD mouse following 

staining with Aβ42-specific antibody. 

(C) High-magnification view showing immunopositive neurons following staining with antibody PHF1, which 

detects phosphorylated residues S396 and S404. (D) High-magnification view of the subiculum showing tau-

reactive dystrophic neurites surrounding globular structures, which are thioflavin-positive Aβ plaques. 

Adapted from Oddo et al., 2003233. 

 

3×Tg-AD mice progressively develop Aβ plaques and tau tangles. Intracellular deposits of Aβ 

can be observed as early as at 6 months of age with extracellular plaques becoming 

prominent in 12-month-old animals. In contrast, the tau pathology takes longer time to 

develop. NFTs can be first detected between 12 and 15 months235. This sequence of events 

tightly correlates with the development of the disease in human, where plaque accumulation 

was shown to precede tau pathology39,48. Apart from neuroanatomical signs of AD, the 3×Tg-
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AD model develops characteristic memory deficits236. Synaptic function is inhibited at 6 

months as determined by reduction in long-term potentiation (LTP)233. Likewise, extensive 

gliosis can be observed at this age237. Close resemblance to human pathology, relatively mild 

overexpression of inserted transgenes and gradual progression of the disease make 3×Tg-AD 

mice one of the most popular genetic mouse models to study AD. 

 

 High-throughput profiling of gene and protein expression in AD 

Changes in gene expression can indicate underlying physiological and pathological 

alterations during disease progression. The knowledge of such changes can help to decipher 

molecular mechanisms governing pathogenesis. Furthermore, systematic profiling of gene 

expression in tissues and biological fluids (either from humans or animal models) can 

identify early biomarkers of pathological state so much needed for AD diagnosis. 

The high-throughput approaches or so-called “-omics” techniques allow for simultaneous 

detection and quantitative measurement of biological molecules. Advances in molecular 

genomics made it possible to map human genome and helped to identify mutations leading 

to FAD as well as alleles and single nucleotide polymorphisms (SNPs) that increase the risk 

of developing SAD. Transcriptomics and proteomics approaches enable estimation of gene 

expression on mRNA and protein level, respectively. Transcriptome and proteome mapping 

can provide valuable insights into the mechanisms of diseases since up- or downregulation 

of protein expression can serve as an indication of pathological process.  

 Microarray approaches 

Levels of mRNA can serve as proxies to protein expression. Traditionally, quantification of 

specific RNA in biological sample was performed using Northern blotting or quantitative 

real-time PCR. However, the use of these methods is limited to quantification of single (or in 

some cases few) RNA sequence(s) at the time. Development of microarray techniques in the 

1990s enabled simultaneous high-throughput quantification of transcripts238. In classical 

microarray experiments, mRNA is first transcribed to complementary DNA (cDNA) which is 

then hybridized with the array of single-strand DNA probes specific to individual genes. 

Successful hybridization leads to an increase in the readout value (typically fluorometric or 
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luminometric) for specific gene, hence quantitative information on RNA levels can be 

obtained239. 

Studies utilizing cDNA microarray approaches helped to expand our knowledge of 

transcripts regulated in AD. Several studies revealed that the expression of genes involved in 

energy metabolism, oxidative stress, DNA damage, senescence and synaptic function is 

primarily dysregulated in AD brains240,241. Another report demonstrated that the levels of 

diabetes-related mRNAs differed significantly between the brains of healthy and AD 

individuals242. In the same study, akin results were observed for the transcriptome obtained 

from hippocampus of 3×Tg-AD model. Microarray profiling of mRNA isolated from microglia 

revealed similar network of genes to be regulated upon microglia activation in different 

neurodegenerative disorders (AD and ALS) as well as normal aging243. Another 

transcriptomic study on acutely isolated glia revealed that both astrocytes and microglia 

acquired a proinflammatory transcriptome profile in APPSwe/PSEN1dE9 double transgenic, 

but not in control mice. Interestingly, upregulation of immune response genes in astrocytes 

was stronger than in microglia and was accompanied by reduced expression of neuronal 

support genes244. 

 RNA sequencing 

Nowadays, transcriptomics is transitioning from hybridization microarrays to the next 

generation sequencing methods (RNA-seq). RNA-seq could overcome some of the major 

limitations of microarray approach such as cross-hybridization artifacts, imprecise 

quantification of low and high abundant transcripts and the requirement for prior knowledge 

of the tested sequence. RNA-seq analysis also covers all species of RNA, including non-coding 

RNAs. Additionally, RNA-seq enables identification of differently spliced transcripts. Another 

advantage of contemporary RNA-seq techniques is high sensitivity. Total RNA isolated from 

a single cell is typically enough to identify thousands of different RNA species245. These 

single-cell sequencing techniques are thus a powerful method to uncover changes in 

expression profile with regard to individual cell type. This aspect of RNA-seq technology is 

particularly useful in AD research since it allows to determine an individual contribution of 

neurons, astrocytes, microglia and other cell types to the progression of the disease. 
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Single cell RNA-seq analysis of microglia derived from inducible mouse model of severe 

neurodegeneration demonstrated a rapid remodeling of microglia transcriptome after 

induction of neurodegeneration246. The same study also reported a wide heterogeneity in 

microglia responding to neurodegenerative stimuli and time-dependent cell reprogramming 

occurring with the disease progression. Further RNA-seq-based studies led to identification 

of microglia subtype that occurs specifically in AD247. These cells exhibit particularly strong 

expression of APOE and TREM2 and protect brain from neurodegeneration by phagocytic 

removal of Aβ and other toxic products. A recent study applying mathematical inference 

model to publicly available mRNA-seq data, revealed that the decay of mRNAs encoding 

synaptic proteins occurs faster in the brain of AD patients than in age-matched controls248. 

The authors speculate that the reason for such difference is reduced expression of mRNA 

stabilizing protein RBFOX1 in individuals affected by AD.  

The role of non-coding RNAs has been also examined using RNA-seq. The group of Shumpei 

Niida has developed a pipeline for identification of miRNAs from publicly available databases 

and have already shown a significant difference in the levels of 27 miRNAs in the blood of AD 

patients249. This approach is thus promising for the identification of miRNAs as biomarkers 

of AD. Furthermore, the function of another class of non-coding RNAs termed long intergenic 

non-coding (lincRNAs) in neurodegeneration is emerging250,251. Interestingly, a recent study 

demonstrated that lincRNAs undergo even larger changes in AD than the protein coding 

transcriptome252. Although the regulation of lincRNAs seems to play a role in AD 

development, more studies are required to understand the function of such RNAs in the brain 

and their relation to the disease. 

 Mass-spectrometry based proteomics 

Quantitative measurement of mRNA by microarray or RNA-seq techniques has expanded our 

knowledge of transcripts involved in AD. Nevertheless, most of the biological processes are 

manifested through proteins. mRNA levels do not always linearly correlate with expression 

of corresponding protein253. To overcome this bias, various techniques for protein 

identification and quantification were developed. For instance, protein levels can be assessed 

by application of antibodies or ligands that specifically bind the protein of interest. Although 

specific, these methods are limited to identification of a single protein. Additionally, 
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immunological techniques allow only for identification of proteins that have been already 

discovered and for which specific antibodies or ligands are available.  

Alternatively, protein composition of a biological sample can be analyzed by N-terminal 

sequencing which was developed in 1949 by Pehr Edman254. This method does not depend 

on the prior knowledge of protein or availability of specific antibodies and is well suited for 

identification of novel proteins. Nevertheless, use of Edman sequencing in high-throughput 

protein quantification is restricted by several technical limitations and insufficient accuracy 

of quantitative measurement255.  

The world of proteomics was revolutionized by development of quantitative mass-

spectrometry (MS). In this method, proteins are typically digested enzymatically to obtain 

smaller peptide fragments. These individual peptides can be then identified and quantified 

based on their mass to charge ratio (m/z). In the next step, the data obtained for each peptide 

can be combined and processed to infer the relative quantity of proteins in the sample. 

Atypical mass spectrometer consists of an ionizer (converts injected peptides into ions), a 

mass analyzer (selects ions based on their m/z ratio) and a detector (determine quantity of 

selected ion). Current tandem mass spectrometry techniques enable us to quantify thousands 

of proteins from complex biological samples on the time scale of minutes or hours. 

Explorative proteomic studies typically apply a so-called “shotgun” approach where data are 

acquired in data-dependent acquisition. In this case, most abundant peptides will be selected 

for fragmentation and further quantification as they appear in mass-analyzer. As a drawback, 

the low abundant peptides will elude the analysis. Nevertheless, improvement in the MS 

instrumentation and peptide separation techniques allowed to considerably increase the 

dynamic range of detection in shotgun proteomics256. For better quantification of specific 

peptides/proteins, data-independent acquisition methods such as multiple reaction 

monitoring (MRM) or SWATH were developed. However, the higher accuracy of the data-

independent acquisition approaches comes with a trade-off of lower sensitivity and 

coverage257. 

Mass spectrometry has been successfully applied to elucidate changes of brain proteome in 

mouse models of AD. A dysregulation of mitochondrial proteome was reported in 3×Tg-AD 

mice258,259. Another proteomic study in 3×Tg-AD model strengthened the hypothesis that 
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oxidative phosphorylation is impaired in AD revealing upregulation of numerous proteins 

involved in glucose catabolism260. Recent proteomic study in monogenic APP and double 

transgenic APP/PSEN1 mice demonstrated dysregulation of protein networks related to 

synapse, mitochondria and cytoskeleton261. Interestingly, the upregulation of endogenous 

mouse APOE4 in cortex and hippocampus of transgenic mice was detected in this report as 

well. 

Initial investigations of human brain proteome unraveled changes in similar pathways as 

were described in mice262. To focus the analysis on specific subset of proteins, many studies 

utilized subcellular fractionation prior to MS measurement. For example, isolation of nerve 

terminals from postmortem brains allowed to perform comprehensive proteomic analysis of 

synapses while reducing the background of high abundant proteins of neuronal soma and 

non-neuronal cells263. The follow-up study from the same group applied MRM to quantify the 

differences in most prominent synaptic hits with higher precision264. This analysis 

demonstrated downregulated expression of several synaptic proteins as well as strong 

elevation of peroxiredoxin-1, a protein directly involved in response to oxidative stress. A 

similar approach was applied to postsynaptic density (PSD) proteins, which were first 

enriched by subcellular fractionation from brains of AD and age-matched healthy 

individuals265. Interestingly, researchers found that among the core PSD proteins only one 

(IRSp53) was significantly diminished in AD brains suggesting that the reduction of specific 

proteins rather than extensive downregulation of entire synaptic proteome can inhibit 

neurotransmission in AD. Isolation of SDS-insoluble fraction of brain proteins from 

postmortem brains of AD patients revealed accumulated components of mRNA processing 

machinery in Aβ plaques proposing the role for dysregulated alternative splicing in AD266.  

MS-based proteomics has been used on another front of AD research, namely the 

identification of biomarkers. Classical CSF biomarkers of AD include increased tau and 

phospho-tau as well as reduced soluble Aβ1-4247. These markers can be detected by MS 

techniques to determine the disease with about 85-95% specificity267. Nevertheless, this 

impressive accuracy holds true only for fully developed symptomatic AD. Therefore, 

explorative MS-studies have been conducted to identify presymptomatic biomarkers that can 

be detected before the onset of dementia. Dysregulated proteins identified in CSF of FAD 

patients before manifestation of symptoms were related predominantly to synapse or 
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inflammatory response268. Isolation of exosomes from CSF and downstream proteomic 

characterization was proposed as a new approach for identification of AD biomarkers as it 

might help to enrich disease-relevant proteins secreted by damaged cells269. Identification of 

plasma-based biomarkers has also demonstrated some progress over the last years. Thanks 

to MS-based proteomics, positive correlation between levels of clusterin (APOJ) in plasma 

and severity of AD was found270. Recent systematic study of plasma biomarkers reported that 

APP/Aβ1–42 and Aβ1–40/Aβ1–42 ratios determined by immunoprecipitation coupled with mass 

spectrometry correlate strongly with amyloid deposits in the brain assessed by PET scanning 

and thus can serve as a concomitant diagnostic method46. 

 Assessment of posttranslational modifications 

The activity of biological function can be extrapolated from the expression levels of proteins 

involved in it. However, this is rather a crude simplification. For instance, such an 

extrapolation does not consider posttranslational modifications (PTMs) that can significantly 

alter activity of the protein. Yet PTMs such as phosphorylation, ubiquitination, oxidation, 

acetylation, O- and N-glycosylation, glycation and others are known to play important roles 

in AD32,153,271,272.  

Protein phosphorylation is one of the most abundant and well-studied PTMs. A phosphate 

group can be placed on serine, threonine or tyrosine residues by protein kinases. 

Phosphorylation is a transient modification and can be reversed by protein phosphatases. 

This way, protein phosphorylation serves as an activity switch turning proteins on or off. The 

best example of such transient activation are kinases and phosphatases whose activity 

depends on the phosphorylation status of specific phoshposites273. Protein phosphorylation 

is thus considered to be a key process governing signal transduction in cells. 

Systematic uncovering of protein phosphorylation became possible thanks to the 

improvements in MS instrumentation and post-acquisition analysis274. Identification of 

phosphopeptides in shotgun proteomics is complicated because of their relatively low 

abundance and consequent masking by more copious peptides. Therefore, methods to enrich 

phosphopeptides from original biological sample have been developed. The two most used 

methods in the field are immobilized metal affinity chromatography (IMAC) and metal oxide 

affinity chromatography (MOAC)274. Both methods rely on the interaction of the negatively 



Introduction | 39 
 

charged phosphate group with metal cations or metal oxide matrixes. Different 

chromatography techniques (e.g. strong cation exchange) can be used for additional 

prefractionation of phosphopeptides. Enriched phosphopeptides can be then quantified by 

mass spectrometry using stable isotope labeling or label-free approaches.  

As discussed above, hyperphosphorylation of tau has devastating consequences on the health 

of a neuron during AD. However, AD-related changes in protein phosphorylation are not 

restricted to tau. The MS-based phosphoproteomic analysis of postmortem human brains 

revealed strong differences in phosphorylation of various kinases and small heat shock 

proteins between healthy and AD individuals in addition to hyperphosphorylation of 

microtubule-associated proteins275. Another study published the same year demonstrated 

dysregulated phosphorylation of proteins involved in general metabolism in AD276. Tagawa 

and colleagues compared AD brain phosphoproteome between several mouse models and 

human277. They identified a myristoylated alanine-rich C-kinase substrate (MARCS) to be 

strongly phosphorylated by protein kinase C (PKC) and Ca2+/calmodulin-dependent kinase I 

and II (CaMKI/II) in AD across species. Furthermore, reversal of MARCS phosphorylation by 

inhibition of PKC and CaMKII rescued dendritic spine pathology in cultured neurons 

prepared from 5×FAD mice.  

Although considerable technological progress in the field of phosphoproteomics has been 

achieved over the last decade, we still lack the knowledge of how the brain phosphoproteome 

changes over the course of AD progression. In particular, more systematic studies are 

required to untangle the signaling pathways affected in AD at the early stages of the disease. 

 

 Aims of this thesis 

Protein expression levels can be indicative of physiological and pathological changes. Studies 

that applied microarray, RNA-seq and mass spectrometry analyses of postmortem brain 

tissue from AD patients have broadened our understanding of genes and proteins involved 

in AD. While such studies give important insights into pathology at molecular level at later 

stages, they provide limited information about the progressive alterations that occur over 

the development of the disorder. Particularly, early changes in protein expression preceding 

the onset of the disease would be missed. Understanding the sequence of the events 
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happening in AD pathogenesis as well as initial molecular mechanisms driving its 

progression is crucial for the development of effective therapeutics and early diagnosis. For 

this reason, my PhD project focuses on the following three main objectives. 

 

First, I wanted to understand how the expression of brain proteins changes over the course 

of AD progression. To this end, I applied quantitative mass-spectrometry to analyze the brain 

proteome of 3×Tg-AD mice at four specific time points that corresponded to distinct 

pathological stages of AD. In addition to expression changes, I examined alterations in protein 

phosphorylation as the major posttranslational modification affecting protein function. Using 

bioinformatics analysis of obtained quantitative data on protein expression and 

phosphorylation I could infer biological processes and molecular pathways that are affected 

at each specific stage of the disease. 

 

The second aim of this study was to identify presymptomatic brain markers of AD. Aside from 

being potentially useful for early detection of AD, these proteins could also be critically 

involved in the initial steps of the disorder culminating in clinical AD manifestation. 

Therefore, identifying these proteins can be an important step towards the design of early 

intervention strategies that can halt the initiation phase of AD. My analysis revealed a number 

of such presymptomatic markers including proteins with no previous record of involvement 

in AD. Additionally, I tested the expression of the most prominent presymptomatic markers 

in brain samples obtained from AD patients to confirm the relevance of the findings in 3×Tg-

AD mouse model for the disease in human. 

 

Finally, I aimed to take a closer look at the putative presymptomatic markers that have not 

been linked to AD before. In this study I took first steps to characterize one such novel 

marker, heme-binding protein-1 (Hebp1). I analyzed its potential biological function using 

various biochemical and cell culture techniques. These experiments revealed neuronal 

expression of Hebp1 in the brain, its association with mitochondria and role in apoptotic 

response making it a promising candidate involved in the development of Alzheimer’s 

disease at its early stages. 
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2 Materials and Methods 

 Materials 

 Chemicals 

The standard chemicals used in this study were purchased from Merck (Darmstadt, 

Germany) and Sigma-Aldrich (Steinheim, Germany). All chemicals had at least analytical 

purity. Other chemicals are listed in Table 2-1. 

Table 2-1. List of chemicals used in this study. 

Chemical Source 
Catalog 
number 

Albumin standard Thermo Fisher Scientific 23209 

Protease and phosphatase inhibitor Pierce 88669 

Acetonitrile Thermo Fisher Scientific 51101 

2-[4-(2-hydroxyethyl)piperazin-1-
yl]ethanesulfonic acid (HEPES) 

Gerbu Biotechnik  1009.1000 

2-Amino-2-hydroxymethyl-propane-1,3-
diol (Tris) 

VWR International 103156X 

Paraformaldehyde (PFA) Sigma P6148 

Rapigest Waters, Milford, USA 186002123 

Titanium dioxide beads (TiO2) GL Sciences Inc. 1400B500 

Dithiothreitol (DTT) Thermo Fisher Scientific 20290 

Chloroacetamide (CAA) Sigma 22790 

Phenylmethylsulfonylfluorid (PMSF) AppliChem 6367.3 

Pepstatin Peptide Institute 4397 

Ammonium bicarbonate Sigma A6141 

Formic acid Sigma 56302 

Acrylamide AppliChem A3626 

Triton-X Merck K42092903 
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Nonidet P40 (NP-40) AppliChem A1694 

Sodium dodecyl sulfate (SDS) Serva 20765.03 

Coomassie Brilliant Blue G250 AppliChem A3480 

 

 Cell culture reagents 

Table 2-2. List of cell culture reagents used in this study. 

Chemical Source 
Catalog 
number 

Dulbeccos Modified Eagles 
Medium(DMEM) 

Lonza BE12-733F 

Dulbeccos Modified Eagles 
Medium(DMEM)-F12 Medium 

Sigma D6421 

Eagle’s Minimum Essential Medium Sigma M2414 

Opti-Mem I Reduced-serum Medium Invitrogen 11058021 

Hank's Balanced Salt Solution (HBSS) Lonza BE10-547 

Trypsin-EDTA Lonza 17-161E 

L-glutamine  Invitrogen 25030123 

L-cystein Sigma 30129 

Papain suspension  Cell Systems LS003126 

DNaseI Sigma D5025 

L-Alanyl-L-Glutamine Millipore K0302 

Fetal Bovine Serum (FBS) Pan Biotech P30-8500 

MEM-Vitamine Sigma  K0373 

Mito+Serum extender Corning 355006 

D-glucose AppliChem A0883 

B-27 supplement Invitrogen 17504044 

Poly-D-lysine Sigma P-6407 
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5-Fluoro-2′-deoxyuridine (FUDR) Sigma F0503 

Puromycin Sigma P9620 

Hemin Sigma 51289 

tert-butyl-hydroperoxide Sigma 458139 

staurosporine Santa Cruz sc-3510 

Bovine serum albumin (BSA), fraction V AppliChem A1391 

Lipofectamine 2000 Life Technologies 11668019 

DMSO Sigma D-2650 

 

 Enzymes 

Table 2-3: List of enzymes used in this study. 

Enzyme Source Catalog number 

Sequencing grade modified trypsin Promega V5113 

Lysyl endopeptidase, mass spectrometry grade Wako Chemicals 125-05061 

Restriction endonucleases 

EcoRI-HF NEB R3101L 

AgeI-HF NEB R3552S 

NotI NEB R0189L 

XbaI NEB R0145L 

BsmBI  NEB R0580L 

 

 Kits 

Table 2-4: List of used kits. 

Kits Source Catalog number 

Pierce 660nm Protein Assay Reagent Pierce 
22660 
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MultiTox-Glo Promega G9270 

CellEvent Caspase-3/7 Green Detection 
Reagent 

Sigma C10723 

GSH/GSSG-Glo Assay Promega V6611 

Mitochondrial Membrane Potential Assay Kit 
(II) 

Cell Signaling  13296S 

ECL Select Western Blotting Detection 
Reagent 

GE Healthcare RPN2235 

GFP-trap Chromotek gtma-20 

 

 Antibodies 

Table 2-5: List of used antibodies. 

WB (Western Blotting), IHC (Immunohistochemistry), ICC (Immunocytochemistry). 

Antibody Specie 
Application 
and dilution  

Source 
Catalog 
number 

Hebp1 rabbit polyclonal 
WB (1:1000) 
IHC (1:100) 

Invitrogen PA5-30609 

Ctip2 rat monoclonal IHC (1:100) Abcam ab18465 

GFAP 
mouse 
monoclonal 

IHC (1:500) 
Synaptic 
systems 

173 011 

IBA1  
guinea pig 
polyclonal 

IHC (1:100) 
Synaptic 
Systems 

134 004 

CA1 rabbit polyclonal WB (1:250) 
Novus 
Biologicals 

NBP1-8819 

Glo1 
mouse 
monoclonal 

WB (1:1000) Genetex GTX628890 

Mic60 
mouse 
monoclonal 

WB (1:1000) 
ICC (1:100) 

Abcam ab110329 

α-Tubulin 
mouse 
monoclonal 

WB (1:5000) 
Synaptic 
Systems 

302211 

β-actin rabbit polyclonal  WB (1:5000) 
Synaptic 
Systems 

251003 

Amyloid beta (Aβ) 
mouse 
monoclonal 

WB (1:1000) 
IHC (1:100) 

Biolegend 803004 

Tau rabbit polyclonal WB (1:1000) 
Synaptic 
Systems 

314002 

Phospho-tau 
(Ser202;Thr205) 

mouse 
monoclonal 

WB (1:1000) 
Thermo 
Fisher 

MN1020B 

Phospho-tau 
(Ser400;Thr403;Ser404) 

rabbit polyclonal WB (1:1000) 
Cell 
Signaling 

11837S 
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Secondary antibodies for immunoblotting 

rabbit IgG (HRP labeled ) goat polyclonal WB (1:2000) BioRad 1706515 

mouse IgG (HRP labeled ) goat polyclonal WB (1:2000) BioRad 1706516 

IRDye 800CW Anti-
Rabbit IgG 

Goat polyclonal WB (1:12,500) Licor 926-32211 

IRDye 680CW Anti-
Mouse IgG 

Goat polyclonal WB (1:12,500) Licor 926-68070 

Secondary antibodies for immunostainings 

Alexa Fluor 488 anti-
mouse IgG 

Goat polyclonal  IHC (1:750) Invitrogen A32723 

Alexa Fluor 488 anti-
rabbit IgG 

Goat polyclonal IHC (1:750) Invitrogen A-11034 

Alexa Fluor 555 anti-
mouse IgG 

Goat polyclonal IHC (1:750) Invitrogen A-21422 

Alexa Fluor 546 anti-
rabbit IgG 

Goat polyclonal IHC (1:750) Invitrogen A-11010 

Alexa Fluor 555 anti-
guinea pig IgG 

Goat polyclonal IHC (1:750) Invitrogen A-21435 

Alexa Fluor 555 anti-rat 
IgG 

Goat polyclonal IHC (1:750) Invitrogen A-21434 

 

 Plasmids 

Table 2-6: List of plasmids used in this study. 

Name Insert Backbone Cloning  

FUGW EGFP Addgene #14883 
Original vector from 
Addgene 

FUGW-Hebp1 Hebp1-EGFP Addgene #14883 
Cloning by restriction 
digest with EcoRI-HF 
and AgeI-HF 

psPax2 None Addgene #12260 
Original vector from 
Addgene 

pCMV-VSV-G None Addgene #8454 
Original vector from 
Addgene 

pLenti-CRISPR-V2-Luc sgRNA, Cas9 Addgene #52961 
Cloning by restriction 
digest with BsmBI 

pLenti-CRISPR-V2-Hebp1-H1 sgRNA, Cas9 Addgene #52961 
Cloning by restriction 
digest with BsmBI 

pLenti-CRISPR-V2-Hebp1-H3 sgRNA, Cas9 Addgene # 52961 
Cloning by restriction 
digest with BsmBI 
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 sgRNAs used for CRISPR/Cas9 mediated gene knockout 

Table 2-7: List of sgRNAs for CRISPR/Cas9 experiments. 

Name 
Targeted 
gene 

Species 
Targeted 
region 

Sequence 

Hebp1-H1 Hebp1 Homo sapiens Exon 2 CAAGGTCGCAAAGTATGCGG 

Hebp1-H3 Hebp1 Homo sapiens Exon1/Intron1 CTAAGCAAAGGGGACAAGGT 

 

 Buffers and solutions 

All solutions were prepared in ultrapure Type 1 water (Milli-Q). 

Table 2-8: List of buffers and solutions with their composition used in this study. 

Buffer/Solution Composition 
Homogenization buffer 
 
TFE buffer 
 
 
NP-40 Lysis buffer 
 
 
TBST 
 
Transfer buffer 
 
SDS-PAGE Running buffer 
 
PBS 
 
 
High‐concentrated 
phosphate buffer 
 
Tyrode’s solution 
 
 
Coomassie Brilliant Blue 
staining solution 

320 mM sucrose, 5 mM Hepes, pH 7.4 
 
10% tetrafluoroethylene, 100 mM ammonium bicarbonate, 
pH 8.0 
 
50 mM Tris, 150 mM NaCl, 1% Nonidet P40, pH 7.4, contains 
Pierce protease and phosphatase inhibitors 
 
15 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5 % (v/v) Tween 20 
 
200 mM Glycine, 25 mM Tris, 20 % Methanol 
 
25 mM Tris-HCl, 192 mM Glycine, 0.1 % SDS 
 
2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 8 mM Na2HPO4, 
pH 7.35 
 
411 mM NaCl, 8.1 mM KCl, 30 mM Na2HPO4, 5.2 mM KH2PO4, 
pH 7.2 
 
10 mM Hepes, pH 7.3, 130 mM NaCl, 4 mM KCl, 5 mM CaCl2, 1 
mM MgCl2, 48 mM glucose 
 
0.08% Coomassie Brilliant Blue G250, 1.6% ortho-Phosphoric 
acid, 8% ammonium sulfate, 20% methanol 
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 Cell culture media and solutions 

All cell culture media were prepared and maintained in sterile conditions. 

Table 2-9: List of cell culture media and solutions with their composition used in this study. 

Medium/Solution Composition 
D10 medium 
 
Neuronal plating medium 
 
Neuronal serum medium 
 
 
GBSS 
 
 
 
 
Papain enzymatic solution 
 
 
Inactivation solution 
 
Poly-D-lysine solution 
 

DMEM, 10% FBS, 20 mM Glutamine 
 
DMEM/F12, 1x B-27, 2 mM L-Alanyl-L-Glutamine 
 
Eagle’s MEM, 5% FBS, 2 mM L-Alanyl-L-Glutamine, 1x MEM-
Vitamine, Mito+Serum extender, 3,8 g/L D-glucose 
 
1.5 mM CaCl2∙2H2O, 4.9 mM KCl, 0.2 mM NaH2PO4∙H2O, 11 mM 
MgCl2∙6H2O, 0.3 mM MgSO4∙7H2O, 130 mM NaCl, 2.7 mM 
NaHCO3, 0.8 mM Na2HPO4, 5 mM D-glucose, 22 mM HEPES, 
pH=7.4 in Milli-Q water 
 
GBSS, 11.39 mM L-cystein, 0.5 mM Na EDTA, pH = 8, 1 mM 
CaCl2, 3 mM NaOH, 0.1 mg/mL Dnaze I, 1 % Papain suspension 
 
Neuronal serum medium, 0.25% BSA, 0.1 mg/mL Dnaze I 
 
0.01 g/L poly-D-lysine, 25mM H3BO3, 6,3 mM Na2B4O7∙10H2O 
in Milli-Q water 

 

 

 Methods 

 Mice 

All animal procedures used in this study fully complied with the guidelines as stipulated in 

the section 4 of the Animal Welfare Law of the Federal Republic of Germany (section 4 of 

TierSchG, Tierschutzgesetz der Bundesrepublik Deutschland). 3×Tg-AD mice (B6.129.Thy 

tr.tg-/-), generated on a mixed 129/sv-C57bl6 genetic background, and control B6;129 

(129/sv C57bl6 WT) mice were kindly provided by Prof. Wolfgang Härtig (Paul Flechsig 

Institute for Brain Research, University of Leipzig, Germany). For preparation of primary 

neurons, Wistar rats originated from the local animal facility were used. All animals were 

maintained under 12L/12D cycle with food and water ad libitum. 
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 Preparation of soluble brain protein fraction 

Whole brains of male mice (both control and 3×Tg-AD) were collected at 2, 6, 12 and 18 

months of age in four biological replicates. Half the brain was used for the IHC analysis (see 

section 2.2.10). Subcellular fractionation was performed on the other half as described 

before278. Briefly, brain tissue was homogenized by a glass-Teflon homogenizer (RW20-DZM, 

IKA) in 3 ml of the ice-cold homogenization buffer (containing Pierce protease and 

phosphatase inhibitors) at 900 rpm for 9 strokes. Thereafter, the homogenate was 

centrifuged for 2 min at 3000× g at 4°C in S100AT4 rotor (SORVALL) to remove cell debris. 

Next, the supernatant was transferred to a new tube and additionally centrifuged for 12 min 

at 14,500× g in S100AT4 rotor at 4°C to obtain the soluble fraction of brain proteins 

(supernatant). For the preparation of crude mitochondria fraction, the upper synaptosomal 

pellet was first carefully resuspended in homogenization buffer and removed. Remaining 

mitochondrial pellet was collected in homogenization buffer (Figure 2-1). 

 

Figure 2-1. Preparation of soluble protein fraction from mouse brain. 

Schematic workflow of subcellular brain fractionation. Abbreviations: S1 – supernatant 1, P1 – pellet 1, S2 – 

supernatant 2 (fraction of soluble proteins), P2 – pellet 2 (synaptosomes). 

 

Homogenate 

3,000 rcf, 2 min 

P1 S1 

14,500 rcf, 12 min 

P2 S2 

Mitochondria pellet 

Mouse brain 
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 Measurement of protein concentration 

To determine the protein concentration, Pierce 660nm Protein Assay Reagent was used 

according to manufacturer instructions. Protein standard solutions were prepared using 

albumin in a desired buffer. Protein concentration was determined by measuring the 

absorbance at 650 nm in a 96-well plate using the Tecan Genios Pro plate reader according 

to the manufacturer’s manual. 

 Preparation of samples for mass spectrometry 

For the proteomic and phosphoproteomic analysis, 40 and 300 µg of protein from the soluble 

fraction were used, respectively. Proteins were precipitated with four volumes of ice-cold 

acetone overnight at -20°C. For global proteomics, the protein pellet was resuspended in 1% 

RapiGest and incubated in thermoshaker at 60°C for 15 min at 1050 rpm. Disulfide bonds 

were reduced by 10 mM DTT (60°C for 45 minutes at 1050 rpm) and alkylated by 25 mM 

chloroacetamide (37°C for 30 minutes at 750 rpm). Proteins were then digested by trypsin 

(1:20 trypsin to protein ratio) in 50 mM ammonium bicarbonate, pH 8, for 16 hours. 

Digestion was stopped by addition of 1% formic acid (37°C for 1 hour with shaking at 750 

rpm) and the peptide solution was cleared by centrifugation (21,800× g at 4°C for 30 

minutes). Obtained peptides were desalted using the C18 extraction disk (Sigma, 66883-U), 

dried in a vacuum concentrator (Savant SPD131DDA, Thermo Fisher Scientific) and stored at 

-20°C until analyzed by MS. 

The phosphoproteomics samples were prepared as described before279. Briefly, the acetone 

precipitated protein pellet was resuspended in TFE buffer using a Bioruptor sonicator 

(Diagenode). Proteins were then digested by Lys-C (1:100 ratio, incubation at 37°C for 30 

min) and trypsin (1:50 ratio, incubation at 37°C for 15 h). Phosphopeptides were enriched 

using TiO2 beads. The enriched phosphopeptides were desalted using the C18 extraction disk, 

dried in the vacuum concentrator and stored at -20°C. 

 Measurements of mass spectrometry samples 

For the global proteomics analysis, Fusion mass spectrometer (Thermo Fisher Scientific) 

coupled to Ultimate 3000 HPLC system (Agilent Technologies) was used. Peptides were 

resuspended in solvent A and loaded onto a trap column packed in-house (100 µm 

ID × 30 mm self-packed with Reprosil-Pur 120 C18-AQ 1.9 μm, Dr. Maisch GmbH, 
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Ammerbuch-Entringen, Germany) and separated at a flow rate of 300 nl/min on the 

analytical column (75 µm ID × 300 mm self-packed with Reprosil-Pur 120 C18-AQ, 1.9 μm, 

Dr. Maisch HPLC GmbH, Ammerbuch-Entringen, Germany). Peptides were eluted from the 

column with 5-76% gradient of solvent B with an overall run-time of 90 min. Separated 

peptides were ionized by electrospray ionization (ESI) source in a positive ion mode. Full-

scan MS spectra were acquired in the range of 350-1550 m/z at a resolution of 60,000 units. 

The top speed method was selected for fragmentation in the collision cell with Higher-energy 

Collisional Dissociation with the normalized collision energy of 30% and isolation window of 

1.2 m/z. 

For the phosphoproteomics analysis, enriched phosphopeptides were dissolved in loading 

buffer (2% ACN, 0.1% FA) and analyzed on a Q-Exactive HF hybrid Quadrupole-Orbitrap 

mass spectrometer (Thermo Scientific) coupled to an Ultimate 3000 RSLC UHPLC (Dionex, 

USA). The peptides were pre-concentrated on a Reversed Phase-C18 precolumn (100 µm 

ID × 28 mm self-packed with Reprosil-Pur 120 C18-AQ 1.9 μm, Dr. Maisch HPLC GmbH) and 

then separated by reversed phase-C18 nanoflow chromatography (75 µm ID × 300 mm self-

packed with Reprosil-Pur 120 C18-AQ, 1.9 μm, Dr. Maisch GmbH). Peptides were injected 

with solvent A (0.1% FA) at a flow rate 300 nL/min and eluted by 2-60% gradient of solvent 

B (80% ACN, 0.08% FA) with an overall run-time of 90 min. Separated peptides were ionized 

by ESI source in a positive ion mode. The mass spectrometer was operated in a data-

dependent acquisition mode. Full-scan MS spectra were acquired in the range of 350-1600 

m/z at the resolution of 120,000. The top 15 most intense peaks per cycle from the survey 

scan were selected for fragmentation in the collision cell with Higher-energy Collisional 

Dissociation with the normalized collision energy of 28% and isolation window of 2 m/z.  

 Data processing and bioinformatics analysis 

Acquired MS spectra were processed using the MaxQuant software package version 

1.5.0.25280. Spectra were searched using the Andromeda search engine281 against the 

proteome database of Mus musculus (Uniprot complete proteome updated at 2014-05-13, 

with 24,504 entries). The MaxQuant search was configured as follows: the mass tolerance 

was set to 20 and 4.5 ppm for the first and the main peptide search, respectively; the 

multiplicity was set to one; Trypsin/P was fixed as protease and maximum of 2 missed 
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cleavages were allowed; carbamidomethylation of cysteine was set as fixed modification and 

methionine oxidation as well as N-terminal acetylation were specified as variable 

modifications; a false discovery rate of 1% was applied; the re-quantification and match 

between runs options (Match time window 0.7 min, Alignment time window 20 min) were 

enabled. For the phosphoproteomics, phosphorylation on serine/threonine/tyrosine was 

selected as an additional variable modification. 

The “Protein groups” and “Phospho(STY)” output files from MaxQuant was processed by 

“Perseus”, version 1.5.5.3280, for the downstream data analysis.  In each time point proteins 

and phosphosites that were identified in at least two out of four biological replicates in each 

group (control and disease) were selected for further analysis. Reverse hits were removed.  

For the phosphoproteomics analysis, reverse hits and phosphosites with localization 

probability less than 0.75 were removed.  

For Principal Component Analysis (PCA) (Figure 3-4), the LFQ intensities were log2 

transformed and averaged by group. PCA was performed in “Perseus” with the number of 

clusters set to 5 and Benjamini-Hochberg FDR cut-off of 0.05. 

For the downstream proteomics analysis, The LFQ intensities of proteins reported by 

MaxQuant were log10 transformed. The log2 ratio of transformed LFQ intensities AD/Control 

was calculated for each protein. The LFQ intensities of phosphosites were also log10 

transformed and the ratio of AD/Control intensities for each phosphosite was calculated. The 

AD/Control ratio of phosphosites was normalized by AD/Control ratio of the corresponding 

protein quantified in the proteome analysis. 

Time course changes in biological pathways and their top upstream regulators were 

identified by Ingenuity Pathway Analysis (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) (Figure 3-

6, Figure 3-7). The log2 AD/Control intensity ratios of all quantified proteins were used for 

the analysis with IPA.  Positive z-score indicates an overall upregulation (activation) of the 

process, while a negative score stands for its inhibition. The z-score is computed based on 

the measured protein expression values (log2 ratio AD/control) and the information on the 

relationship between the proteins and biological processes they are involved in stored in 

Ingenuity Knowledge Database. 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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The IPA was also applied to identify canonical pathways that were activated at time points 2 

and 18 months based on phosphoproteomic dataset (Figure 3-10 A). The distribution of 

significantly up- or downregulated phosphosites by biological processes was determined by 

Gene ontology (GO) annotation (Figure 3-8 B). 

To predict the kinase activity at different time points of AD progression, NetworKIN 

prediction tool (version 3.0) was used282. NetWorKIN predicts substrates of 222 kinases 

based on the linear motifs and a network context of the kinases. Sequences of mouse 

phosphosites that were identified as up- or downregulated were matched with homologous 

human sequences. For the prediction, the following parameters were set: minimum 

NetWorKIN score of 1.5, maximum difference of 4 and maximum 1 prediction was selected 

(Figure 3-10 B).   

 Analysis of human mRNA expression datasets 

Information on Hebp1 mRNA expression levels in AD patients was extracted from the 

transcriptome dataset from the Harvard Brain Tissue Resource Center (HBTRC) that is 

publicly available on the GeneNetwork website (www.genenetwork.org). Used datasets were 

human primary visual cortex (GN Accession: GN327) and human prefrontal cortex (GN 

Accession: GN328). These datasets were generated on a custom-made Agilent 44K 

microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes. The 

study includes 803 participants of which 388 Alzheimer’s disease cases, 220 Huntington’s 

disease cases and 195 controls matched for gender, age and postmortem interval. 

 Postmortem human brain samples 

The brain samples were provided by the Prion Disease Surveillance Units of Germany 

including spAD, rpAD and non-demented control cohorts as described previously283. All 

experimental protocols were approved and the study conformed to the Code of Ethics of the 

World Medical Association. All study participants or their legal next of kin gave informed 

consent and the study was approved by the local ethics committee in Göttingen (No. 

24/8/12). All samples were anonymized with regard to their personal data. Information on 

ages, genders, disease duration, disease stage (Braak classification284) and postmortem 

interval are summarized in Table 2-10. Brain tissue samples were processed as 

demonstrated previously283,285. 
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Table 2-10. Patient details 

Patients 
ID 

Gender Age  
Disease duration 

(years) 
Braak Stages 

(AD) 
Postmortem 

Delays 

Cont. 1 Male 86 - II/A 06:45 

Cont. 2 Male 61 - I/0 03:03 

Cont. 3 Male 74 - II/A 11:00 

Cont. 4 Male 86 - II/A 06:45 

Cont. 5 Female 73 - I/0 04:03 

Cont. 6 Male 69 - II/A 05:03 

Cont. 7 Male 68 - I/0 05:03 

Cont. 8 Female 64 - I/0 09:00 

Cont. 9 Male 67 - I/0 05:03 

spAD1 Female 72 >4 V/C 09:30 

spAD2 Female 75 >4 V/C 04:15 

spAD3 Male 78 >4 V/C 09:30 

spAD4 Male 83 <4 V/C 08:20 

spAD5 Female 56 >4 V/C 07:00 

spAD6 Male  83 >4 III/0 07:25 

spAD7 Female 90 >4 IV/A 09:55 

spAD8 Female 93 >4 V/C 03:00 

rpAD1 Male 78 <4 V/C 03:30 

rpAD2 Female 79 <4 V 05:30 

rpAD3 Female 81 <4 III/B 06:00 

rpAD4 Male 83 <4 VI/C 05:30 

rpAD5 Male 83 <4 V/C 08:20 

rpAD6 Male 70 <4 VI/C 11:30 

rpAD7 Male 76 <4 VI/C 06:30 

rpAD8 Female 77 <4 IV/A 12:00 

 

 Immunoblotting 

Immunoblotting was performed according to standard procedures286. Protein samples were 

mixed with 4× NuPAGE LDS Sample Buffer (Thermo Fisher Scientific, NP0008) and boiled at 

95°C for 5 minutes. 15 μg of protein sample were typically loaded on per lane of a gel. Mouse 

brain samples and Co-IP samples were separated on 12% SDS-PAGE gels. Proteins were 

transferred to nitrocellulose membrane using the Mini Trans-Blot Cell system (Bio-Rad) for 

1 hour at constant voltage of 100 V. Human samples were run on 4-20% Criterion TGX gels 

(Bio-Rad, 5671095) and transferred using Trans-Blot Turbo Transfer System (Bio-Rad). 
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Membranes were blocked in 5% non-fat dry milk in TBST for 1 hour at room temperature, 

incubated with primary antibodies in blocking solution overnight, washed with TBST (5 

times, 5 minutes each), incubated with secondary antibodies for 1 hour at room temperature 

and washed again with TBST (5 times, 5 minutes each). Protein bands were visualized using 

fluorescence or enhanced chemiluminescence and images were developed using Odyssey 

CLx Infrared Imaging System (Licor) or Fujifilm LAS-100 device, respectively. 

 Immunohistochemistry 

Mouse tissue samples for immunohistochemistry were prepared as described previously287. 

In brief, for the preparation of cryosections, one half of the dissected whole brain was fixed 

in 4% PFA for 4 hours at 4°C and washed in PBS three times for 20 minutes each. Tissues 

were immersed in 15% sucrose in PBS (1 hour), followed by 30% sucrose in PBS (overnight) 

and finally in 50% tissue freezing medium (Tissue Tek, Leica) in 30% sucrose for 1 hour. 

Tissue was embedded in the freezing medium, frozen at -20°C and preserved at -80°C until 

use.  

For paraffin sections, whole brains of 12-month-old mice were fixed in 4% PFA overnight, 

washed in PBS three times (20 minutes each) and subsequently immersed in 0.98% NaCl for 

1 hour. The tissues were then dehydrated in a stepwise series of ethanol dilutions (50%, 70%, 

90%, 95%, 100%), cleared in the ascending toluene/isopropanol dilution series and finally 

embedded in paraffin. 

Immunostainings were performed on 10 µm thick cryo-sections. Sections were washed three 

times in PBS and blocked in 10% FCS and 0.5% Triton-X100 in PBS for 60 min at room 

temperature. Slides were incubated overnight with primary antibodies at 4°C in the blocking 

solution followed by three washes in PBS (10 minutes each) and incubation with secondary 

antibodies (1: 750) for 60 minutes at room temperature. Finally, sections were rinsed in PBS 

three times (10 minutes) and mounted with Vectashield containing DAPI (Vector 

Laboratories). Additional 8 µm thick paraffin sections were used for IBA1/Hebp1 co-staining. 

Prior to the staining, paraffin sections were hydrated through descending ethanol series and 

boiled for one minute in unmasking solution (1:100 in water, Vector Laboratories, H-3300). 
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 Staining of Aβ plaques 

Aβ plaques were stained with thioflavin S (Santa Cruz, CAS 1326-12-1) as described 

previously288. Briefly, 10 µm thick cryo-sections were equilibrated to room temperature and 

rinsed in PBS for 3 minutes. The slides were stained with filtered 0.05% thioflavin S in 50% 

ethanol for 8 minutes in the dark and differentiated with 80% ethanol (2 times for 

10 seconds). Subsequently, the sections were washed with large volumes of distilled water 

and incubated in high‐concentrated phosphate buffer at 4°C for 30 minutes. Finally, slides 

were briefly rinsed in PBS and mounted with Vectashield containing DAPI. Slides were 

allowed to set in the dark at room temperature and were imaged immediately thereafter 

using Zen Observer 1 microscope (Zeiss). 

 Primary neurons and cell culture 

Primary cortical or hippocampal neurons were prepared from postnatal day 0 Wistar rats. 

Dissected cortices and hippocampi were digested for 30 min with papain enzymatic solution. 

Digestion was stopped by addition of inactivation solution. Digested tissues were triturated 

using a fire-polished Pasteur pipette until no visible tissue debris could be observed. The cell 

suspension was passed through a 40 μM cell strainer (Corning Costar, 352340) and 

subsequently centrifuged for 5 min at 500 rpm followed by resuspension of cell pellets in 

serum medium. Next, cortical neurons were plated in plating directly on PDL-coated 10 cm 

culture plates (Greiner, 664160) for Co-IP analysis (1 cortex per plate). Hippocampal 

neurons were plated on PDL-coated coverslips in plating medium at a density of 20,000 

cells/cm2 for imaging. Medium was changed completely to fresh plating medium 

supplemented with 1× FUDR the next day. 

All cells were grown at 37°C in a humidified incubator with 5% CO2 atmosphere. HEK293 and 

HeLa cells were cultured in D10 medium. 

Mitochondria isolation from HEK293 cells was performed exactly as described before289. 

 Lentiviral transduction 

For overexpression of Hebp1 in primary rat neurons, cDNA encoding full-length human 

Hebp1 was subcloned to FUGW backbone (FUGW was a gift from David Baltimore, Addgene 

plasmid # 14883) using EcoRI and AgeI restriction enzymes. Empty FUGW vector was used 

as a negative control for overexpression of EGFP. For production of lentiviral particles, 
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HEK293 cells were co-transfected with the FUGW-Hebp1or FUGW plasmid, and the helper 

plasmids psPax2 (a gift from Didier Trono, Addgene plasmid #12260) and pCMV-VSV-G (a 

gift from Bob Weinberg, Addgene, plasmid #8454) in a 2:1:1 ratio using Lipofectamine 2000. 

Medium was changed 6 hours after transfection to DMEM supplemented with 2% FBS and 5 

mM sodium butyrate. Culture supernatant was harvested 24 hours and lentiviruses 

concentrated by ultracentrifugation via Amicon Ultra-15 filters (Millipore, UFC910024). 

Concentrated lentiviruses were diluted to the final volume of 1 mL in DMEM/F12 medium, 

aliquoted, snap-frozen in liquid nitrogen and stored at -80°C until use. Only lentivirus 

preparations resulting in transduction rate of at least 90% (assessed by EGFP 

overexpression) were used for experiments. 

 Live imaging of mitochondria 

Primary rat hippocampal neurons were infected with lentiviruses overexpressing Hebp1-

EGFP or EGFP alone one day after seeding and analyzed at DIV14. Prior to imaging, cells were 

incubated with MitoTracker Red CMXRos (Life Technologies, M5712) in plating medium at 

final concentration of 10 nM for minimum of 30 minutes. Cells were then imaged in Tyrode’s 

solution using Zeiss Observer 1 laser scanning confocal microscope within a 30-minute 

period.  

 Identification of Hebp1 binding partners 

Proteins interacting with Hebp1 were identified using co-immunoprecipitation coupled with 

mass spectrometry in four independent biological experiments. Primary rat cortical neurons 

were infected with lentiviruses expressing Hebp1-EGFP or EGFP one day after seeding. 

Neurons were lysed at DIV14 with NP-40 lysis buffer. Lysates were clarified by centrifugation 

at 13,000× g for 10 min at 4°C. Hebp1-EGFP and EGFP were pulled down using GFP-trap 

according to manufacturer’s instructions. Beads were sequentially washed in lysis buffer 

containing descending concentrations of NP-40 (1%, 0.8%, 0.4%, 0.2%). Proteins were eluted 

by boiling the beads at 95°C for 10 min in 1× NuPAGE LDS Sample Buffer and separated on 

4-12% Bis-Tris NuPAGE gels (Thermo Fisher Scientific, NP0342). Gels were stained with 

Coomassie solution overnight and destained in deionized water for two days. Each lane was 

cut into six equal pieces and in-gel protein digestion was performed as described 
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previously290. Peptides extracted from each gel piece were measured three times in 

independent technical repetitions. 

The digested peptides were subjected to Q Exactive HF mass spectrometer (Thermo Fisher 

Scientific) coupled with an Ultimate 3000 RSLC system (Dionex, USA). Peptides were 

separated on a self-made capillary column (ReproSil-Pur 120 C18-AQ, 1.9 µm, Dr. Maisch 

GmbH, 300 x 0.075 mm; C18 pre-column from Thermo Fisher (article nr. 160454)) with a 5-

42% linear gradient of increasing buffer B (80% ACN, 0.08% FA) and decreasing buffer A 

(0.1% FA in water) for an overall run time of 58 min at a constant flow rate of 300 nl/min. 

Separated peptides were ionized by ESI source in a positive ion mode. Full-scan MS spectra 

were acquired in the range of 350-1600 m/z at the resolution of 60,000 units. The top 30 

most abundant precursors were selected for fragmentation in the collision cell with Higher-

energy Collisional Dissociation with the normalized collision energy of 30% and isolation 

window of 1.6 m/z. Max quant search was performed with the same parameters used for 

brain proteome analysis.  

Perseus software was used for downstream data analysis. The intensities of identified 

proteins were log2 transformed and the missing values for identified proteins in each 

replicate were imputed with the width of 0.3 and downshift of 1.8 in the total matrix mode. 

Log2 difference between Hebp1-EGFP and EGFP samples was calculated for each identified 

protein and was averaged between technical and biological replicates. Statistical significance 

of protein enrichment in each sample was determined by one-sample t-test (p < 0.05). 

 Generation of Hebp1 knockout HeLa lines by CRISPR/Cas9 system 

sgRNA (5’-CTAAGCAAAGGGGACAAGGT-3’) targeting human Hebp1 was designed using 

sgRNA Designer (Broad Institute). The pLenti-CRISPR-H3 vector was generated by inserting 

the sgRNAs into the LentiCRISPRv2 plasmid at the BsmBI site. The LentiCRISPRv2 plasmid is 

a gift from Feng Zhang (Addgene, plasmid #52961). To obtain stable Hebp1 knockout HeLa 

lines, HeLa cells were transiently transfected with pLenti-CRISPR-H3 construct targeting 

human sequence of Hebp1 using Lipofectamine 2000. Twenty-four hours following 

transfection, the cells were subjected to puromycin selection (2 μg/mL) for 2 days. Selected 

cell colonies were picked, expanded and subsequently tested for Hebp1 expression by 
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immunoblotting. Knockout and wild type lines (unaltered Hebp1 expression) were selected 

and propagated for further experiments. 

 In vitro cell-based assays 

HeLa cells were seeded on black 96-well plates (Corning) at a density of 3x104 cells/cm2. Cell 

toxicity was assessed using MultiTox-Glo reagent according to the manufacturer’s 

instructions. Briefly, cytotoxicity was measured by activity of dead-cell protease 

(luminescent readout) and was normalized to cell viability measured by the activity of live-

cell protease (fluorescent readout) to account for discrepancies in cell number between the 

wells. Final cytotoxicity values are presented as a fold change of corresponding vehicle 

control. Cells were treated with 10 µM hemin, 100 µM tert-butyl-hydroperoxide or 1 µM 

staurosporine. Hemin was always prepared fresh in accordance with a protocol published 

previously291.  

Apoptosis was assessed by measurement of caspase 3/7 activity using CellEvent Caspase-

3/7 Green Detection Reagent. The Caspase-3/7 Green Detection Reagent was added to cells 

simultaneously with hemin treatment. Apoptotic cells were quantified 24 hours later. Images 

were acquired from three non-overlapping fields of each well with a 10× objective, Zeiss 

Axiovert 200M (GFP channel and brightfield). Cells positive for Caspase-3/7 activity were 

quantified with in-house written macro in Fiji292. Total number of cells was quantified 

manually from brightfield images. Each experiment was performed at least in three 

independent biological repetitions with three technical replicates for each condition. 

Levels of oxidative stress were determined by measurement of reduced/oxidized glutathione 

ratio (GSH/GSSG) using GSH/GSSG-Glo Assay according to the manufacturer’s guidelines. 

Luminescence was assessed twenty-four hours after treatment with hemin by Tecan Genios 

Pro plate reader with integration time and time between move and integrations set to 100 

ms and 500 ms, respectively. Reduced (GSH) and oxidized (GSSG) glutathione were measured 

in separate wells (two technical replicates each). The ratio GSH/GSSG was calculated 

thereafter. Each experiment was performed in five independent experiments. 

Mitochondrial membrane potential was assayed with the corresponding kit from Cell 

Signaling according to the manufacturer’s guidelines. Briefly, potentiometric fluorescent 

TMRE dye (final concentration 200 nM) was added to HeLa cells twenty-four hours after 
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hemin treatment. Fluorescence was measured 30 minutes after with Tecan Genios Pro plate 

reader using 550 nm and 615 nm excitation and emission filters, respectively. 

Statistical analysis of the data obtained in in vitro cell-based assays was performed using 

Prism software. Applied statistical tests with major parameters are mentioned in the legends 

of corresponding figures. 
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3 Results 

 

 Experimental design 

The first objective of my project was to characterize the brain proteome and 

phosphoproteome of Alzheimer’s disease over the course of its progression, including the 

presymptomatic stage. In order to do that, an optimal biological system to study the disease 

and its development needed to be selected. The use of brain samples from patients would be 

the most appropriate to investigate a human disease. However, the available samples are 

limited to postmortem brain tissue that captures only the terminal stage of the disease. The 

use of animal models is thus a viable alternative. The pros and cons of various mouse models 

of AD were discussed in detail in the Introduction (section 1.2). Among available mouse 

models, I selected the triple transgenic AD mice (3×Tg-AD) as they fulfill three important 

criteria that align with the aims of my work. First, 3×Tg-AD mice exhibit both key molecular 

hallmarks of AD pathology: amyloid beta plaques and hyperphosphorylated tau. Second, the 

overexpression of human transgenes (APPSwe, MAPTP301L) in 3×Tg-AD is under the control of 

mouse Thy1.2 promoter and is rather mild (~1.5-2 fold of endogenous APP and MAPT 

expression) in comparison to other mouse models. The third and the most important reason 

for choosing the 3×Tg-AD model for this study is that these mice develop the disease in a 

progressive age-dependent manner closely resembling AD in humans. 

To identify the proteins and phosphosites differentially expressed over the course of AD 

progression, I analyzed brain proteomes of age-matched 3×Tg-AD and control mice at four 

distinct time points using label-free quantitative mass spectrometry. The four time points 

were selected according to the well-characterized progressing pathological changes in 3×Tg-

AD mice based on previously published data233,293. Additionally, I confirmed the presence of 

Aβ plaques and hyperphosphorylated tau in the brains of 3×Tg-AD mice from our colony 

(Figure 3-1). The selected four time points include the presymptomatic time point (2 

months), the age of first behavioral abnormalities (6 months), appearance of first Aβ plaques 

(12 months) and hyperphosphorylated tau (18 months) (Figure 3-2 A). 
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Figure 3-1. Assessment of pathology in 3×Tg-AD mice used in this study. 

(A) Accumulation of Aβ plaques assayed by thioflavin S staining at each analyzed time point in 3×Tg-AD and 

control mice. Representative images of coronal sections including subiculum region were acquired. White 

arrows indicate exemplary Aβ plaques. (B) High magnification images of Aβ plaques in 12 and 18-month-old 

3×Tg-AD mice. 

(C) Assessment of tau phosphorylation at sites S400/T403/S404 by immunoblotting. Soluble fraction of brain 

proteins was used for the analysis. (D-G) Relative quantification of tau phosphorylation. Slight upregulation of 

phospho-tau can be observed at the time point 12 months in 3×Tg-AD mice. Significantly different levels of tau 

phosphorylation were detected at the late stage of the disorder (18 months). 

All bar charts represent mean ± SD. Statistical significance in the datasets was assessed by Student’s t-test: *p 

value < 0.05. 
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Figure 3-2. Experimental design.  

(A) Disease progression in 3×Tg-AD mice and corresponding time points (2, 6, 12, 18 months) of sample 

collection in this study. Four biological replicates per group (3×Tg-AD and control) were collected at each time 

point. (B) Schematic representation of brain sample processing. 

 

Whole mouse brains were collected at the designated time points. One half of the brain was 

processed to obtain a soluble protein fraction (Figure 2-1). For proteome analysis, 40 µg of 

this fraction were digested by trypsin and subjected to analysis by label-free liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) (Figure 3-2 B). In parallel, 300 µg 

of the soluble protein fraction were digested and utilized for phosphopeptide enrichment 

with titanium dioxide beads and further analysis by label-free LC-MS/MS to map the brain 

phosphoproteome. The remaining half of the brain was used to prepare cryosections for 

subsequent immunohistochemical assessment of hits identified by mass spectrometry (see 

Methods for exact description of experimental procedures). 

 

 Assessment of brain proteome in 3×Tg-AD mice along AD progression 

In total, 3760 proteins were identified in the soluble brain protein fraction (peptide and 

protein false discovery rate (FDR) of 1%).  Additional stringency was applied by selecting 
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Figure 3-3. Number of identified proteins and technical reproducibility of proteomic data. 

(A) Cumulative number of identified, quantified and statistically significant proteins at all time points.  

(B) Pearson correlation coefficients between biological quadruplicates for each condition and time point. 
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proteins that were present in at least two out of four biological replicates in each group 

(disease or control). Thus, between 2414 and 2574 proteins were quantified and further 

analyzed depending on the time point (Figure 3-3 A). Pearson's correlation coefficients for 

quantified proteins between biological replicates were above 0.96, attesting to the high 

reproducibility of the data (Figure 3-3 B). 

 Principal component analysis clusters proteins by age and disease status 

Principal component analysis (PCA) of the datasets revealed that the quantified proteins 

could be clustered according to age (component 1, 40.9% of total variation) as well as disease 

state (component 2, 18.3% of total variation) (Figure 3-4 A). Notably, segregation by age was 

mainly driven by extracellular matrix proteins (Hapln2, Tnc, Acan, Vcan, Hapn1) and 

increased expression of microglia markers (S100b, Ctpd) (Figure 3-4 B). Many of these 

proteins have been previously reported as markers of brain aging294,295. The samples 

segregated by principle component 2 varied primarily in the expression of AD-related genes. 

As expected, APP and tau (MAPT) were detected in the AD cluster (Figure 3-4 B). The PCA 

also demonstrated that differences between the brain proteomes of 3×Tg-AD and control 

mice increased with disease progression as indicated by the growing distance between the 

points corresponding to diseased and control mice of the same age (Figure 3-4 A).  

 Relative quantification of protein expression 

After a general assessment of proteomic data with PCA, I investigated the changes in the 

protein expression of individual proteins between diseased and control mice at each stage of 

AD. For this purpose, the log2 ratio of LFQ intensities between 3×Tg-AD and control mice was 

calculated (log2 ratio AD/Control). Statistical significance of expression change was 

determined by t-test (p-value cut-off of < 0.05 for statistically significant difference). Volcano 

plots were built based on the log2 ratio AD/Control and the -log10 of p-value for each 

quantified protein. (Figure 3-5 A-D). Statistical analysis demonstrates that 7 to 8% of 

quantified proteins were expressed at significantly different levels between 3×Tg-AD and 

control mice at time points 2, 6 and 12 months. The percentage of significantly regulated 

proteins almost doubled (13.7%) by the preterminal stage of the disease (18M). This result 

confirms that brain proteome of 3×Tg-AD mice is more affected at the late stage of the 

disease. At the same time these data also indicate that proteome aberrations occur early in 
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the disease progression and can be already observed at the presymptomatic stage (2 

months). 

 

Figure 3-4. Principal component analysis reveals disease- and age-dependent alterations of 3×Tg-AD 

brain proteome. 

(A) Principal component analysis of soluble brain proteome of 3×Tg-AD and control mice based on their protein 

expression profile. Principal component 1 segregates mice by age and accounts for 40.3% of variability in the 

dataset, while principal component 2 clusters mice according to their disease status (18.9% of variance). (B) 

Proteins driving the difference between aged, young, diseased and control mice are depicted in brown, pink, 

navy and light blue colors, respectively. 
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Figure 3-5. Comparative proteome analysis of 3×Tg-AD and control samples at different stages of AD. 

Distribution of the quantified proteins at 2M (A), 6M (B), 12M (C) and 18M (D) based on log2 ratio AD/Control 

and -log10 p-value (t-test) by time point. The pie charts represent the number of: quantified non-regulated 

proteins (grey), significantly different proteins between AD and control samples, t-test p-value < 0.05 (pink), 

and significantly regulated proteins with more than 50% change (red). Dynamics of the expression over the 

course of AD progression for selected highly regulated proteins based on their function: proteins involved in 

mRNA processing and transport (E) and inflammation (G) that are upregulated over the course of disease 

progression, and serine protease inhibitors (F) and myelin-related proteins (H) that are downregulated.  
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To identify potential markers indicative of disease onset and progression, the dataset was 

scanned to determine individual proteins with the highest degree of fold change at each AD 

stage. Such proteins were selected based on two criteria: 1) statistical significance (t-test, p 

< 0.05), and 2) greater than 50% change in expression level between disease and control 

(Figure 3-5 A-D, red dots). These highly regulated proteins could be grouped based on their 

function. For example, several proteins involved in mRNA processing (Hnrnpm, Hnrnpl, 

Nono, Matrin3, Snrpe) were strongly upregulated at late time points (12 and 18 months). 

Remarkably, the expression of these proteins changed in a coordinated fashion gradually 

increasing throughout the progression of the disease (Figure 3-5 E). A similar coordinated 

expression pattern was also observed for the group of serine protease inhibitors (Serpina1c, 

Serpina3k, Mug1) which were significantly downregulated by the late stage (Figure 3-5 F). 

Several inflammation-related proteins (C1qc, Ilf2, Igh-3) and components of the myelin 

sheath (Mag, Mog) were also identified to be strongly up- and downregulated at the 

preterminal stage of the disease which hints towards progressive inflammation and 

demyelination in the 3×Tg-AD model (Figure 3-5 G and H). 

The full list of quantified proteins at each time point with corresponding log2 AD/control 

ratios and p-values is presented in Supplementary table 1. 

 Relating proteome changes to biological function 

To understand which biological processes were most affected at each disease stage, I applied 

ingenuity pathway analysis (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) feeding 

log2 AD/control ratio for each quantified protein to IPA as an input. IPA allows one to 

interpret “omics” data in a broader biological contest by relating protein or gene expression 

levels to biological function. The information on the relationship between certain protein or 

gene and the biological process, pathway or disease it is involved in is retrieved from the 

curated IPA Knowledge Base. The activation status of the biological function in the dataset 

can be then determined by the z-score which is calculated based on experimental protein 

expression data (in this case log2 AD/control ratio) and the information stored in the IPA 

Knowledge Base. Positive z-score values indicate an activation of a biological pathway or 

function, while negative values indicate its inhibition.  
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Figure 3-6. Inference of activated biological processes in the progression of AD in 3×Tg-AD mice. 

(A, B, C) Activation of biological processes at different stages of the disease assessed by ingenuity pathway 

analysis (IPA). Heatmaps represent activation z-score change over the course of disease progression and 

indicate pathways that are activated at 6M (A), 12M (B), and 18M (C).  

 

 

 



Results | 69 
 

The biological processes that were activated most at early (6 months, Figure 3-6 A), 

intermediate (12 months, Figure 3-6 B) and preterminal (18 months, Figure 3-6 C) 

symptomatic stages of the disease were ranked by their z-score trend. Remarkably, a 

cumulative upregulation in expression of proteins involved in cell death and apoptotic 

processes could already be detected at the first symptomatic time point (6 months) (Figure 

3-6 A). Significant changes in regulation of proteins associated with seizures was also 

observed at the transition point between the presymptomatic phase and 6 months which 

corresponds to the stage where changes in LTP in 3×Tg-AD mice were previously 

described233,296. Neurodegeneration-related processes (amyloid load of hippocampus, 

demyelination of axons and degradation of mitochondria) were also noticeably exacerbated 

with AD progression (Figure 3-6 B and C). Notably, the disturbance of the cytoskeleton, which 

is a hallmark of many neurodegenerative disorders including AD, became prominent only at 

the late stages of the disease (18 months) (Figure 3-6 C) which coincides with the timeline of 

tau aggregation in 3×Tg-AD mice. Interestingly, IPA analysis revealed that the protein 

signatures of dysfunctional mitochondria were among the very first signs of an altered AD 

proteome (Figure 3-6 A and B). 

I further used IPA to identify the upstream master regulators of the 3×Tg-AD proteome. This 

module of IPA determines the most activated/inhibited regulators of protein expression 

based on the expression levels of their downstream targets. As expected, tau (MAPT), APP 

and PSEN1 were among the top activated upstream regulators (Figure 3-7 A) at each 

analyzed time point. This result serves as a robust internal control indicating that these three 

genes contribute most to the change of protein expression between 3×Tg-AD and control 

mice. Additionally, proteins located downstream of tau, APP and PSEN1 in our dataset largely 

overlap (Figure 3-7 B). Interestingly, functional enrichment indicates that these downstream 

effectors of tau, APP and PSEN1 are mainly involved in biological processes such as apoptosis, 

mitochondria dysfunction and oxidative stress (Figure 3-7 C).  

Overall, the analysis of the brain proteome demonstrates progressive stage-dependent 

differences in protein expression between 3×Tg-AD and control mice. Based on these data, I 

could determine a timeline of biological processes dysregulated along AD progression. In 

section 3.3, I will focus specifically on proteins whose expression was significantly affected 

at the presymptomatic stage of the disease. 
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Figure 3-7. Identification of top upstream regulators in the proteomic dataset 

(A) Top5 upstream regulators identified by ingenuity pathway analysis (IPA) of the complete proteome dataset 

(log2 AD/control) at each time point. MAPT (tau), APP and PSEN1 were identified as the top 3 upstream 

regulators. (B) Regulated proteins downstream of MAPT, APP and PSEN1 largely overlap (109). (C) Enrichment 

analysis (IPA) of overlapping proteins reveals their strong association with mitochondrial dysfunction, cell 

death and oxidative stress. Presented protein enrichment data are for the time point 18 months. The orange 

line indicates the p-value cut-off, p < 0.05. 

 

 Alterations of brain phosphoproteome in AD progression 

In the next step of my thesis, I aimed to analyze the brain phosphoproteome and determine 

how the protein phosphorylation profile of the brain changes during AD progression. 

Phosphopeptides compose a relatively small subpopulation of peptides in the entire brain 

proteome and therefore their detection by shotgun proteomics would be masked by more 

abundant peptide species. To overcome this problem and to increase the identification of 

phosphorylated peptides, phosphopeptide enrichment using titanium dioxide beads was 
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performed. The phosphopeptide-enriched fraction was then analyzed by label free LC/MS-

MS.  

 

Figure 3-8. Analysis of brain phosphoproteome at presymptomatic and late stages of AD in 3×Tg-AD 

mice. 

(A) Overview of identified, quantified and regulated phosphosites at time point 2 and 18 months. Phosphosites 

statistically different between 3×Tg-AD and control mice (t-test, p-value < 0.05) and with an expression change 

of at least 50% were considered as “regulated”. (B) Functional classification of proteins with at least one 

significantly regulated phosphosite at 2 and 18 months. Classification was performed based on the Gene 

Ontology Biological Function database. 

Data for these figure were prepared in collaboration with Dr. Mahdokht Kohansal-Nodehi (Department of 

Neurobiology). 
 

The soluble brain fraction obtained from 2- and 18-month old mice was used for 

phosphoproteomic analysis to focus specifically at the differences between the 

presymptomatic and the late symptomatic time points. A total of 4020 phosphosites were 

identified at these two time points (Figure 3-8 A). 

To reflect the changes in phosphosite levels only, the quantified log2 ratio AD/control for each 

individual phosphosite was normalized to the same ratio of corresponding protein from the 

global proteome dataset297. The resulting phospho/global ratio accounts for the difference of 

the phosphopeptide levels between 3×Tg-AD and control mice and is normalized to the total 

level of the protein to which it belongs. In this way, 1997 phosphosites were quantified at 

time points 2 and 18 months. The phosphopeptides that exhibited a statistically significant 

change (t-test, p-value < 0.05) and at least a 50% change in comparison to the control were 

considered as “regulated phosphosites” and were assessed in further bioinformatics 

analyses. 
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To determine the biological functions affected most by altered protein phosphorylation, 

proteins that exhibited regulated phosphosites in the dataset were classified according to the 

Gene Ontology database (Figure 3-8 B). Interestingly, at both presymptomatic and late stages 

of the disease, cytoskeletal proteins contributed to about 20% of regulated phosphosites. 

This is not surprising, given the known role of hyperphosphorylated tau in AD. I indeed 

identified multiple phosphosites of tau to be upregulated, some of them already at the 2 

month time point (Supplementary table 2). Apart from tau, a number of other microtubule 

associated proteins (MAP1, MAP2, MAP7) demonstrated an altered phosphorylation profile. 

Extensive phosphorylation of neurofilaments was also detected in 3×Tg-AD mice with few 

phosphosites upregulated already at the presymptomatic stage of the disease.  

A particularly interesting group of regulated phosphosites belong to the proteins involved in 

mRNA processing. Intriguingly, the number of regulated phosphosites of this group increased 

considerably between time point 2 and 18 months and comprised almost 25% of all regulated 

phosphosites at the preterminal stage. This result correlates well with the data obtained in 

proteomic analysis, where proteins involved in mRNA processing demonstrated steadily 

increasing expression with AD progression. Most of the phosphosites in this group belong to 

just two proteins: serine/arginine rich motif protein 1 and 2 (SRRM1-2) (Figure 3-9). SRRM 

proteins play a role in alternative splicing298, however, it is not known how their 

phosphorylation contributes to this process. 

 

Figure 3-9. SRRM1 and 2 are phosphorylated at numerous phosphosites in the late stage of AD in 3×Tg-

AD mice. 

Upregulated phosphosites of SRRM1 and 2 at time point 2 months (blue), 18 months (yellow) or both time 

points (green). The protein diagrams were generated using DOG Illustrator299. 

Data for these figure were prepared in collaboration with Dr. Mahdokht Kohansal-Nodehi (Department of 

Neurobiology). 
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Phosphorylation of proteins involved in formation of cell-to-cell contact, axogenesis, 

apoptosis and several other biological processes were also identified to be altered in the 

dataset. A substantial number of these changes could be detected already at the time point 2 

months indicating that aberrations in protein phosphorylation and presumably protein 

function precede manifestation of AD symptoms in 3×Tg-AD mice. 

 

Figure 3-10. Canonical signaling pathways and kinase families affected in 3×Tg-AD at the 

presymptomatic and late stage of the disorder. 

(C) Enriched signaling pathways in the phosphoproteome dataset at 2 and 18 months (determined by IPA). The 

positive and negative values of the z-score correspond to activated and deactivated signaling pathways, 

respectively. (D) Kinase groups predicted to phosphorylate up- (yellow) and downregulated (blue) 

phosphosites in the dataset were determined by a kinase prediction tool (NetworKIN, version 3.0282). 

Data for these figure were prepared in collaboration with Dr. Mahdokht Kohansal-Nodehi (Department of 

Neurobiology). 

 

Protein phosphorylation is a key event in many signaling cascades. To gain knowledge of 

specific pathways that are affected in early and late stages of AD, IPA was applied to 

determine regulated canonical signaling pathways by activation z-score (Figure 3-10 A). 

Consistent with previous findings, the CREB pathway and nitric oxide (NO) signaling were 

found to be downregulated in 3×Tg-AD mice at the late stage of the disease300,301. Mixed 

results were reported with regard to the role of the PKA cascade in AD302,303. In my analysis, 

PKA signaling was found to be slightly activated at a time point 18 months. Interestingly, 
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several signaling pathways demonstrated considerable alterations already at the 

presymptomatic stage. For example, signaling through G-protein subunit α (GαS) was 

significantly downregulated at time point 2 months while it demonstrated little change in the 

late stage of the disease. CDK5 signaling was strongly upregulated in 3×Tg-AD mice at the 

presymptomatic time point. CDK5 is known for its phosphorylation of tau, neurofilaments 

and APP and its hyperactivation in AD was previously reported304. Interestingly, the 

observed activation of the CDK5 pathway was much more prominent at the presymptomatic 

stage than at late stage of the disease. This result indicates that CDK5 hyperactivity preceded 

symptomatic onset in the 3×Tg-AD mouse model and might be one of the early events 

happening in AD. 

In addition to the analysis of canonical signaling pathways involved in AD, the information 

on individual kinase families was extracted from the phosphoproteomics dataset (Figure 3-

10 B). To this end, the kinases responsible for phosphorylation of regulated phosphosites 

identified in our study were predicted using a kinase prediction tool (NetworKIN, version 

3.0282). This analysis revealed that the substrates of GSK3 and CDK5 kinases demonstrated 

increased phosphorylation in 3×Tg-AD mice. Most of the phosphosites predicted to be 

phosphorylated by GSK3 and CDK5 in my dataset belong to cytoskeletal proteins. 

Interestingly, tau was primarily phosphorylated by GSK3, while CDK5 was mainly 

responsible for phosphorylation of MAP1 and neurofilaments. In line with the data obtained 

on canonical signaling pathways, higher number of upregulated phosphosites of the CDK5 

kinase family was observed at the time point 2 months. A similar profile was obtained for 

CK2 kinase. Among upregulated CK2 substrates, MAP1, calcineurin and the microtubule-

binding protein stathmin were identified. These data suggest that abnormal activity of 

kinases related to microtubule organization occurs early in the disease progression. 

A very interesting kinase family that demonstrated an age-dependent difference in substrate 

phosphorylation in 3×Tg-AD mice was a group of Cdc2-like kinases (CLKs). CLKs localize to 

nucleus and are known to phosphorylate a wide variety of nuclear matrix proteins including 

members of the serine/arginine-rich (SR) family of splicing factors305. The previously 

mentioned SRRM1-2 proteins that were heavily phosphorylated at time point 18 months 

belong to this group. An increased number of upregulated CLK phosphosites at the 

preterminal stage additionally strengthens the observation of a concomitant increase in 
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expression and phosphorylation of proteins involved in mRNA processing with the 

progression of AD in 3×Tg-AD mice. 

 

 Putative presymptomatic markers of Alzheimer’s disease 

 Identification of proteins involved in early stage of AD 

In the next step of my thesis, I returned to the proteomic data to focus specifically on the 

proteins that demonstrated the strongest degree of change at the presymptomatic stage. The 

knowledge of proteins whose expression is dysregulated early on in the disease progression 

is important for two main reasons. First, they can serve as potential early markers of the 

disease onset. Second, these proteins might be responsible for the initial pathogenic events, 

thus deciphering their function can help us better understand through which mechanisms 

AD is driven in the first place.  

 

Figure 3-11. Putative early markers of Alzheimer’s disease. 

(A) Top 10 significantly up- and downregulated proteins in 3×Tg-AD mice at presymptomatic time point (2 

months). (B) Immunoblotting analysis of most regulated hits: heme-binding protein 1 (Hebp1), glyoxalase 1 

(Glo1) and carbonic anhydrase 1 (CA1). α-tubulin was used as a loading control. Presymptomatic markers that 

remain up- (C) or downregulated (D) across all time points of AD progression in 3×Tg-AD mice. 
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Table 3-1. Putative presymptomatic brain markers of AD in literature. 

Gene name Protein name 
Log2 
AD/Ctrl 

Previous 
involvement in AD 

Reference 

Upregulated early markers 

Hebp1 Heme-binding protein 1 1,28 - - 

Glo1 Glyoxalase 1 1,24 
↑ in human brain, 
mouse model of FTD 

Chen et al. 
2004306, More 
et al., 2013307  

Blvrb Biliverdin Reductase B 0,74 ↑ in plasma 
Mueller et al., 
2010308 

Tsnax Translin Associated Factor X 0,72 - - 

Gmpr 
Guanosine Monophosphate 
Reductase 

0,70 
↑ human brain, early 
stage 

Liu et al, 
2018309 

Vim Vimentin 0,62 
↑ in human brain 
(astrocytes) 

Yamada et al., 
1992310 

Spag9 Sperm Associated Antigen 9 0,46 - - 

Gpd1 
Glycerol-3-Phosphate 
Dehydrogenase 1 

0,43 Accumulation in NFT 
Wang et al., 
2005311 

Dpysl4 Dihydropyrimidinase Like 4 0,40 - - 

Tnik 
TRAF2 and NCK Interacting 
Kinase 

0,22 

Accumulation in 
insoluble fraction of 
amygdala in 
cognitively impaired 
patients 

Gal et al., 
2017312 

Downregulated early markers 

Gng7 G Protein Subunit Gamma 7 -0,60 - - 

Atp2b4 
ATPase Plasma Membrane 
Ca2+ Transporting 4 

-0,60 ↓ in human brain 
Kong et al., 
2015313 

Enoph1 Enolase-Phosphatase 1 -0,60 - - 

Apoa1 Apolipoprotein A1 -0,60 ↓ in plasma 

Saczynski et 
al., 2007314, 
Merched et al., 
2000315 

Cpne5 Copine 5 -0,62 - - 

Lrba 
LPS Responsive Beige-Like 
Anchor Protein 

-0,63 - - 

Mboat7 
Membrane Bound O-
Acyltransferase Domain 
Containing 7 

-0,63 - - 

Hrsp12 Ribonuclease UK114 -0,71 ↑ in CVN-AD model 
Hoos et al., 
2013316 

Kcnj10 
Potassium Voltage-Gated 
Channel Subfamily J Member 
10 

-0,86 
↓ in mouse model of 
ALS 

Kaiser M et al., 
2006317 

Ca1 Carbonic anhydrase 1 -1,23 - - 
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I identified the proteins that were strongly up- or downregulated at the time point 2 months 

(Figure 3-11 A) and corroborated the most prominent hits by immunoblotting (Figure 3-11 

B). Many of the early markers remained over or under-expressed in 3×Tg-AD mice across all 

time points suggesting their importance for the late stages of AD as well (Figure 3-11 C and 

D).  

Noteworthy, among the identified early brain markers of AD, several proteins were 

previously reported for their involvement in AD or other neurodegenerative disorders and 

followed the same direction of expression change (Table 3-1). For example, decreased levels 

of ApoA1 that are observed in this dataset have been linked to the increased severity of AD 

in human patients314,315. Recently, guanosine monophosphate reductase 1 (Gmpr) was 

identified to be expressed at higher levels in the brain of AD patients309. Elevated expression 

of glyoxalase-1 (Glo1) was also shown in other mouse models of neurodegeneration306 and 

restoration of its activity has been proposed as a mechanism to combat cognitive dysfunction 

in AD307. 

 

 Expression of identified presymptomatic markers in postmortem brain 

samples from AD patients 

To verify the relevance of identified presymptomatic markers in the mouse model for the 

disease in humans, I examined the expression of Heme-binding protein 1 (Hebp1) and 

glyoxalase 1 (Glo1), two most prominent early markers, in the postmortem brain samples 

obtained from AD patients and age-matched healthy controls (Table 2-10). I could confirm 

an overall higher expression of both proteins in AD patients compared to controls that 

validates the relevance of the findings in the 3×Tg-AD model (Figure 3-12 A). Interestingly, a 

strong difference in expression of Hebp1 and Glo1 was only observed in the subset of rapidly-

progressing cases (death within 4-year period after diagnosis) (Figure 3-12 B and C). The 

rapidly-progressing forms of AD are characterized by distinct pathological features and 

clinical parameters and are at large associated with a more severe and faster progression of 

the disease318,319. 
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Figure 3-12. Hebp1 and Glo1, identified presymptomatic markers in 3×Tg-AD model, exhibit increased 

expression in brains of patients with rapidly-progressing forms of AD. 

(A) Immunoblotting analysis of Hebp1 and Glo1 expression in slowly-progressing (spAD) and rapidly-

progressing (rpAD) AD cases and age-matched controls. Quantification of Hebp1 (B) and Glo1 (C) levels in 

human samples. Graphs represent mean ± SD. Statistical significance in the datasets was assessed by one-way 

ANOVA followed by Student’s t-test comparison for individual pairs of samples: *p value < 0.05, **p < 0.01, and 

***p < 0.001. 

 

Hebp1 is a novel protein with regard to AD. To further validate its involvement in the disease, 

I have additionally examined the publicly available mRNA expression datasets to check the 

levels of Hebp1 in larger cohorts of AD patients 

(http://www.genenetwork.org/webqtl/main.py) (Figure 3-13). The datasets from Harvard 

Brain Tissue Resource Center (GN327 and GN328) demonstrated significantly increased 

levels of Hebp1 mRNA in the prefrontal and primary visual cortex in AD patients indicating 

an involvement of Hebp1 in AD in humans.  

Half of the identified presymptomatic markers demonstrated no previous record of 

engagement in AD (Table 1-3). These novel markers provoke special interest due to their 

potential to explain the gaps in our understanding of AD pathogenesis and progression. 

 

 

http://www.genenetwork.org/webqtl/main.py
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Figure 3-13. Hebp1 expression in publicly available transcriptome databases of Alzheimer’s disease. 

In silico analysis of Hebp1 mRNA levels in AD patients and matched controls based on publicly available data 

from Harvard Brain Tissue Resource Center (HBTRC) deposited on GeneNetwork (www.genenetwork.org) (see 

Methods for details). Hebp1 expression in prefrontal cortex (A) and primary visual cortex (B) is elevated in AD 

patients. Box plot whiskers cover values from 2.5 to 97.5 percentile. Number of cases in each group is indicated 

in the graphs. 

 

Among the newly identified putative presymptomatic markers of AD, heme-binding protein 

1, was most consistently upregulated across all stages of the disease in 3×Tg-AD mice. In 

agreement with this finding, expression of Hebp1 is significantly elevated in the brains of AD 

patients, particularly in rapidly-progressing cases. Overall, these data strongly suggest the 

implication of Hebp1 in Alzheimer’s disease. In the next part of this thesis I focus specifically 

on Hebp1 and examine its function and potential role in AD by various biochemical and cell 

culture techniques. 

 

 Investigation of heme-binding protein 1 and its potential functions in 

AD pathogenesis 

Among the newly identified putative early markers of AD, heme-binding protein 1 (Hebp1) 

is a particularly interesting candidate. Hebp1 belongs to the family of SOUL proteins and was 

originally identified as a tetrapyrrol-binding protein capable of binding protoporphyrin IX 

and heme320–322. To the best of my knowledge no information on Hebp1 function in the brain 

is available to date.  

The ability of Hebp1 to bind heme poses special interest in context of AD pathology. Heme is 

essential for proper mitochondria functioning and cell survival323. Impairment of heme 
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metabolism is also associated with AD147. Moreover, Aβ can form a complex with heme that 

reacts with oxygen and possesses strong peroxidase activity150–152. In this way, Aβ-heme 

complex can contribute largely to oxidative stress and cytotoxicity during AD. The proteomic 

analysis revealed that cell survival and mitochondria function might be among the first 

pathways affected in 3×Tg-AD mice (Figure 3-6 A-B). I thus further investigated the function 

of heme-binding protein 1 and its potential role in Alzheimer’s disease. 

 Hebp1 is a neuronal protein upregulated in the brain of 3×Tg-AD mouse 

To better understand the function of Hebp1 and how it contributes to the disease, I first 

examined its distribution in the brain. Immunoblotting analyses of four brain areas in 12-

month-old mice indicated that Hebp1 is most abundant in the hippocampus, followed by the 

brain stem and cortical areas. Hebp1 was not detectable in the cerebellum. 

 

 

Figure 3-14. Analysis of Hebp1 expression in the brain of 3×Tg-AD mice. 

(A) Expression of Hebp1 in 12-month-old control and 3×Tg-AD mice by brain region. (B) Hebp1 

immunostaining of cortex and hippocampus (coronal sections). CA1 region is marked with the white dashed 

line. (C) Co-staining of Hebp1 with markers of CA1 and dentate gyrus neurons (Ctip2), astrocytes (GFAP) and 

microglia (IBA-1) in the hippocampus of 3×Tg-AD mice. Hepb1 is expressed predominantly in Ctip2-positive 

cells of the hippocampus (neurons). All images were acquired from 12-month-old control or 3×Tg-AD mice. 

Scale bar is 100 µm. 

Data for these figure were prepared in collaboration with Dr. Tamara Rabe (Department of Genes and Behavior) 
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Importantly, the levels of Hebp1 are dramatically elevated in all four brain regions in age-

matched 3×Tg-AD mice (Figure 3-14 A). Immunohistochemical analysis confirmed 

upregulated expression of Hebp1 in neocortex and hippocampus of 3×Tg-AD mice compared 

with wild type controls (Figure 3-14 B). 

To identify cell types which express Hebp1 in the brain, I performed co-immunostaining of 

Hebp1 with cell-lineage specific markers (Figure 3-14 C). Hebp1 is strongly expressed in 

Ctip2-immunoreactive neurons but is poorly associated with GFAP-stained astrocytes or 

IBA-1-labeled microglia of hippocampus. These data indicate that Hebp1 is a neuronal 

protein and the increase in its expression in 3×Tg-AD mice is also attributed to neurons. 

 

 Hebp1 interacts with the mitochondrial contact site complex 

The role of Hebp1 in neurons has not been characterized yet. Nevertheless, previous studies 

of Hebp1 and its homologues have left some clues regarding its potential function. First, 

Hebp1 can participate in the regulation of neuronal metabolism by transporting heme from 

mitochondria to the cytosol as was proposed previously320,321. Second, it might be involved 

in the cell response to cytotoxic stimuli. The homologue of Hebp1, heme-binding protein 

2/SOUL, is known to mediate cell death by recruitment to mitochondria permeability 

transition pore324,325. Given the heme-binding properties of Hebp1 and its evolutionary 

similarity to Hebp2/SOUL326 I wanted to test whether Hebp1 is involved in one of these 

processes. In this case, mitochondrial or perimitochondrial localization of Hebp1 would be 

expected. Previous attempts to define the mitochondrial proteome led to mixed results with 

regard to mitochondrial localization of Hebp1327–329. To determine whether Hebp1 is 

associated with mitochondria, I performed subcellular fractionation of mouse brain and 

cultured HEK293 cells. In both experiments, Hebp1 is distributed equally in mitochondrial 

and soluble fractions, indicating that an appreciable portion of Hebp1 is indeed associated 

with mitochondria (Figure 3-15).  
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Figure 3-15. Subcellular localization of Hebp1. 

(A) Subcellular fractionation of HEK293 cells. Hebp1 was enriched equally in supernatant (predominantly 

cytosol) and mitochondrial fractions. Presence of tubulin and Na+/K+-ATPase in mitochondria fraction indicates 

slight contamination with cytosolic and plasma membrane proteins, respectively. 

(B) Brain fractionation was performed as described in Methods. Hebp1 was identified in crude mitochondria 

fraction (Mt). Fraction annotation: H – homogenate, S1 – supernatant 1, P1 – pellet 1, S2 – supernatant 2 

(fraction of soluble proteins), P2 – pellet 2 (synaptosomes), Mt – mitochondria, LP1 – lysate pellet 1 (plasma 

membrane fraction of synaptosomes), LS1 – lysate supernatant 1 (soluble fraction of synaptosomes). 20 µg of 

protein from each fraction were loaded on the gel, except for LS1 – 6 µg. 

 

To test whether Hebp1 localizes inside the mitochondria I overexpressed Hebp1 tagged with 

EGFP in rat primary neurons and examined its co-localization with mitotracker by confocal 

microscopy (Figure 3-16). Remarkably, while Hebp1-EGFP and mitotracker signals 

demonstrated relatively low overlap, a large portion of Hebp1-EGFP puncta appeared in 

direct contact with mitochondria suggesting the perimitochondrial localization of Hebp1 

(Figure 3-16). 

I further examined the role of Hebp1 in neurons by identification of its binding partners. To 

this end, EGFP-tagged Hebp1 was overexpressed in primary cortical neurons and 

subsequently immunoprecipitated with a GFP-trap. Co-immunoprecipitated proteins were 

then investigated by MS analysis. The volcano plot represents the relative enrichment of 

detected proteins in either Hebp1-EGFP or EGFP (negative control) pull-downs (Figure 3-17 

A). 
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Figure 3-16. Hebp1 demonstrates perimitochondrial localization in cultured hippocampal neurons. 

Analysis of Hebp1-EGFP co-localization with mitochondria (mitotracker) in cultured rat hippocampal neurons 

(DIV14) by laser scanning confocal microscopy. Low and high magnification images of Hebp1-EGFP (A, D), 

mitotracker CMXRos (B, E) or merged channels (C, F), respectively. Three representative line scans were 

obtained (G-I). Gold lines signed with the numbers at the starting point (F). Line scans demonstrate a direct 

contact between Hebp1-EGFP with mitochondria for some of the Hebp1-EGFP puncta (G, H). Scale bar is 10 µm. 

 

Interestingly, the core components of the mitochondrial contact site and cristae organizing 

system (MICOS) complex, Mic60, Mic19 and Mic25, as well as proteins of the outer 

mitochondria membrane associated with MICOS complex, SAMM50 and Mtx2, were enriched 

in the Hebp1 Co-IP sample. I further validated the interaction between Hebp1 and Mic60 by 

immunoblotting (Figure 3-17 B). The observed interaction between Hebp1 and Mic60 was 
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weak but specific. This result goes in line with the observations of co-localization between 

Hebp1 and mitochondria by confocal microscopy. Although Hebp1 puncta were in direct 

contact with mitochondria, most of the mitochondria were not associated with Hebp1. 

Therefore, it is reasonable to assume that only a small portion of Mic60 (MICOS) interacts 

with Hebp1. 

 

Figure 3-17. Hebp1 interactome reveals its association with mitochondrial contact site and cristae 

organizing system (MICOS) complex. 

(A) Hebp1 interactome obtained by mass spectrometry analysis of proteins co-immunoprecipitated from 

primary cortical neurons with Hebp1-EGFP or EGFP (negative control). Enrichment of mitochondria contact 

site complex (MICOS) proteins (red) or MICOS-associated proteins (orange). Dashed line represents a cut-off 

for significantly different proteins between Hebp1-EGFP and control pulldown with at least 4-fold change. (B) 

Validation of Hebp1-Mic60 interaction by immunoblotting. 

 

Taken together these data indicate that Hebp1 localizes in the close proximity to 

mitochondria and interacts with the MICOS complex probably indirectly through associated 

proteins of outer mitochondria membrane such as SAMM50 or Mtx2. In line with our 

observation, a very similar pattern of subcellular localization was observed in cells that were 

transfected with full-length Hebp2/SOUL324, hinting towards a potential role of Hebp1 in the 

regulation of cell death. 

 Hebp1 facilitates heme-mediated cytotoxicity 

Heme metabolism, cell death response and AD are tightly interconnected. Dysregulation of 

proteins linked to heme metabolism has been reported in AD146,147. Accumulation of Aβ 
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around brain vasculature results in cerebral amyloid angiopathy (CAA), microvessel 

destruction and leakage of free heme into brain tissue152. Due to its strong hydrophobicity, 

heme is almost exclusively bound to carrier proteins in cellular environment. High 

concentration of free heme is toxic as has been shown in multiple cell types148,149. Therefore, 

I hypothesized that Hebp1 could serve as a heme buffer to keep the free heme at a low level 

and protect neurons from the toxic effects of excessive heme. To test this hypothesis, stable 

clonal HeLa cell lines with the knockout of Hebp1 were generated using CRISPR/Cas9 (Figure 

3-18). 

 

Figure 3-18. Validation of Hebp1 knockout in CRISPR/Cas9-edited clonal HeLa cell lines. 

Immunoblotting analysis of Hebp1 expression in independent CRISPR/Cas9-edited clonal HeLa cell lines. 

Hebp1-KO (*) and wild type (#) lines were selected and used in further experiments. The following naming of 

lines is applied: C3 – KO1, A6 – KO2, C5 – WT1, A5 – WT2. 

 

To analyze the role of Hebp1 in cell response to heme, the generated HeLa lines were treated 

with exogenous hemin (ferric chloride salt of heme). Cytotoxicity was then assayed by 

activity of dead cell protease (see Methods). Surprisingly, Hebp1-KO cells demonstrated no 

response to hemin as compared to vehicle control while cytotoxicity increased by around 

50% for the wild type cells (WT) (Figure 3-19 A). This result indicates that, opposite to the 

expectations, Hebp1 does not protect cells from excessive heme but rather exacerbates its 

toxic effect. 

To find out whether heme-induced cell death follows the apoptotic pathway and, if so, can 

Hebp1 depletion protect cells from apoptosis, the activity of caspase 3/7 was assayed in the 

HeLa lines. Hemin treatment indeed induced apoptosis affecting wild type cells to a higher 

extent than Hebp1-KO line (Figure 3-19 D, E). This finding clearly indicates that Hebp1 is 

essential for activation of apoptosis upon increased concentration of exogenous heme.  
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Figure 3-19. Hebp1 is required for apoptotic response upon heme overload. 

(A) Measurement of cytotoxicity after 24-hour stimulation with 10 µM hemin or vehicle. Hebp1-KO lines are 

resistant to heme-mediated cytotoxicity. Wild type and Hebp1-KO HeLa cells demonstrate similar response to 

3 hour treatment with (B) 100 µM tert-Butyl hydroperoxide and (C) 1 µM staurosporine.  

Hemin-induced cell death follows the apoptotic pathway: (D) Representative images of wild type and Hebp1-

KO cells treated with 10 µM hemin for 24 hours. Apoptotic cells were determined by fluorescent signal of 

caspase 3/7 activity (see Methods). (E) Hebp1-KO HeLa cells demonstrate increased resistance to apoptosis 

upon heme overload in comparison to wild type cells.  

All bar charts represent mean ± SEM. Statistical significance in the datasets was assessed by one-way ANOVA 

followed by Student’s t-test comparison for individual pairs of samples: *p value < 0.05 and **p < 0.01,  

 

These results raise the question whether Hebp1 is a general master regulator of apoptosis or 

its effect on cell death is restricted to heme-mediated toxicity. To this end, Hebp1-KO and 

wild type cells were subjected to other known inducers of the apoptotic pathway330,331. No 

significant difference in cytotoxicity was observed between KO and WT lines upon treatment 

with tert-butyl-hydroperoxide (stable analog of hydrogen peroxide) and staurosporine 

(Figure 3-19 B and C) which indicates that knockout of Hebp1 can protect cells rather 

specifically against heme-induced toxicity. 

In the next step, I tried to understand through which mechanisms Hebp1 depletion protects 

cells from hemin-induced apoptosis. I decided to test two processes that accompany 
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apoptotic response and can be related to Hebp1 function: the oxidative stress and the 

maintenance of mitochondrial membrane potential (MMP). First, oxidative stress was 

investigated in hemin-treated WT and Hebp1-KO cells by measurement of the 

reduced/oxidized glutathione ratio (GSH/GSSG) (Figure 3-20 A). Hemin has indeed invoked 

oxidative stress, though no difference in GSH/GSSG ratio between WT and Hebp1-KO cells 

upon hemin stimulation was detected. Interestingly, a small but significant difference could 

be observed between WT and KO cells at the basal condition, indicating that Hebp1 may 

contribute to the maintenance of antioxidative potential under physiological conditions. 

 

Figure 3-20. Measurement of oxidative stress and mitochondrial membrane potential in hemin-treated 

wild type and Hebp1-KO HeLa cells. 

HeLa cells were treated with 10 µM hemin for 24 hours.  

(A) Hemin induces oxidative stress as measured by reduced/oxidized glutathione ratio (GSH/GSSG). Hebp1-KO 

cells exhibit significantly higher levels of oxidative stress compared to wild type at the baseline but not upon 

hemin stimulation. 

(B) Hemin treatment induces reduction of mitochondrial membrane potential in HeLa cells. However, no 

statistically significant difference was detected between wild type and Hebp1-KO lines. 

All bar charts represent mean ± SEM. Statistical significance in the datasets was assessed by one-way ANOVA 

followed by Student’s t-test comparison for individual pairs of samples: *p value < 0.05, ns – not significant. 

 

Next, the mitochondrial membrane potential was assayed using a cationic potentiometric dye 

(see Methods). As expected, hemin treatment indeed led to reduction of the MMP. 

Nevertheless, no significant effect of Hebp1 knockdown on the MMP could be detected 

neither upon hemin treatment (Figure 3-20 B), nor at the baseline (data not shown). Taken 

together, these data suggest that the pro-apoptotic role of Hebp1 upon increased 

concentrations of free heme is rather independent of the oxidative stress response and 

regulation of mitochondrial membrane potential or is situated downstream of these 

processes in the chain of apoptotic events.  
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Overall, the experiments utilizing Hebp1-KO cell lines demonstrate that Hebp1 sensitizes 

cells to apoptosis in response to heme overload. Such an effect of Hebp1 in not manifested 

through the altered response of cells to oxidative stress or differences in mitochondrial 

membrane potential. The exact mechanism of such a pro-apoptotic effect of Hebp1 requires 

further investigations. Nevertheless, the involvement of Hebp1 in the cell death response is 

extremely interesting in the context of Alzheimer’s disease and its progression. The 

implications of these findings will be discussed in the next chapter of this thesis. 
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4 Discussion  

In this thesis, the changes in brain proteome and phosphoproteome were investigated along 

the progression of Alzheimer’s disease in 3×Tg-AD mice. These data provided valuable 

information on alterations in protein expression levels at specific stages of AD and allowed 

to determine the affected biological processes and pathways. A special aspect of this project 

was the focus on identifying proteins whose expression differed significantly between 3×Tg-

AD and control mice at the presymptomatic stage. The presymptomatic markers identified in 

this study included both proteins previously described to be involved in AD as well as new 

candidates. A closer examination of one such novel protein, Hebp1, revealed its increased 

expression in the brains of patients afflicted with rapidly-progressing forms of AD. Further 

functional analyses demonstrated neuronal expression of Hebp1 in the brain, its association 

with mitochondria via MICOS complex and the role in apoptotic response to cytotoxic levels 

of exogenous heme. In this chapter, the significance of these results will be discussed in a 

broader context of AD pathogenesis. Strengths and limitations of applied experimental 

approaches will be further elaborated here. 

 

 Analysis of biological processes affected in the brain of 3×Tg-AD mice 

Bioinformatic analyses of proteomic and phosphoproteomic data identified several groups 

of proteins with altered expression in 3×Tg-AD mice at specific stages of the disorder 

(Figures 3-4, 3-5, 3-6 and 3-7). Here, I discuss in detail the affected biological processes that 

are most relevant to AD. 

 Regulation of microtubule stability 

Cumulative alterations in expression of proteins involved in microtubule dynamics were 

among the most prominent differences observed between the brain proteomes of the control 

and 3×Tg-AD mice (Figure 3-6). The phosphorylation of cytoskeletal proteins was also 

significantly upregulated in the transgenic mice. Interestingly, while the expression changes 

of cytoskeleton-related proteins became prominent only by the late stage (18 months), their 

phosphorylation was already significantly affected at the presymptomatic time point (Figure 

3-8). 
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Microtubule instability in AD is primarily associated with tau hyperphosphorylation19. 

Indeed, I identified several phosphosites of tau to be phosphorylated at higher levels in the 

brain of 3×Tg-AD mice. Interestingly, hyperphosphorylated tau can sequester normal tau as 

well as other MAPs35,332 leading to formation of NFTs. Remarkably, in this study, I also found 

multiple phosphosites of MAP1, MAP2, MAP4 and MAP9 to be differentially phosphorylated 

between the control and 3×Tg-AD mice. A comprehensive analysis of human brain 

phosphoproteome also identified a range of upregulated phosphosites in these MAPs in AD 

stressing their importance for the disease in humans275. In general, the phosphorylation of 

MAPs impacts microtubule dynamics, though the precise function of individual phosphosites 

are not well understood yet333–335. Further assessment of site-specific MAP phosphorylation 

is thus required to obtain a comprehensive overview of microtubule regulation in AD. 

Increased phosphorylation of tau and other MAPs could be detected at the presymptomatic 

time point already. This is particularly interesting given the findings of previous studies 

demonstrating that human neurons can live for decades with hyperphosphorylated tau 

before dying336,337. My results also indicate that the elevated phosphorylation of cytoskeletal 

proteins can be seen early in the disease, long before the development of NFTs at a later age 

and may drive pathological changes during its silent stage. 

As aforementioned, many AD-related phosphosites of tau were indeed upregulated in the 

dataset (Table 4-1). On the other hand, phosphorylation of several “classical” tau sites was 

not significantly affected in 3×Tg-AD mice even at the time point 18 months (Table 4-1). 

There are few potential explanations to such outcome. First, in this study, a soluble fraction 

of brain proteins was used for the phosphoproteomics, while hyperphosphorylated tau can 

be found predominantly in the insoluble fraction338. Second, special conditions may be 

required for hyperphosphorylation of tau that are not fully fulfilled in the mouse brain339,340. 

Third, mutated human tau (P301L) overexpressed in 3×Tg-AD mice has lower affinity to 

microtubules but is not necessarily more prone to phosphorylation234,341. Additionally, 

previous studies demonstrated weaker hyperphosphorylation of some classical tau 

phosphosites in 3×Tg-AD mice342,343 in comparison to humans275. My results support these 

observations and suggest that the data obtained in 3×Tg-AD mice should be extrapolated 

cautiously on AD in humans.  
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Table 4-1. Phosphorylation profile of tau at time point 18 months. 

Phosphorylation of individual tau phosphosites detected in phosphoproteomics analysis at time point 18 

months and comparison with the previously published data. Legend: Aa – amino acid residue, m – multiplicity 

(the number of phosphorylated amino acid residues on the identified peptide). Last column (D) indicates 

whether corresponding phosphosite was identified to be significantly upregulated in human AD tissue 

according to the study of Dammer and collegues275. Significantly regulated phosphosites in this study are 

marked in red. 

 

Aa 
Amino acid 

position Sequence window M 
p-

value 
(t-test) 

Log2 
ratio 

AD/Ctrl 

Known in 
AD 

D 
Mouse Human 

S 167 - RIPAKTTPSPKTPPGSG 2 0,742 0,153   
T 170 181 AKTTPSPKTPPGSGEPP 1 0,843 -0,165  - 
T 170 181 AKTTPSPKTPPGSGEPP 2 0,827 0,143  - 
S 187 198 KSGERSGYSSPGSPGTP 2 0,031 -0,441  - 
S 188 199 SGERSGYSSPGSPGTPG 2 0,622 -0,017 Onishi et al., 

2014344, 
Henkins et 
al., 2012345 

- 
S 188 199 SGERSGYSSPGSPGTPG 1 0,098 0,317 - 

S 191 202 RSGYSSPGSPGTPGSRS 2 0,319 1,271 
- 

S 199 210 SPGTPGSRSRTPSLPTP 2 0,636 0,032  + 
S 199 210 SPGTPGSRSRTPSLPTP 3 0,092 0,795  - 
T 201 212 GTPGSRSRTPSLPTPPT 3 0,083 0,441  + 
S 203 214 PGSRSRTPSLPTPPTRE 1 0,958 0,153  + 
S 203 214 PGSRSRTPSLPTPPTRE 2 0,563 0,051  + 
S 203 214 PGSRSRTPSLPTPPTRE 3 0,083 0,441  - 
T 206 217 RSRTPSLPTPPTREPKK 2 0,563 0,051  + 
T 206 217 RSRTPSLPTPPTREPKK 3 0,128 0,491  - 
T 220 231 PKKVAVVRTPPKSPSAS 2 0,101 0,467 Lasagna-

Reeves, 
2014346, 
Jicha et al., 
1997347 

- 

S 224 235 AVVRTPPKSPSASKSRL 2 0,101 0,467 

+ 

S 251 262 NVKSKIGSTENLKHQ - - - 
Gu et al., 
2016348 

+ 

Y 383 394 TDHGAEIVYKSPVVSGD 3 0,146 0,995  - 
S 385 396 HGAEIVYKSPVVSGDTS 2 0,931 -0,017 

Mondragón-
Rodríguez et 
al., 2014349, 
Noble et al., 
2003350, 
Merino-
Serrais et al., 
2013351  

+ 
S 385 396 HGAEIVYKSPVVSGDTS 3 0,478 0,000 + 
S 389 400 IVYKSPVVSGDTSPRHL 3 0,459 -0,006 + 
S 389 400 IVYKSPVVSGDTSPRHL 2 0,038 0,206 + 
T 392 403 KSPVVSGDTSPRHLSNV 1 0,912 -0,109 + 
T 392 403 KSPVVSGDTSPRHLSNV 3 0,354 -0,019 + 
S 393 404 SPVVSGDTSPRHLSNVS 3 0,404 -0,270 + 
S 393 404 SPVVSGDTSPRHLSNVS 1 0,328 0,360 - 
S 393 404 SPVVSGDTSPRHLSNVS 2 0,042 0,338 - 
S 401 412 SPRHLSNVSSTGSIDMV 3 0,354 0,513  - 
S 402 413 PRHLSNVSSTGSIDMVD 3 0,387 0,784  - 
S 402 413 PRHLSNVSSTGSIDMVD 2 0,151 0,210  - 

 



Discussion | 92 
 

 mRNA processing 

Several proteins in our dataset exhibited gradual increases in expression that correlated with 

the disease progression in 3×Tg-AD mice. These included proteins that are involved in mRNA 

processing such as Matrin-3 and Nono that form a complex involved in DNA damage response 

and recognition and retention of incorrectly processed mRNA in the nucleus352,353. Similar 

changes in expression pattern were detected for Hnrnpm and Hnrnpl, which regulate 

alternative splicing354,355. Bai and colleagues have previously found U1 snRNP components 

to be enriched in insoluble brain proteome of AD patients and demonstrated impaired 

splicing of AD-related transcripts266.  

Increased phosphorylation of SRRM1-2 proteins that are directly involved in the regulation 

of splicing was detected at 18 months in 3×Tg-AD mice. Nonetheless, the role of SRRM 

phosphorylation in the regulation of this process is not known. Strikingly, a recent 

phosphoproteomics study of brain samples from four different mouse models of AD (5×FAD, 

Tg2576, PS1-dE9, PS2N141I) revealed an increased phosphorylation of several SRRM2 

phosphosites277. Interestingly, the same report demonstrated an upregulation of SRRM2 

phosphorylation in the mouse model of tauopathy. Furthermore, the levels and the splicing 

of SRRM2 itself are dysregulated in Parkinson’s disease. Taken together, these results hint 

towards a broader importance of impaired RNA processing in neurodegenerative 

disorders356. 

The kinase prediction analysis revealed that most of the upregulated phosphosites on SRRM 

proteins were potential substrates of CLK kinases (Figure 3-10). Increased CLK activity in the 

brains of AD patients was reported previously357 and was proposed to be associated with 

more frequent exon 10 skipping during the splicing of tau358. It was also suggested that the 

effects of the elevated CLK activity in AD are manifested through phosphorylation of SR-

proteins including SRRM1-2358,359. However, no experimental evidence was provided to 

support this hypothesis. Importantly, my analysis demonstrates for the first time that the 

hyperphosphorylation of SRRM1-2 proteins in AD pathology is attributed to CLK kinases. 

Kinases are prospective therapeutic targets since their activity can be inhibited 

pharmacologically. A range of small molecule inhibitors of CLKs was developed over the last 

decade359. CLKs have relatively few known substrates apart from SR-proteins which is 
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advantageous for minimization of potential off-target effects. CLKs are thus promising drug 

targets for AD especially given the concomitant increase of their activity with the aggravation 

of pathology in 3×Tg-AD model. 

This study supports the previous findings indicating a disturbance in mRNA processing 

during AD266,360,361. Despite being a promising direction of research to follow, implications of 

mRNA processing in AD have not been studied extensively. Therefore, thorough analyses of 

RNA splicing using contemporary RNA-seq techniques have to be performed to determine 

how exactly splicing events are altered in AD and what are the transcripts that are affected 

the most by this disorder. 

 Inhibition of serine proteases 

Several inhibitors of serine proteases (serpins) demonstrated a coordinated declining 

expression over the course of AD progression in 3×Tg-AD. Interestingly, a recent study of the 

hippocampal proteome in 5×FAD mouse model of AD also identified downregulation of 

serpins362. In contrast, accumulation of alpha 1-antitrypsin (serpina1c) in Aβ plaques of AD 

patients was detected previously363. Such discrepancy between the data can be explained by 

the recruitment of serpins to the Aβ plaques and a subsequent depletion of their levels in the 

soluble brain fraction. Several serine proteases can cleave APP364. Therefore, the recruitment 

of serpins to the Aβ plaques could be a response mechanism aimed to reduce deleterious APP 

processing. 

Regulation of protease activity is critical in AD not only from the standpoint of proteolytic 

APP cleavage but also because of many other functions. Protease inhibitors regulate 

composition of extracellular matrix, synaptic plasticity, immune response and other 

processes directly related to AD pathogenesis365,366. For instance, the inhibition of serine 

proteases by serpins has been proposed as a mechanism of protection from the excessive 

synapse loss364. Serpins also play an important role in apoptosis367. 

Among the three serine protease inhibitors identified to be gradually downregulated in 

3×Tg-AD mice with age, alpha1-antitrypsin has been studied most extensively as mentioned 

in references above. Less is known about serpin A3K (Serpina3k) and murinoglobulin-1 

(Mug1). Serpina3k has been previously shown to inhibit inflammatory response in corneal 

endothelium by interfering with TNF-α signaling368,369. Additionally, Serpina3k protects 
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retinal Müller cells from oxidative stress and cell death, though the exact mechanisms of such 

protection remain unknown370. Even less information is available on Mug-1 and its function. 

Mug1 is expressed predominantly in CA1-3 hippocampal regions where it regulates synaptic 

plasticity by inhibiting neuropsin371. Interestingly, Mug1 exhibits structural similarity to 

A2M. The proteomic analysis performed in this study did not reveal any significant changes 

of A2M expression at the time points 2-12 months. However, this protein was significantly 

downregulated at the preterminal stage of the disorder (18 months) following the same 

direction of change as serpina1a, serpina3k and Mug1 (Supplementary table 1). Importantly, 

the deletion of 5’-splice site of exon II in A2M gene confers an increased risk for developing 

AD372. Additionally, elevated levels of A2M protein were identified in CSF of patients with MCI 

and fully-developed AD373. A2M inhibits maturation of nerve growth factor (NGF) in vitro and 

can induce neuronal death through interaction with surface receptor p75374. Nevertheless, 

the exact role of A2M protein in AD pathogenesis is not known. Collectively, the available 

information on the identified serine protease inhibitors point out their role in inflammation 

and cell death response which is in line with the other findings in this thesis. 

Serpins hold a potential as therapeutic targets, since their levels in the brain can be restored 

through injection of recombinant protein. This approach was recently tested with 

metalloprotease inhibitor TIMP2 which was injected intraperitoneally to reach the brain and 

improve the cognitive function of aged mice375. It would be thus interesting to test whether a 

manipulation of systemic serpin levels can ameliorate pathology and cognitive decline in AD 

mice. 

 Cell death 

Neuronal death is the key process responsible for the cognitive decline in AD patients376. The 

analysis of proteomic data with IPA revealed an activation of processes related to cell death 

in 6-month-old 3×Tg-AD mice. Whether the loss of neurons is happening in 3×Tg-AD mice 

remains an open question377. Given the data from AD patients and other mouse models of the 

disorder, it is unlikely that neuronal loss would happen early on in the disease progression 

before the initial accumulation of Aβ378,379. On the other hand, overexpression of proteins 

counteracting apoptotic response has been previously shown to decrease pathology in 3×Tg-

AD mice110. The same study demonstrated activation of caspases 9 and 3 in the CA regions of 
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hippocampus in young transgenic mice, which is in agreement with the data obtained in this 

thesis. It is possible that the proapoptotic proteins such as caspases exacerbate AD pathology 

through other mechanisms that are not strictly related to cell death380,381. Alternatively, early 

changes in expression of genes related to apoptosis may not lead to an immediate cell death 

but rather predispose neurons to it. This is particularly interesting in light of my findings 

regarding early upregulation of Hebp1 expression in 3×Tg-AD mice and its newly found role 

in apoptotic response. 

 

 Heme-binding protein 1 as a novel candidate involved in early stages of 

AD pathogenesis 

Hebp1 has not been studied extensively. The available publications on this protein are 

restricted to its heme-binding properties and a role in immune response (discussed later). 

No prior report associates Hebp1 with the brain function. It is therefore especially striking 

that Hebp1 was identified here as one of the proteins with the highest upregulated 

expression in 3×Tg-AD mice. Therefore, understanding the functions of Hebp1 in the brain is 

a critical step for deciphering its role in AD pathology. 

 Association of Hebp1 with MICOS complex  

Immunohistological assessment of mouse brain revealed that Hebp1 is predominantly a 

neuronal protein (Figure 3-14 C). The increase of Hebp1 expression could be detected in all 

major brain areas of 3×Tg-AD mice. Interestingly, the highest levels of Hebp1 were observed 

in hippocampus, the brain region that is most affected by AD382. 

To better understand the function of Hebp1 in neurons, I performed an IP-MS analysis of 

Hebp1 binding partners (Figure 3-17). This analysis revealed that Hebp1 interacts with the 

members of MICOS complex and associated proteins. MICOS is a multiprotein complex 

residing in the inner mitochondria membrane and is responsible for the formation and 

maintenance of mitochondrial cristae junctions383. According to the Co-IP/MS data, the core 

component of MICOS complex, Mic60, was the most enriched protein in the Hebp1-EGFP 

pulldown fraction (Supplementary table 3). Other constituents of the complex, Mic19 and 

Mic25, also co-immunoprecipitated with Hebp1-EGFP. The known interactors of MICOS such 
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as SAMM50, metaxin 2 and ADP/ATP translocase 2 (Slc25a5) also bound Hebp1-EGFP in 

neurons384,385. SAMM50 together with metaxin 1 and 2 form sorting and assembly machinery 

complex (SAM) in the outer mitochondrial membrane386. SAMM50 directly interacts with 

Mic19387 and connects SAM and MICOS complexes to form mitochondrial intermembrane 

space bridging supercomplex (MIB) that spans both mitochondrial membranes386,388. 

SAM complex is involved in the recognition and insertion of β-barrel proteins into the outer 

mitochondrial membrane389. Interestingly, Hebp1 forms a distorted beta-barrel structure322. 

Hebp1 also does not possess canonical mitochondria-targeting sequence390. Taking into 

account an overlap of Hebp1-EGFP localization with the surface of mitochondria (Figure 3-

16), it can be speculated that a portion of Hebp1 could be inserted into the outer 

mitochondrial membrane by SAM complex. However, an elegant study utilizing the 

peroxidase-mediated proximity biotinylation demonstrated that Hebp1 is not an integral 

part of outer mitochondrial membrane but rather localizes in close proximity at its cytosolic 

side327. These data also agree with my observations of Hebp1 localization in neurons. 

 Hebp1 and heme transport 

Before discussing the role of Hebp1 in apoptotic response, one more possible function of 

Hebp1 should be considered. It is known from the previous studies that Hebp1 can efficiently 

bind heme and other protoporphyrinogens320–322. Importantly, heme biosynthesis and 

metabolism depends on the efficient transport of heme and its precursors between 

mitochondria and cytosol391. Heme is a highly hydrophobic molecule and thus requires 

protein carriers to mediate its trafficking in and out of mitochondria392. Surprisingly, it is still 

not known which proteins are responsible for the export of mature heme from mitochondria 

to cytosol or import of heme precursors such as coproporphyrinogen III inside the 

mitochondria392 (Figure 4-1). The data obtained in this project indicate that Hebp1 resides 

close to the outer mitochondrial membrane and can potentially serve as an acceptor of heme 

exported from mitochondria (Figure 4-1). Heme can then be redistributed by Hebp1 to other 

cytosolic proteins that require heme as their co-factor (e.g. globins or nitric oxide 

synthase393). Alternatively, Hebp1 can facilitate the transport of coproporphyrinogen III into 

mitochondria or serve as a heme buffer, keeping the levels of cytosolic heme under control 

(Figure 4-1). Nevertheless, the involvement of Hebp1 in the heme transport was not explored 
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in this thesis and the proposed ideas are just hypotheses that require further validation. 

Experiments tracing radiolabeled heme in Hebp1-depleted cells (Hebp1-KO HeLa lines 

generated in this thesis project) could help to explore the role of Hebp1 in heme trafficking. 

 

Figure 4-1. Hypothetical role of Hebp1 in heme metabolism. 

See explanation in the main text. Abbreviations: ferrochelatase (FC), protoporphyrin IX (PPIX), 

coproporphyrinogen oxidase (CPO), hemoglobin (Hb), protoporphyrinogen oxidase (PPO), transferrin receptor 

(TfR). 

Adapted and modified from Ponka et al., 2017392. 

 

 Hebp1 and cell death 

Mitochondria are the centerpiece in the cascade of events during apoptosis. The relocation 

of proteins from cytosol to outer mitochondrial membrane upon cell stress or mitochondria 

damage can be directly implicated in cell death and neurodegeneration as demonstrated by 

the example of parkin in Parkinson’s disease86. Interestingly, heme-binding protein 2 (SOUL), 

a homolog of Hebp1, promotes cell death presumably through recruitment to mitochondria 

and permeabilization of its outer membrane324,325. Moreover, the newly identified binding 

partner of Hebp1, Mic60, is also an important player in cell death. Loss of Mic60 increases 

the rate of apoptosis due to the dissipation of cristae junctions and intensifies leakage of 
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cytochrome c from mitochondria to cytosol394. Together, these findings suggest that Hebp1 

itself can be involved in the regulation of cell death response. 

Indeed, I observed that Hebp1-depleted HeLa cells become resistant to hemin-mediated 

toxicity. The cytoprotective effect of Hebp1 knockout is specific to heme as the rate of cell 

death did not differ significantly between Hebp1-KO and wild type cells upon treatment with 

other cytotoxic compounds (Figure 3-19). But what could be the implications of heme-

mediated cell death for AD? Degradation of heme by heme oxygenase-1 (HMOX1) was 

demonstrated to reduce cytotoxicity caused by Aβ1-42 peptide in SH-SY5Y cells395. HMOX1 

was not identified in the proteomic analysis in this study. However, binding partner of 

HMOX1, biliverdin reductase B (Blvrb), together with Hebp1 were one of the most 

upregulated proteins at the presymptomatic time point (Figure 3-11). Importantly, Blvrb 

catalyzes the second and the final step of heme degradation reducing biliverdin to 

bilirubin396. Increased levels of HMOX1 and biliverdin reductase isoform A (Blvrba) in the 

brains of AD patients were reported previously146,397,398. It is possible that the levels of Blvrb 

increase in response to the increased concentration of free heme in the brain of 3×Tg-AD 

mice to enhance its degradation. 

Whether the levels of free heme in AD brain are significantly elevated remains unclear. 

Nevertheless, several lines of evidence point towards this possibility. Heme synthesis is 

impaired in AD and accumulation of immature heme species can be a potential source of 

heme overload147. Excessive heme in the brain can also originate from bloodstream. Cerebral 

amyloid angiopathy contributes significantly to AD both in human and the 3×Tg-AD model 

starting from the early stage of the disease399,400. CAA may lead to the disruption of brain 

vasculature and a consequent release of heme outside the vessels152,401. CAA is also 

associated with apoptosis402,403 and thus creates a possible link between upregulation of 

Hebp1 early in AD and its newly found role in mediation of heme cytotoxicity. 

To understand through which mechanisms Hebp1 depletion protects cells from heme 

overload, I have examined the changes in oxidative stress and mitochondrial membrane 

potential in Hebp1-KO and wild type cells upon hemin treatment. Both parameters were 

affected by addition of hemin to cell culture. However, Hebp1 knockout influenced neither of 

them significantly (Figure 3-20). These observations lead to two possible conclusions. First, 
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the protective effect of Hebp1 depletion is not manifested through the regulation of oxidative 

stress or mitochondrial membrane potential. Second, Hebp1 affects apoptosis downstream 

of these processes. The mechanism by which Hebp1 depletion protects cells from apoptotic 

response to hemin treatment remains unclear and therefore requires further investigations. 

It also has to be mentioned that no striking abnormalities of mitochondria morphology were 

detected in Hebp1-KO HeLa cells or Hebp1-overexpressing neurons (data not shown). A 

closer look at the mitochondria structure (for example, by means of electron microscopy) can 

determine whether cristae junctions are impaired upon Hebp1 knockout or overexpression. 

Such experiments can verify if a link between Hebp1, MICOS complex and apoptosis does 

exist. 

 Proteolytic cleavage of Hebp1 in immune response 

Hebp1 also poses interest for its potential signaling function. Two studies demonstrated that 

N-terminal cleavage of Hebp1 by cathepsin D results in generation of 21 amino acid long 

peptide called F2L that is capable of binding FPRL1/FPR2 receptor on the surface of mouse 

neutrophils and promote their migration404,405. In the mouse brain, FPR2 is expressed 

predominantly by activated microglia406. Moreover, FPRL1-positive microglia was shown to 

be recruited to Aβ plaques in AD patients407. In our dataset, expression of the Hebp1 protease 

cathepsin D also strongly correlates with aging which indicates the possibility of the 

progressive F2L accumulation in 3×Tg-AD mice with age. Increased expression of cathepsin 

D in hippocampus of AD patients was also reported previously408. Thus, it is possible that 

cleavage of Hebp1 by cathepsin D in neurons may additionally generate the soluble F2L 

peptide to recruit activated microglia and modulate inflammatory response during AD. Such 

hypothesis can be tested by intracerebral infusion of F2L peptide to wild type and 3×Tg-AD 

mice and subsequent monitoring of microglia activation by imaging techniques. 

 

 Advantages and caveats of applied experimental procedures 

 Mouse model 

To address the aims of this thesis, the use of an animal model was inevitable. Mouse models 

have contributed greatly to studies of AD mechanisms and preclinical drug development. The 
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3×Tg-AD mouse model used in this study develops major neuropathological signs associated 

with AD. Over the last fifteen years, these mice became the workhorse of AD research and 

were used in over 1000 published studies, making them one of the most popular animal 

models in AD research55.  

Despite the evident advantages, 3×Tg-AD mice also exhibit several significant limitations. 

Like most other AD models, 3×Tg-AD mice overexpress mutated human transgenes (APP and 

tau) under the control of an exogenous promoter. Such overexpression has been linked to 

several potential artifacts224. For example, it was suggested that the pathological changes in 

mice overexpressing APP are not attributed exclusively to the increased production of Aβ but 

rather elevated expression of APP itself409,410. A recent study utilizing newly-generated APP 

knock-in mice confirmed some of these suspicions411. Extreme overexpression of APP may 

interfere with kinesin-mediated axonal trafficking412, activate Cdk5 through p35 cleavage by 

calpain protease204 and induce synapse loss and cell death through increased production of 

C-terminal APP fragments413.  

At the same time, it should be mentioned that 3×Tg-AD mice overexpress APP and tau at 

relatively mild levels (cumulative expression of endogenous and ectopic APP and tau 

proteins in 3×Tg-AD model was increased up to about 1.5-fold level of control in this study). 

Such a mild expression of introduced transgenes in 3×Tg-AD model may slightly delay or 

reduce AD-related neuropathological changes. Although 3×Tg-AD mice used in this study 

exhibited Aβ plaques (Figure 3-1), their density was somewhat lower in comparison to 

original reports from Oddo and colleagues233,235, possibly due to a genetic drift in the 

colony414. 

Few considerations should be made with regard to tau-P301L transgene. The 

phosphoproteomic analysis revealed the upregulation of several tau phosphosites already at 

the presymptomatic stage. At the same time several phosphosites of tau known for their 

involvement in AD remained unaffected in 3×Tg-AD model (see chapter “Regulation of 

microtubule stability”). As discussed in that section, the magnitude of observed tau 

hyperphosphorylation in 3×Tg-AD mice was low in comparison to terminal AD patients. My 

observations point out that the differences exist in the behavior of tau protein in mouse and 

human brain affected by AD. 
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Taking into account the potential artifacts related to the nature of genetic mouse models, 

validation of the key findings using the brain samples obtained from AD patients was 

particularly important. The two most prominent presymptomatic markers identified in this 

study, Hebp1 and Glo1, were also expressed at significantly higher levels in the brains of rpAD 

patients confirming the relevance of the data obtained in 3×Tg-AD model for the disease in 

humans. 

 Sample processing and mass spectrometry 

AD affects primarily hippocampus and various cortical regions415,416. To focus on the most 

pronounced point of AD pathology, previous proteomic studies often utilized proteins 

isolated specifically from these regions262. Nevertheless, recent studies have demonstrated 

that abnormalities in cerebellum and brain stem can be detected in AD as well417,418. To 

capture an entire spectrum of AD proteome across all brain regions I used whole brain as an 

input sample. Such approach indeed allowed for uncovering the differences in brain 

proteome that are not exclusively related to hippocampus or cortex. For instance, 

immunoblotting analysis revealed increased levels of Hebp1 in all major regions of the brain 

in 3×Tg-AD mice, including cerebellum and brain stem (Figure 3-14 A). At the same time, I 

acknowledge that the use of whole brain sample could potentially minimize the observed 

differences in expression levels restricted to particular regions of the brain. 

Shotgun mass spectrometry is a reliable technique for relative quantification of protein levels 

between different biological samples. It is a powerful method for explorational studies 

aiming at identification of unknown proteins involved in a certain biological process or 

disease. 

Shotgun mass spectrometry operates in the data-dependent acquisition mode (DDA). In DDA, 

the most abundant peptides are selected automatically for fragmentation and acquisition of 

MS2 spectra which results in identification of the individual peptides419. Therefore, DDA is 

intrinsically biased towards identification of highly-abundant peptide species. This poses a 

difficulty for identification of low abundant proteins in complex biological samples. 

To minimize this problem, subcellular fractionation of the brain was performed and a soluble 

fraction of proteins was used for proteomic and phosphoproteomic analysis in this study. 

While this strategy reduced identification of membrane proteins potentially relevant to AD 
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(e.g. synaptic proteins)420,421, it allowed to identify the low abundant proteins of soluble 

fraction that would otherwise be masked in a classical shotgun mass spectrometry 

quantification. For example, identification of Hebp1 was not reported in the previous 

proteomic analyses performed on the total brain homogenate from 3×Tg-AD mice likely due 

to the above-mentioned masking260. 

The identification of peptides in shotgun mass spectrometry does not linearly correlates with 

the abundance of a given peptide. Besides abundance, the detection of peptides depends on 

several other factors which include charge, length, chemical modifications and others422. 

Nevertheless, it is well established that the relative quantity of specific peptide can be reliably 

compared between different samples based on the intensity423. Formerly, labeling techniques 

were frequently used for quantification of the peptides. But with the development of 

instrumentation and post-acquisition data analysis, label-free quantification became a 

reliable method bypassing the technical difficulties of labeling approaches424. 

In this study, phosphoproteomic data were acquired in the DDA mode. Therefore, prior 

enrichment of phosphopeptides was extremely important to increase the probability of their 

identification by MS. Label-free quantification was also used to assess the levels of 

phosphosites. Label-free approach increases the number of identified phosphopeptides 

compared to more complex labeled samples. However, in this approach the sample 

preparation has to be carefully controlled since the quantification is based solely on the 

intensity of a single peptide. High correlation between the intensities of individual peptides 

in four biological replicates attest to reliability and high reproducibility of obtained data. 

 Bioinformatic analysis 

To reliably quantify expression changes between the samples, only the proteins that were 

identified at least in two biological replicates at each analyzed time point were used for 

quantification and further analysis. At the same time, the proteins that are highly abundant 

in one condition (e.g. disease) and are below the detection limit in the other one were 

excluded from the analysis. Such proteins could potentially demonstrate the highest degree 

of change between 3×Tg-AD and control mice. However, a reliable quantification of such 

changes is not possible without imputation of the missing values. To avoid any potential 

artifacts related to the imputation, I decided to continue further data analysis without it and 
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focus only on the proteins that were reliably quantified in both conditions. The full list of 

proteins identified exclusively in one condition (disease or control) at each time point is 

available in Supplementary table 4.  

To interpret the proteomic data in a broader biological context, a combination of IPA analysis 

and GO annotation was used. Both analyses rely on the previous knowledge about individual 

proteins and phosphosites stored at corresponding databases. These tools provided a 

valuable overview of biological processes and functions affected in this study. However, such 

analysis is not devoid of possible shortcomings. Potential problems include incomplete 

databases, imprecise or incorrect annotation and redundancy425,426. Nevertheless, such 

analysis allows for uncovering the hidden information that could not be deconvoluted by 

manual annotation such as identification of upstream regulators or canonical signaling 

pathways. 

 

 Conclusions and perspectives 

The results obtained in this thesis project provide a quantitative proteome map of AD 

progression in 3×Tg-AD model. Several novel proteins were identified that could serve as 

putative presymptomatic markers of the disorder. These data can serve as a starting point to 

allow for a more thorough investigation of these markers in relation to their roles in AD 

pathogenesis. In this thesis, I took first steps to characterize one such marker, heme-binding 

protein 1. 

Collectively, my data suggest that the elevation of Hebp1 expression may have a pro-

pathogenic role in AD. Generation of Hebp1-knockout mice would be beneficial to verify this 

hypothesis. Crossbreeding of such Hebp1-KO mice with 3×Tg-AD or other mouse model of 

AD would allow us to determine whether Hebp1 depletion can delay or ameliorate pathology 

on cognitive and anatomical levels. Moreover, such knockout model can shed light on the 

physiological function of Hebp1 in the brain and other organs.  

The experiments in Hebp1-KO HeLa cells demonstrated that Hebp1 is crucial for mediation 

of heme-invoked apoptosis. However, it remains elusive whether the same effect can be 

observed in neurons. For this purpose, I developed CRISPR/Cas9 constructs that can target 
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rodent Hebp1 in primary cultured neurons from mouse and rat. Genetic knockout of Hebp1 

in neurons will allow us to determine the relationship between Hebp1 and apoptosis in these 

cells. A further reaching step towards understanding the role of Hebp1 in AD, would be the 

application of neurons differentiated from AD patients’ cells (induced pluripotent stem cells 

or fibroblasts)427. Such cell models are optimal for in vitro studies of AD mechanisms as they 

cover the key factors important for AD modeling such as an appropriate specie (human), cell 

type (neurons) and the disease genotype and/or phenotype428. In addition, such cells can be 

easily modified genetically, for example to deplete Hebp1 expression.  

As mentioned in the Introduction, current biomarkers used in AD diagnosis are restricted to 

symptomatic onset of AD or MCI at best. Therefore, another important outcome of this study 

is the list of putative presymptomatic markers that can be used in the diagnosis of AD. These 

presymptomatic markers were identified in the brain tissue which is typically not available 

for diagnostic procedures. Nevertheless, these markers belong to the soluble fraction of brain 

proteins and thus the possibility exists that they can also be detected in CSF or plasma. 

Examination of these putative presymptomatic markers in CSF and plasma of AD patients 

with highly specific antibodies or targeted mass spectrometry techniques can determine 

their potential in early diagnosis of AD. 
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6 Appendices 

 List of abbreviations 

(11C)PIB  (11)C-labelled Pittsburgh Compound-B ligand 
3×Tg-AD Triple-transgenic mouse model of Alzheimer's disease 
Acan Aggrecan core protein 
ACN  Acetonitrile 
AD Alzheimer's disease 
ALS Amyotrophic lateral sclerosis 
ANOVA Analysis of variance 
Apoa1  Apolipoprotein A1 
APOE Apolipoprotein E 
APOJ  Apolipoprotein J (clustering) 
APP Amyloid precursor protein 
Atp2b4  ATPase Plasma Membrane Ca2+ Transporting 4 
Aβ Amyloid beta 
Bax bcl-2-like protein 4 
BBB  blood brain barrier 
Bcl-2 B-cell lymphoma 2 protein 
Blvrb  Biliverdin reductase B 
BSA Bovine serum albumin 
C1qc Complement C1q subcomponent subunit C 
CA1 Carbonic anhydrase 1 
CAA Cerebral amyloid angiopathy 
CaMKI/II  Ca2+/calmodulin-dependent kinase I and II 
cAMP Cyclic adenosine monophosphate 
Cdk5 Cyclin-dependent-like kinase 5 
cDNA Complementary deoxyribonucleic acid 
CHRNB2  Cholinergic receptor nicotinic beta 2 subunit 
CK2 Casein kinase II 
CLK  Cdc2-like kinase 
CNS  Central nervous system 
Co-IP Co-immunoprecipitation 
COX2  Cyclooxygenase 2 
Cox4 Cyclooxygenase 4 
CPO  Coproporphyrinogen oxidase 
CREB Cyclic AMP-responsive element-binding protein 1 
CSF Cerebrospinal fluid 
Ctip2 Protein Ctip2 
Ctpd Cathepsin D 
DAPI 4',6-diamidino-2-phenylindole 
DDA  data-dependent acquisition 
DIV Days in vitro 
DMEM  Dulbeccos Modified Eagles Medium 
DNA Deoxyribonucleic acid 
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Dpysl4  Dihydropyrimidinase Like 4 
DR4/5 Death receptor 4/5 
DTT  Dithiothreitol 
ECL Enhanced chemiluminescence 
EGFP Enhanced Green fluorescence protein 
EMA European Medicines Agency 
ER Endoplasmic reticulum 
ESI  Electrospray ionization 
FA Formic acid 
FAD Familial Alzheimer's disease 
FBS  Fetal Bovine Serum 
FC  Ferrochelatase 
FCS Fetal calf serum 
FDA Food and Drug Administration 
FDG  Fluorodeoxyglucose 
FDR False discovery rate 
FPR2 Formyl peptide receptor 2 
FPRL1 Formyl Peptide Receptor-Like 1 
FUDR  5-Fluoro-2′-deoxyuridine 
GAPDHS  Glyceraldehyde-3-Phosphate Dehydrogenase 
GFAP Glial fibrillary acidic protein 
GFP Green fluorescent protein 
Glo1 Glyoxalase 1 
Gmpr  Guanosine Monophosphate Reductase 
Gng7  G Protein Subunit Gamma 7 
GO Gene ontology 
Gpd1  Glycerol-3-Phosphate Dehydrogenase 1 
GSH Glutathion 
GSK Glycogen synthase kinase 
GSSG Glutathion disulfide 
GαS  G-protein subunit α 
Hapn1/2 Hyaluronan and proteoglycan link protein 1/2 
Hb  Hemoglobin 
HBSS  Hank's Balanced Salt Solution 
HBTRC  Harvard Brain Tissue Resource Center 
Hebp1  Heme-binding protein 1 
HEPES  2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 
HMOX1  Heme oxygenase-1 
Hnrnpl Heterogeneous nuclear ribonucleoprotein L 
Hnrnpm Heterogeneous nuclear ribonucleoprotein M 
HPLC High-performance liquid chromatography 
IB Immunoblotting 
IBA1 Ionized calcium-binding adapter molecule 1 
ICC Immunocytochemistry 
IgG Immunoglobulin G 
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Igh-3 Ig gamma-2B chain C region 
IHC Immunohistochemistry 
IL-6 Interleukin 6 
Ilf2 Interleukin enhancer-binding factor 2 
IMAC  Immobilized metal affinity chromatography 
IP Immunoprecipitation 
IPA Ingenuity Pathway Analysis 
IR Infrared radiation 
KO Knockout 
LC-MS/MS Liquid chromatography-tandem mass spectrometry 
LDS Lithium dodecyl sulfate 
LFQ Label-free quantification 
lincRNA Long non-coding ribonucleic acid 
Lrba  LPS Responsive Beige-Like Anchor Protein 
LTP  Long-term potentiation 
m/z  mass to charge ratio 
Mag Myelin-associated glycoprotein 
MAM  mitochondria-associated ER membranes 
MAP Microtubule-associated protein 
MAPT Microtubule-associated protein tau 
MARCS  Myristoylated alanine-rich C-kinase substrate 
Mboat7  Membrane Bound O-Acyltransferase Domain Containing 7 
MCI Mild cognitive impairment 
MEM Minimal essential medium 
MIB  Mitochondrial intermembrane space bridging supercomplex 
MICOS Mitochondrial contact site and cristae organizing system complex 
miRNA Micro ribonucleic acid 
MMP  Mitochondrial membrane potential 
MOAC  Metal oxide affinity chromatography 
Mog Myelin-oligodendrocyte glycoprotein 
MRI Magnetic resonance imaging 
MRM  Multiple reaction monitoring 
mRNA Messanger ribonucleic acid 
MS Mass spectrometry 
Mtx2 Metaxin 2 
Mug1 Murinoglobulin-1 
NEB New England Biolabs 
NFT Neurofibrillary tangle 
NMDA N-Methyl-D-aspartic acid 
NO  Nitric oxide 
NOS  Nitric oxide synthase 
NP-40  Nonidet P40 
NSE  Neuron specific enolase 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate-buffered saline 
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PCA  Principal component analysis 
PCR Polymerase chain reaction 
PDGF-β  Platelet-derived growth factor β-chain 
PDL Poly-D-lysine 
PET  Positron emission tomography 
PFA  Paraformaldehyde 
PINK1  PTEN-induced putative kinase 
PKA Protein kinase A 
PKC  Protein kinase C 
PMSF  Phenylmethylsulfonylfluorid 
PPIX  Protoporphyrin IX 
PPO  Protoporphyrinogen oxidase 
PrP  Prion protein 
PSD  Postsynaptic density 
PSEN1 Presenilin-1 
PSEN2 Presenilin-2 
PTM  Posttranslational modification 
RAGE  Receptor for advanced glycation products 
RanBP9 RAN Binding Protein 9 
RBFOX1 RNA binding protein, fox-1 homolog 
RNA Ribonucleic acid 
RNA-seq Ribonucleic acid sequencing 
ROS  Reactive oxidative species 
rpAD Rappidly-progressing Alzheimer's disease 
S100b Protein S100-B 
SAD Sporadic Alzheimer's disease 
SAM  Sorting and assembly machinery complex 
SD Standard deviation 
SDS  Sodium dodecyl sulfate 
SEM Stndard error of the mean 
Ser Serine 
sgRNA Single guide ribonucleic acid 
SNP  Single nucleotide polymorphism 
snRNP Small nuclear ribonucleo proteins 
Snrpe Small nuclear ribonucleoprotein E 
spAD Slowly-progressing Alzheimer's disease 
Spag9  Sperm Associated Antigen 9 
SR  serine/arginine-rich proteins 
SRRM1-2 Serine/arginine repetitive matrix protein 1-2 
Stx1 Syntaxin 1 
TfR  Transferrin receptor 
TGF-β Transforming growth factor beta 
Thr Threonine 
Thy1  Thymocyte differentiation antigen 1 
TLR  Toll-like receptors 
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Tnc Tenascin 
TNF-α Tumor necrosis factor alpha 
Tnik  TRAF2 and NCK Interacting Kinase 
TREM2 Triggering receptor expressed on myeloid cells 2 
Tsnax  Translin Associated Factor X 
Vcan Versican core protein 
Vim  Vimentin 
WB Western blotting 
WT Wild type 
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 Supplementary material 

Supplementary material are available on the CD attached to this thesis 

 

List of supplementary material: 

 

Supplementary table 1 

Full list of quantified proteins in the soluble brain fraction of 3×Tg-AD and control mice at 

each analyzed time point. 

 

Supplementary table 2 

Full list of quantified phosphosites in the soluble brain fraction of 3×Tg-AD and control mice 

at time points 2 and 18 months. 

 

Supplementary table 3 

List of proteins identified in Hebp1-EGFP Co-IP experiment (Figure 3-17). 

 

Supplementary table 4 

Proteins identified exclusively in one condition (disease or control) at each analyzed time 

point. 
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