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1. Abstract  

Deletion of the most abundant protein of CNS myelin, proteolipid protein (PLP) 

causes type 2-spastic paraplegia (SPG2) in humans, which is characterized by 

axonal degeneration. The assumption that the primary cause of SPG2 is the lack of 

PLP from oligodendrocytes has been challenged by studies reporting Plp gene 

products (official gene name Plp1) also in a subset of neurons. To clarify the cellular 

origin of SPG2, we established mice with a floxed Plp allele to selectively delete Plp 

in neurons or oligodendrocytes. Recombination of Plp in excitatory projection 

neurons did not cause neuropathology, whereas oligodendroglial deletion of Plp 

caused the complete neurodegenerative spectrum observed in Plpnull/Y mice including 

axonopathy, gliosis and elevated numbers of T cells in the brain and thus provide a 

novel model of SPG2. We conclude that the primary cause of SPG2 is the lack of 

PLP in oligodendrocytes. To better understand the interplay of PLP-deficient 

oligodendrocytes, axons and T cells, we analyzed the emergence of 

neuropathological events upon Plp-deletion over time in tamoxifen-inducible Plp 

knockout mice. Importantly, axonal spheroids were observed prior to elevated 

numbers of T cells, implying that axonopathy occurs independent from T cells in this 

model, at least initially. Together, by analyzing novel mouse models of SPG2 this 

work provides relevant information about the cellular neuropathology caused by PLP-

deficiency. 
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2. Introduction 

The nervous system facilitates complex motor and sensory as well as cognitive 

functions, it is tightly interconnected with the blood and digestive system and also 

regulates processes within our body. The nervous system of vertebrates consists of 

the central nervous system (CNS) comprised of the brain and the spinal cord and the 

peripheral nervous system (PNS) making up all other nerves in the body. Both CNS 

and PNS are mainly comprised of neurons, which convey information via electric 

signals, i.e. action potentials, and glial cells serving diverse functions. Important 

structural insights into the complex nervous system date back to a bit over 100 years 

ago. In 1906 Santiago Ramón y Cajal and Camillo Golgi received the Nobel Prize “in 
recognition of their work on the structure of the nervous system”. Using the silver 

nitrate staining method, developed by Camillo Golgi, Ramón y Cajal observed and 

illustrated nerve cells as individual entities and proposed that they transmit some sort 

of information from one to another. Even though it took another approximately 50 

years until electron microscopes were developed and could finally prove that neurons 

are individual cells, as opposed to a continuous mesh as proposed by Golgi and 

others, this was an essential cornerstone of neuroscience (Lopez-Munoz et al., 

2006). Ramón y Cajal’s famous drawings of neurons from human and animal brains 

(Figure 1) are of remarkable detail, as demonstrated by comparison with data 

acquired by more advanced techniques (Garcia-Lopez et al., 2010; Garcia-Marin et 

al., 2007; Navarrete and Araque, 2014). Using different staining techniques, he also 

depicted in great detail glial cells of the brain (Figure 1 b), which were discovered 

earlier by Rudolf Virchow in 1846 as reviewed by (Garcia-Marin et al., 2007). Rudolf 

Virchow initially described “neuroglia” as a connective tissue that binds nervous 
elements together in 1858 (Parpura et al., 2012) and called in “Nervenkitt” (nerve 
glue) which gave rise to the name “neuroglia”, adapted from the Greek word glia for 
“glue”. 

  

 

Figure 1: Neurons and glial cells illustrated by Ramón y Cajal 

(a) Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebellum, 1899. Instituto Santiago 

Ramón y Cajal, Madrid, Spain. (b) Drawing of fibrous astrocytes of human cerebral cortex contacting a 

blood vessel. Instituto Santiago Ramón y Cajal, Madrid, Spain. Figure adapted from (Navarrete and 

Araque, 2014). 
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Cajal and others proposed already in the late 19th century that this glia as well is 

composed of individual cells and that these cells serve functions such as supplying 

nutrients, regulating transmission of information or making contacts to blood vessels 

(reviewed by (Garcia-Marin et al., 2007; Navarrete and Araque, 2014)). However, it 

was only with the advancement of techniques that the complex structures and 

functions of glial cells could be further elucidated. Today we know that glial cells are 

not just functioning as a “glue” but serve very diverse functions and are essential for 
normal performance and modulation of the nervous system. Different kinds of glial 

cells in the CNS will be introduced in the next paragraph. 

 

2.1. Glial cells in the central nervous system 

To properly perform all its complex motor, sensory and cognitive functions, the 

nervous system of vertebrates requires precise interaction between neurons and glial 

cells. The long-held belief that glial cells by far outnumber neurons is under current 

debate (von Bartheld et al., 2016), however it is undoubtable that they are crucial 

master regulators for normal functioning of the nervous system (Zuchero and Barres, 

2015). The three main types of glial cells in the CNS are astrocytes, oligodendrocytes 

and microglia.  

 

2.1.1. Microglia 

Microglia are the resident immune cells in the CNS. They are developed from 

hematopoetic stem cells and reside in the brain parenchyma. During development, 

microglia help in sculpting synapses and modulating the strength of synaptic 

transmission (Colonna and Butovsky, 2017). In response to injury or pathogens they 

change rapidly in morphology from a ramified “surveillance state” to an amoeboid 
shaped “activated state”. Activated microglia proliferate and migrate to the site of 

infection or injury, phagocytose and eliminate microbes, dead cells and protein 

aggregates (Colonna and Butovsky, 2017). Furthermore, microglia secrete pro-

inflammatory or anti-inflammatory factors such as cytokines, growth factors and 

neurotrophic factors. Microglia are typically classified as pro-inflammatory or 

neurotoxic (M1) or anti-inflammatory (M2) microglia with distinct secretion profiles 

(Appel et al., 2011). In models of neurodegeneration they often express both 

neurotoxic and neuroprotective factors (Chiu et al., 2013; Wes et al., 2016). It 

remains debatable whether microglia have beneficial or protective functions in 

neurodegeneration and this probably also depends on the context (Colonna and 

Butovsky, 2017). Recently, activated microglia have also been shown to drive 

astrocyte reactivity (Liddelow et al., 2017). 
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2.1.2. Astrocytes 

Astrocytes and oligodendrocytes are formed from neuroepithelial progenitor cells in 

the embryonic neural tube and forebrain during development (Rowitch and 

Kriegstein, 2010) and are also referred to as macroglia. Astrocytes are the most 

abundant glial cell type in the CNS and are classified as protoplastic in the gray 

matter or fibrous in the white matter. They serve extremely diverse functions in the 

CNS ranging from promoting neuronal survival, contributing to synaptogenesis and 

synapse pruning to forming the blood-brain barrier and interacting with the 

vasculature to provide nutrients to axons (Zuchero and Barres, 2015). They can form 

a scar upon injury (Anderson et al., 2016), are involved in neurodegenerative 

diseases (Liddelow and Barres, 2017), have phagocytic potential and can clear 

debris and dead cells (Tasdemir-Yilmaz and Freeman, 2014). More recently, like 

microglia, astocytes have been suggested to form at least two types of “reactive” 
astrocytes upon different types of injury. A1 neuroinflammatory reactive astrocytes 

are suggested to have “harmful” functions, since they upregulate many genes that 

have previously been shown to be destructive for synapses; and Ischemia-induced 

A2 reactive astrocytes might have “helpful” or reparative functions, since 

neurotrophic factors promoting neuronal survival and growth are upregulated 

(Liddelow and Barres, 2017).  

 

2.1.3. Oligodendrocytes 

Oligodendrocytes are the myelinating cells of the CNS, enabling rapid propagation of 

action potentials along axons (Waxman, 1980). Oligodendrocytes form myelin by 

extending processes and wrapping their much extended plasma membrane around 

the corresponding axon to form a tight multilamellar sheath. At these myelin-

ensheathed segments of an axon – the internodes – myelin electrically insulates the 

axon from the extracellular fluid (Figure 2). Thus, electrical currents between axon 

and extracellular fluid are limited to the nodes of Ranvier, the regions devoid of 

myelin between the internodes (Hodgkin and Huxley, 1952). Mature myelin may 

consists of up to 160 membrane layers and internodes in the CNS can extend up to 

1.7 mm in length (Nave and Werner, 2014). The regions of the brain and spinal cord 

which contain a high amount of myelin appear white due to the high lipid content of 

myelin, and are therefore referred to as white matter. The regions where neuronal 

cell bodies reside contain less myelin and are referred to as grey matter. While in the 

CNS the myelin sheath is established by oligodendrocytes, which can form dozens of 

myelin internodes, myelination in the PNS is provided by Schwann cells, which only 

form one internode each (Quarles, 2002). Importantly, oligodendrocytes and 

Schwann cells are not only essential for rapid propagation of action potentials along 

axons, but also for axonal maintenance (Nave, 2010), further elucidated in chapter 

2.3. 
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Figure 2: Schematic representation of myelinated axons in the CNS  

In the CNS, oligodendrocytes form multiple myelin sheaths by wrapping their extended plasma 

membrane around internodal axonal segments. Perinodal astrocytes are associated with the nodes of 

Ranvier. Figure adapted from (Poliak and Peles, 2003). 

 

2.2. Compact and non-compact myelin of oligodendrocytes 

By wrapping their much extended plasmamembrane around axons oligodendrocytes 

form a tight compact multilamellar sheath. On the intracellular side the compacted 

plasmamembranes are held together by myelin basic protein (MBP) and form a 

highly electron-dense line, the major dense line (Barkovich, 2000). MBP is a 

positively-charged, extrinsic membrane protein, which accounts for about 8% of the 

total protein in CNS myelin (Jahn et al., 2009) and is thereby the second most 

abundant protein in compact CNS myelin. It exists in four splice isoforms (Boggs, 

2006), is essential for the maintenance of compact myelin in the CNS (Weil et al., 

2016) and holds the intracellular surfaces of myelin sheaths together by providing 

adhesion of the negatively-charged cytosolic surfaces with its positive charge 

(Aggarwal et al., 2013). A less electron dense line - the intraperiod line - represents 

proteolipid protein (PLP), a transmembrane protein extending into the extracellular 

space (Barkovich, 2000). PLP is the most abundant protein in CNS compact myelin 

(Jahn et al., 2009) and exists also in the smaller isoform DM20 (Nave et al., 1987). 

Since it is the subject of this thesis, it will be further described in chapter 2.4. The 

oligodendrocyte-specific protein (OSP/Claudin 11) forms strands of tight junctions 

and thereby the radial component, also providing adhesion in the compact myelin 

sheath (Gow et al., 1999; Mobius et al., 2008). Besides the compact myelin there are 

also non-compact compartments of myelin, consisting of adaxonal myelin towards 

the axon, abaxonal myelin on the outside of the myelin sheath and paranodal loops 

next to the node of Ranvier. Non-compact myelin is equipped with a partly 

overlapping, yet different set of proteins compared to compact myelin. Contrary to 

compact myelin, non-compact myelin domains contain cytoskeletal elements and 

cytoplasm (Arroyo and Scherer, 2000; Poliak and Peles, 2003). 
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Figure 3: Optic nerve cross section illustrating compact and non-compact myelin in the CNS 

Electron micrograph showing a cross section through a high pressure frozen optic nerve of a wild type 

mouse. Several cross-sectioned myelinated axons can be seen. Arrows indicate an axon, compact 

myelin and adaxonal non-compact myelin. Figure adapted from (de Monasterio-Schrader et al., 2012). 

 

Figure 4: Schematic representation of PLP in compact CNS myelin 

On the left, a myelinated axon, a cross section through a myelinated internode and myelin 

ultrastructure are schematically depicted. In the middle, a myelin internode is unwrapped and 

illustrates compact myelin in dark grey. Tight junction strands are organized as the radial component. 

Non-compact myelin, including paranodal non-compact myelin, is depicted in white. In the 

“enwrapped” state, these segments form paranodal loops. At the bottom, enlargement of the myelin 

ultrastructure illustrates the major dense line (MDL) and intraperiod lines (IPL). Within the MDL, myelin 

basic protein (MBP) is associated with the intracellular cytosolic surfaces of the plasma membrane. 

The intraperiod lines (IPL) are stabilized by the extracellular domains of proteolipid protein (PLP). PLP 

is composed of 276 amino acids and contains four transmembrane domains and two extracellular 

loops. Its smaller isoform DM20 lacks 35 amino acids in the intracellular loop, depicted in grey. 

Another major structural compact myelin protein is the oligodendrocyte-specific protein 

(OSP/CLDN11), which forms the radial component. Figure adapted from (Mobius et al., 2008). 
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2.3. Oligodendroglial support for axons 

Oligodendrocytes support not only axonal function by forming myelin sheaths to 

increase the speed of action potential propagation, but they are also essential for 

axonal integrity. A number of myelin-related diseases, such as multiple sclerosis, or 

leukodystrophies illustrate that the lack of myelin is detrimental. But oligodendrocytes 

also provide axonal support in a myelin-independent manner. The first hint that 

oligodendrocytes may provide axonal support in a myelin-independent manner came 

from the Plpnull/Y mouse (Klugmann et al., 1997), a model for spastic paraplegia type 

2 (SPG2) (Garbern et al., 2002). Surprisingly at that time, Plpnull/Y mice form relatively 

normal appearing compact myelin, despite lacking the most abundant compact 

myelin protein in the CNS. However, they do display progressive axonopathy, i.e. 

axonal spheroids, also referred to as axonal swellings, and axonal loss (Griffiths et 

al., 1998) and develop impaired motor capacity by 15-16 months of age (Griffiths et 

al., 1998; Groh et al., 2016), indicating that oligodendrocytes exert a myelin-

independent function for axonal integrity. Further support for this concept comes from 

a mouse model lacking the non-compact myelin protein 2’,3’ cyclic nucleotide 3’-
phosphodiesterase (CNP). Also Cnpnull mice display axonal spheroids, despite the 

formation of compact myelin (Lappe-Siefke et al., 2003) and are even more affected 

than Plpnull/Y mice. They display axonal spheroids in the optic nerve as early as 

postnatal day 15, whereas they are observed at around postnatal day 40 in Plpnull/Y 

mice (Edgar et al., 2004b). In Cnpnull mice the progressive axonopathy results in 

premature death at around 7 to 11 months of age (Lappe-Siefke et al., 2003) 

whereas life expectancy of Plpnull/Y mice is not impaired up to at least 1 year of age 

(Patzig et al., 2016b) and Plpnull/Y mice have even been analyzed with an the age of 

22 months (Griffiths et al., 1998). Importantly, PLP and CNP are not essential for the 

formation of compact myelin but for axonal integrity. In contrast, a mouse model 

devoid of compact myelin due to the lack of the second most abundant compact 

myelin protein MBP displays no axonal degeneration. (Rosenbluth, 1980). In these 

so-called “shiverer” mice axons are however ensheathed by oligodendrocytes which 

do not form compact myelin sheaths, suggesting that the supportive role for axonal 

integrity comes from oligodendrocytes, independently of the formation of compact 

myelin sheaths. Up until now it is uncertain how exactly oligodendrocytes support 

axonal integrity. Current studies suggest a metabolic support of oligodendrocytes for 

axons (Funfschilling et al., 2012; Lee et al., 2012; Nave, 2010). 

 

2.4. Proteolipid protein (PLP)  

PLP is the most abundant protein in the compact myelin of the CNS. It accounts for 

about 17% of the total protein in CNS (Jahn et al., 2009) and is thereby the most 

abundant CNS myelin protein. PLP is a hydrophobic 30 kDa four-transmembrane 

domain spanning protein (tetra-span membrane protein) with its N and C terminal 

located in the cytoplasm (Popot et al., 1991). The highly basic regions of PLP 
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interacts with lipids (Weimbs and Stoffel, 1992), especially cholesterol and 

galactosylceramide-enriched membrane domains (Simons et al., 2000), which are 

major components of the myelin membrane. The Plp gene is localized on the long 

arm of the X chromosome. It spans a roughly 17-kb genomic interval, is comprised of 

7 exons (Macklin et al., 1987) and generates two splice isoforms. The larger isoform 

PLP is comprised of 276 amino acids and has a molecular weight of 30 kDa (Nave et 

al., 1987). The smaller splice isoform DM20 (26.5 kDa) is formed due to an 

alternative splice site in exon 3 and lacks 35 amino acids in the intracellular loop 

(Nave et al., 1987). The sequences of PLP and DM20 are highly conserved across 

species and the amino acid sequences are identical in man, mouse and rat (Macklin 

et al., 1987; Woodward, 2008). PLP is synthesized in the rough endoplasmic 

reticulum and then transported via the secretory pathway through the Golgi. In the 

Golgi, PLP associates and forms membrane “rafts” with myelin lipid constituents, 

such as cholesterol, galactocerebroside or sulfatide, which are then transported in 

vesicles into the myelin (Simons et al., 2000). Plp expression is already observed in 

oligodendrocyte progenitor cells (OPC) during embryonic development (Delaunay et 

al., 2008). 

 

2.5. Human disorders caused by mutations affecting the PLP gene 

Mutations in the PLP gene (official gene name PLP1) lead to the leukodystrophy 

Pelizaeus-Merzbacher disease (PMD) and the clinically distinct spastic paraplegia 

type 2 (SPG2) (Inoue, 2005; Mayer et al., 2015; Saugier-Veber et al., 1994; 

Seitelberger, 1995; Woodward, 2008). Both PMD and SPG2 are inherited in an       

X-linked recessive fashion and thus usually affect only men (Brender et al., 2015; 

Woodward, 2008). While axons degenerate without apparent impairment of myelin in 

SPG2 patients and corresponding models (Garbern et al., 2002; Klugmann et al., 

1997), axonal degeneration in PMD is accompanied by dysmyelination (i.e. myelin is 

not formed properly during development), demyelination and oligodendrocyte death 

(Woodward, 2008). 

 

2.5.1. Pelizaeus-Merzbacher disease (PMD) 

At least 100 different mutations of the PLP gene can result in PMD (Woodward, 

2008). The severity of symptoms is heterogenous. It correlates with the degree of 

myelination defects and depends on the type of mutation (Duncan, 2005). Based on 

the severity PMD is categorized into two forms. The classic form of PMD, which 

accounts for most cases of PMD, results from genomic duplications in chromosome 

Xq22 which contains the PLP gene (Woodward, 2008). Symptoms such as hypotonia 

(low muscle tone) or nystagmus (involuntary eye movements) usually appear within 

the first year of life. They are followed by motor disabilities such as spasticity of upper 

and lower limbs, ataxia, as well as spasticity and slow development, leading to death 
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around mid-adult life (Inoue, 2005; Marteyn and Baron-Van Evercooren, 2016). In 

contrast to the classic form, the more severe connatal form is mostly caused by point 

mutations of PLP (or triplications or quintuplications of the PLP gene). It usually 

presents shortly after birth, comes with severe neurological symptoms and more 

severe motor deficits, exemplified by feeding and breathing issues, spasticity and 

seizures and leads to death within the first decade of life (Marteyn and Baron-Van 

Evercooren, 2016; Woodward, 2008). Furthermore, transitional forms of PMD 

combine clinical features of the classical and connatal forms (Garbern, 2007). As 

investigated in mouse models, Plp overexpression results in accumulation of PLP in 

the late endosome/lysosome with cholesterol (Simons et al., 2002), which is believed 

to interfere with myelination and reduce viability of the oligodendrocyte. Missense 

mutations of Plp probably lead to misfolding and accumulation in the rough 

endoplasmic reticulum, resulting in failure of transport to the oligodendrocyte cell 

membrane and activation of the unfolded protein response (Duncan, 2005; Garbern, 

2007; Inoue, 2017; McLaughlin et al., 2007; Woodward, 2008).  

 

2.5.2. Spastic paraplegia type 2 (SPG2) 

SPG2 is caused by deletion of PLP and presents milder symptoms than the classic 

and connatal PMD. It is often referred to as “mild form of PMD” or as an allelic 
disease to PMD (Woodward, 2008). In contrast to other PMD forms however SPG2 is 

clinically different. In SPG2 there is no hypomyelination and axons degenerate 

despite relatively normal myelin. With its clinical presentation – degeneration of upper 

motor neurons – SPG2 caused by deletion of PLP is a form of hereditary spastic 

paraplegia, which are described in the next paragraph. 
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Figure 5: Classification of PLP-related inherited disorders 

Clinically, PLP-related inherited disorders are classified into connatal PMD and classic PMD, which 

both display hypomyelination and a wide variety of clinical phenotypes, and the clinically more distinct 

SPG2. Each class of mutations results in a range of phenotypes. Point mutations leading to protein 

misfolding and toxic gain of function are the most prominent cause for the most severe connatal PMD. 

PLP duplications are the most frequent cause for classic PMD and lead to a toxic gene dosage effect. 

SPG2 is associated with the loss of PLP. Figure taken from (Inoue, 2017). 

 

2.6. Hereditary spastic paraplegia (HSP) 

Hereditary spastic paraplegia (HSP) is a heterogenous group of inherited 

neurological diseases characterized by lower extremity spasticity and weakness. The 

prevalence of HSP has been estimated to be between 3 and 10 cases per 100000 in 

Europe (Salinas et al., 2008). At least 41 different mutated genes (Fink, 2013) can 

cause different types of HSP. The unifying clinical feature is the length-dependent 

retrograde degeneration of the long descending axons of upper motor neurons in the 

cerebrospinal tract (Salinas et al., 2008). Their degeneration results in spasticity and 

weakness in the lower limbs, abnormal walking which may cause patients to become 

wheelchair-bound, often bladder dysfunction and sometimes sensory symptoms 

(such as reduced vibration sense) or pes cavus (Salinas et al., 2008). However, 

symptoms can vary in degree, onset and progression, depending on the underlying 

mutation and potentially also on environmental factors (Fink, 2013). Symptoms of 

HSP may begin at any age, from early childhood through senescence; life 

expectancy is normal in most cases (Fink, 2013). The pure form of HSP comprises 

the symptoms described above, complex HSP forms involves additional neurologic 

symptoms such as ataxia, epilepsy, deafness, mental retardation, cognitive decline 

and polyneuropathy (Fjermestad et al., 2016; Salinas et al., 2008). Besides dividing 

HSP types into pure and complex forms by their clinical representation, HSP are also 

divided according to the mode of inheritance. Most HSP cases (70%) are inherited in 

an autosomal dominant fashion and mostly these are pure cases. Complicated forms 

represent usually autosomal recessive or X-linked recessive forms of HSP. SPG2 

https://en.wikipedia.org/wiki/Spasticity


Introduction 

28 

 

caused by the lack of PLP is an X-linked recessive and complex form of HSP. 

Especially complicated and late-onset forms are often difficult to diagnose and easily 

mistaken for other conditions such as multiple sclerosis, motor neuron disease or 

vitamin deficiency to name a few (Salinas et al., 2008).  

A health survey of HSP patients reported lower mental wellbeing, lower social 

support, poorer memory and sleep and overall lower life satisfaction (Fjermestad et 

al., 2016). To date there is no treatment to prevent, slow or reverse HSP including 

SPG2. Current treatments such as physiotherapy or prescription of muscle relaxants, 

such as Baclofen, only address the symptoms of the disease. Better understanding 

of the underlying disease mechanisms may help to find better treatment options. 

 

2.7. The function of PLP is not understood 

Different mutations of the PLP gene lead to forms of PMD or SPG2, however the 

exact roles of PLP are not yet understood. PLP is dispensable for development and 

survival of oligodendrocytes (Yool et al., 2001). It is also not essential for the 

formation of compact myelin (Klugmann et al., 1997). In the absence of PLP a 

proportion of small diameter axons are ensheathed but show no or delayed formation 

of myelin sheaths, suggesting that PLP may be involved in early stages of axon-

oligodendrocyte interaction and wrapping of the axon. (Yool et al., 2001). The rate of 

myelin biogenesis was shown to be impaired due to depletion of PLP (de Monasterio-

Schrader et al., 2013). Despite being largely dispensable for the formation of 

compact myelin sheaths, PLP has been suggested to harbor adhesive properties and 

be involved in stabilizing the myelin sheath (Klugmann et al., 1997). Ultrastructural 

abnormalities of myelin including changes of the intraperiod line and myelin 

outfoldings have been observed upon depletion of PLP (Duncan et al., 1987; 

Klugmann et al., 1997; Mobius et al., 2016; Patzig et al., 2016a) and it may be 

involved in organization of the radial component (Rosenbluth et al., 2006). In early 

stages of development PLP may play a role in the development of OPCs, since it is 

detectable long before myelin formation begins (Delaunay et al., 2008; Inoue, 2005). 

Indeed PLP-deficiency results in subtle changes in glutamate-dependent migration of 

oligodendrocyte progenitor cells (Harlow et al., 2015). Moreover, PLP is required for 

the incorporation of cholesterol (Werner et al., 2013) and the deacetylase sirtuin 2 

(Werner et al., 2007) into the CNS myelin sheath. Yet it is unclear if and how any of 

these implications lead to axonopathy in Plpnull/Y mice and SPG2 patients. 

 

2.8. Axonopathy in Plpnull/Y mice modeling SPG2 

The most prominent neuropathological feature of PLP-deficient (Plpnull/Y) mice are 

axonal spheroids and progressive degeneration of axons particularly in long 

myelinated tracts (Griffiths et al., 1998), making them a genuine model of SPG2 
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caused by loss-of-function mutations (Garbern et al., 2002; Griffiths et al., 1998). 

Since myelin of Plpnull/Y mice appeared surprisingly relatively normal (Klugmann et 

al., 1997) this model also suggested for the first time a myelin-independent role of 

oligodendrocytes for axonal support (chapter 2.3.). A similar mouse model with 

significant residual CNS myelination is the Plprumpshaker/Y mouse (Edgar et al., 2004a; 

Schneider et al., 1992), defined by the same I186T missense mutation as the first 

human family diagnosed with SPG2 (Saugier-Veber et al., 1994). Axonal spheroids 

are apparent in optic nerves of Plpnull/Y mice from about postnatal day 40 (Edgar et 

al., 2004a). They result from accumulations of membranous organelles and occur 

mainly in small caliber axons (Edgar et al., 2004a; Griffiths et al., 1998), preferentially 

at the distal juxtaparanode, the region between the internode and the node (Edgar et 

al., 2004a). Axonal spheroids are probably caused by an impaired retrograde axonal 

transport, described in Plpnull/Y mice (Edgar et al., 2004a) and impairment of axonal 

transport is also considered a putative common factor in the pathogenesis of HSP 

(Crosby and Proukakis, 2002). Mechanistically, it is not yet clear how axonal 

pathology emerges in Plpnull/Y mice and SPG2 patients. Besides the concept that 

metabolic support by oligodendrocytes (Funfschilling et al., 2012; Lee et al., 2012; 

Nave, 2010) may be disturbed, there are two alternative hypotheses how axonal 

degeneration might evolve in Plpnull/Y mice and these provide the motivation for our 

study. 

 

2.9. Does neuroinflammation cause axonal degeneration in Plpnull/Y 

mice? 

The full spectrum of neuroinflammation, including microgliosis, and astrogliosis and 

elevated numbers of T cells, is observed in models for PMD (Groh et al., 2016; Ip et 

al., 2006; Ip et al., 2012) and in the SPG2-modeling Plpnull/Y mouse (de Monasterio-

Schrader et al., 2013). T cells have recently been reported to aggravate 

neurodegeneration in the Plptransgenic-overexpressor mouse model of PMD and the 

Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mouse models of PMD caused by 

missense mutations (Groh et al., 2016; Ip et al., 2006; Ip et al., 2012). Furthermore, it 

has been proposed that T cells perturb retrograde axonal transport in a PMD mouse 

model (Ip et al., 2012). The involvement of neuroinflammation has been considered 

to be underestimated in PMD pathology (Marteyn and Baron-Van Evercooren, 2016) 

and it has been proposed that “since at least some forms of HSP might be strongly 

driven by neuroinflammation, it is now tempting to consider immune modulation as a 

treatment option … for so far non-treatable, genetically-mediated disorders of the 

nervous system accompanied by pathogenic neuroinflammation” (Groh et al., 2016). 

Since oligodendrocytes can play an active part in pathological cascades and may 

modulate immune cells (Zeis et al., 2016), one may hypothesize that not a lack of 

oligodendroglial support, but oligodendrocyte-mediated recruitment of T cells may 

ultimately damage axons in Plpnull/Y mice. 
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2.10. Does pathology in Plpnull/Y mice arise due to lack of PLP in 

oligodendrocytes or neurons?  

For the vast majority of HSP types, neuronal dysfunction is thought to be the primary 

pathologic cause in patients and respective mouse models. Affected genes are 

thought to mainly impair transport of macromolecules and organelles, disturbance of 

mitochondrial function, or lead to abnormalities of the developing axon (Salinas et al., 

2008). In this respect SPG2 is an exception, together with two other types of spastic 

paraplegia, SPG35 and SPG44, which are caused by mutations in the genes for fatty 

acid 2-hydroxylase (FA2H) and connexin 47 (GJC2/CX47), respectively (Dick et al., 

2008; Orthmann-Murphy et al., 2009). The expression of these three genes is 

strongly enriched in oligodendrocytes compared to other neural cell types – see 

Figure 9 (Zhang et al., 2014) – and it is unknown how exactly dysfunctional 

oligodendrocytes may lead to neurodegeneration. Given that neurodegeneration in 

all other types of HSP is likely caused by intrinsic defects within neurons – 

pathogenic mechanisms reviewed in (Blackstone et al., 2011; Salinas et al., 2008) – 

it is an intuitive question to ask if there is not at least some expression of these genes 

in neurons, so that actually impairment of neuronal expression may lead to 

neurodegeneration.  

 

2.11. Plp expression in neurons 

Due to its strong expression in oligodendrocytes it is generally assumed that 

neuropathological impairments in SPG2, including axonal pathology, are caused by 

the lack of PLP from oligodendrocytes. However, over the last two decades there has 

indeed been accumulating evidence that Plp is not only expressed in 

oligodendrocytes but also in neurons. Plp gene expression has first been observed in 

neuronal cell lines of mouse and rat (Ikenaka et al., 1992). Also in other studies 

neuronal activity of the PLP/Plp gene has been documented, for example by using 

reporter gene expression in transgenic mice, Plp mRNA in situ hybridization, 

PLP/DM20 immunolabeling and by transcriptional and translational profiling – 

examples in Figure 6, 7, 8, 9; see overview in Table 1 from (Luders et al., 2017)  and 

references therein. Direct proof that the lack of PLP in oligodendrocytes is 

responsible for neuropathological impairments in SPG2 and PMD is lacking, since all 

previous in vivo analyses were performed in mice lacking PLP from all cells. 

Together, the above-mentioned and other publications showing that Plp expression is 

not exclusive to oligodendrocytes (Table 1) have led to the alternative hypothesis 

that the absence of neuronal Plp expression causes the axonal degeneration 

phenotype in SPG2 patients and the respective mouse models (Fulton et al., 2011; 

Jacobs et al., 2003; Sarret et al., 2010). The hypothesis has been posed that 

“neuronal expression of the hPLP1 gene might explain the neuronal dysfunctions in 

patients carrying hPLP1 gene mutations” (Sarret et al., 2010). (hPLP1 stands for 

human PLP1 gene). 
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Figure 6: Plp promoter activity in neurons 

Deep cerebellar white matter region from wild type mice (a, b) and Plp-Cre line 627 mice (c, d) at 

postnatal day 4 double stained with antibody for Cre (red) as a marker for Plp expression and NeuN 

(green) as a marker for neurons and counterstained with DAPI. Many Cre-positive cells co-stained for 

NeuN (indicated by white arrows). Scale bar 20 µm. Figure adapted from (Michalski et al., 2011). 

 

 

Figure 7: In situ hybridization of Plp mRNA 

In situ hybridization for Plp mRNA (blue)-labeled neurons and oligodendrocytes in the caudal medulla 

of a mouse at postnatal day 5. Neurons are colabeled with NeuN (brown). (a, b) Examples from 

hypoglossal nucleus (HG) and medullary reticular nucleus, dorsal part (MdD). White arrow indicates 

an oligodendrocyte (dark blue) apposed to a neuron (light blue cytoplasm, NeuN-positive nucleus). No 

signal was detected in the Plp
null/Y

 mouse (c) or by using a sense probe (d) in the lateral reticular tract 

(LRt). Scale bar=15 µm in a and b; Scale bar 24 µm in c and d. Figure adapted from (Miller et al., 

2009). 
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Figure 8: In situ hybridization of Plp mRNA and immunohistochemical detection of PLP protein 

(a) In situ hybridization in the cerebellum of 14-days-old mice shows punctate labeling of the “sr” 
variants of Plp and Dm20 mRNAs in cells throughout the white matter (red arrows) and the internal 

granular cell layer (neurons; white arrows) and Purkinje cells (neurons; yellow arrows). (b) 

Immunohistochemical detection of srPLP and srDM20 in a region of the cerebellum similar to that in 

(a). Cell bodies of oligodendrocytes (red arrows) and Purkinje cells (black arrows) are indicated. 

Granule neurons located within the internal granular layer were also immunostained. (c) Neuronal 

expression of PLP protein in adult human CNS tissue. The box indicates a Purkinje cell. IGL=internal 

granular layer; DCWM=deep cerebellar white matter; GL=granular layer; AA9=Antibody used to detect 

PLP. Figure 8 a, b adapted from (Bongarzone et al., 1999). Figure 8 c adapted from (Sarret et al., 

2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Introduction 

33 

 

Table 1: Previous studies reporting the detection of PLP/Plp gene products in neurons 

 

Given are detection level, method and species. BAC, bacterial artificial chromosome; FACS, 

Fluorescence-activated cell sorting; IHC, immunohistochemistry; ISH, in situ hybridization; PCR, 

polymerase chain reaction; RT-PCR, reverse transcription PCR; RNA-Seq, whole-transcriptome 

shotgun sequencing; RPA, ribonuclease protection assay; TRAP, translating ribosome affinity 

purification. Table taken from (Luders et al., 2017). 

 

References in Table 1: (Bongarzone et al., 1999; Doyle et al., 2008; Fulton et al., 

2011; Gong et al., 2003; Greenfield et al., 2006; Ikenaka et al., 1992; Jacobs et al., 

2004; Jacobs et al., 2003; Lein et al., 2007; Michalski et al., 2011; Miller et al., 2003; 

Miller et al., 2009; Sarret et al., 2010; Tuason et al., 2008; Zeisel et al., 2015; Zhang 

et al., 2014) 
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3. Aim of this thesis 

It is generally assumed that neuropathology in SPG2 is caused by a lack of PLP from 

oligodendrocytes. Given that Plp gene activity, Plp mRNA and PLP protein have 

been detected in neurons, the hypothesis emerged that the pathology in SPG2 and 

respective mouse models might actually be caused by a lack of PLP in neurons. One 

aim of this thesis is to test this hypothesis by establishing mouse models allowing 

cell-type specific recombination of a floxed Plp allele in neurons or oligodendrocytes. 

The respective mutants will be subjected to neuropathological analysis to test 

whether neuropathology emerges as a consequence of neuronal or oligodendroglial 

Plp-deletion. Furthermore time-controlled deletion of Plp will be used in a tamoxifen-

inducible model to analyze in which order axonal spheroids, gliosis and elevated 

number of T cells emerge. This shall help to elucidate whether infiltration of T cells is 

required for axonal damage in PLP-depleted mice or whether it is a secondary effect. 

 

 

 

  



 

36 

 

  



Material 

37 

 

4. Material 

 

4.1. Chemicals and kits 
 

Chemicals and laboratory materials 

All chemicals were purchased from Sigma-Aldrich GmbH (Munich, Germany), Merck 

KGaA (Darmstadt, Germany) and SERVA (Heidelberg, Germany) unless stated 

otherwise. General laboratory materials were from BD Falcon (Heidelberg, 

Germany), Bio-Rad (Munich, Germany), Brand (Radebeul, Germany), Gilson 

(Limburg-Offheim, Germany) and Eppendorf (Hamburg, Germany). 

 

Kits 

RNA purification ‘RNeasy mini prep’  Qiagen (Portland, USA) 

DC Protein Assay (Lowry et al.) Bio-Rad (Munich, Germany)  

LSAB2 kit  Dako (Hamburg, Germany) 

Vector Elite ABC kit Vector Labs (Loerrach, Germany) 

DAB Zytomed kit  Zytomed Systems GmbH (Berlin, Germany) 

FoxP3 staining kit eBioscience; Thermo Fisher Scientific 

(Frankfurt, Germany) 

 

4.2. Molecular biology  
 

Modified Gitschier buffer (MGB) 

67 mM   Tris/HCl, pH 8.8 

16.6 mM   (NH4)2SO4 

6.5 mM   MgCl2 

0.5% [v/v]  Triton X-100 

 

Proteinase K (10 mg/ml)  

Added to MGB buffer before use for tail digest 

Final concentration 1 mg/ml  

 

10 mM dNTP (50 x stock) 

2.5 mM each nucleotide (dATP, dCTP, dGTP, dTTP) (Boehringer-Ingelheim, 

Germany) 

200 μM final concentration in a PCR reaction (50 μM each nucleotide) 

 

50 x Trisacetate EDTA (Towbin et al.) buffer 

2.0 M   Tris/Acetate, pH 8.0 

50 mM   EDTA 

17.5% [v/v]  Glacial acetic acid 
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Enzymes 

Proteinase K Boehringer GmbH (Mannheim, 

  Germany) 

GOTaq DNA polymerase  Promega (Mannheim, Germany) 

Superscript III-reverse transcriptase Invitrogen (Karlsruhe, Germany) 

 

DNA marker   

GeneRuler 100 bp DNA ladder Thermo Fisher Scientific (St. Leon-rot, 

 Germany) 

 

4.3. Protein biochemistry buffers 
 

10 x Phosphate buffered saline (PBS) 

1.7 M   NaCl 

34 mM   KCl 

40 mM   Na2HPO4 × 2H2O 

18 mM   K2HPO4 

pH 7.2 with 1 N NaOH 

 

10 x Tris-buffered saline (TBS) 

500 mM   Tris/HCl, pH 7.5  

1.5 M   NaCl 

 

2 x Modified RIPA buffer (Protein lysis buffer) 

200 mM   Tris/HCl pH 7.5  

600 mM   NaCl 

2 mM   EDTA 

2% [w/v]  Triton X-100  

1% [v/v]  SDS  

 

Complete Mini protease inhibitor (Roche Diagnostics GmbH, Mannheim, Germany) 

was freshly added to RIPA buffer before use (1 tablet/10 ml). 

 

4.4. SDS PAGE and immunoblot  
 

SDS separating gel 

12% or 10% [v/v] Acrylamid/Bisacrylamid 29:1 

0.4 M   Tris/HCl pH 8.8 

0.1% [v/v]  SDS 

0.03% [v/v]  APS 

0.08% [v/v]  TEMED 
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SDS stacking gel  

4% [v/v]  Acrylamid/Bisacrylamid 29:1 

125 mM   Tris/HCl pH 6.8 

0.1% [v/v]  SDS 

0.05% [v/v]  APS 

0.1% [v/v]  TEMED 

 

4 x SDS sample buffer 

40% [v/v]  Glycerol  

240 mM   Tris/HCl pH 6.8  

8% [v/v]  SDS  

0.04% [w/v]  Bromphenol blue 

  

10 x SDS running buffer (Laemmli buffer)  

250 mM   Tris base 

1.92 M   Glycine 

1% [v/v]  SDS 

 

Transfer buffer 

96 mM   Tris base 

78 mM   Glycine 

10% [v/v]  Methanol 

 

20 x Tris buffered saline (TBS) 

1 M   Tris/HCl, pH 7.5 

3 M   NaCl 

 

1 x TBS with Tween-20 (TBST) 

50 mM   Tris/HCl, pH 7.5 

150 mM   NaCl 

0.05% [v/v]  Tween-20 

 

Immunoblot blocking buffer for detection with Intas ChemoCam system 

5% [w/v] non-fat dry Milk powder in 1 x TBST 

 

Immunoblot blocking buffer for detection with Odyssey infrared imager 

50% Odyssey®Blocking buffer (PBS) in TBST (LI-COR, Lincoln, NE) 

 

Protein marker 

PageRuler Plus Prestained Protein Ladder 10-250 K (Fermentas, St. Leon-Rot, 

Germany) 
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Additional materials 

Enhanced Chemiluminescence (ECL) Immunoblot detection kit Western Lightning™ 
Plus-ECL, Enhanced luminol reagent plus (Perkin Elmer Life Sciences, Inc., Rodgau, 

Germany) 

ECL-Hyperfilms (Amersham Biosciences, Uppsala, Sweden) 

PVDF membrane Hybond P pore size 0.45 μm (Amersham, Arlington Heights, IL)  

 

4.5. Solutions for fixation 
 

Avertin 

2% [w/v]  2,2,2-Tribromethanol 99% 

2% [v/v]  Amylalkohol  

Mixed at 40°C for 30 min while stirring and subsequently filtered 

Stored at -20°C 

 

16% [w/v] Paraformaldehyde (PFA) 

16% [w/v] Paraformaldehyde cooked at 65°C for 20 min while stirring. 

5 N NaOH droplets added until solution was cleared, filled up to final volume of 

500 ml with ddH2O and then filtered. 

Aliquoted and frozen at -20°C 

 

0.2 M Phosphate buffer (fixation buffer) 

0.36% [w/v]   Sodium dihydrogen phosphate (NaH2PO4) 

3.1% [w/v]   di-Sodium hydrogen phosphate (Na2HPO4) 

1% [w/v]  Sodium chloride  

 

4% Paraformaldehye (PFA, immunohistochemistry) 

4% [w/v]   PFA  

0.1 M   Phosphate buffer  

 

Immuno Karlsson-Schultz fixative (for immuno electron microscopy) 

4% [w/v]   PFA  

0.25% [w/v]   Glutaraldehyde  

0.1 M   Phosphate buffer 

 

4.6. Immunohistochemistry and staining solutions 
 

Phosphate buffer (0.2 M, pH 7.4) 

0.04 M   Sodium dihydrogen phosphate (NaH2PO4) 

0.16 M   di-Sodium hydrogen phosphate (Na2HPO4) 

Always prepared freshly 
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Citrate buffer (0.01 M, pH 6.0) 

1.8 mM   Citric acid (C6H8O7 × H2O) 

8.2 mM   Sodium citrate (C6H5O7Na3 × 2H2O) 

Always prepared freshly  

 

BSA/PBS  

0.04 M   Sodium dihydrogen phosphate (NaH2PO4) 

0.16 M   di-Sodium hydrogen phosphate (Na2HPO4) 

1.8% [w/v]  Sodium chloride 

1.0% [w/v]  Bovine serum albumin (BSA)  

 

Tris buffer (pH 7.6) 

50 mM  Tris/HCl, pH 7.6 

0.9% [w/v]  Sodium chloride (NaCl) 

Always prepared freshly 

 

Mayer’s haematoxylin solution 

0.1% [w/v]  Haematoxylin  

0.02% [w/v]   Sodium iodate  

5% [w/v]   Potassium aluminium sulphate (K2Al2(SO4)4 × 24H2O) 

Added under constant shaking, solution turned violet blue 

5% [w/v]   Chloralhydrate  

0.1% [w/v]   Citric acid added  

Added and filtered before use 

 

Eosin solution  

0.1% [v/v]   Eosin  

12 drops of glacial acetic acid in 250 ml  

 

Scott’s solution 

0.2% [w/v]   Potassium hydrogen carbonate 

2% [w/v]   Magnesium sulphate 

 

HCl - alcohol 

0.09% [v/v]  HCl  

70% [v/v]  Ethanol 

 

Blocking buffer for fluorescent stainings 

20% [v/v]  Goat serum  

0.5% [v/v]  Triton X-100 

Dissolved in BSA/PBS 
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Mounting media 

Eukitt Kindler (Freiburg, Germany) 

Aqua-Poly/Mount Polysciences (Eppelheim, Germany) 

 

4.7. Electron microscopy  
 

Formvar solution 

625 mg Formvar (Plano, Wetzlar, Germany) 

50 ml Chloroform 

Stirred for at least 30 min 

Stored at RT protected from light 

 

Carbon-stabilized grids (100 lines/inch Hex.mesh; Science Services) 

 

Colloidal gold conjugated to protein A (Cell Microscopy Center; Department of 

Cell Biology, University Medical Center at Utrecht, The Netherlands) 

 

Epoxy resin (Epon) 

171.3 g  Glycidether 100  

 (Serva, Heidelberg, Germany) 

115 g  DDSA (Dodecenyl succinic anhydride) 

 (Serva, Heidelberg, Germany) 

89 g  MNA (Methyl nadic anhydride) 

 (Serva, Heidelberg, Germany) 

Mixed using magnet stirrer for 10 min and then added 

6.5 ml  DMP-30 (2,4,6-Tris(di-methyl-aminomethyl-)-phenol) 

 (Electron Microscopy Sciences, Munich, Germany) 

Mixed using magnet stirrer for 20 min 
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4.8. Antibodies 
 

Table 2: Immunoblot - Primary antibodies 

Probe Antibody Species Company/ 

Source 

 

Concen

-tration 

Protein 

loaded 

Gel 

Lysate Actin Monoclonal 

mouse 

Millipore 1:5000 5 µg 15% 

Lysate PLP/DM20 

(A431) 

Polyclonal 

rabbit 

Jung, 

Sommer, 

Schachner, & 

Nave, 1996 

1:5000 5 µg 15% 

Myelin PLP/DM20 

(A431) 

Polyclonal 

rabbit 

Jung, 

Sommer, 

Schachner, & 

Nave, 1996 

1:5000 0.8 µg 15% 

Myelin SIRT2   

(16 mo pti) 

Polyclonal 

rabbit 

Abcam 1:2500 10 µg 10% 

Myelin SIRT2    

(10 mo pti) 

Polyclonal 

rabbit 

Abcam 1:2500 10 µg 10% 

Myelin SIRT2     

(4 mo pti) 

Polyclonal 

rabbit 

Abcam 1:500 0.78 µg 15% 

Myelin ATP1a3 Monoclonal 

mouse 

Abcam 1:1000 10 µg 10% 

Myelin MBP Monoclonal 

mouse 

Novocastra 1:500 2.5 µg 15% 

 

Table 3: Immunoblot - Secondary antibodies 

Probe Antibody Species Company/ Source Concentration 

Lysate α-rabbit-HRP Goat  Dianova 1:10000 

Lysate α-mouse-HRP Goat  Dianova 1:10000 

Myelin α-rabbit-

IRDye800CW 

Goat LI-COR 1:2500 

Myelin α-mouse-

IRDye680RD 

Goat LI-COR 1:2500 
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Table 4: Histological analysis - Primary antibodies 

Antibody Species Company/ 

Source 

Concentration Kit used 

 

APP Monoclonal 

mouse 

Chemicon 1:1000 LSAB2 kit (Dako) 

IBA1 Polyclonal 

rabbit 

Wako 1:1000 LSAB2 kit (Dako) 

GFAP Monoclonal 

mouse 

Novo Castra 1:200 Vector Elite ABC 

kit (Vector Labs) 

MAC3 Monoclonal 

rat 

Pharmingen 1:400 Vector Elite ABC 

kit (Vector Labs) 

CD3 Monoclonal 

rat 

Serotec 1:150 Vector Elite ABC 

kit (Vector Labs) 

CD3 Monoclonal 

rat 

Abcam 1:250 Vector Elite ABC 

kit (Vector Labs) 

PLP (aa3) Monoclonal 

rat 

Yamamura, 

Konola, 

Wekerle, & 

Lees, 1991 

1:100 No kit 

MBP Polyclonal 

rabbit 

Dako 1:1000 No kit 

 

Table 5: Histological analysis - Secondary antibodies 

Antibody Species Company/Source Concentration 

α-rat-Alexa488 Goat Dianova 1:1000 

α-mouse-Alexa555 Goat Dianova 1:1000 

α-rat-biotinylated  Rabbit Vector 1:100 

 

Table 6: Cryo-immuno electron microscopy - Primary antibody 

Antibody Species Company/Source Concentration 

PLP/DM20 (A431) Polyclonal rabbit Jung, Sommer, 

Schachner, & 

Nave, 1996 

1:300 

 

Table 7: Cryo-immuno electron microscopy - Secondary antibody 

Antibody Company/Source Concentration 

Colloidal gold 

conjugates to 

protein A 

Cell Microscopy Center, Department of 

Cell Biology, University Medical Center 

Utrecht, The Netherlands 

1:50 
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4.9. PCR Primers 
 

Primers were synthesized in-house by the service facility of the Max Planck Institute 

of Experimental Medicine. 

 

Genotyping primers (internal numbers) 

Primers for genotyping of the Flp allele  

15300: 5’- CACTGATATTGTAAGTAGTTTGC -3’ 
15301: 5’- CTAGTGCGAAGTAGTGATCAGG -3’ 
 

Primers for genotyping of the PlplacZ-neo allele  

24460: 5’- GACATAGCCCTCAGTGTTCAGG -3’ 
24461: 5’- GAATCCTGCATGGACAGACAG -3’  
15048: 5’- CAACGGGTTCTTCTGTTAGTCC -3’ 
 

Primers for genotyping of the Plpflox allele 

24460: 5’- GACATAGCCCTCAGTGTTCAGG -3’ (labeled P1 in Figure 9 c) 

24461: 5’- GAATCCTGCATGGACAGACAG -3’ (labeled P2 in Figure 9 c) 

32796: 5’- CACACACATATTCAGACCCCC -3’ (labeled P4 in Figure 9 c) 

 

Primers for genotyping of the Nex/NeuroD6 allele 

3131: 5’- GAGTCCTGGAATCAGTCTTTTTC -3’ 
3132: 5’- AGAATGTGGAGTAGGGTGAC -3’ 
2409: 5’- CCGCATAACCAGTGAAACAG -3’ 
 

Primers for genotyping of the Cnp allele 

2016: 5’- GCCTTCAAACTGTCCATCTC -3’ 
7315: 5’- CCCAGCCCTTTTATTACCAC -3’ 
4193: 5’- CCTGGAAAATGCTTCTGTCCG -3’ 
4192: 5’- CAGGGTGTTATAAGCAATCCC -3’ 
 

Primers for genotyping of the tamoxifen inducible PlpCreERT2 allele 

10099: 5’- TGGACAGCTGGGACAAAGTAAGC -3’  
7963: 5’- CGTTGCATCGACCGGTAATGCAGGC -3’ 
 

Primers for genotyping of the Plp allele 

1864: 5’- TTGGCGGCGAATGGGCTGAC -3’ 
2729: 5’- GGAGAGGAGGAGGGAAACGAG -3’ 
2731: 5’- TCTGTTTTGCGGCTGACTTTG -3’ 
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4.10. Mixes for PCR reaction 
 

Mix for PCR reaction for Flp allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.2 µl  Primer 15300 

0.2 µl  Primer 15301 

0.07 µl   GoTaq DNA polymerase 

13.23 µl ddH20 

 

Mix for PCR reaction for PlplacZ-neo allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.5 µl  Primer 24460 

0.5 µl  Primer 24460 

0.25 µl Primer 15048 

0.07 µl  GoTaq DNA polymerase 

12.38 µl ddH20 

 

Mix for PCR reaction for Plpflox allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.5 µl  Primer 24460 (labeled P1 in Figure 9c) 

0.5 µl  Primer 24461 (labeled P2 in Figure 9c) 

0.3 µl   Primer 32796 (labeled P4 in Figure 9c) 

0.07 µl   GoTaq DNA polymerase 

12.33 µl ddH20 

 

Mix for PCR reaction for Nex/NeuroD6 allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.2 µl  Primer 3131 

0.2 µl  Primer 3132 

0.2 µl   Primer 2409 

0.07 µl   GoTaq DNA polymerase 

13.03 µl ddH20 
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Mix for PCR reaction for Cnp allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.3 µl  Primer 4192 

0.3 µl  Primer 4193 

1 µl   Primer 2016 

1 µl   Primer 7315 

0.07 µl   GoTaq DNA polymerase 

11.03 µl ddH20 

 

Mix for PCR reaction for PlpCreERT2 allele 

4.2 µl  Go-Taq buffer (5 x) 

2.1 µl   dNTP (2 nM) 

0.2 µl  Primer 10099 

0.2 µl  Primer 7963 

0.07 µl   GoTaq DNA polymerase 

13.23 µl ddH20 

 

 

4.11. Quantitative real-time PCR primers 

 
Plp  

Forward: 5’- CTCCAAAAACTACCAGGACTATGAG -3’ 
Reverse: 5’- AGGGCCCCATAAAGGAAGA -3’ 
 

Mbp 

Forward: 5’- GCCTGTCCCTCAGCAGATT -3’ 
Reverse: 5’- CCTAAACCGATGCCTCCG -3’ 
 

Ube2l3 

Forward: 5’- CACATTTGCGGATCTCTTCA -3’ 
Reverse: 5’- AGCAGCACCAGATCCAAGAT -3’ 
 

Rplp0 

Forward: 5’- GATGCCCAGGGAAGACAG -3’ 
Reverse: 5’- ACAATGAAGCATTTTGGATAATCA -3’ 
 

Rps13 

Forward: 5’- CGAAAGCACCTTGAGAGGAA -3’ 
Reverse: 5’- TTCCAATTAGGTGGGAGCAC -3’ 
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4.12. Mouse lines 
 

Plpnull/Y mice (Klugmann et al., 1997) 

Plpflox mice (Luders et al., 2017) 

CnpCre mice (Lappe-Siefke et al., 2003) 

NexCre mice (Goebbels et al., 2006) 

PlpCreERT2 mice (Leone et al., 2003) 

Mice expressing FLIP recombinase body-wide (Farley et al., 2000) 

(129S4/SvJaeSor-Gt(ROSA26Sortm1(FLP1)Dym/J; backcrossed into C57BL/6N) 
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5. Methods 

 

5.1. Animals 

All mice used for the experiments in this thesis were bred and kept in the animal 

facility of the Max Planck Institute of Experimental Medicine with a 12 hour light/dark 
cycle and 2-5 animals per cage. All experiments were performed in accordance with 

the German animal protection law. For immunohistochemical stainings and FACS 

analysis mice were perfused using anesthetics and for all other analyses mice were 

sacrificed by cervical dislocation. 

 

5.1.1. Establishment of mice with floxed Plp allele  

In order to generate Plpflox mice, we acquired embryonic stem cells (ES) harboring an 

engineered allele of the Plp gene from the European Conditional Mouse Mutagenesis 

Program (EUCOMM). ES cells were grown in the department of Neurogenetics in the 

Max Planck Institute of Experimental Medicine by Ramona Jung. In the transgenic 

facility of the Max Planck Institute of Experimental Medicine ES cells were 

microinjected into blastocysts derived from FVB mice and embryos were transferred 

to pseudo-pregnant foster mothers, yielding 13 chimeric males. Upon breeding with 

C57BL/6N-females germline transmission was achieved for ES clone EPD0160-2-

D10. The offspring harboring the complete PlplacZ-neo allele was interbred with mice 

expressing FLIP recombinase (129S4/SvJaeSor-Gt(ROSA)26Sortm1(FLP1)Dym/J; 

backcrossed into C57BL/6N) in order to excise the lacZ-neomycin resistance 

cassette in vivo. This yielded mice carrying the Plpflox allele in which exon 3 of the Plp 

gene is flanked by loxP sites, and thereby can be excised by recombination with Cre. 

 

5.1.2. Mouse models 

To inactivate expression of Plp in excitatory projection neurons, exon 3 was excised 

in vivo upon appropriate interbreedings of Plpflox mice with mice expressing Cre 

recombinase under control of the Nex/NeuroD6 promoter (Goebbels et al., 2006), 

yielding mice referred to as Plpflox*NexCre/WT mice. To inactivate expression of Plp in 

myelinating cells, exon 3 was excised in vivo upon interbreeding Plpflox mice with 

mice expressing Cre recombinase under control of the Cnp promoter (Lappe-Siefke 

et al., 2003), yielding mice referred to as Plpflox*CnpCre/WT mice. To conditionally 

inactivate expression of Plp in oligodendrocytes upon tamoxifen injection, Plpflox mice 

were interbred with mice expressing tamoxifen inducible Cre recombinase under 

control of the Plp promoter (Leone et al., 2003) and exon 3 was excised in vivo upon 

tamoxifen injection. After tamoxifen injection Plpflox mice are referred to as control 

mice (Ctrl) and Plpflox*PlpCreERT2 mice harboring the tamoxifen inducible Cre are 

referred to as induced conditional knockout mice (iKO). Furthermore Plpnull/Y mice 
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which lack expression of Plp in all cells were analyzed. These mice were described 

previously (Klugmann et al., 1997).  

 

5.1.3. Tamoxifen administration 

Tamoxifen (Sigma-Aldrich) was diluted in corn oil (Sigma-Aldrich) and mixed on a 

vortexer (Heidolph) in the dark for at least half an hour at RT. It was freshly prepared 

each time for the following five days of injections and kept in the dark at 4°C for those 

five days. Mice were injected with tamoxifen intraperitoneally (i.p.) at the age of         

8 weeks (1 mg/100 µl corn oil per mouse per day) for 10 consecutive days with a      

2 days break after the first 5 days of injection, by a protocol adapted from (Leone et 

al., 2003). 

 

5.1.4. Genotyping of mice 

At postnatal day 21 tail tips (0.5 cm long) or ear punches were taken and digested 

overnight (o/n) in 180 µl 1 x MGB with 20 µl Proteinase K (Boehringer GmbH) at 

55°C with agitation. The next day tails were incubated at 95°C for 10 min to inactivate 

proteinase K. Polymerase chain reaction (PCR) (Mullis et al., 1986; Saiki et al., 1988) 

was used to amplify specific DNA segments. The amount of PCR-mix needed for the 

number of tail tips for the specific PCR reaction was calculated (see material). Each 

PCR reaction was performed with 20 µl PCR-mix and 1 µl DNA in a T3 or Gradient 

Thermocycler (Biometra). Primers were synthesized in house by the service facility of 

the Max Planck Institute of Experimental Medicine. After the PCR, 5 µl Gel Red 

Nucleic Acid Stain (BioTrend; 1:2500 in ddH2O) was added to each PCR reaction to 

visualize DNA. PCR products were separated on 2% [w/v] agarose gels in TAE buffer 

for 30-60 min at 120 V along with the marker GeneRuler 100 bp DNA ladder (Thermo 

Fisher Scientific). Pictures for documentation were taken with the Intas UV system. 

 

5.2. RNA isolation and analysis 

 

5.2.1. RNA isolation  

RNA extraction and purification was performed using the RNeasy Mini Kit (Qiagen). 

The kit’s working principle is the selective binding of RNAs bigger than 200 bases to 
a silica-gel based membrane under high-salt conditions. Frozen (-80°C) half brains of 

mice were homogenized in 3 ml 0.32 M sucrose with protease inhibitor (Complete 

Mini, Roche) using an Ultraturrax homogenizer (IKA T10 Basic). 100 µl of the 

homogenate was directly transferred to 600 µl RLT buffer (RNeasy Miniprep kit; 

Qiagen) with beta-mercaptoethanol (Fluka, BioChemika). The rest of the 

homogenate was either used for myelin purification or saved at -80°C. Samples in 

RLT buffer were mixed at RT for 3 min and then stored at -80°C until RNA isolation. 

RNA isolation and qRT-PCR from Ctrl mice and iKO mice in Figure 15 c, 15 d was 
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done by Ursula Kutzke. Samples were thawed quickly and RNA isolation was 

performed using the RNeasy Mini Kit (Qiagen) following the manufacturer’s protocol. 
Briefly, one volume of ethanol was added to the samples, mixed and applied to 

RNeasy columns. The columns were centrifuged for 1 min at 16000 × g, washed one 

time with the RW1 buffer (RNeasy Miniprep kit; Qiagen) and two times with the RPE 

buffer (RNeasy Miniprep kit; Qiagen) and RNA was eluted with 50 µl of RNAse-free 

ddH2O. 

 

5.2.2. RNA measurement 

The quality of RNA was tested using the Agilent RNA 6000 Nano KIT and the Agilent 

2100 Bioanalyzer following the company’s instructions. The amount of RNA was 
measured using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific) 

and the RNA concentration for all samples was adjusted to 100 ng/µl. 

 

5.2.3. cDNA synthesis 

As a next step the isolated RNA was transcribed into a complementary single 

stranded DNA (cDNA) in a reverse transcription reaction catalyzed by RNA 

dependent DNA polymerase SuperScript III (Invitrogen). Per PCR tube 1 µl            

dT-mixprimer (0.6 pmol/µl) and 1 µl random nonamer primers (25 pmol/µl) as well as 

a total of 4 µl RNA and ddH2O were pipetted (so that the same amount of RNA was 

in each tube, approximately 400 ng/4 µl according to the Nanodrop measurement). 

After shortly spinning the mixture down in a centrifuge, RNA and primers were 

denatured at 70°C for 1 min and then the PCR tubes with the mixture were put on 

ice. The mastermix was added (2 µl of 5 x first strand buffer, 0.5 µl dNTP (10 mM),    

1 µl DDT (100 mM) and 1 µl SuperScript III reverse transcriptase (200 U/µl)) and the 

total reaction mixture was incubated in a T3 or Gradient Thermocycler (Biometra) 

with the following settings: 

 

25°C 10 min 

50°C 45 min 

55°C 45 min  

Synthesized cDNA was diluted 1:30 with ddH2O and stored at -20°C. 

 

5.2.4. Quantitative real-time PCR 

The pipetting robot epMotion 5075 (Eppendorf) was used for pipetting and the 

qRT-PCR was performed using the Power SYBR Green PCR Master Mix (Applied 

Biosystems) and the Light Cycler 480II (Roche). The mixture for the gene expression 

analysis contained 5 μl of SYBR Green Master Mix, 2 µl of cDNA (2 ng/µl) and 0.1 µl 

of each primer (10 pmol/µl) and 2.8 µl ddH2O. All reactions were performed in 
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quadruplicates. The qRT-PCR reaction was carried out using the following settings: 

60°C for 1 min and 95°C for 15 sec [50 cycles]. mRNA abundance was analyzed in 

relation to the mean of the standards Ube2l3, Rplp0 and Rps13, which did not differ 

between genotypes. Statistical analysis was performed using GraphPad Prism 6.0.  

 

5.3. Biochemical protein analysis 

 

5.3.1. Myelin purification  

Myelin purification was performed after a protocol adapted from (Larocca and Norton, 

2007; Norton and Poduslo, 1973). Mice were sacrificed by cervical dislocation and 

brains were dissected. After removal of optic nerves, brains were cut in half, frozen 

on dry ice and then stored at -80°C. For myelin purification half brains of mice were 

taken from -80°C and directly homogenized in 3 ml cold 0.32 M sucrose with 

protease inhibitor (Complete Mini, Roche) in centrifugation tubes (14 × 89 mm, 

Beckman) using an Ultraturrax homogenizer (IKA T10 Basic) on level 3. 100 µl of this 

homogenate was taken for RNA purification (chapter 5.2.) and afterwards 3 ml 

0.32 M sucrose was added to the homogenate and briefly homogenized again. 400 µl 

of this homogenate was frozen at -80°C and the remaining homogenate was carefully 

layered on top of 3 ml 0.85 M sucrose in fresh centrifugation tubes (14 × 89 mm, 

Beckman). Probes were constantly kept on ice and all centrifugation steps were 

carried out at 4°C. All 6 samples of one time point were processed simultaneously 

(n=3 controls and 3 experimental samples) and were adjusted to the same weight 

before each centrifugation step. To accumulate the myelin fraction at the interphase 

between the two sucrose concentrations, samples were centrifuged with a Sorvall 

WX+ Ultra series centrifuge (Thermo Fisher Scientific) in a TH641 rotor (Thermo 

Fisher Scientific) at 75000 × g (24000 rpm) for 30 min with both acceleration and 

deceleration prolife set at 7. The interphase was taken out with a glass pipette and 

transferred to a fresh centrifugation tube. To wash the interphase the centrifugation 

tubes were filled up with ddH2O and centrifuged for 15 min at 75000 × g (24000 rpm) 

with both acceleration and deceleration prolife set at 9 (maximum). The supernatant 

was discarded and the pellet was resuspended in a small volume of ice cold ddH2O. 

Afterwards the tube was filled up with ddH2O and incubated for 15 min on ice for the 

first osmotic shock. After 15 min centrifugation at 12000 × g (9800 rpm) with both 

acceleration and deceleration prolife set at 9 (maximum) the supernatant was 

discarded and a second osmotic shock was performed in the same way. The pellet 

was afterwards resuspended in a 3 ml 0.32 M sucrose and this re-homogenate was 

carefully layered on top of 3 ml 0.85 M sucrose to perform a second purification step 

with the same settings as above (75000 × g (24000 rpm) for 30 min with both 

acceleration and deceleration prolife set at 7). The interphase was washed again by 

resuspending it in ddH2O and centrifugation for 15 min at 75000 × g (24000 rpm) with 

both acceleration and deceleration prolife set at 9 (maximum). The pellet was finally 

resuspended in 200 µl 1 x TBS (137 mM NaCl, 20 mM Tris/HCl pH 7.4) with protease 
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inhibitor and frozen at -80°C. The purified myelin was slowly thawed on ice and 

homogenized once again with a mortar before the protein concentration was 

measured. 

 

5.3.2. Lysate preparation 

For immunoblotting displayed in Figure 9 g, mice were sacrificed at postnatal day 

21, brains were dissected, cut in half and frozen at -80°C. Frozen half brains were 

homogenized in 0.32 M sucrose with protease inhibitor (Complete Mini, Roche) using 

an Ultraturrax homogenizer (IKA T10 Basic). 200 µl of the lysate were directly 

transferred into 200 µl of 2 x RIPA buffer (200 mM Tris/Cl pH 7.5; 600 mM NaCl;       

2 mM EDTA; 2% Triton X-100; 1% SDS with protease inhibitor) to obtain brain lysate 

in 1 x RIPA buffer. After 15 min on ice, samples were centrifuged at 13000 rpm for 

10 min at 4°C. The protein concentration of the supernatant was measured.  

 

5.3.3. Measurement of protein concentration 

The protein concentration of purified myelin and lysate were measured with the 

Lowry assay (Lowry et al., 1951; Peterson, 1979) using the Bio-Rad DC Protein 

assay kit (Bio-Rad). The “microplate assay” protocol of the manufacturer was used 
and the optical density was measured at 650 nm using Eon™ High Performance 
Microplate Spectrophotometer (BioTek).  

  

5.3.4. Protein separation using SDS PAGE 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE) was 

performed after a protocol established by Laemmli (Laemmli, 1970). The Bio-Rad 

system was used to cast gels and separate proteins. Acrylamid gels (1.5 mm thick; 

10% or 12% acrylamid) were casted between glass cover plates, overlaid with 

isopropanol and polymerized for 30 min. Isopropanol was rinsed off with ddH2O, 

excess water was taken up with filter paper and the stacking gel was casted on top of 

the separating gel. Wells to load protein mix onto the gel were created using plastic 

combs from Bio-Rad. Gels were stored in moist paper towels at 4°C for no longer 

than a week or used directly. Myelin and lysate samples were adjusted to the desired 

protein concentration. 1 x SDS buffer and 5% [v/v] mercaptoethanol were added to 

denature the proteins, and the samples were heated for 10 min at 40°C. All samples 

used for one immunoblot were adjusted to the same protein concentration and 

processed in parallel. Gels were assembled in Bio-Rad chambers and the chambers 

were filled with 1 x Laemmli running buffer. Protein samples were carefully pipetted 

into the prepared gel-wells and separated using the Bio-Rad power supply at 170 V 

for 1 hour. Afterwards gels were removed from the cover plates and incubated in 

transfer buffer for 15 min before proteins were transferred to a polyvinylidene 

difluoride (PVDF) membrane. 
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5.3.5. Immunoblot 

After separation, proteins were transferred to a PVDF membrane as described by 

Towbin and colleagues (Towbin et al., 1979). Therefore The PVDF membrane 

(Hybond; Amersham) was activated using 100% ethanol for 1 min, washed two times 

shortly with ddH2O and kept in transfer buffer. The protein transfer was performed 

using the Novex® Semi-Dry Blotter (Invitrogen). Four Whatman filter papers soaked 

in cold transfer buffer were placed onto the anode plate and each filter paper was 

rolled with a blotting roller to remove any air bubbles. The activated PVDF membrane 

was placed on top of the filter papers, followed by the gel and four more Whatman 

papers (soaked in transfer buffer). Proteins were transferred at 20 V for 40 min using 

the Bio-Rad power supply. Up to four gels could be transferred simultaneously.   

 

5.3.6. Immunodetection of blotted proteins with the Intas 

ChemoCam system 

After the protein transfer, PVDF membranes were removed from the Semi-Dry Blotter 

and incubated in blocking buffer (was 5% [w/v] non-fat dry milk in TBST) at RT for 

1 hour. The primary antibody was diluted in 5 ml blocking buffer and incubated in a 

50 ml Falcon Tube on a rotor at 4°C o/n with the membrane. The next day, the 

membrane was washed 3 × 5 min in TBST and incubated with HRP-coupled 

secondary antibody (Dianova), diluted in 5 ml blocking buffer on a rotor for 1 hour at 

RT. Afterwards membranes were washed in TBST 3 × 5 min. Membranes were 

carefully picked up with forceps, excess liquid was removed by carefully holding one 

corner of a membrane against a paper towel and the membrane was placed onto a 

glass plate. Enhanced Chemiluminescence Detection (ECL) solution was added 

according to the manufacturer’s recommendations (0.5 ml of each solution) (Western 

Lightning™, Western Blot Chemiluminescence Reagent Plus, PerkinElmer Life 
Sciences, Inc.). After 1 min of incubation, excess liquid was removed again and the 

membranes were placed between two plastic foils and chemiluminescence was 

scanned for 15 min using the Intas ChemoCam system (Intas).  

 

5.3.7. Immunodetection of blotted proteins with the Odyssey 

infrared imager 

The protocol for incubation with antibodies was the same as for detection with the 

Intas ChemoCam system. Instead of milk in TBST, blocking was done with 50% 

Odyssey®Blocking buffer (LI-COR) in TBST. Primary antibody was incubated in 50% 

Odyssey®Blocking buffer (LI-COR) in TBST with additional 0.1% Tween-20 

(Promega). Fluorescently coupled secondary antibody was incubated in 50% 

Odyssey®Blocking Buffer (LI-COR) in TBST with additional 0.1% Tween-20 and 

0.01% SDS. After incubation with the secondary antibody membranes were washed 

3 × 5 min in with TBST and 2 times shortly with ddH2O and fluorescent signal was 

detected using the Odyssey infrared imager (LI-COR). Relative intensity of 
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fluorescent bands was measured in relation to the background using Image Studio 

Ver 3.1. Graphs were plotted using GraphPad Prism 6.0 and an exponential curve 

with one phase decay was fitted in Figure 16 b, 16 c. Statistical analysis was 

performed using a two-tailed unpaired t-test in GraphPad Prism 6.0. for each 

individual time point in Figure 16 b, 16 c and for graphs e, f and h. Levels of 

significance were set as p<0.05 (*), p<0.01 (**) and p<0.001 (***).  

 

5.4. Histological analysis 

 

5.4.1. Perfusion fixation of mouse tissue 

For histological analysis mice were perfused. After anesthetizing mice by i.p. injection 

of avertin (0.2 ml per 10 gram of body weight), and confirming successful anesthesia 

by pinching the hind paw, animals were stabilized with the ventral side up. The heart 

was exposed by opening the chest and diaphragm with three excisions. A butterfly 

(27G, Venofix) was injected into the left ventricle, while the right atrium was cut. The 

butterfly was connected to a peristaltic pump and the blood was flushed out with 

37°C warm HBSS (Invitrogen) for 4 min. A tail biopsy for re-genotyping was taken 

during these 4 min. Afterwards mice were perfused with 37°C warm 4% [w/v] PFA for 

at 6-8 min (40-50 ml PFA) to fix the tissue. Brains and spinal cords (with vertebrae) 

were dissected, stored at 4°C in 4% [w/v] PFA o/n and then transferred to 1% [w/v] 

PFA and stored at 4°C.  

 

5.4.2. Paraffin-embedding and sectioning 

Brains were taken from 1% [w/v] PFA and cut into three pieces with two coronal 

sections. Vertebrae were removed from the spinal cords and spinal cords were cut 

into two pieces (cervical, thoracic and lumbal spinal cord). Brains and spinal cords 

were placed into plastic molds for embedding in Paraffin (Paraplast; Leica) using the 

Microm HMP110 tissue processor (MICROM) with the following program:  

 

1 hour  50% Ethanol  

2 × 2 hours  70% Ethanol   

2 × 2 hours   96% Ethanol   

2 × 2 hours  100% Ethanol   

1 hour  Isopropanol  

2 × 2 hours  Xylol  

2 × 2 hours  Paraffin  
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Afterwards, the three brain slices and the spinal cord (again cut into six pieces: 2 

cervical, 2 thoracic and 2 lumbal) per animal were placed in a metal form and casted 

with 60°C warm paraffin. Metal forms were removed after cooling down of the 

paraffin, labeled at stored at RT. 5 µm thick slices were cut using the HM400R 

Microtome (MICROM) partly by Annette Fahrenholz, dried at 37°C o/n and stored at 

RT.  

 

5.4.3. DAB staining 

DAB staining was performed by Annette Fahrenholz. For staining of 

neuropathological markers, sections were first deparaffinized in glass cuvettes by the 

following steps: 

 

10 min  60°C   

2 × 10 min  Xylol  

10 min  Xylol/Isopropanol (1:1)  

5 min  100% Ethanol  

5 min  90% Ethanol  

5 min  70% Ethanol  

5 min  50% Ethanol  

5 min  ddH2O  

 

To permeabilize the tissue, slides were incubated in citrate buffer for 5 min and then 

cooked for 10 min in boiling citrate buffer (650 W in microwave oven). After cooling 

for about 20 min, sections were rinsed with Tris buffer containing 2% [w/v] milk 

powder. To make sure that small volumes of the antibody-solutions were evenly 

distributed across the tissue, glass slides were placed into Shandon cover plates 

(Thermo Fisher Scientific) and rinsed again with Tris buffer containing 2% [w/v] milk 

powder. Since horse radish peroxidase (HRP) coupled secondary antibodies were 

used, it was necessary to inhibit the endogenous peroxidase activity by applying 3% 

[v/v] hydrogen peroxide for 5 min. Afterwards slides were washed with Tris buffer 

containing 2% [w/v] milk powder and incubated in blocking solution (20% [v/v] goat 

serum in BSA/PBS) for 30 min at RT. Primary antibodies were diluted in BSA/PBS 

and incubated o/n at 4°C. The next day, slides were washed with Tris buffer 

containing 2% [w/v] milk powder. Staining of amyloid beta precursor protein (APP), 

allograft-inflammatory factor (AIF1/IBA1) and glial fibrillary acidic protein (GFAP) was 

performed using the LSAB2 kit (Dako). Using the kit, sections were incubated with 

100 μl of bridging antibody i.e. a biotinylated secondary antibody for 10 min at RT. 

After rinsing with Tris buffer containing 2% [w/v] milk powder, the HRP complex 

bound antibody was incubated for 10 min at RT. For staining of lysosomal-associated 
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membrane protein 2 (LAMP2/MAC3) and the T cell marker cluster of differentiation 3 

(CD3), sections were incubated with an α-rat-biotinylated antibody (Vector Labs) for 

30 min. The two components of the Vector Elite ABC kit (Vector Labs) were mixed 

and incubated for 30 min. Afterwards the Shandon cover plates were removed and 

all sections (for APP, MAC3, IBA1, GFAP and CD3 staining) were rinsed with Tris 

buffer without milk-powder. The HRP substrate 3,3'-Diaminobenzidine was applied by 

using the DAB Zytomed Kit (Zytomed Systems GmbH). Slides were incubated with 

DAB for 10 min, so that brown labeling appeared where antibodies recognized their 

targets. After additional washing with ddH2O, sections were incubated in 0.1% 

Haematoxylin for 5 min to label nuclei. Nuclei were stained blue due to the interaction 

of Haematoxylin with the basic nuclear compartment. After rinsing with ddH2O 

sections were incubated with HCl-Alcohol for 5-10 sec and with Scott’s solution for    
5 min. After rinsing with ddH2O again, slides were stained with 0.1% Eosin for          

3-5 min to visualize cytoplasm and connective tissue. Slides were rinsed again with 

ddH2O. Tissue was then dehydrated by an alcohol gradient (50%, 70%, 90%, and 

100% for 5 min each), incubated with xylol/isopropanol (1:1) for 5 min, two times for   

5 min in xylol and finally mounted using Eukitt (Kindler). 

 

5.4.4. Imaging and quantification of DAB stainings 

Images were taken with an AxioImager Z1 bright-field light microscope (Zeiss) 

coupled to an AxioCam MRc camera (Zeiss) controlled by Zeiss ZEN 1.0 software. 

Images were captured at 10 × (CD3), 20 × (GFAP, IBA1, MAC3), 40 × (APP) or    

100 × (representative images for the Figures) magnification and processed using Fiji. 

For quantification, the hippocampal fimbriae or the corpus callosum were selected 

and CD3-immunopositive (CD3+) T cells and APP-immunopositive (APP+) axonal 

spheroids were counted. To quantify white matter area immunopositive for IBA1, 

MAC3 or GFAP, the fimbriae were selected and analyzed using an ImageJ plug-in 

(de Monasterio-Schrader et al., 2013) for semi-automated analysis. For this analysis 

the color threshold was used to transform the colored picture to a black and white 

picture and brown signal was detected as positive black signal. Then, the area of the 

positive black signal was measured and related to the size of the analyzed area. For 

each animal the average of both fimbriae was calculated. CD3 in Figure 21 a, 21 c 

was counted on 5 slides per animal at 4 months pti (n=6), 7 slides per animal at 6-8 

months pti (n=5), 2-4 slides per animal at 10 months pti (n=5-6), 2 slides per animal 

at 16 months pti (n=5-7), and 1-2 slides per animal in 6-months-old wild type (n=3) 

and Plpnull/Y (n=10) mice. All other markers and CD3 in Figure 13 were analyzed on 

one slide per animal. For the time point depicted as 6-8 months tamoxifen, n=3 mice 

were collected 6 months pti and n=2 mice were collected 8 monhs pti. All 

quantifications were performed blinded to the genotype. Statistical analysis was 

performed using one-way ANOVA with Tukey’s multiple comparison post-test in 

GraphPad Prism 6.0. Levels of significance were set as p<0.05 (*), p<0.01 (**) and 

p<0.001 (***).  
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5.4.5. Fluorescent staining 

Fluorescent immunolabeling was performed on 5 µm paraffin-embedded cross 

sections of mouse brains. Brain slices were depariffinized in xylol, rehydrated in a 

graded alcohol series and tissue was permeabilized with citrate buffer as described 

in chapter 5.4.3. Unspecific binding sites were blocked with blocking solution 

contained 10% goat serum and 1% BSA in PBS. Primary antibodies were diluted in 

blocking buffer and incubated at 4°C o/n. The next day, slides were washed in 

1 x PBS three times 10 min. Secondary antibodies were incubated for 2 hours at RT. 

Slides were washed with 1 x PBS and then incubated with DAPI (1:10000) for 5 min. 

After additional washing, tissue was mounted using Aqua-Poly/Mount (Polysciences). 

 

5.4.6. Imaging of fluorescent staining 

Slides were imaged with the confocal microscope Leica SP5 (Leica) using the 

objective HCX PL APO CS 63.0 × 1.30 GLYC 21°C UV. An argon laser with the 

excitation of 488 nm was used to excite the Alexa 488 fluorophore, and the emission 

was set to 500-526 nm. The laser DPSS 561 was used to excite the Alexa 555 

fluorophore, and the emission was set to 575-630 nm. LAS AF lite software was used 

to export the images as TIF files. 

 

5.5. Cryo-immuno electron microscopy 

 

5.5.1. Tissue preparation 

Mice were sacrificed by cervical dislocation, optic nerves were carefully removed and 

fixed with Immuno-Karlsson-Schultz fixative o/n (25 hours) and then transferred to 

1% [w/v] PFA. Fixed optic nerves were washed with PBS, immersed with 2.3 M 

sucrose in 0.1 M phosphate buffer o/n, mounted in 10% [w/v] gelatine for 

ultramicrotome cutting and frozen in liquid nitrogen.  

 

5.5.2. Cryosections and immunogold labeling 

Cutting of ultrathin cryosections and immunogold labeling was performed according 

to the “Tokuyashu technique” (Tokuyasu, 1973) similar to the protocol published in 

(Werner et al., 2007) by Ramona Jung. 50 nm thin cryosections were cut with a UC6 

cryo-ultramicrotom (Leica) and picked up on formvar-filmed carbon-stabilized grids 

(100 lines/inch Hex.mesh; Science Services) in a 1:1 mixture of 2% [w/v] 

methylcellulose (Sigma-Aldrich) and 2.3 M sucrose (Liou et al., 1996). After washing 

with PBS and PBS with 0.1% glycine [w/v], sections were blocked with 1% [w/v] BSA 

in PBS for 3 min. The primary antibody (PLPA431) was diluted 1:300 in 1% [w/v] 

BSA in PBS and incubated for 30 min. After washing with 0.1% [w/v] BSA in PBS 

tissue was incubated with protein A-gold (10 nm) in 1% [w/v] BSA in PBS. Colloidal 
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gold conjugated to protein A was obtained from the Cell Microscopy Center 

(Department of Cell Biology, University Medical Center at Utrecht, The Netherlands) 

and prepared as done previously (Roth et al., 1978; Slot and Geuze, 1985). 

Afterwards grids were incubated in 1% [v/v] glutaraldehyde in PBS for 5 min to fix 

gold and antibody and for denaturation of the FC domain. After washing with ddH2O 

tissue was contrasted with neutral uranyl acetate (2% [w/v] in 0.15 M oxalic acid, pH 

adjusted to 7.0 with ammonium hydroxide) for 5 min. After further washing with PBS, 

grids were transferred to ice-cold droplets of 1.8% [w/v] methylcellulose containing 

0.4% [w/v] uranyl acetate for 5 min, and picked up with a wire loop. Excess fluid was 

drained from the loop by gentle tapping to Whatman filter paper, and the sections 

were embedded in the remaining thin film by air-drying (Liou et al., 1996). Sections 

were analyzed with a LEO EM912 Omega (Zeiss) and digital micrographs were 

obtained with an on-axis 2048 × 2048-CCD camera (TRS, Moorenweis) with 10000 × 

magnification. 

 

5.5.3. Analysis of immunogold labeling 

Per animal 41-58 myelin profiles were analyzed on 6-9 images per animal (5.9 µm² 

per image  35.4-53.1 µm² per animal) using Fiji. This corresponds to 3.4-8.4 µm² 

myelin area analyzed per animal. The inside and outside half area of myelin was 

measured and gold-particles were counted within these areas. Graphs display gold 

particles per µm² myelin normalized to mean of Ctrl mice. All quantifications were 

performed blinded to the genotype. Statistical analysis was performed using a two-

tailed unpaired t-test in GraphPad Prism 6.0. Level of significance was set as p<0.05 

(*).  

 

5.6. High pressure freezing, freeze substitution and electron 

microscopy 

Samples for transmission electron microscopy by high pressure freezing and freeze 

substitution were prepared as described (Mobius et al., 2010) together with Dr. 

Wiebke Möbius, Torben Ruhwedel, Martin Meschkat and Boguslawa Sadowski. After 

sacrificing mice by cervical dislocation optic nerves were dissected and placed into 

aluminium specimen carriers with an indentation of 0.2 mm. The remaining space 

was covered with 20% [w/v] polyvenylpyridilone (PVP) (Sigma-Aldrich P2307-100G, 

molecular weight 10000) in PBS. The sample was cryofixed using a HPM100 high-

pressure freezer (Leica) and freeze substitution was carried out in a Leica AFS 

(Leica) according to the following protocol: first, samples were kept in tannic acid 

(0.1% [w/v] in acetone) at -90°C for 100 hours, then washed with acetone (4 × 30 

min, -90°C) and afterwards transferred into Osmiumtetroxyde (OsO4) (Electron 

Microscopy Systems; 2% [w/v]) and uranyl acetate (SPI Chem, 0.1% [w/v]) in 

acetone at -90°C. The temperature was raised from -90 to -20°C in increments of 

5°C/hour, then kept unaltered at -20°C for 16 hours, and then raised to +4°C in 

increments of 10°C/hour. After washing with acetone (3 × 30 min at 4°C), samples 
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were allowed to adjust to room temperature for 1 hour. Afterwards, optic nerves were 

transferred into Epon (Serva, Heidelberg) (25%, 50%, and 75% Epon in acetone for 

1-2 hours each, 90% Epon in acetone for 18 hours, 100% Epon for 4 hours). Finally, 

the samples were placed in embedding molds for polymerization (60°C, 24 hours). 

Ultrathin sections (50 nm) were cut using a Leica Ultracut S ultramicrotome (Leica) 

and contrasted with an aqueous solution of 4% [w/v] uranyl acetate (SPI Chem) 

followed by lead citrate according to Reynolds (Reynolds, 1963). The samples were 

examined in a LEO 912AB Omega transmission electron microscope (Zeiss). 

Pictures were taken with an on-axis 2048 × 2048-CCD-camera (TRS, Moorenweis). 

For assessment of pathology, 3 Ctrl mice and 3 iKO mice were analyzed at             

10 months pti. Randomly selected, non-overlapping images were taken at 

7000 × magnification. Per animal 5 electron micrographs (1105 µm²) were analyzed 

using ImageJ (Fiji). Myelinated and non-myelinated axons were categorized into 

“normal appearing myelin”, “myelin with channels or lamella-splitting” and “non-

myelinated axons” and these three categories were expressed in percent of all axons 
counted (sum of the three categories). Furthermore we counted “axons with myelin 
comprising a swollen adaxonal compartment (inner tongue)”, “outfoldings”, “myelin 
profiles with degenerating and degenerated axons” and expressed the number of 
these events in percent of all axons counted (sum of the first three categories). The 

number of axons harboring additional small axonal profiles in association with the 

inner tongue (“axons with sproutings”) was expressed as percentage of axons-myelin 

units which could be evaluated for this. To quantify “axonal spheroids” at least 20 
images, taken at 3000 × magnification (at least 15800 µm²), were analyzed per 

animal. The number of axonal spheroids is normalized to the area analyzed of each 

individual animal and expressed as axonal spheroids/mm². All statistical analyses 

were performed using GraphPad Prism 6.0. All quantifications were performed 

blinded to the genotype. Levels of significance were set as p<0.05 (*), p<0.01 (**) 

and p<0.001 (***). 

 

5.7. Preparation of CNS mononuclear cells and flow cytometry 

Fluorescence-activated cell sorting (FACS) analysis was essentially performed as 

described in (Lagumersindez-Denis et al., 2017) in collaboration with Dr. Stefan 

Nessler (Department of Neuropathology, UMG Göttingen). Mice were injected i.p. 

with Heparin (5IU/g body weight) and 15 min later they were transcardially perfused 

with HBSS and Heparin. Brains were dissected and after removal of meninges brains 

were digested in 2.5 ml DMEM containing 2.5 mg/ml Collagenase D (Roche) and       

1 mg/ml DNAse I (Roche) for 5 min in a water bath at 37°C. After short mixing by 

turning the tube upside down by hand several times, the mixture was placed on a 

rotor at 37°C for 25 min. By pressing the mixture through a strain the tissue was 

separated into small pieces and the digestion was stopped as collagenase was 

diluted by rinsing the strain with DMEM. After short centrifugation in an Eppendorf 

5810R centrifuge, cells were washed with DMEM and 2% [v/v] FCS (Sigma-Aldrich) 

to wash out the collagenase and DNAse. After short centrifugation, cells were taken 
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up in 5 ml 37% [v/v] PercolTM (GE Healthcare) in DMEM and layered over 5 ml 70% 

PercolTM in DMEM. Afterwards the mixture was centrifuged at 1600 rpm at 15°C 

with in an Eppendorf 5810R centrifuge to collect mononuclear cells at the interphase. 

The interphase with the cells was removed, washed with PBS with 2% [v/v] FCS 

(Sigma-Aldrich) and subsequently the cells were blocked with αCD16/32 (BioLegend, 

Clone 93) for 15 min. 

 

Stainings were performed in a 96 well plate (Thermo Fisher Scientific). Antibodies 

were diluted in PBS with 2% [v/v] FCS (Sigma-Aldrich) and incubated on the cells on 

ice for 15 min. Afterwards the cells were washed using 200 µl PBS with 2% FCS [v/v] 

(Sigma-Aldrich) twice. To collect the cells at the bottom of the wells, they were 

centrifuged at 1200 rpm for 5 min with the Eppendorf 5810R centrifuge after each 

step. The following antibodies were used in the dilutions as indicated (all from 

BioLegend unless stated otherwise): αCD3 (145-2C11) 0.4 µl/ 50µl, αCD4 (RM4-5) 

0.4 µl/50 µl, αCD8 (53-6.7) 0.4 µl/ 50 µl, αCD11b (M1/70) 0.4 µl/50 µl, αCD19 

(eBio1D30, eBioscience) 4 µl/50 µl, αCD25 (PC61.5) 0.4 µl/50 µl, αCD45 (30-F11) 

0.4 µl/50 µl, αFoxP3 (FJK-16S, eBioscience) 0.4 µl/50µl, αLy6C (HK1.4) 0.1 µl/50 µl, 

αLy6G (1A8) 0.4 µl/50 µl, αCCR2 (R&D 475301) 2.5 µl/50µl. For intracellular αFoxP3 

staining, cells were fixed after surface staining for 45 min and permeabilized for 

30 min using the eBioscience FoxP3 staining kit. All flow cytrometry data were 

acquired on a FACS CantoTm II (BD Bioscience) device and analyzed with the FlowJo 

software (v. 7.6.1, Tree Star Inc). 

Immune cell subsets were defined as following: 

Microglial cells: CD45int CD11b+ Ly6C- Ly6G- 

T cells: CD45high CD3+ CD19- 

CD4+ T cells: CD45high CD3+ CD4+ 

Regulatory T cells (Treg cells): CD45high CD3+ CD4+ CD25+ FoxP3+ 

CD8+ T cells: CD45high CD3+ CD8+ 

B cells: CD45high CD19+ CD3-  

 

 

5.8. Statistical analysis and figure assembly 

All graphs and statistical analyses were done using the software GraphPad Prism 

6.0. Levels of significance were set as p<0.05 (*), p<0.01 (**) and p<0.001 (***). For 

comparison of two groups an unpaired two-tailed student’s t-test was performed. For 

comparison of more than two groups a one-way ANOVA with Tukey's multiple 

comparison test was performed. Scanned pictures were cut using Adobe 

Photoshop CS6 and arranged in Adobe Illustrator CS6. 
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6. Results 

 

6.1. Genetic dissection of oligodendroglial and neuronal Plp 

function in a novel mouse model of SPG2 
 

Plp expression has been viewed to be restricted to the oligodendrocyte lineage for a 

long time but recently it has been additionally reported in neurons (Table 1), leading 

to the assumption that lack of neuronal Plp expression may cause neuronal 

dysfunctions in SPG2 patients and respective mouse models (Fulton et al., 2011; 

Jacobs et al., 2003; Sarret et al., 2010). To test this hypothesis, we established a 

mouse model in which Plp-deletion can be controlled cell-type specifically and 

evaluated the neuropathological appearance of mice lacking PLP specifically in 

oligodendrocytes or neurons. All data in this part (6.1.) were published in (Luders et 

al., 2017). 

 

6.1.1. Plp expression in neurons 

To evaluate whether neuronal Plp expression is also reflected in an unbiased 

approach, we analyzed original data from and RNA-Seq database of brain cell types 

sorted from the cortex of mice (GEO dataset GSE52564). In the original publication 

(Zhang et al., 2014) FPKM (fragments per kilobase of exon per million fragments 

mapped)-values of 0.04 and 0.1 were chosen as minimum and conservative 

thresholds for a gene to be accepted as expressed in a particular cell type, 

respectively. Regarding the original data, an even more rigorous threshold FPKM-

value of 0.8 was exceeded for Plp mRNA in cortical neurons, astrocytes and 

microglia, while Fa2h and Gjc2/Cx47 mRNA did not reach this threshold (Figure 9 a). 

As expected, mRNAs of Plp, Fa2h and Gjc2/Cx47 were strongly enriched in newly 

formed and mature oligodendrocytes (Figure 9 b). Together, Plp mRNA is enriched 

in but not exclusive to oligodendrocytes. Indeed, low-level expression of Plp is also 

seen in neurons.  

 

6.1.2. Mice with oligodendroglial or neuronal deletion of Plp 

To investigate the possible pathobiological relevance of neuronal Plp expression in 

vivo, we have established a novel mouse model that allows cell type-dependent Cre-

mediated recombination of the Plp-gene. ES cells with a PlplacZ-neo allele were 

acquired from EUCOMM, microinjected into blastocysts and these were injected into 

pseudo-pregnant foster mothers. After germ-line transmission of the PlplacZ-neo allele, 

FRT-sites were reombined in vivo and we obtained mice harboring the Plpflox allele in 

which exon 3 of the Plp gene is flanked by loxP sites (Figure 9 c). Male Plpflox/Y and 



Results 

64 

 

female Plpflox/flox mice were born at expected frequencies. To recombine Plp in 

oligodendrocytes we used CnpCre driver mice which express Cre in myelinating cells 

(Lappe-Siefke et al., 2003). Female Plpflox/flox and male Plpflox/Y*CnpCre/WT mice were 

interbred, yielding males of the genotype Plpflox/Y*CnpCre/WT and Plpflox/Y control mice. 

Genotyping PCR (Figure 9 d) shows efficient Cre-mediated recombination of the 

Plpflox allele by CnpCre. To model Plp-deletion only in neurons, we interbred female 

Plpflox/flox with male Plpflox/Y*NexCre/WT mice (also termed NeuroD6Cre mice) (Goebbels 

et al., 2006). We obtained male mice of the genotype Plpflox/Y*NexCre/WT and Plpflox/Y 

control mice. Nex/NeuroD6 is a member of the NeuroD family of bHLH transcription 

factors; in accordance with its cellular expression pattern the Nex/NeuroD6 promoter 

drives expression of Cre in most neocortical and hippocampal excitatory projection 

neurons and their immediate progenitors but not in glial cells (Belvindrah et al., 2007; 

Bormuth et al., 2013; Brinkmann et al., 2008; Goebbels et al., 2006; Li et al., 2013; 

Schwab et al., 1998; Wu et al., 2005). Importantly, genotyping PCR confirmed 

recombination of the Plp allele by Cre behind the Nex/NeuroD6 promoter 

(Figure 9 e). We therefore have generated a model for oligodendrocyte-specific 

deletion of Plp (Plpflox/Y*CnpCre/WT) and a model for deletion of Plp in those neurons 

affected in SPG2 (Plpflox/Y*NexCre/WT). Plpflox/Y*NexCre/WT and Plpflox/Y*CnpCre/WT mice 

were born at expected frequencies. Visual surveillance of their cage behavior did not 

reveal spasticity or major impairment of motor capabilities up to an age of at least 

6 months (not quantified) similar to previously reported Plpnull/Y mice (Griffiths et al., 

1998).  

We note that Cnp heterozygosity in CnpCre/WT mice per se causes late-onset 

neuropathology (Hagemeyer et al., 2012) as in CnpCre mice the integration of the 

open reading frame for Cre into the Cnp locus at the same time results in a Cnp-

deficient allele. However, importantly, neuropathology is not yet measureable in 

CnpCre/WT mice at 8 months of age (Hagemeyer et al., 2012), i.e. 2 months older than 

the age analyzed in the present work. Besides Plpnull/Y mice, we also included 

Plpnull/Y*CnpCre/WT mice as a more direct control group in the neuropathological 

analysis. 
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Figure 9: Detection of Plp mRNA in neurons imposes cell type-specific analysis 

(a) By RNA-Seq of cells immunopanned from mouse cortex, Plp mRNA (the SPG2 disease gene) is 

detected in neurons at low but significant level. The cell-type specific abundance was extracted from 

(Zhang et al., 2014). Mean with SEM; n=2; stippled line indicates a threshold of 0.8 fragments per 

kilobase of exon per million fragments mapped (FPKM). For comparison mRNA-abundance of Fa2h 

and Gjc (mutated in SPG35 and SPG44, respectively) is below threshold. Note that neuronal Plp 

expression was previously reported in several publications (see Table 1). (b) Expectedly, the same 

dataset shows that Plp, Fa2h and Gjc mRNAs are highly abundant in oligodendrocytes. Mean with 

SEM; n=2. (c) Targeting scheme for the conditional inactivation of the Plp gene. Exon 3 of the Plp
flox

 

allele is flanked by loxP sites for Cre-mediated recombination. Positions of PCR primers (P1, P2, P4) 

are indicated. (d-e) Genomic PCR of DNA isolated from mouse brains at postnatal day 21 detects the 

Plp
WT

 allele (591 bp product of P1 and P2), the non-recombined Plp
flox

 allele (683 bp product of P1 

and P2) as well as the recombined Plp
flox

 allele (519 bp product of P1 and P4). Note that 

recombination of the Plp
flox

 allele is observed after expression of Cre under control of the 

oligodendroglial Cnp promoter (d) or the neuronal Nex promoter (e). (d’-e’) Genomic PCR of brain 

DNA detecting the Cnp
Cre

 (d’) or Nex
Cre

 (e’) allele. (f) qRT-PCR to determine the abundance of Plp 

transcripts in mouse brains at postnatal day 75. Note that Plp mRNA is more abundant in 

Plp
flox/Y

*Cnp
Cre/WT

 compared to Plp
null/Y

 mice, probably reflecting non-oligodendroglial expression. Mean 

with SEM; n=4-6; two-tailed unpaired t-test; p<0.001 (***). (g) Immunoblot of mouse brains 

homogenized at postnatal day 21. PLP/DM20 was virtually undetectable in Plp
flox/Y

*Cnp
Cre/WT

 brains. 

Actin was detected as a loading control. (h) Confocal microscopic analysis of mouse brains 

immunolabeled at age 26 weeks detects intense MBP labeling (red) as exemplified for a single 

internode in the cortex. PLP-immunolabeling (green) essentially co-distributed with MBP in Plp
flox/Y

 

mice but was virtually undetectable in Plp
flox/Y

*Cnp
Cre/WT

 mice. OL=Oligodendrocyte; 

OPC=Oligodendrocyte progenitor cell. Figure taken from (Luders et al., 2017). 
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6.1.3. PLP is abundant in oligodendrocytes 

To test the abundance of Plp mRNA in Plpflox/Y*CnpCre/WT compared to Plpnull/Y mice, 

we performed qRT-PCR of brain lysate from mice sacrificed at postnatal day 21. We 

observed a higher abundance of Plp mRNA in the brains of Plpflox/Y*CnpCre/WT mice 

(Figure 9 f), which may reflect a low but significant non-oligodendroglial expression 

of the Plp gene. To test if the abundance of PLP in the brain is altered upon deletion 

of the Plp gene in neurons or oligodendrocytes, we subjected brain lysate from mice 

sacrificed at postnatal day 21 to immunoblot analysis. By immunoblotting, PLP was 

virtually undetectable in the brains of Plpflox/Y*CnpCre/WT mice whereas it appeared 

unchanged in Plpflox/Y*NexCre/WT mice (Figure 9 g). By immunohistochemistry PLP co-

labeled with MBP, a marker of compact myelin (Nawaz et al., 2013) in Plpflox/Y mice. 

In Plpflox/Y*CnpCre/WT mice, MBP labeling appeared unchanged, but PLP was virtually 

absent (Figure 9 h). Both experiments suggest that PLP is abundant in 

oligodendrocytes, and PLP expressed is either not detected with our method or 

overshadowed by the high abundance of PLP in oligodendrocytes. 

 

6.1.4. Neuropathological analysis  

To answer whether lack of PLP from oligodendrocytes or neurons is responsible for 

the pathology in SPG2, we evaluated the neuropathology in our newly established 

models. The neuropathology described in Plpnull/Y mice, which represent a model of 

SPG2, includes axonal pathology i.e. axonal spheroids, microglial activation, 

astrogliosis and the presence of T cells (de Monasterio-Schrader et al., 2013) We 

thus analyzed all these features in the brains of Plpflox/Y*NexCre/WT, Plpflox/Y*CnpCre/WT 

and control mice by immunohistochemistry. The hippocampal fimbria was used for 

quantification, as it is a relatively uniform white matter tract through which the long 

descending axons of Nex/NeuroD6-positive excitatory neurons project (Fernandez-

Miranda et al., 2008; Goebbels et al., 2006; Li et al., 2013).  

 

Axonal spheroids 

To measure the extent of axonal pathology, we immunolabeled and quantified 

amyloid precursor protein-immunopositive (APP+) axonal spheroids in the fimbria at 

the age of 26 weeks (Figure 10). In agreement with previous reports, a significant 

number of axonal spheroids were present in Plpnull/Y mice (Griffiths et al., 1998; 

Werner et al., 2013), and their density was further elevated by additional Cnp 

heterozygosity in Plpnull/Y*CnpCre/WT mice (Edgar et al., 2009). When comparing 

Plpnull/Y*CnpCre/WT and Plpflox/Y*CnpCre/WT mice the density of axonal spheroids was 

similar. Strikingly, only few APP+ axonal spheroids were found in Plpflox/Y*NexCre/WT 

mice, similarly to Plpflox/Y control mice. Together this implies that axonal pathology is 

entirely caused by oligodendroglial but not by neuronal recombination of Plp.  
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Figure 10: Axonal spheroids in the white matter caused by Plp-deletion in oligodendrocytes but 

not neurons 

(a-e) Representative light microscopic images of the hippocampal fimbria of 26-weeks-old mice of the 

indicated genotypes immunolabeled for amyloid precursor protein (APP) to detect axonal spheroids 

(black arrowheads). Note that Plp
flox/Y

 (a) and Plp
flox/Y

*Nex
Cre/WT

 (b) brains do not display axonal 

spheroids while oligodendroglial (c) or systemic (d, e) deletion of Plp causes axonal pathology. Axonal 

impairment is enhanced in mice heterozygous for Cnp additional to oligodendroglial (c) or systemic (d) 

deletion of Plp. Scale bar 10 µm. (f) Genotype-dependent quantification of APP-immunopositive 

(APP+) axonal spheroids in the fimbria. Mean with SEM; n=3-7; one-way ANOVA with Tukey's 

multiple comparison test; p<0.01 (**) and p<0.001 (***). Figure taken from (Luders et al., 2017). 
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Microgliosis 

As axonal damage is commonly associated with microgliosis, i.e. an increased 

density and ‘activation‘ of microglial cells (Sasaki, 2016) and this has also been 

observed in Plpnull/Y mice (de Monasterio-Schrader et al., 2013), we analyzed our 

mice at the age of 26 weeks for this feature. We used antibodies against allograft-

inflammatory factor (AIF1/IBA1) (Figure 11 a-e) and lysosomal-associated 

membrane protein 2 (LAMP2/MAC3) (Figure 11 g-k) to label microglia and activated 

microglia, respectively. The relative area of the fimbria occupied by immunostaining 

was quantified (Figure 11 f, l). The signal for MAC3 and IBA1 was enhanced in 

Plpnull/Y mice compared to Plpflox/Y control mice and further elevated by additional Cnp 

heterozygosity in Plpnull/Y*CnpCre/WT mice. Importantly, the area of immunopositivity 

was similar when comparing Plpnull/Y*CnpCre/WT and Plpflox/Y*CnpCre/WT mice. 

Conversely, the area of immunopositivity was not increased in Plpflox/Y*NexCre/WT 

compared to Plpflox/Y control mice. Thus, axonal damage and microglial activation 

correlate well as a consequence of oligodendroglial, but not neuronal recombination 

of Plp. Interestingly, there was a good correlation between IBA1 immunolabeling 

indicating microglial cell number and MAC3 immunolabeling reflecting microglial 

activation.  

 

 

 

 

 

 

 

 

 

 

Figure 11 (next page): Microglial activation after Plp-deletion in oligodendrocytes but not 

neurons 
Representative light microscopic images of the hippocampal fimbria of 26-weeks-old mice 

immunolabeled for the microglial markers allograft-inflammatory factor (AIF1/IBA1) (a-e) and 

lysosomal-associated membrane protein 2 (LAMP2/MAC3) (g-k) and genotype-dependent 

quantification (f,l). Note that Plp
flox/Y

 (a) and Plp
flox/Y

*Nex
Cre/WT

 (b) brains do not display activated 

microglia while oligodendroglial (c, i) or systemic (d, e, j, k) deletion of Plp causes microgliosis. 

Microgliosis is enhanced in mice heterozygous for Cnp additional to PLP-deficiency (c, d, i, j). Scale 

bar 10 µm. (f, l) Genotype-dependent quantification of the relative size of area occupied by IBA1-

immunopositive (f) or MAC3-immunopositive (l) microglia in the fimbria. Mean with SEM; n=3-7; one-

way ANOVA with Tukey's multiple comparison test; p<0.05 (*), p<0.01 (**) and p<0.001 (***). Figure 

taken from (Luders et al., 2017). 
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Astrogliosis 

The intercellular crosstalk in the diseased brain may include microglia-dependent 

activation of astrocytes (Liddelow et al., 2017) as well as astrocyte-dependent 

recruitment or activation of microglia (Jo et al., 2017; Skripuletz et al., 2013). Indeed, 

both microgliosis and astrogliosis occur in various SPG/PMD patients and mouse 

models (overview in (Marteyn and Baron-Van Evercooren, 2016)) including the 

Plpnull/Y mouse model of SPG2 (de Monasterio-Schrader et al., 2013). We thus 

analyzed the amount of astrogliosis by immunolabeling astrocytes using antibodies 

directed against glial fibrillary acidic protein (GFAP) and measured the relative area 

of immunopositivity (Figure 12 a-f). At the age of 26 weeks we found moderately but 

significantly enhanced GFAP-labeling in Plpnull/Y, Plpnull/Y*CnpCre/WT and 

Plpflox/Y*CnpCre/WT compared to Plpflox/Y control mice, indicative of a mild astrogliosis. 

Notably, the relative GFAP-positive area was similar in in Plpflox/Y*NexCre/WT and 

Plpflox/Y control mice, indicating that oligodendroglial but not neuronal recombination 

of Plp causes astrogliosis. 

 

 

Figure 12: Astrogliosis after Plp-deletion in oligodendrocytes but not neurons 

(a-e) Representative light microscopic images of the hippocampal fimbria of 26-weeks-old mice 

immunolabeled for glial fibrillary acidic protein (GFAP) to detect astrocytes. Note that oligodendroglial 

(c) or systemic (d, e) deletion of Plp causes astrogliosis compared to Plp
flox/Y

 (a) and Plp
flox/Y

*Nex
Cre/WT

 

(b) brains. Scale bar 10 µm. (f) Genotype-dependent quantification of the relative size of area 

occupied by GFAP-immunopositive astrocytes in the fimbria. Mean with SEM; n=3-7; one-way ANOVA 

with Tukey's multiple comparison test; p<0.05 (*) and p<0.01 (**). Figure taken from (Luders et al., 

2017). 
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CD3-immunopositive T cells 

Axonal damage and microglial activation are frequently but not always associated 

with an increased density of T cells (Ransohoff and Brown, 2012; Waisman et al., 

2015). In brain tissue of the Plptransgenic-overexpressor mouse model of PMD (Ip et al., 

2006; Ip et al., 2012), the Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mouse 

models of PMD harboring missense mutations (Groh et al., 2016) and the Plpnull/Y 

mouse model of SPG2 (de Monasterio-Schrader et al., 2013) T cells have been 

observed. For immunolabeling of T cells we used antibodies directed against CD3 

and quantified the density of CD3+ cells in the fimbria at the age of 26 weeks 

(Figure 13 a-f). The increased density of CD3+ cells in Plpnull/Y compared to Plpflox/Y 

control mice did not reach significance but was further elevated by additional Cnp 

heterozygosity in Plpnull/Y*CnpCre/WT mice. Importantly, the density of CD3+ T cells 

was similar when comparing Plpnull/Y*CnpCre/WT and Plpflox/Y*CnpCre/WT mice. 

Conversely, the density of CD3+ T cells was not increased in Plpflox/Y*NexCre/WT 

compared to Plpflox/Y control mice. Together, axonal damage and the density of          

T cells correlate in consequence of oligodendroglial but not neuronal recombination 

of Plp.  
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Figure 13: Increased density of T cells after Plp-deletion in oligodendrocytes but not neurons 

(a-e) Representative light microscopic images of the hippocampal fimbria of 26-weeks-old mice 

immunolabeled for CD3 to detect T cells. Note that Plp
flox/Y

 (a) and Plp
flox/Y

*Nex
Cre/WT

 (b) brains do not 

display T cells, while oligodendroglial (c) or systemic (d, e) deletion of Plp causes an increased 

density of CD3-immunopositive (CD3+) cells. The density of CD3+ cells is enhanced in mice 

heterozygous for Cnp additional to oligodendroglial (c) or systemic (d) deletion of Plp. The apparently 

increased density of T-cells in Plp
null/Y 

mice did not yield significance compared to Plp
flox/Y 

mice at the 

analyzed age. Scale bar 10 µm. (f) Genotype-dependent quantification of the number of CD3+ T cells 

in the fimbria. Mean with SEM; n=3-8; one-way ANOVA with Tukey's multiple comparison test; 

p<0.001 (***). Figure taken from (Luders et al., 2017). 

 

Axonal spheroids in an independent white matter tract 

The observed neuropathology is likely to affect all myelinated axons of long-

projecting excitatory neurons in the CNS and to test this concept we evaluated the 

amount of axonal spheroids in an independent white matter tract. We therefore 

quantified APP+ axonal spheroids in the corpus callosum at the age of 26 weeks 

(Figure 14). Indeed, similar to the hippocampal fimbria (Figure 10) a significant 

number of axonal spheroids were observed in the corpus callosum of Plpnull/Y mice. 

The density of axonal spheroids was further elevated by additional Cnp 

heterozygosity in Plpnull/Y*CnpCre/WT mice and similar between Plpnull/Y*CnpCre/WT and 

Plpflox/Y*CnpCre/WT mice (Figure 14). Importantly, no APP+ axonal spheroids were 

found neither in Plpflox/Y*NexCre/WT mice, nor in Plpflox/Y control mice.  
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Figure 14: Axonal spheroids in the corpus callosum caused by Plp-deletion in 

oligodendrocytes but not neurons 

(a-e) Representative light microscopic images of the corpus callosum of 26-weeks-old mice of the 

indicated genotypes immunolabeled for amyloid precursor protein (APP) to detect axonal spheroids 

(black arrowheads). Note that Plp
flox/Y

 (a) and Plp
flox/Y

*Nex
Cre/WT

 (b) brains do not show axonal 

spheroids while oligodendroglial (c) or systemic (d, e) deletion of Plp causes axonal pathology. Axonal 

impairment is enhanced in mice heterozygous for Cnp additional to oligodendroglial (c) or systemic (d) 

deletion of Plp. Scale bar 10 µm. (f) Genotype-dependent quantification of APP-immunopositive 

(APP+) axonal spheroids in the corpus callosum. Mean with SEM; n=3-7; one-way ANOVA with 

Tukey's multiple comparison test; p<0.05 (*) and p<0.001 (***). Figure taken from (Luders et al., 2017). 

 

 

Taken together, we observed increased numbers of axonal spheroids, astrogliosis, 

microgliosis and increased density of T cells upon deletion of Plp in 

oligodendrocytes, but not upon deletin of Plp in neurons. Thus, recombination of Plp 

in oligodendrocytes affects axonal integrity and causes a general neuropathological 

reaction whereas recombination in excitatory projection neurons does not.  
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6.2. Axonal pathology precedes T cells in tamoxifen-induced PLP-

deficient mice 

 

In the previous part (6.1.), published in (Luders et al., 2017), we have shown that lack 

of PLP specifically from oligodendrocytes leads to increased numbers of axonal 

spheroids, accompanied by increased gliosis and infiltration of T cells. Yet, it is 

unclear whether infiltration of T cells is required for axonal damage in this model or 

whether it is a secondary effect. We therefore applied tamoxifen-inducible deletion of 

Plp to analyze in which order axonal spheroids, gliosis and elevated number of T 

cells emerge upon PLP-depletion. This approach also allowed us to draw 

conclusions about the turnover of PLP within myelin.  

 

6.2.1. Plp is successfully deleted by tamoxifen-inducible CreERT2 

In order to analyze in which order axonal spheroids, gliosis and elevated number of T 

cells emerge upon deletion of Plp, we used a model in which Plp-deletion can be 

induced by tamoxifen injection. Therefore mice harboring a floxed Plp allele, which 

were established as described in chapter 6.1.2. (Luders et al., 2017), were crossbred 

to mice harboring a tamoxifen inducible PlpCreERT2 allele (Leone et al., 2003), yielding 

Plpflox/Y and Plpflox/Y *PlpCreERT2 mice. Only male mice wer used for analyses. Both 

Plpflox/Y and Plpflox/Y *PlpCreERT2 males were injected intraperitoneally (i.p.) with 

tamoxifen dissolved in corn oil at the age of 8 weeks and then analyzed at 16 days, 

2, 4, 6, 8, 10, 12 and 16 months post tamoxifen injection (pti) as illustrated in 

(Figure 15 a). In Plpflox/Y *PlpCreERT2 mice the floxed allele was recomibed after 

administration of tamoxifen, but not without tamoxifen administration, as tested by 

standard genotyping (Figure 15 b). From here on, Plpflox/Y mice after tamoxifen 

injection will be referred to as control mice (Ctrl) and Plpflox/Y*PlpCreERT2 mice after 

tamoxifen injection will be referred to as induced conditional knockout mice (iKO). To 

test for successful deletion of the Plp gene upon tamoxifen administration, we 

measured the relative abundance of Plp mRNA in Ctrl mice and iKO mice 

(Figure 15 c). Plp mRNA was significantly reduced at all three time points analyzed 

(16 days, 2 and 10 months pti) indicating that the deletion of Plp upon tamoxifen 

administration was successful. The relative mRNA abundance of the second most 

abundant compact myelin protein in the CNS, myelin basic protein (MBP) was tested 

as a reference, and was not significantly changed at any of the three tested time 

points (Figure 15 d).  
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Figure 15: Tamoxifen-inducible Plp knockout mouse 

(a) Tamoxifen injection scheme for inactivation of the Plp gene. Plp
flox/Y

 (Ctrl) and Plp
flox/Y

*Plp
CreERT2

 

(iKO) male mice were injected i.p. with tamoxifen and analyzed at the indicated time points (16 days, 

2, 4, 6, 8, 10, 12 and 16 months pti). (b) Genotyping PCR of DNA detects the recombined Plp
flox

 allele 

(462 bp product) after tamoxifen injection, whereas only the non-recombined Plp
flox

 allele (683 bp 

product) is observed without tamoxifen injection. (c, d) qRT-PCR to determine the abundance of Plp 

and Mbp transcripts in mouse brains. (c) Note that Plp mRNA is less abundant in iKO mice compared 

to Ctrl mice at all investigated times points (16 days, 2 and 10 months pti). (d) Note that there is no 

significant difference in Mbp mRNA abundance between Ctrl mice and iKO mice at 16 days, 2 and 

10 months pti. d=days; mo=months; pti=post tamoxifen injection; bp=base pairs; Tam=tamoxifen; 

Flox=floxed allele; Rec=Recombined allele; Cre=Cre allele; Ctrl=Control (Plp
flox/Y

 mice
 

pti); 

iKO=induced conditional knockout (Plp
flox/Y

*Plp
CreERT2 

mice pti); Mean with SEM; n=5-6; two-tailed 

unpaired t-test; p<.001 (***). 

 

6.2.2. Decline of PLP/DM20 in biochemically purified myelin fraction 

In order to analyze the decline of PLP and its smaller isoform DM20 from myelin, we 

biochemically purified a myelin fraction by sucrose-gradient centrifugation after a 

protocol adapted from Norton and Poduslo (Larocca and Norton, 2007; Norton and 

Poduslo, 1973) and measured the relative abundance of PLP and DM20 by 

immunoblotting. We observed the decline of PLP and its smaller isoform DM20 in 

myelin by an immunoblot series of this biochemically purified myelin fraction. The 

abundance of PLP and DM20 in iKO mice was compared to age-matched Ctrl mice 

at 16 days, 2, 4, 6, 8, 10, 12 and 16 months pti (Figure 16 a) and quantified (Figure 

16 b, 16 c). PLP abundance (Figure 16 b) in iKO mice declined slowly over time and 

the decline in the graph resembles a fitted exponential curve. PLP abundance in iKO 

mice reached on average a non-significantly different 91% compared to Ctrl mice at 

16 days pti and a non-significantly different 84% compared to Ctrl mice at 2 months 

pti. PLP abundance was first significantly different in iKO mice compared to Ctrl mice 

4 months pti and at all time points after. PLP abundance reached on average 63% at 

4 months, 62% at 6 months, 51% at 8 months, 53% at 10 months, 48% at 12 months 

and 43% at 16 months pti in iKO mice compared to Ctrl mice. DM20 abundance 

(Figure 16 c) in iKO mice declined slowly over time and the decline resembles a 
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fitted exponential curve just as for PLP. DM20 level in iKO mice reached on average 

a non-significantly different 91% compared to Ctrl mice at 16 days pti and a non-

significantly different 80% compared to Ctrl mice at 2 months pti. DM20 level was first 

significantly different in iKO mice compared to Ctrl mice 4 months pti and at all time 

points after. DM20 abundance reached on average 51% at 4 months, 50% at 

6 months, 36% at 8 months, 43% at 10 months, 35% at 12 months and 30% at 

16 months pti in iKO mice compared to Ctrl mice. For comparison, we measured the 

abundance of myelin basic protein (MBP), the second most abundant CNS compact 

myelin and at ATPase subunit 1a3 (ATP1a3) (Figure 16 d). Both were not 

significantly altered between Ctrl mice and iKO mice at 16 months pti (Figure 16 e, 

16 f), indicating that the amount of myelin is unaltered by the deletion of Plp and the 

reduction of PLP protein. In a gel-based myelin proteome analysis, a novel myelin 

protein, NAD+ dependent deacetylase SIRT2, was virtually absent from the myelin 

proteome of Plpnull/Y mice (Werner et al., 2007). It was thus suggested that the 

supportive effect of PLP for axons, which lacks in SPG2-modeling Plpnull/Y mice, may 

be transduced by SIRT2 by a yet unknown mechanism. We therefore quantified the 

abundance of SIRT2 in iKO and Ctrl mice by immunoblotting at 4, 8 and 16 months 

pti (Figure 16 g, 16 h). There was neither a significant difference in abundance of 

both isoforms together at 4 months pti, nor of isoform v2 at 8 months pti. There was a 

significant reduction of SIRT2 v2 at 16 months pti to 54% on average (Figure 16 g, 

16 h) and also SIRT2 v1 appeared to be lower in abundance on the immunoblot 

(Figure 16 g; not quantified).  

All in all, the abundance of PLP and DM20 in the purified myelin fraction decreased 

over time. Their decline was very slow and the decay of both proteins followed an 

exponential curve. The overall amount of myelin appeared to be unaltered, as 

indicated by the unchanged abundance of MBP at 16 months pti. The most striking 

effect of Plp-deletion on the abundance of other proteins, namely the virtual absence 

of SIRT2 (Werner et al., 2007), was also observed in iKO mice, however relatively 

late. 
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Figure 16: Turnover of PLP/DM20 in CNS myelin 

(a) PLP and its smaller isoform DM20 detected by immunoblot in purified myelin of Ctrl and iKO mice 

at time points 16 days, 2, 4, 6, 8, 10, 12 and 16 months pti. The abundance of PLP (b) and DM20 (c) 

in iKO and Ctrl myelin is plotted for all time points (normalized to mean of respective age-matched 

Ctrl). The decrease over time of both PLP and DM20 resembles a fitted exponential curve with one-

phase decay. T-test was performed for each time point individually between iKO mice and age-

matched Ctrl mice. (d) MBP and ATP1a3 appear unchanged in abundance between Ctrl mice and iKO 

mice at 16 months pti. Quantification of (e) MBP and (f) ATP1a3 abundance detects no significant 

difference between Ctrl mice and iKO mice at 16 months pti. (g, h) Abundance of SIRT2 is not 

significantly altered at 4 and 8 months post tamoxifen injection, but SIRT2 v2 is significantly reduced in 

the iKO mice 16 months pti compared to Ctrl mice at the same age. d=days; mo=months; pti=post 

tamoxifen injection; Ctrl=Control (Plp
flox/Y

); iKO=induced conditional knockout (Plp
flox/Y

*Plp
CreERT2

); 

Mean with SEM; n=3; two-tailed unpaired t-test; p<.05 (*), p<.01 (**) and p<.001 (***). 
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6.2.3. Even diminishment of PLP across the myelin sheath 

We also investigated the decline of PLP within the myelin sheath by cryo-immuno 

electron microscopy (Figure 17). PLP was labeled with immunogold particles on 

optic nerve sections from Ctrl mice and iKO mice 4 months pti. The total number of 

immunogold labeling was reduced to an average of 50% in iKO mice compared to 

Ctrl mice. In an attempt to distinguish whether PLP is degraded towards the adaxonal 

or abaxonal side of the myelin sheath, we quantified the amount of immunogold 

labeling in the inner and outer half of the compact myelin sheath in iKO mice 

compared to Ctrl mice separately. There was a similar reduction of PLP labeling in 

the inner half (55% on average; close to significance, p=0.0589) and in the outer half 

(47% on average, *, p=0.0293) of compact myelin in iKO mice compared to Ctrl mice. 

Thus, we cannot distinguish whether it is degraded towards the outside or inside of 

the myelin sheath with this approach. However, we can conclude that PLP in myelin 

has a high lateral mobility and that upon tamoxifen injection in iKO mice PLP is 

diminished in the optic nerve myelin on average to about 50% 4 months pti. Thus, it 

appears to be reduced in the optic nerve to a similar level as in the brain (PLP 62%; 

DM20 51% in iKO mice compared to Ctrl mice in purified myelin at 4 months pti; 

Figure 16 b). 
 

 

 

Figure 17: Turnover of PLP in the optic nerve by cryo-immuno electron microscopy 

(a, b) Representative images of PLP immunogold labeling in Ctrl mouse (a) and iKO mouse (b) at 

4 months pti. White arrows indicate immunogold particles. Scale bar 75 nm. (c) The number of 

immunogold particles in compact myelin in Ctrl mice and iKO mice normalized to the mean of Ctrl 

mice. (d) Same as in (c) but displayed separately for the inner and outer myelin layers. Note that in 

the inner and outer half myelin layers, immunogold labeling is reduced to a similar level. Ctrl=Control 

(Plp
flox/Y

); iKO=induced conditional knockout (Plp
flox/Y

*Plp
CreERT2

); Mean with SEM; n=3; two-tailed 

unpaired t-test; p<.05 (*). 
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6.2.4. Changes in myelin ultrastucture and axonal pathology upon 

adult deletion of Plp  

In order to analyze the ultrastructure of myelin, we used high pressure freezing 

followed by freeze substitution of optic nerves from iKO and Ctrl mice 10 months pti 

and analyzed them by electron microscopy. Some ultrastructural abnormalities of 

myelin have been described in Plpnull/Y mice (Duncan et al., 1987; Klugmann et al., 

1997; Patzig et al., 2016a). Our tamoxifen-inducible model allowed us to investigate 

whether ultrastructural abnormalities of myelin and axonopathy also develop upon 

adult depletion of PLP. 

 

Myelin pathology 

Almost all axons (about 90% on average) in Ctrl mice were surrounded by normal 

appearing myelin, whereas this was only the case for less than 20% in iKO mice 

(Figure 18 a). In contrast, the proportion of non-myelinated axons in iKO mice was 

with more than 10% significantly higher than in Ctrl mice (Figure 18 b), which has 

been similarly observed in Plpnull/Y mice (de Monasterio-Schrader et al., 2013; Yool et 

al., 2001). Furthermore myelin outfoldings (Figure 18 c), a feature of Plpnull/Y mice 

(Patzig et al., 2016a), and swollen inner tongues (myelin comprising a swollen 

adaxonal compartment) (Figure 18 d) occurred significantly more often in iKO mice 

compared to Ctrl mice. It was furthermore striking, that myelin sheaths of iKO mice 

appeared looser compared to Ctrl mice. On average 70% of axons in iKO mice were 

ensheathed by myelin profiles with lamellae splitting and/or cytosolic myelin channels 

in iKO mice, whereas this is only seen for about 10% of the axons in Ctrl mice 

(Figure 18 e).  

 

Axonal pathology 

Interestingly, we found a remarkable number of additional small axonal profiles in 

association with the inner tongue both in Ctrl mice and iKO mice. There may be a 

trend to this feature, which we called “axonal sprouting” to being more abundant in 
iKO mice (Figure 18 f). The number of myelin profiles with degenerating and 

degenerated axons was unchanged in iKO mice (Figure 18 g), as also observed in 

Plpnull/Y mice (Patzig et al., 2016a). Importantly, axonal spheroids, the most prominent 

feature of Plpnull/Y mice and SPG2 patients (de Monasterio-Schrader et al., 2013; 

Garbern et al., 2002; Griffiths et al., 1998; Werner et al., 2013) also developed in iKO 

mice. Axonal spheroids are thought to form due to a transport defect in axons and 

presumably lead to Wallerian degeneration of axons (Edgar et al., 2004b). Axonal 

spheroids were significantly increased in the optic nerve of iKO mice 10 months pti, 

while they were virtually absent in the optic nerves of Ctrl mice (Figure 18 h), 

indicating that our iKO mice model axonopathy as observed in Plpnull/Y mice (Griffiths 

et al., 1998), Plpnull/Y*CnpCre/WT mice described in chapter 6.1. (Luders et al., 2017) 

and SPG2 patients (Garbern et al., 2002).  
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Figure 18: Neuropathological features in the optic nerve upon Plp-deletion 

(a) Genotype-dependent quantification of axons with normal appearing myelin units. White arrow 

indicates an axon-myelin unit with normal appearing myelin. (b) Quantification of non-myelinated 

axons (indicated by white arrows). (c) Quantification of myelin outfoldings (indicated by white stippled 

line). Asterik indicates corresponding axon. (d) Quantification of enlarged inner tongues (myelin 

comprising a swollen adaxonal compartment - indicated by white arrow). Asterisk indicates axon. (e) 

Quantification of axons with myelin which displays lamellae splitting or myelinic channels (indicated by 

white arrow). Note that all features of myelin pathology (b-e) are significantly more frequent in iKO 

mice compared to Ctrl mice. (f) Axonal sproutings (indicated by white arrows) are present in both Ctrl 

mice and iKO mice. (g) The relative number of myelin profiles with degenerating and degenerated 

axons was unchanged between Ctrl mice and iKO mice. A degenerating axon within a myelin-profile is 

indicated by white arrow. (h) Axonal spheroids (marked by white arrow) are significantly more frequent 

in iKO mice than in Ctrl mice. None were observed in Ctrl mice. (a-e, g) Numbers of events are 

expressed as percent of the number of axons (myelinated and non-myelinated) counted on an 

1105 µm² optic nerve area of the corresponding individual animal. (f) Numbers of axons with axonal 

sproutings are expressed in percent of myelinated axons which could be evaluated for this feature on 

an 1105 µm² optic nerve area. (h) Axonal spheroids were counted on at least 18000 µm² per animal 

and are expressed as number per mm². Ctrl=Control; iKO=induced conditional knockout; Mean with 

SEM; n=3; two-tailed unpaired t-test; p<.05 (*), p<.01 (**) and p<.001 (***).  
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6.2.5. Time course of neuropathological events 

It has been suggested that the role of neuroinflammation for PMD has been 

underestimated (Marteyn and Baron-Van Evercooren, 2016) and T cells have been 

demonstrated to strongly influence axonopathy in PMD models (Groh et al., 2016; Ip 

et al., 2006; Ip et al., 2012). As we could observe axonal spheroids in the optic nerve 

at 10 months pti (chapter 6.2.4.), we concluded that neuropathology in iKO mice 

emerges with time and that iKO mice are a valuable model to better understand the 

cellular neuropathology in SPG2 by analyzing the time course of neuropathological 

events. We therefore analyzed Ctrl and iKO mice at several time points pti and 

quantified axonal spheroids, gliosis and the numbers of T cells in the brain; all of 

which have been described in SPG2-modeling Plpnull/Y mice (de Monasterio-Schrader 

et al., 2013) and Plpnull/Y*CnpCre/WT mice described in chapter 6.1. (Luders et al., 

2017). 

 

Axonal spheroids 

Amyloid precursor protein (APP) was used as a marker to detect axonal spheroids in 

Ctrl mice and iKO mice at 4, 6-8, 10 and 16 months pti (Figure 19 a-c). There was 

no difference at 4 months pti but at 6-8 months pti the number of APP+ axonal 

spheroids was significantly increased in iKO mice compared to age-matched Ctrl 

mice. At later time points the numbers of APP+ axonal spheroids increased further. 

At 10 and 16 months pti the numbers of APP spheroids were significantly increased 

on average by about 6-fold and 10-fold in iKO mice compared to age-matched Ctrl 

mice, respectively. Comparison of wild type and Plpnull/Y mice at the age of 6 months 

(Figure 19 c), confirmed significant increase of axonal spheroids observed in Plpnull/Y 

mice (Griffiths et al., 1998; Werner et al., 2013). 
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Figure 19: Axonal spheroids in the fimbria upon tamoxifen-induced Plp-deletion  

(a) Genotype-dependent quantification of axonal spheroids immunopositive for APP in the fimbria at 4, 

6-8, 10 and 16 months pti. Note that at 6-8 months pti the number of APP-immunopositive (APP+) 

axonal spheroids is increased in iKO mice compared to Ctrl mice and that their number further 

increases at later time points. (b) Representative light microscopic images immunolabeled for APP. 

Scale bar 10 µm. (c) For comparison, in fimbriae of 6-months-old Plp
null/Y

 mice the number of APP+ 

axonal spheroids is significantly increased compared to age-matched wild type mice. mo=months; 

pti=post tamoxifen injection; Ctrl=Control (Plp
flox/Y

); iKO=induced conditional knockout 

(Plp
flox/Y

*Plp
CreERT2

); APP=Amyloid precursor protein; Mean with SEM; n=3-7; two-tailed unpaired t-test; 

p<.001(***).  

 

Microgliosis and astrogliosis 

To test for activation of microglia and astrocytes, which is often observed together 

with axonal damage (Sasaki, 2016), we quantified the area of the fimbria positive for 

MAC3 (activated microglia), IBA1 (microglia) and GFAP (astrocytes) at 4, 10 and 

16 months pti (Figure 20). At 4 months pti, before the onset of axonal spheroids 

(Figure 19 a), there was no significant difference in any of the three markers 

between the genotypes (Figure 20 a, 20 d, 20 g). At 6-8 months pti, when the 

numbers of axonal spheroids were significantly increased, all three markers were 

significantly increased in iKO mice compared to Ctrl mice (Figure 20 a, 20 d, 20 g). 

There was a non-significant trend towards increase of IBA1 and GFAP and a 

significant increase of MAC3 in iKO mice at 10 months pti and significant increase of 

all three markers at 16 months pti (Figure 20 a, 20 d, 20 g). Thus, microgliosis and 

astrogliosis were detectable at the same time as increased numbers of axonal 

spheroids in our model (6-8 months pti). We note that at this time (6-8 months pti) on 

average about 50% of the PLP from the brain was depleted (Figure 16; chapter 

6.2.2). 
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Figure 20: Microglial activation and astrogliosis upon tamoxifen-induced Plp-deletion 
(a, d, g) Genotype-dependent quantification of the relative area of the hippocampal fimbria 

immunopositive for the microglial markers MAC3 (a) and IBA1 (d) and immunopositive for GFAP to 

detect astrocytes (g) at 4, 6-8, 10 and 16 months pti. (b, e, h) Representative light microscopic images 

of the hippocampal fimbria immunolabeled for IBA1 (b), MAC3 (e) and GFAP (h) in Ctrl mice and iKO 

mice at 16 months pti. Scale bar 10 µm. (c, f, i) Quantification of the relative area of the hippocampal 

fimbria immunopositive for IBA1 (c), MAC3 (f) and GFAP (i) in 6-months-old wild type and Plp
null/Y

 

mice. Note that the area immunopositive for all three markers is increased in Plp
null/Y

 mice compared to 

wild type mice and in iKO mice compared to Ctrl mice at 6-8 mo and 16 mo pti. mo=months; pti=post 

tamoxifen injection; Ctrl=Control (Plp
flox/Y

); iKO=induced conditional knockout (Plp
flox/Y

*Plp
CreERT2

); 

IBA1=allograft-inflammatory factor (AIF1/IBA1); MAC3=lysosomal-associated membrane protein 2 

(LAMP2/MAC3); GFAP=glial fibrillary acidic protein; Mean with SEM; n=3-7; two-tailed unpaired t-test; 

p<.01(**) and p<.001(***). 

 

CD3-immunopositive T cells 

To better understand their potential contribution to the disease course in SPG2, we 

also analyzed the number of T cells in the fimbria at 4, 6-8, 10 and 16 months pti. As 

the role of the immune system has been proposed to be underestimated in PMD 

(Marteyn and Baron-Van Evercooren, 2016) and T cells have been shown to play a 

detrimental role for axonal pathology in the Plptransgenic-overexpressor mouse model of 

PMD (Ip et al., 2006; Ip et al., 2012) and the Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W 

transgenic mouse models of PMD caused by missense mutations (Groh et al., 2016) 

we wanted to test when and which type of T cells emerge in our iKO model for SPG2. 

Therefore, the T cell marker CD3 was used and CD3-immunopositive (CD3+) T cells 

in the fimbria were counted. There was no significant difference between Ctrl mice 
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and iKO mice at 4 and 6-8 months pti. At 10 months pti there was a significant 

increase and at 16 months pti a stronger significant increase in T cell number in iKO 

mice compared to Ctrl mice (Figure 21 a). Thus, by 16 months pti the full spectrum of 

neuropathology observed in Plpnull/Y mice (de Monasterio-Schrader et al., 2013) 

including axonal spheroids (Figure 19 a), microglial (Figure 20 a, 20 d) and 

astroglial (Figure 20 g) activation and increased numbers of T cells (Figure 21 a) 

was observed in iKO mice. Importantly axonal spheroids, microgliosis and 

astrogliosis were apparent earlier than increased numbers of T cells were detectable, 

i.e. already at 6-8 months pti (Figure 19 a, 20 a, 20 d, 20 g).  

 

6.2.6. Flow cytometric characterization of immune cells 

In order to characterize inflammatory cells in more detail, we performed multicolor 

flow cytrometry in collaboration with Dr. Stefan Nessler (Department of 

Neuropathology, UMG Göttingen). Cells from whole mouse brains (12-17 months pti) 

were isolated, immunolabeled and separated by FACS (Fluorescence-activated cell 

sorting). Density plots of cells positive for the markers CD45 or CD11b demonstrate 

that microglia/macrophages are visibly more numerous in iKO mice compared to Ctrl 

mice (Figure 21 d). Indeed, microglia (CD45int CD11b+) are significantly more 

abundant in iKO mice (Figure 21 f), supporting the quantification of MAC3 staining in 

the fimbria (Figure 20 a). In addition, CD3+ T cells are significantly more numerous 

in iKO mice (Figure 21 e), supporting the quantification of immunohistochemical 

CD3+ T cell stainings in the fimbria (Figure 21 a). To analyze which kind of T cells 

are observed in our model, we qantified CD4+ and CD8+ T cells. CD8+ cells are the 

dominant T cell population in both Ctrl mice and iKO mice (Figure 21 g). Both CD4+ 

cells (upper left quadrant) and CD8+ T cells (lower right quadrant) are more 

numerous in iKO mice compared to Ctrl mice. Quantification shows that the increase 

in CD8+ T cell number in iKO mice is significant (Figure 21 h) whereas there is no 

significant difference in the number of CD4+ T cells (Figure 21 i). Therefore, it seems 

that CD8+ T cells play a more relevant role in the pathology of SPG2. Among the 

different subtypes of CD4+ T cells, we also regarded FoxP3-positive regulatory T 

cells (Tregs). Tregs suppress the function and the proliferation of conventional CD4+ 

and CD8+ T cells/effector T cells (Mancusi et al., 2018) and thereby may exert a 

neuroprotective effect. The number of Tregs was not significantly altered in iKO mice 

and overall their abundance is relatively low in both genotypes (Figure 21 k). There 

was no difference in the low abundance of B cells between iKO mice and Ctrl mice 

(Figure 21 l).  
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Figure 21: Density and markers of T cells after tamoxifen-induced Plp-deletion 
(a) Genotype-dependent quantification of the number of CD3-immunopositive (CD3+) T cells in the 

fimbria at 4, 6-8, 10 and 16 months pti. Note that at 10 and 16 months pti CD3+ T cell numbers are 

significantly increased in iKO mice compared to Ctrl mice. (b) Representative light microscopic images 

of the hippocampal fimbria immunolabeled for CD3 to detect T cells in Ctrl mice and iKO mice 

16 months pti. Scale bar 10 µm. (c) Quantification of CD3+ T cells in the fimbria of 6-months-old 

Plp
null/Y

 and wild type mice. Mean with SEM; n=3-10; two-tailed unpaired t-test; p<.05(*), p<.01(**) (d) 

FACS analysis of cells isolated from brains of Ctrl mice and iKO mice 12-17 months pti. 

Representative CD45 and CD11b flow cytrometry dot plots with microglial cells (CD45
int

 CD11b+) 

depicted in grey boxes. (e, f) Quantification of CD3+ T cells (e) and CD45
int

 CD11b+ microglial cells 

(f), which are significantly more frequent in iKO mice compared to Ctrl mice. (g) CD8+ T cells are the 

dominant brain T cell subset and their numbers are significantly increased in iKO mice compared to 

Ctrl mice (h). Numbers of CD4+ cells (i), FoxP3+ Treg cells (k) and B cells (l) are not significantly 

changed in iKO mice compared to Ctrl mice. mo=months; pti=post tamoxifen injection; Ctrl=Control 

(Plp
flox/Y

); iKO=induced conditional knockout (Plp
flox/Y

*Plp
CreERT2

); FACS=Fluorescence-activated cell 

sorting; cpb=cells per brain; CD=Cluster of differentiation; CD3=Cluster of differentiation 3 (marker for 

T cells); Mean with SEM; n=7-10 two-tailed unpaired t-test; p<.05 (*). 
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To sum up, our analysis showed that upon deletion of Plp in adult mice, axonal 

spheroids develop not only in the optic nerve (Figure 18 h), but also in the fimbria 

(Figure 19). Additionally, we quantified microgliosis, astrogliosis and the numbers of 

T cells and found that all of these were significantly increased over time upon adult 

deletion of Plp. We thus confirmed with a further technique that not only in the optic 

nerve (Figure 18) but also in a white matter tract of the brain, i.e. the fimbria 

(Figure 19, 20, 21), the full spectrum of neuropathological disease develops, as 

described in SPG2-modeling Plpnull/Y mice (de Monasterio-Schrader et al., 2013) and 

Plpnull/Y*CnpCre/WT mice described in chapter 6.1. (Luders et al., 2017). Thus, our iKO 

mice can be considered a model for SPG2. This model shows that PLP is crucial for 

axonal integrity in the adult mouse. Furthermore, we gained insight on the time 

course of neuropathological events after adult deletion of Plp. We observed a 

significantly increased number of axonal spheroids, microglia and astrocytes in the 

fimbria of iKO mice compared to Ctrl mice as early as 6-8 months pti (Figure 19). T 

cell numbers in the fimbria were significantly increased two months later (10 months 

pti). Moreover, we found that CD8+ T cell numbers were significantly increased, 

whereas the numbers of CD4+ T cells and Treg cells were not significantly altered. 



Discussion 

87 

 

7. Discussion 

Correct interaction between neurons and glial cells is crucial for normal functioning of 

the nervous system. Accumulating evidence for neuronal expression of Plp (see 

Table 1) has led to the hypothesis that neuronal dysfunctions in SPG2 patients and 

respective mouse models may be caused by lack of neuronal Plp expression rather 

than a lack of PLP from oligodendrocytes (Fulton et al., 2011; Jacobs et al., 2003; 

Sarret et al., 2010). By establishing and analyzing cell type-specific Plp knockout 

mice, we determined that the cause of neuropathological features typical for SPG2 is 

the lack of PLP from oligodendrocytes and thereby support the concept that 

oligodendroglial support is crucial for axonal maintenance. Furthermore, we 

investigated the order of pathological events, including axonopathy and 

neuroinflammation, upon tamoxifen-induced deletion of Plp and conclude that 

axonopathy initially develops independent from infiltration of T cells in this model. 

Interestingly, axonal spheroids and gliosis were already detected when the PLP level 

in CNS myelin was reduced to about 50% compared to Ctrl mice. 

 

7.1. Support for the concept of glia-dependent axonal integrity 

The main pathologic feature in SPG2 patients and the corresponding Plpnull/Y mouse 

model is the length-dependent degeneration of axons (de Monasterio-Schrader et al., 

2013; Edgar et al., 2004b; Garbern et al., 2002; Griffiths et al., 1998; Gruenenfelder 

et al., 2011; Petit et al., 2014). Although widely regarded as an oligodendrocyte 

specific protein, a number of studies have reported expression of Plp in a subset of 

neurons and suggested that the neuronal loss or dysfunction of PLP may be the 

primary cause for axonal degeneration in SPG2 or other PLP-related disorders 

(Fulton et al., 2011; Jacobs et al., 2003; Sarret et al., 2010); see Table 1. To test this 

hypothesis, we have specifically deleted Plp in oligodendrocytes and neurons by cell 

type-specific Cre-mediated recombination of the Plp gene. We observed that 

neuronal Plp expression appers to be dispensable for axonal integrity, whereas 

recombination of the Plp gene in oligodendrocytes causes the full spectrum of 

pathology observed in Plpnull/Y mice (de Monasterio-Schrader et al., 2013), including 

axonal spheroids, microgliosis, astrogliosis and inflitration of T cells. We have thus 

created a novel cell-type specific model for SPG2 and our results support the 

concept that oligodendroglial support is essential for axonal integrity. Conversely, 

neuronal Plp expression appears to be dispensable for a healthy nervous system. 

It is thus very likely that axonal pathology is also caused by the failure of 

oligodendrocytes to properly support axons in SPG35 and SPG44, in which 

expression of the causative genes FA2H and GJC2/CX47 is restricted to the 

oligodendroglial lineage in the CNS according to (Zhang et al., 2014) (Figure 1). In 

other forms of HSP the causative genes are not resticted to oligodendrocytes but 

expressed in several cell types including neurons. Respective proteins are implicated 
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in functions such as membrane-trafficking or microtubule-associated transport 

(Salinas et al., 2008). These functions are probably disturbed in neurons and it is 

likely that impairment of axonal transport leads to axonal degeneration in SPG2. This 

is likely as especially long axons are affected (Edgar et al., 2004b; Garbern et al., 

2002) and long axons are most likely to degenerate upon transport defects (Nave, 

2010).Transport defects may emerge due to dysfunctions in neurons themselves, but 

they may also emerge due to impaired glia-axonal interaction (Funfschilling et al., 

2012; Nave, 2010). Thus, it cannot be ruled out that dysfunction of oligodendrocytes 

or other glial cells also plays a role in the emergence and progression of further HSP 

types than previously assumed. This becomes even more likely when considering 

that oligodendrocytes have recently been implicated in classical neurodegenerative 

diseases such as Rett syndrome (Nguyen et al., 2013), amyotrophic lateral sclerosis 

(Kang et al., 2013) and Down syndrome (Olmos-Serrano et al., 2016). Analysis of 

models with cell type-specific mutations would be required to determine the exact 

contributions of individual cell types to the pathobiology of any neurodegenerative 

disorder.  

 

7.2. Why may PLP-deficient oligodendrocytes fail to support axons 

We have shown that depletion of PLP in oligodendrocytes leads to axonal pathology 

as observed in Plpnull/Y mice and SPG2 patients (Garbern et al., 2002; Griffiths et al., 

1998). However, the mechanisms how Plp gene mutations lead to axonal pathology 

have only been partly resolved. There are some changes in the biogenesis, 

ultrastructure and composition of PLP-deficient myelin, which we – as far as 

investigated – also observed in PLP-deficient mice in this study. Thus, the Plp gene 

may influence axonal survival indirectly, for example by abnormal formation of myelin 

sheaths. Cytosolic channels and enlarged inner tongues, which we quantified for the 

first time in a PLP-deficient mouse model, support the concept that trophic support by 

oligodendrocytes may be altered in PLP-deficient mice. 

 

7.2.1. Ultrastructural changes in PLP-deficient myelin  

Moderate structural abnormalities, i.e. condensed intraperiod lines are observed in 

compact myelin devoid of PLP in mice (Klugmann et al., 1997; Mobius et al., 2008) 

and rats (Duncan et al., 1987) and PLP is thus viewed as a “molecular strut” to 

stabilize compact myelin at the intraperiod lines. PLP helps to enrich cholesterol in 

the compact myelin, by associating with it in the secretory pathway. PLP-deficient 

mice display less cholesterol, but yet enough to form compact myelin, as the 

cholesterol-sequestering function of PLP can be partly compensated by another 

proteolipid M6B (Werner et al., 2013). Further changes in the molecular composition 

of myelin deficient of PLP include for example a reduction of septins and the virtual 

absence of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase 
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sirtuin 2 (SIRT2) (Werner et al., 2007). Septins form longitudinal filaments in the 

adaxonal compartment of mature CNS myelin and thereby stabilize the compact 

myelin and prevent the formation of myelin outfoldings (Patzig et al., 2016a), another 

structural feature of Plpnull/Y mice, which also developed after tamoxifen-induced 

deletion of Plp in this study. Yet, it is unclear if and how alterations in the intraperiod 

line, cholesterol content or outfdoldings would lead to axonal degeneration. 

Implications of SIRT2 will be adressed in chapter 7.2.2. In vitro experiments 

furthermore suggested that products of the Plp gene may modulate oligodendrocyte-

dependent axonal survival directly (Boucher et al., 2002).  

 

7.2.2. A potential role of the deacetylase SIRT2? 

Sirtuin enzymes are expressed by different tissues and cell types and are involved in 

various biological processes including aging, inflammation, apoptosis and cellular 

metabolism (Michan and Sinclair, 2007; Yang et al., 2000). In the CNS SIRT2 is 

expressed by various cell types, including oligodendrocytes, where it has been 

observed in the cytoplasm, in compacted and non-compacted myelin by cryo-

immuno electron microscopy (Li et al., 2007; Werner et al., 2007). Since the 

deacetylase SIRT2 was the only protein virutally absent in the myelin proteome of 

Plpnull/Y mice, it was suggested that PLP may exert a supportive function for axons via 

SIRT2 (Werner et al., 2007). The function of SIRT2 is yet not understood, possible 

targets include transcription factors, alpha-tubulin, Glycogen synthase kinase 3 and 

histones (Bao et al., 2014; North et al., 2003; Sarikhani et al., 2018; Snider et al., 

2013; Vaquero et al., 2006; Wang et al., 2007; Wang and Tong, 2009). Similar to 

Plpnull/Y mice, in which myelin is virtually devoid of SIRT2 (Werner et al., 2007) we 

also observed a decrease of SIRT2 in myelin by immunobloting experiments upon 

adult deletion of PLP. It is surprising that both isoforms of SIRT2 appear reduced in 

our model (at least at 16 months pti) since only isoform v2 is enriched in myelin 

(Werner et al., 2007). In Plpnull/Y mice only isoform v2 was virtually absent, and v1 

was unaltered in abundance. Furthermore, it was surprising that the decrease of 

SIRT2 appeared relatively late, i.e. at 16 months pti. PLP is required for the transport 

of SIRT2 into the myelin compartment (Werner et al., 2013; Zhu et al., 2012) and the 

turnover of SIRT2 is even faster than the turnover of PLP (Toyama et al., 2013). 

Maybe the transport of SIRT2 into the myelin compartment only breaks down after 

PLP falls below a certain a “threshold”. Hypothetically, if a vesicular pool of PLP is 

responsible for transporting SIRT2 into compact myelin, this should be exhausted 

quickly upon Plp-deletion. If there is a “cirulating pool” of PLP, i.e. vesicles with PLP 

budded from the compact myelin are send out to sequester SIRT2, the idea of a PLP 

“threshold” needed for transport of SIRT2 into compact myelin would be more 

plausible. Altogether the observation that decrease of SIRT2 was only evident 

months after the onset of axonal degeneration implies that PLP exerts its protective 

function for axons independent from SIRT2 in agreement with unpublished genetic 

studies (Kusch et al., unpublished studies). 
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7.2.3. Potential adhesive function of PLP may be lost 

In high pressure frozen optic nerves of PLP-deficient mice (10 months pti), we 

observed a high number of myelin profiles with lamellae splitting. PLP is not a 

classical adhesion protein, yet adhesive properties of PLP are under debate. So far, 

mild adhesive properties of PLP have been observed at least in vitro (Bakhti et al., 

2013; Bizzozero et al., 2001; Bizzozero and Howard, 2002), but in-vivo proof has 

remained problematic due to aretefacts of conventional aldehyde fixation (Mobius et 

al., 2008). Conventional fixation of samples for electron microscopy is based on 

fixation with aldehydes, which stabilizes tissue by connecting proteins with each 

other. Since in Plpnull/Y mice, the most abundant compact myelin protein PLP is 

lacking, aldehyde fixation cannot stabilize the tissue of Plpnull/Y mice to the same 

extent as in wildtype mice, which makes lamellae prone to split. Lamellae splitting in 

conventional aldehyde fixed optic nerves of Plpnull/Y mice has thus rather been 

attributed to non-optimal fixation of the tissue due to the lack of PLP protein in the 

myelin (Mobius et al., 2008). To circumvent this problem protocols to improve 

ultrastructual preservation of myelin by cryofixation, i.e. high pressure freezing and 

freeze substitution, have been developed - reviewed by (Mobius, 2009). By rapidly 

freezing tissue, cross-linking of proteins is not needed; only actual adhesive 

properties within the tissue play a role for its preservation. Upon careful tissue 

handling, split myelin lamellae were not obvious in high pressure frozen optic nerves 

of Plpnull/Y mice in (Mobius, 2009). In our analyisis, we observed a higher number of 

myelin profiles with lamellae splitting in PLP-deficient mice. This is probably due to a 

reduced adhesion of lamellae in the PLP-deficient mice, which results in easy 

splitting upon not quite optimal handling. In this study we provide the first 

quantification of lamellae splitting and cytosolic channels in myelin on high pressure 

frozen optic nerves of PLP-deficient mice. Our results suggest that lamellae splitting 

may indeed indicate an adhesive function of PLP in vivo, as suggested from in vitro 

experiments (Bakhti et al., 2013; Bizzozero et al., 2001; Bizzozero and Howard, 

2002). The lack of an adhesive PLP function may be responsible for the presence of 

more cytosolic channels through PLP-deficient myelin.  

 

7.2.4. Indications for impaired trophic support 

Besides splitting of lamellae, we also observed cytosolic channels in the compact 

myelin sheath and more enlarged inner tongue processes in high pressure frozen 

optic nerves of iKO mice (10 months pti). The inner tongue is the most distal process 

of the oligodendrocyte. Together with the non-compacted adaxonal and abaxonal 

myelin compartment and paranodal loops it forms a cytoplasm-filled continuum with 

the olidogendrocyte soma (Ransom et al., 1991) and may provide a compartment for 

direct communication between axon and oligodendrocyte. Cytosolic channels may 

provide a cytoplasmic route through the compact myelin sheath, mainly during 

development. They are stabilized by CNP, which counteracts membrane compaction 
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by MBP (Snaidero and Simons, 2017) and a large fraction of them disappears by 

postnatal day 21 (Snaidero et al., 2014). Recently, cytosolic channels have been 

illustrated in high pressure frozen optic nerves of adult Plpnull/Y mice (Mobius et al., 

2016). The channels have probably not been so well visible in tissue of Plpnull/Y mice 

by previous conventional aldehyde fixation. In our analysis, cytosolic channels were 

not always distinguishable from lamellae splitting and often both features appeared 

together in the same myelin sheath, so both features were quantified together. As a 

result, our analysis does not provide ultimate proof but suggests that formation of 

cytosolic channels may be increased in PLP-deficient mice. They occurred in 

different sizes and were sometimes filled with organelles. It may be possible that they 

occur in PLP-deficient mice due to the lack of an adhesive function of PLP (chapter 

7.2.3.). In the PNS cytoplasmic channels, i.e. Schmidt-Lantermann incisures, 

probably provide transport routes for vesicles and molecules through compact 

myelin, e.g. to the adaxonal myelin layer (Nave and Werner, 2014). Similarly, 

cytoplasm-rich channels in the CNS may connect the oligodendroglial cell body with 

the inner adaxonal tongue of myelin. It is likely that in the CNS the presence of 

cytosolic channels affects the intracellular transport routes between oligodendroglial 

cell body and the inner tongue of myelin and thus the transport of small metabolites 

that are exchanged between oligodendrocytes and axons, thereby providing trophic 

support (Frühbeis et al., 2013; Funfschilling et al., 2012; Lee et al., 2012; Nave, 

2010; Nave and Werner, 2014; Snaidero et al., 2017). In this study, we also 

quantified for the first time the number of enlarged cytoplasm-filled inner tongues in a 

PLP-deficient mouse model. Our observation that enlarged inner tongues were were 

more numerous in PLP-deficient mice, may be an indication for impaired import or 

export of molecules at the glia-axonal contract site in PLP-deficient mice. Together, 

higher abundance of cytoplasmic channels and enlarged inner tongues may reflect 

an altered transport or exchange of molecules to trophically support axons at the 

internode.  

 

7.2.5. Lack of trophic support may cause axonal degeneration 

In order to maintain the ionic potential needed for transmission of action potentials 

along axons (Na++K+) ATPases, which are present along the entire internodal 

membrane (McGrail et al., 1991; Young et al., 2008), exchange Na+ and K+ ions and 

thereby consume ATP. It is unlikely that ATP is produced by glycolysis along the 

entire length of an axon. Since glycolyic enzymes move by slow anterograde axonal 

transport (Brady and Lasek, 1981; Oblinger et al., 1988), they would probably be 

completely degraded by the time it would take them to reach the distal end of a 1 m 

long axon for example (Nave, 2010). In order to reach their high energy demands, 

axons probably rely on energy supply, yet the surface of myelinated axons is largely 

isolated from metabolic exchange with the extracellular milieu. Metabolic coupling of 

oligodendrocytes and axons may be a mechanism to counteract the isolation of 

myelinated axonal stretches to the extracellular milieu (Funfschilling et al., 2012; Lee 



Discussion 

92 

 

et al., 2012; Nave, 2010; Nave and Werner, 2014). According to the model in 

(Funfschilling et al., 2012) oligodendrocytes import glucose through 

glucose 1 transporters (GLUT1) and possibly via astrocytes, and metabolize it by 

glycolysis. The produced lactate/ pyruvate may be transported to the myelinated 

axon via monocarboxylic acid transporters (MCT1, MCT2) and this can be used for 

energy production, i.e. ATP in axonal mitochondria. (Lee et al., 2012) support this 

concept by demonstrating that disruption of the oligodendrocytic MCT1 transporter 

leads to axonal damage and neuron loss. 

Another way how oligodendrocytes may directly support axons could be a signal-

mediated transfer of exosomes from oligodendrocytes to neurons. (Frühbeis et al., 

2013) show that oligodendrocytes secrete exosomes upon stimulation by the 

neurotransmitter glutamate. These exosomes carry specific protein and RNA cargo 

and can be retrieved by neurons in vivo. Since the viability of neurons cultured under 

stressed conditions is improved when they are supplied with oligodendroglial 

exosomes, the study suggests that oligodendroglial exosomes contribute to neuronal 

integrity.  

Impaired trophic support by oligodendrocytes may lead to reduced ATP levels in 

myelinated axons (Trevisiol et al., 2017), damage axonal mitochondria (Yin et al., 

2016) and impair fast anterograde and retrograde axonal transport, which requires 

ATP (Gibbs et al., 2015). Impaired axonal transport in Plpnull/Y mice (Edgar et al., 

2004b) may ultimately lead to accumulation of organelles and vesicles similar to a 

“traffic jam” so that axonal spheroids are formed (Garbern et al., 2002; Griffiths et al., 

1998; Gruenenfelder et al., 2011).  

 

7.2.6. How trophic support by PLP-depleted oligodendrocytes is 

impaired remains to be determined 

Impaired metabolic axonal support by PLP-depleted oligodendrocytes may lead to 

the formation of axonal spheroids. Yet, it is unclear whether and how exactly 

increased numbers of cytosolic channels and enlarged inner tongues in 

oligodendrocytes relate to impaired metabolic support by oligodendrocytes. 

Increased numbers of cytosolic channels and enlarged inner tongues may result from 

a “traffic jam” of metabolites, which cannot be properly passed on to axons via MCT1 

and MCT2 transporters. Increased numbers of cytosolic channels and enlarged inner 

tongues may also be indicative of increased transport of trophic molecules within 

myelin, which could be an attempt of oligodendrocytes to compensate impaired 

axonal energy homeostasis. Also the abundance of MCT1 is increased in Plpnull/Y 

mice (Kathrin Kusch, unpublished data), indicading that transport of metabolites may 

be impaired. Yet it is unclear, why and how axonal energy homeostasis may be 

impaired in Plpnull/Y mice. Our study implies that axonal energy homeostasis is not 

impaired due to potential lack of PLP from neurons, since we observed that lack of 
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PLP from neurons alone does not cause neuropathology. Hypothetically, the myelin 

sheath may become leaky to ions due to the lack of PLP and thus axons may have a 

higher ATP demand to keep up their resting potential. Thus, oligodendrocytes may 

try to compensate for this higher energy demand by increasing the number of 

cytosolic channels, the size of their inner tongues and the number of MCT1 

transporters. Yet, the exact mechanisms how trophic support may be impaired in 

Plpnull/Y mice is not resolved. 

 

7.3. PLP is needed for axonal maintenance in the adult mouse 

It may be hypothesized that in Plpnull/Y mice the maturation of myelin is impaired, and 

that impaired axonal support may result from incompletely matured myelin or maybe 

even a developmental impairment of oligodendrocytes. PLP-deficiency has 

consequences to oligodendrocyte progenitor cells (OPC), i.e. an impairment of OPC 

migration (Harlow et al., 2015) and length and orientation of their processes (Harlow 

et al., 2014) has been observed during remyelination. PLP is not essential for the 

formation of myelin in general (Klugmann et al., 1997) but some small diameter 

axons fail to be myelinated in PLP-deficient mice (de Monasterio-Schrader et al., 

2013; Yool et al., 2001), thus PLP-deficiency may already have some consequences 

early, i.e. on migration of OPCs and myelination of small caliber axons. Furthermore, 

ultrastrucutral changes and changes in protein composition (chapter 7.2.1.) may 

result from impaired myelin maturation due to the lack of PLP. However, we 

observed that the same axonal pathology, neuroinflammation and ultrastructural 

changes of myelin observed in Plpnull/Y mice developed after we deleted Plp at the 

age of 8 weeks, i.e. after successful formation of myelin. This suggests that PLP is 

not only needed for development and establishment of mature myelin, but also 

serves a function for long term maintenance in adult mice.  

 

7.4. Does instable myelin favor the emergence of axonal 

sproutings? 

In high pressure frozen optic nerves, we observed some myelin profiles with 

additional axonal segments, to which we refered to as axonal sproutings. We do not 

know their function or exact three-dimensinal structure. We think of these sproutings 

as “fingers” that may be emerging from the initially myelinated axon and extend 

below its myelin sheath. We did not observe a significant difference, but since there 

may be a trend to this feature being more abundant in iKO mice. It is tempting to 

hypothesize that unstable myelin may favor the emergence of these sproutings and 

that these may contribute to a metabolic imbalance. But so far this is speculative and 

more detailed analysis and quantification of further mouse models with potentially 

unstable myelin, e.g. Plpnull/Y mice (Klugmann et al., 1997), Cnpnull mice (Lappe-

Siefke et al., 2003), Magnull mice (Li et al., 1994) and shiverer mice lacking MBP 
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(Rosenbluth, 1980) would need to be done to investigate this hypothsis. 3D electron 

microscopy would allow to determine the actual shape of these sproutings. 

Alternatively, rather than “finger-like” extensions from one axon, an alternative 

hypothesis may be that several axons are myelinated by one myelin sheath. In this 

study, we note axonal sproutings as an interesting observation with potential for 

future evaluation. 

 

7.5. Implications of neuroinflammation 

Besides axonal pathology, neuroinflammation, i.e. gliosis and increased numbers of 

T cells have also been observed in PMD models (Groh et al., 2016; Ip et al., 2006; Ip 

et al., 2012) and SPG2-modeling Plpnull/Y mice (de Monasterio-Schrader et al., 2013) 

and Plpnull/Y*CnpCre/WT mice analyzed in chapter 6.1 (Luders et al., 2017). Yet, the 

precise molecular trigger as well as the exact role of neuroinflammation in 

SPG2/PMD disorders are not well understood. Immune cells may be modulated by 

axonal pathology as well as by oligodendroglial molecules (Zeis et al., 2016). Axonal 

damage and microglial activation may occur in association with but also independent 

from increased numbers of T cells (Ransohoff and Brown, 2012; Waisman et al., 

2015). Gliosis may also occur independent of evident axonal pathology and vice 

versa low-grade gliosis is not necessarily detrimental to axons or myelin, as seen in 

mice lacking the myelin protein tetraspanin-2 (de Monasterio-Schrader et al., 2013). 

In order to better understand a potential contribution of neuroinflammation to the 

axonopathy in SPG2, we observed the emergence of pathology over time upon 

deletion of Plp in adult mice by tamoxifen injection. 

 

7.5.1. Microgliosis and astrogliosis accompany the initial formation 

of axonal spheroids 

When we deleted Plp at the age of 8 weeks by tamoxifen injection and analyzed the 

emergence of pathology over time, we found significantly more axonal spheroids, 

microgliosis and astrogliosis by 6-8 months pti. The number of T cells was not 

increased at this time point, but increased two months later, i.e. by 10 months pti. 

This suggests that astrocytes and microglia, but not T cells may be involved in the 

initial formation of axonal spheroids. We cannot distinguish whether the increase of 

microglia and astroglia is a consequence of axonal pathology or whether they take an 

active part in this process. Microglia may damage axons, by releasing glutamate, 

TNF-alpha, nitrogen species or reactive oxygen species, which are highly neurotoxic 

(Gonzalez and Pacheco, 2014), yet they may also have neuroprotective effects for 

example against excitotoxicity (Mitrasinovic et al., 2005). Microglia may activate 

astrocytes (Liddelow and Barres, 2017) and there is astrocyte-dependent recruitment 

or activation of microglia in the diseased brain (Jo et al., 2017; Skripuletz et al., 

2013), so the role of microglia and astrocytes for formation of axonal spheroids 

remains so far elusive in our model.  
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7.5.2. T cells do not explain neuropathology to its full extent 

The observation that a significant number of axonal spheroids, as well as astrogliosis 

and microgliosis were apparent before the numbers of T cells increased, suggests 

that T cells are initially not responsible for axonal damage but develop as a 

secondary pathology. Also in Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mice 

crossed to Rag1null/null mice for depletion of T and B cells, axonal spheroids were 

ameliorated, but still observed at a significantly higher level than in wildtype mice 

(Groh et al., 2016), which also indicated that T cells do not explain axonal pathology 

to its full extent. Likewise, in Plptransgenic-overexpressor mice crossed to Rag1null/null mice for 

depletion of T and B cells, axonal pathology was strongly reduced, but not completely 

abolished (Groh et al., 2016; Ip et al., 2006; Ip et al., 2012). Overall this suggests that 

in our iKO mice as well as in Plptransgenic-overexpressor mice and Plpnull/Y*PLPL30R and 

Plpnull/Y*PLPR137W transgenic mice, there is a mechanism leading to axonal spheroids 

that is independent from the infiltration of T cells. Such a mechanism may, for 

example, be the lack of metabolic support from dysfunctional oligodendrocytes, as 

discussed above (chapter 7.2.) yet the exact mechanism is not fully understood. 

 

7.5.3. T cells may amplify neuropathology as a secondary effect  

At the time when T cell numbers started to increase in iKO mice (10 months pti) also 

a strong increase of axonal spheroids was observed, indicating that the infiltration of 

T cells may amplify axonal pathology. Studies of (Groh et al., 2016; Ip et al., 2006; Ip 

et al., 2012) imply a very strong implication of T cells for axonal pathology in PMD 

models. Signs of axonal pathology as well as demyelination were strongly alleviated 

when the PMD modeling Plptransgenic-overexpressor mice were crossed to Rag1null/null mice 

to genetically deplete T and B cells (Ip et al., 2006). Depletion of T and B cells also 

ameliorated axonal transport in the same model (Ip et al., 2012). Likewise, crossing 

Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mice to Rag1null/null mice to 

genetically deplete T and B cells, resulted in reduced numbers of axonal spheroids, 

as well as ameliorated retrograde axonal transport, reduced demyelination, neuronal 

loss and brain atrophy (Groh et al., 2016). In contrast, all these features were 

aggravated when the impact of the adaptive immune system was amplified by 

crossing Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mice to Pd1null/null mice, 

indicating that T cells play an important role for the patholgy in these models (Groh et 

al., 2016). It needs to be highlighted that the pathology of Plptransgenic-overexpressor mice 

and the Plpnull/Y*PLPL30R and Plpnull/Y*PLPR137W transgenic mice is more severe than 

in PLP-depleted mice in our study and also involves demyelination. Therefore, T cells 

may influence axonal pathology by different mechanisms and to a different extent in 

different models. According to our data, T cells may also amplify axonopathy in PLP-

deficient mice as a secondary effect.  
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7.5.4. Which T cell type is involved in the pathology of SPG2  

In order to distinguish between different T cell types, we subjected brain cells from 

iKO mice and Ctrl mice to FACS analysis. We found that the number of CD8+ T cells 

was significantly increased in the brains of iKO mice 12-17 months pti, whereas there 

was no significant difference of CD4+ or Treg cells. CD8+ T cells are important 

components of the immune defense. They can selectively kill infected or damaged 

cells (Lord et al., 2003) and are also referred to as cytotoxic T cells (Sobottka et al., 

2009) or T effector cells (Groh and Martini, 2017). CD4+ T cells infiltrate the CNS in 

many neurodegenerative disorders and may influence neuronal damage (Gonzalez 

and Pacheco, 2014). Treg cells are a subtype of CD4+ T cells. They can suppress the 

function and the proliferation of conventional CD4+ and CD8+ T cells (Mancusi et al., 

2018) and thereby may exert a neuroprotective effect. Our observation that only the 

numbers of CD8+ T cells, but not of CD4+ cells and Treg cells, are significantly 

increased in iKO mice, also matches observations in a study regarding the role of 

T cells in Plptransgenic-overexpressor mice modeling PMD (Ip et al., 2006). T cells were 

ablated from Plptransgenic-overexpressor mice by crossing them with Rag1null/null mice. In 

these Plptransgenic-overexpressor *Rag1null/null mice the phenotype of Plptransgenic-overexpressor 

mice was ameliorated, i.e. there were fewer demyelinated axons and fewer signs of 

axonal degeneration. Bone marrow transplantation of CD8+ but not CD4+ Tcells 

reverted the ameliorating effect of T cell ablation. Thus, CD8+ T cells promote 

neurodegeneration in Plptransgenic-overexpressor mice, and they can do so in the absence 

of CD4+ T cells. Similarly, in our PLP-depleted mice, CD8+ T cells may exert a 

secondary effect by amplifying neuropathology.  

 

7.5.5. How could CD8+ T cells damage axons? 

There are different hypotheses how CD8+ T cells may lead to axonal damage. In 

Plptransgenic-overexpressor mice immunofluorescence staining showed that CD8+ T cells 

are directly attached to MHC class I+ oligodendrocytes, suggesting that CD8+ T cells 

target and damage mutant oligodendrocytes rather than axons (Ip et al., 2006). 

Axonal degeneration may arise secondary to myelin loss, resulting in loss of its 

neuroprotective barrier against NO, toxic radicals or proinflammatory radicals (Ip et 

al., 2012). However, there is no evident demyelination in Plpnull/Y mice (Klugmann et 

al., 1997) and in PLP-deficient mice in this study. Thus, CD8+ T cells would probably 

need to exert a potentially harmful function for axons via a different mechanism in our 

PLP-depleted model and Plpnull/Y mice. 

Alternatively, T cells may lead to axonal damage by activating macrophages or 

microglia. Ip et al., 2006 observed fewer macrophage-like cells, i.e. macrophages 

and microglia in Plptransgenic-overexpressor mice depleted for T and B cells and the 

remaining macrophage-like cells contained less myelin debris (reflecting reduced 

phagocytic potential). This observation supports the concept, that T cells may 
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mediate axonal damage by activating macrophage-like cells (Brookes et al., 2003), 

and these may mediate degeneration of axons in myelinated tracts (Hendriks et al., 

2005). Microglia may for example damage axons by releasing glutamate, TNF-alpha, 

nitrogen species or reactive oxygen species, which are highly neurotoxic (Gonzalez 

and Pacheco, 2014). Activated microglia are already observed before the infiltration 

of T cells in our model. Thus, infiltrated T cells may further activate microglia or 

influence their profile to become pro-inflammatory (M1 state). Together, T cells may 

mediate an effect for axonal pathology via activation of microglia. 

CD8+ T cells may also damage axons by performing a cytotoxic attack mediated by 

perforin and granzyme B. Perforin may form a pore in the membrane of a target cell,  

and this pore may allow granzyme B to enter and lead to apoptosis of the cell (Lord 

et al., 2003). CD8+ T cells have been observed directly attached to MHC class I+ 

oligodendrocytes in Plptransgenic-overexpressor mice (Ip et al., 2006), suggesting that they 

can target dysfunctional oligodendrocytes. T cells have been associated with 

juxtaparanodes in Plptransgenic-overexpressor mice (Ip et al., 2012), in which axonal 

spheroids mostly occur, probably due to impaired axonal transport. Since Ip et al., 

2012 demonstrated that impaired axonal transport was ameliorated in Plptransgenic-

overexpressor mice when T cells were ablated and also when perforin and granzyme B 

were deleted from T cells, they suggested two ways, how T cells may influence 

axonal transport at the paranode: (1) The cytotoxic attack may be directed against 

oligodendrocytes and alter their subcelluar organisation in such a way that for 

example transport processes are impaired and they cannot properly support axons 

anymore. (2) Alternatively, perforin and granzyme B, initially targeting glial cells, may 

“spill over“ to axons. Axonal degeneration may thus be a “collateral bystander 
damage“ of CD8+ T cells targeting oligodendrocytes. Granzyme B may damage 

axons via interaction with the neuronally expressed mannose-6-phosphate-receptor, 

which is also located on axons (Hawkes and Kar, 2003) and enter the axoplasm by a 

perforin-dependent process (Lord et al., 2003). Once in the cytoplasm granzyme B 

could potentially promote reorganization of microtubules (Adrain et al., 2006) or 

mitochondrial damage (Sobottka et al., 2009), thereby causing impaired axonal 

transport. 

Since axonal spheroids mainly occur at paranodes/juxtaparanodes of Plpnull/Y mice 

(Edgar et al., 2004b; Griffiths et al., 1998), these are some plausible mechanisms 

how T cells may lead to the formation of axonal spheroids in Plpnull/Y mice and our 

conditional PLP-deficient mice as well. Yet, our study highlights that the effect of T 

cells is, if at all, a secondary amplification of axonal pathology in PLP-depleted mice, 

which at low grade also occurs independent from T cells in other models (Groh et al., 

2016; Ip et al., 2006; Ip et al., 2012).  
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7.6. Implications for therapeutic approaches 
 

At the moment there is no way to stop, slow or reverse the progression of PMD, 

SPG2 and other HSP. Current treatments are limited to alleviating symptoms to 

some extend, for example with muscle relaxants such as Baclofen, physiotherapy or 

walking aids (Fink 2013). When regarding options to treat SPG2/PMD by altering the 

cellular pathomechanisms, it needs to be considered that these are essentially 

different in SPG2 and different forms of PMD and that no single therapy concept may 

work for all patients with SPG2 or PMD. While in SPG2 clinical consequences are 

caused by a loss of function of the Plp gene and respective PLP protein, forms of 

PMD are caused by either duplications or missense mutations of the Plp gene, 

leading to toxic gain of function effects. Some approaches to counteract the toxic 

effects of accumulated or misfolded PLP have been to downregulate the toxic Plp 

overexpression on mRNA level with the progesterone antagonist Lonaprisan (Prukop 

et al., 2014), feeding Plptransgenic-overepressor mice with a cholesterol-enriched diet, to 

facilitate incorporation of PLP into myelin membranes (Saher et al., 2012) and 

treatment with Curcumin (Epplen et al., 2015; Yu et al., 2012). Yet, none of these 

studies have progressed into clinical trials. Since PMD can result from a number of 

different PLP mutations, with possibly different disease mechanisms, replacing 

diseased PMD oligodendrocytes with wildtype or genetically-corrected cells may be 

an attractive, yet very debatable treatment approach (Osorio et al., 2017). 

Furthermore, it has been suggested that the role of neuroinflammation for PMD may 

have been underestimated (Marteyn and Baron-Van Evercooren, 2016) and that 

existing and well-established immunomodulatory therapies, initially developed for 

multiple sclerosis and other primarily inflammatory diseases (Bittner and Wiendl, 

2016), may emerge as treatment options for genetically caused neurodegenerative 

disorders involving neuroinflammation, such as PMD (Groh and Martini, 2017). 

 

Our study demonstrates that T cells emerge as a secondary pathology upon 

Plp-deletion, yet we do not know wheather they may, as a secondary effect, amplify 

axonopathy in PLP-deficient mice, as demonstrated in models for PMD (Groh et al., 

2016; Ip et al., 2006; Ip et al., 2012). In order to determine, whether 

immunomodulation may be a considerable treatment approach for SPG2, as 

considered for PMD (Groh et al., 2016; Groh and Martini, 2017), it may be 

investigated whether T cell ablation, for example by crossing Plpnull/Y mice with 

Rag1null/null mice, has an alleviating effect for axonopathy. In order to better 

understand the role of microglia, which are activated prior to infiltration to T cells in 

our model, it may be determined whether they express rather markers indicating a 

pro-inflammatory M1 or pro-regenerative M2 phenotype. Components influencing 

microglial activation status are being exploited (Subramaniam and Federoff, 2017), 

thus influencing microglial activation status may potentially be a therapeutic approach 

to alleviate the progression of SPG2 and PMD. 
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7.7. Turnover and lateral mobility of PLP 

Myelin has been regarded as a static structure in the past. Yet, it is increasingly 

recognized that there is plasticity within myelin. Motor skill learning (Sampaio-

Baptista et al., 2013) or social isolation of mice (Liu et al., 2012) leads to changes in 

myelin. Also in humans, there is turnover of myelin (Yeung et al., 2014) and 

practicing a skill, such as juggling, can lead to increase of white matter volume 

(Scholz et al., 2009). Besides investigating in which order pathological events 

emerge in our tamoxifen-inducible Plp knockout mice, we also made observations 

regarding the turnover of PLP and DM20 within CNS myelin. 

 

7.7.1 Turnover rate of PLP and differentiation of OPCs 

When we recombined the Plp gene at the age of 8 weeks by tamoxifen injection, we 

observed the decline of PLP and DM20 within biochemically purified myelin by 

immunblotting. Myelin is considered to be very stable, yet a slow turnover of myelin 

proteins has previously been observed. By 15N isotope feeding to rats (Toyama et al., 

2013) determined that starting from 6 weeks of age 18.53% of PLP are not 

exchanged after a period of 6 months. In our analysis 51% PLP was left in myelin 6 

months after tamoxifen-induced Plp-deletion. It needs to be considered that the 

analysis by (Toyama et al., 2013) was performed in a different species, i.e. in the rat, 

that a different method was applied, and that the analysis in (Toyama et al., 2013) 

has not been done in purified myelin as in our study. Older studies report a half-life of 

PLP in rats of about 35 days by radioactive labeling of lipids (Smith, 1968) and 95 

days in the mouse by protein based [³H]leucine radioactive labeling (Fischer and 

Morell, 1974). Due to the application of different models and different techniques the 

results cannot be directly compared, but all reflect a slow turnover of myelin proteins. 

We note that the decline of PLP in our model does not allow to draw conclusions 

about the turnover of myelin in general, as it may be different for different proteins 

and lipids within myelin. It also needs to be considered that in PLP-deficient mice 

myelin is not entirely normal, and thus the decline of PLP may have an influence on 

myelin turnover per se. Interestingly the decline of PLP and DM20 in myelin of iKO 

mice followed an exponential curve, and at 16 months pti there were still 43% PLP 

and 30% DM20 left. It is unclear when and if PLP and DM20 at a later time point 

would be fully depleted. This may be explained by incomplete recombination of 

oligodendrocytes and OPCs. For tamoxifen-induced Cre expression we used 

PlpCreERT2 mice. (Leone et al., 2003) report a recombination efficiency of the 

PlpCreERT2 promoter of 90.9 +/- 2.4% of cells in the corpus callosum and 83.5 +/- 5.7% 

of cells in the white matter of the cerebellum, thus some oligodendroctes may remain 

unrecombined. For NG2 positive OPCs they report a recombination efficiency of 74.9 

+/- 7.7% (Leone et al., 2003). The frequency of recombination may vary depending 

on the location of loxP sites (Vooijs et al., 2001). Thus recombination efficiency in our 
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model may differ to the reporter mouse R26R used in (Leone et al., 2003), yet it is 

likely that a small number of OPCs and maybe some oligodendrocytes remain 

unrecombined also in our model and contribute to the level of PLP measured by 

immunoblotting. This may be explain why the abundance of PLP on immunoblots 

does not appear to reach zero and also why after a period of 6 months, the PLP level 

appears higher in our analysis compared to the level in (Toyama et al., 2013). A 

speculative explanation for the reduced decline over time may also be that feedback 

mechanisms may lead to a reduced turnover when a protein is not synthesized 

anymore. Furthermore, the turnover of PLP may be faster in some regions or myelin 

sheaths than in others, which will be further elaborated in chapter 7.8. All in all, with 

our applied method we did not dissect how much PLP at a given time point comes 

from PLP-depleted oligodendrocytes and how much comes from newly differentiated 

oligodendrocytes. Thus, our curves do not reflect the exact turnover rate of PLP and 

DM20, but they reflect that over all PLP and DM20 levels are diminished slowly in our 

model over time. Immunoblotting and cryo-immuno electron microscopy reveal a 

similar reduction of PLP in the brain and optic nerve, respectively. 

 

7.7.2. Lateral mobility of PLP 

As one aspect of PLP turnover, we investigated whether it is possible to determine if 

PLP is diminished towards the abaxonal or adaxonal side of the myelin sheath by 

immunogold labeling on cryosections from optic nerves. Experiments from (Snaidero 

et al., 2014) propose that newly synthesized proteins during active developmental 

myelin biogenesis are delivered to the inner tongue and defined it as the growth 

zone, suggesting that PLP decline may first be visible at the inside of the myelin 

sheath in our model. Surprisingly, however we observed that PLP was reduced 

evenly across the entire cross section of a myelin internode. We therefore cannot 

distinguish whether PLP is recycled and renewed on the adaxonal or abaxonal side 

of the compact myelin sheath. Thus, our study indicates that PLP has a high lateral 

mobility within the myelin sheath. This could be either due to passive diffusion or 

active transport of PLP to cover the myelin area with an even abundance. 

Alternatively, PLP turnover may also be mediated via the paranodal loops.  

 

7.8. Reduced abundance of PLP in myelin causes axonopathy 

As determined by neuropathological analysis, iKO mice displayed significantly 

increased numbers of axonal spheroids by 6-8 months pti. At this time PLP was 

reduced to about 50% as investigated by immunoblotting experiments. This is 

remarkable as it suggests that not only lack, but also a diminished abundance of PLP 

leads to axonal pathology, i.e. axonal spheroids as observed in Plpnull/Y mice (Griffiths 

et al., 1998) accompanied by gliosis. Mouse models overexpressing Plp with different 

levels, show various degrees of clinical and histopathological severity (Anderson et 
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al., 1998; Inoue et al., 1996; Readhead et al., 1994). Also in vitro experiments have 

exploited a gradual dose-dependent effect of Plp overexpression on the survival of 

co-cultered neurons (Boucher et al., 2002). While it is also established that loss of 

PLP leads to axonal degeneration (Griffiths et al., 1998), the finding that a diminished 

amount of PLP triggers the onset of neuropathological features is a new aspect. 

Pathology-triggering mechanisms may even have started earlier than increased 

numbers of axonal spheroids and gliosis were detectable in iKO mice, since they 

may have taken some time to develop. Thus, even a higer level than 50% PLP in 

myelin may already lead to axonpathy.  

 

However, it needs to be considered that PLP in a few unrecombined 

oligodendrocytes and differentiated OPCs may contribute to the amount of PLP 

measured by immunoblotting experiments (chapter 7.7.1.). Furthermore, the speed of 

turnover and thus the diminishment of PLP may differ in different regions of the brain 

and maybe even between individual internodes. The differentiation rate of OPCs 

(Young et al., 2013) as well as the lifetime of oligodendrocytes (Tripathi et al., 2017; 

Yeung et al., 2014) differ between brain areas; and so might the turnover of proteins. 

With our immunoblotting analysis we only determined the average abundance of PLP 

in myelin across the brain. Hypothetically, the level of PLP may diminish faster in the 

fimbria, where we measured axonal spheroids, than in other brain regions. It may 

also decline more rapidly in individual internodes. Thus, axons which are ensheathed 

by myelin harboring very little or no PLP protein, may degenerate in our model. 

Further studies are needed to investigate a potential region- or internode-dependent 

turnover of PLP in CNS myelin. 

 

Together, our study implies that not only overexpression (Anderson et al., 1998; 

Readhead et al., 1994) or lack (Griffiths et al., 1998; Klugmann et al., 1997) but also 

reduction of PLP leads to impaired axonal maintenance. Thus, it suggests that the 

full amount of PLP is needed for proper axonal maintenance. This finding has 

important implications for therapeutic approaches for PMD that aim at a 

downregulation of overexpressed Plp, for example on mRNA level (Prukop et al., 

2014). Indeed, it would also be deleterious to downregulate Plp expression too much. 

Gene therapy/cell replacement strategy is also discussed as a potential treatment 

option for PMD (Osorio et al., 2017; Woodward, 2008) and it has been recognized 

that one of the manifold challenges would be to gain Plp expression at the right level 

(Woodward, 2008). Our study supports this notion and adds that axonal maintenance 

is not only sensitive to increased (Anderson et al., 1998; Readhead et al., 1994) but 

also to decreased Plp expression. 
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8. Summary 

Proper functioning of the central nervous system (CNS) depends on the interplay of 

neurons with oligodendrocytes, the myelinating cells of the CNS. However, the 

interactions between oligodendrocytes and their myelinated axons are not well 

understood. For example, deletion of the most abundant protein of CNS myelin, 

proteolipid protein (PLP), causes spastic paraplegia type 2 (SPG2), which is 

characterized by axonal degeneration. In both patients and the corresponding mouse 

model (Plpnull/Y mice), axons degenerate despite only minor structural myelin 

abnormalities. Since Plp has been considered to be exclusively expressed in the 

oligodendrocyte lineage, it has been assumed that the primary cause of SPG2 is the 

lack of PLP from oligodendrocytes. However, several recent studies have detected 

Plp gene products also in a subset of neurons. Consequently, it has been suggested 

that the loss of Plp expression in neurons could cause axonal pathology. To clarify 

the primary cellular origin of SPG2, we established mice with a floxed Plp allele to 

selectively delete Plp in neurons or oligodendrocytes by recombination with cell-type 

specific Cre driver lines. Recombination of Plp in excitatory projection neurons did 

not cause neuropathology, whereas oligodendroglial deletion of Plp caused the 

complete neurodegenerative spectrum observed in Plpnull/Y mice including 

axonopathy, gliosis and T cell infiltration into the brain. We conclude that the primary 

cause of SPG2 is the lack of PLP in oligodendrocytes. To better understand the 

interplay of PLP-deficient oligodendrocytes, axons and T cells, we analyzed the 

emergence of neuropathological events upon Plp-deletion over time. We therefore 

interbred mice with a floxed Plp allele with mice harboring a tamoxifen-inducible Cre 

in oligodendrocytes and induced Plp-deletion by tamoxifen injection in adult mice. We 

observed a slow decline of PLP in myelin over months, supporting the concept that 

myelin turnover is very slow. Interestingly, PLP was diminished evenly across the 

myelin layers, indicating a high lateral mobility of PLP. The entire neurodegenerative 

spectrum observed in Plpnull/Y mice developed over time, including axonopathy, 

gliosis and T cell infiltration. As axonopathy was already detectable when the 

abundance of PLP in myelin was reduced to about 50%, we conclude that the 

normally very high abundance of PLP is required for axonal support. Importantly, 

axonal spheroids and gliosis were observed prior to elevated numbers of T cells, 

implying that axonopathy occurs independent from T cells in this model, at least 

initially. Thus, T cells emerge as secondary pathology and may exert an amplifying 

effect on neuropathology.  
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