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“... 

vi la circulación de mi oscura sangre, vi el engranaje del amor y la modificación de la muerte, vi el 

Aleph, desde todos los puntos, vi en el Aleph la tierra, y en la tierra otra vez el Aleph y en el Aleph 

la tierra, vi mi cara y mis vísceras, vi tu cara, y sentí vértigo y lloré, porque mis ojos habían visto 

ese objeto secreto y conjetural, cuyo nombre usurpan los hombres, pero que ningún hombre ha 

mirado: el inconcebible universo. 

…” 

Jorge Luis Borges, El Aleph 

 

“.... 

Abriu-se majestosa e circunspecta, 

sem emitir um som que fosse impuro 

nem um clarão maior que o tolerável 

 

pelas pupilas gastas na inspeção 

contínua e dolorosa do deserto, 

e pela mente exausta de mentar 

 

toda uma realidade que transcende 

a própria imagem sua debuxada 

no rosto do mistério, nos abismos. 

Abriu-se em calma pura, e convidando 

quantos sentidos e intuições restavam 

a quem de os ter usado os já perdera 

 

e nem desejaria recobrá-los, 

se em vão e para sempre repetimos 

os mesmos sem roteiro tristes périplos, 

 

convidando-os a todos, em coorte, 

a se aplicarem sobre o pasto inédito 

da natureza mítica das coisas, 

…” 

Carlos Drummond de Andrade, A máquina do mundo 
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1. Introduction 

 

Understanding and explaining behavior has been an ongoing labor and permanent quest for 

the human kind. From metaphysical speculations to the first elaborations of this method of 

manipulating and decomposing perceptual information nominated science, explaining and 

predicting living organisms’ behaviors was a first-order agenda. The outbreak of modern 

neuroscience and psychology approaches allowed direct experimentation with the mind-brain-

behavior conundrum, leaning on an extensive row that goes from lesioned patients to modern 

neuroimaging methods. The in-depth study of the physiological foundations of higher brain 

functions and mental activity in the mammalian brain is denominated cognitive neuroscience, 

where cognitive processes that rely on the central nervous system, such as memory, can be 

scientifically investigated with advanced methods such as imaging and computational techniques 

(Raichle, 2009).  

Some of the modern neuroimaging techniques, as electrophysiology and magnetic 

resonance tomography, have paved the way to unveil the neural basis of cognition and behavior, 

each with its own qualities and pitfalls, such as their temporal and spatial resolution (Axmacher, 

Elger, & Fell, 2009). In conjunction with them, non-invasive brain stimulation (NIBS) are 

techniques widely employed in the last decades to the study of physiology of cognitive processes, 

and bring the promise of being a complementary therapeutic intervention to neuropsychiatric 

disorders (Parkin, Ekhtiari, & Walsh, 2015). They can be useful to causally connect certain brain 

structures and neuronal activity to functions, since neuroimaging and electrophysiology can reveal 

spatio-temporal fingerprints of cognitive processes, but can only establish a correlational bound 

between them (Bergmann, Karabanov, Hartwigsen, Thielscher, & Siebner, 2016). On the other 
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hand, NIBS can be inserted as a perturbation to the brain in order to interfere with a targeted 

function. In the scope of memory research, NIBS, specifically transcranial Electrical Sitmulation 

(tES) interventions, have been applied to several brain areas with the use of direct and alternating 

currents. In an atempt to modulate memory encoding or retrieval, the majority of the studies 

focused on the pre-frontal cortex as a preferable target (Manenti, Cotelli, Robertson, & Miniussi, 

2012).  

In this doctoral dissertation, we attempted to advance in methodologically rigorous 

protocols influencing normal brain physiology and search for solutions to modulate memory 

activity, a promising area for rehabilitation of people with neuropsychiatric diseases or aging 

impairments. The episodic memory network is composed of several brain nodes working in a 

network manner. For that, we attempted to influence different nodes of this network (here the left 

pre-frontal and temporal cortices) in the search of the most robust and convincing results. We made 

use of different versions of a verbal-associative memory task as the behavioral paradigm, and 

computational models to estimate the features of our stimulation parameters.  Specifically, the aim 

of this doctoral work was to augment long-term memory performance in healthy human 

participants by the application of transcranial electrical stimulation. In the following pages, I 

outline the state of the art of the methods and brain processes investigated in this work, before 

introducing the original scientific contributions brought by the two manuscripts that form the core 

of this thesis. The last chapter summarizes the results brought by our investigations and points 

possible future directions for the field. 
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1.1.Episodic long-term memory in humans 

 

The brain systems supporting learning and memory are classified and differ according to type 

and functional relevance. Short-term and long-term memory are partially overlapping functions 

which rely on distinct neural underpinnings, being the long-term system split into procedural (or 

implicit) and declarative memory (Morris, 2013). Episodic long-term memory is the process of 

learning, storing and retrieving information in the brain regarding to daily personal experiences, 

and a crucial feature for humans to thrive and adapt in different ever-changing environmental 

conditions (Tonegawa, Pignatelli, Roy, & Ryan, 2015). While in the short-term modality memories 

seem to be held in patterns of neural activity, long-term encompass structural modifications of 

synaptic linkages and network connectivity. The encoding of a long-term memory involves an 

initial scheme of activity that promotes a posterior structural modification to be retained as a trace, 

i.e., an arrangement of connections maintained in specific neural assemblies by structural 

molecular changes (Morris, 2013). The intriguing kaleidoscope of long-term memory 

representations in the brain (namely the “engram”) are ensued by epigenetic modification in gene 

expression caused by cascades of molecular alterations in neural activity to sensory inputs (Poo et 

al., 2016). These molecular modifications, such as increase in AMPA receptors and spines that 

control post-synaptic gears, are promoted and altered depending on the regularity of the activity 

between cell assemblies that regulate the firing of a postsynaptic neuron, fostering the core 

mechanisms of synaptic plasticity, the so-called long-term potentiation (LTP) or depression 

(LTD). In mammals, the molecular and cellular basis of episodic memory encoding can be 

approached by invasive procedures and cellular recordings. In humans, such invasive recordings 
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are poorly available, with the mechanisms of long-term memory having to be uncovered mostly 

by techniques such as electrophysiology and neuroimaging (Kandel, Dudai, & Mayford, 2014).  

A large body of literature has argued that declarative long-term memory is implemented 

on intertwined distributed networks paced in spatiotemporal scales. Neocortical, allocortical and 

subcortical brain areas were already extensively studied with the help of lesioned patients, 

neuropsychological and neuroimaging findings. The most common areas associated with episodic 

long-term memory are regions in the pre-frontal (PF), parietal cortex (PC) and the temporal lobe, 

especially its medial part, with feedback projections between the neocortical associational, 

subcortical and medial temporal lobe (MTL) structures (Dickerson & Eichenbaum, 2010; Henke, 

2010; Kühn & Gallinat, 2014; Ofen et al., 2007; Preston & Eichenbaum, 2013).  

The last decades have seen the rise of a method to compare neural activity regarding patterns 

of activation during recall or forgetting on memory tasks, called Subsequent Memory Effect 

(SME), a biomarker for either successful encoding or for neural activity interfering with it (Kandel 

et al., 2014). A meta-analysis investigated 74 fMRI episodic memory studies during encoding of 

item and associated verbal and pictorial content, and showed a SME associated mainly with the 

left inferior frontal cortex, bilateral fusiform cortex, bilateral medial temporal lobe, bilateral pre-

motor cortex and bilateral posterior parietal cortex (H. Kim, 2011). The verbal associative memory 

modality (explored in this thesis) predominantly presented left-lateralized SM effects. These 

results in the verbal associative domain were partially confirmed by a later fMRI study, with effects 

being left-lateralized at the pre-frontal cortex level, but bilateral for the medial temporal lobe and 

posterior parietal cortex (Schott et al., 2013). Gilmore et al. (2015) expounded on a group of meta-

analyses of task based functional MRI studies, proposing a functional parietal memory network 

that showed SME for encoding and successful retrieval, encompassing the precuneus, the mid-
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cingulate cortex, and the posterior inferior parietal lobule. In turn, the functional role of the MTL 

on episodic memory is well stablished, with extensive scientific evidence showing a function-

related topography in its different structures operating in a loop-coordinated fashion. The 

hippocampus is strongly associated with relational memory, i.e. for storing and binding the 

different associative memory representational elements (Davachi, 2006; Hannula & Ranganath, 

2009; Henke, 2010; Jeong, Chung, & Kim, 2015; Ranganath, 2010). 

Neural oscillations are deemed to temporally pace neural firing and shape plasticity by the 

synchronization or desynchronization of neuronal assemblies (Hanslmayr, Staresina, & Bowman, 

2016). Neuronal synchronization represents the dynamic activation of neuronal groups and 

underlies effective cell communication (Wang, 2010; Womelsdorf et al., 2007). The rhythmic 

modulation of synaptic communication is thought to be at the core of effective connectivity, and 

coherence between pre and post synaptic groups is required to coordinate input arrival at precise 

excitability phases in oscillatory cycles (Fries, 2015). In long-term memory encoding, these 

patterns are represented by activity in the key areas spreading along some of the canonical 

frequency bands. Activity correlated with successful long-term memory formation showed 

increases or decreases depending on the task type and site. Nevertheless, in general, decreases in 

alpha and beta band (desynchronization), increases in theta and gamma power (synchronization) 

and cross-frequency relationships are the most prominent (Düzel, Penny, & Burgess, 2010; 

Hanslmayr et al., 2016; Hanslmayr & Staudigl, 2014; Jutras & Buffalo, 2010).   In brain 

physiology, cross-frequency coupling (CFC) is a multiscale neural phenomenon that can be 

characterized by excitability fluctuations represented by the phases of the slower oscillation, 

which, in turn, can selectively entrain higher-frequencies spiking of local specific networks in a 

phase-locked manner (Canolty & Knight, 2010; Hyafil, Giraud, Fontolan, & Gutkin, 2015). One 
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of the most distinctive observable cross-frequency phenomenon in the brain is the theta-gamma 

phase-amplitude coupling. It is hypothesized to be active in mnemonic computations in several 

neocortical and medial temporal lobe areas with a specific functional significance: theta cycles 

would organize distinct timing phases of neural excitability, coordinating the firing of local neural 

assemblies (gamma activity) that represent and segregate chunks of information (Colgin, 2015; 

Heusser, Poeppel, Ezzyat, & Davachi, 2016; Lisman & Jensen, 2013). Nevertheless, studies 

investigating theta-gamma phase-amplitude coupling in verbal long-term memory encoding are 

correlative, and the requirement of increases or decreases in theta-gamma coupling for successful 

encoding in humans is still under debate (Lega, Burke, Jacobs, & Kahana, 2016; Vaz, Yaffe, 

Wittig, Inati, & Zaghloul, 2017) . 

The widespread nature of the episodic long-term memory network, and its multiscale 

requirements for effective encoding of information nurture the necessity of further unveiling its 

intricate anatomical and physiological underpinnings. Some of its core features, such as integration 

of segregated sensorial input, dispersion and division of tasks – i.e. attention allocation and local 

computations - and induction of effective plasticity, can be approached with neuroscientific tools 

able to induce plastic after-effects and/or act on the temporal scales of cognitive phenomena. For 

that, transcranial electrical stimulation in its modern format comes to hand, and its characteristics 

will be described in the next sections.  

 

1.2.Transcranial electrical stimulation (tES)  

 

Transcranial electrical stimulation is a NIBS technique that grew steadily in the last 20 

years, although having an older history of human attempts on its usage. Since the convention of 
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the voltaic pile, scientists have been trying to apply direct current to the human head to a myriad 

of neurological and behavioral conditions (Paulus, 2011). Soon these efforts were interrupted by 

the lack of reliable results and experimental outcomes that could be precisely measured by the 

time’s instrumentation. The field experimented a renaissance around two decades ago, when 

transcranial magnetic stimulation (TMS) was used to assess motor cortex excitability after the 

application of direct currents (Priori, Berardelli, Rona, Accornero, & Manfredi, 1998). Pioneer 

studies on direct current applied to the primary motor cortex (Nitsche & Paulus, 2000, 2001) set 

up the stage for a steep increase of papers in the field, going from motor to perception, cognition 

and clinical studies.  

tES basically assumed three different forms in the last decade: direct current (tDCS), 

alternating current (tACS) and random noise (tRNS), which are mostly used to interfere or enhance 

neuronal activity (Bergmann et al., 2016). It works through the application of weak electric 

currents to the scalp, generating an electric field and related electric currents in the head (Peterchev 

et al., 2012). In contrast to TMS, which as a suprathreshold stimulation is able to elicit neuronal 

firing, tES is a subthreshold form of NIBS that is capable of inducing changes in the margin of a 

neuronal response and up or down-regulate neuronal excitability (Fertonani & Miniussi, 2017). 

The distribution of the generated-electric fields is heavily dependent on several variables, such as 

the experimental parameters and the individual anatomy of the target (Opitz, Paulus, Will, & 

Thielscher, 2015). The anatomical compartments’ conductivity values play an important role, 

being unique for skin, scalp, corticospinal fluid, bone, grey and white matter, given that the 

currents have to surpass several of them (Opitz, Windhoff, Heidemann, Turner, & Thielscher, 

2011). Gyral geometry is also crucial, since the polarization of neurons is directly related to the 
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direction of the electric field and to which extent and direction it reaches different compartments 

of grey matter neurons (Thielscher, Opitz, & Windhoff, 2011). 

The tES technique encompasses the application of low intensity currents (~1-4 mA) by 

dedicated stimulators with different assemblies of electrodes over the scalp. Electrodes vary in size 

(usually from 1 to 7 centimeters) according to stimulation design, and are made of rubber or plastic, 

normally using paste, gels or saline solution as conductive means (Fertonani & Miniussi, 2017). 

Montage choices to target a selected brain area are supposed to be guided by the available literature 

or experimental data, as well as the use of recently available tools to simulate the generated-electric 

field direction and distribution, either to serve research or clinical purposes (Bergmann et al., 

2016). Some key variables that impact tES are electrode type and size, conductive mean, 

stimulation intensity, polarity, duration, frequency and blinding protocols, all selected carefully to 

assure maximal protocol effectiveness and safety (Woods et al., 2016). The approach can be either 

online or offline, i.e., in offline, tES is applied before a task or brain monitoring in order to prior 

modulate brain plasticity and/or activity, whereas in online tES is delivered during a specific task 

and/or brain monitoring in order to direct influence behavior or brain activity during a chosen 

measurement. Although these parameters are controllable, several factors related to individual 

differences, such as brain anatomy and dynamics, neurochemistry, genetics, age and gender are 

hard to control and impact directly on the physiological responses to tES (Li, Uehara, & Hanakawa, 

2015).   

The experimental validations of the mechanistic hypothesis underlying the action of tES 

method has been built up through in vitro, in vivo, computational and pharmacological studies. A 

pertinent discussion to the field is referred to the translation of these studies to humans, i.e., if the 

weak electrical currents would penetrate the scalp and actually reach the human brain, and to which 
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extent of the electric filed distribution. Despite that realistic finite-element models showed that 

most of the current is shunted by the skin (Holdefer, Sadleir, & Russell, 2006), recently available 

intracranial recordings in humans demonstrated that the currents can reach up to 0.5 mV/mm with 

a 1 mA stimulation, and, in the case of alternating currents, only negligible phase shifts across 

space occur (Y. Huang et al., 2017; Opitz, Falchier, Yan, Yeagle, & Linn, 2016).   

Regarding safety, ethical and legal parameters, recent literature based on more than 8.000 

participants summarized the actual safety indicators of low intensity tES. So far, the majority of 

adverse effects were mild, such as itching or burning sensations and headache, with very 

occasional moderate adverse effects related to skin burning (A. Antal et al., 2017). The almost two 

decades of current-tES parameters in humans, in addition to the safety analysis drawn by animal 

studies (Liebetanz et al., 2009), have been demonstrating the feasibility of this techniques as an 

easy, portable and relatively safe procedure to modulate brain activity for basic and applied 

purposes in a tolerable fashion.  

 

1.3.Transcranial direct current stimulation 

 

Transcranial direct current stimulation is a NIBS technique that works through the application 

of weak direct currents over the scalp. It has the advantage of being reasonably cheap, portable 

and of easy applicability, making it accessible to several research and clinical facilities. Besides 

it´s common usage with neuromodulatory purposes to cognitive, perceptual and motor processes, 

it has being trialed, with relative success, to a myriad of neuropsychiatric disorders, such as stroke, 

Parkinson, depression and chronic pain (A. Antal et al., 2017; Lefaucheur et al., 2017).  
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In tDCS, the current is unidirectional and passed by a pair or set of electrodes with a determined 

electrode polarity, the so-called anodal or cathodal tDCS. This current direction is thought to 

induce long-lasting polarity-dependent effects on neuronal excitability by modulating ongoing 

neuronal activity, being highly dependent on the network state of the target (Andrea Antal, Terney, 

Poreisz, & Paulus, 2007; Nitsche et al., 2008; Woods et al., 2016).  The current is able to cross the 

initial anatomical compartments and affect relative wide cortical areas, initially de- or 

hyperpolarizing resting membrane potentials, but, depending on the duration of the stimulation, 

induce synaptic plasticity, and thus, long-lasting effects (Bikson et al., 2018; Polanía, Nitsche, & 

Ruff, 2018). Nonetheless, it is known that the large cortical folding and the geometry and 

placement of the neurons in the cortical layers impact closely the quantity of polarization, where 

the orientation of the neurons relative to the electric field, as well as to which neuronal 

compartment these fields are reaching, largely determine possible net summation effects that can 

result in increased or decreased excitability (Thomas Radman, Ramos, Brumberg, & Bikson, 2009; 

Rahman et al., 2013). 

The effects of tDCS can be split into on-line and off-line. During stimulation (on-line effects), 

pharmacological and TMS studies revealed that changes in the resting membrane potential are 

likely the main actor, with no prominent effects of synaptic plasticity (Stagg & Nitsche, 2011).  

Early evidence of DC fields applied to in vitro preparations showed an increase or decrease in the 

firing rate of neurons with the application of anodal and cathodal currents, respectively (Stagg, 

Antal, & Nitsche, 2018), confirmed by recent studies that were able to manipulate membrane 

potential and influence up- or down-regulation of neuronal compartments excitability (Bikson et 

al., 2004; Thomas Radman et al., 2009).  The effects of tDCS on synaptic plasticity seem to be 

CA2+ and NMDA receptor dependent and alter GABAergic and Glutamatergic activity, as well 
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as brain neurotrophic factor-related, thus resembling LTP and LTD-like plasticity (Y.-Z. Huang et 

al., 2017; Nitsche, Müller-Dahlhaus, Paulus, & Ziemann, 2012; Nitsche & Paulus, 2011).  In 

addition, as suggested by several pharmacological studies, the off-line effects of tDCS seem to 

rely on neuromodulators as dopamine, acetylcholine and serotonin for the anodal polarity, and on 

changes of glutamatergic synapses for the cathodal stimulation (Kuo, Grosch, Fregni, Paulus, & 

Nitsche, 2007; Kuo, Paulus, & Nitsche, 2008; Nitsche et al., 2006, 2009).  

 tDCS is also able to modulate brain connectivity and neural communication (To, De 

Ridder, Hart Jr., & Vanneste, 2018). Studies in resting-state fMRI demonstrated the ability of tDCS 

to alter functional connectivity of the motor cortex, pre-frontal cortex, fronto-parietal and default-

mode networks (Amadi, Ilie, Johansen-Berg, & Stagg, 2014; Keeser et al., 2011; Sehm et al., 

2012), which can be a source of explanation to the behavioral effects resulting of its application 

verified in diverse experimental results. Moreover, as physiological brain oscillations are deemed 

to functionally underlie neural communication and synchronization, influencing them should bring 

detectable physiological and behavioral impacts. Direct current was demonstrated to influence 

ongoing oscillatory activity in several bands (theta, alpha, beta and gamma), however, without a 

clear mechanistical explanation so far (Notturno, Marzetti, Pizzella, Uncini, & Zappasodi, 2014; 

Soekadar et al., 2013; Zaehle, Sandmann, Thorne, Jäncke, & Herrmann, 2011). Recent intracranial 

recordings in monkeys during a learning task showed that tDCS is able to modulate neural 

excitability and connectivity, specifically tuning up connectivity in higher frequencies (Krause et 

al., 2017). In this doctoral thesis, tDCS is used in one study in an attempt to modulate cortical 

activity at the pre-frontal cortex during a verbal memory task. 
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1.4.Transcranial alternating current stimulation  

 

To dynamically coordinate neural transmission between functionally connected but 

spatially distributed brain networks, neural oscillations are claimed to play a decisive role. These 

oscillations represent a rhythmic activity in neuronal excitability in which components like 

frequency, phase and amplitude are modulated through specific functions to be performed by the 

brain (Thut, Miniussi, & Gross, 2012). The poor temporal resolution of tDCS brought the field of 

tES research to experiment with oscillating currents. Transcranial alternating current stimulation 

shares common features with tDCS, such as the dependence on parameters as intensity, current 

density, electrodes choice and target site, but brings into play new variables to be explored, mainly 

frequency and phase. Frequencies from close do DC up to the kilohertz range can be employed by 

applying currents in an oscillatory fashion, and with that, endogenous activity can be coupled by 

the means entrainment, i.e., inducing changes by an external driving force and, in this case, 

modulating neuronal firing synchronicity that rise as detectable brain rhythms (Andrea Antal et 

al., 2008; Andrea Antal & Herrmann, 2016; Miniussi, Harris, & Ruzzoli, 2013). On one side, tACS 

can be a powerful tool to causally link brain oscillations to functions (Herrmann, Rach, Neuling, 

& Strüber, 2013). On the other side, since several brain disorders are related to perturbations in 

rhythmic oscillatory patterns in cortical and subcortical areas (so-called oscillopathies), tACS turns 

to be a promising intervention to treat symptoms of central nervous system diseases (Fröhlich, 

Sellers, & Cordle, 2015).  

  One of the main hypotheses behind tACS action, coming from in vitro and in vivo studies, 

is that the generated fields can tune up or down oscillatory power by synchronizing or 

desynchronizing neuronal networks. It would change spike rate and timing, both magnified by 
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networks dynamics (Davide Reato, Rahman, Bikson, & Parra, 2013). In in vitro preparations, 

oscillatory currents can also accomplish membrane polarization, although within the temporal 

characteristics of alternating fields (Deans, Powell, & Jefferys, 2007; T. Radman, Su, An, Parra, 

& Bikson, 2007). Data from ferrets’ cortical slices showed that AC fields from 0.5 mV/mm could 

already modulate ongoing neural functioning (Fröhlich & McCormick, 2010). A computational 

model, tested at the in vitro level, found that weak AC currents can affect firing time of neurons 

(which summed at the network level), adjust the timing of frequency cycles and pace timing shifts 

(D. Reato, Rahman, Bikson, & Parra, 2010). Another computational model tested in vivo (multi-

unit activity recordings) in anesthetized ferrets showed an increase in oscillatory power and phase-

locked activity at the frequency of the stimulation (Ali, Sellers, & Frohlich, 2013). Recording 

invasively in rats, intrinsic slow oscillatory activity could be entrained by external AC fields in 

widespread cortical sites, where additional intracellular recordings showed the pacing of firing 

activity by the applied electrical current (Ozen et al., 2010). 

 The main mechanistic hypothesis underlying the action of tACS in the brain is that it acts 

by the means of entrainment (Fröhlich & Schmidt, 2013; Helfrich et al., 2014).  Entrainment 

corresponds, in this case, to the possibility of resetting, by an acting external force, network activity 

driven by local dynamics. This would phase-lock and synchronize brain oscillations in its 

harmonics and sub-harmonics frequencies, mostly or more strongly when the external field 

matches the ongoing oscillatory dominant frequency of the targeted neuronal group (Andrea Antal 

& Herrmann, 2016; Miniussi, Brignani, & Pellicciari, 2012; Veniero, Vossen, Gross, & Thut, 

2015). If tACS is able to entrain naturally occurring brain oscillations, this may signify on the 

neuronal level that the current modulation of the firing rates of neurons will force a temporal 

oscillatory shift on membrane potential, possibly influencing physiological neural rhythms (Thut, 
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Schyns, & Gross, 2011). If brain oscillations are a force behind neural communication and 

cognitive processes, affecting these rhythms would be detectable by behavioral changes in 

response to perceptual or cognitive tasks. There are currently several electrophysiological and 

behavioral evidences in favor of the entrainment hypothesis in tACS (Romei, Thut, & Silvanto, 

2016). Long-lasting effects of tACS are scarcer in evidence, and so far most efficient in a high 

frequency range of about 140 Hz (Moliadze, Antal, & Paulus, 2010; Moliadze, Atalay, Antal, & 

Paulus, 2012). Although offline effects in tACS may be a product of spike-time dependent 

plasticity resulting of the tuning of neural rhythms, evidence that these effects are dependent on 

the online action of the technique are not conclusive (Y.-Z. Huang et al., 2017; Veniero et al., 

2015). In this thesis, tACS is used to target physiologically occurring theta-gamma phase-

amplitude coupling at the left temporal cortex during the encoding phase of a verbal memory task. 

 

1.5.The modulation of episodic long-term memory by tES  

 

A growing set of experimental work supports tES-related modulatory effects on memory 

formation or retrieval, ranging from improvements to impairments, although frequently small-

sized (K. Kim, Ekstrom, & Tandon, 2016), with some reports of negative results (Braun, Sokoliuk, 

& Hanslmayr, 2017). So far, the majority of the studies with tES and episodic long-term memory 

were conducted with tDCS. A review in 2012 (Manenti et al., 2012) showed the that most tDCS 

studies focused the stimulation on the DLPFC with relative success, generally improving verbal 

memory with anodal or impairing with cathodal tDCS, applied to the encoding or retrieval phase 

of a task. Another study with verbal material showed an improvement in memory performance 
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when tDCS was applied to frontal and parietal regions of young participants during the retrieval 

phase of a task, but not during encoding (Manenti, Brambilla, Petesi, Ferrari, & Cotelli, 2013). In 

another case, tDCS improved memory retrieval of non-verbal material and impaired verbal and 

non-verbal when applied to the parietal and pre-frontal cortices, respectively (Manuel & Schnider, 

2016). Nevertheless, these two studies suffered from clear pitfalls, as not comparing real against 

sham conditions or being single-blind, which can raise doubts about the plausibility of the effects. 

Two further studies showed that anodal and cathodal stimulation applied to the DLPFC during 

encoding respectively improved and impaired both verbal (A. H. Javadi & Walsh, 2012) and 

pictorial (Zwissler et al., 2014) memory in recognition tasks. More recently, only anodal tDCS to 

the ventrolateral pre-frontal cortex was able to augment memory performance when applied to 

encoding, but no to retrieval, of verbal material (Medvedeva et al., 2018). Again, at the parietal 

cortex, anodal tDCS applied during retrieval in a verbal task improved performance (Pisoni et al., 

2015). 

Early studies applying oscillatory tES to modulate episodic memory used alternating 

currents with a DC-offset during sleep, and were able to influence verbal memory encoding 

(Marshall, Helgadóttir, Mölle, & Born, 2006; Marshall, Kirov, Brade, Mölle, & Born, 2011). 

However, these results could not be replicated during sleep (Eggert et al., 2013; Paßmann et al., 

2016; Sahlem et al., 2015) and during wakefulness when applied after memory encoding, yet 

during learning the free recall of associated-words showed improvement (Kirov, Weiss, Siebner, 

Born, & Marshall, 2009). More recent approaches with older humans and Alzheimer patients 

revealed a positive effect on memory of oscillatory tES applied during day-naps (J. Ladenbauer et 

al., 2016; X. J. Ladenbauer et al., 2017). With tACS, 140 Hz bilaterally applied at the dorsolateral 

pre-frontal cortex during the encoding of word pairs before sleep reduced overnight forgetting of 
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learned material (Ambrus et al., 2015). In a different approach, Javadi et al. (2017a) used gamma 

tACS to the DLPFC during both encoding and retrieval to modulate memory reinstatement and 

could enhance verbal episodic memory. On the other hand, Braun and colleagues (2017) attempted 

to modulate verbal and non-verbal episodic memory formation in the alpha, beta and low gamma 

range, using a short-burst event-related approach. Results showed null-effects on memory 

performance for words and faces in a recognition paradigm. Taken together, the modulation of 

episodic memory by tES is so far bringing mixed results, with several research groups tracking for 

the optimal stimulation parameters that can bring reliable and replicable outcomes.  

 

1.6.Limitations of tES 

 

Although being generally well-received in the scientific community and experiencing a strong 

increase in its use on the last years (Polanía et al., 2018), transcranial electrical stimulation does 

not come without limitations and critics. TDCS and tACS studies have been showing replication 

issues and small effect sizes across motor, perception and cognitive fields (Chew, Ho, & Loo, 

2015; Emmerling et al., 2017; Horvath, Forte, & Carter, 2014, 2015; Parkin, Bhandari, Glen, & 

Walsh, 2018; Raffin & Siebner, 2014), with notable inter- and intra-individual variability in the 

obtained results (Y.-Z. Huang et al., 2017). The major sources of variability to NIBS protocols 

have been pointed as intrinsic/biological factors and extrinsic/protocol factors.  In the former, 

aspects such as age, gender, genetics, lifestyle, individual neuroanatomy and synaptic history, time 

of the day, arousal, substance use and additional unknown that may affect plasticity. In the latter, 

technical factors as tES parameters (polarity, intensity, duration, montage), study design, sample 
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size, statistics, neuroimaging recordings and behavioral tasks directly impact the experimental 

outcomes(Guerra, López-Alonso, Cheeran, & Suppa, 2017; Y.-Z. Huang et al., 2017).  

In the cognitive domain, the widespread and simplistic use of tES to enhance cognitive 

functions as diverse as reading, decision making, speech, working memory and mathematical skills 

comes with at the expense of raising concerns in the quality and reliability of these studies (Parkin 

et al., 2015). Recently, Parkin et al. (2018) investigated the assumptions of classical tDCS 

parameters applied to cognitive processes. There, they tested the assumptions that a bilateral tDCS 

montage and a 2mA would have the enhancing properties on cognition as showed by several 

studies. The results using TMS-generated MEPs to evaluate cortico-spinal excitability revealed 

null results for bilateral montages, adding up evidence to these concerns on the literature using 

such stimulation parameters for the purposes of cognitive enhancement.  

In general, the field of tES research brings several promises of cognitive enhancement, 

although clear-cut designs and methodological shortcomings are a topic under current intensive 

discussion. Some suggestions were already drawn to make the most conclusive and less variable 

studies, when technically and financially possible: the use of neuronavigation, the experimental 

control of behavioral tasks, sites and frequencies, the use of neuroimaging, and the elaboration of 

clearer mechanistical models to the NIBS-induced changes. This so-called multi-method studies 

would take careful consideration about planning the stimulation targeting, adequate control 

conditions and reasonable sample sizes (Polanía et al., 2018). A recent panel of specialists (Bikson 

et al., 2018) brought on a list of recommendations to improve quality and reproducibility in tES 

research. They included electrode preparation and placement, operator training, protocol blinding 

and report, the use of computational models for spatial targeting and dose individualization, and 

the use of multi-modal approaches that include neuroimaging. 
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2. Targeting the left pre-frontal cortex during verbal episodic memory 

encoding with transcranial direct current stimulation 

 

The participation of the left pre-frontal cortex in episodic long-term memory encoding is 

well-stablished in the literature (Dickerson & Eichenbaum, 2010). It is assumed that the region 

acts as a hub for semantic processing, and primarily actively executing organizational functions of 

monitoring and managing episodic memories (Eichenbaum, 2017). Accordingly, attempts to 

modulate this region´s activity with transcranial direct current stimulation have been conducted in 

the last years, with moderate success (Dedoncker, Brunoni, Baeken, & Vanderhasselt, 2016b). 

Nevertheless, the majority of the studies employ a typical bipolar (i.e., two electrodes) montage 

bilaterally placed at the left and right pre-frontal cortex (Dedoncker, Brunoni, Baeken, & 

Vanderhasselt, 2016a).  This sort of tES setting usually leads to less focal distribution of the 

generated electric-field, a potential confounding factor for the effects of absence of it (Hill, 

Rogasch, Fitzgerald, & Hoy, 2017). In the first study (Lara, Knechtges, Paulus, & Antal, 2017), 

we aimed to modulate memory performance by applying a focal multi-electrode tDCS based on a 

computational model to stablish our stimulation parameters, targeting primarily the dorso-lateral 

pre-frontal cortex (DLPFC). We expected to augment cortical excitability with anodal tDCS, and 

consequently, ignite verbal memory performance. Two groups of fifteen young healthy 

participants were stimulated continuously for 20 minutes, each group in a different timing step 

(first during encoding and second during retrieval). The behavioral assessment was conducted 

through a classical paired-associative verbal learning task in a cued-recall fashion. We found no 

significant effects of tDCS on memory performance on both of the measured groups. The possible 

factors for the obtained results are discussed on the published paper that follows. 
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Anodal tDCS Over the Left DLPFC
Did Not Affect the Encoding and
Retrieval of Verbal Declarative
Information
Gabriel A. de Lara*, Philipp N. Knechtges, Walter Paulus and Andrea Antal

Department of Clinical Neurophysiology, University Medical Center Goettingen, Georg-August University of Goettingen,

Göttingen, Germany

Several studies imply that anodal transcranial direct current stimulation (tDCS) over

the left dorsolateral prefrontal cortex (DLPFC) can modulate the formation of verbal

episodic memories. The aim of this study was to test if tDCS through a multi-electrode

Laplacian montage over the left DLPFC could differentially modulate declarative memory

performance depending on the application phase. Two groups of healthy participants

(n = 2× 15) received 1mA anodal or sham stimulation for 20min during the encoding or

during the recall phase on a delayed cued-recall, using a randomized, double-blinded,

repeated-measures experimental design. Memory performance was assessed at two

time points: 10min and 24 h after learning. We found no significant difference between

anodal and sham stimulation with regard to the memory scores between conditions

(stimulation during encoding or recall) or between time points, suggesting that anodal

tDCS over the left DLPFC with these stimulation parameters had no effect on the

encoding and the consolidation of associative verbal content.

Keywords: tDCS, verbal associative learning, verbal long-term memory, DLPFC

INTRODUCTION

Low-intensity transcranial electrical brain stimulation (TES) has the potential to further improve
our knowledge about the functional and neural correlates of declarative memory, by directly
manipulating the neural activity of targeted brain areas before or during the performance of a
given task. Previous studies in this research field have found promising improvements in subjects’
recognition of encoded material when transcranial direct current (tDCS), alternating current
(tACS), or oscillatory tDCS was applied in either the learning and/or in the recognition phase
(Marshall et al., 2006; Jacobson et al., 2012; Javadi et al., 2012; Javadi and Walsh, 2012; Ambrus
et al., 2015; Pisoni et al., 2015). Among the above-mentioned techniques, tDCS is one of the most
extensively used TES methods. It is thought that tDCS is capable of inducing polarity-dependent,
relatively long-lasting changes in the human brain, probably either by de- or hyperpolarising
neurons’ resting membrane potentials and causing a reversible change in the balance of excitatory-
inhibitory cortical activity (for recent reviews see Hartwigsen et al., 2015; Woods et al., 2016;
Fertonani and Miniussi, 2017).

A meta-analysis of fMRI studies on episodic memory showed left lateralized effects for the
encoding of verbal material, arguing in favor of the involvement of the prefrontal cortex (Kim,
2011). Additionally, results from non-invasive brain stimulation studies suggest that the left
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dorsolateral prefrontal cortex (DLPFC) may be involved in both
the encoding and retrieval of verbal content (Manenti et al.,
2012). Furthermore, several sources of recent experimental data
indicate that the application of anodal tDCS over the left DLPFC
during learning results in improvements in different cognitive
tasks, including the encoding of semantic material (e.g., Brunoni
and Vanderhasselt, 2014; Dedoncker et al., 2016b; Kim et al.,
2016; Hill et al., 2017), although conflicting results were also
reported (e.g., Tremblay et al., 2014). Further research considered
that the stimulation timing might be critical (Dedoncker et al.,
2016a, b; e.g., before or during the performance of the task),
with the results usually showing a small, but significant, effect on
accuracy and reaction time in workingmemory, when tested after
the application of anodal tDCS.

A recent study tested the hypothesis that long-term
associative-memory engrams are stored in an excitatory-
inhibitory balance in neuronal ensembles. Learning is assumed
to change synaptic strength, which is disrupted during this
process, with the new excitatory connections being rebalanced
afterwards by inhibitory GABAergic mechanisms (Barron et al.,
2016). They showed that by unmasking inhibitory connections
using anodal tDCS to downregulate cortical GABA concentration
after learning, significant improvement could be obtained in
associative memory, which correlated with a decreased GABA
level in the targeted area.

To clarify whether anodal tDCS directed to the left prefrontal
cortex could indeed significantly modulate the encoding or
retrieval of verbal associative learning, we chose to apply 20
min of tDCS, as it constitutes common standard in the field for
cognitive paradigms (Hill et al., 2017). For this we designed two
experiments with different stimulation time points: in the first
group, anodal tDCS was applied before and during learning, in
order to augment learning-induced neuronal plasticity. In the
second group, stimulation was administered before and during
the recall phase 24 h after learning with the aim to rebalance
inhibitory plasticity after learning, as previous studies showed
that anodal tDCS can effectively decrease the GABA level (Stagg,
2014; Stagg et al., 2014; Barron et al., 2016). While after learning
(and during “forgetting”) the new excitatory connections are
frequently rebalanced by inhibition, we hypothesized that the
stimulation during the recall phase might induce enhanced
memory performance by downregulating the increased GABA
level, compared to sham stimulation, and similarly, during the
encoding phase.

MATERIALS AND METHODS

Participants
Thirty healthy, young adult, right-handed, native German
speakers with normal or corrected-to-normal vision were
recruited, after giving their informed consent. They were
assigned to two groups of 15 participants each (group 1: eight
females, mean age 24.8 ± 3.5, age range 18–30; group 2: seven
females, mean age 24.6 ± 3, age range 18–31). They had no
history of neuropsychiatric or brain disorders. The participants
were naïve to the applied task and were reimbursed for their
participation. The project was approved by the ethics committee

of the University Medical Center Göttingen and was conducted
accordingly to the Declaration of Helsinki. No participant
reported adverse effects.

Experimental Procedure
A randomized, double-blind, repeated-measures, placebo-
controlled design was used, with each participant taking part
only in one experimental group. Every participant underwent
two stimulation conditions (anodal tDCS and sham) with
blocks of two experiments related to one condition (stimulation
during encoding—group 1 or recall—group 2) separated by 24 h,
generating a total of four sessions (Figure 1). The first and the
third sessions consisted of a (1) learning phase, combined with
the application of tDCS in the group 1, (2) a 10-min pause,
and (3) a first cued-recall. The second and fourth sessions
were composed of a second cued-recall to assess memory
overnight consolidation, combined with tDCS only in group
2. Each stimulation session was separated by at least a 5-day
interval to avoid carryover effects. To minimize the well-known
learning effect in word-list memory tasks, the order of real and
placebo conditions were counterbalanced across participants.
At the beginning of the first session, the subjects received
written instruction about the task and were informed about
the experimental procedures. The participants also filled in an
additional indicators questionnaire and were debriefed after the
stimulation sessions.

Stimulation Protocol
tDCSwas delivered by using a certifiedNeuroConnMultichannel
stimulator (Ilmenau, Germany). We used a set of five 3 cm2

rubber-round electrodes with Ten20 paste as conductivity mean.
Both of the groups received 1.0 mA of tDCS applied for 20min
continuously during the learning phase of the task (group 1)
or during the second day’s cued-recall (group 2). For group
1, the stimulation was started 12min before presentation of
the learning material, and then continued during it (learning
duration was 8min); for group 2, the stimulation started 15min
before and then continued during the cued-recall (which lasted
5min). During the real (anodal tDCS) and sham stimulation the
current was ramped up for 10 s in the beginning until reaching
the programmed intensity, and then ramped down for 10 s at the
end. In the sham condition, the current was additionally applied
for 30 s and then discontinued. The impedances were kept below
the limit of 5 k� as measured by the device.

Montage
The positioning of the electrodes was standardized and kept
constant across the experiments as suggested bymodeling studies
(Saturnino et al., 2015), with the plugs and cables always
turned in a medial-to-lateral direction. The Laplacian multi-
electrode montage, designed to answer our research hypothesis,
was composed of a central anodal electrode over the AF3
position (according to the international 10–20 EEG system)
and four surrounding return electrodes with 6 cm distance
from the central one, and 10 cm distance between the medial
and lateral electrodes (Figure 2A). A realistic finite-element
model (Figure 2B) to evaluate the extension and precision of
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FIGURE 1 | The paired-associate learning task assessing episodic long-term memory. Participants learned 52 semantically-related German paired nouns. The

cued-recall testing consisted in verbally expressing the second word of the pair, always 10 min and again 24 h after the encoding phase.

FIGURE 2 | The multi-electrode tDCS left pre-frontal montage and the estimated distribution of the tDCS-generated electric field. (A) A five-electrode Laplacian

montage to deliver the current was centered over the AF3 position, surrounded by 4 return electrodes. The distances between the electrodes were set as follows:

central and return electrodes, 6 cm; adjacent return electrodes, 6 cm; distance between the medial and lateral return electrodes, 10 cm (Human head modified from

Patrick J. Lynch’s illustration, distributed under a CC-BY 2.5 license.) (B) The estimated electric field distribution is color-coded to the intensity scale, with the

maximum field strength reaching 0.35 mV/mm.

our anatomical target and to estimate the distribution of the
electric field was generated in SIMNIBS 2.0.1 (Thielscher et al.,
2015). The model accounts for white matter anisotropy and the
following conductivity for these anatomical components: scalp
(σ = 0.465 S/m), bone (σ = 0.010 S/m), cerebrospinal fluid (σ
= 1.654 S/m), gray matter (σ = 0.275 S/m), and white matter
(σ = 0.126 S/m). The tetrahedral volume mesh post-processing
and visualization was generated through Gmsh (Geuzaine and
Remacle, 2009).

Task
A verbal-associative learning task (Figure 1), shown in previous
studies to be sensitive in the capture of effects of non-invasive
brain stimulation in declarative memory (Marshall et al., 2006;
Garside et al., 2015), was utilized in order to assess verbal
episodic memory. In this paradigm, the participants were asked
to memorize semantically related word-pairs presented one at
a time. For each experimental condition, a different list with a
total of 54 word-pairs composed of associated German nouns
was presented on a monitor, where 8 (4 in the beginning and

4 in the end) of them were dummy pairs to buffer recency
and primacy effects. The order of the lists was randomized
across subjects and conditions. Each correct answer was granted
two points, with one point given to late or partially correct
(morphologically incorrect) answers, totaling 92 possible points
(100% performance) to score. The dummy pairs were excluded
from the data analysis. The subjects were exposed to each
word-pair for 4 s with an inter-stimulus interval of 100 ms,
thereby learning the list two times in a different, randomized
order. With two different time delays (10min and 24 h),
the participants’ memory performance was subsequently tested
with a cued-recall in a forward-recall manner, where each
stimuli was presented for 5 s. The stimuli in the two cued-
recalls were presented in two different, randomized orders.
During the 10-min pause following the learning phase, the
participants stayed seated and had no other activity or verbal
interaction with the researcher. No feedback was given about
the correctness of the answers. The task was conducted using
Presentation software (Neurobehavioral Systems Inc., Albany,
CA, USA).
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Statistical Analysis
In a first step, all the groups underwent null hypothesis
significance testing to compare their behavioral performance
in the task. As in the first experimental group two variables
were non-normally distributed, a related-samples Wilcoxon
signed rank test was employed in order to compare memory
performance between sham and real tDCS, both for the first
and second testing days. To rule out baseline differences that
could impact the outcomes in our parallel-group design, a non-
parametric independent-samples Mann–Whitney U-test was
used to compare the sham condition performances on both days.
In addition to the null hypothesis significance testing, we ran
Bayesian analyses to verify the amount of evidence for the null
or the alternative hypothesis given in our dataset (Rouder et al.,
2009). One-sided JSZ Bayes Factors (BF01) were computed in
JASP (version 0.8.1.2) to estimate how likely the null hypothesis
(there are no differences between the conditions) could be
observed under the alternative hypothesis (there are differences),
with a Cauchy prior width of 0.707. We also calculated the
effect size for all the real conditions compared with sham for the
respective groups (Figure 3C). The calculations were performed
with the Measures of Effect Size toolbox for MATLAB, which
provides a corrected and unbiased Hedges’g estimation for small
paired samples (Hentschke and Stuttgen, 2011).

Arousal Levels and Sleep Quality Indicators
To control for two variables that directly influence memory
encoding and retrieval (Diekelmann and Born, 2010; Rutishauser
et al., 2010), we asked the participants to report their arousal
levels and sleep time and quality in the previous night (Table 1).
The arousal was assessed on a self-report scale from 1 to 10 (1
= very tired, 10 = totally awake). Sleep quality was measured
through self-report, including the number of hours subjects slept
during the previous night (Likert scale, 1–5 points continuum;
1 = very bad, 5 = very good). All the indicators were analyzed
using the non-parametric paired samples Wilcoxon signed rank
test.

RESULTS

Memory Accuracy
The results with regard to memory performance in the paired-
associative learning task are summarized in Figure 3. The task
permitted an absolute maximum numerical score of 92 points,
and the results are plotted in original values for all days when
memory accuracy was measured in a cued-recall fashion. In
the first group (n = 15), where the participants received the
stimulation during encoding, a small numerical difference in
memory performance was observed between the real (67.2 ±

17.3) condition compared to sham (67.8 ± 16.8) stimulation
in the first recall test, and also between sham (66.5 ± 17.1)
and real tDCS (64.7 ± 16.4) on the second day of recall.
The related-samples Wilcoxon signed rank test revealed no
statistically significant effect of the stimulation condition, for
either the first day (Z = −0.057, p = 0.955, Hedges’g = 0.03)
or the second day (Z = 0.664, p = 0.506, Hedges’g = 0.10) of
testing. The computed Bayes Factor showed moderate evidence

in favor of the null hypothesis on the first cued-recall (BF01 =

3.719), where the null hypothesis is 3.719 times more likely to
be observed that the alternative hypothesis given this dataset.
For the second cued-recall, Bayes Factor also showed moderate
evidence for the null hypothesis (BF01 = 3.237), i.e., it is 3.237
times more likely to be observed than the alternative given the
present data.

For the second group (n = 15), where the participants
received the tDCS during retrieval, the first cued-recall showed
a slight numerical difference in memory performance between
the anodal tDCS group (70.3 ± 10.6) compared to sham (71.4
± 8.3). On the delayed cued-recall, memory performance was
also slightly different between the real stimulation (70.0 ± 11.6)
compared to sham (69.4 ± 10.6). The related samples Wilcoxon
signed rank test revealed no statistically significant differences in
memory performance between sham and real tDCS for either
the first (Z = −0.711, p = 0.477, Hedges’g = 0.11) or the
second cued-recall (Z = −0.566, p = 0.572, Hedges’g = −0.04).
Here, Bayes Factor showed moderate evidence in favor of the
null hypothesis (BF01 = 3.326) for the first cued-recall, where
the null is 3.326 times more likely to be observed than the
alternative. For the second cued-recall, Bayes Factor also showed
moderate evidence for the null hypothesis (BF01 = 3.737),
being 3.737 times more likely to be observed given the actual
data.

Moreover, the independent samples Mann–Whitney U-test
revealed no significant difference in sham performance between
the groups, for neither the first cued-recall (U = 112.500, p =

1.000), or for the second cued-recall (U = 119.500, p= 0.771).

Sleep Quality and Arousal Indicators
A summary of the sleep quality and arousal data collected on
the day of the experiments is reported in Table 1. In the first
group (stimulation during encoding), the number of hours slept
the night before the experimental session showed no significant
difference between real and sham condition for session one or
session two. There was also no significant difference in sleep
quality report on the night before the experiments between real
and sham for either of the sessions. Similarly, Wilcoxon signed
rank test showed no significant difference in the arousal levels
between sham and real stimulation for the first and second day of
memory cued-recall testing.

For the second group (stimulation during retrieval), the
amount of reported hours slept on the night before the
experiments showed no significant impact on the results for
either the real or sham conditions for any of the cued-
recall sessions. The sleep quality was not significantly different
between real and sham stimulation before the first session, but
significant difference was observed before the second session,
where participants judged that they slept better before receiving
sham stimulation (p = 0.008). A significant difference was
detected in the arousal levels before the session between sham
and real stimulation for the first day of memory cued-recall
testing, where participants reported higher arousal levels in the
real tDCS condition (p = 0.006), but not for the second cued-
recall.
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FIGURE 3 | tDCS had no significant effects on memory performance. The violin plots indicate the density of the sample distribution across the y-values. Mean and

standard error of the mean (SEM) are shown in each plot as the black dot and the black line (A) Memory score for sham and real stimulation conditions for each

participant in group one, day 1 and 2, respectively. (B) Memory score for sham and real stimulation conditions for each participant in group two, day 1 and 2,

respectively. (C) Effect sizes for the real tACS conditions across the two groups.
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TABLE 1 | Results for the sleep and arousal indicators.

Condition Value Test

SLEEP

Group 1

Amount of hours Session 1 p = 0.092

Real 7.5 ± 0.81

Sham 7.1 ± 1.1

Session 2 p = 0.223

Real 7.2 ± 0.9

Sham 6.7 ± 1.5

Sleep quality Session 1 p = 0.683

Real 3.4 ± 1.0

Sham 3.6 ± 1.0

Session 2 p = 0.666

Real 3.9 ± 0.8

Sham 3.9 ± 1.0

Group 2

Amount of hours Session 1 p = 0.138

Real 7.5 ± 0.9

Sham 6.9 ± 1.2

Session 2 p = 0.634

Real 7.2 ± 1.1

Sham 7.3 ± 1.2

Sleep quality Session 1 p = 0.490

Real 3.6 ± 0.7

Sham 3.4 ± 0.9

Session 2 p = 0.008

Real 3.4 ± 0.9

Sham 4.3 ± 0.6

AROUSAL

Group 1

First cued recall Real

Sham

7.1 ± 1.2

7.2 ± 1.4

p = 0.888

Second cued recall Real

Sham

7.4 ± 0.9

7.6 ± 1.3

p = 0.392

Group 2

First cued recall Real

Sham

7.9 ± 1.1

6.3 ± 1.8

p = 0.006

Second cued recall Real

Sham

7.0 ± 1.4

7.0 ± 1.9

p = 0.848

DISCUSSION

In the present study we investigate the effect of anodal tDCS
over the left DLPFC on verbal-associative long-term memory
performance. Interestingly, none of the stimulation conditions
(before-during learning or before-during the recall phase)
resulted in a modification of performance compared to the
subjects during sham tDCS. Significant differences were observed
between anodal and sham condition only in the sleep quality
and arousal level in Group 2, however, without behavioral
consequences.

Previous work has suggested that the excitatory-inhibitory
balance in neuronal networks is disturbed during the learning

of a new material (Song et al., 2000; Nabavi et al., 2014).
In this period, when novel information is stored during the
modification of excitatory synaptic strengths, anodal tDCS can
have a beneficial effect and, consequently, augment the learning
process. Indeed, data from numerous past experiments has
implied that anodal tDCS can modify reaction time (for a review
see Dedoncker et al., 2016b) or memory performance (for a
recent review see: Hill et al., 2016) when administered in this
critical period. However, the small effect sizes of previous studies,
coupled with non-significant effects on several analyses, require
cautious interpretation of these data. Moreover, since in the first
experiment we fit the learning inside the last minutes of the
stimulation protocol, homeostatic metaplastic effects could have
driven the results toward a cancelation, as shown already when
long-term potentiation-like brain stimulation protocols were
applied prior to motor learning in humans (Jung and Ziemann,
2009).

With regard to the administration of anodal tDCS on the
day after the verbal information encoding (experiment 2), we
hypothesized that by decreasing the inhibitory rebalancing that is
thought to take place after learning-induced increase in neuronal
excitation (Froemke et al., 2007), a larger amount of semantic
information would be recalled and memory performance would
increase compared to sham stimulation. However, this was not
the case and we were not able to replicate previous findings
(Barron et al., 2016). Nevertheless, we can speculate that the
timing of the stimulation in Group 2 might not have been ideal
(e.g., the memory test should have occurred after the 20 min
stimulation), as decreases in GABA levels were significantly lower
after anodal tDCS applied at the primary motor cortex, but not
during it, when compared to baseline measurements and to sham
stimulation (Bachtiar et al., 2015). Another possible scenario is
that the applied intensity might have been too low to generate
an electric field strong enough to overcome the inhibitory effect.
Nevertheless, the same intensity was used in previous research to
successfully modulate GABA levels with anodal tDCS (Bachtiar
et al., 2015; Barron et al., 2016).

Joyal and Fecteau (2016) reviewed studies that used tDCS in
an attempt to modulate semantic processing. The data revealed a
structured network correlated with this function, which included
the inferior frontal gyrus, a region adjacent to the stimulated
area but not directly targeted by it, a fact that can be related
to the absence of significant behavioral outcomes. Moreover,
we could speculate that the cathodal electrodes close to the
lateral part of the frontal cortex may have driven this site to
temporal inhibition. Additionally, findings on the cellular and
network plasticity mechanisms that govern human learning and
memory point to the fact that the search for a specific locus
for the memory engram storage can be misleading, due to its
possible widespread nature, i.e., the memory trace may be stored
in connectivity patterns in different brain sites defined during
encoding (Tonegawa et al., 2015). Therefore, targeting only one
structure may be a limitation of each study with a design similar
to the present one.

Furthermore, our target area might also not have been ideal.
Indeed, multiple brain regions and not only the DLPFC are
assumed to interact in order to coordinate verbal information
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processing, both for encoding and retrieval of declarative
memories (Cabeza and Nyberg, 2000; Borst and Anderson, 2013;
Pisoni et al., 2015). Besides, a fixed montage as chosen here
can impact the study outcome. An individualized anatomical
approach governed by neuronavigation to localize the DLPFC
could optimize the results, in keeping with the known variability
of brain anatomy as related to gender, aging, lateralization and
pathological processes (Mylius et al., 2013). In addition, we
employed electrode types that differed from the ones used in
previous studies, that is, five smaller electrodes arranged in a
Laplacian montage. Although, it was suggested by computational
models and experimental studies that this sort of montage could
effectively change cortical activity (Datta et al., 2009, 2012;
Gbadeyan et al., 2016), the electric field induced by this montage
is more focal and less deep compared to the one evoked by
conventional pad electrodes.

Since we did not observe significant behavioral effects in
the responses to tDCS, it would have been interesting to
identify external and internal factors that might account for
the negative results. Certainly, the variability in the cortical
changes after tDCS that might result in the absence of group
effects is a frequently discussed issue, particularly at the case
of motor-evoked potentials responses after tDCS (e.g., Wiethoff
et al., 2014). Many factors that could modulate responsiveness
before, during or after tDCS have been identified (these being
methodological-, investigator- and subject-related), however,
until now, no consensus has been reached about the reasons
underlying the between- and within-subject variability of tDCS
effects. Although, it is difficult to compare directly, we believe that
with regard to age, gender, educational level or sample size, this
work did not differ from those published by previous research in
tDCS and episodic memory.

So far, these studies in healthy participants have presented
small effect sizes (Cohen’s d of 0.04), with samples varying
from 12 to 20 participants, with females outperforming male
participants (Dedoncker et al., 2016a). Moreover, a meta-
analysis that included only single-session protocols showed
no significant effects of anodal tDCS on episodic memory
(Dedoncker et al., 2016b). In another meta-analysis that included
research with similar designs to the present work, only one
study presented significant results, with a sample size of n= 16
(Horvath et al., 2015). Furthermore, in a recently published
work (Emmerling et al., 2017), anodal tDCS was applied to
the right DLPFC in order to manipulate cognitive control.
The authors used the same experimental conditions in two

independent experimental groups (with 18 and 16 participants
receiving anodal stimulation), and surprisingly, after positive
results in the first experiment, they failed to replicate their own
previous findings in the second. They admitted that although this
could have been related to insufficient power, the mechanisms
underlying tDCS at the neuronal level are far from being
understood.

Taken together, contrary to previously published results, we
have found no evidence that single-session anodal tDCS over the
left DLPFC with the parameters used in this work has a reliable
effect on encoding and retrieval of verbal information in healthy
adult subjects. These findings further highlight the importance of

uncovering the methodological factors that might underlie inter-
individual variability in response to tDCS, such as anatomical
differences and electrode placement. Studies that combine
behavioral outcomes with neurophysiological measures should
systematically evaluate stimulation parameters and correlate
them to effects in order to identify predictive factors. We also
suggest that future studies should report not only the mean group
data but also the individual performance data points. Moreover,
to determine how far the negative results translate to a larger
population, a higher number of participants is required.
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3. Targeting the left temporal cortex during verbal episodic memory 

encoding with transcranial alternating current stimulation 

 

In the second study (Lara et al., 2018), we moved our target to the left temporal cortex.  

This time we aimed to interfere and manipulate with the temporal characteristics of the encoding 

process, and for that we chose tACS. Here, we attempted to profit on the naturally occurring theta-

gamma phase-amplitude coupling observations of previous neuroimaging studies (Hyafil et al., 

2015) to build or scientific framework and hypotheses. It is still debated to which extend cross-

frequency phase-amplitude coupling in different cortical sites is fundamental to successful 

episodic memory encoding, including at the lateral temporal cortex (Lega et al., 2016). Recently, 

a first study employed a theta-gamma cross-frequency tES waveform to the left pre-frontal cortex 

and was able to modulate working memory performance and cortical connectivity (Alekseichuk, 

Turi, Amador de Lara, Antal, & Paulus, 2016).  We further extend this idea to another memory 

modality and cortical area, and, attempting to modulate theta-gamma cross-frequency coupling 

during episodic memory encoding, we stimulated 72 healthy young participants divided into 3 

groups with cross-frequency theta-gamma tACS. In one group, gamma bursts were rhythmically 

coupled to the peak of the theta cycle, whereas in a second group they were coupled to the trough 

of theta. In a third condition, as a control, the two frequencies were continuously intertwined for 

the entire theta cycle. Here, the same verbal associative learning task as in the previous chapter 

was utilized. When high gamma bursts were couplet to the trough of the theta cycle, memory was 

significantly impaired. This work adds new evidence to the participation of theta-gamma coupling 

to the physiology of verbal episodic memory encoding. 
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TGp-tACS: short bursts of high gamma tACS cycles that are coupled to the peak of the theta 17 

tACS cycle  18 

TGt-tACS: short bursts of high gamma tACS that are coupled to the trough of the theta tACS-19 

waveform  20 

TGc-tACS: continuous high gamma and theta tACS 21 

LTD: long-term potentiation 22 

LTD: long-term depression 23 
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Abstract   24 

Background: Phase-amplitude cross-frequency coupling (PAC) is characterized by the 25 

modulation of the power of a fast brain oscillation (e.g., gamma) by the phase of a slow rhythm 26 

(e.g., theta). PAC in different sub- and neocortical regions is known to underlie effective neural 27 

communications and correlates with successful long-term memory formation. 28 

Objective/Hypothesis: The present work aims to extend earlier observational data, by probing 29 

the functional role of theta-gamma PAC in the left temporal cortex in humans during verbal long-30 

term memory encoding. 31 

Methods: In three double-blinded, placebo-controlled experiments (n=72), we employed cross-32 

frequency transcranial alternating current stimulation (tACS) to externally modulate ongoing 33 

PAC during a verbal-associative learning task. Three types of cross-frequency tACS protocols 34 

were used: bursts of high gamma tACS were coupled to the peak or trough of the theta tACS 35 

cycle, and a control condition where gamma tACS was continuously superimposed at theta tACS 36 

cycles. 37 

Results: Gamma bursts coupled to the trough of theta tACS induced robust behavioral 38 

impairment in memory performance (p < 0.01), whereas gamma burst coupled to the peak or 39 

continuously superimposed with theta tACS had no significant behavioral effects. 40 

Conclusions: Our results demonstrate direct evidence regarding the importance of theta-gamma 41 

coupling in verbal long-term memory formation. 42 

 43 

Keywords: tACS, verbal episodic memory, phase-amplitude cross-frequency coupling, long-44 

term memory, temporal lobe 45 
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Introduction 46 

Complex cognitive functions, like declarative long-term memory, rely on large-scale 47 

distributed networks operating in precise spatiotemporal coordination. Neural oscillations 48 

dynamically coordinate the information flow between the medial temporal lobe and its 49 

projections to subcortical and neocortical sites, and have been shown to be crucial in associative 50 

memory formation [1–4]. Phase-amplitude cross-frequency coupling (PAC) is an 51 

electrophysiological phenomenon in which the phases of a slow oscillation selectively entrains 52 

the amplitude of a fast rhythm in a phase-locked manner [5,6].  53 

Experiments in rodents’ medial temporal lobe showed that, depending on the recording 54 

location (hippocampal fissure or CA1/CA3), the peak or trough in the theta cycle are thought to 55 

regulate the induction of long-term potentiation, and thus, memory encoding [7]. In essence, 56 

different phases of theta states would represent shifts in excitable periods that recruit functionally 57 

associated neuronal populations segregated into gamma cycles [8,9]. However, the relationship 58 

between theta-gamma PAC and memory is quite ambiguous: although evidence supports a 59 

positive relation in different cortical sites and its behavioral effect on long-term memory 60 

formation  [10,11], a left-lateralized decrease in theta-gamma PAC was also found during the 61 

successful encoding of associative verbal and pictorial information [12,13].  62 

In order to mimic physiologically occurring PAC characteristics, we used cross-frequency 63 

transcranial alternating current stimulation (tACS), a non-invasive brain stimulation method that 64 

can causally probe the functional role of cross-frequency coupling by externally injecting 65 

oscillatory electrical current into the brain [14,15]. It is hypothesized that tACS can entrain the 66 

endogenous activity, i.e. induce changes in the amplitude and phase, and thus modulate neuronal 67 

firing synchronicity that rise as detectable brain rhythms [16,17]. In a recent work,  theta-gamma 68 
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cross-frequency tACS applied to the left pre-frontal cortex was able to increase visual spatial 69 

working memory performance on a two n-back match-to-sample task [18].  70 

 Here, we aimed to externally modulate PAC at the human temporal lobe during the 71 

memory formation stage of a verbal paired associated learning task. For this purpose, we utilized 72 

two cross-frequency theta-gamma tACS protocols: short bursts of high gamma tACS cycles were 73 

coupled to the peak (TGp-tACS; experiment one) or trough (TGt-tACS; experiment two) of the 74 

theta tACS cycle (Figure 1D). In addition, we introduced a control group in which the gamma 75 

frequency was continuously modulated along the theta cycle (TGc-tACS; experiment three). 76 

High gamma frequency was chosen due to its association with successful verbal memory 77 

encoding in the hippocampus and left temporal lobe in humans [19,20]. High gamma oscillation 78 

coupled with theta was also detected in rats and human’s medial temporal lobe and neocortical 79 

structures during episodic memory encoding [21–23].  80 

We hypothesized that TGp-tACS would magnify gamma oscillations and PAC at higher 81 

excitability phases, which would facilitate successful memory encoding by inducing LTP-like 82 

effects. On the other hand, an increase in PAC at the lower excitability theta phases (TGt-tACS) 83 

would impede memory encoding, reinforcing LTD-like plasticity mechanisms. LTD or LTP-like 84 

processes were already shown to be facilitated by different protocols with rhythmic stimulation,  85 

mainly when applied to different theta phases [5,24]. By coupling gamma bursts to different 86 

excitability phases in theta cycle, we attempted to alter normal PAC regimes when compared to 87 

sham stimulation. In the control group, gamma oscillations were modulated continuously along 88 

the theta wave (TGc-tACS), meaning no phase coupling specificity. From a dynamical systems 89 

theory perspective, this can be treated as a weak coupling, where the modulatory force of the 90 

slow rhythm is weak enough for the fast rhythm to stay present during the whole slow oscillation 91 
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cycle, rendering the phase-amplitude relationship unsubstantial [25]. For that, we hypothesized 92 

that no significant differences in memory performance would be generated. We found that TGt-93 

tACS induced a robust behavioral impairment in memory performance compared to the active 94 

sham condition, whereas TGp- and TGc-tACS produced no significant behavioral effects. Our 95 

findings provide direct evidence for the importance of theta-gamma coupling in memory 96 

formation and its external modulation by TG-tACS. 97 

 98 

Materials and Methods 99 

 100 

Participants 101 

A total of 72 healthy, right-handed, young adult, native German speakers with normal or 102 

corrected-to-normal vision were recruited for the study, after giving their signed informed 103 

consent. They were randomly distributed into three experiments, each of which consisted of 24 104 

participants, with 12 males and 12 females (experiment one: mean age 23.5 ± 3.1, age range 18-105 

32; experiment two: mean age 24.3 ± 2.9, age range 19-29; experiment three: mean age  23.2 ± 106 

2.2 , age range 19-27). They reported no history of neuropsychiatric disorders, drug-dependency, 107 

or neurological abnormalities. The participants were naïve to the memory test applied and were 108 

reimbursed for their participation. The experiments were approved by the Ethics Committee of 109 

the University Medical Center Goettingen, Germany, and conducted in agreement with the 110 

Declaration of Helsinki.  111 

Experimental procedures 112 

The study utilized a double-blind, randomized, placebo-controlled, parallel group design, 113 

where each participant took part in one experiment with two conditions (real stimulation and 114 

active sham). Every participant took part in four sessions. The first and the third sessions 115 
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consisted of a (1) learning phase combined with the application of real or active sham tACS, (2) a 116 

ten minutes pause and (3) a cued-recall test. The second and fourth sessions occurred 24 hours 117 

after learning and consisted of a second cued-recall to assess overnight memory retention. Each 118 

experimental condition was separated by an at least a 5-day interval between stimulation 119 

sessions. To minimize the learning-to-learn effect on memorizing word lists that could interfere 120 

in the study outcome, the stimulation conditions were placed in a counterbalanced order across 121 

participants. The data collector was blinded with regard to the stimulation conditions by another 122 

researcher, who replaced the condition labels with dummy codes. In the beginning of the first 123 

experimental session, the subjects received a written instruction about the task and were informed 124 

about the stimulation procedures.  125 

Stimulation protocol 126 

The transcranial alternating current was delivered by means of a CE-certified Neuroconn 127 

multichannel stimulator (neuroConn GmbH, Ilmenau, Germany). The stimulation protocol was in 128 

agreement with the present ethical guidelines [26]. We used a 3 cm2 rubber-round electrode with 129 

the Ten20 paste as the conductive mean. In all groups, for the real tACS protocol, a sinusoidal 130 

alternating current of 1 mA (peak-to-baseline) was applied for 10 minutes continuously during 131 

the learning phase of the task. As demonstrated by intracranial recordings during transcranial AC 132 

stimulation in humans, the stimulation intensity applied in this work can generate electric fields 133 

strong enough [27,28] to modulate neuronal activity according to in vitro and in vivo studies 134 

[29,30]. During the real and active sham stimulation, the current was ramped up for 10 seconds in 135 

the beginning until the programmed intensity was reached, with a ramp down of 10 seconds in 136 

the end; but in the active sham condition, a current was delivered for 30 seconds and then 137 

discontinued by using a ramp-down of 10 seconds. The active sham stimulation consisted of a 138 
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protocol already demonstrated to mimic the cutaneous sensations related to the real transcranial 139 

electrical stimulation, although not leading to detectable behavioral after-effects [31]. The 140 

impedances were kept below 10 kΩ as measured by the device. The positioning of the electrodes 141 

was standardized and kept constant across the experiments as suggested by modelling studies 142 

[32], with the plugs and cables always turned to an anterior-to-posterior direction. 143 

In this work, the employed cross-frequency stimulation comprised two components 144 

(figure 1D): in the first and second experiments, a slow, continuous 5 Hz theta wave (0.75 mA 145 

peak-to-baseline) modulated bursts of the 80 Hz gamma (0.5 mA peak-to-baseline, 50 ms 146 

duration) fast component coupled with the peak and trough of each theta cycle, respectively; in 147 

the third experiment, both components were merged into a continuous superimposed theta-148 

gamma wave, with the theta being the envelope of the gamma wave. There were no DC offsets in 149 

the waveforms (which could lead to confounding effects). The temporal coordination of the 150 

components was generated with a specific hardware and verified in the stimulator with an 151 

oscilloscope.  152 

Montage 153 

 The three-electrode montage was derived from a finite-element model to focus the electric 154 

field distribution over the left temporal lobe. It was composed of a stimulation electrode over T7 155 

and two return electrodes over FPz and T8, according to the international 10-20 EEG system 156 

(Figure 1B). In order to estimate the distribution of the electric field, a realistic model (Figure 157 

1C) was generated from the SIMNIBS 2.0.1 package [33,34]. This MRI-derived, finite element 158 

model took into account white matter anisotropy  and conductivity [35] for the following 159 

anatomical compartments: scalp (σ = 0.465 S/m), bone (σ = 0.010 S/m), cerebrospinal fluid (σ = 160 
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1.654 S/m), grey matter (σ = 0.275 S/m) and white matter (σ = 0.126 S/m). The tetrahedral 161 

volume mesh post-processing and visualization was done with Gmsh [36].  162 

Task 163 

Based on previous studies [37,38], a paired-associative learning task (Figure 1A) was 164 

employed to asses verbal episodic memory, using the study-test method, in which the participants 165 

studied a list of semantically related word-pairs composed of associated German nouns. For the 166 

two stimulation conditions (real or active sham), two independent word lists were used, each of 167 

which containing a total of 54 word-pairs. The order of the word lists was counterbalanced 168 

between stimulation conditions and participants.  Within the word lists, the presentation order of 169 

the word-pairs was randomized for each word-list presentation, stimulation condition, participant 170 

and experiment. The stimuli were presented horizontally at the center of a 17” computer screen, 171 

written in white Arial with a font size 18 over a black background. The participants seated 172 

comfortably in chair placed at a 90 cm distance from the monitor. In order to facilitate the 173 

learning of the large amount of the to-be-encoded word-pairs, during the encoding phase (tACS + 174 

learning), the participants were presented one word list twice immediately after each other. From 175 

the 54 learned word-pairs, 8 (4 in the beginning and 4 in the end) of them were dummy items to 176 

buffer primacy and recency effects, which were excluded from the data analysis. Particularly, the 177 

recency (serial position) effect is accounted for the working memory component in the 178 

performance, which justifies the data exclusion. The subjects were exposed to each word pair for 179 

5 seconds with an inter-stimulus interval of 100 milliseconds. The learning phase was followed 180 

by a 10-minute-long pause, during which the participants stayed quiet and performed no other 181 

activity.  182 
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Each learned word list was tested in two different time points (10 minutes and 24 hours 183 

after encoding) using a cued-recall in a forward-recall fashion, in which the order of the stimuli 184 

in the two test moments was randomized. In the testing phase, each recall trial lasted 5 seconds 185 

with the stimulus constantly being presented on the monitor. Participants responded verbally. 186 

Their responses were noted by the investigator in a standardized experimental sheet. The task 187 

correction criteria included granting one point to late answers (i.e., provided outside of the 5s 188 

recall interval of a given trial) or partially correct answers (e.g., plural instead of singular), and 189 

two points for each correct answer, totaling a possible point score of 92. In addition, a different 190 

scoring criterion was used to test the validity of our procedure. In this second scoring approach, 191 

partially correct answers where considered as full hits, and late answers as misses. The results 192 

from the second scoring approach conceptually replicated the results from the first scoring 193 

approach (see supplementary material).  No feedback was given during and after the recall tests 194 

regarding the correctness of their answers. The task was controlled using Presentation software 195 

(version 0.71, Neurobehavioral Systems Inc, Albany, CA., USA).  196 

 197 

Data analysis  198 

All the experiments were submitted to null hypothesis significance testing to compare the 199 

behavioral performance in the task. In experiment one, three variables (real stimulation day one 200 

and active sham stimulation days one and two) showed a non-normal distribution. For this, a non-201 

parametric related-samples Wilcoxon signed-rank test was employed to compare sham and real 202 

tACS conditions in all the experimental groups. Bonferroni correction was used within 203 

experiments for correcting for multiple comparisons. A parametric independent-samples 204 

Kruskal-Wallis test was used to check if there were significant differences between the active 205 

sham conditions. To complement the applied null hypothesis significance testing, we estimated 206 
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the effect size (Figure 3) for all the real conditions compared with active sham for the respective 207 

experiments. The calculations were performed with the Measures of Effect Size toolbox for 208 

MATLAB, that uses standardized mean difference and corrects for bias in cases of small sample 209 

sizes [39]. We additionally clustered our participants in three groups depending on whether their 210 

performance during active stimulation surpassed, decreased or remained the same when 211 

compared to the active sham condition. 212 

 213 

Arousal levels, cutaneous sensations and sleep quality indicators 214 

To control for the variables which can impact memory performance, we asked the 215 

participants to report their arousal levels, cutaneous sensations and the number of hours they had 216 

slept on the night before the experiment day (Table 1). The arousal degree was self-report on a 217 

scale going from 1-10 (1 = very tired, 10 = totally awake). Wilcoxon signed-ranks test was 218 

applied to assess differences on both of the indicators within groups, and the Independent-219 

samples Kruskal-Wallis test when comparing the same indicators between groups. 220 

We also accounted for a possible effect of cutaneous sensations/discomfort between the 221 

stimulation conditions and groups. The participants were asked whether they felt any skin 222 

sensation during the stimulation (by using an 11-point Likert-scale; 0 – not at all, to 10 – very 223 

strong). The related-samples Wilcoxon signed-rank test was applied to assess differences 224 

between real and active sham tACS within groups, whereas the independent-samples Kruskal-225 

Wallis test was used to compare cutaneous sensation between the groups. 226 

 227 

Results  228 

For the first experiment, we hypothesized that the modulation of the gamma bursts nested 229 

into the theta wave peaks (TGp-tACS) during the memory encoding would improve subsequent 230 
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memory performance by enhancing theta-gamma coupling at theta high excitability phases [18]. 231 

The memory performance across the sample (Figure 2A) was numerically higher, although it was 232 

not statistically significant, in the real TGp-tACS condition (70.1 ± 14.3 mean score; Hedges’ g = 233 

.12) compared to the active sham (68.2 ± 15.8 mean score) for the first cued-recall (Z =.732, p = 234 

.928, Bonferroni corrected, Wilcoxon signed-rank test). Similar improvement also occurred with 235 

real TGp-tACS (66.7 ± 16.2 mean score, Hedges’ g = .15) compared to active sham stimulation 236 

(64 ± 17.3 mean score) on the second cued-recall (Z = 1.116, p = .528, Bonferroni corrected, 237 

Wilcoxon signed-rank test). We further clustered the participants based on whether they had an 238 

increase or decrease in memory performance in response to real TGp-tACS (Figure 4A). No clear 239 

predominance of the effect was observed on the first cued-recall, while a slight numerically better 240 

performance was present on the second cued-recall. Additionally, we asked the participants 241 

before the experiments about their arousal level and the number of hour of sleep they got, factors 242 

that could impact memory encoding and retrieval performance [40,41]. No significant group-243 

level differences were reported (Table 1).   244 

In the second experiment, we hypothesized that the modulation of the gamma bursts 245 

nested into the theta wave troughs (TGt-tACS) would decrease memory performance. This 246 

decrease consistently occurred across the study volunteers (Figure 2B). On both cued-recalls, a 247 

consistent drop in memory performance was observed (79 % and 75% of the subjects, 248 

respectively, Figure 4B). On the first cued-recall (Z = -2.844, p = .008, Bonferroni corrected, 249 

Wilcoxon signed-rank test), real TGt-tACS (62.3 ± 15.4 mean score, Hedges’ g = -.57) impaired 250 

memory formation compared to the active sham stimulation (71.3 ± 15.2 mean score).  The same 251 

effect was observed on the second cued-recall (Z = -2.831, p = .010, Bonferroni corrected, 252 

Wilcoxon signed-rank test), where real TGt-tACS (59.5 ± 16.6 mean score, Hedges’ g = -.49) led 253 

to a decrease in memory performance compared to active sham stimulation (68.0 ± 16.7 mean 254 
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score). The arousal and amount-of-sleep reports showed no significant differences between real 255 

and active sham stimulation on either of the cued-recalls (Table 1). The consistent memory 256 

impairment scores on two separate days indicate that the process of memory encoding was 257 

disrupted. 258 

To additionally control for the phase relationships between theta and high gamma 259 

oscillations during declarative long-term memory formation, a third experiment was conducted, 260 

in which gamma oscillations were modulated continuously along the theta wave (TGc-tACS), 261 

meaning no phase coupling specificity (Figure 1D). We hypothesized that a weaker form of 262 

cross-frequency coupling would have no impact on memory formation and, hence, on memory 263 

performance. Confirming this hypothesis (Figure 2C), we found no significant difference (Z = 264 

.098, p = 1.0 , Bonferroni corrected, Wilcoxon signed-rank test) between real TGc-tACS (65.4 ± 265 

11.3 mean score, Hedges’ g = .05) and the active sham stimulation (64.6 ± 13.5 mean score) on 266 

the first cued-recall, or between real TGc-tACS (62.7 ±12.4 mean score, Hedges’ g = .05) and the 267 

sham (63.5 ±13.5 mean score) on the second cued-recall (Z = -.200, p = 1.0, Bonferroni 268 

corrected, Wilcoxon signed-rank test ). The performance clustering also did not show a clear 269 

predominance of any effect (Figure 4C). Again, there was no significant difference between the 270 

conditions in terms of self-reported arousal levels and hours slept on the night prior to the 271 

experiment (Table 1).  272 

To further test whether fluctuations in individual performances could drive the difference 273 

in the outcomes between the stimulation conditions, we compared specifically the performance 274 

under the active sham tACS conditions between the three experimental groups. An independent-275 

samples Kruskal-Wallis test revealed no significant difference between the active sham 276 

conditions on either the first (H(2) = 3.545, p = .170) or the second cued-recall (H(2) = 1.159, p = 277 
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.560). The comparison of arousal and sleep reports for real and active sham tACS across the three 278 

experiments (Table 1) demonstrated no significant differences among them, excluding the 279 

possible influences of these variables fluctuation on memory performance. 280 

The cutaneous sensations/discomfort comparison was conducted to identify differences 281 

between the stimulation conditions (active sham vs. real tACS) and groups. The skin sensation 282 

reported on the real tACS session was compared between the groups with the independent-283 

samples Kruskall-Wallis test, which revealed no significant difference across the groups (H(2) = 284 

1.612, p = .447). We also tested if discomfort could account for differences between the 285 

conditions. We compared the skin sensation during the real and sham sessions within each group 286 

by using the related-samples Wilcoxon signed rank test. No significant difference was found for 287 

the TGp-tACS group (Z = -.451, p = .652), for the TGt-tACS (Z = .200, p = .841) and for the 288 

TGc-tACS (Z = .500, p = .617).  These results suggest no detectable effect of the stimulation-289 

related skin discomfort on memory performance.   290 

 291 

Discussion 292 

The objective of this study was to investigate verbal episodic memory formation by 293 

targeting CFC between theta and high gamma oscillations at the temporal lobe.  Cross-frequency 294 

tACS protocols, as used here, can further extend correlative evidence deriving from observation 295 

studies, towards a direct link between the theta-gamma cross-frequency hypothesis and cognition 296 

[18]. Due to its preponderance in processing  and storing verbal content within the memory 297 

network [42], we targeted the left temporal lobe by three tACS CFC protocols. Our behavioral 298 

analysis revealed that short bursts of gamma tACS coupled with the trough of the theta tACS 299 

cycle significantly impaired verbal long-term memory performance.  300 
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 PAC between theta and gamma oscillations regulates inter- and intra-areal spike-time 301 

dependent plasticity that underlie learning mechanisms and the organizational pattern of encoding 302 

information [43–46].  In subdural recordings over left cortical areas in epilepsy patients, theta to 303 

high gamma coupling was present in 84.3% of the electrodes for multiple tasks, including 304 

semantic processing and episodic memory [23]. The theta-gamma PAC was also investigated in 305 

the context of sequential temporal encoding of single visual items, where 306 

magnetoencephalography revealed a robust nesting of gamma power to different theta phases 307 

associated with the serial position of the learned items in multiple structures of the MTL  [13].  308 

Additionally, direct recordings from the MTL in rodents and humans suggest that CFC between 309 

theta-low gamma might be involved in memory retrieval, whereas theta-high gamma coupling 310 

could be directly involved in encoding [21,22]. The CFC phenomenon, and a possible phase 311 

preference of high gamma amplitude in relation to the theta cycle during encoding, set the 312 

framework for our hypothesis on the role of theta-gamma coupling in the temporal lobe in 313 

declarative long-term memory. 314 

 The impairment of memory performance in our TGt-tACS experiment suggests the 315 

hindering of naturally occurring theta-gamma coupling characteristics, which is known to 316 

coordinate long-term memory encoding, demonstrating a clear sensitivity to this type of coupling. 317 

To understand the lack of memory improvement, we consider the following scenarios. In healthy 318 

young adults with intact cognitive functions, a ceiling effect in learning may occur more likely as 319 

compared to the likelihood of deterioration, regardless of whether electrical brain stimulation is 320 

applied or not; as well as optimized brain functions predominantly respond to external 321 

perturbations with impairment [47,48]. In line with this, a recent study, in which left or right 322 

medial temporal lobe was stimulated invasively using electrical pulses with a frequency of 50 Hz, 323 

revealed only an impairment, but not an improvement, in verbal and spatial memory domains 324 
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[49]. Also, a long and continuous stimulation as used here is more prone to induce a functional 325 

disruption, rather than enhancement [50], as patterned stimulation protocols could be more 326 

aligned with the physiological fluctuations of neuronal activity than the continuous ones,  327 

although showing variability issues in the outcomes [51,52]. This may be due to the fact that 328 

theta-gamma PAC typically fluctuates in a limited time window during memory encoding, as, in 329 

general, brain rhythms are transient in nature [53].  330 

An alternative explanation may be related to the lack of agreement in the experimental 331 

data regarding the presence of CFC and its phase structure in successful memory encoding, a 332 

topic of constant debate on the field of neuroscience. In the verbal episodic memory domain, 333 

intracranial recordings revealed differences in PAC during episodic memory formation between 334 

hippocampal and neocortical recording sites [54]. While the hippocampus exhibited maximum 335 

PAC between both slow delta/theta (2.5-5 Hz) and low and high gamma rhythms, the lateral 336 

temporal lobe showed a different oscillatory pattern; that is, theta wave (4-9 Hz) modulated 337 

mainly low gamma activity. Future tACS research can explore the involvement of theta-low 338 

gamma PAC during verbal memory encoding. In addition, a recent study using a paired-verbal 339 

memory task has linked successful memory encoding to decreased rather than to increased PAC 340 

between theta and high gamma in the inferior frontal gyrus, and theta and  low gamma in the left 341 

temporal lobe [12]. Nevertheless, the electrophysiological signal detected in the temporal site 342 

with intracranial recordings was classified as a sharp waveform deflection, not as a synchronized 343 

gamma oscillation nested to theta. Based on these last findings, we would expect functional 344 

impairment in all three TG-tACS experiments; however, our results clearly provided evidence for 345 

verbal memory impairment only in the TGt-tACS experiment.  346 

The results from the realistic finite element model indicate the highest field strength 347 

allocated in the left temporal lobe (Figure 1C). As to the anatomical precision of our model-348 
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driven TG-tACS, the present results can be explained by at least two scenarios. First, it is 349 

possible that our findings are due to the direct effect of TG-tACS over the left lateral temporal 350 

lobe. This account is supported by experimental data, which correlated theta-gamma coupling in 351 

this region with verbal long-term memory encoding [54]. In addition, modulation of the left 352 

lateral temporal cortex could affect medial temporal lobe activity via the functional connections 353 

to it, also known as a “proxy” stimulation effect demonstrated by earlier studies [50,55]. Medial 354 

temporal lobe structures that connect to lateral temporal sub-regions, namely the anterior 355 

hippocampus and perirhinal/entorhinal cortices, were shown to encode verbal content as a part of 356 

the episodic memory network [56–61]. Second, we cannot rule out the intriguing possibility that 357 

TG-tACS, although to a lesser extent, reached deeper areas such as the medial temporal lobe 358 

structures, possibly via the cortico-spinal fluid [28]. Thus, it is possible that either direct or 359 

indirect stimulation of the medial temporal lobe with TG-tACS could be responsible for the 360 

present results.  361 

Few limitations of the present study include the absence of electrophysiological 362 

recordings before and after TG-tACS, thus the resulting network dynamics remains to be 363 

characterized. Second, endogenous brain oscillation are transient in nature, however, the present 364 

paradigm utilized continuous stimulation for 10 minutes. This limitation requires the 365 

investigation of a temporally coordinated, event-related form of tACS.  366 

Taken together, we demonstrated that the perturbation of theta-gamma coupling at the 367 

temporal lobe hinders declarative memory formation, by showing the feasibility of externally 368 

modulating verbal episodic memory encoding with theta-gamma cross-frequency stimulation. 369 

 370 

Conflict of interest: W.P. holds a patent on transcranial deep brain stimulation. He is on the 371 

scientific advisory board of EBS technologies and Precisis AG. 372 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

 373 

Acknowledgments 374 

We thank Christine Crozier for language editing of the manuscript. This work was supported by 375 

the Deutsche Forschungsgemeinschaft (PA 419/15-1) awarded to WP. 376 

 377 

References 378 

[1] Dickerson BC, Eichenbaum H. The episodic memory system: neurocircuitry and disorders. 379 

Neuropsychopharmacology 2010;35:86–104. doi:10.1038/npp.2009.126. 380 

[2] Preston AR, Eichenbaum H. Interplay of Hippocampus and Prefrontal Cortex in Memory. 381 

Curr Biol 2013;23:R764–73. doi:10.1016/j.cub.2013.05.041. 382 

[3] Thut G, Miniussi C, Gross J. The functional importance of rhythmic activity in the brain. 383 

Curr Biol 2012;22:R658–63. doi:10.1016/j.cub.2012.06.061. 384 

[4] Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. 385 

Nat Rev Neurosci 2012;13:20–5. doi:10.1038/nrn3137. 386 

[5] Canolty RT, Knight RT. The functional role of cross-frequncy coupling. Trends Cogn Sci 387 

2010;14:506–15. doi:10.1016/j.tics.2010.09.001.The. 388 

[6] Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev 389 

Neurosci 2011;12:105–18. doi:10.1038/nrn2979. 390 

[7] Hasselmo ME. What is the function of hippocampal theta rhythm? - Linking bahavioral 391 

data to phasic properties of field potential and unit recording data. Hippocampus 392 

2005;15:936–49. doi:10.1002/hipo.20116. 393 

[8] Buzsáki G, Anastassiou C a., Koch C. The origin of extracellular fields and currents — 394 

EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012;13:407–20. doi:10.1038/nrn3241. 395 

[9] Hanslmayr S, Staresina BP, Bowman H. Oscillations and Episodic Memory: Addressing 396 

the Synchronization/Desynchronization Conundrum. Trends Neurosci 2016;39:16–25. 397 

doi:10.1016/j.tins.2015.11.004. 398 

[10] Lisman JE, Jensen O. The Theta-Gamma Neural Code. Neuron 2013;77:1002–16. 399 

doi:10.1016/j.neuron.2013.03.007. 400 

[11] Friese U, Köster M, Hassler U, Martens U, Trujillo-Barreto N, Gruber T. Successful 401 

memory encoding is associated with increased cross-frequency coupling between frontal 402 

theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage 403 

2013;66:642–7. doi:10.1016/j.neuroimage.2012.11.002. 404 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

[12] Vaz AP, Yaffe RB, Wittig JH, Inati SK, Zaghloul KA. Dual origins of measured phase-405 

amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the 406 

human cortex. Neuroimage 2017;148:148–59. doi:http://dx.doi.org/10.1101/084194. 407 

[13] Heusser AC, Poeppel D, Ezzyat Y, Davachi L. Episodic sequence memory is supported by 408 

a theta-gamma phase code. Nat Neurosci 2016;19:1374–83. doi:10.1038/nn.4374. 409 

[14] Helfrich RF, Herrmann CS, Engel AK, Schneider TR. Different coupling modes mediate 410 

cortical cross-frequency interactions. Neuroimage 2016;140:76–82. 411 

doi:10.1016/j.neuroimage.2015.11.035. 412 

[15] Helfrich RF, Knight RT. Oscillatory Dynamics of Prefrontal Cognitive Control. Trends 413 

Cogn Sci 2016;20:916–30. doi:10.1016/j.tics.2016.09.007. 414 

[16] Antal A, Herrmann CS. Transcranial Alternating Current and Random Noise Stimulation: 415 

Possible Mechanisms. Neural Plast 2016;2016:1–12. doi:10.1155/2016/3616807. 416 

[17] Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive 417 

neuroscience. Neurosci Biobehav Rev 2013;37:1702–12. 418 

doi:10.1016/j.neubiorev.2013.06.014. 419 

[18] Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial Working Memory 420 

in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex. 421 

Curr Biol 2016;26:1513–21. doi:10.1016/j.cub.2016.04.035. 422 

[19] Sederberg PBP, Schulze-Bonhage A, Madsen JR, Bromfield EB, Litt B, Brandt A, et al. 423 

Gamma oscillations distinguish true from false memories. Psychol Sci 2007;18:927–32. 424 

doi:10.1111/j.1467-9280.2007.02003.x.Gamma. 425 

[20] Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, McCarthy DC, Brandt A, 426 

et al. Hippocampal and neocortical gamma oscillations predict memory formation in 427 

humans. Cereb Cortex 2007;17:1190–6. doi:10.1093/cercor/bhl030. 428 

[21] Colgin LL. Theta-gamma coupling in the entorhinal-hippocampal system. Curr Opin 429 

Neurobiol 2015;31:45–50. doi:10.1016/j.conb.2014.08.001. 430 

[22] Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci 2016;17:239–49. 431 

doi:10.1038/nrn.2016.21. 432 

[23] Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Berger MS, et al. High 433 

Gamma Power is Phase-Locked to Theta Oscillations in Human Neocortex. Science 434 

2006;313:1626–8. doi:10.1126/science.1128115.High. 435 

[24] Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME. Stimulation in hippocampal 436 

region CA1 in behaving rats yields long-term potentiation when delivered to the peak of 437 

theta and long-term depression when delivered to the trough. J Neurosci 2003;23:11725–438 

31. doi:23/37/11725 [pii]. 439 

[25] Hyafil A, Giraud A, Fontolan L, Gutkin B. Neural Cross-Frequency Coupling : Connecting 440 

Architectures , Mechanisms , and Functions. Trends Neurosci 2015;38:725–40. 441 

doi:10.1016/j.tins.2015.09.001. 442 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

 

[26] Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low 443 

intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application 444 

guidelines. Clin Neurophysiol 2017;128:1774–809. doi:10.1016/j.clinph.2017.06.001. 445 

[27] Opitz A, Falchier A, Yan C, Yeagle E, Linn G. Spatiotemporal structure of intracranial 446 

electric fields induced by transcranial electric stimulation in human and nonhuman 447 

primates. Sci Rep 2016;6:1–11. doi:10.1101/053892. 448 

[28] Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and 449 

models of electric fields in the in vivo human brain during transcranial electric stimulation. 450 

Elife 2017;6:e18834. doi:10.7554/eLife.18834. 451 

[29] Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current 452 

stimulation on brain activity-a review of known mechanisms from animal studies. Front 453 

Hum Neurosci 2013;7:687. doi:10.3389/fnhum.2013.00687. 454 

[30] Ali MM, Sellers KK, Frohlich F. Transcranial Alternating Current Stimulation Modulates 455 

Large-Scale Cortical Network Activity by Network Resonance. J Neurosci 456 

2013;33:11262–75. doi:10.1523/JNEUROSCI.5867-12.2013. 457 

[31] Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in - Short 458 

stimulation - Fade out approach to sham tDCS - Reliable at 1 mA for naïve and 459 

experienced subjects, but not investigators. Brain Stimul 2012;5:499–504. 460 

doi:10.1016/j.brs.2011.12.001. 461 

[32] Saturnino GB, Antunes A, Thielscher A. On the importance of electrode parameters for 462 

shaping electric field patterns generated by tDCS. Neuroimage 2015;120:25–35. 463 

doi:10.1016/j.neuroimage.2015.06.067. 464 

[33] Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic 465 

stimulation: A useful tool to understand the physiological effects of TMS? Proc Annu Int 466 

Conf IEEE Eng Med Biol Soc EMBS 2015;2015–Novem:222–5. 467 

doi:10.1109/EMBC.2015.7318340. 468 

[34] Opitz A, Paulus W, Will A, Thielscher A. Anatomical determinants of the electric field 469 

during transcranial direct current stimulation. Neuroimage 2015;109:2. 470 

doi:10.1016/j.neuroimage.2015.01.033. 471 

[35] Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A. How the brain tissue 472 

shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 473 

2011;58:849–59. doi:10.1016/j.neuroimage.2011.06.069. 474 

[36] Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator with built-in pre- 475 

and post-processing facilities. Int J Numer Methods Eng 2009;79:1309–31. 476 

doi:10.1002/nme.2579. 477 

[37] Rasch B, Pommer J, Diekelmann S, Born J. Pharmacological REM sleep suppression 478 

paradoxically improves rather than impairs skill memory. Nat Neurosci 2009;12:396–7. 479 

doi:10.1038/nn.2206. 480 

[38] Ngo H-VV, Martinetz T, Born J, Mölle M. Auditory Closed-Loop Stimulation of the Sleep 481 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

Slow Oscillation Enhances Memory. Neuron 2013;78:545–53. 482 

doi:10.1016/j.neuron.2013.03.006. 483 

[39] Hentschke H, Stüttgen MC. Computation of measures of effect size for neuroscience data 484 

sets. Eur J Neurosci 2011;34:1887–94. doi:10.1111/j.1460-9568.2011.07902.x. 485 

[40] Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 2010;11:114–26. 486 

doi:10.1038/nrn2762. 487 

[41] Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is 488 

predicted by theta-frequency phase-locking of single neurons. Nature 2010;464:903–7. 489 

doi:10.1038/nature08860. 490 

[42] Kim H. Neural activity that predicts subsequent memory and forgetting: A meta-analysis 491 

of 74 fMRI studies. Neuroimage 2011;54:2446–61. 492 

doi:10.1016/j.neuroimage.2010.09.045. 493 

[43] Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr Opin Neurobiol 494 

2010;20:245–57. doi:10.1016/j.conb.2010.01.004. 495 

[44] Jutras MJ, Buffalo E a. Synchronous neural activity and memory formation. Curr Opin 496 

Neurobiol 2010;20:150–5. doi:10.1016/j.conb.2010.02.006. 497 

[45] Buzsáki G, Wang X-J. Mechanisms of Gamma Oscillations. Annu Rev Neurosci 498 

2012;35:203–25. doi:10.1146/annurev-neuro-062111-150444. 499 

[46] Hanslmayr S, Staudigl T. How brain oscillations form memories - A processing based 500 

perspective on oscillatory subsequent memory effects. Neuroimage 2014;85:648–55. 501 

doi:10.1016/j.neuroimage.2013.05.121. 502 

[47] Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmu E. Ceiling Effects Prevent Further 503 

Improvement of Transcranial Stimulation in Skilled Musicians. J Neurosci 504 

2014;34:13834–9. doi:10.1523/JNEUROSCI.1170-14.2014. 505 

[48] Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm 506 

desynchronization impairs working memory. Restor Neurol Neurosci 2017;35:147–58. 507 

doi:10.3233/RNN-160714. 508 

[49] Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ, Sperling MR, et al. Direct Electrical 509 

Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory. Neuron 510 

2016;92:983–90. doi:10.1016/j.neuron.2016.10.062. 511 

[50] Kim K, Ekstrom AD, Tandon N. A network approach for modulating memory processes 512 

via direct and indirect brain stimulation: Toward a causal approach for the neural basis of 513 

memory. Neurobiol Learn Mem 2016;134:162–77. doi:10.1016/j.nlm.2016.04.001. 514 

[51] Hamada M, Hanajima R, Terao Y, Arai N, Furubayashi T, Inomata-Terada S, et al. 515 

Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity 516 

induction of the human motor cortex. Clin Neurophysiol 2007;118:2672–82. 517 

doi:10.1016/j.clinph.2007.09.062. 518 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 

 

[52] Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, et al. Ten Years of 519 

Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. 520 

Brain Stimul 2016;9:323–35. doi:10.1016/j.brs.2016.01.006. 521 

[53] Jones SR. When brain rhythms aren’t “rhythmic”: implication for their mechanisms and 522 

meaning. Curr Opin Neurobiol 2016;40:72–80. doi:10.1016/j.conb.2016.06.010. 523 

[54] Lega B, Burke J, Jacobs J, Kahana MJ. Slow-Theta-to-Gamma Phase–Amplitude Coupling 524 

in Human Hippocampus Supports the Formation of New Episodic Memories. Cereb 525 

Cortex 2016;26:268–78. doi:10.1093/cercor/bhu232. 526 

[55] Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted 527 

enhancement of cortical-hippocampal brain networks and associative memory. Science 528 

(80- ) 2014;345:1054–7. doi:10.1126/science.1252900. 529 

[56] Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity 530 

with the hippocampus during successful memory formation. Hippocampus 2005;15:997–531 

1005. doi:10.1002/hipo.20141. 532 

[57] Wagner K, Frings L, Halsband U, Everts R, Buller A, Spreer J, et al. Hippocampal 533 

functional connectivity reflects verbal episodic memory network integrity. Neuroreport 534 

2007;18:1719–23. doi:10.1097/WNR.0b013e3282f0d3c5. 535 

[58] McLaren DG, Sperling RA, Atri A. Flexible modulation of network connectivity related to 536 

cognition in alzheimer’s disease. Neuroimage 2014;100:544–57. 537 

doi:10.1016/j.neuroimage.2014.05.032. 538 

[59] Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev 539 

Neurosci 2012;13:713–26. doi:10.1038/nrn3338. 540 

[60] Blankenship SL, Redcay E, Dougherty LR, Riggins T. Development of hippocampal 541 

functional connectivity during childhood. Hum Brain Mapp 2017;38:182–201. 542 

doi:10.1002/hbm.23353. 543 

[61] Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL. Distinct cortical 544 

anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional 545 

connectivity. J Neurophysiol 2008;100:129–39. doi:10.1152/jn.00077.2008. 546 

 547 

Figures and table legends 548 

Figure 1. Experimental parameters: (A) The verbal paired-associative learning task. 549 

Participants leaned 54 associated German nouns while receiving TG-tACS. The memory 550 

performance was tested twice in a cued-recall manner: the first test occurred 10 minutes after 551 

learning and the second test 24 hours after learning. (B) Stimulation montage: transcranial 552 

alternating current was  delivered over the left temporal region (T7, international EEG 10-20 553 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

 

system) with two return electrodes over the right temporal (T8) and frontal (Fpz) areas. Note that 554 

the amount of power provided by the summed energy of the components in each cycle 555 

corresponded to 2 mA peak-to-peak. (C) Realistic, anisotropic, finite-element computational head 556 

model of the electric field distribution in the brain, including the following compartments: scalp, 557 

bone, cerebrospinal fluid, grey and white matter. Colored circles in upper figures represent the 558 

tACS electrodes locations. Bottom right presents only field strength distribution in grey matter 559 

compartment. The field strength is color-coded from 0 to 0.6 mV/mm. (D) Cross-frequency 560 

protocols for tACS where 80 Hz gamma bursts were (1) coupled with the peaks (TGp-tACS), (2) 561 

with the troughs (TGt-tACS), or (3) continuously presented during the 5 Hz theta wave cycles 562 

(TGc-tACS).  563 

 564 

Figure 2: Episodic memory performance. Violin plots with individual data points indicate the 565 

scores in the verbal paired-associative learning task. (A) Active sham and real TGp-tACS for the 566 

first experiment (80 Hz gamma bursts at the peak of the 5 Hz theta cycle). (B) Active sham and 567 

real TGt-tACS for the second experiment (80 Hz gamma bursts at the trough of the 5 Hz theta 568 

cycle). (C) Active sham and real TGc-tACS for the third experiment (80 Hz gamma bursts 569 

continuously modulated by 5 Hz theta cycles). Mean and standard error of the mean are indicate 570 

by the filled black dot and the vertical black line, respectively. Horizontal brackets point 571 

statistically significant differences according to paired samples null significance hypothesis 572 

testing (* p < 0.01; Bonferroni corrected). 573 

 574 

Figure 3. Effect sizes. Cross-frequency tACS protocols in three experimental groups. Values in 575 

the Y axis represent an unbiased Hedges’ g estimator of the standardized mean performance 576 
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compared to sham stimulation. The X axis presents the two cued-recall tests for each of the 577 

experimental groups. 578 

 579 

Figure 4. Clustered memory performance. Proportion of volunteers that demonstrated increase 580 

or decrease in memory performance. Left column indicates the first cued-recall (10 min after 581 

learning and TG-tACS), and right the second cued-recall (24 hours after learning). Blue areas 582 

represent increase, orange areas represent decrease, and grey areas represent equal performance 583 

between real and active sham tACS. 584 

 585 

Table 1.  Sleep hours and arousal indicators. Comparisons between real and active sham tACS 586 

within experiments for the amount of hours slept and the self-reported arousal level before the 587 

memory test, both on the first and second experimental days. Wilcoxon signed ranks test revealed 588 

no significant differences for either indicator. Comparing the same indicators between 589 

experiments, again for the real and sham conditions and for both of the experimental days, the 590 

independent-samples Kruskal-Wallis test showed no significant differences. The value column 591 

indicates mean ± standard deviation. 592 
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Table 1. 
 Condition                Value Test 
Sleep  
 
Experiment 1 (peak) 

   

Number of hours First day 
real 
active sham 

 
  7.1 ± 0.9 
  7.2 ± 1.0 

 
p = .79 

 Second day 
real 
active sham 

 
  7.4 ± 1.1 
  7.0 ± 1.0 

 
p = .20 

    
    
Experiment 2 (trough)    
Number of hours First day 

real 
active sham 

 
  7.2 ± 0.9 
  6.9 ± 1.5 

 
p = .54 

 Second day 
real 
active sham 

 
  7.2 ± 1.1 
   7.4  ± 1.3 

 
p = .30 

 
Experiment 3 (continuous) 
Number of hours 

 
 

First day 
real 
active sham 
Second day 
real  
active sham 

 

 
 
 

7.4 ± 0.6 
7.4 ± 0.7 

 
7.7 ± 0.8 
7.6 ± 1.0 

 
 
 

p = .92 
 
 

p = .95 

    
Arousal 
 

   

Experiment 1    
First day real  

active sham 
6.8 ± 1.8  
 6.8 ± 1.3  

p = .97 

Second day real  
active sham 

7.0 ± 1.5  
6.8 ± 1.5   

p = .42 

Experiment 2    
First day real  

active sham 
 6.6 ± 1.1  
6.5 ± 1.5  

p = .73 

Second day 
 
Experiment 3 
First day 
 
Second day 
 

real  
active sham 

 
real 
active sham 
real 
active sham 

6.7 ± 1.5  
7.2 ± 1.1  

 
7.4 ± 1.1 
6.8 ± 1.5 
7.6 ± 1.1 
 7.6 ± 1.4  

p = .14 
 
 

p = .18 
 

p = .96 
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Between experiments 
 
Arousal  
First day 
 
Second day 
 
Sleep hours 
First day 
 
Second day 

 
 
 
 
 

real 
active sham 
real 
active sham 

 
real 
active sham 
real 
active sham 

 
 

 
 
 
 
 

p = .06 
p = .58 
p = .14 
p = .30 

 
p = .61 
p = .37 
p = .62 
p = .09 
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Highlights: 

 

• Theta-gamma cross-frequency tACS can modulate verbal declarative memory encoding 

• Gamma bursts coupled to the trough of theta wave hinder memory performance 

• Evidence is added for the involvement of theta-gamma coupling in memory formation 
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3.1.Supplementary material 

 

Task  

The full dataset was additionally analyzed by using an alternative scoring criterion. In this 

second analysis approach, morphological differences such as plural/singular exchanges were 

neglected (Bacharach, 1972; Koppenaal & Glanzer, 1990), and participants received a full score 

for a recalled word. Words recalled outside of the cued-recall’s 5000 milliseconds time window 

(i.e., late answers) were treated as misses (Tulving & Arbuckle, 1963) and no points were added. 

This different approach led to the same statistical results on the behavioral performance as the first 

analysis approach. The dependent variable (performance) was compared between conditions with 

the non-parametric Wilcoxon signed-ranks test and p-values were Bonferroni corrected for 

multiple comparisons.  

For the first experiment (TGp-tACS), memory performance was not significantly different 

between the real tACS condition (70.6 ± 14.9 mean score) and active sham condition (68.3 ± 15.6 

mean score) either for the first cued-recall (Z =1.293, p = .392). No significant difference was 

found between the real tACS condition (66.7 ± 16.2 mean score) and active sham stimulation 

condition (64 ± 17.3 mean score) on the second cued-recall (Z = 1.219, p = .446). In the second 

experiment (TGt-tACS), a significant impairment in performance occurred between real tACS 

(62.5 ± 15.5 mean score) and active sham stimulation (71.6 ± mean score) on the first cued-recall 

(Z = -2.976, p = .006).  This effect was also observed on the second cued-recall (Z = -2.816, p = 

.010), where real tACS (59.9 ± 16.2 mean score) led to a significant decrease in memory 

performance compared to active sham stimulation (68.3 ± 16.6 mean score). For the third 

experiment (TGc-tACS), there was no significant difference (Z = -.046, p = 1.0) between real 
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tACS (65.5 ± 11.4 mean score) and the active sham stimulation (65.1 ± 13.3 mean score) on the 

first cued-recall, or between real tACS (62.7 ± 12.2 mean score) and the active sham condition 

(63.9 ± 13.4 mean score) on the second cued-recall (Z = -.632, p = 1.0). 
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4. Summary and concluding remarks 

 

The work conducted for this doctoral thesis is sustained on the premise that brain activity 

can be externally influenced by weak electrical currents. These currents can cross the barrier of 

several anatomical compartments and reach an extremely folded surface, where millions of 

neurons align themselves in different directions. Besides, the brain cells are also highly intertwined 

by complex layers of synaptic physical approximations and electrochemical cascades, which have 

to calibrate their activity in space and time. This activity is paced in a seesaw influx of excitation 

and inhibition, resulting in ever going cycles that rise as detectable brain rhythms. This activity is 

also susceptible for internal perturbations, which can translate into pathological states. The quest 

of the projects described in this work was to find possible ways of externally improve episodic 

memory performance in the healthy brain, with the ultimate goal as helping future research for 

clinical populations. 

The assumptions’ framework brought together to form this thesis were the following: (1) 

the several cortical nodes composing the verbal episodic memory network are susceptible to 

external perturbations, and, by that, functional changes can be induced; (2) NIBS are techniques 

that can be used to establish causal brain-behavior relations (Polanía et al., 2018), and its use for 

modulating functions is effective and reliable; (3) anodal tDCS can enhance neuronal excitability 

by depolarizing neuronal membrane, and also can decrease GABA levels at the targeted sites 

(Stagg et al., 2018), being a potentially strong paradigm to memory encoding augmentation; (4) 

naturally occurring theta-gamma phase-amplitude at temporal lobe structures is a potential target 

for tACS, its functional relation to verbal episodic memory can be tested by tES, and possibly, 

memory improvements can be tACS-induced. 
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In the first study, where the left pre-frontal cortex was targeted with anodal tDCS, we chose 

to stimulate during encoding or recall (as a control group) with 1 mA current during 20 minutes. 

Contrary to our expectations and hypotheses, we could not observe a significant improvement in 

memory performance, given the chosen stimulation parameters. Still, our results are not distant 

from obtained with 1 mA tDCS in memory encoding paradigms so far, where mixed results and 

small effect sizes were the general finding (Dedoncker et al., 2016a; Manenti et al., 2013, 2012). 

Noteworthy is, that our results do not disprove the efficacy or potential of tDCS for episodic 

memory augmentation, but brings the necessity of uncovering better stimulation parameters for it. 

Factors as current intensity, stimulation duration and target site are first-order candidates for 

further experimental projects. Regarding stimulation duration, recently data demonstrated that the 

standard 20 minutes stimulation in motor cortex paradigms may not be directly translatable to the 

cognitive domain (Parkin et al., 2018). One possible successful use of tDCS in memory 

improvement can be the combination with an additional intervention, as it showed beneficial 

effects when combined with memory training and serotonergic enhancement (Antonenko et al., 

2018; Prehn et al., 2017).     

In the second study, we were the first research group to apply cross-frequency tACS to 

modulate episodic memory. Here, we targeted the left temporal cortex, choosing to stimulate with 

1 mA current for 10 minutes during encoding of verbal content. Using a multi-electrode montage 

based on a computational model optimization, we measured a large sample of healthy participants 

and were able to significantly impair memory encoding in one of the experimental groups. 

Contrary to our hypothesis, when gamma was coupled to the peak of the theta carrying frequency, 

we found no improvement in memory performance. Nevertheless, we add evidence to the causal 

participation of theta-gamma cross-frequency coupling to episodic memory encoding. Additional 
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online electrophysiology recordings might have brought a more definitive answer to which extent 

cross-frequency coupling was manipulated by tACS, although online recordings in tES are 

technically limited due to artifacts, and their current reliability a matter of strong debate (Neuling, 

Ruhnau, Weisz, Herrmann, & Demarchi, 2017; Noury & Siegel, 2018). Also, further research has 

to be conducted on the waveform action when gamma is coupled to the trough of the theta cycle, 

to possibly diverse memory tasks and different stimulation parameters (higher intensities and 

alternative electrode montages).  

Notwithstanding, difficulties in finding robust parameters to augment human episodic 

memory non-invasively are being tackled by a different line of action, meaning, deep brain 

stimulation. These acute stimulation paradigms, usually delivered from electrocorticography 

(ECoG) or depth electrodes, normally profit on pre-surgical electrophysiological measurements 

on epileptic patients to conduct studies or trials (K. Kim et al., 2016). By targeting neocortical 

areas or medial temporal lobe structures, usually with low or high gamma frequencies (e.g. 50, 

100 or 200 Hz), these stimulation protocols aim to mimic the normal physiological oscillatory 

patterns of episodic memory encoding (Lee, Fell, & Axmacher, 2013), and bring maximum 

focality stimulating the memory nodes on site. Curiously, in verbal memory, the majority of the 

studies were able to disrupt memory encoding, but not improve it (Jacobs et al., 2016; Lee et al., 

2013; Merkow et al., 2017). Possible solutions to the impairments can come with better 

synchronization of the stimulating waves with the normal physiology, using machine learning 

paradigms to look at the optimal or sub-optimal brain states and stimulate according to them 

(Ezzyat et al., 2017; Fell et al., 2013; Kucewicz et al., 2018). Nonetheless, invasive techniques 

also do not come with limitations: they are mainly restricted to non-healthy subjects’ cohorts, and 

to the stimulation sites with clinical relevance. Still, focal interventions as invasive stimulation 
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bring the promise of revealing further insights in memory machinery and on effective interventions 

to benefit memory impairments in patients.   

From the non-invasive frontier, it is salutary to discuss some limitations of the studies 

conducted for this thesis. In a broader term, combining NIBS with other research methods would 

bring a clearer picture and more conclusive derivations of what was driven or not by the applied 

electrical currents (Polanía et al., 2018). Targeting can be also a debatable issue in the first study, 

due to the lack of spatial precision of tES, in comparison to other NIBS interventions. However, 

the use of neuronavigation may have affected the outcomes. The dosing employed is also a 

parameter that can highly impact the outcome of our studies, since the electric fields magnitude 

generated inside the skull by 1 mA tES can fall below or be in the limit threshold for modulating 

neuronal activity (Datta et al., 2009; Miranda, Mekonnen, Salvador, & Ruffini, 2013; Opitz et al., 

2016). That said, a linear increase in the dosing may not lead to linear outcomes, (Batsikadze, 

Moliadze, Paulus, Kuo, & Nitsche, 2013; Parkin et al., 2018), and careful optimal intensities for 

different cognitive modalities have to be investigated. Electrode placement can rise now as another 

source of strong variation in studies relying on computational models to estimate the tES-generated 

electric fields. A recent study using intracranial recordings in human patients showed that fields 

predicted by models can vary immensely from real data when electrode placement diverge more 

than 1cm between them (Opitz et al., 2018). This has large implications for model-driven tES 

protocols and for repeated-measures design as in the studies of this thesis.  

Concluding, this research demonstrated that tES can be a tool to modulate episodic memory 

in a meaningful way. The large myriad of methodological parameters that can be explored in such 

investigations require optimizations coming from several technical advances in neurosciences, 

such as timelier precise stimulation tools, close loop systems, multi-electrode solutions, 
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investigation of higher current intensities, and, in the case of episodic memory, the simultaneous 

stimulation of several nodes of the cortical memory network. Additionally, the experimentation 

with interfering alternating currents (Grossman et al., 2017) in the kHz range is a promising 

frontier for memory interventions, if the feasibility of targeting deep brain structures (for memory, 

the hippocampal formation) with non-invasive currents turn out to be executable and targets can 

be accurately reached. 
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