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PREFACE 

This doctoral thesis summarizes my work on the tRNA modifying enzymes tRNA guanine 

transglycosylase and the methyltransferase Dnmt2. The underlying work was carried out from 

August 2015 to September 2018 under supervision by Prof. Dr. Ralf Ficner at the Georg-

August-University Göttingen and resulted in the following publications: 

 

Sven Johannsson, Piotr Neumann, Alexander Wulf, Luisa M. Welp, Hans-Dieter Gerber, 

Matthias Krull, Ulf Diederichsen, Henning Urlaub and Ralf Ficner, Structural insights into the 

stimulation of S. pombe Dnmt2 catalytic efficiency by the tRNA nucleoside queuosine. 2018, 

Sci. Rep. 8, 8880 DOI: 10.1038/s41598-018-27118 

Sven Johannsson, Piotr Neumann and Ralf Ficner, Crystal Structure of the Human tRNA 

Guanine Transglycosylase Catalytic Subunit QTRT1, 2018, Biomolecules, 8(3), 81 DOI: 

10.3390/biom8030081 

 

Parts of this thesis were presented at the following international conferences: 

Sven Johannsson, Piotr Neumann, Alexander Wulf, Luisa M. Welp, Hans-Dieter Gerber, 

Matthias Krull, Ulf Diederichsen, Henning Urlaub and Ralf Ficner, Structural basis of increased 

Dnmt2 activity by queuine tRNA modification, 26th Annual Meeting of the German 

Crystallographic Society (DGK), Essen, Germany, March 2018 

Sven Johannsson, Piotr Neumann, Alexander Wulf, Luisa M. Welp, Hans-Dieter Gerber, 

Matthias Krull, Ulf Diederichsen, Henning Urlaub and Ralf Ficner, Structural Basis for Dnmt2 

Stimulation by Queuine tRNA Modification, 23rd Annual Meeting of the RNA Society, 

Berkeley, USA, June 2018 

 

Both first authored publications are included as part of this thesis, although not in chronological 

but topical order. The individual contribution of each author is stated at the beginning of the 

respective chapter. 
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 ABSTRACT 

Posttranslational and posttranscriptional modifications have long been known to modulate and 

extend the properties of proteins and nucleic acids. A vast variety of non-canonical bases have 

been found on RNA molecules, with a huge number of them occurring on transfer RNAs 

(tRNAs).Here they modulate the molecule’s stability, chemical properties or even its shape, 

which are crucial elements for the correct function of tRNAs. In contrast to modifications that 

have been described on proteins like histones, where a close interplay of modifications has been 

elucidated, least is known about how RNA modifications affect each other and whether they 

may be linked. Considering an average of 14 modifications occurring on an tRNA molecule 

simultaneously, the study of an eventual link between these modifications becomes imminent. 

In contrast to the numerous studies focusing on a single modification, recent publications have 

presented a link between the 7deaza-guanosine derivative queuosine (Q), which occurs on the 

tRNAAsp wobble base 34 (Q34), and Dnmt2 mediated methylation of the C38 base (m5C38) in 

a downstream manner. While investigation of this linkage identified C38 methylation to 

strongly depend on presence of queuosine in the tRNA target, least in known about the 

underlying molecular mechanism of this interplay.  

Prior to this thesis, the structure of the tRNA guanine transglycosylase (TGT), which establishes 

Q34 modification by incorporating the modified queuine base into the tRNAs tRNAAsp, 

tRNAAsn, tRNAHis and tRNATyr, was unknown. Within this work the first structure of the 

catalytic subunit QTRT1 of the TGT heterodimer is reported. Investigation of this structure of 

the human QTRT1 reveals a high conservation, suggesting the reaction mechanism to be 

conserved from bacteria to men. Furthermore, the QTRT1 structure was solved in complex with 

the queuine base providing first insights into the accommodation of this hypermodified base. 

Within this thesis, the newly solved QTRT1 crystal structure is further investigated with focus 

on RNA interaction and phosphorylation, latter of which is implicated in TGT activity. 

In a second part, the Dnmt2 methyltransferase is investigated biochemically and structurally 

with focus on Q34 substrate modification, as the dependence of tRNAAsp C38 methylation in S. 

pombe has been shown to depend on the presence of TGT reaction product queuosine as part 

of the substrate in vivo. However, the underlying mechanism how queuosine modulates the 

activity of the m5C38 depositing enzyme Dnmt2 is not known. As part of this work, queuine 

modification of tRNAAsp alone is found to be sufficient to trigger Dnmt2 activity in vitro. 
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Furthermore, a model of Dnmt2 tRNA substrate complex was generated by computational 

docking of the tRNA to the newly solved S. pombe Dnmt2 crystal structure. Combination of 

biochemical and structural data lead to the conclusion that triggering of Dnmt2 activity by Q34 

is mediated by optimal positioning of the relevant reaction components.  

Substrate specificity of Dnmt2 is further investigated and set into relation with the S. pombe 

Dnmt2 structure as well as previously deposited Dnmt2 structures. Furthermore, the docked 

Dnmt2 tRNA complex is found to be in high agreement with cross link data and identified as 

the most advanced model of Dnmt2 substrate interaction. Finally, a working model for Dnmt2 

mediated methylation is proposed by combining data reported as part of this work with the other 

reported studies on the Dnmt2 enzyme. 
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CHAPTER 1:  INTRODUCTION 

The discovery of deoxyribonucleic acid (DNA) molecules over a century ago (1), marked the 

first encounter of what is now understood as one most important discoveries in life sciences 

ever made: The genetic code. DNA consists of only four canonical nucleosides: The nucleosides 

comprising a purine base deoxycytidine (dC) and deoxythymidine (dT), and the pyrimidine 

base containing nucleosides deoxyguanosine (dG), deoxyadenosine (dA), with the 

corresponding ribonucleosides C, U, G and A in ribonucleic acids (RNAs). Followed by 

groundbreaking discoveries about its components and its architecture DNA and RNA are 

generally renowned as the basic building blocks of life. 

The basic building blocks of DNA and RNA are the nucleic bases, which are covalently linked 

to a (deoxy-) ribose molecule. Linked by a phosphate group between the 5’ position of one 

(deoxy-) ribose and the 3’ of a neighboring ribose molecule, multiple nucleosides are capable 

to form huge polymers that can store the genetic information through the specific sequence of 

the bases. To preserve the genetic information this polymer is stabilized by contact formation 

with an antisense strand, mediated by the bases, with consequent formation of the renowned 

double helix architecture (2, 3). In this helix base contacts are mediated by hydrogen bond 

formation between the purine bases and the pyrimidine bases, which allow biomolecules to 

“read” the genetic information and replicate it or transcribe the sequence into RNA. In RNA 

molecules the same specific base paring rules apply with G/C and A/U. However, different 

types RNA molecules exist that do exhibit distinct functions apart from serving as a coding 

template for protein synthesis, as it is the case for messenger RNA (mRNA). Certain RNAs are 

capable to catalyze (bio-) chemical reactions (4, 5), while micro RNAs, small nuclear RNAs 

(snRNAs) and small nucleolar RNAs (snoRNAs) have been associated with gene expression, 

mRNA splicing and RNA modification respectively (6–8). One of the most abundant RNA 

molecules in the cell are transfer RNAs (tRNAs). These RNAs an essential tool to translate 

mRNA sequences into protein and therefore are featured by organisms belonging to all 

kingdoms of life (9).  
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1.1 TRANSFER RNAS 

Transfer RNAs (tRNAs) were discovered more than 50 years ago and their discovery was vital 

for the understanding of the central biochemical dogma that DNA is transcribed into RNA 

which subsequently is translated into protein. With several million molecules, tRNAs are the 

most abundant RNA molecules in the cell (10). More than 400 tRNA genes are annotated in the 

human genome, with several of them being encoded not by one but multiple genes (11). Despite 

their high sequence diversity, tRNAs possess a similar secondary structure which is commonly 

referred to as the “cloverleaf”, based on an analogy of both shapes. This tRNA fold is build up 

by five parts (Figure 1), the acceptor stem, that comprises the 5’- and 3’- end of the molecule, 

the D-arm, the anticodon stem and loop, which includes the name giving anticodon triplet, and 

the TψC-arm or T-arm, named after the thymidine modification that was observed in this region. 

Part of every tRNA is also the CCA triplet, which is enzymatically linked to the 3’end of all 

tRNAs by the CCA-adding enzyme after their transcription (12–14). This sequence, consisting 

of only three nucleotides, is of imminent importance for aminoacylation, positioning of the 

tRNA in the ribosome and transcription termination (15–17).  

 

Figure 1. Structural organization of L-shaped tRNAs 

Crystal structure of yeast tRNAPhe (PDB-ID: 1EHZ) depicted as cartoon with individual representation of 

the four canonical bases. The individual parts comprised by the canonical tRNA fold are colored 

individually. 
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In contrast to the canonical shape exhibited by most tRNAs, alterations in the structure have 

been observed for some tRNAs. They occur mainly in tRNAs from mitochondria, such as the 

mitochondrial tRNAs tRNAAsp from human and the bovine tRNAPhe. In these tRNAs a highly 

altered nucleotide content and altered sizes of the D- and T-loop lead to an impaired interaction 

between these regions that is usually of importance for the global stability of tRNAs (18, 19). 

Even more drastic changes have been observed in tRNAs from nematodes, missing entire 

elements of the canonical tRNA structure like the D-loop and/or the T-loop, which in 

consequence adopt a fold very distinct from the common cloverleaf (20, 21). Interestingly, 

several studies indicate that these non-canonical tRNAs may still be fully functional in protein 

translation. However, these structural specialties are restricted to individual tRNAs and the L-

shape is typical for the vast majority of tRNAs (12, 22). 

After maturation, the biological purpose of tRNAs is mediated by multiple protein interactions 

upon which the tRNA structure might undergo conformational changes (23). Interaction with 

aminoacyl-tRNA-synthases (aaRS), who charge the tRNA with the corresponding amino acid 

at the CCA end, is mainly localized at the anticodon loop and the CCA end, which serve as 

recognition- and as target site for the aaRS respectively (24, 25). AaRS tRNA complex 

structures revealed that the tRNAs do adopt a different fold at these interacting regions upon 

binding that allows the modifying enzyme to specifically recognize its substrate and perform 

the enzymatic transfer reaction (26, 27), thus highlighting the flexibility of the tRNA fold (23). 

 

1.2 NONCANONICAL RNA BASES 

To date, only a single digit number of modifications on DNA are known. These are mainly 

limited to methylation of the bases cytosine, adenine and uracil (28). In contrast to this low 

number, at least 171 different modifications are present on RNAs (29) adding a high variety to 

the chemical properties of the canonic RNA bases. Alterations of the RNA’s canonical structure 

mainly involve the bases themselves and are found to occur on all four nucleosides. The nature 

of these modifications is highly diverse, ranging from rather simple modifications, such as 

methylation or acetylation, to the addition of complex structures, so called hypermodifications, 

which can even involve changes of the base ring system (28). 

With a total of 93 modifications, tRNAs are one of the most heavily modified RNA species (29, 

30). The composition of these modifications as well as their abundance differs in the three 
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kingdoms of life (28, 31), with 6.6 % of all tRNA bases carrying modifications in prokaryotes 

and a generally higher abundance of non-canonical nucleotides in eukaryotes where an average 

of 16.6 % of all bases are modified (32). Some of the modifications, such as pseudouridine (ψ), 

are observed on most tRNAs and generally more abundant while other, usually more elaborate 

structures like queuine (Q) or isoprenyl rests, are typically found only on a tRNA subset (28, 

33). 

The consequences of tRNA modifications are as diverse as their chemical properties, ranging 

from effects on stability over induction of structural alterations to fine tuning of interactions 

(34–36). A prominent example how a small modification can be important for a global tRNA 

structure is the methylation of the A9 base in the mitochondrial tRNALys. In vitro transcription 

of the respective RNA sequence results in a misfolded tRNA, which is highly diverse from the 

canonical cloverleaf structure of tRNAs. The introduction of a methyl group at position 1 of the 

A9 base (m1A9) results in the disruption of the watson-crick base paring with U64 and 

consequently results in the formation of the classical tRNA topology (35, 37). Beside 

supporting the tertiary structure, it has been shown that tRNA modifications have the potential 

to increase the stability of the respective RNA molecule (31). Thermophilic organisms rely on 

increased stability of their cellular components to heat. To meet this requirement, thermophiles 

do utilize a high diversity of modifications, like pseudouridine (38, 39). Presence of this 

modified base at position 39 of the tRNALys anticodon stem stabilizes the structure through 

improved stacking of the bases and stronger base paring, resulting in a 5 °C higher melting 

temperature (40).  

A similar effect has been observed as a consequence of archaeosine (G*) modification at 

position G15 in concert with Mg2+ resulting in a higher tRNA stability through promoted base 

paring (41). The integral position of the G15 base in the tRNA structure enables its modification 

to impact the structural integrity of the molecule, nicely illustrating that the purpose of a 

modification is tightly associated with its location. This does also apply to base modifications 

located in the anticodon stem loop of tRNAs. Within the anticodon, the bases at position 34 are 

37 are extensively modified (42). The importance of modification in this case becomes clear in 

their absence, which results in a shift in the translation reading frame, causing transcription of 

alternative protein sequences (43). This effect may be due to loss of anticodon stability which 

is normally promoted by anticodon loop modifications (44) such as queuosine, which is located 

at position 34 of certain tRNAs (33), or the hypermodified base wybutosine (yW) (42). The 

importance of yW modification, which has been observed exclusively on position 37 of 
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tRNAPhe for protein translation, was further investigated by Konevega et al., who found yW to 

promote codon-anticodon interaction through stabilization of tRNAPhe binding to the ribosomal 

A site during protein translation (34), thus explaining how absence of this modification can 

result in frame shifting during translation. Queuine modification and its biological 

consequences are an important part of this thesis and are described in detail in paragraph 1.5 

and following. 

Modifications of tRNA molecules in total seem to promote correct function of tRNAs as an 

integral part of the tRNA molecule. But although the consequences of tRNA modification seem 

to be generally of beneficial nature, their individual abundance is subject to change. With the 

level of modification differing from 10 % to over 80 % depending on the type of modification 

and their location (45), tRNA modifications seem to underly accurate fine tuning mechanisms 

that may be important for cellular responses to altered environmental conditions. Indeed, the 

abundance of RNA modifications are subject to change upon the induction of cellular stress as 

a consequence of reduction of the corresponding RNA modifying enzyme, suggesting that 

tRNA modifications are also part of the cellular stress response (46). Next to the variety of 

tRNA modifications, the dynamic change of their abundance adds another layer to this complex 

biochemical matter. Considering that about 60 million tRNA molecules exist in a mammalian 

cell (10), the study of tRNA modification and its regulation is highly complex. 

 

1.3 M5C DNA METHYLTRANSFERASES 

The various modifications on nucleic acids are deposited by “writer” proteins. Specific 

positions of genomic DNA information have been observed to serve as an acceptor site for 

methyl groups, transferred from a donor substrate by enzymes, which are therefore called 

methyltransferases. DNA modification with methyl groups have been observed as N4-

methylcytosine (m4C), N6-methyladenine (m6A) and C5-methylcytosine (m5C) (47). These 

modifications are not universally distributed among the kingdoms of live as m4C modification 

has only been described in bacteria (48) and m6A levels are most abundant in prokaryotic 

genomes (49, 50). In contrast, m5C is the most abundant DNA methylation variant in eukaryotes 

(51), with the methylation sites often found to belong to a CpG dinucleotide (52). 
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This abundant m5C modification is deposited by DNA methyltransferases (Dnmts), which share 

a conserved catalytic mechanism (Figure 2) to transfer a methyl group from the methyl donor 

S-adenosyl-methionine (SAM) onto the C5 atom of the nucleic base cytosine.  

 

 

Figure 2. Catalytic mechanism of Dnmt enzymes 

In a first step, a covalent enzyme-nucleic acid intermediate is formed through a nucleophilic attack on the 

cytosine C6 atom by a cysteine side chain that is part of the enzyme’s PCQ motive. This attack is aided by 

a conserved glutamate residue (ENV motive). In a second step, the cytosine`s C5 atom is covalently bound 

to the SAM`s methyl group, which consequently results in formation of the reaction product SAH (Met-S-

Ad). In a last step, the modified cytosine base is released from the cysteine in a base dependent manner. 

This figure is based on the previously reported Dnmt mechanism by Jeltsch et al. (53). 

 

Dnmt enzymes are encoded by a broad variety of genomes not only in mammalian organisms, 

but are also a feature of plants and insects such as the honey bee (52). However, even among 

the animal kingdom, the set of Dnmt proteins that are encoded in the genome is highly diverse. 

While five different Dnmts are known in the human system, the extensively studied model 

organism Drosophila melanogaster is deficient of Dnmt1 and Dnmt3 (54), with no known 

homologs of this methyltransferases identified. The presence of Dnmt2 as the only Dnmt 

enzyme make D. melanogaster a valuable tool to study the effects of Dnmt2 in this “Dnmt2 

only” organism. Furthermore, there are organisms that show a complete lack of Dnmt enzymes, 

such as the nematode Cenerohabditis elegans, whose genome does not code for a single Dnmt 

enzyme (47).  
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1.4 DNMT2 

An extensively studied member of the Dnmt enzyme family is Dnmt2, a protein of about 40 

kDa, whose role has emerged to be rather distinct from other members of its enzyme family. 

The Dnmt2 enzyme shares the same catalytic domain architecture and the catalytic mechanism 

with other members of the Dnmt family, as of which Dnmt2 has also been suggested to 

methylate DNA targets like other Dnmts. However, in contrast to the well-studied homologs 

Dnmt1 and Dnmt3, DNA methylation by Dnmt2 is still controversially discussed. Modification 

of DNA by Dnmt2 has been investigated employing more than 10 different techniques, 

including the use of methylation specific antibodies, high pressure liquid chromatography 

(HPLC), bisulfate sequencing, and even more elaborate approaches such as the combination of 

HPLC with mass spectrometry (51, 54–58). Several of these studies report genome wide 

methylation of the D. melanogaster genome at a generally low level. However, critical 

evaluation by Krauss & Reuter (59), highlights missing controls and technical limitations in 

some of the aforementioned studies. This view is supported by a more recent study failing to 

detect specific DNA methylation patterns in D. melanogaster and Schistosoma mansoni in 

which the authors point out that the low amounts of m5C detection level in their experiments is 

likely caused by technical limitations of the applied bisulfate sequencing technique (54). In 

general, DNA methylation by Dnmt2 in Drosophila seems to occur at more restricted locations 

such as retrotransposons or at promotors of specific genes, where it might be involved in the 

regulation and gene expression respectively (60–63). Despite the controversial discussion about 

m5C methylation in Drosophila, m5C methylation seems to be generally absent in the genome 

of other Dnmt2 only organisms such as S. pombe (56). 

In contrast to the enigmatic activity of Dnmt2 on DNA, a much higher activity of Dnmt2 was 

observed for RNA. First evidence for a Dnmt2 target other than DNA came from Goll et al. 

(64), who used fluorescence microscopy to localize Dnmt2 to the cytoplasm, a finding strongly 

contradicting the hypothesis of DNA methylation by Dnmt2. As the most striking result, the 

authors were able to link presence of Dnmt2 in mice to specific methylation of the cytosine 

base C38 in the anti-codon stem loop of tRNAAsp. A more elaborate approach employing RNA 

immunoprecipitation from human cell line lysates, confirmed Dnmt2 substrate specificity in 

the human system and furthermore identified tRNAGly and tRNAVal as additional Dnmt2 targets. 

Altogether, these three tRNAs are the currently known cognate substrates for Dnmt2 in 

mammals and are also confirmed in S. pombe (65), however, this substrate specificity does not 
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apply to every organism. A different Dnmt2 specificity has been reported for Geobacter 

sulfurreducens, where investigation of Dnmt2 activity led to the surprising discovery that 

tRNAAsp is not methylated by Dnmt2. Instead, tRNAGlu is a Dnmt2 target in this organism(66). 

Furthermore, a weak methylation of tRNAGlu by Dnmt2 has been also been observed in S. 

pombe (67). While these altered specificities do apply to some organisms, the tRNAs tRNAAsp, 

tRNAVal and tRNAGly have emerged as the common targets in most organisms, with tRNAAsp 

being the most abundant target (68). 

A common feature of all Dnmt2 target tRNAs is the presence of a cytosine at the target position 

38. However, C38 is not exclusive to Dnmt2 cognate tRNAs, which raises the question how 

Dnmt2 discriminates cognate from non-cognate tRNAs. Investigation of the binding-surface of 

the human Dnmt2 enzyme by mutational analysis of basic surface residues revealed that Dnmt2 

tRNA interaction might mostly (but not exclusively) be mediated by the anticodon stem and 

loop (69). However, the sole anticodon stem loop only weakly interacts with Dnmt2 and is not 

methylated by Dnmt2 (70, 71). Consequently, other regions of the tRNA substrate have to 

contribute to substrate recognition by Dnmt2, which is supported by the observation that also 

residues more distant from the active site are of importance for Dnmt2 activity (69). A potential 

candidate region could be the variable loop of the tRNA, as modification by the human Dnmt2 

enzyme was lost when the loop was exchanged in the murine tRNAAsp substrate by the variable 

loop of the G. sulfurreducens tRNAAsp (66). Also, the tRNA D-loop and L-loop might be 

involved in substrate recognition. When these regions are replaced with a DNA stretch of the 

same sequence (containing 3-desoxy-nucleotides) in a tRNA/DNA molecule, the chimeric 

tRNA is no longer targeted by Dnmt2 (71) indicating that interaction of Dnmt2 might be 

mediated by the sequence unspecific phosphate ribose backbone in these regions. Interestingly, 

replacement of C38 and adjacent bases with DNA nucleotides does not negatively impact 

Dnmt2 activity (71). The observation that Dnmt2 is active on DNA in structural context of 

tRNA and the importance of other regions of the RNA molecule indicates that specificity may 

not only be determined by the sequence but that the overall shape of the target is of importance 

for methylation by Dnmt2. However, the molecular properties of this interaction are still largely 

unknown. 
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1.4.1 STRUCTURE OF DNMT2 ENZYMES 

To date, three structures of the Dnmt2 enzyme from human (PDB-ID:1G55), Entamoeba 

histolytica (PDB-ID: 3QV2) and Spodoptera frugiperda (PDB-ID: 4H0N) have been reported 

(70, 72, 73). The structure of the human Dnmt2 is presented in figure 3.  

 

Figure 3. Crystal structure of the Homo sapiens Dnmt2 methyltransferase 

The crystal structure of the human Dnmt2 enzyme (PDB-ID: 1G55) is depicted as blue cartoon. The binding 

pocket of the reaction product SAH (shown as yellow sticks) is formed by the underlying seven stranded 

ȕ-sheet. The active site loop, protruding out of the catalytic pocket is not featured by this structure. 

 

All these crystal structures were solved in complex with the reaction product S-adenosyl-

homocysteine (SAH) that is formed by demethylation of SAM during the enzymatic methyl 

transfer. However, none of these structures comprises any RNA. Based on these structures, the 

overall fold and topology of Dnmt2 is highly conserved with a seven stranded ȕ-sheet as a 

central structural element that provides the binding pocket for the co-substrate. Differences 

between the crystal structures are mainly observed in loop regions lacking secondary structures. 

One prerequisite of Dnmt2 structures seems to be a highly unstructured stretch of about 20 

amino acids, which protrudes out of the active site. In the human Dnmt2 structure this loop, 

including catalytic residue Cys79, is not a featured (72). The S. frugiperda Dnmt2 also 

possesses the active site loop, but in contrast to the structure of the human enzyme, in this case 

it is resolved exhibiting two short anti parallel beta-strands (73). This loop conformation is 

stabilized by an extensive integral interaction with the corresponding active site loop of a 
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symmetry mate. Dnmt2 from the pathogenic amoeba E. histolytica also comprises the entire 

active loop, which here adopts a α-helical conformation. This fold, in analogy to the S. 

frugiperda structure, is also stabilized by crystal packing of the α-helix (70), however to a much 

lesser extent. Interestingly, both loops have a different conformation with different secondary 

structures probably resulting from crystallization. The conformation of this loop in the ternary 

complex might be different from the crystal structure, as the DNA complex structure of the 

unrelated, but structurally similar DNA methyltransferase HhaI suggests. Here, the 

corresponding flexible loop is interacting with the DNA substrate (74), highlighting the 

possibility that the Dnmt2 active site loop may fulfil a similar purpose (68). 

 

1.4.2 BIOLOGICAL CONSEQUENCES OF DNMT2 ACTIVITY 

Dnmt2 is the most abundant methyltransferase of the Dnmt family in eukaryotes (75). Despite 

its high conservation, phenotypes of Dnmt2 deficient model organisms are rather mild and 

divergent (76), consequently raising the question why Dnmt2 is evolutionary preserved at such 

a high degree. 

Investigation of the function of tRNA methylation by Dnmt2 has provided several insights into 

biological consequences of methylation by Dnmt2. m5C38 is known to protect Dnmt2 substrate 

tRNAs from nucleolytic cleavage by the endonuclease angiogenin in Drosophila (77). In 

opposition, m5C38 hypomodification in Drosophila results in an increase of tRNA degradation 

products (tsRNAs) produced by endonuclease digest upon heat shock induced cellular stress 

(78). These tsRNAs lower translation initiation (79) and interfere with activity of the Dicer2 

nuclease leading to less production of small interfering RNAs (siRNAs) that consequently 

results into dysregulation of siRNA pathway dependent genes (78). Furthermore, absence of 

m5C38 modification on tRNAAsp results in an impaired charging with aspartate in vitro and in 

reduced synthesis of poly-aspartate containing proteins in Dnmt2 knocked-out mouse 

embryonic fibroblasts (80). 

The consequences of an increased level of tRNA degradation products, resulting from reduced 

levels or absence of m5C38, are not the sole downstream effects of this modification. Moreover, 

this modification itself is impacting protein translation. Dnmt2 specifically methylates 

tRNAAsp, tRNAGly and tRNAVal in human and Drosophila at C38 position in the anticodon stem 

loop (64, 81). Modifications in this tRNA region, especially of the wobble base, have been 

shown to impact protein translation through pre-structuring the anticodon and increasing tRNA 
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stability to ensure correct recognition of the tRNA by the ribosome (42). The close proximity 

of the Dnmt2 methylation target site to the anticodon and to the wobble base, raises the 

possibility that also m5C38 modification of these tRNAs may affect protein translation (68). 

First indications for a function of Dnmt2 mediated tRNA methylation came from double knock 

out mice, deficient of Dnmt2 and NSun2, a m5C tRNA methyltransferase with a distinct target 

specificity (82). In these Dnmt2-/-, NSun2-/- mice, protein biosynthesis as well as tRNA levels 

were substantially reduced while mRNA levels remained unchanged compared to the wild type 

(WT) (83). Furthermore, ribosome foot printing of phenotypically affected tissues derived from 

Dnmt2-/- only mice revealed that C38 methylation is required for codon fidelity. Absence of 

m5C38 leads to an increased misinterpretation of the near cognate codons CAG and CAC, 

which code for aspartate and glutamate respectively, resulting in mutual misincorporation of 

the two amino acids. The result is an increased degradation of these, presumably misfolded, 

proteins by the ubiquitin proteasome machinery (84). Additionally, Dnmt2 activity is required 

for correct differentiation of bone marrow multipotent stem cells (MSCs), in which absence of 

Dnmt2 results in a hematopoietic defect causing impaired differentiation. These findings 

accumulate into the hypothesis that Dnmt2 aids differentiation by modulated expression of 

certain proteins through adapting tRNAs to codons (84). 

Recent results suggest that tsRNAs do not only affect protein translation in one generation 

alone, but are involved in intergenerational transmission of paternally acquired phenotypes in 

a Dnmt2 dependent but DNA independent manner (85, 86). Application of a high-fat diet (HFD) 

to mice results in an upregulation of Dnmt2 in parts of the male reproductive tract, where sperm 

cells maturate. In consequence, upregulation of Dnmt2 does not only tune tsRNA levels, but 

also correlates with an increase of m5C methylation levels on sperm cell small non-coding 

RNAs. This RNA fraction contains transcripts of about 30-40 nucleotides and is mainly 

composed of tsRNAs (85), with degradation products from tRNAGlu being the most abundant 

tsRNA in sperm (87, 88). Injection of this RNA fraction, isolated from sperm of mice kept 

under a high-fat-diet, into oocytes, caused development of a metabolic disorder in the offspring 

generation (87). In contrast, deletion of Dnmt2 prevented elevated m5C modification in this 

RNA fraction and abolished transmission of the HFD induced metabolic disorders (86). 

Furthermore, this study shows that methylation of the tsRNAs alters their secondary structure 

properties arguing that Dnmt2 activity contributes to a secondary level of paternal hereditary 

information (86). Besides HDF induced disorders, other paternal hereditary phenotypes have 

been shown to be transmitted intergenerationally by RNAs (89, 90). These novel findings reveal 
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previously unidentified functions of Dnmt2 and harbor the potential of new discoveries that 

may further contribute to the understanding why Dnmt2 is strictly conserved (86). 

 

1.5 QUEUINE 

In 1968 a previously unknown nucleoside was identified in the tRNATyr anticodon of the gram 

negative bacterium Escherichia coli that leads to suppression of a stop codon and instead to 

incorporation of a tyrosine into the polypeptide chain (91) (92). The nucleoside was assigned 

the letter Q, with the base called queuine and the nucleoside named queuosine (93). Later, this 

nucleoside was also identified on three other tRNAs (tRNAAsp, tRNAAsn and tRNAHis) located 

at the wobble base same position (33). In following investigations, the structure of queuosine 

(Figure 4) was determined by gas chromatography, mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) (94, 95).  

 

Figure 4. Chemical structure of queuosine 

The ribose is substituted by the letter R in the structure 

Queuosine was identified to be a modified guanosine analogue in which the N7 is substituted 

by a carbon atom. At this carbon an aminomethlyether bridge links to a ring of five carbon 

atoms. In this ring a double bond as well as two hydroxy groups are present at C4 and C5 

position which exhibit a cis-conformation completing the structure of this cyclopentene-diol. 

Currently this 7-(4,5-dihydroxyl-1-1-cyclopentene-3-yl-aminomethyl)-7-deazaguanine is 

referred to as queuine (96). 
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1.5.1 QUEUINE BIOSYNTHESIS 

Early investigation of the queuine content in E.coli found no free queuine base in extracts, 

arguing that queuine is not synthesized as a free base in the bacterium’s cytoplasm (97). To 

date, no direct queuine synthesis has been observed in any organism (98). Instead, the queuine 

precursor, 7-ammoniomethyl-7-deazaguanine (preQ1), is synthesized in the bacterial cytoplasm 

by five enzymatic reactions before it is incorporated into tRNA by the bacterial tRNA guanine 

transglycosylase enzyme (Figure 5) (97). 

The biosynthesis of preQ1 in bacteria is a multi-step process involving five different enzymes 

of several enzyme classes. The first step of preQ1 synthesis is catalyzed by the first enzyme of 

the folate pathway, GTP cyclohydrolase I (99). Starting from guanosine-5’-triphosphate, this 

enzyme, which is encoded by the FolE gene in E.coli (100), catalyzes the cleavage of the 

imidazole ring at the C8 via protonation of the N7 atom and cleavage of the furanose ring, 

generating a Schiff-base from the glycoside in a proposed concerted action (101). Followed by 

a rearrangement and subsequent re-cyclization, a pterin ring is formed, finalizing the reaction 

product 7,8-dihydroneopterin triphosphate (H2NTP) (101, 102). This product is a substrate for 

the QueD enzyme (6-Carboxy-5,6,7,8-tetrahydropterin synthase), a homohexameric protein 

that binds the pterin moiety at one of its six active sites all located at the monomer interfaces as 

observed in the QueD crystal structure (103, 104). QueD catalyzes the turnover of H2NTP into 

the reaction product 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) under generation of the leaving 

group acetaldehyde (103). This reaction is succeeded by the QueE enzyme and metal ion 

dependent ring contraction of CPH4 into a guanine derivative, in which the N7 is replaced by 

a carbon atom with a covalently linked carboxy group (7-carboxy-7-deazaguanine) in a SAM 

dependent manner (105). The carboxy group of 7-carboxy-7-deazaguanine has to be converted 

into a nitrile to yield preQ0. The underlying reaction is catalyzed by the hydrolase QueC in an 

ATP dependent step in which the cyano nitrogen is derived from ammonia (106, 107). The 

crystal structure of QueC from Bacillus subtilis reveals a homotetrameric architecture of the 

enzyme with each monomer containing a zinc ion tetragonally coordinated by three cysteines 

(PDB-ID: 3BL5) (108). Despite the quaternary assembly in the crystal, just the monomer is 

annotated as the biological assembly, as it contains the substrate binding cleft. However, 

whether the QueC quaternary structure contributes to catalysis and the role of the zinc binding 

domain has yet to be determined. The unprecedented reduction of the preQ0 nitrile to the 

primary amine of preQ1 is promoted by another enzyme of the queuine34 tRNA synthetic 

pathway, the QueF transferase (109). This enzyme exhibits a homodecameric, quaternary 
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structure with two head to head facing pentameric assemblies providing ten catalytic centers at 

their interfaces (PDB-ID: 4F8B) (110). The energy necessary for the cleavage of two of the N-

C bonds is provided by the oxidation of two NADPH/H+ molecules (109). The queuine 

precursor preQ1 is then incorporated into the tRNA substrate at the wobble base position by the 

bacterial TGT enzyme, which is described in more detail in paragraph 1.6.1. 

 

 

Figure 5. Biosynthesis of preQ1 and Q34tRNA in bacteria 

The queuine precursor preQ1, which is incorporated at position 34 into cognate tRNAs by the tRNA guanine 

transglycosylase enzyme is built up from guanosine 5’-triphosphate (GTP) in bacteria in a sequential 

reaction catalyzed by the five enzymes FolE, QueE, QueC and QueF. After generation of preQ1-34tRNA, 

the 7-deaza-guanine derivative is further modified under use of SAM by QueA. The final queuine 

modification is established by QueG. 

 

After generation of the preQ1-G34tRNA, the fully modified queuine base needs to be 

established on the tRNA. The first step of the addition of the cyclopentene-cis-diol ring to the 

modified base is facilitated in a complex reaction by the tRNA ribosyltransferase isomerase 

(QueA) consisting of two domains one of which comprises a 6-stranded ȕ-barrel (111, 112). 

The preQ1tRNA and the SAM is sequentially bound, forming a ternary complex followed by 

the reaction and the release to the epoxy-queuosine tRNA (epoxy-Q34tRNA) (113). In a last 
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step, a two-electron reduction results in removal of the epoxide and subsequent formation of 

the characteristic cyclopentene-diol moiety, finalizing the Q34tRNA synthetic pathway with 

the fully established queuine tRNA modification. The enzyme catalyzing this final reaction is 

the epoxy-queuosine reductase QueG (114). The structure of the QueG enzyme (PDB-ID: 

5D08) reveals a cob(II)alamine and two 4Fe4S clusters at the active site (115). Both of them 

were identified to be catalytically essential in an earlier study (114). Lately, a structural study 

by Dowling et al. revealed a convincing model for opening of the epoxide until the release of 

the final queuine modified tRNA molecule. Reduction of the cobalamine’s Co2+ to Co+ likely 

involving action of the Fe4S4 cluster, marks the start of this reaction. Subsequently, Co+ is able 

to perform a nucleophilic attack on the epoxide ring forming a covalent Co-alkyl intermediate, 

which results in the opening of the epoxide. Upon reduction of Co3+ to Co2+ and condensation 

of a water molecule, the characteristic double bond in the queuine’s cyclopentene moiety is 

established and the final reaction product of the queuosine biosynthetic pathway, Q34tRNA, is 

released (116). 

 

1.5.2 QUEUINE UPTAKE IN PROKARYOTES 

In total, the synthesis of queuine and its precursors involves multiple enzymes, different co-

substrates and even a vitamin. This complex cascade poses a substantial energetic burden for 

the cell and lowering of the energetic costs without sacrificing the benefits of queuine 

modification might be beneficial to the cells energy management. Therefore, the uptake of 

queuine from the environment surrounding the cell is an obvious way to circumvent queuine 

biosynthesis. Furthermore, not all bacteria are capable to synthesize queuine by themselves as 

they lack enzymes of the queuine biosynthetic pathway (117). These organisms rely on 

scavenging queuine precursors which in consequence requires a mechanism that facilitates their 

uptake. Interestingly, E. coli has been observed not only to synthesize queuine and its precursors 

itself, but also to salvage preQ0 and preQ1 from an extracellular source. Not only the uptake of 

the precursors has been observed, but it was shown by comparative genomics analyses to 

involve the COG1738 member YhhQ. In the experimental setup this transporter was essential 

for transport of the queuine precursor preQ0 into the cell. However, whether this transporter is 

directly facilitating the uptake of preQ0 or facilitates another essential step of the uptake 

mechanism remains unknown (118). Furthermore, YhhQ seems not to affect preQ1 uptake, 

pointing out how little of the uptake mechanism is understood so far. 
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1.5.3 QUEUINE UPTAKE IN EUKARYOTES 

No homologous proteins for bacterial enzymes involved in the queuine biosynthetic pathway 

have been identified in eukaryotes. Therefore, deficiency of queuine biosynthesis in eukaryotic 

organisms has been the accepted opinion in the field for quite some time, although this may not 

be a definitive proof of absence. However several studies show that eukaryotic organisms, such 

as Drosophila melanogaster, Caenorhabditis elegans, Dictyostelium discoideum and the 

eukaryotic algae Chlorella pyrenoidose as well as Chlamydomonas reinhardtii can be fully 

depleted of their queuine pool, if held strictly under queuine deficient conditions for an 

extended time period (119–122) arguing that in these organisms indeed do not synthesize 

queuine. Full depletion of Q-tRNA from the organism can take as long as one year after start 

of the queuine free diet, as has been shown for mice held under axenic (germ free) conditions 

(123), indicating the presence of a highly efficient recycling system for this essential base in 

eukaryotes. 

The apparent disability of eukaryotes to synthesize the queuine base consequently makes them 

rely on the content of this essential nutrient in extracellular sources. However, the amount of 

queuine required by the human organism might be minimal as is suggested by the low content 

of queuine in human milk (1 ng/mL) (98) arguing for a highly efficient system present in men 

to keep this modified base inside the organism. Investigation of the queuine content of dietary 

products, such as plant derived sources or dairy products, finds them to contain sufficient 

amounts of queuine to meet the human dietary needs (98). The amount of queuine in nutritional 

sources is highly variable ranging from 1 ng/mL in evaporated and canned goat milk over 21 

ng/g in tomato up to 87-530 ng/mL in coconut water. The high content of queuine especially in 

plants raises the question how it traverses from the bacterial to the eukaryotic organism. To 

animals, queuine sources may be exposed in the gut environment upon the normal rate of the 

microbial turnover in the intestine (124), while plants seem to rely on the bacterial turnover in 

soil. The transfer of queuine sources might be promoted by the specificity of the eubacterial 

TGT enzyme, which does not accept queuine, queuosine nor the queuine nucleotide as 

substrates (125, 126). 

Despite the disability of eukaryotic cells to synthesize queuine, the observation that queuine is 

found incorporated in the tRNA of eukaryotic organisms implies the uptake of peripheral 

queuine into the eukaryotic cell as a logical consequence. Indeed, the concentration of queuine 

circulating in the human system has been estimated to be in the range of 1-10 nM (127, 128). 

In analogy to bacteria, queuine uptake in eukaryotes is still largely unclear. Studies trying to 
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decipher the mechanism of queuine uptake are exploiting the properties of a reduced queuine 

tritium derivative (rQT3), which is not a substrate for the human TGT but gets efficiently taken 

up into the cell at a rate comparable to queuine, making this compound suitable for investigation 

of queuine uptake (129–131). A study by Elliot et al. focused on quantitative evaluation of the 

uptake of queuine into cultured human foreskin fibroblasts (HFF) cells, describes two phases 

of queuine salvation. They monitored the cellular rQT3 concentration over time after its 

application to the culture, which resulted in a diphasic diagram. Initially after rQT3 application 

a first uptake system is responsible for a quick saturation of the rQT3 cellular concentration 

after 2-4 min with a Km value of about 30 mM, while another uptake system with an estimated 

Km of 350 mM is responsible for an steady increase of the rQT3 concentration, which saturates 

at 1 µM after 3-4 hours (132). Despite the apparent queuine uptake in eukaryotes, the 

components underlying these two systems are yet to be described. 

 

1.5.4 FURTHER MODIFICATION OF THE QUEUINE BASE 

GTP is extensively modified to preQ1 before it gets incorporated into target tRNAs in bacteria 

but does not represent the final modification, because the fully established queuine bases 

possesses an additional cyclopentene-diol moiety, that is formed after incorporation of the 

preQ1 into the tRNA target. However, the final queuine modification does not necessarily 

represent the final modification stage of this base. The majority of queuine molecules derived 

from rat, rabbit and starfish carry an additional modification, themed as Q*, which was 

observed by means of thin layer chromatography and mass spectrometry. Although frequently 

found in mammalian samples, queuine but no Q* species are observed in samples derived from 

plants, such as wheat germ (133). MS experiments with tRNA from rat liver showed a mass 

shift of queuine by 571 m/z, caused by O-linked mannosylation (manQ) and/or galactosylation 

(galQ) of the cyclopentene-diol moiety. While mannose modification is exclusively overserved 

for tRNAAsp, queuine in tRNATyr carries an additional galactose. tRNAAsn and tRNAHis, 

although being queuinylated, are not further targeted by glycosyltransferases. Despite O-

mannosylation and O-galactosylation of queuine occurs on different tRNAs, they both are 

localized at the C4 OH group of the cyclopentene, as observed by proton resonance shift of the 

hypermodified base in comparison to the unmodified queuine in NMR (134). A further study 

revealed that queuine hypermodification in eukaryotes is not only restricted to rodents or 

asteroidea, but is also present in human (64). Here, tRNAAsp harbors manQ at the wobble base 

position.  



CHAPTER 1:  INTRODUCTION 

 

32 

The glycosyltransferase(s) modifying queuine in the structural context of tRNA are yet 

unknown. However, a mannosyltransferase was isolated from cell free rat liver extract by 

chromatography and enzymatically characterized by using the substrate uridine diphosphate 

(UDP) -α-mannose as a donor. Mannosylation activity of this enzyme was specific for the 

queuine base in structural context of tRNAAsp and no other Q34tRNAs (tRNAAsn tRNAHis, 

tRNATyr) were modified (135). Furthermore, the authors found the transfer of mannose on 

queuine to be crucially dependent on the presence of Mg2+, an observation that is in line with 

the current knowledge that most enzymes of this class rely on Mg2+ or Mn2+ as a cofactor. These 

divalent metal ions are supposed to promote leaving of the nucleoside diphosphate group by 

stabilizing the developing negative charge (136). 

 

1.6 TRNA GUANINE TRANSGLYCOSYLASES 

Transfer RNA guanine transglycosylases (TGTs) are tRNA modifying enzymes that are 

encoded in archaebacteria, eubacteria and eukaryotes where they catalyze the incorporation of 

7-substituted 7-deazaguanine derivatives into cognate tRNAs (137). While the 7-deazaguanine 

core moiety of the substrate is the same for every TGT, the base accepted by the according 

enzyme differs in the substituent at position 7 of the 7-deazaguanine which is specific to the 

kingdom of the respective organism (138). Despite their differences in substrate specificity, 

TGT enzymes share a fairly similar fold (139–141), that is mainly constituted of an (ȕ/α)8 TIM 

barrel which provides elements involved in substrate binding and its recognition (142, 143). 

Substrate recognition is further facilitated by the second prominent structural element of TGT 

enzymes, a zinc binding domain N-terminally to the barrel, comprising a divalent zinc ion 

(Zn2+). This overall highly similar fold classifies TGTs as an own superfamily (EC 2.4.2.29). 

Members of this superfamily can be divided in eubacterial, archaebacterial und eukaryotic 

TGTs that differ in the modified base they transfer, tRNA substrate specificity and/or the target 

site (Figure 6). 
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Figure 6. Kingdom specific incorporation of 7-deazaguanine derivatives by TGTs 

With respect to the kingdom, the bacterial TGT (bacTGT), the eukaryotic TGT (euTGT) and the archaeal 

TGT (arcTGT) incorporate preQ1 (R1), preQ0 (R2) or queuine (R3) into cognate tRNAs respectively. While 

the bacTGT as well as the euTGT target the guanine at the wobble base position (G34), the arcTGT exhibits 

a different specificity and exchanges G15 with the modified base. 

 

1.6.1 THE EUBACTERIAL TGT 

TGTs of eubacterial organisms (bacTGTs) incorporate the queuine precursor 7-aminomethyl-

7-deazaguanine or preQ1 into the cognate tRNAs tRNAAsp, tRNAAsn, tRNAHis and tRNATyr 

(125). These tRNAs share their anticodon sequence, G34 U35 N36, with N representing one of 

the four canonical nucleotides (G, C, A or U), with the triplet nucleotide sequence U33 G34 

and U35 representing the minimal recognition sequence for bacTGT (144, 145). Next to the 

sequence, the tertiary structure to the acceptor tRNA is of importance for the substrate 

recognition by TGTs, as has been observed for a truncated helix mimicking the anticodon of a 

tRNA substrate. This helix serves as a substrate for TGT at 20 °C, but at 37°C no TGT activity 

is observed on this substrate anymore, due to loss of the substrate’s secondary and tertiary 

structures (145). 

The two structures of a bacTGT currently available are the crystal structure of Thermatoga 

maritima bacTGT (PDB-ID: 1ASH) and Zymomonas mobilis (PDB-ID: 1PUD) (139) latter of 

which is the structurally most extensively studied enzyme of the TGT superfamily with 

currently over 100 entries in the PDB database.  
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1.6.1.1 STRUCTURE OF THE BACTERIAL TGT 

First insights into the structure of a TGT enzyme were provided by the crystal structure of the 

Z. mobilis TGT by Romier et al. (139), who observed the bacTGT’s characteristic (ȕ/α)8 to be 

capped at the N-terminal site with a three-stranded ȕ-sheet, belonging to the N-terminus of the 

protein (Figure 7). 

 

Figure 7. Crystal structure of the Z. mobilis bacTGT assembly 

The functional homodimeric assembly of the bacTGT from Z. mobilis (PDB-ID: 1PUD) is shown with both 

subunits depicted as cartoon. The two identical subunits are colored individually in light- and dark grey. 

The zinc atom of each subunit it shown as a sphere and colored accordingly to the subunit. 

 

Furthermore, they observed that the ȕ-strands of the barrel are not only linked by one α-helix 

connecting two sheets, but in some cases by multiple helices or even an additional three-

stranded beta sheet. The barrel is bridged by an α-helix to a C-terminal domain, which features 

a structurally important zinc ion that is coordinated by three cysteines and an α-helix bound 

histidine, stacking from the top to complete the tetragonal coordination of the metal ion. This 

binding motive can be described as CXCX2CX29H, and is conserved among bacTGTs (139). 
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1.6.1.2 STRUCTURE OF THE BACTERIAL TGT SUBSTRATE COMPLEX 

Crystallization of protein RNA complexes is a challenging task, as protein RNA interactions 

are usually transient and exhibit low binding constants, which hinders crystallization. To 

overcome this problem, researchers have been using modified bases or cross linking to stall the 

enzymatic reaction at a distinct point in the reaction cycle and thus trap the protein RNA 

complex as covalent reaction intermediate (146, 147). 

To trap the Z. mobilis TGT RNA reaction intermediate, Xie et al. (142) used 9-deaza-guanine 

(9dzG), which prevents bond formation between the modified base and the ribose. By using 

this modified base, they were able to stall the enzymatic reaction after cleavage of the glycosidic 

bond and crystallized the complex with a covalent bond formed between the ribose and the Asp 

280 residue of the TGT (Figure 8). This crystal structure offers first insights into RNA binding 

by a bacTGT. In the complex structure, TGT forms a homodimer, with 9dzG bound to the active 

site of both subunits. However, only one subunit has the RNA, which is comprised of an tRNA 

anticodon stem anticodon loop, bound to its active site. The question why only one subunit 

contains the tRNA substrate, cannot be resolved by this structure, but in presence of the full 

length tRNA, the second subunit might aid binding of the RNA substrate, as it is the case for 

the arcTGT (143). In contrast to the arcTGT (Chapter 1.6.2), both active sites in the homodimer 

are facing a similar direction, a fact that might obstruct binding of a second tRNA substrate to 

the unoccupied second catalytic center, due to steric hinderance by the tRNA bound to the other 

subunit (142). The fold adopted by the bacTGT monomer in the ternary complex is fairly similar 

to the bacTGT crystal structure without RNA. In the complex structure the RNA sits on top of 

the C-terminal end of the (ȕ/α)8 barrel, representing the conformation of a tRNA anticodon stem 

and loop. The stem interacts with the enzyme in a sequence unspecific manner via van der 

Waals contacts and hydrogen bonds involving not the bases but the phosphate backbone. In 

contrast to the stem, the anticodon loop adopts an unusual conformation that is subjected to a 

global conformational change upon binding, compared to the unbound tRNA full length 

structure. Furthermore, the loop is engaged in extensive interaction involving the bases C32-

A38 (142). 
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Figure 8. Crystal structure of a bacTGT RNA complex 

The bacTGT from Z.mobilis (PDB-ID: 1Q2R) is shown in complex with a tRNA anticodon stem loop all 

depicted as cartoon. The RNA is bound exclusively to the active site of one subunit (light grey) while the 

active site of the homodimer’s other subunit (dark grey) in unoccupied. All molecules are shown as cartoon, 

while the zinc ion of each monomer is depicted as a sphere in the respective color of the subunit. 

 

1.6.2 THE ARCHAEBACTERIAL TGT 

TGT enzymes found in archaea (arcTGTs) exhibit outstanding properties that clearly 

distinguish them from their eubacterial and eukaryotic counterparts. Sharing only 20-25 % 

sequence identity with bacTGTs (148), the most remarkable difference is the completely 

different target site, which is the guanine 15, located in the D-arm of most archaeal tRNAs (15, 

149). Compared to the bacTGT, archaeal TGTs do not incorporate preQ1, but 7-cyano-7deaza-

gunanine or preQ0, that harbors a nitrile group as part of the substituent at position 7 (150). In 

contrast to eubacteria where preQ1, which is subsequently modified into queuine on tRNA, in 

archaea preQ0 tRNA is converted into 7-formamidino-7-deazaguanine-tRNA in a single 

enzymatic reaction (151). Because of the occurrence of this modified base on the tRNA of 

archaebacteria it is referred to as archaeosine or G*. Archaeosine modification is thought to 

promote tRNA stability, a crucial task for thermophile archaeal bacteria such as Pyrococcus 

horikoshii (36, 138) 
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1.6.2.1 STRUCTURE OF THE ARCHAEBACTERIAL TGT 

The first structure of an arcTGT was described for the TGT from the thermophile organism P. 

horikoshii (PDB-ID: 1IQ8) (Figure 9) (140). This arcTGT comprises the characteristic (ȕ/α)8 

barrel and the zinc binding domain, which, together with the shared catalytic mechanism, 

clearly identify this enzyme as a member of the TGT enzyme family. Furthermore, arcTGT is 

organized in a homodimeric assembly with the zinc binding domain heavily involved in dimer 

formation. Although the arcTGT structure shares several similarities to queuosine TGTs, it 

exhibits pronounced structural differences. The arcTGT contains three additional domains at 

the C-terminus, consequently named C1-C3 that are specific to archaeal TGTs and completely 

absent in queuosine TGTs. Interestingly, the binding site for the preQ0 substrate is provided by 

an α-helix which is unfolded in the free state and adopts a fold upon binding of the modified 

base (140). 

 

Figure 9. Crystal structure of the P. horikoshii arcTGT homodimer 

Both subunits of the P. horikoshii arcTGT homodimer crystal structure (PDB-ID: 1IQ8) are depicted as 

cartoon and colored identically. The N-terminal domain, which resembles the fold of the bacTGT, is colored 

in turquoise, while the three C-terminal domains C1-C3, that are not featured by TGTs from other kingdoms 

are shown in pale turquoise. The zinc atoms that are coordinated by each subunit individually are presented 

as grey spheres. 
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The crystal structure of the P. horikoshii arcTGT homodimer in complex with a full length 

tRNA (PDB-ID: 1J2B) describes a novel tRNA conformation. In the free tRNA, the G15 target 

base is buried in the D-loop of the L-shaped tRNA molecule (PDB-ID: 1EHZ) (152). The 

arcTGT tRNA complex structure (Figure 10) reveals the same homodimeric assembly as in the 

tRNA-free structure of the arcTGT, but to access G15 for the enzymatic reaction, the tRNA is 

forced into a different conformation by the arcTGT, referred to as the λ-conformation. 

Promoted by the C-terminal domains, this tRNA shape exposes bases of the D-loop to the 

protein surface and allows to insert the G15 base into the active site of the arcTGT. In contrast 

to the bacTGT, two tRNA molecules are bound to the homodimer without steric hinderance in 

the complex structure with one G15 accommodated in each catalytic pocket. 

 

Figure 10. Crystal structure of the arcTGT tRNA complex. 

The arcTGT homodimer from P. horikoshii (PDB-ID: 1J2B) is shown with individual coloring of both 

subunits (turquoise and light turquoise). A tRNA (orange/yellow) is bound to the active site of each 

monomer in a 1:1 ratio. The three C-terminal domains of one subunit are engaged in extensive contact 

formation with the RNA, facilitating the insertion of the target base G15 in the active site of the respective 

other molecule. All components are depicted as cartoon. 
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1.6.3 THE EUKARYOTIC TGT 

In analogy to eubacteria, the G34 of the tRNAs tRNAAsp, tRNAAsn, tRNAHis and tRNATyr is 

replaced by the modified base queuine in most eukaryotic organisms. But in contrast to bacteria, 

no biosynthetic pathway for queuine is known in eukaryotes. Therefore, these rely on 

scavenging this modified base from nutritional sources (153). The absence of a biosynthetic 

pathway and the more complex cellular organization of eukaryotic cells impose altered 

requirements on the TGT enzyme and indeed, the eukaryotic TGT exhibits striking structural 

differences to their bacterial counterparts. While bacterial TGTs are organized as a homodimer, 

the quaternary structure of the eukaryotic TGT is of heterodimeric organization. It is composed 

of a catalytical QTRT1 and a non-catalytical QTRT2 (or QTRTD1) subunit (154). This altered 

subunit organization, from a homomer in bacteria to a heteromeric assembly in eukaryotes, has 

been observed previously for a different tRNA modifying enzyme, the m1A58 

methyltransferase of Thermus thermophilus. This bacterial enzyme is a homotetramer, but in 

analogy to the bacTGT can only bind half the number of tRNA substrates, while the 

homologous enzyme from S. cerevisiae is organized as a homodimer of a heterodimer(155, 

156). 

QTRT1 and QTRT2 of the eukaryotic TGT are homologous to the eubacterial TGT exhibiting 

42 % sequence identity (157). Analysis of the sequence conservation found both subunits to 

harbor the three cysteines and a histidine which are required for coordination of the Zn2+ ion in 

the Z. mobilis TGT structure (139, 157). The catalytically essential residues identified in 

bacTGT are likely conserved in QTRT1. Asp279, the QTRT1 residue aligning to the 

catalytically important Asp280 in bacTGT, has been shown to be crucial for activity of the 

human TGT (154). In contrast to QTRT1, these amino acids are mutated to residues exhibiting 

substantially different chemical properties in the QTRT2 subunit (141, 157). Because of this 

observation, the QTRT2 subunit is generally considered to be deficient of a TGT related 

catalytic function (154). Despite its degeneration of the of the active site, QTRT2 does not only 

colocalize with QTRT1 in a cellular context (157), but its presence in the heterodimeric 

assembly is crucial for TGT activity in eukaryotes (154). Neither QTRT1- nor QTRT2-only 

samples do exhibit any transglycosylation activity which is exclusively observed in presence of 

the heterodimer (141, 154, 157) highlighting the importance of QTRT2 for the enzymatic 

activity of the eukaryotic TGT. Investigations of the quaternary structure of the mammalian 

TGT by immunoprecipitation of lysate obtained from COS-7 cells, which were transiently 

transfected with the two TGT subunits, found both subunits to tightly interact. However, the 
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authors were also able to identify a homodimer composition of QTRT2, while QTRT1 failed to 

self-associate ex vivo (157). Investigation of the recombinantly expressed and purified human 

TGT enzyme confirmed these observations of the quaternary structure of the subunits under in 

vitro conditions (154). Additionally, the authors observed a homodimerization not only of the 

QTRT2, but also of the catalytic QTRT1 subunit using intact mass analysis. An even more 

detailed analysis of the TGT quaternary assembly was conducted by Behrens et al. for the 

mouse enzyme (141). Mass-spectrometric analysis under non-denaturing conditions of either 

QTRT1 or QTRT2 in absence of the other respective subunit, allowed to quantify 

homodimerization. QTRT1 was found to weakly self-associate under the experimental 

conditions with only 20 % of the molecules exhibiting a dimeric assembly, while 80 % remained 

as a monomer in solution. Interestingly, this ratio was stable upon increased protein 

concentration. Investigation of the QTRT2 subunit alone revealed a much higher tendency of 

this subunit to self-associate, with 80 % of the proteins forming dimers. Despite the high 

tendency of QTRT2 to be engaged in homodimeric assemblies, the addition of QTRT1 to the 

sample resulted in the large majority of molecules to form the heterodimeric TGT complex, 

with only a small minority of both subunits present as monomer or homodimer, confirming 

previous observations for the human and mouse TGT enzyme (141). 

 

1.6.3.1 STRUCTURE OF THE EUKARYOTIC TGT 

The recently reported crystal structure of the mouse QTRT2 subunit (PDB-ID: 6FV5) provids 

first structural insights into a eukaryotic TGT subunit and is shown in figure 11 (141). The 

overall fold and topology of the non-catalytic QTRT2 strongly resembles the structure of the 

bacterial monomer from Z. mobilis with a largely similar organization of the (ȕ/α)8 barrel and 

the zinc ion being coordinated at the respective location. Investigation of the QTRT2 structure 

reveals the previously noted assumption that amino acids involved in the catalytic mechanism 

in the bacterial enzyme are not conserved in QTRT2, with the two catalytical residues Asp 280 

and Asp102 from the Z. mobilis structure being replaced by a glutamate (Glu272) and a cysteine 

(Cys94) residue in the mouse QTRT2 subunit. Furthermore, the binding site for the modified 

base is degenerated with the α-helix absent in QTRT2 that harbors the preQ1 stacking residue 

Tyr106 in the bacTGT (PDB-ID: 1P0E). The QTRT2 structure furthermore shows a 

homodimeric assembly of two subunits, which is organized similarly to the homodimer of the 

Z. mobilis bacTGT (141). Because of the unknown function of this subunit outside of the TGT 

heterodimer, a biological consequence of this assembly remains elusive. 
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Figure 11. Crystal structure of the Mus musculus QTRT2 homodimeric assembly 

The non-catalytic subunit, QTRT2, from mouse was crystallized as a homodimeric assembly (PDB-ID: 

6FV5). Both subunits of the assembly depicted as cartoon, with individual coloring of the subunits. The 

zinc atom of each subunit it shown as grey sphere. The QTRT2 homodimer is organized similarly to the 

bacTGT homodimer, however no biological significance for this homodimer has been reported.  

Do date no crystal structure of an eukaryotic TGT catalytic subunit has been reported. Hence, 

efforts were undertaken to provide structural insights into this subunit by deducting its structural 

organization from homology modeling based on the bacTGT structure from Z. mobilis as well 

as engineering of the bacTGT to mimic the eukaryotic TGT’s active site (158). Indeed, the 

diffraction data of the bacTGT Tyr106Phe/C158Val/Val233Gly triple mutant does show 

electron density for the 7-deaza-guanine moiety of the co-crystallized queuine base but not for 

the cyclopentene ring. Furthermore, this mutant does not accept queuine as a substrate for the 

transglycosylation reaction (158), highlighting the necessity for a report of a QTRT1 structure. 

 

1.6.3.2 REGULATION OF THE EUKARYOTIC TGT 

Not only the uptake of queuine in eukaryotic cells, but also the activity of the TGT enzyme has 

been shown to be regulated. A study by Morris et al., investigating activity of the purified TGT 

derived from rat liver finds the enzyme to lose nearly all its activity over 4 days (159). This 

observation may not be surprising, as it is common knowledge that most enzymes are subject 

to activity loss over time when kept under artificial conditions. However, TGT activity can be 
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restored to nearly 100 % by adding a low amount of protein kinase C (PKC), which had also 

been implicated in queuine uptake in eukaryotic cells (1.5.3). The addition of phosphatases, 

such as alkaline phosphatase results in a contrary effect most likely caused by removal of 

phosphorylation. Transfer of 32P by PKC and subsequent autoradiograph analysis of an SDS-

PAGE gel, loaded with the treated TGT protein, finds most radioactivity to be incorporated into 

the lower migrating band which, according to the authors, corresponds to the active subunit of 

the rat TGT heterodimer. Altogether, TGT activity and hence Q34tRNA levels seem to be 

positively regulated by PKC and its activity is counteracted by phosphorylases (159). 

 

1.7 BIOLOGICAL CONSEQUENCES OF QUEUINE MODIFICATION 

1.7.1 MODULATION OF DNMT2 DEPENDENT C38 METHYLATION 

The interplay of RNA modifications and how they affect each other is largely unknown. The 

presence of an average of 14 different modifications on a single tRNA molecule at the same 

time contributing to the tRNA’s function rises the possibility that they may not only aid function 

of the tRNA but also could influence each other’s abundance (160). Within their study, the 

authors who firstly identified Dnmt2 as a tRNA methyltransferase reported on the side that 

Dnmt2 dependent C38 methylation was strictly observed in concert with another modification 

(64). This modification was further investigated by mass spectrometry and identified as a 

mannosylated queuine which was incorporated at position 34 of the methylated tRNA. (64). 

Despite this observation the link between these two modifications was initially not further 

investigated by the field. A first hint that Dnmt2 activity might be altered by another factor 

came from the Ehrenhofer-Murray laboratory, who observed unexpectedly low C38 

methylation of Dnmt2 target RNAs when S. pombe cells were grown in standard complete or 

minimal medium. On the other side, Dnmt2 dependent methylation was much higher when the 

cells were grown under presence of peptone, which contains also several nutrients (67, 161). 

This nutrient was identified as the 7-deaza-guanine derivative queuine, a modified base that 

was supplemented to the cells as a component of the peptone mixture. Sole supplement of 

queuine to the cell medium had a drastic effect on Dnmt2 activity. In cells grown under absence 

of the free queuine base C38 modification of tRNAAsp was low, with only 6 % of the tRNAs 

modified, but when queuine was added to the medium, the tRNAAsp pool became fully 

methylated. The authors could also show ex vivo that queuine modification of tRNAAsp is 
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responsible for this modulation of Dnmt2 activity (65). How exactly queuine mediates Dnmt2 

stimulation on tRNAAsp a molecular basis, and if other factors are involved in this effect is 

currently unclear. 

 

1.7.2 QUEUINE AND CELL PROLIFERATION 

The growth of human foreskin fibroblasts (HFF) in culture under constant presence of 

nanomolar concentration of the PKC activity-modulating compound phorbol-12,13-

didecanoate (PDD) results in a substantial decrease of Q34tRNA (162). Simultaneously, the 

constant addition of PDD results in a 5-10 fold increase of culture saturation density at early 

passages (163). Application of exogenous, purified queuine at 50 nM concentration to the cells 

abolishes the PDD induced effect on maximal cell density and re-establishes cell growth similar 

to PDD untreated cells (162), suggesting that either the free queuine base or Q34 modified 

tRNA counteract the effect of the PDD. In contrast to these results, investigation of rQT3 

transport in later-passage fibroblasts finds the rQT3 uptake to be stimulated by PDD. 

Simultaneously it was shown that the effect observed in the early-passage stage of HFF cells 

was caused by a cell produced factor that inhibits queuine uptake (164). The identity of this 

factor is not described in this study. However, other studies identified a 10-30 kDa factor that 

was responsible for queuine inhibition (164) and finally led to the observation that interferons 

(α-, ȕ- and Ȗ-) are responsible for the inhibition of queuine uptake (165). This led to the revised 

view that PKC activity is stimulating queuine uptake in the cells (124). 

 

1.7.3 QUEUINE AND CANCER 

Besides the observation that TGT is subject to regulation, queuine has been investigated in 

various tumor cells, where a lack of queuine at the wobble base position in the anticodon of 

TGT target tRNAs have been observed (166). Extraction of the tRNA pool and subsequent 

analysis identified various degrees of queuine hypomodification in tissues that show abnormal 

and excessive growth (neoplastic tissues) and transformed cells. While high queuine deficiency 

was observed in lung cancer (167), the degree of queuine hypomodification correlates with the 

severity of malignancy in several cancerous tissues in human, such as leukemia, lymphoma, 

brain and ovarian tumor as well as lung cancer (167–170). In particular, lack of tRNA queuine 

modification in high grade lymphomas is substantially more severe than in less malignant 

cancer types such as lymphocytic lymphoma at a favorable diagnostic stage (168). Evaluating 
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the outcome of their study, the authors highlight the importance of queuosine for disease 

activity and imply its role in maturation of certain types of cancer. 

The apparent strong correlation between a lack of Q34tRNAs and the proliferation state of the 

malignant tissue, raises the idea that the lack of queuine modified tRNA may be simply due to 

the lack of free queuine in the cell, a consequence of limited supply caused by the abnormal 

fast growth of the respective tissue. This theory is supported by Osaka et al., who measured the 

amount of queuine incorporated into tRNA by quantifying the amount of radioactively labelled 

guanine incorporated by the E. coli TGT enzyme. Results indicate queuine hypomodification 

to be closely related to the state of cell differentiation (171). Analysis of mitochondrial tRNA 

from Morris hepatoma cells highlights a defective queuosine incorporation into tRNAAsp at an 

early stage of cancer development, involving abnormalities in mitochondria. The authors 

hypothesize that queuine hypomodification is caused either by a deficient uptake of queuine or 

inhibition of the TGT enzyme. Indeed, TGT activity as well as queuine uptake into the cell have 

been found to depend on activity of PKC (159, 162), which is involved in cell proliferation and 

tumor genesis and is a prominent receptor for cancerogenic phorbol esters (172). A hint that 

queuine hypermodification may indeed be caused substrate limitation came with the 

observation that the administration of external queuine to cancerous mice results in an increased 

level of Q-modified tRNA in cancerous tissues and coincidentally causes the inhibition of tumor 

growth (173). However, administration of higher queuine levels might also affect activity of a 

potentially inhibited TGT enzyme. In support of this, Emmerich et al. found that queuine 

hypomodification might not be caused by lack of queuine as they observed similar free queuine 

concentrations in neoplastic and non-neoplastic tissues of about 100 nM, a concentration that 

is sufficient to allow full queuine modification of the tRNA pool (119, 168). Whether 

modulation of PKC activity during tumor genesis is the causative factor and which step of Q-

modification is hindered, has not been shown. Furthermore, characteristic features of malignant 

tumor growth, such as higher turnover of tRNAs and excretion of modified nucleosides, might 

contribute to hypomodification of the respective tRNAs with queuine (174, 175).  
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CHAPTER 4:  DISCUSSION 

A complex cellular machinery is utilized by organisms for chemical modification of 

proteins/RNA after their translation/transcription to alter their chemical properties, extend their 

functionality, promote their structural integrity, or to fine tune cellular processes. In relation to 

the complex purpose of modifications, the chemical structure of these modifications is also 

highly diverse as are the “writers” and “readers” of these modifications. The importance of an 

interplay between modifications has been observed for modifications on histones, which have 

emerged to be highly interconnected and tightly regulated throughout the cell cycle to a 

complexity that this referred to as the “histone code” (176, 177). Such a coding of a complex 

interplay is not exclusive to proteins, but has also been proposed for certain glycosylations 

(178). The vast diversity of modifications would also provide the necessary framework for a 

similar interplay of modifications on RNA. However, for RNA the matter is much more diverse, 

due of the higher diversity of modifications and the existence of multiple RNAs. First evidence 

for an interplay of modifications on tRNA was reported after the start of this thesis showing 

that the presence of queuine modification does induce Dnmt2 mediated methylation of the C38 

base on the same tRNA molecule in vivo. The hallmark of this thesis is the structural and 

biochemical investigation of the two enzymes that deposit these two modifications in the 

eukaryotic system: The heterodimeric TGT and the methyltransferase Dnmt2.  

Within this thesis, the first structure of a eukaryotic TGT catalytic subunit has been described 

confirming a conserved catalytic mechanism for the QTRT1 subunit from bacteria to mankind. 

While the publication focused of the active site, in this chapter the conservation of tRNA 

recognition by TGTs is further investigated and the effects of posttranslational phosphorylation 

will be discussed in context of the newly described QTRT1 structure. 

Besides the structural investigation of the human TGT enzyme, the most extensively studied 

topic of this thesis is the biochemical and structural study of the influence of Q34 modification 

on Dnmt2 activity. As shown in chapter 3, queuine alone is sufficient to trigger Dnmt2 activity 

in vitro. To provide insights into how activity is modulated by queuine, a model of the enzyme 

substrate complex was computed, based on the newly reported S. pombe Dnmt2 structure. Here, 

the model is compared to previously reported Dnmt2 substrate models. Furthermore, the cross-

link data of the enzyme substrate complex offers the opportunity to evaluate the model complex 
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with respect to information from in vitro complex formation. Moreover, different possibilities 

how queuine might influence Dnmt2 on a molecular level will be evaluated and finally, a model 

for the Dnmt2 enzymatic turnover reaction will be proposed by linking previously reported data 

to the results of this thesis.  

 

4.1 INVESTIGATION OF RNA-INTERACTING RESIDUES IN QTRT1 

In the publication entitled “Crystal structure of the human TGT catalytic subunit QTRT1” 

(chapter 2) the general fold of the newly reported human QTRT1 crystal structure is compared 

to the crystal structure of the bacTGT identifying the fold of both proteins to be highly similar. 

Furthermore, the structural comparison of both active sites finds the catalytic residues of 

QTRT1 and the bacTGT at equivalent locations. This argues for a conserved reaction 

mechanism, despite of the different specificity for the incorporated modified base. However, 

the overall similar fold of both enzymes does not only allow to compare their active centers but 

also to evaluate the conservation of their RNA interactions. The base for this analysis is the 

QTRT1 structure and the complex structure of the Z. mobilis TGT enzyme which is covalently 

linked to an anticodon RNA substrate (PDB-ID: 1Q2R). 

In the structure of the RNA in the complex with bacTGT the bases of the anticodon stem are 

paired, limiting their accessibility. Thus, protein RNA interactions involving this RNA region 

are restricted to contact formation of protein residues with the phosphate ribose backbone. In 

contrast, the unpaired bases of the stem loop are exposed and can interact with protein residues 

(Figure 12). The first base that is stacked, but not engaged in base pairing is the base 32 which 

is coordinated face to face by Gln290 in the complex structure. Interestingly, in the human 

QTRT1 enzyme the equivalent position is held by a phenylalanine, that could promote RNA 

interaction through π-stacking. Similarly, U33 also is coordinated by only one bacTGT residue, 

Asp267, which is conserved in human QTRT1. Coordination of the target ribose at position 34 

is mediated mainly by the catalytic Asp280. Residues forming the catalytic site are conserved 

from the bacterial to the human enzyme, as it is described in chapter 2, arguing for an overall 

similar interaction at this base in both proteins. A base that exhibits extensive interaction with 

the protein is U35. This uridine is accommodated inside a grove on the bacTGT surface which 

is formed by two arginines. Coordination of U35 by this two residues involves both oxygens of 

the purine base, and thus likely is base specific. This specificity is conserved to human where 
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a uridine is present at position 35 in all four tRNA substrates and the two arginine residues on 

the protein side (Arg285 and Arg288), highlighting the functional conservation of TGT 

enzymes. Another conserved residue is the Ser113 (Ser116 in human QTRT1) that coordinates 

A36 in the bacterial substrate complex. Despite the serine residues in both enzymes do occupy 

an equivalent position, the underlying polypeptide chains adopt different conformations. 

However, this difference might be less severe when QTRT1 is bound to a substrate tRNA, as 

this part of the protein chain exhibits high B-factors. This indicates flexibility in solution and 

furthermore the two beta strands comprised by the amino acids Gly124 to 138 adopt a more 

open conformation compared to the equivalent residues in the bacTGT complex. In the QTRT1 

crystal, this conformation is stabilized through crystal contact formation and might be different 

when the tRNA substrate is bound. The RNA bases 37 and 38 in the bacTGT complex only 

show limited interactions with the protein despite they are not engaged in base pairing. In total, 

the comparison of the residues involved in contact with the RNA bases highlights a high 

conservation of these amino acids from the bacterial to human QTRT1. In contrast, the non-

catalytic QTRT2 subunit of the eukaryotic enzyme does not exhibit this conservation with the 

respective residues exchanged by chemically different amino acids. Beside the incapability for 

base exchange, which has been discussed in chapter 2, this structural investigation agues for an 

impaired or even absent tRNA binding ability in QTRT2. 
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Figure 12. Conservation of TGT residues interacting with RNA. 

(Left) overlay of the Z. mobilis bacTGT (grey) with the QTRT1 subunit structure (PDB-ID: 6H45) (green). 

The bacTGT was crystallized in complex with RNA (yellow/orange) (PDB-ID: 1Q2R). QTRT1 was aligned 

to the structure of the bacTGT monomer which is bound to the RNA, the other subunit is omitted from the 

figure. Unpaired RNA bases interact with several residues of the bacTGT. The vast majority of these 

residues is conserved to human QTRT1 (right). 

 

4.2 STRUCTURAL INVESTIGATION OF QTRT1 PHOSPHORYLATION 

Preparation of the human TGT from endogenous sources yields an active enzyme but its activity 

is lost over days (159). Interestingly, the activity can be restored by kinase activity, suggesting 

an involvement of posttranscriptional phosphorylation. Consequently, application of a 

phosphorylase results in a substantial decrease of TGT activity, supporting the hypothesis that 

indeed TGT phosphorylation regulates the enzymes activity (159). However, the underlying 

study fails to report the modification site resulting from PKC activity. Investigation, of reported 

phosphorylation for both subunits, QTRT1 and QTRT2, reveals six sites to carry phosphate 

modification while only one site was reported for QTRT2. However, most of these sites have 

been found in high throughput analysis and were automatically annotated without manual 

confirmation rendering it hard to confirm the validity of these results. A valuable exception is 

the phosphorylation of the QTRT1 Ser139 residue, which has also been confirmed in low 
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throughput analysis (179). Investigation of this residue in context of the newly reported QTRT1 

structure, finds Ser139 on the protein surface and exposed to the solvent and accessible for 

potential phosphorylation by PKC (Figure 13).  

 

Figure 13. Analysis of QTRT1 phosphorylation. 

a Overlay of the human QTRT1 monomer with the Z. mobilis homodimer crystallized in complex with 

RNA (PDB-ID: 1Q2R). The QTRT1 structure, shown as green surface representation, (PDB-ID: 6H45) 

was aligned to one subunit of the bacTGT dimer. This subunit is omitted from the image. The respective 

other subunit of the bacTGT homodimer is shown as grey cartoon to illustrate a potential dimerization of 

the human TGT. Ser139 (gold) is distant from a potential dimerization surface and the RNA 

(orange/yellow). Furthermore, Ser139 is also distant from the active site. b Top down view into the 

assembly shown in a. Ser116 (pink) is close to the RNA and Thr165 (pink) is in close proximity to the 

queuine base (yellow sticks).  

However, Ser139 is quite distant from the active site. The distance of 15.1 Å between the 

hydroxy group of the serine side chain and the nearest atom of the queuine base renders an 

influence of this peripheral residue on the architecture of the catalytic pocket questionable. 

Furthermore, based on an overlay of the QTRT1 structure with the structure of the bacTGT 
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complex (PDB-ID: 1Q2R), interaction with a tRNA substrate is unlikely, assuming a similar 

tRNA binding to the human TGT. However, the Ser139 is directly C-terminal to the flexible 

three-stranded beta sheet, which is described in paragraph 2.4. A phosphorylation at this site 

could foster a conformation of the sheet and the interconnecting loops that aids tRNA binding. 

As a third possibility, Ser139 phosphorylation could modify the affinity of the heterodimer’s 

subunits. Assuming a conservation of the dimer assembly, which has been observed to arrange 

similarly in bacTGT and QTRT2 homodimers, for the functional heterodimer, Ser139 is likely 

incapable to influence the dimerization as it is neither part of the interaction surface nor 

secondary structures involved in the contact formation between the two subunits (Figure 13a). 

In total, phosphorylation of Ser139 may be unlikely to promote human TGT activity. 

Furthermore, prediction of QTRT1 phosphorylation prediction with NetPhos 3.1 (180) finds a 

low probability for Ser139 phosphorylation by PKC. Instead, this residue is suggested to be a 

target for several other kinases, which have not been implicated into modulation of TGT 

activity. However, other residues of QTRT1 are suggested by the prediction to be targeted by 

PKC in the QTRT1 enzyme but have yet not been reported to undergo phosphorylation. 

Considering the impact of PKC dependent phosphorylation on TGT activity, candidate residues 

of the prediction pool may be close to the active site, RNA interacting regions or at the 

heterodimer interface, latter of which are still awaiting structural confirmation. However, no 

predicted phosphorylation site is located at the interface of both subunits, in case dimer 

architecture is conserved from bacteria to the eukaryotic TGT. Instead, Thr165, one of the 

putative PKC phosphorylation sites, is in close proximity to the queuine binding grove and to 

the hydroxy groups of cyclopentene-diol moiety (5.8 Å distance between the sidechain and the 

C5 hydroxy group). A phosphorylation of this residue may promote binding of the queuine base 

through further coordination of the cyclopentene-diol upon a small rearrangement of the 

underlying peptide chain. This coordination could result in higher affinity and/or an optimized 

positioning of the queuine base for the nucleophilic attack on the reaction intermediate, thus 

increasing TGT activity. Interestingly, also the conserved Ser116 is predicted to be targeted by 

PKC. The corresponding serine in the RNA complex structure of the Z. mobilis bacTGT 

interacts with the adenine base at position 36 (Figure 12). Considering that this base is not 

conserved in the substrate tRNAs of human TGT, phosphorylation of this residue might 

promote contact formation with the less spacious pyrimidine bases of tRNAAsp and tRNAAsn. 

At this point it is unclear whether these depicted consequences of a Ser116 phosphorylation 

hold true, as Morris et al., confirmed the PKC dependent stimulation of TGT activity in context 

of total tRNA extract but not for the individual substrates (159). 
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In total, it is undoubted that PKC mediated phosphorylation has a stimulating effect on the 

activity of the human TGT enzyme, however the phosphorylation of Ser139 reported for 

QTRT1 seems unlikely to have an impact on TGT activity. Instead, other sites on the catalytic 

subunit have been predicted to be targeted by PKC, with Thr165 and Ser116 being the best 

candidates whose phosphorylation might impact TGT activity. Anyhow, which residue indeed 

is targeted by PKC awaits conformation by subsequent TGT phosphorylation and its analysis 

by mass spectrometry. 

 

4.3 DNMT2 SUBSTRATE SPECIFICITY 

The methyltransferase Dnmt2 is the most conserved of all Dnmt enzymes (75), with Dnmt2 

activity reported for several organism ranging from human, over fruit fly to yeast (64, 67, 181). 

These studies mainly focus on the Dnmt2 dependent methylation of the C38 base, the common 

target site for Dnmt2 mediated methyltransfer in all organisms that have reported Dnmt2 

activity. The vast majority of published data on Dnmt2 tRNA targets do include the accepted 

amino acid by the tRNA and may report the anticodon sequence, however, annotation of the 

underlying tRNA sequence or the genome locus is the exception. For identification of potential 

Dnmt2 targets the missing link between the name of the reported target and its sequence is a 

general hinderance. The problem of insufficient annotation becomes apparent when a specific 

tRNA encoded in the human genome is of interest, as a total of 417 tRNA genes are mapped 

but only 61 codons code for amino acids. Moreover, different loci that code for a tRNA with a 

common anticodon do not necessarily have the same sequence. For example, nine genes for 

tRNAVal with the anticodon AAC are annotated in the human genome, with five of them coding 

for the same sequence (tRNAVal -AAC-1-1 to tRNAVal -AAC-1-5). In this case a different tRNA 

sequence has been identified so serve as a substrate for Dnmt2, which is tRNAVal -AAC-2-1 

(81), highlighting the importance of sequence annotation for Dnmt2 substrates.  

The report of queuine being important for Dnmt2 catalytic activity in S. pombe, points out the 

importance of the base position 34 for Dnmt2 substrate tRNAs (65, 182). Whether queuine has 

a similar effect in the human system is currently unknown, but that C38 methylation of tRNAAsp 

by Dnmt2 in human is exclusively observed in concert with queuine modification of the wobble 

base (64) supports the idea that this position is of eminent importance for Dnmt2 activity.  
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Interestingly, the importance of the wobble base for Dnmt2 activity seems not to be restricted 

to the tRNAAsp substrate. The sequence of the non cognate tRNAVal substrate in human 

(tRNAVal -CAC-2-1) does not code for a guanine at position 34 but for the pyrimidine base, 

cytosine. Interestingly, Khoddami et al. (81) observed no Dnmt2 methylation for tRNAVal-

CAC-2-1 despite the almost identical sequence of both tRNAs. Notably, the only difference in 

the sequence of the two tRNAs is the respective exchange of the adenine at position 34 by the 

pyrimidine base cytosine, transforming a Dnmt2 substrate into a non-cognate tRNA. The 

apparent necessity for a purine base at position 34 for methyltransfer by the human enzyme is 

further supported by the third annotated tRNA substrate which is tRNAGly (tRNAGly-GCC-1-

1). Here, in analogy to tRNAAsp, position 34 is occupied by the purine base guanine. This 

finding, although it awaits further confirmation by biochemical studies, may serve as a hint that 

Dnmt2 indeed does distinguish its substrates by the anticodon sequence. 

 

4.4 IMPACT OF THE S. POMBE DNMT2 CRYSTAL STRUCTURE 

At the start of this thesis, three structures of Dnmt2 from human, S. frugiperda, and the 

pathogenic amoebae E. histolytica were available from X-ray crystallography (70, 72, 73). 

These structures offer insights into the enzyme’s fold and accommodation of the methyldonor 

SAM. However, they provide only limited information about substrate binding as the structures 

do not contain a nucleic acid. Analysis of the three annotated tRNA substrates from the human 

Dnmt2 enzyme reveals high variances in the nucleotide sequence but their predicted secondary 

structures are highly similar. This structural similarity is also observed for the tRNA substrates 

which exhibit a high consensus of all the clover leaf secondary structures especially in the 

anticodon stem loop. In all three human tRNA targets the stem is comprised of five 

Watson-Crick base pairs, which in total have a generally high CG content, from 60 % in 

tRNAVal to 100 % in tRNAAsp, and an anticodon loop that comprises seven unpaired bases. 

Furthermore, these properties of the stem and the loop do also apply for the Dnmt2 targets in 

D. melanogaster and S. pombe (11). 

The structure of the S. pombe Dnmt2 (PDB-ID: 6FDF), which is reported as part of this thesis 

(182), exhibits a positively charged area around the negatively charged active site cavity. This 

cavity has to accommodate the C38 base in order to generate the close proximity of the 

substrates and catalytic residues necessary for the methyltransfer reaction. This charge 
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distribution of the catalytic center and the surrounding area is not only a feature in the structure 

from S. pombe but also conserved in the other reported Dnmt2 structures. This evolutionary 

conservation indicates a defined purpose of this region in interaction with the tRNA. 

Considering the conserved positive charge and the above described seemingly conserved 

topology of the tRNA, interaction around the active site likely is mediated by the phosphate 

ribose backbone of the structurally similar tRNAs. Indeed, the positive charge is of importance 

for Dnmt2 activity as mutagenesis of non-catalytical residues involved in this charge topology 

results in decreased activity of the human Dnmt2 enzyme (69), highlighting the importance of 

this charge distribution. In conclusion, the conservation of surface electrostatics in regions 

adjacent to the active site supports the hypothesis that the protein substrate interaction is mainly 

facilitated by contact formation between the positively charged protein surface and the 

negatively charged phosphate backbone of the tRNA. This could also explain the seemingly 

conserved architecture, but not conserved sequence of the different tRNA substrates. 

 

4.5 BIOLOGICAL SIGNIFICANCE OF DNMT2 COMPLEX MODELS 

The molecular mechanism underlying the methyl transfer reaction catalyzed by Dnmt2 

enzymes has been described by employing biochemical methods and found to resemble the 

mechanism used by other Dnmt family members (68). Beside this discovery, several efforts 

have been made to understand the modus of Dnmt2 substrate recognition providing valuable 

information about accepted substrates (71) and interacting regions of the protein surface (69). 

In total, two models of Dnmt2 in a substrate complex have been proposed simultaneously before 

the start of this thesis. One reported model presents the Dnmt2 structure from E. histolytica in 

complex with a DNA double helix comprising a cytosine flipped out into the catalytic pocket 

of Dnmt2 (70). This model was generated by superposition of the Dnmt2 structure with the 

structure of the similar but unrelated DNA methyltransferase HhaI, which was solved in 

complex with a DNA double helix (PDB-ID: 1MHT). The model seems to fulfill the reported 

properties that are required for Dnmt2 mediated methyltransfer. Furthermore, major clashes 

between both structures of the model do appear to be absent, which is aided by the structural 

similarity of both enzymes. This overlay represents a plausible model for DNA methylation by 

Dnmt2, but is still controversially discussed (59). As a consequence, the question of a biological 

significance of this model is yet unanswered.  
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Nevertheless, Dnmt2 has indeed been shown to be capable of DNA methylation but only in the 

structural context of tRNA (71). In opposition to the discussion of DNA methylation, 

methylation of tRNA by Dnmt2 has been observed by various groups (64–66, 81, 183), leaving 

Dnmt2 activity on tRNA unquestionable. The second model of a Dnmt2 substrate complex was 

reported in frame of mapping the substrate binding site of the human Dnmt2 enzyme by a 

mutational study (69). This model comprises the structure of Dnmt2 as well as a tRNAAsp 

structure taken from an aspartyl-tRNA synthase complex (PDB-ID: 1ASY). The tRNA 

structure was manually placed into the Dnmt2 structure with respect to the surface residues 

which were found to be of importance for Dnmt2 activity (69). However, this model has certain 

flaws as monitoring of enzyme activity upon alteration of non-catalytic residues is not a direct 

measure for enzyme substrate interaction. Furthermore, the top down representation of the 

complex model, clearly limits the accessibility of details such as the distances between the two 

molecules. This representation may be sufficient to support the authors’ conclusion that the 

tRNA stem and anticodon loop may be of suitable size to be accommodated by the groove 

around the active site, however the lack of details caused by the manual placing prevents further 

interpretation. 

 

Figure 14. Validation of the Dnmt2 tRNA docking model. 

The structure of tRNAAsp from S. cerevisiae (PDB-ID: 1VTQ) that was docked to the S. pombe Dnmt2 

crystal structure (PDB-ID: 6FDF) is depicted as cartoon. Dnmt2 is shown as surface representation with 

electrostatics ranging from +5.0kBT/e (blue) to -5.0kBT/e (red). Protein residues cross-linked to RNA bases 

are depicted as green spheres. 
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The model of the tRNAAsp Dnmt2 complex (Figure 14), which has been published under the 

title “Structural insights into the stimulation of S. pombe Dnmt2 catalytic efficiency by the 

tRNA nucleoside queuosine” and is reported in this thesis, is not based on manual placement 

or superposition. Instead, computational docking of five different tRNA structures (PDB-IDs: 

1VTQ, 1ASZ, 1QF6, 4WJ3, 4WT8) was performed. Compared to manual placement, this 

method has the advantage of an automated quantitative ranking of the docked models through 

their individual internal Rosetta scores, a value that has been adjusted from normal Rosetta 

scores to better meet the properties protein RNA complexes (184). Application of this method 

prevents bias compared to manual placements of RNAs. However, selection of the best model 

was not solely based on a total score containing the energy of the interactions across the surface 

and various other values, but also on biochemical requirements. In this respect we verified the 

model with respect to the proximity of the methylation target C38 to the active site. Further 

justification of the model is achieved by mapping the interaction surface through cross-linking 

of the complex in solution that does allow the direct observation of protein-RNA interactions.  

Several tRNA structures were used for docking but no confirmed Dnmt2 substrate structure 

was available in the Protein Data Bank. Interestingly, the best model was observed by docking 

the tRNAAsp structure from S. cerevisiae (PDB-ID:1VTQ), one of the few organisms that do 

not encode Dnmt2 in their genome (56). This raises the question whether this model allows for 

a more detailed interpretation since the cross-linking was performed with tRNA and Dnmt2 

both cloned from S. pombe sequences. Therefore, the sequences of the docked S. cerevisiae 

tRNAAsp and the S. pombe tRNAAsp were analyzed. Both tRNAAsp molecules are composed of 

73 nucleotides, which do strongly differ in their sequence although they share the same 

anticodon sequence. A structural alignment of both sequences identified both tRNAs not only 

to encompass the same number of nucleotides but also the stems and loops are of identical sizes 

(185) arguing for an overall similar fold of the two tRNAs. 

UV-light was used to cross-link the tRNA with the protein in the ternary complex and four 

amino acids were identified by terms of mass spectrometry that are in close contact with the 

tRNA molecule (Lys91, Trp221, His223 and Cys303). All crosslinks were observed exclusively 

to uridines. The closest cross-link to the active site involved the Cys303 residue. Evaluation of 

the proximity of the respective cysteine to the tRNA identifies the wobble base adjacent base 

33 to be the closest and thus most likely to be cross-linked to Cys303 by UV-light. The 

corresponding base at position 33 in the S. pombe tRNAAsp indeed is a uridine (U33), finding 

the model in agreement with the biochemical data. During refinement of the structure, the 
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unusual location of the tryptophan residue Trp221 was noticed as it is not buried in the protein 

core but exposed to the solvent. This is a rather unusual case for a hydrophobic sidechain 

indicating that this residue could be involved in tRNA recognition, presumably through π-

stacking. Indeed, Trp221 as well as His223 apparently are in close distance to the tRNA in the 

ternary complex as they were found to cross-link to uridines. The docked model finds Trp221 

in close contact with the tRNA bases 41 and 42, both of which are uridines in S. pombe tRNAAsp. 

On a side note, this case also nicely illustrates the limitations of the employed cross-link 

method, which involves the digest of the RNA during sample preparation for MS analysis. A 

consequence of this method is the loss of sequence information on the RNA side which makes 

it impossible to distinguish which one of the two uridines is involved in the cross-link. Closest 

to the cross-linked His223 residue are the bases 19 and 20 in the complex model, which are also 

the first two bases of the D-loop. In the tRNA structure, they are flipped out from the loop and 

facing the protein surface. Although base 20 is slightly closer to His223, only base 19 is a U in 

S. pombe tRNAAsp and can be involved in the cross-link formation in the ternary complex. It 

seems that orientation of the tRNA in the model compared to the in-solution complex differs in 

regions that are remote to the active site. The fourth interaction between the protein and the 

RNA is observed for the active site loop harbored Lys91 which is rather distant from the tRNA, 

thus resulting in various interaction possibilities. Consequently, it is impossible to determine 

from the available data whether this residue interacts with U33, U35, or the even more distant 

nucleotides U41 or U42.  

In summary, the information derived from cross-linking agrees very well with the proposed 

docking model of the Dnmt2 tRNAAsp complex. However, in case of the cross-linked Lys91 

our model also highlights the limitation that arise from docking of rigid body structures when 

it comes to flexible regions and altered conformations upon substrate binding. In this case, the 

conformation of the active site loop, which is observed in the crystal structure, is likely different 

when a substrate is bound. Interestingly, the conformation of this loop does not interfere with 

tRNA binding based on the docking model, arguing that it represents an “open” conformation. 

In case of tRNA docking the missing flexibility is of high importance as structures of tRNA 

complexes have been shown that the conformation of RNA molecules can undergo substantial 

changes when they are bound by a protein (26, 27, 143). Usually, the most striking differences 

to the unbound tRNA molecule are observed in the interacting regions, which, in the case of 

Dnmt2, seems to involve the anticodon stem loop, the anticodon stem, and the D-loop. 

Consequently, these regions might adopt a different fold when the tRNA is bound by Dnmt2. 
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Altogether, the application of unbiased computational docking methods, biological 

requirements and the evaluation of the models based on direct interactions between the tRNA 

and Dnmt2 make the herein reported arrangement the most plausible model for a Dnmt2 tRNA 

substrate complex reported to date. 

 

4.6 HOW QUEUOSINE MIGHT TRIGGER DNMT2 ACTIVITY 

Previously, Müller et al. (65) showed that methylation of tRNAAsp by Dnmt2 is dependent on 

presence of the nutrient queuine, which gets incorporated into position 34 of the tRNA. We 

could confirm that queuine modification of tRNAAsp alone is sufficient to trigger Dnmt2 activity 

in vitro and found that its presence on the substrate does lower the K0.5 value and increases Vmax 

in comparison to the unmodified substrate (182). However, the incorporation of queuine does 

only have a minor effect on binding affinity raising the question how queuosine affects the 

methyltransfer reaction. Co-crystallization of S. pombe Dnmt2 in presence of a micromolar 

concentration of the free queuine base, as well as soaking did not result in additional electron 

density that could correspond to this ligand. This finding together with the observation that 

queuine has only a mild effect on substrate affinity indicates that interaction of the queuosine 

base with the protein might be limited. At the same time, it also raises the question how queuine 

can have this tremendous effect on Dnmt2 activity if it is not directly recognized by the protein. 

Its direct participation in the chemical reaction is also unlikely because the unmodified tRNA 

substrate is also methylated, however at lower turnover numbers. Furthermore, our model 

pictures queuosine in proximity of the active center but still too distant for a direct involvement 

in the reaction. 

Queuosine might also have other effects in context of tRNA as modifications of the anticodon 

at position 34 and 37 have been implicated in tRNA conformation (34, 44). Initially these 

modifications were proposed to increase flexibility of the anticodon loop, maybe because they 

add more chemical groups to the loop chemistry. However, the opinion has emerged that they 

in fact promote rigidity of the tRNA anticodon loop (43). It is possible that Q34 may have such 

an effect on tRNAAsp through stabilizing a conformation that weakens C38 interaction within 

the tRNA and promote the base flip.  

As a third hypothesis Q34 could promote Dnmt2 activity through interaction with the active 

site loop. It is possible that the flexibility of this loop is altered by coordination of residues or 
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the peptide backbone via the diol moiety of the queuine’s cyclopentene ring or by stacking with 

the double bond. We tried to localize the queuosine protein interaction by cross-linking of the 

Q34 modified tRNAAsp and Dnmt2 in the binary complex and subsequent MS analysis. 

However, we failed to identify a crosslink that involved either the 7-deaza-guanine or the 

cyclopentene-diol of the queuine base leaving the question of a direct interaction with the 

enzyme unanswered.  

All three explanations of how queuosine might impact Dnmt2 activity on a molecular level are 

biochemically justifiable. Most convincing is the more general explanation that Q34 triggers 

Dnmt2 activity through optimized orientation of the components that are involved in the 

reaction. This is supported by the close proximity of Q34 to the co-substrate and the active site 

in the complex model. First insights into the role of queuine could be provided by determination 

of the kon and koff values of tRNA binding, that might very well change upon queuine 

modification despite the macroscopic binding constant is unchanged. 

 

4.7 DISCUSSION OF A DNMT2 WORKING MODEL 

In this paragraph, a model of a Dnmt2 mediated methyltransfer from the methyldonor SAM to 

the C38 of a cognate tRNA is presented. The model is focused on the structural and biochemical 

observations presented within this thesis for the S. pombe system including data reported by 

other groups. 

In contrast to Dnmt1 and 3, which target DNA and therefore are localized in the nucleus, the 

Dnmt2 enzymatic reaction is likely to occur in the cytoplasm, as the human Dnmt2 enzyme has 

been shown to localize in this cellular compartment (64). From the docked model of the Dnmt2 

substrate complex it can be concluded that binding of the methyldonor SAM to the Dnmt2 

enzyme must occur prior to binding of the tRNA substrate, which otherwise would obstruct the 

SAM binding pocket. Thus, SAM binding likely is the first step in the enzymatic turnover. 

Interestingly, no Dnmt2 crystals of a quality suitable for data collection could be observed in 

absence of the demethylated reaction product SAH and all structures reported previously as 

well as the herein reported structure of the S. pombe Dnmt2 were solved from crystals grown 

in presence of SAH. This raises the question how SAH contributes to Dnmt2 crystallization. 

Given the high flexibility that is observed for the active site loop, SAH binding might foster 

conformational rigidity at the beginning of this loop and other regions that are involved in SAH 
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coordination reducing Dnmt2 flexibility and aiding crystallization. As the second step, the 

binding of the tRNA substrate is likely to occur which seems to induce conformational changes 

on the protein and possibly also the RNA side. A striking conformational change has to involve 

the active site loop, as is was shown for the S. pombe system that this loop is in direct contact 

with RNA substrate. This active site loop is likely folds down onto the nucleotides upon binding 

of the tRNA and adopting a “closed” conformational state. It has previously been shown for 

Dnmt1 that methyltransfer requires a flip out of the respective cytosine base into the catalytic 

pocket to undergo methylation. In this Dnmt1 case a concerted action replaces the target base 

by a protein residue in the DNA double helix and the cytosine is flipped into the catalytic 

pocket. Despite the different substrate specificity of Dnmt2, the proven conservation of the 

catalytic mechanism throughout the Dnmt family, argues that such a base flip out may also 

occur with respect to this enzyme. This is further supported by the reported tRNAAsp structure 

from yeast, in which the C38 base is not flipped out but is engaged in base pairing. Such a flip 

out could be promoted by residues of the active site loop. A similar action has been observed 

for the structurally similar HhaI DNA methyltransferase, which was crystallized with the target 

base flipped out into the active site. In this crystal structure this base is substituted by a residue 

of a loop that is adjacent to the active site. 

The catalytic mechanism of Dnmt2 has been described for the human enzyme before (53, 183). 

All relevant residues are also conserved in S. pombe as well is the structure arguing for a 

conserved mechanism from human to yeast. In the crystal structure of S. pombe Dnmt2 the 

catalytically relevant Glu121 is positioned towards the catalytic center. In contrast, the catalytic 

residue Cys81 does not face the active site but rather is turned into the inside of the protein 

indicating that the catalytically active conformation of Dnmt2 is fully established only after the 

substrate is bound. With all residues in place, Cys81 can the nucleophilically attack the 

cysteine’s C4 atom and form the covalent reaction intermediate. Transfer of the methylgroup 

would then be further promoted by the electron drawing coordination of the base by Glu121 

fulfilling the conserved Dnmt reaction mechanism. The reaction product is finally formed 

through basic attack on the C5 hydrogen atom resulting in a break of the covalent link between 

the protein and the RNA that is now free to dissociate from the enzyme. In a last step the SAH 

must be released, leaving the binding site competent for the next SAM molecule and the 

turnover can start again. 
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The recently reported interplay of the tRNA modifications Q34 and m5C38 in S. pombe (65) is 

one of the first examples that distinct modifications on the same tRNA molecule can influence 

their abundance in a downstream manner. However, before the start of this thesis the structure 

of the enzyme, which incorporates queuine, was not known and the question how Q34 

modification affects Dnmt2 on a molecular level and whether other modifications are required 

was unanswered. 

For the structure determination of the human TGT enzyme, the experimental design focused on 

determination of the functional heterodimer. However, possibly aided by the crystallization 

condition, only the QTRT1 subunit crystallized. The solution of this structure resulted in the 

first reported structure of a eukaryotic TGT catalytic subunit and soaking with queuine did not 

only provide novel insights into the subunit architecture but also in binding of the modified 

base by QTRT1. 

To date the crystal structures of both eukaryotic TGT subunits as well as enzyme kinetics have 

been reported. Future structural work on the human TGT should focus on structure 

determination of the functional heterodimer, as the quaternary assembly of this enzyme is still 

unclear. The underlying experimental design should account for the herein presented 

observation that the presence of chaotropic salts may promote destabilization of subunit 

interaction. Beside crystallization of the human TGT heterodimer, purification methods for all 

components of a tRNA substrate complex have been established within this thesis, supporting 

crystallization of the tRNA substrate complex. The resulting structure likely could provide long 

awaited insights into the enigmatic role of the QTRT2 subunit, that was proven to be of essence 

to the functionality of the enzyme but harbors no functional active site itself. Another interesting 

topic is the apparent dependence of TGT activity on phosphorylation by PKC. In vitro 

phosphorylation of the recombinantly expressed and purified heterodimer with subsequent MS 

analysis could resolve which TGT residue(s) are phosphorylated and crystallization could 

provide structural insights into conformational changes upon modification that may explain the 

importance of phosphorylation for TGT activity. 
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Beside further investigation of the human TGT enzyme, the heart of this thesis is the structural 

and biochemical investigation of queuine mediated modulation of Dnmt2 activity. It was shown 

that queuine alone is capable to promote Dnmt2 activity in structural context of tRNA. 

Furthermore, a model was generated by computational docking of a tRNA to the newly reported 

S. pombe Dnmt2 crystal structure. Additional information on the structure of the ternary 

complex was obtained from cross-linking experiments and allowed to validate the docking 

model. The model furthermore suggests that queuine at position 34 of the tRNA substrate does 

trigger Dnmt2 activity through optimized positioning of relevant components rather than being 

recognized by a pocket on the enzyme surface.  

An important element of this thesis is the model of the Dnmt2 substrate complex which was 

obtained from computational docking of the tRNA to the complex provides new valuable 

insights how Dnmt2 might bind its tRNA substrate and how queuine might alter Dnmt2 activity. 

It also promotes a deeper understanding regarding the mode of action of the enzyme and 

together with cross-linking data argue for an important role of the enzyme’s active site loop. 

Despite the reported complex model is the most advanced as of today, docking of ridged 

structures has the previously described disadvantages. Therefore, a crystal structure of the 

Dnmt2 substrate complex is still of imminent importance for the understanding of the Dnmt2 

functional mechanism.  

Within the experimental work underlying this thesis, a substantial effort was undertaken to 

obtain the crystal structure of the Dnmt2 enzyme in complex with a substrate tRNA. Despite 

optimization of crystallization conditions favoring complex formation, crystals obtained from 

crystallization trials were either of insufficient quality for structure determination, or did 

contain either the protein or the tRNA, but not the ternary complex. Most promising, was the 

combination of the E. histolytica Dnmt2 with the human tRNAAsp, which yielded a single 

crystal that allowed collection of synchrotron datasets up to 3.1 Å resolution. Processing of this 

data identified the crystal to belong to the space group P321, which has not been reported for a 

Dnmt2 enzyme or tRNA alone. The cell constants, furthermore, proved that both components 

of the complex could be encompassed in the unit cell of the crystal. Despite extensive data 

processing and application of numerous search models, the structure could not be solved by 

molecular replacement. This promising candidate should be in the scope of future work, which 

should focus on optimization of this crystallization condition to improve crystal quality and 

employ the use of anomalous scatterers to solve the structure of the complex. Most interesting 

will be the structure obtained from the use of a Q34 modified tRNA, which could in comparison 
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to the unmodified tRNA complex answer the question how queuine modulates Dnmt2 activity 

on a structural level. Furthermore, queuine dependency of methylation by Dnmt2, although 

suggested, has not been reported in other organisms than S. pombe. The herein reported assay 

that allows to incorporate queuine into tRNA can serve as a basis for an investigation of Q34 

dependency of Dnmt2 for the E. histolytica and the human enzyme. 
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-/-    double knock out  

6xHis tag   hexa-histidine tag 

9dzG    9-deaza-guanine 

A    adenosine 

A280    absorption at 280 nm wavelength 

aaRS    aminoacyl tRNA synthase 

arcTGT   archaebacterial tRNA guanine transglycosylase 

ATP    adenosine 5’-triphosphate 

bacTGT   bacterial tRNA guanine transglycosylase 

BSA    bovine serum albumin 

C    cytidine 

CpG    cytidine-phosphate-guanosine 

CPH4    6-carboxy-5,6,7,8-tetrahydropterin 

CV    column volume 

dA    deoxyadenosine 

dC    deoxycytidine 

DESY    Deutsches Elektronen-Syncrotron 

DFG    deutsche Forschungsgemeinschaft 

dG    deoxyguanosine 

DNA    deoxyribonucleic acid 

Dnmt    DNA methyltransferase 

dT    deoxythymidine 

DTT    dithiothreitol 

E515    extinction coefficient at 515nm wavelength 

EDTA    ethylenediaminetetraacetic acid 

EMBL    European Molecular Biology Laboratory 

ESI    electrospray ionization 
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euTGT    eukaryotic tRNA guanine transglycosylase 

G    guanosine 

G*    archaeosine 

galQ    galactosyl-queuosine 

GST    glutathione S-transferase 

GTP    guanosine 5’-triphosphate 

H2NTP    7,8-dihydroneopterin triphosphate 

HEPES   4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

HFD    high-fat diet 

HFF    human foreskin fibroblasts 

HPLC    high pressure liquid chromatography 

HT    HEPES transcription 

m1A    N1-methyladenosine 

m4C    N4-methylcytosine 

m5C    C5-methylcytosine 

m6A    N6-methyladenine 

manQ    mannosyl-queuosine 

MES    2-(N-morpholino)ethanesulfonic acid 

micro RNAs   micro ribonucleic acid 

MR    molecular replacement 

mRNA    messenger ribonucleic acid 

MS    mass spectrometry 

MSC    multipotent stem cell 

MWCO   molecular weight cut out 

NADPH/H+   reduced form of nicotinamide adenine dinucleotide phosphate 

NMR    nuclear magnetic resonance 

PDB    Protein Data Bank 

PDD    phorbol-12,13-didecanoate 

PEG    polyethylene glycol 

PGA    Ȗ-polyglutamic acid 
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PKC    protein kinase C 

Q    queuosine 

Q*    modified queuine base/queuosine 

RMSD    root mean square deviation 

RNA    ribonucleic acid 

rQT3    reduced queuine tritium derivative 

SAD    single-wavelength anomalous dispersion 

SAH    S-adenosyl-homocysteine 

SAM    S-adenosyl-methionine 

SD    standard deviation 

SDS-PAGE    sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA    small interfering ribonucleic acid 

snoRNA   small nucleolar ribonucleic acid 

snRNA   small nuclear ribonucleic acid 

TGT    tRNA guanine transglycosylase 

TLC    thin-layer chromatography 

Tris     tris(hydroxymethyl)aminomethane 

tRNA    transfer ribonucleic acid 

tsRNAs   tRNA-derived small ribonucleic acid 

U    uridine 

UDP    uridine diphosphate 

UV/Vis   ultraviolet and visible fraction of electromagnetic radiation 

WT    wild type 

yW    wybutosine 

ψ    pseudouridine 
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