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 Abstract 

The formation of the subapical domain during cellularization in Drosophila 

embryogenesis is mediated by a pathway including the proteins Rap1, Canoe 

and their downstream effectors Bazooka and Armadillo. The cortical domain 

at the subapical position gives rise to the zonula adherens with adherens 

junctions after cellularization. The timing of the subapical domain formation 

remained unclear. It is possible that the introduction happens gradually with 

ongoing cellularization or that the domain is introduced at the beginning of 

cellularization. The localization of Bazooka leads to the first hypothesis as it 

gets enriched gradually at the subapical domain over the course of 

cellularization. However, I could show that Bazookas upstream factor Canoe 

localizes to the subapical domain already during early cellularization. 

Furthermore, I could show by live imaging with CanoeYFP and the basal 

marker CherrySlam, that the segregation of subapical and basal domains 

happens during the first minutes of cellularization.  

The upstream factor of Canoe Rap1 localizes to all cortical domains without 

an enrichment at the subapical domain and the factor activating the GTPase 

locally remained unclear. I could show that the unconventional Rap1 GEF 

ELMO-Sponge localizes to the subapical domain and that the formation of this 

domain is perturbed in ELMO and sponge mutants. This led to the hypothesis, 

that ELMO-Sponge locally activates Rap1 leading to the formation of the 

subapical domain. ELMO-Sponge both localize to actin caps before 

cellularization in a disc-like fashion, labeling the whole cap. This localization 

changes with onset of cellularization to a more ring-like pattern defining the 

position for the formation of the subapical domain. I further could show, that 

the introduction of the subapical domain depends on midblastula transition 

and with this onset of zygotic gene expression. In embryos in which zygotic 

gene expression was repressed by injection of the drug α-amanitin, 

cellularization was blocked and subapical Canoe localization was lost. 
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 Introduction 

The introduction, including Figures 1-4, has been published as an invited 

review by JCS in Schmidt and Großhans (2018) “Dynamics of cortical domains 

in early Drosophila development”. 

 Cortex and Cortical domains 

Below the plasma membrane in eukaryotic cells, an actin cortex containing a 

meshwork of actin filaments and associated proteins can be found. In all 

polarized and epithelial cells, cortical domains exist, which are characterized 

by specific sets of proteins, and, typically, these are the apical, subapical, 

lateral and basal domains. These sets of domain-specific proteins contain cell-

type-specific proteins, as well as proteins that are conserved throughout 

evolution, among which are the Par proteins, which had originally been 

identified in Caenorhabditis elegans based on their function in establishing 

zygotic anterior-posterior polarity (reviewed in Lang and Munro, 2017), the 

adherens junctions complex of the zonula adherens and markers for the lateral 

domain, Scribbled (Scrib), Discs large 1 (Dlg) and Lethal giant larvae (Lgl) 

(reviewed in Campanale et al., 2017). 

Among the proteins in the cortex are cortical proteins and actin-associated 

proteins, such as nucleators, crosslinkers and motors, as well as integral 

membrane proteins (Figure 1A) (reviewed in Honigmann and Pralle, 2016). 

The cortex is able to react to external and internal signals and has important 

functions in cell division, motility, cell shape changes, cell rearrangement and 

mechanical stability. Cortical domain organization is linked to cell polarity 

and is important for cell behavior, and, consequent with this, tissue 

morphogenesis and embryonic development, in a variety of species (reviewed 

in Munjal and Lecuit, 2014). Cortical domains are set up by the differential 

localization of proteins that confer identity to cortical domains and are 

maintained, for example, by lateral diffusion barriers (Figure 1A) (reviewed in 

Honigmann and Pralle, 2016). Besides their function in epithelial cells, Par 

proteins also define anterior-posterior polarity in the C. elegans zygote and 

Drosophila oocyte (reviewed in Nance and Zallen, 2011), as well as separating 

the inner and outer cells in early mouse embryos, which give rise to the first 

cell lineages (Korotkevich et al., 2017) (Figure 1). Further functions of cortical 

domains in non-epithelial cells include axon specification and polarization of 

neurons, for example, with Par-3 [Bazooka (Baz) in flies] and Par-6 proteins 
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being restricted to the apical tip growth cone of axons (reviewed in Insolera et 

al., 2011), and directed migration of astrocytes, where localization of the Par 

complex to the leading edge is seen (reviewed in Suzuki and Ohno, 2006) 

(Figure 1B). 

Several mechanisms for the establishment and maintenance of cortical 

domains and the molecular factors involved have been delineated. These 

include mutual exclusion, as the lateral proteins Scribbled, Lgl, Dlg and Par-1, 

 

Figure 1 Cortex and cortical domains.  

(A) Schematic representation of the cortex. A thin layer of F-actin lies below the plasma 

membrane, which includes myosin motors, regulators, nucleators and crosslinkers of F-actin. 

Embedded in the cortex are specific components that are associated with or integrated in the 

plasma membrane. Different cortical domains are generated by domain-specific sets of cortical 

components. Lateral diffusion of cortical domain components across the domain boundary is 

inhibited as shown by the dashed line. (B) Examples of cortical domains. Epithelial cells show 

a typical distribution of Par proteins with Par-1 localizing to the lateral domain (light blue) 

and Par-3 to the zonula adherens with adherens junctions (red) (Harris, 2012). In the C. elegans 

zygote, anterior-posterior polarity is defined by two cortical domains, with Par-3 localizing to 

the anterior cortical domain (red) and Par-2 defining the posterior half of the zygote (light 

blue) (Nance and Zallen, 2011). In eight-cell stage mouse embryos, apical-basal polarity 

becomes defined by the localization of Par-3, Par-6 proteins and aPKC to apical domains (red), 

whereas Par-1 localizes to the baso-lateral cortex (light blue) (Korotkevich et al., 2017; Vinot et 

al., 2005). Neurons show polarized cortical domains with aPKC, Par-3 and Par-6 proteins 

localizing to the apical tip (red) (Insolera et al., 2011). Migratory cells exhibit localization of 

aPKC, Par-3 and Par-6 to the leading edge (Suzuki and Ohno, 2006). 
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exclude apical proteins and adherens junctions from the lateral domain (Bilder 

et al., 2000; McKinley and Harris, 2012; Tanentzapf and Tepass, 2003; 

Yamanaka et al., 2006). Directional transport and vesicle trafficking are also 

assumed to have an important role in the establishment and maintenance of 

cortical domains. As the generic mechanisms for the establishment and 

maintenance of typical cortical domains in epithelial cells have been covered 

in several excellent reviews (Goldstein and Macara, 2007; Krämer, 2000; 

Laprise and Tepass, 2011; Lecuit, 2004; Mazumdar and Mazumdar, 2002), we 

will focus here on the dynamic nature of cortical domains and emphasize the 

relevance of their remodeling in early development of Drosophila. 

 Dynamics of cortical domains in early Drosophila embryos 

Cortical organization and remodeling are tightly linked to embryonic 

development (Figure 2). From the single uniform cortical domain during the 

pre-blastoderm stage, the first cortical differentiation takes place during 

syncytial blastoderm development, where two cortical domains are seen 

during the interphase and three domains during mitosis (Foe et al., 1993). With 

mid-blastula transition and the switch to cellularization in interphase 14, a 

subapical domain is added to give rise to the typical epithelial organization 

with four cortical domains (reviewed in Harris, 2012). 

Following fertilization, the nuclei and their associated centrosomes reside 

deep within the yolk where they undergo the first nine nuclear cycles. During 

this stage, the embryonic surface is covered by microprojections of the plasma 

membrane that are comparable to microvilli (Turner and Mahowald, 1976). 

The cortex is uniformly organized with an even distribution of F-actin and 

Myosin II (MyoII) (Karr and Alberts, 1986; Warn et al., 1980; Warn et al., 1984; 

Young et al., 1991). Cortical Myosin II localization occurs in cycles linked to 

embryonic mitotic cycles and, along with this, cortical contractions and 

elongation of the anterior-posterior axis take place (Royou et al., 2002). 

Staining for endoplasmic reticulum (ER) markers has shown that the cortex is 

associated with the ER (Frescas et al., 2006) that appears to be organized in a 

continuous and interconnected membrane system. Fluorescence loss in 

photobleaching (FLIP) of a cortical ER marker indicates that it is mobile and 

its diffusion is not delimited by diffusion barriers (Frescas et al., 2006). ER 

morphology generally depends on microtubules (Terasaki et al., 1986; 

Waterman-Storer and Salmon, 1998), and, consistent with this, microtubules 
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were detected at or close to the cortex (Frescas et al., 2006; Karr and Alberts, 

1986). Unpolymerized tubulin and short microtubules that surround small 

particles, likely yolk granules, can be detected (Frescas et al., 2006; Karr and 

Alberts, 1986) despite the absence of an obvious microtubule-organizing 

center (Karr and Alberts, 1986). These microtubules are important for ER 

localization, as nocodazole treatment leads to a loss of the cortical association 

of the ER (Frescas et al., 2006). Although the pre-blastoderm cortex has this 

simple and unstructured organization, it exhibits plasticity and can actively 

respond to signals like wounding (Abreu-Blanco et al., 2011, 2014). 

 

 

Figure 2 Dynamics of cortical domains in Drosophila embryos. 

Schematic representation of cortical domains in early Drosophila embryos in relation to the 

developmental stages and nuclear cycles. During embryonic development, the number of 

cortical domains increase from one during pre-blastoderm stage to two (caps and intercaps) 

in the syncytial blastoderm stage during the interphase and three (apical, lateral and basal) 

during mitosis. During early cellularization, the new subapical domain emerges between 

apical and lateral domain. The subapical region matures and contains adherens junctions, 

which are introduced during gastrulation. 
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 Cap and intercap regions in syncytial blastoderm embryos 

During nuclear cycles 7–9, the nuclei together with their associated 

centrosomes and cytoplasm migrate from the interior of the yolk towards the 

cortex (Foe et al., 1993). As soon as the nuclei appear at the cortex, cytoplasmic 

buds are formed above the nuclei and its associated pair of centrosomes 

(Figure 2). Although they are most prominent at the anterior pole, the 

cytoplasmic buds uniformly cover the entire embryonic surface (Foe and 

Alberts, 1983). This represents the first morphological and molecular 

differentiation of the embryonic cortex into distinct domains, designated here 

as caps and intercaps. Within the buds or caps, the plasma membrane forms 

extended microvilli-like membrane folds (Turner and Mahowald, 1976). 

Consistent with this, caps are strongly enriched for F-actin (Karr and Alberts, 

1986; Kellogg et al., 1988; Warn et al., 1984, 1987), actin-binding proteins such 

as Arp2/3, suppressor of cAMP receptor (SCAR) (Stevenson et al., 2002; Zallen 

et al., 2002) and Moesin (Rikhy et al., 2015), as well as proteins functionally 

related to the actin cytoskeleton, such as spectrins (Thomas and Williams, 

1999) and the unconventional guanine nucleotide exchange factor (GEF) 

complex of ELMO (also named Ced-12 in flies) and Sponge (Spg) (Schmidt et 

al., 2018). Despite the high F-actin content of caps, Myosin II is not specifically 

enriched in caps but in intercaps instead (Royou et al., 2002; Warn et al., 1980). 

The plasma membrane in the region between the caps (intercaps) appears 

relatively smooth with only occasional bulbous projections (Turner and 

Mahowald, 1976) and forms a fold, which becomes more prominent during 

cycles 12 and 13. In addition to membrane morphology and F-actin content, 

the separation into two cortical domains is indicated by segregation of marker 

proteins. GAP43, which attaches to the membrane through a palmitoylated 

residue (Zacharias et al., 2002), is uniformly distributed over caps and 

intercaps, whereas Toll (Tl) and Slow as molasses (Slam) segregate to the 

intercap region (Mavrakis et al., 2009; Schmidt et al., 2018). 

The centrosomes are responsible for the segregation of the cortex into caps and 

intercaps, as there is a strict correlation between emergence of centrosomes 

with nuclei at the cortex and bud formation (Foe and Alberts, 1983; Karr and 

Alberts, 1986; Warn et al., 1987). In addition, embryos with ‘lonesome’ 

centrosomes (i.e. not associated with a nucleus) are sufficient to induce caps 

(Peel et al., 2007; Raff and Glover, 1989; Yasuda et al., 1991). 
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The link between centrosomes and the cortex is unclear. The increase in F-actin 

within the caps depends on Arp2/3, which is activated by SCAR (Zallen et al., 

2002). SCAR and Arp2/3 activity and, subsequently, actin polymerization in 

the caps might be controlled through activation of Rac1 by the unconventional 

GEF complex ELMO–Sponge (Figure 3A). ELMO and Sponge are required for 

cap formation, as the plasma membrane remains flat without any cytoplasmic 

buds and an uniformly distributed cortical F-actin in ELMO and sponge mutant 

embryos (Postner et al., 1992; Schmidt et al., 2018; Winkler et al., 2015). The 

function of centrosomes at the cortex may involve microtubule-based 

transport or anchoring, as Kinesin-1 and the Dynein complex are enriched at 

the caps (Cytrynbaum et al., 2005; Winkler et al., 2015) (Figure 3A). 

Alternatively, a microtubule-independent mechanism is supported by the 

observation that the actin caps form even in embryos where the microtubules 

are depolymerized through treatment with colchicine (Stevenson et al., 2001). 

The separation into two cortical domains may be linked to the 

compartmentalization of the plasma membrane, that is, the generation of 

 

Figure 3 Cortical domains during syncytial blastoderm. 

(A) Two cortical domains are present during interphase, named the cap (blue) and intercap 

(green). The genetic pathways linking centrosomes to domain formation are depicted on the 

right. (B) Three cortical domains are observed during mitosis, the apical domain (dark blue), 

lateral domain (metaphase furrow, light blue) and basal domain (furrow tip, green). The 

genetic pathways responsible for formation of the metaphase furrow are depicted on the right. 
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boundaries that limit the movement and spreading of membrane and cortical 

components between adjacent caps. This has been shown by photobleaching 

experiments in syncytial blastoderm embryos, in which a cap and its 

connected intercap region do not exchange cortical and membrane 

components with the neighboring domains (Mavrakis et al., 2009). The 

restricted mobility of cortical components depends on the F-actin network, as 

treatment with latranculin A, which prevents F-actin assembly, alleviated the 

mobility of cortical markers (Mavrakis et al., 2009). 

The differentiation into cortical domains may also be linked to a segregated 

distribution of phospholipids, as has been observed in generic epithelial cells 

(reviewed in Gassama-Diagne and Payrastre, 2009; Shewan et al., 2011). 

However, no such polarized distribution has so far been reported for the 

syncytial embryo. 

 Cortical domains in the metaphase furrow 

During mitosis 10 to 13, the individual spindles and their associated 

chromosomes are separated by transient invaginations of the plasma 

membrane, termed metaphase or pseudo-cleavage furrows (Foe et al., 1993; 

Karr and Alberts, 1986) (Figure 2). These transient and dynamic furrows reach 

a maximum extension of ∼10 µm during metaphase 13, and form and retract 

within a short time frame of ∼5 min (Cao et al., 2008; Karr and Alberts, 1986; 

Sherlekar and Rikhy, 2016). The metaphase furrows are important for proper 

chromosome segregation, as mutant embryos that lack the metaphase furrows 

[e.g. diaphanous (dia) mutants] show a mis-segregation of chromosomes with 

low frequency (Afshar et al., 2000; reviewed in Sullivan and Theurkauf, 1995). 

During mitosis, three cortical domains are present, an apical, lateral and basal 

domain, as visualized by segregation of respective marker proteins. F-actin 

and the cortical proteins Amphiphysin (Amph), Anilin, Dia, Syndapin, 

Myosin II and Patj are strongly enriched at the tip of metaphase furrows (basal 

domain) (Afshar et al., 2000; Field and Alberts, 1995; Mavrakis et al., 2009; 

Sherlekar and Rikhy, 2016). Toll and Dlg are found at the lateral furrow and 

are excluded from the apical side and the basal tip (Cao et al., 2008; Lee et al., 

2003; Mavrakis et al., 2009), whereas Canoe, Peanut and Scrambled all localize 

to lateral and apical domains and are excluded from the basal tip (Harris and 

Peifer, 2004; Mavrakis et al., 2009; Sawyer et al., 2009; Stevenson et al., 2001). 

In contrast, the markers GAP43 and the pleckstrin homology domain of 



Introduction 

-13- 

phospholipase C-δ1 (PLCδ1), which binds with high affinity to 

phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are evenly distributed 

throughout the plasma membrane (Gay and Keith, 1992; Mavrakis et al., 2009; 

Rikhy et al., 2015). However, the metaphase furrows are highly dynamic, and 

the reports for protein localization might be incomplete as most of the reports 

are based on fixed specimens. 

Membrane trafficking might be important for the differentiation of cortical 

domains in the metaphase furrow (Figure 3B). The localization and activity of 

Dynamin during the syncytial embryo divisions plays an important role in 

maintaining early embryonic compartmentalization as its inhibition leads to 

an impaired metaphase furrow and perturbed compartmentalization during 

interphase (Rikhy et al., 2015). Further evidence for a role of membrane 

trafficking comes from the observation that the F-BAR protein Syndapin is 

involved in the maintenance and organization of the metaphase furrow, as 

syndapin mutants have short metaphase furrows with mislocalized Peanut, Dia 

and Amphiphysin, leading to a misorganized F-actin network (Sherlekar and 

Rikhy, 2017). 

The lack of metaphase furrows in embryos mutant for dia could be explained 

by the function of this formin in nucleating and elongating F-actin (Yan et al., 

2013). Indeed, several studies show that proper F-actin polymerization is 

required for the elongation of the metaphase furrow (Cao et al., 2008; Webb et 

al., 2009), which is mediated by Dia and its activator RhoGEF2 (Großhans et 

al., 2005; Padash Barmchi et al., 2005). Interestingly, the correct localization of 

RhoGEF2 to the furrow has been found to be mediated by RE-derived vesicles, 

whose transport is dependent on the RE-associated proteins Nuclear fallout 

(Nuf) and Rab11 (Cao et al., 2008), further pointing to the importance of 

membrane trafficking in establishing the metaphase furrow (Figure 3B). 

 Cortical organization during cellularization 

Cellularization during interphase 14 is a special stage in fly embryonic 

development. It mediates the transition from syncytial to cellular development 

and from a maternal to zygotic control of gene expression (reviewed in Blythe 

and Wieschaus, 2015; Liu and Grosshans, 2017). This stage is generally 

referred to as the mid-blastula transition (reviewed in Farrell and O’Farrell, 

2014; Yuan et al., 2016). 
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In contrast to the preceding nuclear cycles, the plasma membrane forms a 

stable furrow between adjacent nuclei at the onset of interphase 14 (termed the 

cellularization furrow). Over the following hour, the furrow slowly ingresses 

to its final length of ∼35 µm, which encloses each of the cortical nuclei into the 

resulting individual cells, thereby giving rise to a polarized and single-layered 

columnar epithelium surrounding the yolk (Foe et al., 1993) (Figure 2). 

During initial cellularization, two types of furrows are observed, newly 

emerging furrows between corresponding daughter nuclei of mitosis 13 and 

‘old’ furrows. The old furrows are derived from metaphase furrows that 

retract to ∼3 µm in length (He et al., 2016) before they transform into a 

cellularization furrow and then ingress in synchrony with the ‘new’ furrows. 

For correct positioning of the new furrows, a flow of Myosin II towards the 

new furrow is required during the first minutes of cellularization, which is 

mediated by the zygotic gene dunk in an unknown manner (He et al., 2016). 

Following Dunk-dependent flow, Myosin II is recruited by Slam, which then 

drives further ingression of the cellularization furrow independently of Dunk 

(He et al., 2016). As no pre-patterning is present at these sites, de novo 

polarization of the cortex and the emergence of cortical domains occurs at the 

new furrows, and a segregation of cortical markers can be observed at the 

onset of cellularization. Importantly, the difference between old and new 

furrows vanishes as soon as ingression starts (Acharya et al., 2014). 

The cellularization furrow is distinct from the metaphase furrow in several 

aspects. The metaphase furrow is linked to the mitosis, whereas the 

cellularization furrow forms in interphase (Foe et al., 1993). Beside a clear 

difference in the kinetics of elongation and retraction of the furrows, a striking 

difference is the emergence of a subapical domain, which is introduced as a 

region between apical and lateral domains. 

Similar to the cortical differentiation in syncytial blastoderm embryos into 

caps and intercaps, the centrosomes also trigger the cortical polarization 

during cellularization (Acharya et al., 2014). Indeed, lonesome centrosomes 

are sufficient to induce and organize cellularization furrows, as observed by 

the segregation of the lateral and basal cortical markers, Dlg and Slam. 

Accordingly, centrosome ablation inhibits marker segregation, and the basal 

marker Slam remains distributed along the entire membrane (Acharya et al., 

2014), suggesting that centrosomes provide the initial information for cortical 
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differentiation and the restriction of cortical markers to their respective 

domain (Figure 4). 

In the following sections, we will discuss the signaling pathways that 

contribute to the establishment of the cortical domains that emerge during 

cellularization in more detail. However, we will not discuss the apical domain 

as the function of this domain during cellularization has not been studied in 

detail and no specific marker proteins have been reported yet. 

 Establishment of the basal domain 

The basal domain forms a specific morphological structure. The furrow canal 

leads the ingressing furrow and will broaden during the second half of 

cellularization before it finally encloses the adjacent cells (Foe et al., 1993) 

(Figure 4). In this way, the basal domain of the cellularization furrow is 

different from the basal tip of the metaphase furrow and also distinct from the 

generic basal domain of epithelial cells that arises later. 

 

Figure 4 Cortical domains during cellular blastoderm/cellularization.  

Schematic illustration of a furrow during early cellularization with apical (dark blue), 

subapical (red), lateral (light blue) and basal (green, furrow canal) domains depicted. 

Centrosomes are apical to the nuclei and constitute the anchor for the microtubule basket as 

depicted. Cellularization results in an epithelium with apical, lateral and basal domains, 

which is later connected to the basal lamina (gray) and contains adherens junctions (red). The 

genetic pathways for formation of the basal domain and separation from the lateral domain, 

and those involved in the formation of the subapical domain are shown on the left and right, 

respectively. 



Introduction 

-16- 

The basal domain is specified by two redundant signaling pathways (Figure 

4). The first pathway is triggered by a complex between Slam and its mRNA, 

which localizes to the basal domain throughout cellularization (Acharya et al., 

2014; Wenzl et al., 2010; Yan et al., 2017). The restriction of Slam to the 

prospective basal domain depends on recycling endosomes (RE) and the 

arfophilin Nuf, which is necessary for cycling of Rab11 (Riggs et al., 2003). The 

requirement for Nuf and/or REs for the exclusion from Slam from the apical 

and lateral domains is demonstrated by what is seen in nuf mutants, which 

have impaired and disorganized REs, and in which Slam is uniformly 

distributed over the plasma membrane (Acharya et al., 2014). In hypomorphic 

nuf situations, when a furrow forms, Slam is detected at the lateral and basal 

domain instead of being restricted to the basal domain, indicating that domain 

segregation is impaired (Acharya et al., 2014). Slam activates Rho signaling by 

recruiting RhoGEF2 to the prospective basal domain through a physical 

interaction that involves the PDZ domain of RhoGEF2 and an unconventional 

PDZ-binding motif within the C-terminal part of Slam (Wenzl et al., 2010) 

(Figure 4). Downstream of Rho1, actin polymerization is mediated by Dia and 

actomyosin contractility induced by Myosin II (Afshar et al., 2000; Großhans 

et al., 2005; Padash Barmchi et al., 2005; Wenzl et al., 2010), resulting in furrow 

invagination. Furthermore, other polarity markers such as Patj become basally 

restricted in a manner that depends on their direct or indirect interaction with 

Slam (Wenzl et al., 2010). 

In parallel, a second signaling pathway is established by Nullo, which 

accumulates in the basal domain, depending on N-terminal myristoylation 

and an N-terminal cluster of positively charged amino acids (Hunter and 

Wieschaus, 2000; Postner and Wieschaus, 1994) (Figure 4). Depending on 

Nullo, Serendipity-α (Sry-α) becomes restricted to the prospective basal 

domain (Postner and Wieschaus, 1994; Schweisguth et al., 1990). Nullo and 

Sry-α control F-actin, possibly also through the formin Dia, as RhoGEF2 nullo 

and slam nullo double mutants exhibit a stronger phenotype than single 

mutants, with a uniform distribution of Dia and loss of the basal domain 

(Acharya et al., 2014; Großhans et al., 2005). Importantly, both nullo and slam 

are zygotic genes that are expressed early in cellularization (Lecuit et al., 2002; 

Postner and Wieschaus, 1994), which distinguishes this stage from the 

preceding nuclear cycles. Therefore, their expression may confer the timing 

information that controls the new cortical organization in cellularization. 
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Both, the Slam and Nullo pathways contribute to specification of the basal 

domain, as loss of a single pathway, for instance in the single mutants of nullo 

or RhoGEF2, leads to a dispersed pattern of F-actin with regions that have a 

proper cortical organization and regions without any specified cortical 

domains (Acharya et al., 2014; Wenzl et al., 2010). This, in turn, leads to a 

disrupted furrow array and, ultimately, to the formation of multinuclear cells 

(Hunter and Wieschaus, 2000; Wenzl et al., 2010). Therefore, the specification 

of the basal domain appears to be essential for furrow formation and 

ingression of the plasma membrane. 

The basal domain also has a peculiar morphological structure. During the 

onset of cellularization, dynamic transient tubular extensions in the 

micrometer range arise from the basal membrane spanning into the cytoplasm 

as observed by staining with the N-BAR protein Amphiphysin or other 

markers of the basal domain such as Slam (Sokac and Wieschaus, 2008a; Yan 

et al., 2013). With progression of cellularization, these tubular extensions 

disappear. In embryos, in which F-actin is reduced, such as owing to 

cytochalasin treatment or in dia or nullo mutants, the tubular extensions persist 

throughout cellularization (Bogdan et al., 2013; Sokac and Wieschaus, 2008a; 

Yan et al., 2013). Three not mutually exclusive models have been proposed 

with regard to the dynamics of the tubular extensions. First, that tubules act as 

membrane reservoirs that regulate furrow ingression rates, given that absence 

of tubules in amphiphysin mutants leads to increased ingression rates (Su et al., 

2013). Second, according to the so-called endocytosis model, that tubular 

extensions give rise to endocytic vesicles and so promote the turnover of the 

basal domain, thereby restraining the endocytosis of proteins, such as Peanut, 

Patj and Myosin II (Sokac and Wieschaus, 2008a). Third, the cortex model 

suggests that the tubular extensions reflect a weak cortex that allows the 

infolding of the plasma membrane (Yan et al., 2013). With the formation of the 

basal domain and progression of cellularization, cortical F-actin builds up and 

suppresses tubulation in the region of the basal domain (Simpson and 

Wieschaus, 1990; Sokac and Wieschaus, 2008b). In support of the cortex model, 

the ultrastructure of the furrow canal in dia mutants shows extensive blebbing 

and folding, in contrast to the wild-type membrane, which is straight and flat 

(Großhans et al., 2005). These reports indicate that F-actin produced and 

organized by Dia is needed to suppress tubulation. Further studies are needed 

to distinguish between the models, which are not mutually exclusive, in order 
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to delineate the function of the tubular extensions and to reveal mechanistic 

insights. 

The ability to segregate the basal markers from the lateral factors appears to 

be linked to the micrometer-sized tubular extensions within the basal domain. 

In all situations, in which these tubular extensions persist throughout 

cellularization, lateral markers were found to invade the basal domain, while 

the basal domain remained intact, as judged by the restriction of basal markers 

(Sokac and Wieschaus, 2008a; Yan et al., 2013). Physical barriers within the 

membrane such as cell–cell junctions are unlikely to contribute to the exclusion 

of lateral markers, as embryos with impaired E-Cadherin-based junctions are 

still able to exclude lateral markers (Sokac and Wieschaus, 2008b). 

Alternatively, the interaction of the actin cortex with the plasma membrane 

might mediate the segregation of the basal and lateral domains. Indeed, the F-

BAR protein Cip4, which links the plasma membrane to the actin cytoskeleton 

(Fricke et al., 2009), antagonizes basal-lateral domain segregation, as 

overexpression of Cip4 resulted in the spreading of lateral markers into the 

basal domain, similar to what is seen for dia mutants (Yan et al., 2013) (Figure 

4). Mechanistically, Cip4 has been shown to directly bind to Dia and to inhibit 

Dia-mediated F-actin nucleation and elongation in vitro (Yan et al., 2013; 

reviewed in Bogdan et al., 2013). However, it remains unclear how the 

inhibition of Dia by Cip4 would lead to an exclusion of lateral markers. Dia 

may promote a stable actin cortex with corresponding lower turnover of the 

plasma membrane, whereas Cip4 may counteract this. Owing to the large 

amounts of Dia and F-actin at the basal domain, this model would predict a 

softer cortex and higher rates of membrane turnover in the lateral domain than 

in the basal domain, as well as a uniformly soft cortex with high membrane 

turnover in dia or nullo mutants. However, further research is needed to test 

whether this hypothesis is indeed true. 

Taken together, these findings suggest that two pathways triggered by the 

zygotically expressed proteins Slam and Nullo specify the basal domain and 

also help to establish a stable actomyosin network that is needed to stabilize 

the basal furrow and to execute the contractions that eventually close the 

adjacent cells. 
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 The lateral domain 

The lateral domain, which is located above the basal domain already contains 

lateral marker proteins (e.g. Scribbled), in metaphase furrows during syncytial 

nuclear cycles as discussed above. With the formation of the cellularization 

furrow at the position between the daughter nuclei of the last nuclear division, 

a new lateral domain will arise (Schmidt et al., 2018). Similar to their 

localization in the metaphase furrow, Dlg, Scribbled and Lgl mark the region 

apical to the basal domain (Bilder et al., 2000). However, they do not function 

in furrow ingression or the formation of the subapical domain during early 

cellularization, as the localization of the subapical marker Canoe is not affected 

in scribbled mutants (Schmidt et al., 2018). In fact, the function for the Dlg–

Scribbled–Lgl complex in cortical organization emerges later (Bilder and 

Perrimon, 2000; Bilder et al., 2000). Par-1 is uniformly distributed at the cortex 

during early cellularization, but by mid-to-late cellularization, Par-1 decreases 

apically and basally and thus becomes restricted to the lateral domain 

(McKinley and Harris, 2012). The role of Par-1 for cortical domains and 

cellularization is complex. Par-1-depleted embryos lack some of the 

cellularization furrows, indicating an early function in furrow ingression. Par-

1 also functions in clearing Bazooka from the lateral domain as Bazooka 

spreads into the lateral furrow in Par-1-depleted embryos (McKinley and 

Harris, 2012). As Par-1 is excluded from the subapical domain only late in 

cellularization, it is likely that clearing of Bazooka (Baz) from the lateral 

domain by Par-1 is a gradual process that functions in addition to Canoe 

(Cno)-dependent subapical recruitment of Bazooka. 

Taken together, cortical domains appear to be formed largely independently 

of each other in early cellularization. During the course of cellularization, 

however, they mutually interact, which then leads to lateral exclusion of 

Bazooka from the lateral domain, for example. 

 Emergence of the subapical domain 

The lateral, basal and apical domains all have predecessors in the cap and 

intercap regions, or the metaphase furrow during the syncytial blastoderm. 

However, the subapical domain is special in that it emerges between the apical 

and lateral domains as a new feature during cellularization. 

The subapical domain is specified by a signaling pathway that involves the 

small GTPase Rap1 and the actin-binding protein Canoe (Afadin in mammals) 
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(Figure 4). It controls the subapical localization of the conserved markers 

Bazooka (Par-3 in mammals), Par-6 and atypical protein kinase C (aPKC), as 

well as accumulation of the complex between E-Cadherin, Armadillo (Arm) 

and α-Catenin during the course of cellularization through an unknown 

mechanism (Choi et al., 2013; reviewed in Harris, 2012) (Figure 4). Whereas 

Canoe is restricted to the subapical domain from the onset of cellularization 

(Schmidt et al., 2018), Bazooka and E-Cadherin only gradually accumulate 

there (Harris and Peifer, 2004). A prominent subapical localization of Bazooka 

and the E-Cadherin complex is only apparent by the end of cellularization. The 

subapical accumulation of Bazooka depends on cytoskeletal cues, such as 

binding to an actin scaffold and Dynein-mediated transport in basal to apical 

direction (Harris and Peifer, 2005). 

Although it is known that Canoe is needed for proper subapical localization 

of Bazooka (Choi et al., 2013), it is still unclear how Bazooka is recruited by 

Canoe (Figure 4). Canoe might recruit Bazooka to the subapical domain by 

direct binding, as supported by a protein recruitment assay performed in S2 

cells (Choi et al., 2013). Alternatively, Canoe might act indirectly and/or 

transiently with Bazooka, as they do not show obligatory colocalization during 

cellularization (Choi et al., 2013). For instance, Canoe could control the 

microtubule-dependent apical transport of Bazooka through an unknown 

mechanism (McKinley and Harris, 2012). Another model has been proposed 

based on the recruitment of Bazooka by membrane lipids, as Bazooka contains 

a PH domain in its C-terminus (Krahn et al., 2010a,b). However, as no specific 

subapical enrichment of phosphatidylinositols (PIPs) has been detected 

(Reversi et al., 2014), it is unlikely that these phospholipids are involved in the 

subapical restriction of Bazooka during cellularization. 

The source of the information that initially positions the subapical domain 

between the apical and lateral domains is unknown. The GTPase Rap1 is 

known to act upstream of subapical protein Canoe as restricted Canoe 

localization during cellularization is lost in Rap1 mutant embryos (Sawyer et 

al., 2009). Rap1 requires an initial signal for positioning Canoe to the newly 

emerging subapical domain, as it is uniformly distributed over the entire 

membrane (Sawyer et al., 2009). Rap1 activation is most likely spatially 

restricted, which subsequently leads to the subapical restriction of Canoe 

(Figure 4). Indeed, the expression of a constitutively active form of Rap1 leads 
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to mislocalization of Canoe, as well as of Bazooka and Arm, to the lateral 

domain (Bonello et al., 2018). 

The dynamics and function of the upstream regulators of Rap1 may provide 

clues to the origin of the positional information, and multiple GEFs and 

GTPase-activating proteins have been described for Rap1. A promising 

candidate is the GEF Dizzy (Dzy), which has been shown to be required for 

Rap1 activity in the assembly of apical adherens junction in the mesoderm 

anlage (Spahn et al., 2012). During late cellularization, Dizzy is involved in the 

localization of Canoe to tricellular junctions (Bonello et al., 2018), but not in its 

subapical restriction (Schmidt et al., 2018). This latter function appears to be 

fulfilled by the ELMO–Sponge complex, which is an unconventional GEF, as 

subapical restriction of Canoe is perturbed in ELMO and sponge mutant 

embryos (Schmidt et al., 2018). It is assumed that ELMO (Ced-12) provides the 

PH domain for membrane association and Sponge (the homolog of 

mammalian Dock180) entails the enzymatic activity and confers specificity for 

Rap1 and also Rac (Biersmith et al., 2011; Komander et al., 2008; Yajnik et al., 

2003). The ELMO–Sponge complex is enriched at the prospective subapical 

domain during the onset of cellularization (Schmidt et al., 2018), so the 

complex could provide local activation of Rap1 and, through this, spatial 

information for the introduction of the subapical domain (Figure 4). 

Although a signaling pathway involving ELMO–Sponge has been defined to 

act through Rap1 to restrict Canoe, and consequently Bazooka and E-

Cadherin, to the subapical domain, the mechanism that changes the 

distribution of the ELMO–Sponge complex during onset of cellularization is 

much less clear. Strikingly, the localization of ELMO–Sponge changes from a 

disc-like pattern at the caps in the syncytial blastoderm to a ring-like pattern 

during onset of cellularization. The molecular basis for this is unknown but is 

likely to be linked to the structure and dynamics of actin caps and to the mid-

blastula transition and possibly newly transcribed zygotic factors (Schmidt et 

al., 2018). 

An important open question is the role of the cytoskeleton. The subapical 

restriction of Bazooka and Canoe requires F-actin assembly, as drug-induced 

F-actin depolymerization results in the dispersion of Canoe and Bazooka (Choi 

et al., 2013; Harris and Peifer, 2005). However, a direct function of F-actin in 

the positioning of subapical cues is unlikely, as F-actin is not visibly enriched 
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at the subapical domain during early cellularization, but instead accumulates 

only later in development at adherens junctions (Choi et al., 2013). 

 Transition to epithelial organization during gastrulation 

The make-up of the cortex in generic epithelia includes the apical, lateral and 

basal domains. The region between the apical and lateral domain is further 

differentiated into the extreme apical region or marginal zone as marked by 

Crumbs and the region containing the adherens junctions (Harris and Peifer, 

2004; reviewed in Tepass, 2012). However, this organization is partially 

independent of the cortical organization that is set up during cellularization. 

Mutants that exhibit an impaired subapical domain during cellularization 

such as canoe or Dynein heavy chain 64C, recover during gastrulation with a 

clearly subapically restricted localization of Bazooka and E-Cadherin (Choi et 

al., 2013; Harris and Peifer, 2005). It appears that upon transition from 

cellularization to gastrulation, the conserved components for epithelial and 

cortical organization, such as the Par proteins, take over control from the 

cellularization-specific mechanism based on Rap1 and Canoe. 

Such a transition is also obvious in the dynamics of the subapical marker 

proteins. Bazooka and E-cadherin localize to a more apical position where they 

form the zonula adherens (reviewed in Harris, 2012), and the localization of 

Bazooka becomes independent of Canoe (Choi et al., 2013). During 

gastrulation, Bazooka localization is mainly governed by the mutual exclusion 

of factors between the different cortical domains, in that, Bazooka is excluded 

from the lateral domain by the presence of Par-1 (McKinley and Harris, 2012), 

and from the apical domain by Par-6 and Crumbs (Bilder and Perrimon, 2000; 

Hutterer et al., 2004; Krahn et al., 2010a, b; Morais-de-Sá et al., 2010). Similarly, 

the lateral proteins Dlg, Scribbled and Lgl are important for the lateral 

exclusion of subapical and apical proteins (Bilder and Perrimon, 2000; Bilder 

et al., 2003; Hutterer et al., 2004; Tanentzapf and Tepass, 2003). We will not 

cover this aspect here in more detail, as several excellent reviews have recently 

been published addressing epithelial organization (e.g. (Coopman and Djiane, 

2016; Harris, 2012; Laprise and Tepass, 2011; Nance, 2014). 

 Aim of this work 

The formation, dynamics and maintenance of cortical domains are crucial for 

morphogenesis and functionality of differentiated cells and tissues. Cortical 

domains are linked to cell polarity and remodeling of adherens junctions 
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during mesenchymal-epithelial transition and vice versa. The understanding 

how cortical domains form can help to understand these processes better. 

However, the formation of cortical domains in an epithelium can only be 

analyzed in a forming epithelium, which makes the process of cellularization 

during Drosophila development to a suitable model. Cellularization is 

especially suited to investigate the formation of epithelial domains because it 

allows to track the segregation of marker proteins with stereotypic timing.  

Although, the pathway for the formation of adherens junctions is well 

understood, the formation of the preceding subapical domain was not well 

investigated yet. In the first part of my thesis I defined the timing of subapical 

Canoe accumulation and segregation with the lateral marker Scribble and the 

basal marker Slam. Furthermore, I was able to show, that the unconventional 

GEF complex formed by ELMO-Sponge is acting upstream of Rap1 and 

responsible for its local activation during onset of cellularization leading to the 

formation of the subapical domain.  

  



Results 

-24- 

 Results 

Large parts of this results section have been published by Development in 

Schmidt et al. (2018) “ELMO and Sponge specify subapical restriction of Canoe 

and formation of the subapical domain in early Drosophila embryos” including 

Figures 5-13 and 15-21, 25 and 30. 

 The organization of cortical domains changes with onset of 

cellularization 

After the fertilization of the Drosophila egg, 9 nuclear divisions take place in 

the interior of the preblastoderm embryo (reviewed in Foe et al., 1993). During 

preblastoderm stage, the actin cortex, underlying the plasma membrane, was 

unstructured and only one cortical domain could be found (Figure 5B) 

(reviewed in Schmidt and Grosshans, 2018). With nuclear cycle 10 in syncytial 

blastoderm, when the nuclei reach the periphery of the embryo, cortical 

domains, which are dependent on the cell cycle, could be detected (Figure 5). 

During interphase every nucleus was covered by an actin cap formed by 

membrane infoldings called microvilli. The caps showed enriched F-actin 

staining (Figure 5A, C) whereas intercap regions were stained by markers such 

as Slam (Figure 5A, C). During metaphase around 10 µm long furrows reach 

into the interior of the syncytial blastoderm embryo to separate the 

neighboring spindles from each other. The so-called metaphase furrows were 

stained by Canoe that localized to apical and lateral regions whereas the lateral 

membrane was stained by Dlg. Slam stained the basal domain of the furrows 

(Figure 5A, D). With midblastula transition, the onset of zygotic gene 

expression and start of cellularization a fourth cortical domain is introduced 

between apical and lateral domain in interphase 14. During cellularization 

Canoe stained the newly introduced subapical domain, whereas it was 

restricted from apical and lateral domains (Figure 5A, E). Lateral and basal 

domains were stained by Dlg and Slam. This domain organization with four 

domains was stable throughout cellularization (Figure 5A, F). After 

cellularization, the subapical localized Canoe leads the way for setup of 

adherens junctions to build an epithelium with apical, lateral and basal cortical 

domains and the zonula adherens between lateral and apical domain 

(reviewed in Harris, 2012). 
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Canoe marks the subapical domain with onset of cellularization 

With the staining of Canoe and Slam in fixed embryos, I could show, that both 

proteins were functional markers for the subapical and basal domains. To 

further analyze the formation of the subapical domain and the separation from 

the basal domain in living embryos during cellularization, I made use of YFP- 

and mCherry-tagged versions of both proteins. I used embryos, expressing 

CanoeYFP and CherrySlam and imaged them during the transition from 

metaphase 13 and interphase 14, during which cellularization takes place. To 

show the introduction of the new subapical domain I imaged z-stacks from the 

top view with a step size of 0.5 µm and in intervals of one minute (Figure 6). 

Timepoint zero was defined by the emergence of the new furrow between a 

pair of daughter nuclei. Figure 6 shows merged images of an embryo 

expressing CanoeYFP and CherrySlam. During the end of metaphase 13 

(timepoint - 1) CanoeYFP could still be detected along the whole lateral 

 

Figure 5 Dynamics of cortical domains in the Drosophila blastoderm embryo.  

(A) Scheme (sagittal view) illustrating cortical domains before and after midblastula transition 

(MBT). Cap, apicolateral and subapical domains are marked in red, intercap and basal 

domain, in blue and lateral domain, in green. (B–F) Images of embryos stained for domain 

marker before and after MBT. (B) Preblastoderm embryo stained for F-actin (red) and DNA 

(blue) in sagittal and planar view (C) Interphase 13, stained for caps (F-actin, red) and intercap 

regions (Slam, blue) in sagittal and planar view. (D) Mitosis 12, stained for the apical-lateral 

(Canoe, red), lateral (Dlg, green) and basal domains (Slam, blue). (E, F) Early (E) and late (F) 

cellularization (interphase 14), sagittal view, stained for subapical (Canoe, red), lateral (Dlg, 

green) and basal domains (Slam, blue). Dashed lines represent nuclei. Scale bars 10 µm. 
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domain of the metaphase furrow, which was still retracting at beginning of 

interphase 14 to a length of around 5 µm. With beginning of interphase, the 

new furrow was immediately marked with CanoeYFP (0 min) whereas the 

basal marker CherrySlam was not yet visible at the new furrow (Figure 6).  

To get a better insight into the separation of subapical and basal domain, I took 

fewer timepoints and significant z-positions from Figure 6 and separated the 

channels from each other (Figure 7B). A scheme of the sagittal view during 

metaphase 13 and the transition to cellularization and the localization of 

CanoeYFP and CherrySlam is shown in Figure 7A. Figure 7B shows at 0 min, 

that CanoeYFP marked the new furrow at an apical-basal position of 1.5-

3.0 µm (upper panel), whereas CherrySlam still marked the basal part of the 

retracting metaphase furrow at an apical-basal position of 4.0-4.5 µm but the 

 

Figure 6 CanoeYFP and CherrySlam dynamics during mitosis 13 and interphase 14. 

Images from time lapse recording of an embryo expressing CanoeYFP (green) and CherrySlam 

(red). Time from left to right, apical basal position from up to down. Scale bar 10 µm. 
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new furrow was not marked yet (middle panel). With CanoeYFP signal getting 

sharper in the subapical region at around 7 min and an apical-basal position 

of 1.5-3.0 µm, the new furrow further invaginated and CherrySlam got visible 

at the furrow canal of the new furrow at an apical-basal position of around 4.0-

4.5 µm (yellow arrowhead).  

To quantify the separation of CanoeYFP and CherrySlam, I measured the 

fluorescence intensity along the apical-basal axis of three new furrows at 

4 min, when the new furrow was not yet marked by CherrySlam and at 8 min, 

when CherrySlam was clearly visible at the basal furrow canal (Figure 8A, 

arrowheads depict measured furrows). As comparing the total numbers of 

fluorescence intensity was not possible, I normalized the numbers for each 

protein to their peak to get relative values and plotted these values as a graph 

against the position the apical-basal axis (Figure 8B). A weak CherrySlam 

signal that did not show a clear peak was already visible at 4 min (red dashed 

 

Figure 7 Localization of Canoe and Slam at onset of cellularization.  

(A) Scheme for furrow formation and invagination in early cellularization. CanoeYFP (green) 

and CherrySlam (red) mark subapical and basal domains respectively. Axial (apical-basal) 

axis with appropriate scale is indicated on right side. (B) Images from time lapse recordings 

including axial stacks of embryo expressing CanoeYFP (grey/green) and CherrySlam 

(grey/red) during mitosis 13 and early interphase 14. Axial position is indicated on upper left. 

Yellow arrowheads point to position of “new” furrows. Scale bar 10 µm. 
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line) whereas CanoeYFP already showed a clear subapical peak at 4 min 

(green dashed line), which also stayed subapical (green line) although the new 

furrow further invaginated as a clear basal peak of CherrySlam (red line) could 

be detected at 8 min. Both signals were already separated after 8 min even 

though the new furrow was, with a length of around 5.5 µm, still very short. 

With these results I could show that domain separation takes place during the 

first minutes of furrow invagination.  

As the CanoeYFP signal also changed during the first minutes of 

cellularization from a broader distribution to a sharp subapical signal (Figure 

7, Figure 8A), I quantified the signal distribution along a new furrow by 

measuring the fluorescence intensity and plotted it against the relative 

position left and right to the furrow, with zero marking the middle of the new 

furrow (Figure 8C). At 4 min (blue line), the signal indeed showed a broad 

 

Figure 8 Dynamics of Canoe and Slam at onset of cellularization.  

(A) Images from time laps recording of embryos expressing CanoeYFP (green) and 

CherrySlam (red) at two different axial positions indicated on lower left and two timepoints 

during onset of cellularization. Yellow arrowheads point to “new” furrows. (B) Relative 

fluorescence intensity of CanoeYFP (green) and CherrySlam (red) at “new” furrows measured 

along the apical-basal axis at indicated times. (C) Distribution of CnoYFP (relative 

fluorescence) across a “new” furrow measured at indicated timepoints. (D) Width of 

CanoeYFP signal in µm measured at indicated times at three “new” furrows. Error bars 

represent SEM. Scale bar 10 µm. 
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distribution of around 1.2 µm left and right to the middle of the new furrow, 

the signal already got sharper at 9 min (green dashed line) with a clear peak 

in the middle of the new furrow (0 µm) but with some remaining signal left to 

the furrow. At 14 min a very clear and sharp peak at 0 µm could be detected 

(red dotted line). To show the sharpening of the Canoe signal in a more 

quantitative way, I measured the width of the Canoe signal at three new 

furrows and plotted the averages against the time (Figure 8D). The signal 

width decreased from around 2.5 to only 0.5 µm in a time of 10 min and then 

stayed stable. The sharpening of the CanoeYFP signal could be explained with 

the fact, that the new furrow first appears as a broad and shallow groove as 

shown in Figure 6A. When the furrow then further invaginates into the 

embryo, the membranes are pulled together and come closer to each other, so 

that also the subapical Canoe signal gets sharper. 

Scribble marks the elongating lateral domain with onset of cellularization 

After investigating the formation of basal and subapical cortical domains, I 

also analyzed the formation of the lateral domain using the lateral marker 

protein Scribble tagged with a GFP. I imaged embryos expressing ScribbleGFP 

as explained before but with a z-step size of 1 µm. Figure 9 shows z-stacks 

along the apical-basal axis over time in which 0 min is defined by the 

emergence of new furrows in interphase 14. During the end of metaphase 13 

(-1 min) ScribbleGFP marked the lateral domain of the retracting metaphase 

furrows. After onset of cellularization, a broad signal could be detected, 

marking the new furrow (0-2 min). The signal got then stronger at a more 

lateral position with elongation of the furrows (3-11 min). 
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A selection of significant z-positions and timepoints is shown in Figure 10A. 

In the first minute of cellularization shallow grooves were visible, which were 

marked by a broad ScribbleGFP signal at an apical-basal position of 2-3 µm. 

This signal got sharper at 3 min at a position of 3-4 µm but some broad signal 

was still visible, which vanished in the next minutes of cellularization. To 

analyze the dynamics of ScribbleGFP, I quantified the ScribbleGFP signal of 

three new furrows along the apical-basal axis as described before (Figure 10B). 

At 3 min (dashed line) the short furrow showed ScribbleGFP signal from 1-

3 µm, whereas the region of the increased ScribbleGFP signal elongated with 

the furrow to 5 µm at 8 min (solid line). Comparing the behavior of 

ScribbleGFP, CherrySlam and CanoeYFP one can conclude, that ScribbleGFP 

and CanoeYFP marked the new emerging furrow in contrast to CherrySlam 

which emerged when the new furrow elongated and formed a furrow canal. 

With elongation of the furrows CanoeYFP stayed at its subapical position, 

whereas ScribbleGFP also elongated with the furrow and marked the lateral 

domain. 

 

Figure 9 ScribbleGFP dynamics during mitosis 13 and interphase 14.  

Images from a time lapse recording of an embryo expressing ScribbleGFP. Time from left to 

right, apical basal position from up to down. Scale bar 10 µm. 
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Subapical Canoe localization is not dependent on basal and lateral marker 

proteins 

To test if lateral or basal components of cortical domains affect the subapical 

localization and lateral restriction of Canoe, I analyzed fixed embryos mutant 

for scribble and slam by staining against Canoe and Dlg (Figure 11). Like in wild 

type embryos (Figure 11A), Canoe showed subapical enrichment and lateral 

exclusion in scribble mutants, although the invaginating furrows appeared 

weakened and Dlg spread into the apical domain (Figure 11B). Embryos 

mutant for slam had no or only short cellularization furrows as shown in 

Figure 11C. The maternal and zygotic mutation of slam was confirmed by 

antibody staining against Slam protein (not shown). However, also in these 

embryos Canoe was excluded from the lateral domain and showed subapical 

enrichment, although not as strong as in wild type embryos. Taken together, 

subapical Canoe localization was not dependent on basal and lateral markers 

slam and scribble. 

 

 

Figure 10 Dynamics of ScribbleGFP during early cellularization.  

(A) Scheme for furrow formation and invagination at early cellularization. Scribble (blue) 

marks lateral domain. Axial (apical-basal) axis with approximate scale is indicated on the right 

side. (B) Images of time lapse recordings of an embryo expressing ScribbleGFP during early 

cellularization. Axial position is indicated. (C) Relative fluorescence intensity of ScribbleGFP 

at “new” furrows measured along the apical-basal axis at indicated times. Error bars represent 

SEM. Scale bar 10 µm. 
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 The unconventional GEF ELMO-Sponge complex controls 

subapical Canoe localization 

The localization of the subapical proteins Canoe and Bazooka and the 

mechanism for positioning adherens junctions at onset of gastrulation was 

intensively studied in the past years. Although it is known, that the GTPase 

Rap1 is responsible for the subapical restriction of Canoe (Choi et al., 2013; 

Sawyer et al., 2009), Rap1 does not show a specific subapical localization or 

enrichment but is found all over the membrane during late cellularization 

(Sawyer et al., 2009).  

Rap1 controls Canoe localization but is not activated by Dizzy 

As the localization of Rap1 was only tested during mid- and late 

cellularization, I imaged embryos expressing GFP-Rap1 controlled by its 

endogenous promoter during different stages of cellularization (Figure 12). 

During early (5 min), mid- (35 min) and late (50 min) cellularization, GFP-

Rap1 could be detected along the whole cellularization furrows and even 

along the apical membrane and no enrichment in any cortical domain was 

visible. Thus, I could confirm, that Rap1 shows no specific localization or 

enrichment also in early cellularization when the new subapical domain was 

formed. 

 

Figure 11 Genetic control of subapical Canoe by lateral and basal factors.  

Images of fixed embryos in early cellularization stained for Canoe (grey/green), Dlg (grey/red) 

and DNA (blue). Merged images are shown in right panel. Inserts show zoom in of one 

furrow. Genotypes are (A) wild type, embryos from germline clones for (B) scribble and (C) 

slam. Scale bar 10 µm, insets 2 µm. 
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To confirm, that Rap1 is also needed for Canoe localization during early 

cellularization, I stained fixed wild type embryos and Rap1 germ line clones 

against Canoe and Dlg, which was used to mark the lateral domain (Figure 

13A, B). In early cellularization, Canoe localized to the subapical region and 

was restricted from the lateral membrane in wild type embryos (Figure 13A), 

whereas Canoe did not show any membrane localization at all in Rap1 mutants 

(Figure 13B) according to findings before (Sawyer et al., 2009).  

As Rap1 showed no subapical enrichment it was likely that it is activated 

locally by a yet unknown GEF. One possible candidate for local Rap1 

 

Figure 12 Dynamics of GFP-Rap1 during cellularization.  

Living embryos expressing GFP-Rap1 were imaged by conducting z-stacks from the top with 

a step size of 0.4 µm in an interval of 5 min. Shown are orthogonal views during early (5 min, 

left), mid (35 min, middle) and late (50 min, right) cellularization. The nuclei are indicated by 

dashed lines. Scale bar 10 µm. 

 

Figure 13 Genetic control of subapical Canoe by potential upstream factors.  

Images of fixed embryos in early cellularization stained for Canoe (grey/green), Dlg (grey/red) 

and DNA (blue). Merged images are shown in right panel, insets show zoom in of one furrow. 

Genotypes (A) wild type, embryos from germline clones for (B) Rap1 and (C) dzy. Scale bars 

10 µm, insets 2 µm. 
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activation was the GEF Dizzy, which also acts on Rap1 during gastrulation 

(Spahn et al., 2012). To analyze if Dizzy plays a role for Canoe activation, I 

stained fixed embryos maternally mutant for dizzy against Canoe and Dlg 

(Figure 13C). The restriction of Canoe from the lateral and apical domain and 

its subapical localization was not affected in dizzy mutant embryos confirming 

that Dizzy is not responsible for local activation of Rap1. 

The unconventional GEF ELMO-Sponge affects early embryogenesis and 

localization of Canoe during cellularization 

Several GEFs for the activation of Rap1 are known to play diverse roles during 

the development of various organs in Drosophila morphogenesis. The 

described GEFs and one GAP are depicted in Figure 14. The well characterized 

GEF Dizzy does not only play a role in ventral furrow formation, as its 

depletion led to delayed formation of adherens junctions and therefore 

defective furrow formation, its downregulation is also needed for normal 

mesoderm formation (Spahn et al., 2012). Although I could show, that Dizzy 

did not act on Canoe localization during early cellularization, it is needed for 

the localization of Canoe to tricellular junctions during the end of 

cellularization and by this also explains the delayed formation of adherens 

junctions in dzy mutants (Bonello et al., 2018). Next to Dizzy, the Rap1 GEF 

C3G is expressed in developing muscles in Drosophila embryos and has a 

function in the development of body wall muscles in larvae, acting by Rap1 on 

integrins (Shirinian et al., 2010). Furthermore, the Rap1GEF EPAC is 

responsible for cAMP regulated fluid secretion in different cell types in 

Malpighian tubes (Efetova et al., 2013). As shown in Figure 14A, these proteins 

share a C-terminal GEF domain and Ras-association domains/Ras exchange 

motifs, which are needed for the activation of Rap1 (Efetova et al., 2013; Lee et 

al., 2002; Shirinian et al., 2010). Furthermore, Dizzy and EPAC share N-

terminal cyclic nucleotide binding domains, meaning that they can be 

activated by cAMP, for example.  

Figure 14B depicts the domain structure of an unconventional Rap1 GEF, 

which consists of the two proteins ELMO and Sponge that activate Rap1 in a 

complex. In this complex, ELMO provides the membrane-binding PH-domain 

at its C-terminus. The function of the ELMO domain is not known. With its N-

terminal SH3 domain, Sponge binds to the proline-rich C-terminus of ELMO. 

The GEF activity of Sponge is mediated by its DHR domains (Yajnik et al., 

2003). The ELMO-Sponge complex is known to play a role in axonal patterning 
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and heart development during Drosophila embryogenesis by acting on the 

actin cytoskeleton via Rap1 (Biersmith et al., 2011, 2015). Furthermore, it was 

shown, that maternal mutations of sponge and ELMO disrupt the formation of 

actin caps in syncytial blastoderm embryos and that these mutations are lethal 

during cellularization (Postner et al., 1992; Schmidt et al., 2018; Winkler et al., 

2015). The domain structure of the mammalian homologue of the only known 

Rap1 GAP in Drosophila is depicted in Figure 14C. It was shown that RapGAP1 

regulates Rap1 during posterior dorsal fold formation in embryogenesis, 

leading to uncoupling of actin from the junctions and by this deeper 

invagination than the anterior fold where RapGAP1 is not expressed (Wang et 

al., 2013). 

For none of the conventional GEFs a function during early cellularization was 

described and I could also show, that Dizzy does not function on Canoe 

localization during early cellularization. However, as maternal mutations of 

both ELMO and sponge lead to phenotypes during syncytial blastoderm and 

cellularization, I further analyzed the functions of these proteins. 

 

Figure 14 GEFs and GAP for Rap1.  

(A) Scheme of domain structure of conventional GEFs Dizzy (Spahn et al., 2012), C3G 

(Shirinian et al., 2010) and Epac2 (Efetova et al., 2013) known to activate Rap1. (B) Domain 

structure of the unconventional Rap1 and Rac GEF ELMO-Sponge (Biersmith et al., 2011; 

Yajnik et al., 2003). The interaction domain is marked with a line. (C) Murine domain structure 

of the sole known Rap1 GAP in Drosophila (Wang et al., 2013). Domains are as follows: cNMP: 

cyclic nucleotide monophosphate binding domain; REM: Ras exchange motif; PDZ: PDZ-

domain; RA: Ras-associating domain; GEF: Guanine nucleotide exchange factor domain; 

RasGEF: Ras guanine nucleotide exchange factor domain; CNB: cyclic (AMP or GMP) 

nucleotide binding domain; DEP: Dishevelled-Egl10-pleckstrin domain; ELMO: ELMO 

domain; PH: Pleckstrin homology domain; SH3: SRC homology 3 domain; DHR: Dock 

homology region; PxxP: Proline rich region; G: GoLoco interaction motif; GAP: GTPase-

activating protein domain. Schemes show N-termini to C-termini from left to right. 
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To clarify if the ELMO-Sponge complex may be responsible for the local 

activation of Rap1 during cellularization, I analyzed ELMO367 germline clones, 

in the following named as ELMO mutants. The ELMO367 allele was generated 

in an EMS screen (Luschnig et al., 2004) and mapped and characterized by Dr. 

Zhiyi Lv. Embryos mutant for ELMO, did not form actin caps during 

blastoderm interphases but had an unstructured actin cortex (Figure 15A, 

images made by Dr. Zhiyi Lv), furthermore cellularization did only occur at 

the terminal poles of the embryos as shown by staining of fixed ELMO mutant 

embryos against Dlg, Slam and DNA (Figure 15B, images made by Dr. Zhiyi 

Lv). 

As ELMO mutants did not form the two cortical domains with cap and 

intercap during syncytial blastoderm stage, I further analyzed if also the 

formation of the subapical domain was defective during onset of 

cellularization. For this I made use of ELMO and sponge mutant embryos to 

stain them against Canoe and Dlg (Figure 16). Sponge mutants resembled the 

phenotype with missing actin caps during syncytial blastoderm stage and only 

terminal cellularization (Postner et al., 1992) as described for ELMO mutants. 

In ELMO mutants Canoe localization was indeed perturbed as Canoe spread 

along the whole lateral and partially basal domains (Figure 16B). This 

phenotype was also visible in sponge mutants, even in late cellularization 

(Figure 16C). To quantify the effects of ELMO on Canoe localization, I 

measured the fluorescence intensity of the Canoe signal along the apical-

lateral membrane in in total nine cellularization furrows of three wild type and 

ELMO embryos and normalized the data to its peak to be able to compare 

intensities (Figure 16D). All measured furrows were axially aligned to their 

peaks which was defined as 0 µm. Each measured furrow is represented in the 

heatmaps (left panel) for wild type and ELMO mutants. In wildtype the 

 

Figure 15 Blastoderm phenotype of embryos from ELMO germline clones.  

(A) Images of wild type and ELMO embryos expressing the F-actin marker UtrGFP. (B) Image 

of fixed ELMO embryo stained for Dlg (green), Slam (red) and DNA (blue). Cellularizing 

terminus marked by yellow rectangle and magnified in inset. Scale bar 10 µm in A and inset 

of B, 50 µm in B. Images were made by Dr. Zhiyi Lv 
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highest intensities were present at the subapical domain, around 0 µm along 

the apical-basal axis, whereas there was only weak signal detectable along the 

lateral domain. In ELMO mutants, a peak was still detectable at the subapical 

region, however also high intensities along the lateral domain were present. 

This was also shown by averaging the intensities measured along each 

membrane and plotted against the apical-basal position (Figure 16D, right 

panel). Taken together, it is likely that the unconventional GEF ELMO-Sponge 

is responsible for local activation of Rap1 to position Canoe and define the 

subapical domain at onset of cellularization, as Canoe localization is perturbed 

in ELMO and Sponge mutants. 

 ELMO-Sponge localization changes from disc-like to ring-

like with onset of cellularization 

Sponge localizes to actin caps, metaphase furrows and subapical domains 

of cellularization furrows 

The ELMO-Sponge complex as an unconventional Rap1 GEF provided a 

reasonable explanation for localization of Canoe and its downstream factors. 

As I could already show the functional relevance of ELMO-Sponge I wanted 

to analyze if ELMO and Sponge also showed a subapical localization during 

cellularization. To analyze this aspect, I stained fixed wild type embryos for 

Sponge (Figure 17) as its localization during early embryogenesis was not 

described yet. Figure 17 shows Sponge staining during different nuclear cycles 

in sagittal and top views. During interphases of syncytial blastoderm embryos, 

 

Figure 16 ELMO and Sponge are required for subapical restriction of Canoe.  

(A-C) Images of fixed (A) wild type, (B) ELMO and (C) sponge embryos stained for Canoe 

(grey/green), Dlg (grey/red) and DNA (blue). Merged images are shown in right panel with a 

furrow in higher magnification in insets. (D) Heat maps and averaged values of relative 

fluorescence intensity along apical-basal axis aligned to the peak value measured for 

9 furrows in 3 embryos. Error bars represent SEM. Scale bars 10 µm, insets 2 µm. 
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Sponge was localized at the actin caps but not at intercap regions (Figure 17, 

interphase 11).  

During mitosis, Sponge localized to the lateral domain of the metaphase 

furrow and was also found at the apical domain (Figure 17, mitosis 13). Also, 

at onset of cellularization in interphase 14, before nuclear elongation and with 

still very short furrows, Sponge was found at the actin caps with some 

 

Figure 17 Sponge localization during early embryonic development.  

Images of fixed wild type embryos at indicated stages stained for Sponge (grey/red) and DNA 

(blue). Sagittal and planar views. Scale bar 10 µm. 
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enrichment at the rims of the caps, as the top view shows (Figure 17, interphase 

14). With start of nuclear elongation, which still resembles early 

cellularization, Sponge reorganized and was enriched at the newly introduced 

subapical domain, which is shown in the side view (Figure 17, interphase 14). 

The top views of interphase 14 show a more ring like distribution of Sponge 

compared to its localization in interphase 11, during which the whole actin cap 

was stained resembling a disc-like localization. From the localization of 

Sponge, it is possible that it could activate Rap1 locally at the subapical domain 

at onset of cellularization. 

Sponge localization depends on ELMO but not on Rap1, Canoe and 

Scribble 

As described before, Sponge and ELMO build a complex in which ELMO is 

responsible for membrane binding (Côté et al., 2005). To test if ELMO is 

necessary for Sponge localization at the membrane in vivo, I stained fixed wild 

type and ELMO mutant embryos against Sponge and Dlg (Figure 18). 

Compared to the subapical Sponge enrichment in wild type embryos during 

early cellularization (Figure 18A), membrane localization of Sponge was 

indeed completely absent in ELMO mutant embryos (Figure 18B) showing, 

that ELMO is needed for membrane targeting of Sponge. 

Furthermore, I tested if Sponge localization is affected by its downstream 

factors Rap1 and Canoe or by the lateral factor Scribble by staining of Sponge 

in the associated mutant situations (Figure 19). In Rap1 mutant embryos, 

Sponge enrichment was detected in the subapical region and did not spread 

into the lateral domain (Figure 19B), although it is possible that Sponge was 

 

Figure 18 Membrane localization of Sponge is mediated by ELMO.  

Images of fixed (A) wild type and (B) ELMO embryos in early cellularization stained for 

Sponge (grey/green), Dlg (grey/red) and DNA (blue). Merged images are shown in red panel 

with a furrow in higher magnification in inset. Scale bar 10 µm, insets 2 µm. 
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not well restricted from the apical domain compared to wild type (Figure 19A). 

Also, in canoe mutants, Sponge was subapically enriched and did not spread 

into the lateral domain (Figure 19D). This was also the case for scribble mutants, 

in which Sponge enrichment was visible at the subapical domain and Sponge 

did not spread into the lateral domain (Figure 19C). Taken together, the 

subapical enrichment of Sponge was dependent on its interactor ELMO in vivo, 

but not on its downstream factors Rap1 and Canoe as well as on the lateral 

domain protein Scribble. 

ELMO shows a ring-like localization at onset of cellularization marking 

the position of the newly forming subapical domain 

To follow the dynamics of ELMO-Sponge in vivo, I made use of a transgenic 

line expressing GFP-tagged ELMO under the control of its own promoter. The 

transgene was made by Dr. Zhiyi Lv. Furthermore, I used CherrySlam as a 

marker for the basal domain. Imaging of living embryos expressing ELMO-

GFP and CherrySlam was done from the top view with z-stacks with a step 

size of 0.5 µm and an interval of 1 min during end of mitosis 13 and beginning 

of interphase 14 and onset of cellularization (Figure 20). Timepoint zero was 

 

Figure 19 Genetic control of subapical Sponge.  

Images of fixed embryos in early cellularization stained for Sponge (grey/green), Dlg 

(grey/red) and DNA (blue). Merged images are shown in right panel, inserts show zoom in of 

one furrow. Genotypes (A) wild type, embryos from germline clones for (B) Rap1, (C) scribble, 

(D) canoe. Scale bar 10 µm, insets 2 µm. 
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defined by the formation of new cellularization furrows. As shown in Figure 

20, ELMO-GFP localized to metaphase furrows in metaphase 13.  

 

Figure 20 ELMO-GFP and CherrySlam dynamics during mitosis 13 and interphase 14. 

Images of a time lapse recording of an embryo expressing Elmo-GFP (green) and CherrySlam 

(red). Time from left to right, apical basal position from up to down. Scale bar 10 µm. 
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With onset of cellularization, ELMO-GFP localized to caps and showed an 

enrichment at the rims of the cap to form a ring-like structure, that was stable 

at least during the first 8 minutes of cellularization when furrows elongated, 

shown by basal CherrySlam signal, as indicated. Figure 21A shows ELMO-

GFP signal from an actin cap during an earlier interphase, that had no 

enrichment at the rim of the caps, forming a more disc-like localization.  

To analyze the dynamics of ELMO-GFP in more detail I selected significant z-

positions along the apical-basal axis and timepoints at onset of cellularization, 

which are depicted in Figure 21C, with a schematic overview of the sagittal 

view in Figure 21B. During interphases in syncytial blastoderm, ELMO-GFP 

localized to the whole cap domain in a disc like pattern (Figure 21A). At onset 

of interphase 14 (Figure 21C, 1 min), ELMO-GFP got enriched at the rims of 

the actin caps at a z-position of around 0.5-1.5 µm, as also described before for 

Sponge in fixed embryos. The new furrow was formed at the position where 

two rings came together as indicated by a yellow arrowhead. Similar to the 

 

Figure 21 Dynamics of ELMO-GFP during early cellularization.  

(A) Image from a time laps recording of an embryo expressing ELMO-GFP shows ELMO-GFP 

localization at the cap during interphase 13. (B) Scheme for furrow formation and invagination 

in early cellularization. Subapical and basal domains are marked in green and red, 

respectively. Axial (apical-basal) axis with approximate scale is indicated. (C) Images from 

time lapse recordings including axial stacks of embryo expressing ELMO-GFP (grey/green) 

and CherrySlam (grey/red) during mitosis 13 and early interphase 14. Axial position is 

indicated. Yellow arrowhead points to position of “new” furrows. (D) Relative fluorescence 

intensity of ELMO-GFP (green) and CherrySlam (red) at “new” furrows measured along the 

apical-basal axis at indicated times. Error bars represent SEM. Scale bar 10 µm. 
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quantifications I showed for CanoeYFP and ScribbleGFP, I measured the 

fluorescence intensity of ELMO-GFP and CherrySlam along the apical-basal 

axis of three new furrows in one embryo, normalized the data to their peaks 

and plotted the averages of the relative fluorescence intensity against the 

apical-basal position (Figure 21D). After 2 minutes, when the new furrow was 

still a shallow groove, revealed by the missing peak of CherrySlam intensity 

(dashed red line), ELMO-GFP already showed a subapical enrichment which 

was diminished in basal direction (dashed green line). After the formation and 

invagination of the new furrow at 6 min, indicated by a peak of CherrySlam 

intensity at around 4.5-5.5 µm (red line), ELMO-GFP intensity was still 

subapically enriched and decreased in direction of the basal domain (green 

line).  

Taken together, I could show that the unconventional GEF ELMO-Sponge is a 

likely candidate to activate Rap1 locally to position Canoe and its downstream 

factors. The change of ELMO-Sponge localization from a more disc-like 

distribution during blastoderm interphases to the ring-like enrichment during 

onset of cellularization may provide an explanation for the switch from three 

cortical domains in metaphase and two cortical domains in interphase during 

syncytial blastoderm to four cortical domains in cellularization by the 

insertion of the new subapical domain. 

 Bazooka gets enriched at the subapical domain during 

cellularization 

The PDZ-domain protein Bazooka is another known factor in the pathway for 

the upset of the subapical domain downstream of Canoe (Choi et al., 2013). To 

get a further insight into the formation of the subapical domain, I analyzed the 

localization and dynamics of Bazooka. As it is known, that Bazooka is 

transported to the subapical domain by Dynein transport along microtubules 

(Harris and Peifer, 2005) and gets enriched during cellularization, I wanted to 

analyze when Bazooka gets visible at the subapical domain. For this purpose, 

I used staged and fixed wild type embryos and stained against Bazooka and 

Armadillo as lateral marker and imaged with same imaging conditions (Figure 

22). During mitosis 13, Bazooka was not visible at the metaphase furrows, 

although its localization at metaphase furrows has been described before 

(Harris and Peifer, 2004). This could be explained by different imaging set ups, 

as I wanted to compare protein localization during different stages of 
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blastoderm embryos. At early cellularization, before nuclear elongation, 

Bazooka was still not visible at the subapical domain (Figure 22), at this stage 

a clear subapical localization of Canoe and Armadillo accumulation was 

already visible as described before. With nuclear elongation, Bazooka got 

enriched at the subapical domain (Figure 22, third panel), however also during 

mid cellularization there were still some Bazooka puncta visible at the lateral 

membrane (Figure 22, fourth panel). At the end of cellularization Bazooka 

formed then a tight subapical enrichment (Figure 22, bottom panel). 

I also detected BazookaGFP signal in living embryos. For this I made use of a 

fly line, which expressed Bazooka tagged with a GFP at the endogenous locus. 

Imaging of side views using a confocal laser scanning microscope was not 

possible as focusing around 75 µm into the embryo led to non-detectable 

signal, even if I used the sensitive AiryScan detector. To analyze, Bazooka 

 

Figure 22 Subapical enrichment of Baz during cellularization in fixed embryos.  

Images from wild type embryos stained for Bazooka (grey/red), Arm (grey/green) and DNA 

(gey/blue) during mitosis 13 and interphase 14. Images were conducted with same laser 

settings and processed with same brightness and contrast settings. Scale bar 10 µm. 
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dynamics during the course of cellularization, I imaged the embryos during 

mitosis 13 and interphase 14 from the top view in intervals of 1 minute and 

made z-stacks with a step size of 0.5 µm. To collect all signal and visualize 

BazookaGFP puncta as early as possible, I summarized the z-stacks and 

selected several time points as shown in Figure 23. During mitosis 13, 

BazookaGFP puncta were only weakly detectable at the metaphase furrows, 

confirming the staining of the fixed embryos (Figure 23). During onset of 

cellularization in interphase 14, BazookaGFP puncta were not detectable (9- 

28 min). The first visible puncta could be detected at a timepoint of 31 min 

after onset of cellularization, which got enriched with ongoing cellularization 

(34-40 min), resembling the staining of the fixed embryos shown before. 

To image Bazooka dynamics in sagittal sections I made use of two-photon 

microscopy. By this technique the fluorophores are excited by two photons of 

a wavelength around 900 nm instead of one of 488 nm, leading to the 

possibility to focus deep into the embryo. In Figure 24 BazookaGFP dynamics 

are shown in side views from onset of cellularization confirming the results as 

shown before with Bazooka getting visible around mid-cellularization 

(40 min) and getting stronger and more enriched to the end of cellularization 

(60 min) and onset of gastrulation (80 min). 

From this data I could conclude, that Bazooka gets enriched at the subapical 

domain gradually during the course of cellularization with a clear subapical 

enrichment visible during mid-cellularization. 

 

Figure 23 Subapical enrichment of Baz during cellularization in living embryos. 

Summarized z-stacks from images of a movie of a wild type embryo expressing BazGFP 

during mitosis 13 (- 8 min) and cellularization (9 min- 40 min) at a room temperature of ~20 °C. 

Accumulation of BazGFP puncta can be found at a time point of 31 min. Scale bar 10 µm. 
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Localization of Bazooka and Armadillo are dependent on ELMO-Sponge 

As I investigated the role of the unconventional GEF complex ELMO-Sponge 

in chapters 3.2 and 3.3, I wanted to examine if ELMO-Sponge do not only play 

a role in formation of the subapical domain and correct localization of Canoe 

but also have a function on the subapical localization of Canoes downstream 

factors Armadillo and Bazooka. For this, I stained fixed wild type and ELMO 

mutant embryos and stained for Armadillo and Bazooka (Figure 25). As 

described before, Bazooka and Armadillo showed subapical enrichment 

 

Figure 24 BazookaGFP dynamics imaged by two-photon microscopy.  

Living embryos imaged with a two-photon microscope in intervals of 10 min and a room 

temperature of ~20 °C. Timepoint 0 min was set by the appearance of interphase 14 nuclei. 

Time points are as indicated. Scale bar 10 µm. 
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during mid and late cellularization in wild type embryos (Figure 25A). 

Although staging of ELMO mutants was somehow vague due to their 

perturbed morphology, I could detect Bazooka and Armadillo staining 

dispersed over the whole cellularization furrow (Figure 25B). However, as I 

could show before, that also Canoe was mislocalized in ELMO mutants it is 

likely, that the effect of ELMO on Bazooka and Armadillo is more indirect and 

due to the mislocalization of the upstream factor Canoe. 

 Bazooka is required for subapical localization of Canoe 

It was described before, that Bazooka is needed for subapical localization of 

Canoe during late cellularization and for its enrichment at tricellular junctions 

at onset of gastrulation (Choi et al., 2013). A function for Bazooka in the 

localization during early cellularization was not shown yet. For this purpose, 

I stained fixed wild type and bazooka RNAi embryos for Canoe and DNA 

(Figure 26). During mid-cellularization Canoe localized to the subapical region 

in wild type embryos that displayed a hexagonal enrichment in top views 

(Figure 26A). During early cellularization in bazooka RNAi embryos, the 

subapical Canoe enrichment was still detectable in sagittal sections, though 

the top view already revealed a broader Canoe enrichment (Figure 26B, upper 

panels). During mid-cellularization Canoe was also detectable along the 

 

Figure 25 ELMO is required for subapical enrichment of Baz and Arm.  

(A-B) Images of fixed (A) wild type and (B) ELMO embryos during mid and late cellularization 

stained for Baz (grey/red), Arm (grey/green) and DNA (grey/blue). Merged images are shown 

in right panel. Scale bar 10 µm. 
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lateral domain in sagittal sections of bazooka RNAi embryos and the top view 

revealed an even more dispersed Canoe signal than during early 

cellularization (Figure 26B, lower panels). The functionality of bazooka knock 

down by RNAi was shown by typical holes in the amnioserosa of stage 14 

embryos (Figure 26C). 

I also tested if the localization of Sponge depends on Bazooka by staining wild 

type and bazooka RNAi embryos against Sponge and Dlg (Figure 27). In wild 

type I was able to detect subapical Sponge enrichment during early 

cellularization in sagittal sections and also the hexagonal signal in top views 

(Figure 27A). Although I could detect a mislocalization of Dlg in baz RNAi 

 

Figure 26 Baz functions in Cno localization during cellularization 

(A-B) Fixed cellularizing (A) wild type and (B) baz RNAi embryos stained for Cno (grey/ red) 

and DNA (blue). Merged images are shown in right panels, zoom-ins in right panel. The depth 

of the cellularization furrow is marked by a dashed line. Sagittal views are shown in upper 

panels, top vies (maximum intensity projections of z-stacks) in lower panels. (C) baz RNAi 

embryo stained for Cno (red) and DNA (blue) with typical holes in the amnioserosa tissue. 

Scale bar 10 µm, zoom-ins 2 µm. 
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embryos with continuous staining also at the tricellular junctions, which show 

reduced Dlg in wild type embryos, subapical Sponge localization was not 

affected in bazooka RNAi embryos (Figure 27B). From this data I could 

conclude, that not only Canoe affected Bazooka localization but that also 

Canoe was controlled by Bazooka already during early and mid-

cellularization whereas it did not affect Sponge localization. 

 The onset of zygotic gene expression is necessary for correct 

localization of Canoe 

To test if expression of zygotic genes is necessary for the introduction of the 

subapical domain during cellularization, I made use of the drug α-amanitin, 

that inhibits RNA polymerase II and with this zygotic gene expression (Edgar 

et al., 1986). It was shown before, that the injection of α-amanitin leads to an 

arrest in interphase 14 and no invagination of cellularization furrows takes 

place (Edgar et al., 1986). 

I injected α-amanitin in wild type embryos expressing Canoe-YFP during 

preblastoderm development, let them develop until interphase 13-14 and 

stained them after fixation to visualize Canoe, F-actin and DNA for control of 

 

Figure 27 Spg localization is not affected by Baz. 

(A-B) Fixed early cellularizing (A) wild type and (B) baz RNAi embryos stained against Spg 

(grey/ red), Dlg (grey/ green) and DNA (blue). Merged images are shown in right panels, 

zoom-ins in right panel. Upper panels show sagittal sections, lower panels top view of 

maximum intensity projections. Scale bar 10 µm, zoom-ins 2 µm.  
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the developmental stage (Figure 28). Figure 28A shows a non-injected embryo, 

that was co-stained with injected embryos. In this embryo F-actin and Canoe 

show the typical hexagonal localization described for onset of cellularization. 

A zoom in of Canoe signal and merged image are shown in Figure 28A’ to 

point the staining up. In α-amanitin injected embryos during interphase 14, 

this hexagonal pattern of F-actin and Canoe could not be detected anymore 

(Figure 28B, B’). This observation confirms the hypothesis, that onset of 

zygotic gene expression is needed for correct localization of Canoe and 

formation of the subapical domain.  

As a control that not the nuclear cycle number but the onset of zygotic gene 

expression is responsible for the correct localization of Canoe and formation 

of the subapical domain, I made use of two mutants that display either an 

increased number of cell cycles before cellularization or a decreased number 

of cell cycles before start of cellularization (Figure 29).  

 

Figure 28 Zygotic gene expression is necessary for Canoe localization during cellularization.  

(A-B) Fixed non-injected (A) and α-amanitin-injected (B) embryos expressing CanoeYFP 

stained against F-actin (grey/ red), CanoeYFP (grey/ green) and DNA (grey/ blue). Merged 

images are shown in right panels. (A’, B’ show zoom ins from (A, B). Scale bars 10 µm. 
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I compared the localization of F-actin and Canoe in early interphase 14 wild 

type embryos (Figure 29A) to embryos maternally mutant for X161 (Figure 

29B) which start cellularization already in interphase 13 (Sung et al., 2013) and 

embryos maternally mutant for sésame (ssm) (Figure 29C) which are haploid 

and display another nuclear cycle before they start cellularization in 

interphase 15 (Loppin et al., 2000). The nuclear cycle number was defined by 

the number of nuclei. Like in wild type, F-actin localized to the actin caps and 

invaginating furrows as I could show in the sagittal views and in top views at 

a z-position of the subapical region I could detect the typical hexagonal 

enrichment in wild type and both mutants. This was also the case for the 

 

Figure 29 Cno localizes to subapical domain at onset of cellularization independently of the 

cell cycle number. 

(A-C) Fixed (A) wild type, (B) X161 and (C) ssm embryos during early cellularization stained 

against Cno (grey/ green), F-actin by Phalloidin (grey/ red) and DNA (blue). Cell cycle number 

is as indicated and was defined by the number of nuclei. Merged images are shown in right 

panels, sagittal views in upper and top views of the subapical section in lower panels. Scale 

bar 10 µm. 
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subapical enrichment of Canoe, making clear that the formation of the 

subapical domain does not depend on the nuclear cycle number but on the 

onset of zygotic gene expression. 
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 Discussion 

The main goal of this study was to analyze the formation of cortical domains 

during the generation of an epithelium. For this purpose, I made use of the 

progress called cellularization happening during early embryogenesis of 

Drosophila melanogaster development. During early embryogenesis, the 

Drosophila embryo shows different numbers of cortical domains, which consist 

of actin filaments underlying the plasma membrane, accompanied by different 

sets of domain-specific and domain-unspecific proteins. During 

preblastodermal development, only one cortical domain can be observed. 

During syncytial blastoderm, when the nuclei reach the embryonal periphery 

and perform nuclear divisions, more cortical domains are introduced. During 

syncytial blastoderm interphases two cortical domains can be observed, which 

are cap and intercap domains, whereas three domains are visible during 

mitosis. During mitosis, metaphase furrows reach around 10 µm into the 

interior of the embryo, separating the spindles of the dividing nuclei from each 

other. The metaphase furrows consist of lateral and basal domains, whereas 

the apical domain underlies the plasma membrane in between the metaphase 

furrows. During cellularization, a fourth cortical domain is introduced 

between apical and lateral domain, namely the subapical domain. The proteins 

belonging to this domain will later help to direct proteins that make up 

adherens junctions to their final position in the epithelium.  

The process how the PDZ-domain-protein Bazooka is directed to the subapical 

domain during late cellularization was researched intensely in the past years 

and next to binding to a cortical F-actin scaffold, also active transport along 

microtubules by Dynein was reported (Harris and Peifer, 2005). Furthermore, 

it was also described, that subapical Canoe is acting upstream of Bazooka, as 

its subapical localization was affected in canoe mutants and that correct Canoe 

localization is mediated by the GTPase Rap1 (Choi et al., 2013; Sawyer et al., 

2009). However, the regulation of Rap1 was not described yet as well as the 

new formation of the subapical domain by subapical Canoe localization is not 

understood yet. 

The aim of the first part of my study was to get further insight into the new 

domain formation. For this aspect I made use of domain specific proteins like 

Canoe for the subapical domain, Scribble for the lateral domain and Slam for 

the basal domain and analyzed their dynamics before and during onset of 
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cellularization. Furthermore, I investigated the regulation of Canoe by Rap1-

GTPase and the local activation of the GTPase by the unconventional GEF 

ELMO-Sponge. Until now, the formation and introduction of the subapical 

domain was not studied yet as most of the studies that investigated subapical 

proteins were performed during mid- or late cellularization, or even during 

gastrulation.  

In my study, I was able to show, that the subapical domain is introduced 

within the formation of a new cellularization furrow, to which CanoeYFP 

localized when it was still a groove. With invagination of the furrow, that was 

tracked with the basal marker CherrySlam, CanoeYFP stayed subapical and 

its signal was not detected at the elongating lateral domain. I was able to show 

the early restriction of Canoe to the subapical domain not only in movies from 

living embryos but was also able to quantify this behavior. In addition, fixed 

samples of early cellularizing embryos were used to show and quantify the 

subapical localization of Canoe during early cellularization.  

After clarifying that Canoe was restricted to the subapical domain from onset 

of cellularization on, I wanted to analyze the regulation of its localization. It 

was shown before, that the GTPase Rap1 is upstream of Canoe and necessary 

for its cortical localization during mid- late cellularization (Choi et al., 2013). I 

was able to confirm this relationship during early cellularization, as cortical 

Canoe localization was completely lost in Rap1 mutants also in this stage. 

However, it was also described before, that Rap1 does not show any 

enrichment at the subapical cortical domain that could explain its role in 

subapical positioning of Canoe. In contrast Rap1 could be found along all 

cortical domains during late cellularization (Choi et al., 2013; Sawyer et al., 

2009) and I was also able to confirm this finding for early cellularization.  

GTPases are typically regulated by GEFs and GAPs, that can activate the 

GTPase by adding a GTP or inactivate it by addition of a GDP (reviewed in 

Cherfils and Zeghouf, 2013). To find the GEF that could activate Rap1 locally 

at the subapical domain, I first analyzed the known Rap1 GEFs in Drosophila. 

The first promising candidate was Dizzy, as it was found to play a role in Rap1 

activation during ventral furrow formation in early gastrulation, acting 

upstream of E-Cadherin and adherens junctions (Spahn et al., 2012). 

Surprisingly, I could not detect a role for Dizzy in early subapical activation of 

Rap1, as dizzy mutant embryos did not show any Canoe mislocalization to the 
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lateral domain, although Dizzy was found recently to mediate the localization 

of Canoe to tricellular junctions during the end of cellularization (Bonello et 

al., 2018). In addition, Bonello et al. (2018) could also not show a clear function 

of Dizzy on the lateral restriction of Canoe from the lateral domain during late 

cellularization. Furthermore, I could also show, that Bazooka and Armadillo, 

that are downstream of Canoe were not affected in dizzy mutants.  

Another candidate for the activation of Rap1 was a complex formed by the 

proteins ELMO and Sponge, that were previously described as unconvential 

GEF for Rac and Rap1 in Drosophila and vertebrates (Biersmith et al., 2011; 

Yajnik et al., 2003). Maternal mutants for both genes missed actin caps during 

syncytial blastoderm stage and showed only partial invagination of 

cellularization furrows at the terminal poles of the embryo. As I could also 

show, that in invaginating furrows of these mutants subapical proteins like 

Canoe, Bazooka and Armadillo mislocalized to the lateral and sometimes even 

to the basal domain, it is likely that ELMO-Sponge could mediate the local 

activation of Rap1. Another strong argument for this interaction is the 

localization of both proteins, as I found Sponge to be subapically enriched in 

cellularizing wild type embryos and the GFP-tagged ELMO also showed 

subapical enrichment in living cellularizing embryos. In addition, both 

proteins showed a change in localization with onset of cellularization. During 

early syncytial blastoderm interphases both proteins localized in a disc-like 

pattern to the whole actin cap, whereas this localization changes to a more 

ring-like pattern with onset of cellularization and onset of zygotic gene 

expression (Figure 30A). 

I hypothesize that these rings could give the spatial information for the 

insertion of the new subapical domain by definition of an interface of two 

already existing domains which becomes a new domain (Figure 30B). The 

change in localization of ELMO and Sponge could be mediated by mid 

blastula transition and the accompanied change from maternal to zygotic 

expression. This hypothesis is supported by the fact, that the subapical domain 

did not form in embryos with suppressed zygotic gene expression by the 

injection of α-amanitin. Here I hypothesize, that a yet unknown gene could 

modify the localization upstream of ELMO-Sponge. Proteins that could 

mediate the localization of ELMO-Sponge are transport proteins like Dynein 

or Kinesin-1, that transport cargos along the cytoskeletal network. However, 

an interaction with transport proteins and ELMO was not shown yet, also not 



Discussion 

-56- 

in other organisms. Though an interaction of the microtubule binding protein 

ACF7 (Short stop in Drosophila) with ELMO was shown in cell culture 

(Margaron et al., 2013). This interaction helps to capture and stabilize 

microtubules at the cortex to promote cell migration but does not give a hint 

for ELMO transport along the microtubules. 

Although, the pathway for the formation of the subapical domain is well 

described, the mechanistic relation between the proteins is not well 

understood yet. The protein Sponge itself is mainly acting together with the 

PH-domain protein ELMO (Biersmith et al., 2011; Yajnik et al., 2003). 

However, I could show, that ELMO is needed for the cortical localization of 

Sponge, as this is lost completely in ELMO mutants. 

The ELMO-Sponge complex has been described to have various and partially 

redundant functions during developmental processes in different cell types of 

Drosophila. For example, Sponge shows cytoplasmic and membrane 

localization in air sac primordium cells of larval wing discs and cytoplasmic 

 

Figure 30 Model for the formation of the subapical domain during onset of cellularization.  

(A) The ELMO-Sponge complex localizes in disc-like fashion to actin caps before MBT. 

Afterwards, with onset of cellularization, the complex localizes in a ring-like fashion and 

activates Rap1 locally. A further direct or indirect interaction with Canoe is not excluded. (B) 

Possible formation of a new domain by transformation of the interface. 
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localization in R7 photoreceptor cells of larval eye discs (Eguchi et al., 2013; 

Morishita et al., 2017). In both tissues the knockdown of Sponge leads to 

developmental defects like apoptosis in air sac primordial cells and roughened 

eye phenotype by knock down in eye discs. The authors of the two studies 

could show, that in both tissues Sponge acts by activating the ERK pathway 

which is known to play a role in cell differentiation and apoptosis. However, 

whereas Sponge activates this pathway via Rac1 in the air sac primordium 

(Morishita et al., 2017), it acts via Rap1 on the differentiation of R7 

photoreceptor cells (Eguchi et al., 2013). In these cell types Sponge does not act 

on cell polarization but on differentiation and cell maintenance. However, the 

activation of the ERK pathway downstream of ELMO-Sponge and Rap1 

during cellularization is not likely, at least not for the formation of cortical 

domains, as a role for the ERK pathway for completion of cellularization is not 

described and the downstream cascade of Rap1 for positioning of subapical 

proteins is well researched. Although the mechanism of how Rap1 recruits 

Canoe, which recruits Bazooka are not known yet.  

More research about the role of ELMO-Dock complexes during Drosophila 

development revealed also functions on the actin cytoskeleton and cell 

adhesion. During embryonal development the Sponge-related DOCK A 

protein Mbc together with ELMO activates Rac and functions via the actin 

cytoskeleton during dorsal closure (Toret et al., 2018) and myoblast fusion in 

muscle development (Biersmith et al., 2011). In contrast, the ELMO-Sponge 

complex acts in axon guidance during the embryonal development of the 

central nervous system where it is also thought to act on the actin cytoskeleton 

but here no experimental evidence is shown (Biersmith et al., 2011). 

Furthermore, Mbc and Sponge are both required for embryonal heart 

development. However, it seems that they exhibit different functions in this 

process, Mbc activating Rac which acts on the actin cytoskeleton, whereas 

Sponge acts via Rap1 possibly on cell adhesion (Biersmith et al., 2015).   

In the mammalian system it was shown before, that the activation of Rap1 by 

DOCK4, the mammalian homologue of Sponge, could lead to cell adhesion by 

the formation of adherens junctions (Yajnik et al., 2003). In addition, Rap1 is 

necessary for the positioning and formation of adherens junctions in Drosophila 

wing disc epithelia (Knox and Brown, 2002). However, it was shown, that 

Rap1 is acting directly on E-Cadherin and Cadherin-binding proteins like 

Armadillo (Spahn et al., 2012). This direct interaction with E-cadherin for 
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formation of cortical domains in my system is not likely, as subapical 

enrichment of E-Cadherin happens only during late cellularization, after the 

formation of cortical domains (reviewed in Laprise and Tepass, 2011). 

Furthermore, it was shown before, that Rap1 acts on Canoe during late 

cellularization probably by direct binding, as Canoe has a Rap1 binding site 

(Boettner et al., 2000; Boettner et al., 2003; Linnemann et al., 1999). I could also 

show, that the function of Rap1 is necessary for Canoe localization during 

early cellularization, which supports the hypothesis, that Rap1 acts via Canoe 

on the formation of the subapical domain. 

However, although Canoe shows a massive mislocalization in Rap1 mutants 

with no cortical enrichment at all, Canoe still shows cortical localization in 

sponge and ELMO mutants with subapical enrichment but enhanced signal 

along the lateral domain. There are several possibilities that could explain this 

contrast. Firstly, it is possible, that also other Rap1 GEFs contribute to the 

correct spatial activation of Rap1. Although I could show that the known Rap1 

GEF Dizzy did not contribute to Canoe localization, there are several more 

known Rap1 GEFs in Drosophila which are not investigated during 

cellularization yet. Secondly, another yet unknown downstream effector of 

Rap1 could mediate the spatial restriction of Canoe. This hypothesis is also 

likely as subapical Canoe localization is much more prominent and restricted 

than Sponge localization. Furthermore, several Rap1 effectors are known, 

which directly or indirectly regulate the cytoskeleton and also other Rap1 

GEFs like Epac (reviewed in Bos, 2006). 

The subapical marker Bazooka, which is known to bind E-cadherin and can 

recruit it to adherens junctions, gets localized during the course of 

cellularization. Although it was described before, that it also localizes to the 

lateral domain of metaphase furrows (Harris and Peifer, 2004), I was not able 

to detect it during mitosis in fixed or living embryos. In addition, Bazooka did 

not mark the subapical domain during onset of cellularization but got enriched 

there later. In living embryos, I was only able to detect Bazooka puncta during 

mid-cellularization. As described before, the subapical protein enrichment is 

mediated by Dynein transport along the microtubule network and needs a 

cortical actin scaffold (Harris and Peifer, 2004). How Canoe does interact with 

Bazooka is not clear yet. Choi et al. (2013) could show, that Canoe was able to 

recruit Bazooka in vitro although both proteins do not necessarily colocalize, 

as well in the cell culture system as also during cellularization. As Canoe and 
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Bazooka both are PDZ-domain proteins, a direct interaction via these domains 

could be possible. Another possibility is that Rap1/ Canoe modify the 

cytoskeleton in a way, that Bazooka could find its subapical position during 

the course of cellularization, as it was shown before, that Canoe could do so 

during apical constriction (Sawyer et al., 2009). However, Choi et al. (2003) 

could show, that the cytoskeleton is not modified in canoe and Rap1 mutant 

embryos, making this hypothesis unlikely.  

Taken together, with my work I could show, that the unconventional GEF 

complex ELMO-Sponge is upstream of Rap1, activating it locally at the 

subapical domain, leading to subapical localization of Canoe with onset of 

cellularization. ELMO-Sponge itself could be found at the interphase caps 

during syncytial blastoderm development in a disc-like pattern, whereas with 

switch from maternal to zygotic gene expression they change their localization 

to a more ring-like pattern, possibly defining the place of the newly introduced 

subapical domain. 
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 Abstract 

The localization of the subapical proteins Canoe and Bazooka does not only 

depend on its upstream factors Canoe and Rap1 but also on a functional 

cortical F-actin scaffold. The depolymerization of F-actin by injection of drugs 

leads to perturbed localization of Canoe and Bazooka. Embryos mutant for the 

F-actin nucleator and elongator diaphanous (dia) do not only display markers 

of the lateral domain like Dlg leaking into the basal cortical domain but I could 

also show mislocalization of Canoe, Bazooka and Armadillo. Although, this 

observation led to the hypothesis, that the mislocalization of subapical 

proteins in dia mutants happens due to less or perturbed cortical F-actin, I 

could not find differences in F-actin amount of dia versus wild type embryos 

during syncytial blastoderm development. Also, during cellularization a 

mislocalzation of F-actin was not detectable. Dia was described to localize to 

the barbed ends of the actin filaments to elongate the filaments at this position. 

By staining of syncytial blastoderm embryos, I could show that the interphase 

actin caps show some polarization with Dia-marked barbed ends being 

enriched at the cap edges. This observation led to the hypothesis, that Dia 

could be responsible for the organization and polarity of the cortical F-actin 

network in actin caps. I was able to confirm this hypothesis by staining with 

the barbed-end marker Capping protein alpha (Cpa) in wild type and dia 

syncytial blastoderm embryos. Cpa showed significant less enrichment at the 

edges actin caps in dia embryos. I hypothesize, that the polarized cortical F-

actin network acts as a prepattern that defines the position of the subapical 

domain with onset of cellularization and could direct the ELMO-Sponge 

complex for formation of the subapical domain to its ring-like localization. 

Although the polarization of the cortical F-actin is available before 

cellularization I hypothesize that it is read out with midblastula transition and 

onset of zygotic gene expression. In this hypothesis Dia plays a more indirect 

role for the formation of the subapical domain, going in line with the 

observation that Dia does not show a subapical enrichment during early 

cellularization as well as I could not detect elevated subapical Rho signaling 

that could explain local subapical Dia activation.  
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 Introduction 

 Actin dynamics are controlled by actin binding proteins 

Actin binding proteins, that can nucleate, elongate or bundle actin filaments 

are a group of conserved proteins among the animal kingdom (reviewed in 

Pollard et al., 2000). In Figure 31 the dynamics of non-muscle actin are 

depicted. Profilin-bound globular actin monomers can be nucleated by a 

formin to build an actin filament which is also elongated by this protein class 

at their barbed (or plus) ends (Kovar et al., 2006; Pring et al., 2003). At pointed 

(or minus) ends of filaments, depolymerization happens spontaneously. The 

elongation of a filament can be stopped by binding of capping proteins to the 

plus ends, removing the formin from its place (reviewed in Pollard et al., 2000). 

However, recent publications point out, that both, Capping proteins and 

formins, can bind to barbed ends simultaneously at least for short terms 

(Bombardier et al., 2015; Shekhar et al., 2015). Next to severing of filaments, 

they can also be bundled to thick filaments or being crosslinked (Figure 31). 

The formation of branches, which emerge in an angle of 70° is nucleated by 

 

Figure 31 Scheme of actin dynamics in non-muscle cells.  

Actin filaments are nucleated from monomeric actin molecules and elongated to form long 

filaments. These filaments can be severed, crosslinked, bundled or branching can occur. 
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the Arp 2/3 complex (Mullins et al., 1998) (Figure 31). The formation and 

dynamics of the actin cytoskeleton are not only crucial for cell maintenance 

but also for cell mobility, cytokinesis and also for cell-cell interaction 

(reviewed in Bogdan et al., 2013; Pollard et al., 2000). 

 The formin Dia nucleates and elongates filamentous actin 

and binds to plus ends 

The protein Dia belongs to the protein family of formins, which has a sole 

homolog in Drosophila (reviewed in Bogdan et al., 2013). Typical of proteins 

belonging to the Dia-family are their domain composition and regulation 

(Figure 32; reviewed in Bogdan et al., 2013).  

Drosophila Dia is composed by an N-terminal Rho-binding domain to which 

Rho1 binds for activation. Followed by 3 domains being necessary for 

regulation, the Dia inhibitory domain (DID), the dimerization domain (DD) 

and a coiled-coil region. In autoinhibited state, the C-terminal Dia 

autoregulatory domain (DAD) binds to the DID domain. This binding is 

released by binding of Rho1. After activation and formation of a Dia 

 

Figure 32 Scheme of domain composition of Drosophila Dia. 

In the autoinhibited state, the DAD domain binds to the DID domain. This interaction is 

released upon binding of Rho1 to the RBD domain, followed by the formation of a homodimer 

to nucleate and elongate F-actin. Abbreviations: Rho binding domain (RBD), Dia inhibitory 

domain (DID), dimerization domain (DD), coiled-coil domain (CC), Formin homology 

domain 1 and 2 (FH1, FH2), Dia autoinhibitory domain (DAD) (Bogdan et al., 2013; Kühn and 

Geyer, 2014). 
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homodimer, the Formin homology domains 1 and 2 (FH1, FH2) are 

responsible for nucleation and elongation of F-actin. In this process, the FH2 

domains form a ring and bind to the growing barbed end of the actin filament 

whereas the FH1 domain recruits profilin-bound G-actin to the growing 

filament (reviewed in Bogdan et al., 2013; Kühn and Geyer, 2014). Dia can act 

in three ways on actin. The first activity is the elongation function in which 

Dia binds to the actin filament and includes profilin bound G-actin to the tip 

of the growing filament (Großhans et al., 2005; Yan et al., 2013). The second 

activity is the nucleation of three profilin-bound G-actin units to form a new 

actin filament (Li and Higgs, 2003). The third activity is its binding to the plus 

ends of the actin filament, being able to remove capping proteins (reviewed in 

Pollard et al., 2000). However, recent publications show evidence, that at least 

in vitro the FH2 and FH1 domain of formins can bind in parallel to capping 

proteins which leads to a so-called decision complex controlling the dynamics 

of the filament (Bombardier et al., 2015; Shekhar et al., 2015).    

 Multiple functions of Dia in Drosophila development 

The diverse functions of Dia during Drosophila development are well 

researched (reviewed in Bogdan et al., 2013). It functions during cytokinesis 

by formation of the contractile ring for example in spermatogenesis in male 

testis (Castrillon and Wasserman, 1994). Furthermore, Dia seems to play a role 

in cell shape changes by acting upstream of actomyosin contraction and 

stability at adherens junctions during Drosophila morphogenesis (Homem and 

Peifer, 2008). During cellularization, which is also described as special form of 

cytokinesis, Dia is necessary for proper membrane invagination and for the 

stabilization of the basal furrow canal, as described before in chapter 2.6 

(Afshar et al., 2000; Großhans et al., 2005; Yan et al., 2013). Furthermore, Dia 

plays a role in planar cell polarity during the formation of wing hairs by acting 

on cytoskeletal activation and directly on the planar cell polarity pathway (Lu 

and Adler, 2015). 

 Aim of the thesis 

In this part of my thesis, I analyzed the function of the formin Dia in the 

formation of the subapical domain. I was able to show, that Dia plays a role 

for the introduction of the subapical domain and for the localization of 

subapical proteins. Furthermore, I could show, that Dia acts by the 

organization and polarization of the cortical F-actin network of the syncytial 
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blastomderm embryo. This polarization of the cortical F-actin could serve as a 

pattern which is red out during onset of cellularization and gives rise to the 

subapical domain. Here I was able to connect the permissive, indirect function 

of Dia and the cortical F-actin with the localization of subapical proteins. 
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 Results 

 dia and bazooka show antagonist genetic interaction 

Dia protein is strongly reduced in dia mutant embryos 

To investigate the function of F-actin during cortical domain formation, I made 

use of a dia mutation. The allele diasy5, that was used for this study, from here 

on named as dia, carries a point mutation leading to the exchange of the Serin 

at position 92 by a Leucin, resulting in a hypomorphic mutant situation (Yan 

et al., 2013) (Figure 33).  

As the effect of the mutation on the protein level is not understood, I stained 

wild type and dia embryos with an antibody raised against the C-terminal half 

of Dia that mediates the function on F-actin (Figure 34A, B). To ensure 

comparable experimental conditions, dia embryos that expressed a GFP-

tagged version of MyoII were used and stained in the same tube together with 

unmarked wild type embryos. Whereas Dia was enriched at the basal tip of 

cellularization furrows at early cellularization in wild type embryos it was not 

detectable in dia germ line clones (Figure 34A). The lateral domain was stained 

by Dlg, which was also detectable at the furrow canal in dia mutants (Figure 

34A), a phenotype described before by Yan et al. (2013). To analyze total Dia 

amounts in wild type versus dia embryos, I used extracts from embryos which 

were incubated for 2 hours after egg laying at 25 °C and made a western blot 

and stained against Dia (Figure 34B). The protein could be detected at 130 kDa 

 

Figure 33 Genetic region of dia and alleles.  

Coding sequence of dia locus is indicated by blue boxes, 5’UTR and 3’UTR by grey boxes. dia1 

shows an inserted p-element (Castrillon and Wasserman, 1994) that was mobilized to generate 

dia5 (Afshar et al., 2000). Lower boxes indicate Dia protein. Point mutations characterized by 

sequencing with changes in amino acid sequences are indicated (SY1-6). Figure was taken 

from Yan et al. (2013).  
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in wild type whereas only a faint band was detectable in dia embryonic 

extracts. As loading control, α-Tubulin was used.  

Overexpression of Bazooka in dia mutant background leads to defects 

during oogenesis 

To analyze the dependence of Dia on Bazooka, I wanted to describe Bazooka 

dynamics in wild type and dia mutant background. However, crossing of a 

GFP-tagged UASp-Bazooka driven by a maternal promoter into dia mutant 

background resulted in flies that did not lay eggs. In contrast, the expression 

of BazookaGFP at endogenous levels (Protein Trap) in dia mutant background, 

gave rise to viable embryos which showed the dia phenotype. In this fly line, a 

GFP is inserted by cloning of an artificial exon, which encodes GFP, into the 

genomic locus, resulting in a GFP-tagged protein expressed in endogenous 

amounts from its own promotor (2x Bazooka) (Buszczak et al., 2007; Morin et 

al., 2001). To investigate this antagonistic genetic interaction, I generated dia 

germline clones overexpressing BazookaGFP (dia + 3x Bazooka). Mutant 

germline cells were marked by absence of nuclear GFP. I dissected the ovaries 

of these flies and stained against Phalloidin and DNA to show the structures 

of the ovary (Figure 35). In wild type stage 9 ovaries, expressing 2xnlsGFP 

which marked the nuclei with GFP, the boundary between nurse cells and 

oocyte was stained by a strong Phalloidin signal, which stains F-actin (Figure 

35, red arrow). In dia mutant clones which were overexpressing BazookaGFP 

(dia + 3x Bazooka), marked by absence of GFP from nuclei of germ cells, this 

Phalloidin staining at the border between oocyte and nurse cells was 

diminished. Instead the oocyte seemed to be filled with F-actin meshwork 

(Figure 35B, red arrow). Furthermore, in dia mutant ovaries with BazookaGFP 

overexpression the nuclear integrity seemed to be lost, as heterochromatin, 

 

Figure 34 Dia is reduced in dia mutants.  

(A) Fixed wild type and dia embryos during early cellularization stained against Dia (grey/ 

red), Dlg (grey/green) and DNA (blue). Embryos of both phenotypes were co-stained and 

imaged with same laser settings. (B) Western blot of extracts from wild type and dia glcs 0-2 h 

after egg laying against Dia. α-Tubulin was used as loading control. 15 embryos per lane were 

loaded. Scale bar 10 µm. 
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marked by stronger DAPI staining, seemed to be disorganized. Stage 9 ovaries 

were the oldest stages which could be detected in this genetic background. To 

conclude these findings, bazooka and dia show an antagonistic genetic 

interaction, as the overexpression of bazooka in dia mutant background led to 

phenotypes during oogenesis which resulted in degradation of the developing 

egg chambers. Overexpression of BazookaGFP in wild type background 

(3x Bazooka) or expression of BazookaGFP in endogenous amounts in dia 

background (dia + 2x Bazooka) did not give rise to the described phenotypes 

and resulted in eggs which could further develop. To make sure, that the 

oogenesis was not affected by the GFP-tag of overexpressed Bazooka in dia 

background, I made use of an mCherry-tagged Bazooka, which was driven by 

a ubiquitin-promoter. However, also the overexpression of CherryBazooka in 

dia mutant background led to perturbed oogenesis.  

 

Figure 35 Antagonistic genetic interaction of dia and baz during oogenesis.  

Ovaries from (A) flies expressing 2xnls-GFP and (B) flies with dia mutant germline, marked 

by no nuclear GFP staining, overexpressing BazGFP. Ovaries are stained for F-actin by 

phalloidin (grey/red), DNA (grey/blue) and GFP (grey/ green). The red arrows mark the 

border between nurse cells and oocyte. Lowest panel shows zooms from middle panel. Scale 

bar 50 µm. 
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 Dia is required for subapical localization of marker 

proteins 

As described in chapter 3.2, Canoe localization is dependent on the GTPase 

Rap1 which is locally activated by the unconventional GEF-complex ELMO-

Sponge. Downstream of Canoe, the PDZ-domain protein Bazooka gets 

localized during the course of cellularization (Choi et al., 2013). Bazooka binds 

E-cadherin and directs this protein to the subapical domain to set up adherens 

junctions after cellularization (Harris and Peifer, 2004). The localization of 

Bazooka does not only depend on Canoe and Rap1 but also on a cortical F-

actin scaffold, to hold it at its place (Harris and Peifer, 2005). To get further 

insight into the formation of the subapical domain, I tested the localization of 

Bazooka and its downstream target Armadillo in wild type and different 

genetic backgrounds (Figure 36).  

The localization of Armadillo and Bazooka depends on Dia and Rap1 but 

not on Dizzy 

In dia mutant embryos, Bazooka mislocalized even to the basal domain during 

early cellularization and spread over the whole membrane and was still found 

at the lateral domain during mid-cellularization (Figure 36B). Armadillo 

localized to the lateral domain during cellularization and was enriched in spot 

junctions at the subapical domain and the basal end of the lateral domain in 

wild type embryos (Figure 36A) (Harris and Peifer, 2004; McGill et al., 2009). 

In dia mutants, Armadillo lost its subapical enrichment and also spread into 

the basal domain (Figure 36B). As described before (Choi et al., 2013) not only 

Canoe localization but with this also Bazooka localization depends on the 

GTPase Rap1. I repeated this experiment and indeed Bazooka puncta were 

spread over the whole lateral domain during mid-cellularization and also in 

late cellularization, Bazooka puncta were still visible at the lateral domain 

(Figure 36C). Furthermore, the subapical enrichment of Armadillo was lost, 

although the enrichment at basal junctions was still visible, as shown before 

by Choi et al. (2013) (Figure 36C). Dizzy was described as potential Rap1GEF 

during cellularization to locally activate Rap1 (Choi et al., 2013; Spahn et al., 

2012). However, as I could already show for Canoe, Bazooka and Armadillo 

localization was not perturbed in dizzy mutant embryos in early and late 

cellularization (Figure 36C) compared to wild type (Figure 36A). 
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Dia is required for subapical localization of Armadillo 

To get further insight into the perturbed localization of Armadillo in dia 

mutant embryos, I measured the fluorescence intensity of the Armadillo signal 

along three furrows of three embryos in apical-basal direction in wild type and 

dia (Figure 37A, B). I normalized the data to its peak and plotted relative 

 

Figure 36 Genetic control of subapical Baz and Arm localization.  

Images of fixed embryos in early, mid and late cellularization stained for Baz (grey/red), Arm 

(grey/green) and DNA (grey/blue). Merged images are shown in right panel. Genotypes (A) 

wild type, (B) dia, (C) Rap1 and (D) dzy as indicated. Scale bar 10 µm. 
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fluorescence intensities along the 9 furrows as heatmaps and averaged for wild 

type and dia (Figure 37C).  

The apical-basal position of intensities measured in wild type embryos were 

aligned to the individual peaks, which was not possible in the mutant situation 

due to the dispersed signal. The heatmaps showed a clear subapical 

enrichment and also some basal enrichment in wild type embryos as described 

before (Harris and Peifer, 2004; McGill et al., 2009). In dia mutants, the 

 

Figure 37 Dia is required for subapical Arm enrichment.  

(A-B) Images of fixed (A) wild type and (B) dia mutant embryos stained for Arm (grey/green) 

Baz (red) and DNA (blue), merged images are shown in lower panels. (C) Relative 

fluorescence intensity of Arm signal measured along the apical-basal axis of 9 furrows in 3 

wild type and dia embryos. Heatmaps (left) display relative fluorescence intensities of each 

measured furrow. Averages were plotted on the right side. The bar represents the difference 

of relative fluorescence intensities at the peak (p< 0.001). Dashed lines indicate SEM. Scale bar 

10 µm. 
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subapical enrichment of the Armadillo signal was clearly diminished and 

relative Armadillo signal was higher along the lateral domain. The averages 

of the Armadillo signal showed a clear subapical peak in wild type compared 

to no clear peak in dia embryos (Figure 37C). This difference at the subapical 

domain was highly significant with a p-value < 0.001. 

Subapical Bazooka enrichment depends on Dia 

As Armadillo is downstream of Bazooka, I wanted to analyze if the 

mislocalization of Armadillo was due to mislocalized Bazooka in dia mutants. 

For this, I also stained wild type and dia mutant embryos for Bazooka and 

quantified fluorescence intensities along the cellularization furrows as 

explained before. Figure 38A, B shows fixed wild type and dia mutant embryos 

stained for Bazooka and Armadillo as already shown in Figure 37A, B. In wild 

type embryos Bazooka puncta accumulated at the subapical region, showing 

some overlap with Armadillo, whereas Bazooka puncta were distributed 

along the lateral domain in dia mutant embryos. I quantified this observation 

as shown before (Figure 38C). In wild type embryos, the subapical enrichment 

of Bazooka signal was visible as well as the lateral restriction of the Bazooka 

signal, whereas subapical Bazooka peaks were not visible in dia mutants. 

Instead elevated relative Bazooka signal was visible along the whole furrow. 

Apparently, by averaging the intensities of the Bazooka signal in all furrows, 

Bazooka signal was elevated along the lateral domain in dia mutants compared 

to wild type leading to the difference in the base lines (Figure 38C). The 

subapical peak was clearly visible in wild type embryos and showed a 

significant difference to the signal in dia embryos with a p-value < 0.001. 
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Subapical enrichment of Bazooka is delayed in dia embryos 

Next to the stainings against Bazooka in wild type and dia mutant embryos, I 

wanted to analyze the dynamics of Bazooka during cellularization in living 

embryos. For this purpose, I imaged wild type and dia mutant embryos 

expressing BazookaGFP in endogenous levels as already shown in Figure 24 

with a two-photon microscope in intervals of 10 min. (Figure 39). Timepoint 0 

was defined by the appearance of interphase 14 nuclei. In wild type embryos 

expressing BazookaGFP, subapical Bazooka signal got visible after around 40 

 

Figure 38 Dia is required for subapical Baz enrichment.  

(A-B) Images of fixed (A) wild type and (B) dia mutant embryos stained for Baz (grey/red), 

Arm (green) and DNA (blue). Merged images are shown in lower panels. (C) Heat maps (left) 

of relative fluorescence intensities of Baz signal measured along the apical-basal axis of 9 

furrows in 3 wild type and dia embryos. Averages (right) of relative fluorescence intensities 

plotted against apical-basal position. Bar represents difference of both genotypes at the peak. 

P< 0.0001. Dashed lines indicate SEM. Scale bar 10 µm. 
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min, a timepoint that should reflect mid cellularization (Figure 39A). 

However, as I did not introduce a membrane marker, the progress of 

membrane invagination could not be followed. In dia mutant embryos (Figure 

39B) the subapical BazookaGFP signal was only visible at a time point of 

around 50-60 min, that should reflect the end of cellularization. As the nuclei 

were not arranged in one horizontal plane at 60 min, gastrulation might have 

started at this time point. It is possible, that the delayed subapical BazookaGFP 

signal was due to the more dispersed localization of Bazooka in dia mutant 

embryos. However, it is also possible, that this is due to less BazookaGFP, as 

it was expressed homozygously in wild type and only heterozygously in dia 

mutant background.  

 

Figure 39 Dynamics of Baz-GFP during cellularization in wild type and dia embryos. 

(A-B) Images from a movie of (A) WT and (B) dia embryos expressing BazGFP during 

cellularization. Movies were taken with a 2-photon microscope to enable sagittal views. Scale 

bar 10 µm. 
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Canoe shows subapical localization in dia mutants but is dispersed along 

the lateral membrane 

The investigation of the localization of Bazooka and Armadillo during early 

cellularization is difficult because in stainings of fixed embryos, subapical 

signal is not reliably visible during this time points. To get further insight into 

subapical localization of marker proteins in dia mutants, I made use of the 

marker protein Canoe which shows reliable subapical localization already 

during early cellularization, as I could show before. Furthermore, Canoe is 

needed for subapical localization of Bazooka and its mislocalization in dia 

could be explained if also the restriction of Canoe from the lateral domain is 

defective. To examine Canoe in dia mutants, I stained fixed wild type and dia 

mutant embryos and quantified the fluorescence intensity of the Canoe signal 

as before for Armadillo and Bazooka (Figure 40).  

 

Figure 40 Dia is required for subapical Cno enrichment.  

(A-B) Images of fixed (A) wild type and (B) dia mutant embryos stained for Cno (grey/green) 

and Dlg (red). Merged images are shown in lower panels. (C) Heat maps (left) of relative 

fluorescence intensities of Cno signal measured along the apical-basal axis of 9 furrows in 3 

wild type and dia embryos. Averages are shown on right side. The difference of signal 

intensities is shown with a black bar. P < 0.0001. Dashed lines indicate SEM. Scale bar 10 µm. 
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Figure 40A, B shows wild type and dia embryos during early cellularization 

stained for Canoe and Dlg. In wild type embryos Canoe localized to the 

subapical domain and was restricted from apical and lateral domains whereas 

in dia Canoe is also visible at the lateral and also at the apical domain. To 

quantify if Canoe is not properly restricted from the lateral domain in dia 

mutants, I measured the fluorescence intensities along three furrows in three 

wild type and dia embryos as shown before (Figure 40B). In wild type embryos 

a clear subapical localization of Canoe was visible and also relatively weak 

signal along the lateral domain, whereas Canoe signal seemed not restricted 

from the lateral domain in furrows from dia embryos, as a relatively high 

Canoe signal was visible also at lateral positions. However, compared to the 

localization of Bazooka and Armadillo in dia, Canoe still showed a subapical 

peak. This made it possible to also normalize the apical-basal position from 

the measurements in dia to their peaks (Figure 40C). Also, the averages plotted 

in Figure 40C make clear. that a subapical peak could be detected in wild type 

as well as in dia embryos. However, the restriction of Canoe from the lateral 

domain was perturbed in dia, as the difference between the two relative 

fluorescence intensities of both genotypes was highly significant as 

represented by the bar in Figure 40C (p-value < 0.001). 

The localization of ELMO-Sponge depends on Dia 

The ELMO-Sponge complex showed subapical enrichment and was required 

for the local activation of Rap1 and subsequently localization of Canoe, 

Bazooka and Armadillo, as I could show before in part A of this thesis. The 

fact, that the proteins Canoe and Bazooka were mislocalized in dia mutant 

embryos lead to the analysis of their upstream factor Sponge in dia mutants. 

As performed for the other proteins, I stained fixed cellularizing wild type and 

dia embryos against Sponge and Dlg (Figure 41A, B). In wild type, Sponge 

signal was detectable along the whole cellularization furrow, but showed a 

clear enrichment at the subapical region (Figure 41A). Also, in dia mutants 

Sponge was detectable along the cellularizing furrow and also showed 

subapical enrichment although the staining gave the impression, that the 

subapical enrichment was not as clear as in wildtype and Sponge also seemed 

to spread into the apical domain (Figure 41B). To quantify the localization of 

Sponge, I measured the fluorescence intensity of the Sponge signal in 19 

furrows of four wild type and dia mutant embryos along the apical- basal axis 

as done before (Figure 41C).  
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As it was already visible in wild type, the heat maps showed subapical 

enrichment in wild type but also some protein could be found along the lateral 

membrane. The subapical enrichment was also detectable in dia embryos, 

 

Figure 41 Subapical enrichment of Spg in wild type and dia embryos.  

(A, B) Fixed cellularizing (A) wild type and (B) dia mutant embryos were stained against Spg 

(grey/ red), Dlg (grey/ green) and DNA (grey/ blue). Merged images and zoom ins are shown 

in right panels. (C) Heat maps of relative fluorescence intensities of Spg signal measured along 

the apical-basal axis of cellularization furrows of six wild type and eight dia embryos as 

indicated. Each row reflects one cellularization furrow. Averages of relative fluorescence 

intensities of Spg signal in wild type (blue) and dia (red) embryos were plotted against the 

apical- basal position (right side). Filled regions indicate SEM. Scale bars 10 µm, zoom ins 

2 µm.  
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however, like for Canoe, this enrichment was broader and relatively more 

protein could be detected along the lateral domain (Figure 41C, heat maps). 

This could be confirmed by the plot of the averages of the relative fluorescence 

intensities. Furthermore, the difference of relative fluorescence intensities at 

position 3.2 µm at the lateral domain was highly significant (p < 0.001).  

Taken together, I could show, that the function of Dia is necessary for 

subapical localization of Armadillo, Bazooka and Canoe and Sponge and also 

for their restriction from the lateral domain leading to the hypothesis, that Dia 

is involved in the formation of the subapical domain. However, it is still 

unclear, how Dia could mechanistically act on the positioning of subapical 

cues and their restriction from the lateral domain. 

 Dia and F-actin are enriched at the basal domain during 

cellularization 

F-actin is not enriched at the subapical domain during early and mid-

cellularization 

The cortex is built by filamentous actin underlying the plasma membrane and 

functions as a scaffold for proteins resulting in the possibility to form cortical 

domains. It was described before that F-actin is needed for subapical 

localization of Canoe and Bazooka, as perturbation of F-actin by injection of 

Latranculin A led to mislocalization of Canoe and Bazooka (Choi et al., 2013; 

Harris and Peifer, 2004). With this knowledge I examined the localization of F-

actin during cellularization to investigate if F-actin could directly or indirectly 

mediate the localization of subapical proteins. For this purpose, I stained fixed 

wild type embryos with fluorescently labeled Phalloidin which marks F-actin 

and Dlg (Figure 42A). During early cellularization, before nuclear elongation 

started, F-actin was still enriched at the actin caps and showed an enrichment 

at the tip of the invaginating furrow (Figure 42A, upper panel). With 

elongation of the furrow and flattening of the actin caps, the enrichment of F-

actin at the caps was lost, although an F-actin signal was still detectable along 

the apical and lateral membranes, whereas the enrichment at the basal furrow 

canal got even stronger with progressing membrane invagination (Figure 42A, 

panels 2-4). To analyze if F-actin localization is affected in dia, I stained fixed 

dia mutant embryos and stained for F-actin and Dlg (Figure 42B). During early 

cellularization, before nuclei elongation started F-actin was enriched at the 

apical caps and also at basal tips similar to wild type. The staining against Dlg 
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showed, that the lateral marker spread into the basal domain as described 

before (Yan et al., 2013).  

Dia and Rho signaling are enhanced at furrow canals 

The nucleation and elongation of F-actin is mediated by a group of proteins 

called formins to which Dia belongs. To investigate if Dia could mediate the 

subapical localization of Canoe, Bazooka and Armadillo, I stained fixed wild 

type embryos against Dia and Dlg (Figure 43). During mid cellularization 

(Figure 43, upper panel) Dia was enriched at the basal domain, like F-actin. 

Although Dia was visible along the whole furrow, a subapical enrichment 

could not be detected. During the end of cellularization, a subapical 

enrichment of Dia got visible (Figure 43, lower panel). It was described before, 

that Dia shows an active state in which it nucleates and elongates F-actin and 

an autoinhibited state (Großhans et al., 2005; Li and Higgs, 2003). However, 

the antibody against Dia did not discriminate between the two forms, so it was 

still possible, that an enrichment of active Dia at the subapical domain 

mediates subapical enrichment of Canoe, Bazooka and Armadillo during early 

and mid-cellularization.  

 

Figure 42 F-actin is enriched at furrow canals during cellularization.  

(A-B) Images of fixed embryos stained for F-actin (grey/ red), Dlg (grey/ green) and DNA 

(grey/ blue). (A) Wild type embryos during early, mid and late cellularization staged by 

furrow length. (B) dia embryo during early cellularization. Scale bar 10 µm. 
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To investigate the localization of active Dia, I overexpressed a dominant active 

version of Dia with deleted C- and N-terminus, tagged to GFP. The construct 

was driven by a maternal Gal4 driver line. However, I could only detect a salt 

a pepper like signal in the embryo with some cells showing GFP signal and 

others not. A specific signal could not be detected (data not shown). To 

circumvent these problems, I made use of an indirect assay to detect the 

localization of active Rho1, that could locally activate Dia. For this assay the 

Rho binding domain (RBD) of Anillin was N-terminally tagged with 

dtTomato, named as Rho-sensor, expressed under the control of a nanos-

promoter. Although the nanos-promoter is germline specific, the leakage of 

this expression system made it possible to detect the Rho-sensor also in 

somatic cells. It was described before, that the localization of the RBD is likely 

to reflect the localization of an active protein with RBD (Abreu-Blanco et al., 

2014). Figure 44 shows the dynamics of the Rho-sensor during Mitosis 13 (left 

panel), early cellularization (middle panel) and late cellularization (right 

panel) imaged in living embryos. The orthogonal views of z-stacks are shown 

in the bottom panels. During mitosis 13, the Rho sensor could be detected 

along the whole metaphase furrow. Whereas the Rho sensor was highly 

enriched at the basal domain during early and late cellularization in interphase 

14. Like F-actin and Dia the RBD-sensor could also be detected along the lateral 

and apical domains. A subapical enrichment could not be detected.  

Taken together, it is not likely that Dia and/or F-actin play a direct role in 

subapical localization of marker proteins, as no subapical enrichment of Dia 

or F-actin could be detected before late cellularization. Thus, it seems that Dia 

 

Figure 43 Dia is enriched at furrow canals during cellularization. 

Images of fixed wild type embryos during mid (upper panel) and late cellularization (bottom 

panel) stained for Dia (grey/ red), Dlg (grey, green) and DNA (grey/ blue). Scale bar 10 µm. 
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and F-actin have an indirect permissive function for the localization of 

subapical cues.  

 Diffusion of Canoe and integral membrane proteins is not 

affected in dia 

The mobility of Canoe during cellularization does not change in dia  

The actin cortex can influence the lateral diffusion of cortical proteins and 

cortical domains can be separated by diffusion barriers (reviewed in 

Honigmann and Pralle, 2016). As shown before, F-actin was still detectable at 

the invaginating furrows in dia mutants although the F-actin seemed somehow 

disorganized. Furthermore, the barrier between lateral and basal domain is 

not functionable anymore in dia mutants, with lateral proteins also leaking into 

the basal domain (Yan et al., 2013). To test if cortical Canoe at the subapical 

domain shows differences in dynamics in wild type compared to dia mutants, 

 

Figure 44 Dynamics of the Rho binding domain.  

Images of living embryos expressing the Rho binding domain labeled with tdTomato during 

Mitosis 13 (left panel), early cellularization (middle panel) and late cellularization (right 

panel). Top views with apical-basal position as indicated in lower right. Corresponding 

orthogonal views are shown in bottom panel. Scale bar 10 µm. 
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I quantified the recovery of fluorescence after bleaching in cellularizing 

embryos expressing CanoeYFP. By measuring the fluorescence intensities 

along the time after bleaching, the dynamics of the protein could be detected 

and investigated if different cortical properties in wild type versus dia mutant 

embryos could influence these dynamics. Figure 45 shows fluorescence 

recovery after photobleaching (FRAP) experiments in living CanoeYFP 

expressing wild type and dia mutant embryos.  

The bleaching was conducted 10 min after start of cellularization in the 

subapical region. To be able to follow the bleached region during the dynamic 

process of cellularization I imaged z-stacks with three slices and with a step 

 

Figure 45 Recovery of CanoeYFP after bleaching in wild type and dia during cellularization.  

(A-B) FRAP in living embryos expressing CanoeYFP. Images from movies of (A) wild type 

and (B) dia embryos. Timepoints are as indicated and the region of interest is marked by a red 

rectangle. (C) Averaged relative fluorescence intensities before and after FRAP of CanoeYFP 

in 3 wild type (red line) and dia (blue line) embryos. Fluorescence intensities of furrows in the 

region of interest are normalized to the peak and to fluorescence intensities of furrows outside 

of the region of interest (grey line) to correct for photobleaching. Scale bar 5 µm. 
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size of 1.5 µm in an interval of 30 seconds. In Figure 45A, B top views of wild 

type and dia embryos before, directly after and 60 s after bleach of several 

furrows were marked. The images show, that already after 60 seconds a high 

rate of recovery was reached. To quantify the fluorescence recovery, I 

measured the fluorescence intensities in the regions of interest of three 

embryos per genotype before and after bleaching, normalized to its peak and 

to fluorescence intensities outside of the bleached region to correct for 

photobleaching during imaging. The averages of relative fluorescence 

intensities were plotted against the time (Figure 45C). A significant difference 

in fluorescence recovery of CanoeYFP was not detectable between wild type 

and dia embryos. It seems, that dia did not influence the dynamics of CanoeYFP 

during the process of cellularization.  

The diffusion of 117GFP is not affected in dia preblastoderm embryos 

As also the lateral diffusion of integral membrane proteins is regulated by their 

connection to the underlying actin cortex (reviewed in Kusumi et al., 2005), I 

wanted to test if this is affected in dia embryos. For this examination I made 

use of the integral membrane protein 117, tagged with GFP and expressed 

under the control of the ubiquitin-promoter in wild type and dia mutant 

background. To get further insight into a more general influence of Dia on the 

cortex and the lateral diffusion of membrane proteins, I tested the recovery of 

117GFP in preblastoderm embryos in which only one cortical domain is 

existing. Figure 46A shows top views of wild type (upper panel) and dia 

mutant embryos in preblastoderm expressing 117GFP before and after 

bleaching. The bleached region is marked with blue and red circles as 

indicated. To evaluate the recovery speed of the 117GFP signal, I measured the 

fluorescence intensity of the region of interest in seven wild type and six dia 

embryos, normalized it to its peak and to the outside to correct for 

photobleaching. The averages were plotted against the time as shown in 

Figure 46B. The recovery of 117GFP signal after bleaching did not differ 

significantly between wild type and dia embryos. It seems, that general lateral 

diffusion of integral membrane proteins is not affected in dia mutants, at least 

not in preblastderm embryos with only one cortical domain.  
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 The effect of endocytosis on the formation of the subapical 

domain is dispensable  

Subapical localization of Bazooka does not depend on endocytosis 

It was reported, that Dia could stabilize the actin cortex by the formation of 

linear actin filaments and by this also preventing endocytosis, as in dia mutants 

an extended endocytic activity could be detected (Yan et al., 2013). In contrast, 

branched F-actin, produced by Arp2/3 could promote endocytosis by 

stabilizing the neck of the forming endocytic bud (reviewed in Robertson et 

al., 2009). Furthermore, it was described that endocytosis provides the 

 

Figure 46 Recovery of the integral membrane protein 117GFP in wild type and dia 

preblastoderm embryos.  

(A-B) FRAP in living embryos expressing 117GFP. (A) Images from movies of wild type 

(upper panel) and dia (lower panel) embryos. Timepoints are as indicated and the region of 

interest is marked by a blue (wild type) and red (dia) circle. (B) Averaged relative fluorescence 

intensities before and after FRAP of 117GFP in 3 wild type (blue line) and dia (red line) 

embryos. Fluorescence intensities in the region of interest were normalized to their peak and 

to a region outside of the bleached region (green) to correct for photobleaching. Scale bar 

10 µm. 
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invagination of the cellularization furrow by providing membrane material 

(Fabrowski et al., 2013; Lecuit and Wieschaus, 2000).   

To test if the defective formation of cortical domains in dia mutants is due to 

destabilization of the actin cortex and extended endocytosis, I made use of a 

temperature sensitive mutation in the gene shibire (shi). Shibire (Dynamin in 

vertebrates) is needed for the final scission of vesicles during endocytosis and 

without Shibire, cellularization cannot take place because membrane 

elongation stops as not enough membrane is provided (Fabrowski et al., 2013). 

To induce the mutation during early cellularization, I collected wild type and 

shibire embryos for 1.5-3.0 hours at room temperature and then heat shocked 

both collections for 0.5 hours at 37 °C in a water bath. The embryos were 

covered by water to prevent drying-out. Afterwards, the embryos were fixed 

following standard methods as described before (Figure 47A). Early and mid 

cellularizing wild type embryos showed subapical Bazooka enrichment and 

 

Figure 47 Subapical enrichment of Baz is not perturbed in shi embryos.  

(A) Scheme showing the process of induction of shi mutation. (B-C) Images of fixed wild type 

(B) and (C) shi embryos stained for Baz (grey/ red), Dlg (grey/ green) and DNA (grey/ blue). 

Merged images are shown in right panel. Scale bar 10 µm. 
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Dlg staining the lateral domain (Figure 47B). Embryos in which the mutation 

of shibire was induced before or at early cellularization displayed missing 

furrows and multiple nuclei in between two cellularization furrows. However, 

restriction of Bazooka from the lateral domain seemed not to be perturbed in 

furrows of early and late cellularizing embryos (Figure 47C), concluding that 

endocytosis did not have a direct function on formation and maintenance of 

the subapical domain. 

Rab proteins do not show a subapical enrichment during cellularization 

Rab proteins belong to the family of GTPases and are known as regulators of 

intracellular transport by vesicle trafficking (reviewed in Zerial and McBride, 

2001). As I investigated the role of endocytosis for the formation of the 

subapical domain, I analyzed the localization of several YFP-tagged Rab 

proteins during early embryogenesis. For this analysis I made use of fly lines 

which control the YFP-tagged Rab proteins endogenously (yRab lines; Dunst 

et al., 2015). An interesting candidate was Rab35 that regulates the terminal 

steps of endocytosis during cell division in Drosophila S2 cells by controlling 

Septin and the subcellular distribution of PIP2 (Kouranti et al., 2006). 

Furthermore, it was found to regulate the formation of filopodia in S2 cells and 

the assembly of actin filaments in the process of bristle development (Zhang 

et al., 2009). To analyze the localization of yRabs, I stained fixed embryos 

expressing yRabs with the GFPbooster to detect the YFP-tagged Rab and Dlg 

and Slam to mark lateral and basal domains. During the course of 

cellularization I could detect yRab35 along all domains with no specific 

enrichment at the subapical domain (Figure 48). During late cellularization, I 

could detect Rab35 positive compartments marking endocytic vesicles as 

described before for gastrulation (Jewett et al., 2017).  
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Rab23 that was described to play a role in the activation of the planar cell 

polarity and inhibits hair formation at positions outside of the distal vertex 

(Pataki et al., 2010), was also found to be expressed during early 

embryogenesis. I stained embryos expressing YFP-Rab23 as explained before 

Figure 49. During mitosis 13 YFP-Rab23 localized to the apical and the lateral 

domain of metaphase furrows and during interphase 13 it was found at actin 

caps. During celullarization I could detect Rab23 puncta along all cortical 

domains without any specific enrichment.   

 

 

Figure 48 yRab35 localizes to all cortical domains during cellularization.  

Fixed cellularizing wild type embryos expressing YFP-Rab35 stained by GFP booster (grey/ 

green), Dlg (grey, blue) and Slam (grey/ red). Stages are as indicated. Merged images are 

shown in right panel. Upper panels show side views and lower panels top views of 

representative lateral positions. Scale bars 10 µm. 
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 Cortical F-actin is polarized and this organization depends 

on Dia 

Dia is enriched at the rims of actin caps 

The function of Dia and F-actin on the formation of cortical domains seems not 

to be direct but more permissive, allowing the marker proteins to localize to 

their associated domains. As I could show, that F-actin is still present in dia 

mutants, the mislocalization of the marker proteins in dia was not due to 

 

Figure 49 Localization of yRab23 during early embryogenesis.  

Fixed cellularizing embryos expressing YFP-Rab23 stained with GFPbooster (grey/ green), Dlg 

(grey/ blue) and Slam (grey/ red). Stages are as indicated. Upper panels show side views, 

lower panels top views of a representative lateral position. Merged images are shown in right 

panels. Scale bar 10 µm. 
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missing F-actin. However, the F-actin of the cellularization furrow seemed to 

be loosened up and somehow misorganized in dia compared to wild type 

during cellularization (Figure 42B). To test if the actin cortex shows an 

organization or polarization, I stained fixed wild type embryos against Dia 

and F-actin (Figure 50). Dia is known to bind to the barbed or plus-ends of the 

actin filaments where they are elongated by Dia (Moseley et al., 2004). During 

interphases of syncytial blastoderm, F-actin marked the actin caps and also 

Dia was visible at the actin caps but did not show a complete overlap with F-

actin and seemed more enriched at the rims of the actin caps (Figure 50).  

Cpa localizes to enriched barbed ends of actin filaments at rims of caps 

As I also intended to analyze the cortical organization in dia mutants, I made 

use of another plus-end binding protein, named Capping protein alpha (Cpa) 

(Isenberg et al., 1980). The capping protein heterodimer consisting of Capping 

protein alpha and beta binds to the barbed ends of actin filaments, inhibiting 

the addition of actin monomers to the filament (Isenberg et al., 1980). Recently, 

it was shown, that the apical cortical actin network of epithelial cells during 

ventral furrow formation is organized in a way, that the plus ends are enriched 

at the junctions whereas the minus ends are in the medial part, playing a role 

in Myosin organization and contraction and following apical constriction 

(Coravos and Martin, 2016; Lv and Großhans, 2016).  

To confirm, that the cortical F-actin also shows an organization in syncytial 

embryos during interphase 13, mitosis 13 and early interphase 14, I stained 

fixed wild type embryos against Cpa and F-actin (Figure 51). Indeed, during 

 

Figure 50 Dia localization to actin cap rims in syncytial blastoderm wild type embryos. 

Fixed wild type embryos during a syncytial blastoderm interphase stained against Dia (grey/ 

green), F-actin (grey/ red) and DNA (blue). Upper panels represent the side view and lower 

panels the corresponding top view. Merged images and zoom ins are shown in right panels. 

Scale bars 10 µm. 
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interphase 13, Cpa localized to the actin cap without complete overlap with F-

actin, but enrichment at the rims of the caps (Figure 51, upper panels).  

In mitosis 13, Cpa localized along the metaphase furrow without an 

enrichment at a specific domain (Figure 51, middle panels), and during early 

interphase 14, the localization to the rims of the actin caps got even more 

obvious (Figure 51, lower panels). The shown data indicated, that the cortical 

F-actin in caps during syncytial development is organized with F-actin plus 

ends pointing to the rims of the actin caps.  

The separation of cap and intercap domain is functional in dia mutants 

Before I investigated the localization of Cpa in dia mutant embryos, I wanted 

to clarify if the separation of cap and intercap domains is functional in dia 

 

Figure 51 Cpa enrichment at the rims of actin caps during syncytial blastoderm in wild type 

embryos.  

Staining against Cpa (grey/ red) and F-actin (grey/ green) during interphase 13, mitosis 13 and 

interphase 14 in wild type embryos as indicated. Scale bar 10 µm. 
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mutants as the domain separation is perturbed during cellularization. For this 

I stained F-actin in wild type and dia embryos expressing MyoII tagged with 

3x GFP (Figure 52). In both genotypes the domains were clearly separated and 

did not show any overlap, although intercap staining by MyoII seemed to be 

more punctate and less continuous in dia mutants (Figure 52B). 

Cpa is less enriched at actin cap rims of dia embryos 

Since I could show, that the actin caps of syncytial embryos show an 

organization of the cortical actin with plus ends to the rims, I next compared 

this organization in wild type and dia mutant embryos. For this I stained wild 

type and dia mutant embryos against Cpa and F-actin (Figure 53). For optimal 

comparison, I used dia mutant embryos, expressing a GFP-tagged Myosin and 

stained both genotypes in the same tube and mounted them on the same slide. 

The mutant embryos could be detected by GFP fluorescence. In early 

interphases 12 and 13 Cpa could again be detected enriched at the rims of actin 

caps as shown by side and top views in wild type embryos (Figure 53A). In dia 

mutants, this enrichment seemed to be broader and less stringent than in wild 

type (Figure 53B). Especially in the side views Cpa seemed to be distributed 

equally over the whole actin cap. Concluding from this staining, I could show, 

that the organization of the cortical actin seemed to be loosened up in dia 

mutants. 

To confirm the effect of Dia on the organization of the cortical actin network, 

which I could show by the staining, I quantified the enrichment of the signal 

 

Figure 52 The separation of cap and intercap domains in wild type and dia embryos. 

Top views of fixed interphase embryos during syncytial blastoderm stained for F-actin by 

Phalloidin (grey/ red), MyoII by GFPbooster (grey/ red) and DNA (blue). Genotypes are (A) 

wild type and (B) dia. Scale bar 10 µm. 
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of the staining against Cpa at the rims of the actin caps (Figure 54). For this 

purpose, I measured the fluorescence intensity along a line with a width of 10 

pixel which was placed over the rim of the actin cap (Figure 54A). I measured 

in total 98 rims of three wild type and 108 rims of three dia embryos, which 

were in interphases 11-13.  

The stage was estimated by the size of nuclei and actin caps. To plot the 

measurements as a graph in a comparable manner, I normalized every 

measurement to its peak and calculated the mean value for each embryo 

(Figure 54B). From this data, it gets clear, that the measurements of all three 

embryos per genotype were comparable, so that the stage of the syncytial 

blastoderm embryo did not influence the enrichment of Cpa at the rim. 

Furthermore, the data could show that the Cpa enrichment at the rims of the 

caps is less prominent in dia mutants, with a much broader distribution of Cpa 

at the rims of actin caps. To confirm, that the difference in Cpa distribution 

was significant, I measured the width of the curves of every measured cap of 

wild type and dia at a relative fluorescence intensity of 0.8 and plotted the 

width as box plots (Figure 54C). The average width of wild type was around 

0.6 µm compared to 1.5 µm in dia and the difference of both was highly 

significant with a p-value of less than 0.001.  

 

Figure 53 The Cpa signal at the rim of actin caps gets broader in dia mutants.  

Staining against Cpa (grey/ green), F-actin (grey/ red) and DNA (grey/ blue) of fixed wild type 

and dia mutant embryos during syncytial blastoderm interphases. Scale bar 10 µm. 
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In order to circumvent the arbitrary selection of a fluorescence intensity at 

which I measured the width of the curve, I included another method to 

describe the form of the curves of Cpa enrichment in wild type and dia 

mutants. For this I selected the averaged data from the three wild type and dia 

embryos, which are shown in Figure 54B, from -1.6 to 1.6 µm, mirrored the 

data at an x-value of 0 and then fitted exponential curves to the six wild type 

and dia curves, which are shown in Figure 55A. An example for one fitted 

curve is shown in Figure 55B. The exponential decay (t1), that reflected the 

 

Figure 54 Cpa enrichment at cap edges in wild type and dia syncytial blastoderm embryos.  

(A) Interphase 11 wild type embryo stained against Cpa. The red line marks how 

measurement of fluorescence intensity along the rim of actin caps was performed. (B) 

Averages of relative fluorescence intensities of three wild type (blue line) and dia (red line) 

embryos were plotted against the position left and right to the cap edge. Measured 

fluorescence intensities were normalized against its maximum and aligned to 1. Error bars 

represent SEM. (C) The width of the curves was measured at a relative fluorescence intensity 

of 0.8 for all single measurements (wild type= 98, dia= 108) and plotted as boxplots for both 

genotypes. P < 0.001. Scale bar 5 µm. 
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shape of the curve, was then used as coefficient to describe the shapes of the 

curves and plotted for wild type and dia embryos (Figure 55C). The mean 

exponential decay of Cpa enrichment at the actin cap in wild type embryos 

was around 0.5 compared to around 1.3 in dia. This reflected the flatter shaped 

curve in dia compared to wildtype. Concluding from this data, I could show 

that Dia is responsible for the organization of the cortical actin network with 

the plus ends directing to the rims of actin caps. 

 

Figure 55 Cpa enrichment at cap rims in wild type and dia. 

(A) Relative fluorescence intensities of Cpa staining measured from the edges of actin caps in 

wild type (blue) and dia (red) embryos. Each data point reflects the averages from one embryo. 

(B) Example of a fitted exponential curve to the data points from one wild type embryo. t1 is 

the exponential decay. (C) The coefficient based on the exponential decay plotted for wild type 

and dia as indicated. Horizontal bars represent the mean and error bars SEM. P < 0.001. 
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The amount of F-actin does not change in caps of dia embryos 

The stainings of F-actin in wild type and dia and the disorganized F-actin 

cortex in dia mutants led to the impression, that the amount of cortical F-actin 

was not significantly different, although Dia is the only formin that is known 

to play a role during cellularization. To assure, that the disorganization of the 

actin cortex in dia is not due to a reduced amount of cortical F-actin, I imaged 

the co-stained wild type and dia embryos with same laser intensities and 

settings and measured the fluorescence intensity of the signal (Figure 56). In 

Figure 56A examples of wild type and dia syncytial embryos are depicted. The 

images showed no visible difference in F-actin intensity. Imaging was done by 

conducting z-stacks of interphases during syncytial development and then 

summarized. Four frames of a size 256x256 pixel were measured per embryo 

for fluorescence intensity, which was plotted for both phenotypes (Figure 

56B). In total three embryos per phenotype were measured and the mean value 

is shown as vertical line in the plots. The embryos were chosen by cap size and 

nuclear size to measure comparable stages. The measurement showed, that 

indeed no significant difference in fluorescence intensity of the F-actin signal 

between wild type and dia could be detected, so the disorganization of the 

cortical F-actin seemed to be dependent on Dia directly.  

 

Figure 56 Fluorescence intensity of F-actin in wild type and dia syncytial blastoderm embryos.  

(A) Wild type and dia embryos were co-stained against F-actin by Phalloidin (grey/ red) and 

DNA (grey/ blue). Merged images are shown in right panels. The interphase embryos were 

imaged with same laser intensities and settings and the conducted z-stacks were summarized. 

(B) Four frames of three embryos per genotype were measured for fluorescence intensities and 

plotted. The mean is shown by a vertical line and error bars represent SEM. Scale bar 10 µm. 
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Cpa is misorganized in dia embryos during early cellularization 

Next to the localization of Cpa in syncytial blastoderm interphases, I also 

analyzed the localization of Cpa during early cellularization in interphase 14. 

Staining of wild type and dia mutant embryos against Cpa and F-actin by 

Phalloidin are shown in Figure 57. In early cellularizing wild type embryos, 

Cpa was still detectable at the rims of the actin caps and was enriched at the 

basal tips of the invaginating cellularization furrows as shown in the side 

views in Figure 57A. The top views of wild type embryos show a sharp 

enrichment of Cpa and F-actin in a hexagonal pattern, marking the 

invaginating membrane. In cellularizing dia mutant embryos, Cpa and F-actin 

were detectable at the caps and the cellularization furrow with enrichment at 

the basal tips. However, also during early cellularization, the enrichment of 

Cpa at the rims of the actin caps was not visible in the side view (Figure 57B). 

Cpa and F-actin also marked the invaginating furrows in dia mutant embryos 

as shown in the top view (Figure 57B), but also here the signal seemed not as 

sharp as in wild type. 

 

  

 

Figure 57 Cpa and F-actin enrichment at actin caps and basal tips in wild type and dia during 

early cellularization. 

Fixed (A) wild type and (B) dia mutant embryos were stained against Cpa (grey/ green), F-

actin by Phalloidin (grey/ red) and DNA (grey/ blue). Merged panels, with a zoom-in, are 

shown in right panels. Side views of both genotypes are depicted in the upper panels, top 

views in lower panels. Scale bar 10 µm. 
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 Discussion 

 Introduction 

In part A of my thesis, I could show, that the unconventional GEF ELMO-

Sponge is upstream of the pathway to form the subapical domain. It is likely, 

that subapically enriched ELMO-Sponge activates Rap1 to localize subapical 

proteins. Furthermore, I proposed the hypothesis, that ELMO-Sponge 

relocalize with onset of cellularization and onset of zygotic gene expression 

from a more disc like pattern to a ring-like pattern that marks the position of 

the subapical domain.  

However, it was still not clear how this relocalization could happen and how 

the position of the ELMO-Sponge ring could be defined. In the second part of 

my thesis, I described the function of the formin Dia on the restriction of 

subapical proteins to their cortical domains and investigated how Dia could 

affect the organization and polarity of the cortical actin filaments and the 

function of F-actin polarity on cortical domains.  

 Dia acts indirectly on subapical cues 

In the second part of my thesis, I examined the role of Dia on the formation of 

the subapical domain. I could show, that Dia influences the subapical 

restriction of Sponge, Canoe, Bazooka and Armadillo during early and mid-

cellularization as this was affected in dia mutant embryos. As described before, 

Dia does not only play a role during the formation of the subapical domain 

but also restricts proteins of the lateral domain from spreading into the basal 

domain (Yan et al., 2013). However, the role of Dia in separating lateral from 

basal domain seems to be more indirect. Dia, that is enriched at the basal 

furrow canal, nucleates and elongates filamentous actin, stabilizing the actin 

cortex of the basal domain and reducing membrane turnover at this position. 

In dia mutants, the weakening of the basal cortex could lead to spreading of 

lateral proteins into the basal domain. Interestingly, basal markers, like Slam, 

stay restricted to their domain, which could not be explained yet (Yan et al., 

2013).  

Although Dia has an influence on the subapical enrichment of all tested 

proteins, their localization in dia mutants was different. Whereas Sponge and 

Canoe still showed subapical enrichment in dia and leaked into the lateral 

domain in higher amounts than in wild type, Bazooka and Armadillo 

completely lost subapical enrichment. Interestingly, both Sponge and Canoe 
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are on top of the subapical domain formation pathway directing Bazooka, 

which itself directs Armadillo, to its subapical position during the course of 

cellularization (Choi et al., 2013; Schmidt et al., 2018). By this observation, I 

hypothesize that the formation of the subapical domain does not only depend 

on Dia. Furthermore, the localization of the marker proteins seems to be 

refined, possibly within this pathway or yet unknown proteins playing a role 

on this pathway. A hint for this hypothesis is, that Canoe is not only dependent 

for proper subapical localization of Bazooka during cellularization but also 

Bazooka acts on Canoe localization in a reverse loop (Part A, Choi et al., 2013). 

Possibly, reverse loops could help to insure the correct set up of the subapical 

domain during cellularization.  

Furthermore, one has to keep in mind, that the diasy5 allele is described as 

hypomorphic. Although I was not able to detect protein by staining or western 

blot, it is still possible, that there is still some residual amount of functional 

protein. Although there is a dia allele (diasy1) available, that has a premature 

stop codon at position 455, it is not possible to test the localization of subapical 

proteins in mutant embryos of these alleles, as female flies carrying the 

mutation in their germline do not lay eggs. Another possibility to test how the 

subapical proteins behave, is to use a formin inhibitor (SmiFH2) which it at 

least described to function on vertebrate formins in cell culture (Isogai et al., 

2015). Furthermore, several other proteins belonging to the class of formins are 

described in Drosophila (reviewed in Bogdan et al., 2013). Although a function 

for other formins in the process of cellularization is not described, it is still 

possible that another formin could, at least partially, substitute for Dia 

function. 

 Less Dia does not lead to less cortical F-actin 

As I could not detect a subapical enrichment of Dia, Rho signaling or F-actin 

during early or mid-cellularization, I suspected, that Dia does not play a direct 

role in positioning of subapical marker proteins. That arises the question, how 

Dia could act on these proteins. As explained before, Canoe and Bazooka bind 

both to a cortical F-actin scaffold (Choi et al., 2013; Harris and Peifer, 2005) and 

as Dia can nucleate and elongate F-actin (Yan et al., 2013), I tested how the 

cortical F-actin network is affected in dia mutants. Surprisingly, I could still 

detect F-actin along the cellularization furrow, although the cortical F-actin 

seemed to look more unorganized than in wild type. Furthermore, the 
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quantification of F-actin amounts at the actin caps of wild type and dia mutant 

embryos during syncytial blastoderm interphases revealed, that there is no 

significant difference. From this data I concluded, that the amount of cortical 

F-actin is not changed in dia during syncytial blastoderm and cellularization 

and I hypothesize, that the mislocalization of subapical proteins is not due to 

a reduced amount of a cortical F-actin scaffold.  

Again, the fact that I could not find a difference in F-actin amount in wild type 

and dia could, at least partially be an effect of the hypomorphic mutation. 

However, other actin nucleators and elongators could at least partially 

overtake this function in dia mutant embryos. For syncytial blastoderm 

interphase caps, it was described before, that the Arp2/3 complex, that can 

produce branched F-actin, is needed for the formation of functional caps and 

cortical F-actin (Zallen et al., 2002). In contrast, Dia is needed for the formation 

of metaphase furrows during syncytial blastoderm, as these are absent also in 

diasy5 mutants. However, several formins are described for Drosophila, but 

either mutants of these formins, like Cappuccino, Frl, Fhod1, did not show 

phenotypes during cellularization or they were not tested yet.  

 The polarization of cortical F-actin defines the interphase 

of cap and intercap domains 

I could show, that Dia seems acts on the formation of subapical proteins 

indirectly and also not by being responsible for the cortical F-actin scaffold to 

bind the subapical proteins. So, the question remained how Dia could affect 

the domain formation. Dia is described to bind to the barbed or plus ends of 

F-actin filaments to elongate it (Higashida et al., 2004) and I could show that 

Dia is enriched at the rims of actin caps during syncytial blastoderm 

interphases. From this data I hypothesized, that the cortical actin filaments of 

the caps could show a polarized distribution with plus ends enriched at the 

edge of the caps. This hypothesis was supported by staining against Capping 

protein alpha (Cpa), that is also a plus end binding protein. The capping 

protein heterodimer, that consists of alpha and beta subunit was described 

before as F-actin regulator and tumor suppressor module in human and 

Drosophila. The regulation of Cpa in vivo was described in Drosophila wing disc 

cells (Amândio et al., 2014). The authors of this publication could show, that 

Cpa and Cpb are enriched at adherens junctions in the wing disc epithelium. 

Overexpression of both proteins led to a decrease in apical F-actin levels and 
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a reduction in cell size, whereas expression of mutated versions that have a 

dominant negative effect resulted in increased F-actin levels and tissue 

overgrowth. During ventral furrow formation in gastrulation, the polarized 

apical F-actin network is required for apical constriction of epithelial cells 

(Coravos and Martin, 2016; Lv and Großhans, 2016). The F-actin network with 

the plus ends enriched at the peripheral adherens junctions provides the basis 

for MyoII that moves towards the plus ends of actin filaments, generating the 

force that is needed for apical constriction. As these studies provide evidence 

for a polarized cortical F-actin network in polarized epithelial cells, I tested the 

hypothesis that this is also true during syncytial blastoderm development. By 

staining against Cpa I could not only show that F-actin plus ends were 

enriched at the edges of actin caps but also that this was dependent on Dia. 

The sharp line of Cpa surrounding the actin caps was broadened in dia 

mutants. Furthermore, at onset of cellularization, I could detect Cpa enriched 

along the whole actin cap and not at the edges as it was in wild type. These 

observations led to the hypothesis, that Dia is responsible for the organization 

of cortical F-actin, with plus ends being enriched at the edges of the interphase 

caps and also organizing the cortex of the cellularization furrow.  

The fact that cap domains and the cellularization furrow show a polarization 

of their cortical F-actin that is dependent on Dia leads to the question how this 

polarization could affect the formation of new cortical domains. I hypothesize 

that the polarization with the F-actin plus ends at the rim of the cap domain 

could help to define the interface of two domains (Figure 30). In the case of 

actin caps the interface of cap and intercap domain. By this definition of the 

interface, the position of the newly inserted subapical domain during onset of 

cellularization could be determined.  

Following this hypothesis, the question how this could be done 

mechanistically arises. Firstly, the polarized actin cytoskeleton could lead to a 

polarized transport of subapical proteins to the area of the newly formed 

domain. Secondly, the polarization of the cortical F-actin could somehow lead 

to a spatial restriction of proteins bound to this scaffold (Figure 58). Thirdly, it 

is possible, that the polarized cortical actin network is involved in MyoII flows 

especially during onset of cellularization. Cortical flows of MyoII are known 

to play a crucial role in various processes by the generation of local forces for 

example in apical constriction (Munjal et al., 2015), cytokinesis (DeBiasio et al., 

1996) or embryonic polarity (Munro et al., 2004). A recent publication also 
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showed cortical MyoII flows with onset of cellularization (He et al., 2016). Here 

the authors could show, that MyoII is recruited by the yet uncharacterized 

protein Dunk. Possibly, the cortical MyoII flow is supported by the polarized 

actin cytoskeleton at the onset of cellularization. To test this hypothesis MyoII 

flows in wild type versus dia mutant embryos could be analyzed. 

 Midblastula transition as a switch for introduction of a new 

domain 

As I could show in part A of my thesis and discussed before, the switch from 

maternal to zygotic gene expression by midblastula transition is responsible 

for the switch in ELMO-Sponge localization from a disc- to a ring-like 

distribution. For the polarization of the actin cytoskeleton I detected a ring-

like enrichment of plus ends at the rims of the cap domain throughout the 

whole syncytial blastoderm interphases. Concluding, that the polarized 

cortical actin does not need the input of a zygotically expressed protein. This 

observation strengthens the hypothesis, that the zygotic expression of a 

“master regulator” is responsible for the localization change of ELMO-Sponge 

and the formation of the subapical domain. Taken together, I hypothesize that 

the polarized cortical F-actin scaffold provides a prepattern for the definition 

of the interface between cap and intercap domain that is read out by a 

zygotically expressed, yet unknown, master regulator. This master regulator 

could then directly or indirectly regulate the change in localization of ELMO-

Sponge during onset of cellularization and with this control the spatial 

information for the direction of subapical proteins. It would be not surprising 

if this master regulator would be a transport protein, that moves along actin 

 

Figure 58 Influence of a polarized actin cortex on the formation of a cortical domain. 

Before MBT the actin cortex of actin caps is already polarized but ELMO-Sponge still localize 

in a disc-like fashion. After MBT the polarized actin network leads to redistribution of ELMO-

Sponge to the interface of cap and intercap domains and formation of the subapical domain 

by activation of the downstream players. 
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filaments or along microtubules that could also be polarized similar to the 

cortical F-actin.  
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 Abstract 

The role of Formin-like protein (FMNL) on the formation of adherens junctions 

and actin dynamics in vertebrates makes its Drosophila homolog a good 

candidate for playing a role during the process of cellularization. The protein 

belongs to the Dia-family and the vertebrate version is known to nucleate and 

elongate F-actin. The fact, that FMNL was found in a Yeast-two-hybrid screen 

as a possible interactor of Slam, that is needed for the invagination of 

cellularization furrows, made it a good candidate to investigate if there is a 

function during cellularization. For this analysis a mutant allele of FMNL 

should be generated. However, I could not find a phenotype. Though I found 

that P/Def flies that resulted from a cross of flies with an introduced P-element 

into the genetic region of FMNL to flies with a large deficiency spanning over 

the genetic region of FMNL (P/Def flies) expressed less amounts of FMNL by 

real time quantitative PCR. P/Def flies were viable and fertile but showed 

reduced fitness and could not be kept as a stock. Embryos from these flies 

showed a reduced viability in embryonic to pupal stages. To analyze the 

localization of FMNL and to do further biochemical analysis, I purified an 

antibody generated against the N-terminus of FMNL. However, stainings with 

antibody sera and western blot analysis with sera and purified antibodies did 

not reveal a specific signal. I was successful in the generation of a transgenic 

fly line expressing FMNL tagged to a GFP driven by its own promotor. 

Imaging of embryos, as well as in situ hybridization of wild type embryos 

revealed the expression of mRNA and protein from early embryogenesis on. 

Also, the dissection of larval and adult tissues revealed FMNL-GFP 

expression. Strong expression of FMNL-GFP in the larval brain was further 

analyzed and could be detected in cells expressing a glial cell marker, giving 

rise to the hypothesis, that FMNL could play a role in the development of the 

central nervous system.  
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 Introduction 

 Proteins of the formin family in Drosophila 

Proteins that belong to the formin-family are known to nucleate and/ or 

elongate filamentous actin. They are defined by a unique and highly 

conserved C-terminal formin homology 2 (FH2) domain that mediates the 

effects on actin (Wallar and Alberts, 2003). The Drosophila genome contains six 

genes encoding proteins with FH2 domains. Next to Diaphanous (Dia) there 

are Cappucino (Capu), DAAM, Formin 3, Fhos and FMNL (Frl in flybase). 

The formin which is best researched in Drosophila is Dia. Among functions 

during various cytokinetic events like spermatogenesis, follicle cell formation 

or neuroblast division, Dia also contributes to early embryogenesis (Part 

B,Afshar et al., 2000; Castrillon and Wasserman, 1994). Embryos lacking 

maternal Dia have perturbed metaphase furrow formation, lack pole cells and 

have defects during gastrulation (Afshar et al., 2000). Capu and Fhos do not 

show phenotypes during early cellularization. They have functions in 

oogenesis and tracheal development (Emmons et al., 1995; Lammel et al., 

2014). Also for DAAM and Formin 3 no functions in early embryonal 

development are described, they have functions in tracheal development and 

muscle development (Matusek et al., 2006; Molnár et al., 2014; Tanaka et al., 

2004).  

For FMNL, which potential function for cellularization should be investigated 

during this study, there is also no function during early embryogenesis 

described, yet. However, Dollar et al. (2016) could show, that FMNL functions 

in planar cell polarity during eye development and, together with DAAM, in 

axon growth in the mushroom body of the brain. In flies lacking FMNL or 

overexpressing dominat negative FMNL the omnatidial rotation is affected. 

Dollar et al. (2016) could also show, that Drosophila FMNL is autoinhibited 

and activated by Cdc42, like its mammalian homologe.  

 Formin-like (FMNL) is the sole homolog in Drosophila 

In vertebrates Formin-like Proteins (FMNL) build a group of three members, 

whereas only one FMNL exists in Drosophila.  

The function of vertebrate FMNL was researched in different cell culture 

models. In human breast cancer cell lines in 3D culture, FMNL2 is required for 

the formation of adherens junctions downstream of Rac1 (Grikscheit et al., 
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2015). The authors could show, that FMNL2 is not only needed for actin 

assembly and turnover at the adherens junctions, but also that FMNL2 can be 

recruited to the plasma membrane by Rac1 activity. Another function that was 

shown in this publication is that FMNL2 is also involved in lumen formation 

of these cell epithelia. Together the data from this study indicate a function for 

FMNL2 in the formation of human epithelia.  

Another role for mammalian FMNL2 was described in mouse B16-F1 

melanoma cell culture (Block et al., 2012). These cells are motile and built large 

lamellipodia and filopodia especially when plated on fibronectin or laminin 

coated surfaces (Xue et al., 2010). In these cells FMNL2 was not only expressed 

endogenously but also had a function in the formation of lamellipodia as the 

protrusion rate of lamellipodia was reduced by knock down of FMNL2 (Block 

et al., 2012). With this also the migration rate of the cells was reduced. Another 

study in this cell culture system revealed that FMNL2 regulates vesicle 

trafficking and cell polarity downstream of Cdc42 (Kage et al., 2017a) and it 

has been shown that it elongates F-actin in vitro (Block et al., 2012). In contrast 

to the work in breast cancer cells described before, an activation by Rac1 could 

not be detected (Block et al., 2012). Instead, Block et al. (2012) describe the 

activation of FMNL2 downstream of Cdc42. This is consistent with the study 

of Dollar et al. (2016) in which an activation by Cdc42 could also be shown for 

Drosophila FMNL. Dollar et al. (2016) described a role for FMNL in 

establishment of polarized planar polarity during ommatidial rotation in eye 

development of Drosophila. Other studies provide a role for mammalian FMNL 

in colorectal cancer (Li et al., 2010).  

The domain structure of FMNL2, which also resembles the domain prediction 

of Drosophila FMNL, is related to Dia, another member of the formin-protein 

family. Figure 59 shows the domain structure of FMNL (reviewed in Kühn 

and Geyer, 2014). The N-terminal regions contain the Diaphanous inhibitory 

domain (DID) which is necessary for autoinhibition of the protein by binding 

to the C-terminal Diaphanous autoregulatory domain (DAD). This 

autoinhibition can be released by binding of small GTPases to the N-terminal 

GTPase-binding domain (GBD). C-terminal to the DID domain a dimerization 

domain (DD) which is necessary for the formation of dimers in the active form 

of the protein is followed by a coiled-coil domain (CC). The formin homology 

1 and 2 domains (FH1, 2) which comprise the C-terminal half of the proteins, 

are needed for the nucleation and elongation of F-actin. The FH1 domain binds 
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the profilin-G-actin-complex whereas the FH2 domain incorporates the G-

actin into the F-actin filament. Formins of the Diaphanous family do not only 

show a similar domain structure but also related regulation (reviewed in Kühn 

and Geyer, 2014). In the autoinhibited state, the protein forms a ring-like 

structure, which is resolved by binding of a small GTPase. For FMNL it is 

known, that the small GTPase Cdc42 can activate the protein, whereas Dia is 

activated by Rho GTPases. Furthermore, another co-factor can be necessary to 

fully activate the formin.  

 Aim of this study 

In this study, the function of FMNL during early embryogenesis should be 

investigated. This should be done by the making of a mutant by imprecise 

excition of a P-Element or CRIPSR mutagenesis. Furthermore, the expression 

and localization of RNA and protein should be analyzed in early embryos by 

western blot, in situ hybridization, antibody staining and the generation of a 

GFP-tagged transgene expressed by its own promoter. 

  

 

Figure 59 Domain structure of FMNL.  

Shown is the known domain structure of Drosophila FMNL. (GBD) GTPase-binding domain, 

Diaphanous inhibitory domain (DID), dimerization domain (DD), coiled-coil domain (CC), 

Formin homology domain 1, 2 (FH1, FH2), Diaphanous autoregulatory domain (DAD). 
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 FMNL was found to be an interactor of Slam by Yeast-Two-

Hybrid-Screening 

The formin FMNL (CG32138) was found to be a possible interactor with Slam 

in a Yeast-Two-Hybrid-Screen (Hybrigenics services; Dr. Philip Laupsien, 

PhD dissertation) and therefore may play a role for cellularization. A detailed 

analysis could demonstrate, that the FH2 domain of FMNL and a C-terminal 

Slam-fragment show a weak interaction whereas an interaction with full-

length Slam could not be detected (Dr. Philip Laupsien, PhD dissertation). 

The role of FMNL for cellularization, gene expression and protein localization 

should be characterized during this study. However, during this work, the 

generation of a null mutant by imprecise excision of a P-element or CRISPR 

mutation did not lead to a phenotype. 

 Embryos from P/Def flies show reduced amount of FMNL-

RNA and reduced viability 

P/Def flies are viable and fertile 

As the generation of a mutant did not lead to a phenotpye, a deficiency line 

with full deletion of the FMNL gene (Figure 60) and a fly line with a P-element 

inserted into the 5’ UTR of FMNL (Figure 61) were used for further analysis. 

 

Figure 60 Genetic map of FMNL-deficiency.  

Genetic locus of FMNL (frl). The deletion of the used deficiency line Df(3L)ED4528 is indicated 

with a black line. Taken from flybase.org. 
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Both lines are homozygous lethal, however, the P-Element line carries a 

second lethal, as it was homozygous viable and fertile after cleaning of the 

chromosome by recombination. However, it was not possible to hold 

homozygous flies as a stock. Also, the deficiency line was homozygous lethal, 

as other essential genes were also deleted. Crossing both together, resulted in 

flies carrying one allele of the P-element insertion and one allele deficient for 

3L:14,030,141-14,070,123, from now on named as P/Def flies. These flies were 

viable and fertile but could also not be kept as a stock.  

Embryos from P/Def flies express less FMNL 

To analyze the expression of FMNL in P/Def embryos, a quantitative qPCR 

was done with wild type and embryos from P/Def flies. For further analysis it 

has to be considered, that embryos from crosses of P/Def females with P/Def 

males can be P/Def (1/3), P/P (1/3) or Def/Def (1/3). Figure 62 shows the PCR 

cycle number of amplified cDNA, that was needed to reach a critical threshold 

measured by fluorescence intensity of the incorporated fluorophore for FMNL 

and actin, a housekeeping gene that was used as reference. The cDNA was 

prepared by reverse transcription after RNA extraction from embryonic 

lysates from overnight embryo collections. The cycling number was in 

logarithmic scale and inversely proportional to the quantity of cDNA, that was 

reversely transcribed from RNA extracted from embryonic lysates. The 

negative control H20 without cDNA gives high cycling numbers of ~34 for 

FMNL and ~35 for actin, this is also the case for the RNA controls, in which 

 

Figure 61 Genetic map of P-Element insertion into the FMNL locus.  

Genetic locus of FMNL (frl) is shown as well as it’s transcripts. The transgenic insertion site of 

P{GSV7}GS23052 is marked by a red circle. Taken from flybase.org. 
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wild type or P/Def RNA was added to control for DNA contamination of the 

RNA extraction. As the cycling numbers for actin with 15.7 for wild type and 

15.2 for p/Def embryos respectively, were nearly the same, the cycle numbers 

for FMNL for wild type and P/Def embryos could directly be compared. In 

wild type 22.8 cycles were needed to reach the threshold for FMNL, as in P/Def 

the cycling number was 25.6, showing that embryos from P/Def flies express 

23 times less FMNL-RNA than wild type embryos.  

Embryos from P/Def flies show a reduced viability 

To analyze the effect of less FMNL-RNA expression in P/Def flies, the viability 

at different developmental stages was compared with wild type embryos. 

Again, embryos from wild type and from crosses of P/Def females and P/Def 

males were used for the analysis and hatched larva, pupa and adults were 

counted (Figure 63). From 202 wild type embryos 11 embryos died (5.4 %) 

during development, whereas 81 embryos of 202 embryos from P/Def flies 

died (40.1 %). Starting with 193 wild type larvae, 9 larvae died before pupation 

(4.7 %) and 92 larvae of 121 larvae from P/Def flies died (76 %) and from 194 

wild type pupae 2 did not hatch (1.0 %), whereas 8 pupae died of 29 starting 

 

Figure 62 Quantitative real time PCR of p/Def and wild type embryonic extracts.  

Cycle numbers (logarithmic scale) are plotted for samples as indicated. FMNL: Primers 

against FMNL; Actin: Primers against actin (positive control); WT: cDNA sample from wild 

type embryos; p/Def: cDNA sample from P/Def embryos; H20: negative control with water 

instead of cDNA; RNA WT: Total RNA extracted from wild type embryos; RNA P/Def: Total 

RNA extracted from P/Def embryos. Numbers are averaged from two replicates. 
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pupae of embryos from P/Def embryo (27.6 %) Taken together, embryos, larva 

and pupa from crosses of P/Def females with P/Def males show increased 

lethality. Also, for this analysis it has to be considered, that embryos of crosses 

from P/Def females and P/Def males have different allelic combinations as 

described before and it is not clear if lethality comes from the second lethal of 

the P-element line, deficiency of essential genes or reduced FMNL expression. 

P/Def flies showed reduced fitness 

Although P/Def flies were viable and fertile, it was not possible to keep them 

as a stock. To test the general fitness of these flies a negative geotaxis assay 

was performed. Flies with normal locomotor activity have the tendency to 

move against gravity. This ability decreases with aging or with reduced 

locomotor capability (Benzer, 1967). To be able to compare fitness one-day old 

flies were used for both genotypes and P/TM3 flies were used as control. The 

assay was performed by transferring single anesthetized flies to plastic tubes 

with a diameter of around 1 cm and after waking up, flies were shaken down 

to the bottom and the distance they crawled up was measured at three 

timepoints (Figure 64). While P/TM3 flies crawled up to ~15 cm after 

30 seconds, P/Def flies reached only ~1 cm. Also, after 1:30 min, P/Def could 

only reach ~1.5 cm, indicating that they show less locomotor activity and less 

fitness.  

 

Figure 63 Viability assay of wild type and P/Def flies. 

Lethality of wild type (blue) and P/Def (red) during embryonic, larval und pupal 

development. Lethality rates are shown above the bars. 
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 The purification of an FMNL-antibody did not lead to a 

specific signal 

FMNL antibodies did not show specific staining 

Antibodies against the N-terminus of FMNL were raised in rabbit and guinea 

pig by Henrik Steffen. The antibodies were generated by expression and 

purification of the N-terminal part (1 – 596 aa) and immunization of rabbits 

and guinea pigs. 

I tested the antibody sera in formaldehyde and heat fixed wild type embryos, 

however, the fixation procedure did not make a difference. In Figure 65 heat 

fixed embryos stained with rabbit anti FMNL (Figure 65A) and guinea pig anti 

FMNL (Figure 65B) are shown, Dlg was used to mark lateral membranes. 

Rabbit anti FMNL showed partial nuclear enrichment in sagittal views (Figure 

65A, upper panel) whereas the top view showed cytoplasmic, possible 

vesicular, staining with nuclear exclusion (Figure 65A, lower panel). The 

differences of staining in the different views can be explained by the z-position 

of the top view that may show a plane were no enrichment can be seen in the 

channel of the FMNL antibody. Also, in the staining with guinea pig anti 

FMNL (Figure 65B) nuclear enrichment was shown in sagittal views (Figure 

 

Figure 64 P/Def flies show reduced negative geotaxis.  

Averaged distance of P/TM3 (control/blue) and P/Def (red) flies. One-day old adult flies were 

shaken down in a cylinder and the averaged distance they crawled up is plotted at three 

different time points indicated. Error bars represent SEM. ***: p≤0.001. 
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65B, upper panel) and top views (Figure 65B, lower panel). However, due to 

the differences in the different views and with different antibodies it is not 

possible to make a clear statement about FMNL localization by this staining. 

Purification of FMNL antibodies did not lead to a specific signal 

As the staining could not show a clear localization, I purified the antibody sera 

by affinity purification with the protein fragment that was used for 

immunization. For this procedure, I expressed the FMNL fragment with an N-

terminal ZZ-tag and a C-terminal His-Tag in BL21DE cells (Figure 66A). The 

fragment was running at ~82 kDa and showed a clear induction after it was 

expressed overnight at 18 °C. After lysis, I purified the fragment with an Äkta 

over His-Trap columns at 4 °C as shown in Figure 66B by SDS-PAGE of 

different fractions and the OD read of A280 during purification in Figure 66C. 

Although a big amount of the fragment could be found in the insoluble 

fraction (Figure 66B) it was still possible to purify a suitable amount of the 

fragment. After the first purification step, the eluted fractions 9-11 were 

pooled. 

 

Figure 65 Antibodies against FMNL show no specific signal in wild type embryos.  

(A-B) Heat fixed embryos stained for FMNL (grey/red), Dlg (grey/green) and DNA 

(grey/blue). Merged images are shown in right panel. Upper panels show sagittal views, lower 

panels top views. (A) Staining with serum of rabbit anti FMNL-antibody, (B) staining with 

serum of guinea pig anti FMNL-antibody. Scale bar 10 µm. 



Results 

-114- 

As an ZZ-tag can lead to unspecific binding of the antibody, it was removed 

by making use of a TEV cleavage site between ZZ-tag and the FMNL fragment. 

Successful cleavage was shown by SDS-PAGE, as the fragment was running 

at ~70 kDa after cleavage (Figure 67A). The ZZ-tag has a molecular weight of 

~15 kDa. The second purification was done with His-Trap columns at 4 °C 

manually with a pump, however as one of the columns was getting clogged 

during loading, it was disconnected and eluted manually without washing 

steps. I loaded the fractions of this column 1 on an SDS-PAGE (Figure 67B). 

The corresponding OD read of A280 is shown in Figure 67D. As the eluted 

 

Figure 66 Purification of FMNL-Fragment with N-terminal ZZ- and C-terminal His-tag.  

(A) Protein gel of lysed BL21DE bacteria before and after induction of protein expression as 

indicated. ZZ-FMNL-His Fragment was running at ~75 kDa. (B) Protein gel of different 

fractions as indicated during purification of ZZ-FMNL-GFP with His-Trap columns. (C) 

Absorbance of A280 during purification. Flow-Through, washing and elution steps were as 

indicated. 
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fractions from column 1 were comparable to the elution of the washed column 

2 (Figure 67A, B), fractions 2-3 and 5-9 from column 1 and fractions 5-7 from 

column 2 were used for the coupling to Sepharose and affinity purification of 

the FMNL antibody from guinea pig and rabbit sera.  

Purified FMNL antibodies show no specificity in western blot 

Sera and affinity purified antibodies were then tested in western blots of wild 

type embryo lysates (Figure 68). The full-length FMNL had a calculated 

molecular weight of 133 kDa, but no band could be detected in this range 

neither with guinea pig serum or purified antibody (Figure 68, left blot) nor 

with rabbit serum or purified antibody (Figure 68, right blot). Not only, that 

no band with expected size could be detected, the antibodies, even the purified 

solutions, showed a lot of unspecific binding. 

 

Figure 67 ZZ-Tag cleavage with TEV protease and further purification of FMNL-His fragment.  

(A, C) Protein gels loaded with samples during purification with two different His-Trap 

columns. (A) Samples before and after TEV cleavage are shown in Lane 2 and 3 as indicated. 

(C) Fractions from elution from column one without washing steps. (B, D) Absorbance of A280 

during purification from (B) column 2 and (D) column 1. Flow-through, washing and elution 

are indicated in graphs. 
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 FMNL is expressed during embryonic development 

FMNL mRNA is detected during embryogenesis by in situ hybridization 

To show the predicted and by qRT-PCR confirmed embryonal expression of 

FMNL, I performed a whole mount in situ hybridization.  

 

Figure 68 Western blot of wild type embryonic extracts against FMNL.  

Western blot of embryonic extracts stained with guinea pig anti FMNL antibody (left panel) 

and rabbit anti FMNL antibody (right side). 10 embryos per lane were loaded. Staining was 

performed with unpurified serum and purified antibody solutions as indicated. FMNL should 

run at ~133 kDa. 

 

Figure 69 FMNL is expressed during embryonic development. 

In situ hybridization of wild type embryos with a probe against FMNL. Stages are as indicated. 

Image of probe against Slam is shown in lower right panel as control. Anterior is left, posterior 

is right. Scale bar 10 µm. 
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Probes for FMNL RNA were produced with FMNL cDNA and a probe against 

Slam was used as control. To get an overview over the expression during 

embryonal development, embryos were collected overnight. As shown in 

Figure 69,  I found FMNL to be expressed throughout embryonal development 

from cellularization (Stage 5) on. In stage 15 an enrichment of FMNL could be 

seen in the anterior part of the embryo. A cellularizing embryo hybridized 

with a Slam probe was used as a control (Figure 69). 

FMNL-GFP is expressed during cellularization 

As the antibodies did not show a specific signal, I generated a GFP-tagged 

FMNL transgenic fly line. For the transgene a fosmid was used that carried the 

whole gene region of FMNL with an N-terminal GFP-tag.  

 

Figure 70 Map of the fosmid used for the generation of FMNL-GFP flies. 

The genes integrated into the fosmid are marked in turquois. FMNL (CG32138) is N-

terminally tagged with a superfolder GFP (SGFP, green) a TEV site and the target peptide for 

the birA biotin ligase (BLRP) prior to the endogenic STOP codon. The 5’UTR and 3’UTR of 

FMNL are marked in blue. The attB insertion site is marked in yellow, the 3xP promoter in 

green followed by the DsRed sequence (yellow) for detection of successful integration, 

followed by a SV40 terminator. The origin of replication (oriV) and the F-factor function repE 

(orange) are for amplification and correct distribution of the fosmid to the daughter cells. 
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The construct was inserted into the left arm of the third chromosome at 

position 65B2 in addition to the endogenous protein. This fosmid was 

generated by the TransgeneOME project (Ejsmont et al., 2009; 

transgeneome.mpi-cbg.de) and provided by Dr. Frank Schnorrer. It contained 

the genetic region of the genes CG6833, CG13484, FMNL (CG32138) with N-

terminal GFP, pex1 and btl and a dsRed tag driven by the 3xP3 eye promoter 

(fosmid map, Figure 70). The inserted construct reflects endogenous 

expression due to the large genomic region associated with the tagged FMNL 

region. 

 

 

Figure 71 FMNL-GFP is expressed during cellularization.  

Images of fixed embryos in early, mid and late cellularization from top to bottom expressing 

FMNL-GFP stained with GFP-booster (grey/green), Dlg (grey/red) and DNA (grey/blue). 

Merged images are shown in right panel. A top view is shown in bottom panel. Scale bar 

10 µm. 
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Embryos from the generated FMNL-GFP line were then collected, fixed and 

imaged. Figure 71 shows fixed embryos from FMNL-GFP flies during early, 

mid- and late cellularization in sagittal views and a top view (bottom panel), 

Dlg was used to stain lateral membranes and GFP booster to show GFP signal. 

I could detect a cytoplasmic, possibly vesicular staining n the GFP-channel, 

whereas I could not detect a clear membrane localization throughout 

cellularization. 

 FMNL is expressed in larval and adult tissues 

To further analyze localization of FMNL-GFP, I dissected testes and ovaries of 

adult flies, fixed and stained with GFP-booster and DAPI, to show DNA. In 

Figure 72A wild type (upper panel) as a control and FMNL-GFP (lower panel) 

testes are shown. In FMNL-GFP testes I could detect a clear expression. 

Furthermore, I could detect a clear expression of FMNL-GFP (Figure 72B, 

upper panel) in female ovaries compared to wild type ovaries (Figure 72B, 

lower panel). Enriched FMNL-GFP at the nurse cells, that may be also 

localized at the membrane, was marked with a yellow arrowhead. 
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I also screened several larval tissues for FMNL-GFP enrichment and I could 

detect high expression of FMNL-GFP in larval brains, which were also 

dissected, fixed and stained with GFP-booster and DAPI. Figure 73 shows 

brains from wild type compared to FMNL-GFP larval brains. Ventral nerve 

 

Figure 72 FMNL-GFP is expressed in testis and ovary.  

(A-B) Images of testis (A) and ovary (B) of wild type and FMNL-GFP expressing flies stained 

with GFP-booster (grey/green) and DNA (grey/blue). Merged images are shown in right 

panel. (A) Wild type (upper panel) and FMNL-GFP (lower panel) testis. FMNL-GFP 

enrichment is indicated with yellow arrowhead. (B) Wild type (upper panel) and FMNL-GFP 

(lower panel) ovaries. WT ovary shows auto-fluorescence at nurse cells, FMNL-GFP 

enrichment between nurse cells is indicated with yellow arrowhead. Scale bar 10 µm. 
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cord and optic lobes are shown in upper and lower panels as indicated. Some 

strong symmetric spots of FMNL-GFP could be detected at the ventral nerve 

cord and also some strong spots were visible in the optic lobe region. I was not 

able to detect these signals in wild type embryos.  

 

Figure 73 FMNL-GFP shows strong expression in larval brains.  

(A-B) Images of fixed larval brains of (A) wild type and (B) FMNL-GFP expressing larval 

brains stained with GFP-booster (grey/ green) and DNA (grey/blue). Merged images are 

shown in right panel. Ventral nerve cord (upper panel) and optic lobe (lower panel) are as 

indicated. Scale bar 20 µm. 
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To further analyze larval brain FMNL-GFP expression on a cellular level, 

stainings were performed by Prof. Gaia Tavosanis/ Tomke Stürner (DZNE, 

Bonn) with an GFP antibody and Repo antibody, that marks glia cells. Indeed, 

FMNL-GFP was strongly enriched in glia cells at the ventral nerve cord and 

optic lobes, as shown in Figure 74. 

FMNL-GFP can be pulled down from adult head extracts 

In order to perform further experiments to find possible binding partners of 

FMNL, I performed pull-down assays. However, I was not able to pull down 

FMNL-GFP from embryonic extracts in detectable amounts, possibly due to 

low expression levels. As the stainings of larval brains led to the hypothesis, 

that FMNL-GFP is expressed in higher levels in this tissue, I prepared extracts 

from adult heads (Figure 75). Before performing the pull-down assay, I made 

a Western Blot with extracts from adult heads, detecting FMNL-GFP with an 

antibody against GFP (Figure 75A). I could detect a band running at a size of 

~150 kDa in extracts from FMNL-GFP expressing heads, that correlates with 

the predicted size of FMNL-GFP. However, a weaker band of this size could 

also be detected in extracts from wild type flies, possibly due to contamination. 

Furthermore, a second band was detected in heads from FMNL-GFP 

 

Figure 74 FMNL-GFP is enriched in glia cells in larval brains.  

Images of fixed brains of FMNL-GFP (grey/ green) expressing larvae stained against Repo 

(glia marker; grey/ red). Upper panel shows optic lobe, lower panel ventral nerve cord. Images 

and stainings were done by Gaia Tavosanis/Tomke Stürner (DZNE/Bonn). 
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expressing flies, which could resemble a lower running isoform of FMNL-GFP 

or unspecific binding. In the pull-down assay, the extract of 200 adult heads 

from flies expressing FMNL-GFP was used and a western blot of samples from 

the input, the unbound fraction and the bound fraction was performed (Figure 

75B). In this assay, FMNL-GFP was immunoprecipitated by GFP-binder 

beads. Like in Figure 75A, two bands could be detected in the input sample. 

In the unbound fraction, only the lower band could be detected which is a hint, 

that this was due to unspecific binding of the antibody. The bound fraction 

showed a clear band running at around 150 kDa like the upper band in the 

input sample (Figure 75B).  

From these results it would be possible to pull down FMNL-GFP from adult 

heads to further analyze binding partners of the protein f.e. by mass 

spectroscopy. However, these experiments were not part of my thesis. 

  

 

Figure 75 FMNL-GFP is expressed in adult heads.  

(A-B) Western blot and immunoprecipitation of FMNL-GFP from adult heads. (A) Western 

blot of adult heads from wild type and FMNL-GFP expressing flies. 15 heads were loaded per 

lane. The membrane was stained with GFP antibody and Tubulin antibody as loading control. 

FMNL-GFP runs at ~ 150 kDa. (B) FMNL-GFP from 200 heads was immunoprecipitated with 

GFP-binder beads. Samples of input, unbound and bound fractions were loaded and stained 

with antibodies against GFP (upper panel) and Tubulin (lower panel) as loading control. 
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 Discussion 

The aim of this study was to analyze the possible role of FMNL during early 

Drosophila embryogenesis by the generation of an FMNL mutant and FMNL-

GFP expressing transgenic flies. As FMNL was identified as a possible 

interaction partner of Slam in a yeast-two-hybrid screen and Slam itself plays 

a crucial role for the invagination of furrows during cellularization (Acharya 

et al., 2014; Lecuit et al., 2002), a role of FMNL for this process was possible. F-

Actin itself is fundamental for the process of cellularization as no invagination 

of cellularization furrows takes place if actin is depolymerized by drugs (Sokac 

and Wieschaus, 2008b). Furthermore, another protein of the formin family, 

Dia, is needed for proper cellularization (Afshar et al., 2000) and formation of 

cortical domains, as I could show in part B of my thesis.  

In this study the generation of a mutant for FMNL by imprecise excision of a 

p-element or by directed mutagenesis with different CRISPR methods did not 

lead to a visible phenotype. In 2016 Dollar et al. presented a study in which 

they generated three FMNL mutant fly lines by imprecise excision of a p-

element, which were described to be homozygous lethal. However, two of 

these lines were homozygous viable in our lab. Both were balanced by the 

TM6B balancer whereas the lethal line was balanced by TM3. Possibly, 

balancing by TM6B was inefficient in this case as the mutations generated by 

Dollar et al (2016) were clearly characterized, the deletion of other genes 

rescued by adding back the deleted gene sequence other than FMNL and 

rescued by insertion of full-length FMNL sequence. However, the timepoint 

of lethality was not described in this study. The focus of Dollar et al. (2016) lay 

on the morphogenesis of ommatidial cells in eye development, rotation of 

ommatidial cells and the outgrowth of neurons during larval and pupal 

development. The effects on ommatidial rotation were weak but reproducible 

in the study of Dollar et al. (2016) and much stronger by the overexpression of 

dominant negative and constitutively active variants of FMNL. However, they 

analyzed the mutations and overexpression phenotypes by tissue specific 

expression. The FRT site that they introduced into their mutants to generate 

homozygous mutant clones did not work to generate maternal germ line 

clones and I did not follow up the analysis of this mutant.  

The described phenotypes from Dollar et al. (2016) led to the hypothesis, that 

FMNL is needed for the morphogenesis of ommatidial cells but also plays a 
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role in planar cell polarity (PCP) downstream of Cdc42. It was also described 

before, that PCP genes can act on axon growth and also there FMNL played a 

role. However, PCP genes are not in general needed for the formation of 

cortical domains and successful cellularization. A similar role for FMNL in 

PCP signaling is not described yet for the vertebrate system.  

In vertebrates FMNL was described to influence actin dynamics in the 

formation of lamellipodia and with this also cell migration (Block et al., 2012; 

Kage et al., 2017b). Furthermore, the role of FMNL in epithelial formation was 

researched in 3D cell culture. Here it was shown, that it is necessary for the 

formation of adherens junctions and also for lumen formation (Grikscheit et 

al., 2015). As the formation of an epithelium is also happening during 

cellularization in Drosophila embryos a similar role for FMNL in this process 

would be consequential. Although FMNL was found in the Yeast-two-hybrid 

screen as potential binding partner of Slam, I was not able to show a function 

in cellularization, as the mutants that I generated did not show a phenotype. 

Another argument for a role of FMNL in cellularization is that I could show 

that FMNL was expressed during cellularization by in situ hybridization. In 

addition, I could detect FMNL-GFP during cellularization but I could not 

show an enrichment of the protein at the invaginating cellularization furrow 

but rather in the cytoplasm, possibly in vesicles. As vesicle transport and 

endocytosis are playing roles in successful cellularization (Fabrowski et al., 

2013; Lecuit and Wieschaus, 2000), a function of FMNL in this process can still 

not be excluded. Another possibility to investigate a possible role for FMNL 

in cellularization would be the expression of different FMNL variants. As 

FMNL is autoinhibited the overexpression of a constitutively active version by 

deletion of the N-terminal regulatory domains could give rise to 

overexpression phenotypes. Also, the expression of a dominant negative 

version with deleted FH2 domain could rule out possible compensations of a 

FMNL mutation by other formins (Dollar et al., 2016). 

Next to the expression of FMNL-GFP in the embryo, I also studied its 

localization in different larval and adult tissues. I could find FMNL-GFP to be 

expressed in the male testis and the female ovary, where I could also detect a 

possible accumulation at the membranes between the nurse cells. However, I 

did not follow up a possible function of FMNL in these tissues. I could also 

detect a high expression of FMNL-GFP in the larval brain. Together with 

stainings by Prof. Gaia Tavosanis and Tomke Stürner (DZNE/ Bonn) the cells 
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expressing FMNL-GFP could be identified as glia cells. Glia cells belong to the 

most abundant cell type of the central nervous system (CNS) and play various 

roles not only in neuron function, health and regulation, they are also known 

to function in axon guidance (reviewed in Ou et al., 2014; Stork et al., 2012). 

Interestingly, Dollar et al. (2016) showed a function of FMNL in the CNS. In 

their study, they could show, that FMNL is, together with the formin DAAM, 

required for correct growth of axons in the mushroom body. Together with 

my result, that flies with reduced amounts of FMNL showed reduced fitness, 

a role for FMNL in the formation and function of the CNS is likely. 

Taken together, although I was not able to describe a function for FMNL 

during cellularization, I was successful in the generation of a functional 

FMNL-GFP transgene, that gave the hint to a possible function for the CNS 

due to its expression in glia cells. Furthermore, this transgene could be used 

for further biochemical and functional analysis. The expression and 

purification of FMNL-GFP from flies could f. e. be used for the analysis of 

binding partners by mass spectroscopy. Also, the subcellular localization of 

FMNL in glia cells could be investigated further and the role of FMNL for the 

formation and/ or maintenance of glia cells and its role in CNS development 

and function could be analyzed further.  
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 Material and Methods 

 Materials  

13.1.1 Reagents  

All standard reagents and chemicals were obtained from AppliChem GmbH 

(Darmstadt), Carl Roth GmbH (Karlsruhe), Gibco BRL (Eggenstein), 

Invitrogen (Carlsbad, USA), Merck (Darmstadt), Sigma-Aldrich (St. Louis, 

USA) or Thermo Fisher Scientific (Waltham, USA) unless otherwise 

mentioned.  

13.1.2 Enzymes 

Restriction enzymes were purchased from Thermo Fisher Scientific (Waltham, 

USA) or New England Biolabs (Ipswich, USA) and used as described by the 

manufacturer. The following other enzymes were used: 

DNase I (Roche, Basel, Switzerland) 

Lysozyme (AppliChem GmbH, Darmstadt, 

Germany) 

Proteinase K (Roche, Basel, Switzerland) 

T7 RNA polymerase (expressed and purified in the lab) 

TEV protease (expressed and purified in the lab of 

Prof. Dirk Görlich) 

Transcriptor Reverse Transcriptase (Roche, Basel, Switzerland) 

13.1.3 Commercial kits 

The following kits were used according to the instructions of the 

manufacturers: 

HiPure Plasmid Mini Kit (Life Technologies, Carlsbad, USA) 

Plasmid Midi Kit Nucleobond AX (Macherey-Nagel, Düren, Germany) 

iQ SYBR Green Supermix (Bio-Rad, München, Germany) 

13.1.4 Chromatography 

The following columns and materials were used for the purification of 

recombinant proteins: 

CNBr-activated Sepharose 4B (GE Healthcare Life Sciences, Little 

Chalfont, UK) 

HisTrap HP columns (GE Healthcare Life Sciences, Little 

Chalfont, UK) 
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PD-10 desalting columns (GE Healthcare Life Sciences, Little 

Chalfont, UK) 

13.1.5 Media 

LB and SOC media were prepared by lab technicians according to standard 

protocols as described in Sambrook and Russel, 2001. 

13.1.6 Microscopy 

Confocal microscope LSM780  

equipped with an AiryScan Unit: 

 

Zeiss AxioObserver.Z1 (Carl Zeiss, 

Jena, Germany, 2011) 

Detectors: PMT 

GASP 

AiryScan detection 

Lasers: Diodelaser (405 nm, 30 mW) 

Argonlaser (458 nm, 488 nm, 514 nm, 25 

mW) 

DPSS-Laser (561 nm, 20 mW) 

HeNe-Laser (633 nm, 5 mW) 

Objectives: C-Apochromat (40x, NA 1.2, water) 

Plan-Appochromat (63x, NA 1.4, oil) 

LCI-Plan Neofluar (63x, NA 1.3, multi-

immersion) 

Two-Photon Microscope LSM 

7MP 

(Carl Zeiss, Jena, Germany) 

Laser: Mode-locked Ti-sapphire laser 

(Coherent, Santa Clara, USA) 

Objective: Plan-Apochromat (20x, NA 1, water)  

(Carl Zeiss, Jena, Germany) 

Other light microscopes:  

Microinjection microscope (Carl Zeiss, Jena, Germany) 

Zeiss Axioplan 2 equipped with 

an AxioCam MRc 

(Carl Zeiss, Jena, Germany) 

Stereomicroscopes: 

Zeiss Stemi 2000 

 

(Carl Zeiss, Jena, Germany) 
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13.1.7 Buffers and solutions 

All buffers were prepared according to Sambrook and Russels (2001) unless 

otherwise stated. 

Table 1 Buffers and solutions  

Name Composition 

General buffers and solutions  

Phosphate buffered saline (PBS)  130 mM NaCl 

7 mM Na2HPO4 

3 mM NaH2PO4 

pH 7.4 

PBT PBS with 0.2 % Tween 

TE buffer 10 mM Tris/Hcl, pH 8 

1 mM EDTA 

Embryo fixation solution 4.5 mL PBS 

0.5 or 1 mL Formaldehyde (37 %) 

5 mL Heptane 

Immunostaining blocking buffer 1x PBS 

5 % BSA 

Buffers and solutions for SDS-PAGE, Western Blot and Immunoprecipitation 

Stacking gel buffer 0.5 M Tris/HCl, pH 6.8 

0.4 % SDS 

Separating gel buffer 1.5 M Tris/HCl, pH 8.8 

0.4 % SDS 

10 x SDS-PAGE running buffer 0.25 M Tris 

2 M glycine 

1 % SDS 

6x Lämmli buffer 375 mM Tris/HCl 

10 % SDS 

50 % Glycerol 

0.6 M DTT 

0.06 % Bromphenole blue 

Wet transfer buffer 25 mM Tris 

175 mM Glycine 

20 % Methanol 

Blocking buffer 1x PBST 

5 % milk powder 
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Buffers and solutions - continuation 

RIPA Buffer 10 mM Tris/HCl, pH 7.5 

150 mM NaCl 

5 mM EDTA 

1 % Deoxycholate 

1 % Triton X-100 

0.1 % SDS 

Add fresh: 

1 x Roche protease inhibitor cocktail 

2 mM PMSF 

Buffers and solutions for purification of recombinant proteins 

Lysis buffer 20 mM Na-Phosphate, pH 8 

50 mM NaCl 

20 mM Imidazole  

Washing buffer 20 mM Na-Phosphate pH 8.0 

500 mM NaCl 

40 mM Imidazole 

Elution buffer 20 mM Na-Phosphate pH 8.0 

500 mM NaCl 

250 mM Imidazole 

TEV buffer 50 mM Tris, pH 8 

0.5 mM EDTA 

1 mM DTT 

Buffer and solutions for purification of antibodies 

Coupling buffer 100 mM NaHCO3/NaOH, pH 8.3 

500 mM NaCl 

Blocking buffer 0.1 mM Tris/HCl, pH 8.0 

Washing buffer I 0.1 M Na-actetate  

0.5 M NaCl, pH 4.0 

Washing buffer II 0.1 M Tris/HCl, pH 8.0 

0.5 M NaCl; PH 8.0 

High salt buffer 4 M MgCl2 

50 mM Tris/HCl, pH 7.5 

Low pH buffer 50 mM Glycine, pH 2.5 

High pH buffer 50 mM Triethanolamine, pH 11.5 

Neutralization buffer 1 M Tris, pH 9 
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Buffers and solutions - continuation 

Buffers and solutions for in situ hybridization 

NBT 75 mg/mL in 70 % DMF 

BCIP 50 mg/mL in DMF 

Hybridization solution 50 % Formamide 

5x SSC 

50 µg/mL Heparin 

0.2 % Tween 

100 µg/mL tRNA 

Adjust with water to final volume 

AP-Buffer 100 mM NaCl 

50 mM MgCl2 

100 mM Tris, pH 9.5 

0.2 % Tween 

Adjust with water to final volume 

NTP+Dig-labeling mix (10x) 10 mM ATP 

10 mM GTP 

10 mM CTP 

6.5 mM UTP 

3.5 mM Dig-11-UTP, pH 7.5 

For work with RNA, buffers were treated with Diethylpyrocarbonate (DEPC) 

as described in Sambrook and Russel, 2001 

13.1.8 Oligonucleotides 

All Oligonucleotides were purchased from Eurofins Genomics (Ebersberg, 

Germany). 

Table 2 Oligunucleotides used in this study 

Name Sequence 5’ → 3’ Description 

AS12 GTA GCA ATG GAA CCG AGG 

TC 

Forward primer FMNL 

AS55 AAT GGC TAG CTT GGA CGA GA Reverse primer FMNL 

HS390 CAC CGG TAT CGT TCT GGA CT Forward primer Actin 

HS391 AGG GCA ACA TAG CAC AGC 

TT 

Reverse primer Actin 
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13.1.9 Plasmids and fosmids 

Table 3 Plasmids and fosmids used in this study 

Name Description Source 

pQE-ZZ-FMNL-

His 

C-terminal His-tag and N-

terminal ZZ-tag fused to N-

terminal half of FMNL (1-596 aa) 

J. Großhans 

FMNL cDNA 

plasmid  

Plasmid pOTB7 containing the 

cDNA of FMNL. #AT04875 

DGRC 

FMNL-GFP fosmid Fosmid containing the genetic 

region of FMNL tagged with a C-

terminal GFP.  

TransgeneOme 

project/ Frank 

Schnorrer 

13.1.10Antibodies 

Table 4 Primary antibodies used in this study 

Antibody Raised in Dilution Source 

  Staining Western Blot  

α-Tubulin Mouse - 1:50000 Sigma Aldrich (St. 

Louis, USA) 

Armadillo Mouse 1:50 - Hybridoma Bank 

N2 7A1 

Canoe Rabbit 1:1000 - Choi et al., 2013/ M. 

Peifer  

CpA Rabbit 1:200 - Amândio et al., 

2014/ F. Janody 

Bazooka Rabbit 1:1000 - A. Wodarz 

Dia Guinea pig 1:1000 1:5000 J. Großhans 

Dia Rabbit 1:1000 - ZMBH 

Dlg Mouse 1:100 - Hybridoma Bank 

4F3 

FMNL Guinea pig 1:0000 Serum: 1:1000 

Purified: 

1:1000/1:500 

J. Großhans 

FMNL Rabbit 1:0000 Serum: 1:1000 

Purified: 

1:1000/1:500 

 

 

J. Großhans 
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Primary antibodies used in this study - continuation 

GFP Rabbit - 1:10000 Torrey Pines Biolabs 

(Seacaucus, USA) 

Slam Guinea pig 1:10000 - J. Großhans 

Slam Rabbit 1:10000 - J. Großhans 

Sponge Guinea pig 1:1000 - Biersmith et al., 

2011/ E. Geisbrecht 

Secondary Alexa-conjugated antibodies were used at a final concentration of 

4 µg/mL (1:500). Alexa-conjugated Phalloidin for staining of F-actin was used 

at a dilution of 1:1000. Both products were purchased from Invitrogen 

(Carlsbad, USA). GFP-booster-Atto488 was used at a final concentration of 

2 µg/mL (1:500) and purchased from Chromotek (Martinsried, Germany). 

Anti-Digoxigenin-peroxidase antibodies were purchased from Roche (Basel, 

Switzerland) and used at a final dilution of 1:200. As secondary antibodies for 

western blots IRDye-800CW and IRDye-680 were used at a final concentration 

of 0.05 µg/mL (1:20000) and purchased from LI-COR Biotechnology (Bad 

Homburg, Germany).  

13.1.11Fly stocks 

If not otherwise stated, fly stocks were obtained from Bloomington Drosophila 

stock center.  

Table 5 Fly stocks used in this study 

Name Genotype Source 

Wild type / 

OrR 

+

+
  

117GFP w; GFP117−2{w+}[resille] J. Zallen/ 

Blankenship 

et al., 2006 

UAS-

BazGFP 

w;
tub−Gal4−VP16{w+}[15], UASp−bazGFP{w+}

TM6B
 D. St 

Johnston/ 

Benton and 

Johnston, 

2003 

BazGFP y w P{w[+mC] = PTT−GC}baz[CC01941] Bloomingto

n #51572 
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Fly stocks used in this study - continuation 

baz RNAi y sc*v; 

P{y[+t7.7] v[+t1.8]=TRiP.HMS01412(baz)}attP2

TM3, Sb
 

Bloomingto

n #35002 

canoe FRT82B cnoR2

TM3 twiGFP
 Choi et al., 

2013/ M. 

Peifer 

canoeYFP PBac{602. P. SVS−1}cnoCPTI000590 Kyoto Stock 

Center 

#115111 

Cherry-slam 
w; USAp−Chery−slam{w+} 

Acharya et 

al., 2014 

dia w;
dia[sy5]FRT[2L]{neoR}

Cyo, hs−hid{w+}
 Afshar et al., 

2000 

dia 117GFP w; 
GFP117−2{w+}[resille]dia[sy5]FRT[2L]{neoR}

CyO
 J. Großhans 

dzyΔ8 w; 
dzy [∆8]b pr FRT2L

SM1
 Huelsmann 

et al., 2006 

ELMO 

w;
al dp elmo[367]b pr FRT[40A]{neoR}

CyO, hs−hid{w+} 
 

Winkler et 

al., 2015/ F. 

Schnorrer 

ELMO-GFP w; ; ELMO−GFP{w+} Z. Lv; 

Schmidt et 

al., 2017 

FMNL-GFP w; ; attP−B3 [FMNL − GFPFos] Generated in 

this work 

FMNL p-

element 

y w;
P{GSV7}GS23052

TM3, Sb Ser
 Kyoto Sock 

Center 

#204678 

FMNL (Def) w1118;  
Df(3L)ED4528

TM6C, Sb c
 Kyoto Stock 

Center # 

150136 

myoII3xGF

P 

MyoII ∷ 3xGFP Y. Bellaîche/ 

Pinheiro et 

al., 2017 

mtd-Gal4 P[otu−Gal4∷VP16.R]1, w*; P[Gal4−nos.NGT]40;  

P[Gal4∷VP16-nos.UTR]CG6325(MVD1) 
Bloomingto

n #31777 

Fly stocks used in this study - continuation 
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nanosφC31 y1w1118; PBac{y+−attP−B}3VK00033 F. Schnorrer 

nlsGFP 

FRT[2L] 

y w hs−Flp122{ry+}; P[w+, ubi−nlsGFP]2−23, 

 P[w+, ubi−nlsGFP]2−1 FRT2L[40A]{neoR, ry+}  
S. Luschnig 

Rap1 
y w hsFLP;

Rap1P(5709) FRT[2A]

TM3, Sb 
 R. Reuter/ 

Knox and 

Brown, 2002 

GFP-Rap1 w;
GFP−Rap1

CyO
 E. Knust/ 

Knox and 

Brown, 2002 

scribble w; 
scrib1 FRT82B

TM3, Sb
 D. Bilder/ 

Bilder and 

Perrimon, 

2000 

scribbleGFP w; scrib−GFPCA07683 Buszczak et 

al., 2007 

shibireTS w shi[1]

FM6, y B
 Bloomingto

n  

slam w; 
Df(2L)slam{w+}FRT[2L]{neoR} c slam5′{w+}

CyO
 P. Wenzl 

sponge ru st e spg[242]ca

TM6, Ubx Abd−lacZ
 E. Schejter; 

Postner et 

al., 1992 

sponge (Df) Df(3R)3450

TM6B, Hu
 E. Schejter 

TM3/TM6B w;
TM3, Sb Ser

TM6B, Tb Hu
 Bloomingto

n 

ovoD2L hs−Flp[122];
ovoD FRT2L[40A]

If / CyO, hs−hid
 J. Großhans 

ovoD2R hs−Flp[122];
FRT2R[42A] ovoD

If / CyO, hs−hid
 J. Großhans 

Rho-sensor attp40 [nanos

∷ tdTomato−RBD−P2A−tdkatushk2a−CAAX] 

 

R. Lehmann 

13.1.12Bacterial strains 

Amplification of DNA plasmids was performed in E. coli DH5α. For 

expression of recombinant proteins E. coli BL21DE3 was used.  
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13.1.13Equipment 

Äkta pure (GE Healthcare Life Sciences, Little 

Chalfont, UK) 

EmulsiFlex-C5 Microfluidiser (Avestin, Ottawa, Canada) 

FemtoJet Microinjector (Eppendorf, Hamburg, Germany) 

Odyssey CLx Infra-red imaging 

system 

(LI-COR Biosciences, Bad Homburg, 

Germany) 

P-87 Flaming/Brown Micropipette 

Puller 

(Sutter Instrument Co., Novato, 

USA) 

qPCR cycler CFX96 (Bio-Rad, München, Germany) 

Semi-Dry Transfer Cell (Bio-Rad, München, Germany) 

Thermo cycler (Bio-Rad, München-Germany) 

13.1.14Other materials 

10S and 3S VoltaLef Halocarbon oil (Lehmann & Voss & Co., Hamburg, 

Germany) 

α-Amanitin (AppliChem, Darmstadt, Germany) 

Aquapolymount (Polysciences Inc., Warrington, USA) 

Complete Mini (EDTA-free) Protease 

Inhibitor Cocktail 

(Roche, Basel, Switzerland) 

Coverslips (Thermo Fischer, Braunschweig, 

Germany) 

Eppendorf tubes (Eppendorf, Hamburg, Germany) 

Falcon tubes (BD, Heidelberg, Germany) 

Fly vials (Greiner, Kremsmünster, Austria) 

GFP-Trap  (Chromotek, Martinsried, Germany) 

Glass slides (Thermo Fischer, Braunschweig, 

Germany) 

Glass pipettes (Brand, Wertheim, Germany) 

Micropipettes (Gilson, Middleton, USA) 

Micropipette tips (Sarstedt, Nürnbrecht, Germany) 

Minisart Single Use Filter Units 

0.22 µm 

(Sartorius, Göttingen, Germany) 

Nitrocellulose membrane Protran 

0.45 µm NC 

(GE Healthcare Life Sciences, Little 

Chalfont, UK) 

PCR tubes (Brand, Wertheim, Germany) 

Petri dishes (Greiner, Kremsmünster, Austria) 



Material and Methods 

-137- 

Pasteur pipettes (Brand, Wertheim, Germany) 

Pipet-aid (Drummond, Birmingham, USA) 

Protein concentrator (Sartorius, Göttingen, Germany) 

Ribolock RNase inhibitor (Thermo Fischer, Braunschweig, 

Germany) 

Safe-Seal RNase-free tips (Biozym, Wien, Austria) 

Whatman 3 mm blotting paper (GE Healthcare Life Sciences, Little 

Chalfont, UK) 

13.1.15Software 

Excel  (Microsoft, Redmond, USA) 

Word  (Microsoft, Redmond, USA) 

Powerpoint  (Microsoft, Redmond, USA) 

Illustrator CS6 (Adobe, San Jose, USA) 

Photoshop CS6 (Adobe, San Jose, USA) 

ImageJ  (NIH, Bethesda, USA) 

Lasergene (GATC Biotech, Konstanz, 

Germany) 

Zen 2012 (Carl Zeiss, Jena, Germany) 
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 Methods 

Standard procedures that are not mentioned in the following sections were 

performed according to Sambrook and Russel, 2001 

13.2.1 DNA and RNA methods 

Amplification and purification of fosmid DNA 

The fosmid with the whole genomic sequence of FMNL tagged with a GFP 

was provided by Frank Schnorrer/TransgeneOme. To amplify the fosmid, a 

preculture of 2 mL LB medium + chloramphenicol (25 µg/mL) was inoculated 

with the fosmid clone from a glycerol stock and grown over night at 25 °C. The 

preculture was then diluted to 10 mL (9 mL LB medium + chloramphenicol 

and 1 mL preculture) and 10 µL of 10 % Arabinose (final concentration 0.01 %) 

was added to induce high copy number. The culture was incubated at 37 °C 

for 5 hours. The bacteria were harvested by centrifugation for 15 min with 

6,000 rpm at 4 °C, the supernatant was discarded and the pellet stored at -

20 °C.  

For mini preparation of fosmid DNA, the HiPure Plasmid Miniprep Kit was 

used. Pipetting of the fosmid was avoided. For the procedure buffers E4 was 

prewarmed to 50 °C and buffer L7 to 37 °C and the column was equilibrated 

with 2 mL EQ1. The cells were resuspended with 0.4 mL R3 + RNaseA and 

lysed by addition of 0.4 mL L7, inverting of the tube for 5 times and incubation 

for 4 min at room temperature. For neutralization 0.4 mL of N3 was added, the 

tube inverted and incubated tor 4 min on ice before centrifugation at 

maximum speed for 10 min at 4 °C. The supernatant was then loaded onto a 

column and washed twice with 2.5 mL W8. The DNA was eluted with 850 µL 

E4 and precipitated with 595 µL isopropanol and then centrifuged for 10 min 

at 4 °C with maximum speed. The supernatant was removed and the pellet 

washed with 800 µL 70 % ethanol. The pellet was air dried for 4 min and 

resuspended in 20 µL TE buffer. For injection the concentration was freshly 

adjusted to 250 ng/µL with water. 

Amplification and purification of plasmid DNA 

Amplification and purification of plasmid DNA was done as described in 

Sambrook and Russel, 2001.  

Isolation and purification of total RNA from embryos 
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Isolation of total RNA from WT and P/Def embryos for quantitative real-time 

PCR. The embryos were collected over night on apple juice agar plates, 

dechorionated, transferred to Eppendorf tubes, weighed, frozen in liquid 

nitrogen and stored at -80 °C.  

For preparation of embryo lysates ~12 mg of P/Def and ~11.8 mg of WT 

embryos were used. The embryos were lysed with a micro pestle and 800 µL 

of Trizol were added little by little to wash the pestle. The extract was 

incubated for 5 min at room temperature. After adding 160 µL Chloroform, 

the extracts were shaken and after 2-3 min incubation at room temperature, 

centrifuged with 14,000 rpm for 15 min at 4 °C. The upper aqueous phase was 

transferred to a new Eppendorf tube and 400 µL Isopropanol was added to 

precipitate RNA. The solution was incubated at room temperature for 10 min 

and then centrifuged for 30 min with 14,000 rpm at 4 °C. The pellet was then 

washed with 70 % ethanol (DEPC) and centrifuged for 10 min with 14,000 rpm 

at 4 °C. The pellet was tried at room temperature under the hood and then 

resuspended in 50 µL water (DEPC).  

Production of cDNA by reverse transcription 

1 µg of RNA sample was mixed with 1 µL Oligo(dT) and adjusted with water 

to 13 µL. The sample was incubated in the PCR machine for 10 min at 65 °C 

and then immediately cooled down on ice. The following master mix was 

prepared and added to the sample: 

5x Reverse transcriptase buffer: 4 µL 

RNase inhibitor: 0.5 µL 

dNTP mix (10 mM): 2 µL 

Reverse transcriptase: 0.5 µL 

The samples were then incubated in the PCR machine with the following 

program: 30 min at 55 °C; 10 min at 85 °C. The cDNA was the stored at -20 °C.  

Quantitative Real-Time-PCR 

A master mix with primers for FMNL and one with primers for actin as control 

were made as described by the manufacturer. The mix for one sample was as 

followed: 

SYBR qPCR Mix 12.5 µL 

ddH2O 8 µL 



Material and Methods 

-140- 

Primer 1 1.25 µL 

Primer 2 1.25 µL 

cDNA  2 µL 

2 µL of the mix were then transferred into a qPCR plate and incubated in the 

qPCR machine with the following program: 

1. Initial 

denaturation 

95 °C, 3 min 

2. Denaturation 95 °C, 10 s 

3. Annealing 54 °C, 15 s 

4. Elongation 72 °C, 30 s 

5. Melting curve 55 °C – 95 °C, 10 s (increase 0.5 °C) 

      Steps 2 – 4 were cycled 40 times. 

 

The following samples were loaded as 2 duplicates: 

- WT cDNA with primers for FMNL - WT cDNA with primers for actin 

- p/Def cDNA with primers for 

FMNL 

- p/Def cDNA with primers for actin 

- H20 with primers for FMNL - H20 with primers for actin 

- WT RNA with primers for FMNL - WT RNA with primers for actin 

- P/Def RNA with primers for 

FMNL 

- P/Def RNA with primers for actin 

For RNA samples the produced RNA was diluted like for the reverse 

transcription. For FMNL sample primers AS12 and AS55 and for actin sample 

primers HS390 and HS391 were used. 

13.2.2 Protein methods 

Isolation of total protein from embryos or adult heads 

For embryonic extracts, staged embryos were collected from apple juice agar 

plates, dechorionized, transferred to Eppendorf tubes, weighted, immediately 

frozen in liquid nitrogen and stored at -80 °C. To prepare extracts, the embryos 

were thawed, 1x Lämmli buffer was added (20 µL per 1 mg embryos), treated 

with a micro pestle and incubated at 95 °C for 10 min. A suitable number of 

embryos (1 mg corresponds to 100 embryos) was loaded on an SDS-gel. 

For extracts from adult heads, 50 adult flies were collected in 15 mL Falcon 

tubes and frozen in liquid nitrogen, shaken vigorously to dissociate heads 
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from thoraxes and then put on a sieve to collect heads, which were transferred 

into an Eppendorf tube and stored at -80 °C or pestled in 30 µL 1x Lämmli 

buffer. For western blot the embryo extract was incubated at 95 °C for 10 min. 

Immunoprecipitation 

To prepare an extract from the adult heads, ~200 heads were dounced in a 

precooled glass homogenizer in 500 µL RIPA buffer, centrifuged for 15 min 

with 14,500 rpm at 4 °C. The supernatant was transferred to a new Eppendorf 

tube and an input sample was taken. To prepare the Sepharose-GFP-Trap 

beads, the tube was vortexed and 20 µL were transferred into 500 µL cold 

RIPA buffer and centrifuged for 2 min with 800 rpm at 4 °C. The supernatant 

was discarded and the procedure repeated twice. The lysate was then loaded 

onto the beads and incubated for 1 h at 4 °C. Afterwards an unbound sample 

was taken from the supernatant. The beads were then washed three times with 

1 mL RIPA buffer (centrifugation for 2 min with 800 rpm at 4 °C). The beads 

were then eluted in 20 mL Lämmli buffer and incubated at 97 °C for 10 min 

and stored at -20 °C. The samples were then used to perform western blotting.  

SDS-PAGE and western blot 

SDS-PAGE and western blotting were done according to standard procedures 

described in Sambrook and Russel, 2001. 

After the blotting procedure, the membrane was blocked in PBT + 5 % milk 

powder. The membrane was incubated with the primary antibody overnight 

at 4 °C or for 2 h at room temperature and then washed 4 times for 5 min 

before incubation with secondary antibody for 2 h at room temperature and 

afterwards washed as described before.  

13.2.3 Expression and purification of recombinant proteins 

Large Scale protein expression 

For preincubation one colony from the LB plate was picked with a pipet tip 

and added to 20 mL LB medium with ampicillin (100 µg/mL) which was 

incubated over night at 37 °C. For large scale expression 10 mL of the 

preculture was added to 1 L LB medium with Ampicillin and incubated at 

37 °C until an OD of 0.5 was reached. Before incubation a sample of 1 mL was 

taken, centrifuged for 1 min with 12,000 rpm at room temperature and the 

pellet was suspended in 1x Lämmli buffer (100 µL per 1 OD) and stored at -

20 °C as uninduced sample. The culture was then cooled down, expression 
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was induced with 0.2 mM IPTG and shaken at 18 °C over night. Another 

sample was taken afterwards as induced sample.  

Lysis of bacteria 

The overnight culture was centrifuged at 4,000 k for 20 min at 4 °C and the 

pellet was solubilized in 20 mL lysis buffer and stored at -20 °C. The cells were 

thawed and 200 µL Lysozyme, 200 µL PMSF (1 mM) and DNase was added 

and incubated for 35 min on ice. The cells were lysed in a microfluidizer and 

then centrifuged in Beckmann centrifuge tubes for 15 min with15,000 k at 4 °C 

twice. A sample was taken from the pellet (insoluble fraction) and from 

supernatant (soluble fraction), mixed with Lämmli Buffer and stored at -20 °C.  

Purification of recombinant proteins 

All buffers were sterile filtrated and precooled before purification at 4 °C. The 

Äkta was washed with sterile water and the columns were equilibrated with 

lysis buffer. The sample was loaded into a super loop and connected to the 

machine. The sample was loaded onto the His-Trap column with a flow rate 

of 0.7 mL/min. The flow-through was collected in 10 mL fractions. After 

loading the column was washed with washing buffer with a flow rate of 

1 mL/min until OD A280 was stable. Elution was done with elution buffer with 

a flow rate of 1 mL/min and collected in fractions of 3 mL. Afterwards the Äkta 

and column were washed with water and 20 % ethanol.  

TEV cleavage of ZZ-Tag 

For cleavage of the ZZ-Tag 7 mL of purified protein solution was mixed with 

100 µL TEV protease (10 mg/mL) and incubated in a dialysis bag in 300 mL 

TEV buffer over night at 4 °C. 

Buffer exchange and concentration  

The buffer exchange was done with PD10 columns. First the column was 

equilibrated with 10 mL coupling buffer, then the protein solution was 

transferred onto the column and eluted with 3 times 3.5 L coupling buffer. The 

protein solution was concentrated with Vivaspin 20 columns to a 

concentration of 1.14 mg/mL. 

13.2.4 Purification of antibody sera 

Coupling of FMNL-His to CNBr-activated Sepharose  
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1 g of CNBr-activated sepharose was swollen in 1 mM HCl for 15 min and then 

washed with 200 mL 1 M HCl on a glass filter. The sepharose was then 

transferred to a Falcon tube with 5 mL coupling buffer, mixed with the protein 

solution and incubated over night at 4 °C under constant shaking. Afterwards 

the supernatant was removed and some sepharose was tested for protein 

binding with color reaction of Bradford solution. Then blocking buffer was 

added to the sepharose and washed for 2 h at room temperature. The coupled 

sepharose was then loaded onto an empty column and washed with 5 column 

volumes of washing buffers 1 and 2 and afterwards washed with 5 column 

volumes of PBS. The column was stored in PBS + 0.02 % NaN3. 

Purification of antibody sera 

The purification was performed at 4 °C. After washing the column with 

FMNL-His tagged sepharose with PBS (10 column volumes, 1 mL/min) the 

centrifuged (2x15 min, 4 °C, 15,000 g) serum was loaded onto the column with 

a flow rate of 0.5 mL/min. The flow-through was collected and a sample was 

taken. The column was washed with 10 column volumes of PBS and 10 column 

volumes of PBS + 300 mM NaCl until the OD A280 was stable. The first elution 

step was done with High Salt Buffer until the OD A280 dropped. The fraction 

size was 1 mL. Then elution with low pH and high pH buffer followed. For 

elution with high and low pH buffers, 100 µL neutralization buffer was added 

to the collection tubes before elution. After purification, the fractions were 

pooled, the buffer was changed to PBS as explained before and the solution 

was concentrated to a concentration of 1 mg/mL. 

13.2.5 Fly-related methods 

Fly genetics and generation of germ line clones 

The diasy5 allele carries a point mutation leading to the exchange of a Serin by 

a Leucin at position 92 of the protein (Yan et al., 2013). The genetic region is 

flanked by a flipase recognition target (FRT) site on the left chromosome. For 

the generation of embryos carrying the maternal mutation, diasy5 FRT were 

crossed to ovoFRT2L flies. These flies carry a Flipase that is expressed upon heat 

shock, the ovo mutation, leading to female sterility, and the corresponding FRT 

site. Upon heat shock, the Flipase leads to induction of mitotic recombination 

that results in female flies with homozygous mutant germline cells (Chou and 

Perrimon, 1992). Flies in which the mitotic recombination did not happen carry 

the ovo mutation in their germline leading to sterility (Chou et al., 1993).  
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In the same way germ line clones of dizzy, canoe, ELMO, Rap1 and scribble were 

generated with corresponding ovoFRT2L or ovoFRT2R flies.  

The dizzyΔ8 allele was generated by imprecise excision of a P-element, leading 

to a removal of the transcription start site, the first exon and nearly the full first 

intron (Huelsmann et al., 2006). The canoeR2 allele, that was generated in an 

EMS screen has a stop codon at position 211 directly after the first Ras 

association domain, possibly representing a null-allele (Sawyer et al., 2009). 

Also, the ELMO367 allele was generated in an EMS screen (Luschnig et al., 2004) 

and was mapped and characterized by Dr. Zhiyi Lv (Winkler et al., 2015). 

Although no mutation in the genomic region of ELMO could be detected, the 

lethality of this allele could be mapped to ELMO by a complementation assay 

with deficiencies that are available from the Bloomington Drosophila stock 

center. Furthermore, the lethality of the allele can be rescued by endogenous 

expression of an ELMO-GFP. The Rap1P579 allele was made by insertion of a P-

element, leading to phenotypes also described for other Rap1 alleles 

(Huelsmann et al., 2006; Knox and Brown, 2002). The scribble1 allele was also 

generated in a EMS screen, exchanging the Leucine at position 266 to a 

glutamine (Zeitler et al., 2004).  

For the analysis of dia mutant ovaries overexpressing Bazooka GFP, diasy5 flies 

with a maternal tub-Gal4 driver and UASp-Bazooka-GFP were crossed to flies 

expressing hs-Flipase and nls-GFP with a flanking FRT site. After induction of 

mitotic recombination by heat shock mutant ovaries were marked by missing 

nuclear GFP-signal. 

The generation of germ line clones was done according to Chou and Perrimon, 

1992. Heat shocks were done at two consecutive days at first and second larval 

stages at 37 °C for one hour to induce expression of the Flipase.  

To generate embryos maternally mutant for sponge, I made use of the allele 

sponge[242], that was generated in an EMS screen and carries a stop codon 

(W487STOP) (Biersmith et al., 2011; Postner et al., 1992). These flies were 

crossed to flies carrying a deficiency of the sponge locus (DF(3R)3450) resulting 

in viable flies homozygous mutant for sponge giving rise to embryos that died 

latest during gastrulation (Biersmith et al., 2011; Postner et al., 1992). For GLCs 

of slam I made use of a fly stock in which the genomic rescue of the 5’ region 

of Df(2L) slam containing CG9505 was inserted into position 58A3 and 

recombined with Df(2L) slam FRT2L. 



Material and Methods 

-145- 

Expression of constructs driven by UAS-Gal4 system was done with a 

maternal tubulin-Gal-4 driver according to Brand and Perrimon, 1993. 

Expression of Bazooka RNAi was done with a triple maternal driver (MTD-

Gal4) (Petrella et al., 2007).  

Generation of transgenic flies 

For φC31 mediated transgenesis of attPB3VK00033 flies (Markstein et al., 

2008), staged preblastoderm embryos from the fly stock nanos φ31 were 

collected, dechorionated and lined up on pieces of apple juice agar. The 

embryos are then glued with heptan based glue to a cover glass, dried for ~ 10 

min in a desiccation chamber, covered with halocarbon oil. The fosmid was 

injected with a concentration of 250 ng/µL in water. The slides were then 

incubated at 18 °C and hatched larvae were collected into food vials and 

further incubated at room temperature. Adults were crossed to w- flies and the 

next generation was screened for dsRed expression in the eyes. Males which 

showed dsRed expression were crossed to TM3/TM6B females and then 

homozygous possible FMNL-GFP stocks were established and tested for GFP 

expression. 

Fixation of embryos for staining 

Fixation of embryos was done according to Großhans et al., 2005. If stained for 

Armadillo, heat fixation was performed. For staining of F-actin by Phalloidin 

or Cpa, a concentration of 8 % formaldehyde was used instead of 4 % and the 

vitelline membrane was removed by hand. Hand peeling was done by 

washing the fixation solution off with PBS and the embryos were stuck to 

double sided tape and covered with PBT. The vitelline membrane was 

removed with an injection needle. Afterwards the embryos were stored in PBT 

at 4 °C for short term before staining. 

Preparation of ovaries, testis and larval brains 

Preparation of ovaries and testis were done by opening the abdomen of adult 

male or female flies and removing the tissues from other body parts. Tissue 

preparation was performed in cold PBS and tissues were stored on ice before 

fixation. Fixation was done in 9.5°mL PBS with 0.5°mL Formaldehyde by 

shaking for 20 min at room temperature. The tissues were then washed with 

PBT and stained as described below. 

Immunostaining 
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Immunostaining was performed according to Großhans et al., 2005.  

Viability Assay 

For viability assays wild type and P/Def embryos were collected on apple juice 

agar plates o/n, counted and transferred to fresh apple juice agar plates. 

Hatched larvae were counted and transferred to food vials in which pupae are 

counted as well as the hatched adult flies. The number of used embryos, larvae 

or pupae was counted as 100 %.  

Injection of α-amanitin 

α-amanitin was injected into embryos expressing CanoeYFP during 

preblastoderm stage. The embryos were dechorionated, lined up on apple 

juice agar plates and glued onto cover slides. The drug was injected with a 

concentration of 1 mg/mL in water. Afterwards, the embryos were kept at 

25 °C for around 1.5-2 h to reach late syncytial blastoderm stage. The embryos 

were then washed from the slides with heptane and fixed, hand peeled and 

stained as described above. 

13.2.6 Whole mount in situ hybridization 

Production of a probe detecting FMNL 

In situ hybridization was done using standard methods described before 

(Lehmann and Tautz, 1994). To produce the FMNL probe, FMNL cDNA vector 

was linearized with NotI. The sample of 50 µL was mixed with 200 µL phenol-

chloroform mix, centrifuged with maximum speed for 5 min at 4 °C and the 

upper aqueous phase was transferred to a new Eppendorf tube and 200 µL 

Chloroform were added. After centrifugation with maximum speed for 5 min 

at 4 °C, the upper phase was again transferred to a new tube and DNA was 

precipitated by adding 20 µL NaAc and 500 µL ethanol and incubation for 

30 min at -80 °C. After centrifugation for 30 min with maximum speed at 4 °C, 

the pellet was washed with 70 % ethanol, dried and solved in 10 µL RNase-

free water. The linearized cDNA was then transcribed with T7 RNA 

polymerase using Dig-NTPs to label the probe as followed: 

Linearized DNA (1 µg) 3 µL 

10x NTP-Dig Labeling Mix 2 µL 

10x Transcription buffer 2 µL 

RNA Polymerase T7 2 µL 
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RNase inhibitor 1 µL 

RNase free water Adjust to 20 µL 

The mix was incubated at 37 °C for 2 h in a PCR machine. Afterwards 0.8 µL 

of 0.5 M EDTA, 2 µL of 5 M LiCl and 75 µL cold ethanol were added and 

incubated for at least 30 min at 4 °C. After incubation the mix was centrifuged 

with maximum speed for 10 min at 4 °C and the pellet was washed twice with 

70 % cold ethanol. The pellet was dissolved in 20 µL DEPC-treated water and 

the probe was stored at -20 °C. To produce a working solution 2 µL of the 

probe was mixed with 1 µL tRNA (50 mg/mL) and 20 µL DEPC-treated water 

and boiled for 4 min at 100 °C. Afterwards the probe was immediately cooled 

down in ice water and mixed with 200 µL hybridization solution. The slam 

probe was prepared by Dr. Shuling Yan. 

Hybridization and detection of RNA 

For hybridization FA-fixed embryos were transferred to PBT, washed twice 

for 5 min, then washed for 10 min in hybridization solution:PBT-mix (1:1) and 

then incubated with hybridization solution for 10 min at room temperature. 

Prehybridization with hybridization solution was done at 57 °C in a water 

bath for 1 h. Afterwards embryos were incubated with the diluted probe (1:10) 

in hybridization solution overnight at 57 °C and then washed with decreasing 

concentrations of hybridization solution in PBT.  

To detect the probe, an antibody against DIG labeled with alkaline 

phosphatase (AP) was used as described before for immunostainings. After 

incubation with the antibody, the embryos were transferred into AP buffer 

and washed trice for 5 min. To induce color reaction 4.5 µL NBT and 3.5 µL 

BCIP were added to embryos in 1 mL AP buffer. The enzymatic color reaction 

was detected after 5-10 min and stopped by washing with PBT. To remove 

background, the embryos were washed in a series of increasing ethanol in PBT 

to 100 % ethanol and back to 100 % PBT. The embryos were mounted in 

Aquapolymount and imaged with a light microscope. 

13.2.7 Imaging 

Imaging of fixed samples 

Fixed and immunostained embryos were imaged at the LSM microscope with 

63x water objectives. Larval tissues were imaged with 25x and 40x objectives. 

The laser intensities were set to optimal illumination. Top views of embryos 
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were made with a 2x zoom and images had a size of 67.5 x 67.5 µm 

(512 x512 pixel) and a lateral pixel size of 130 nm. Side views were imaged 

with a zoom of 1.4x and had a size of 96.4 x 29.4 µm (512 x 200 pixel) and a 

lateral pixel size of 190 nm. Z-stacks were made with a step size of 0.5 µm. 

Each channel was recorded separately. Images of phalloidin staining in wild 

type and dia embryos were obtained with a size of 67.48 x 67.48 µm 

(512 x 512 pixel) and a lateral pixel size of 131.8 nm. Z-stacks with a step size 

of 0.5 µm were made with same laser intensities for both phenotypes which 

were mounted of the same slide and distinguished by a Myo-GFP signal that 

was only expressed by dia mutants. 

Live imaging 

For live imaging embryos were handled as described before (Kanesaki et al., 

2011). Live imaging of embryos expressing CanoeYFP and CherrySlam were 

gained with a frame size of 28.7 x 28.7 µm (256 x 256 pixel) and a lateral pixel 

size of 110 nm in an interval of 60 s. Each channel was recorded separately and 

channels were changed after recording of every z-stack. Z-stacks had a size of 

19 slices with a step size of 0.5 µm. Embryos expressing ScribbledGFP were 

imaged with AiryScan detection with a frame size of 36 x 36 µm 

(488 x 488 pixel) and a lateral pixel size of 73 nm. Z-stacks were obtained in an 

interval of 60 s and every z-stack included 11 slices with a step size of 1 µm. 

Embryos expressing ELMO-GFP and CherrySlam were imaged with AiryScan 

detection with a frame size of 32 x 32 µm (488 x 488 pixel) and a lateral pixel 

size of 66 nm. Z-stacks were obtained in an interval of 60 s and every z-stack 

contained 17 slices with a step size of 0.5 µm. Images of embryos expressing 

GFP-Rap1 were obtained with AiryScan detection with a frame size of 

32.1 x 32.1 µm (476 x 476 pixel) with a lateral pixel size of 67.5 nm. Z-stacks 

were obtained with a step size of 0.2 µm and orthogonal views were 

conducted with Fiji/ ImageJ. Images of living embryos expressing the 

Rhosensor-tdtomato was done with AiryScan. The frame size was 

32.16 x 32.16 µm (488 x 488 pixel) with a lateral pixel size of 66 nm. Z-stacks 

were recorded from apical to basal end of the furrow with a step size of 0.4 µm 

and orthogonal views were obtained using Fiji/ ImageJ. Top views of embryos 

expressing BazookaGFP were recorded with AiryScan detection and a frame 

size of 32.16 x 32.16 µm (488 x 488 pixel) with a lateral pixel size of 66 nm. 

Every minute a z-stack with 22 slices, covering 11 µm was imaged. For Figure 

23 slices covering 8.5 µm were summed using Fiji/ ImageJ. 
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Fluorescence recovery after photobleaching (FRAP) 

FRAP experiments were performed at the LSM microscope. For bleaching of 

CanoeYFP, the laser intensity was set to 50 % and bleaching was done with 

100 iterations in fast FRAP mode. Imaging was started directly after bleaching 

and was done with z-stacks (3 slices, step size of 1.5 µm) in an interval of 30 s. 

The images were recorded with a frame size of 50 x 50 µm (512 x 512 pixel) 

with a lateral pixel size of 97.7 nm. The z-stacks were merged for 

quantification. FRAP of 117-GFP was done with laser power set to 100 % and 

150 iterations in fast FRAP mode. Imaging was done with a frame size of 

33.7 x 33.7 µm (512 x 512 pixel) and a lateral pixel size of 65.8 nm and in an 

interval of 5 s. 

Two-Photon microscopy 

Living embryos expressing BazookaGFP either in wild type or dia background 

were imaged with a two-photon microscope to allow for side views. Images 

were taken every 10 min with correction for z- position. The frame size of each 

image was 85.02 x 49.82 µm (512 x 300 pixel) with a lateral pixel size of 

166 nm.  

13.2.8 Quantifications 

All measurements for quantifications were done in Fiji/ ImageJ and further 

calculations were done in Microsoft Excel if not stated otherwise. 

Fluorescence intensities along cellularization furrows of side views 

For quantification of fluorescence intensities along cellularization furrows of 

fixed embryos segmented lines were drawn along the furrows from apical to 

basal and fluorescence intensities were measured using the line plot function 

of Fiji/ ImageJ. The maximal intensities for each furrow were normalized to 

one and apical – basal positions were normalized to the peak if possible. 

Averages were calculated after normalization with standard error of the mean 

as error bars and plotted against the apical basal position. Heat maps were 

made with the conditional formatting function for each furrow. 

Fluorescence intensities along cellularization furrows of top views 

For quantification of fluorescence intensities along cellularization furrows of 

living embryos from top views, the fluorescence intensity of three furrows in 

one embryo were measured in each z-position along the apical – basal axis for 



Material and Methods 

-150- 

the indicated time points. The maximal intensities for each protein were 

normalized to one, averaged and plotted against the apical – basal position. 

For the measurement of the width of Canoe signal in Figure 8the distribution 

of fluorescence intensity at one furrow was measured at different time points 

using the line plot function. Position zero on the x-axis was defined by the 

peak of the curve at the latest time point. The width of the Canoe region was 

measured for Figure 8was measured at three furrows at time points as 

indicated and plotted against the time. 

FRAP 

Quantification of FRAP results was done by measuring the mean fluorescence 

intensity in the bleached region before and after bleach over time. 

Furthermore, the mean fluorescence intensity outside of the bleached region 

was measured. The fluorescence intensities were then normalized to their 

individual peak and to the outside to correct for bleaching. The averages with 

SEM were plotted against the time.  

Measurement of fluorescence intensities in fixed top views and calculation of 

exponential decay 

Quantification of fluorescence intensities of phalloidin staining in wild type 

and dia embryos was done by measuring mean fluorescence intensities in four 

frames with a size of 256 x 256 pixel per embryo. As the embryos were co-

stained in the same vial and imaged with same laser intensities, the measured 

intensities could be plotted for both genotypes without any normalization. 

Averages of intensities from 3 embryos per genotype with SEM were also 

plotted. 

Measurement of Cpa signal at the edges of caps in wild type and dia embryos 

were done by drawing a line perpendicular to the edge across the edge. Every 

measurement was normalized to its peak and the peak was set as position 

zero. The measurements for every embryo was averaged and plotted with 

SEM against the position. For the determination of the width of the Cpa signal, 

the width of the curves for the averages from every measurement was 

quantified at a relative fluorescence intensity of 0.8 and plotted for both 

genotypes as box plots with the error bars showing the maximal and minimal 

measured width. 
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For the calculation of the exponential decay, the data points from the averages 

of every embryo – 1.6 µm to 1.6 µm were mirrored at position zero and with 

error bars plotted in Origin Pro 8.5G. For every of the six curves an exponential 

curve was fitted and the exponential decay was plotted for each genotype 

together with the average and SEM.  
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 Appendix 

Table 6 Normalized values of fluorescence intensities measured for Figure 8B. 

 Furrow 1 Furrow 2 Furrow 3 Average 

a-b 

pos. 

Cno 

3 mi

n 

Slam 

3 min 

Cno 

3 min 

Slam 

3 min 

Cno 

3 min 

Slam 

3 min 

Cno 

3 min 

Slam 

3 min 

[µm] Nor

m 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

0.00 0.62 0.31 0.38 0.25 0.57 0.29 0.52 0.28 

0.50 0.57 0.24 0.62 0.20 0.59 0.26 0.60 0.23 

1.00 0.59 0.27 0.64 0.27 0.73 0.23 0.66 0.26 

1.50 0.85 0.38 1.00 0.60 0.93 0.33 0.94 0.44 

2.00 0.86 0.40 0.94 0.57 0.86 0.40 0.89 0.46 

2.50 0.69 0.38 0.83 0.48 0.65 0.39 0.73 0.42 

3.00 0.56 0.31 0.64 0.38 0.44 0.30 0.54 0.33 

3.50 0.28 0.20 0.26 0.23 0.23 0.19 0.26 0.21 

4.00 0.12 0.14 0.15 0.21 0.14 0.16 0.14 0.17 

4.50 0.15 0.14 0.14 0.24 0.10 0.12 0.13 0.17 

5.00 0.12 0.11 0.14 0.25 0.12 0.13 0.13 0.16 

5.50 0.12 0.14 0.11 0.23 0.08 0.10 0.10 0.15 

6.00 0.08 0.17 0.07 0.25 0.10 0.09 0.08 0.17 

6.50 0.09 0.14 0.09 0.17 0.07 0.18 0.08 0.16 

7.00 0.09 0.15 0.10 0.15 0.10 0.15 0.10 0.15 

7.50 0.10 0.14 0.07 0.19 0.08 0.14 0.08 0.16 

8.00 0.08 0.15 0.10 0.24 0.08 0.14 0.09 0.18 

8.50 0.09 0.18 0.10 0.20 0.09 0.16 0.09 0.18 

9.00 0.11 0.21 0.10 0.23 0.12 0.16 0.11 0.20 
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Normalized values of fluorescence intensities measured for Figure 8B 

- continuation 

a-b 

pos. 

Cno 

3 mi

n 

Slam 

3 min 

Cno 

3 min 

Slam 

3 min 

Cno 

3 min 

Slam 

3 min 

Cno 

8 min 

Slam 

8 min 

[µm] Nor

m 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

0.00 0.58 0.22 0.46 0.16 0.63 0.24 0.56 0.21 

0.50 0.61 0.26 0.55 0.19 0.64 0.20 0.60 0.22 

1.00 0.65 0.29 0.68 0.19 0.67 0.27 0.67 0.25 

1.50 0.94 0.42 0.79 0.36 0.75 0.34 0.83 0.37 

2.00 0.95 0.51 1.00 0.39 0.85 0.44 0.94 0.45 

2.50 0.88 0.64 0.94 0.48 0.84 0.44 0.88 0.52 

3.00 0.73 0.93 0.78 0.59 0.68 0.57 0.73 0.70 

3.50 0.53 1.00 0.42 0.73 0.42 0.87 0.46 0.87 

4.00 0.22 0.53 0.23 0.40 0.21 0.73 0.22 0.56 

4.50 0.16 0.38 0.16 0.30 0.18 0.40 0.17 0.36 

5.00 0.17 0.27 0.14 0.25 0.16 0.32 0.16 0.28 

5.50 0.13 0.23 0.12 0.19 0.12 0.32 0.12 0.25 

6.00 0.10 0.19 0.11 0.17 0.10 0.19 0.10 0.18 

6.50 0.08 0.18 0.09 0.14 0.11 0.18 0.09 0.17 

7.00 0.11 0.21 0.11 0.17 0.08 0.18 0.10 0.19 

7.50 0.14 0.21 0.09 0.18 0.10 0.16 0.11 0.19 

8.00 0.10 0.16 0.08 0.17 0.10 0.18 0.09 0.17 

8.50 0.09 0.28 0.08 0.18 0.10 0.21 0.09 0.22 

9.00 0.10 0.25 0.10 0.19 0.09 0.24 0.10 0.23 
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Table 7 Normalized fluorescence intensity measured for Figure 8C 

Pos. 

[µ.m.] 
Norm. fluorescence intensity 

of Cno signal [a.u.] 

 Pos. 

[µ.m.] 

Norm. fluorescence intensity 

of Cno signal [a.u.]  
3 min 8 min 13 min   3 min 8 min 13 min 

-2.69 0.19 0.10 0.16  1.35 0.38 0.23 0.10 

-2.58 0.27 0.06 0.10  1.46 0.19 0.09 0.17 

-2.47 0.11 0.07 0.05  1.57 0.08 0.09 0.09 

-2.36 0.09 0.04 0.03  1.68 0.10 0.30 0.05 

-2.24 0.07 0.12 0.09  1.79 0.10 0.13 0.03 

-2.13 0.08 0.07 0.15  1.91 0.07 0.03 0.07 

-2.02 0.16 0.18 0.06  2.02 0.12 0.06 0.03 

-1.91 0.06 0.11 0.07  2.13 0.06 0.03 0.06 

-1.79 0.06 0.15 0.03  2.24 0.12 0.05 0.11 

-1.68 0.15 0.10 0.10  2.36 0.23 0.07 0.02 

-1.57 0.17 0.14 0.14      

-1.46 0.16 0.23 0.23      

-1.35 0.44 0.16 0.14      

-1.23 0.74 0.49 0.21      

-1.12 0.78 0.42 0.22      

-1.01 0.63 0.52 0.17      

-0.90 0.42 0.74 0.17      

-0.79 0.55 0.56 0.27      

-0.67 0.45 0.50 0.33      

-0.56 0.57 0.73 0.21      

-0.45 0.35 0.86 0.23      

-0.34 0.57 0.89 0.08      

-0.22 0.57 1.00 0.39      

-0.11 0.37 0.77 0.57      

0.00 0.53 0.65 1.00      

0.11 0.64 0.49 0.80      

0.22 0.41 0.37 0.48      

0.34 0.35 0.45 0.47      

0.45 0.40 0.10 0.40      

0.56 0.50 0.15 0.11      

0.67 0.72 0.08 0.20      

0.79 0.55 0.09 0.10      

0.90 0.52 0.16 0.10      

1.01 1.00 0.09 0.05      

1.12 0.76 0.07 0.06      

1.23 0.51 0.14 0.21      
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Table 8 Furrow width marked by Canoe measured for Figure 8D 

Time 

[min] 
Furrow width [µm] Furrow 

width 

[µm]  
Furrow 1 Furrow 2 Furrow 3 Average 

4.00 2.42 2.65 2.27 2.44 

5.00 2.22 1.88 1.59 1.90 

6.00 1.60 1.93 1.51 1.68 

7.00 1.18 1.26 1.27 1.24 

8.00 1.30 0.97 0.83 1.03 

9.00 1.01 0.73 0.69 0.81 

10.00 0.67 0.58 0.60 0.62 

11.00 0.63 0.58 0.61 0.60 

12.00 0.79 0.63 0.28 0.57 

13.00 0.56 0.53 0.52 0.54 

14.00 0.39 0.32 0.40 0.37 

Table 9 Normalized fluorescence intensity of Scrib signal measured for Figure 10C 

a-b 

position 

[µm] 

Normalized fluorescence intensity Scrib [a.u.] 3 

min 

Furrow 1 Furrow 2 Furrow 3 

0,00 0,53 0,63 0,67 

1,00 0,44 0,60 0,60 

2,00 0,75 0,69 0,60 

3,00 0,26 0,23 0,21 

4,00 0,26 0,17 0,17 

5,00 0,25 0,13 0,14 

6,00 0,17 0,11 0,09 

7,00 0,12 0,12 0,09 

8,00 0,13 0,14 0,14 

9,00 0,13 0,14 0,17 

10,00 0,13 0,16 0,13 

a-b 

position 

[µm] 

Normalized fluorescence intensity Scrib [a.u.] 8 

min 

Furrow 1 Furrow 2 Furrow 3 

0,00 0,64 0,64 0,59 

1,00 0,60 0,74 0,76 

2,00 0,64 0,71 0,75 

3,00 0,83 0,83 1,00 

4,00 0,73 0,81 0,98 

5,00 0,49 0,59 0,82 

6,00 0,19 0,24 0,43 

7,00 0,16 0,16 0,34 

8,00 0,14 0,11 0,14 

9,00 0,11 0,14 0,13 

10,00 0,14 0,13 0,14 
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Table 10 Normalized fluorescence intensity of Canoe signal measured for Figure 16D 

a-b 

position 

[µm] 

Wild type  

Normalized fluorescence intensity of Canoe signal [a.u.] 

Average 

E 1 E 1 E 1 E 2 E 2 E 2 E 3 E 3 E 3 

-1.51 0.37 0.17 
 

0.35 
     

0.30 

-1.32 0.44 0.24 
 

0.37 0.26 0.37 
  

0.08 0.29 

-1.13 0.55 0.32 
 

0.56 0.34 0.49 0.19 
 

0.12 0.37 

-0.94 0.78 0.44 0.22 0.67 0.37 0.57 0.27 0.20 0.22 0.42 

-0.75 0.73 0.63 0.35 0.67 0.37 0.61 0.31 0.26 0.34 0.47 

-0.56 0.80 0.74 0.52 0.59 0.47 0.62 0.34 0.36 0.52 0.55 

-0.38 0.73 0.68 0.57 0.50 0.72 0.72 0.45 0.48 0.72 0.62 

-0.19 0.84 0.76 0.83 0.78 0.66 0.75 0.60 0.66 0.82 0.74 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.99 1.00 0.99 

0.19 0.74 0.90 0.90 0.83 0.57 0.96 1.00 1.00 0.84 0.86 

0.38 0.51 0.90 0.74 0.66 0.43 0.64 0.99 0.85 0.47 0.69 

0.56 0.39 0.92 0.67 0.47 0.42 0.52 0.85 0.54 0.36 0.57 

0.75 0.41 0.66 0.61 0.38 0.62 0.44 0.63 0.56 0.36 0.52 

0.94 0.44 0.43 0.47 0.26 0.51 0.27 0.56 0.43 0.41 0.42 

1.13 0.36 0.38 0.41 0.29 0.46 0.36 0.39 0.31 0.30 0.36 

1.32 0.31 0.28 0.35 0.30 0.50 0.30 0.30 0.28 0.28 0.32 

1.51 0.29 0.32 0.34 0.28 0.34 0.26 0.22 0.29 0.29 0.29 

1.69 0.26 0.31 0.33 0.27 0.24 0.31 0.25 0.32 0.31 0.29 

1.88 0.25 0.22 0.26 0.25 0.23 0.31 0.25 0.55 0.30 0.29 

2.07 0.26 0.21 0.22 0.20 0.27 0.33 0.18 0.44 0.23 0.26 

2.26 0.29 0.28 0.27 0.18 0.30 0.38 0.18 0.24 0.18 0.26 

2.45 0.33 0.25 0.23 0.21 0.28 0.40 0.22 0.17 0.21 0.25 

2.64 0.30 0.23 0.18 0.20 0.30 0.40 0.27 0.18 0.22 0.25 

2.82 0.23 0.18 0.26 0.27 0.33 0.47 0.25 0.20 0.26 0.27 

3.01 0.27 0.19 0.27 0.27 0.36 0.35 0.25 0.20 0.22 0.26 

3.20 0.26 0.30 0.28 0.20 0.33 0.27 0.30 0.22 0.26 0.27 

3.39 
 

0.32 0.31 0.21 0.29 0.22 0.32 0.24 0.22 0.27 

3.58 
 

0.49 0.31 0.23 0.26 0.19 0.26 0.26 0.23 0.28 

3.77 
 

0.31 0.40 0.22 0.25 0.19 0.23 0.25 0.18 0.25 

3.95 
  

0.33 0.23 0.18 0.12 0.20 0.23 0.15 0.21 

4.14 
  

0.29 0.24 0.17 
  

0.22 
 

0.23 

4.33 
  

0.27 
 

0.21 
  

0.19 
 

0.23 

4.52 
       

0.18 
 

0.18 

4.71 
       

0.16 
 

0.16 
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Normalized fluorescence intensity of Canoe signal measured for Figure 16D 

- continuation 

a-b  

position 

[µm] 

ELMO 

Normalized fluorescence intensity of Canoe signal [a.u.] 

Average 

E 1 E 1 E 1 E 2 E 2 E 2 E 3 E 3 E 3 

-1.51 
  

0.29 
    

0.15 
 

0.22 

-1.32 
  

0.35 
   

0.12 0.25 
 

0.24 

-1.13 
 

0.24 0.43 
 

0.36 
 

0.18 0.47 
 

0.34 

-0.94 0.25 0.36 0.50 
 

0.45 0.20 0.29 0.65 
 

0.39 

-0.75 0.31 0.56 0.59 
 

0.58 0.29 0.41 0.70 0.34 0.47 

-0.56 0.39 0.61 0.69 
 

0.64 0.34 0.47 0.63 0.51 0.54 

-0.38 0.55 0.81 0.81 
 

0.61 0.52 0.63 0.69 0.66 0.66 

-0.19 0.81 0.83 0.88 0.81 0.75 0.74 0.88 0.75 0.82 0.81 

0.00 0.91 0.90 0.97 0.96 0.97 0.91 1.00 0.94 0.97 0.95 

0.19 0.97 0.98 0.85 0.90 1.00 0.91 0.88 0.90 1.00 0.93 

0.38 0.90 1.00 0.86 0.78 0.86 0.86 0.81 0.82 0.89 0.86 

0.56 0.91 0.94 0.82 0.67 0.74 0.86 0.68 0.75 0.89 0.81 

0.75 0.91 0.81 0.76 0.62 0.73 0.86 0.53 0.95 0.88 0.78 

0.94 0.98 0.86 0.79 0.68 0.76 0.98 0.49 1.00 0.90 0.83 

1.13 0.87 0.81 0.78 0.76 0.72 1.00 0.50 0.81 0.88 0.79 

1.32 0.75 0.74 0.79 0.78 0.73 0.84 0.51 0.77 0.81 0.75 

1.51 0.78 0.65 0.83 0.70 0.72 0.80 0.43 0.62 0.82 0.71 

1.69 1.00 0.64 0.83 0.78 0.73 0.73 0.50 0.67 0.76 0.74 

1.88 0.91 0.77 0.78 0.79 0.84 0.74 0.47 0.77 0.82 0.76 

2.07 0.87 0.80 0.78 0.70 0.92 0.83 0.48 0.79 0.87 0.78 

2.26 0.94 0.79 0.83 0.84 0.87 0.75 0.51 0.76 0.82 0.79 

2.45 0.98 0.86 0.94 1.00 0.87 0.64 0.48 0.69 0.79 0.80 

2.64 0.87 0.83 1.00 0.89 0.86 0.59 0.53 0.57 0.81 0.77 

2.82 0.81 0.76 0.88 0.83 0.74 0.52 0.67 
 

0.82 0.75 

3.01 0.81 0.68 0.87 0.65 0.71 0.60 0.66 
 

0.80 0.72 

3.20 0.83 0.67 0.84 0.55 0.67 0.59 0.64 
 

0.77 0.69 

3.39 0.84 0.63 0.89 0.54 0.63 0.57 0.74 
 

0.76 0.70 

3.58 0.71 0.63 
 

0.53 0.55 0.64 0.76 
 

0.80 0.66 

3.77 0.67 0.69 
 

0.51 0.64 0.63 0.70 
 

0.84 0.67 

3.95 0.68 0.71 
 

0.60 0.73 0.61 0.72 
 

0.86 0.70 

4.14 0.72 0.66 
 

0.67 0.84 0.74 0.75 
 

0.82 0.74 

4.33 0.68 0.67 
 

0.66 0.82 0.83 
   

0.73 

4.52 0.64 
  

0.62 0.83 0.82 
   

0.73 

4.71 0.62 
  

0.58 0.81 
    

0.67 
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Table 11 Normalized fluorescence intensities of ELMO-GFP and CherrySlam measured for 

Figure 21D. 

 Furrow 1 2 min Furrow 2 2 min Furrow 3 2 min Average 2 min 

a-b 

pos. 

ELM

O 

Slam ELM

O 

Slam ELM

O 

Slam ELM

O 

Slam 

[µm] Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

Norm 

[a.u.] 

0.00 0.75  0.82  0.86  0.75  

0.50 0.69  0.61  0.75  0.69  

1.00 0.54 0.41 0.53 0.55 0.67 0.34 0.54 0.41 

1.50 0.51 0.32 0.49 0.44 0.60 0.36 0.51 0.32 

2.00 0.40 0.30 0.47 0.37 0.50 0.39 0.40 0.30 

2.50 0.31 0.23 0.32 0.27 0.40 0.30 0.31 0.23 

3.00 0.24 0.19 0.23 0.20 0.36 0.25 0.24 0.19 

3.50 0.20 0.17 0.18 0.16 0.30 0.20 0.20 0.17 

4.00 0.19 0.17 0.16 0.16 0.29 0.18 0.19 0.17 

4.50 0.18 0.15 0.13 0.15 0.28 0.21 0.18 0.15 

5.00 0.21 0.14 0.14 0.15 0.20 0.18 0.21 0.14 

5.50 0.20 0.15 0.13 0.14 0.25 0.17 0.20 0.15 

6.00 0.20 0.16 0.23 0.16 0.25 0.20 0.20 0.16 

6.50 0.22 0.20 0.23 0.19 0.27 0.23 0.22 0.20 

7.00 0.24 0.29 0.28 0.27 0.34 0.31 0.24 0.29 

Pos. 

[µm] 

Furrow 1 6 min Furrow 2 6 min Furrow 3 6 min Average 6 min 

0.00 1.00  0.91  0.72  1.00  

0.50 0.94  0.75  0.63  0.94  

1.00 0.82 0.33 0.63 0.33 0.64 0.35 0.82 0.33 

1.50 0.76 0.27 0.63 0.27 0.66 0.32 0.76 0.27 

2.00 0.72 0.28 0.57 0.26 0.61 0.27 0.72 0.28 

2.50 0.67 0.26 0.48 0.29 0.63 0.33 0.67 0.26 

3.00 0.61 0.38 0.43 0.35 0.54 0.43 0.61 0.38 

3.50 0.59 0.58 0.42 0.47 0.45 0.44 0.59 0.58 

4.00 0.53 0.81 0.40 0.59 0.41 0.64 0.53 0.81 

4.50 0.48 0.92 0.39 0.68 0.40 0.78 0.48 0.92 

5.00 0.37 0.94 0.33 0.60 0.38 1.00 0.37 0.94 

5.50 0.30 0.53 0.26 0.41 0.31 0.63 0.30 0.53 

6.00 0.22 0.35 0.24 0.25 0.27 0.45 0.22 0.35 

6.50 0.25 0.29 0.20 0.23 0.25 0.34 0.25 0.29 

7.00 0.25 0.42 0.26 0.33 0.29 0.43 0.25 0.42 
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Table 12 Normalized fluorescence intensities of Armadillo signal for Figure 37C 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Arm signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00 0.04 
     

0.07 
  

0.05 

0.12 0.06 
     

0.07 0.09 
 

0.07 

0.24 0.06 
     

0.06 0.14 
 

0.09 

0.36 0.08 0.02 
 

0.11 
  

0.05 0.20 0.02 0.08 

0.48 0.09 0.03 
 

0.15 
  

0.08 0.27 0.04 0.11 

0.60 0.07 0.04 
 

0.12 
  

0.10 0.45 0.05 0.14 

0.72 0.07 0.04 
 

0.14 0.13 
 

0.08 0.46 0.06 0.14 

0.85 0.06 0.05 
 

0.16 0.13 
 

0.11 0.28 0.05 0.12 

0.97 0.07 0.09 
 

0.21 0.16 
 

0.20 0.14 0.05 0.13 

1.09 0.13 0.08 
 

0.17 0.20 0.15 0.24 0.10 0.06 0.14 

1.21 0.17 0.05 
 

0.12 0.26 0.26 0.19 0.09 0.05 0.15 

1.33 0.24 0.05 
 

0.16 0.29 0.11 0.16 0.07 0.06 0.14 

1.45 0.27 0.08 
 

0.20 0.29 0.09 0.17 0.07 0.06 0.15 

1.57 0.39 0.06 
 

0.21 0.27 0.11 0.18 0.08 0.07 0.17 

1.69 0.35 0.10 
 

0.19 0.24 0.09 0.18 0.11 0.08 0.17 

1.81 0.16 0.17 
 

0.20 0.29 0.12 0.34 0.13 0.09 0.19 

1.93 0.13 0.17 0.08 0.26 0.30 0.16 0.53 0.13 0.10 0.21 

2.05 0.14 0.15 0.17 0.36 0.51 0.27 0.65 0.18 0.15 0.29 

2.17 0.20 0.34 0.23 0.46 0.75 0.23 0.76 0.31 0.23 0.39 

2.29 0.27 0.37 0.21 0.52 0.85 0.28 0.65 0.39 0.29 0.43 

2.41 0.24 0.15 0.15 0.67 0.91 0.48 0.50 0.45 0.36 0.43 

2.53 0.26 0.09 0.12 0.82 0.91 0.68 0.55 0.53 0.33 0.48 

2.66 0.33 0.10 0.13 0.91 0.90 0.73 0.66 0.50 0.33 0.51 

2.78 0.36 0.10 0.30 0.90 0.94 0.79 0.67 0.43 0.32 0.53 

2.90 0.62 0.21 0.58 0.95 0.91 0.75 0.88 0.38 0.36 0.63 

3.02 0.93 0.58 0.89 0.96 0.97 0.95 0.98 0.51 0.62 0.82 

3.14 1.00 1.00 0.90 0.97 1.00 1.00 1.00 0.63 0.75 0.92 

3.26 0.70 0.97 0.57 0.93 0.83 0.80 0.89 0.61 0.70 0.78 

3.38 0.62 0.70 0.33 0.69 0.51 0.78 0.58 0.55 0.58 0.59 

3.50 0.56 0.60 0.27 0.43 0.41 0.77 0.33 0.40 0.57 0.48 

3.62 0.49 0.60 0.25 0.41 0.35 0.59 0.20 0.28 0.41 0.40 

3.74 0.44 0.42 0.22 0.39 0.34 0.47 0.16 0.25 0.30 0.33 

3.86 0.33 0.35 0.24 0.33 0.38 0.38 0.16 0.22 0.25 0.29 

3.98 0.23 0.27 0.17 0.28 0.33 0.24 0.16 0.17 0.24 0.23 

4.10 0.18 0.15 0.15 0.16 0.25 0.18 0.13 0.14 0.26 0.18 

4.22 0.14 0.17 0.14 0.11 0.23 0.19 0.13 0.12 0.21 0.16 

4.35 0.13 0.38 0.19 0.11 0.29 0.23 0.13 0.15 0.20 0.20 

4.47 0.21 0.42 0.37 0.09 0.32 0.24 0.14 0.20 0.21 0.24 

4.59 0.33 0.36 0.56 0.09 0.24 0.17 0.11 0.15 0.27 0.25 

4.71 0.27 0.37 0.66 0.13 0.19 0.16 0.13 0.14 0.26 0.26 

4.83 0.22 0.30 0.75 0.14 0.13 0.17 0.15 0.16 0.19 0.24 

4.95 0.21 0.35 0.59 0.12 0.12 0.15 0.13 0.19 0.28 0.24 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Arm signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

5.07 0.14 0.44 0.45 0.10 0.11 0.16 0.13 0.23 0.32 0.23 

5.19 0.09 0.31 0.34 0.11 0.11 0.16 0.13 0.26 0.22 0.19 

5.31 0.09 0.14 0.24 0.15 0.11 0.18 0.14 0.27 0.21 0.17 

5.43 0.11 0.08 0.26 0.15 0.10 0.22 0.17 0.26 0.26 0.18 

5.55 0.11 0.08 0.26 0.16 0.08 0.21 0.22 0.32 0.24 0.19 

5.67 0.16 0.11 0.25 0.16 0.09 0.21 0.32 0.32 0.19 0.20 

5.79 0.15 0.16 0.21 0.15 0.10 0.23 0.27 0.29 0.25 0.20 

5.91 0.10 0.19 0.18 0.15 0.12 0.28 0.18 0.30 0.22 0.19 

6.04 0.07 0.15 0.17 0.13 0.14 0.25 0.13 0.28 0.19 0.17 

6.16 0.07 0.10 0.20 0.10 0.14 0.20 0.19 0.27 0.15 0.16 

6.28 0.08 0.09 0.21 0.09 0.11 0.15 0.27 0.25 0.19 0.16 

6.40 0.06 0.10 0.25 0.07 0.09 0.11 0.28 0.25 0.21 0.16 

6.52 0.06 0.09 0.31 0.09 0.11 0.11 0.27 0.26 0.26 0.17 

6.64 0.08 0.07 0.34 0.14 0.13 0.13 0.15 0.25 0.30 0.18 

6.76 0.10 0.07 0.30 0.19 0.14 0.09 0.14 0.21 0.19 0.16 

6.88 0.11 0.09 0.19 0.30 0.17 0.09 0.18 0.22 0.16 0.17 

7.00 0.15 0.11 0.13 0.37 0.21 0.12 0.19 0.25 0.18 0.19 

7.12 0.17 0.09 0.13 0.27 0.22 0.12 0.23 0.32 0.19 0.19 

7.24 0.16 0.10 0.17 0.16 0.16 0.12 0.38 0.34 0.22 0.20 

7.36 0.20 0.10 0.22 0.13 0.16 0.10 0.44 0.26 0.23 0.21 

7.48 0.18 0.10 0.25 0.14 0.19 0.10 0.32 0.17 0.29 0.19 

7.60 0.14 0.15 0.25 0.17 0.18 0.12 0.25 0.14 0.24 0.18 

7.73 0.20 0.14 0.16 0.17 0.17 0.16 0.23 0.12 0.21 0.17 

7.85 0.26 0.08 0.13 0.16 0.16 0.24 0.27 0.17 0.23 0.19 

7.97 0.24 0.07 0.15 0.14 0.15 0.21 0.36 0.23 0.21 0.20 

8.09 0.20 0.09 0.17 0.11 0.14 0.18 0.42 0.26 0.32 0.21 

8.21 0.23 0.15 0.17 0.10 0.15 0.14 0.35 0.33 0.29 0.21 

8.33 0.23 0.19 0.23 0.14 0.16 0.10 0.28 0.39 0.24 0.22 

8.45 0.20 0.15 0.31 0.16 0.16 0.10 0.31 0.31 0.26 0.22 

8.57 0.19 0.16 0.30 0.12 0.18 0.12 0.31 0.23 0.26 0.21 

8.69 0.16 0.13 0.19 0.12 0.17 0.13 0.26 0.22 0.34 0.19 

8.81 0.19 0.09 0.14 0.14 0.12 0.26 0.22 0.23 0.50 0.21 

8.93 0.22 0.12 0.13 0.13 0.12 0.38 0.24 0.23 0.53 0.23 

9.05 0.19 0.13 0.14 0.15 0.17 0.37 0.23 0.24 0.40 0.22 

9.17 0.19 0.09 0.21 0.18 0.27 0.33 0.22 0.25 0.32 0.23 

9.29 0.24 0.07 0.32 0.27 0.33 0.25 0.29 0.24 0.26 0.25 

9.42 0.20 0.09 0.32 0.45 0.34 0.22 0.33 0.25 0.32 0.28 

9.54 0.14 0.07 0.25 0.58 0.47 0.22 0.28 0.30 0.50 0.31 

9.66 0.13 0.06 0.23 0.56 0.55 0.35 0.20 0.37 0.51 0.33 

9.78 0.15 0.09 0.26 0.55 0.45 0.39 0.20 0.41 0.62 0.35 

9.90 0.15 0.08 0.30 0.67 0.38 0.25 0.20 0.46 0.59 0.34 

10.02 0.13 0.10 0.29 0.82 0.41 0.22 0.27 0.54 0.53 0.37 

10.14 0.16 0.11 0.25 0.85 0.50 0.28 0.36 0.52 0.55 0.40 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensitiy of Arm signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

10.26 0.17 0.10 0.30 0.91 0.50 0.38 0.35 0.43 0.49 0.40 

10.38 0.18 0.08 0.30 1.00 0.52 0.51 0.39 0.41 0.45 0.43 

10.50 0.17 0.09 0.20 0.88 0.55 0.53 0.39 0.56 0.33 0.41 

10.62 0.16 0.09 0.18 0.58 0.53 0.50 0.27 0.67 0.36 0.37 

10.74 0.17 0.10 0.25 0.31 0.46 0.45 0.24 0.68 0.64 0.36 

10.86 0.21 0.17 0.33 0.16 0.42 0.43 0.18 0.61 1.00 0.39 

10.98 0.20 0.20 0.47 0.14 0.37 0.59 0.11 0.58 0.77 0.38 

11.11 0.19 0.22 0.57 
 

0.32 0.85 
 

0.57 0.47 0.45 

11.23 0.19 0.24 0.38 
 

0.26 0.92 
 

0.67 0.41 0.44 

11.35 0.18 0.21 0.25 
  

0.81 
 

0.78 0.44 0.45 

11.47 0.15 0.22 0.24 
  

0.55 
 

0.91 0.53 0.43 

11.59 0.12 0.17 0.27 
  

0.32 
 

1.00 0.51 0.40 

11.71 0.12 0.13 0.24 
  

0.19 
 

0.76 0.45 0.31 

11.83 
 

0.14 0.20 
  

0.11 
 

0.47 0.52 0.29 

11.95 
 

0.16 0.21 
    

0.32 0.49 0.29 

12.07 
 

0.29 0.24 
      

0.27 

a-b pos.  

[µm] 

Normalized fluorescence intensitiy of Arm signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00 0.13 0.19 0.11 0.11 0.08 0.09 0.09 0.12 0.14 0.12 

0.12 0.18 0.33 0.19 0.13 0.10 0.10 0.09 0.14 0.17 0.16 

0.24 0.23 0.21 0.15 0.12 0.08 0.09 0.12 0.18 0.18 0.15 

0.36 0.32 0.14 0.20 0.13 0.09 0.08 0.17 0.19 0.17 0.17 

0.48 0.32 0.13 0.14 0.13 0.09 0.08 0.15 0.20 0.16 0.16 

0.60 0.27 0.15 0.14 0.14 0.07 0.08 0.14 0.17 0.18 0.15 

0.72 0.27 0.27 0.09 0.13 0.06 0.09 0.11 0.18 0.23 0.16 

0.85 0.25 0.52 0.08 0.13 0.08 0.11 0.14 0.20 0.20 0.19 

0.97 0.35 0.88 0.09 0.17 0.08 0.13 0.15 0.18 0.12 0.24 

1.09 0.40 0.70 0.11 0.15 0.17 0.14 0.20 0.30 0.17 0.26 

1.21 0.40 0.28 0.18 0.17 0.20 0.19 0.28 0.51 0.17 0.26 

1.33 0.28 0.26 0.16 0.19 0.12 0.22 0.35 0.35 0.20 0.24 

1.45 0.19 0.30 0.16 0.16 0.11 0.20 0.38 0.26 0.23 0.22 

1.57 0.21 0.27 0.25 0.16 0.11 0.17 0.34 0.28 0.24 0.23 

1.69 0.28 0.24 0.31 0.19 0.11 0.16 0.39 0.37 0.23 0.25 

1.81 0.37 0.35 0.25 0.19 0.13 0.14 0.42 0.34 0.29 0.28 

1.93 0.42 0.47 0.21 0.17 0.12 0.13 0.33 0.32 0.32 0.28 

2.05 0.29 0.38 0.14 0.15 0.09 0.13 0.22 0.28 0.30 0.22 

2.17 0.19 0.21 0.17 0.19 0.06 0.13 0.21 0.30 0.23 0.19 

2.29 0.19 0.21 0.20 0.19 0.11 0.16 0.21 0.34 0.18 0.20 

2.41 0.18 0.18 0.14 0.18 0.15 0.15 0.21 0.47 0.15 0.20 

2.53 0.14 0.19 0.15 0.23 0.20 0.14 0.21 0.69 0.13 0.23 

2.66 0.13 0.37 0.13 0.28 0.19 0.14 0.22 0.65 0.12 0.25 

2.78 0.12 0.74 0.10 0.41 0.24 0.15 0.24 0.39 0.11 0.28 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Arm signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

2.90 0.11 0.94 0.13 0.51 0.29 0.18 0.33 0.53 0.12 0.35 

3.02 0.11 0.98 0.14 0.46 0.22 0.21 0.48 0.47 0.10 0.35 

3.14 0.12 1.00 0.18 0.30 0.19 0.23 0.55 0.25 0.10 0.33 

3.26 0.10 0.73 0.31 0.26 0.15 0.22 0.48 0.19 0.09 0.28 

3.38 0.13 0.22 0.31 0.33 0.16 0.18 0.56 0.22 0.08 0.24 

3.50 0.10 0.10 0.20 0.47 0.18 0.16 0.66 0.29 0.09 0.25 

3.62 0.10 0.15 0.35 0.60 0.22 0.13 0.49 0.36 0.09 0.28 

3.74 0.13 0.31 0.37 0.62 0.30 0.14 0.32 0.30 0.09 0.29 

3.86 0.14 0.23 0.18 0.46 0.37 0.14 0.26 0.28 0.09 0.24 

3.98 0.10 0.17 0.11 0.38 0.38 0.16 0.25 0.30 0.10 0.22 

4.10 0.08 0.17 0.16 0.52 0.31 0.24 0.35 0.31 0.13 0.25 

4.22 0.07 0.24 0.12 0.63 0.28 0.40 0.42 0.35 0.15 0.30 

4.35 0.06 0.25 0.19 0.59 0.37 0.48 0.36 0.36 0.14 0.31 

4.47 0.11 0.21 0.27 0.52 0.40 0.51 0.26 0.28 0.14 0.30 

4.59 0.14 0.33 0.27 0.47 0.41 0.44 0.19 0.28 0.13 0.30 

4.71 0.12 0.62 0.21 0.54 0.40 0.32 0.13 0.22 0.12 0.30 

4.83 0.10 0.75 0.35 0.63 0.40 0.26 0.11 0.26 0.13 0.33 

4.95 0.09 0.56 0.37 0.67 0.38 0.25 0.11 0.24 0.16 0.31 

5.07 0.12 0.42 0.41 0.71 0.42 0.28 0.11 0.16 0.18 0.31 

5.19 0.18 0.44 0.46 0.73 0.44 0.38 0.10 0.10 0.15 0.33 

5.31 0.17 0.35 0.31 0.74 0.42 0.51 0.12 0.12 0.12 0.32 

5.43 0.19 0.29 0.15 0.71 0.34 0.69 0.14 0.16 0.12 0.31 

5.55 0.21 0.38 0.14 0.52 0.36 0.71 0.22 0.15 0.16 0.32 

5.67 0.16 0.28 0.30 0.35 0.32 0.58 0.31 0.15 0.29 0.30 

5.79 0.21 0.16 0.37 0.36 0.33 0.43 0.39 0.15 0.38 0.31 

5.91 0.21 0.14 0.25 0.40 0.35 0.29 0.41 0.18 0.27 0.28 

6.04 0.22 0.19 0.22 0.44 0.37 0.21 0.45 0.22 0.22 0.28 

6.16 0.17 0.40 0.40 0.47 0.38 0.19 0.53 0.30 0.20 0.34 

6.28 0.15 0.49 0.38 0.47 0.37 0.24 0.54 0.34 0.25 0.36 

6.40 0.12 0.60 0.35 0.40 0.32 0.36 0.56 0.39 0.27 0.37 

6.52 0.16 0.58 0.58 0.40 0.32 0.45 0.70 0.37 0.25 0.42 

6.64 0.18 0.38 0.92 0.43 0.30 0.54 0.65 0.36 0.30 0.45 

6.76 0.22 0.58 1.00 0.44 0.30 0.63 0.46 0.45 0.47 0.51 

6.88 0.26 0.71 0.74 0.45 0.33 0.62 0.38 0.60 0.56 0.52 

7.00 0.30 0.41 0.63 0.52 0.40 0.58 0.35 0.79 0.39 0.49 

7.12 0.30 0.21 0.75 0.60 0.47 0.59 0.41 0.85 0.21 0.49 

7.24 0.31 0.17 0.81 0.56 0.46 0.52 0.52 0.82 0.21 0.49 

7.36 0.27 0.18 0.78 0.47 0.49 0.46 0.55 0.59 0.21 0.44 

7.48 0.36 0.18 0.57 0.43 0.49 0.63 0.51 0.39 0.21 0.42 

7.60 0.53 0.15 0.52 0.51 0.46 0.71 0.40 0.44 0.30 0.45 

7.73 0.63 0.21 0.53 0.55 0.45 0.52 0.36 0.64 0.43 0.48 

7.85 0.61 0.38 0.56 0.49 0.40 0.33 0.34 0.81 0.44 0.48 

7.97 0.48 0.58 0.62 0.41 0.43 0.24 0.34 0.79 0.34 0.47 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Arm signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

8.09 0.40 0.36 0.66 0.37 0.50 0.25 0.33 0.75 0.36 0.44 

8.21 0.49 0.23 0.66 0.28 0.57 0.36 0.35 0.72 0.41 0.45 

8.33 0.55 0.19 0.70 0.20 0.51 0.34 0.42 0.93 0.39 0.47 

8.45 0.56 0.17 0.51 0.19 0.41 0.26 0.58 1.00 0.29 0.44 

8.57 0.55 0.16 0.60 0.24 0.40 0.22 0.72 0.96 0.19 0.45 

8.69 0.54 0.19 0.51 0.33 0.30 0.24 0.72 0.94 0.15 0.43 

8.81 0.39 0.19 0.45 0.44 0.23 0.27 0.70 0.80 0.13 0.40 

8.93 0.25 0.21 0.65 0.59 0.21 0.26 0.72 0.72 0.15 0.42 

9.05 0.35 0.18  0.67 0.20 0.25 0.78 0.55 0.18 0.39 

9.17 0.45 0.20  0.51 0.24 0.24 1.00 0.35 0.21 0.40 

9.29 0.53 0.34  0.34 0.33 0.23 0.98 0.18 0.22 0.39 

9.42 0.58 0.47  0.25 0.39 0.22 0.82 0.12 0.20 0.38 

9.54 0.48 0.48  0.28 0.31 0.20 0.67 0.08 0.16 0.33 

9.66 0.33 0.60  0.37 0.33 0.20 0.63 0.08 0.12 0.33 

9.78 0.26 0.32  0.43 0.38 0.20 0.68  0.13 0.34 

9.90 0.24 0.33  0.44 0.45 0.20 0.72  0.19 0.37 

10.02 0.23   0.34 0.42 0.21 0.66  0.34 0.37 

10.14 0.27   0.26 0.33 0.24 0.51  0.50 0.35 

10.26 0.35   0.29 0.29 0.30 0.40  0.78 0.40 

10.38 0.51   0.39 0.28 0.38   1.00 0.51 

10.50 0.72   0.46 0.34 0.49   0.92 0.59 

10.62 0.75   0.46 0.40 0.56   0.66 0.56 

10.74 0.70   0.53 0.38 0.53   0.44 0.51 

10.86 0.92   0.57 0.35 0.48   0.38 0.54 

10.98 1.00   0.56 0.28 0.52   0.31 0.54 

11.11 0.78   0.47 0.29 0.53   0.22 0.46 

11.23    0.44 0.27 0.59   0.15 0.36 

11.35    0.43 0.22 0.72   0.16 0.38 

11.47    0.48 0.24 0.83   0.17 0.43 

11.59    0.53 0.25 0.89   0.14 0.45 

11.71    0.58 0.29 0.92    0.60 

11.83    0.61 0.37 1.00    0.66 

11.95    0.59 0.55 1.00    0.71 

12.07    0.57 0.73     0.65 
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Table 13 Normalized fluorescence intensities of Baz signal measured for Figure 38C 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Baz signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00 0.05 0.11     0.15   0.10 

0.12 0.04 0.11     0.13   0.09 

0.24 0.06 0.15     0.21   0.14 

0.36 0.08 0.17 0.07    0.23   0.14 

0.48 0.06 0.13 0.06    0.19 0.11  0.11 

0.60 0.03 0.10 0.06 0.11   0.32 0.17  0.13 

0.72 0.04 0.11 0.07 0.09   0.41 0.20  0.15 

0.85 0.03 0.16 0.07 0.11   0.27 0.21  0.14 

0.97 0.04 0.20 0.06 0.10 0.05 0.18 0.29 0.18  0.14 

1.09 0.06 0.22 0.07 0.12 0.07 0.18 0.27 0.24  0.15 

1.21 0.10 0.22 0.08 0.18 0.08 0.27 0.36 0.28 0.31 0.21 

1.33 0.16 0.20 0.11 0.13 0.11 0.20 0.32 0.29 0.30 0.20 

1.45 0.22 0.20 0.12 0.18 0.12 0.28 0.30 0.29 0.31 0.22 

1.57 0.25 0.23 0.15 0.12 0.13 0.47 0.30 0.26 0.34 0.25 

1.69 0.15 0.22 0.16 0.09 0.13 0.36 0.25 0.22 0.39 0.22 

1.81 0.08 0.29 0.16 0.12 0.20 0.23 0.32 0.22 0.28 0.21 

1.93 0.08 0.29 0.14 0.10 0.14 0.28 0.44 0.19 0.26 0.21 

2.05 0.11 0.39 0.11 0.11 0.17 0.31 0.45 0.14 0.27 0.23 

2.17 0.14 0.77 0.14 0.16 0.18 0.34 0.34 0.13 0.24 0.27 

2.29 0.15 0.81 0.14 0.26 0.22 0.46 0.53 0.12 0.28 0.33 

2.41 0.14 0.89 0.13 0.30 0.18 0.38 0.72 0.20 0.25 0.35 

2.53 0.14 0.96 0.19 0.36 0.19 0.45 0.79 0.29 0.33 0.41 

2.66 0.15 0.90 0.24 0.37 0.20 0.58 0.70 0.41 0.29 0.43 

2.78 0.30 0.85 0.20 0.42 0.26 0.52 0.87 0.61 0.38 0.49 

2.90 0.51 0.69 0.25 0.41 0.26 0.52 0.78 0.73 0.52 0.52 

3.02 0.52 0.74 0.28 0.40 0.38 0.77 0.86 0.66 0.59 0.58 

3.14 0.55 0.70 0.48 0.48 0.53 0.76 0.83 0.50 0.73 0.62 

3.26 0.64 0.76 0.80 0.58 0.71 0.70 0.86 0.59 0.90 0.73 

3.38 0.72 0.97 0.99 0.90 0.86 0.83 0.97 0.80 0.88 0.88 

3.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3.62 0.85 0.92 0.72 0.81 0.74 0.74 0.89 0.72 0.74 0.79 

3.74 0.46 0.80 0.37 0.61 0.59 0.46 0.87 0.50 0.83 0.61 

3.86 0.27 0.64 0.25 0.45 0.52 0.37 0.64 0.33 0.65 0.46 

3.98 0.13 0.46 0.17 0.33 0.44 0.47 0.43 0.29 0.75 0.39 

4.10 0.11 0.43 0.14 0.25 0.34 0.32 0.30 0.26 0.73 0.32 

4.22 0.10 0.37 0.11 0.28 0.34 0.31 0.38 0.21 0.58 0.30 

4.35 0.13 0.26 0.08 0.18 0.28 0.35 0.31 0.19 0.81 0.29 

4.47 0.12 0.23 0.08 0.16 0.24 0.38 0.32 0.19 0.73 0.27 

4.59 0.10 0.22 0.09 0.14 0.20 0.46 0.34 0.14 0.80 0.28 

4.71 0.11 0.25 0.14 0.18 0.19 0.61 0.43 0.14 0.65 0.30 

4.83 0.14 0.17 0.21 0.19 0.19 0.44 0.40 0.19 0.55 0.28 

4.95 0.21 0.16 0.22 0.18 0.16 0.37 0.35 0.20 0.47 0.26 
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Normalized fluorescence intensities of Baz signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Arm signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

5.07 0.24 0.13 0.18 0.20 0.13 0.38 0.42 0.19 0.54 0.27 

5.19 0.17 0.14 0.16 0.17 0.13 0.28 0.43 0.19 0.61 0.25 

5.31 0.16 0.19 0.16 0.11 0.15 0.34 0.48 0.13 0.49 0.25 

5.43 0.10 0.19 0.13 0.10 0.14 0.41 0.45 0.16 0.49 0.24 

5.55 0.07 0.19 0.09 0.09 0.16 0.47 0.41 0.15 0.63 0.25 

5.67 0.08 0.23 0.10 0.10 0.13 0.54 0.37 0.13 0.40 0.23 

5.79 0.06 0.29 0.15 0.14 0.11 0.54 0.35 0.12 0.42 0.24 

5.91 0.09 0.38 0.21 0.12 0.10 0.40 0.26 0.14 0.42 0.24 

6.04 0.11 0.49 0.25 0.09 0.08 0.32 0.42 0.18 0.40 0.26 

6.16 0.11 0.49 0.27 0.08 0.07 0.30 0.52 0.18 0.41 0.27 

6.28 0.07 0.36 0.26 0.08 0.10 0.32 0.50 0.16 0.42 0.25 

6.40 0.07 0.27 0.22 0.08 0.10 0.24 0.57 0.17 0.34 0.23 

6.52 0.10 0.21 0.13 0.08 0.10 0.17 0.51 0.14 0.38 0.20 

6.64 0.06 0.20 0.12 0.10 0.11 0.19 0.31 0.11 0.36 0.17 

6.76 0.07 0.21 0.16 0.12 0.07 0.27 0.36 0.13 0.43 0.20 

6.88 0.08 0.21 0.25 0.12 0.09 0.26 0.30 0.16 0.38 0.20 

7.00 0.11 0.22 0.26 0.13 0.10 0.21 0.30 0.17 0.37 0.21 

7.12 0.12 0.13 0.19 0.11 0.08 0.17 0.29 0.15 0.32 0.17 

7.24 0.10 0.11 0.15 0.09 0.05 0.26 0.25 0.17 0.38 0.17 

7.36 0.07 0.10 0.12 0.06 0.06 0.25 0.30 0.15 0.38 0.17 

7.48 0.08 0.08 0.10 0.08 0.10 0.19 0.29 0.15 0.35 0.16 

7.60 0.10 0.11 0.07 0.09 0.09 0.22 0.30 0.14 0.37 0.17 

7.73 0.09 0.15 0.07 0.07 0.09 0.23 0.28 0.14 0.37 0.16 

7.85 0.07 0.15 0.07 0.07 0.07 0.23 0.28 0.13 0.41 0.16 

7.97 0.06 0.13 0.08 0.06 0.08 0.19 0.27 0.12 0.32 0.15 

8.09 0.04 0.10 0.11 0.08 0.07 0.31 0.37 0.16 0.32 0.17 

8.21 0.05 0.09 0.12 0.10 0.09 0.15 0.30 0.17 0.35 0.16 

8.33 0.04 0.11 0.12 0.09 0.10 0.15 0.38 0.09 0.52 0.18 

8.45 0.05 0.11 0.13 0.06 0.08 0.20 0.25 0.10 0.58 0.17 

8.57 0.06 0.11 0.14 0.05 0.13 0.12 0.21 0.11 0.58 0.17 

8.69 0.08 0.15 0.13 0.07 0.10 0.10 0.29 0.13 0.49 0.17 

8.81 0.09 0.14 0.12 0.06 0.08 0.12 0.38 0.12 0.35 0.16 

8.93 0.10 0.16 0.16 0.09 0.12 0.15 0.28 0.11 0.33 0.17 

9.05 0.09 0.19 0.17 0.10 0.13 0.17 0.28 0.13 0.27 0.17 

9.17 0.06 0.16 0.15 0.09 0.07 0.19 0.21 0.13 0.41 0.17 

9.29 0.07 0.09 0.16 0.10 0.06 0.23 0.18 0.11 0.31 0.15 

9.42 0.09 0.13 0.14 0.07 0.07 0.24 0.20 0.10 0.25 0.14 

9.54 0.08 0.13 0.12 0.07 0.08 0.26 0.13 0.12 0.33 0.15 

9.66 0.08 0.20 0.16 0.11 0.08 0.24 0.16 0.11 0.34 0.17 

9.78 0.08 0.19 0.16 0.11 0.09 0.18 0.17 0.14 0.26 0.15 

9.90 0.06 0.23 0.16 0.11 0.11 0.17 0.28 0.14 0.29 0.17 

10.02 0.06 0.23 0.13 0.11 0.14 0.20 0.32 0.13 0.43 0.20 

10.14 0.06 0.15 0.13 0.13 0.14 0.16 0.28 0.13 0.41 0.17 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Baz signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Average  

10.26 0.07 0.16 0.16 0.18 0.12 0.17 0.25 0.13 0.51 0.19 

10.38 0.09 0.12 0.21 0.21 0.10 0.22 0.28 0.16 0.52 0.21 

10.50 0.09 0.14 0.16 0.16 0.09 0.18 0.33 0.18 0.29 0.18 

10.62 0.07 0.13 0.10 0.10 0.07 0.18 0.30 0.16 0.37 0.17 

10.74 0.09 0.21 0.10 0.11 0.11 0.23 0.26 0.12 0.47 0.19 

10.86 0.09 0.15 0.11 0.12 0.08 0.22 0.35 0.13 0.37 0.18 

10.98 0.10 0.16 0.12 0.14 0.06 0.23 0.28 0.10 0.36 0.17 

11.11 0.11 0.17 0.11 0.12 0.09 0.19 0.27 0.12 0.30 0.17 

11.23 0.11 0.22 0.08 0.11 0.11 0.11  0.13 0.29 0.14 

11.35 0.10 0.26 0.09  0.12 0.11  0.15 0.26 0.16 

11.47 0.09 0.21 0.10  0.10 0.17  0.14 0.34 0.17 

11.59 0.09 0.26 0.13   0.25  0.15 0.28 0.19 

11.71 0.09 0.24 0.18   0.24  0.12 0.36 0.20 

11.83  0.24 0.18     0.12 0.25 0.20 

11.95  0.22 0.17     0.10 0.35 0.21 

12.07  0.20 0.12     0.06 0.52 0.23 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Baz signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00 0.42 0.28 0.76 0.37 0.37 0.22 0.33 0.35 0.29 0.38 

0.12 0.39 0.32 0.86 0.41 0.32 0.29 0.35 0.34 0.38 0.41 

0.24 0.55 0.26 0.70 0.48 0.37 0.34 0.38 0.37 0.39 0.43 

0.36 0.54 0.28 0.80 0.42 0.37 0.39 0.43 0.39 0.44 0.45 

0.48 0.67 0.30 0.72 0.51 0.47 0.37 0.46 0.44 0.44 0.49 

0.60 0.68 0.34 0.63 0.45 0.42 0.41 0.50 0.45 0.45 0.48 

0.72 0.69 0.51 0.61 0.49 0.45 0.41 0.43 0.49 0.46 0.50 

0.85 0.72 0.54 0.73 0.44 0.58 0.45 0.43 0.53 0.50 0.55 

0.97 0.72 0.58 0.83 0.38 0.59 0.46 0.46 0.52 0.51 0.56 

1.09 0.73 0.47 0.80 0.41 0.55 0.42 0.47 0.61 0.53 0.55 

1.21 0.73 0.39 0.89 0.34 0.48 0.47 0.46 0.76 0.55 0.56 

1.33 0.77 0.34 0.99 0.33 0.61 0.55 0.57 0.79 0.47 0.60 

1.45 0.74 0.35 1.00 0.34 0.58 0.51 0.58 0.79 0.42 0.59 

1.57 0.89 0.39 0.88 0.49 0.56 0.63 0.48 0.76 0.50 0.62 

1.69 0.76 0.38 0.94 0.55 0.60 0.72 0.50 0.62 0.41 0.61 

1.81 0.86 0.40 0.83 0.61 0.62 0.64 0.49 0.62 0.40 0.61 

1.93 0.92 0.42 0.75 0.55 0.65 0.62 0.46 0.60 0.47 0.60 

2.05 0.86 0.45 0.74 0.53 0.67 0.58 0.42 0.69 0.53 0.61 

2.17 0.76 0.40 0.52 0.56 0.60 0.54 0.39 0.71 0.63 0.57 

2.29 0.73 0.40 0.59 0.58 0.70 0.62 0.49 0.68 0.67 0.61 

2.41 0.68 0.45 0.44 0.55 0.73 0.58 0.58 0.68 0.65 0.59 

2.53 0.52 0.51 0.60 0.52 0.61 0.63 0.57 0.74 0.69 0.60 

2.66 0.52 0.65 0.59 0.52 0.60 0.65 0.52 0.72 0.59 0.59 

2.78 0.68 0.75 0.64 0.59 0.53 0.65 0.58 0.60 0.49 0.61 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Baz signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

2.90 0.71 0.93 0.74 0.57 0.60 0.62 0.58 0.66 0.36 0.64 

3.02 0.66 1.00 0.74 0.50 0.55 0.59 0.62 0.74 0.31 0.63 

3.14 0.57 0.90 0.75 0.48 0.60 0.60 0.59 0.52 0.23 0.58 

3.26 0.57 0.66 0.76 0.46 0.57 0.53 0.62 0.54 0.28 0.56 

3.38 0.43 0.55 0.77 0.47 0.67 0.51 0.59 0.44 0.25 0.52 

3.50 0.48 0.38 0.83 0.47 0.63 0.70 0.54 0.44 0.19 0.52 

3.62 0.57 0.32 0.73 0.41 0.63 0.69 0.58 0.32 0.25 0.50 

3.74 0.68 0.31 0.65 0.43 0.65 0.80 0.51 0.36 0.26 0.52 

3.86 0.64 0.31 0.64 0.52 0.64 0.90 0.57 0.50 0.22 0.55 

3.98 0.49 0.37 0.61 0.48 0.55 1.00 0.53 0.44 0.22 0.52 

4.10 0.47 0.35 0.76 0.48 0.70 0.91 0.53 0.51 0.24 0.55 

4.22 0.50 0.37 0.78 0.60 0.70 0.80 0.54 0.37 0.34 0.55 

4.35 0.66 0.36 0.74 0.65 0.66 0.76 0.57 0.42 0.30 0.57 

4.47 0.57 0.42 0.70 0.58 0.71 0.85 0.50 0.37 0.28 0.55 

4.59 0.48 0.35 0.74 0.70 0.60 0.83 0.50 0.40 0.32 0.55 

4.71 0.44 0.37 0.58 0.70 0.61 0.88 0.46 0.40 0.38 0.54 

4.83 0.41 0.42 0.55 0.84 0.76 0.97 0.40 0.43 0.40 0.58 

4.95 0.40 0.34 0.55 1.00 0.68 0.98 0.42 0.39 0.45 0.58 

5.07 0.43 0.26 0.64 0.85 0.73 0.98 0.43 0.44 0.42 0.58 

5.19 0.33 0.25 0.66 0.73 0.86 0.96 0.46 0.56 0.45 0.59 

5.31 0.40 0.28 0.60 0.65 0.94 0.89 0.50 0.62 0.41 0.59 

5.43 0.48 0.26 0.57 0.57 1.00 0.97 0.53 0.61 0.45 0.60 

5.55 0.60 0.25 0.52 0.58 0.86 0.89 0.76 0.71 0.39 0.62 

5.67 0.51 0.25 0.60 0.66 0.76 1.00 0.83 0.77 0.45 0.65 

5.79 0.61 0.28 0.50 0.73 0.62 0.98 0.81 0.73 0.31 0.62 

5.91 0.60 0.37 0.48 0.74 0.72 0.80 0.78 0.84 0.29 0.62 

6.04 0.64 0.41 0.59 0.76 0.65 0.64 0.66 0.79 0.38 0.61 

6.16 0.62 0.46 0.55 0.89 0.74 0.66 0.67 0.85 0.43 0.65 

6.28 0.57 0.59 0.62 0.95 0.81 0.72 0.51 0.96 0.40 0.68 

6.40 0.53 0.72 0.61 0.82 0.80 0.72 0.50 1.00 0.31 0.67 

6.52 0.61 0.83 0.63 0.76 0.72 0.78 0.47 0.75 0.25 0.65 

6.64 0.56 0.70 0.70 0.75 0.78 0.88 0.47 0.71 0.40 0.66 

6.76 0.55 0.62 0.59 0.71 0.96 0.90 0.44 0.67 0.30 0.64 

6.88 0.46 0.59 0.63 0.60 0.86 0.86 0.40 0.64 0.30 0.59 

7.00 0.45 0.57 0.69 0.53 0.74 0.84 0.33 0.73 0.28 0.57 

7.12 0.52 0.53 0.69 0.44 0.67 0.76 0.37 0.65 0.26 0.54 

7.24 0.61 0.39 0.66 0.47 0.74 0.67 0.37 0.66 0.19 0.53 

7.36 0.70 0.38 0.53 0.55 0.65 0.58 0.40 0.65 0.16 0.51 

7.48 0.79 0.37 0.45 0.53 0.72 0.61 0.46 0.75 0.18 0.54 

7.60 0.88 0.33 0.45 0.55 0.70 0.54 0.42 0.89 0.20 0.55 

7.73 1.00 0.31 0.57 0.57 0.58 0.55 0.37 0.94 0.22 0.57 

7.85 0.96 0.32 0.58 0.47 0.69 0.54 0.45 0.79 0.27 0.56 

7.97 0.95 0.32 0.59 0.36 0.70 0.57 0.42 0.59 0.32 0.53 
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Normalized fluorescence intensities of Armadillo signal for Figure 37C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Baz signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

8.09 0.87 0.35 0.53 0.38 0.68 0.61 0.33 0.63 0.30 0.52 

8.21 0.81 0.38 0.52 0.39 0.65 0.61 0.36 0.48 0.25 0.49 

8.33 0.94 0.35 0.54 0.36 0.68 0.53 0.38 0.60 0.18 0.51 

8.45 0.88 0.40 0.52 0.41 0.78 0.49 0.54 0.51 0.17 0.52 

8.57 0.70 0.32 0.65 0.47 0.76 0.52 0.74 0.46 0.18 0.53 

8.69 0.60 0.28 0.65 0.51 0.82 0.42 1.00 0.40 0.17 0.54 

8.81 0.51 0.36 0.77 0.60 0.78 0.49 1.00 0.40 0.19 0.57 

8.93 0.40 0.36 0.70 0.67 0.77 0.55 0.89 0.37 0.24 0.55 

9.05 0.35 0.32  0.62 0.69 0.38 0.82 0.56 0.27 0.50 

9.17 0.41 0.26  0.52 0.62 0.35 0.99 0.47 0.24 0.48 

9.29 0.39 0.32  0.49 0.76 0.39 0.92 0.30 0.27 0.48 

9.42 0.34 0.36  0.44 0.74 0.46 0.81 0.36 0.35 0.48 

9.54 0.41 0.39  0.44 0.83 0.55 0.72 0.45 0.32 0.51 

9.66 0.45 0.33  0.46 0.76 0.44 0.53 0.38 0.38 0.47 

9.78 0.39 0.30  0.45 0.72 0.45 0.42  0.45 0.45 

9.90 0.39 0.24  0.39 0.71 0.48 0.40  0.62 0.46 

10.02 0.42   0.43 0.74 0.46 0.35  0.95 0.56 

10.14 0.45   0.45 0.64 0.47 0.37  1.00 0.56 

10.26 0.49   0.46 0.64 0.56 0.37  0.70 0.53 

10.38 0.52   0.51 0.61 0.59   0.51 0.55 

10.50 0.51   0.54 0.55 0.54   0.35 0.50 

10.62 0.58   0.47 0.66 0.57   0.29 0.52 

10.74 0.63   0.48 0.72 0.53   0.31 0.53 

10.86 0.57   0.44 0.61 0.53   0.28 0.49 

10.98 0.48   0.39 0.67 0.50   0.25 0.46 

11.11 0.51   0.37 0.56 0.54   0.24 0.45 

11.23    0.39 0.54 0.57   0.20 0.42 

11.35    0.49 0.50 0.65   0.25 0.47 

11.47    0.50 0.64 0.65   0.26 0.51 

11.59    0.58 0.64 0.49    0.57 

11.71    0.56 0.74 0.54    0.61 

11.83    0.58 0.76 0.51    0.62 

11.95    0.53 0.67 0.43    0.54 

12.07    0.51 0.69     0.60 
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Table 14 Normalized fluorescence intensity of Cno signal measured for Figure 40C. 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Cno signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00       0.26   0.26 

0.19 0.17      0.32   0.24 

0.38 0.29  0.09    0.31 0.28 0.10 0.21 

0.56 0.23 0.05 0.22    0.41 0.50 0.18 0.26 

0.75 0.25 0.10 0.39   0.16 0.49 0.53 0.26 0.31 

0.94 0.36 0.15 0.58   0.31 0.49 0.48 0.34 0.39 

1.13 0.60 0.23 0.46 0.11 0.22 0.37 0.56 0.62 0.46 0.40 

1.32 0.74 0.33 0.64 0.36 0.37 0.55 0.49 0.71 0.53 0.52 

1.51 0.86 0.51 0.77 0.77 0.80 0.80 0.73 0.88 0.67 0.76 

1.69 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00 0.99 

1.88 0.92 0.94 0.73 0.97 0.98 0.67 0.78 0.69 0.52 0.80 

2.07 0.69 0.71 0.76 1.00 0.95 0.52 0.69 0.60 0.38 0.70 

2.26 0.56 0.52 0.75 0.63 0.93 0.34 0.67 0.49 0.31 0.58 

2.45 0.46 0.51 0.74 0.39 0.66 0.23 0.70 0.43 0.20 0.48 

2.64 0.48 0.38 0.54 0.24 0.37 0.15 0.53 0.43 0.18 0.37 

2.82 0.18 0.30 0.15 0.16 0.23 0.15 0.25 0.38 0.21 0.22 

3.01 0.09 0.25 0.13 0.08 0.16 0.14 0.17 0.31 0.16 0.17 

3.20 0.06 0.21 0.28 0.05 0.15 0.13 0.17 0.23 0.13 0.16 

3.39 0.14 0.13 0.57 0.05 0.11 0.13 0.19 0.18 0.15 0.18 

3.58 0.24 0.07 0.33 0.03 0.09 0.10 0.18 0.19 0.14 0.15 

3.77 0.18 0.07 0.20 0.05 0.11 0.10 0.14 0.19 0.12 0.13 

3.95 0.16 0.09 0.14 0.04 0.06 0.07 0.14 0.19 0.15 0.11 

4.14 0.08 0.12 0.14 0.02 0.06 0.08 0.18 0.19 0.14 0.11 

4.33 0.04 0.12 0.06 0.03 0.05 0.12 0.20 0.20 0.13 0.11 

4.52 0.12 0.12 0.04 0.05 0.07 0.12 0.17 0.19 0.15 0.11 

4.71 0.15 0.09 0.04 0.03 0.07 0.08 0.17 0.19 0.14 0.11 

4.89 0.07 0.06 0.10 0.02 0.05 0.15 0.16 0.16 0.13 0.10 

5.08 0.07 0.05 0.10 0.00 0.05 0.14 0.17 0.16 0.11 0.09 

5.27 0.06 0.05 0.12 0.01 0.09 0.11 0.21 0.18 0.10 0.10 

5.46 0.08 0.03 0.18 0.03 0.05 0.11 0.20 0.14 0.09 0.10 

5.65 0.10 0.03 0.23 0.03 0.03 0.07 0.17 0.13 0.09 0.10 

5.84 0.13 0.04 0.32 0.03 0.04 0.08 0.15 0.14 0.11 0.11 

6.02 0.22 0.10 0.19 0.02 0.04 0.08 0.15 0.12 0.11 0.11 

6.21 0.24 0.09 0.13 0.01 0.11 0.06 0.18 0.11 0.12 0.12 

6.40 0.19 0.08 0.09 0.03 0.05 0.10 0.22 0.16 0.11 0.11 

6.59 0.19 0.05 0.14 0.02 0.05 0.09 0.19 0.21 0.12 0.12 

6.78 0.20 0.09 0.11 0.01 0.03 0.07 0.14 0.23 0.15 0.11 

6.97 0.15 0.07 0.15 0.01 0.01 0.14  0.18 0.18 0.11 

7.15 0.13 0.07 0.16 0.02 0.03 0.24  0.13 0.19 0.12 

7.34  0.09 0.18 0.05 0.08    0.22 0.12 

7.53  0.05  0.11 0.08    0.21 0.11 

7.72    0.11 0.09     0.10 
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Normalized fluorescence intensities of Cno signal for Figure 40C - continuation 

7.91    0.13 0.15     0.14 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Cno signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

0.00 0.58   0.41      0.50 

0.19 0.76   0.51 0.50     0.59 

0.38 0.63   0.66 0.57     0.62 

0.56 0.63   0.56 0.64     0.61 

0.75 0.54   0.59 0.66     0.59 

0.94 0.50 0.30 0.53 0.62 0.75    0.14 0.47 

1.13 0.56 0.62 0.77 0.56 0.75 0.22 0.34 0.48 0.27 0.51 

1.32 0.65 0.79 0.72 0.63 0.79 0.47 0.51 0.61 0.59 0.64 

1.51 0.80 0.86 0.79 0.85 0.89 0.78 0.84 0.83 0.85 0.83 

1.69 1.00 1.00 0.85 1.00 0.91 0.91 1.00 1.00 0.98 0.96 

1.88 0.94 0.97 0.85 0.88 0.99 0.97 0.82 0.85 1.00 0.92 

2.07 0.75 0.83 0.73 0.56 0.88 1.00 0.72 0.60 0.98 0.78 

2.26 0.57 0.80 0.79 0.42 0.85 0.98 0.75 0.55 0.99 0.74 

2.45 0.45 0.81 0.75 0.41 0.87 0.76 0.66 0.51 0.93 0.68 

2.64 0.42 0.74 0.65 0.38 0.44 0.49 0.52 0.42 0.82 0.54 

2.82 0.50 0.60 0.64 0.41 0.34 0.38 0.57 0.48 0.73 0.52 

3.01 0.37 0.56 0.76 0.41 0.32 0.59 0.61 0.57 0.67 0.54 

3.20 0.40 0.65 0.71 0.40 0.25 0.93 0.49 0.58 0.76 0.57 

3.39 0.42 0.79 0.67 0.33 0.29 0.92 0.42 0.56 0.81 0.58 

3.58 0.40 0.48 0.70 0.32 0.55 0.65 0.40 0.63 0.79 0.55 

3.77 0.33 0.29 0.63 0.44 0.74 0.54 0.36 0.79 0.74 0.54 

3.95 0.26 0.45 0.53 0.45 0.82 0.46 0.34 0.69 0.67 0.52 

4.14 0.24 0.72 0.53 0.40 1.00 0.42 0.35 0.57 0.77 0.56 

4.33 0.24 0.71 0.58 0.35 0.92 0.31 0.39 0.48 0.58 0.51 

4.52 0.28 0.49 0.49 0.31 0.49 0.24 0.42 0.45 0.47 0.40 

4.71 0.33 0.40 0.41 0.23 0.35 0.20 0.39 0.46 0.47 0.36 

4.89 0.38 0.38 0.41 0.18 0.38 0.23 0.40 0.39 0.40 0.35 

5.08 0.33 0.30 0.39 0.20 0.33 0.19 0.39 0.37 0.33 0.31 

5.27 0.25 0.25 0.56 0.24 0.34 0.25 0.37 0.40 0.31 0.33 

5.46 0.29 0.26 0.83 0.35 0.47 0.26 0.38 0.41 0.30 0.39 

5.65 0.31 0.35 1.00 0.39 0.68 0.21 0.39 0.36 0.28 0.44 

5.84 0.26 0.53 0.90  0.49 0.17 0.47 0.31 0.29 0.43 

6.02 0.35 0.57 0.69  0.36 0.18 0.58 0.31 0.28 0.42 

6.21 0.53 0.28 0.58  0.27 0.22 0.57 0.34 0.32 0.39 

6.40 0.55 0.17 0.58  0.25 0.30 0.50 0.41 0.44 0.40 

6.59 0.54 0.18 0.51   0.21 0.42 0.46 0.42 0.39 

6.78  0.14 0.38   0.15 0.43 0.51 0.30 0.32 

6.97  0.15 0.38   0.16 0.53 0.48 0.33 0.34 

7.15  0.17 0.46   0.23 0.53 0.49  0.38 

7.34  0.16 0.56   0.27  0.50  0.37 

7.53   0.73   0.28    0.50 
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Normalized fluorescence intensities of Cno signal for Figure 40C - continuation 

a-b pos.  

[µm] 

Normalized fluorescence intensity of Cno signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Average  

7.72   0.82   0.29    0.55 

7.91   0.81   0.27    0.54 



Appendix 

-191- 

Table 15 Normalized fluorescence intensities of Spg singal measured for Figure 41C. 

a-b  

pos. [µm] 

Normalized fluorescence intensities of Spg signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Embryo 4 Average 

-1.69 0.47 
    

0.65 
      

0.33 
   

0.72 
 

0.26 0.49 

-1.51 0.59 
    

0.66 
      

0.36 
   

0.77 
 

0.40 0.55 

-1.32 0.66 
 

0.32 
  

0.82 0.15 
     

0.53 
   

0.85 
 

0.55 0.55 

-1.13 0.86 
 

0.49 0.19 
 

0.78 0.33 
     

0.64 
   

0.88 
 

0.52 0.58 

-0.94 0.80 0.50 0.67 0.35 0.16 0.72 0.41 
 

0.28 
   

0.66 0.44 0.47 0.50 0.80 
 

0.52 0.52 

-0.75 0.76 0.61 0.79 0.64 0.25 0.57 0.56 
 

0.38 0.66 
  

0.59 0.60 0.52 0.71 0.79 
 

0.58 0.60 

-0.56 0.74 0.74 0.88 0.75 0.39 0.68 0.73 0.19 0.59 0.88 0.37 
 

0.70 0.71 0.61 0.80 0.80 0.60 0.68 0.66 

-0.38 0.80 0.83 0.88 0.75 0.64 0.85 0.76 0.45 0.75 0.84 0.66 
 

0.78 0.82 0.87 0.87 0.87 0.84 0.87 0.79 

-0.19 0.93 0.94 1.00 0.91 0.91 0.90 0.98 0.97 0.93 0.90 0.98 0.90 0.97 0.91 1.00 1.00 1.00 0.97 1.00 0.95 

0.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.93 0.89 0.76 0.82 1.00 0.86 0.95 

0.19 0.75 0.95 0.70 0.89 0.93 0.89 0.88 0.81 1.00 0.80 0.99 0.98 0.79 1.00 0.87 0.78 0.85 0.93 0.85 0.88 

0.38 0.65 0.92 0.61 0.86 0.89 0.70 0.68 0.88 0.98 0.98 0.78 0.92 0.71 0.92 0.85 0.83 0.75 0.87 0.76 0.82 

0.56 0.70 0.93 0.61 0.75 0.81 0.65 0.56 0.86 0.81 0.88 0.88 0.90 0.63 0.77 0.82 0.87 0.67 0.87 0.64 0.77 

0.75 0.79 0.93 0.58 0.68 0.71 0.58 0.64 0.91 0.67 0.81 0.71 0.84 0.56 0.57 0.73 0.86 0.67 0.74 0.58 0.71 

0.94 0.81 0.83 0.52 0.61 0.68 0.55 0.66 0.84 0.59 0.79 0.71 0.80 0.50 0.47 0.66 0.74 0.65 0.65 0.48 0.66 

1.13 0.68 0.71 0.49 0.66 0.72 0.50 0.62 0.75 0.69 0.76 0.61 0.90 0.47 0.49 0.58 0.76 0.70 0.56 0.46 0.64 

1.32 0.59 0.63 0.53 0.73 0.66 0.48 0.63 0.89 0.69 0.65 0.47 0.93 0.39 0.49 0.52 0.55 0.44 0.46 0.47 0.59 

1.51 0.51 0.61 0.62 0.57 0.69 0.48 0.56 0.91 0.66 0.48 0.55 0.95 0.34 0.40 0.44 0.41 0.37 0.50 0.59 0.56 

1.69 0.44 0.61 0.56 0.47 0.75 0.39 0.64 0.82 0.74 0.36 0.55 0.71 0.33 0.25 0.33 0.50 0.51 0.57 0.47 0.53 

1.88 0.42 0.68 0.49 0.43 0.70 0.35 0.74 0.61 0.63 0.47 0.51 0.54 0.33 0.21 0.26 0.54 0.51 0.75 0.29 0.50 

2.07 0.40 0.76 0.46 0.46 0.62 0.36 0.52 0.47 0.63 0.50 0.46 0.64 0.37 0.21 0.29 0.51 0.46 0.65 0.26 0.48 

2.26 0.48 0.57 0.46 0.45 0.55 0.40 0.41 0.42 0.54 0.47 0.44 0.70 0.47 0.21 0.33 0.50 0.37 0.63 0.34 0.46 
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Normalized fluorescence intensities of Spg singal measured for Figure 41C. - continuation 

a-b  

pos. [µm] 

Normalized fluorescence intensities of Spg signal [a.u.] wild type 

Embryo 1 Embryo 2 Embryo 3 Embryo 4 Average 

2.45 0.45 0.45 0.54 0.45 0.45 0.41 0.46 0.51 0.59 0.49 0.65 0.68 0.34 0.22 0.30 0.33 0.34 0.43 0.43 0.45 

2.64 0.35 0.37 0.58 0.43 0.42 0.35 0.49 0.56 0.55 0.41 0.60 0.74 0.31 0.21 0.30 0.31 0.28 0.47 0.39 0.43 

2.82 0.30 0.34 0.51 0.44 0.42 0.38 0.48 0.51 0.61 0.49 0.40 0.66 0.38 0.28 0.32 0.34 0.32 0.61 0.29 0.42 

3.01 0.44 0.39 0.41 0.48 0.42 0.53 0.33 0.55 0.60 0.42 0.38 0.54 0.42 0.25 0.24 0.36 0.37 0.52 0.21 0.41 

3.20 0.48 0.38 0.37 0.43 0.44 0.60 0.31 0.53 0.50 0.40 0.34 0.40 0.39 0.18 0.27 0.45 0.44 0.50 0.29 0.41 

3.39 0.48 0.35 0.38 0.40 0.44 0.55 0.31 0.48 0.46 0.33 0.48 0.61 0.44 0.19 0.34 0.41 0.39 0.48 0.23 0.41 

3.58 0.55 0.37 0.41 0.37 0.41 0.51 0.27 0.45 0.52 0.47 0.60 0.65 0.36 0.17 0.32 0.35 0.34 0.51 0.27 0.42 

3.77 0.57 0.35 0.36 0.49 0.42 0.47 0.32 0.42 0.49 0.56 0.49 0.44 0.34 0.14 0.34 0.32 0.37 0.48 0.28 0.40 

3.95 0.64 0.26 0.29 0.51 0.56 0.41 0.34 0.42 0.32 0.63 0.35 0.62 0.39 0.15 0.45 0.32 0.58 0.37 0.23 0.41 

4.14 0.62 0.23 0.35 0.50 0.66 0.58 0.31 0.48 0.34 0.54 0.48 0.57 0.40 0.16 0.50 0.33 0.57 0.41 0.28 0.44 

4.33 0.58 0.27 0.33 0.44 0.58 0.49 0.31 0.40 0.44 0.39 0.43 0.49 0.39 0.20 0.39 0.35 0.39 0.40 0.30 0.40 

4.52 0.65 0.31 0.33 0.47 0.44 0.45 0.29 0.31 0.51 0.42 0.43 0.47 0.32 0.25 0.34 0.39 0.28 0.33 0.28 0.38 

4.71 0.73 0.31 0.44 0.42 0.37 0.39 0.30 0.35 0.46 0.50 0.40 0.50 0.31 0.22 0.44 0.27 0.35 0.25 0.28 0.38 

4.89 0.55 0.27 0.51 0.43 0.33 0.43 0.30 0.41 0.42 0.48 0.35 0.41 
 

0.20 0.53 0.27 0.44 0.36 0.36 0.39 

5.08 0.49 0.25 0.43 0.60 0.33 0.41 0.31 0.57 0.44 0.44 0.41 0.32 
 

0.24 0.62 0.35 0.53 0.47 
 

0.42 

5.27 0.62 0.30 0.54 0.70 0.40 0.47 0.42 0.67 0.68 0.43 0.49 0.33 
 

0.21 0.57 0.43 
 

0.41 
 

0.48 

5.46 0.69 0.28 0.60 0.56 0.42 0.60 0.40 0.45 0.55 0.61 0.49 0.38 
 

0.18 0.45 
  

0.37 
 

0.47 

5.65 0.50 0.28 0.50 0.49 0.38 
 

0.31 0.34 0.45 0.73 0.50 0.52 
 

0.28 0.47 
  

0.52 
 

0.45 

5.84 0.42 0.37 0.43 0.56 0.39 
 

0.33 0.46 0.56 
 

0.46 0.51 
  

0.51 
  

0.53 
 

0.46 

6.02 0.45 0.44 
 

0.57 0.40 
  

0.55 
   

0.41 
  

0.43 
  

0.50 
 

0.47 

6.21 
 

0.37 
 

0.58 0.37 
  

0.54 
   

0.58 
       

0.49 

6.40 
 

0.34 
  

0.41 
  

0.37 
   

0.54 
       

0.42 
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Normalized fluorescence intensities of Spg singal measured for Figure 41C. - continuation 

6.59 
 

0.42 
  

0.45 
  

0.48 
   

0.45 
       

0.45 

6.78 
                    

6.97 
                    

a-b  

pos. [µm] 

Normalized fluorescence intensities of Spg signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Embryo 4 Average 

-1.69    0.61      0.53   0.62    0.80   0.64 

-1.51    0.77      0.63   0.70    0.86   0.74 

-1.32    0.82 0.34     0.64   0.62    0.86   0.65 

-1.13    0.76 0.50     0.66 0.35  0.75    0.76   0.63 

-0.94  0.26 0.63 0.77 0.62 0.33  0.54  0.73 0.53  0.80 0.48   0.74   0.59 

-0.75 0.46 0.38 0.62 0.75 0.73 0.56  0.72 0.40 0.73 0.67 0.64 0.85 0.71 0.78  0.77  0.42 0.64 

-0.56 0.74 0.55 0.64 0.68 0.84 0.82 0.52 0.79 0.74 0.69 0.73 0.76 0.80 0.83 0.81 0.38 0.81 0.68 0.66 0.71 

-0.38 0.83 0.70 0.78 0.76 0.87 0.88 0.74 0.90 0.88 0.71 0.83 0.89 0.82 0.83 0.88 0.69 0.81 0.84 0.84 0.81 

-0.19 0.98 1.00 0.90 0.91 0.93 0.98 1.00 0.93 1.00 0.74 0.96 0.90 1.00 0.91 1.00 0.93 0.85 1.00 0.94 0.94 

0.00 0.95 0.99 0.98 0.86 1.00 1.00 0.97 0.99 0.94 0.78 0.97 1.00 0.89 0.92 0.87 1.00 0.83 0.93 0.97 0.94 

0.19 0.76 0.88 1.00 1.00 0.92 0.98 0.90 1.00 0.99 0.88 1.00 0.81 0.71 0.84 0.69 0.91 0.86 0.98 0.88 0.89 

0.38 0.77 0.79 0.76 0.89 0.91 0.81 0.80 0.96 0.95 0.86 0.90 0.68 0.60 0.91 0.65 0.82 0.87 0.93 0.83 0.83 

0.56 0.88 0.70 0.67 0.98 0.84 0.68 0.78 0.88 0.93 0.99 0.73 0.74 0.56 1.00 0.75 0.69 1.00 0.82 0.93 0.82 

0.75 1.00 0.71 0.81 0.93 0.80 0.87 0.76 0.87 0.84 0.77 0.66 0.90 0.72 0.80 0.80 0.63 0.88 0.74 0.99 0.81 

0.94 0.84 0.75 0.98 0.80 0.69 0.87 0.78 0.90 0.86 0.65 0.51 0.98 0.57 0.61 0.76 0.61 0.74 0.65 0.80 0.76 

1.13 0.69 0.78 0.86 0.67 0.68 0.74 0.80 0.86 0.81 0.54 0.58 0.78 0.55 0.64 0.76 0.54 0.86 0.69 0.65 0.71 

1.32 0.83 0.72 0.79 0.61 0.74 0.64 0.73 0.74 0.79 0.56 0.60 0.66 0.64 0.75 0.79 0.47 0.88 0.73 0.66 0.70 

1.51 0.61 0.65 0.90 0.63 0.78 0.59 0.69 0.67 0.71 0.69 0.55 0.77 0.55 0.70 0.54 0.47 0.73 0.71 0.70 0.66 

1.69 0.62 0.60 0.80 0.70 0.73 0.58 0.70 0.74 0.76 0.76 0.52 0.83 0.53 0.65 0.50 0.58 0.62 0.62 0.77 0.66 
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Normalized fluorescence intensities of Spg singal measured for Figure 41C. - continuation 

a-b  

pos. [µm] 

Normalized fluorescence intensities of Spg signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Embryo 4 Average 

1.88 0.64 0.63 0.61 0.71 0.81 0.60 0.66 0.61 0.72 0.82 0.54 0.62 0.46 0.77 0.49 0.65 0.61 0.59 0.85 0.65 

2.07 0.65 0.60 0.62 0.71 0.78 0.69 0.64 0.59 0.80 0.73 0.55 0.49 0.47 0.84 0.43 0.75 0.60 0.56 0.93 0.65 

2.26 0.81 0.52 0.55 0.75 0.54 0.68 0.67 0.55 0.81 0.82 0.46 0.49 0.59 0.90 0.49 0.69 0.53 0.60 1.00 0.65 

2.45 0.93 0.53 0.54 0.62 0.59 0.71 0.54 0.55 0.91 0.70 0.49 0.53 0.62 0.90 0.59 0.57 0.43 0.66 0.82 0.64 

2.64 0.91 0.59 0.46 0.56 0.67 0.69 0.48 0.57 0.89 0.68 0.52 0.58 0.72 0.94 0.60 0.53 0.43 0.59 0.71 0.64 

2.82 0.70 0.69 0.44 0.55 0.68 0.63 0.52 0.63 0.81 0.85 0.59 0.73 0.51 0.83 0.58 0.53 0.60 0.57 0.69 0.64 

3.01 0.66 0.85 0.57 0.58 0.65 0.66 0.55 0.64 0.76 0.74 0.51 0.76 0.48 0.80 0.53 0.56 0.68 0.55 0.73 0.64 

3.20 0.55 0.77 0.54 0.61 0.78 0.71 0.57 0.66 0.70 0.45 0.40 0.67 0.50 0.89 0.66 0.41 0.60 0.50 0.68 0.61 

3.39 0.46 0.64 0.56 0.65 0.79 0.65 0.63 0.66 0.77 0.32 0.42 0.65 0.62 0.95 0.64 0.33 0.45 0.44 0.65 0.59 

3.58 0.53 0.70 0.59 0.57 0.79 0.71 0.62 0.72 0.73 0.29 0.55 0.66 0.79 0.82 0.55 0.31 0.43 0.53 0.67 0.61 

3.77 0.50 0.65 0.65 0.57 0.95 0.78 0.56 0.64 0.69 0.39 0.60 0.69 0.69 0.82 0.63 0.34 0.42 0.49 0.76 0.62 

3.95 0.58 0.50 0.80 0.58 0.93 0.79 0.52 0.58 0.66 0.75 0.58 0.50 0.67 0.69 0.62 0.47 0.46 0.47 0.67 0.62 

4.14 0.64 0.40 0.73 0.66 0.74 0.77 0.55 0.48 0.63 0.95 0.50 0.33 0.65 0.63 0.48 0.62 0.52 0.43 0.50 0.59 

4.33 0.54 0.34 0.65 0.69 0.72 0.70 0.56 0.46 0.62 1.00 0.43 0.25 0.63 0.61 0.44 0.53 0.62 0.39 0.57 0.57 

4.52 0.61 0.32 0.51 0.49 0.73 0.69 0.58 0.49 0.71 0.68 0.51 0.24 0.75 0.52 0.55 0.54  0.43 0.63 0.55 

4.71 0.79 0.36 0.68  0.76 0.74 0.55 0.44 0.76  0.51 0.35 0.89 0.44 0.53 0.72  0.44 0.51 0.59 

4.89 0.65 0.40 0.84  0.76 0.71 0.51 0.39 0.74  0.38 0.45  0.41 0.46 0.71  0.46 0.57 0.56 

5.08  0.54 0.74  0.68 0.68 0.52 0.45 0.74  0.44 0.40  0.52    0.46 0.56 0.56 

5.27  0.51 0.73  0.60 0.70 0.58 0.54 0.66  0.47 0.42  0.59    0.51 0.58 0.57 

5.46   0.77  0.52 0.62 0.75 0.57 0.52  0.58   0.63    0.51 0.52 0.60 

5.65   0.60  0.50 0.62 0.81 0.49 0.46     0.74     0.57 0.60 

5.84   0.57  0.50 0.60 0.71 0.50      0.70     0.61 0.60 
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Normalized fluorescence intensities of Spg singal measured for Figure 41C. - continuation 

a-b  

pos. [µm] 

Normalized fluorescence intensities of Spg signal [a.u.] dia 

Embryo 1 Embryo 2 Embryo 3 Embryo 4 Average 

6.02     0.58 0.53 0.65 0.49      0.69     0.60 0.59 

6.21      0.65 0.55 0.57           0.75 0.63 

6.40      0.72 0.60 0.61           0.84 0.69 

6.59      0.63 0.60 0.53           0.81 0.64 

6.78      0.57 0.60 0.61           0.86 0.66 

6.97      0.55 0.64 0.67            0.62 
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Table 16 Normalized fluorescence intensities of CnoYFP signal measured for Figure 45C. 

Time  

[s] 

Norm. fluorescence int. [a.u.] wild type Norm. fluorescence int. [a.u.] dia 

E1  E2 E3 Average E1  E2 E3 Average 

-30.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.00 0.13 0.12 0.18 0.14 0.16 0.14 0.16 0.15 

30.00 0.32 0.29 0.35 0.32 0.33 0.35 0.27 0.32 

60.00 0.35 0.44 0.49 0.43 0.52 0.48 0.44 0.48 

90.00 0.45 0.68 0.60 0.58 0.54 0.48 0.59 0.54 

120.00 0.54 0.68 0.78 0.67 0.70 0.70 0.71 0.70 

150.00 0.69 0.78 1.01 0.82 0.69 0.65 0.93 0.76 

180.00 0.72 0.77 0.95 0.81 0.77 0.78 0.94 0.83 

210.00 0.81 0.81 0.88 0.83 0.90 0.80 1.09 0.93 

240.00 0.85 0.67 0.89 0.80 0.76 0.70 1.22 0.89 

270.00 0.91 0.66 0.91 0.82 0.69 0.68 1.00 0.79 

300.00 0.94 0.74 0.94 0.87 0.80 0.77 1.17 0.91 

330.00 0.91 0.85 1.04 0.93 0.81 0.91 1.44 1.06 

360.00 0.90 0.89 1.04 0.94 0.75 0.88 1.51 1.05 

390.00 1.02 0.94 1.23 1.06 0.82 0.81 1.10 0.91 

420.00 1.00 0.86 1.10 0.99 0.95 0.59 1.05 0.86 

450.00 1.20 0.97 1.18 1.12 0.82 0.63 1.00 0.82 

480.00 1.12 0.99 1.01 1.04 0.82 0.72 1.09 0.88 

510.00 1.19 1.19 1.00 1.13 1.03 0.70 0.95 0.89 

540.00 1.12 1.14 1.10 1.12 0.98 0.67 1.07 0.91 

570.00 0.97 1.18 1.01 1.06 1.18 0.50 1.00 0.89 

600.00 0.91 1.15 1.16 1.07 1.10 0.71 1.24 1.02 

630.00 1.06 1.16 0.95 1.06 0.99 0.69 1.37 1.01 

660.00 1.03 1.03 1.02 1.02 1.00 0.81 1.31 1.04 

690.00 1.08 1.01 1.11 1.07 0.87 0.68 1.44 0.99 

720.00 1.05 0.95 1.14 1.05 0.87 0.67 1.56 1.03 

750.00 0.91 0.98 1.13 1.01 1.04 0.64 1.32 1.00 

780.00 0.99 0.99 1.16 1.05 1.09 0.60 1.43 1.04 

810.00 0.99 1.06 1.14 1.06 1.11 0.85 1.28 1.08 

840.00 1.02 1.04 1.15 1.07 0.87 0.87 1.47 1.07 

 

Table 17 Normalized fluorescence intensities of 117GFP signal measured for Figure 46B. 

Time 

[s] 

Normalized fluorescence intensity of 117GFP [a.u.] wild type 

E1 E2 E3 E4 E5 E6 E7 Average 

-5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.00 0.15 0.16 0.17 0.14 0.11 0.12 0.11 0.13 

5.00 0.22 0.25 0.33 0.25 0.21 0.25 0.25 0.25 

10.00 0.31 0.35 0.42 0.38 0.28 0.35 0.36 0.35 

15.00 0.37 0.35 0.57 0.44 0.36 0.40 0.48 0.42 

20.00 0.38 0.39 0.61 0.54 0.40 0.43 0.51 0.47 

25.00 0.42 0.42 0.61 0.60 0.43 0.53 0.61 0.52 
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Normalized fluorescence intensities of 117GFP signal for Figure 46B - continuation 

30.00 0.46 0.50 0.69 0.65 0.48 0.54 0.64 0.57 

35.00 0.51 0.47 0.76 0.66 0.55 0.60 0.78 0.62 

40.00 0.59 0.54 0.87 0.75 0.58 0.61 0.76 0.67 

45.00 0.55 0.51 0.84 0.73 0.61 0.65 0.87 0.68 

50.00 0.66 0.58 0.84 0.70 0.66 0.74 0.81 0.71 

55.00 0.67 0.55 0.93 0.71 0.68 0.61 0.89 0.72 

60.00 0.72 0.59 0.99 0.73 0.68 0.64 0.90 0.75 

65.00 0.79 0.59 1.05 0.68 0.76 0.67 0.87 0.77 

70.00 0.84 0.58 1.00 0.70 0.78 0.70 0.83 0.78 

75.00 0.82 0.57 1.14 0.65 0.94 0.71 0.82 0.81 

80.00 0.78 0.56 1.20 0.62 1.04 0.77 0.73 0.81 

85.00 0.85 0.60 1.21 0.84 1.04 0.79 0.68 0.86 

90.00 0.92 0.65 1.15 0.88 1.06 0.83 0.63 0.87 

95.00 0.83 0.65 1.20 0.91 1.04 0.89 0.66 0.88 

100.00 0.89 0.69 1.27 0.88 1.10 0.90 0.65 0.91 

105.00 0.95 0.67 1.06 0.94 1.15 0.84 0.70 0.90 

110.00 0.87 0.72 1.05 0.81 1.23 0.97 0.67 0.90 

115.00 0.94 0.65 0.99 0.80 1.25 0.89 0.66 0.88 

Time 

[s] 

Normalized fluorescence intensity of 117GFP [a.u.] dia 

E1 E2 E3 E4 E5 E6 
 

Average 

-5.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

1.00 

0.00 0.12 0.26 0.15 0.10 0.16 0.11 
 

0.15 

5.00 0.23 0.39 0.22 0.21 0.29 0.23 
 

0.26 

10.00 0.30 0.52 0.26 0.30 0.46 0.27 
 

0.35 

15.00 0.36 0.58 0.34 0.38 0.51 0.35 
 

0.42 

20.00 0.48 0.66 0.39 0.46 0.59 0.44 
 

0.50 

25.00 0.49 0.69 0.51 0.53 0.64 0.47 
 

0.55 

30.00 0.54 0.67 0.56 0.58 0.67 0.49 
 

0.59 

35.00 0.51 0.64 0.57 0.61 0.77 0.50 
 

0.60 

40.00 0.61 0.69 0.62 0.70 0.76 0.49 
 

0.64 

45.00 0.67 0.72 0.59 0.71 0.79 0.52 
 

0.67 

50.00 0.67 0.80 0.61 0.78 0.72 0.60 
 

0.70 

55.00 0.72 0.92 0.67 0.84 0.74 0.66 
 

0.76 

60.00 0.79 0.96 0.69 0.81 0.78 0.70 
 

0.79 

65.00 0.79 0.89 0.78 0.90 0.82 0.71 
 

0.81 

70.00 0.73 1.00 0.81 0.99 0.80 0.67 
 

0.83 

75.00 0.71 0.81 0.80 0.99 0.77 0.75 
 

0.81 

80.00 0.77 0.84 0.85 0.88 0.68 1.00 
 

0.84 

85.00 0.79 0.89 0.92 0.96 0.73 1.00 
 

0.88 

90.00 0.87 0.91 0.84 0.86 0.76 1.03 
 

0.88 

95.00 0.91 0.91 0.84 0.76 0.71 1.22 
 

0.89 

100.00 0.93 0.93 0.86 0.74 0.67 1.24 
 

0.89 

105.00 0.82 0.92 0.84 0.64 0.72 1.54 
 

0.91 

110.00 0.70 0.86 0.76 0.68 0.75 1.48 
 

0.87 
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Normalized fluorescence intensities of 117GFP signal for Figure 46B - continuation 

115.00 0.78 0.93 0.77 0.75 0.73 1.40 
 

0.89 

 

Table 18 Averages of normalized fluorescence intensities per embryo measured for Figure 54B. 

Position 

[µm] 

Normalized fluorescence intensities averaged per embryo [a.u.] 

WT 1 WT 2 WT 3 dia 1 dia 2 dia 3 

-2.90 0.58 0.47 0.43 0.63 0.58 0.52 

-2.77 0.56 0.48 0.44 0.64 0.55 0.51 

-2.64 0.57 0.49 0.44 0.63 0.55 0.52 

-2.50 0.56 0.50 0.45 0.62 0.57 0.52 

-2.37 0.57 0.51 0.44 0.62 0.59 0.53 

-2.24 0.58 0.51 0.45 0.62 0.59 0.53 

-2.11 0.58 0.52 0.45 0.63 0.60 0.54 

-1.98 0.57 0.54 0.44 0.64 0.60 0.55 

-1.85 0.57 0.54 0.45 0.65 0.60 0.55 

-1.71 0.58 0.54 0.46 0.66 0.61 0.57 

-1.58 0.59 0.53 0.46 0.67 0.62 0.60 

-1.45 0.60 0.53 0.47 0.68 0.63 0.62 

-1.32 0.61 0.53 0.48 0.71 0.65 0.65 

-1.19 0.62 0.53 0.50 0.72 0.68 0.67 

-1.05 0.63 0.55 0.52 0.74 0.71 0.69 

-0.92 0.63 0.57 0.55 0.76 0.74 0.72 

-0.79 0.65 0.59 0.56 0.79 0.78 0.76 

-0.66 0.68 0.63 0.59 0.81 0.81 0.79 

-0.53 0.71 0.67 0.62 0.84 0.84 0.82 

-0.40 0.74 0.72 0.69 0.87 0.88 0.86 

-0.26 0.82 0.81 0.79 0.91 0.93 0.91 

-0.13 0.93 0.93 0.93 0.97 0.98 0.97 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.13 0.95 0.93 0.91 0.97 0.97 0.97 

0.26 0.83 0.83 0.74 0.91 0.93 0.93 

0.40 0.74 0.74 0.64 0.88 0.88 0.88 

0.53 0.69 0.67 0.59 0.85 0.85 0.84 

0.66 0.66 0.63 0.56 0.83 0.82 0.80 

0.79 0.63 0.60 0.54 0.80 0.78 0.77 

0.92 0.62 0.59 0.52 0.76 0.74 0.74 

1.05 0.60 0.57 0.51 0.74 0.71 0.71 

1.19 0.58 0.55 0.49 0.74 0.69 0.69 

1.32 0.58 0.53 0.48 0.73 0.67 0.67 

1.45 0.57 0.53 0.47 0.70 0.65 0.65 

1.58 0.55 0.53 0.47 0.68 0.62 0.63 

1.71 0.55 0.54 0.47 0.66 0.60 0.62 

1.85 0.56 0.55 0.48 0.66 0.59 0.60 

1.98 0.56 0.55 0.48 0.65 0.59 0.60 
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Averages of normalized fluorescence intensities per embryo measured for Figure 54B. 

- continuation 

2.11 0.55 0.53 0.48 0.64 0.58 0.59 

2.24 0.54 0.52 0.48 0.64 0.57 0.58 

2.37 0.55 0.51 0.47 0.63 0.57 0.56 

2.50 0.57 0.52 0.46 0.64 0.57 0.55 

2.64 0.57 0.53 0.47 0.63 0.55 0.52 

2.77 0.57 0.52 0.48 0.61 0.54 0.51 

2.90 0.54 0.49 0.47 0.59 0.54 0.52 

3.03 0.52 0.52 0.48 0.59 0.54 0.52 

 

Table 19 Width of Cpa signal curves measured for Figure 54C.  

Width of fluorescence intensity curves of Cpa signal at 80 % signal intensity [µm] 

Wild type dia 

Embryo 1 Embryo 2 Embryo 3 Embryo 1 Embryo 2 Embryo 3 

0.65 0.96 0.75 2.31 1.56 1.82 

0.77 0.70 0.46 2.32 1.84 1.43 

0.63 0.48 0.48 1.57 1.80 1.95 

0.55 0.53 0.55 1.35 1.19 1.59 

0.70 0.45 0.31 0.92 0.92 1.46 

0.74 1.27 0.67 1.36 1.74 1.07 

0.60 0.95 0.67 1.26 1.61 1.27 

0.58 0.71 0.41 2.48 1.40 1.57 

0.54 0.48 0.50 1.69 0.94 0.94 

0.37 0.51 0.39 2.03 1.14 0.81 

0.91 1.13 0.43 2.15 0.86 1.49 

1.02 0.63 0.52 1.58 1.69 1.05 

0.65 0.90 0.40 1.27 1.46 1.86 

0.81 1.04 0.39 1.44 1.85 1.25 

1.00 0.97 0.47 1.86 2.00 0.86 

0.82 1.16 0.56 2.23 1.71 1.44 

0.81 0.86 0.38 2.27 1.87 1.48 

0.87 0.49 0.46 1.48 1.75 1.12 

0.56 0.58 0.41 2.25 0.68 1.97 

0.33 0.71 0.35 1.20 1.13 1.16 

1.37 0.83 0.68 1.81 2.33 1.12 

1.03 
 

0.48 1.06 1.71 1.81 

0.79 
 

0.46 1.71 1.20 0.88 

0.45 
 

0.48 1.13 1.45 1.01 

0.78 
 

0.55 0.86 1.78 1.69 

0.56 
 

0.52 1.57 1.43 1.83 

0.94 
 

0.60 1.81 1.27 1.32 

0.91 
 

0.76 1.52 1.09 1.28 

0.60 
 

0.48 0.90 1.19 1.26 

0.53 
 

0.40 1.10 1.41 1.71 
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Width of Cpa signal curves measured for Figure 54C. - continuation 

0.48 
 

0.88 2.13 1.75 1.26 

0.90 
 

1.10 1.77 2.11 1.67 

0.69 
 

1.03 2.09 1.57 1.33 

0.52 
 

0.93 1.10 1.41 1.11 

0.43 
 

0.90 2.01 1.62 1.08 

0.48 
 

0.51 
 

1.43 0.93 

0.35 
 

0.45 
  

1.54 

0.46 
 

0.37 
   

1.08 
     

 

Table 20 Exponential decay of Cpa curves fitted for Figure 55C. 

Exponential decay [a.u.] 

WT dia 

0.59 1.19 

0.54 1.46 

0.44 1.15 

0.51 1.31 

0.39 1.68 

0.62 1.34 

Average 

0.51 1.36 

 

Table 21 Fluorescence intensities of Phalloidin measured for Figure 56C. 

Fluorescence intensity [a.u.] 

WT dia 

1528.40 1596.08 

1446.49 1436.46 

1521.25 1654.39 

1481.74 1667.82 

1945.86 1870.67 

1821.08 1626.99 

1996.18 1251.53 

1782.33 1324.88 

1370.34 1244.74 

1341.67 1238.17 

1278.47 1352.77 

1473.23 1280.93 

Average 

1582.25 1462.12 
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Table 22 Distance of flies measured in negative geotaxis assay for Figure 64. 
  

P/ TM3 Distance [cm] P/ Def Distance [cm] 

# sex 0:30 min 1:00 min 1:30 min 0:30 min 1:00 min 1:30 min 

1 m 19,00 19,00 19,00 0,00 0,00 0,00 

2 m 0,00 0,00 0,00 0,00 0,00 0,00 

3 m 16,00 19,00 19,00 0,00 0,00 0,00 

4 m 19,00 19,00 19,00 0,00 0,00 0,00 

5 m 13,00 17,00 19,00 0,00 0,00 0,00 

6 m 6,50 8,00 5,00 4,00 4,00 6,00 

7 m 15,00 16,00 18,00 0,00 0,00 0,00 

8 f 19,00 19,00 19,00 0,00 0,00 2,00 

9 f 17,00 19,00 19,00 0,00 0,00 0,00 

10 f 17,00 2,00 13,00 0,00 0,00 0,00 

11 f 15,00 19,00 19,00 2,00 2,00 2,00 

12 f 19,00 19,00 19,00       

Average 14,63 14,67 15,67 0,55 0,55 0,91 
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