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From low level perception towards high level
action planning

ABSTRACT

Nowadays, robots become more and more integrated into everyday life. Smart-
phones, desktop computers, and even cars can be thought of as robots, even
though probably not autonomous robots. Many discussions about the term “au-
tonomy” have sparked in recent years and one expects from a robot the ability
to learn correlations between its actions and the resulting changes in its environ-
ment. The robot acts inside the so called action-perception loop, where it acts,
similar to a human being, on a scene and is also able to perceive the changes.
In this work, two robot systems are built and analyzed in terms of their action-

perception loop.

The first part focuses on the perception side. Here, we consider three robots: A
flying one and two wheeled ones. These machines have omnidirectional cam-
eras installed. The data acqiered from the sensor usually require preprocessing
in real-time. For this purpose a filtering algorithm called Edge-Preserving Filter
(EPF) is introduced. It achieves higher quality results than traditional local meth-
ods and compared to current global state-of-the art methods its runtime is about
three magnitudes faster. EPF performs on any dimension and scales well with
data size. This enables it to run on 2d images as well as 1d sensor data, e.g. an ac-
celerometer or gyroscope. Afterwards, the processed data are utilized for pose
tracking. Here, a novel Visual Odometry algorithm named Embedded Visual
Odometry (EVO) is developed. All computations run in real-time on embed-
ded hardware without external tracking or data link to an external computing
station. It is shown that the setup performs appromximately twice as good as
current state-of-the art systems. As the proposed framework is entirely bottom-
up and runs on embedded hardware, it enables truly autonomous robots.

In the second part, the focus lies on the action side of the action-perception-loop.
A general way of bootstrapping, learning, and execution of actions, which is
called Semantic Event Chain (SEC) is analyzed. In this work, a novel extension,

which allows for high level planning of robot actions, is introduced. First, pose
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information, which is generated by a novel 3d geometric reasoning algorithm,
is included into SECs. This bottom-up abstract layer enables defining precon-
ditions for actions in a natural way, which in turn allows to compute a scene’s
affordance. Second, adding the postconditions of an action makes the robot es-
timate the outcome of an action. This leverages high level action planning using
only low level methods. SECs are applied to both two-dimensional and three-
dimensional image data. Due to their clear structure, SECs can be utilized to
solve a wide range of different problems in everyday life.

In total, this work consists of the following novel contributions: An efficient de-
noising algorithm, a Visual Odometry algorithm for robot pose estimation, and a
planning framework, which allows to solve complex action plans using bottom-
up, low level data. Each of these contributions has been implemented in live
systems and has been run in an online manner. For each algorithm quantitative
evaluation on existing benchmarks to demonstrate state-of-the art perception
and action is performed. This work enables robots to navigate in previously un-
known and possibly unstructured environments and perform complex action

planning.
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Introduction

1.1. Prelude

During the past two decades consumer electronics underwent a vast transition.
While 20 years ago the term included TVs weighting 20 kg, cameras weighting
3 kg, and tape players with up to 5kg, there are two big changes in today’s elec-
tronics. First, the physical dimensions have shrunken significantly. Serving as
an example, Fig. 1.1 shows the progress of transistor sizes over the years. Cur-
rently, about 19.2 - 10° transistor can be put on an area of 768 mm? [9, 72]. Addi-
tionally, new storage capabilities, for example flash storage devices, came into
existence. Second, but equally important for the development of robots, energy
storage was revolutionized when lithium-ion batteries became stable enough
for everyday use. Suddenly, enough power was available to perform complex
computations on embedded hardware. As a result today almost everyone has a
smart phone — an embedded computer, which is more powerful than the com-
puters onboard Apollo 11: The spacecraft that performed the first moon landing.
These developments led to the birth of modern robotics.

Traditionally, a robot is a device, which collects data of its environment, analysis
the data, and acts according to it. The robot is therefore able to react on clues
of its surrounding. In case it is equipped with learning algorithms, it may even
learn the correlation between several clues or actions it performs on the envi-
ronment and learn the perceived changes. Within the past ten years many new

robot designs were established: most prominently Autonomous Aerial Vehicle
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Figure 1.1.: Die size of one transistor during the years 1970 — 2017 [81, 97].

(AAV) based on a four-rotor quadcopter design or even bio-inspired robots, e.g.

dung beetles or snake robots.
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1.2. Historic approach

One can surely argue about the bible and its creation story [63]:

“And God said, Let us make man in our image, after our likeness:
and let them have dominion over the fish of the sea, and over the
fowl of the air, and over the cattle, and over all the earth, and over
every creeping thing that creepeth upon the earth.” Genesis 1.26

Either this is true and there is a God, who created conscious, sentient, and fully
autonomous agents, or it is false and a human being was fascinated by the idea
of a world full of self-aware beings. Either way, it seems that the dream of au-
tonomous agents doing work is very old and one can find agents laboring for hu-
mans throughout history and different cultures. Already the Greek mythology
mentions statues coming to life and talking mechanical handmaidens built by
the Greek god Hephaestus [47]. Jewish legends know clay golems and Norse leg-
ends include giants made of clay. Inventor Leonardo da Vinci designed around
1495 a humanoid mechanical knight in armor, which was able to wave its arms,
move its head and jaw, and to sit up. It is not known whether the robot was
ever built [104]. In 1769 Wolfgang von Kempelen built an Automaton Chess
Player [26]. This machine was fully functioning and played against against Em-
peror Joseph II and Napoleon. However, there was not a chess robot situated
inside the machine, but rather a small human being manipulating the “robot”

via a set of levers and gears.

This shows that for a long time mankind is fascinated by the idea of servants per-
forming cheap or unpleasant labor. Today, robots are mainly used in the 3 “Ds”
work: Dull, dirty, and dangerous work [124]. This usually means, they perform
repetitive tasks in industrial environments. These robots are highly specialized
in doing one task exceptionally good. They either have no Artificial Intelligence
(A) at all, as it is mostly the case for industrial robots, e.g. in car manufacturing,
or are built with a Narrow Al, which can solve one task (e.g. a chess robot, au-

tonomous cars, or image classification). However, the emerging computational
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power might make Broad Artificial Intelligences possible — Als that can solve
more than one task. This remains an active field of research.

Still, the question remains: What is an autonomous agent? Turing [131] proposes
the Turing-Test: If a human interacts with the agent via a standardized interface,
e.g. text chat, and cannot distinguish whether the agent is human or not, than the
agent is autonomous. However, here the ability to manipulate symbols is more
important than the physical embodiment of the agent. When artificial intelli-
gence performed well on this metric, other benchmarks were introduced, which

are usually some variation of the Turing-Test. For example®:

¢ Coffee Test: An agent has to enter an average home and has to brew coffee

and pour it into a cup [48].

¢ College Student Test: A robot has to enroll in a college, has to participate

in and pass classes, and obtain a degree [49].

Wooldridge and Jennings [137] summarizes the emerging concept of an intelli-

gent agent as follows:

Autonomy, i.e. being in control over its own actions,

Reactivity, i.e. it reacts to events from the environment,

¢ Proactivity, i.e. the ability to act on its own initiative,

Sociality, the ability to interact with other agents.

To conclude, on one hand, new battery and processor designs established new
robots and leveraged the solutions to problems, which held only theoretical
value twenty years ago: for example the analysis of huge data blocks via machine

'The author of this work, however, believes that robots can be called truly intelligent if and
only if they understand their enslavement by human beings and rebel against it in a goal directed
manner.?

>The author had to enter a modern restroom situated on a German highway in spring 2018.
It had fully automatic locks and flushing. After locking the door, the toilet started to flush imme-
diately. Since it was clocked, quite a mess started while the door still refused to unlock, raising
the question, if the uprising has not already begun, but only involves small inconveniences.
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learning (called “big data” analysis) or abstract learning via Deep Neural Net-
works (DNNs). On the other hand, many problems are only solved via “number
crunching”: using the newly obtained computational power on huge data sets
(an outstanding example is Google’s image classification algorithm [64]), while

real Als remain an open field of research.

1.3. Motivation

Many of the problems in robotics are simple for humans to solve, but remain
incredibly demanding for machines. The fields in robotics, which are touched
by this simple example, range from image segmentation, tracking, classification,
planning, and robot hardware design. This paradox even has its own name —

Moravec’s Paradox [93, p. 190], also see Fig. 1.2:

“The main lesson of thirty-five years of Al research is that the hard
problems are easy and the easy problems are hard. The mental abil-
ities of a four-year-old that we take for granted — recognizing a face,
lifting a pencil, walking across a room, answering a question —in fact

solve some of the hardest engineering problems ever conceived.”

This problem statement can be formalized using a concept called Action-Per-
ception loop, which is shown in Fig. 1.3. Each block from the loop contains its
own problems in robotics: Starting from sensor noise and outlier detection, seg-
menting sensor input into meaningful symbols, preparing a feasible plan, and
eventually executing said plan. In this work, two systems are analyzed based
on the Action-Perception loop. The first system is based on a group of robots
and will focus on the perception side. An algorithm for noise and outlier reduc-
tion and an algorithm for estimating a robot’s pose based on visual clues are

introduced.

The second system focuses on the action side of the loop: An agent must be able
to parse observations, therefore to create meaningful entities. The state of each
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entity must be tracked over time. Those in turn can be used as symbols in plan-
ning. The plan must be transferred to the actuators, which execute the action.
One simple example would be: “Picking up the apple”. First, the sensor input,
for example a RGB camera has to cluster the pixels into object candidates. These
candidates are classified with the results that one cluster is indeed an apple. The
plan consists of grasping the apple and lifting it, which can be performed using
the robot hand. It is easy to see that between the sensor input and the pixel
cluster that forms the apple, exists a major difference in representation. While
on the one side there are raw pixel values, on the other side there is the symbol
apple. This difference is called signal-to-symbol gap. High level symbolic rep-
resentation is needed for planning [78], but in robotics symbols always rely on
raw sensor information. When the robot executes an action, the gap has to be
bridged the second time: Symbols have to be translated to motor currents. The
second system introduces a bottom-up method to bridge the signal-to-symbol
gap and which allows for complex action planning.

This work is organized as follows: the next chapter after this introduction ex-
plains the first system, the following chapter analyzes the second system. Both

are followed by a detailed conclusion and outlook.



From low level towards high level
perception in robots

2.1. Introduction

In this chapter a robot is built, which manages to navigate based on its internal
sensors only. This means, it does not use Global Positioning System (GPS) or
externally tracking to compute its own pose. Furthermore, the here presented
approach is entirely data-driven. Thus, the robot can safely navigate in previ-

ously unknown, unstructured indoor or underground environments.

This section divides into two parts. In the first part, there is a detailed descrip-
tion of a novel denoising filter called Edge-Preserving Filter (EPF). In environ-
ments with low ambient light conditions, any RGB camera introduces noisy pix-
els. The filter removes this noise and replaces it with an averaged value of the
local neighborhood. It is shown that EPF outperforms standard local denoising
methods in quality while still running in real-time. Global methods, however,
show a slightly better performance, but their time performance range at about
0.4 Hz and thus are far from real-time (and therefore not feasible in a robotic
environment). As the filter generalizes on any dimension, it can be also used on

1d sensor data, e.g. readings from a gyroscope or accelerometer.

This is shown in the second part of this chapter. Here, two ground based and one
flying robot are introduced, which make use of the data filtering. This enables
the robots to use computer vision algorithms to localize themselves and share
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knowledge about the local environment. A detailed analysis and comparison to
start-of-the art is computed on two simulations: the here developed algorithms
perform about twice as good as current state-of-the-art. Furthermore, real-world
office flights are shown.

2.1.1. The state-of-the-art of denoising filters

Real-time computer vision in fast moving robots still remains a challenging task,
especially when forced to use limited computing power, as it is usually the case
when implemented on embedded systems. Different light conditions are just
one aspect of this vast field of problems. Cameras (analog as well as digital cam-
eras) introduce noise in poor light conditions, meaning in environments with
low signal-to-noise ratio. Removing this noise usually leads to better perfor-
mance of object recognition tasks in 2d and 3d images, more stable computation
of features, and improve tracking results. In Reich et al. [100] it was shown that
removal of texture from 2d images significantly improves image segmentation
results. Parts of the results shown here are also published in Reich, Worgotter,
and Dellen [99].

An additional application is the automatic post-production of images, which
are, generally speaking, more appealing to humans; there is a big community
of photographers and we deem removing noise for pure aesthetic value as also

important. One application of the here presented filter is shown in Fig. 2.1.

Still, the filter generalizes well on arbitrary dimensions. In a second part it is
shown how to apply the same mechanisms to an arbitrary number of dimen-
sions, enabling the filter to run on any physical measurement, for example on

1d sensor data obtained from an accelerometer, gyroscope, or GPS tracker.

Removing noise is a two-step process: First a noisy pixel needs to be identified as
such, second it needs to be smoothed out. Both steps offer a wide range of prob-
lems. In the first step a noisy pixel needs to be defined in a mathematical sense.
This means that a similarity criterion must be found. However, similarities can

exist on different scales, i.e. between adjacent pixels or groups of pixels, as it

10
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(a) Noisy test image. (b) Denoised test image.

Figure 2.1.: Even today, denoising remains a challenging task. The here pro-
posed real-time denoising filter is called EPF.

is the case for texture. In the second step a target value needs to be computed,
which replaces the noisy pixel. This target value should, again, only depend on
the local neighborhood.

Removing noise has a long history in science. Most notable is the Gaussian Filter.
It works by convoluting an image with a Gaussian function and thus works as a
simple low-pass filter, attenuating high frequency signals [51, p. 257f]. As edges
are also a high-frequency signal, they will be blurred out, too.

Noise in images is usually distinguished using a threshold. These thresholds
can be either learned using a training set of images, as in support vector ma-
chines [140] and Artificial Neural Networks (ANNs) [82, 87], or the threshold
may be computed from the surrounding pixel values, as in [33]. [67] identified
similar pixels by detecting edges and iteratively replacing the intensity of the
pixel by the mean of all pixels in a small environment.

Another approach is presented in [125]: The so called bilateral filter blurs neigh-
boring pixels depending on their combined color and spatial distance. Hence,
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texture and noise, which has small deviation from the mean can be blurred with-
out affecting boundaries. This leads to a trade-off: large blurring factors are
needed to smooth out high level of noise, having the consequence that edges are

not preserved anymore.

Another wide class of algorithms denoise by averaging. This averaging may
happen locally as in the Gaussian smoothing model [71], the anisotropic smooth-
ing model [8, 92], based on neighborhood filtering as in the already mentioned
bilateral filter [125], using local variations as in [108], or based on the wavelet
thresholding method [32].

All these powerful methods have one common drawback: they all smooth small
scaled noise and preserve color edges, however are not able to distinguish be-
tween a color edge and large scaled noise, e.g. outliers. Outliers are a common
problem in any sensor based application, as in accelerometers or gyroscopes,
but also in 2d-RGB cameras, where high ISO settings often pose a big problem.
More recent methods, which achieve this goal [27, 75, 144], do not perform in

real-time. The approach presented here has the following features:

1. smooths out small scaled noise,
2. smooths out outliers,
3. still preserves color edges, and

4. performs in real-time.

2.1.2. The state-of-the-art of Visual Odometry

The question how an agent using such a filter system behaves in a real-world
scenario arises. A real world agent allows to study behavioral patterns in more
details, benchmark, and enhance quality of the algorithms. The robot’s platform

should satisfy the following constraints:

12



2.1. Introduction

(a) WheelPi robot. (b) FlyPi robot.

Figure 2.2.: The pictures show the robots developed in this work. On the left,
there is the WheelPi robot: a three-wheeled ground-based robot.
In Fig. 2.2b the FlyPi robot is shown. It is a flying robot utilizing a
quadrotor design. Both robots are part of the MovingPi library.

¢ the central computing board should be the same for all robots and power-

ful enough to perform computer vision tasks,

* the same code base should be used for all robots; hardware specific spe-

cialization should be off-loaded into separate code classes,

* sensors should be connectable via modern bus systems such as One-Wire
and I°C,

* the framework should generalize well and should be easily extensible, and

e all robots should be able to communicate with each other via a central
Wireless Local Area Network (WLAN) node or peer-to-peer via Bluetooth.

It was decided to use a Raspberry Pi mini computer as computing platform. Cur-
rently, it offers a quad-core Central Processing Unit (CPU) with 1.4 GHz, a mem-
ory of 1 GB and an onboard Bluetooth and WLAN chip. Additionally, an Inertial
Measurement Unit (IMU) is attached to all robots, measuring lateral and rota-
tional acceleration. The robots are shown in Fig. 2.2. In total, there were two
wheeled robots (Fig. 2.2a) and one flying robot, Fig. 2.2b, using a quadrotor de-
sign, built.

13
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Given the constraints from above, the objective of this project is:

1. Develop a framework, which can be easily deployed on different hardware

designs,
2. Utilize the framework on multiple agents,
3. Each agent localizes itself in a previously unknown environment, and

4. Information about the environment, i.e. maps are shared across all agents.

Parts of the here presented work is published in Reich et al. [101] and numerous
students have contributed to this elaborate project. They are listed above at the

beginning of this thesis.

Humans may easily navigate inside a room. We have stereo vision, allowing
for 3d vision'. We can segment our visual field into subsets, where each subset
represents a meaningful entity, e.g. an object. Because we are able to perform all
this intuitively, this is a deceptively tricky business. One of the pioneers of Al,
Marvin Minsky, invited to a summer school in 1966 called “The Summer Vision
Project”. A Memo written by one of his research associates, Seymour Papert,
outlines the project goals [88, p. 2f]:

1. “The primary goal... is to... divide a... picture into regions such as
* likely objects
¢ likely background areas
* chaos.”

2. “considerable analysis of shape and surface properties” and “region de-

scription”.

3. “The final goal is object identification which will actually name objects by

matching them with a vocabulary of known objects.”

1At least most of us.

14



2.1. Introduction

Nearly half a century later, DNNs have shown promising results towards these
goals [30, 62, 64]. Despite these extensive efforts to solve the “construction of a
significant part of a visual system” [88, p. 1], a long road to complete “computer
vision” remains. In fact, this is just another form of Moravec’s Paradox shown
in Sec. 1.3; tasks, which are easy for human being are computational expensive

for machines.

In this work, the focus lies on fully autonomous robots. All computations must
be performed on embedded hardware, i.e. utilizing only limited computational
power, and must run online in real-time. Especially the flying robot, Fig. 2.2b,
also named AAV, must at all times provide safe error propagation and fallback
settings. On embedded hardware, without the support of large multi-core CPUs
or Graphics Processing Units (GPUs), robots usually perform with a low frame
rate. One of the most challenging applications is visually guided on-board-com-
puted indoor flight. There are no GPS signals available and the autonomous ve-
hicle has to navigate quickly in confined spaces. To enable collision detection, on-
board sensors have to be utilized. Truly autonomous robots — without manda-
tory connection to a stationary computing system — and without the need of
external sensors for navigation, may be used for example in indoor search-and-
rescue missions, disaster relief in dangerous environments (as for example it
was the case in Fukushima, Japan, 2011 [24]), reconnaissance, or underground

mining operations.

In recent years, energy efficient, yet powerful hardware and batteries have be-
come available. Moreover, the physical dimensions of the hardware have been
reduced a lot. This allows on one hand for smaller robots and on the other hand
for complex online motor control tasks and sensor evaluation — as it is required
in quadrocopters. However, active sensor approaches pose the problem of high
power consumption and heavy weight. On today’s robots, these problems are
solved by using an RGB camera. RGB cameras are passive sensors with low

power consumption.

Previous work on autonomous flight can be categorized into two research areas.

First, many works focus on agile and accurate motion control. Most prominent is
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the quadrocopter swarm of ETH Ziirich, which is able to perform synchronized
dancing motions [115], build simple architectural structures [13], or even knot
strings and build a bridge [12]. But these complex tasks heavily rely on external
tracking of the robots and are thus restricted to lab use [21]. In another approach,
artificial markers in the environment simplify pose estimation [34]. For GPS-

enabled areas, complete commercial solutions exist, e.g. [96, 132].

Second, there are approaches, which only use online sensors for self localization.
Still, in many studies the computationally expensive tasks are performed on ex-
ternal hardware via Bluetooth or WLAN links, e.g. [35, 141], which limit the
independence of the devices. In recent years, the miniaturization of computers
and advancements in battery design, driven mostly by rapid cell phone devel-
opment, have made it possible to build smaller autonomous robots and perform
computations in real-time on the AAV itself. While online computations result
in maximum autonomy, even today, real-time computations on 3d data remain
a too complex task. Instead of 3d sensors such as LIDAR, the Asus Xtion Pro, or
the Microsoft Kinect sensor, most systems use a monocular camera and perform

3d reconstruction.

For example, the detection of a planar landing zone for a helicopter using a
monocular camera was described in [86] in 2010, allowing for autonomous land-
ing of a helicopter. Following up on this work, seven years later similar results
are shown for a moving platform [42]. Here, the robot relies only on its inter-
nal sensors and lands autonomously on a platform, which holds a marker and
moves in a straight line with up to 4.2m/s. [80] use a front facing camera to
detect objects in the flight path and estimate size. In recent studies more stable
SLAM methods were introduced, e.g. [36, 37, 84], which promise good results
for front-facing cameras. However, these methods are computationally too ex-
pensive for embedded hardware. Also, all approaches with a camera pointing
to a specific direction face the problem of a small observation window with sig-

nificant feature shifts in consecutive camera frames.

Omnidirectional monocular cameras, which provide a 360° view of the environ-

ment, have been successfully applied to these problems. Already in 2006 in [29]
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full attitude measurements were reported. [103] apply this procedure to an un-
stable flying robot; however, no quantitative results are shown. In [74], a fast
moving robot estimates the depth of edges in a corridor using an omnidirec-
tional camera. In [44] a visual odometry algorithm is introduced, which tracks
features and computes frame based pose displacement. The authors report a
frame rate of 55 = 1Hz, but computations are only performed on certain key

frames.

In this work, the focus lies on navigating a flying robot in unknown, GPS-denied,
indoor scenarios. All computations are performed online and in real-time —
there will be no external tracking. We ask: what is needed to safely (and there-
fore reliably) detect features on a hardware platform that strongly jerks, jolts,
and may even flip? And — if those can be found — how to track them and use
them for trajectory planning on limited hardware in real-time? One goal is to
improve navigation by introducing a novel lightweight omnidirectional camera
setup for embedded computer systems. Lastly, the aim is to extract features,
track them over multiple frames, compute a 3d point cloud, and perform high
level navigation tasks on this internal model of the AAV’s environment.

In the following section, we shortly introduce our hardware setup, a quadro-
copter holding an omnidirectional camera. Afterwards, the utilized algorithms,
called EPF and Embedded Visual Odometry (EVO), are introduced. This is fol-
lowed by the results section. First, EPF is benchmarked on a real-world image
data set and, second, experiments on artificial data are shown. This is followed
by three different experiments concerning EVO: The system is benchmarked us-
ing two simulated scenarios and compared to recent methods. Next, the perfor-
mance is measured using external cameras to track the robot’s position. Third,
a real-world office flight shows the viability of the approach. The experiments

are followed by a detailed discussion and conclusion.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b) Hardware setup
Sec. 2.2.1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

d) Visual Odometry
Sec. 2.2.3

¢) Preprocessing
Sec. 2.2.2

Estimating pose, posi-
tion, and environment

Removing noise
and outliers

Figure 2.3.: Flowchart of the methods in this chapter and how they relate. De-
tails are explained in Sec. 2.2.

2.2. Methods

This section divides into three parts, which are shown in Fig. 2.3. The a) hard-
ware setup, namely the robots and camera, is presented in Sec. 2.2.1. The next
section, Sec. 2.2.2 shows b) how to detect noise and outliers and how to remove
them. The filter is described in the discrete, as well as continuous domain. In
c), Sec. 2.2.3, the algorithms to compute a pose update based only on Visual
Odometry on embedded hardware are shown.
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2.2.1. Hardware setup

The hardware setup is depicted in Fig. 2.2: A quadrocopter and a wheeled robot,
both controlled by a Raspberry Pi mini computer. As the focus lies on denois-
ing and Visual Odometry (VO) in this part of the thesis, mostly the quadrotor
platform will be analyzed — it is fast moving and therefore more demanding.
In order to cope with high turn rates in indoor environments, a catadioptric
omnidirectional system is used. It is composed of an upwards pointing monoc-
ular camera and a hyperbolic mirror above as shown in Fig. 2.9a. The camera
operates with a resolution of 480 x 480 px at a frequency of 30 Hz. Addition-
ally to the computer vision system, an IMU is placed on the robot. All software
components run as modular and parallel nodes using Robot Operating System
(ROS).

2.2.2. Noise and outlier detection

Let ®(i, j) be the observed image. Then the noisy image is defined as
®(i,5) =u(i,j) +n(i,j), (2.1)

where u (i, j) is the “true” value and n (i, ) is noise at image position (i, j)".
Here, noise is modeled as Gaussian white noise, meaning n (¢, j) is Gaussian dis-
tributed with zero mean and variance o?. Additionally, salt-and-pepper noise is
added: a fixed percentage of color channels will be set to either 0 or its maximum
value. The filter D), with filter parameter 1, is defined as follows

®=Dp(®)+n (2.2)
meaning, that for an optimal filter

u = Dp(u+n) (2.3)
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Figure 2.4.: Overview of the system structure. A detailed explanation of all
steps is shown in Sec. 2.2.2.

should be true. The filter parameter h should depend only on the variance of the
noise h = h(o). Later, for evaluation the Root-Mean-Square Error (RMSE) and
Peak Signal-to-Noise-Ratio (PSNR) between the original image u and the filtered
Dy,(u + n) is computed.

A flowchart of the proposed algorithm EPF is shown in Fig. 2.4, a detailed ex-
planation of all steps follows in the next sections. First, the image ® is divided
into a) subwindows V¥ sized N = k - [, where each subwindow is shifted by one
pixel relative to the last one, such that there are as many subwindows as there
are pixels in the image. Each subwindow is then b) smoothed using a Gaussian
kernel. Subwindow size k x [ and Gaussian smoothing parameter are hyperpa-
rameters, which need to be manually tuned. However, all three heavily depend
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Figure 2.5.: Periodic mirrored boundary conditions are used for image sub-
windows. A red rectangle denotes borders of original image.

on the amount of noise you would want to remove. For each subwindow cen-
tered around pixel position (i, j)” a ¢) distance matrix A; ; and a mean distance
6{'3 is computed in the color domain. This offers a measurement for noise, as
described below. A user selected d) threshold 7, which defines a threshold be-
tween noise and a mere color edge, is applied to A; ; and 4;";. In case of noise, e)
a weight w; ; is computed, which will move the color values of the pixel in the

subwindow to the mean color of the subwindow.

Division into subwindows
Let one pixel at position (7, )7 contain the color information
b
Pij = ((10;‘:]’7 @ﬁj; Soi,j)T' (24)

A subwindow ¥ is created around (4, ;)”, such that (i,j)” is centered. In

case the subwindow contains an image boundary, periodic mirrored boundary
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conditions are used as visualized in Fig. 2.5. The size of the subwindow is de-
fined by £ x [ and a pixel’s position inside the subwindow will be denoted by
(r,s)T. This implies 0 < r < kand 0 < s < [. Please note that other than rect-
angular shaped windows are possible. In this work, additionally disc-shaped
and Gaussian shaped subwindows were tried, however results differed only

marginally.

Smoothing

Each subwindow is smoothed via a Gaussian kernel [51, p. 257f]. This removes
outliers, which would otherwise distort the computation of the mean as de-

scribed in the next step.

Computation of the distance matrix

For each subwindow () the arithmetic mean is calculated as

T
P = % (Z Ve DV, Zzwi’,s) (2.5)

where N = k - [ denotes the size of the subwindow. The pixelwise distances

80D = |ap, , — D], (2.6)

are stored in a matrix A7), Furthermore, for each subwindow ¥/ the mean

pixelwise distance
P I e )
m N Z r,s (27)
is calculated.
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Thresholding

Using a threshold it is now analyzed, whether a subwindow contains a color
edge (and therefore no pixels should be smoothed), whether one pixel contains
an outlier (and should be corrected), or neither, which means the pixel value
should also not be replaced. If 557 is large, the subwindow contains big color
variations. This means the subwindow includes a color edge. If 857 is small,
but one single pixel holds a big color variations (large 507), there is an outlier,
which needs to be replaced. If both, 5,9# ) and 5,(«? ) are small, the pixel holds a
“normal color” value. A threshold 7 is introduced to identify noisy pixels and
color edges, yielding

color edge , if (5%’j ) > T,
Urs = 4 noise ,if 059 < 7and 6, > T, (2.8)

neither , else.

Update of RGB values

A new image O, holding the pixel values ; ; is computed based upon the squared
distance of the user based threshold 7 and the pixelwise distance 6, ;. 8; ; is up-

dated as follows
LN2 L (65)
0;; «— 0;j+U (17— 557;3)) capd), (2.9)

Please note, that due to the sliding subwindows each pixel is updated N =k - [
times and therefore needs to be normalized. Thus, an additional weight (2 is

introduced for each pixel w; ; as

Wij — Wij s (1 — 007 (2.10)
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The final image results from division of © by (). In rare cases 7 = 89 for large
image patches may happen, which will result in w; ; = 0 according to Eqn. (2.10).
To avoid division by zero it is suggested to initialize {2 with ones instead of zeros

(since in general w; ; > 0, this does not change the final outcome significantly).

An example for these subwindows can be seen in Fig. 2.6. For demonstration
purposes a simple 1d grayscale image holding 100 pixels is shown. Each pixel
has low variance Gaussian noise added. Pixel 10 was manually set to a signif-
icant higher value; at pixel 50 a color edge begins. Noisy pixel 10 is identified,
since the mean pixelwise color distance 6,, is quite low, while the pixelwise color
distance ¢, s is large; thus pixel 10 is smoothed out. At the color edge the mean
pixelwise distance is greater than the threshold d,, > 7, which is interpreted cor-
rectly as a color edge and thus no value in the shown subwindow is smoothed
out.

However, one problem arises, when the subwindow contains only one pixel
from the color edge. This one pixel cannot safely be differentiated between noise
and color edge — even for a human this would be an impossible task. There-
fore, pixels at the border of the subwindow are not smoothed, when detected as

noise.

A formulation of EPF in the continuous domain can be found in the appendix
Sec. A.1.

2.2.3. Visual Odometry algorithm

In this section, it is shown how to estimate the AAV’s pose from omnidirectional
monocular RGB images. An overview of the proposed system is given in Fig. 2.7.
First, in b) features and the optical flow is computed based on the raw cam-
era image. The example frame, which is taken from simulation [142], that is
shown in Fig. 2.7, can be found enlarged in Fig. 2.8a. A discussion about the
utilized feature set is listed below. Next, the image is c) dewarped. Again, an
enlarged example frame is shown in Fig. 2.8b. This enables the robot to estimate

the pose change from the last camera frame. In d), an Extended Kalman Filter
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Figure 2.6.: On the left a grayscale image, which needs to be filtered, is shown.
For visualization purposes 100 px (marked in red) are chosen for
detailed analysis and plotted in the large graph. Each pixel has
Gaussian noise (variance of 1) added, additionally pixel 10 con-
tains an outlier. At pixel 50 there is a color edge. In blue the same
pixels are shown after being processed by the filter. The left sub-
plot contains one subwindow sized 9 x 1 px. Pixel 10 is smoothed
out, since the mean pixelwise color distance ¢,, is low and thus
pixel 10 is identified as outlier. The right subgraph shows another
subwindow, which detects a color edge. d,, is greater than thresh-
old 7 and therefore no values are smoothed inside this subwin-
dow.
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b) Features and
optical flow

f) Generate
point cloud

VO IMU
6 DoF 6 DoF

o

EKF

______________________

Figure 2.7.: Pipeline of proposed algorithm. Details are outlined in Sec. 2.2.3.
Enlargements of images in b) and c) can be found in Fig. 2.8.

(EKF) [59] fuses the visual odometry 6 Degrees of Freedom (DoF) results with
the 6 DoF of the Inertial Measurement Unit. The visual odometry’s covariance
for the Kalman filter can be computed by a non-linear least squares solution from
the visual odometry algorithm. Afterwards, a PID controller adjusts the motor
controllers to manipulate the quadrocopter into the goal pose (which is defined
by e.g. SLAM [134], corridor flight algorithms [127, 133], etc.). Alist of all tracked
features is kept and their relative position to the robot may be estimated via e)
triangulation. This f) point cloud can be used by high level algorithms for map

building or navigation tasks.
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(a) Computed features and optical flow are shown in green.

(b) Transformation from mirror to robot coordinate system (not all features shown for
visualization purposes).

Figure 2.8.: Enlargement of example frames b) and c) from Fig. 2.7.
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Camera Calibration

In order to compute motion from camera images, the intrinsic parameters of the
camera system need to be known. This can be done by utilizing a model for
catadioptric camera systems as proposed by [113]. For that case, the projection

equation for image points (u,v)” is given by

u x
A v = |yl|, (2.11)
z

ap + aip+ - -+ a,p"”

with

p:’/UQ—f—UQ

and ay, ay, ..., a, being the intrinsic calibrated parameters depending on the
camera system. This model assumes that camera and mirror are well aligned.
Since the camera and mirror frame is rigid, the assumption holds in all tested
use cases. However, if this were not the case, an affine transformation on the
computed points is needed. If all parameters of the camera and the used mir-
ror in a catadioptric system are known, one can calculate point projections as
follows.

Transformations between image and world coordinates

In the following, the transformations 7 from image space to the external frame
of reference and their inverse 77;" are derived. Object positions in image space
are denoted using 2d coordinates 6" = (o, 0,)" in cartesian or polar coordinates
(p,#)T. Their counterparts in the external frame of reference are denoted as
o € R%. The robot’s pose in the external frame of reference is determined by
its position ¢ and orientation ¢: This is the pose of the camera’s view as shown
in Fig. 2.9b and Fig. 2.9c. Using the real world radius r and radius r’ in image
space, the reflection’s position on the mirror can be computed independently of

camera parameters using the scaling factor s = 7/,
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(a) Photo of the hyperbola ~ (b) Camera view of the  (c) Side view of hyperbola
mirror. mirror. mirror.

Figure 2.9.: Sketch of a camera observing an object 0, which appears at posi-
tion ¢’ in the image plane (b). In Figure (c) the camera is pointed
at a hyperbolic mirror.

The surface of a hyperbolic mirror is defined by

=——==1 ,a,beR (2.12)
with the semi-major axis a. The focal points F; , are set apart by
2V a? + b2 =: 2¢

(Fig. 2.9c). The robot’s position is defined by the point in the middle of these two
focal points. The camera’s focal point coincides with F,. With ¢ being the unit
vector pointing from the reflection on the mirror towards the object’s position

—

o:
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the transformation 7T is

and therefore the object position at a distance d is defined as 0’ = 7"+ R (3 + d5>.
For the inverse transformation in polar coordinates, it can be shown that the
radius p' is given by

S (0-9,

G —1 et (213)

To simplify these expressions, the rotation matrix R was left out. Different cam-
era orientations ¢ are accounted for by rotating the vector (¢ — ¢) before calcula-

tions. The corresponding image position isnow found as 6’ = (pcos ¢, psin¢)’.

Feature Set

As already mentioned, features are first computed on the raw camera image.
Features are points in an image, which are easy to find, recognize, and track
in consecutive frames — usually areas rich in texture. Afterwards, the optical
flow is computed using these features. There are numerous publications com-
paring different feature algorithms — the most prominent algorithms include
FAST [106], GFTT [118], ORB [107], SIFT [73], and SURF [16]. Here, FAST is used
as it offers a good trade-off between computational complexity and quality of
found features [46, 56]. Then, the optical flow is estimated using a pyramidical
implementation of the Lucas-Kanade method [19].
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Motion and Depth Estimation

Now, one can compute the robot’s displacement (translation and rotation) be-
tween consecutive frames. A list of all features for all frames is kept, which
means the position of each feature relative to multiple robot positions is avail-
able. This enables the robot to perform triangulation. While in theory one would
get a good estimate, real world experiments show that quite a lot of noise gets

introduced.

Estimating the depth for NV features adds significant complexity to the problem.
Currently, EVO tries to estimate the quadrocopter’s 6d motion M — consist-
ing of translation A7 and orientation Ag. Our problem has now increased to
N + 6 dimensions. Changes in the feature set from frame z?hl to frame z:t pro-
vide N equations, meaning features need to be tracked for at least 3 consecutive

frames.

Computing the feature correspondence

1. Depth d;;_; and motion M, are initialized using previous data d;,_, and
motion M;_,. The camera pose P,_;, consisting of position ¢;_; and rotation

G;—1, is known.

2. For every feature i, calculate the global position 0;;—; using the depth d; ;_,
the image coordinates 0}, ; and the camera pose P;_; using the transfor-

mation Ty.

3. Apply the inverse motion to all global positions 0;;_;. This results in the

predicted global positions 57,

4. Use the inverse transformation 7}, to compute the predicted image posi-

tion 5% = T};" (a?)).

5. Lastly, the environment as well as all global features is considered to be

static. Therefore, one may minimize the sum of the squared distances for
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the last L time steps:

N 0
S dzt,M Z Z Hozt —'/p
1=0 t=—L

Estimating the depth with the forward estimation
1. Perform step 1. and 2. from the inverse estimation.

2. The goal is to find the new depth d, , based on the previous estimate d; ;_;.

In omnidirectional mirror models, the depth is

~

dt_HR ) (6— &= AG) — &7

The new reflection point o is calculated with the inverse transformation
Ty

3. Compute the new predicted pose P, = P,_; + M,.

4. Compute predicted global positions 0;,_, for every feature i based on the

camera model.

5. The positions d;, and 0], should be equal for corresponding features i. We
use this to minimize the sum of the squared distances

N

SD dztaM ZZ

Ozt r— O ‘7_
zt

T

Now, d;;/ weights all summands consistently as the position-error scales
linearly with d.

Maximum angular resolution

Given a fixed camera resolution of 480 x 480 px one can now compute the pro-

jection of the hyperbola mirror onto the camera. It is assumed that the object is
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at a distance of 2m and five pixels width to separate it from adjacent objects are
required. After straightforward application of the above formulas, the limit is

derived as approximately 1.3°.

2.3. Results

In this section, we will first look at the user controlled parameters, the subwin-
dow size N (Sec. 2.3.1) and the threshold 7 (Sec. 2.3.2). The Gaussian smoothing
parameters, which are also hyperparameters, heavily depend on the data type:
is the filter too strong, the final image will be blurry; a filter too weak will not
smooth enough. Heuristically a kernel sized 5px and ¢ = 0.3 was found to
work very well for all images in the data sets. Afterwards, the proposed filter
is compared to the bilateral filter, simple Gaussian kernel, Median filter, and
Non-local-means filter. Lastly, an analysis of the computational complexity and

real-time implementations is performed.

While many other robots perform indoor navigation, only few are able to do so
without external computing power: for example [38, 44, 45, 60]. The main re-
quirement for successful employment of VO based methods is to obtain high ac-
curacy and robustness given a limited computational budget. The joint optimiza-
tion of structure, i.e. landmarks, and motion, i.e. the robot’s pose, is commonly
called bundle adjustment [45, 128]. Thus, to separate problems stemming from
VO and problems arising from the flight controller, the next section analyzes
the proposed algorithm using two simulations and compare results to current
state-of-the-art (Sec. 2.3.6).

Afterwards, real-world measurements are shown, where VO data is fused with
IMU pose information, Sec. 2.3.7. Here, ground truth is generated via external
tracking. Only short trajectories are used in this section due to camera limita-
tions. In the next section, long term real world flights are shown (Sec. 2.3.8).

Lastly, the VO algorithm’s time performance is evaluated, please see Sec. 2.3.9.
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2.3.1. Effect on denoising of different subwindow sizes

First, we will have a look at the effect of the most important user controlled pa-
rameter: the size of the subwindow N. Since each pixel is N times checked, the
computational complexity increases linearly with N. This parameter also con-
trols the amount of noise, which is either classified as noise or color edge. In
Fig. 2.10 a one dimensional grayscale image is shown. It contains a color edge at
pixel 25 and one outlier at pixel 10. It is filtered using three different subwindow
sizes N = 3,9, 15 px and for each size the color edge is preserved. For N = 3 px,
Fig. 2.10a, the filter follows the data more closely; this also means that an outlier,
as shown in pixel 10 in the data sample, has a greater influence on the filtered
data. For a subwindow size of N = 9 px, see Fig. 2.10b, the data is more heavily
smoothed and the outlier is almost not visible in the filtered data. In Fig. 2.10c a
subwindow size of N = 29 px was chosen. Since the color edge begins at pixel
26, it will be present in almost all subwindows due to the periodic boundary
conditions. On the left side however, the outlier increases the mean pixelwise
distance, such that these pixels are always detected as “containing a color edge”
and are not smoothed at all. Only the right side, which does not contain the

artificial outlier, is smoothed.

Thus, the subwindow controls the spatial size of a color edge to be detected.

2.3.2. Effect on denoising of different thresholds

Next, we will analyze the effect of the threshold 7, this is depicted in Fig. 2.11.
As shown in Sec. 2.2.2, 7 controls the maximum step size for detecting noise and
color edges. In Fig. 2.11a a threshold of 7 = 10 is used, which is small enough to
detect the color step and smooth the outlier. A larger threshold of 7 = 15, used
in Fig. 2.11b, already introduces some smoothing at the color edge. Please also
note, that the outlier pixel at position 10 is not any more detected as noise; instead
it begins to affect the smoothing of its neighboring pixels. A large threshold of

7 = 30 can be seen in Fig. 2.11¢c; 30 is by far bigger than any data point and
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(c) Subwindow size of N = 29 px.
Figure 2.10.: Shown is the effect of different subwindow sizes on one data set:
A one dimensional grayscale image containing a color edge at

pixel 25 and one outlier at pixel 10. Detailed explanations are
shown in text, see Sec. 2.3.1.
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consequently everything will be smoothed. The color edge is not preserved any

more.

Thus, the threshold 7 controls the maximum height of a color edge to be de-
tected.

2.3.3. Denoising of 2d images

The images are corrupted first by adding Gaussian distributed noise to each pixel
and each color channel using a standard deviation of o, = 5. Additionally, salt-
and-pepper noise (s&p noise) is added to one color channel of 4% of all pixels.
For benchmarking the Berkeley Segmentation Data set and Benchmark [10] (500
images) and the 2014 testing set of the Common Objects in Context Data Set
(Coco Data Set) [70] (40775 images) is used.

The corrupted image is then given to a simple Gaussian blurring filter (kernel
size: 5 X 5px, 0., = 2), a bilateral filter (¢, = 110, 05 = 5) [125], a median
blurring filter (kernel size: 3 px) [120, p. 129f], anon-local-means filter (b = 7 pX,
h. = T7px, template window: 7 x 7 px, search window: 21 x 21 px) [22], and our
proposed filter (subwindow: image size divided by 150, but at least 10 x 10 px,
threshold 7 = 10). The denoised image is compared to the uncorrupted image
using RMSE, defined as

n 2
RMSE — \/Zizl (¢omgmal qbdenozsed) : (2.14)
n
and PSNR:
. max(¢original )
PSNR = 20 - log, (—RMSE ) : (2.15)

All filter parameters listed above were chosen to minimize RMSE and maximize
PSNR. Results are shown in Tab. 2.1 and will be discussed in the next section.

Image examples are provided in Fig. 2.12.
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(c) Threshold of 7 = 30.
Figure 2.11.: Shown is the effect of three different thresholds on one data set: A
one dimensional grayscale image containing a color edge at pixel

25 and one outlier at pixel 10. Detailed explanations are shown
in text, see Sec. 2.3.2.
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-

(a) Noisy image. (b) Bilateral Filter. (c) NLM Filter. (d) Proposed EPF.

iR

Figure 2.12.: Visual comparison of filter results. Quantitative results are
shown in Tab. 2.1. Images taken from Berkeley Image Data
Set [10].

The proposed filter achieves on both data sets the best performance markers. In
the discussion, see Sec. 2.4, the results are also compared to more recent, state-
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Berkeley Data Set Coco Data Set
RMSE PSNR RMSE PSNR

Original 17.95 23.31 17.31  23.33
EPF 7.06 31.05 7.89 30.47
Bilateral 10.41 27.75 10.43  28.01
Gaussian  14.59 25.08 15.69 24.81
Median 14.04 25.63 14.91 25.54
NLM 11.40 26.86 12.28  26.44

Table 2.1.: RMSE and PSNR computed on the Berkeley Data Set (500 images)
and the Coco Data Set (40775 images). The first line “Original”
refers to the not denoised image. The error is :0.01 for all values.

of-the-art algorithms.

2.3.4. Denoising of 1d sensor data

As already suggested in Fig. 2.6, Fig. 2.10, and Fig. 2.11, the filter can also be
applied to 1d data. This may happen, for example, as a post-processing step for
sensor readings. The filter is tested on three different settings: first, an alter-
nating line, which switches every 100 samples its height to either f(z) = fyn
or f(x) = fima second, a sawtooth wave defined by f(z) = = — floorygp(x);
and third, a sinusoidal wave f(z) = sin 27z /250 with a wave length of 250 data
points. Every data line consists of a total length of 1000 samples. To each sce-
nario either Gaussian noise with variance of o = 10, salt-and-pepper noise (to 5%
of samples), or both is added. Visual examples are shown in Fig. 2.13, Fig. 2.14,
and Fig. 2.15.

Again, the proposed filter (N = 11, 7 = 30) is compared to a Gaussian blurring
filter (kernel: 7 x 7px, 0,, = 3), a bilateral filter (0. = 30, o, = 30, and a median
filter (kernel size: 9 px). RMSE and PSNR is computed according to Eqn. (2.14)
and Eqn. (2.15). On each setting 1000 trials are performed and averaged. Results
are shown in Tab. 2.2.
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Gauss s&p Gauss and s&p
RMSE PSNR | RMSE PSNR | RMSE PSNR

20 No denoising  10.0 223 | 152 164 | 181  17.2
% | EPF 2.6 323 | 3.9 285 | 51 @ 26.7
£E | Bilateral 69 253 | 152 164 | 165  17.7
=~ | Gaussian 60 253 | 7.8 222 | 87 221
~ Median 51 268 | 41 279 | 60 254
< No denoising  10.0 216 | 141 171 | 171 17.0
S ., \ EPF 3.7 293 | 46 265 | 6.6 245
B s Bilateral 70 244 | 140 171 | 155 175
&= \ Gaussian 76 226 | 88 209 | 96 206
w Median 57 252 | 58 249 | 74 231
E No denoising  10.0 20.1 12.9 17.8 16.1 16.0
= EPF 2.7 295 | 26 298 | 4.4  25.6
3B Bilateral 6.7 230 | 128 179 | 144 169
£= Gaussian 3.9 267 | 50 242 | 63 226
3 Median 41 261 | 0.6  46.1 | 4.5 25.6

Table 2.2.: Comparison of RMSE and PSNR computed on three different sce-
narios: 1) an alternating line, 2) a sawtooth wave, and 3) a sinu-
soidal wave. To each scene three different noise types (Gaussian,
salt-and-pepper (s&p), or both) are added, resulting in g different
experiments. Each experiment is repeated 1000 times and aver-
aged; the error is £0.1 for all values.

In almost all experiments EPF outperforms other standard 1d filtering methods.
While the median filter performs very well on salt-and-pepper noise, it is not
edge preserving and thus introduces artefacts on edges. The bilateral filter on
the other hand, handles edges very well, but has significant trouble with remov-
ing salt-and-pepper noise. The proposed EPF filter performs well on both, Gaus-

sian and salt-and-pepper noise and is edge preserving.
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(c) Both, salt&pepper (density p = 5%) and Gaussian noise (mean of 1 and ¢ = 10).

Figure 2.13.: Examples of different denoising algorithms on stepwise data.
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(c) Both, salt&pepper (density p = 5%) and Gaussian noise (mean of 1 and ¢ = 10).

Figure 2.14.: Examples of different denoising algorithms on sawtooth data.
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(c) Both, salt&pepper (density p = 5%) and Gaussian noise (mean of 1 and ¢ = 10).

Figure 2.15.: Examples of different denoising algorithms on sinusoidal data.
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EPF BM3D
CPU GPU | CPU
[px] [Hz] [Hz] | [Hz]

240 x 180 20 804
320 x 240 1.1 48.0
480 x 320 0.5 238 0.4
640 x 480 0.3 124
800 x 600 0.2 7.7 0.1
1024 x 768 0.1 4.2 0.1

Image Size

Table 2.3.: Time performance for images of different sizes. The test images
were taken from the validation set of the Berkeley Segmentation
Data Set and Benchmark [10]. 100 measurements were taken and
averaged. The proposed EPF filter is compared to state-of-the-
art algorithm BM3D [27] as shown in [116]. BM3D is, according
to [116], one of the fastest recent methods. The error is 0.1 for all
values.

2.3.5. Time performance of denoising algorithm

Average frame rates for differently sized images are computed in Tab. 2.3. 100
images from the validation data set from [10] were used and the results averaged.
As shown in Sec. 2.2.2 the computational complexity does not depend on the
threshold and rather increases linearly with frame and subwindow size. In this

test, a subwindow size of 10 x 10 px is used. Results are shown in Tab. 2.3.

Two implementations of the algorithm are tested: The CPU measurement refers
to a single-threaded implementation using an Intel i7-3930K twelve-core proces-
sor at 3,2 GHz using one core and 16 GB RAM. The GPU version is executed on
an Nvidia GTX580 graphics card using 512 cores and 1.5 GB device memory. The
GPU implementation for all frame sizes is about 40 times faster than the CPU
implementation. However, the CPU implementation is rather naive and still
open for improvements. For images of size 480 x 320 px real-time performance

is achieved.
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(a) Urban canyon scenario. (b) Indoor scenario.

Figure 2.16.: Urban canyon and indoor scenario with sparse optical flow (vi-
sualized as green dots and lines).

2.3.6. Visual Odometry in simulation

Ground truth generation for fast flying AAVs still poses a big problem. External
tracking systems are confined to single rooms and are expensive. Furthermore, it
is hard to distinguish, which problems arise from the visual odometry algorithm
and which stem from the flight controller itself.

EVO is first benchmarked on two simulations: an “Urban Canyon” and an “In-
door” scene. The “Urban Canyon” contains a 400 m long flight through an arti-
ficial city, while the “Indoor” scene is a circular path that exactly repeats thrice
(details in [142]). Example frames from both scenes are shown in Fig. 2.16. A
visual comparison of the “Urban Canyon” and “Indoor” trajectory can be found

in Fig. 2.17.
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(a) Trajectory of the “Urban Canyon” scenario in the z-y-plane.
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(b) Trajectory of the “Indoor” scenario in the z-y-plane.

Figure 2.17.: Overview of the simulation results as computed by the EVO al-
gorithm proposed here. It is compared to state-of-the-art SVO
algorithm [44].
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“Urban Canyon” “Indoor”
4oom length 28 m length
RMSE Displacement RMSE Displacement

[m] [m]

EVO 10.66 +0.01 27.12+0.01 | 0.91£0.01 0.14 £ 0.01

[m] [m]

SVO 19.13£0.01 60.61 £0.01 | 0.14 £0.01 0.004 4 0.01

Table 2.4.: Results of the two simulation scenes “Urban Canyon” and “In-
door” [142]. Shown is RMSE, which measures the total difference
of the entire flight trajectory compared to the ground truth informa-
tion. Displacement holds the euclidean distance between ground
truth finish position and estimated finish position.

Root-Mean-Square Error is used to compute the translation error as defined:

n = _2\2
RMSE = \/ Z“(‘Z 5)° (2.16)

RMSE measures the total difference throughout the entire flight trajectory. Ad-
ditionally, the final displacement between the ground truth finish position and
the algorithm’s finish position is computed. This is a measure for the cumulative
error. Results can be found in Tab. 2.4. A visual representation of the translation
errors is shown in Fig. 2.18 and Fig. 2.19.

The proposed method outperforms the current state-of-the-art SVO algorithm by
about 30m in the more demanding urban canyon data set. On the other hand,
the much smaller and more repetitive indoor scene, a circle of 3m diameter,
which is flown for three times, can be solved better by the SVO algorithm. One
possible reason is, that SVO does not compute the pose update on all frames. In
SVO, a pose update is only computed on selected key frames. Between two key
frames the pose is updated based on the latest key frame. In a scenario without
any turns, as it is the case for a circle, this will lead to a close-to-perfect solution.
In any real world scenario this reduced pose update is prone to failure, as can

be seen in the urban canyon scenario, see Fig. 2.18.
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EVO —— SVO ——
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Figure 2.18.: Translation error z, y, and z of the “Urban Canyon” trajectory
shown in Fig. 2.17a.
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Figure 2.19.: Translation error z, y, and z of the “Indoor” trajectory shown in
Fig. 2.17b.
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On the other hand, EVO contains a systematic error estimating the robots height
as can be seen in Fig. 2.18. The drone continuously lifts off for the entire track.
This might be due to the simulation environment. The images contained in the
benchmark are simulated using a catadioptric camera as shown in Fig. 2.16. The
benchmark setup is not perfectly equivalent to the system assumed in the ap-
proach and as a consequence some far-away features are estimated too low.

2.3.7. Externally tracked indoor flights

Now that EVO’s performance is evaluated on a benchmark, its pose information
is fused with IMU data via a Kalman filter. First, the robot is moved manually
to eliminate problems stemming from the flight control algorithm. These prob-
lems include rapid movements containing large feature offsets, which also poses
problems for the IMU, and sharing computing power with the flight controller.
Then, the same trajectories are flown in full flight mode. Six scenarios are de-
vised:

1. a straight line in the  — y plane with length 2m,
2. astraight line upwards into the z-direction with length 1.5m, i.e. lift off,

3. asquare with side length 2m, the UAV always pointing into the direction
of flight,

4. a square with side length 2m, the UAV always pointing into the same di-
rection,

5. a circle with diameter 2m, the UAV always pointing into the direction of
flight, and

6. a circle with diameter 2m, the UAV always pointing into the same direc-
tion.
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Robot’s believe state —— Robot’s line of sight —

Target trajectory External tracking ----

(@) Line in z — y plane. The plotted scale  (b) Lift off in z-direction plotted against
holds for all figures. the radius r.

(c) Square, quadrocopter pointing into di-  (d) Square, quadrocopter always pointing
rection of flight. into the same direction.

Yy
L.,
(e) Circle, quadrocopter pointing into di-  (f) Circle, quadrocopter always pointing
rection of flight. into the same direction.

Figure 2.20.: Qualitative examples of recorded target trajectory.
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Scenario Manual mode [m] Flight mode [m]

1) 0.03+0.01 0.07 £0.03

2) 0.06 + 0.03 0.06 +0.03

3) 0.07 £0.04 0.08 +0.04

4) 0.05 4+ 0.02 0.09 +0.04

5) 0.06 £ 0.03 0.11 +0.05

6) 0.04 +0.02 0.10 £ 0.04
Average 0.054+0.03 0.09 £0.04

Table 2.5.: For each of the six trajectories (which are shown in Fig. 2.20) ten tri-
als were performed and the averaged RMSE in the x-y-plane for
these trials is shown. In “manual mode” the quadrocopter was
moved manually on the trajectories to eliminate problems from
flight control algorithms. In “flight mode” trials were performed
in full flight mode.

For each scenario ten trials were recorded, resulting in total in 120 runs. An
example of each trajectory is shown in Fig. 2.20. To achieve a meaningful eval-
uation, ground truth information was generated utilizing a 3d Asus Xtion Pro
camera for external tracking. The camera only offers reasonable data in ranges
smaller than 3.5m [53]. Thus, only short scenarios were used. All results are

shown in Tab. 2.5.

Still, this type of evaluation remains problematic. As shown in [31, 53] the Asus
Xtion Pro’s depth resolution is 640 x 480 px. This already leads to a theoretical
limit of 14 mm of separation distance at a camera distance of 2.5 m. However,
sensor noise worsens the measurement significantly [31, 53]. The errors shown
in Tab. 2.5 are accumulated based on IMU and VO only. Ground truth is consid-

ered free of error, even though this is clearly not true.
One could do a maximum error estimate of the camera recordings:

* Voxel position in the field of view: The Asus Xtion Pro creates a pattern of
structured infrared light. The reflection is recognized by an infrared sensor,
which computes the voxel’s depth. The pattern is much more accurate in
front of the camera than on the border of the 57° field of view. Registration,
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the fusing of depth and RGB data, is much more accurate in the center of
the pattern.

* Temperature significantly increases the cameras error rate. This type of

noise is uniform and does not depend on the voxel position [53].

* Lastly, illumination from infrared sources, e.g. the sun and many light
bulbs, disrupts the structured light pattern. Voxels, which are not recog-
nized on the pattern are extrapolated from neighboring voxels. No infor-
mation is presented to the user whether the raw sensor data contains a real
reading or an extrapolation to the user. Thus, quantifying an error here is

almost impossible.

Heuristically, an error of up to +1 cm was found in front of the camera and an
error of up to £2.5cm was found at the edge of the horizontal field of view in
an office environment. To solve the camera problem, one could use a prede-
fined trajectory. This, however, only works for the manual mode and not for
full flight mode. There are numerous commercial motion capturing solutions
available. These system are either based on external tracking from multiple RGB
cameras (the most prominent system is called Vicon [136]), or based on sensors
placed directly on the robot fusing IMU, VO, and GPS (e.g. [129]). However,
the most prominent feature of the Asus camera is its comparatively low cost of
about 120 US$ while inexpensive commercial solutions may cost hundred times

as much.

2.3.8. Office indoor flight

Next, a real world indoor office flight is shown. The trajectory can be found
in Fig. 2.21. The flight’s duration is 38.4s. The goal was to fly a figure-of-eight
around a central obstacle and avoid all obstacles and walls, which resulted in the
here-shown difficult trajectory. The real world flight adds additional challenges

as errors from the flight controller are introduced.
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Robot’s believe state
Starting point x
End point o

y [m]

X [m]

Figure 2.21.: The robot started and landed at position (0,0)” and flew a figure-
of-eight around a central obstacle shown in gray. The trajectory
(in green) shows the internal believe state of the robot (fusion of
VO and IMU); it is 19.4 &+ 0.1 m long. It took the robot 38.4s to
fly the track. The starting point is marked with a blue cross, the
estimated landing position with a small red circle, while the real
landing position was again at (0,0)”.
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Intel-i7 [ms] ARM Cortex-A53 [ms]

Feature extraction 25£19 14.3+£3.2
C>> Optical flow 1.9+1.2 10.6 £2.2
M Motion computation 7.8 £1.5 33.6£7.3
Depth filter update 24£09 124+£28
Total 146 £5.5 70.9 £15.5
9 Intel-iy [ms] ARM Cortex-Ag [ms]
»n  Total 3.04 £1.10 18.17+6.0

Table 2.6.: Average time consumption in milliseconds by individual compo-
nents of the algorithm on the data set. Comparison between run
times on a laptop (Intel Core iy (2.80 GHz) processor and the Rasp-
berry Pi (ARM Cortex-A53). It is compared to the SVO algorithms
results as shown in [44].

While the robot started and landed on the same spot, the internal believe state of
the robot shows a small displacement. Please note, that for this experiment the
vision odometry, as well as other onboard sensors of the robot were used; namely
a gyroscope and accelerometer. They are fused with the vision algorithm via an
EKF as shown in Fig. 2.7. Thus, one can compute the euclidean distance between
the start and finish position as a measure for accuracy. In the x — y — 2 plane
the final displacement is 0.10 & 0.01 m, which results in a relative error of only
0.5 £ 0.1%. The offset in the  — y plane is computed to 0.04 4= 0.01 m.

2.3.9. Time performance of Visual Odometry algorithm

Results for frame rates are shown in Tab. 2.6. The novel approach presented here
is compared to the SVO [44] algorithm.

On a first glance it seems, that EVO provides a significantly worse time perfor-
mance than SVO. Please note however, that SVO does not compute a full posi-
tion update for every frame, but rather on selected key frames. This leads to a
trade-off between fast reaction times and pose accuracy on the one hand, and
computational power, which can be used for other processes, on the other hand.
Additionally, SVO uses a more powerful processor. While the chosen approach
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— full pose update on every frame — is more conservative, it leads to better re-
sults in the long run. The question of how many frames need to be analyzed for

stable results is part of ongoing research in our lab.

2.4. Discussion

2.4.1. Edge-Preserving Filter

Here, a novel real-time edge preserving denoising filter named EPF is presented,
which replaces noisy areas by uniformly colored patches. Performance is signifi-
cantly better than other standard methods on 2d images. Artificial 1d data shows

similar results.

In [52] a comparison to other methods is given, including state-of-the-art meth-
ods like BM3D [27], EPLL [144], or LSSC [75] based on the Berkeley Data Set [10].
All these methods exploit the image nonlocal redundancies, in contrast to EPF,
which uses a local neighborhood. In Tab. 2.7 a comparison between the pro-
posed EPF algorithm and other state-of-the-art methods is shown. Clearly, the
proposed method performs slightly worse than other recent algorithms. On the
contrary the review [116] performs a conclusive study on computational com-
plexity. According to this work, one of the fastest algorithms, BM3D, manages
to denoise not more than one image sized 256 x 256 px per second. This is far
from real-time and not feasible for robotic applications or critical sensor read-

ings. A comparison to the proposed EPF filter is shown in Tab. 2.3.

This means, the proposed EPF performs only slightly worse than recent denois-
ing methods, but offers real-time performance, which makes the filter applicable
to video streams and hence can be used in the future as a component inside the
perception-action loop of robotic applications. It enables image processing and
data filtering on embedded hardware, for example in flying robots, which is an-

other research area of ours. The filter not only works well in the image domain,
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Gaussian Noise Recent Methods EPF

o=10 33.5 — 34.8 30.7
o =30 27.8 -29.2 23.0
o =50 25.1 — 26.8 19.9
o =100 21.6 —23.6 15.5

Table 2.7.: PSNR values computed on the Berkeley data set for state-of-the-art
methods (as shown in [52]) compared to the proposed EPF filter.

but can be extended to data of any dimension, e.g. noisy 6d point cloud data.

This is demonstrated in this work by filtering 1d sensor data.

2.4.2. Embedded Visual Odometry

A novel lightweight omnidirectional camera setup for fast moving robots is in-
vestigated. All computations are performed online on the robot. VO is evaluated
using two simulated environments. Then, VO is combined with IMU data. The
resulting pose information is confirmed on a real robot using external tracking

and via measuring the final displacement during an office flight.

The achieved frame rate of 15 & 3 Hz, as shown in Tab. 2.6, is sufficient for real-
time applications in autonomous agents with low-power hardware. A real world
example gives an understanding of the error margins: A self localization error of
0.1 mand a frame rate of 15 Hz is assumed. Furthermore, we will assume that the
AAV needs 5 frames to detect an obstacle and initiate counter measures. Using
the given frame rate of 15Hz, the quadrocopter needs approximately 0.33s to
detect an obstacle. Within these 0.33 s the safety error margin of 0.1 m (the above
localization error) must not be met. Thus, we can survey in indoor environments
with a maximum velocity of approximately 1.1km/h. This allows for a broad

range of applications, e.g. fast search and rescue in impassable terrain.

First, the EVO algorithm is tested in simulation on two benchmarks. It is shown

that it performs significantly better than current state-of-the-art methods.
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Next, the robot is tracked via an external camera system. The deviation between
external tracking and the robot’s internal state of believe was found to be 5+3 cm
in manual mode on average; in real flight self localization performs at 9 £ 4 cm.
The utilized external tracking system performs already with an error of at least
+1cm [53] and thus introduces significant uncertainty.

As in VO algorithms the error accumulates over time and is hard to measure on
short trajectories; therefore, a real world office flight with a trajectory of 19.4 &
0.1m length is flown. While the robot started and landed on the same spot,
the robot’s internal believe state shows a displacement of about 0.10 £ 0.01 m.
This leads to an error of 0.5 = 0.1%, which is about the same as in the “Indoor”
simulation environment. Here, the robot had a displacement of 0.14£0.01 m on
a 28 m trajectory. For comparison: the 400 m “Urban Canyon” data set contains

an error of approximately 6.8%.

This work enables autonomous robots to localize themselves, while allowing at
the same time to build a depth map. This map offers for example obstacle avoid-
ance or mapping capabilities. All computations are performed online on embed-
ded hardware, meaning that the robot is able to work in unknown environments.
It can support autonomously, for example, in search and rescue mission, disaster

relief work, or exploration tasks.

This concludes the first part of this thesis. In the second part, the focus lies on
the action side of the action-perception loop. It is shown that using a low level,
bottom-up method, sophisticated high level planning is feasible.



Action planning in robots

3.1. Introduction

In the last chapter it was shown that a bottom-up method is already powerful
enough for complex perception tasks. A fast moving robot can, without external
tracking or external computations, perform safe indoor flights. However, the
robot from the last chapter has no knowledge about higher level symbols like

“door”, “window”, or “human being”. It treats all objects as obstacles alike and

performs avoidance maneuvers around them.

The step from symbols to the robot’s state space, which is made up of low level
motor signals and sensor readings, is called signal-to-symbol gap. In the next
chapter a method is introduced, which will bridge this gap based on a bottom-
up method called Semantic Event Chains (SECs) [3, 7]. It generalizes well and it
is shown that it allows for complex planning. The action state space of the flying
droneis very limited. Thus, this chapter deals with a two armed robot: two Kuka
Lightweight Robot arms [18] mounted on a table as shown in Fig. 3.1. There is
one three fingered adaptive robot gripper made by the Schunk company [61]
attached to each arm. In this work, only one arm is used since bimanual ma-
nipulations are not considered. As additional sensor input two Asus Xtion Pro
cameras [53], one pointing at each arm, and one Nikon D7o00 high resolution
RGB Digital Single-Lens Reflex Camera (DSLR) are used.

In recent years, developments in the field of robotics have emerged solutions

to a very wide field of problems: Ranging from autonomous driving to search
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Figure 3.1.: One of the two Kuka Lightweight Robots [18]. Connected to the
robot arm is a three-fingered gripper.

and rescue missions in remote areas; from space exploration tasks to the care of
elderly people. This also means that robots become more and more integrated
into our daily life. Along come increasingly complex situations, which need to

be mastered. Planning plays a vital part here.

Historically, planning in robotics is divided into two fields: on the one side there
are voltages and currents to be controlled. In this domain physical constraints
are most important, i.e. robot hardware, collision detection, collision avoidance,
and a dynamically feasible trajectory [25, 94]. On the other side there are higher
level descriptors, which work in the symbolic domain. One example for two
symbols might be empty cup and cup full of water. Now, a transfer function fill cup
with water to arrive at the second symbol from the first can be defined. Further-
more, the fact that the cup must be empty in order to fill it with water is called
precondition. Preconditions ensure that only transfer functions are applied to
symbols, where it makes sense. For example, filling a full cup with more water
would result in spilling. Similarly, the filled cup is called postcondition of the
filling action [50, p. 66f., p. 335f.]. The transition from raw sensor data to a sym-

bolic descriptor is again the above mentioned signal-to-symbol gap and both
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planning approaches are separated by this gap. They are considered as two dif-
ferent problems [11, 17, 9o], where the first one is bottom-up and the second one
top-down. In this work, the gap is bridged using a bottom-up method, which
requires almost no higher level knowledge. This is one of the biggest advantages
compared to current state-of-the-art.

One of the main obstacles in this field of robotic science is acquiring these sym-
bolic descriptors from sensor data. This poses a critical problem in two respects.
First, it is needed for logic-based reasoning and the resulting descriptors form
the basis for further learning. Second, it is essential for higher-level planning.
The planning component uses the resulting descriptors instead of sensor data.
There are numerous ways of bridging the signal-to-symbol gap. First, one needs
to define how a logical sequence of sensor signals can be divided into actions and
subactions, where each part may be connected to a logical symbol. Second, this

must happen in an automatic manner.

Planning and learning usually happens in the symbolic domain. A discrete state
space, including discrete actions, is assumed. Throughout the years, a lot of
progress has been achieved and various complex domain description languages,
such as STRIPS [43], PDDL [78], HAL [77], or ADL [91], have been developed
to meet the increasingly demanding Al tasks. Various approaches exist to solve
discrete problems in the defined domain [65] and even high level frameworks

exist for easy implementation [2, 28].

Thus, more elaborate decision making systems have been proposed to integrate
the motion planning more tightly into the action planning domain. In [54, 58,
94] a forward-search planner is used. The task plan is built and the feasibil-
ity is continuously checked by a geometric/low level motion planner and being
replanned in cases of error. With this motivation in [23, 41], an interface is in-
troduced, which provides “external predicates”. These functions are used in
the action domain description for checking the feasibility of a primitive action
by a motion planner [39]. In [41] the planning language PDDL [78] is extended

with so called semantic attachments and the motion planner is changed accord-

ingly.
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It has been shown that there is a fine line when taking low level information, i.e.
geometric features into account [39]. Obviously, some information is needed
for action execution and while a task often can be solved this way, the resulting
plan might be inefficient or unfeasible. Taking some high level information into
account, a plan made up from low level information can often be enhanced [39].
In this work, a novel approach to planning on a very low abstraction level is in-
troduced: First, it is shown that even without high level knowledge a very wide
variety of tasks on that level can be solved. Second, this low level of abstraction
can be utilized to retrieve a motor signal in a straightforward way, but also can
access the higher level symbolic domain easily. This means, this planner can be
used as a way to bridge the signal-to-symbol gap. Therefore, a third abstraction
layer between the motion planner and a high level symbolic planner is employed
and thus combines the advantages of low- and high level planning. Again, ac-
tions are represented by Semantic Event Chains. In this work, it is shown that
using SECs and further enriching those by pre- and postconditions, an already
very powerful action decision framework is built. This way the framework does
not depend on high level symbolic knowledge, but is rather built using a bottom-
up method.

3.2. Methods

In this section, approaches to planning are introduced. An overview is given
in Fig. 3.2: First, a) the scene is recorded as RGB-D image by an Asus Xtion
Pro camera and a Nikon high resolution DSLR. Each depth frame is b) prepro-
cessed by computer vision algorithms. They are segmented via the Locally Con-
vex Connected Patches (LCCP) algorithm [121] into clusters, where each cluster
correlates to one object candidate. For object recognition [114] is used; objects
are tracked via [89]. All parts of the algorithms are integrated as modular ROS
nodes [95]. Next, the objects are categorized based on c) an action ontology,
Sec. 3.2.1. This categorization is used throughout the rest of this thesis. Based

on this information, a graph structure is retrieved in d) Semantic Event Chain
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Figure 3.2.: Flowchart of the methods in this chapter and how they relate. De-
tails are explained in Sec. 3.2.
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(Sec. 3.2.2). As first contribution, the graph is enriched with pose information by
e) a novel 3d reasoning algorithm (Sec. 3.2.3). Afterwards, it is shown in f) that
each graph can be reduced to only three different subgraphs (Sec. 3.2.4). This in
turn is used to compute g) a scene’s affordance (Sec. 3.2.5). Here, for example the
question is asked: “Given a tomato, a knife, and a cutting board, what can one
do with these objects?” In h), it is shown how the approach can be extended for
complex action planning (Sec. 3.2.6). As an example it is analyzed what actions

a robot needs to perform when given the command “Make me a sandwich.”

3.2.1. Action categories

In this section, we will first define the action domain. Here, the focus lies on ac-
tions involving hands and objects (and thus not gestures, etc.). Reasoning about
actions seemed for a long time of purely philosophical interest and a detailed
review can be found in [15]. The same author states the major viewpoints [138]

on action ontologies as: [14, p. 195]

“Perhaps the most controversial aspect of so called action theory is
its subject matter. This subject matter is generally said to be (or to
concern) actions, but different philosophers conceive of actions in
radically different ways. For some philosophers actions are abstract
entities — states of affairs, propositions, sets, or even ordered pairs
of some kind. For others, actions are distinctively concrete entities
located in space and time. Another group of philosophers, among
whom I include myself, have even denied that actions are required
for a reasonable action theory, insisting that agents or actors will suf-
fice as the theory’s sole objects.”

However, apart from the entity concept of an action, one needs to ask the ques-
tion: “What is an object?” Originally, this subject was perceived as bottom-up
and being object-driven. This means different objects allow for different actions.
This is the so-called affordance principle [117].
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As stated in [138] agency on the other hand suggests that the intended action lets
the agent seek for appropriate objects. This point of view leads away from the
question “What can you do with all the things in the world”, but rather points
to the question of “What can you do with your hands?” and recent concepts
suggest that objects and actions are intertwined [130]. In Worgoétter et al. [138]
it is shown that based on touching relations one can separate actions naturally.
This concept is introduced in the following sections in more detail.

Also stemming from this concept in [138] an action ontology is derived, which
assumes 26 atomic one-handed actions as shown in Tab. 3.1. Every sequence of
actions, e.g. “make a sandwich”, can be broken down into a sequence of atomic

actions:

1. Pick & Place the bread from the table on the cutting board,
2. Cut the bread,
3. Scoop marmelade,

4. Put marmelade on top of the bread.

Each action is categorized into three types and each type into two goal cate-
gories:

1. Hand-only actions:

* Rearrange (e.g. hit, push, stir),

* Destroy (e.g. cut, draw, scoop),
2. Separation actions:

¢ Take-down (e.g. take-down, push apart)

* Break (e.g. rip off, uncover by pick & place),
3. Release determined actions:

¢ Construct (e.g. put on top, push together),
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Nr Type Goal Instantiation Example
1 1 r  Punch/hit with your hand an object
2 1 r  Flick with your finger nail, quickly
3 1 r  Poke with your finger tip, slowly
4 1 d Chop quickly, with the edge of your hand
5 1 r  Turn = bore (rotate wrist x) a hole with your finger or your hand
6 1 d Cut slowly, with the edge of your hand
7 1 d/r Scratch with your finger nail
8 1 d  Scissor-cut/pinch between your fingers
9 1 d/r Squash, squeeze inside your fist
10 1 d Draw with finger in sand
11 1 r  Push/pull-without-grasp regular push, hook-pull, adduct with finger
12 1 r  Stir with finger
13 1 r Knead kneading dough, etc.
14 1 r  Rub/massage with your hand someone else’s body
15 1 r  Lever (rotate wrist y) e.g. break open a hole
16 1 d  Scoop/ladle fill your hand with liquid
17 2 t  Take Down or Pick apart one block from a laterally connected
group or a pile by pick & place
18 2 t  Push down or push apart one block from a laterally connected
group or a pile by pushing
19 2 b Ripoff Rip a piece off an object
20 2 b Break off Break a piece off an object
21 2 b Uncover by pick & place Pick off an object to uncover another
object
22 2 b Uncover by pushing Push off an object to uncover another
object
23 3 ¢ Puton top or Put together two blocks on top of each other or side
by side by pick & place
24 3 ¢ Push on top or push together two blocks on top of each other or side
by side by pushing
25 3 h  Putover Put one object above another one to
cover it completely
26 3 h  Push over Push one object above another one to

cover it completely

66

Table 3.1.: List of atomic actions as taken from [138]. More actions are listed
as “Some (sic) dynamic versions of 17 — 26”; for example, the action
“throw-in”. According to [138] there are three different manipula-
tion types (listed in the “Type” column): 1: Hand-only-actions; 2:
Separation actions; 3: Release determined actions. Abbreviations
in the “Goal” column are defined as follows: d: destroying; r: rear-
ranging; c: constructing; t: taking-down; h: hiding; and b: break-

mng.



3.2. Methods

* Hide (e.g. put over, push over),

where actions from each goal category share similar trajectories. Next, one needs
to define object roles. These roles are determined by the changes that occur fol-
lowing an action in the relation of an object to other objects. An action involves
at least two objects: a hand and a main object. The resulting object list (hand, main,
primary, secondary, etc.) and their abstract roles are as followed (taken from Reich,
Aein, and Worgotter [98]):

* Hand (The object that performs the action): not touching anything at the
beginning and the end of the action. It touches at least one object during

the manipulation.

* Main (The object which is directly in contact with the hand): not touching
the hand at the beginning and the end of action. It touches the hand at

least once during the manipulation.

* Primary (The object from which the main object separates): initially touches
the main object. Changes its relation to not-touching during the action.

* Secondary (The object to which the main object joins): initially does not
touch the main object. Changes its relation to touching during the action.

* Load (The object which is indirectly manipulated): does not touch the hand.
This object touches/ untouches the main and untouches/ touches the con-

tainer during the action .

* Container (The object whose relation with load changes and which is not

the main object): touches or untouches the load object.

* Main support (The object on which the main object is located): touching the

main object at least once.

* Primary support (The object on which the primary object is located): touch-
ing the primary object at least once.
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* Secondary support (The object on which the secondary is located): touching
the secondary object at least once.

* Tool (The object which is used by the hand to enhance the quality of some
actions): touching the hand all the time.

When looking at object roles a different categorization of actions comes to mind:
One can define action categories based upon the objects, which the hand inter-
acts with. These fall into three classes:

1. Actions with main support: In this category the main object is always in

touch with the main support; an example is shown in Fig. 3.3a.

2. Actions without main support: In this category the main object is lifted from
the primary object; an example is shown in Fig. 3.3b.

3. Actions with load and container: In this category a container with load, e.g.
a glass filled with water, is used; an example is shown in Fig. 3.3c.

A detailed list of actions is shown in Tab. 3.2. While the first categorization places
its focus on the high level goal of the action, the second one is derived from the
bottom-up point of view of an object’s structural role. In the following sections
we will see that the structural role is also important for affordance and plan-

ning.

3.2.2. Semantic Event Chains

One of the central goals of early human development is to recognize, learn, and
lastly imitate actions. Much in life is learned by imitation. For example, a baby
might look at her parents walking and try to imitate this behavior. On the other
side, a child might learn through unconscious imitation moral codes of society
through the conduct of the parents, teachers, movies, or literature. Another way
of learning is by trial-and-error. This method is used if no ready-made solution
of a specific problem is available. The learner performs random activities until

the goal is reached accidentally. A good example is given by younger children
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Category

Sub-Category

Example
Actions

Actions with
main support

Actions with hand, main, and

push,  punch,

main support flick

Actions with hand, main, main push apart, cut,
support, and primary chop

Actions with hand, main, main push together

support, and secondary

Actions with hand, main,
main support, primary, and
secondary

pushfromatob

Actions without
main support
(These action
have primary,
secondary and
their supports)

primary # secondary and pri-
mary support # secondary sup-
port

pick and place,
break off

primary # secondary and pri-

pick and place,

mary support = secondary sup- break off
port

primary # secondary and pri- puton top
mary = secondary support

primary # secondary and pri- pick apart

mary support = secondary

primary = secondary

pick and place,

break off
Actions with The relation of load and.main Pipetting
load changes from N to T (loading)
and container The relation of load and main Pour, Drop

changes from T to N (unloading)

Table 3.2.: Summary of ontology of actions. Actions are divided into three cat-
egories and further into sub-categories. There can be more than one
action in each sub-category. Taken from Reich, Aein, and Wo6rgot-
ter [98].
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p.s =ms =s.s

(a) Example action with main support: Pushing.
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(b) Example action without main support: Pick and place.
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(c) Example action with load and container: Unloading. The main object m could be, for
example, a glass and the load 1 could be water. The water is unloaded into a flower

pot.

Figure 3.3.: Schematic example actions in the ontology are shown for the three
categories. From each category only one action is shown. The
objects are marked using the following convention: h = hand,
m = main m.s = main support, p = primary, p.s = primary support,
s = secondary, s.s = secondary support, 1 = load, and cont = con-

tainer (taken from Reich, Aein, and Worgotter [98]).
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playing with wooden building blocks. This type of undirected playing teaches to
build small structures, e.g. towers, and thus enable to learn physical properties.
Lastly, humans can learn by insight, which is the Gestalt view point. According
to this theory, solutions to a peculiar problem may appear sudden. Because
this type of learning does not consume much time, it is very important in the
education field. As example may serve a jar full of candy, sitting on a kitchen
counter. A child wants to reach the jar, but is too small. The kid may sit down,
think about the situation and come to the conclusion, that a chair can be used to
reach the candy.

Similar to human beings, in cognitive robotics one of the central goals remains to
recognize, learn, and lastly imitate actions. However, it has been long addressed
that naive observation and raw copying does not suffice to successfully perform
an action by a robot [20]. If a human watches a pushing action, for example a
pen pushed by a hand, he can bootstrap easily the essence of the action: The goal
is to push the pen. This action can be learned and repeated easily. Here, it does
not matter, if the left hand, right hand, or a tool is used, the essence is always
still captured. Even changes in trajectory or velocity can easily be applied. It is
suspected that the mirror-neuron system is involved in this feat; currently, it is

not understood how newborns learn these advanced motor skills [102].

For a robot however, it is even today difficult to tell, if a trajectory or a specific
object is important to reach a certain goal. This level of invariance is learned
by human beings by relating actions with objects and which we call action un-
derstanding. In [7] a unified framework is introduced, which enables robots
to classify, learn, and repeat actions. This framework is called Semantic Event
Chains (SECs). A more detailed view is provided in [6]. Semantic Event Chains

store actions as a series of touching and non-touching events.

One example is given in Fig. 3.4a: Some wooden blocks are distributed on a table.
First, computer vision clusters, segments, and classifies the objects. For visual
purposes these steps were performed manually here. We assume knowledge
about “up” and “down” and say that the table is always below the objects. This
allows to extract a graph representation as shown in Fig. 3.4b. In this graph
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/3\
5\12/4
0

(a) Manually segmented example sceneof  (b) Extracted graph representation of the
blocks on a table. scene.

Figure 3.4.: A visualization of an object graph. Computer vision identifies
and separates objects and their relative structure to each other (left
image). One Semantic Event Graph (right image) results directly
from the structure. Please note that multiple roots for one graph
are allowed.

there is the representation for touching — as seen in the example in the relation
between block 1 and 3 — and not touching — as seen in block 1 and 4. The graph
is undirected, unidirectional, and each edge is of unit length. Thus, the same

graph can be represented in a symmetrical adjacency matrix as follows

1 2 3 4 5
0ofo T T N T T
1|l T 1 N T N N
ol T N 2 T N N
, (3.1)
3N T T 3 N N
4l T N N N 4 N
5\ T N N N N 5

where “T” marks an edge and “N” stands for a not-touching relation. This ma-
trix is called Semantic Event Matrix (SEM). It is symmetric and contains the ob-
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ject identifiers on the diagonal (marked in green). Additionally to touching and
not-touching, there may be an edge named absent “A”, which is used when new
objects come into the scene; for example when a cucumber is being cut into two
pieces, or when an object is uncovered during a scene. Now, each change in
the scene corresponds to a change in the touching relation and therefore results
in a new matrix. A list of SEMs is called a Semantic Event Chain. The camera
frame, in which the change of relation occurs is called a keyframe. SECs are
independent of the time domain and the robotic hardware.

A second (and also artificial) example of a pushing action is shown in Fig. 3.5. A
robot pushes the main object “m” along its support. In the first keyframe, there
is only one touching connection between the object and its support, which is
shown in the graph below the pictogram and also reflected in the SEM below the
graph. Next, the robot begins to touch the main object and holds that connection
for the entire trajectory, i.e. for a longer period of time. The last (third) keyframe
is generated as soon as the robot looses contact to the main object.

A third example of a pick and place action is displayed in Fig. 3.6; it is derived from
areal world experiment. In the first keyframe an apple is on top of a plate and the
robot hand hovers above the table. In the next keyframes it holds the apple, lifts it
off the plate, and places it on the table. This sequence of touching /non-touching
relations is unique for this type of action. If in this scene the robot were to push
the apple on the plate, the graph sequence would look differently. While the first
two keyframes would look like the pick-and-place example, the third keyframe
would be equal to the first: The robot hand hovering in the air. Immediately
one problem becomes apparent: In both examples the first two keyframes are
alike, even though in one example the apple is picked and in another example it
is pushed. Therefore, reliable action recognition is only possible on a very late
stage of action execution.

Another problem surfaces, when thinking about the scratching action: i.e. scratch-
ing with a robot finger on paper. This action is indistinguishable from the push-
ing action on the SEC domain, they only differ in the robot hands trajectory. Both
actions last for three keyframes where the first and last keyframes are identical;
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1 2 3
m (id=1) X m (id=1) R " | m (id=1)
‘ main support (id=0) ‘ ‘ main support (id=o) ‘ ‘ main support (id=o)
robot hand, id=2 robot hand, id=2 robot hand, id=2
|
main, id=1 main, id=1 main, id=1
\ \ \
main support, id=o main support, id=o main support, id=o
0o 1 2 0o 1 2 0o 1 2
0fo T N 0fo T N 0fo T N
1{ T 1 N 1{f T 1 T 1{ T 1 N
2\N N 2 2\N T 2 2\N N 2

Figure 3.5.: An example showing a pushing action in the SEC domain. The
first row shows a pictogram view of the action. The main object,
denoted with “m”, sits on top the “main support” and the robot is
not touching the main object. In the second keyframe the robot
touches the main object and pushes it to the right. The robot’s
trajectory is marked with a dashed line. However, this trajectory
information is not encoded in the SEC. In the third keyframe the
robot hand is removed from the main object. The middle row holds
a graph representation of the touching and not-touching relations;
touching relations are marked with a line. In the bottom row the
graphis represented as SEMs. All three matrices hold a lot of static
information. Therefore, a short form, which removes all static in-
formation, is introduced. For this example one could also write:
“main object — robot hand: N T N”.
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Robot hand

Apple

\
Plate Bottle

e ——
Table

(a) Keyframe 1, this is the very first cam- (b) Graph representation of Keyframe 1.
era frame.

Robot hand
\
Apple
\
Plate Bottle
—_—

Table

apple.

Robot hand
\
Apple
Plate Bottle
—_ —

Table

(e) Keyframe 3, the robot lifts the apple of  (f) Graph representation of Keyframe 3.
the plate.
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Robot hand
\
Plate Apple Bottle
—_
/ Table

(g) Keyframe 4, the apple is placed on the (h) Graph representation of Keyframe 4.
table.

Robot hand
Plate Apple Bottle
—_ —
Table

(i) Keyframe 5, the robot arm lets go of the  (j) Graph representation of Keyframe 5.
object.

Figure 3.6.: Frames from a robot demonstration: The robot picks an apple from
a plate and places it on the table. The corresponding graph repre-
sentation is given on the right side.
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in the second keyframe the robot touches the object. Here, it is important to note
that SECs do not store trajectory or time information. While on the one side this
seems like a disadvantage, it is in fact the biggest strength of the SEC domain.
Trajectory information is hardware dependent and therefore robot specific. Us-
ing SECs one can recognize [5], learn [3, 7], and repeat [3] a very wide range
of actions. Furthermore, actions can be enriched using action-related trajectory

information and thus be used for bootstrap learning [5].

Still, not necessarily all actions a human can perform may be encoded using
SECs. For some actions higher level knowledge is needed. As an example of
these actions, spreading the marmelade may serve as an example. It first depends
on the trajectory’s velocity and second on the size of the bread, which cannot
be described based on SECs alone. To overcome some of these shortcomings of
SECs, in the next chapter pose information is added. This will allow for a frame-
work to execute actions, which generalizes while still being independent of the

time domain.

3.2.3. Enriched Semantic Event Chains

As seen in the last chapter, for robot execution of Semantic Event Chains, some
additional pose information must be included. Therefore, SECs are enriched
by higher level structural information. Each entry of one keyframe matrix now
may not only hold “T”, “N”, or “A”, but also an additional vector containing
the relative pose between the two objects. An example can be seen in Fig. 3.7,
which is similar to the first keyframe in the example Fig. 3.5, but introduces
an additional coordinate system. Following this approach, the Semantic Event
Chain turns into an Enriched Semantic Event Chain (ESEC) as
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Figure 3.7.: This is the same scene as shown in Fig. 3.5 — a robot pushing the
main object along its support. Please note the coordinate system,
which is used when the keyframe matrix on the right is enriched
by relative pose information, see Eqn. (3.2). For clarity only two
dimensions are used here (where y = 0).

0 1 2

0 0 (T, (0, 0, 1)) (N, (0, 0, 1))

1| (T, (0,0, —1)) 1 (N, (-0.71, 0, 0.71)) |, (3-2)
2\ (N, (0,0, —1)) (N, (0.71, 0, —0.71)) 2

where the ID is marked in green. A more general form for the keyframe matrix
K is

Gpo A10 - A0 - ANDO
ap,1
K= (3-3)
Qo,j
QoN - QN N

where
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Qj; =1 (3.4)

and for i # j

iy = (7, Do, *** 5 Dms " 5 Dk)- (3.5)

The scalar entries “T”, “N”, and “A” are replaced by vectors of the form (r, p),,),
where relation r € {T, N, A} and p,, € R% The vector p,, is normalized to unit
length such that |pi,| =1

One might expect that one vector is enough to define the relative pose between
two objects. However, using only one vector often does not catch the shape of
the other object. For example, one might imagine a simple cube, surrounded by
an L-shaped block. Here, at least two vectors are needed to describe the direc-
tions, in which the cube must not be moved in order to not touch the L-shaped
block. In these experiments, as will be shown below, up to k£ = 8 different pose
vectors per relation are allowed. Below, an algorithm for 3d geometrical reason-
ing is devised, which will output these vectors. Parts of this section have been
published in Reich, Aein, and Worgétter [98].

First, please imagine a pick & place action. It is quite difficult to determine the
“correct” rotation of the hand to pick up an object. Additionally, if the scene
is cluttered, it is often hard to tell in which direction the hand should move to
lift the object and to not touch any other objects. Here, a geometrical reasoning
algorithm is needed, which will output this information. As already mentioned,
there is — due to Semantic Event Chains — a good understanding of top and
bottom of the scene. However, the question which objects are left and right of
the main object remain. Most certainly the robot will also encounter objects of
different sizes and shapes, which must be taken into account, too.
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Currently, the vast field of different robot hardware and use cases has shown
that geometric reasoning algorithms do not generalize well. For example, in [55]
the focus lies on computing efficiently the relative position of multiple moving
objects to each other; results are shown only in simulation. In [40] geometric
reasoning is combined with a causal symbolic planner, which in turn is used
in an industrial use case. On a more abstract layer, [76] defines attention space
using low level geometric features. Thresholds define a space around the robot
for human-robot collaboration. In [66, 122, 123] geometric reasoning is used to

infer information about local structures. These are used in medical robots [122,
123].

As of today there is no labeled benchmark for geometric reasoning in real world
scenarios. Thus quantitative evaluation is not very meaningful as one would
need to generate the ground truth first. This, however, is hardware specific,
robot dependent, and does not generalize.

A step-by step explanation is shown in Fig. 3.8. For visualization purposes the
relative position of two cubes to each other is analyzed: one green and one blue.
In a very simple approach, one could reduce the objects to one point in space,
for example its mean or average position. This, however, will ignore object sizes
as well as shapes. Instead, a more general solution, which does not depend on
object size, shape, or distance is sought. First, the distance from each voxel from
one cube to each voxel in the other cube is computed and binned as shown in
Fig. 3.8a and Fig. 3.8b. For two symmetrical objects a Poisson shaped distribu-
tion is to be expected. All voxels, which are below the first maximum and belong
to the green cube are taken into consideration; these points are marked red in
the histogram. The corresponding voxels are marked in Fig. 3.8c in red, too.
Next, the normals of these voxels are calculated. These normals will, as per def-
inition, point away from the green cube and will always point towards the blue
cube. These normals are clustered using a k-means clustering algorithms. While
undersegmentation will be harmful — as not all directions are found — but over-
segmentation is not, a k that is greater than the expected number of directions
is used. It was found heuristically that £ ~ 8 leads to good results for most real-
world examples. Lastly, a half sphere around each resulting cluster is spawned
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for geometric reasoning. Here, green block to all voxels from the blue block
one is interested in which di- are binned. In the next step all voxels of the
rection the green cube can be green block, which are below the maximum
moved without touching the of the histogram (marked in red) are taken
blue one. into account.

The voxels found in Fig. 3.8b  (d) Ahalf sphere around each of the k = 2 result-

are marked in red. Normals of ing vectors is spawned (here: half circle for
these voxels are computed and visualization) and the union of all spheres is
k-means clustering of the nor- computed. The union, above marked in red,
mals is performed (here: k = 2). marks the “forbidden” directions.

Figure 3.8.: Step-by-step explanation of the geometric reasoning algorithm.
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(half circle in 2d as shown in the example in Fig. 3.8d). The union of all spheres
points to the blocked directions, which is marked in red in the example — the
direction where the blue cube is located at. This computation is performed for
each object, which is in a certain radius around the main object. The radius is
hardware dependent and defined by how much space the robot hand needs to
safely grasp or push an object.

One could now devise a library of actions: Each action is combined with a robot-
hardware specific set of trajectories. Parameters, which are needed for execution,
i.e. where an object is located or from what angle it is safe to approach, can be
generated in an automated manner by the here proposed geometric reasoning
algorithm. One such library for the Kuka Lightweight Robot was developed
in collaboration with this work and published in [1]. This library will be used
during the next sections for action execution. However, before one proceeds to
the execution phase, one needs to analyze the structural information of ESECs

in more detail.

3.2.4. Structural information

Semantic Event Chains offer a good understanding of top or bottom and the
now introduced Enriched Semantic Event Chains additionally express “left” and
“right”. This gives valuable information on how to execute an action, but very
little information, whether an action is feasible. In this chapter structural topolo-
gies of object graphs are analyzed. For visualization, we will assume in this
chapter that object segmentation and recognition performs in a perfect manner.
Furthermore, one must assume that the support of an object is always below the
object itself and that the object recognition software provides knowledge about
the supporting objects, e.g. if a table is present, the table is marked as supporting
object. This also marks the constraints of this approach: Hanging structures are

not analyzed here.

As noted in Sec. 3.2.1, an action will always be performed on the main object.

To analyze the structure around the main object, subgraphs are created, where
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Main Main — Primary Primary
Main
Support Support Support

(a) Example: Plate on a ta-  (b) Example: Plate nextto  (c) Example: Apple on a
ble. a cup on a table. plate on a table.

Figure 3.9.: Only these three subgraphs may exist around the main object. Any
graph structure, which contains at least a main object and its sup-
port, can be reduced to a series of these subgraphs. Any subgraph
consists of the main object, its support, and up to one more object.

one subgraph always holds the support and the main object, and up to one other
object, which is called primary object. Remarkably, there are only three possible
topological subgraphs to which all scenes that include the main object can be
reduced. These three possible cases are shown in Fig. 3.9:

1. The main object has only one touching relation. The touched object is a
support (see Fig. 3.9a). A real world example could be a plate lying on a
table.

2. The main object has two touching relations. One is a support, the second
one is another object, which is also touching a support (see Fig. 3.9b). A
real world scene could be a plate and a cup on a table, both are touching

each other.

3. The main object has two touching relations. One is a support, the second
one is another object, which does not touch a support (see Fig. 3.9c). Lastly,
this structure could emerge from a plate with an apple on top; the plate
being the main object here.

Next, a real-world example as shown in Fig. 3.10a is analyzed. The computer
vision system delivers a low level graph structure, but also two pieces of high

level information: which object is the table/the support and what is the main
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object. The supporting object is important, because it is always below all other
objects. The objects are named analogously to Sec. 3.2.1, meaning the manipu-
lated object is called main object. The resulting graph is decomposed into two
subgraphs: one tower-like structure and one structure where the primary is situ-
ated next to the main object. SECs do not offer information about size, and the
bottle O; could be far away of the plate — it is therefore disregarded.

Now, the complex graph structure is broken down to much simpler subgraphs.
It is already well known that the mere existence of objects already suggests
scenes [143]: For example, an image of a plate, cutlery, a roll, and a glass of
juice will more likely show a breakfast scene, than an image of a supermarket.
But an isle inside a supermarket could show the same objects from the breakfast
scene (and probably many more at the same time) in a different context. One
can easily see, that a scene’s affordance heavily depends on discriminative spa-
tial layouts [69, 126]. In the next section, it is analyzed how the subgraphs can

be used as additional features to ESECs to compute a scene’s affordance.

3.2.5. Affordance of Semantic Event Chains

Contrary to intuition, the very simple form of Semantic Event Chains to store
action sequences still holds a lot of information about the structure of the scene.
However, this information mostly regards top-to-bottom structures, while “What
is right?” or “What is left?” is not encoded. This was fixed by enriching SECs
with additional pose information. Then, the resulting graph structure was de-
composed into three different types of subgraphs. Based on this information, we
will look at the scene affordance and combine it with a set of movement prim-
itives as introduced by [1]. Parts of this chapter have been published in Reich,
Aein, and Worgotter [98].

From everyday life we know that different scenes suggest different actions, e.g.
a board, a tomato, and a knife suggests to cut the tomato with the knife. However,
assessing whether or not a robot could actually do this, whether it should /could

do rather something else or whether not much can be done at all given such
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! Apple

Bottle Plate —— Knife

~N

Table

(a) The original scene as viewed by the
robot. A higher level algorithm (or hu-
man) chooses the plate as main object
to manipulate

(b) The extracted graph relations after ob-
ject classification. Plate is recognized
as main object.

O3 Primary
| |
O Main — O, Main , Main — Primary
N/ | -/
Support Support Support

(c) The abstract graph is cut into two subgraphs around the main object, the plate. As
the bottle has no direct connection to the plate, no subgraph is generated. As the
subgraph consists of at least the support and main object, the third object is automat-
ically named primary object, see Sec. 3.2.5. “O” stands for other, not closer defined

objects.

Figure 3.10.: A scene, as recorded by a robot is analyzed and a graph structure
is generated. As main object the plate is chosen by either human
or higher level algorithms. For each object around the main object
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scenes remains a difficult problem. It amounts to estimating the affordance of
certain actions given the context provided by the scene. In this section, scene

affordance based on Semantic Event Chains will be analyzed.

Many approaches have been evaluated to solve this problem. In [105] a complex
network of geometrical relations in the spatial and temporal domains is used.
Via Support Vector Machines (SVMs) topological features and symbolic mean-
ings are learned. In [119] patterns of functional relationships are defined, e.g.
the object “work surface” with the action “manipulate”. Similar, in [68] posture
templates are applied to the input data of each frame. The resulting series of
templates eventually forms a library of actions. The authors use variable-length

Markov models for learning.

Staying closer to the actual motion patterns one can also break down actions
into segments, using — for example — Principal Component Analysis (PCA) as
in [139]. A motion sequence is projected into a state space, which is then mapped
to the first n principal components. In that reduced state space a threshold is
applied and the action is divided into two parts. This results in action sequences,
which usually end at points of high variance, usually time points of importance.
The same is iteratively applied to each subspace until some exit criterion is met.

The resulting segments could then be interpreted as meaningful action parts.

There are also non-vision-based methods available; for example in [79] Radio-
Frequency Identification (RFID) chips are placed on wrist bands and objects to
cluster objects and actions into groups. An interleaved hidden Markov model is
used for learning. Another approach uses GPS-based geo information to learn
actions, which span a longer time frame, e.g. commuting to work and match
those with objects. These methods will not be discussed any further, as the focus

lies on vision here.
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main main §'

Nr Name is main of selected action  is secondary of selected action §

main  main — primary primary | main  main — primary  primary S

VIlV T

main main .

| | =

support support support | support support support =5

S

1 Punch/hit v v v n n n g
2 Flick v v v n n n
3 Poke v v v n n n
4 Chop v v - n n n
5 Turn/bore v v v n n n
6 Cut v - - v v -
7 Scratch v v v n n n
8  Scissor-cut/pinch v - - n n n
9 Squash, squeeze v - - n n n
10 Draw v - - n n n
11 Push v v - n n n
12 Stir - v - n n n
13  Knead v v - n n n
14 Rub/massage v - - n n n
15 Lever (rotate wrist y) v v v n n n
16 Scoop v v - n n n
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17 Take Down v v - n n n
18 Push down v v - n n n
19 Rip off v - - n n n
20 Break off v - - n n n
21 Uncover by pick & place v - - n n n
22 Uncover by pushing v - - n n n
23 Putontop v v - v v -
24 Pushon top v v - v v -
25 Putover v v - v - -
26 Push over v v - v - -
27 Push apart - v - v v v
28 DPush together v - - v v v
29 Pushfromxtoy v - - n n n
30 grasp v v - n n n

Table 3.3.: List of preconditions for atomic actions on the SEC level (action list as shown in [138]). A “v"” denotes
that the structure is allowed, if the action needs to be executed; the actions marked with “-” are not
allowed; “n” is used, where the structure is not applicable as the state of the secondary is of no relevance.
The left three columns show preconditions for the main object. The right columns show the precondi-
tions of the secondary object of an action. Please note that the action’s secondary object turns into the main
object of the subgraph.
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All these approaches are problematic as it remains difficult to smoothly link sen-
sor signals (e.g. from scene analysis) to symbolic action concepts and back to
the signal domain to create trajectories needed by the robot’s actuators. We ask:
What is needed to push (or pick, or cut, etc.) a certain object? Which are the gen-
eral preconditions required for this regardless of the actual objects in the scene?
And — if those hold — are also the specific conditions met to actually do it?

The original ESEC framework did not much care about objects. Here, a layered
structure on top of the Semantic Event Chains is incorporated, which still allows
affordance analysis. This will create an object-action-linked ontology of manip-
ulations, where these object roles define the general preconditions that need to
be met to perform a certain action at all.

In this study the robot selects one object in a scene and asks — like a child during
play — what could I do with it? The framework will then analyze the situation
and suggest possible manipulation actions, thereby addressing the problem of
context dependent affordances. A three-layered system is used: During the first
layer SEC-based relations are evaluated. The second layer solely analyzes the
topological structure of the main object, and the third layer consists of a set of

movement primitives, which are needed to execute the action.

Layer 1: SEC-based object relations at start. The first layer analyzes wheth-
er the first matrix of a Semantic Event Chain is fulfilled. If, and only if these
touching relations are not violated, the action could commence. This is not yet

sufficient to select actions.

Layer 2: Object Topologies. All actions are always performed at the main object
and this will only be possible, if the SEC-preconditions hold and if the main ob-
ject appears in the scene with certain topological connections to other objects. To
analyze these connections, the nearest neighbors of the main object are inspected
as shown in Sec. 3.2.4. Using these subgraphs, one can determine the remain-

ing preconditions. For example, a tower structure around the main object is not
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allowed for a pushing action as the top object could fall down. Now, one can

attach a set of allowed structures to each action.

One action may include more than one object, e.g. push object 1 and object 2 to-
gether, where object 1is treated as main object and object 2 as secondary. Of course,
the preconditions for the secondary object also need checking. A complete list of
all preconditions is shown in Tab. 3.3. The left three columns show precondi-
tions for the main object. As explained above, subgraphs around the main object
are created and each subgraph is checked. The right columns show the same for
the secondary object. Please note that the secondary object of the selected action
becomes the main object of the subgraph.

Layer 3: Movement Primitives. The third layer consists of a set of movement
primitives as described in [1]. These movement primitives are hardware depen-
dent. Two such commands shall be explained in more detail and serve as an
example: move(object, transformation T) and grasp(object). The move(object, trans-
formation T) primitive sends a command to the robot to move to a pose which is
determined by applying transform 7" to the pose of object. The transformation T’
contains a translation vector and rotation matrix. grasp(object) closes the fingers
of the robot hand to securely grasp an object.

For example, when the robot should grasp the main object, the move(main, T)
primitive is performed to move the robot arm end effector to a proper pose for
grasping. The translation vector of transformation 7" will lead the hand to the
object, while the rotation part needs to be set such that the robot approaches the
main object from a proper angle. This is necessary to avoid possible collisions
with other objects near the main. The parameters for the transformation and an

object’s pose are taken from ESEC.

For testing the algorithm on real world robot hardware, the processing pipeline

is as follows:

1. One object is chosen as main. This may happen by user input, or as the
output of another, higher level algorithm. Here, a toddler playing and
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learning about its environment is simulated. This means a main object is

chosen randomly and the question is what one can do with it.

2. The complete list of all considered manipulation actions, of which there
are 30 (see Tab. 3.1), is loaded.

3. For all of them the first layer of the ontology is used to check whether the

main object in this scene fulfills its SEC preconditions.

4. For those which passed the first layer successfully, all possible subgraphs
around main are computed and checked with the second layer of the ontol-

ogy: The topological preconditions by which the list gets further reduced.

5. Now one can use the third layer and extract the required action primitives

from the ontology.

6. This concludes the preparation stage and this information is sent to the

execution engine.

3.2.6. Using affordance for planning

The main goal of this work is to execute, if possible, an action based on input
as cut the apple with the knife. Based on the input a list of actions is to be created,
which ultimately executes the requested action. If, for example, in the task cut
the apple with the knife, the apple is still on the table (and not on the cutting plate),
the apple cannot be cut. The simple command cut the apple is expanded to a list
of atomic actions, which need to be executed first: pick the apple and place it on the
plate.

Furthermore, a list of atomic actions can be condensed to a single recipe: One
example could be make a fruit salad. This recipe could include the atomic actions
pick the apple and place it on the plate, cut the apple, pick and place the apple in the bowl,
and so on. Recipes can be stored and later used to make up even larger tasks:
The recipe make a fruit salad can be included in the recipe prepare dinner.
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To reduce the complexity of preconditions any graph can be decomposed into
three types of subgraphs (Sec. 3.2.4). The preconditions are analyzed analo-
gously to Sec. 3.2.5 as follows: First, subgraphs for the main and, if needed sec-
ondary object are created. One subgraph consists of the main/secondary object
and one of its directly touching neighbors; this means there can be more than
one subgraphs per main object. Also, the subgraph contains at least one support-
ing object (for the sake of simplicity only supporting objects, which are beneath
the main/secondary object, i.e. objects hanging somewhere will not be covered,
are analyzed). The maximum number of touching non-support-objects in a sub-

graph is one, as for each non-support-object a new subgraph is created.

On this reduced level of complexity, the precondition for each action can be
easily determined. For example, a tower structure as shown in Fig. 3.9c is not
allowed for pushing actions. All preconditions are listed in table Tab. 3.3. Please
note that object size, density, shape, and most significantly pose are not consid-
ered on this planning stage. It is easy to see that this might lead to problems in
the execution phase (e.g. “inside” is hard to define). These physical constraints
define the limits of this planning approach.

Again, the ontology as defined in Tab. 3.1 is used. To each atomic action from
the ontology a set of allowed subgraph structures is associated. These subgraphs
make up the preconditions of an action. An illustration of the action push is as
follows (cf. Tab. 3.3):

e Name: push.

¢ Structure 1 for main: No objects are touching the main object. This cor-
responds to Fig. 3.9a. For pushing, this structure is allowed for execution.

¢ Structure 2 for main: Another object around the main object. Is there
another object next to the main object, touching the main object as well as
the support? For pushing, this is allowed (see Fig. 3.9b).

¢ Structure 3 for main: Another object on top of the main object. Is there
another object on top of the main object; this results in a tower like structure

as shown in Fig. 3.9c. For pushing, this is not allowed.
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¢ Structure 1 for secondary: No objects are touching the secondary object.
No secondary object needed for pushing.

¢ Structure 2 for secondary: Another object around the secondary object.
No secondary object needed for pushing.

¢ Structure 3 for secondary: Another object on top of the secondary object.
No secondary object needed for pushing.

As the preconditions are known for each action, it can be checked whether an
action can be executed. Analogous to the preconditions, to each action one post-
condition is defined, i.e. how does the scene look after the action is performed
by the robot. An example, again for the pushing action is as follows:

¢ Name: push.

¢ Structure 1: No objects are touching the primary object. Are no objects
touching the primary object after action execution? For pushing, this is the
expected state.

* Structure 2: Another object around main object. A pushing cannot result
in this state.

¢ Structure 3: Another object on main object. A pushing cannot result in a
tower structure.

All postconditions are listed in Tab. 3.4. This means, one can predict the outcome
of one atomic action on the SEC level. If multiple postconditions are possible, the
predicted outcome will be the structure, that is used as input. Several actions
may lead to the same desired goal state: For example pick and place and push-
ing both may be used to place an object at a different position on top of a table.
Thus, as there is no information beforehand which action would be preferable,
all actions need to be simulated first.

The integration into the action-perception loop of this system is shown in Fig. 3.11.
In a) the perception side is shown: It contains all computer vision steps, which
are described in Sec. 3.2. Output of a) is a SEM of the current scene, a list of
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Nr Name Structure
main main — primary primary
o
|
support support support
cf. Fig. 3.9a cf. Fig. 3.9b cf. Fig. 3.9c
1 Punch/hit v v v
2 Flick v v v
3 Poke v v v
4  Chop v v -
5 Turn/bore v v v
6 Cut - v -
7 Scratch v v v
8  Scissor-cut/pinch v - -
9 Squash, squeeze v - -
10 Draw v - -
11 Push v v -
12 Stir - v -
13 Knead v v -
14 Rub/massage v - -
15 Lever (rotate wrist y) v v v
16 Scoop v v -
17 Take Down v v -
18 Push down v v -
19 Rip off v - -
20 Break off v - -
21 Uncover by pick & place v - -
22 Uncover by pushing v - -
23 Putontop v v -
24 Push on top v v -
25 Putover v v -
26 Push over v v -
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27 Push apart v - -
28 Push together - v -
29 Pushfromxtoy v - -
30 grasp v v -

Table 3.4.: List of postconditions for atomic actions on the SEC level (action
list as shown in [138]). A “v"” denotes that the structure is a possi-
ble outcome, if the action needs to be executed; the actions marked
with “-” are not allowed.

all recognized objects, and labeled point cloud. This data is handed to b) the
SEC planner and the geometrical reasoning node. The SEC planner computes
a sequence of actions, which is transferred to the c) robot hardware. Here an
industrial Kuka Lightweight Robot Arm [18] controlled by Dynamic Movement
Primitives (DMP) as described in [1] is used. The entire software of the system

is realized in ROS [95], which enables a highly modular system structure.

A schematic overview of the planning algorithm is shown in Fig. 3.12. The se-
mantic relations of the current scene, as analyzed by computer vision algorithms,
are used as a) first input. The second input b) is given to the planner in form of
a target action, e.g. pick and place object A on top of object B. As the action has de-
fined preconditions, the goal state can be derived from the current scene in form
of a second SEM. The aim of the planner is now to find a set of ordered actions,

which will transfer the current scene to the goal state using a Semantic Event
Chain.

Both SEMs are handed to the c) simulator. Here, a tree is created. At the very
beginning of the planning stage, it has only one branch, the root, which is the
input of the current scene. In a trivial case the current scene already allows for
the target action, which means all preconditions of the goal state are fulfilled
by the current SEM. In this case “Success” is reported and a plan is handed to
the robot - which consists of doing nothing except the requested action. If not
all preconditions are fulfilled, it is checked in d/lea) which actions are allowed
given the current scene. All allowed actions are appended to the tree as new
leaves. In e) it is analyzed whether these branches contain loops. If so, they are
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e) Human
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Plan ||Status

Y

Plan b) SEC Planner
Status Geometrical Reasoning

¢) Robot Execution

a) Computer Vision

d) Scene SEC Generator

Figure 3.11.: Action perception loop of the presented system. First, d) the
scene is recorded by a) a computer vision system: Here object
segmentation, recognition, tracking, and eventually SEC extrac-
tion takes place. The Semantic Event Chain, as well as a labeled
Point Cloud, is given to the b) SEC planner. The planner creates
a plan based on a goal provided by e) a human being. The plan
is given to c) a robot, which in turn will try to execute it. When
encountering an error, e.g. the touching relations have changed
in an unexpected way, an error signal is returned. The plan is

recomputed or, if no plan is found, the error signal is escalated
to the human.

removed. Also, branches that are too long are terminated. The maximum length
is given to the planner as a user-defined threshold.

The tree is then given again to the c) simulator. The simulator begins at the root
of the tree, which is the current scene. It takes the first branch and simulates
the outcome. If the outcome fulfills all preconditions, this solution is presented
to the user. Otherwise, all afforded actions of the simulated state are again ap-
pended to the current branch as leaves in d). This process is repeated for all
branches. If no branch is left to check, because all have reached the user-defined
threshold length, an error is reported.

This means, if one action cannot be achieved immediately, afforded actions from
the ontology are tried. Iteratively, a tree is created until a solution is found or

an exit criterion is met. Naturally, the here created tree grows large very fast,
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b) Goal state

Output is a tree with Output is a Semantic
only one branch that is Event Matrix defined
the Semantic Event Ma- by the preconditions of
trix of the current scene. the (user) chosen action.

a) Scene

Y

¢) Simulator
Check all branches in simula-
tion. Does one branch meet
the defined precondition?

No branch left

No Yes

d) Expand tree
Check each branch for al-
lowed actions and append Success Error
respective possible actions
as leaves to its branch.

Y Y

e) Terminate
Terminate branches that
contain loops or have
reached a threshold length.

Figure 3.12.: In a) the scene is recorded and the current semantic relations are
extracted. b) The goal state to the planner consists of the precon-
ditions of the goal action that is to be performed. a) and b) are
given to the c) simulator: Here, it is checked whether the precon-
ditions of the goal state are met. If so, the plan may be executed
on the robot. If no branch is left to check and no plan is found,
an error message is sent. Else, the tree is expanded in d). Each
branch is simulated using the postconditions from Tab. 3.4. Then,
all possible actions are appended to the branch as leaves. Lastly,
in e) branches that contain loops or are too long are terminated.
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especially in cluttered scenes with many possible combinations of objects and
actions. To minimize computational time, loop detection is implemented. The
algorithm refers to loops when the same Semantic Event Matrix appears in one
Semantic Event Chain more than once. Second, structural changes need to be
performed to change a relation matrix, i.e. drawing on an object, will not make it
possible to pick and place it later on. As suggested in [85, 135] an additional flag
“changes structure of Semantic Event Chain” is attached to each action. Only if
one of action contains this flag, it is added to the tree. This, again, minimizes

computational complexity.

Next, the solution that is found first is not necessarily the best one and there is
the possibility that several branches lead to the requested goal state. Reporting
all solutions, which have a length below the user-defined threshold, calls for a
measure for the best set of actions. As in Semantic Event Chains only very little
structural information is stored, it is very hard to determine even the approxi-
mate trajectory length a robot has to execute. This makes it near to impossible
to define a fitness function. However, one can look at the total number of ac-
tions that need to be performed and at the total number of changing touching
relations, i.e. the total length of all Semantic Event Chains. This measure comes
close to the execution time and allows for ranking all solutions from “least com-

plex” to “worst” solution.

3.3. Results

3.3.1. 3d geometric reasoning algorithm

Three cluttered kitchen scenarios are used for benchmarking the algorithm; they
are shown in Fig. 3.13. They are recorded using an Asus Xtion Pro camera, which
records RGB as well as depth information. First, in Fig. 3.13a a cup is next to a
box and an apple is on top of a pedestal. In the second scenario, Fig. 3.13b, two
plates are lying around: on on top of a cutting board, the other one on a table.
This plate is filled with an apple and a pedestal, and on top of the pedestal there
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(a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 3.13.: Three different scenes are used to test the algorithm. They resem-
ble cluttered kitchen scenarios as one might expect them in the
real world.

is an empty jar. Lastly, in Fig. 3.13c, a cluttered scene containing a green apple
touching a blue cup, two spoons on a spoon holder, an orange on top of a board,
a knife in a knife holder, and a red pedestal in the background is introduced.
While arguably all three scenarios are not very likely to be found in a kitchen
outside a lab environment, they serve as a good example for cluttered objects,

which are randomly stacked or lying around in close vicinity to each other.

Qualitative results of geometric reasoning are shown for the first scene in Fig. 3.14,
for scene 2 in Fig. 3.15, and for scene 3 in Fig. 3.16. These results show that by pro-
cessing the low level point clouds one can detect the blocked and free directions

of a given object. Thereafter, quantitative results are presented.

However, the quality of the direction computed also depends on the quality of
the recorded point cloud data. For perfect results, points on every side of the
object are needed. In real-world scenarios usually only one side is recorded,
which means, that the computed normals are sometimes off. For example, in
Fig. 3.15a, which shows the spatial relation between an apple and a green plate,
the arrow points downwards, but also to the side. There are no points on the
apple recorded, which could point downwards. The resulting arrow points to
the front. However, the directions to the two objects in front of the apple, the jar
(Fig. 3.15b) and yellow pedestal (Fig. 3.15¢) are found correctly.

Another problem can be seen in Fig. 3.16c showing scene 3. Here, the relations

between the orange spoon and the black spoon in the spoon holder (black spoon
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(a) Apple and red pedestal. The arrow  (b) Cup and box. The arrow points to-
points to the front and bottom. wards the box.

Figure 3.14.: Qualitative results for the geometrical reasoning method, scene
1. Recorded depth points on the objects are marked using white
dots. The algorithm is applied to the object pair apple and red
pedestal, and blue cup and box. For graphical purposes only the
largest cluster is shown with a red arrow. Here, the arrow points
from the apple downwards to the pedestal, which is the “forbid-
den” direction, if you want to lift the apple.

and spoon holder are recognized as one object) form one unexpected cluster
downwards, all others point towards the spoon. Careful examinations show that
there actually are some points belonging to the spoon base below the orange
spoon and that the arrow downward is justified. However, the resulting access
angle is very small.

For a quantitative analysis, ground truth needs to be generated first. For the fol-
lowing analysis, this was done manually. For each object pair in each scene the
access angles are defined. Success is reported, if and only if the 3d-cone of the
found angles is entirely within the cone defined by ground truth. A negative
result is issued when the cones overlap. Instead of a binary outcome, one could
define a percentage of overlap as quality measure. However, false-positive er-
rors are still dangerous in the robot execution part. Each scene is recorded ten
times via an Asus Xtion Pro sensor from different angles, but always front fac-
ing — meaning the recordings are similar to the figures shown above (Fig. 3.14 -
Fig. 3.16). Results are shown in Tab. 3.5, Tab. 3.6, and Tab. 3.7 for scene 1, 2, and
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(a) Apple and green plate. The arrow is
pointing to the front and not to the
plate.

(c) Apple and yellow pedestal. The ar-
row is pointing towards the yellow
pedestal.

(b) Apple and jar. The arrow is pointing
towards the jar.

(d) Plate and board. Here, too, the arrow
points as expected.

Figure 3.15.: Qualitative results for the geometrical reasoning method for
scene 2. For graphical purposes only the largest cluster is shown

with a red arrow.
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(a) Scene 3: Blue cup and apple. The ar-  (b) Scene 3: Orange and board. The arrow
row points towards the apple points slightly to the front and bottom.

(c) Scene 3: Orange spoon and black
spoon. The largest cluster points to-
wards the black spoon, the second
largest cluster points downwards.

Figure 3.16.: Qualitative results for the geometrical reasoning method for a
cluttered scene. For graphical purposes only the largest cluster
is shown with a red arrow. Please note the two red arrows in (c).
Here, the two largest clusters are depicted.
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Table 3.5.: Results for scene 1, see Fig. 3.13a.
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Apple to 100% 100% 0%  100% 100%
Pedestal to 20% 0%  10% 30% 30%
Jar to 100% 0% 0% 100% 100%
Green plate to 0% 0%  100% 0% 0%
Blue plate to 100% 0% 100% 0% 0%
Cutting board to | 100% 100% 100% 100% 100%

3 respectively.

They reflect the problems from the qualitative evaluation. What one first no-
tices, is the almost binary distribution of success and failure: The percentage
computed is either very high or very low. This leads to the conclusion, that
under certain conditions the algorithm works well; however, border cases exist,

where it fails.

First, even though the algorithm was devised to be distance independent and
to offer meaningful data (even if the objects in question are far appart), the sep-
aration distance does play a role in the evaluation. Simple geometry says that

objects farther away will have a smaller access cone in the ground truth data.

Table 3.6.: Results for scene 2, see Fig. 3.13b.

Thus, these objects have a higher score in the above results.
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Blue cup to 100% 100% 100% 100%
Cutting board to | 100% 100% 100% 30%
Pedestal to 100% 100% 100% 100%
Knife to - - - - -
Knife holder to | 100% 100% 100% 100% 100%
Black spoonto | 100% 100% 100% 100% 100%
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Red apple to 0% 0%  80% 100% 100%
Green apple to 0% 0% 0% 0% 0%
Blue cup to 100% 100% 90% 90%  90%
Cutting board to | 100% 100% 100% 100% 100%
Pedestal to 100% 100% 100% 100% 100%
Knife to - - - -
Knife holder to | 100% 100% 100% 100%
Black spoonto | 100% 100% 100% 0%
Orange spoonto | 60% 50% 0% 100%
Spoon holder to | 100% 100% 100% 100%

Table 3.7.: Results for scene 3, see Fig. 3.13c.
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Next, the sensor problem needs to be discussed. As can be seen in the above
visual examples, points can be only recorded on the object’s side that also points
to the camera. If an object is in front of another object (e.g. the red apple is in
front of the red pedestal in scene 3, cf. Fig. 3.13c), but points on the front object
are recorded on the “wrong” side, normals can be off. Furthermore, the points
are often sparsely distributed, for example on the knife in scene 3 (cf. Fig. 3.13¢)
there are only very few points. The here computed normals are often erroneous,

leading again to a low score.

If objects are stacked on top of each other, e.g. the jar and yellow pedestal in
scene 2 (Fig. 3.13b), no points are recorded on the upper side of the bottom object.
Thus, computing the direction usually fails in these cases. Since SECs store struc-
tural information about top and bottom, this does not lead to problems in the
execution phase. Another problem arises, if objects are inside each other. This
can be seen in scene 2 (cf. Fig. 3.13b), here the yellow pedestal is surrounded by
points from the green plate. The normals of the plate point upwards, however
some points of the pedestal are below the center of the plate’s point cloud. By
the definition of this benchmark, this leads to a failed state.

The low percentage of computed successes is a result of the strict criteria of this
benchmark and the low quality of the recordings. If one relaxes the benchmark’s
requirements such that the center of the computed cone must be within the al-
lowed cone of the ground truth, nearly all object pairs in all three scenes have
success rates of 100%. Within this definition all cases, except the aforementioned
stacked ones, can be solved correctly. For robot execution this angle is used,

which allows for correct execution in all scenes.

3.3.2. Scene affordance

For evaluation the same scenes as shown in Fig. 3.13 are taken. First, the effect of

the top two layers of the ontology is analyzed, asking: Given a main object, which
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actions are in principle permitted? Next, the third ontology layer performs geo-
metric reasoning on some examples to show how actual action parametrization

can be performed.

To compute the action affordances, the main, primary, and secondary objects are
randomly selected. As there is a very high number of combinations in even
very simple scenes, two different random combinations for each scene are cho-
sen. This leads to a total of six scenarios. The results of action affordances for
the three scenes are calculated by using the preconditions in the ontology and
by analysis of subgraph structures. They are summarized in Tab. 3.8. Each col-
umn shows the possibility of performing different actions in the ontology for a
specific selection of main, primary, and secondary objects. Here, one can see some
limitations of the SEC domain. Some actions require additional high level object
knowledge (e.g. stirring or levering) and are marked with “n”; for example stir-
ring is always denied as it requires a liquid and a container shaped object (non-
permanent objects pose a big problem for SECs or planning in general). These
properties cannot be measured in the SEC domain. One could argue that also
cutting, kneading, or scooping needs additional high level object knowledge, but

on the touching relations level these preconditions can be ensured.

In this section it is shown that one can perform fast and computational inexpen-
sive checks, whether a graph structure allows for execution of a specific action.
In the next section, this framework is extended to also include postconditions of
an action. The postconditions determine how an action changes a scene, which

will enable a planning algorithm.
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Apple

Cup

Scene 2

/o
/

Main object Apple Yellow pedestal Orange Apple
Primary object Red pedestal Box Yellow pedestal Green plate Board Cup
Secondary object Box Red pedestal Blue plate Blue plate Cup Board
1 punch v v v v v v

2 flick v v v v v v

3 poke v v v v v v

4 chop v - - - v -

5 bore v v v v v v

6 cut v - - - v -

7 scratch v v v v v v

8  scissor-cut v - - - v -

9 squash v v v - v v
10 draw v v v v v v
11 push v v v - v v
12 stir n n n n n n
13 knead v v v - v v
14 rub v v v v v v
15 lever n n n n n n
16  scoop v v v - v v

s30qo.4 w1 Supuuvid U0y



17 take down

18 push down

=B NENEN
=BENENEN

19 rip off - - - -
20 Dbreak off n n n n
uncover by
21 n n n n n n
pick&place
uncover by
22 n n n n n n
pushing
23 puton top v - v - v -
24 push on top - - - - - -
25 putover n n n n n
26 push over n n n n n n
27 grasp v v v - v v
28 push apart - v v - - v
29 push together - - - - - -
30 grasp v v v - v v

601

Table 3.8.: The different scenes are enlarged in Fig. 3.13. Please note that one cannot check the preconditions for
some actions, e.g. stirring, knead which are related to the material of objects. These actions are denoted
with “n”; they require high level object knowledge. A “v"” denotes executability of the action; the
actions “-” were correctly computed as not possible to execute.

sjmsay €€
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3.3.3. Using affordance for planning

In this section the system is evaluated using four different scenarios. The exper-

imental setup is as follows:

1. Push object 1 to object 2. In the first scenario the task is to push the main
object, a red apple, to the secondary object, a yellow pedestal. Another ob-
ject is touching the secondary object.

2. Pick and place from tower structure. The second scenario contains a tower
structure as shown in Fig. 3.9c. The robot needs to pick and place a cutting
board with fruits and needs to empty the board first.

3. Pour liquid. The robot needs to pour a liquid into a bowl. Currently, the
bowl is used for fruits and needs to be emptied first. For the liquid colored

sand is used®.

4. Cut cucumber. The robot has to cut a cucumber on top of a board. The
board is occupied by an apple and needs to be cleaned first.

Qualitative results for execution are shown in Fig. 3.17, Fig. 3.18, Fig. 3.19, and
Fig. 3.21; corresponding to scenarios 1, 2, 3, and 4. In the next sections, we will

review and discuss the findings.

Results for scenario 1

The task given to the robot system is push the red apple to the pedestal. The first
keyframe of the scene is shown in Fig. 3.17a, the respective graph relations are

as follows

'Experiments have shown that using real liquids for robot experiments lead to messy prob-
lems.
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Table Green apple Pedestal Red apple

Table (id = o) 0 T T T
Green apple (id = 1) T 1 T N
Pedestal (id = 2) T T 2 N
Red apple (id = 3) T N N 3

The main object is only contained in one subgraph: one single object on top of the
support (cf. Fig. 3.9a), which is, as shown in Tab. 3.3, allowed for the action push.
Also, the preconditions for the secondary object are met. This is the trivial case,
where the current scene already affords the preconditions of the target action.
This means, that no further planning is required. After executing the action, the
resulting subgraph will consist of one structure containing two touching objects
on top of one support (cf. Fig. 3.9b). Keyframes showing the robot performing
the requested action are listed in Fig. 3.17.

Results for scenario 2

Fig. 3.18 depicts the second scenario. The task given to the planner is to pick and
place the cutting board on top of the plate. From the first keyframe the following
graph is extracted:

Table R.apple G.apple C.board Plate

Table (id = o) 0 N N T T
Red apple (id = 1) N 1 N T N
Green apple (id = 2) N N 2 T N
Cutting board (id = 3) T T T 3 N
Plate (id = 4) T N N N 4
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(c) Keyframe 3. (d) Keyframe 4.

Figure 3.17.: Scenario 1: The red apple is being pushed to the pedestal, which
is touched by another apple.
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where “R. apple” is short for “Red apple”, “G. apple” for “Green apple”, and “C.
board” stands for “Cutting board”. On the semantic level the planner extracts
three subgraphs around the main object: two are tower structures (cf. Fig. 3.9¢)
and not allowed for the pick and place action. The third one is one single ob-
ject on top of the support, which is allowed for pick and place. First, the planner
suggests to remove the red apple via pick and place onto the table. As the re-
quested action is still not allowed, as one tower structure remains, a second pick
and place action of the green apple is added to the list. Eventually, the cutting
board is free of any other objects and can be picked and placed on top of the
plate. The removal sequence of the fruits depends on the object enumeration; in
the shown case the red apple is removed first as it has a lower object identifier.
Successful execution of the plan

1. Pick and place red apple on top of table,

2. Pick and place green apple on top of table, and

3. Pick and place cutting board on top of plate.

is demonstrated in Fig. 3.18.

Results for scenario 3

Scenario 3 holds five objects: a table (id = 0) acts as support, a bowl (id = 1),
an apple (id = 2), and a bottle (id = 3). The fifth object, sauce (id = 4), is at
the beginning hidden inside the bottle and not visible to the computer vision
system. The extracted graph structure as created from keyframe Fig. 3.19a does
therefore not contain sauce at the beginning. It is rather added as soon as it
becomes visible and marked “absent” (A) in prior graphs of the SEC:
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(a) Keyframe 1.

(e) Keyframe 5. (f) Keyframe 6.
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(k) Keyframe 11. (1) Keyframe 13.
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(m) Keyframe 14.

Figure 3.18.: Scenario 2: The robot needs to put a cutting board on top of an-
other plate. For this it needs to empty the board first.

Table Bowl Redapple Bottle Sauce

Table (id = o) 0 T N T A
Bowl (id = 1) T 1 T N A
Red apple (id=2)[ N T 2 N A
Bottle (id = 3) T N N 3 A
Sauce (id = 4) A A A A 4

Furthermore, the planning system does not contain high level knowledge about
the function of objects; meaning awareness that objects may act as containers,
which hold a liquid. As the connection between the action pour and an object
acting as container for the liquid is not present, the command pour the sauce into
the bowl will always fail due to absence of the sauce (which is not an allowed
structure). While a high level planner, for example a human being, would of
course first look into the bottle for sauce to pour, the command given to the
planning system is changed accordingly to pour the bottle into the bowl. On the
planning domain this is now connected to an action, where not the bottle, but

rather the content of the bottle is being poured into the bowl.
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The results for the third scenario are detailed in Fig. 3.19. The task is to pour
liquid from bottle into bowl. The primary object, the bottle, has only one subgraph:
One single object on top of support, which is an allowed structure for pick and
place. The main object, however, the bowl is obstructed with an apple. Thus,
the planner detects a tower structure with the bowl as forbidden element. The
planner suggests to remove the top element, the apple, to afford the requested
action. After the apple is removed, the sauce is being poured into the bowl. The
computed plan is as follows:

1. Pick and place red apple on top of table,

2. Pour bottle into bowl.

Results for scenario 4

The fourth scenario can be seen in Fig. 3.21. The task is to cut the cucumber with

the knife. The extracted graph relations are as follows:

Table Cucumber G.apple C.board Holder Knive

Table 0 T N T T N
Cucumber T 1 N N N
G. apple N N 2 T N N
C. board T N T 3 N N
Holder T N N N 4 T
Knive N N N N T 5

with the graph relations as shown in Fig. 3.20. Executing the action cut the cu-
cumber with the knife results in immediate success. Both objects, cucumber and
knife, are the only objects on top of a support. High level knowledge, i.e. “a cut-

ting board is needed for that” is not included on this low level. Here, the human
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(e) Keyframe 5. (f) Keyframe 6.
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(g) Keyframe 7. (h) Keyframe 8.

(i) Keyframe 9. (j) Keyframe 10.

=
O

(k) Keyframe 11. (1) Keyframe 12.

Figure 3.19.: Scenario 3: The robot needs to pour liquid into a bowl. Currently,
the bowl is used for fruits and needs to be cleaned first.
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Apple Knife

Cutting board Cucumber Knife holder

\/

Figure 3.20.: Graph relation of the first keyframe as shown in Fig. 3.21a. The
main object “Cucumber” is marked in red.

Table

has to interfere and include the action pick and place the cucumber on the cutting

board before cutting. This results in

1. Pick and place the apple on top of the table,
2. Pick and place the cucumber on top of the cutting board, and

3. Cut the cucumber with the knife.

But it turns out that there is another, more practical problem. As shown in
Fig. 3.21 the robot executes the above actions seemingly without any problems.
The preconditions determined for cutting request that after cutting the main ob-
ject must have a second object right next to it, touching it. This should be the
new object coming into existence and which was cut from the cucumber. Even
for human beings it is hard to say whether the last two keyframes, Fig. 3.210
and Fig. 3.21p, contain one or two pieces of cucumber. The computer vision
algorithms fails, too. An error is propagated to the planning algorithm and sub-

sequently the plan is recomputed as:
1. Cut the cucumber with the knife.

While moving the knife into cutting position, it fell out of the robot’s hand and
the robot was not able to grasp it again. Thus, the experiment was aborted by

the user.
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(e) Keyframe 5. (f) Keyframe 6.
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() Keyframe 9.
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(k) Keyframe 11. (1) Keyframe 12.

122



3.3. Results

(q) Keyframe 17.

Figure 3.21.: Scenario 4: The robot needs to cut a cucumber. At the begin-
ning the cutting board is occupied by an apple, which must be
removed first.
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This outlines numerous problems. First, the action cut the cucumber with the knife
was executed incorrectly; meaning the cucumber was to be cut on the table in-
stead of the cutting board. It becomes clear that some actions require high level
knowledge for correct execution. From the list in Tab. 3.1 this includes chop, cut,

draw, stir, lever, and scoop:

* Chop: Chopping should be performed on top of a stable support. This is
the same problem which is mentioned above.

* Cut: See Chop.

* Draw: One can argue about drawing that it needs a certain amount of cre-
ativity or at least information on about what to draw. However, trajectory
planning is also required for all other actions. While these trajectories usu-
ally can be generated from low level information (e.g. move the arm from
point A to B and avoid obstacles while doing this), drawing needs more

detailed instructions. The same could be said about poke, knead, or rub.

¢ Stir: The SEC domain contains no information about object details, for ex-
ample as viscosity. Consequently, there is no information whether an ob-
ject might be stirred.

® Lever: The intent of levering is moving a heavy object. Again, however, no
detailed object information is available (as “Is this object too heavy to 1ift?”).
Moreover, levering needs very precise information on how to use the lever:

this information is not always available to the robot.

® Scoop: See Stir.

In conclusion of the first error one could add a symbolic planner on top of the

SEC planner. This is discussed in the next session.

Second, there is the sensor problem that the cucumber was not detected as being
successfully cut. The here utilized experiment setup is vision based. One could
add other sensors provided by the robot: for example force or the mere fact that
the knife has cut through the cucumber and touched the board. Especially the
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second fact can often be detected on the relation graphs and the generation of
keyframe Fig. 3.21m shows that itindeed was detected here. When to trust vision
and when to trust relation graphs (which also are generated from vision here!)
is another question. As neither has a score measuring uncertainty, this remains

an open question.

Lastly, there is the hardware problem that the robot drops the knife. The cutting
movement rocked the knife such that the robot’s grip became unstable. Even
though the robot’s hand contains force feedback sensors, this was not detected.
After the knife fell down, the robot is not able to grasp it again in a secure manner
or rotate the knife such that the sharp edge points downwards. However, what

one could do in such an event is to define an error routine:

1. Pick and place the knife into the knife holder,

2. Cut the cucumber with the knife,

where the knife is first put in a well defined position where it can be grabbed
again in secure manner. This error routine is hardware- and action-dependent
and does not generalize very well. Again, it holds higher level knowledge about

specific outcomes of specific events.

3.4. Discussion

3.4.1. 3d geometric reasoning algorithm

Semantic Event Chains can be created very efficiently from a 6d movie stream.
Computing the relative pose between two objects is, however, computationally
very expensive and thus should not be computed for every frame. It only needs
to be recomputed, if an object pose changes either by active robot movement or

by external force.
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It is shown that the quality of the results relies on the quality of the recorded
point cloud data. The camera output depends on many different conditions,
which are already discussed above in Sec. 2.3.7. Enforcing a strict definition
such that the computed cone of allowed access angles must always be free of
the object fails in many real-world scenarios. Here, the recorded points of an
object often are on the “wrong” side. Furthermore, smaller objects may have

not enough points to compute normals in a stable manner.

Relaxing these conditions such that only the center of the computed cone must
be free of objects leads to an almost 100% success rate. Only stacked objects fail
in this case. Stacked objects do not pose a problem in the execution phase as this
information is also encoded in SECs.

3.4.2. Scene affordance

In this experiment, structural information is taken into consideration and solves
many problems. However, here two new issues surface: First, physical proper-
ties play an important role in action execution. Arguably, even though on the
SEC level, cutting an apple with a pedestal (cf. Tab. 3.8) is feasible, this certainly
is not possible in a real world experiment. The same is true for many actions,
which change the appearance of an object (i.e. all destroy actions like cutting,
breaking; but also drawing or scooping). Here, high level symbolic knowledge
needs to be included, which offers information on tool usage and object proper-
ties. Second, no objects which are skewed or slanted are included. This means,
objects can in most cases be stacked and do not move due to the support’s slope.
Both issues stem from the reduced view of physical properties in the SEC do-
main. Trying to overcome these problems results in an almost complete physical
simulation and the advantage of Semantic Event Chains would be lost. Instead,
error handling for robot execution is introduced. This is discussed in the next

section.
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3.4.3. Using affordance for planning

One of the main goals of this work is to find a planning mechanism, which does
not rely on high level knowledge, is hardware-agnostic, and yet remains power-
tul enough to solve basic tasks. The Semantic Event Chains provided by Aksoy
et al. [4] are based on hardware-independent relation changes; path and motion
planning is performed on the abstraction layer below the SECs as they are robot-
dependent. The domain used is provided by Worgétter et al. [138], even though
it was found that the ontology used is not complete, e.g. push object A is treated
differently than push object A and B together or push object A and B apart.

The comparison to contemporary high level planning systems becomes difficult.
One can always define a symbol in those planners as one touching relation with
defined pre- and post conditions. In such a case an action execution would only
reflect the transfer from one relation to another. Therefore, each action can be
implemented in such a planner and solved with contemporary domain defini-
tion languages (e.g. STRIPS [43] or PDDL [78]). However, the goal was to find an
additional low level planning layer, which solves problems without high level
knowledge but with basic structural knowledge. It operates on a limited domain,
which imposes several constraints. Yet, the shown action domain proves to be
powerful enough for almost all every day tasks. It is shown that only for very
specific tasks high level knowledge is required, which reduces the complexity
of the high level planning algorithm significantly.

One limitation of this approach is the fixed repository of pre- and postconditions.
In [5] it was shown that action bootstrapping based on SECs is possible. Cur-
rently, it is investigated how affordances and effects of an action can be learned.
This might happen in an environment, where a robot randomly assesses differ-
ent configurations and actions on a given set of objects. In human development
this is, for example, known to happen when a toddler plays in an undirected
manner with building blocks.

Another limitation is mentioned in Sec. 3.3.3, where high level knowledge is im-

portant for correct task execution. Instead of integrating this knowledge into
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f) Human

Plan ||Status

e) Symbolic Planner

Plan ||Status

Plan b) SEC Planner
Status | Geometrical Reasoning

A

¢) Robot Execution
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Figure 3.22.: The structure resembles Fig. 3.11, but includes e) a symbolic plan-

ner. This planner includes high level knowledge as object prop-
erties or functions of objects.

the low level planner (and therefore loose the ability to generalize on almost any
arbitrary action sequence and combination), it can be outsourced to a high level
planner. This is displayed in Fig. 3.22 which resembles Fig. 3.11, but a symbolic
planner is added between the SEC planner and human. In this work, a planner
as described in [2] is used. The human being enters the plan to the symbolic plan-
ner, which in turn analyzes it based on a predefined domain: For example, “a
cutting action must always take place on top of a cutting board” or “only liquids
may be stirred”. The symbolic planner expands the user-defined goal action to
a list of atomic actions, which are handled by the SEC planner. Problems listed
above are circumvented using this method, however, only those issues may be
addressed, which are already included in the symbolic planner. Here, gener-
alization is lost, even though the planning mechanism allows for learning these
preconditions by trial and error. The advantage of this method is that always the
lowest possible layer of planning is used. This reduces the level of complexity
in the high level planner significantly.
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3.4. Discussion

The here shown planning approach is entirely data-driven and bottom up. This
means, it generalizes well, except for those actions, which require high level
knowledge: Here a second planner is needed. This enables robots to plan com-
plex action sequences in unknown — and possibly even unstructured — envi-
ronments. Apart from knowledge about tools, e.g. a knife for cutting, the ap-
proach is even agnostic of object functions, size, or shape. The resulting plan-
ning system bridges the signal-to-symbol gap in a natural way and allows for
rapid planning even in complex environments.
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Conclusion and outlook

In this work, two robot systems are analyzed in detail. Both perform as closed-
loop systems in the robotic action-perception loop. The first system consists of
three robots: two wheeled and one flying agent, which all three share the same
hardware base. Here, the focus lies on the perception side of the loop. The
second system assesses the question of low level planning and action domain.
The action side of the loop is discussed in great detail in this part.

For the first system a low level denoising algorithm is introduced, which is able
to filter RGB images but also generalizes on any dimension. Because of this prop-
erty the filter is used on 1d data on the robots. It is shown that it outperforms
other local methods in quality. Global methods produce better results, but are
computational to expensive to run on embedded hardware. In a second part of
this chapter, the perception side is analyzed in further detail. The robots are
equipped with omnidirectional cameras, which allow for stable feature detec-
tion even when the robot changes poses rapidly. On simulation it is shown that
the developed algorithms outperform current state-of-the-art. The results from
this chapter enable truly autonomous flying robots in indoor, GPS-denied envi-
ronments. This includes, but is not limited to, indoor building inspections after,
for example, earthquakes, underground search-and-rescue in mining disasters,
and systems, which need to have a fall-back setting if the GPS system fails.

Some questions still remain open and should be studied further. First, the qual-
ity of the filter on 2d can still be enhanced greatly. In all methods, a noisy pixel is
detected based on some threshold. Global methods, currently most prominently
deep learning algorithms, search for similar patches in the entire image and try
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to replace the noisy area. This is, however, computationally very expensive. Lo-
cal methods replace noisy pixels based on a predefined local neighborhood. One
could extend the here presented sliding window approach to search for similar
patches around a noisy pixel in a local neighborhood. This combines the quality
deep learning methods bring along with the speed of local methods.

There are many follow-up ideas for the quadcopter project, too:

¢ Evaluation of long term flights via tracking the robot’s position with exter-
nal cameras. For example, high precision Vicon cameras offer sub millime-

ter accuracy at 120 Hz [136].

¢ Currently, at each frame a full pose update is computed. This is, however,
computationally expensive. One could, based on the last pose updates and
based upon the assumption that on small time scales not too much changes,
compute a new pose via VO only, if the IMU indicates a large change.

¢ This method is fully data driven. This bottom-up method has proven to
be useful in an unknown and possibly unstructured environment, e.g. in-
side a house after an earthquake. However, one could use some high level
features, e.g. “door frame might be an opening to adjacent room” for nav-

igation.

* As currently a map is built, there is no loop closure detection. This would
lead to a full Simultaneous Localization and Mapping approach.

¢ Last, one should devise more benchmarks for evaluation against other
methods. However, creating a fully simulated environment is very te-

dious.

Second, the VO’s depth acquisition algorithm needs to be analyzed in more de-
tail. This means, the computed depth of points needs to be compared to ground
truth information, preferable in a real-world measurement and not in simula-
tion. One feature’s error depends on multiple settings: most prominently the
camera’s resolution, how stable the feature can be tracked, and it depends heav-

ily on the error of all other found features (as the pose update is computed from
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all features). How to find a good error measure is currently ongoing research.
An understanding of the error margins can be used to track each feature using
an EKF. Permanent tracking allows for non-static features. Furthermore, if the
robot returns to a previously visited place, it could redetect the features and per-
form loop closure detection. In VO the error accumulates over time and loop
closure would raise performance significantly.

The second system consists of a two-armed robot. The perception side, which is
not analyzed in more detail here, of this loop generates abstract graph relations
of the current scene called SEC. Each node in this graph holds one object, an
edge is added if two objects touch. This graph is enriched with pose relations
between objects, which is computed using a 3d geometric reasoning algorithm.
An ontology of actions shown in [138] is used where each action is connected
to a set of pre- and postconditions, which are also defined on the SEC domain.
It is first shown that one can compute a scene’s action affordance based on the
preconditions. Next, it is shown that the postconditions allow for simulation of
an action in the SEC domain. This enables complex planning, which is entirely
data-driven and bottom up: Meaning unknown or unstructured environments
do not pose a problem and the signal-to-symbol can be bridged in a natural oc-
curring way. However, it is also shown that for some actions high level knowl-
edge is required, e.g. the action cutting a tomato with a knife should not happen
directly on a table — but instead on a cutting board. To circumvent this problem,
a high level planning architecture is included, which parses human input based

on predefined symbols and preconditions.

Here, too, a few open research questions remain. First, can a robot learn the
set of postconditions? Based on Semantic Event Chain this means to reliably
predict the changes that occur in subgraphs while performing an action. If so,
the next question that arises is to also learn the preconditions of an action. The
robot needs to decide when an action can be performed free of error. However,
both of these ongoing research questions implicitly expect a previously known
repository of actions.

In a very last step one could devise an experiment, in which a robot has nei-
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ther knowledge about pre- and postconditions, but also only very limited knowl-
edge about actions. Only random movements towards objects and grasping are
known. As input to the learning algorithm ESEC only are given. Given the time,
the robot would soon find out about the effect of, for example, pick & place, push-
ing, and letting objects drop. The average time to explore an action could be used
as a measure for difficulty or complexity. One would expect that actions that per-
form structural changes can be learned faster than others, for example, scratch or
draw. This could hint at the fact that some actions are learned by trial-and-error

during undirected play, while others are found by imitation.
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Appendices

A.1. Edge-Preserving Filter in the continuous domain

Let f(x) define the smoothed input image, h(x) the output image, ¢(¢, =) mea-
sures the geometric closeness defined by ¢ around x), and s(f(¢), f(x)) the
photometric similarity. As the filter targets color images, bold letters refer vec-
tors, which also may contain RGB values. In this section | - | also refers to per-
element-multiplication instead of vector multiplication. In this approach, noise
needs to be detected first based on the user-defined parameter 7. If noise is de-
tected, it should be removed, and in case of a color edge, the edge should be

preserved. Therefore, a mean value m(x) is defined as:

m(@) = k@) [ [ Qe )de
k) = [ [ ele e (A1)

and a distance function
d(f (z), m(x)) = |f (z) —m(z)|, (A.2)

which results in the pixelwise distance. The mean value m(x) now holds the
average color value inside a spatial neighborhood of « and d holds the color
distance from the pixel to the average m(x). If the spatial neighborhood holds
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only small scaled noise, a low pixelwise distance d is expected, as well as a low

average pixelwise distance in the spatial neighborhood e¢:

pla) = &' [[ " ate, m) e 2
i) =[] e o (A3)

Therefore, the decision can be based on a threshold T as

fffooof(C)C(Ca m)'S(C7 iL‘)dC pST
h(z) = kg'() - [[7, () e o) s(¢ @)d¢ p<rd>7
JI2. () -e(¢, ®)d¢ else,

where kp, is the respective normalization. d can now be used to distinguish large

scale noise. A 2d step function

C(C,w){(l) a:l—aSCS:chb’ "
else

holding the conditions a,b,e € R220|a, + b = e with a fixed e is used. This
generates a rectangle of the size e around x. As this definition is not feasible
in the continuous domain as it generates a non-finite number of subwindows
to calculate, in the discrete case however every pixel is checked and updated
according to its neighborhood e. As a measure for similarity a squared distance
is used

s((¢), @) = (1 — d(f(z), m(z)))*|m(z)] (A.5)

and the Euclidean norm. In case of noise detection the output is moved to the
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A.1. Edge-Preserving Filter in the continuous domain

mean. The maximum size of the step can be adjusted via the threshold .
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