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Summary

The germline cells are of fundamental importance for all animals as they have the

ability to give rise to the next generation. Their precursors, the primordial germ cells

(PGCs), are determined very early during animal development. To form the embryonic

gonad they must come together with the somatic gonadal precursor cells (SGPs) which

are often specified at a different location within the embryo. This requires the PGCs to

actively migrate towards the SGPs.

In Drosophila, the PGCs arise from a specialized cytoplasm, the germplasm, which is

deposited at the posterior pole of the oocyte during oogenesis. They form earlier than

the somatic epithelium and are kept outside the embryo until gastrulation. Later they

start their active migration towards the SGPs in the lateral mesoderm. If they fail to

reach their destination they are removed by programmed cell death.

In this thesis two gene functions have been investigated which are required for the early

separation of the PGCs from the somatic epithelium. If these gene functions are absent

the PGCs migrate through the epithelium prematurely. Both genes have overlapping

mutant phenotypes but function using completely different mechanisms.

echinoid (ed, CG12676) codes for a homophilic cell adhesion molecule which is

expressed in the somatic epithelial cells but not in the PGCs during early embryogenesis.

If Ed is removed from the soma the PGCs start to traverse the underlying epithelium

already shortly after cellularization. Since this phenotype can also be observed when ed

is ectopically expressed within the PGCs in addition to its expression in the epithelial

cells the untimed transmigration is not due to Ed functioning as a normal cell adhesion

factor. This rather demonstrates that the interface between ed expressing and ed non-

expressing cells is crucial to avoid untimed migration of the PGCs. These interfaces and

their biological relevance have been studied before in other contexts like dorsal closure.

It was shown that the differential expression of ed is sufficient to trigger the formation

of an actomyosin cable within the ed expressing cells at the interface. Here, the

existence of a similar mechanism could also be demonstrated: In wild type embryos an

apical meshwork of actomyosin is present in the epithelial cells beneath the PGCs. This
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actomyosin network is weakened or disrupted if Ed is removed from the epithelium or

ectopically expressed within the PGCs. This result strongly supports a model in which

actomyosin-mediated tension within the epithelial sheet is essential to inhibit the

transmigration of PGCs. Such a regulatory network would represent the first example a

system in which the tension within 2D-epithelia inhibits the invasion of overlying cells.

However, the molecular mechanisms by which the differential expression of Ed triggers

the formation of the apical actomyosin meshwork and its interaction with the well

characterized E-cadherin actin meshwork at the adherence junctions remain to be

investigated.

lost (CG14648) codes for highly conserved putative RNA binding protein. It is has been

found in ribonucleoprotein particles (RNPs) like the splicosome or sponge bodies.

Furthermore, together with Rump (a homolog of hnRNP that binds nos RNA) it has a

function in the accumulation of the germ plasm during late oogenesis. lost RNA and

protein are maternally provided and ubiquitously present in the early embryo. In

embryos which lack the maternal lost contribution PGCs are migrating through the

epithelium prematurely. This is likely to be caused by a reduction of transcriptional

activity found only in the somatic nuclei beneath the PGCs resulting in cellularization

defects at the posterior pole. Furthermore, the PGCs, which are transcriptionally silent

in wild type embryos, show ectopic transcriptional activity in maternal lost mutant

embryos.

All observed lost mutant phenotypes are specific for the posterior pole or the PGCs

although Lost is ubiquitously present in the early embryo. Since Lost is a putative RNA

binding protein and has been found in RNPs the localization pattern of several germ

plasm RNAs was analyzed in maternal lost mutant embryos. It was confirmed that osk

RNA, unlike other germ plasm RNAs, is not actively transported into the PGCs but

largely remains in the soma in wild type embryos. In maternal lost mutants, however,

the amount of osk RNA within the PGCs is increased fourfold. This mislocalization is

sufficient to cause ectopic transcriptional activity within the PGCs and an increased rate

of PGC transmigration as embryos which have osk RNA ectopically loaded into the

PGCs by fusing the nos 3’UTR to the osk ORF show the same phenotypes. The amount

or localization of Osk protein, however, does not differ from wild type neither in
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maternal lost mutants nor in embryos having osk RNA ectopically brought into the

PGCs. So an increased transport of osk RNA into PGCs or its reduced degradation in

the PGCs is sufficient to cause posterior cellularization defects with transmigrating

PGCs and an increased number of transcriptionally active PGCs.

A candidate downstream effector could be pgc, another germ plasm component, which

codes for a peptide responsible for the transcriptional silencing of the PGCs. pgc RNA

partially inhabits the same RNP as osk RNA in early embryos.

The lost mutant phenotype combines features from pgc LOF (active transcription in

PGCs) and pgc GOF (less transcription in posterior somatic nuclei, cellularization

defects and transmigrating PGCs). This could be explained by an impaired pgc RNA

transport into the PGCs leading to more pgc in the soma and less in the PGCs; yet

quantitative analyzes did not detect a change in pgc RNA localization nor a clear

temporal or spatial difference in translation in maternal lost mutants after PGC

formation. However, the average relative pgc FISH staining intensity in the center of the

germ plasm before PGC formation is increased in maternal lost mutants compared to

wild type embryos. This could reflect a change in the pgc RNP structure which affects

the accessibility of pgc RNA for the FISH probe.

Furthermore, the results show that the expression of a transgene consisting of the GFP

ORF and the pgc 3’UTR is sufficient to cause lost-like phenotypes. Taken together, the

loss of lost activity, an increased amount of osk RNA within the PGCs and maternal

overexpression of the pgc 3’UTR all lead to the same phenotypes: Ectopic

transcriptional activity of PGCs and premature transmigration of PGCs through the

underlying epithelium presumably caused by a reduced transcriptional activity of the

posterior somatic cells.

Although the mechanisms regulating the gene activity remain unknown, it is tempting to

speculate that Lost protein is a part of the osk-pgc RNP affecting osk RNA localization

or its stabilization in the PGCs and by that indirectly regulating the activity of Pgc

protein. However, more experiments are needed to identify the mechanisms and factors

which govern the complex temporal and spatial regulation of the germline determinants.
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Introduction

The development of higher animals is an intriguing process as the whole body with its

high number of different tissues originates from a single cell, the fertilized egg or

zygote. Early in development this cell divides rapidly giving rise to a high number of

cells which successively become more specialized and eventually form differentiated

tissues and organs. The generation of different developmental fates depends on external

cues like signaling molecules/morphogens or can be generated by asymmetrical cell

divisions resulting in the uneven distribution of cytoplasmic determinants. Once

different cell fates are established, it is essential to prevent these cell populations from

mixing, which is usually achieved through differential expression of cell adhesion

molecules. So both the establishment and the maintenance of different cell populations

are of fundamental importance for all multicellular animals.

The germline cells are the only cells which have the ability to form eggs or sperm and

thus give rise to the next generation. This makes them fundamentally different from the

somatic cells. The germ line is specified early during development as primordial germ

cells (PGCs). In contrast to the somatic cells, which differentiate into all kinds of cell

types and mostly stop dividing, the germline cells must not differentiate to keep their

pluripotency and their ability to divide. The establishment of the germline cells and

their separation from the differentiating somatic surroundings is therefore crucial for all

animals.

Germ plasm biogenesis – oogenesis

The ovaries of Drosophila are the largest organ in the adult females. They consist of

about 18 ovarioles, each of which can be seen as an “assembly line” for the production

of oocytes (Fig. 1 A) (Bastock and Johnston 2008). Its anterior tip, the germarium,

harbors the germline stem cells (GSCs) as well as the somatic follicle stem cells (Bate
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and Martinez-Arias 1993). The GSCs divide asymmetrically giving rise to another GSC

and a daughter cell which starts to differentiate (Spradling et al. 1997). The daughter

cell divides four times with incomplete cytokinesis which results in a 16-cell cyst. The

cyst cells are connected to each other via cytoplasmic bridges termed ring canals. One

of the 16 cells will become the oocyte; the other ones will develop into polyploid nurse

cells (Roth and Lynch 2009). This 16-cell cyst is then ensheathed by somatic follicle

cells to form the egg chamber with the developing oocyte located at its posterior side

(Roth and Lynch 2009). The nurse cells produce large amounts of proteins, RNAs,

ribosomes and mitochondria which are transported along the microtubules through the

ring canals into the oocyte. Later the nurse cells empty their content into the oocyte in a

process called nurse cell dumping and undergo programmed cell death (Wheatley et al.

1995, Nezis et al. 2000).

The mature oocyte contains localized RNAs which define the body axis of the future

embryo. At the anterior pole of the oocyte bicoid RNA is anchored (St Johnston et al.

1989) while the posterior pole holds the germ plasm where the polar granules are

positioned (Mahowald 1962). These are large ribonucleoprotein particles (RNPs) which

contain abdominal patterning information as well as the germ line determinants

(Thomson et al. 2008). The assembly of the germ plasm, which is directed by Oskar

(Osk), has been extensively studied during oogenesis (Mahowald 2001, Lehmann 2016).

During stages 1-6 of oogenesis osk RNA is transcribed in the nurse cells and then

transported into the oocyte via Dynein along microtubules (Fig. 1 B) (Ephrussi et al.

1991, Jambor et al. 2014). At stage 7 a signal from the posterior follicle cells triggers a

reorganization of the microtubules within the oocyte, which now nucleate from the

cortex (Roth et al. 1995, Shulman et al. 2000). Their +-ends point in all directions with

a slight bias towards posterior (Khuc Trong et al. 2015). osk RNA, which is now

transported along the microtubules via Kinesin, accumulates at the posterior pole (Fig. 1

C) (Zimyanin et al. 2008). Recently it was shown that Actin related protein 1 (Arp1),

which is a subunit of the dynactin transport complex, plays a role in promoting the

growth of the microtubules into the posterior cortex by preventing their collapse

(Nieuwburg et al. 2017). Dynactin is transported along the microtubules via Kinesin-1

to the posterior pole where it accumulates and stabilizes the microtubules which allows



7

Kinesin-1 to transport more Dynactin. This positive feedback loop ensures the

microtubules reach the posterior cortex. If this function of Arp1 is prohibited by a point

mutation osk RNA is not properly transported and the amount of osk RNA which is

anchored at the posterior cortex is severely reduced (Nieuwburg et al. 2017).

There are two isoforms of Osk, both of which are only translated at the posterior cortex

(Markussen et al. 1995, Vanzo et al. 2007). The long isoform of Osk promotes the

anchoring of the germ plasm creating a positive feedback loop (Tanaka et al. 2011). The

short isoform of Osk then acts as a master regulator of posterior and germ plasm

development (Lehmann 2016) by recruiting Vasa and Tudor (Breitwieser et al. 1996,

Anne 2010). Tudor acts as a scaffold for germ plasm assembly and recruits Aubergine

(Arkov et al. 2006, Liu et al. 2010). Germ plasm RNAs like nos, gcl and pgc are then

trapped and anchored to the posterior pole (Forrest and Gavis 2003, Sinsimer et al. 2013)

where they form large, posterior localized RNPs, which contain the germ line

determinants, termed germ granules. At stage 10 of oogenesis the microtubules align in

Figure 1: The germ plasm is deposited at the posterior pole during oogenesis. (A) Schematic
representation of an ovariole with different stages of oogenesis. The anterior tip, the germarium (left),
contains the stem cells. The right image is the mature egg. (B) Stage 5 egg chamber showing the
microtubule network (green) connecting the nurse cells with the oocyte. The oocyte is at the posterior
pole of the egg chamber (right). (C) After initial polarization the microtubules (green) in the oocyte
nucleate from the anterior and lateral cortex (yellow) and extend inwards with a slight bias towards
posterior. This leads to the accumulation of osk RNA (blue) at the posterior pole. (D) Nurse cell
dumping and ooplasmic streaming. The nurse cells (left) empty their content into the oocyte and
undergo programmed cell death. Ooplasmic streaming ensures the content reaches the posterior pole.
nos RNA (pink) and other germ plasm components are trapped at the posterior pole and continue to
accumulate. (adapted from Lehmann (2016))
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the cortex of the oocyte (Dahlgaard et al. 2007). The nurse cells undergo programmed

cell death and dump their content into the oocyte (Wheatley et al. 1995, Nezis et al.

2000). Ooplasmic streaming, driven by Kinesin, mixes the ooplasm with the contents of

the nurse cells (Fig. 1 D) (Serbus et al. 2005). During this phase osk RNA as well as

other germ plasm components continue to accumulate at the posterior pole of the oocyte

(Snee et al. 2007). Lost, in a complex with Rump, has been shown to play a role in this

process (Sinsimer et al. 2011).

The mechanisms which restrict the translation of osk RNA to the posterior pole of the

developing oocyte have been extensively studied (see Lehmann (2016) for a review).

During its transport from the nurse cells into the oocyte osk RNA is, among others,

bound to Staufen (Stau) and Bruno (Bru) (St Johnston et al. 1991, Kim-Ha et al. 1995).

Stau has been shown to be important for the transport of osk RNA along microtubules

as well as for its translation when it reaches the posterior pole (Micklem et al. 2000).

Bru represses osk RNA translation during the transport in a complex with Cup, a 5'-

UTR cap binding protein (Nakamura et al. 2004). It has been suggested that the

concentration of Bru relative to local osk RNA levels is crucial for repressing the

translation. During transport, when osk RNA levels are low, Bru binds to osk RNA and

blocks translation. In contrast, at the posterior pole of the oocyte, where osk RNA

molecules accumulate, Bru levels are not high enough to suppress translation of osk

resulting in the localized production of Osk protein (Kanke and Macdonald 2015). It has

been shown that the poly-A binding protein Orb and Poly-A-Binding Protein (PABP)

are required for osk translation indicating that polyadenylation is an essential step

(Castagnetti and Ephrussi 2003, Vazquez-Pianzola et al. 2011).

Besides coding for Osk protein it has been suggested that osk RNA has additional

functions during oogenesis. In ovaries from osk RNA null mutant mothers oogenesis

halts during early stages, before Osk protein is normally produced (Jenny et al. 2006).

Since this phenotype can be rescued by reducing the levels of Bru protein (Kanke et al.

2015) it has been suggested that in wild type ovaries osk RNA is required for reducing

the levels of unbound Bru which would otherwise interfere with the translation of genes

required for early oogenesis.
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Early embryogenesis

Drosophila embryogenesis starts with a rapid series of synchronous mitotic divisions

without cytokinesis. During the ninth division cycle the majority of the nuclei migrate

to the periphery of the embryo where they form a monolayer in the cortex (Rabinowitz

1941). The nuclei that reach the posterior pole, where the germ plasm resides, will bud

out and form the primordial germ cells (PGCs) or pole cells (Rabinowitz 1941). The

somatic nuclei continue to divide synchronously while the PGCs divide asynchronously

and at a lower rate (Rabinowitz 1941).

After a total of 14 cycles of mitotic divisions the somatic nuclei stop dividing and

cellularization starts (Fig. 2 A). During this process the plasma membrane grows in

between the somatic nuclei, encloses them and simultaneously forms the about 6000

cells of the embryonic epithelium (Mazumdar and Mazumdar 2002). After the last

mitotic division the centrosomes locate apically of the nuclei with the microtubules

extending their minus-ends basally towards the interior of the embryo forming a basket-

like structure around the nuclei (Warn and Warn 1986). slow-as-molasses (slam) RNA

and protein accumulate in the cortex between the nuclei (Lecuit et al. 2002). slam is

maternally contributed as well as zygotically transcribed (Acharya et al. 2013). The

localization of slam RNA and protein depend on each other. Slam protein then recruits

DRhoGEF2 which in turn locally activates the small GTPase Rho1 (Wenzl et al. 2010).

This leads to the local recruitment and stabilization of actomyosin at the site of

membrane invagination (Padash Barmchi et al. 2005). The invagination front, termed

furrow canal (FC), moves inwards separating the nuclei (Fig. 2 B). slam RNA and

protein stay associated with the FC during the invagination (Acharya et al. 2013).

During cellularization the apical-basal polarity of the forming epithelium is established

which involves several highly conserved protein complexes (Laprise and Tepass 2011).

The Drosophila PAR-3 homolog Bazooka (Baz) is a key player in establishing the

apical domain of a cell (Tepass 2012). Very early during cellularization Baz is recruited

to the apicolateral plasma membrane via microtubules and the apical actin cytoskeleton

(Fig. 2 B) (Harris and Peifer 2005). There it serves as a platform for the recruitment of

other apical domain proteins like atypical Protein Kinase C (aPKC), Crumbs (Crb) and
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Stardust (Std) (Tepass 1996, Harris and Peifer 2004, Harris and Peifer 2005). A

complex of Discs Large (Dlg), Scribbled (Scrib) and Lethal Giant Larvae (Lgl), which

is recruited to the lateral membrane domain, prevents the apical domain from expanding

basally (Bilder et al. 2000, Bilder and Perrimon 2000).

Cell adhesion is also established during cellularization with two distinct types of

adherens junctions (AJ) forming: The transient basal adherens junctions form close to

the FC and follow the invagination (Fig. 2 B) (Mazumdar and Mazumdar 2002). Spot

Figure 1: Cell polarity and adhesion are established during cellularization. (A) Schematic
representation of cellularization. The somatic nuclei (grey) sit beneath the plasma membrane. Then
the furrow canal (FC) forms, the membrane invaginates in between the nuclei. After passing the nuclei
the contractile actomyosin at the furrow canal constricts pinching off individual cells. (B) Establishing
cell adhesion. Bazooka (Baz) defines the subapical membrane domain. Just apical of the FC an
adherens junction (AJ) forms, which stays basal at the FC. While the invagination proceeds spot
adherens junctions (SAJ) form in the lateral membrane, which then condense in the subapical domain,
while the basal AJ is disassembled. When cellularization is complete apical adherens junctions (AAJ)
have formed. (adapted from Laprise and Tepass (2011))
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adherens junctions form in the lateral membrane and then get recruited to the subapical

domain by Baz (McGill et al. 2009). There they start clustering together and slowly

form a mature zonula adherens during gastrulation. AJ contain DE-Cadherin (Shotgun,

Shg), a highly conserved homophilic cell adhesion molecule, β-Catenin (Armadillo,

Arm) and α-Catenin, which link the intracellular domain of Shg to the actin

cytoskeleton (Tepass et al. 2001). Once the FC passes the nuclei the invagination

accelerates and eventually the actomyosin in the FC constricts and pinches off

individual cells (Fig. 2 B) (Mazumdar and Mazumdar 2002).

When cellularization is complete gastrulation starts (reviewed by Leptin (1995)). At the

ventral side of the embryo the mesoderm starts to invaginate. The germ band extension

(GBE) shifts the posterior midgut (PMG) anlage dorsal and anterior. The PGCs form a

loose aggregation on top of the PMG epithelium and are passively carried along (Starz-

Gaiano and Lehmann 2001). During this process the length of the germ band increases

dramatically which is driven by cell intercalation and oriented cell division (Irvine and

Wieschaus 1994, da Silva and Vincent 2007). The PMG epithelium then invaginates

forming the posterior gut pocket while the germ band continues to extend. Like the

mesoderm invagination the PMG invagination is initiated by the apical constriction of

the respective epithelial cells (Leptin 1995). The apical constriction is driven by

contractile actomyosin located in the apical and subapical cortex of the cells. All these

morphogenetic tissue movements must take place without compromising epithelial

integrity. This requires extensive and coordinated rearrangement of AJs and their link to

the cortical actin cytoskeleton (Rauzi et al. 2015)

PGC development

The PGCs are the first individual cells that form during embryogenesis (Fig. 3 A).

During their formation the germ plasm is actively transported into the budding PGCs

along astral microtubules (Lerit and Gavis 2011). As soon as a PGC is formed it ceases

actively transcribing genes (Seydoux and Dunn 1997) while the somatic nuclei stay
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transcriptionally active. This global transcriptional silencing in the PGCs is mediated by

Polar granule component (Pgc), a 71 amino acid peptide. Pgc binds to positive

Transcription Elongation Factor b (pTEFb) thereby preventing it from phosphorylating

the carboxyterminal domain (CTD) of RNA polymerase II which is required for active

transcription (Hanyu-Nakamura et al. 2008). pgc RNA is part of the maternally

contributed germ plasm and is only translated after the PGC formation to ensure that

transcription is only shut down in the PGCs and not in the somatic nuclei (Rangan et al.

2009).

At the beginning of gastrulation the PGCs are passively shifted towards dorsal and

anterior with the elongating germ band (Fig. 3 B). Eventually they are internalized and

reside inside the gut pocket (Starz-Gaiano and Lehmann 2001) forming a tight cluster

(Kunwar et al. 2008). At embryonic stage 9, when the germ band is fully extended, the

PGCs lose their contact to each other and start to migrate out of the gut pocket as

individual cells (Fig. 3 C) (Jaglarz and Howard 1995). At the same time the PGCs

become transcriptionally active (Zalokar 1976). Two independent events have been

shown to be essential for the transmigration. First, Trapped-in-endoderm-1 (Tre1), a G-

protein coupled receptor with unknown ligand, needs to be active in the PGCs. In

maternal tre1 mutants the PGCs fail to disperse and stay clustered in the gut pocket

(Kunwar et al. 2003, Kunwar et al. 2008). Second, the PMG epithelium needs to

undergo an epithelial-to-mesenchymal transition (EMT) during which the PMG cells

lose their apical-basal polarity and weaken their cell adhesion (Campbell et al. 2011).

This allows the PGCs to migrate through the tissue (Seifert and Lehmann 2012). The

EMT is independent of PGC development and required for the formation of the

digestive tract (Reuter et al. 1993). The anterior midgut and the PMG cells both

temporarily adopt mesenchymal behavior, migrate towards the center of the embryo and

fuse to form the midgut (Reuter et al. 1993). In the PMG the EMT is triggered by the

GATA factor Serpent (Srp), which represses the transcription of crb (Campbell et al.

2011). This leads to the loss of apical-basal polarity and to the delocalization of AJ

proteins like Shg, which weakens the cell adhesion (Campbell et al. 2011). If the EMT

in the PMG epithelium is blocked by mutating srp or huckebein (hkb), the PGCs fail to

leave the gut pocket (Jaglarz and Howard 1994, Campbell et al. 2011). Furthermore,
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Seifert and Lehmann (2012) showed

that weakening the cell adhesion in

the PMG independent of the EMT

triggered by srp by reducing the

amount of Crb is sufficient for the

PGCs to leave the gut pocket. This

demonstrates that the weakening or

disruption of epithelial integrity either

by EMT or other means allows the

PGCs to transmigrate.

Once the PGCs have left the gut

pocket they migrate dorsally towards

the trunk mesoderm where they split

into two lateral groups (Fig. 3 D)

(Sonnenblick 1941). Then they

migrate along the lateral mesoderm

towards posterior where they

associate with the somatic gonadal

precursor (SGP) cells and eventually

form the embryonic gonad (Fig. 3 E-

H) (Starz-Gaiano and Lehmann 2001).

The splitting and directed migration is

regulated by to date unidentified

repulsive and attractive cues.

Figure 2: Schematic representation of the migration of the PGCs. (A) The PGCs (yellow) are
formed at the posterior pole. (B) During gastrulation the midgut (red) and the mesoderm primordia
(green) are formed. The PGCs are carried passively on the posterior midgut (PMG) and get
internalized in the gut pocket. (C,D) The PGCs actively migrate out of the gut pocket and towards the
mesoderm. (E) The PGCs migrate into the lateral mesoderm and (F,G) align with the somatic gonadal
precursor (SGP) cells. (H) During gonad coalescence the PGCs increase their cell adhesion, undergo
compaction and are surrounded by the SGP. (adapted from Starz-Gaiano and Lehmann (2001))
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However, several genes have been shown to play a role in producing or receiving the

guidance cues (Santos and Lehmann 2004a).

Wunen (Wun) and Wunen-2 (Wun2) are transmembrane proteins with a lipid phosphate

phosphatase enzymatic activity located in the extracellular domain of the protein (Sigal

et al. 2005). wun2 is maternally provided to the PGCs while wun is mostly zygotically

expressed in a pattern which provides guidance cues to the migrating PGCs. It is

thought that Wun cleaves an unidentified, ubiquitously present phospholipid which acts

as an attractant to the PGCs. The presence of Wun therefore reduces the concentration

of that phospholipid which provides a negative guidance cue to the PGCs (Starz-Gaiano

et al. 2001). wun is expressed in the ventral cells of the PMG epithelium at embryonic

stages 9 and 10. when the PGCs leave the gut pocket. This negative cue directs PGCs

migration towards dorsal into the trunk mesoderm. When in contact with the mesoderm

the PGCs split into two lateral groups caused by wun expression in the central nervous

system (CNS). This wun expression is believed to cause again a negative guidance cue

along the midline by the degradation of the unknown phospholipid resulting in a

gradient of this lipid which ensures an equal distribution of PGCs into two lateral

clusters (Renault et al. 2010).

Besides providing guidance cues a phospholipid acts as a survival factor for the PGCs.

It has been suggested the PGCs sense the unknown phospholipid via Wun2 which upon

cleavage internalizes the lipid (Renault et al. 2004). wun2 RNA is maternally provided

to the PGCs (Hanyu-Nakamura et al. 2004). The more wun2 RNA a particular PGC

receives the higher is its chance for survival (Slaidina and Lehmann 2017). In embryos

overexpressing wun in the mesoderm the PGCs die rapidly presumably because the

phospholipid is cleaved by the ectopic Wun (Starz-Gaiano et al. 2001).

The migration of the PGCs towards the SGPs is regulated by columbus (clb), which

codes for a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR). clb is initially

expressed throughout the mesoderm and later restricted to the SGPs, where it provides

attractive guidance cues for the PGCs (Van Doren et al. 1998a). Overexpressing clb is

sufficient to guide the PGCs into tissues they normally avoid (Van Doren et al. 1998a).
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HMGCoAR catalyzes the rate limiting step of the mevalonate pathway which

synthesizes isoprenoids and sterols (Goldstein and Brown 1990). It has been shown that

mutating different enzymes of the mevalonate pathway, including the β-subunit of the

geranyl-geranyl transferase type I (βGGTI), results in similar PGC migration

phenotypes, which points at a geranylized peptide which acts as a chemoattractant for

the PGCs (Santos and Lehmann 2004b).

During germ band retraction the PGCs associate with the SGPs, which are located in the

lateral mesoderm of parasegments 10 to 13 (Fig. 3 F,G) (Boyle and DiNardo 1995). The

SGP cluster in parasegment 13 contributes to the gonad only in male embryos and is

specified in a different way (DeFalco et al. 2003). During embryonic stage 14 the PGCs

switch from a motile to a non-motile state and get surrounded by the SGPs (Fig. 3 H).

This process, termed gonad coalescence, requires changes in cell adhesion between the

PGCs as well as between the PGCs and somatic SGPs. The zinc transporter Fear of

Intimacy (Foi) regulates the expression of Shg transcriptionally and post-

transcriptionally, which is essential for this process (Jenkins et al. 2003, Van Doren et

al. 2003, Mathews et al. 2006).

Echinoid

echinoid (ed) codes for a transmembrane homophilic cell adhesion molecule. The

extracellular part of Ed contains 7 Immunoglobulin (Ig) superfamily domains and a

fibronectin superfamily domain while the intracellular domain lacks any conserved

protein domains (Vogel et al. 2003).

ed RNA and protein are maternally provided to the embryo. It is expressed throughout

embryogenesis in all epidermal tissues. ed RNA can be found in the embryonic

epidermis, the developing trachea and in the midgut epithelium.
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Early studies focused on the role of Ed in modulating different signaling pathways. It

was shown that Ed antagonizes the EGFR pathway during the development of the

photoreceptors (Bai et al. 2001, Rawlins et al. 2003b). Ed was also shown to modulate

Notch signaling during neurogenesis and thorax bristle patterning (Escudero et al. 2003,

Rawlins et al. 2003a).

In maternal-zygotic ed mutant embryos the trachea show a convoluted phenotype with

reduced intersegmental spacing. Tracheal fusion is also affected by an increased number

of fusion events and atypical branching. Although being a cell adhesion molecule loss

of Ed in the trachea has no effect on the function of septate junctions (Laplante et al.

2010).

More insight into the function of Ed in epithelial morphogenesis came from the analysis

of ed mutant cell clones in the larval wing disc epithelium (Wei et al. 2005) and the

follicular epithelium of the egg chamber (Laplante and Nilson 2006). Wei et al. (2005)

could show that Ed is a part of the apical adherens junctions (AAJ) and can bind to

Canoe (Cno), which interacts with the actin cytoskeleton. They also describe the border

between ed mutant cell clones and ed expressing surrounding tissue lacking any AJ

components but instead being rich in actin filaments. Laplante and Nilson (2006)

confirmed the findings of Wei et al. (2005) and focused more on the interface between

ed-expressing and ed-non expressing cell populations. They describe an intercellular

actomyosin cable forming at this interface. It was also shown that a similar actomyosin

cable plays a role during the development of the dorsal appendages of the egg shell and

during dorsal closure in mid-embryogenesis.

A more detailed analysis of the function of Ed during dorsal closure was later published

by the same group (Laplante and Nilson 2011). It was shown that the differential

expression of ed (it is present in the lateral epidermis but not in the amnioserosa) creates

an interface which defines the leading edge. An intercellular contractile actomyosin

cable is formed at the interface which provides physical force that contributes to dorsal

closure. If the interface between ed-expressing and ed-non expressing cells is eliminated
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(by either removing Ed from the epidermis or by ectopically expressing Ed in the

amnioserosa) the actomyosin cable fails to form which leads to defects in dorsal closure.

During early embryogenesis the epidermal cells express ed while the PGCs at the

posterior pole do not contain Ed. This creates another the interface between ed-

expressing and ed-non expressing cells. In this thesis, the functional relevance of this

differential expression of ed regarding the development of the PGCs is investigated.

Lost

The gene lost (CG14648) was first identified in a misexpression screen in muscle

apodeme precursor cells where it caused aberrant muscle morphology and ectopic

midline crossing of muscle fibers (Molitor 2002). This phenotype lead to further

investigations of lost by Molitor (2002) and later Graf (2007).

The gene lost is located on the third chromosome at cytogenetic band 3R:82A6. It

consists of 6 exons and codes for two isoforms, which result from using an alternative

promotor (Molitor 2002). The mutant allele lost2 was created by an imprecise jump-out

of a P-element positioned in the first intron which resulted in a 1466 base pair (bp)

deletion removing the entire second and a part of the third exon. The deletion also

causes a frame shift which leads to an early termination (Molitor 2002).

lost mRNA can be found throughout Drosophila development, from the embryo to the

adult fly (Molitor 2002). Besides the very early embryo (0-2h) and the adult female,

which contain more lost RNA, the level of transcription is roughly constant (Gelbart

and Emmert 2010).

Lost protein contains an N-terminal 5-formyltetrahydrofolate cyclo-ligase (5-FTHF cyc-

lig) family domain and a C-terminal RNA recognition motif (RRM) superfamily

domain, which belongs to the RNA recognition motif in vertebrate
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methenyltetrahydrofolate synthetase domain-containing (MTHFSD) protein subfamily

(Marchler-Bauer et al. 2017). Although 5-FTHF cyclo-ligase enzymes play an

important role in metabolism proteins containing a 5-FTHF cyc-lig domain and an

RRM-MTHFSD domain are predicted to be RNA binding proteins (Marchler-Bauer et

al. 2017). In fact, the human protein Methenyltetrahydrofolate synthetase domain

containing (MTHFSD), which has a similar protein domain architecture as Drosophila

Lost (Geer et al. 2002), has been shown to bind RNA in HeLa cells and in human

embryonic kidney cells (Baltz et al. 2012, Castello et al. 2012).

Several sources point towards a function of Lost protein in RNA regulation or

metabolism. An abstract describes a role of Lost for the localization of gurken mRNA

during oogenesis (Lin et al. 2007), however, this result was never published in a peer-

reviewed publication. The same holds true for a personal communication in Dienstbier

et al. (2009) which states that Lost binds RNA unspecifically. Furthermore, Lost protein

has been found in the splicosome by mass spectroscopy analysis (Herold et al. 2009),

where it physically interacts with Zn72D, a splicing factor for maleless (mle)

(Worringer et al. 2009). Also Lost has been described as a sponge body component

during oogenesis, where it can be co-immunoprecipitated with Trailer-hitch (Tral) if

RNA is present (Snee and Macdonald 2009).

Sinsimer et al. (2011) published a role of Lost for the accumulation of germ plasm

during oogenesis and nanos RNA (nos) localization in early embryos. They could show

that in 50% of the embryos from lost mutant mothers nos RNA localization is slightly

more diffuse than in wild type embryos (Sinsimer et al. 2011). Furthermore, they found

that Lost interacts with the RNA binding protein Rumpelstiltskin (Rump) during

oogenesis. Rump is a homolog of hnRNP and directly binds nos RNA (Jain and Gavis

2008). Using rump-lost double mutants, they showed that during late oogenesis the

amount of germ plasm at the posterior pole of the oocyte is dramatically increased, a

process which requires Lost and Rump. The initial assembly of the germ plasm during

mid-oogenesis is not affected by the loss of Rump and Lost. Without the late phase of

germ plasm accumulation the embryos show abdominal patterning defects and a

reduced number of PGCs (Sinsimer et al. 2011). However, since all their results
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regarding the germ plasm only apply to rump-lost double mutants it is not clear which

role Lost is playing in this process.

A genome-wide yeast-two-hybrid protein interaction screen identified six putative

interaction partners for Lost (Giot et al. 2003). One of these putative interactors is Actin

related protein 1 (Arp1), whose interaction with Lost was verified by co-

immunoprecipitation (Graf 2007). Arp1 is part of the Dynactin transport complex,

which among others also contains Dynein Heavy Chain (Dhc) (Allan 1996). Lost

partially colocalizes with Dhc in early embryos (Graf 2007) which suggests that Lost

binds to Dynactin in vivo.

Molitor (2002) and Graf (2007) also showed that the PGCs in embryos from lost mutant

mothers migrate through the PMG epithelium prematurely. A detailed quantitative

analysis of this premature transmigration phenotype revealed that the number of

transmigrating PGCs is considerably increased during embryonic stages 6 and 7 (Hertel

2011). Furthermore, it was shown that besides physically interacting with Arp1 Lost

also interacts genetically with Arp1 and Dhc: In embryos from mothers heterozygous

for lost and arp1 or dhc, respectively, the number of transmigrating PGCs is as high as

in embryos from homozygous lost mutant mothers (Hertel 2011). This indicates a

functional relevance for the interaction of Lost with the Dynactin complex during early

embryogenesis.

In this thesis, the mutant phenotype of lost during early embryogenesis is analyzed in

detail. The localization patterns of several germ plasm RNAs are visualized and

quantified to gain insight into the mechanisms leading to the observed phenotypes. A

possible function of Lost for indirectly regulating the translation of germ plasm RNAs

via altering the properties of RNPs is discussed as a working model.
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Results

Echinoid

The echinoid project was started as a lab rotation and bachelor thesis project by Ninett

Wolfram under the practical supervision by the author of this dissertation. Details about

the contributions can be found in the Methods section.

ed is expressed in the soma, but not in the PGCs

In order to verify the published ed

expression during embryogenesis

RNA in-situ hybridization (RISH)

and antibody staining using a specific

antiserum against the Ed protein were

performed. ed mRNA is maternally

provided and present in the whole

blastoderm embryo except for the

germline (Fig. 4 A) (Kumar et al.

2011). Later it is enriched in the

developing tracheal system, the

segment boundaries and the epithelia

of the digestive system (data not

shown, (Kumar et al. 2011)). Figure 4

B shows the posterior pole of a stage

5 wild type embryo stained with an

antibody against Ed and Dapi to label

the nuclei. The Ed protein is apically

enriched in the forming epithelium

Figure 4: Ed is found the embryonic
epithelium but not in the PGCs. (A) RNA in-
situ hybridization staining with antisense-ed of a
wild type stage 5 embryo. Anterior is left, dorsal
is up. ed RNA is present ubiquitously in the
soma, but not in the PGCs at the posterior pole.
(B) Confocal section of a stage 5 wild type
embryo stained for Ed (green) and Dapi (blue).
Ed protein (B') is located in the apicolateral
membrane in the soma and is absent from the
PGCs.
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during cellularization and absent from the PGCs (Fig. 4 B’). The apical localization

shown here confirms published results that show that Ed can be detected in all

epidermal tissues where it is co-localizing with apical adherence junction (AAJ)

components like DE-cadherin (Wei et al. 2005).

Based on the absence of ed mRNA and Ed protein from the PGCs an interface between

ed expressing (somatic epithelium) and ed non-expressing (PGCs) cells is formed

during cellularization. It has been suggested that such an interface could have a function

in cell sorting where Ed activity is required to prevent the two cell populations from

mixing (Lecuit 2005). However, such a function was only shown for cell populations of

the same type, like ed-expressing and non-expressing follicle cells and eye discs cells

when ed mutant clones were generated (Wei et al. 2005, Laplante and Nilson 2006).

This raises the question whether the boundary between two independent tissues (the ed-

positive epithelium and the ed-negative PGCs) is also required for the formation of a

barrier that inhibits the mixing of these two cell types.

Differential expression of ed prevents the PGCs from transmigrating

To address this hypothesis the interface between ed-expressing and ed-non expressing

tissues needs to be removed by either removing ed expression from the epithelium or by

ectopically expressing ed within the PGCs. In order to achieve the former embryos from

ed mutant mothers need to be analyzed because ed RNA is maternally provided to the

egg. Since ed is an essential gene it is thus not possible to get homozygous mutant adult

flies the germline clone (GLC) technique (Chou et al. 1993) has to be used to generate

embryos without maternal ed mRNA contribution (hereafter referred to as edF72 GLC

embryos). An alternative way to obtain embryos devoid of maternal ed transcripts is the

use of RNAi expressed exclusively in the germline of mothers ((Staller et al. 2013) see

methods for details). To evaluate whether the PGCs mix with the underlying epithelium

fixed embryos have been stained with an antibody against Vasa to label the PGCs and

with an antibody which detects tyrosine-phosphorylated proteins (PY20) to label the

somatic epithelium. Figure 5 shows maximum intensity projections of 3-6 confocal

sections of posterior poles of wild type embryos (Fig. 5 A,D,G), edF72 GLC embryos
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(Fig. 5 B,E,H) and maternal ed RNAi embryos (Fig. 5 C,F,I) at stages 5, 6 and 7 of

embryonic development.

In wild type embryos the PGCs remain at the site of their formation during

cellularization (Fig. 5 A). With the onset of gastrulation they are shifted dorsally with

the elongating germ band (Fig. 5 D) and then get internalized with the forming posterior

midgut (PMG) pocket from stage 7 onward (Fig. 5 G). During these processes the PGCs

remain outside the underlying somatic PMG epithelium.  In edF72 GLC embryos,

however, the PGCs start to intermingle with the epithelium during the late phases of

cellularization (Fig. 5 B). This becomes more apparent during stages 6 and 7 when more

PGCs migrate in between the somatic epithelial cells (Fig. 5 E,H). The same phenotype

is found in maternal ed RNAi embryos (Fig. 5 C,F,I).

Figure 5: In embryos which lack maternal Ed the PGCs mix with the underlying epithelium.
(A-I) Maximum intensity projections of 2-5 confocal sections of posterior poles of embryos stained
for Vasa (green) and phospho-tyrosine (red). (A,D,G) PGCs in wild type embryos reside at the
posterior pole and are then passively moved into the forming PMG pocket. Only very few PGCs
migrate through the epithelium. In embryos devoid of maternal Ed, edF72 GLC (B,E,H) and maternal
ed RNAi (C,F,I) the PGCs migrate through the epithelium. (J) Quantification of the cell mixing
phenotype. The columns show the average relative number of transmigrating PGCs during stages 6
and 7 of the three genotypes. Error bars show SEM. *** p<0.001 Mann-Whitney-U test
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The relative number of PGCs which migrate in between the epithelium can be used

measure the strength of the phenotype (Fig 5 J). This reveals that in wild type embryos

on average 10% of the PGCs transmigrate during stages 6 and 7. In edF72 GLC or in

maternal ed RNAi embryos 34% or 33% of the PGCs transmigrate, respectively. These

changes are statistically significant when compared to wild type (Mann-Whitney-U test,

*** p<0.001).

This result shows that in embryos without a maternal ed mRNA contribution within the

germline PGCs start to mix with the underlying epithelial cells. The effect is seen in

edF72 GLC embryos as well as in maternal ed RNAi embryos. However, the result

obtained from ed mutants does not allow to distinguish if the observed cell mixing is

caused by a cell autonomous function of Ed within the somatic epithelium or if it is

caused by the loss of the interface between ed-expressing and ed non-expressing cells.

To investigate if the loss of the interface between ed-expressing and ed non-expressing

cells is the cause of the observed cell mixing a second independent way of removing the

interface is to ectopically express ed within the PGCs in addition to its normal

expression in the somatic epithelium. In order to achieve this a transgene was

constructed consisting of the ORF of ed fused to the 3'-UTR of the nanos (nos) gene.

The 3'-UTR of nos targets the transgenic RNA to the germ plasm at the posterior pole of

the embryo and into the PGCs (Van Doren et al. 1998b). The expression of the

transgenic construct is controlled by the UAS-Gal4 system (Rorth 1998). Embryos from

mothers which carry the transgene as well as a Gal4 driver which is active during

oogenesis (hereafter referred to as ed-nos-3'-UTR embryos) will contain the transgenic

fusion mRNA.

An ed RISH staining of ed-nos-3'-UTR embryos shows besides the endogenous

maternal ed mRNA a high concentration of ed mRNA at the posterior pole before PGC

formation (Fig. 6 A) which is then transported into the PGCs (Fig. 6 B). Figure 6 C

shows a confocal section of the posterior pole of a stage 5 ed-nos-3'-UTR embryo

stained with an antibody against Ed, an antibody against Vasa to label the PGCs and

with Dapi to show the nuclei. Ed protein is detected apically in the somatic epithelium

as well as within the PGCs (Fig. 6 C'). This confirms that the transgenic ed RNA is

indeed transported into the PGCs and translated and by that removing the interface
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between ed-expressing and ed non-expressing cells without affecting the expression of

ed within the somatic cells.

Figure 6: Ectopic expression of ed within the PGCs leads to PGCs mixing with the
epithelium. (A,B) RNA in-situ hybridization against ed of ed-nos-3'UTR embryos. Anterior is left,
dorsal is up. The probe detects the endogenous ed mRNA present ubiquitously in the embryo and the
transgenic ed RNA which (A) localizes to the germ plasm and (B) is later transported into the PGCs.
(C) Confocal section of a stage 5 ed-nos-3'UTR embryo stained for Ed (green), Vasa (red) and Dapi
(blue). (C') Endogenous Ed protein is located in the apicolateral membrane in the soma. Ed protein
from the transgene can be detected in the PGCs. (D-I) Maximum intensity projections of 2-5 confocal
sections of posterior poles of embryos stained for Vasa (green) and phospho-tyrosine (red). (G-I) In
ed-nos-3'UTR embryos the PGCs mix with the underlying epithelium during stages 6 and 7. (D-F)
Wild type embryos are shown for comparison. (J) Quantification of the cell mixing phenotype. The
columns show the average relative number of transmigrating PGCs during stages 6 and 7 of the wild
type (ctrl) and ed-nos-3'-UTR embryos. Error bars show SEM. *** p<0.001 Mann-Whitney-U test.
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To evaluate whether the PGCs mix with the underlying epithelium fixed ed-nos-3'-UTR

embryos are stained with an antibody against Vasa to label the PGCs and with the PY20

antibody to label the somatic epithelium. Figure 6 G-H shows maximum intensity

projections of 3-6 confocal sections of posterior poles of ed-nos-3'-UTR embryos at

stages 5, 6 and 7 of embryonic development. Wild type embryos of the same

developmental stage are shown for comparison (Fig. 6 D-F). As in embryos devoid of

maternal ed contribution (see Fig. 5) the PGCs in ed-nos-3'-UTR embryos mix with the

underlying epithelial cells during stages 6 and 7 (Fig. 6 H,I). A quantification of the

phenotype reveals that in ed-nos-3'-UTR embryos on average 34% of the PGCs migrate

in between the epithelial cells (Fig. 6 J). This differs significantly from wild type, where

only 10% of the PGCs show that behavior (Mann-Whitney-U test, *** p<0.001).

This demonstrates that removing the interface between ed-expressing and ed non-

expressing cells by ectopically expressing ed within the PGCs leads to exactly the same

phenotype than removing ed entirely from the early embryo: The PGCs mix with the

underlying epithelial cells.

Ed is removed from the PMG during transmigration at stage 10

The analysis of ed mutants reveals an essential role for Ed protein in the PMG

epithelium in early embryos (see Fig. 5) to prevent the migration of PGCs in between

the PMG cells. At stage 9 of embryonic development, however, the PGCs start to

actively traverse the midgut epithelium to migrate towards the lateral mesoderm

(Jaglarz and Howard 1995). Therefore, either ed expression is lost in the PMG from

stage 10 onwards or PGC start expression of ed before they traverse the PMG.

To address this issue fixed wild type embryos have been stained with an antibody

against Ed, an antibody against Vasa to label the PGCs and with Dapi to show the

nuclei. Figure 7 A shows a mid-sagittal confocal section of a stage 9 embryo before the

start of the active migration of the PGCs. Figure 7 B shows an optical cross section

through the very same confocal stack at the position indicated by the dotted line in

Figure 7 A. The dotted line in Figure 7 B indicates the position of the sagittal section
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shown in Figure 7 A. Figure 7 C and

D show similar sections of a stage 10

embryo when most of the PGCs have

left the gut pocket.

Before the active PGC migration Ed

can be detected apically in the

epithelial cells of the PMG (Fig. 7

A,B) which surround the cluster of

PGCs. When the PGCs are migrating

out of the gut pocket almost no Ed

signal is present in the region of the

epithelium where the PGCs are

traversing, only a weak Ed signal is

found in very few PMG cells (Fig. 7

C,D).

This shows that during stages 9 and

10 of embryonic development, when

the PGCs actively migrate out of the

gut pocket, Ed is locally removed

from PMG epithelium allowing the

PGCs to migrate in between the cells.

Cellularization is not affected

by Ed

Ed is part of the AAJ complex and indirectly linked to the actin cytoskeleton, but it is

not essential for epithelial integrity (Wei et al. 2005). It could, however, have a function

during cellularization, when the epithelium is established. To address the possibility

fixed wild type, maternal ed RNAi and ed-nos-3'-UTR embryos have been stained with

antibodies against Discs-large (Dlg), Slam, Vasa and with Dapi. Dlg marks the lateral

Figure 7: Ed is removed from the PMG
cells when the PGCs transmigrate. (A-D)
Wild type embryos stained for Ed (green), Vasa
(red) and Dapi (blue). (A) Mid-sagittal and (B)
cross section of a stage 9 embryo before the start
of the active migration of the PGCs. The dotted
lines indicate the position of the respective
section. Ed (green) can be detected apically in
the epithelial cells of the PMG. (C) Mid-sagittal
and (D) cross section of a stage 10 embryo when
the PGCs transmigrate. The dotted lines indicate
the position of the respective section. Only a
weak Ed signal is detected in a few PMG cells.
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membrane domain (Bilder et al. 2000), Slam is part of the furrow canal (Wenzl et al.

2010), Vasa labels the PGCs and Dapi the nuclei.

Figure 8 shows confocal sections of posterior poles of embryos of the three genotypes

mentioned above during cellularization. In all the genotypes Slam localizes to the

furrow canal, there is no difference between wild type, maternal ed RNAi or ed-nos-3'-

UTR (Fig. 8 A',B',C' respectively). Also no difference is found in the localization of Dlg.

It always localizes to the lateral membranes of the somatic cells irrespective if Ed

protein is present or not. These experiments show that neither the loss of Ed nor its

ectopic presence within the PGCs cause cellularization defects, which strongly supports

a model that the premature transmigration of PGCs is not indirectly caused by an

abnormal cellularization of the PMG.

Figure 8: Cellularization is not disturbed in ed RNAi and ed-nos-UTR embryos. (A-C)
Confocal sections of posterior poles of stage 5 embryos stained for Slam (magenta), Dlg (green), Vasa
(red) and Dapi (blue). Posterior is up. (A) Wild type. Slam (A') localized to the furrow canal. Dlg (A'')
localizes to lateral membranes. No difference in the localization of Slam or Dlg are found in maternal
ed RNAi embryos (B) or ed-nos-3'-UTR embryos (C).
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An apical actomyosin network depends on the differential expression of Ed

It has been shown that an intercellular contractile actomyosin cable forms in ed-

expressing cells at the interface between ed-expressing and ed non-expressing cells and

that this cable prevents the cell populations from mixing (Wei et al. 2005). It is

therefore possible that Ed prevents the PGCs from mixing with the underlying epithelial

cells via a similar mechanism. To visualize the actin network fixed embryos have been

devitellinized by hand and then stained with Phalloidin to label the actin cytoskeleton,

with an anti-Vasa antibody to label the PGCs and with Dapi to show the nuclei. Figure 9

shows confocal sections of posterior poles of wild type, maternal ed RNAi and ed-nos-

3'-UTR embryos (Fig. 9 A,B,C respectively). In wild type embryos (Fig. 9 A) a weak

actin signal can be detected in the cell membranes of the epithelium where it is slightly

enriched in the apicolateral membrane domains (Fig. 9 A'). The strong actin signal at

Figure 9: The apical actin network is disrupted in fixed ed RNAi and ed-nos-UTR embryos.
(A-C) Confocal sections posterior poles of fixed embryos stained for actin (green), Vasa (red) and

Dapi (blue). (A) Wild type embryos show an apical network of actin in the epithelial cells beneath the

PGCs (A'). The apical actin network is weakened or disrupted underneath the PGCs in maternal ed

RNAi embryos (B) or ed-nos-3'-UTR embryos (C).
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the basal side of some epithelial cells represents remnants of the furrow canal. Beneath

the PGCs a strong actin signal can be seen in the apical cortex of the epithelium (Fig. 9

A'). In maternal ed RNAi or ed-nos-3'-UTR embryos, without an interface between ed-

expressing and ed non-expressing cells, this apical actin network is disrupted or

severely weakened at this position (Fig. 9 B' and C'). In contrast, the other features of

the actin pattern are indistinguishable from wild type embryos.

Figure 10: The apical actin network is disrupted in live ed RNAi and ed-nos-UTR embryos.
(A-C) Confocal sections of posterior poles of live embryos expressing Utr-GFP (magenta) and Sqh-

Ch (green). Utr-GFP labels acting, Sqh-Ch labels myosin-II. In all genotypes Utr-GFP is enriched in

the PGCs, but also present in the epithelium (A''-C''). Sqh-Ch is mainly found apically in the epithelial

cells (A'-C'). In control embryos the apical Sqh-Ch signal is uniformly strong at the posterior pole (A')

while in maternal ed RNAI embryos and ed-nos-3'-UTR embryos this apical Sqh-Ch is disrupted or

severely weakened (B', C').
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Since the actin cytoskeleton is a highly dynamic structure fixing the samples before

analyzing can lead to artifacts. In order to exclude fixation artifacts, live embryos were

analyzed which requires the use of transgenic fly lines in which the proteins of interest

are tagged with a fluorophore. Here, a transgenic line was used in which the females

express Utrophin-eGFP (Utr-GFP) and Spaghetti-Squash-Cherry (Sqh-Ch) in the

germline (see methods for details (Rauzi et al. 2010)). Utrophin is a mammalian protein

that binds actin fibers and Sqh is the regulatory light chain of myosin-II. Thereby the

Utr-GFP signal shows actin filaments while the Sqh-Ch signal highlights contractile

actomyosin cables (Rauzi et al. 2010).

Figure 10 shows confocal sections of posterior poles of live stage 6 embryos from

mothers either expressing Utr-GFP and Sqh-Ch (ctrl), Utr-GFP, Sqh-Ch and ed RNAi

(maternal ed RNAi) or Utr-GFP, Sqh-Ch and ed-nos-3'-UTR (ed-nos-3'UTR). In all

genotypes Utr-GFP is enriched in the PGCs but can also be detected apically in the

somatic cells (Fig. 10 A'',B'',C'', respectively). Sqh-Ch, in contrast, is highly enriched in

the apical cortex of the epithelial cells and barely present in the PGCs (Fig. 10 A',B', C'

respectively). In control embryos the apical Sqh-Ch signal is uniformly strong at the

posterior pole, also beneath the PGCs (Fig. 10 A') while in embryos which lack an

interface between ed-expressing and ed non-expressing cells this apical Sqh-Ch signal is

disrupted or severely weakened (Fig. 10 B' and C').

These findings show that wild type embryos have an apical actomyosin network in the

epithelial cells beneath the PGCs and that this actomyosin network is disturbed in the

absence of the interface between ed-expressing and ed non-expressing cells.

Taken together, here, it was shown that Ed, a homophilic cell adhesion molecule, is

expressed in the somatic epithelial cells but not in the PGCs during early embryogenesis.

If Ed is removed from the soma the PGCs start to traverse the underlying epithelium

already shortly after cellularization. Since this phenotype can also be observed when ed

is ectopically expressed within the PGCs in addition to its expression in the epithelial

cells the untimed transmigration is not due to Ed functioning as a normal cell adhesion

factor. This rather demonstrates that the interface between ed-expressing and ed non-

expressing cells is crucial to avoid untimed migration of the PGCs.



32

These interfaces and their biological relevance have been studied before in other

contexts like dorsal closure. It was shown that the differential expression of ed is

sufficient to trigger the formation of an actomyosin cable within the ed expressing cells

at the interface.

Here, it was shown that in wild type embryos an apical meshwork of actomyosin is

present in the epithelial cells beneath the PGCs. This actomyosin network is weakened

or disrupted if Ed is removed from the epithelium or ectopically expressed within the

PGCs.
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Lost

Lost is a sponge body component and ubiquitously present in early

embryos

It was reported earlier that Lost can be found in the sponge bodies during oogenesis

(Snee and Macdonald 2009). To verify this, ovaries from females which have a GFP

enhancer trap inserted into the lost locus have been analyzed. In this fly line a Lost-GFP

fusion protein is expressed instead of the wild type protein (Morin et al. 2001). Figure

11 A shows a confocal section of an ovariole expressing Lost-GFP (green), stained with

Dapi (blue) and Phalloidin (red). Figure 11 B shows a different optical section of the

same egg chamber highlighting the developing oocyte. Lost-GFP can be detected from

mid-oogenesis onwards. It is present in large perinuclear structures around the nurse cell

nuclei and highly enriched in the oocyte.

In order to analyze the localization of Lost protein in early embryos fixed wild type pre-

blastoderm embryos were stained with a specific antibody against Lost (Graf 2007).

Figure 11: Lost is a sponge body component and ubiquitously present in early embryos. (A)

Confocal section of an ovary expressing Lost-GFP (green), stained with Phalloidin (red) and Dapi

(blue). (B) Different confocal section of the rightmost egg chamber in (A) showing the developing

oocyte. (A') In the nurse cells Lost-GFP is enriched in perinuclear patches resembling nuage. (B')

Lost-GFP is accumulating in the developing oocyte. (C) Confocal section of the posterior half of a

preblastoderm wild type embryo stained for Lost. Lost is present ubiquitously in the embryo and

slightly enriched at the posterior pole.



34

Figure 11 C shows a confocal section of the posterior half of an early wild type embryo.

Lost protein can be detected throughout the embryo. It is slightly enriched at the

posterior pole.

PGC development is impaired in maternal lost mutant embryos

In wild type embryos the vast majority of PGCs transmigrates during stages 9 and 10 of

development through the PMG whereas in maternal lost mutants an increased number

of PGCs cross the epithelium already during stages 6 and 7 (Hertel 2011). Here the

transmigration phenotype was reanalyzed and quantified (Fig. 12). Fixed embryos of the

desired developmental stages were stained with an antibody against Vasa protein to

label the PGCs. Then 3D confocal stacks of the posterior pole were acquired and

analyzed. Using the cell counter plugin from Fiji the total number of PGCs was counted

as well as the number of transmigrating PGCs. In wild type embryos only a small

number of PGCs transmigrate during stages 6 and 7 (Fig. 12 A). In embryos maternally

mutant for lost the number of transmigrating PGCs is drastically increased (Fig. 12 B).

The same phenotype can be observed in maternal knockdown of lost using RNAi (Fig.

12 C). In control embryos on average 6 PGCs cross the epithelium during stages 6 and 7,

while in lost mutants or lost RNAi that number is increased to 11 or 14, respectively.

The difference is statistically significant (Mann-Whitney-U test, p<0.001). Since the

total number of PGCs varies between different embryos of the same genotype as well as

between genotypes the number of transmigrating PGCs was also normalized to the total

number of PGCs in that embryo. This reveals that in control embryos on average 13%

of PGCs transmigrate, compared to 22% in lost mutants and 35% in lost RNAi. These

differences are statistically significant (Mann-Whitney-U test, ** p<0.01 and ***

p<0.001 respectively).

A general feature of developing PGCs is their transcriptional quiescence (Leatherman

and Jongens 2003). This has been reported for the development of mice, worms, flies

and others (Nakamura and Seydoux 2008, Strome and Updike 2015). The

transcriptional silencing in the different model organism is achieved by different
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mechanisms but it is always crucial to their development. If the transcriptional silencing

is disturbed in Drosophila the PGCs show developmental defects and eventually die

(Nakamura et al. 1996).

During early Drosophila embryogenesis the nuclei are transcriptionally active. After

PGC budding the somatic nuclei remain transcriptionally active while the PGC nuclei

become transcriptionally silent (Seydoux and Dunn 1997). Later, when the PGCs start

their active migration at stage 9, they become transcriptionally active (Zalokar 1976).

Figure 12: The PGCs in embryos which lack maternal lost cross the PMG epithelium

prematurely. (A-C) Maximum intensity projections of 2-5 confocal sections of posterior poles of

stage 6 embryos stained for Vasa (red) and Dapi (blue). (A) In wild type embryos the PGCs reside at

the posterior pole. (B,C) In lost embryos or lost RNAi embryos PGCs migrate through the epithelium.

(D,E) Quantification of the premature transmigration phenotype. The columns show the average total

number (D) or relative number (E) of transmigrating PGCs during stages 6 and 7 of the three

genotypes. Error bars show SEM. *** p<0.001. ** p<0.01 Mann-Whitney-U test.
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The major DNA-dependent RNA polymerase for protein coding genes, RNA-

polymerase II, has a characteristic 7 amino acid repeat at its C-terminal domain (CTD)

which is conserved across all phyla (Dahmus 1996). The phosphorylation state of these

repeats correlates with the activity of the enzyme. It is only fully phosphorylized while
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actively elongating mRNA. The phosphorylation state and by that transcriptional

activity can be readily detected using immunofluorescence (Palancade and Bensaude

2003).

Figure 13 shows the posterior poles of stage 6 embryos of wild type (A,A'), maternal

lost mutants (B,B'), maternal lost RNAi (C,C') and embryos from mothers which are

heterozygous for lost and a deficiency line covering the lost locus stained with

antibodies against pCTD (green), Vasa that labels the PGCs (red) and Dapi to show the

nuclei (blue).

In wild type embryos the PGCs are mostly transcriptionally silent, as shown by the

absence of pCTD signal in the PGCs (Fig. 13 A,A'). In maternal lost mutant embryos

the number of PGCs which are transcriptionally active is greatly increased (Fig. 13 B,B')

revealed by a strong nuclear signal of pCTD in the PGCs. In maternal lost RNAi

embryos the PGCs also show transcriptional activity, although to a lesser extent than in

lost embryos (Fig. 13 C,C'). Embryos from lost/Df mothers show the same ectopic

transcription in the PGCs (Fig. 13 D,D'). The strength of this phenotype can be

quantified by counting the number of transcriptionally active PGCs using the Fiji Cell

Counter plugin. On average the absolute number of transcriptionally active PGCs is 8

for wild type, 26 for lost mutants, 14 for maternal lost RNAi and 17 for lost/Df (Fig. 13

E). Besides lost RNAi the increased numbers in ectopic transcription are highly

statistically significant (Mann-Whitney-U test, p<0.001) compared to wild type. Since

the total number of PGCs can differ between the individual embryos and between the

genotypes the relative number of transcriptionally active PGCs was calculated (Fig: 13

Figure 13: The PGCs in embryos which lack maternal lost show ectopic transcriptional

activity. (A-D) Maximum intensity projections of 2-5 confocal sections of posterior poles of stage 6

embryos stained for Vasa (red), pCTD (green) and Dapi (blue). The presence of a pCTD signal

indicates transcriptional activity. (A) In wild type embryos only the somatic cells but not the PGCs

show a strong pCDT signal (A'). (B-D) In embryos which lack the maternal lost contribution many

PGCs show a clear pCTD signal (B'-D'). The pCTD signal of the somatic nuclei is considerably

stronger. (E,F) Quantification of the ectopic transcriptional activity of the PGCs phenotype. The

columns show the average total number (D) or relative number (E) of pCTD-positive PGCs in stage 6

embryos of the four genotypes. Error bars show SEM. *** p<0.001. ** p<0.01. * p<0.05. n.s. not

significant, Mann-Whitney-U test.
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F). In wild type embryos approximately 16% of the PGCs show transcriptional activity

during stage 6, in maternal lost mutants 56%, in lost RNAi 32% and in lost/Df 50%.

These changes are statistically significant compared to wild type with p<0.05 for lost

RNAi and p<0.001 for lost and lost/Df.

This demonstrates that in embryos that come from mothers which lack lost function the

PGCs show ectopic transcriptional activity during embryonic stage 6.

Cellularization defects at posterior pole in embryos lacking maternal lost

During stages 9 and 10. when most of the PGCs leave the midgut pocket in wild type

embryos, the PMG epithelium undergoes an epithelium-to-mesenchymal transition

(EMT) which weakens the adhesion between the cells and allows the PGCs to pass

(Seifert and Lehmann 2012). The presence of the premature transmigration phenotype

in maternal lost mutants (see Fig. 12) therefore raises the question whether Lost

functions during cellularization or in cell adhesion. Several proteins show characteristic

localization patterns during cellularization and in the epithelium. Their localization

indicates a proper formation of the epithelium during stage 5.

Bazooka (Baz) labels the apical part of the lateral membrane of epithelial cells (Tepass

2012). The lateral membrane domain contains Discs-large (Dlg), a protein which among

others has a role in maintaining apicobasal cell polarity and cell adhesion (Bilder et al.

2000). During cellularization the invaginating membrane front, the furrow canal,

contains Slam, which recruits DRhoGEF2 and by that promotes the formation of

contractile actomyosin at the invaginating membrane (Wenzl et al. 2010). During

cellularization the centrosomes are located apically to the somatic nuclei. The

microtubules extent basally and form a very regular, cage-like structure around the

nuclei (Warn and Warn 1986).

Therefore, the localization pattern of the four before mentioned proteins was analyzed

in fixed stage 5 embryos. They were visualized using immunofluorescence and 3D

confocal image stacks were acquired of a lateral part of the embryo (lat.) or the posterior

pole (post.) showing the forming epithelium. The analyzed areas are indicated in Figure
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14 A. The lateral and the posterior confocal sections always show fractions of the same

embryo for a given genotype and protein stained. In wild type embryos Baz is localized

Figure 14: Cellularization
phenotypes in lost embryos
are restricted to the very
posterior pole. (A) Confocal
section of a wild type embryo
stained for Vasa (red), Slam
(green) and Dapi (blue). The
yellow boxes highlight the
regions of interest: Posterior
(post.), beneath the PGCs and
lateral (lat.), a lateral part of the
embryo, distant from the
posterior pole. (B-Q) Confocal
sections of wild type or lost
stage 5 embryos stained for
Baz, Dlg, Slam or Tubulin. The
pictures showing the two
regions of interest are always
from the same embryo for a
given genotype and staining.
(B,C) In wild type embryos
Baz localizes to the apical
membrane, independent of the
region. (D,E) In lost embryos
Baz localizes wild type-like in
the lateral regions, while
beneath the PGCs it is also
found in the furrow canal.
(F,G) In wild type embryos Dlg
localizes to the lateral
membrane, independent of the
region. (H,I) In lost embryos
Dlg localizes wild type-like in
the lateral regions, while
beneath the PGCs it is
sometimes also found in the
furrow canal or completely
missing at a lateral membrane.
(J,K) In wild type embryos
Slam localizes to the furrowSlam localizes to the furrow canal, independent of the region. (L,M) In lost embryos Slam localizes
wild type-like in the lateral and posterior regions. The furrow canal can be malformed and enlarged,
spanning several nuclei. (N,O) In wild type embryos Tubulin forms regular cage-like structures
around the nuclei, independent of the region. (P,Q) In lost embryos the Tubulin pattern is wild type-
like in the lateral regions. Beneath the PGCs the Tubulin cages are missing or malformed.
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in apical puncta at the cell interfaces in the lateral part of the embryo (Fig. 14 B) as well

as at the posterior pole beneath the PGCs (Fig. 14 C). In embryos from lost mutant

mothers Baz shows a normal localization in lateral portion of the embryo (Fig. 14 D)

while at the posterior pole ectopic Baz can be detected in the furrow canal (Fig. 14 E).

The apicolateral Baz puncta are sometimes absent.

Dlg localizes to the lateral membrane basally to Baz at cell interfaces in wild type

embryos with no difference between the lateral and posterior portion of the embryo (Fig.

14 F,G respectively). In maternal lost mutant embryos Dlg localizes normally in the

lateral epithelium (Fig. 14 H) whereas at the posterior pole Dlg can sometimes be found

in the basal domain of the membrane. Also at some cell interfaces Dlg is largely absent

(Fig. 14 I).

Slam, which marks the furrow canal, is only detected there in wild type embryos (Fig.

14 J,K) as well as in maternal lost mutants both in the lateral portion of the embryo and

at the posterior pole (Fig. 14 L,M). However, in lost mutants the furrow canal

sometimes is malformed and severely enlarged spanning several nuclei (Fig. 14 M).

This phenotype only occurred beneath the PGCs at the posterior pole but never in lateral

portion of the embryo.

The very regular pattern of microtubules is readily visible in the lateral parts of the

embryo for both wild type and maternal lost mutants (Fig. 14 N,P). At the posterior pole

beneath the PGCs the same regular pattern can be seen in wild type embryos (Fig. 14 O)

while in maternal lost mutants this pattern is disrupted (Fig. 14 Q). The tubulin "cages"

around the nuclei can be severely malformed, reduced or absent. This tubulin phenotype

is only present beneath the PGCs.

lost mRNA is maternally provided and the protein is ubiquitously present in early

embryos with a slight enrichment at the posterior pole (see Fig. 11 C). In general

cellularization and cell polarity are not affected in maternal lost mutants in the most

parts of the embryo. Only at the posterior pole, right underneath the PGCs, membrane

polarity markers Baz and Dlg are mislocalized or absent, the furrow canal is malformed

and the tubulin pattern is disturbed or absent. Since the Lost protein is present

throughout the entire embryo a general role of Lost in cellularization seems to be

unlikely.
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The posterior somatic nuclei have less transcription in maternal lost

mutants

It has been shown that zygotic transcription of several factors is essential for

cellularization, including Slam (Edgar et al. 1986, Acharya et al. 2013). In embryos

from lost mutant mothers the amount of tubulin at the posterior pole can be severely

reduced (Fig. 14 Q) alongside with other defects in cellularization (Fig. 14).

One possible cause for that could be reduced zygotic transcription from the somatic

nuclei underneath the PGCs (hereafter called SNUPs). The overall transcriptional

activity can be easily detected by an antibody against the phosphorylated carboxy-

terminal domain (pCTD) of RNA-polymerase II. To assess the possibility of reduced

levels of transcription at the posterior pole fixed embryos were stained with an anti-

pCTD antibody to label active transcription, an anti-Vasa antibody to label the PGCs

and Dapi to show the nuclei.

Figure 15 A shows the posterior pole of an embryo from a wild type mother. A clear

and strong pCTD signal is detected in all somatic nuclei (Fig. 15 A') indicating a

uniformly high level of active transcription. In embryos from lost mutant mothers the

pCTD signal in the SNUPs is weaker compared to somatic nuclei which are not directly

beneath the PGCs (Fig. 15 B,B'). The nuclei are present as shown by the Dapi staining

(Fig. 15 B''). The same phenotype can be found in embryos from mothers expressing

lost RNAi (Fig. 15 C,C',C'') and in embryos from lost/Df mothers (Fig. 15 D,D',D'').

The magnitude by which transcription is reduced in the SNUPs can be estimated by

comparing the signal intensity of the pCTD staining within the SNUPs to the signal

intensity within the other somatic nuclei. For that, 3D confocal stacks of posterior poles

of stage 4 embryos stained for pCTD, Vasa and Dapi of the respective genotypes were

recorded. A Fiji macro was created for batch-processing each image stack individually

(see Methods for details). In brief for each slice in a 3D stack a mask was created from

the Dapi channel and the PGC nuclei were removed from that mask resulting in a

selection of only the somatic nuclei. The part of that mask which lies beneath a Vasa

signal was detected and defined as SNUP (= somatic nuclei beneath PGCs). The total

signal intensity in the pCTD channel and the number of analyzed voxels was then
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measured in the SNUP area and outside the SNUP area of the Dapi mask. From that the

average pCTD signal intensity within the SNUPs and within the other somatic nuclei

was calculated. By that method the complete posterior pole of an embryo is quantified

and the relative transcriptional activity of the SNUPs compared the rest of the soma is

obtained. The analysis of the data revealed that even in control embryos the

transcriptional activity of the SNUPS is only 88% of that in the rest of the soma (Fig. 15

E). In embryos from mothers which are devoid of Lost function the transcriptional

Figure 15: The somatic nuclei underneath
the PGCs (SNUPs) have reduced levels of
transcription in embryos which lack
maternal lost. (A-D) Confocal sections of
posterior poles of stage 4 embryos stained for
Vasa (red), pCTD (green) and Dapi (blue). (A)
In wild type embryos the pCTD signal is
uniformly strong in all somatic nuclei. (B-D) In
embryos which lack maternal lost the pCTD
signal in the SNUPs is weaker than that of the
other somatic nuclei. (E) Quantification of the
reduced levels of transcription. The bars show
other somatic nuclei. (E) Quantification of the reduced levels of transcription. The bars show the
average relative intensity of the pCTD signal of the SNUPs compared to the other somatic nuclei of
the same embryo for the indicated genotypes. Error bars show SEM. *** p<0.001. ** p<0.01 Mann-
Whitney-U test.



43

activity in the SNUPs is reduced to 67% in maternal lost mutants, 68% in maternal lost

RNAi and 68% in embryos from lost/Df mothers (Fig. 15 E). These differences are

highly statistically significant when compared to control embryos (Mann-Whitney-U

test; *** p<0.001; ** p<0.01).

While the vast majority somatic nuclei of wild type stage 4 embryos shows a uniformly

strong transcriptional activity the SNUPs show slightly reduced levels of transcription.

In embryos from mothers who lack Lost function however the transcriptional activity of

the SNUPs is reduced to two thirds of that of the rest of the soma.

Fluorescent in-situ hybridyzation reveals localization patterns of germ

plasm RNAs

Lost protein is present throughout the entire early embryo (Fig. 11 C). However, all the

lost mutant phenotypes (premature transmigration of PGCs (Fig. 12), ectopic

transcription in PGCs (Fig. 13), cellularization defects (Fig. 14) and reduced levels of

transcription in SNUPs (Fig. 15)) involve PGCs or are restricted to the very posterior

pole of the embryo. Furthermore, Lost has been reported to be part of several RNA-

protein complexes (Herold et al. 2009, Snee and Macdonald 2009) as well as being

involved in the accumulation of germ plasm in the oocyte during the last stages of

oogenesis (Sinsimer et al. 2011) and being potentially an RNA binding protein

(Marchler-Bauer et al. 2017). This raises the question whether the germ plasm RNAs

are properly localized in maternal lost mutant embryos.

The germ plasm is composed of several proteins (for example Vasa and Osk) and

different RNAs (reviewed by Santos and Lehmann (2004a)). Especially gcl, cycB, osk,

nos and pgc RNAs have been extensively studied and their posterior localization in

early embryos is well established. Fluorescent in-situ hybridization (FISH) was used to

visualize the localization of these RNAs (see methods for details). In brief fixed

embryos of stages 1 or 2 were probed with a labeled antisense-RNA against the

respective target RNA. The antisense-RNA probe was then detected by a horseradish

peroxidase (HRP)-coupled antibody which in turn produces a fluorescent signal when



44

subjected to a tyramide signal amplification (TSA) reaction. The stained embryos are

then analyzed by confocal microscopy.

Figure 16 shows the localization of gcl (A,F), cycB (B,G), osk (C,H), nos (D,I) and pgc

RNA (E,J) at the posterior poles of wild type embryos (A-E) and embryos from lost

mutant mothers (F-J). All analyzed RNAs show a typical germ plasm localization at the

posterior cortex as reported in the literature (Lecuyer et al. 2007) in both wild type and

lost embryos. However, nos and pgc FISH stainings differ in one aspect from gcl, cycB

and osk: The staining intensity at the very posterior tip of the embryo seems lower than

at the margins of the germ plasm (Fig. 16 D,E), although the amount of germ plasm

RNAs is reported to be the highest in that region (Slaidina and Lehmann 2017). This

Figure 16: The localization patterns of germ plasm RNAs revealed by FISH. (A-J) Confocal
sections of posterior poles of preblastoderm embryos stained for the indicated RNAs by fluorescent
in-situ hybridization (FISH). gcl, cycB, osk, nos and pgc RNA localize to the germ plasm at the
posterior pole. There is no difference between wild type (A-E) and lost embryos (F-J). Note that the
staining intensity at the very posterior tip of the embryo seems lower than at the margins of the germ
plasm for nos and pgc RNA independent of the genotype (D,E,I,J).
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phenomenon is highly reproducible, independent of genotype (compare Fig. 16 D and I)

and only occurring when staining nos or pgc RNA.

Comparing germ plasm RNA staining patterns using FISH intensity

profiles

To visualize and quantify the distribution of germ plasm RNAs the embryos were

counterstained with an anti-Vasa antibody to label the germ plasm. Then 3D confocal

stacks of posterior poles of stage 1 or 2 embryos were acquired covering the complete

germ plasm. Figure 17 show y-projections of complete confocal stacks from wild type

(A',A'') and maternally lost mutant embryos (B,B''). In this projection the germ plasm

RNAs (Fig. 17 A',B') as well as Vasa protein (Fig. 17 A'',B'') form a circular disc at the

posterior pole of the embryo. To quantify the distribution of germ plasm RNAs and

Vasa protein intensity profiles along a straight line through the middle of the germ

plasm were obtained (see blue and red lines in Fig. 17 A,B). A Fiji macro was created

for batch processing each 3D confocal stack (see methods for details). The intensity

profiles for a given genotype and staining (germ plasm RNA FISH or Vasa protein)

were then scaled to the diameter of the germ plasm and normalized to highest intensity.

This allows averaging the intensity profile curves from a given genotype and staining

and comparison between genotypes.

Figure 17 shows the averaged intensity profiles of gcl, cycB, osk and nos RNA (C-F)

and the corresponding Vasa protein (G-J) for wild type embryos (blue) and maternal

lost mutant embryos (red). In all analyzed conditions the Vasa protein always forms a

circular disk with a uniform distribution (Fig. 17 A'',B''). This is reflected by the

averaged intensity profiles (Fig. 17 G-J): A very low background signal between 0.05

(Fig. 17 I) and 0.2 (Fig. 17 H) of the maximum intensity, followed by a steep increase

which reaches a plateau at 0.8 to 0.9 and a steep decrease to background levels.

Regarding the distribution of Vasa protein in the germ plasm no difference between

wild type embryos and maternally lost mutant embryos could be detected. The intensity

profiles of gcl, cycB and osk RNA show the same features as those from Vasa protein.
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A uniformly high staining intensity within the germ plasm (Fig. 17 C-E) can be detected

for both wild type (blue) and maternal lost mutant (red) embryos. The before mentioned

reduction in staining intensity at the very posterior pole for nos RNA (Fig. 16 D,I) is

clearly reflected in the intensity profile (Fig. 17 F). The margins of the germ plasm

show a high intensity (0.8 of the maximum), comparable to the other RNAs. However,

Figure 17: The localization
patterns of most germ plasm
RNAs do not differ between
wild type and lost. (A,B) y-
projections of confocal stacks
covering the complete germ
plasm stained for a germ plasm
RNA and Vasa protein. (C-J)
Average intensity profiles of
germ plasm RNAs (C-F) and
the corresponding Vasa
channel (G-J) from control
(blue) and maternal lost
embryos (red) along a straight
line through the center of the
germ plasm (see red and blue
lines in (A,B)) in y-projections
of confocal stacks covering the
complete germ plasm stained
for a germ plasm RNA and
Vasa protein. The shaded areas
show the SEM. The intensity
profile curves of gcl (C), cycB
(D) and osk (E) have the same
shape as their corresponding
Vasa profiles (G-I): A steep
incline, followed by a plateau
and a sharp decline. The
intensity profile of nos (F)
shows a depression reflecting
the lower FISH staining
intensity in the center of the
germ plasm (see Fig. 16 D,I).
There is no difference in the
average intensity profiles of
gcl, cycB, osk and nos between
control and maternal lost
mutant embryos.
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this intensity is reduced to 0.5 in the center of the germ plasm which results in a clear

dent in the intensity profile. There is no difference between wild type (blue) and

maternal lost mutant embryos (red).

The pgc FISH intensity profile is altered in maternal lost embryos

The distribution of pgc RNA in the germ plasm of wild type embryos shows similar

features as the one for nos RNA: The staining intensity in the margins of the germ

plasm (labeled by Vasa (Fig. 18 A'')) is considerably higher than in its center (Fig. 18

A'). This phenomenon is highly reproducible and thereby reflected in the averaged

intensity profile (Fig. 18 C, blue). As for nos RNA (see Fig. 17 F) the mean intensity in

the center of the germ plasm is around 0.4 while the margins reach a normalized

intensity of 0.8. Vasa protein is uniformly distributed (Fig. 18 A'') which results in an in

intensity profile with an even plateau at 0.9 (Fig. 18 D, blue). In embryos from lost

mutant mothers, however, the reduction of pgc FISH staining intensity at the very

posterior pole is less pronounced than in wild type embryos (compare Fig. 16 E and J).

A y-projection of a complete confocal stack of a posterior pole shows clearly shows that

phenomenon (compare Fig. 18 A' and B'), while the distribution of Vasa protein in lost

and wild type condition is highly similar (Fig. 18 A'' and B'').

The less pronounced reduction of pgc FISH staining intensity in the center of the germ

plasm is also reflected in the averaged intensity profile (Fig. 18 C, red). At the margins

of the germ plasm the normalized staining intensity reaches 0.8 which poses no

difference between wild type and maternally lost mutant embryos. In the center of the

germ plasm, however, the pgc FISH staining intensity is reduced to only 0.6 in lost

embryos, compared to a reduction to 0.4 in wild type embryos (Fig. 18 C). The

difference between the averaged curves is highly statistically significant in its center

(Mann-Whitney-U test, p<0.001) and not significant at the margins of the germ plasm.

The analysis of germ plasm RNAs by FISH reveals a uniform distribution of gcl, cycB

and osk RNA within the germ plasm of wild type embryos and a reduced staining

intensity in the center of the germ plasm for nos and pgc RNA. This reduction in

staining intensity is highly reproducible and can be quantified by averaging intensity
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Figure 18: The average relative pgc FISH staining intensity in the center of the germ plasm
is higher in maternal lost embryos. (A,B) y-projections of confocal stacks covering the complete
germ plasm stained for pgc RNA and Vasa protein. (C,D) Average intensity profiles of pgc FISH (C)
and the corresponding Vasa channel (D) from control (blue) and maternal lost embryos (red) along a
straight line through the center of the germ plasm (see red and blue lines in (A,B)) in y-projections of
confocal stacks covering the complete germ plasm stained for pgc RNA and Vasa protein. The shaded
areas show the SEM. The intensity profile of pgc (C) shows a depression reflecting the lower pgc
FISH staining intensity in the center of the germ plasm. The depression is significantly less deep in
maternal lost embryos compared to control (*** p<0.001 Mann-Whitney-U test). (E) y-projections of
a confocal stack covering the complete germ plasm of a wild type embryo stained for pgc RNA and
Lost protein. Lost protein is enriched in the center of the germ plasm, where the pgc FISH staining
intensity is lower.
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profile curves. The quantitative analysis reveals a statistically significant weaker

reduction in pgc FISH staining intensity in the center of the germ plasm of lost embryos

compared to wild type embryos. No difference was observed for gcl, cycB, osk and nos

RNA, as well as for the distribution of Vasa protein.

Maternal lost mutants combine features of pgc LOF and pgc GOF

Of all analyzed germ plasm RNAs only pgc FISH staining shows a different behavior in

lost embryos. pgc (polar granule component) codes for a 71-amino acid peptide that

plays a critical role in the transcriptional silencing of the PGCs (Hanyu-Nakamura et al.

2008). Overactivity of pgc results in a "pole-hole" phenotype: Embryos from mothers,

who carry 4 additional copies of the genomic pgc locus (6x[pgc]), show cellularization

defects at the posterior pole; likely to be caused by a decrease in somatic transcription

due ectopic action of Pgc in the somatic nuclei (de Las Heras et al. 2009). That pole-

hole phenotype is strikingly similar to the premature transmigration of PGCs seen in

maternally lost mutant embryos (compare Fig. 19 B and C). As described earlier the

number of transmigrating PGCs can be used to quantify the strength of the phenotype.

In embryos from 6x[pgc] mothers on average 12 PGCs (40%) transmigrate, compared

to 11 (23%) in maternal lost embryos and 6 (13%) in wild type embryos (Fig. 19 E).

The differences between 6x[pgc] or lost and wild type, respectively, are statistically

significant (Mann-Whitney-U test, ** p<0.01. *** p<0.001).

If two genes or their products function in the same biological process the combination

of respective mutations can result in phenotypes which are much stronger than expected

from the individual phenotypes. This phenomenon is called genetic interaction and can

be used to identify functional relationships between genes (Mani et al. 2008).

In embryos from mothers heterozygous for lost (lost/+) the absolute as well as the

relative number of transmigrating PGCs are not significantly different from wild

embryos (Fig. 19 E,F). A very slight increase of pgc activity, in embryos from mothers

having just 1 additional copy of the genomic pgc locus (3x[pgc]), does not lead to a

pole-hole phenotype, as the absolute and the relative number of transmigrating PGCs

differ not significantly from wild embryos (Fig. 19 E,F). However, when combining
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these two conditions, in embryos from 3x[pgc];;lost/+ mothers, a clear pole-hole

phenotype can be observed (Fig. 19 D). A quantification of the phenotype reveals that

on average 12 PGCs (24%) transmigrate which is significantly different from wild type

embryos (Fig. 19 E,F. Mann-Whitney-U test, * p<0.05. ** p<0.01). An increased

maternal load of pgc (in embryos from 6x[pgc] mothers) leads to a pole-hole phenotype,

Figure 19: lost interacts genetically with pgc GOF. (A-D) Maximum intensity projections of 2-5
confocal sections of posterior poles of stage 6 embryos stained for Vasa (red), Tubulin (green) and
Dapi (blue). (A) In control embryos the PGCs reside at the posterior pole. (B,C,D) In lost embryos,
6x[pgc] embryos and 3x[pgc];;lost/+ embryos some PGCs migrate through the epithelium. (E,F)
Quantification of the premature transmigration phenotype. The columns show the average total
number (E) or relative number (F) of transmigrating PGCs during stages 6 and 7 of the indicated
genotypes. While heterozygous lost embryos and 3x[pgc] embryos don't differ from control embryos
the combination of both (3x[pgc];;lost/+ embryos) leads to premature transmigration as strong as in
lost embryos. Error bars show SEM. *** p<0.001. ** p<0.01. *p<0.05 Mann-Whitney-U test.
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which is highly similar to the lost premature transmigration phenotype. When

combining a slight increase in maternal pgc load (3x[pgc]) and heterozygous lost

condition, which both don't show a transmigration phenotype on their own, the resulting

embryos from 3x[pgc];;lost/+ mothers show a pole-hole phenotype, which is as strong

as in embryos from homozygous lost mutant mothers. This indicates a genetic

interaction between lost and pgc GOF.

In wild type embryos the PGCs are transcriptionally silent after they are formed and

become transcriptionally active later in embryonic development (Zalokar 1976,

Seydoux and Dunn 1997). Pgc is essential for the repression of transcription in the

PGCs, as is embryos from pgc mutant mothers the PGCs show ectopic transcriptional

activity (Hanyu-Nakamura et al. 2008). As described above (see Fig. 12) in lost

embryos the PGCs also become transcriptionally active after they are formed. In order

to compare these phenotypes embryos from wild type mothers, from lost mothers and

from two different pgc LOF conditions (pgc/Df mothers and mothers expressing dsRNA

against pgc during oogenesis (maternal pgc RNAi)) were analyzed. Fixed stage 6

embryos of these genotypes were stained with an antibody against active RNA-

polymerase II to show transcription (pCTD), an anti-Vasa antibody to label the PGCs

and Dapi to show the nuclei. Then 3D confocal stacks were acquired and the total

number of PGCs as well as the number of transcriptionally active PGCs, determined by

the presence of a nuclear pCTD signal, was counted.

Figure 20 shows the posterior poles of stage 6 embryos from wild type mothers (A,A'),

lost mutant mothers (B,B'), pgc/Df mothers (C,C') and mothers with RNAi-mediated

pgc knockdown. In wild type embryos around 20% of the PGCs are transcriptionally

active, while in lost embryos almost 60% of the PGCs show transcriptional activity. In

embryos from mothers devoid of pgc function the amount of PGCs which have active

transcription is drastically increased to 85% in embryos from pgc/Df mothers and 98%

in embryos from pgc RNAi mothers. These differences are statistically significant

compared to wild type numbers (Mann-Whitney-U test, *** p<0.001).

In summary, Embryos from lost mutant mothers and pgc LOF mothers both show the

ectopic transcriptional activity in the PGCs, although the phenotype is stronger in pgc

LOF condition.
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Figure 20: The PGCs in embryos which
lack maternal lost or maternal pgc show
ectopic transcriptional activity. (A-D)
Maximum intensity projections of 2-5 confocal
sections of posterior poles of stage 6 embryos
stained for Vasa (red), pCTD (green) and Dapi
(blue). The presence of a pCTD signal indicates
transcriptional activity. (A) In wild type embryos
only the somatic cells but not the PGCs show a
strong pCDT signal (A'). (B-D) In embryos
which lack the maternal lost contribution (A) or
maternal pgc (C,D) many PGCs show a clear
which lack the maternal lost contribution (A) or maternal pgc (C,D) many PGCs show a clear pCTD

signal (B'-D'). (E) Quantification of the ectopic transcriptional activity of the PGCs. The columns

show the average relative number of pCTD-positive PGCs in stage 6 embryos of the four genotypes.

Error bars show SEM. *** p<0.001. ** p<0.01 Mann-Whitney-U test.
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lost interacts genetically with dhc64c

Maternally lost mutant embryos show features of the pgc GOF phenotype in the soma

beneath the PGCs (reduced transcriptional activity in the SNUPs and cellularization

defects) as well as features of the pgc LOF phenotype within the PGCs (ectopic

transcriptional activity). During stage 3 of embryonic development the germ plasm and

with it pgc RNA is transported into the forming PGCs via dynein-mediated transport on

the astral microtubules (Lerit and Gavis 2011). A reduced efficiency or slower transport

could result in an increased amount of pgc RNA in the soma after PGC budding and a

reduced amount of pgc RNA within the PGCs. The dynactin complex contains, among

others, Actin-related protein 1 (Arp1) and Dynein heavy chain (Dhc) and links different

cargoes to microtubule dependent motor proteins (Allan 1996). It has been shown that

one Dhc variant, Dhc64c, plays a role in the transport of the germ plasm (Lerit and

Gavis 2011). Furthermore, a genome wide yeast two-hybrid screen identified Lost as a

possible binding partner of Arp1 (Giot et al. 2003). This interaction was verified in

early Drosophila embryos by GST-pulldown and co-immunoprecipitation experiments

(Graf 2007). In order to establish a functional relationship between Lost and the

dynactin transport complex a genetic interaction experiment was performed. Embryos

Figure 21: lost interacts genetically with dynein heavy chain (dhc). (A,B) Quantification of the
premature transmigration phenotype. The columns show the average total number (A) or relative
number (B) of transmigrating PGCs during stages 6 and 7 of the indicated genotypes. While
heterozygous lost embryos and heterozygous dhc embryos don't differ from control embryos the
combination of both (lost/dhc embryos) leads to a strong premature transmigration phenotype. Error
bars show SEM. *** p<0.001 Mann-Whitney-U test.
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from wild type mothers (ctrl), heterozygous lost mutant mothers (lost/+), heterozygous

dhc64c mutant mothers (dhc/+) and from mothers transheterozygous for lost and

dhc64c (lost/dhc) were fixed and stained with an antibody against Vasa to label the

PGCs. The number of transmigrating PGCs was used to quantify the phenotype.

Figure 21 shows the average absolute (Fig. 21 A) and relative (Fig. 21 B) numbers of

transmigrating PGCs in embryos of the before mentioned genotypes. In wild type

embryos around 6 PGCs (14%) transmigrate. In embryos from mothers heterozygous

for lost (lost/+) on average 7 PGCs (12%) transmigrate and in embryos from mothers

heterozygous for dhc64c (dhc/+) on average 6.5 (14%). These numbers are not

significantly different from wild type embryos. However, when combining these two

conditions, in embryos from lost/dhc mothers, the amount of transmigrating PGCs is 16

(38%). This increase is statistically significant when compared to wild type (Mann-

Whitney-U test, *** p<0.001). This indicates a genetic interaction between lost and

dhc64c.

No detectable change in pgc RNA or peptide localization in maternal lost

mutants

Lost protein was shown to be a part of different RNP complexes (Herold et al. 2009,

Snee and Macdonald 2009) and is enriched at the posterior pole of very early embryos

(Fig. 18 E''). Furthermore, lost interacts biochemically (Graf 2007) and genetically (Fig.

21) with components of the dynactin transport complex which has been shown to have a

function in germ plasm transport (Lerit and Gavis 2011). This raises the possibility that

Lost acts as an adapter protein linking germ plasm RNPs to the dynactin complex and

by that promotes the transport of pgc RNA into the budding PGCs. If Lost facilitates the

transport of pgc RNA into the PGCs an increased amount of pgc RNA should be

detectable in the soma after PGC budding in embryos from lost mutant mothers. In

order to test this hypothesis fixed embryos from wild type or lost mutant mothers were

analyzed. pgc RNA was visualized using FISH, an antibody against Vasa and Dapi were

used to label the PGCs and the nuclei, respectively. Figure 22 shows the posterior poles
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of a wild type embryo (Fig. 22 A) and

a lost embryo (Fig. 22 B). After PGC

budding is completed the PGCs reside

at the posterior pole separated from

the soma (Fig. 22 A',B'). In both

genotypes pgc RNA is detected

within the PGCs as well as in the

soma adjacent to the PGCs (Fig. 22

A'',B''). There is no obvious

difference in the amount of somatic

pgc RNA between wild type and lost

embryos. In order to quantify the

distribution of pgc RNA within an

embryo a Fiji macro was created for

batch processing each embryo

individually (see Methods for details).

Figure 22: The amount of pgc RNA
which remains in the soma after PGC
formation is not increased in maternal lost
mutants. (A,B) Maximum intensity
projections of 2-4 confocal sections of
posterior poles of stage 4 embryos stained for
Vasa (red), pgc RNA (green) and Dapi (blue).
(A',B') Vasa staining clearly labels the PGCs.
(A'',B'') A considerable portion of the pgc
RNA can be detected in the soma after PGC
formation in both wild type and lost mutant
embryos, located apical of the SNUPs. (C)
Quantifaction of the pgc FISH signal in the
soma. The columns show the average
cumulative pgc FISH signal intensity located
in the soma relative to the cumulative total
pgc FISH signal intensity of a given embryo.
The relative amount of pgc FISH signal in the
soma in maternal lost embryos does not differ
significantly from wild type embryos. Error
bars show SEM. n.s. not significant, Mann-
Whitney-U test.
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In brief, 3D confocal stacks covering the complete posterior pole were analyzed.

Because of some Vasa protein left in the soma after PGC budding it is not possible to

use a mask from the Vasa channel to distinguish between somatic pgc RNA and pgc

RNA which has been transported into the PGCs. Instead the identity of the nuclei

(somatic or PGC nucleus) can be used since the somatic pgc RNA always localizes to

an area directly apical of the somatic nuclei underneath the PGCs (Fig. 22 A'',B''). For

that in the Dapi channel each nucleus was identified as a single object using a 3D

watershed algorithm. Then each nucleus was assigned to be either somatic or within a

PGC by measuring the average intensity of Vasa signal in a sphere around that nucleus.

Then the pgc FISH signal in a volume around all somatic nuclei was measured and

compared to the pgc FISH signal which is not in that volume (i.e. the pgc FISH signal

within the PGCs). This yields the relative amount of pgc RNA which remains in the

soma after PGC formation is complete for each individual embryo. On average 32% of

the pgc FISH signal is located in soma in wild type stage 4 embryos and 30% in

embryos from lost mutant mothers (Fig. 22 C). The difference is not statistically

significant (Mann-Whitney-U test, p = 0.71). There is no detectable difference in the

amount of pgc RNA which remains in the soma after PGC budding between wild type

and lost embryos.

The transcriptional silencing of the SNUPs which is seen in lost embryos could be

explained by a temporal or spatial misregulation of pgc translation, although no change

in pgc RNA localization could be detected after PGC formation in lost embryos

compared to wild type embryos (Fig. 22). pgc RNA codes for a 71-amino acid peptide

which globally blocks transcriptional elongation (Hanyu-Nakamura et al. 2008). In

order to visualize the Pgc peptide fixed stage 4 embryos from either wild type or lost

mutant mothers were stained with an antibody against Pgc, an antibody against Vasa

and with Dapi (Fig. 23 A,C). As reported earlier (Hanyu-Nakamura et al. 2008) in wild

type embryos Pgc is enriched in the nuclei of the PGCs and in their cytoplasm but it is

absent from the somatic portion of the embryo (Fig. 23 A''). The same localization

pattern is found in lost embryos (Fig. 23 C''). In both genotypes no Pgc signal could be

detected in the soma beneath the PGCs which stands out from the background noise.

Another way of visualizing the translation of pgc RNA is to use a transgenic reporter
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construct described by Rangan et al. (2009). It has been shown that the 3’-UTR of a

given mRNA dictates its subcellular localization and translational regulation (Rangan et

al. 2009). A transgene consisting of the open reading frame (ORF) of eGFP fused to the

pgc-3'-UTR under the control of the maternally active nos promotor can be used to

highlight the spatial and temporal regulation of the translation of pgc RNA (Rangan et

al. 2009). Fixed stage 4 embryos from mothers homozygous for the above mentioned

transgenic reporter construct either in wild type genetic background or lost mutant

background have been stained with antibodies against GFP and Vasa and with Dapi (Fig.

23 B,D). In control embryos the GFP reporter is highly enriched in the PGCs, as already

published (Rangan et al. 2009). No signal which is stronger than the background noise

Figure 23: Maternal loss of lost does not drastically affect the localization of Pgc peptide or
a pgc translation reporter construct after PGC formation. (A-D) Maximum intensity projections
of 2-4 confocal sections of posterior poles of stage 4 embryos stained for Vasa (red), Pgc peptide or
GFP reporter (green) and Dapi (blue). (A'-D') Vasa staining clearly labels the PGCs. (A'',B'') Pgc
peptide is readily detected in the PGCs (enriched in the nuclei) but not in the soma after PGC
formation with no obvious difference between wild type and lost embryos. (B'') The translation of
GFP from a maternally provided GFP-pgc-3'-UTR transgene recapitulates the translation of pgc
(Rangan et al. 2009). GFP is detected in the PGCs but not in the soma. (D'') Maternal loss of lost does
not affect the expression of the GFP reporter. The low signal-to-noise ratio in (A''-D'') does not allow
to exclude subtle effects.
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can be detected in the soma beneath the PGCs (Fig. 23 B''). This pattern reflects the

translation of pgc RNA in wild type embryos. In embryos from lost mutant mothers

which also express the transgenic reporter construct the pattern of the GFP reporter is

indistinguishable from the pattern in control embryos: The GFP reporter can be detected

in the PGCs, but not in the adjacent soma (Fig. 23 D'').

There is no obvious difference in the translation of pgc RNA between wild type

embryos and lost embryos as judged by Pgc antibody staining and a transgenic reporter

construct which recapitulates pgc translation. However, due to the high levels of

background noise in the stainings a weak somatic signal of Pgc or the GFP reporter

cannot be excluded.

An excess of the pgc 3’UTR causes lost-like phenotypes

Fixed embryos from mothers overexpressing the GFP-pgc-3'UTR transgenic construct

described above in a wild type background were stained with an anti-Vasa antibody to

label the PGCs, an anti-pSerCTD antibody to show transcriptional activity and Dapi to

label the nuclei. Figure 24 A shows the posterior pole of a stage 6 embryo. The embryo

shows a pole-hole phenotype with cellularization defects at the posterior pole and

transmigrating PGCs (Fig. 24 A'). This is highly similar to lost embryos (see Fig. 12)

and to maternal pgc overexpression (Fig. 19). Quantification of that phenotype by

calculating the relative amount of transmigrating PGCs reveals that the relative number

of transmigrating PGCs is increased to 21% while in wild type embryos only 14% of the

PGCs transmigrate (Fig. 24 B). This increase compared to wild type embryos is

statistically significant (Mann-Whitney-U test, * p<0.05. ** p<0.01). The amount of

transmigrating PGCs in maternal lost mutants is shown for comparison (see Fig. 12 for

details).

Furthermore, an ectopic transcriptional activity can be detected in the PGCs in stage 6

embryos from mothers overexpressing GFP-pgc-3'UTR as evident by the nuclear pCTD

staining in the PGCs (Fig. 24 A,A''). The same phenotype can be found in lost embryos

(Fig. 13) and in maternal pgc mutant embryos (Fig. 20). Quantification of that

phenotype by calculating the relative amount of transcriptionally active PGCs reveals
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that the relative number of transcriptionally active PGCs is increased to 48% while in

wild type embryos only 20% of the PGCs have active transcription (Fig. 24 C). This

increase compared to wild type embryos is statistically significant (Mann-Whitney-U

test, ** p<0.01. *** p<0.001). The amount of transcriptionally active  PGCs in maternal

lost mutants is shown for comparison (see Fig. 13 for details).

Embryos from mothers which overexpress GFP-pgc-3'UTR exhibit features from

maternal pgc mutants (ectopic transcriptional activity in the PGCs) and from pgc GOF

embryos (transmigrating PGCs). This combination of phenotypes is also seen in

embryos from lost mutant mothers.

Figure 24: Embryos from
mothers expressing GFP-
pgc-3'UTR show lost-like
phenotypes. (A) Maximum
intensity projections of 4
confocal sections of posterior
poles of stage 6 embryos
stained for Vasa (red), pCTD
(green) and Dapi (blue). The
presence of a pCTD signal
indicates transcriptional
activity. (A') Some of the
PGCs, labeled by Vasa,
migrate through the epithelium
prematurely. (A'') Some PGCs
show ectopic transcriptional
activity. (B) Quantification of
the premature transmigration
and (C) transcriptional active
PGCs in GFP-pgc-UTR
embryos in comparison wild
type (ctrl) and maternal lost
embryos. The columns show

embryos in comparison wild type (ctrl) and maternal lost embryos. The columns show the average
relative number of transmigrating PGCs during stages 6 and 7 (B) or pCTD positive PGCs during
stage 6 (C) of the indicated genotypes. The relative amount of transmigrating PGCs and
transcriptionally active PGCs in GFP-pgc-UTR embryos is significantly increased compared to wild
type embryos, but does not differ significantly from maternal lost embryos. Error bars show SEM. ***
p<0.001. ** p<0.01. * p<0.05 Mann-Whitney-U test.
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The amount of osk RNA in the PGCs is increased in maternal lost mutants

These phenotypes are not caused by an increased amount of the complete pgc RNA in

the early embryo but only its 3'-UTR. The 3'-UTR of a given RNA dictates its

localization, stability and translation by binding to certain proteins forming

ribonucleoprotein particles (RNPs) (reviewed by Martin and Ephrussi (2009)).

These RNPs can consist of different proteins and RNAs which define their function and

subcellular localization. The RNPs which contain the germ line determinants are

referred to as “polar granules” and are located at the posterior pole in the early embryo.

Since Lost protein has been found to be present in various RNPs (Herold et al. 2009,

Snee and Macdonald 2009) and it is enriched at the posterior pole (Fig. 11 C) it might

play a role in regulating the germ plasm RNPs.

Recently it was found that the pole plasm contains at least two different types of RNPs

(Trcek et al. 2015). One type, the polar granules, consists of Vasa and Osk proteins and

nos, gcl, cycB and pgc RNAs. pgc RNA, however, is the only germ plasm RNA which

is also found in the other type of RNP (Trcek et al. 2015). Besides pgc RNA and Vasa

protein this RNP also contains osk RNA, which is absent from the polar granules (Trcek

et al. 2015). In contrast to the polar granule RNAs osk RNA is excluded from PGCs

(Little et al. 2015) although it inhabits the same volume at the posterior pole of an

embryo as the germ plasm.

Since osk and pgc are found in the same RNP and loss of lost has an effect on pgc FISH

intensity profile (see Fig. 18) a possible effect of Lost on the localization of osk after

PGC formation was investigated. For that wild type and maternal lost mutant embryos

have been stained and analyzed. Figure 25 shows the posterior poles of fixed stage 4

embryos from either wild type mothers (Fig. 25 A) or lost mutant mothers (Fig. 25 B).

osk RNA was visualized using FISH, an anti-Vasa antibody was used to label the PGCs

and Dapi to show the nuclei. As published before (Little et al. 2015), the vast majority

of osk RNA is found in the soma beneath the PGCs but not in the PGCs in wild type

embryos (Fig. 25 A'). The somatic osk RNA is not localized apically or perinuclear, it

rather seems to diffuse away from the posterior pole. In lost embryos, however, a

substantial fraction of osk RNA signal is found within the PGCs (Fig. 25 B',B''). In

order to quantify the relative amount of osk RNA within the PGCs of a stage 4 embryo a
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Fiji macro was created for batch processing each embryo individually (see Methods for

details). In brief, 3D confocal stacks covering the complete posterior pole were

analyzed. Because of some Vasa protein left in the soma after PGC budding it is not

possible to use a mask from the Vasa channel to distinguish between soma and PGCs.

Instead the identity of the nuclei (somatic or PGC nucleus) can be used. For that each

nucleus was identified as a single object using a 3D watershed algorithm. Then each

Figure 25: The amount of osk RNA within the PGCs is drastically increased in maternal lost
mutants. (A,B) Maximum intensity projections of 2-4 confocal sections of posterior poles of stage 4
embryos stained for Vasa (red), osk RNA (green) and Dapi (blue). (A) In control embryos the vast
majority of osk RNA is found in the soma after PGC formation. Only very weak osk FISH signals (A')
can be detected in the PGCs, labeled by Vasa (A''). (B) In maternal lost embryos a strong osk FISH
signal (B') can be found colocalizing with Vasa (B''). (C) Quantification of the osk FISH signal in the
PGCs. The columns show the average cumulative osk FISH signal intensity located in the PGCs
relative to the cumulative total osk FISH signal intensity of a given embryo. The relative amount of
osk FISH signal in the PGCs in maternal lost embryos is significantly increased compared to wild
type. Error bars show SEM. *** p<0.001 Mann-Whitney-U test.
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nucleus was assigned to be either somatic or within a PGC by measuring the average

intensity of Vasa signal in a sphere around that nucleus. Then a mask from the Vasa

channel was created from which a volume around the somatic nuclei was removed

resulting in a mask specific for the PGCs. Then the osk FISH signal intensity within that

mask and outside that mask was measured. This yields the amount of osk RNA within

the PGCs relative to the total amount of osk RNA for each embryo. The quantitative

analysis reveals that in wild type embryos on average around 9% of the osk RNA signal

is localized within the PGCs while in embryos from lost mutant mothers 40% of the osk

RNA resides inside the PGCs (Fig. 25 C). This difference is statistically significant

(Mann-Whitney-U test, *** p<0.001).

This shows that the relative amount of osk RNA in the PGCs of lost embryos is

increased fourfold compared to wild type embryos. The biological relevance of

excluding osk RNA from the PGCs remains unclear, however, it was reported that

forcing osk RNA into the PGCs has a detrimental effect on their development (Little et

al. 2015). The details of this phenomenon remain to be explored.

The localizion of osk RNA and protein is highly dynamic during PGC

formation

In order to gain further understanding of the behavior of osk RNA during PGC

formation and to investigate the effect of the observed osk RNA mislocalization in lost

embryos (see Fig. 25) the changes in osk RNA localization before, during and after

PGC formation were analyzed in detail. A transgenic construct, in which the localizing

elements of the osk-3’-UTR were replaced with the nos 3’UTR, was obtained (Little et

al. 2015). In embryos from mothers overexpressing this construct using the UAS-Gal4

system (thereafter referred to as osk-nos-3’UTR embryos) the transgenic osk RNA is

ectopically loaded into the PGCs due to the presence of the nos-3’-UTR which dictates

its localization (Van Doren et al. 1998b, Little et al. 2015).

In order to evaluate the performance of the ectopic transport of osk RNA into the PGCs

and to document the localization of osk RNA during early embryogenesis FISH was
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used to label osk RNA. The germ plasm was labeled using an antibody against Vasa,

Dapi was used to detect the nuclei. The antisense RNA probe directed against osk does

not discriminate between endogenous and transgenic osk RNA species. Figure 26 shows

confocal sections of posterior poles of embryos from wild type mothers (Fig. 26 A,D,G),

lost mutant mothers (Fig. 26 B,E,H) and mothers overexpressing osk-nos-3’UTR (Fig.

26 C,F,I) before PGC budding (Fig. 26 A-C), during PGC budding (Fig. 26 D-E) and

after PGC budding (Fig. 26 G-I).

Before PGC budding the osk RNA inhabits the same volume as the germ plasm at the

posterior pole as indicated by the almost perfect overlap of the osk FISH staining (Fig.

26 A'-C') with the anti-Vasa staining (Fig. 26 A''-C''). A close observation reveals that

although osk RNA particles and Vasa particles are localized in the same region they are

separate structures. This has been reported earlier (Trcek et al. 2015). There is no

difference in the localization of osk RNA between wild type embryos, lost embryos and

osk-nos-3’UTR embryos before the formation of the PGCs.

During PGC budding the germ plasm accumulates around the budding nuclei and

eventually gets incorporated into the PGCs. This process can be observed in wild type

embryos (Fig. 26 D''), lost embryos (Fig. 26 E'') and osk-nos-3’UTR embryos (Fig. 26

F'') with no apparent difference between these genotypes. osk RNA follows a different

pattern of localization. In wild type embryos osk RNA does not accumulate around the

budding nuclei and is thus not actively transported into the forming PGCs. Instead the

osk RNA starts to diffuse away from the posterior cortex towards the yolk (Fig. 26 D').

These observations confirm the results from Little et al. (2015). In lost embryos,

however, an increased amount of osk RNA seems to be present in the polar buds (Fig.

26 E') compared to wild type embryos. The majority of osk RNA diffuses from the

cortex into the embryo comparable to wild type embryos. In osk-nos-3’UTR embryos a

substantial amount of osk RNA accumulates around the budding nuclei like the germ

plasm does (Fig. 26 F') while the remaining osk RNA is diffusing into the embryo. The

osk RNA particles which follow the germ plasm are likely to be the transgenic osk-nos-

3’UTR molecules while the diffusing osk FISH signal represents the endogenous osk

RNA.

After PGC budding the germ plasm has been almost completely transported into PGCs.

There are only small amounts of Vasa particles left in the soma localized directly apical
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of the SNUPs. This can be observed in wild type embryos (Fig. 26 G''), lost embryos

(Fig. 26 H'') and osk-nos-3’UTR embryos (Fig. 26 I'') with no apparent difference

between these genotypes. As shown in Figure 25 in wild type embryos the vast majority

of osk RNA is present in the soma beneath the PGCs diffusing away from the posterior

pole (Fig. 26 G'). Only a small fraction of osk RNA can be detected within the PGCs

(see above for details). In lost embryos the amount of osk RNA which resides within the

PGCs is significantly increased (Fig. 26 H') compared to wild type (see Fig. 25 for

details). In osk-nos-3’UTR embryos a substantial amount of osk RNA can be found

within the PGCs (Fig. 26 I'). The osk RNA particles which are detected in the soma

diffuse away from the posterior pole into the embryo comparable to wild type and lost

embryos.

In summary, although osk RNA particles and the germ plasm inhabit the same volume

at the posterior cortex before PGCs budding they are regulated differently. In wild type

embryos the germ plasm is accumulating around the budding nuclei and by that

incorporated into the forming PGCs while osk RNA starts to diffuse away from the

cortex. This leaves the vast majority of osk RNA in the soma while the germ plasm is

almost exclusively present in the PGCs. In lost embryos an increased amount of osk

RNA can be found within the PGCs after their formation. In osk-nos-3’-UTR embryos a

part of the osk RNA is accumulating around the budding nuclei and gets transported

into the PGC where it is readily detected after PGC formation. This is likely to be the

Figure 26: The localization of osk RNA is highly dynamic during PGC formation. (A-I)
Maximum intensity projections of 2-4 confocal sections of posterior poles of embryos before (A-C),
during (D-F) and after PGC budding (G-I) stained for Vasa (magenta), osk RNA (green) and Dapi
(blue). Posterior is up. Note that the osk FISH in C',F' and I' labels both the endogenous and the
transgenic osk RNA species. (A-C) Before PGC budding osk RNA (A'-C') inhabits the same volume
at the posterior pole as the germ plasm labeled by Vasa (A''-C'') in wild type, maternal lost mutant
embryos and embryos maternally expressing a transgenic RNA composed of the osk ORF and the
3'UTR of nos. (D-F) During PGC budding the germ plasm accumulates around the budding nuclei and
is transported into PGCs (D''-F'') with no difference between the genotypes. (D',E') In wild type and
maternal lost embryos osk RNA is accumulating around the budding nuclei. Some fraction of osk
RNA appears to be brought into the PGCs passively with the posterior cytoplasm. (F') In osk-nos-
3'UTR embryos a large portion of the osk RNA accumulates around the budding nuclei and is
transported into the PGCs. (G-I) After PGC formation the vast majority of the germ plasm is located
in the PGCs, only a small fraction remains in the soma (G''-I'') with no difference between the
genotypes. (G') In wild type embryos almost no osk RNA is detectable in the PGCs, while in maternal
lost and in osk-nos-3'UTR embryos osk RNA can be detected within the PGCs.
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transgenic osk-nos-3’-UTR RNA species. The remaining osk RNA, presumably the

endogenous osk RNA molecules, shows a wild type-like localization pattern. This

confirms that in embryos from mothers overexpressing osk-nos-3’-UTR osk RNA is

indeed ectopically transported into the PGCs.

Like osk RNA Osk protein has been extensively studied during oogenesis and its role as

the nucleator for the formation of the germ plasm is well established (reviewed by

Lehmann (2016)). Osk protein is a component of the polar granules located at the

posterior pole of embryos. These granules also contain the germ line determinants like

gcl RNA and Vasa protein. Since osk RNA is mislocalized in lost embryos (see Fig. 25)

the question arises whether Osk protein is affected as well. To address these questions

the localization of Osk protein during early embryogenesis was visualized using

immunofluorescence. The germ plasm was labeled using an antibody against Vasa,

Dapi was used to detect the nuclei. Figure 27 shows confocal sections of posterior poles

of embryos from wild type mothers (Fig. 27 A,D,G), lost mutant mothers (Fig. 27

B,E,H) and mothers overexpressing osk-nos-3’UTR (Fig. 27 C,F,I) before PGC budding

(Fig. 27 A-C), during PGC budding (Fig. 27 D-E) and after PGC budding (Fig. 27 G-I).

During the whole process of PGC formation Osk protein resembles the localization

pattern of Vasa protein. Before PGC budding both proteins are found at the posterior of

the embryo (Fig. 27 A',A'') forming, together with other components, the germ granules.

During PGC budding both Osk and Vas accumulate around the budding nuclei (Fig. 26

D',D'') and are thus transported into the forming PGCs. After PGC budding the majority

of both Osk and Vas is present within the PGCs and only a small fraction remains in the

soma (Fig. 27 G',G'') where it localizes apically of the SNUPs. There are no detectable

Figure 27: The localization of Osk protein is not affected in maternal lost and in osk-nos-
3'UTR embryos. (A-I) Maximum intensity projections of 2-4 confocal sections of posterior poles of
embryos before (A-C), during (D-F) and after PGC budding (G-I) stained for Vasa (magenta), Osk
protein (green) and Dapi (blue). Posterior is up. Localization of Osk protein in maternal lost (B,E,H)
and in osk-nos-3'UTR embryos (C,F,I) does not differ from wild embryos (A,D,G). It colocalizes with
Vasa and behaves as a germ plasm component: Before PGC budding (A'-C') Osk resides at the
posterior pole, during PGC budding (D'-F') Osk accumulates around the budding nuclei and after PGC
formation (G'-I') Osk is mainly found within the PGCs. A small fraction of Osk remains in the soma
apical to the SNUPs.



68

differences in the localization of Osk protein between wild type, lost or osk-nos-3’UTR

embryos at any of the analyzed time points. This makes it unlikely that Osk protein is

involved in causing the phenotypes observed in lost embryos. Furthermore, the

overexpression of osk-nos-3’UTR during oogenesis does not result in changes in Osk

protein localization during PGC formation, it merely leads to an increased amount of

osk RNA within the PGCs as it is also found in lost embryos (see Fig. 25 and Fig. 26).

Maternal expression of osk-nos-3'UTR is sufficient to cause lost-like

phenotypes

Embryos from lost mutant mothers show a fourfold increase in the relative amount of

osk RNA within the PGCs after their formation compared to wild type embryos (see Fig.

25), however, no difference in the amount or localization of Osk protein could be

detected (see Fig. 27). This raises the question whether ectopic osk RNA within PGCs

can cause the phenotypes observed in lost embryos. To address this question osk-nos-3’-

UTR embryos were analyzed in detail and the strength of the lost-like phenotypes was

quantified. Fixed embryos were stained with an antibody against Vasa to label the PGCs,

an antibody against the phosphorylated carboxy-terminal domain (pCTD) of RNA-

polymerase II to label active transcription and Dapi was used to show the nuclei.

Analyses and quantifications were performed as before (see methods for details).

In lost embryos the transcriptional activity of the somatic nuclei underneath the PGCs

(SNUPs) is lower than in the other somatic nuclei (see Fig. 15). The same effect can be

observed in osk-nos-3’UTR embryos (Fig. 28 A''). A quantification of this phenotype

reveals that the average intensity of the pCTD signal within the SNUPs is 0.68-fold of

the signal strength of the other somatic nuclei (Fig. 28 C). This difference is statistically

significant compared to wild type (Mann-Whitney-U test, *** p<0.001). The effect seen

in osk-nos-3’UTR embryos is as strong as in lost embryos (Fig. 28 C).

Another feature of lost embryos is an increased relative number of PGCs which show

transcriptional activity at stage 6 of development (see Fig. 13). This is also found in osk-

nos-3’UTR embryos (Fig. 28 B''). Quantifying this phenotype reveals that in osk-nos-
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3’UTR embryos 42% of the PGCs show transcriptional activity while in wild type

embryos only 20% are transcriptionally active (Fig. 28 D). Although the phenotype is

not as strong as in lost embryos (57%) it differs statistically significant from wild type

(Mann-Whitney-U test, *** p<0.001).

In lost embryos an increased number of PGCs migrate through the PMG epithelium

during stages 6 and 7 (see Fig. 12). This phenotype can also be observed in osk-nos-

Figure 28: Maternal expression of osk-nos-3'UTR is sufficient to cause lost-like phenotypes.
(A, B) Maximum intensity projections of 2-4 confocal sections of posterior poles of osk-nos-3'UTR
embryos stained for Vasa (red), pCTD (green) and Dapi (blue). The presence of a nuclear pCTD
signal indicates transcriptional activity. (A) At stage 4 the SNUPs are less transcriptionally active than
the other somatic nuclei indicated by their very weak pCTD signal (A''). Dapi (A') labels the nuclei.
(B) At stage 6 some of the PGCs, labeled by Vasa (B'), migrate through the epithelium prematurely.
(B'') Some PGCs show ectopic transcriptional activity. (C) Quantification of the relative
transcriptional activity of the SNUPs, (D) transcriptional active PGCs and (D) the premature
transmigration in osk-nos-3'UTR embryos in comparison wild type (ctrl) and maternal lost embryos.
The columns show the average pCTD signal in the SNUPs relative to the other somatic nuclei (C), the
average relative number of pCTD positive PGCs during stage 6 (D) or the average relative number of
transmigrating PGCs during stages 6 and 7 (E) of the indicated genotypes. In osk-nos-3'UTR embryos
the SNUPs show significantly less transcription (C) while the number of transcriptionally active PGCs
and the number of transmigrating PGCs are significantly increased compared to wild type embryos.
The phenotypes are as strong as in maternal lost embryos. Error bars show SEM. *** p<0.001. **
p<0.01 Mann-Whitney-U test.
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3’UTR embryos (Fig. 28 B'). A quantification of this phenotype reveals that in osk-nos-

3’UTR embryos on average 23% of the PGCs transmigrate (Fig. 28 E), a statistically

significant increase compared to 13% transmigrating PGCs found in wild type embryos

(Mann-Whitney-U test, ** p<0.01. *** p<0.001). The effect seen in osk-nos-3’UTR

embryos is as strong as in lost embryos (Fig. 28 E).

This demonstrates that an increased amount of osk RNA within the PGCs caused by

transgenic osk-nos-3’UTR RNA is sufficient to induce lost-like phenotypes, including a

reduced transcriptional activity in the SNUPs, ectopic transcriptional activity in the

PGCs’ nuclei and cellularization defects at the posterior pole with transmigrating PGCs.
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Discussion

The germline cells are of fundamental importance for all animals as they have the

ability to give rise to the next generation. Their precursors, primordial germ cells

(PGCs), are determined very early during animal development. To form the embryonic

gonad they must come together with the somatic gonadal precursor cells (SGPs) which

are often specified at a different location within the embryo. This requires the PGCs to

actively migrate towards the SGPs.

In Drosophila, the PGCs arise from a specialized cytoplasm, the germplasm, which is

deposited at the posterior pole of the oocyte during oogenesis. They form earlier than

the somatic epithelium and are kept outside the embryo until gastrulation. Later they

start their active migration towards the SGPs in the lateral mesoderm. If they fail to

reach their destination they are removed by programmed cell death.

In this thesis two gene functions have been investigated which are required for the early

separation of the PGCs from the somatic epithelium. Both genes have overlapping

mutant phenotypes but function by completely different mechanisms.

Echinoid

ed codes for a homophilic cell adhesion molecule that is expressed throughout

embryogenesis in all epidermal tissues. ed mRNA is maternally contributed to the early

embryo (Kumar et al. 2011) and its RNA and the translated protein are present in the

embryonic epithelium during stage 6 but not in the PGCs which reside at the posterior

pole of the embryo (Fig. 4).



72

Differential expression of Ed prevents PGC transmigration

Since ed LOF mutations are homozygous lethal the germline clone (GLC) technique

was used to obtain maternally ed mutant embryos (Chou et al. 1993). The UAS-Gal4

mediated expression of dsRNA against ed in the female germline (Staller et al. 2013)

was used as a completely independent way of obtaining embryos devoid of the maternal

contribution of ed RNA. Both, ed GLC and maternal ed RNAi embryos, show the same

phenotype: The PGCs, which normally reside on top of the PMG epithelium during

embryonic stages 6 and 7, migrate in between the epithelial cells (Fig. 5). This

phenotype could be due a role of Ed in epithelial cell adhesion or cellularization.

Several points argue against that: It was shown that in ed mutant clones in larval wing

disc epithelia adherens junctions (AJ) between mutant cells are not affected (Wei et al.

2005). Furthermore, an analysis of the localization of the cellularization markers Slam

and Dlg in maternal ed RNAi embryos revealed no difference compared to wild type

embryos (Fig. 8) ruling out a role of Ed in cellularization. The finding that in embryos

lacking maternal ed contribution the PGCs migrate through the PMG epithelium

without having cell adhesion or cellularization compromised suggests that the interface

between ed-expressing epithelial cells and ed non-expressing PGCs is crucial.

Differential expression of ed has been shown to have a function in tissue morphogenesis

and has been suggested to drive cell sorting (Lecuit 2005, Laplante and Nilson 2006).

This led to the hypothesis that the interface between ed-expressing somatic cells and ed

non-expressing PGCs prevents intermingling of these two cell populations

Further support for this interpretation comes from embryos in which the expression

interface was removed by ectopically expressing ed within the PGCs. This was achieved

by maternally expressing a transgene consisting of the ed ORF fused to the 3'UTR of

nos in the female germline. In embryos from these mothers ed RNA is enriched at the

posterior pole and then in the PGCs (Fig. 6). In these embryos also Ed protein is found

in the PGCs as well as in the soma, so the ectopic expression does not influence the

endogenous ed expression. These ed-nos-3'UTR embryos show the same PGC

transmigration phenotype as maternal ed mutant embryos without affecting
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cellularization. This demonstrates that indeed the differential expression of ed prevents

the PGCs from mixing with the underlying epithelial cells.

The results suggest an essential role of the ed expression within the PMG to inhibit the

premature transmigration of PGCs. However, during gastrulation and germ band

extension (GBE) the PGCs stay in the posterior midgut pocket only up to stage 9. Then

they start to migrate as individual cells in between the epithelial cells and subsequently

towards the SGPs in the lateral mesoderm. So if ed expression in the PMG epithelium

prevents transmigration a change in Ed localization or expression would be expected at

the onset of PGC migration.

Indeed, in wild type embryos Ed remains apically localized in the PMG epithelium until

stage 9 when the active migration of the PGCs starts. However, during transmigration

Ed is mostly absent from the PMG (Fig. 7). At the same time the PMG epithelium

undergoes an epithelial-to-mesenchymal transition (EMT) during which the PMG cells

lose their apical-basal polarity and weaken their cell adhesion (Campbell et al. 2011). It

is not clear whether Ed is actively removed from the PMG to allow the transmigration

or if its absence is a consequence of the EMT. It has been shown, however, that the

reduced cell adhesion between the PMG cells is necessary for allowing the PGCs to

transmigrate (Seifert and Lehmann 2012). The removal of Ed from the PMG precisely

at the time of the PGCs transmigration supports the model that indeed the interface of

ed expressing PMG and ed non-expressing PGCs represents a key inhibitory mechanism

against an untimed transmigration of PGCs.

Mechanism underling the inhibition of PGC transmigration

The interface between ed-expressing and ed non-expressing cell populations has been

studied before. When Laplante and Nilson (2006) introduced ed mutant clones of cells

in the follicular epithelium of the egg chamber they found a smooth border between the

ed mutant cells and the surrounding ed expressing cells. This borderline is devoid of cell

adhesion proteins like Cadherin and Catenin but rich in actin and myosin in the ed
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expressing cells. The same behavior of ed mutant clones in an ed expressing epithelium

was reported for the larval wing disc (Wei et al. 2005). The biological relevance of the

differential expression of ed has been demonstrated in the context of dorsal closure

(Laplante and Nilson 2011). It was shown that Ed is present in the epidermal epithelium

but not in the amnioserosa. At the interface, the leading edge, epithelial cells generate

an intercellular contractile actomyosin cable which provides physical force that results

in a smooth border and was shown to be essential for dorsal closure. If ed is removed

from the epithelium or ectopically expressed within the amnioserosa the actomyosin

cable fails to form which leads to defects in dorsal closure (Laplante and Nilson 2011).

The ed non-expressing PGCs sitting on top of the ed-expressing epithelium form an

interface comparable to that during dorsal closure, although the function of the

differential expression of ed is different. While during dorsal closure the differential

expression ensures the formation of an intercellular contractile actomyosin cable that

stabilizes the leading edge (Laplante and Nilson 2011) in context of the PGCs the

differential ed expression prohibits the PGCs mixing with the underlying epithelium.

Here, the differential expression of Ed prevents the migration of an overlying cell

population through an epithelium. So in contrast to the already described examples of

Ed function between ed expressing and non-expressing cells within a planar epithelium

where the border resembles a line (Wei et al. 2005, Laplante and Nilson 2006), here a

border resembling a plane is generated between a two-dimensional epithelium and a cell

population on top.

Interestingly, in fixed wild type embryos an apical actin network is present in the

epithelial cells beneath the PGCs (Fig. 9). This network is weakened or disrupted in

maternal ed RNAi embryos as well as in ed-nos-3'-UTR embryos indicating that the

differential expression of ed is necessary for its formation or stabilization. These

findings are confirmed using fly lines which express fluorescently labeled actin and

myosin markers in the female germ line (Rauzi et al. 2010). In living embryos with

these markers maternally provided a strong apical actin and myosin signal is detected in

the epithelium beneath the PGCs (Fig. 10). This network is severely weakened or

disrupted in maternal ed RNAi embryos as well as in ed-nos-3'-UTR embryos

ectopically expressing ed in the PGCs (Fig. 10).
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Although the interface between ed expressing and non-expressing tissues promotes the

formation of actomyosin cables both during dorsal closure and in the PMG cells

underneath the PGCs the situation is slightly different: The PGCs are not in the same

plane as the epithelium but on top of it. This also means that the interface between ed-

expressing and ed non-expressing cells is not a line as in the follicle but a plane.

Accordingly the actomyosin forms an intercellular network at the apical side of the

epithelial cells and not a cable. However, it is not clear whether it resembles an

apicolateral actomyosin connected to the adherens junctions (AJ) or a subapical or

apical cortical network.

The germ band extension (GBE) further complicates the situation. This process is

mainly driven by cell intercalation and cell shape changes (Irvine and Wieschaus 1994,

da Silva and Vincent 2007). These tissue movements are taking place without

compromising epithelial integrity which requires the constant remodeling of AJ. The

role of actomyosin cables during these processes have been studied in detail during the

invagination of the mesoderm at embryonic stage 6 (Coravos and Martin 2016) as well

during GBE (Rauzi et al. 2010). While DE-Cad in the AJ keeps the cells attached

actomyosin is providing the force for the morphogenetic movements. Two distinct actin

systems have been described to play a role: An actin cable located in the subapical

cortex which is connected to the AJ and an actomyosin meshwork in the apical cortex

(Martin et al. 2009). The former plays a role in epithelial integrity and positioning of the

AJ (Lecuit and Lenne 2007) while the latter provided physical force for cell shape

changes like apical constriction (Coravos and Martin 2016). During the movement the

local concentration of myosin and therefore the force generation is highly dynamic

(Mason et al. 2013). It is likely that similar mechanisms are used by the cells of the

PMG to regulate their adhesion shape during GBE which is reflected by the strong

accumulation of actin in the apical region of PMG cells which starts to undergo cell

shape changes during GBE (Fig. 9, 10).

It is, however, unclear which of the actomyosin systems is used by the differential

expression of ed. No conclusion can be drawn from analyzing the confocal images
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because both actomyosin populations are located apically in the cells and are therefore

in close proximity. Furthermore, the PGCs which are located directly on top of the

epithelium also contain actin and myosin. By analyzing the confocal images it is

impossible to distinguish to which of two touching cells the actin signal detected at the

interface belongs. It is, however, unlikely that Ed affects the DE-Cad associated species

of actin because it has been published that ed LOF has no impact on cell adhesion (Wei

et al. 2005). Furthermore, GBE and gastrulation are not disturbed neither in maternal ed

RNAi nor in ed-nos-3'UTR embryos which argues against Ed affecting AJ. It has been

shown, however, that DE-Cad is linked to the actin cytoskeleton via α-Catenin and

Girdin (Gir) while Ed uses Canoe (Cno) as an adaptor (Wei et al. 2005, Desai et al.

2013, Houssin et al. 2015). Further research focusing on these genes might help to shed

light on the molecular mechanisms by which Ed is affecting the actin cytoskeleton.

However, it cannot be excluded that the differential expression of ed triggers the

formation of another, distinct cortical actomyosin network in the PMG epithelium. It

has been shown that physical tension provided by cortical actomyosin can drive cell

sorting and morphogenesis (Umetsu et al. 2014, Duque and Gorfinkiel 2016). Recently

it was shown that in early mouse blastocysts the cells that become the inner cell mass

sort themselves out from the later trophectoderm cells via differential surface tension

(Samarage et al. 2015). Live imaging and mathematical models show that cortical

tension also directs cell sorting during zebrafish gastrulation (Krieg et al. 2008).

Cortical tension provided by actomyosin seems to be commonly used mechanism for

cell sorting in animal development. However, the means of regulating the actin

cytoskeleton differ between species.
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Lost

lost codes for a highly conserved RNA binding protein which has been found in several

RNA-protein complexes, such as splicosomes and sponge bodies (Herold et al. 2009,

Snee and Macdonald 2009). Furthermore, it has been shown to form a complex with

Rumpelstiltskin (Rump) during oogenesis which directly binds to nos mRNA and has a

function for transport and anchoring of the germ plasm (Jain and Gavis 2008, Sinsimer

et al. 2011). Lost protein and RNA are maternally provided to the early embryo

(Molitor 2002). After the maternal-to-zygotic transition (MZT) the lost RNA is

degraded in the somatic part of the embryo and stabilized in the PGCs (Molitor 2002).

However, Lost protein is localized ubiquitously in the embryo but slightly enriched at

the posterior pole before PGC formation and later in the PGCs (Fig. 11).

Posterior and PGC development is affected in maternal lost mutants

In embryos derived from mothers that are homozygous mutant for lost (hereafter

referred to as maternal lost mutant embryos) some PGCs traverse the PMG epithelium

prematurely during embryonic stages 6 and 7 through gaps in the epithelium. This

phenotype solely depends on the genotype of the mother (Hertel 2011) therefore only

maternal mutants have been analyzed here. Although Lost is present throughout the

embryo the epithelial integrity is compromised only in somatic cells directly beneath the

PGCs. Staining of various proteins expressed in the somatic epithelium revealed a

normal expression and localization except for the area beneath the PGCs. Marker

proteins for the apical, lateral and basal membrane domains show a reduced expression

level and are localized abnormally only in these somatic cells (Fig. 14). This argues

against a general function of Lost for cellularization or cell adhesion between the

somatic epithelial cells and supports a model of specific function of Lost in the region

of the posterior pole of the embryo.
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Shortly before cellularization the somatic nuclei are characterized by a uniformly strong

transcriptional activity as judged by an antibody against active RNA polymerase II (Fig.

15, Palancade and Bensaude (2003)). In contrast, the PGCs are mostly transcriptionally

silent after their formation at stage 3 until they start their active migration at stage 9 in

wild type embryos (Fig. 13, Zalokar (1976)). In maternal lost mutants, however, the

transcriptional activity of the somatic nuclei underneath the PGCs (SNUPs) is reduced

to about two thirds compared to the other somatic nuclei. This local reduction in

transcriptional activity is perfectly overlapping with the region of the observed changes

in expression and localization of epithelial marker proteins.

It has been demonstrated that active zygotic transcription is essential for cellularization

(Edgar et al. 1986), thus the reduced transcriptional activity in the SNUPs observed in

maternal lost mutant embryos could cause the cellularization phenotypes observed at the

posterior pole. In wild type embryos the PGCs migrate through the PMG epithelium

during stages 9 and 10 while at the same time the PMG undergoes an epithelial-to-

mesenchymal transition (EMT) weakening its cell adhesion (Campbell et al. 2011). It

has been shown that compromising epithelial integrity (either by EMT or other means)

is necessary for allowing the PGCs to transmigrate (Seifert and Lehmann 2012). The

premature transmigration seen in maternal lost mutant embryos could therefore be

explained by compromised epithelial integrity at the posterior pole which is a result of

cellularization defects caused by reduced levels of zygotic transcription in the SNUPs.

The analysis RNA polymerase II activity not only revealed the described reduction of

the activity in the somatic cells beneath the PGCs, but also that the number of

transcriptional active PGCs is increased 3-fold in maternal lost mutant embryos (Fig.

13). In wild type embryos the PGCs are mostly transcriptionally silenced after their

formation (Seydoux and Dunn 1997). This is a general feature of developing PGCs and

has been shown in mice, worms, flies and others (Leatherman and Jongens 2003,

Nakamura and Seydoux 2008, Strome and Updike 2015). The mechanisms by which the

PGCs shut down their transcription differ among species. In Drosophila the PGC

silencing is mediated by Pgc, a 71 amino acid peptide (Hanyu-Nakamura et al. 2008),

which directly binds to the positive Transcription Elongation Factor b (pTEFb) thereby
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preventing its recruitment to chromatin (Hanyu-Nakamura et al. 2008). Therefore,

pTEFb is unable to phosphorylize the carboxy-terminal domain (CTD) of RNA

polymerase II, which is necessary for active transcription (Dahmus 1996). If the

transcriptional silencing is disturbed in Drosophila the PGCs show developmental

defects and eventually die (Nakamura et al. 1996). Although the PGCs are

transcriptionally active in maternal lost mutants such an excessive cell death is not seen

in maternal lost mutants (Hertel 2011). This might be due to the magnitude of the

disruption of the transcriptional silencing. In maternal pgc mutants or in maternal pgc

RNAi embryos 85% or 98% of the PGCs, respectively, are transcriptionally active (Fig.

20) and in maternal lost mutants only 54% of the PGC. The analysis of PGC cell death

is further complicated by the fact that those PGCs that migrate through the PMG

prematurely are removed by programmed cells death as well.

In wild type the PGCs start their active migration at embryonic stage 9 (Jaglarz and

Howard 1995). At the same time they become transcriptionally active (Zalokar 1976).

Therefore, it could be that active transcription is a prerequisite for active migration

since both phenomena are seen in maternal lost mutants. Two findings argue against

this hypothesis. First, it has been shown that PGCs in wild type embryos, which are

transcriptionally silent after their formation, are highly motile (Kunwar et al. 2008).

Second, there is no correlation between transcriptional activity and transmigration at

stage 6. The transmigrating PGCs are not necessarily transcriptionally active, while the

transcriptionally active PGCs are not necessarily transmigrating (Fig. 13). This supports

the view that PGCs have the ability to transmigrate independently of their

transcriptional state strongly supporting the model that the two phenotypes observed in

maternal lost mutants are independent.

Lost affects the localization of osk RNA

In summary, all lost mutant phenotypes (premature transmigration of the PGCs, reduced

transcriptional activity of the SNUPs, ectopic transcriptional activity of the PGCs) are

restricted to somatic cells beneath the PGCs or directly involve PGCs. Lost protein,

however, is present throughout the embryo. This discrepancy indicates that Lost protein
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must have a specific function at the posterior pole and/or in the PGCs during the early

embryonic stages. Since Lost was found in various RNA-protein complexes (Herold et

al. 2009, Snee and Macdonald 2009), it has a putative RRM and it was suggested to

play a role in germ plasm transport during late oogenesis (Sinsimer et al. 2011) a

function of Lost in regulating germ plasm RNA transport or anchorage during early

embryogenesis was investigated. While FISH analysis revealed no difference in the

localization of cycB, nos, pgc and gcl RNA between lost mutants and wild type during

stage 1 and stage 4 the amount of osk RNA within the PGCs was significantly increased

in maternal lost mutant embryos compared to wild type embryos at stage 4 (Fig. 25).

It was shown that, in contrast to other germ plasm RNAs, osk RNA is not detectable in

the PGCs after their formation (Little et al. (2015), Fig. 25) although it is present at the

posterior pole of the embryo before the PGCs form. In wild type embryos only a

fraction of osk RNA is incorporated into the PGCs while the majority remains in the

soma (Fig. 26). The osk RNA in the PGCs then is rapidly degraded in wild type

embryos. In contrast, osk RNA can be reliably detected in the PGCs in maternal lost

mutants (Fig. 25, 26). However, the experimental design does not allow determining

whether the increased amount of osk RNA in PGCs originates from a larger fraction of

the osk RNA originally transported into the PGCs or from its reduced degradation in

lost mutant embryos.

To investigate whether the observed increased amount of osk RNA in the PGCs causes

the lost mutant phenotypes a transgenic fly line was obtained which maternally

expresses an osk RNA variant which lacks its own localization signals and is fused to

the 3'-UTR of nos (Little et al. 2015). The 3'-UTR of nos targets the transgenic osk

RNA into the PGCs (Van Doren et al. 1998b). Embryos from mothers expressing osk-

nos-3'UTR RNA during oogenesis indeed show the same phenotypes as maternal lost

mutant embryos: The PGCs migrate through the PMG epithelium prematurely, the

SNUPs have reduced transcriptional activity and the PGCs become transcriptionally

active (Fig. 28). This independent experimental design proves that targeting osk RNA

into the PGCs is sufficient to cause lost-like phenotypes both in the PGCs and in the

somatic cells beneath them. Furthermore, since the localization of the osk-nos-3'-UTR
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RNA into the PGCs is sufficient to induce the observed mutant phenotypes a role of the

3’UTR of the osk RNA can be excluded. This result supports the model that the

mislocalization of an RNA that contains the ORF of Osk is sufficient to cause the

phenotypes.

Although osk RNA is degraded within the PGCs in wild type embryos Osk protein is

present in the PGCs where it is part of the germ granules (Trcek et al. (2015), Fig. 27).

Surprisingly, PGCs of maternal lost mutant embryos, which have an increased amount

of osk RNA, do not show elevated levels or mislocalization of Osk protein (Fig. 27).

The same holds true for embryos from mothers expressing osk-nos-3-UTR, which

targets the transgenic osk RNA into the PGCs in high amounts (Fig. 27). Although Osk

protein levels could only be measured in a semi-quantitative way, these results support

the conclusion that the lost-like phenotypes in these embryos are caused by the excess

of osk RNA within the PGCs independent of the presence of increased levels of Osk

protein. Therefore, increased amounts of the osk RNA including the ORF without a

requirement of additional Osk protein translation seem to be the cause for the observed

phenotypes in lost mutants.

Osk protein and osk RNA are part of different RNP particles

Osk protein induces the formation of the germ plasm during oogenesis. osk RNA is

transcribed in the nurse cells and transported into the developing oocyte. During the

transport its translation is inhibited until it reaches the posterior pole of the oocyte,

where Osk protein is produced. Several regions of the osk RNA, located in the ORF and

in the 3'-UTR, have been shown to be essential for its localization and translational

regulation (Jambor et al. 2011, Simon et al. 2015). Osk protein then binds its own RNA

resulting in a positive feedback loop which further increases the amount of Osk protein

at the posterior pole. Osk protein also recruits Vasa and Tudor and by that induces the

formation of the germ plasm at the posterior pole of the oocyte (Breitwieser et al. 1996,

Anne 2010).
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However, less is known about the function of osk RNA. Recently it was reported that

osk RNA has the ability to rescue certain osk mutations in trans during oogenesis

(Macdonald et al. 2016). It was shown that in ovaries without wild type osk RNA two

osk RNA species with independent mutations can rescue each other when the mutations

are positioned in different domains of the RNA. This ability to rescue in trans could be

blocked by preventing the formation of RNPs indicating that it is sufficient that all

essential osk RNA regions are present in a single RNP rather than on a single RNA

molecule. They also showed that osk RNA molecules affect other RNA molecules

which are present in the same RNP (Macdonald et al. 2016). The authors suggest that

osk RNA molecules recruit certain proteins to the RNP which in turn could regulate the

behavior of all the RNA molecules within that RNP (Macdonald et al. 2016).

These results show an essential role of osk RNA for the formation and composition of

RNPs thereby regulating the transport and translation of additional RNAs. Some RNAs

recruit factors to the RNP which affect the localization and/or translation of all the RNA

species in that RNP (Macdonald et al. 2016). Therefore interfering with the composition

of RNPs by mutating RNAs or proteins affect several genes whose RNA happens to be

part of the affected RNPs. This might result in mislocalized RNAs or untimely or

ectopic translation or ectopic translational repression.

RNPs and their dynamic composition are known to be of great importance for the

regulation of transport and translation of RNAs (Stoiber et al. 2015). Recent advances

in imaging and image analysis allow a more detailed investigation of RNPs during

Drosophila oogenesis and early embryogenesis. Little et al. (2015) reported that the

number of nos RNA molecules within a single RNP increases from 1 during transport to

up to 60 (with a mean of 16) once the particles reach the posterior pole of the oocyte.

This indicates that single RNA molecules get incorporated into large RNPs at the

posterior pole. pgc and cycB RNAs behave in a similar way: After traveling as single-

copy RNPs they assemble into homotypic clusters at the posterior pole of the oocyte.

These clusters (containing either nos, pgc or cycB) then aggregate to form the germ

granules (Little et al. 2015). However, it was also shown that osk RNA behaves in a

fundamentally different way. osk RNA forms multi-copy particles already during
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transport and is assembled into large aggregates containing 50 to 250 molecules of osk

RNA at the posterior pole. Furthermore, the osk RNA particles are devoid of nos, cycB

and Vasa and are not transported into the PGCs during embryogenesis (Little et al.

2015).

Similar results were published by the group of Ruth Lehmann (Trcek et al. 2015). They

combined single molecule FISH with super resolution microscopy and found two

distinct species of RNA-protein particles at the posterior pole of early embryos. One,

the germ granule, contains the well characterized germ line determinants (Vasa, Osk,

Tud, gcl, cycB, nos, pgc) while the other particle contains osk RNA but no Osk protein

(Trcek et al. 2015). The fact that in contrast to the germ granules osk RNA is not

actively transported into the PGCs suggests that these two particles are regulated

differently.

The only germ plasm RNA that has been found in both types of RNPs is pgc (polar

granule component) RNA with around 50% of the pgc RNA molecules being part of the

osk RNP (Trcek et al. 2015). Therefore, pgc RNA in the osk RNA RNP would be a

good candidate that could be affected by the observed mislocalization of osk RNA into

the PGCs.

A detailed analysis of the distribution of germ plasm RNAs in stage 1 wild type

embryos revealed that pgc and nos RNA show a weaker staining intensity at the center

of the germ plasm compared to the outer area of the germ plasm in early wild type

embryos (Fig. 16, 17). This finding is highly reproducible and can also be observed in

the genome-wide FISH database (Lecuyer et al. 2007). However, in other publications

visualizing nos RNA in early embryos using a different staining procedure this reduced

staining intensity is not seen (Little et al. 2015). This indicates that the reduced signal

intensity in the center of the germ plasm is not due to a reduced number of RNA

molecules but a result of the staining method. This interpretation is supported by

Slaidina and Lehmann (2017), who found the concentration of germ plasm components

to be the highest in the center of the germ plasm. It might be that the reduced signal

intensity is caused by a very tight packaging of the respective RNA molecules into
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RNPs in the center of the germ plasm. This could restrict the ability of the antisense-

RNA probe to bind to its target when certain FISH staining methods are used.

Interestingly, when early wild type and maternally lost mutant embryos are stained and

imaged using identical methods the reduction of FISH staining intensity for pgc RNA is

less strong in lost mutants compared to wild type embryos (Fig. 18). Assuming that the

reduced signal intensity is caused by the packaging of the RNA the observed phenotype

could be explained by an altered structure or composition of the pgc containing RNPs in

maternal lost mutants.

pgc as a candidate for Lost-mediated regulation

pgc is a well characterized germ plasm RNA. It codes for a 71-amino acid peptide

which binds to positive Transcription Elongation Factor b (pTEFb). This prevents

pTEFb from phosphorylating RNA-polymerase II and by that globally inhibits

transcription (Hanyu-Nakamura et al. 2008). Interestingly, maternal lost mutant

embryos combine features found in pgc LOF and pgc GOF embryos. Like in embryos

from mothers devoid of pgc the transcriptional silencing of the PGCs is disrupted, i.e.

active transcription can be detected in the nuclei of the PGCs (Hanyu-Nakamura et al.

(2008), Fig. 20). In pgc GOF embryos (from mothers having 6 genomic copies of the

pgc locus instead if 2) not only the PGCs get transcriptionally repressed but also the

somatic nuclei at the posterior pole of the embryo which leads to the “pole-hole”

phenotype where some PGCs “fall” into embryo (de Las Heras et al. 2009). Exactly

these features are also seen in lost embryos: The somatic nuclei underneath the PGCs

(SNUPs) show less active transcription than the other somatic nuclei (Fig. 15). The

epithelial integrity is compromised only beneath the PGCs (Fig. 14) which allows them

to transmigrate through “holes” in the epithelium (Fig. 19).

This combination of features from pgc LOF and pgc GOF phenotypes in lost mutants

could be explained by a misregulation of pgc RNA mediated by osk RNA. pgc and osk

RNA can be found in the same RNP in early embryos (Trcek et al. 2015) and osk RNA

is affected in maternal lost mutants. Furthermore, it has been demonstrated that the

presence of osk RNA in an RNP can influence other RNAs in the same particle
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(Macdonald et al. 2016). A misregulation of pgc transport or translation could therefore

lead to less pgc activity within the PGCs (explaining the ectopic transcriptional activity)

and more pgc activity remaining in the soma (explaining the reduced transcriptional

activity in the SNUPs and the transmigration) in maternal lost mutant embryos. A

detailed analysis of the distribution of pgc RNA between soma and PGCs in wild type

embryos and lost mutants, however, revealed no clear difference (Fig. 22). Within the

limitations of the semi-quantitative measurement of the pgc RNA amount this result

rules out an important function of Lost for the transport of pgc RNA into the PGCs.

Since no difference in the distribution of pgc RNA between soma and PGCs after PGC

formation was found a misregulation of pgc translation due to changes in RNP structure

or composition mediated by osk RNA could alternatively explain the phenotypes

observed in maternal lost mutants. The increased amount of osk RNA within the PGCs

of lost mutant embryos could negatively affect the translation of pgc by recruiting

translational repressors to the shared RNP. The weaker reduction in pgc FISH staining

intensity at the center of the germ plasm in maternal lost mutant embryos at stage 1

could be due to a less dense structure of the pgc containing RNPs which could result in

ectopic translation of pgc in the soma.

The translation of pgc is tightly regulated: It is only translated after the PGCs have

formed to prevent transcriptional silencing of the somatic nuclei (Rangan et al. 2009). If

Lost is a part of a pgc-containing RNP it might have an influence on its translation. Lost

might affect the temporal and/or spatial regulation of translation by influencing the

physical properties or the composition of the RNP. As discussed above, Lost affects the

localization of osk RNA after PGC formation. Furthermore, it was shown that about 50%

of the pgc RNA in early embryos are part of the osk RNP (Trcek et al. 2015).

Interestingly, the fraction of pgc RNA which colocalizes with osk RNA is reduced at the

same time the germ plasm gets transported into the forming PGCs and the translation of

pgc starts (Trcek et al. 2015). This means that either osk RNA is removed from the RNP

or that pgc RNA leaves the RNP. Since it was also shown that osk RNA can affect the

translation of other RNA molecules in the same RNP (Macdonald et al. 2016) it could
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be that the translation of pgc is regulated via osk RNA. This raises the possibility that

Lost could have an indirect effect on the translation of pgc via influencing osk RNA.

If Lost affects the spatial and/or temporal regulation of pgc translation there should be

an excess of Pgc peptide detectable in the soma after PGC formation. Comparative

analyses of antibody stainings of wild type and maternal lost mutant embryos, however,

did not show any noticeable difference in the amount or localization of Pgc peptide (Fig.

23). However, the low quality of the antiserum did not allow the detection of subtle

changes of Pgc expression rates. Therefore, an independent way of visualizing the

translation of pgc was used. A maternally expressed transgenic construct consisting of

the ORF of GFP and the 3'-UTR of pgc allows the analysis of the translation of pgc

(Rangan et al. 2009). It was shown that the expression of GFP from this construct

recapitulates the translation of pgc RNA both temporally and spatially due to the

regulatory signals being localized in the 3’-UTR. However, comparison of anti-GFP

stainings derived from this construct in wild type and in maternal lost mutant embryos

carrying this transgenic construct did not show any clear difference neither in the

amount or localization of GFP expression nor its temporal expression (Fig. 23).

However, the relatively high levels of background noise in both cases make it

impossible to detect or exclude subtle changes in the amount or localization of Pgc

peptide or the GFP reporter. An improved staining procedure and the use of better

antibodies could increase the signal-to-noise ratio and may make it possible to detect

even small differences between wild type and lost mutant embryos in the future.

The pgc 3’UTR can cause lost-like phenotypes

A detailed analysis of PGCs in embryos from mothers overexpressing GFP-pgc-3'UTR,

however, revealed that these embryos show the same phenotypes as maternal lost

mutant embryos (Fig. 24): The PGCs transmigrate prematurely through gaps between

the epithelial cells and the PGCs show active transcription. These results strongly

suggests that an excess of RNA including the 3'-UTR of pgc without its ORF can cause

the same defects at the posterior pole as the lack of Lost and as an excess of osk RNA in
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the PGCs. It was shown before that the 3'-UTR of pgc dictates the spatial and temporal

regulation of pgc translation (Rangan et al. 2009). It is most likely that this regulatory

activity is based on recruiting proteins which then ensure its proper localization and

translation. Therefore, overexpressing GFP-pgc-3'-UTR RNA might result in a

competition of the transgenic pgc-3'-UTR with the endogenous one for the regulating

factors. This could lead to a less efficient transport or a less tightly controlled translation

of the endogenous pgc RNA species which in turn would cause the observed

phenotypes. The phenomenon that certain RNAs can affect other RNA species by

competing for regulatory factors was already described during oogenesis, where the

lack of osk RNA causes early oogenesis defects, because the translational repressor

Bruno (Bru), which normally binds osk, was free to block the translation of other RNAs

(Kanke et al. 2015). However, it is not known which factors regulate the translation of

pgc RNA. Therefore, it remains unclear whether the translation of pgc and of osk RNA

is controlled by overlapping activities.

As discussed above, the overexpression of GFP-pgc-3'UTR causes lost-like phenotypes

with a combination of pgc LOF and pgc GOF features, so the expression of the pgc

3’UTR does not simply shift the wild type conditions into one direction. In contrast,

embryos from mothers bearing 6 copies of the genomic pgc locus instead of 2 only

show strong pgc GOF phenotypes: An excess of pgc RNA can be found in the soma

after PGC formation, the SNUPs have dramatically reduced levels of transcription

causing cellularization defects and later premature transmigration of the PGCs. The

transcriptional silencing of the PGCs, however, is not affected. Therefore, the

overexpression of the pgc 3’UTR together with its ORF results in the compensation of

the phenotype within the PGCs (the ectopic transcriptional activity in the PGCs). This

results clearly shows that the lost-like phenotypes are only dependent on the pgc 3’UTR.

Hypothetical model

In summary, two separate phenotypes are found in maternal lost mutant embryos. First,

the increased transmigration of the PGCs, due to cellularization defects at the posterior

pole caused by reduced transcriptional activity in the SNUPs. Second, the
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transcriptional silencing of the PGCs is disrupted so that the number of transcriptionally

active PGCs is increased fourfold. The same two phenotypes are observed in embryos

from mothers which express GFP-pgc-3’UTR or osk-nos-3’UTR in their germline. Both

defects have been described independently in conjunction with pgc. The first phenotype,

transmigrating PGCs and less transcription in the SNUPs, is found in pgc GOF embryos,

while the second phenotype, transcriptionally active PGCs, is seen in pgc LOF embryos.

Therefore, both effects could be explained by a disturbed regulation of the activity of

pgc: the somatic nuclei experience an excess of pgc activity and the PGCs lack pgc

activity. Both, osk and pgc RNA, are transported and localized as RNPs. Furthermore,

Lost binds to RNA directly or indirectly (via Rump) and has been found in several

RNPs. It is therefore likely that the lost mutant phenotypes are caused by a

misregulation of RNPs, their localization and/or their physical properties. However, no

change in pgc RNA or peptide localization could be observed in maternal lost mutants,

suggesting that either these changes are very subtle or that the activity of pgc can be

regulated independent of RNA and protein amounts.

pgc RNA is part of the germ plasm located at the posterior pole and is then transported

into the PGCs. It is not translated before PGC formation to avoid silencing the

transcription of the somatic nuclei. The mechanisms regulating the translation of pgc are

unknown, however its 3’UTR is sufficient to control its temporal and spatial translation

(Rangan et al. 2009). pgc RNA is present in two distinct RNPs in early embryos, the

germ granule and the osk RNP (Trcek et al. 2015). It might therefore be that the

premature translation of pgc is inhibited by two different mechanisms dependent on the

type of RNP. Lost could be a part of these RNPs and directly or indirectly bind pgc

RNA and affect its translation.

As a germ granule component, Lost might promote a tightly packed structure (suitable

for storing and transporting) of pgc RNA molecules within the germ granules when

their concentration is high. It has been shown that the concentration of germ plasm

components is higher in the center of the germ plasm that in its marginal regions

(Slaidina and Lehmann 2017). Lost protein is also slightly enriched in the center of the

germ plasm (Fig. 18). The fact that the pgc FISH staining intensity is lower at the center
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of the germ plasm although there is more pgc RNA might be due to a very tight

packaging of the RNA molecules. A tight packaging of the RNP might also prevent the

premature translation of pgc. To date it is not known how the translation of germ

granule components is regulated in detail. However, it was shown that different RNAs

of the germ plasm are translated at different time points depending on their 3’UTR

sequences (Rangan et al. 2009).  One regulatory mechanism could be a very tight

clustering of the pgc RNA molecules in the germ granules before PGC formation. Once

the germ granules enter the PGCs they dissolve and release the germ line determinants

(pgc RNA being one of them) and allow their translation. In the absence of Lost the pgc

RNA molecules might be less tightly packed which would explain the increased pgc

FISH staining intensity observed in maternal lost mutant preblastoderm embryos. This

might lead to precocious translation of pgc in the soma which in turn leads to less

zygotic transcription in the SNUPs (as observed) and later to cellularization defects and

transmigrating PGCs.

About 50% of the pgc RNA are not part of the germ granules but inhabit the same RNP

as osk RNA. This population of pgc RNA molecules might be regulated by other

mechanisms. osk RNA has been shown to recruit translation repressors like Bru and by

that affect the translation of other RNA species which are in the same RNP (Macdonald

et al. 2016). So the translation of pgc would be indirectly inhibited by osk RNA. This

model is supported by the fact, that before the pgc RNA is transported into the PGCs

(where it is supposed to be translated) it loses its connection with osk RNA (Trcek et al.

2015), which remains in the soma. It is not known, however, whether osk RNA is

removed from the particle or pgc RNA and how this process is regulated. It might be

that Lost promotes the separation of pgc RNA from the osk RNP. In maternal lost

mutants osk RNA could therefore be transported into the PGCs along the pgc RNPs.

This would explain the increased amount of osk RNA in the PGCs which is observed in

maternal lost mutant embryos. This model could also explain the impaired

transcriptional silencing of the PGCs. If osk RNA is still present in the same RNP as

pgc in the PGCs it might inhibit the translation of pgc (via recruiting for Bru or other

factors to the shared RNP) which in turn leads to the observed ectopic transcriptional

activity of the PGCs.



90

The same phenotypes as in maternal lost mutants are also observed in embryos from

mothers which express GFP-pgc-3’UTR or osk-nos-3’UTR during oogenesis. A

maternal overexpression of the 3’-UTR of pgc might result in the competition of the

transgenic RNA and the endogenous pgc RNA for Lost and other putative regulatory

factors. This would explain why an excess of pgc-3’UTR phenocopies the maternal lost

mutants.

The very same phenotypes are also caused by maternal overexpression of osk-nos3’UTR,

although the mechanism has to be a different one. First, the transgenic osk RNA might

compete with the endogenous osk RNA species for translational inhibitory factors like

Bru or others. This would lead to a reduced amount of translational inhibitors bound to

the endogenous osk RNP, which in turn could lead to premature translation of pgc from

the osk RNP. This model would explain why an excess of osk RNA causes the reduced

levels of transcription in the SNUPs and the premature transmigration of the PGCs.

Second, the transgenic osk RNA and with it the putative translational inhibitors are part

of the germ granules. There they might associate with the endogenous pgc RNA. Before

PGC formation this does not have any effect, but after PGC formation this might result

in the less efficient translation of pgc and therefore impaired silencing. This model

would explain how the maternal overexpression of osk-nos3’UTR can cause the

observed ectopic transcriptional activity in the PGCs.
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Methods

Here the methods are briefly explained. For detailed protocols see Appendix I:

Protocols and Appendix II: Fiji macros.

Fly methods

Embryo collection and fixation with PFA

Flies were grown on standard yeast-corn-meal-molasses food at 18°C or 25°C. Embryos

of the desired developmental time window are collected on apple juice agar plates

supplied with yeast paste. Fixation is performed as described (Karr and Alberts 1986)

with minor modifications. Embryos are transferred from the plates to embryo collection

sieves and thoroughly rinsed with water. Then they are incubated in 50% bleach

solution for 3min. After rinsing with water the embryos are transferred to a 20ml

scintillation vial containing 6ml heptane and 1.5ml fixation solution and incubated for

20min on a shaker. After removing the lower phase 5ml of MeOH are added, followed

by vigorous manual shaking the vial for 20-30sec. The successfully fixed and

devitellinized embryos sink to the bottom of the vial and the upper phase is removed.

Then the embryos are rinsed 3 to 5 times with MeOH, transferred to a 1.5ml test tube

and stored at -20°C.

MeOH-free devitellinization

Some staining procedures require fixed and devitellinized embryos without the use of

MeOH. For that the embryos are collected and fixed as described above using a higher

concentration of PFA and longer incubation. After the fixation the lower phase (PFA) is

removed, then the upper phase (heptane) is removed leaving the embryos in the vial.

Then the embryos are rinsed 3 to 5 times with PBST and the vial is placed on ice for
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15min. A monolayer of the embryos is glued to the center of a small petri dish using

heptane glue and then covered with ice cold PBST. Then a very sharp tungsten needle is

used to manually peel the embryos out of the vitellin membrane under a stereo

microscope. The vitellin membranes stay glued to the bottom of the petri dish while the

embryos can be transferred in PBST to a 1.5ml test tube for further processing.

Maternal genotypes

The genotypes of the analyzed embryos always refer to the maternal genotype, i.e. the

genotype of the mother. For example, for analyzing homozygous lost mutants female

virgins of the genotype +/+;+/+;lost[2]/lost[2] were crossed to wild type males. The

embryos from that cross are then collected, fixed and analyzed as maternal lost mutant

embryos.

UAS-Gal4 system

The UAS-Gal4 system (Brand and Perrimon 1993) is used for the targeted expression of

transgenes and other constructs. It is a binary system consisting of a fly line expressing

the Gal4 transcription factor from yeast under the control of a specific promotor (the

Gal4 driver line) and an effector fly line, which contains the desired construct under the

control of an Gal4-specific promotor called UAS (upstream activating sequence) (the

UAS line). Crossing these two fly lines yields offspring which have both, Gal4

expressed in specific tissue (depending on the driver line) and the UAS effector, which

gets expressed only when Gal4 is present.

Maternal RNAi

Many RNAs and proteins present in the early embryo are produced and deposited in the

egg from the mother during oogenesis. Analyzing gene functions in early embryos

therefore often require the use of maternal mutants to abolish the maternal contribution.
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Many mutations are homozygous lethal which makes it impossible to get adult mutant

females. To address his problem the germ line clone (GLC) technique has been

developed (Chou et al. 1993). Another, faster way of removing the maternal

contribution of a gene is the use of RNAi in the adult female germ line (Staller et al.

2013).

The TRiP collection is a genome wide collection of transgenic fly strains which express

a short hairpin RNA directed against a specific gene under the control of UAS (Ni et al.

2011). This allows knocking down gene functions using RNAi in a tissue specific

manner using the Gal4-UAS system.

A fly bearing the desired UAS-shRNA construct (from the TRiP collection) is crossed

to a Gal4 driver line which is active in the female germ line (MTD-Gal4). The female

offspring from that cross, which expresses the shRNA in the germline, is crossed to

wild type males. The resulting embryos are collected and analyzed.

Fly crosses

For all analyses maternal genotypes are listed. That means that mothers of the listed

genotype were crossed to wild type fathers. From these crosses the embryos were

collected and analyzed. For imaging actin and myosin in live embryos w;UASp::Utr-

GFP,sqh::Sqh-Ch;MatGal4(15) was used as a control. This line crossed to ed RNAi

yields yv/w;UASp::Utr-GFP,sqh::Sqh-Ch/ed RNAi; MatGal4(15)/+ which express Utr-

GFP, Sqh-Ch and dsRNA against ed in the female germ line. To obtain females which

express Utr-GFP, Sqh-Ch and ed-nos-3’UTR in the germ line w;UASp::Utr-

GFP,sqh::Sqh-Ch;MatGal4(15) was crossed to w[*];UASp::ed-nos3’UTR yielding

w[*];UASp::Utr-GFP,sqh::Sqh-Ch/UASp::ed-nos3'UTR;MatGal4(15)/+.

To obtain lost mutant females which express GFP-pgc-3’UTR in the germ line w;

P{nos::nos-5'UTR-HA-GFP-HA-pgc-3'-UTR}/CyO;MKRS/TM6B was crossed to

w;;lost[2]/TM6B yielding w;P{nos::nos-5'UTR-HA-GFP-HA-pgc-3'-UTR}/CyO;

lost[2]/TM6B. From this stock females homozygous for lost[2] were selected.
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List of fly lines

fly line genotype source
OregonR wild type

lost[2] +/+; +/+; lost[2]/TM6B float (Graf 2007)

lost RNAi y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL01090}attP2 Bloomington #38931

MTD-Gal4 P{w[+mC]=otu-GAL4::VP16.R}1, w[*]; P{w[+mC]=GAL4-
nos.NGT}40; P{w[+mC]=GAL4::VP16-
nos.UTR}CG6325[MVD1]

Bloomington #31777

lost Df w[1118]; Df(3R)BSC316/TM6B, Tb[+] Bloomington #24342

ed RNAi y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL00648}attP40 Bloomington #38209

ed-nos-3‘UTR w[*];P{UASp::ed-nos-3’UTR} Vorbrüggen unpubl.

lost GFP trap w[1118]; P{w[+mC]=PTT-GA}lost[ZCL3169] Bloomington #6832

6x[pgc] w[*], P{w[+],pgc};+/+; P{w[+],pgc} (de Las Heras et al.
2009)

3x[pgc];lost P{w[+],pgc}/FM7;;lost[2]/TM3 this study

pgc[Δ1] w; pgc[Δ1]/CyO (Hanyu-Nakamura et
al. 2008)

pgcDf Dp(1;Y)y[+]/y[1]; Df(2R)X58-7, pr[1] cn[1]/CyO, bw[1] Bloomington #283

pgc RNAi y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMS00601}attP2 Bloomington #33720

dhc64c mwh[1] Dhc64C[6-10] h[1] st[1] p[p] e[s]/TM6B, Tb[1] Bloomington #8747

GFP-pgc-3’UTR w; P{nos::nos-5'UTR-HA-GFP-HA-pgc-3'-UTR}/CyO; (Rangan et al. 2009)

UtrGFP;Sqh-Ch w;UASp::Utr-GFP,sqh::Sqh-Ch;MatGal4(15) (Rauzi et al. 2010)

osk-nos-3‘UTR yw[67c23];P{UASp::osk Δ 1,2-nos3′UTR} (Little et al. 2015)

Antibody staining

Antibody staining was performed as described (Patel 1994) with some modifications.

All of the following steps were carried out in 1.5ml test tubes at room temperature, if

not stated otherwise. During all washing and incubation steps the samples were placed

on a rotating wheel. When pipetting embryos cut-off pipette tips were used. The

widened aperture of the tips prevents damaging the embryos via shearing forces.

The desired amount of fixed embryos is transferred together with some MeOH to a

clean test tube and rinsed several times with MeOH. The MeOH is then replaced by

PBST in a stepwise manner. After blocking the sample with sheep serum in PBST the

primary antibodies are added in the required dilution (see List of antibodies) and
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incubated over night at 4°C. After washing and blocking appropriate secondary

antibodies are added (and Dapi if needed) and incubated for 2 hours. This and all the

following steps are carried out in darkness to prevent photobleaching. Afterwards the

sample is thoroughly washed with PBST.

Primary antibodies

Antigen Host Use Dilution Source

Baz rabbit
polyclonal

Bazooka,
adherens
junctions

1:1000 Wodarz et al. (1999)

Digoxigenin sheep, Fab
fragments

DIG-labeled
RNA probes,
HRP
conjugated

1:500 Roche cat. 1207733, Lot 87916922

Dlg, clone
4F3

mouse
IgG1

lateral
membranes

1:20 DSHB

Ed rat
polyclonal

Echinoid 1:5000 Laplante and Nilson (2006)

GFP chicken
polyclonal

GFP 1:1000 Abcam ab13970

Lost rabbit
polyclonal

Lost 1:200 Graf (2007)

Osk rabbit
polyclonal

Oskar 1:2000 Anne Ephrussi

Pgc rabbit
polyclonal

Pgc peptide 1:300 Hanyu-Nakamura et al. (2008)

p-Tyrosine,
clone PY20

mouse
IgG2b

cell borders 1:500 Biomol bml-sa240

pSer2CTD,
clone H5

mouse
IgM

transcriptional
activity

1:500 Abcam ab24758 or BioLegend. Cat
920202. Lot B200429

Slam guinea pig
polyclonal

furrow canal 1:5000 Jörg Großhans (Brandt et al. 2006)

Vasa rabbit
polyclonal

PGCs 1:5000 R.Jauch, unpublished

Vasa rat IgM PGCs 1:25 DSHB
β-Tubulin,
clone E7

mouse
IgG1

microtubules 1:50 DSHB

Secondary Antibodies

Secondary antibodies were anti-rabbit, anti-mouse IgG, anti-rat, anti-chicken or anti-

guinea pig coupled to Alexa-488, Alexa-568 or Alexa-647. Anti-mouse IgM is coupled
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to DyLight-649. All secondary antibodies were purchased from Jackson

ImmunoResearch and used in 1:500 dilution.

FISH

Fluorescent in-situ hybridization was performed as described (Lecuyer 2011) with some

modifications. The labeled antisense RNA probes were created in this study (cycB, pgc,

gcl) or a kind gift from Dr. Ralf Pflanz (nos, osk). All of the following steps were

carried out in 1.5ml test tubes at room temperature, if not stated otherwise. During all

washing and incubation steps the samples were placed on a rotating wheel. When

pipetting embryos cut-off pipette tips were used. The widened aperture of the tips

prevents damaging the embryos via shearing forces.

The desired amount of fixed embryos is transferred together with some MeOH to a

clean test tube and rinsed several times with MeOH. The MeOH is then replaced by

PBST in a stepwise manner. The PBST is then replaced by Hybridazation buffer (Hyb)

in a stepwise manner. Afterwards the embryos are equilibrated in Hyb buffer in a 57°C

waterbath for 1 hour, then the labeled antisense-RNA probe is added. The sample is

then incubated overnight at 57°C in a waterbath.

After rinsing and washing the embryos with 57°C Hyb buffer the Hyb buffer is replaced

by PBST in a stepwise manner. The embryos are then incubated with an appropriate

horseradish peroxidase (HRP) coupled antibody that detects the RNA probe (anti-DIG

or anti-FITC). After washing off the unbound antibodies with PBST the embryos are

equilibrated with the amplification diluent from the tyramide signal amplification (TSA)

kit (PerkinElmer). Then the desired fluorophore solution from the TSA kit is added and

incubated for 10 to 20min. After washing extensively with PBST the embryos can be

mounted to a microscope slide or used for antibody staining.

RISH

RNA in-situ hybridization (RISH) used to visualize ed RNA was performed as

described (Tautz and Pfeifle 1989) with some modifications. The labeled antisense-
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RNA probe was obtained from Gerd Vorbrüggen (unpubl.). All of the following steps

were carried out in 1.5ml test tubes at room temperature, if not stated otherwise. During

all washing and incubation steps the samples were placed on a rotating wheel. When

pipetting embryos cut-off pipette tips were used. The widened aperture of the tips

prevents damaging the embryos via shearing forces.

The desired amount of fixed embryos is transferred together with some MeOH to a

clean test tube and rinsed several times with MeOH. The MeOH is then replaced by

PBST in a stepwise manner. The PBST is then replaced by Hybridazation buffer (Hyb)

in a stepwise manner. Afterwards the embryos are equilibrated in Hyb buffer in a 57°C

waterbath for 1 hour, then the labeled antisense-RNA probe is added. The sample is

then incubated overnight at 57°C in a waterbath.

After rinsing and washing the embryos with 57°C Hyb buffer the Hyb buffer is replaced

by PBST in a stepwise manner. The embryos are then incubated with an appropriate

alkaline phosphatase (AP) coupled antibody that detects the RNA probe (anti-DIG or

anti-FITC) at 4°C over night. After washing off the unbound antibodies with PBST the

embryos are equilibrated in AP buffer solution and transferred to a white weighing dish.

After adding NBT and BCIP and mixing the staining reaction can be observed using a

stereo microscope. When the desired staining intensity is reached the reaction is stopped

by adding PBST. After transferring the embryos to a 1.5ml test tube the sample is

thoroughly rinsed and washed with PBST.

Ovary preparation and staining

Ovaries have been dissected from females expressing Lost-GFP (Lost GFP trap) in PBS.

After rinsing the ovaries were incubated with phalloidin and Dapi for 30min, followed

by washing with PBS. Then the ovaries were immediately put on a microscope slide in

some PBS, spread out with forceps, covered with a coverslip and analyzed with a

confocal microscope.
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Imaging and analysis

Mounting stained embryos on a microscope slide

in VectaShield

All mounting methods require stained embryos in PBST in a 1.5ml test tube.

After removing all excess of PBST from the test tube 2-3 drops of VectaShield

(VectorLabs) are added and gently mixed. After the embryos have sunk to the bottom of

the tube the excess of VectaShield is replaced by fresh VectaShield and gently mixed.

The desired amount of embryos are transferred to a clean microscope slide using a cut-

off pipette tip and covered with a coverslip without causing air bubbles. The edges are

then sealed with nail polish.

in DPX

DPX is a non-aqueous mounting agent that provides good clearing while preventing

bleaching (Espada et al. 2005). A variant which is less toxic than the classic recipe has

been used (DPX new, Merck). The PBST in the test tube with the stained embryos is

replaced by 100% EtOH in a stepwise manner. After washing the sample with EtOH the

EtOH is replaced by xylene (Sigma) in a stepwise manner. The desired amount of

embryos is then transferred to a clean microscope slide using a cut-off pipette tip in as

little xylene as possible. After removing the excess xylene with a tissue the embryos are

quickly covered with DPX mounting medium followed by a coverslip. After 20-30min

the edges are sealed with nail polish.

in Canada balsam

The PBST in the test tube with the stained embryos is replaced by 100% EtOH in a

stepwise manner. A drop of canada balsam is placed on a clean microscope slide. The

desired amount of embryos is then transferred onto the canada balsam drop using a cut-
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off pipette tip in as little EtOH as possible. After drying the excess EtOH by gently

blowing the embryos are stirred into the canada balsam and everything is covered with a

coverslip. The canada balsam can take up to 24hours to solidify.

Confocal microscopy

Confocal microscopy was performed using a LSM780 confocal laser scanning

microscope (Zeiss). A Plan-Apochromat 25x/0.8 Imm Korr DIC or a Plan-Apochromat

40x/1.4 Oil DIC objective was used. Laser intensities and detector gain values were

adjusted to prevent over exposure while using the full dynamic range.

Image analysis and quantification

Confocal images were analyzed using Zen2011 (Zeiss) and Fiji, a variant of ImageJ

(NIH). Figures were annotated and assembled using the ScientiFig plugin for Fiji

(Aigouy and Mirouse 2013). The number of PGCs, transmigrating PGCs and

transcriptionally active PGCs was counted manually using the CellCounter plugin for

Fiji. 3D image stacks covering the complete posterior pole of an embryo were analyzed.

PGCs were identified by the presence of Vasa. PGCs were counted as “transcriptionally

active” when they showed a clear pCTD signal in their nucleus.

Transcriptional activity in SNUPs

The intensity of the nuclear pCTD signal was used as readout for transcriptional activity.

Since the signal intensity is compared within each embryo (SNUPs vs. the other somatic

nuclei) differences between stainings and imaging sessions can be ignored. For

measuring the relative SNUP activity a custom macro for Fiji was created (see

Appendix II for details). The macro batch-processes a defined input folder, which must
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contain the 3D confocal stacks to be analyzed. It requires .lsm files (from the LSM780

confocal microscope) oriented posterior up and stained for Vasa, pCTD and Dapi.

After defining the input folder the macro opens the first stack and increases the

brightness of each slice depending on its z-coordinate to compensate for the reduced

signal intensity that occurs when recording 3D stacks. This step uses a custom made

macro (see Appendix II for details). Then, after removing background the user is asked

to set the measurement parameters which include threshold values for each channel

which are saved a file. Then all open images are closed and the second stack is opened.

After the input parameters for all files in the input folder have been set the macro starts

the analysis.

First a mask is created from the Dapi channel, then a mask from Vasa channel. This

requires the 3D Object Counter plugin for Fiji. Then, for each slice in the stack, the

Vasa mask is subtracted from the Dapi mask, which now only contains the somatic

nuclei. A rectangular selection created from the in y-direction extended bounding box of

the Vasa mask is defined and applied to the Dapi mask. Everything of the Dapi mask

inside this selection is treated as SNUP while everything outside is treated as a normal

somatic nucleus. Using these masks and selections the signal intensity of the pCTD

channel is measured only in the SNUPs and in the other somatic nuclei, respectively.

This is done for each slice of the 3D stack. Then the cumulative pCTD signal intensity

for the SNUPs and the rest of the soma are calculated and divided by the total number

of analyzed voxels, which yields the average pCTD staining intensity. From these

values the average pCTD signal intensity of the SNUPs relative to the other somatic

nuclei is calculated.

This measurement procedure is used on every 3D stack in the input folder and all

measured values are saved in a file. The results can then be subjected to statistical

analysis.

Germ plasm intensity profiles

Here, the method is briefly described. For details refer to Appendix I: Protocols and to

Appendix II: Fiji scripts. To visualize and quantify the distribution of germ plasm

RNAs embryos are stained with an anti-Vasa antibody to label the germ plasm after the
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RNA of interest has been stained using FISH. Then 3D confocal stacks of posterior

poles of stage 1 or 2 embryos are acquired covering the complete germ plasm.

For all stacks to be analyzed a y-projection is created using Fiji. In this projection the

diameter of the germ plasm is measured using the “Line Selection” tool and the

“Measure” function in Fiji.

For obtaining the intensity profiles a custom Fiji macro was created. It takes an input

folder containing the .lsm files from the confocal microscope and creates y-projections

for each stack. Then a 10 voxel high rectangular selection through the center of the

germ plasm is created which spans the entire y-projection. On each x-position the mean

intensity value within the selection is recorded using the “getProfile” function from Fiji

and saved in a table. This is done for the Vasa channel as well as for the germ plasm

FISH channel.

The intensity profiles are then smoothened and normalized. Then the profiles are scaled

and adjusted in x-direction to the diameter and the position of the germ plasm in the y-

projection. These calculations can be carried out in a spreadsheet. The data is imported

into OriginPro 9, where the intensity profiles for a given staining and genotype are first

averaged using the "Average Multiple Curves" tool and the averaged curve is plotted.

Somatic vs. PGC distribution of osk and pgc RNA

Stage 4 embryos are analyzed. Because of some Vasa protein left in the soma after PGC

budding it is not possible to use a mask from the Vasa channel to distinguish between a

somatic RNA signal and an RNA signal which is within the PGCs. Instead the identity

of the nuclei (somatic or PGC nucleus) is used to determine whether a FISH signal is

somatic or with a PGC. This requires 3D confocal stacks covering the complete

posterior pole of an embryo stained with Vasa, Dapi and FISH of the RNA of interest.

For that, a series of custom Fiji macros was created (see Appendix II: Fiji macros for

details) which use several functions of the ImageJ 3D Suite plugin (Ollion et al. 2013).

All macros are batch-processing all files from a defined input folder. The first macro

takes an input folder containing the .lsm files from the confocal microscope and splits

the channels. Then it calls a second macro which identifies all nuclei as single objects in

3D from the Dapi channel. This is done by first finding local maxima of signal intensity
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using the “3D Fast Filters” tool from the 3D Suite plugin. The maxima are then used as

seeds for the 3D watershed algorithm from the 3D Suite plugin. This yields a list of 3D

objects representing all nuclei in the image stack. Then around the centroid of each

nucleus a sphere with a radius of 5μm is drawn. This yields a list of spheres each

representing a volume around a specific nucleus. This list is saved to a file.

The first macro then calls a third macro which uses the Vasa channel and the list of

spheres as inputs. The macro then measures the average Vasa staining intensity within

each of the spheres. The spheres with a high Vasa intensity are considered to represent

PGC nuclei, while the others represent somatic nuclei. The macro then labels each

object in the list according to its identity and saves the labeled list to a file. The

assignment of the nuclear identities is manually checked and corrected if needed. A list

of objects which contains only spheres around somatic nuclei is saved to a file.

Then a forth macro uses this list to define the regions for measuring the FISH intensities.

For this, a mask is created from the Vasa channel of a given embryo. This mask

contains the PGCs as well as the germ plasm left in the soma. Since the somatic germ

plasm always localizes directly apical to the somatic nuclei, these regions can be

removed from the Vasa mask by deleting everything within a sphere around each

somatic nucleus. These spheres are defined by the list of objects obtained from the third

macro. After that the Vasa mask only contains the PGCs without the somatic remnants

of the germ plasm. Using the mask the signal intensity of the FISH channel is measured

within the mask and then outside the mask. Then the cumulative FISH signal intensity

for the PGCs and the soma are calculated and divided by the total number of analyzed

voxels, which yields the average FISH staining intensity representing the amount of

RNA. From these values the relative amount of osk RNA within the PGCs or the

relative amount of pgc RNA in the soma can be inferred.

This measurement procedure is used on every 3D stack in the input folder and all

measured values are saved in a file. The results can then be subjected to statistical

analysis.
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Statistics and data visualization

Statistical significance of differences between groups was tested using Mann-Whitney-

U test. All calculations if not stated otherwise have been performed in OriginPro 9

(OriginLabs). Data was visualized using OriginPro 9 (OriginLabs).

For calculating the statistical significance of the difference between the pgc FISH

intensity profiles of wild type and lost embryos the adjusted and normalized profile

curves have been linearly interpolated using the “Interpolate” function in OriginPro9.

This generated a set of interpolated data with 500 evenly spaced x-values. Then for each

of the 500 points on the x-axis a Mann-Whitney-U test was calculated to obtain a set of

500 p-values which can be plotted against the interpolated x-values. In the center of the

germ plasm, where the pgc FISH intensity profile in lost embryos differs from wild type,

the p-values are below 0.0001.

Molecular biology

Extraction of genomic DNA from flies

Genomic DNA which can be used as a template for PCR is prepared as described

(Gloor et al. 1993) with minor modifications. In brief a single anesthetized fly is put

into a 1.5ml test tube. The fly is then mashed in Squishing buffer (SB) with a pipette tip

and incubated for 30min at room temperature. Then the tube is heated to 95°C to

inactivate the Proteinase K from the SB. After a brief centrifugation the supernatant can

be used as a template for PCR or stored in the fridge for several weeks.

Template vector for creating in-situ probes

A specific labeled antisense RNA probe is needed to visualize RNA using (fluorescent)

in-situ hybridization. The probes are produced via in-vitro transcription from a suitable
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template vector, which contains a fragment of the gene of interest in antisense direction

downstream of a universal promotor. The template vector can be created using standard

molecular cloning techniques.

First genomic DNA from wild type flies is prepared (see method “Extraction of

genomic DNA from flies”). Then the desired fragment is amplified using the genomic

DNA as a template for PCR using Phusion High-Fidelity DNA polymerase (NEB)

according the manufacturer's instructions. The primers are listed below.

The success of the PCR is verified by agarose gel electrophoresis and the fragment is

extracted from the gel using a Gel extraction kit (Qiagen) according to the

manufacturer's instructions. The purified fragment is then cloned into the pJet1.2-blunt

vector using the CloneJet PCR Cloning Kit (Thermo Fisher Scientific) according to the

manufacturer's instructions and transformed into competent bacteria (One Shot TOP10.

Invitrogen) according to the manufacturer's instructions. Positive clones are identified

via colony PCR according to the protocol provided with the CloneJet PCR Cloning Kit

(Thermo Fisher Scientific) using the pJet1.2-forward sequencing primer and the

FORWARD primer from the genomic PCR. This ensures that the fragment is inserted in

the correct orientation for producing antisense RNA. A positive clone is chosen and the

vector amplified via a midi scale plasmid preparation (see method “Medium scale

plasmid preparation”). An aliquot of the template vector is then sent for sequencing to

MWG Operon (Eurofins Genomics) to verify the sequence and the orientation of the

insert.

Gel electrophoresis

For size separation and purification of DNA fragment agarose gel electrophoresis was

used. Agarose (1% w/w) was dissolved TAE buffer, boiled, mixed with ethidium

bromide and casted into gel chambers. DNA fragments were visualized using a UV

lamp.
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DNA oligos (Primers) used for PCR

Primers were designed using PerlPrimer (v1.1.21) and produced by MWG (Eurofins

Genomics). The following DNA oligos were used:

Name Sequence 5’ → 3’ purpose

pJet1.2-forward CGACTCACTATAGGGAGAGCGGC Colony-PCR, squencing

cycB_ex4_for GATGAAGTACTTGGACATCGT PCR for creating template for

creating cycB in-situ probecycB_ex4_rev TACAGTCAAGTCCAGTTCTTCC

gcl_ex3_for TGATCCGGCCCAGTTAGACACC PCR for creating template for

creating gcl in-situ probegcl_ex3_rev TGCCGATACAGCCACTCCTTG

Medium scale plasmid preparation

A 45ml bacterial culture from a single colony was grown overnight. Plasmid

preparation was performed using PlasmidPlus Midi Kit (Qiagen) according to the

manufacturer’s instructions. DNA was eluted in 200μl water and the concentration was

measured using a spectrophotometer (NanoDrop, Thermo Scientific).

Creating labeled antisense RNA in-situ probes

Labeled antisense RNA probes are produced via in-vitro transcription from a suitable

template vector. Antisense RNA against pgc was created from a cDNA clonse

(RE14873, Drosophila Genome Resource Center). Probes against cycB and gcl were

created from a genomic clone (see method “Template vector for creating in-situ

probes”). First the template is linearized using a restriction endonuclease which cuts

downstream of the insert without disrupting the promoter-insert cassette. The linearized

plasmid is then purified using Qiaquick Nucleotide Removal Kit (Qiagen) according to

the manufacturer's instructions. The labeled antisense RNA probe is produced using the

DIG RNA Labeling Kit (Roche) according to the manufacturer's instructions. The
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reaction contains the linearized plasmid as a template, NTP labeling mix, a suitable

RNA polymerase, reaction buffer and RNAse inhibitor. After the incubation the success

of the reaction is verified by loading a small aliquot of the reaction to an agarose gel for

electrophoresis. The labeled RNA probe is then purified by EtOH precipitation. In brief,

EtOH, water and sodium acetate are added to the reaction which causes the RNA to

precipitate. After centrifugation the supernatant is discarded and the RNA pellet washed

with EtOH. Afterwards the dried pellet is resuspended in Hybe buffer and stored at -

20°C.

Materials

Fix solution 4% paraformaldehyde in PBS, 20 mM EGTA

heptane glue Fixogum (Marabu) 1:15 in heptane

Hyb buffer 50% formamide, 5x SSC, 200 µg/ml ssDNA, 100µg/ml tRNA, 50 µg/ml

heparin

PBS 1.37 M NaCl, 100 mM Na2HPO4, 27 mM KCl, 20 mM
KH2HPO4, pH 7.4

PBTS PBS + 0.1% (v/v) Triton X-100

Squishing buffer 10 mM Tris-HCl (pH 8.2); 1 mM EDTA, 25 mM NaCl, 200 µg/ml

Proteinase K (freshly added)

TAE (50X) 2 M Tris, 1 M acetic acid, 50 mM EDTA, pH 8.4

Echinoid project contributions

The echinoid project was started as a lab rotation and bachelor thesis project by Ninett

Wolfram under the practical supervision by the author of this dissertation. The

following results were obtained by Ninett Wolfram and reported in her Bachelor thesis:

· ed RISH on wild type embryos (Fig. 4 A)

· fly crosses to obtain ed[F72] GLC mutant embryos
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· antibody staining (α-Vasa, α-pTyr) on wild type and ed[F72] GLC embryos

(Fig. 5 ABDEGH)

· quantifying transmigrating PGCs in wild type and ed[F72] GLC embryos (Fig.

5 J, first two columns)

· molecular cloning to create a pUASp-ed-nos3’UTR vector

· establishing transgenic fly lines containing UASp-ed-nos3’UTR construct

· fly crosses to obtain embryos with maternal ed-nos-3’UTR contribution

· ed RISH on ed-nos3’UTR embryos (Fig. 6 A,B)

· quantifying transmigrating PGCs in ed-nos3’UTR embryos (Fig. 6 J)

All results from the echinoid project not mentioned in the above list were obtained by

the author of this dissertation.
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List of abbreviations

AEL after egg laying
AJ adherens junction
AP alkaline phosphatase
BCIP 5-Bromo-4-chloro-3-indolyl phosphate
CNS central nervous system
CTD carboxyterminal domain
DIG Digoxigenin
DSHB Developmental Studies Hybridoma Bank
EMT epithelial-to-mesenchymal transition
EtOH ethanol
FC furrow canal
FISH fluorescent in-situ hybridization
GBE germ band extension
GFP green fluorescent protein
GLC germline clone
GOF gain-of-function
GSC germline stem cell
HRP horseradish peroxidase
LOF loss-of-function
MeOH methanol
MZT maternal-to-zygotic transition
NBT nitroblue tetrazolium
ORF open reading frame
PBS phosphate-buffered saline
PBST phosphate-buffered saline + Triton X-100
PCR polymerase chain reaction
pCTD phosphorylated CTD
PFA para-formaldehyde
PGCs primordial germ cells
PMG posterior midgut
RNA ribonucleic acid
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RNP ribonucleoprotein particle
RRM RNA recognition motif
SB squishing buffer
SEM standard error of the mean
SGP somatic gonadal precursor
SNUPs somatic nuclei underneath the PGCs
TAE Tris acetate EDTA buffer
TSA tyramide signal amplification
UAS upstream activating sequence
UTR untranslated region
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List of genes

Abbreviation Gene name CG number

aPKC atypical protein kinase C CG42783

arm armadillo, β-Catenin CG11579

Arp-1 Actin-related protein 1 CG6174

aub aubergine CG6137

baz bazooka CG5055

bcd bicoid CG1034

bru bruno CG31762

clb columbus, HMG Coenzyme A reductase CG10367

cno canoe CG42312

crb crumbs CG6383

cup cup CG11181

CycB Cyclin B CG3510

Dhc64C Dynein heavy chain 64C CG7507

dlg discs-large CG1725

ed echinoid CG12676

foi fear-of-intimacy CG6817

gcl germ cell-less CG8411

Gir Girdin CG12734

grk gurken CG17610

hkb huckebein CG9768

lgl lethal (2) giant larvae CG2671

lost lost CG14648

mle maleless CG11680

nos nanos CG5637

orb oo18 RNA-binding protein CG10868

osk oskar CG10901

pAbp poly(A) binding protein CG5119

pgc polar granule component CG32885

Rho1 Rho1 CG8416
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RhoGEF2 Rho guanine nucleotide exchange factor 2 CG9635

rump rumpelstiltskin CG9373

scrib scribbled CG43398

sdt stardust CG32717

shg shotgun, DE-Cadherin CG3722

slam slow as molasses CG9506

srp serpent CG3992

stau staufen CG5753

tral trailer hitch CG10686

Tre1 Trapped in endoderm-1 CG3171

tud tudor CG9450

vas vasa CG46283

wun wunen CG8804

wun2 wunen-2 CG8805

Zn72D zinc-finger protein at 72D CG5215

α-Cat α-Catenin CG17947

Earlier the gene lost (GC14648) was called aeneas (aen) internally and can be found

under that name in Molitor (2002) and Graf (2007).
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Fig. 26: The localization of osk RNA is highly dynamic during PGC formation. 64
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Appendix I: Protocols

Antibody staining with embryos
· Wash embryos in 600ml methanol and 300ml PBST for 10 min
· Wash embryos in 300ml methanol and 600ml PBST for 10 min
· Rinse embryos 3 times with 1ml PBST
· wash embryos 3 times for 15 min with PBST
· incubate embryos in 5% sheep serum in 750μl PBST for 20 min
· repeat blocking step once
· add primary antibody/antibodies in 2% sheep serum in 750μl PBST
· incubate over night at 4°C rotating
· rinse 3x with 1ml PBST
· wash 10min, 20min, 30min with 1ml PBST
· incubate embryos in 2% sheep serum in 750μl PBST for 20 min
· add fluorescent secondary antibody/antibodies (1:500), in 750μl PBST with 2%

sheep serum
· if needed, add DAPI now (from 500X stock, use 3μl in 750μl volume)
· incubate 2h at RT rotating
· rinse 3-5 times with 1ml PBST
· wash 10min, 20min, 30min with 1ml PBST.

Embryo fixation
· remove dead flies from apple juice agar plate
· optional: remove yeast paste from AJ agar plate
· cover plate with water
· use brush to gently detach embryos from agar
· transfer water-embryo suspension into collection sieve
· rinse with water to remove yeast
· incubate sieve with embryos in 50% bleach solution for 3min
· rinse thoroughly with water
· prepare glass vials with 1.5ml fix solution and 6ml heptane
· remove water from embryo collection sieve
· transfer embryos to 20ml scintillation vial
· incubate for 20min on shaker
· gently remove lower phase with pasteur pipette without removing embryos
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· add 6ml methanol
· shake heavily for 10-20 sec
· let embryos sink down
· remove upper phase and embryos in interphase completely
· rinse 3x with methanol
· transfer embryos to 1.5ml test tube
· store at -20°C

Create antisense RNA probes
· use 5 µg plasmid DNA
· linearize for 2h to 3h at 37°C
· purify using QIAquick Nucleotide Removal Kit (Qiagen) columns
· elute in 30µl to 40µl H20
· measure DNA concentration with NanoDrop
· use DIG RNA Labeling Kit (Roche)
· set up reaction (10 µl end volume):

o 1µg linearized plasmid DNA (ca. 6µl)
o 1µl transcription buffer 10x
o 1µl NTP Labeling Mixture
o 1µl RNase inhibitor
o 1µl RNA polymerase (T7, T3 or SP6)

· incubate 2h at 37°C
· load 1µl of reaction mixture (+9µl H2O, +2µl loading dye) onto 1% agarose gel

to check reaction
· add RNAse free water to sample up to 50µl
· add 5µl 3M sodium acetate and 125µl ice-cold 100% EtOH
· place at -70°C overnight
· centrifuge at max speed at cooled tabletop centrifuge for 20min
· remove supernatant, wash with 150µl 70% EtOH
· centrifuge at max speed at cooled tabletop centrifuge for 20min
· remove EtOH, dry pellets in speed-vac (2-5min)
· resuspend probe in 100µl Hybe buffer
· store at -20°C
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FISH
· Wash embryos in 600ml methanol and 300ml PBST 10 min
· Wash embryos in 300ml methanol and 600ml PBST 10 min
· Rinse embryos 3 times with 1ml PBST
· Wash embryos 3 times 15 min with PBST
· Wash 1 time in HybB/PBST 1:1 for 20 min at RT
· Wash 3 times 20 min in HybB at 57ºC (water bath)
· remove HybB; leave ~40µl of buffer on embryos
· add 1µl of labeled (DIG) probe, mix gently
· incubate at 57ºC over night (water bath)
· discard probe-HybB mix
· rinse 3x with 1ml HybB (57°C)
· wash 10min, 20min, 30min with 1ml HybB, 57°C (water bath)
· wash 20min with 1ml HybB/PBST 1:1 at RT
· rinse 3x with 1ml PBST
· wash 10min, 20min, 30min with 1ml PBST
· add primary antibody (sheep anti-DIG, HRP coupled) 1:200 to 1:500
· incubate 1.5h at RT
· Rinse 3 times with PBST
· wash 10min, 20min, 30min with 1ml PBST
· take as much PBST from embryos as possible
· rinse 2 times with 100ml Amplification diluent (TSA kit)
· Add 2ml of the Fluorophor solution to the dilution solution
· Stir embryos up a bit and incubate in the dark for 10 to 20min
· Rinse at least 3-10 times with PBST
· wash 10min, 20min, 30min with 1ml PBST
· proceed with antibody staining or desired mounting protocol
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Appendix II: Fiji macros

Macro for measuring pCTD intensity of SNUPs
macro "measure intensities v5.3" {

dirSource = getString("Enter directory path: ", "path");
dirTemp = dirSource+"temp\\";
list = getFileList(dirSource);
inputFile = 0;
filecounter = 0;
for (i=0; i<list.length; i++)

if (startsWith(list[i], "temp"))
inputFile = 1; //checking wether temp folder (and thus input file) is

present
else if (endsWith(list[i],".lsm"))

filecounter++; //counting number of .lsm files
if (inputFile == 0) {

Dialog.create("Info");
Dialog.addMessage("No input parameters file found. Proceed with setting parameters?");
Dialog.show();
File.makeDirectory(dirTemp);
numberChan = getNumber("Enter number of channels", 4);
choice = newArray("DNA", "Vasa", "pCTD", "ignore");
Dialog.create("Specify channels");
for (i=0; i<numberChan; i++)

Dialog.addChoice("Channel "+(i+1)+":", choice);
Dialog.show();
chan = newArray(numberChan);
for (i=0; i<numberChan; i++) {

chan[i] = Dialog.getChoice();
}
Dialog.create("Info");
Dialog.addCheckbox("Perform z-correction for brightness/contrast\nand remove

background",true);
Dialog.show();
zCorr = Dialog.getCheckbox();
title = "InputParameters";
title2 = "["+title+"]";

//now opens each file one after another, splitting channels, asks for thresholds, stores the values in an table and the
channel files in \temp folder

run("New... ", "name="+title+" type=Table width=950 height=600");
print(title2,

"\\Headings:filename\tthresholdDNA\tthresholdVasa\tthresholdpCTD\tlowerBorder\tcomment\tblank2");
for (i=0; i<list.length; i++) {

if (endsWith(list[i],".lsm")) {
open(dirSource+list[i]);
run("Split Channels");
for (k=0; k<numberChan; k++) { //perform actions on

channels
if (chan[k] == "ignore") {     //close all channels labeled as "ignore"

selectWindow("C"+(k+1)+"-"+list[i]);
close();

} else if ((chan[k] == "DNA") && (zCorr == true)) {  //perform z-
correction & background removal in DNA and VASA channels, if checkbox was checked

selectWindow("C"+(k+1)+"-"+list[i]);
runMacro("F:\\GWDG-

cloud\\Fiji.app\\macros\\own\\z_correction_brightness.ijm");
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setMinAndMax(10. 255);   //remove background.threshold
15

run("Apply LUT", "stack");
run("Gaussian Blur...", "sigma=2 stack");

//gaussian smooth
setMinAndMax(5, 255); //this reduces background

substantially!!
run("Apply LUT", "stack");

} else if ((chan[k] == "Vasa") && (zCorr == true)) {
selectWindow("C"+(k+1)+"-"+list[i]);
runMacro("F:\\GWDG-

cloud\\Fiji.app\\macros\\own\\z_correction_brightness.ijm");
setMinAndMax(15, 255);   //remove background.threshold

20
run("Apply LUT", "stack");
run("Gaussian Blur...", "sigma=2 stack");

//gaussian smooth
setMinAndMax(10. 255); //this reduces background

substantially!!
run("Apply LUT", "stack");

}
}
waitForUser("Set thresholds", "Adjust the threshold for each channel

individually. Set the lower y-border in the pCTD channel. Then click ok.\nIf no threshold is set in Vasa channel this
stack will be skipped during measurement procedure.");

Dialog.create("Set parameters");
Dialog.addMessage("Optional: Leave a comment or mark the stack for being

skipped during measurement.");
Dialog.setInsets(15, 50. 5);
Dialog.addString("comments", "");
Dialog.setInsets(15, 50. 5);
Dialog.addCheckbox("skip this stack",false);
Dialog.show();
comment = Dialog.getString();
skip = Dialog.getCheckbox();
for (j=0; j<numberChan; j++) {

if (chan[j] == "DNA") {
 selectWindow("C"+(j+1)+"-"+list[i]);
 getThreshold(l,thresholdDNA);
 resetThreshold();
 if (skip==false)

saveAs("tiff",dirTemp+"DNA_"+list[i]);
//save channel file only if stack is not marked as "skip"

 close();
}
else if (chan[j] == "Vasa") {

selectWindow("C"+(j+1)+"-"+list[i]);
getThreshold(l,thresholdVasa);
resetThreshold();
if (skip==false)

saveAs("tiff",dirTemp+"Vasa_"+list[i]);
close();

}
else if (chan[j] == "pCTD") {

selectWindow("C"+(j+1)+"-"+list[i]);
getThreshold(l,thresholdpCTD);
resetThreshold();
getLine(x1, y1, x2, y2, lineWidth);
if (x1!=-1)

lowerBorder = round((y1+y2)/2);
else

lowerBorder = "NaN";
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if (skip==false)
saveAs("tiff",dirTemp+"pCTD_"+list[i]);

close();
}

}
if (skip==true) {

thresholdVasa = -1; //if thresholdVasa == -1 the stack will
be skipped later

comment = "skipped. "+comment; //add note
"skipped" to comment

}
print(title2, list[i] + "\t" + thresholdDNA + "\t" + thresholdVasa + "\t" +

thresholdpCTD + "\t" + lowerBorder + "\t" + comment + "\t"); //write stuff in table
}

}
selectWindow(title);
saveAs("Text", dirTemp+title+".xls");
run("Close");

}
else {

Dialog.create("Info");
Dialog.addMessage("Input parameters file found. Proceed with measurement using this file?");
Dialog.show();

}
Dialog.create("Info");
Dialog.addCheckbox("Measure somatic intensities beneath PGCs",true);
Dialog.addMessage("Lower y-border needs to be set in InputParameters file.");
Dialog.show();
measureSoma = Dialog.getCheckbox();

//  measuring prodedure starts using either the just created or a previously created table called "InputParameters.xls"
setBatchMode(true);
open(dirTemp+"InputParameters.xls");
for (i=0; i<list.length; i++) {

if (endsWith(list[i],".lsm")) {
filename = substring(list[i],0.(lengthOf(list[i])-4))+".tif";
thresholdDNA = getResult("thresholdDNA",i); //read out parameters from input file
thresholdVasa = getResult("thresholdVasa",i);
thresholdpCTD = getResult("thresholdpCTD",i);
lowerBorder = getResult("lowerBorder",i);
comment = getResultString("comment",i);
if (thresholdVasa!=-1) { //skip if no threshold in Vasa channel

is set
open(dirTemp+"DNA_"+filename);
run("3D Objects Counter", "threshold="+thresholdDNA+" slice=1 min.=300

max.=15000000 objects");
selectWindow("DNA_"+filename);
close();
selectWindow("Objects map of DNA_"+filename);
setMinAndMax(0.1); //create a mask from DNA channel
run("Apply LUT", "stack");
run("Invert", "stack");
run("8-bit");
saveAs("tiff",dirTemp+"DNA_map"); //save complete DNA objects map
open(dirTemp+"Vasa_"+filename);
run("3D Objects Counter", "threshold="+thresholdVasa+" slice=1 min.=600

max.=15000000 objects");
selectWindow("Vasa_"+filename);
close();
selectWindow("Objects map of Vasa_"+filename);
setMinAndMax(0.1); //create a mask from vasa channel
run("Apply LUT", "stack");
run("Invert", "stack");
run("8-bit");
numberSlices = nSlices();
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for (j=0; j<numberSlices; j++) {
selectWindow("Objects map of Vasa_"+filename);
setSlice(j+1);
run("Create Selection"); //apply that mask (slice by slice) to

DNA channel
selection = selectionType();
if (selection != -1) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Restore Selection");
run("Make Inverse");
run("Fill", "slice"); // black eveything OUTSIDE vasa

domain
}

}
selectWindow("DNA_map.tif");
run("Select None");
setMinAndMax(0.1); //create mask from DNA_map channel for

signals INSIDE vasa domain
run("Apply LUT", "stack");

HistoIn = newArray(256);
open(dirTemp+"pCTD_"+filename);
for (j=0; j<numberSlices; j++) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Create Selection");
selection = selectionType();
if (selection != -1) {

selectWindow("pCTD_"+filename); //apply mask to
pCTD channel and get histogram for each slice

setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

HistoIn[k] = HistoIn[k] + counts[k]; //sum up
histogram counts and save as array[256]

}
}
selectWindow("DNA_map.tif"); //close modified DNA_map
close();
selectWindow("Objects map of Vasa_"+filename); //select mask from

Vasa channel and invert
run("Select None");
setMinAndMax(0.1);
run("Apply LUT", "stack");
open(dirTemp+"DNA_map.tif");
setMinAndMax(0.1);
run("Apply LUT", "stack");

for (j=0; j<numberSlices; j++) {
selectWindow("Objects map of Vasa_"+filename);
setSlice(j+1);
run("Create Selection"); //apply inverted mask (slice by slice)

to DNA channel
selection = selectionType();
if (selection != -1) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Restore Selection");
run("Fill", "slice"); // black eveything INSIDE vasa

domain
}

}
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selectWindow("DNA_map.tif");
run("Select None");
setMinAndMax(0.1); //create mask from

DNA channel for signals OUTSIDE vasa domain
run("Apply LUT", "stack");
saveAs("tiff",dirTemp+"DNA_map"); //save modified DNA_map.

now DNA_map only contains somatic nuclei!!
HistoOut = newArray(256);
for (j=0; j<numberSlices; j++) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Create Selection");
selection = selectionType();
if (selection != -1) {

selectWindow("pCTD_"+filename); //apply mask to
pCTD channel and get histogram for each slice

setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

HistoOut[k] = HistoOut[k] + counts[k];
//sum up histogram counts and save as array[256]

}
}
selectWindow("DNA_map.tif"); //close modified DNA_map
close();

// measuring SNUP activity starts
if (measureSoma == true) {

if (lowerBorder == -1)
exit("Lower y-border not set. Check InputParameters

file.");
selectWindow("Objects map of Vasa_"+filename);
run("Select None");
setMinAndMax(0.1);
run("Apply LUT", "stack");
for (j=0; j<numberSlices; j++) {

// selectWindow("Objects map of Vasa_"+filename);
setSlice(j+1);
run("Create Selection");
selection = selectionType();
if (selection !=-1) {

getSelectionBounds(x, y, width, height);
//get coordinates of bounding box of selection

if (width < 3)
makeRectangle(x, 0. width,

lowerBorder); //make new selection with lower y-border and x-values from vasa mask
else

makeRectangle((x+(width*15/100)),0.(width-(width*15/100)),lowerBorder); //measure only in under-vasa-
area minus 15% from left and right

run("Clear", "slice");
}

}

run("Select None");
setMinAndMax(0.1); //created

changed mask from Vasa channel
run("Apply LUT", "stack");
open(dirTemp+"DNA_map.tif");

for (j=0; j<numberSlices; j++) {
selectWindow("Objects map of Vasa_"+filename);
setSlice(j+1);
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run("Create Selection"); //apply changed mask (slice
by slice) to DNA channel (vasa domain already blacked)

selection = selectionType();
if (selection != -1) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Restore Selection");
run("Fill", "slice"); // black eveything INSIDE

under-PGC area
}

}
selectWindow("DNA_map.tif");
run("Select None");
setMinAndMax(0.1); //create mask from DNA channel for

signals OUTSIDE under-PGC area
run("Apply LUT", "stack");
SomaNotUnder = newArray(256);
for (j=0; j<numberSlices; j++) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Create Selection");
selection = selectionType();
if (selection != -1) {

selectWindow("pCTD_"+filename); //apply
mask to pCTD channel and get histogram for each slice

setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

SomaNotUnder[k] = SomaNotUnder[k]
+ counts[k]; //sum up histogram counts and save as array[256]

}
}
selectWindow("DNA_map.tif"); //close changed

DNA_map
close();
selectWindow("Objects map of Vasa_"+filename); //select

changed mask from Vasa channel and invert
run("Select None");
run("Invert", "stack");
setMinAndMax(0.1);
run("Apply LUT", "stack");
open(dirTemp+"DNA_map.tif"); //open

DNA_map, with Vasa domain already blacked
for (j=0; j<numberSlices; j++) {

selectWindow("Objects map of Vasa_"+filename);
setSlice(j+1);
run("Create Selection"); //apply inverted changed

mask (slice by slice) to DNA channel (vasa domain already blacked)
selection = selectionType();
if (selection != -1) {

selectWindow("DNA_map.tif");
setSlice(j+1);
run("Restore Selection");
run("Fill", "slice"); // black eveything OUTSIDE

under-PGC area
}

}
selectWindow("DNA_map.tif");
run("Select None");
setMinAndMax(0.1); //create mask from DNA channel for

signals INSIDE under-PGC area
run("Apply LUT", "stack");
SomaUnder = newArray(256);
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for (j=0; j<numberSlices; j++) {
selectWindow("DNA_map.tif");
setSlice(j+1);
run("Create Selection");
selection = selectionType();
if (selection != -1) {

selectWindow("pCTD_"+filename); //apply
mask to pCTD channel and get histogram for each slice

setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

SomaUnder[k] = SomaUnder[k] +
counts[k]; //sum up histogram counts and save as array[256]

}
}

}
close();
close();
close();
NumberVoxelsIn = 0;
TotalValueIn = 0;
NumberVoxelsOut = 0;
TotalValueOut = 0;
NumberSomaNotUnder = 0;
TotalSomaNotUnder = 0;
NumberSomaUnder = 0;
TotalSomaUnder = 0;

/* pCTD threshold defines the background lvl of pCTD channel. each voxel with
intensity<theshold will be ignored in the statistics.
 * this is because of the yolk which always gives a signal in DAPI channel and
thereby will be treated as nuclei. this dramatically reduces
 * the average intensity of somatic pCTD. since there is no pCTD signal in the
yolk ignoring all voxels below threshold solves this issue.
 */

for (k=thresholdpCTD; k<256; k++) {
//ignore all values below threshold

if (measureSoma == true) {
NumberSomaNotUnder = NumberSomaNotUnder +

SomaNotUnder[k];
NumberSomaUnder = NumberSomaUnder +

SomaUnder[k];
TotalSomaNotUnder = TotalSomaNotUnder +

(k*SomaNotUnder[k]);
TotalSomaUnder = TotalSomaUnder + (k*SomaUnder[k]);

}
NumberVoxelsIn = NumberVoxelsIn + HistoIn[k];

//sum up all counts from histogram arrays
NumberVoxelsOut = NumberVoxelsOut + HistoOut[k];
TotalValueIn = TotalValueIn + (k*HistoIn[k]); //sum all

values(=intensities) from histogram arrays
TotalValueOut = TotalValueOut + (k*HistoOut[k]);

}
MeanIntensityIn = TotalValueIn/NumberVoxelsIn;

//calculate mean values
MeanIntensityOut = TotalValueOut/NumberVoxelsOut;
MeanSomaNotUnder = TotalSomaNotUnder/NumberSomaNotUnder;
MeanSomaUnder = TotalSomaUnder/NumberSomaUnder;
if (i==0) {

run("New... ", "name=NakedResults type=Table width=950
height=400"); //create new table if loop runs the first time

print("[NakedResults]",
"\\Headings:stage\tNumberVoxelsIn\tTotalValueIn\tNumberVoxelsOut\tTotalValueOut\tMeanIntensityIn\tMeanInten
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sityOut\tMeanSomaNotUnder\tMeanSomaUnder\tslideID\tname\tcomment\tthresholdDNA\tthresholdVasa\tthreshold
pCTD\tyborder");

}
slideID = substring(filename,0.12); //get info about staining from

filename
length = lengthOf(filename);
name = substring(filename,13,(length-4)); //store results and file info in

table
stage = substring(filename,18,20);
print("[NakedResults]", stage + "\t" + NumberVoxelsIn + "\t" + TotalValueIn

+ "\t" + NumberVoxelsOut + "\t" + TotalValueOut + "\t" + MeanIntensityIn + "\t" + MeanIntensityOut + "\t"
+MeanSomaNotUnder+ "\t" +MeanSomaUnder+ "\t" + slideID + "\t" + name + "\t" +comment+ "\t" + thresholdDNA
+ "\t" + thresholdVasa + "\t" + thresholdpCTD + "\t" + lowerBorder);

}
 else { // is run if stack is skipped

if (i==0) {
run("New... ", "name=NakedResults type=Table width=950

height=400"); //create new table if loop runs the first time
print("[NakedResults]",

"\\Headings:stage\tNumberVoxelsIn\tTotalValueIn\tNumberVoxelsOut\tTotalValueOut\tMeanIntensityIn\tMeanInten
sityOut\tMeanSomaNotUnder\tMeanSomaUnder\tslideID\tname\tcomment\tthresholdDNA\tthresholdVasa\tthreshold
pCTD\tyborder");

}
slideID = substring(filename,0.12); //get info about staining from

filename
length = lengthOf(filename);
name = substring(filename,13,(length-4)); //insert empty line in results

table, just file info and "skipped"+commment
stage = substring(filename,18,20);
print("[NakedResults]", stage + "\t" + "\t" + "\t" + "\t" + "\t" + "\t" + "\t" + "\t"

+ "\t" + slideID + "\t" + name + "\t" +comment+ "\t" + thresholdDNA + "\t" + thresholdVasa + "\t" + thresholdpCTD
+"\t" + lowerBorder);

}
}

}
selectWindow("NakedResults");
saveAs("Text", dirSource+"NakedResults.xls");
selectWindow("Results");
run("Close");
setBatchMode(false);
waitForUser("Info", "Naked results table saved in source folder");

}

Somatic vs. PGC distribution of osk and pgc RNA

first macro

//written by Andres Hertel March 2016
macro "soma_vs_PGC_get-ROI" {
//folder must contain a subfolder \input. subfolder \temp will be created

dir = getString("Enter directory path: ", "path");
setBatchMode(true);
numberChan = getNumber("Enter number of channels", 4); //ask for number of channels

//prompt user for channel identity. DNA, Vasa, measureThis (FISH), ignore
choice = newArray("DNA", "Vasa", "FISH", "ignore");
Dialog.create("Specify channels");
for (ch=0; ch<numberChan; ch++)  //variable "ch" is index of channel

Dialog.addChoice("Channel "+(ch+1)+":", choice);
Dialog.show();
chan = newArray(numberChan);
for (ch=0; ch<numberChan; ch++) {
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chan[ch] = Dialog.getChoice(); //save channel identity as array chan[ch]
}

//store list of files in source folder as array list[i]
dirSource = dir+"\\input\\";
dirTemp = dir+"\\temp\\";
File.makeDirectory(dirTemp);
list = getFileList(dirSource);
for (file=0; file<list.length; file++) {  //variable "file" is index of file list in input folder

filename = list[file];  //read filename
ID = substring(filename,0.15);  //ID of the file. used for saving ROIs and other output
if ((indexOf(filename, "st04")) != (-1)) { //check filename for presense for

"st04". if not, skip that file
open(dirSource+list[file]);
rename("bild");  //this makes it easier (while coding) since every file has the same name

now. real name is stored in "filename" variable
run("Split Channels");

//rename channels according to input. close all ignore channels
for (ch=0; ch<numberChan; ch++) {

selectWindow("C"+(ch+1)+"-bild");
if (chan[ch] == "ignore")

close();
else

rename("bild-"+chan[ch]);
}

//get ROIs from nuclei. save ROI lists in somewhere.
selectWindow("bild-DNA");
runMacro("F:\\GWDG-

cloud\\Fiji.app\\macros\\own\\workinprogress\\get_nuclear_ROI_v2-1.ijm"); //sub-macro closes "bild-DNA". 2 ROI
files are saved.
//rename ROI file from "bild-ROI" to "ID_ROI". ID is part of filename.

File.copy("F:\\soma_vs_PGC\\temp\\bild_DNA-ROI.zip", dir+"\\"+ID+"_DNA-
ROI.zip");
// File.copy("F:\\soma_vs_PGC\\test\\bild_DNA-ROI-spheres.zip",
"F:\\soma_vs_PGC\\test\\temp\\"+ID+"_DNA-ROI-spheres.zip")

File.copy("F:\\soma_vs_PGC\\temp\\bild_DNA-ROI-spheres.zip",
dir+"\\"+ID+"_DNA-ROI-spheres.zip");

selectWindow("bild-Vasa");
//submacro for finding the PGCs. needs stack "bild-Vasa" and Roi file "bild_DNA-ROI-spheres.zip". saves a ROI file
in folder.

runMacro("F:\\GWDG-
cloud\\Fiji.app\\macros\\own\\workinprogress\\identify_PGCs_and_label.ijm");
//copy ROI file

File.copy("F:\\soma_vs_PGC\\temp\\bild_nuclei-labeled.zip", dirTemp+ID+"_nuclei-
labeled.zip");
//save vasa channel in temp folder. apply "fire" LUT first

selectWindow("bild-Vasa");
run("Fire");
saveAs("Tiff", dirTemp+ID+"-Vasa.tif");
close("*"); //close all image windows
run("Collect Garbage"); //run Java garbage collector, which flushes memory to free

RAM space
wait(2000); //wait for 2seconds to let the garbage collector do its job

}
}
print("Done!");

}

second macro

//written by Andres Hertel February 2016
macro "get_nuclear_ROI" {
//macro should work on single channel stacks which contain the DAPI signal. make sure only one suitable image is
open/active
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//image must be named "bild-DNA"
rename("bild-DNA");
getDimensions(width, height, channels, slices, frames);

//correct brightness/contrast in z-dimension. increases brightness depending on z
runMacro("F:\\GWDG-cloud\\Fiji.app\\macros\\own\\z_correction_brightness.ijm");

//remove background. threshold 30.
setMinAndMax(30. 255);
run("Apply LUT", "stack");

//gaussian smooth
run("Gaussian Blur...", "sigma=2 stack");
setMinAndMax(10. 255); //this reduces background substantially!!
run("Apply LUT", "stack");

//apply s-log curve. slope is set to 7
runMacro("F:\\GWDG-cloud\\Fiji.app\\macros\\own\\workinprogress\\burn_in_s-log.ijm");

//find local maxima. use 3D suite plugin. radius in xyz is 3microns. use Voxelsize to calc pixel values
getVoxelSize(x,y,z,unit);
setVoxelSize(x,x,z,unit);
getVoxelSize(x,y,z,unit);
Voxelvolume = x*y*z; //volume of one voxel in cubic microns
x_rad = round(3/x);
y_rad = round(3/y);
z_rad = round(3/z);
run("3D Fast Filters","filter=MaximumLocal radius_x_pix="+x_rad+" radius_y_pix="+y_rad+"

radius_z_pix="+z_rad+" Nb_cpus=8");
//use "3D_MaximumLocal" as a seed for 3D watershed

run("3D Watershed", "seeds_threshold=50 image_threshold=0 image=bild-DNA
seeds=3D_MaximumLocal radius=2");
//get ROIs from watershed into 3D ROI manager

run("3D Manager");
selectWindow("watershed");
Ext.Manager3D_AddImage();

//save ROI list
Ext.Manager3D_Save("F:\\soma_vs_PGC\\temp\\bild_DNA-ROI.zip");
close("bild-DNA");
close("3D_MaximumLocal");
close("watershed");//all image windows(from this sub macro) closed

//remove all ROIs with volume lower than 25 cubic microns (normal nucleus has around 60). they are noise.
counter = 0; //object number is changing when an object is deleted. therefore manual increment of

select-object-counter
do {

Ext.Manager3D_Select(counter);
Ext.Manager3D_Measure3D(counter,"Vol",volume);
if (volume < (25/Voxelvolume)) {

Ext.Manager3D_Delete();
} else {

counter++;
}
Ext.Manager3D_Count(nb_obj);

} while (counter < nb_obj);
//get centroids from objects (nuclei) in 3D manager. draw sphere around center with r=5microns (use pixelvalues
here!)
//then add image with sphere to 3D manager. close image. repeat for all objects.

Ext.Manager3D_Count(nb_obj); //nb_obj = number of objects in 3D manager (number of nuclei)
for (m=0; m<nb_obj; m++) {

Ext.Manager3D_Select(m); //m is current object
Ext.Manager3D_Centroid3D(m,cx,cy,cz);
run("3D Draw Shape", "size="+width+","+height+","+slices+"

center="+(round(cx))+","+(round(cy))+","+(round(cz))+"
radius="+(round(5/x))+","+(round(5/y))+","+(round(5/z))+" vector1=1.0.0.0.0.0 vector2=0.0.1.0.0.0 res_xy=1.000
res_z=1.000 unit=unit value=255 display=[New stack]");

selectWindow("Shape3D");
Ext.Manager3D_AddImage();
close("Shape3D");

}
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//select first nb_obj objects, delete them. list now only contains ROIs defining spheres around each nucleus. save list
Ext.Manager3D_SelectFor(0.(nb_obj),1);
Ext.Manager3D_Delete();
Ext.Manager3D_Save("F:\\soma_vs_PGC\\temp\\bild_DNA-ROI-spheres.zip");
Ext.Manager3D_SelectAll();
Ext.Manager3D_Delete();
Ext.Manager3D_Close();
for (counter = 0; counter < 3; counter++) {

run("Collect Garbage");
wait(2000);

}
}

third macro

//written by Andres Hertel March 2016
macro "identify PGCs" {
//submacro for "soma_vs_PGC"
//requires single channel stack named "bild-Vasa" and a ROI list (from get_nuclear_ROI macro)

setMinAndMax(5, 255);
run("Apply LUT", "stack");  //remove everything darker than 5. its background
run("3D Manager");

//load ROI list which contains spheres around nuclei
Ext.Manager3D_Load("F:\\soma_vs_PGC\\temp\\bild_DNA-ROI-spheres.zip");
Ext.Manager3D_Count(nb_obj);  //get number of object in list
Labels = newArray(nb_obj);
MeanValues = newArray(nb_obj);
LabelsSort = newArray(nb_obj);
MeanValuesSort = newArray(nb_obj);
ratio = newArray(nb_obj);
ratio[0] = 1;
for (obj=0; obj<nb_obj; obj++) {

Ext.Manager3D_GetName(obj, objLabel);
Ext.Manager3D_Quantif3D(obj,"Mean",mean);
Labels[obj] = objLabel;  //save labels and mean values as array
MeanValues[obj] = mean;

}
ranks = Array.rankPositions(MeanValues); //get ranks of meanValues in anscending order

//sort Labels[obj] and MeanValues[obj] according to ranks. save as new arrays
for (obj=0; obj<nb_obj; obj++) {

index = ranks[obj];
LabelsSort[obj] = Labels[index];
MeanValuesSort[obj] = MeanValues[index];

}
//calculate relative change from MeanvaluesSort[obj] to next number in array

for (obj=1; obj<nb_obj; obj++)  //skip first entry as there is no previous one
ratio[obj] = MeanValuesSort[obj]/MeanValuesSort[(obj-1)];

maxima = Array.findMaxima(ratio, 0.01);
//find the highest maximum for which MeanValue>5 (below that cannot be a PGC)

obj = 0;
do {

index = maxima[obj];
obj++;

} while ((MeanValuesSort[index]) < 5); //variable "index" now contains the position of first PGC in
MeanValuesSort[obj]
//every object equal or brighter than "MeanValuesSort[index]" is considered a PGC nucleus.

Ext.Manager3D_DeselectAll();
//rename all objects to "soma_<number>" or "PGC_<number>"

for (obj=0; obj<nb_obj; obj++) {
Ext.Manager3D_Select(obj);
if ((MeanValues[obj]) < (MeanValuesSort[index]))

Ext.Manager3D_Rename("soma_"+obj);
else

Ext.Manager3D_Rename("PGC_"+obj);
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}
Ext.Manager3D_SelectAll();

//save selected objects as file
Ext.Manager3D_Save("F:\\soma_vs_PGC\\temp\\bild_nuclei-labeled.zip");

//delete all objects, then close 3D manager, then run garbage collector 3 times
Ext.Manager3D_Delete();
Ext.Manager3D_Close();
for (counter = 0; counter < 3; counter++) {

run("Collect Garbage");
wait(2000);

}
}

fourth macro

//written by Andres Hertel February-June 2016
macro "soma_vs_PGC_measure" {

dir = getString("Enter directory path: ", "path");
setBatchMode(true);
numberChan = getNumber("Enter number of channels", 4); //ask for number of channels

//prompt user for channel identity. DNA, Vasa, measureThis (FISH), ignore
choice = newArray("DNA", "Vasa", "FISH", "ignore");
Dialog.create("Specify channels");
for (ch=0; ch<numberChan; ch++)  //variable "ch" is index of channel

Dialog.addChoice("Channel "+(ch+1)+":", choice);
Dialog.show();
chan = newArray(numberChan);
for (ch=0; ch<numberChan; ch++) {

chan[ch] = Dialog.getChoice(); //save channel identity as array chan[ch]
}
threshVASA = 10;  //threshold for quantifying Vasa staining later. every voxel below threshVASA will be

ignored
threshFISH = 10; //threshold for quantifying FISH staining later. every voxel below threshFISH will be

ignored
dirSource = dir+"\\input\\";
dirTemp = dir+"\\temp\\";
list = getFileList(dirSource);  //store list of files in source folder as array list[i]

//create output table
tableName = "[results_table]";
run("New... ", "name="+tableName+" type=Table"); print(tableName,

"\\Headings:filename\tnb_PGC\tVASAVasaMaskOUTvox\tVASAVasaMaskOUTtot\tVASAVasaMaskINvox\tVAS
AVasaMaskINtot\tFISHVasaMaskOUTvox\tFISHVasaMaskOUTtot\tFISHVasaMaskINvox\tFISHVasaMaskINtot\t
VASAPGCMaskOUTvox\tVASAPGCMaskOUTtot\tVASAPGCMaskINvox\tVASAPGCMaskINtot\tFISHPGCMas
kOUTvox\tFISHPGCMaskOUTtot\tFISHPGCMaskINvox\tFISHPGCMaskINtot\tcomments"); //header of the table

for (file=0; file<list.length; file++) {  //variable "file" is index of file list in input folder
filename = list[file];  //read filename
ID = substring(filename,0.15);  //ID of the file. used for saving ROIs and other output
if ((indexOf(filename, "st04")) != (-1)) { //check filename for presense for

"st04". if not, skip that file
open(dirSource+list[file]);
rename("bild");  //this makes it easier (while coding) since every file has the same name

now. real name is stored in "filename" variable
getVoxelSize(x,y,z,unit);
run("Split Channels");

//rename channels according to input. close all ignore channels
for (ch=0; ch<numberChan; ch++) {

selectWindow("C"+(ch+1)+"-bild");
if (chan[ch] == "ignore")

close();
else

rename("bild-"+chan[ch]);
}

//create mask from Vasa channel. duplicate image first.
selectWindow("bild-Vasa");
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run("Select None"); //make sure there is no selection in image! f*cking important!
run("Duplicate...", "duplicate");
selectWindow("bild-Vasa-1");
rename("bild-Vasa-mask");
run("Gaussian Blur...", "sigma=0.2 scaled stack");
setMinAndMax(10. 255); //remove background
run("Apply LUT", "stack");

//first blur, then background removal is good for getting rid of unspecific stuff
run("Gaussian Blur...", "sigma=0.2 scaled stack");
setMinAndMax(5, 255); //remove background
run("Apply LUT", "stack");
runMacro("F:\\GWDG-cloud\\Fiji.app\\macros\\own\\workinprogress\\burn_in_s-

log.ijm");
run("Gaussian Blur...", "sigma=0.50 scaled stack");
setMinAndMax(20. 255); //remove background
run("Apply LUT", "stack");

//mask is ready for removal of somatic Vasa
run("3D Manager");
Ext.Manager3D_Load(dirTemp+ID+"_nuclei-labeled.zip"); //load ROI file which

contains somatic spheres (manually corrected)
selectWindow("bild-Vasa-mask");
Ext.Manager3D_SelectAll();
Ext.Manager3D_Erase(); //deletes objects from list AND deletes regions in the stack

setThreshold(1, 255);
run("Make Binary", "method=Default background=Default black");
Ext.Manager3D_AddImage(); //add remainings as ROI, then save it
Ext.Manager3D_Save(dir+"\\"+ID+"_Vasa-clean.zip");
Ext.Manager3D_SelectAll();
Ext.Manager3D_Delete();
Ext.Manager3D_Close();

//done with making Vasa mask. proceed with making mask from PGCs
selectWindow("bild-FISH");
getDimensions(width, height, channels, slices, frames); //get info about image size and

slices
newImage("HyperStack", "8-bit color-mode", width, height, 1, slices, 1); //create blank

(black) stack with same size. there the ROIs will be drawn
run("3D Manager");
Ext.Manager3D_Load(dir+"\\"+ID+"_DNA-ROI-spheres.zip"); //load ROI file with

nuclear spheres (all nuclei!)
Ext.Manager3D_Count(nb_nuc); //number of objects is number of nuclei

// print("nb_nuc: "+nb_nuc);
selectWindow("HyperStack");
Ext.Manager3D_SelectAll(); //select all objects
Ext.Manager3D_FillStack(255, 255, 255); //fills the ROI with white
Ext.Manager3D_Delete(); //deletes objects from ROI manager list

//HyperStack now has all nuclear spheres filled
Ext.Manager3D_Load(dirTemp+ID+"_nuclei-labeled.zip"); //load ROI file which

contains somatic spheres (manually corrected)
Ext.Manager3D_Count(nb_som);
nb_PGC = (nb_nuc - nb_som); //number of PGC!
Ext.Manager3D_SelectAll(); //select all objects
Ext.Manager3D_Erase(); //deletes objects from list AND deletes regions in the stack

//HyperStack now only contains PGC spheres
Ext.Manager3D_Close();

//expand PGC selection in 3D. 1micron in all directions.
//ratio of xy-scale to z-scale determines how often "dilate" (only xy-dimension) is used before using "dilate 3D" (xyz)
once

for (counter = 1; counter < (round(z/x)); counter++)
run("Dilate", "stack");

run("Dilate (3D)", "iso=255");
//load soma-spheres ROI file. then delete these regions in "hyperStack". whats left are PGCs without somatic
Vasa/FISH signal!!

run("3D Manager");
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Ext.Manager3D_Load(dirTemp+ID+"_nuclei-labeled.zip"); //load ROI file which
contains somatic spheres (manually corrected)

Ext.Manager3D_SelectAll(); //select all objects
Ext.Manager3D_Erase(); //deletes objects from list AND deletes regions in the stack
Ext.Manager3D_AddImage(); //add remainings as ROI, then save it
Ext.Manager3D_Save(dir+"\\"+ID+"_PGC-clean.zip");
Ext.Manager3D_SelectAll();
Ext.Manager3D_Delete();
Ext.Manager3D_Close();

//done with making PGC mask. proceed with measuring
/* use both masks (from Vasa channel: "bild-Vasa-mask" and from PGCs: "HyperStack") to measure intensities
inside and outside these
masks. measure in Vasa channel and in FISH channel. so 8 measurements: two channels, two masks, inside & outside.
(2*2*2 = 8)
for each measurement the number of voxels above threshold and the total intensity of these voxels are stored. (= 16
values)
mean values can be calculated later in excel/origin if needed. names of variables are:
VASAVasaMaskOUTvox, VASAVasaMaskOUTtot, VASAVasaMaskINvox, VASAVasaMaskINtot
FISHVasaMaskOUTvox, FISHVasaMaskOUTtot, FISHVasaMaskINvox, FISHVasaMaskINtot
VASAPGCMaskOUTvox, VASAPGCMaskOUTtot, VASAPGCMaskINvox, VASAPGCMaskINtot
FISHPGCMaskOUTvox, FISHPGCMaskOUTtot, FISHPGCMaskINvox, FISHPGCMaskINtot
*/

VASAVasaMaskOUT = newArray(256); //create array for storing brightness
histograms

VASAVasaMaskIN = newArray(256);
FISHVasaMaskOUT = newArray(256);
FISHVasaMaskIN = newArray(256);
VASAPGCMaskOUT = newArray(256);
VASAPGCMaskIN = newArray(256);
FISHPGCMaskOUT = newArray(256);
FISHPGCMaskIN = newArray(256);

//use Vasa-mask first.
for (j=0; j<slices; j++) {

selectWindow("bild-Vasa-mask");
setSlice(j+1);
run("Create Selection");
if (selectionType != -1) {  //skip slice if nothing selected

selectWindow("bild-Vasa");
setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

VASAVasaMaskOUT[k] = VASAVasaMaskOUT[k] +
counts[k]; //sum up histogram counts and store as array

run("Make Inverse");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

VASAVasaMaskIN[k] = VASAVasaMaskIN[k] +
counts[k]; //sum up histogram counts and store as array

selectWindow("bild-FISH"); //repeat measuring in FISH channel
setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

FISHVasaMaskIN[k] = FISHVasaMaskIN[k] + counts[k];
//sum up histogram counts and store as array

run("Make Inverse");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

FISHVasaMaskOUT[k] = FISHVasaMaskOUT[k] +
counts[k]; //sum up histogram counts and store as array

}
}

//now repeat all the measuring with PGCmask
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for (j=0; j<slices; j++) {
selectWindow("HyperStack"); //mask. contains PGC without adjacent

soma
setSlice(j+1);
run("Create Selection");
run("Make Inverse");
if (selectionType != -1) { //skip slice if nothing selected

selectWindow("bild-Vasa");
setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

VASAPGCMaskIN[k] = VASAPGCMaskIN[k] +
counts[k]; //sum up histogram counts and store as array

run("Make Inverse");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

VASAPGCMaskOUT[k] = VASAPGCMaskOUT[k] +
counts[k]; //sum up histogram counts and store as array
//now measure in FISH channel

selectWindow("bild-FISH"); //apply mask to FISH channel and get
histogram for each slice

setSlice(j+1);
run("Restore Selection");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

FISHPGCMaskOUT[k] = FISHPGCMaskOUT[k] +
counts[k]; //sum up histogram counts for FISHinPGC and save as array[256]

run("Make Inverse");
getHistogram(values, counts, 256);
for (k=0; k<256; k++)

FISHPGCMaskIN[k] = FISHPGCMaskIN[k] + counts[k];
//sum up histogram counts for FISHinSoma and save as array[256]

}
}
VASAVasaMaskOUTvox = 0; //number of voxels outside mask AND above

threshold
VASAVasaMaskOUTtot = 0; //total intensity of all voxels outside mask AND above

threshold
VASAVasaMaskINvox = 0;
VASAVasaMaskINtot = 0;
FISHVasaMaskOUTvox = 0;
FISHVasaMaskOUTtot = 0;
FISHVasaMaskINvox = 0;
FISHVasaMaskINtot = 0;
VASAPGCMaskOUTvox = 0;
VASAPGCMaskOUTtot = 0;
VASAPGCMaskINvox = 0;
VASAPGCMaskINtot = 0;
FISHPGCMaskOUTvox = 0;
FISHPGCMaskOUTtot = 0;
FISHPGCMaskINvox = 0;
FISHPGCMaskINtot = 0;

//sum up the histogram arrays for VASA channel
for (k=threshVASA; k<256; k++) { //sum up histograms. ignore

all values below threshold, because loop starts with threshold
VASAVasaMaskOUTvox = VASAVasaMaskOUTvox +

VASAVasaMaskOUT[k]; //sum up all counts from histogram arrays
VASAVasaMaskINvox = VASAVasaMaskINvox + VASAVasaMaskIN[k];
VASAPGCMaskOUTvox = VASAPGCMaskOUTvox +

VASAPGCMaskOUT[k];
VASAPGCMaskINvox = VASAPGCMaskINvox + VASAPGCMaskIN[k];
VASAVasaMaskOUTtot = VASAVasaMaskOUTtot +

(k*VASAVasaMaskOUT[k]); //sum all values(=intensities) from histogram arrays
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VASAVasaMaskINtot = VASAVasaMaskINtot + (k*VASAVasaMaskIN[k]);
VASAPGCMaskOUTtot = VASAPGCMaskOUTtot +

(k*VASAPGCMaskOUT[k]);
VASAPGCMaskINtot = VASAPGCMaskINtot + (k*VASAPGCMaskIN[k]);

}
//sum up the histogram arrays for FISH channel

for (k=threshFISH; k<256; k++) { //sum up histograms. ignore
all values below threshold

FISHVasaMaskOUTvox = FISHVasaMaskOUTvox +
FISHVasaMaskOUT[k]; //sum up all counts from histogram arrays

FISHVasaMaskINvox = FISHVasaMaskINvox + FISHVasaMaskIN[k];
FISHPGCMaskOUTvox = FISHPGCMaskOUTvox + FISHPGCMaskOUT[k];
FISHPGCMaskINvox = FISHPGCMaskINvox + FISHPGCMaskIN[k];
FISHVasaMaskOUTtot = FISHVasaMaskOUTtot +

(k*FISHVasaMaskOUT[k]); //sum all values(=intensities) from histogram arrays
FISHVasaMaskINtot = FISHVasaMaskINtot + (k*FISHVasaMaskIN[k]);
FISHPGCMaskOUTtot = FISHPGCMaskOUTtot +

(k*FISHPGCMaskOUT[k]);
FISHPGCMaskINtot = FISHPGCMaskINtot + (k*FISHPGCMaskIN[k]);

}
print(tableName,

filename+"\t"+nb_PGC+"\t"+VASAVasaMaskOUTvox+"\t"+VASAVasaMaskOUTtot+"\t"+VASAVasaMaskINvox
+"\t"+VASAVasaMaskINtot+"\t"+FISHVasaMaskOUTvox+"\t"+FISHVasaMaskOUTtot+"\t"+FISHVasaMaskINvo
x+"\t"+FISHVasaMaskINtot+"\t"+VASAPGCMaskOUTvox+"\t"+VASAPGCMaskOUTtot+"\t"+VASAPGCMaskI
Nvox+"\t"+VASAPGCMaskINtot+"\t"+FISHPGCMaskOUTvox+"\t"+FISHPGCMaskOUTtot+"\t"+FISHPGCMaskI
Nvox+"\t"+FISHPGCMaskINtot);
//save results table after each embryo. in case of memory error the progress is not lost

selectWindow("results_table");
saveAs("Text", dir+"\\results_table.txt");
close("*"); //close all image windows
run("Collect Garbage"); //run Java garbage collector, which flushes memory to free

RAM space
wait(2000); //wait for 2seconds to let the garbage collector do its job

}
}
run("Close"); //close all windows
print("All done!!");

}

Germ plasm intensity profiles

//written by Andres Hertel, July 2015
macro "measure germ plasm v1.3" {

dirSource = getString("Enter directory path: ", "path");
setBatchMode(true);
list = getFileList(dirSource);
for (i=0; i<list.length; i++) {

filename = list[i];
if ((indexOf(filename, "div")) != (-1)) { //check filename for presense for "div".

if not, skip that file
open(dirSource+list[i]);
if (filename == "090615_1_A_1_04-st01-div5.lsm") //because this stack has

wrong orientation
run("Rotate 90 Degrees Right");

rename("bild");
slices = nSlices/4; //divide by number of channels
run("Make Substack...", "channels=3-4 slices=1-"+slices+""); //keep two

channels open, but measure only one. or else "enhance contrast" isn't working
run("Split Channels");
selectWindow("C1-bild-1"); //C1 = VASA channel; C2 = pgc channel
run("Enhance Contrast...", "saturated=0.001 process_all use"); //(at least) two

channels have to be open to perform this task. one is not working!
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run("Reslice [/]...", "output=1.007 start=Top avoid");
run("Z Project...", "projection=[Max Intensity]");
y = slices/2;
run("Specify...", "width=1024 height=10 x=512 y="+y+" centered");

profile = getProfile();
for (j=0; j<profile.length; j++)

setResult(filename, (j), profile[j]);
close("*");

}
}
saveAs("Results", dirSource+"results-table.txt");
setBatchMode(false);
waitForUser("Info", "Results table saved in source folder");

}

Others

macro "z correction brightness [Z]" {
Slices = nSlices();
k = 0.9;
for (j=1; j<(Slices); j++) {

setSlice(j+1);
if (j < (round(Slices/2))) {

y = j;
} else {

y = (2*j)-(round(Slices/2));
}
y = round(y*k);
setMinAndMax(0. (255-y));
run("Apply LUT", "Slice");

}
}

//written by Andres Hertel, October 2015
macro "apply s-log" {
setBatchMode(true);
//defines slope of log-function. 1 means almost linear. the higher the value the steeper the slope. must be integer

slope = 7;
getDimensions(width, height, channels, slices, frames);
if (channels > 1)

exit("Single channel image required!");
//determine brightest pixel in stack, store in maxVal variable

maxVal = 0;
for (i=0; i<slices; i++) {

setSlice(i+1);
getStatistics(area, mean, min, max);
if (max > maxVal)

maxVal = max;
}

//find real bit depth of picture. the smallest n with 2^n>maxVal
bit = 0;
do {

bit++;
} while (((pow(2,bit))-1) < maxVal);
if (bit < 8)

bit = 8; //minimum depth is 8bit
//increase brightness of stack that it uses complete dynamic range of (2^bit)-1

factor = ((pow(2,bit))-1)/maxVal;
for (i=0; i<slices; i++) {
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setSlice(i+1);
for (x=0; x<width; x++) {

for (y=0; y<height; y++) {
intensity = getPixel(x,y);
intensity = floor(intensity*factor);
setPixel(x,y,intensity);

}
}

}
//calculate variables for log-function

factor = pow(2,(bit-slope));
correction = 1-(1/(2*factor));
if (factor<1)

correction = 0;
scaling = ((pow(2,slope))/(log(pow(2,slope))))*factor;
scalingCorrection = log(((pow(2,bit))-1)/factor)/log((((pow(2,bit))-1)/factor)+correction);

//apply log-function to every pixel in every slice
for (i=0; i<slices; i++) {

setSlice(i+1);
for (x=0; x<width; x++) {

for (y=0; y<height; y++) {
intensity = getPixel(x,y);
if (intensity != 0) {

intensity =
log((intensity/factor)+correction)*scaling*scalingCorrection;

intensity = floor(intensity);
setPixel(x,y,intensity);

}
}

}
}

// beep();
run("Collect Garbage");

}
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